
OCaml library

December 12, 2006

Contents

1 Module Arg : Parsing of command line arguments. 3

2 Module Array : Array operations. 5

3 Module ArrayLabels : Array operations. 9

4 Module Buffer : Extensible string bu�ers. 11

5 Module Callback : Registering Caml values with the C runtime. 13

6 Module CamlinternalMod 13

7 Module CamlinternalOO : Run-time support for objects and classes. 14

8 Module Char : Character operations. 17

9 Module Complex : Complex numbers. 18

10 Module Digest : MD5 message digest. 20

11 Module Filename : Operations on �le names. 20

12 Module Format : Pretty printing. 22

13 Module Gc : Memory management control and statistics; �nalised values. 33

14 Module Genlex : A generic lexical analyzer. 38

15 Module Hashtbl : Hash tables and hash functions. 39

16 Module Int32 : 32-bit integers. 42

17 Module Int64 : 64-bit integers. 44

18 Module Lazy : Deferred computations. 48

19 Module Lexing : The run-time library for lexers generated by ocamllex. 48

1

20 Module List : List operations. 50

21 Module ListLabels : List operations. 55

22 Module Map : Association tables over ordered types. 59

23 Module Marshal : Marshaling of data structures. 61

24 Module MoreLabels : Extra labeled libraries. 63

25 Module Nativeint : Processor-native integers. 66

26 Module Obj : Operations on internal representations of values. 69

27 Module Oo : Operations on objects 70

28 Module Parsing : The run-time library for parsers generated by ocamlyacc. 70

29 Module Pervasives : The initially opened module. 71

30 Module Printexc : Facilities for printing exceptions. 87

31 Module Printf : Formatted output functions. 87

32 Module Queue : First-in �rst-out queues. 90

33 Module Random : Pseudo-random number generators (PRNG). 91

34 Module Scanf : Formatted input functions. 93

35 Module Set : Sets over ordered types. 98

36 Module Sort : Sorting and merging lists. 101

37 Module Stack : Last-in �rst-out stacks. 101

38 Module StdLabels : Standard labeled libraries. 102

39 Module Stream : Streams and parsers. 105

40 Module String : String operations. 106

41 Module StringLabels : String operations. 109

42 Module Sys : System interface. 111

43 Module Weak : Arrays of weak pointers and hash tables of weak pointers. 115

44 Module Unix : Interface to the Unix system 118

2

45 Module Str : Regular expressions and high-level string processing 149

46 Module Bigarray : Large, multi-dimensional, numerical arrays. 154

47 Module Num : Operation on arbitrary-precision numbers. 168

1 Module Arg : Parsing of command line arguments.

This module provides a general mechanism for extracting options and arguments from the command
line to the program.

Syntax of command lines: A keyword is a character string starting with a -. An option is a
keyword alone or followed by an argument. The types of keywords are: Unit, Bool, Set, Clear,
String, Set_string, Int, Set_int, Float, Set_float, Tuple, Symbol, and Rest. Unit, Set and
Clear keywords take no argument. A Rest keyword takes the remaining of the command line
as arguments. Every other keyword takes the following word on the command line as argument.
Arguments not preceded by a keyword are called anonymous arguments.

Examples (cmd is assumed to be the command name):

• cmd -flag (a unit option)

• cmd -int 1 (an int option with argument 1)

• cmd -string foobar (a string option with argument "foobar")

• cmd -float 12.34 (a �oat option with argument 12.34)

• cmd a b c (three anonymous arguments: "a", "b", and "c")

• cmd a b � c d (two anonymous arguments and a rest option with two arguments)

type spec =
| Unit of (unit -> unit)

Call the function with unit argument

| Bool of (bool -> unit)

Call the function with a bool argument

| Set of bool Pervasives.ref

Set the reference to true

| Clear of bool Pervasives.ref

Set the reference to false

| String of (string -> unit)

Call the function with a string argument

| Set_string of string Pervasives.ref

Set the reference to the string argument

3

| Int of (int -> unit)

Call the function with an int argument

| Set_int of int Pervasives.ref

Set the reference to the int argument

| Float of (float -> unit)

Call the function with a �oat argument

| Set_float of float Pervasives.ref

Set the reference to the �oat argument

| Tuple of spec list

Take several arguments according to the spec list

| Symbol of string list * (string -> unit)

Take one of the symbols as argument and call the function with the symbol

| Rest of (string -> unit)

Stop interpreting keywords and call the function with each remaining argument

The concrete type describing the behavior associated with a keyword.

type key = string

type doc = string

type usage_msg = string

type anon_fun = string -> unit

val parse : (key * spec * doc) list -> anon_fun -> usage_msg -> unit

Arg.parse speclist anon_fun usage_msg parses the command line. speclist is a list of
triples (key, spec, doc). key is the option keyword, it must start with a '-' character.
spec gives the option type and the function to call when this option is found on the
command line. doc is a one-line description of this option. anon_fun is called on anonymous
arguments. The functions in spec and anon_fun are called in the same order as their
arguments appear on the command line.

If an error occurs, Arg.parse exits the program, after printing an error message as follows:

• The reason for the error: unknown option, invalid or missing argument, etc.

• usage_msg

• The list of options, each followed by the corresponding doc string.

For the user to be able to specify anonymous arguments starting with a -, include for
example ("-", String anon_fun, doc) in speclist.

By default, parse recognizes two unit options, -help and �help, which will display
usage_msg and the list of options, and exit the program. You can override this behaviour by
specifying your own -help and �help options in speclist.

4

val parse_argv :
?current:int Pervasives.ref ->
string array ->
(key * spec * doc) list -> anon_fun -> usage_msg -> unit

Arg.parse_argv �current args speclist anon_fun usage_msg parses the array args as
if it were the command line. It uses and updates the value of �current (if given), or
Arg.current. You must set it before calling parse_argv. The initial value of current is the
index of the program name (argument 0) in the array. If an error occurs, Arg.parse_argv
raises Arg.Bad with the error message as argument. If option -help or �help is given,
Arg.parse_argv raises Arg.Help with the help message as argument.

exception Help of string

Raised by Arg.parse_argv when the user asks for help.

exception Bad of string

Functions in spec or anon_fun can raise Arg.Bad with an error message to reject invalid
arguments. Arg.Bad is also raised by Arg.parse_argv in case of an error.

val usage : (key * spec * doc) list -> usage_msg -> unit

Arg.usage speclist usage_msg prints an error message including the list of valid options.
This is the same message that Arg.parse[1] prints in case of error. speclist and usage_msg
are the same as for Arg.parse.

val align : (key * spec * doc) list -> (key * spec * doc) list

Align the documentation strings by inserting spaces at the �rst space, according to the
length of the keyword. Use a space as the �rst character in a doc string if you want to align
the whole string. The doc strings corresponding to Symbol arguments are not aligned.

val current : int Pervasives.ref

Position (in Sys.argv[42]) of the argument being processed. You can change this value, e.g.
to force Arg.parse[1] to skip some arguments. Arg.parse[1] uses the initial value of
Arg.current[1] as the index of argument 0 (the program name) and starts parsing
arguments at the next element.

2 Module Array : Array operations.

val length : 'a array -> int

Return the length (number of elements) of the given array.

val get : 'a array -> int -> 'a

5

Array.get a n returns the element number n of array a. The �rst element has number 0.
The last element has number Array.length a - 1. You can also write a.(n) instead of
Array.get a n.

Raise Invalid_argument "index out of bounds" if n is outside the range 0 to
(Array.length a - 1).

val set : 'a array -> int -> 'a -> unit

Array.set a n x modi�es array a in place, replacing element number n with x. You can
also write a.(n) <- x instead of Array.set a n x.

Raise Invalid_argument "index out of bounds" if n is outside the range 0 to
Array.length a - 1.

val make : int -> 'a -> 'a array

Array.make n x returns a fresh array of length n, initialized with x. All the elements of this
new array are initially physically equal to x (in the sense of the == predicate). Consequently,
if x is mutable, it is shared among all elements of the array, and modifying x through one of
the array entries will modify all other entries at the same time.

Raise Invalid_argument if n < 0 or n > Sys.max_array_length. If the value of x is a
�oating-point number, then the maximum size is only Sys.max_array_length / 2.

val create : int -> 'a -> 'a array

Deprecated. Array.create is an alias for Array.make[2].

val init : int -> (int -> 'a) -> 'a array

Array.init n f returns a fresh array of length n, with element number i initialized to the
result of f i. In other terms, Array.init n f tabulates the results of f applied to the
integers 0 to n-1.

Raise Invalid_argument if n < 0 or n > Sys.max_array_length. If the return type of f is
float, then the maximum size is only Sys.max_array_length / 2.

val make_matrix : int -> int -> 'a -> 'a array array

Array.make_matrix dimx dimy e returns a two-dimensional array (an array of arrays) with
�rst dimension dimx and second dimension dimy. All the elements of this new matrix are
initially physically equal to e. The element (x,y) of a matrix m is accessed with the notation
m.(x).(y).

Raise Invalid_argument if dimx or dimy is negative or greater than
Sys.max_array_length. If the value of e is a �oating-point number, then the maximum size
is only Sys.max_array_length / 2.

val create_matrix : int -> int -> 'a -> 'a array array

Deprecated. Array.create_matrix is an alias for Array.make_matrix[2].

val append : 'a array -> 'a array -> 'a array

6

Array.append v1 v2 returns a fresh array containing the concatenation of the arrays v1 and
v2.

val concat : 'a array list -> 'a array

Same as Array.append, but concatenates a list of arrays.

val sub : 'a array -> int -> int -> 'a array

Array.sub a start len returns a fresh array of length len, containing the elements
number start to start + len - 1 of array a.

Raise Invalid_argument "Array.sub" if start and len do not designate a valid subarray
of a; that is, if start < 0, or len < 0, or start + len > Array.length a.

val copy : 'a array -> 'a array

Array.copy a returns a copy of a, that is, a fresh array containing the same elements as a.

val fill : 'a array -> int -> int -> 'a -> unit

Array.fill a ofs len x modi�es the array a in place, storing x in elements number ofs to
ofs + len - 1.

Raise Invalid_argument "Array.fill" if ofs and len do not designate a valid subarray of
a.

val blit : 'a array -> int -> 'a array -> int -> int -> unit

Array.blit v1 o1 v2 o2 len copies len elements from array v1, starting at element
number o1, to array v2, starting at element number o2. It works correctly even if v1 and v2
are the same array, and the source and destination chunks overlap.

Raise Invalid_argument "Array.blit" if o1 and len do not designate a valid subarray of
v1, or if o2 and len do not designate a valid subarray of v2.

val to_list : 'a array -> 'a list

Array.to_list a returns the list of all the elements of a.

val of_list : 'a list -> 'a array

Array.of_list l returns a fresh array containing the elements of l.

val iter : ('a -> unit) -> 'a array -> unit

Array.iter f a applies function f in turn to all the elements of a. It is equivalent to f
a.(0); f a.(1); ...; f a.(Array.length a - 1); ().

val map : ('a -> 'b) -> 'a array -> 'b array

Array.map f a applies function f to all the elements of a, and builds an array with the
results returned by f: [| f a.(0); f a.(1); ...; f a.(Array.length a - 1) |].

val iteri : (int -> 'a -> unit) -> 'a array -> unit

7

Same as Array.iter[2], but the function is applied to the index of the element as �rst
argument, and the element itself as second argument.

val mapi : (int -> 'a -> 'b) -> 'a array -> 'b array

Same as Array.map[2], but the function is applied to the index of the element as �rst
argument, and the element itself as second argument.

val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b array -> 'a

Array.fold_left f x a computes f (... (f (f x a.(0)) a.(1)) ...) a.(n-1),
where n is the length of the array a.

val fold_right : ('a -> 'b -> 'b) -> 'a array -> 'b -> 'b

Array.fold_right f a x computes f a.(0) (f a.(1) (... (f a.(n-1) x) ...)),
where n is the length of the array a.

Sorting

val sort : ('a -> 'a -> int) -> 'a array -> unit

Sort an array in increasing order according to a comparison function. The comparison
function must return 0 if its arguments compare as equal, a positive integer if the �rst is
greater, and a negative integer if the �rst is smaller (see below for a complete speci�cation).
For example, Pervasives.compare[29] is a suitable comparison function, provided there are
no �oating-point NaN values in the data. After calling Array.sort, the array is sorted in
place in increasing order. Array.sort is guaranteed to run in constant heap space and (at
most) logarithmic stack space.

The current implementation uses Heap Sort. It runs in constant stack space.

Speci�cation of the comparison function: Let a be the array and cmp the comparison
function. The following must be true for all x, y, z in a :

• cmp x y > 0 if and only if cmp y x < 0

• if cmp x y ≥ 0 and cmp y z ≥ 0 then cmp x z ≥ 0

When Array.sort returns, a contains the same elements as before, reordered in such a way
that for all i and j valid indices of a :

• cmp a.(i) a.(j) ≥ 0 if and only if i ≥ j

val stable_sort : ('a -> 'a -> int) -> 'a array -> unit

Same as Array.sort[2], but the sorting algorithm is stable (i.e. elements that compare equal
are kept in their original order) and not guaranteed to run in constant heap space.

The current implementation uses Merge Sort. It uses n/2 words of heap space, where n is the
length of the array. It is usually faster than the current implementation of Array.sort[2].

val fast_sort : ('a -> 'a -> int) -> 'a array -> unit

Same as Array.sort[2] or Array.stable_sort[2], whichever is faster on typical input.

8

3 Module ArrayLabels : Array operations.

val length : 'a array -> int

Return the length (number of elements) of the given array.

val get : 'a array -> int -> 'a

Array.get a n returns the element number n of array a. The �rst element has number 0.
The last element has number Array.length a - 1. Raise Invalid_argument "Array.get"
if n is outside the range 0 to (Array.length a - 1). You can also write a.(n) instead of
Array.get a n.

val set : 'a array -> int -> 'a -> unit

Array.set a n x modi�es array a in place, replacing element number n with x.

Raise Invalid_argument "Array.set" if n is outside the range 0 to Array.length a - 1.
You can also write a.(n) <- x instead of Array.set a n x.

val make : int -> 'a -> 'a array

Array.make n x returns a fresh array of length n, initialized with x. All the elements of this
new array are initially physically equal to x (in the sense of the == predicate). Consequently,
if x is mutable, it is shared among all elements of the array, and modifying x through one of
the array entries will modify all other entries at the same time.

Raise Invalid_argument if n < 0 or n > Sys.max_array_length. If the value of x is a
�oating-point number, then the maximum size is only Sys.max_array_length / 2.

val create : int -> 'a -> 'a array

Deprecated. Array.create is an alias for ArrayLabels.make[3].

val init : int -> f:(int -> 'a) -> 'a array

Array.init n f returns a fresh array of length n, with element number i initialized to the
result of f i. In other terms, Array.init n f tabulates the results of f applied to the
integers 0 to n-1.

val make_matrix : dimx:int -> dimy:int -> 'a -> 'a array array

Array.make_matrix dimx dimy e returns a two-dimensional array (an array of arrays) with
�rst dimension dimx and second dimension dimy. All the elements of this new matrix are
initially physically equal to e. The element (x,y) of a matrix m is accessed with the notation
m.(x).(y).

Raise Invalid_argument if dimx or dimy is less than 1 or greater than
Sys.max_array_length. If the value of e is a �oating-point number, then the maximum size
is only Sys.max_array_length / 2.

val create_matrix : dimx:int -> dimy:int -> 'a -> 'a array array

Deprecated. Array.create_matrix is an alias for ArrayLabels.make_matrix[3].

9

val append : 'a array -> 'a array -> 'a array

Array.append v1 v2 returns a fresh array containing the concatenation of the arrays v1 and
v2.

val concat : 'a array list -> 'a array

Same as Array.append, but concatenates a list of arrays.

val sub : 'a array -> pos:int -> len:int -> 'a array

Array.sub a start len returns a fresh array of length len, containing the elements
number start to start + len - 1 of array a.

Raise Invalid_argument "Array.sub" if start and len do not designate a valid subarray
of a; that is, if start < 0, or len < 0, or start + len > Array.length a.

val copy : 'a array -> 'a array

Array.copy a returns a copy of a, that is, a fresh array containing the same elements as a.

val fill : 'a array -> pos:int -> len:int -> 'a -> unit

Array.fill a ofs len x modi�es the array a in place, storing x in elements number ofs to
ofs + len - 1.

Raise Invalid_argument "Array.fill" if ofs and len do not designate a valid subarray of
a.

val blit :
src:'a array -> src_pos:int -> dst:'a array -> dst_pos:int -> len:int -> unit

Array.blit v1 o1 v2 o2 len copies len elements from array v1, starting at element
number o1, to array v2, starting at element number o2. It works correctly even if v1 and v2
are the same array, and the source and destination chunks overlap.

Raise Invalid_argument "Array.blit" if o1 and len do not designate a valid subarray of
v1, or if o2 and len do not designate a valid subarray of v2.

val to_list : 'a array -> 'a list

Array.to_list a returns the list of all the elements of a.

val of_list : 'a list -> 'a array

Array.of_list l returns a fresh array containing the elements of l.

val iter : f:('a -> unit) -> 'a array -> unit

Array.iter f a applies function f in turn to all the elements of a. It is equivalent to f
a.(0); f a.(1); ...; f a.(Array.length a - 1); ().

val map : f:('a -> 'b) -> 'a array -> 'b array

Array.map f a applies function f to all the elements of a, and builds an array with the
results returned by f: [| f a.(0); f a.(1); ...; f a.(Array.length a - 1) |].

10

val iteri : f:(int -> 'a -> unit) -> 'a array -> unit

Same as ArrayLabels.iter[3], but the function is applied to the index of the element as
�rst argument, and the element itself as second argument.

val mapi : f:(int -> 'a -> 'b) -> 'a array -> 'b array

Same as ArrayLabels.map[3], but the function is applied to the index of the element as �rst
argument, and the element itself as second argument.

val fold_left : f:('a -> 'b -> 'a) -> init:'a -> 'b array -> 'a

Array.fold_left f x a computes f (... (f (f x a.(0)) a.(1)) ...) a.(n-1),
where n is the length of the array a.

val fold_right : f:('a -> 'b -> 'b) -> 'a array -> init:'b -> 'b

Array.fold_right f a x computes f a.(0) (f a.(1) (... (f a.(n-1) x) ...)),
where n is the length of the array a.

Sorting

val sort : cmp:('a -> 'a -> int) -> 'a array -> unit

Sort an array in increasing order according to a comparison function. The comparison
function must return 0 if its arguments compare as equal, a positive integer if the �rst is
greater, and a negative integer if the �rst is smaller. For example, the
Pervasives.compare[29] function is a suitable comparison function. After calling
Array.sort, the array is sorted in place in increasing order. Array.sort is guaranteed to
run in constant heap space and logarithmic stack space.

The current implementation uses Heap Sort. It runs in constant stack space.

val stable_sort : cmp:('a -> 'a -> int) -> 'a array -> unit

Same as ArrayLabels.sort[3], but the sorting algorithm is stable and not guaranteed to use
a �xed amount of heap memory. The current implementation is Merge Sort. It uses n/2
words of heap space, where n is the length of the array. It is faster than the current
implementation of ArrayLabels.sort[3].

val fast_sort : cmp:('a -> 'a -> int) -> 'a array -> unit

Same as Array.sort[2] or Array.stable_sort[2], whichever is faster on typical input.

4 Module Buffer : Extensible string bu�ers.

This module implements string bu�ers that automatically expand as necessary. It provides accu-
mulative concatenation of strings in quasi-linear time (instead of quadratic time when strings are
concatenated pairwise).

type t

The abstract type of bu�ers.

11

val create : int -> t

create n returns a fresh bu�er, initially empty. The n parameter is the initial size of the
internal string that holds the bu�er contents. That string is automatically reallocated when
more than n characters are stored in the bu�er, but shrinks back to n characters when reset
is called. For best performance, n should be of the same order of magnitude as the number
of characters that are expected to be stored in the bu�er (for instance, 80 for a bu�er that
holds one output line). Nothing bad will happen if the bu�er grows beyond that limit,
however. In doubt, take n = 16 for instance. If n is not between 1 and
Sys.max_string_length[42], it will be clipped to that interval.

val contents : t -> string

Return a copy of the current contents of the bu�er. The bu�er itself is unchanged.

val sub : t -> int -> int -> string

Buffer.sub b off len returns (a copy of) the substring of the current contents of the
bu�er b starting at o�set off of length len bytes. May raise Invalid_argument if out of
bounds request. The bu�er itself is una�ected.

val nth : t -> int -> char

get the n-th character of the bu�er. Raise Invalid_argument if index out of bounds

val length : t -> int

Return the number of characters currently contained in the bu�er.

val clear : t -> unit

Empty the bu�er.

val reset : t -> unit

Empty the bu�er and deallocate the internal string holding the bu�er contents, replacing it
with the initial internal string of length n that was allocated by Buffer.create[4] n. For
long-lived bu�ers that may have grown a lot, reset allows faster reclamation of the space
used by the bu�er.

val add_char : t -> char -> unit

add_char b c appends the character c at the end of the bu�er b.

val add_string : t -> string -> unit

add_string b s appends the string s at the end of the bu�er b.

val add_substring : t -> string -> int -> int -> unit

add_substring b s ofs len takes len characters from o�set ofs in string s and appends
them at the end of the bu�er b.

val add_substitute : t -> (string -> string) -> string -> unit

12

add_substitute b f s appends the string pattern s at the end of the bu�er b with
substitution. The substitution process looks for variables into the pattern and substitutes
each variable name by its value, as obtained by applying the mapping f to the variable
name. Inside the string pattern, a variable name immediately follows a non-escaped $
character and is one of the following:

• a non empty sequence of alphanumeric or _ characters,

• an arbitrary sequence of characters enclosed by a pair of matching parentheses or curly
brackets. An escaped $ character is a $ that immediately follows a backslash character;
it then stands for a plain $. Raise Not_found if the closing character of a parenthesized
variable cannot be found.

val add_buffer : t -> t -> unit

add_buffer b1 b2 appends the current contents of bu�er b2 at the end of bu�er b1. b2 is
not modi�ed.

val add_channel : t -> Pervasives.in_channel -> int -> unit

add_channel b ic n reads exactly n character from the input channel ic and stores them
at the end of bu�er b. Raise End_of_file if the channel contains fewer than n characters.

val output_buffer : Pervasives.out_channel -> t -> unit

output_buffer oc b writes the current contents of bu�er b on the output channel oc.

5 Module Callback : Registering Caml values with the C runtime.

This module allows Caml values to be registered with the C runtime under a symbolic name, so
that C code can later call back registered Caml functions, or raise registered Caml exceptions.

val register : string -> 'a -> unit

Callback.register n v registers the value v under the name n. C code can later retrieve a
handle to v by calling caml_named_value(n).

val register_exception : string -> exn -> unit

Callback.register_exception n exn registers the exception contained in the exception
value exn under the name n. C code can later retrieve a handle to the exception by calling
caml_named_value(n). The exception value thus obtained is suitable for passign as �rst
argument to raise_constant or raise_with_arg.

6 Module CamlinternalMod

type shape =

13

| Function
| Lazy
| Class
| Module of shape array

val init_mod : string * int * int -> shape -> Obj.t

val update_mod : shape -> Obj.t -> Obj.t -> unit

7 Module CamlinternalOO : Run-time support for objects and classes.

All functions in this module are for system use only, not for the casual user.

Classes

type tag

type label

type table

type meth

type t

type obj

type closure

val public_method_label : string -> tag

val new_method : table -> label

val new_variable : table -> string -> int

val new_methods_variables :
table ->
string array -> string array -> label array

val get_variable : table -> string -> int

val get_variables : table -> string array -> int array

val get_method_label : table -> string -> label

val get_method_labels : table -> string array -> label array

val get_method : table -> label -> meth

val set_method : table -> label -> meth -> unit

val set_methods : table -> label array -> unit

val narrow : table -> string array -> string array -> string array -> unit

val widen : table -> unit

val add_initializer : table -> (obj -> unit) -> unit

val dummy_table : table

val create_table : string array -> table

val init_class : table -> unit

val inherits :

14

table ->
string array ->
string array ->
string array ->
t * (table -> obj -> Obj.t) *
t * obj ->
bool -> Obj.t * int array * closure array

val make_class :
string array ->
(table -> Obj.t -> t) ->
t * (table -> Obj.t -> t) *
(Obj.t -> t) * Obj.t

type init_table

val make_class_store : string array ->
(table -> t) ->
init_table -> unit

val dummy_class :
string * int * int ->
t * (table -> Obj.t -> t) *
(Obj.t -> t) * Obj.t
Objects

val copy : (< .. > as 'a) -> 'a

val create_object : table -> obj

val create_object_opt : obj -> table -> obj

val run_initializers : obj -> table -> unit

val run_initializers_opt : obj ->
obj -> table -> obj

val create_object_and_run_initializers : obj -> table -> obj

val send : obj -> tag -> t

val sendcache : obj ->
tag -> t -> int -> t

val sendself : obj -> label -> t

val get_public_method : obj -> tag -> closure
Table cache

type tables

val lookup_tables : tables ->
closure array -> tables
Builtins to reduce code size

val get_const : t -> closure

val get_var : int -> closure

val get_env : int -> int -> closure

15

val get_meth : label -> closure

val set_var : int -> closure

val app_const : (t -> t) ->
t -> closure

val app_var : (t -> t) -> int -> closure

val app_env : (t -> t) ->
int -> int -> closure

val app_meth : (t -> t) ->
label -> closure

val app_const_const : (t -> t -> t) ->
t -> t -> closure

val app_const_var : (t -> t -> t) ->
t -> int -> closure

val app_const_env : (t -> t -> t) ->
t -> int -> int -> closure

val app_const_meth : (t -> t -> t) ->
t -> label -> closure

val app_var_const : (t -> t -> t) ->
int -> t -> closure

val app_env_const : (t -> t -> t) ->
int -> int -> t -> closure

val app_meth_const : (t -> t -> t) ->
label -> t -> closure

val meth_app_const : label -> t -> closure

val meth_app_var : label -> int -> closure

val meth_app_env : label -> int -> int -> closure

val meth_app_meth : label -> label -> closure

val send_const : tag -> obj -> int -> closure

val send_var : tag -> int -> int -> closure

val send_env : tag -> int -> int -> int -> closure

val send_meth : tag -> label -> int -> closure

type impl =
| GetConst
| GetVar
| GetEnv
| GetMeth
| SetVar
| AppConst
| AppVar
| AppEnv
| AppMeth

16

| AppConstConst
| AppConstVar
| AppConstEnv
| AppConstMeth
| AppVarConst
| AppEnvConst
| AppMethConst
| MethAppConst
| MethAppVar
| MethAppEnv
| MethAppMeth
| SendConst
| SendVar
| SendEnv
| SendMeth
| Closure of closure
Parameters

type params = {
mutable compact_table : bool ;
mutable copy_parent : bool ;
mutable clean_when_copying : bool ;
mutable retry_count : int ;
mutable bucket_small_size : int ;

}

val params : params
Statistics

type stats = {
classes : int ;
methods : int ;
inst_vars : int ;

}

val stats : unit -> stats

8 Module Char : Character operations.

val code : char -> int

Return the ASCII code of the argument.

val chr : int -> char

Return the character with the given ASCII code. Raise Invalid_argument "Char.chr" if
the argument is outside the range 0�255.

val escaped : char -> string

17

Return a string representing the given character, with special characters escaped following
the lexical conventions of Objective Caml.

val lowercase : char -> char

Convert the given character to its equivalent lowercase character.

val uppercase : char -> char

Convert the given character to its equivalent uppercase character.

type t = char

An alias for the type of characters.

val compare : t -> t -> int

The comparison function for characters, with the same speci�cation as
Pervasives.compare[29]. Along with the type t, this function compare allows the module
Char to be passed as argument to the functors Set.Make[35] and Map.Make[22].

9 Module Complex : Complex numbers.

This module provides arithmetic operations on complex numbers. Complex numbers are represented
by their real and imaginary parts (cartesian representation). Each part is represented by a double-
precision �oating-point number (type float).

type t = {
re : float ;
im : float ;

}

The type of complex numbers. re is the real part and im the imaginary part.

val zero : t

The complex number 0.

val one : t

The complex number 1.

val i : t

The complex number i.

val neg : t -> t

Unary negation.

val conj : t -> t

Conjugate: given the complex x + i.y, returns x - i.y.

18

val add : t -> t -> t

Addition

val sub : t -> t -> t

Subtraction

val mul : t -> t -> t

Multiplication

val inv : t -> t

Multiplicative inverse (1/z).

val div : t -> t -> t

Division

val sqrt : t -> t

Square root. The result x + i.y is such that x > 0 or x = 0 and y >= 0. This function has
a discontinuity along the negative real axis.

val norm2 : t -> float

Norm squared: given x + i.y, returns x^2 + y^2.

val norm : t -> float

Norm: given x + i.y, returns sqrt(x^2 + y^2).

val arg : t -> float

Argument. The argument of a complex number is the angle in the complex plane between
the positive real axis and a line passing through zero and the number. This angle ranges
from -pi to pi. This function has a discontinuity along the negative real axis.

val polar : float -> float -> t

polar norm arg returns the complex having norm norm and argument arg.

val exp : t -> t

Exponentiation. exp z returns e to the z power.

val log : t -> t

Natural logarithm (in base e).

val pow : t -> t -> t

Power function. pow z1 z2 returns z1 to the z2 power.

19

10 Module Digest : MD5 message digest.

This module provides functions to compute 128-bit �digests� of arbitrary-length strings or �les. The
digests are of cryptographic quality: it is very hard, given a digest, to forge a string having that
digest. The algorithm used is MD5.

type t = string

The type of digests: 16-character strings.

val string : string -> t

Return the digest of the given string.

val substring : string -> int -> int -> t

Digest.substring s ofs len returns the digest of the substring of s starting at character
number ofs and containing len characters.

val channel : Pervasives.in_channel -> int -> t

If len is nonnegative, Digest.channel ic len reads len characters from channel ic and
returns their digest, or raises End_of_file if end-of-�le is reached before len characters are
read. If len is negative, Digest.channel ic len reads all characters from ic until
end-of-�le is reached and return their digest.

val file : string -> t

Return the digest of the �le whose name is given.

val output : Pervasives.out_channel -> t -> unit

Write a digest on the given output channel.

val input : Pervasives.in_channel -> t

Read a digest from the given input channel.

val to_hex : t -> string

Return the printable hexadecimal representation of the given digest.

11 Module Filename : Operations on �le names.

val current_dir_name : string

The conventional name for the current directory (e.g. . in Unix).

val parent_dir_name : string

The conventional name for the parent of the current directory (e.g. .. in Unix).

val concat : string -> string -> string

20

concat dir file returns a �le name that designates �le file in directory dir.

val is_relative : string -> bool

Return true if the �le name is relative to the current directory, false if it is absolute (i.e. in
Unix, starts with /).

val is_implicit : string -> bool

Return true if the �le name is relative and does not start with an explicit reference to the
current directory (./ or ../ in Unix), false if it starts with an explicit reference to the root
directory or the current directory.

val check_suffix : string -> string -> bool

check_suffix name suff returns true if the �lename name ends with the su�x suff.

val chop_suffix : string -> string -> string

chop_suffix name suff removes the su�x suff from the �lename name. The behavior is
unde�ned if name does not end with the su�x suff.

val chop_extension : string -> string

Return the given �le name without its extension. The extension is the shortest su�x
starting with a period and not including a directory separator, .xyz for instance.

Raise Invalid_argument if the given name does not contain an extension.

val basename : string -> string

Split a �le name into directory name / base �le name. concat (dirname name) (basename
name) returns a �le name which is equivalent to name. Moreover, after setting the current
directory to dirname name (with Sys.chdir[42]), references to basename name (which is a
relative �le name) designate the same �le as name before the call to Sys.chdir[42].

The result is not speci�ed if the argument is not a valid �le name (for example, under Unix
if there is a NUL character in the string).

val dirname : string -> string

See Filename.basename[11].

val temp_file : string -> string -> string

temp_file prefix suffix returns the name of a fresh temporary �le in the temporary
directory. The base name of the temporary �le is formed by concatenating prefix, then a
suitably chosen integer number, then suffix. The temporary �le is created empty, with
permissions 0o600 (readable and writable only by the �le owner). The �le is guaranteed to
be di�erent from any other �le that existed when temp_file was called.

val open_temp_file :
?mode:Pervasives.open_flag list ->
string -> string -> string * Pervasives.out_channel

21

Same as Filename.temp_file[11], but returns both the name of a fresh temporary �le, and
an output channel opened (atomically) on this �le. This function is more secure than
temp_file: there is no risk that the temporary �le will be modi�ed (e.g. replaced by a
symbolic link) before the program opens it. The optional argument mode is a list of
additional �ags to control the opening of the �le. It can contain one or several of
Open_append, Open_binary, and Open_text. The default is [Open_text] (open in text
mode).

val temp_dir_name : string

The name of the temporary directory: Under Unix, the value of the TMPDIR environment
variable, or "/tmp" if the variable is not set. Under Windows, the value of the TEMP
environment variable, or "." if the variable is not set.

val quote : string -> string

Return a quoted version of a �le name, suitable for use as one argument in a shell command
line, escaping all shell meta-characters.

12 Module Format : Pretty printing.

This module implements a pretty-printing facility to format text within �pretty-printing boxes�. The
pretty-printer breaks lines at speci�ed break hints, and indents lines according to the box structure.

For a gentle introduction to the basics of pretty-printing using Format, read http://caml.inria.fr/resources/doc/guides/format.html[http:
//caml.inria.fr/resources/doc/guides/format.html].

Warning: the material output by the following functions is delayed in the pretty-printer queue
in order to compute the proper line breaking. Hence, you should not mix calls to the printing
functions of the basic I/O system with calls to the functions of this module: this could result in
some strange output seemingly unrelated with the evaluation order of printing commands.

You may consider this module as providing an extension to the printf facility to provide au-
tomatic line breaking. The addition of pretty-printing annotations to your regular printf formats
gives you fancy indentation and line breaks. Pretty-printing annotations are described below in the
documentation of the function Format.fprintf[12].

You may also use the explicit box management and printing functions provided by this module.
This style is more basic but more verbose than the fprintf concise formats.

For instance, the sequence open_box 0; print_string "x ="; print_space (); print_int
1; close_box () that prints x = 1 within a pretty-printing box, can be abbreviated as printf
"@[%s@ %i@]" "x =" 1, or even shorter printf "@[x =@ %i@]" 1.

Rule of thumb for casual users of this library:

• use simple boxes (as obtained by open_box 0);

• use simple break hints (as obtained by print_cut () that outputs a simple break hint, or by
print_space () that outputs a space indicating a break hint);

• once a box is opened, display its material with basic printing functions (e. g. print_int and
print_string);

22

• when the material for a box has been printed, call close_box () to close the box;

• at the end of your routine, evaluate print_newline () to close all remaining boxes and �ush
the pretty-printer.

The behaviour of pretty-printing commands is unspeci�ed if there is no opened pretty-printing
box. Each box opened via one of the open_ functions below must be closed using close_box for
proper formatting. Otherwise, some of the material printed in the boxes may not be output, or may
be formatted incorrectly.

In case of interactive use, the system closes all opened boxes and �ushes all pending text (as
with the print_newline function) after each phrase. Each phrase is therefore executed in the initial
state of the pretty-printer.

Boxes

val open_box : int -> unit

open_box d opens a new pretty-printing box with o�set d. This box is the general purpose
pretty-printing box. Material in this box is displayed �horizontal or vertical�: break hints
inside the box may lead to a new line, if there is no more room on the line to print the
remainder of the box, or if a new line may lead to a new indentation (demonstrating the
indentation of the box). When a new line is printed in the box, d is added to the current
indentation.

val close_box : unit -> unit

Closes the most recently opened pretty-printing box.

Formatting functions

val print_string : string -> unit

print_string str prints str in the current box.

val print_as : int -> string -> unit

print_as len str prints str in the current box. The pretty-printer formats str as if it
were of length len.

val print_int : int -> unit

Prints an integer in the current box.

val print_float : float -> unit

Prints a �oating point number in the current box.

val print_char : char -> unit

Prints a character in the current box.

val print_bool : bool -> unit

Prints a boolean in the current box.

23

Break hints

val print_space : unit -> unit

print_space () is used to separate items (typically to print a space between two words). It
indicates that the line may be split at this point. It either prints one space or splits the line.
It is equivalent to print_break 1 0.

val print_cut : unit -> unit

print_cut () is used to mark a good break position. It indicates that the line may be split
at this point. It either prints nothing or splits the line. This allows line splitting at the
current point, without printing spaces or adding indentation. It is equivalent to
print_break 0 0.

val print_break : int -> int -> unit

Inserts a break hint in a pretty-printing box. print_break nspaces offset indicates that
the line may be split (a newline character is printed) at this point, if the contents of the
current box does not �t on the current line. If the line is split at that point, offset is added
to the current indentation. If the line is not split, nspaces spaces are printed.

val print_flush : unit -> unit

Flushes the pretty printer: all opened boxes are closed, and all pending text is displayed.

val print_newline : unit -> unit

Equivalent to print_flush followed by a new line.

val force_newline : unit -> unit

Forces a newline in the current box. Not the normal way of pretty-printing, you should
prefer break hints.

val print_if_newline : unit -> unit

Executes the next formatting command if the preceding line has just been split. Otherwise,
ignore the next formatting command.

Margin

val set_margin : int -> unit

set_margin d sets the value of the right margin to d (in characters): this value is used to
detect line over�ows that leads to split lines. Nothing happens if d is smaller than 2. If d is
too large, the right margin is set to the maximum admissible value (which is greater than
10^10).

val get_margin : unit -> int

Returns the position of the right margin.

Maximum indentation limit

val set_max_indent : int -> unit

24

set_max_indent d sets the value of the maximum indentation limit to d (in characters):
once this limit is reached, boxes are rejected to the left, if they do not �t on the current line.
Nothing happens if d is smaller than 2. If d is too large, the limit is set to the maximum
admissible value (which is greater than 10^10).

val get_max_indent : unit -> int

Return the value of the maximum indentation limit (in characters).

Formatting depth: maximum number of boxes allowed before ellipsis

val set_max_boxes : int -> unit

set_max_boxes max sets the maximum number of boxes simultaneously opened. Material
inside boxes nested deeper is printed as an ellipsis (more precisely as the text returned by
get_ellipsis_text ()). Nothing happens if max is smaller than 2.

val get_max_boxes : unit -> int

Returns the maximum number of boxes allowed before ellipsis.

val over_max_boxes : unit -> bool

Tests if the maximum number of boxes allowed have already been opened.

Advanced formatting

val open_hbox : unit -> unit

open_hbox () opens a new pretty-printing box. This box is �horizontal�: the line is not split
in this box (new lines may still occur inside boxes nested deeper).

val open_vbox : int -> unit

open_vbox d opens a new pretty-printing box with o�set d. This box is �vertical�: every
break hint inside this box leads to a new line. When a new line is printed in the box, d is
added to the current indentation.

val open_hvbox : int -> unit

open_hvbox d opens a new pretty-printing box with o�set d. This box is
�horizontal-vertical�: it behaves as an �horizontal� box if it �ts on a single line, otherwise it
behaves as a �vertical� box. When a new line is printed in the box, d is added to the current
indentation.

val open_hovbox : int -> unit

open_hovbox d opens a new pretty-printing box with o�set d. This box is �horizontal or
vertical�: break hints inside this box may lead to a new line, if there is no more room on the
line to print the remainder of the box. When a new line is printed in the box, d is added to
the current indentation.

Tabulations

val open_tbox : unit -> unit

Opens a tabulation box.

25

val close_tbox : unit -> unit

Closes the most recently opened tabulation box.

val print_tbreak : int -> int -> unit

Break hint in a tabulation box. print_tbreak spaces offset moves the insertion point to
the next tabulation (spaces being added to this position). Nothing occurs if insertion point
is already on a tabulation mark. If there is no next tabulation on the line, then a newline is
printed and the insertion point moves to the �rst tabulation of the box. If a new line is
printed, offset is added to the current indentation.

val set_tab : unit -> unit

Sets a tabulation mark at the current insertion point.

val print_tab : unit -> unit

print_tab () is equivalent to print_tbreak (0,0).

Ellipsis

val set_ellipsis_text : string -> unit

Set the text of the ellipsis printed when too many boxes are opened (a single dot, ., by
default).

val get_ellipsis_text : unit -> string

Return the text of the ellipsis.

Tags

type tag = string
Tags are used to decorate printed entities for user's de�ned purposes, e.g. setting font and giving

size indications for a display device, or marking delimitations of semantics entities (e.g. HTML or
TeX elements or terminal escape sequences).

By default, those tags do not in�uence line breaking calculation: the tag �markers� are not
considered as part of the printing material that drives line breaking (in other words, the length of
those strings is considered as zero for line breaking).

Thus, tag handling is in some sense transparent to pretty-printing and does not interfere with
usual pretty-printing. Hence, a single pretty printing routine can output both simple �verbatim�
material or richer decorated output depending on the treatment of tags. By default, tags are not
active, hence the output is not decorated with tag information. Once set_tags is set to true, the
pretty printer engine honors tags and decorates the output accordingly.

When a tag has been opened (or closed), it is both and successively �printed� and �marked�.
Printing a tag means calling a formatter speci�c function with the name of the tag as argument: that
�tag printing� function can then print any regular material to the formatter (so that this material
is enqueued as usual in the formatter queue for further line-breaking computation). Marking a
tag means to output an arbitrary string (the �tag marker�), directly into the output device of the
formatter. Hence, the formatter speci�c �tag marking� function must return the tag marker string
associated to its tag argument. Being �ushed directly into the output device of the formatter, tag
marker strings are not considered as part of the printing material that drives line breaking (in other

26

words, the length of the strings corresponding to tag markers is considered as zero for line breaking).
In addition, advanced users may take advantage of the speci�city of tag markers to be precisely
output when the pretty printer has already decided where to break the lines, and precisely when
the queue is �ushed into the output device.

In the spirit of HTML tags, the default tag marking functions output tags enclosed in "<" and
">": hence, the opening marker of tag t is "<t>" and the closing marker "</t>".

Default tag printing functions just do nothing.
Tag marking and tag printing functions are user de�nable and can be set by calling set_formatter_tag_functions.

val open_tag : tag -> unit

open_tag t opens the tag named t; the print_open_tag function of the formatter is called
with t as argument; the tag marker mark_open_tag t will be �ushed into the output device
of the formatter.

val close_tag : unit -> unit

close_tag () closes the most recently opened tag t. In addition, the print_close_tag
function of the formatter is called with t as argument. The marker mark_close_tag t will
be �ushed into the output device of the formatter.

val set_tags : bool -> unit

set_tags b turns on or o� the treatment of tags (default is o�).

val set_print_tags : bool -> unit

val set_mark_tags : bool -> unit

set_print_tags b turns on or o� the printing of tags, while set_mark_tags b turns on or
o� the output of tag markers.

val get_print_tags : unit -> bool

val get_mark_tags : unit -> bool

Return the current status of tags printing and tags marking.

Redirecting formatter output

val set_formatter_out_channel : Pervasives.out_channel -> unit

Redirect the pretty-printer output to the given channel.

val set_formatter_output_functions :
(string -> int -> int -> unit) -> (unit -> unit) -> unit

set_formatter_output_functions out flush redirects the pretty-printer output to the
functions out and flush.

The out function performs the pretty-printer output. It is called with a string s, a start
position p, and a number of characters n; it is supposed to output characters p to p + n - 1
of s. The flush function is called whenever the pretty-printer is �ushed using print_flush
or print_newline.

val get_formatter_output_functions :
unit -> (string -> int -> int -> unit) * (unit -> unit)

27

Return the current output functions of the pretty-printer.

Changing the meaning of printing tags

type formatter_tag_functions = {
mark_open_tag : tag -> string ;
mark_close_tag : tag -> string ;
print_open_tag : tag -> unit ;
print_close_tag : tag -> unit ;

}

The tag handling functions speci�c to a formatter: mark versions are the �tag marking�
functions that associate a string marker to a tag in order for the pretty-printing engine to
�ush those markers as 0 length tokens in the output device of the formatter. print versions
are the �tag printing� functions that can perform regular printing when a tag is closed or
opened.

val set_formatter_tag_functions : formatter_tag_functions -> unit
set_formatter_tag_functions tag_funs changes the meaning of opening and closing tags to

use the functions in tag_funs.
When opening a tag name t, the string t is passed to the opening tag marking function (the

mark_open_tag �eld of the record tag_funs), that must return the opening tag marker for that
name. When the next call to close_tag () happens, the tag name t is sent back to the closing tag
marking function (the mark_close_tag �eld of record tag_funs), that must return a closing tag
marker for that name.

The print_ �eld of the record contains the functions that are called at tag opening and tag
closing time, to output regular material in the pretty-printer queue.

val get_formatter_tag_functions : unit -> formatter_tag_functions

Return the current tag functions of the pretty-printer.

Changing the meaning of pretty printing (indentation, line breaking, and printing material)

val set_all_formatter_output_functions :
out:(string -> int -> int -> unit) ->
flush:(unit -> unit) ->
newline:(unit -> unit) -> spaces:(int -> unit) -> unit

set_all_formatter_output_functions out flush outnewline outspace redirects the
pretty-printer output to the functions out and flush as described in
set_formatter_output_functions. In addition, the pretty-printer function that outputs a
newline is set to the function outnewline and the function that outputs indentation spaces
is set to the function outspace.

This way, you can change the meaning of indentation (which can be something else than just
printing space characters) and the meaning of new lines opening (which can be connected to
any other action needed by the application at hand). The two functions outspace and
outnewline are normally connected to out and flush: respective default values for
outspace and outnewline are out (String.make n ' ') 0 n and out "\n" 0 1.

val get_all_formatter_output_functions :

28

unit ->
(string -> int -> int -> unit) * (unit -> unit) * (unit -> unit) *
(int -> unit)

Return the current output functions of the pretty-printer, including line breaking and
indentation functions.

Multiple formatted output

type formatter

Abstract data type corresponding to a pretty-printer (also called a formatter) and all its
machinery. De�ning new pretty-printers permits the output of material in parallel on several
channels. Parameters of a pretty-printer are local to this pretty-printer: margin, maximum
indentation limit, maximum number of boxes simultaneously opened, ellipsis, and so on, are
speci�c to each pretty-printer and may be �xed independently. Given an output channel oc,
a new formatter writing to that channel is obtained by calling formatter_of_out_channel
oc. Alternatively, the make_formatter function allocates a new formatter with explicit
output and �ushing functions (convenient to output material to strings for instance).

val formatter_of_out_channel : Pervasives.out_channel -> formatter

formatter_of_out_channel oc returns a new formatter that writes to the corresponding
channel oc.

val std_formatter : formatter

The standard formatter used by the formatting functions above. It is de�ned as
formatter_of_out_channel stdout.

val err_formatter : formatter

A formatter to use with formatting functions below for output to standard error. It is
de�ned as formatter_of_out_channel stderr.

val formatter_of_buffer : Buffer.t -> formatter

formatter_of_buffer b returns a new formatter writing to bu�er b. As usual, the
formatter has to be �ushed at the end of pretty printing, using pp_print_flush or
pp_print_newline, to display all the pending material.

val stdbuf : Buffer.t

The string bu�er in which str_formatter writes.

val str_formatter : formatter

A formatter to use with formatting functions below for output to the stdbuf string bu�er.
str_formatter is de�ned as formatter_of_buffer stdbuf.

val flush_str_formatter : unit -> string

Returns the material printed with str_formatter, �ushes the formatter and resets the
corresponding bu�er.

29

val make_formatter :
(string -> int -> int -> unit) -> (unit -> unit) -> formatter

make_formatter out flush returns a new formatter that writes according to the output
function out, and the �ushing function flush. Hence, a formatter to the out channel oc is
returned by make_formatter (output oc) (fun () -> flush oc).

Basic functions to use with formatters

val pp_open_hbox : formatter -> unit -> unit

val pp_open_vbox : formatter -> int -> unit

val pp_open_hvbox : formatter -> int -> unit

val pp_open_hovbox : formatter -> int -> unit

val pp_open_box : formatter -> int -> unit

val pp_close_box : formatter -> unit -> unit

val pp_open_tag : formatter -> string -> unit

val pp_close_tag : formatter -> unit -> unit

val pp_print_string : formatter -> string -> unit

val pp_print_as : formatter -> int -> string -> unit

val pp_print_int : formatter -> int -> unit

val pp_print_float : formatter -> float -> unit

val pp_print_char : formatter -> char -> unit

val pp_print_bool : formatter -> bool -> unit

val pp_print_break : formatter -> int -> int -> unit

val pp_print_cut : formatter -> unit -> unit

val pp_print_space : formatter -> unit -> unit

val pp_force_newline : formatter -> unit -> unit

val pp_print_flush : formatter -> unit -> unit

val pp_print_newline : formatter -> unit -> unit

val pp_print_if_newline : formatter -> unit -> unit

val pp_open_tbox : formatter -> unit -> unit

val pp_close_tbox : formatter -> unit -> unit

val pp_print_tbreak : formatter -> int -> int -> unit

val pp_set_tab : formatter -> unit -> unit

val pp_print_tab : formatter -> unit -> unit

val pp_set_tags : formatter -> bool -> unit

val pp_set_print_tags : formatter -> bool -> unit

val pp_set_mark_tags : formatter -> bool -> unit

val pp_get_print_tags : formatter -> unit -> bool

val pp_get_mark_tags : formatter -> unit -> bool

val pp_set_margin : formatter -> int -> unit

30

val pp_get_margin : formatter -> unit -> int

val pp_set_max_indent : formatter -> int -> unit

val pp_get_max_indent : formatter -> unit -> int

val pp_set_max_boxes : formatter -> int -> unit

val pp_get_max_boxes : formatter -> unit -> int

val pp_over_max_boxes : formatter -> unit -> bool

val pp_set_ellipsis_text : formatter -> string -> unit

val pp_get_ellipsis_text : formatter -> unit -> string

val pp_set_formatter_out_channel :
formatter -> Pervasives.out_channel -> unit

val pp_set_formatter_output_functions :
formatter -> (string -> int -> int -> unit) -> (unit -> unit) -> unit

val pp_get_formatter_output_functions :
formatter -> unit -> (string -> int -> int -> unit) * (unit -> unit)

val pp_set_all_formatter_output_functions :
formatter ->
out:(string -> int -> int -> unit) ->
flush:(unit -> unit) ->
newline:(unit -> unit) -> spaces:(int -> unit) -> unit

val pp_get_all_formatter_output_functions :
formatter ->
unit ->
(string -> int -> int -> unit) * (unit -> unit) * (unit -> unit) *
(int -> unit)

val pp_set_formatter_tag_functions :
formatter -> formatter_tag_functions -> unit

val pp_get_formatter_tag_functions :
formatter -> unit -> formatter_tag_functions

These functions are the basic ones: usual functions operating on the standard formatter are
de�ned via partial evaluation of these primitives. For instance, print_string is equal to
pp_print_string std_formatter.

printf like functions for pretty-printing.

val fprintf : formatter -> ('a, formatter, unit) Pervasives.format -> 'a

fprintf ff format arg1 ... argN formats the arguments arg1 to argN according to the
format string format, and outputs the resulting string on the formatter ff. The format is a
character string which contains three types of objects: plain characters and conversion
speci�cations as speci�ed in the printf module, and pretty-printing indications. The
pretty-printing indication characters are introduced by a @ character, and their meanings are:

• @[: open a pretty-printing box. The type and o�set of the box may be optionally
speci�ed with the following syntax: the < character, followed by an optional box type
indication, then an optional integer o�set, and the closing > character. Box type is one

31

of h, v, hv, b, or hov, which stand respectively for an horizontal box, a vertical box, an
�horizontal-vertical� box, or an �horizontal or vertical� box (b standing for an
�horizontal or vertical� box demonstrating indentation and hov standing for a
regular�horizontal or vertical� box). For instance, @[<hov 2> opens an �horizontal or
vertical� box with indentation 2 as obtained with open_hovbox 2. For more details
about boxes, see the various box opening functions open_*box.

• @]: close the most recently opened pretty-printing box.

• @,: output a good break as with print_cut ().

• @ : output a space, as with print_space ().

• @\n: force a newline, as with force_newline ().

• @;: output a good break as with print_break. The nspaces and offset parameters of
the break may be optionally speci�ed with the following syntax: the < character,
followed by an integer nspaces value, then an integer o�set, and a closing > character.
If no parameters are provided, the good break defaults to a space.

• @?: �ush the pretty printer as with print_flush (). This is equivalent to the
conversion %!.

• @.: �ush the pretty printer and output a new line, as with print_newline ().

• @<n>: print the following item as if it were of length n. Hence, printf "@<0>%s" arg is
equivalent to print_as 0 arg. If @<n> is not followed by a conversion speci�cation,
then the following character of the format is printed as if it were of length n.

• @{: open a tag. The name of the tag may be optionally speci�ed with the following
syntax: the < character, followed by an optional string speci�cation, and the closing >
character. The string speci�cation is any character string that does not contain the
closing character '>'. If omitted, the tag name defaults to the empty string. For more
details about tags, see the functions open_tag and close_tag.

• @}: close the most recently opened tag.

• @@: print a plain @ character.

Example: printf "@[%s@ %d@]" "x =" 1 is equivalent to open_box (); print_string "x
="; print_space (); print_int 1; close_box (). It prints x = 1 within a
pretty-printing box.

val printf : ('a, formatter, unit) Pervasives.format -> 'a

Same as fprintf above, but output on std_formatter.

val eprintf : ('a, formatter, unit) Pervasives.format -> 'a

Same as fprintf above, but output on err_formatter.

val sprintf : ('a, unit, string) Pervasives.format -> 'a

Same as printf above, but instead of printing on a formatter, returns a string containing
the result of formatting the arguments. Note that the pretty-printer queue is �ushed at the
end of each call to sprintf.

32

In case of multiple and related calls to sprintf to output material on a single string, you
should consider using fprintf with a formatter writing to a bu�er: �ushing the bu�er at
the end of pretty-printing returns the desired string. You can also use the prede�ned
formatter str_formatter and call flush_str_formatter () to get the result.

val bprintf : Buffer.t -> ('a, formatter, unit) Pervasives.format -> 'a

Same as sprintf above, but instead of printing on a string, writes into the given extensible
bu�er. As for sprintf, the pretty-printer queue is �ushed at the end of each call to bprintf.

In case of multiple and related calls to bprintf to output material on the same bu�er b, you
should consider using fprintf with a formatter writing to the bu�er b (as obtained by
formatter_of_buffer b), otherwise the repeated �ushes of the pretty-printer queue would
result in unexpected and badly formatted output.

val kfprintf :
(formatter -> 'a) ->
formatter -> ('b, formatter, unit, 'a) format4 -> 'b

Same as fprintf above, but instead of returning immediately, passes the formatter to its
�rst argument at the end of printing.

val ksprintf : (string -> 'a) -> ('b, unit, string, 'a) format4 -> 'b

Same as sprintf above, but instead of returning the string, passes it to the �rst argument.

val kprintf : (string -> 'a) -> ('b, unit, string, 'a) format4 -> 'b

A deprecated synonym for ksprintf.

13 Module Gc : Memory management control and statistics; �-
nalised values.

type stat = {
minor_words : float ;

Number of words allocated in the minor heap since the program was started. This
number is accurate in byte-code programs, but only an approximation in programs
compiled to native code.

promoted_words : float ;

Number of words allocated in the minor heap that survived a minor collection and
were moved to the major heap since the program was started.

major_words : float ;

Number of words allocated in the major heap, including the promoted words, since
the program was started.

minor_collections : int ;

33

Number of minor collections since the program was started.

major_collections : int ;

Number of major collection cycles completed since the program was started.

heap_words : int ;

Total size of the major heap, in words.

heap_chunks : int ;

Number of contiguous pieces of memory that make up the major heap.

live_words : int ;

Number of words of live data in the major heap, including the header words.

live_blocks : int ;

Number of live blocks in the major heap.

free_words : int ;

Number of words in the free list.

free_blocks : int ;

Number of blocks in the free list.

largest_free : int ;

Size (in words) of the largest block in the free list.

fragments : int ;

Number of wasted words due to fragmentation. These are 1-words free blocks placed
between two live blocks. They are not available for allocation.

compactions : int ;

Number of heap compactions since the program was started.

top_heap_words : int ;

Maximum size reached by the major heap, in words.

}

The memory management counters are returned in a stat record.

The total amount of memory allocated by the program since it was started is (in words)
minor_words + major_words - promoted_words. Multiply by the word size (4 on a 32-bit
machine, 8 on a 64-bit machine) to get the number of bytes.

type control = {
mutable minor_heap_size : int ;

The size (in words) of the minor heap. Changing this parameter will trigger a minor
collection. Default: 32k.

mutable major_heap_increment : int ;

The minimum number of words to add to the major heap when increasing it. Default:
62k.

34

mutable space_overhead : int ;

The major GC speed is computed from this parameter. This is the memory that will
be "wasted" because the GC does not immediatly collect unreachable blocks. It is
expressed as a percentage of the memory used for live data. The GC will work more
(use more CPU time and collect blocks more eagerly) if space_overhead is smaller.
Default: 80.

mutable verbose : int ;

This value controls the GC messages on standard error output. It is a sum of some of
the following �ags, to print messages on the corresponding events:

• 0x001 Start of major GC cycle.

• 0x002 Minor collection and major GC slice.

• 0x004 Growing and shrinking of the heap.

• 0x008 Resizing of stacks and memory manager tables.

• 0x010 Heap compaction.

• 0x020 Change of GC parameters.

• 0x040 Computation of major GC slice size.

• 0x080 Calling of �nalisation functions.

• 0x100 Bytecode executable search at start-up.

• 0x200 Computation of compaction triggering condition. Default: 0.

mutable max_overhead : int ;

Heap compaction is triggered when the estimated amount of "wasted" memory is
more than max_overhead percent of the amount of live data. If max_overhead is set to
0, heap compaction is triggered at the end of each major GC cycle (this setting is
intended for testing purposes only). If max_overhead >= 1000000, compaction is never
triggered. Default: 500.

mutable stack_limit : int ;

The maximum size of the stack (in words). This is only relevant to the byte-code
runtime, as the native code runtime uses the operating system's stack. Default: 256k.

}

The GC parameters are given as a control record. Note that these parameters can also be
initialised by setting the OCAMLRUNPARAM environment variable. See the
documentation of ocamlrun.

val stat : unit -> stat

Return the current values of the memory management counters in a stat record. This
function examines every heap block to get the statistics.

val quick_stat : unit -> stat

35

Same as stat except that live_words, live_blocks, free_words, free_blocks,
largest_free, and fragments are set to 0. This function is much faster than stat because
it does not need to go through the heap.

val counters : unit -> float * float * float

Return (minor_words, promoted_words, major_words). This function is as fast at
quick_stat.

val get : unit -> control

Return the current values of the GC parameters in a control record.

val set : control -> unit

set r changes the GC parameters according to the control record r. The normal usage is:
Gc.set { (Gc.get()) with Gc.verbose = 0x00d }

val minor : unit -> unit

Trigger a minor collection.

val major_slice : int -> int

Do a minor collection and a slice of major collection. The argument is the size of the slice, 0
to use the automatically-computed slice size. In all cases, the result is the computed slice
size.

val major : unit -> unit

Do a minor collection and �nish the current major collection cycle.

val full_major : unit -> unit

Do a minor collection, �nish the current major collection cycle, and perform a complete new
cycle. This will collect all currently unreachable blocks.

val compact : unit -> unit

Perform a full major collection and compact the heap. Note that heap compaction is a
lengthy operation.

val print_stat : Pervasives.out_channel -> unit

Print the current values of the memory management counters (in human-readable form) into
the channel argument.

val allocated_bytes : unit -> float

Return the total number of bytes allocated since the program was started. It is returned as a
float to avoid over�ow problems with int on 32-bit machines.

val finalise : ('a -> unit) -> 'a -> unit

36

finalise f v registers f as a �nalisation function for v. v must be heap-allocated. f will be
called with v as argument at some point between the �rst time v becomes unreachable and
the time v is collected by the GC. Several functions can be registered for the same value, or
even several instances of the same function. Each instance will be called once (or never, if
the program terminates before v becomes unreachable).

The GC will call the �nalisation functions in the order of deallocation. When several values
become unreachable at the same time (i.e. during the same GC cycle), the �nalisation
functions will be called in the reverse order of the corresponding calls to finalise. If
finalise is called in the same order as the values are allocated, that means each value is
�nalised before the values it depends upon. Of course, this becomes false if additional
dependencies are introduced by assignments.

Anything reachable from the closure of �nalisation functions is considered reachable, so the
following code will not work as expected:

• let v = ... in Gc.finalise (fun x -> ...) v

Instead you should write:

• let f = fun x -> ... ;; let v = ... in Gc.finalise f v

The f function can use all features of O'Caml, including assignments that make the value
reachable again. It can also loop forever (in this case, the other �nalisation functions will be
called during the execution of f). It can call finalise on v or other values to register other
functions or even itself. It can raise an exception; in this case the exception will interrupt
whatever the program was doing when the function was called.

finalise will raise Invalid_argument if v is not heap-allocated. Some examples of values
that are not heap-allocated are integers, constant constructors, booleans, the empty array,
the empty list, the unit value. The exact list of what is heap-allocated or not is
implementation-dependent. Some constant values can be heap-allocated but never
deallocated during the lifetime of the program, for example a list of integer constants; this is
also implementation-dependent. You should also be aware that compiler optimisations may
duplicate some immutable values, for example �oating-point numbers when stored into
arrays, so they can be �nalised and collected while another copy is still in use by the
program.

The results of calling String.make[40], String.create[40], Array.make[2], and
Pervasives.ref[29] are guaranteed to be heap-allocated and non-constant except when the
length argument is 0.

val finalise_release : unit -> unit

A �nalisation function may call finalise_release to tell the GC that it can launch the
next �nalisation function without waiting for the current one to return.

type alarm

An alarm is a piece of data that calls a user function at the end of each major GC cycle.
The following functions are provided to create and delete alarms.

37

val create_alarm : (unit -> unit) -> alarm

create_alarm f will arrange for f to be called at the end of each major GC cycle, starting
with the current cycle or the next one. A value of type alarm is returned that you can use to
call delete_alarm.

val delete_alarm : alarm -> unit

delete_alarm a will stop the calls to the function associated to a. Calling delete_alarm a
again has no e�ect.

14 Module Genlex : A generic lexical analyzer.

This module implements a simple �standard� lexical analyzer, presented as a function from char-
acter streams to token streams. It implements roughly the lexical conventions of Caml, but is
parameterized by the set of keywords of your language.

Example: a lexer suitable for a desk calculator is obtained by

let lexer = make_lexer ["+";"-";"*";"/";"let";"="; "("; ")"]
The associated parser would be a function from token stream to, for instance, int, and would

have rules such as:

let parse_expr = parser
[< 'Int n >] -> n

| [< 'Kwd "("; n = parse_expr; 'Kwd ")" >] -> n
| [< n1 = parse_expr; n2 = parse_remainder n1 >] -> n2

and parse_remainder n1 = parser
[< 'Kwd "+"; n2 = parse_expr >] -> n1+n2

| ...

type token =
| Kwd of string
| Ident of string
| Int of int
| Float of float
| String of string
| Char of char

The type of tokens. The lexical classes are: Int and Float for integer and �oating-point
numbers; String for string literals, enclosed in double quotes; Char for character literals,
enclosed in single quotes; Ident for identi�ers (either sequences of letters, digits, underscores
and quotes, or sequences of �operator characters� such as +, *, etc); and Kwd for keywords
(either identi�ers or single �special characters� such as (, }, etc).

val make_lexer : string list -> char Stream.t -> token Stream.t

38

Construct the lexer function. The �rst argument is the list of keywords. An identi�er s is
returned as Kwd s if s belongs to this list, and as Ident s otherwise. A special character s is
returned as Kwd s if s belongs to this list, and cause a lexical error (exception Parse_error)
otherwise. Blanks and newlines are skipped. Comments delimited by (* and *) are skipped
as well, and can be nested.

15 Module Hashtbl : Hash tables and hash functions.

Hash tables are hashed association tables, with in-place modi�cation.

Generic interface

type ('a, 'b) t

The type of hash tables from type 'a to type 'b.

val create : int -> ('a, 'b) t

Hashtbl.create n creates a new, empty hash table, with initial size n. For best results, n
should be on the order of the expected number of elements that will be in the table. The
table grows as needed, so n is just an initial guess.

val clear : ('a, 'b) t -> unit

Empty a hash table.

val add : ('a, 'b) t -> 'a -> 'b -> unit

Hashtbl.add tbl x y adds a binding of x to y in table tbl. Previous bindings for x are not
removed, but simply hidden. That is, after performing Hashtbl.remove[15] tbl x, the
previous binding for x, if any, is restored. (Same behavior as with association lists.)

val copy : ('a, 'b) t -> ('a, 'b) t

Return a copy of the given hashtable.

val find : ('a, 'b) t -> 'a -> 'b

Hashtbl.find tbl x returns the current binding of x in tbl, or raises Not_found if no such
binding exists.

val find_all : ('a, 'b) t -> 'a -> 'b list

Hashtbl.find_all tbl x returns the list of all data associated with x in tbl. The current
binding is returned �rst, then the previous bindings, in reverse order of introduction in the
table.

val mem : ('a, 'b) t -> 'a -> bool

Hashtbl.mem tbl x checks if x is bound in tbl.

val remove : ('a, 'b) t -> 'a -> unit

39

Hashtbl.remove tbl x removes the current binding of x in tbl, restoring the previous
binding if it exists. It does nothing if x is not bound in tbl.

val replace : ('a, 'b) t -> 'a -> 'b -> unit

Hashtbl.replace tbl x y replaces the current binding of x in tbl by a binding of x to y. If
x is unbound in tbl, a binding of x to y is added to tbl. This is functionally equivalent to
Hashtbl.remove[15] tbl x followed by Hashtbl.add[15] tbl x y.

val iter : ('a -> 'b -> unit) -> ('a, 'b) t -> unit

Hashtbl.iter f tbl applies f to all bindings in table tbl. f receives the key as �rst
argument, and the associated value as second argument. Each binding is presented exactly
once to f. The order in which the bindings are passed to f is unspeci�ed. However, if the
table contains several bindings for the same key, they are passed to f in reverse order of
introduction, that is, the most recent binding is passed �rst.

val fold : ('a -> 'b -> 'c -> 'c) -> ('a, 'b) t -> 'c -> 'c

Hashtbl.fold f tbl init computes (f kN dN ... (f k1 d1 init)...), where k1 ...
kN are the keys of all bindings in tbl, and d1 ... dN are the associated values. Each
binding is presented exactly once to f. The order in which the bindings are passed to f is
unspeci�ed. However, if the table contains several bindings for the same key, they are passed
to f in reverse order of introduction, that is, the most recent binding is passed �rst.

val length : ('a, 'b) t -> int

Hashtbl.length tbl returns the number of bindings in tbl. Multiple bindings are counted
multiply, so Hashtbl.length gives the number of times Hashtbl.iter calls its �rst
argument.

Functorial interface

module type HashedType =
sig

type t

The type of the hashtable keys.

val equal : t -> t -> bool

The equality predicate used to compare keys.

val hash : t -> int

A hashing function on keys. It must be such that if two keys are equal according to
equal, then they have identical hash values as computed by hash. Examples: suitable
(equal, hash) pairs for arbitrary key types include ((=), Hashtbl.hash[15]) for
comparing objects by structure, ((fun x y -> compare x y = 0), Hashtbl.hash[15])
for comparing objects by structure and handling Pervasives.nan[29] correctly, and
((==), Hashtbl.hash[15]) for comparing objects by addresses (e.g. for cyclic keys).

40

end

The input signature of the functor Hashtbl.Make[15].

module type S =
sig

type key

type 'a t

val create : int -> 'a t

val clear : 'a t -> unit

val copy : 'a t -> 'a t

val add : 'a t -> key -> 'a -> unit

val remove : 'a t -> key -> unit

val find : 'a t -> key -> 'a

val find_all : 'a t -> key -> 'a list

val replace : 'a t -> key -> 'a -> unit

val mem : 'a t -> key -> bool

val iter : (key -> 'a -> unit) -> 'a t -> unit

val fold : (key -> 'a -> 'b -> 'b) -> 'a t -> 'b -> 'b

val length : 'a t -> int

end

The output signature of the functor Hashtbl.Make[15].

module Make :
functor (H : HashedType) -> S with type key = H.t

Functor building an implementation of the hashtable structure. The functor Hashtbl.Make
returns a structure containing a type key of keys and a type 'a t of hash tables associating
data of type 'a to keys of type key. The operations perform similarly to those of the generic
interface, but use the hashing and equality functions speci�ed in the functor argument H
instead of generic equality and hashing.

The polymorphic hash primitive

val hash : 'a -> int

Hashtbl.hash x associates a positive integer to any value of any type. It is guaranteed that
if x = y or Pervasives.compare x y = 0, then hash x = hash y. Moreover, hash always
terminates, even on cyclic structures.

val hash_param : int -> int -> 'a -> int

Hashtbl.hash_param n m x computes a hash value for x, with the same properties as for
hash. The two extra parameters n and m give more precise control over hashing. Hashing
performs a depth-�rst, right-to-left traversal of the structure x, stopping after n meaningful
nodes were encountered, or m nodes, meaningful or not, were encountered. Meaningful nodes

41

are: integers; �oating-point numbers; strings; characters; booleans; and constant
constructors. Larger values of m and n means that more nodes are taken into account to
compute the �nal hash value, and therefore collisions are less likely to happen. However,
hashing takes longer. The parameters m and n govern the tradeo� between accuracy and
speed.

16 Module Int32 : 32-bit integers.

This module provides operations on the type int32 of signed 32-bit integers. Unlike the built-in
int type, the type int32 is guaranteed to be exactly 32-bit wide on all platforms. All arithmetic
operations over int32 are taken modulo 232.

Performance notice: values of type int32 occupy more memory space than values of type int,
and arithmetic operations on int32 are generally slower than those on int. Use int32 only when
the application requires exact 32-bit arithmetic.

val zero : int32

The 32-bit integer 0.

val one : int32

The 32-bit integer 1.

val minus_one : int32

The 32-bit integer -1.

val neg : int32 -> int32

Unary negation.

val add : int32 -> int32 -> int32

Addition.

val sub : int32 -> int32 -> int32

Subtraction.

val mul : int32 -> int32 -> int32

Multiplication.

val div : int32 -> int32 -> int32

Integer division. Raise Division_by_zero if the second argument is zero. This division
rounds the real quotient of its arguments towards zero, as speci�ed for Pervasives.(/)[29].

val rem : int32 -> int32 -> int32

Integer remainder. If y is not zero, the result of Int32.rem x y satis�es the following
property: x = Int32.add (Int32.mul (Int32.div x y) y) (Int32.rem x y). If y = 0,
Int32.rem x y raises Division_by_zero.

42

val succ : int32 -> int32

Successor. Int32.succ x is Int32.add x Int32.one.

val pred : int32 -> int32

Predecessor. Int32.pred x is Int32.sub x Int32.one.

val abs : int32 -> int32

Return the absolute value of its argument.

val max_int : int32

The greatest representable 32-bit integer, 231 - 1.

val min_int : int32

The smallest representable 32-bit integer, -231.

val logand : int32 -> int32 -> int32

Bitwise logical and.

val logor : int32 -> int32 -> int32

Bitwise logical or.

val logxor : int32 -> int32 -> int32

Bitwise logical exclusive or.

val lognot : int32 -> int32

Bitwise logical negation

val shift_left : int32 -> int -> int32

Int32.shift_left x y shifts x to the left by y bits. The result is unspeci�ed if y < 0 or y
>= 32.

val shift_right : int32 -> int -> int32

Int32.shift_right x y shifts x to the right by y bits. This is an arithmetic shift: the sign
bit of x is replicated and inserted in the vacated bits. The result is unspeci�ed if y < 0 or y
>= 32.

val shift_right_logical : int32 -> int -> int32

Int32.shift_right_logical x y shifts x to the right by y bits. This is a logical shift:
zeroes are inserted in the vacated bits regardless of the sign of x. The result is unspeci�ed if
y < 0 or y >= 32.

val of_int : int -> int32

Convert the given integer (type int) to a 32-bit integer (type int32).

val to_int : int32 -> int

43

Convert the given 32-bit integer (type int32) to an integer (type int). On 32-bit platforms,
the 32-bit integer is taken modulo 231, i.e. the high-order bit is lost during the conversion.
On 64-bit platforms, the conversion is exact.

val of_float : float -> int32

Convert the given �oating-point number to a 32-bit integer, discarding the fractional part
(truncate towards 0). The result of the conversion is unde�ned if, after truncation, the
number is outside the range [Int32.min_int[16], Int32.max_int[16]].

val to_float : int32 -> float

Convert the given 32-bit integer to a �oating-point number.

val of_string : string -> int32

Convert the given string to a 32-bit integer. The string is read in decimal (by default) or in
hexadecimal, octal or binary if the string begins with 0x, 0o or 0b respectively. Raise
Failure "int_of_string" if the given string is not a valid representation of an integer, or if
the integer represented exceeds the range of integers representable in type int32.

val to_string : int32 -> string

Return the string representation of its argument, in signed decimal.

val bits_of_float : float -> int32

Return the internal representation of the given �oat according to the IEEE 754
�oating-point �single format� bit layout. Bit 31 of the result represents the sign of the �oat;
bits 30 to 23 represent the (biased) exponent; bits 22 to 0 represent the mantissa.

val float_of_bits : int32 -> float

Return the �oating-point number whose internal representation, according to the IEEE 754
�oating-point �single format� bit layout, is the given int32.

type t = int32

An alias for the type of 32-bit integers.

val compare : t -> t -> int

The comparison function for 32-bit integers, with the same speci�cation as
Pervasives.compare[29]. Along with the type t, this function compare allows the module
Int32 to be passed as argument to the functors Set.Make[35] and Map.Make[22].

17 Module Int64 : 64-bit integers.

This module provides operations on the type int64 of signed 64-bit integers. Unlike the built-in
int type, the type int64 is guaranteed to be exactly 64-bit wide on all platforms. All arithmetic
operations over int64 are taken modulo 264

44

Performance notice: values of type int64 occupy more memory space than values of type int,
and arithmetic operations on int64 are generally slower than those on int. Use int64 only when
the application requires exact 64-bit arithmetic.

val zero : int64

The 64-bit integer 0.

val one : int64

The 64-bit integer 1.

val minus_one : int64

The 64-bit integer -1.

val neg : int64 -> int64

Unary negation.

val add : int64 -> int64 -> int64

Addition.

val sub : int64 -> int64 -> int64

Subtraction.

val mul : int64 -> int64 -> int64

Multiplication.

val div : int64 -> int64 -> int64

Integer division. Raise Division_by_zero if the second argument is zero. This division
rounds the real quotient of its arguments towards zero, as speci�ed for Pervasives.(/)[29].

val rem : int64 -> int64 -> int64

Integer remainder. If y is not zero, the result of Int64.rem x y satis�es the following
property: x = Int64.add (Int64.mul (Int64.div x y) y) (Int64.rem x y). If y = 0,
Int64.rem x y raises Division_by_zero.

val succ : int64 -> int64

Successor. Int64.succ x is Int64.add x Int64.one.

val pred : int64 -> int64

Predecessor. Int64.pred x is Int64.sub x Int64.one.

val abs : int64 -> int64

Return the absolute value of its argument.

val max_int : int64

45

The greatest representable 64-bit integer, 263 - 1.

val min_int : int64

The smallest representable 64-bit integer, -263.

val logand : int64 -> int64 -> int64

Bitwise logical and.

val logor : int64 -> int64 -> int64

Bitwise logical or.

val logxor : int64 -> int64 -> int64

Bitwise logical exclusive or.

val lognot : int64 -> int64

Bitwise logical negation

val shift_left : int64 -> int -> int64

Int64.shift_left x y shifts x to the left by y bits. The result is unspeci�ed if y < 0 or y
>= 64.

val shift_right : int64 -> int -> int64

Int64.shift_right x y shifts x to the right by y bits. This is an arithmetic shift: the sign
bit of x is replicated and inserted in the vacated bits. The result is unspeci�ed if y < 0 or y
>= 64.

val shift_right_logical : int64 -> int -> int64

Int64.shift_right_logical x y shifts x to the right by y bits. This is a logical shift:
zeroes are inserted in the vacated bits regardless of the sign of x. The result is unspeci�ed if
y < 0 or y >= 64.

val of_int : int -> int64

Convert the given integer (type int) to a 64-bit integer (type int64).

val to_int : int64 -> int

Convert the given 64-bit integer (type int64) to an integer (type int). On 64-bit platforms,
the 64-bit integer is taken modulo 263, i.e. the high-order bit is lost during the conversion.
On 32-bit platforms, the 64-bit integer is taken modulo 231, i.e. the top 33 bits are lost
during the conversion.

val of_float : float -> int64

Convert the given �oating-point number to a 64-bit integer, discarding the fractional part
(truncate towards 0). The result of the conversion is unde�ned if, after truncation, the
number is outside the range [Int64.min_int[17], Int64.max_int[17]].

46

val to_float : int64 -> float

Convert the given 64-bit integer to a �oating-point number.

val of_int32 : int32 -> int64

Convert the given 32-bit integer (type int32) to a 64-bit integer (type int64).

val to_int32 : int64 -> int32

Convert the given 64-bit integer (type int64) to a 32-bit integer (type int32). The 64-bit
integer is taken modulo 232, i.e. the top 32 bits are lost during the conversion.

val of_nativeint : nativeint -> int64

Convert the given native integer (type nativeint) to a 64-bit integer (type int64).

val to_nativeint : int64 -> nativeint

Convert the given 64-bit integer (type int64) to a native integer. On 32-bit platforms, the
64-bit integer is taken modulo 232. On 64-bit platforms, the conversion is exact.

val of_string : string -> int64

Convert the given string to a 64-bit integer. The string is read in decimal (by default) or in
hexadecimal, octal or binary if the string begins with 0x, 0o or 0b respectively. Raise
Failure "int_of_string" if the given string is not a valid representation of an integer, or if
the integer represented exceeds the range of integers representable in type int64.

val to_string : int64 -> string

Return the string representation of its argument, in decimal.

val bits_of_float : float -> int64

Return the internal representation of the given �oat according to the IEEE 754
�oating-point �double format� bit layout. Bit 63 of the result represents the sign of the �oat;
bits 62 to 52 represent the (biased) exponent; bits 51 to 0 represent the mantissa.

val float_of_bits : int64 -> float

Return the �oating-point number whose internal representation, according to the IEEE 754
�oating-point �double format� bit layout, is the given int64.

type t = int64

An alias for the type of 64-bit integers.

val compare : t -> t -> int

The comparison function for 64-bit integers, with the same speci�cation as
Pervasives.compare[29]. Along with the type t, this function compare allows the module
Int64 to be passed as argument to the functors Set.Make[35] and Map.Make[22].

47

18 Module Lazy : Deferred computations.

type 'a t = 'a lazy_t

A value of type 'a Lazy.t is a deferred computation, called a suspension, that has a result
of type 'a. The special expression syntax lazy (expr) makes a suspension of the
computation of expr, without computing expr itself yet. "Forcing" the suspension will then
compute expr and return its result.

Note: lazy_t is the built-in type constructor used by the compiler for the lazy keyword.
You should not use it directly. Always use Lazy.t instead.

Note: if the program is compiled with the -rectypes option, ill-founded recursive de�nitions
of the form let rec x = lazy x or let rec x = lazy(lazy(...(lazy x))) are accepted
by the type-checker and lead, when forced, to ill-formed values that trigger in�nite loops in
the garbage collector and other parts of the run-time system. Without the -rectypes
option, such ill-founded recursive de�nitions are rejected by the type-checker.

exception Undefined

val force : 'a t -> 'a

force x forces the suspension x and returns its result. If x has already been forced,
Lazy.force x returns the same value again without recomputing it. If it raised an
exception, the same exception is raised again. Raise Undefined if the forcing of x tries to
force x itself recursively.

val force_val : 'a t -> 'a

force_val x forces the suspension x and returns its result. If x has already been forced,
force_val x returns the same value again without recomputing it. Raise Undefined if the
forcing of x tries to force x itself recursively. If the computation of x raises an exception, it is
unspeci�ed whether force_val x raises the same exception or Undefined.

val lazy_from_fun : (unit -> 'a) -> 'a t

lazy_from_fun f is the same as lazy (f ()) but slightly more e�cient.

val lazy_from_val : 'a -> 'a t

lazy_from_val v returns an already-forced suspension of v This is for special purposes only
and should not be confused with lazy (v).

val lazy_is_val : 'a t -> bool

lazy_is_val x returns true if x has already been forced and did not raise an exception.

19 Module Lexing : The run-time library for lexers generated by
ocamllex.

Positions

48

type position = {
pos_fname : string ;
pos_lnum : int ;
pos_bol : int ;
pos_cnum : int ;

}

A value of type position describes a point in a source �le. pos_fname is the �le name;
pos_lnum is the line number; pos_bol is the o�set of the beginning of the line (number of
characters between the beginning of the �le and the beginning of the line); pos_cnum is the
o�set of the position (number of characters between the beginning of the �le and the
position).

val dummy_pos : position

A value of type position, guaranteed to be di�erent from any valid position.

Lexer bu�ers

type lexbuf = {
refill_buff : lexbuf -> unit ;
mutable lex_buffer : string ;
mutable lex_buffer_len : int ;
mutable lex_abs_pos : int ;
mutable lex_start_pos : int ;
mutable lex_curr_pos : int ;
mutable lex_last_pos : int ;
mutable lex_last_action : int ;
mutable lex_eof_reached : bool ;
mutable lex_mem : int array ;
mutable lex_start_p : position ;
mutable lex_curr_p : position ;

}

The type of lexer bu�ers. A lexer bu�er is the argument passed to the scanning functions
de�ned by the generated scanners. The lexer bu�er holds the current state of the scanner,
plus a function to re�ll the bu�er from the input.

Note that the lexing engine will only manage the pos_cnum �eld of lex_curr_p by updating
it with the number of characters read since the start of the lexbuf. For the other �elds to
be accurate, they must be initialised before the �rst use of the lexbuf, and updated by the
lexer actions.

val from_channel : Pervasives.in_channel -> lexbuf

Create a lexer bu�er on the given input channel. Lexing.from_channel inchan returns a
lexer bu�er which reads from the input channel inchan, at the current reading position.

val from_string : string -> lexbuf

Create a lexer bu�er which reads from the given string. Reading starts from the �rst
character in the string. An end-of-input condition is generated when the end of the string is
reached.

49

val from_function : (string -> int -> int) -> lexbuf

Create a lexer bu�er with the given function as its reading method. When the scanner needs
more characters, it will call the given function, giving it a character string s and a character
count n. The function should put n characters or less in s, starting at character number 0,
and return the number of characters provided. A return value of 0 means end of input.

Functions for lexer semantic actions
The following functions can be called from the semantic actions of lexer de�nitions (the ML

code enclosed in braces that computes the value returned by lexing functions). They give access to
the character string matched by the regular expression associated with the semantic action. These
functions must be applied to the argument lexbuf, which, in the code generated by ocamllex, is
bound to the lexer bu�er passed to the parsing function.

val lexeme : lexbuf -> string

Lexing.lexeme lexbuf returns the string matched by the regular expression.

val lexeme_char : lexbuf -> int -> char

Lexing.lexeme_char lexbuf i returns character number i in the matched string.

val lexeme_start : lexbuf -> int

Lexing.lexeme_start lexbuf returns the o�set in the input stream of the �rst character of
the matched string. The �rst character of the stream has o�set 0.

val lexeme_end : lexbuf -> int

Lexing.lexeme_end lexbuf returns the o�set in the input stream of the character following
the last character of the matched string. The �rst character of the stream has o�set 0.

val lexeme_start_p : lexbuf -> position

Like lexeme_start, but return a complete position instead of an o�set.

val lexeme_end_p : lexbuf -> position

Like lexeme_end, but return a complete position instead of an o�set.

Miscellaneous functions

val flush_input : lexbuf -> unit

Discard the contents of the bu�er and reset the current position to 0. The next use of the
lexbuf will trigger a re�ll.

20 Module List : List operations.

Some functions are �agged as not tail-recursive. A tail-recursive function uses constant stack space,
while a non-tail-recursive function uses stack space proportional to the length of its list argument,
which can be a problem with very long lists. When the function takes several list arguments, an
approximate formula giving stack usage (in some unspeci�ed constant unit) is shown in parentheses.

50

The above considerations can usually be ignored if your lists are not longer than about 10000
elements.

val length : 'a list -> int

Return the length (number of elements) of the given list.

val hd : 'a list -> 'a

Return the �rst element of the given list. Raise Failure "hd" if the list is empty.

val tl : 'a list -> 'a list

Return the given list without its �rst element. Raise Failure "tl" if the list is empty.

val nth : 'a list -> int -> 'a

Return the n-th element of the given list. The �rst element (head of the list) is at position 0.
Raise Failure "nth" if the list is too short.

val rev : 'a list -> 'a list

List reversal.

val append : 'a list -> 'a list -> 'a list

Catenate two lists. Same function as the in�x operator @. Not tail-recursive (length of the
�rst argument). The @ operator is not tail-recursive either.

val rev_append : 'a list -> 'a list -> 'a list

List.rev_append l1 l2 reverses l1 and concatenates it to l2. This is equivalent to
List.rev[20] l1 @ l2, but rev_append is tail-recursive and more e�cient.

val concat : 'a list list -> 'a list

Concatenate a list of lists. The elements of the argument are all concatenated together (in
the same order) to give the result. Not tail-recursive (length of the argument + length of the
longest sub-list).

val flatten : 'a list list -> 'a list

Same as concat. Not tail-recursive (length of the argument + length of the longest sub-list).

Iterators

val iter : ('a -> unit) -> 'a list -> unit

List.iter f [a1; ...; an] applies function f in turn to a1; ...; an. It is equivalent to
begin f a1; f a2; ...; f an; () end.

val map : ('a -> 'b) -> 'a list -> 'b list

List.map f [a1; ...; an] applies function f to a1, ..., an, and builds the list [f a1;
...; f an] with the results returned by f. Not tail-recursive.

val rev_map : ('a -> 'b) -> 'a list -> 'b list

51

List.rev_map f l gives the same result as List.rev[20] (List.map[20] f l), but is
tail-recursive and more e�cient.

val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a

List.fold_left f a [b1; ...; bn] is f (... (f (f a b1) b2) ...) bn.

val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b

List.fold_right f [a1; ...; an] b is f a1 (f a2 (... (f an b) ...)). Not
tail-recursive.

Iterators on two lists

val iter2 : ('a -> 'b -> unit) -> 'a list -> 'b list -> unit

List.iter2 f [a1; ...; an] [b1; ...; bn] calls in turn f a1 b1; ...; f an bn.
Raise Invalid_argument if the two lists have di�erent lengths.

val map2 : ('a -> 'b -> 'c) -> 'a list -> 'b list -> 'c list

List.map2 f [a1; ...; an] [b1; ...; bn] is [f a1 b1; ...; f an bn]. Raise
Invalid_argument if the two lists have di�erent lengths. Not tail-recursive.

val rev_map2 : ('a -> 'b -> 'c) -> 'a list -> 'b list -> 'c list

List.rev_map2 f l1 l2 gives the same result as List.rev[20] (List.map2[20] f l1 l2),
but is tail-recursive and more e�cient.

val fold_left2 : ('a -> 'b -> 'c -> 'a) -> 'a -> 'b list -> 'c list -> 'a

List.fold_left2 f a [b1; ...; bn] [c1; ...; cn] is f (... (f (f a b1 c1) b2
c2) ...) bn cn. Raise Invalid_argument if the two lists have di�erent lengths.

val fold_right2 : ('a -> 'b -> 'c -> 'c) -> 'a list -> 'b list -> 'c -> 'c

List.fold_right2 f [a1; ...; an] [b1; ...; bn] c is f a1 b1 (f a2 b2 (... (f
an bn c) ...)). Raise Invalid_argument if the two lists have di�erent lengths. Not
tail-recursive.

List scanning

val for_all : ('a -> bool) -> 'a list -> bool

for_all p [a1; ...; an] checks if all elements of the list satisfy the predicate p. That is,
it returns (p a1) && (p a2) && ... && (p an).

val exists : ('a -> bool) -> 'a list -> bool

exists p [a1; ...; an] checks if at least one element of the list satis�es the predicate p.
That is, it returns (p a1) || (p a2) || ... || (p an).

val for_all2 : ('a -> 'b -> bool) -> 'a list -> 'b list -> bool

Same as List.for_all[20], but for a two-argument predicate. Raise Invalid_argument if
the two lists have di�erent lengths.

52

val exists2 : ('a -> 'b -> bool) -> 'a list -> 'b list -> bool

Same as List.exists[20], but for a two-argument predicate. Raise Invalid_argument if the
two lists have di�erent lengths.

val mem : 'a -> 'a list -> bool

mem a l is true if and only if a is equal to an element of l.

val memq : 'a -> 'a list -> bool

Same as List.mem[20], but uses physical equality instead of structural equality to compare
list elements.

List searching

val find : ('a -> bool) -> 'a list -> 'a

find p l returns the �rst element of the list l that satis�es the predicate p. Raise
Not_found if there is no value that satis�es p in the list l.

val filter : ('a -> bool) -> 'a list -> 'a list

filter p l returns all the elements of the list l that satisfy the predicate p. The order of
the elements in the input list is preserved.

val find_all : ('a -> bool) -> 'a list -> 'a list

find_all is another name for List.filter[20].

val partition : ('a -> bool) -> 'a list -> 'a list * 'a list

partition p l returns a pair of lists (l1, l2), where l1 is the list of all the elements of l
that satisfy the predicate p, and l2 is the list of all the elements of l that do not satisfy p.
The order of the elements in the input list is preserved.

Association lists

val assoc : 'a -> ('a * 'b) list -> 'b

assoc a l returns the value associated with key a in the list of pairs l. That is, assoc a [
...; (a,b); ...] = b if (a,b) is the leftmost binding of a in list l. Raise Not_found if
there is no value associated with a in the list l.

val assq : 'a -> ('a * 'b) list -> 'b

Same as List.assoc[20], but uses physical equality instead of structural equality to compare
keys.

val mem_assoc : 'a -> ('a * 'b) list -> bool

Same as List.assoc[20], but simply return true if a binding exists, and false if no bindings
exist for the given key.

val mem_assq : 'a -> ('a * 'b) list -> bool

Same as List.mem_assoc[20], but uses physical equality instead of structural equality to
compare keys.

53

val remove_assoc : 'a -> ('a * 'b) list -> ('a * 'b) list

remove_assoc a l returns the list of pairs l without the �rst pair with key a, if any. Not
tail-recursive.

val remove_assq : 'a -> ('a * 'b) list -> ('a * 'b) list

Same as List.remove_assoc[20], but uses physical equality instead of structural equality to
compare keys. Not tail-recursive.

Lists of pairs

val split : ('a * 'b) list -> 'a list * 'b list

Transform a list of pairs into a pair of lists: split [(a1,b1); ...; (an,bn)] is ([a1;
...; an], [b1; ...; bn]). Not tail-recursive.

val combine : 'a list -> 'b list -> ('a * 'b) list

Transform a pair of lists into a list of pairs: combine [a1; ...; an] [b1; ...; bn] is
[(a1,b1); ...; (an,bn)]. Raise Invalid_argument if the two lists have di�erent lengths.
Not tail-recursive.

Sorting

val sort : ('a -> 'a -> int) -> 'a list -> 'a list

Sort a list in increasing order according to a comparison function. The comparison function
must return 0 if its arguments compare as equal, a positive integer if the �rst is greater, and
a negative integer if the �rst is smaller (see Array.sort for a complete speci�cation). For
example, Pervasives.compare[29] is a suitable comparison function. The resulting list is
sorted in increasing order. List.sort is guaranteed to run in constant heap space (in
addition to the size of the result list) and logarithmic stack space.

The current implementation uses Merge Sort. It runs in constant heap space and logarithmic
stack space.

val stable_sort : ('a -> 'a -> int) -> 'a list -> 'a list

Same as List.sort[20], but the sorting algorithm is guaranteed to be stable (i.e. elements
that compare equal are kept in their original order) .

The current implementation uses Merge Sort. It runs in constant heap space and logarithmic
stack space.

val fast_sort : ('a -> 'a -> int) -> 'a list -> 'a list

Same as List.sort[20] or List.stable_sort[20], whichever is faster on typical input.

val merge : ('a -> 'a -> int) -> 'a list -> 'a list -> 'a list

Merge two lists: Assuming that l1 and l2 are sorted according to the comparison function
cmp, merge cmp l1 l2 will return a sorted list containting all the elements of l1 and l2. If
several elements compare equal, the elements of l1 will be before the elements of l2. Not
tail-recursive (sum of the lengths of the arguments).

54

21 Module ListLabels : List operations.

Some functions are �agged as not tail-recursive. A tail-recursive function uses constant stack space,
while a non-tail-recursive function uses stack space proportional to the length of its list argument,
which can be a problem with very long lists. When the function takes several list arguments, an
approximate formula giving stack usage (in some unspeci�ed constant unit) is shown in parentheses.

The above considerations can usually be ignored if your lists are not longer than about 10000
elements.

val length : 'a list -> int

Return the length (number of elements) of the given list.

val hd : 'a list -> 'a

Return the �rst element of the given list. Raise Failure "hd" if the list is empty.

val tl : 'a list -> 'a list

Return the given list without its �rst element. Raise Failure "tl" if the list is empty.

val nth : 'a list -> int -> 'a

Return the n-th element of the given list. The �rst element (head of the list) is at position 0.
Raise Failure "nth" if the list is too short.

val rev : 'a list -> 'a list

List reversal.

val append : 'a list -> 'a list -> 'a list

Catenate two lists. Same function as the in�x operator @. Not tail-recursive (length of the
�rst argument). The @ operator is not tail-recursive either.

val rev_append : 'a list -> 'a list -> 'a list

List.rev_append l1 l2 reverses l1 and concatenates it to l2. This is equivalent to
ListLabels.rev[21] l1 @ l2, but rev_append is tail-recursive and more e�cient.

val concat : 'a list list -> 'a list

Concatenate a list of lists. Not tail-recursive (length of the argument + length of the longest
sub-list).

val flatten : 'a list list -> 'a list

Flatten a list of lists. Not tail-recursive (length of the argument + length of the longest
sub-list).

Iterators

val iter : f:('a -> unit) -> 'a list -> unit

List.iter f [a1; ...; an] applies function f in turn to a1; ...; an. It is equivalent to
begin f a1; f a2; ...; f an; () end.

55

val map : f:('a -> 'b) -> 'a list -> 'b list

List.map f [a1; ...; an] applies function f to a1, ..., an, and builds the list [f a1;
...; f an] with the results returned by f. Not tail-recursive.

val rev_map : f:('a -> 'b) -> 'a list -> 'b list

List.rev_map f l gives the same result as ListLabels.rev[21] (ListLabels.map[21] f
l), but is tail-recursive and more e�cient.

val fold_left : f:('a -> 'b -> 'a) -> init:'a -> 'b list -> 'a

List.fold_left f a [b1; ...; bn] is f (... (f (f a b1) b2) ...) bn.

val fold_right : f:('a -> 'b -> 'b) -> 'a list -> init:'b -> 'b

List.fold_right f [a1; ...; an] b is f a1 (f a2 (... (f an b) ...)). Not
tail-recursive.

Iterators on two lists

val iter2 : f:('a -> 'b -> unit) -> 'a list -> 'b list -> unit

List.iter2 f [a1; ...; an] [b1; ...; bn] calls in turn f a1 b1; ...; f an bn.
Raise Invalid_argument if the two lists have di�erent lengths.

val map2 : f:('a -> 'b -> 'c) -> 'a list -> 'b list -> 'c list

List.map2 f [a1; ...; an] [b1; ...; bn] is [f a1 b1; ...; f an bn]. Raise
Invalid_argument if the two lists have di�erent lengths. Not tail-recursive.

val rev_map2 : f:('a -> 'b -> 'c) -> 'a list -> 'b list -> 'c list

List.rev_map2 f l gives the same result as ListLabels.rev[21] (ListLabels.map2[21] f
l), but is tail-recursive and more e�cient.

val fold_left2 :
f:('a -> 'b -> 'c -> 'a) -> init:'a -> 'b list -> 'c list -> 'a

List.fold_left2 f a [b1; ...; bn] [c1; ...; cn] is f (... (f (f a b1 c1) b2
c2) ...) bn cn. Raise Invalid_argument if the two lists have di�erent lengths.

val fold_right2 :
f:('a -> 'b -> 'c -> 'c) -> 'a list -> 'b list -> init:'c -> 'c

List.fold_right2 f [a1; ...; an] [b1; ...; bn] c is f a1 b1 (f a2 b2 (... (f
an bn c) ...)). Raise Invalid_argument if the two lists have di�erent lengths. Not
tail-recursive.

List scanning

val for_all : f:('a -> bool) -> 'a list -> bool

for_all p [a1; ...; an] checks if all elements of the list satisfy the predicate p. That is,
it returns (p a1) && (p a2) && ... && (p an).

val exists : f:('a -> bool) -> 'a list -> bool

56

exists p [a1; ...; an] checks if at least one element of the list satis�es the predicate p.
That is, it returns (p a1) || (p a2) || ... || (p an).

val for_all2 : f:('a -> 'b -> bool) -> 'a list -> 'b list -> bool

Same as ListLabels.for_all[21], but for a two-argument predicate. Raise
Invalid_argument if the two lists have di�erent lengths.

val exists2 : f:('a -> 'b -> bool) -> 'a list -> 'b list -> bool

Same as ListLabels.exists[21], but for a two-argument predicate. Raise
Invalid_argument if the two lists have di�erent lengths.

val mem : 'a -> set:'a list -> bool

mem a l is true if and only if a is equal to an element of l.

val memq : 'a -> set:'a list -> bool

Same as ListLabels.mem[21], but uses physical equality instead of structural equality to
compare list elements.

List searching

val find : f:('a -> bool) -> 'a list -> 'a

find p l returns the �rst element of the list l that satis�es the predicate p. Raise
Not_found if there is no value that satis�es p in the list l.

val filter : f:('a -> bool) -> 'a list -> 'a list

filter p l returns all the elements of the list l that satisfy the predicate p. The order of
the elements in the input list is preserved.

val find_all : f:('a -> bool) -> 'a list -> 'a list

find_all is another name for ListLabels.filter[21].

val partition : f:('a -> bool) -> 'a list -> 'a list * 'a list

partition p l returns a pair of lists (l1, l2), where l1 is the list of all the elements of l
that satisfy the predicate p, and l2 is the list of all the elements of l that do not satisfy p.
The order of the elements in the input list is preserved.

Association lists

val assoc : 'a -> ('a * 'b) list -> 'b

assoc a l returns the value associated with key a in the list of pairs l. That is, assoc a [
...; (a,b); ...] = b if (a,b) is the leftmost binding of a in list l. Raise Not_found if
there is no value associated with a in the list l.

val assq : 'a -> ('a * 'b) list -> 'b

Same as ListLabels.assoc[21], but uses physical equality instead of structural equality to
compare keys.

57

val mem_assoc : 'a -> map:('a * 'b) list -> bool

Same as ListLabels.assoc[21], but simply return true if a binding exists, and false if no
bindings exist for the given key.

val mem_assq : 'a -> map:('a * 'b) list -> bool

Same as ListLabels.mem_assoc[21], but uses physical equality instead of structural equality
to compare keys.

val remove_assoc : 'a -> ('a * 'b) list -> ('a * 'b) list

remove_assoc a l returns the list of pairs l without the �rst pair with key a, if any. Not
tail-recursive.

val remove_assq : 'a -> ('a * 'b) list -> ('a * 'b) list

Same as ListLabels.remove_assq[21], but uses physical equality instead of structural
equality to compare keys. Not tail-recursive.

Lists of pairs

val split : ('a * 'b) list -> 'a list * 'b list

Transform a list of pairs into a pair of lists: split [(a1,b1); ...; (an,bn)] is ([a1;
...; an], [b1; ...; bn]). Not tail-recursive.

val combine : 'a list -> 'b list -> ('a * 'b) list

Transform a pair of lists into a list of pairs: combine [a1; ...; an] [b1; ...; bn] is
[(a1,b1); ...; (an,bn)]. Raise Invalid_argument if the two lists have di�erent lengths.
Not tail-recursive.

Sorting

val sort : cmp:('a -> 'a -> int) -> 'a list -> 'a list

Sort a list in increasing order according to a comparison function. The comparison function
must return 0 if it arguments compare as equal, a positive integer if the �rst is greater, and a
negative integer if the �rst is smaller. For example, the compare function is a suitable
comparison function. The resulting list is sorted in increasing order. List.sort is
guaranteed to run in constant heap space (in addition to the size of the result list) and
logarithmic stack space.

The current implementation uses Merge Sort and is the same as
ListLabels.stable_sort[21].

val stable_sort : cmp:('a -> 'a -> int) -> 'a list -> 'a list

Same as ListLabels.sort[21], but the sorting algorithm is stable.

The current implementation is Merge Sort. It runs in constant heap space and logarithmic
stack space.

val fast_sort : cmp:('a -> 'a -> int) -> 'a list -> 'a list

Same as List.sort[20] or List.stable_sort[20], whichever is faster on typical input.

58

val merge : cmp:('a -> 'a -> int) -> 'a list -> 'a list -> 'a list

Merge two lists: Assuming that l1 and l2 are sorted according to the comparison function
cmp, merge cmp l1 l2 will return a sorted list containting all the elements of l1 and l2. If
several elements compare equal, the elements of l1 will be before the elements of l2. Not
tail-recursive (sum of the lengths of the arguments).

22 Module Map : Association tables over ordered types.

This module implements applicative association tables, also known as �nite maps or dictionaries,
given a total ordering function over the keys. All operations over maps are purely applicative (no
side-e�ects). The implementation uses balanced binary trees, and therefore searching and insertion
take time logarithmic in the size of the map.

module type OrderedType =
sig

type t

The type of the map keys.

val compare : t -> t -> int

A total ordering function over the keys. This is a two-argument function f such that f
e1 e2 is zero if the keys e1 and e2 are equal, f e1 e2 is strictly negative if e1 is
smaller than e2, and f e1 e2 is strictly positive if e1 is greater than e2. Example: a
suitable ordering function is the generic structural comparison function
Pervasives.compare[29].

end

Input signature of the functor Map.Make[22].

module type S =
sig

type key

The type of the map keys.

type +'a t

The type of maps from type key to type 'a.

val empty : 'a t

The empty map.

val is_empty : 'a t -> bool

59

Test whether a map is empty or not.

val add : key -> 'a -> 'a t -> 'a t

add x y m returns a map containing the same bindings as m, plus a binding of x to y. If
x was already bound in m, its previous binding disappears.

val find : key -> 'a t -> 'a

find x m returns the current binding of x in m, or raises Not_found if no such binding
exists.

val remove : key -> 'a t -> 'a t

remove x m returns a map containing the same bindings as m, except for x which is
unbound in the returned map.

val mem : key -> 'a t -> bool

mem x m returns true if m contains a binding for x, and false otherwise.

val iter : (key -> 'a -> unit) -> 'a t -> unit

iter f m applies f to all bindings in map m. f receives the key as �rst argument, and
the associated value as second argument. The bindings are passed to f in increasing
order with respect to the ordering over the type of the keys. Only current bindings are
presented to f: bindings hidden by more recent bindings are not passed to f.

val map : ('a -> 'b) -> 'a t -> 'b t

map f m returns a map with same domain as m, where the associated value a of all
bindings of m has been replaced by the result of the application of f to a. The bindings
are passed to f in increasing order with respect to the ordering over the type of the keys.

val mapi : (key -> 'a -> 'b) -> 'a t -> 'b t

Same as Map.S.map[22], but the function receives as arguments both the key and the
associated value for each binding of the map.

val fold : (key -> 'a -> 'b -> 'b) -> 'a t -> 'b -> 'b

fold f m a computes (f kN dN ... (f k1 d1 a)...), where k1 ... kN are the
keys of all bindings in m (in increasing order), and d1 ... dN are the associated data.

val compare : ('a -> 'a -> int) -> 'a t -> 'a t -> int

Total ordering between maps. The �rst argument is a total ordering used to compare
data associated with equal keys in the two maps.

val equal : ('a -> 'a -> bool) -> 'a t -> 'a t -> bool

60

equal cmp m1 m2 tests whether the maps m1 and m2 are equal, that is, contain equal
keys and associate them with equal data. cmp is the equality predicate used to compare
the data associated with the keys.

end

Output signature of the functor Map.Make[22].

module Make :
functor (Ord : OrderedType) -> S with type key = Ord.t

Functor building an implementation of the map structure given a totally ordered type.

23 Module Marshal : Marshaling of data structures.

This module provides functions to encode arbitrary data structures as sequences of bytes, which
can then be written on a �le or sent over a pipe or network connection. The bytes can then be read
back later, possibly in another process, and decoded back into a data structure. The format for the
byte sequences is compatible across all machines for a given version of Objective Caml.

Warning: marshaling is currently not type-safe. The type of marshaled data is not transmitted
along the value of the data, making it impossible to check that the data read back possesses the type
expected by the context. In particular, the result type of the Marshal.from_* functions is given as
'a, but this is misleading: the returned Caml value does not possess type 'a for all 'a; it has one,
unique type which cannot be determined at compile-type. The programmer should explicitly give
the expected type of the returned value, using the following syntax:

• (Marshal.from_channel chan : type). Anything can happen at run-time if the object in
the �le does not belong to the given type.

The representation of marshaled values is not human-readable, and uses bytes that are not print-
able characters. Therefore, input and output channels used in conjunction with Marshal.to_channel
and Marshal.from_channelmust be opened in binary mode, using e.g. open_out_bin or open_in_bin;
channels opened in text mode will cause unmarshaling errors on platforms where text channels be-
have di�erently than binary channels, e.g. Windows.

type extern_flags =
| No_sharing

Don't preserve sharing

| Closures

Send function closures

The �ags to the Marshal.to_* functions below.

val to_channel : Pervasives.out_channel -> 'a -> extern_flags list -> unit

61

Marshal.to_channel chan v flags writes the representation of v on channel chan. The
flags argument is a possibly empty list of �ags that governs the marshaling behavior with
respect to sharing and functional values.

If flags does not contain Marshal.No_sharing, circularities and sharing inside the value v
are detected and preserved in the sequence of bytes produced. In particular, this guarantees
that marshaling always terminates. Sharing between values marshaled by successive calls to
Marshal.to_channel is not detected, though. If flags contains Marshal.No_sharing,
sharing is ignored. This results in faster marshaling if v contains no shared substructures,
but may cause slower marshaling and larger byte representations if v actually contains
sharing, or even non-termination if v contains cycles.

If flags does not contain Marshal.Closures, marshaling fails when it encounters a
functional value inside v: only �pure� data structures, containing neither functions nor
objects, can safely be transmitted between di�erent programs. If flags contains
Marshal.Closures, functional values will be marshaled as a position in the code of the
program. In this case, the output of marshaling can only be read back in processes that run
exactly the same program, with exactly the same compiled code. (This is checked at
un-marshaling time, using an MD5 digest of the code transmitted along with the code
position.)

val to_string : 'a -> extern_flags list -> string

Marshal.to_string v flags returns a string containing the representation of v as a
sequence of bytes. The flags argument has the same meaning as for
Marshal.to_channel[23].

val to_buffer : string -> int -> int -> 'a -> extern_flags list -> int

Marshal.to_buffer buff ofs len v flags marshals the value v, storing its byte
representation in the string buff, starting at character number ofs, and writing at most len
characters. It returns the number of characters actually written to the string. If the byte
representation of v does not �t in len characters, the exception Failure is raised.

val from_channel : Pervasives.in_channel -> 'a

Marshal.from_channel chan reads from channel chan the byte representation of a
structured value, as produced by one of the Marshal.to_* functions, and reconstructs and
returns the corresponding value.

val from_string : string -> int -> 'a

Marshal.from_string buff ofs unmarshals a structured value like
Marshal.from_channel[23] does, except that the byte representation is not read from a
channel, but taken from the string buff, starting at position ofs.

val header_size : int

The bytes representing a marshaled value are composed of a �xed-size header and a
variable-sized data part, whose size can be determined from the header.
Marshal.header_size[23] is the size, in characters, of the header. Marshal.data_size[23]
buff ofs is the size, in characters, of the data part, assuming a valid header is stored in

62

buff starting at position ofs. Finally, Marshal.total_size[23] buff ofs is the total size,
in characters, of the marshaled value. Both Marshal.data_size[23] and
Marshal.total_size[23] raise Failure if buff, ofs does not contain a valid header.

To read the byte representation of a marshaled value into a string bu�er, the program needs
to read �rst Marshal.header_size[23] characters into the bu�er, then determine the length
of the remainder of the representation using Marshal.data_size[23], make sure the bu�er is
large enough to hold the remaining data, then read it, and �nally call
Marshal.from_string[23] to unmarshal the value.

val data_size : string -> int -> int

See Marshal.header_size[23].

val total_size : string -> int -> int

See Marshal.header_size[23].

24 Module MoreLabels : Extra labeled libraries.

This meta-module provides labelized version of the Hashtbl[15], Map[22] and Set[35] modules.
They only di�er by their labels. They are provided to help porting from previous versions of

Objective Caml. The contents of this module are subject to change.

module Hashtbl :
sig

type ('a, 'b) t = ('a, 'b) Hashtbl.t

val create : int -> ('a, 'b) t

val clear : ('a, 'b) t -> unit

val add : ('a, 'b) t -> key:'a -> data:'b -> unit

val copy : ('a, 'b) t -> ('a, 'b) t

val find : ('a, 'b) t -> 'a -> 'b

val find_all : ('a, 'b) t -> 'a -> 'b list

val mem : ('a, 'b) t -> 'a -> bool

val remove : ('a, 'b) t -> 'a -> unit

val replace : ('a, 'b) t -> key:'a -> data:'b -> unit

val iter : f:(key:'a -> data:'b -> unit) -> ('a, 'b) t -> unit

val fold : f:(key:'a -> data:'b -> 'c -> 'c) ->
('a, 'b) t -> init:'c -> 'c

val length : ('a, 'b) t -> int

module type HashedType =

Hashtbl.HashedType

module type S =

sig

63

type key

type 'a t

val create : int -> 'a t

val clear : 'a t -> unit

val copy : 'a t -> 'a t

val add : 'a t -> key:key -> data:'a -> unit

val remove : 'a t -> key -> unit

val find : 'a t -> key -> 'a

val find_all : 'a t -> key -> 'a list

val replace : 'a t -> key:key -> data:'a -> unit

val mem : 'a t -> key -> bool

val iter : f:(key:key -> data:'a -> unit) ->
'a t -> unit

val fold : f:(key:key -> data:'a -> 'b -> 'b) ->
'a t -> init:'b -> 'b

val length : 'a t -> int
end

module Make :

functor (H : HashedType) -> S with type key = H.t

val hash : 'a -> int

val hash_param : int -> int -> 'a -> int

end

module Map :
sig

module type OrderedType =

Map.OrderedType

module type S =

sig

type key

type +'a t

val empty : 'a t

val is_empty : 'a t -> bool

val add : key:key ->
data:'a -> 'a t -> 'a t

val find : key -> 'a t -> 'a

val remove : key -> 'a t -> 'a t

val mem : key -> 'a t -> bool

64

val iter : f:(key:key -> data:'a -> unit) ->
'a t -> unit

val map : f:('a -> 'b) -> 'a t -> 'b t

val mapi : f:(key -> 'a -> 'b) ->
'a t -> 'b t

val fold : f:(key:key -> data:'a -> 'b -> 'b) ->
'a t -> init:'b -> 'b

val compare : cmp:('a -> 'a -> int) ->
'a t -> 'a t -> int

val equal : cmp:('a -> 'a -> bool) ->
'a t -> 'a t -> bool

end

module Make :

functor (Ord : OrderedType) -> S with type key = Ord.t

end

module Set :
sig

module type OrderedType =

Set.OrderedType

module type S =

sig

type elt

type t

val empty : t

val is_empty : t -> bool

val mem : elt -> t -> bool

val add : elt -> t -> t

val singleton : elt -> t

val remove : elt -> t -> t

val union : t -> t -> t

val inter : t -> t -> t

val diff : t -> t -> t

val compare : t -> t -> int

val equal : t -> t -> bool

val subset : t -> t -> bool

val iter : f:(elt -> unit) -> t -> unit

val fold : f:(elt -> 'a -> 'a) -> t -> init:'a -> 'a

65

val for_all : f:(elt -> bool) -> t -> bool

val exists : f:(elt -> bool) -> t -> bool

val filter : f:(elt -> bool) -> t -> t

val partition : f:(elt -> bool) ->
t -> t * t

val cardinal : t -> int

val elements : t -> elt list

val min_elt : t -> elt

val max_elt : t -> elt

val choose : t -> elt

val split : elt ->
t -> t * bool * t

end

module Make :

functor (Ord : OrderedType) -> S with type elt = Ord.t

end

25 Module Nativeint : Processor-native integers.

This module provides operations on the type nativeint of signed 32-bit integers (on 32-bit plat-
forms) or signed 64-bit integers (on 64-bit platforms). This integer type has exactly the same width
as that of a long integer type in the C compiler. All arithmetic operations over nativeint are
taken modulo 232 or 264 depending on the word size of the architecture.

Performance notice: values of type nativeint occupy more memory space than values of type
int, and arithmetic operations on nativeint are generally slower than those on int. Use nativeint
only when the application requires the extra bit of precision over the int type.

val zero : nativeint

The native integer 0.

val one : nativeint

The native integer 1.

val minus_one : nativeint

The native integer -1.

val neg : nativeint -> nativeint

Unary negation.

val add : nativeint -> nativeint -> nativeint

Addition.

66

val sub : nativeint -> nativeint -> nativeint

Subtraction.

val mul : nativeint -> nativeint -> nativeint

Multiplication.

val div : nativeint -> nativeint -> nativeint

Integer division. Raise Division_by_zero if the second argument is zero. This division
rounds the real quotient of its arguments towards zero, as speci�ed for Pervasives.(/)[29].

val rem : nativeint -> nativeint -> nativeint

Integer remainder. If y is not zero, the result of Nativeint.rem x y satis�es the following
properties: Nativeint.zero <= Nativeint.rem x y < Nativeint.abs y and x =
Nativeint.add (Nativeint.mul (Nativeint.div x y) y) (Nativeint.rem x y). If y =
0, Nativeint.rem x y raises Division_by_zero.

val succ : nativeint -> nativeint

Successor. Nativeint.succ x is Nativeint.add x Nativeint.one.

val pred : nativeint -> nativeint

Predecessor. Nativeint.pred x is Nativeint.sub x Nativeint.one.

val abs : nativeint -> nativeint

Return the absolute value of its argument.

val size : int

The size in bits of a native integer. This is equal to 32 on a 32-bit platform and to 64 on a
64-bit platform.

val max_int : nativeint

The greatest representable native integer, either 231 - 1 on a 32-bit platform, or 263 - 1 on a
64-bit platform.

val min_int : nativeint

The greatest representable native integer, either -231 on a 32-bit platform, or -263 on a 64-bit
platform.

val logand : nativeint -> nativeint -> nativeint

Bitwise logical and.

val logor : nativeint -> nativeint -> nativeint

Bitwise logical or.

val logxor : nativeint -> nativeint -> nativeint

Bitwise logical exclusive or.

67

val lognot : nativeint -> nativeint

Bitwise logical negation

val shift_left : nativeint -> int -> nativeint

Nativeint.shift_left x y shifts x to the left by y bits. The result is unspeci�ed if y < 0
or y >= bitsize, where bitsize is 32 on a 32-bit platform and 64 on a 64-bit platform.

val shift_right : nativeint -> int -> nativeint

Nativeint.shift_right x y shifts x to the right by y bits. This is an arithmetic shift: the
sign bit of x is replicated and inserted in the vacated bits. The result is unspeci�ed if y < 0
or y >= bitsize.

val shift_right_logical : nativeint -> int -> nativeint

Nativeint.shift_right_logical x y shifts x to the right by y bits. This is a logical shift:
zeroes are inserted in the vacated bits regardless of the sign of x. The result is unspeci�ed if
y < 0 or y >= bitsize.

val of_int : int -> nativeint

Convert the given integer (type int) to a native integer (type nativeint).

val to_int : nativeint -> int

Convert the given native integer (type nativeint) to an integer (type int). The high-order
bit is lost during the conversion.

val of_float : float -> nativeint

Convert the given �oating-point number to a native integer, discarding the fractional part
(truncate towards 0). The result of the conversion is unde�ned if, after truncation, the
number is outside the range [Nativeint.min_int[25], Nativeint.max_int[25]].

val to_float : nativeint -> float

Convert the given native integer to a �oating-point number.

val of_int32 : int32 -> nativeint

Convert the given 32-bit integer (type int32) to a native integer.

val to_int32 : nativeint -> int32

Convert the given native integer to a 32-bit integer (type int32). On 64-bit platforms, the
64-bit native integer is taken modulo 232, i.e. the top 32 bits are lost. On 32-bit platforms,
the conversion is exact.

val of_string : string -> nativeint

Convert the given string to a native integer. The string is read in decimal (by default) or in
hexadecimal, octal or binary if the string begins with 0x, 0o or 0b respectively. Raise
Failure "int_of_string" if the given string is not a valid representation of an integer, or if
the integer represented exceeds the range of integers representable in type nativeint.

68

val to_string : nativeint -> string

Return the string representation of its argument, in decimal.

type t = nativeint

An alias for the type of native integers.

val compare : t -> t -> int

The comparison function for native integers, with the same speci�cation as
Pervasives.compare[29]. Along with the type t, this function compare allows the module
Nativeint to be passed as argument to the functors Set.Make[35] and Map.Make[22].

26 Module Obj : Operations on internal representations of values.

Not for the casual user.

type t

val repr : 'a -> t

val obj : t -> 'a

val magic : 'a -> 'b

val is_block : t -> bool

val is_int : t -> bool

val tag : t -> int

val set_tag : t -> int -> unit

val size : t -> int

val truncate : t -> int -> unit

val field : t -> int -> t

val set_field : t -> int -> t -> unit

val new_block : int -> int -> t

val dup : t -> t

val lazy_tag : int

val closure_tag : int

val object_tag : int

val infix_tag : int

val forward_tag : int

val no_scan_tag : int

val abstract_tag : int

val string_tag : int

val double_tag : int

val double_array_tag : int

69

val custom_tag : int

val final_tag : int

val int_tag : int

val out_of_heap_tag : int
The following two functions are deprecated. Use module Marshal[23] instead.

val marshal : t -> string

val unmarshal : string -> int -> t * int

27 Module Oo : Operations on objects

val copy : (< .. > as 'a) -> 'a

Oo.copy o returns a copy of object o, that is a fresh object with the same methods and
instance variables as o

val id : < .. > -> int

Return an integer identifying this object, unique for the current execution of the program.

28 Module Parsing : The run-time library for parsers generated by
ocamlyacc.

val symbol_start : unit -> int

symbol_start and Parsing.symbol_end[28] are to be called in the action part of a grammar
rule only. They return the o�set of the string that matches the left-hand side of the rule:
symbol_start() returns the o�set of the �rst character; symbol_end() returns the o�set
after the last character. The �rst character in a �le is at o�set 0.

val symbol_end : unit -> int

See Parsing.symbol_start[28].

val rhs_start : int -> int

Same as Parsing.symbol_start[28] and Parsing.symbol_end[28], but return the o�set of
the string matching the nth item on the right-hand side of the rule, where n is the integer
parameter to rhs_start and rhs_end. n is 1 for the leftmost item.

val rhs_end : int -> int

See Parsing.rhs_start[28].

val symbol_start_pos : unit -> Lexing.position

Same as symbol_start, but return a position instead of an o�set.

70

val symbol_end_pos : unit -> Lexing.position

Same as symbol_end, but return a position instead of an o�set.

val rhs_start_pos : int -> Lexing.position

Same as rhs_start, but return a position instead of an o�set.

val rhs_end_pos : int -> Lexing.position

Same as rhs_end, but return a position instead of an o�set.

val clear_parser : unit -> unit

Empty the parser stack. Call it just after a parsing function has returned, to remove all
pointers from the parser stack to structures that were built by semantic actions during
parsing. This is optional, but lowers the memory requirements of the programs.

exception Parse_error

Raised when a parser encounters a syntax error. Can also be raised from the action part of a
grammar rule, to initiate error recovery.

29 Module Pervasives : The initially opened module.

This module provides the basic operations over the built-in types (numbers, booleans, strings,
exceptions, references, lists, arrays, input-output channels, . . .)

This module is automatically opened at the beginning of each compilation. All components of
this module can therefore be referred by their short name, without pre�xing them by Pervasives.

Exceptions

val raise : exn -> 'a

Raise the given exception value

val invalid_arg : string -> 'a

Raise exception Invalid_argument with the given string.

val failwith : string -> 'a

Raise exception Failure with the given string.

exception Exit

The Exit exception is not raised by any library function. It is provided for use in your
programs.

Comparisons

val (=) : 'a -> 'a -> bool

e1 = e2 tests for structural equality of e1 and e2. Mutable structures (e.g. references and
arrays) are equal if and only if their current contents are structurally equal, even if the two
mutable objects are not the same physical object. Equality between functional values raises
Invalid_argument. Equality between cyclic data structures does not terminate.

71

val (<>) : 'a -> 'a -> bool

Negation of Pervasives.(=)[29].

val (<) : 'a -> 'a -> bool

See Pervasives.(>=)[29].

val (>) : 'a -> 'a -> bool

See Pervasives.(>=)[29].

val (<=) : 'a -> 'a -> bool

See Pervasives.(>=)[29].

val (>=) : 'a -> 'a -> bool

Structural ordering functions. These functions coincide with the usual orderings over
integers, characters, strings and �oating-point numbers, and extend them to a total ordering
over all types. The ordering is compatible with (=). As in the case of (=), mutable
structures are compared by contents. Comparison between functional values raises
Invalid_argument. Comparison between cyclic structures does not terminate.

val compare : 'a -> 'a -> int

compare x y returns 0 if x is equal to y, a negative integer if x is less than y, and a positive
integer if x is greater than y. The ordering implemented by compare is compatible with the
comparison predicates =, < and > de�ned above, with one di�erence on the treatment of the
�oat value Pervasives.nan[29]. Namely, the comparison predicates treat nan as di�erent
from any other �oat value, including itself; while compare treats nan as equal to itself and
less than any other �oat value. This treatment of nan ensures that compare de�nes a total
ordering relation.

compare applied to functional values may raise Invalid_argument. compare applied to
cyclic structures may not terminate.

The compare function can be used as the comparison function required by the Set.Make[35]
and Map.Make[22] functors, as well as the List.sort[20] and Array.sort[2] functions.

val min : 'a -> 'a -> 'a

Return the smaller of the two arguments.

val max : 'a -> 'a -> 'a

Return the greater of the two arguments.

val (==) : 'a -> 'a -> bool

e1 == e2 tests for physical equality of e1 and e2. On integers and characters, physical
equality is identical to structural equality. On mutable structures, e1 == e2 is true if and
only if physical modi�cation of e1 also a�ects e2. On non-mutable structures, the behavior
of (==) is implementation-dependent; however, it is guaranteed that e1 == e2 implies
compare e1 e2 = 0.

72

val (!=) : 'a -> 'a -> bool

Negation of Pervasives.(==)[29].

Boolean operations

val not : bool -> bool

The boolean negation.

val (&&) : bool -> bool -> bool

The boolean �and�. Evaluation is sequential, left-to-right: in e1 && e2, e1 is evaluated �rst,
and if it returns false, e2 is not evaluated at all.

val (&) : bool -> bool -> bool

Deprecated. Pervasives.(&&)[29] should be used instead.

val (||) : bool -> bool -> bool

The boolean �or�. Evaluation is sequential, left-to-right: in e1 || e2, e1 is evaluated �rst,
and if it returns true, e2 is not evaluated at all.

val or : bool -> bool -> bool

Deprecated. Pervasives.(||)[29] should be used instead.

Integer arithmetic
Integers are 31 bits wide (or 63 bits on 64-bit processors). All operations are taken modulo 231

(or 263). They do not fail on over�ow.

val (~-) : int -> int

Unary negation. You can also write -e instead of �-e.

val succ : int -> int

succ x is x+1.

val pred : int -> int

pred x is x-1.

val (+) : int -> int -> int

Integer addition.

val (-) : int -> int -> int

Integer subtraction.

val (*) : int -> int -> int

Integer multiplication.

val (/) : int -> int -> int

73

Integer division. Raise Division_by_zero if the second argument is 0. Integer division
rounds the real quotient of its arguments towards zero. More precisely, if x >= 0 and y > 0,
x / y is the greatest integer less than or equal to the real quotient of x by y. Moreover,
(-x) / y = x / (-y) = -(x / y).

val mod : int -> int -> int

Integer remainder. If y is not zero, the result of x mod y satis�es the following properties: x
= (x / y) * y + x mod y and abs(x mod y) <= abs(y)-1. If y = 0, x mod y raises
Division_by_zero. Notice that x mod y is nonpositive if and only if x < 0. Raise
Division_by_zero if y is zero.

val abs : int -> int

Return the absolute value of the argument. Note that this may be negative if the argument
is min_int.

val max_int : int

The greatest representable integer.

val min_int : int

The smallest representable integer.

Bitwise operations

val land : int -> int -> int

Bitwise logical and.

val lor : int -> int -> int

Bitwise logical or.

val lxor : int -> int -> int

Bitwise logical exclusive or.

val lnot : int -> int

Bitwise logical negation.

val lsl : int -> int -> int

n lsl m shifts n to the left by m bits. The result is unspeci�ed if m < 0 or m >= bitsize,
where bitsize is 32 on a 32-bit platform and 64 on a 64-bit platform.

val lsr : int -> int -> int

n lsr m shifts n to the right by m bits. This is a logical shift: zeroes are inserted regardless
of the sign of n. The result is unspeci�ed if m < 0 or m >= bitsize.

val asr : int -> int -> int

n asr m shifts n to the right by m bits. This is an arithmetic shift: the sign bit of n is
replicated. The result is unspeci�ed if m < 0 or m >= bitsize.

74

Floating-point arithmetic
Caml's �oating-point numbers follow the IEEE 754 standard, using double precision (64 bits)

numbers. Floating-point operations never raise an exception on over�ow, under�ow, division by
zero, etc. Instead, special IEEE numbers are returned as appropriate, such as infinity for 1.0 /.
0.0, neg_infinity for -1.0 /. 0.0, and nan (�not a number�) for 0.0 /. 0.0. These special
numbers then propagate through �oating-point computations as expected: for instance, 1.0 /.
infinity is 0.0, and any operation with nan as argument returns nan as result.

val (~-.) : float -> float

Unary negation. You can also write -.e instead of �-.e.

val (+.) : float -> float -> float

Floating-point addition

val (-.) : float -> float -> float

Floating-point subtraction

val (*.) : float -> float -> float

Floating-point multiplication

val (/.) : float -> float -> float

Floating-point division.

val (**) : float -> float -> float

Exponentiation

val sqrt : float -> float

Square root

val exp : float -> float

Exponential.

val log : float -> float

Natural logarithm.

val log10 : float -> float

Base 10 logarithm.

val cos : float -> float

See Pervasives.atan2[29].

val sin : float -> float

See Pervasives.atan2[29].

val tan : float -> float

75

See Pervasives.atan2[29].

val acos : float -> float

See Pervasives.atan2[29].

val asin : float -> float

See Pervasives.atan2[29].

val atan : float -> float

See Pervasives.atan2[29].

val atan2 : float -> float -> float

The usual trigonometric functions.

val cosh : float -> float

See Pervasives.tanh[29].

val sinh : float -> float

See Pervasives.tanh[29].

val tanh : float -> float

The usual hyperbolic trigonometric functions.

val ceil : float -> float

See Pervasives.floor[29].

val floor : float -> float

Round the given �oat to an integer value. floor f returns the greatest integer value less
than or equal to f. ceil f returns the least integer value greater than or equal to f.

val abs_float : float -> float

Return the absolute value of the argument.

val mod_float : float -> float -> float

mod_float a b returns the remainder of a with respect to b. The returned value is a -. n
*. b, where n is the quotient a /. b rounded towards zero to an integer.

val frexp : float -> float * int

frexp f returns the pair of the signi�cant and the exponent of f. When f is zero, the
signi�cant x and the exponent n of f are equal to zero. When f is non-zero, they are de�ned
by f = x *. 2 ** n and 0.5 <= x < 1.0.

val ldexp : float -> int -> float

ldexp x n returns x *. 2 ** n.

76

val modf : float -> float * float

modf f returns the pair of the fractional and integral part of f.

val float : int -> float

Same as Pervasives.float_of_int[29].

val float_of_int : int -> float

Convert an integer to �oating-point.

val truncate : float -> int

Same as Pervasives.int_of_float[29].

val int_of_float : float -> int

Truncate the given �oating-point number to an integer. The result is unspeci�ed if it falls
outside the range of representable integers.

val infinity : float

Positive in�nity.

val neg_infinity : float

Negative in�nity.

val nan : float

A special �oating-point value denoting the result of an unde�ned operation such as 0.0 /.
0.0. Stands for �not a number�. Any �oating-point operation with nan as argument returns
nan as result. As for �oating-point comparisons, =, <, <=, > and >= return false and <>
returns true if one or both of their arguments is nan.

val max_float : float

The largest positive �nite value of type float.

val min_float : float

The smallest positive, non-zero, non-denormalized value of type float.

val epsilon_float : float

The smallest positive �oat x such that 1.0 +. x <> 1.0.

type fpclass =
| FP_normal

Normal number, none of the below

| FP_subnormal

Number very close to 0.0, has reduced precision

| FP_zero

77

Number is 0.0 or -0.0

| FP_infinite

Number is positive or negative in�nity

| FP_nan

Not a number: result of an unde�ned operation

The �ve classes of �oating-point numbers, as determined by the
Pervasives.classify_float[29] function.

val classify_float : float -> fpclass

Return the class of the given �oating-point number: normal, subnormal, zero, in�nite, or not
a number.

String operations
More string operations are provided in module String[40].

val (^) : string -> string -> string

String concatenation.

Character operations
More character operations are provided in module Char[8].

val int_of_char : char -> int

Return the ASCII code of the argument.

val char_of_int : int -> char

Return the character with the given ASCII code. Raise Invalid_argument "char_of_int"
if the argument is outside the range 0�255.

Unit operations

val ignore : 'a -> unit

Discard the value of its argument and return (). For instance, ignore(f x) discards the
result of the side-e�ecting function f. It is equivalent to f x; (), except that the latter may
generate a compiler warning; writing ignore(f x) instead avoids the warning.

String conversion functions

val string_of_bool : bool -> string

Return the string representation of a boolean.

val bool_of_string : string -> bool

Convert the given string to a boolean. Raise Invalid_argument "bool_of_string" if the
string is not "true" or "false".

val string_of_int : int -> string

Return the string representation of an integer, in decimal.

val int_of_string : string -> int

78

Convert the given string to an integer. The string is read in decimal (by default) or in
hexadecimal (if it begins with 0x or 0X), octal (if it begins with 0o or 0O), or binary (if it
begins with 0b or 0B). Raise Failure "int_of_string" if the given string is not a valid
representation of an integer, or if the integer represented exceeds the range of integers
representable in type int.

val string_of_float : float -> string

Return the string representation of a �oating-point number.

val float_of_string : string -> float

Convert the given string to a �oat. Raise Failure "float_of_string" if the given string is
not a valid representation of a �oat.

Pair operations

val fst : 'a * 'b -> 'a

Return the �rst component of a pair.

val snd : 'a * 'b -> 'b

Return the second component of a pair.

List operations
More list operations are provided in module List[20].

val (@) : 'a list -> 'a list -> 'a list

List concatenation.

Input/output

type in_channel

The type of input channel.

type out_channel

The type of output channel.

val stdin : in_channel

The standard input for the process.

val stdout : out_channel

The standard output for the process.

val stderr : out_channel

The standard error ouput for the process.

Output functions on standard output

val print_char : char -> unit

Print a character on standard output.

79

val print_string : string -> unit

Print a string on standard output.

val print_int : int -> unit

Print an integer, in decimal, on standard output.

val print_float : float -> unit

Print a �oating-point number, in decimal, on standard output.

val print_endline : string -> unit

Print a string, followed by a newline character, on standard output and �ush standard
output.

val print_newline : unit -> unit

Print a newline character on standard output, and �ush standard output. This can be used
to simulate line bu�ering of standard output.

Output functions on standard error

val prerr_char : char -> unit

Print a character on standard error.

val prerr_string : string -> unit

Print a string on standard error.

val prerr_int : int -> unit

Print an integer, in decimal, on standard error.

val prerr_float : float -> unit

Print a �oating-point number, in decimal, on standard error.

val prerr_endline : string -> unit

Print a string, followed by a newline character on standard error and �ush standard error.

val prerr_newline : unit -> unit

Print a newline character on standard error, and �ush standard error.

Input functions on standard input

val read_line : unit -> string

Flush standard output, then read characters from standard input until a newline character is
encountered. Return the string of all characters read, without the newline character at the
end.

val read_int : unit -> int

Flush standard output, then read one line from standard input and convert it to an integer.
Raise Failure "int_of_string" if the line read is not a valid representation of an integer.

80

val read_float : unit -> float

Flush standard output, then read one line from standard input and convert it to a
�oating-point number. The result is unspeci�ed if the line read is not a valid representation
of a �oating-point number.

General output functions

type open_flag =
| Open_rdonly

open for reading.

| Open_wronly

open for writing.

| Open_append

open for appending: always write at end of �le.

| Open_creat

create the �le if it does not exist.

| Open_trunc

empty the �le if it already exists.

| Open_excl

fail if Open_creat and the �le already exists.

| Open_binary

open in binary mode (no conversion).

| Open_text

open in text mode (may perform conversions).

| Open_nonblock

open in non-blocking mode.

Opening modes for Pervasives.open_out_gen[29] and Pervasives.open_in_gen[29].

val open_out : string -> out_channel

Open the named �le for writing, and return a new output channel on that �le, positionned
at the beginning of the �le. The �le is truncated to zero length if it already exists. It is
created if it does not already exists. Raise Sys_error if the �le could not be opened.

val open_out_bin : string -> out_channel

Same as Pervasives.open_out[29], but the �le is opened in binary mode, so that no
translation takes place during writes. On operating systems that do not distinguish between
text mode and binary mode, this function behaves like Pervasives.open_out[29].

val open_out_gen : open_flag list -> int -> string -> out_channel

81

open_out_gen mode perm filename opens the named �le for writing, as described above.
The extra argument mode specify the opening mode. The extra argument perm speci�es the
�le permissions, in case the �le must be created. Pervasives.open_out[29] and
Pervasives.open_out_bin[29] are special cases of this function.

val flush : out_channel -> unit

Flush the bu�er associated with the given output channel, performing all pending writes on
that channel. Interactive programs must be careful about �ushing standard output and
standard error at the right time.

val flush_all : unit -> unit

Flush all open output channels; ignore errors.

val output_char : out_channel -> char -> unit

Write the character on the given output channel.

val output_string : out_channel -> string -> unit

Write the string on the given output channel.

val output : out_channel -> string -> int -> int -> unit

output oc buf pos len writes len characters from string buf, starting at o�set pos, to the
given output channel oc. Raise Invalid_argument "output" if pos and len do not
designate a valid substring of buf.

val output_byte : out_channel -> int -> unit

Write one 8-bit integer (as the single character with that code) on the given output channel.
The given integer is taken modulo 256.

val output_binary_int : out_channel -> int -> unit

Write one integer in binary format (4 bytes, big-endian) on the given output channel. The
given integer is taken modulo 232. The only reliable way to read it back is through the
Pervasives.input_binary_int[29] function. The format is compatible across all machines
for a given version of Objective Caml.

val output_value : out_channel -> 'a -> unit

Write the representation of a structured value of any type to a channel. Circularities and
sharing inside the value are detected and preserved. The object can be read back, by the
function Pervasives.input_value[29]. See the description of module Marshal[23] for more
information. Pervasives.output_value[29] is equivalent to Marshal.to_channel[23] with
an empty list of �ags.

val seek_out : out_channel -> int -> unit

seek_out chan pos sets the current writing position to pos for channel chan. This works
only for regular �les. On �les of other kinds (such as terminals, pipes and sockets), the
behavior is unspeci�ed.

82

val pos_out : out_channel -> int

Return the current writing position for the given channel. Does not work on channels
opened with the Open_append �ag (returns unspeci�ed results).

val out_channel_length : out_channel -> int

Return the size (number of characters) of the regular �le on which the given channel is
opened. If the channel is opened on a �le that is not a regular �le, the result is meaningless.

val close_out : out_channel -> unit

Close the given channel, �ushing all bu�ered write operations. Output functions raise a
Sys_error exception when they are applied to a closed output channel, except close_out
and flush, which do nothing when applied to an already closed channel. Note that
close_out may raise Sys_error if the operating system signals an error when �ushing or
closing.

val close_out_noerr : out_channel -> unit

Same as close_out, but ignore all errors.

val set_binary_mode_out : out_channel -> bool -> unit

set_binary_mode_out oc true sets the channel oc to binary mode: no translations take
place during output. set_binary_mode_out oc false sets the channel oc to text mode:
depending on the operating system, some translations may take place during output. For
instance, under Windows, end-of-lines will be translated from \n to \r\n. This function has
no e�ect under operating systems that do not distinguish between text mode and binary
mode.

General input functions

val open_in : string -> in_channel

Open the named �le for reading, and return a new input channel on that �le, positionned at
the beginning of the �le. Raise Sys_error if the �le could not be opened.

val open_in_bin : string -> in_channel

Same as Pervasives.open_in[29], but the �le is opened in binary mode, so that no
translation takes place during reads. On operating systems that do not distinguish between
text mode and binary mode, this function behaves like Pervasives.open_in[29].

val open_in_gen : open_flag list -> int -> string -> in_channel

open_in mode perm filename opens the named �le for reading, as described above. The
extra arguments mode and perm specify the opening mode and �le permissions.
Pervasives.open_in[29] and Pervasives.open_in_bin[29] are special cases of this function.

val input_char : in_channel -> char

Read one character from the given input channel. Raise End_of_file if there are no more
characters to read.

83

val input_line : in_channel -> string

Read characters from the given input channel, until a newline character is encountered.
Return the string of all characters read, without the newline character at the end. Raise
End_of_file if the end of the �le is reached at the beginning of line.

val input : in_channel -> string -> int -> int -> int

input ic buf pos len reads up to len characters from the given channel ic, storing them
in string buf, starting at character number pos. It returns the actual number of characters
read, between 0 and len (inclusive). A return value of 0 means that the end of �le was
reached. A return value between 0 and len exclusive means that not all requested len
characters were read, either because no more characters were available at that time, or
because the implementation found it convenient to do a partial read; input must be called
again to read the remaining characters, if desired. (See also Pervasives.really_input[29]
for reading exactly len characters.) Exception Invalid_argument "input" is raised if pos
and len do not designate a valid substring of buf.

val really_input : in_channel -> string -> int -> int -> unit

really_input ic buf pos len reads len characters from channel ic, storing them in
string buf, starting at character number pos. Raise End_of_file if the end of �le is reached
before len characters have been read. Raise Invalid_argument "really_input" if pos and
len do not designate a valid substring of buf.

val input_byte : in_channel -> int

Same as Pervasives.input_char[29], but return the 8-bit integer representing the
character. Raise End_of_file if an end of �le was reached.

val input_binary_int : in_channel -> int

Read an integer encoded in binary format (4 bytes, big-endian) from the given input
channel. See Pervasives.output_binary_int[29]. Raise End_of_file if an end of �le was
reached while reading the integer.

val input_value : in_channel -> 'a

Read the representation of a structured value, as produced by
Pervasives.output_value[29], and return the corresponding value. This function is
identical to Marshal.from_channel[23]; see the description of module Marshal[23] for more
information, in particular concerning the lack of type safety.

val seek_in : in_channel -> int -> unit

seek_in chan pos sets the current reading position to pos for channel chan. This works
only for regular �les. On �les of other kinds, the behavior is unspeci�ed.

val pos_in : in_channel -> int

Return the current reading position for the given channel.

val in_channel_length : in_channel -> int

84

Return the size (number of characters) of the regular �le on which the given channel is
opened. If the channel is opened on a �le that is not a regular �le, the result is meaningless.
The returned size does not take into account the end-of-line translations that can be
performed when reading from a channel opened in text mode.

val close_in : in_channel -> unit

Close the given channel. Input functions raise a Sys_error exception when they are applied
to a closed input channel, except close_in, which does nothing when applied to an already
closed channel. Note that close_in may raise Sys_error if the operating system signals an
error.

val close_in_noerr : in_channel -> unit

Same as close_in, but ignore all errors.

val set_binary_mode_in : in_channel -> bool -> unit

set_binary_mode_in ic true sets the channel ic to binary mode: no translations take
place during input. set_binary_mode_out ic false sets the channel ic to text mode:
depending on the operating system, some translations may take place during input. For
instance, under Windows, end-of-lines will be translated from \r\n to \n. This function has
no e�ect under operating systems that do not distinguish between text mode and binary
mode.

Operations on large �les

module LargeFile :
sig

val seek_out : Pervasives.out_channel -> int64 -> unit

val pos_out : Pervasives.out_channel -> int64

val out_channel_length : Pervasives.out_channel -> int64

val seek_in : Pervasives.in_channel -> int64 -> unit

val pos_in : Pervasives.in_channel -> int64

val in_channel_length : Pervasives.in_channel -> int64

end

Operations on large �les. This sub-module provides 64-bit variants of the channel functions
that manipulate �le positions and �le sizes. By representing positions and sizes by 64-bit
integers (type int64) instead of regular integers (type int), these alternate functions allow
operating on �les whose sizes are greater than max_int.

References

type 'a ref = {
mutable contents : 'a ;

}

The type of references (mutable indirection cells) containing a value of type 'a.

85

val ref : 'a -> 'a ref

Return a fresh reference containing the given value.

val (!) : 'a ref -> 'a

!r returns the current contents of reference r. Equivalent to fun r -> r.contents.

val (:=) : 'a ref -> 'a -> unit

r := a stores the value of a in reference r. Equivalent to fun r v -> r.contents <- v.

val incr : int ref -> unit

Increment the integer contained in the given reference. Equivalent to fun r -> r := succ
!r.

val decr : int ref -> unit

Decrement the integer contained in the given reference. Equivalent to fun r -> r := pred
!r.

Operations on format strings
See modules Printf[31] and Scanf[34] for more operations on format strings.

type ('a, 'b, 'c) format = ('a, 'b, 'c, 'c) format4

Simpli�ed type for format strings, included for backward compatibility with earlier releases
of Objective Caml. 'a is the type of the parameters of the format, 'c is the result type for
the "printf"-style function, and 'b is the type of the �rst argument given to %a and %t
printing functions.

val string_of_format : ('a, 'b, 'c, 'd) format4 -> string

Converts a format string into a string.

val format_of_string : ('a, 'b, 'c, 'd) format4 -> ('a, 'b, 'c, 'd) format4

format_of_string s returns a format string read from the string literal s.

val (^^) :
('a, 'b, 'c, 'd) format4 ->
('d, 'b, 'c, 'e) format4 -> ('a, 'b, 'c, 'e) format4

f1 ^^f2 catenates formats f1 and f2. The result is a format that accepts arguments from
f1, then arguments from f2.

Program termination

val exit : int -> 'a

Terminate the process, returning the given status code to the operating system: usually 0 to
indicate no errors, and a small positive integer to indicate failure. All open output channels
are �ushed with �ush_all. An implicit exit 0 is performed each time a program terminates
normally. An implicit exit 2 is performed if the program terminates early because of an
uncaught exception.

86

val at_exit : (unit -> unit) -> unit

Register the given function to be called at program termination time. The functions
registered with at_exit will be called when the program executes Pervasives.exit[29], or
terminates, either normally or because of an uncaught exception. The functions are called in
�last in, �rst out� order: the function most recently added with at_exit is called �rst.

30 Module Printexc : Facilities for printing exceptions.

val to_string : exn -> string

Printexc.to_string e returns a string representation of the exception e.

val print : ('a -> 'b) -> 'a -> 'b

Printexc.print fn x applies fn to x and returns the result. If the evaluation of fn x raises
any exception, the name of the exception is printed on standard error output, and the
exception is raised again. The typical use is to catch and report exceptions that escape a
function application.

val catch : ('a -> 'b) -> 'a -> 'b

Printexc.catch fn x is similar to Printexc.print[30], but aborts the program with exit
code 2 after printing the uncaught exception. This function is deprecated: the runtime
system is now able to print uncaught exceptions as precisely as Printexc.catch does.
Moreover, calling Printexc.catch makes it harder to track the location of the exception
using the debugger or the stack backtrace facility. So, do not use Printexc.catch in new
code.

31 Module Printf : Formatted output functions.

val fprintf :
Pervasives.out_channel ->
('a, Pervasives.out_channel, unit) Pervasives.format -> 'a

fprintf outchan format arg1 ... argN formats the arguments arg1 to argN according
to the format string format, and outputs the resulting string on the channel outchan.

The format is a character string which contains two types of objects: plain characters, which
are simply copied to the output channel, and conversion speci�cations, each of which causes
conversion and printing of arguments.

Conversion speci�cations have the following form:

% [positional specifier] [flags] [width] [.precision] type

In short, a conversion speci�cation consists in the % character, followed by optional modi�ers
and a type which is made of one or two characters. The types and their meanings are:

87

• d, i, n, l, L, or N: convert an integer argument to signed decimal.

• u: convert an integer argument to unsigned decimal.

• x: convert an integer argument to unsigned hexadecimal, using lowercase letters.

• X: convert an integer argument to unsigned hexadecimal, using uppercase letters.

• o: convert an integer argument to unsigned octal.

• s: insert a string argument.

• S: insert a string argument in Caml syntax (double quotes, escapes).

• c: insert a character argument.

• C: insert a character argument in Caml syntax (single quotes, escapes).

• f: convert a �oating-point argument to decimal notation, in the style dddd.ddd.

• F: convert a �oating-point argument to Caml syntax (dddd. or dddd.ddd or d.ddd
e+-dd).

• e or E: convert a �oating-point argument to decimal notation, in the style d.ddd e+-dd
(mantissa and exponent).

• g or G: convert a �oating-point argument to decimal notation, in style f or e, E
(whichever is more compact).

• B: convert a boolean argument to the string true or false

• b: convert a boolean argument (for backward compatibility; do not use in new
programs).

• ld, li, lu, lx, lX, lo: convert an int32 argument to the format speci�ed by the second
letter (decimal, hexadecimal, etc).

• nd, ni, nu, nx, nX, no: convert a nativeint argument to the format speci�ed by the
second letter.

• Ld, Li, Lu, Lx, LX, Lo: convert an int64 argument to the format speci�ed by the second
letter.

• a: user-de�ned printer. Takes two arguments and apply the �rst one to outchan (the
current output channel) and to the second argument. The �rst argument must
therefore have type out_channel -> 'b -> unit and the second 'b. The output
produced by the function is inserted in the output of fprintf at the current point.

• t: same as %a, but takes only one argument (with type out_channel -> unit) and
apply it to outchan.

• { fmt %}: convert a format string argument. The argument must have the same type
as the internal format string fmt.

• (fmt %): format string substitution. Takes a format string argument and substitutes
it to the internal format string fmt to print following arguments. The argument must
have the same type as fmt.

• !: take no argument and �ush the output.

• %: take no argument and output one % character.

88

The optional positional specifier consists of an integer followed by a $; the integer
indicates which argument to use, the �rst argument being denoted by 1.

The optional flags are:

• -: left-justify the output (default is right justi�cation).

• 0: for numerical conversions, pad with zeroes instead of spaces.

• +: for numerical conversions, pre�x number with a + sign if positive.

• space: for numerical conversions, pre�x number with a space if positive.

• #: request an alternate formatting style for numbers.

The optional width is an integer indicating the minimal width of the result. For instance,
%6d prints an integer, pre�xing it with spaces to �ll at least 6 characters.

The optional precision is a dot . followed by an integer indicating how many digits follow
the decimal point in the %f, %e, and %E conversions. For instance, %.4f prints a float with
4 fractional digits.

The integer in a width or precision can also be speci�ed as *, in which case an extra
integer argument is taken to specify the corresponding width or precision. This integer
argument precedes immediately the argument to print, unless an optional positional
specifier is given to indicates which argument to use. For instance, %.*3$f prints a float
with as many fractional digits as the value of the third argument.

val printf : ('a, Pervasives.out_channel, unit) Pervasives.format -> 'a

Same as Printf.fprintf[31], but output on stdout.

val eprintf : ('a, Pervasives.out_channel, unit) Pervasives.format -> 'a

Same as Printf.fprintf[31], but output on stderr.

val sprintf : ('a, unit, string) Pervasives.format -> 'a

Same as Printf.fprintf[31], but instead of printing on an output channel, return a string
containing the result of formatting the arguments.

val bprintf : Buffer.t -> ('a, Buffer.t, unit) Pervasives.format -> 'a

Same as Printf.fprintf[31], but instead of printing on an output channel, append the
formatted arguments to the given extensible bu�er (see module Buffer[4]).

val kfprintf :
(Pervasives.out_channel -> 'a) ->
Pervasives.out_channel ->
('b, Pervasives.out_channel, unit, 'a) format4 -> 'b

Same as fprintf, but instead of returning immediately, passes the out channel to its �rst
argument at the end of printing.

val ksprintf : (string -> 'a) -> ('b, unit, string, 'a) format4 -> 'b

Same as sprintf above, but instead of returning the string, passes it to the �rst argument.

89

val kprintf : (string -> 'a) -> ('b, unit, string, 'a) format4 -> 'b

A deprecated synonym for ksprintf.

32 Module Queue : First-in �rst-out queues.

This module implements queues (FIFOs), with in-place modi�cation.

type 'a t

The type of queues containing elements of type 'a.

exception Empty

Raised when Queue.take[32] or Queue.peek[32] is applied to an empty queue.

val create : unit -> 'a t

Return a new queue, initially empty.

val add : 'a -> 'a t -> unit

add x q adds the element x at the end of the queue q.

val push : 'a -> 'a t -> unit

push is a synonym for add.

val take : 'a t -> 'a

take q removes and returns the �rst element in queue q, or raises Empty if the queue is
empty.

val pop : 'a t -> 'a

pop is a synonym for take.

val peek : 'a t -> 'a

peek q returns the �rst element in queue q, without removing it from the queue, or raises
Empty if the queue is empty.

val top : 'a t -> 'a

top is a synonym for peek.

val clear : 'a t -> unit

Discard all elements from a queue.

val copy : 'a t -> 'a t

Return a copy of the given queue.

val is_empty : 'a t -> bool

90

Return true if the given queue is empty, false otherwise.

val length : 'a t -> int

Return the number of elements in a queue.

val iter : ('a -> unit) -> 'a t -> unit

iter f q applies f in turn to all elements of q, from the least recently entered to the most
recently entered. The queue itself is unchanged.

val fold : ('a -> 'b -> 'a) -> 'a -> 'b t -> 'a

fold f accu q is equivalent to List.fold_left f accu l, where l is the list of q's
elements. The queue remains unchanged.

val transfer : 'a t -> 'a t -> unit

transfer q1 q2 adds all of q1's elements at the end of the queue q2, then clears q1. It is
equivalent to the sequence iter (fun x -> add x q2) q1; clear q1, but runs in constant
time.

33 Module Random : Pseudo-random number generators (PRNG).

Basic functions

val init : int -> unit

Initialize the generator, using the argument as a seed. The same seed will always yield the
same sequence of numbers.

val full_init : int array -> unit

Same as Random.init[33] but takes more data as seed.

val self_init : unit -> unit

Initialize the generator with a more-or-less random seed chosen in a system-dependent way.

val bits : unit -> int

Return 30 random bits in a nonnegative integer.

val int : int -> int

Random.int bound returns a random integer between 0 (inclusive) and bound (exclusive).
bound must be more than 0 and less than 230.

val int32 : Int32.t -> Int32.t

Random.int32 bound returns a random integer between 0 (inclusive) and bound (exclusive).
bound must be greater than 0.

val nativeint : Nativeint.t -> Nativeint.t

91

Random.nativeint bound returns a random integer between 0 (inclusive) and bound
(exclusive). bound must be greater than 0.

val int64 : Int64.t -> Int64.t

Random.int64 bound returns a random integer between 0 (inclusive) and bound (exclusive).
bound must be greater than 0.

val float : float -> float

Random.float bound returns a random �oating-point number between 0 (inclusive) and
bound (exclusive). If bound is negative, the result is negative or zero. If bound is 0, the result
is 0.

val bool : unit -> bool

Random.bool () returns true or false with probability 0.5 each.

Advanced functions
The functions from module State manipulate the current state of the random generator ex-

plicitely. This allows using one or several deterministic PRNGs, even in a multi-threaded program,
without interference from other parts of the program.

module State :
sig

type t

The type of PRNG states.

val make : int array -> t

Create a new state and initialize it with the given seed.

val make_self_init : unit -> t

Create a new state and initialize it with a system-dependent low-entropy seed.

val copy : t -> t

Return a copy of the given state.

val bits : t -> int

val int : t -> int -> int

val int32 : t -> Int32.t -> Int32.t

val nativeint : t -> Nativeint.t -> Nativeint.t

val int64 : t -> Int64.t -> Int64.t

val float : t -> float -> float

val bool : t -> bool

These functions are the same as the basic functions, except that they use (and update)
the given PRNG state instead of the default one.

92

end

val get_state : unit -> State.t

Return the current state of the generator used by the basic functions.

val set_state : State.t -> unit

Set the state of the generator used by the basic functions.

34 Module Scanf : Formatted input functions.

module Scanning :
sig

type scanbuf

The type of scanning bu�ers. A scanning bu�er is the argument passed to the scanning
functions used by the scanf family of functions. The scanning bu�er holds the current
state of the scan, plus a function to get the next char from the input, and a token
bu�er to store the string matched so far.

val stdib : scanbuf

The scanning bu�er reading from stdin. stdib is equivalent to
Scanning.from_channel stdin.

val from_string : string -> scanbuf

Scanning.from_string s returns a scanning bu�er which reads from the given string.
Reading starts from the �rst character in the string. The end-of-input condition is set
when the end of the string is reached.

val from_file : string -> scanbuf

Bu�erized �le reading in text mode. The e�cient and usual way to scan text mode �les
(in e�ect, from_file returns a bu�er that reads characters in large chunks, rather than
one character at a time as bu�ers returned by from_channel do). Scanning.from_file
fname returns a scanning bu�er which reads from the given �le fname in text mode.

val from_file_bin : string -> scanbuf

Bu�erized �le reading in binary mode.

val from_function : (unit -> char) -> scanbuf

Scanning.from_function f returns a scanning bu�er with the given function as its
reading method. When scanning needs one more character, the given function is called.
When the function has no more character to provide, it must signal an end-of-input
condition by raising the exception End_of_file.

93

val from_channel : Pervasives.in_channel -> scanbuf

Scanning.from_channel ic returns a scanning bu�er which reads one character at a
time from the input channel ic, starting at the current reading position.

val end_of_input : scanbuf -> bool

Scanning.end_of_input ib tests the end-of-input condition of the given bu�er.

val beginning_of_input : scanbuf -> bool

Scanning.beginning_of_input ib tests the beginning of input condition of the given
bu�er.

val name_of_input : scanbuf -> string

Scanning.file_name_of_input ib returns the name of the character source for the
input bu�er ib.

end

Scanning bu�ers.

exception Scan_failure of string

The exception that formatted input functions raise when the input cannot be read according
to the given format.

val bscanf :
Scanning.scanbuf ->
('a, Scanning.scanbuf, 'b) Pervasives.format -> 'a -> 'b

bscanf ib fmt f reads tokens from the scanning bu�er ib according to the format string
fmt, converts these tokens to values, and applies the function f to these values. The result of
this application of f is the result of the whole construct.

For instance, if p is the function fun s i -> i + 1, then Scanf.sscanf "x = 1" "%s =
%i" p returns 2.

The format is a character string which contains three types of objects:

• plain characters, which are simply matched with the characters of the input,

• conversion speci�cations, each of which causes reading and conversion of one argument
for f,

• scanning indications to specify boundaries of tokens.

Among plain characters the space character (ASCII code 32) has a special meaning: it
matches �whitespace�, that is any number of tab, space, newline and carriage return
characters. Hence, a space in the format matches any amount of whitespace in the input.

Conversion speci�cations consist in the % character, followed by an optional �ag, an optional
�eld width, and followed by one or two conversion characters. The conversion characters and
their meanings are:

94

• d: reads an optionally signed decimal integer.

• i: reads an optionally signed integer (usual input formats for hexadecimal (0x[d]+ and
0X[d]+), octal (0o[d]+), and binary 0b[d]+ notations are understood).

• u: reads an unsigned decimal integer.

• x or X: reads an unsigned hexadecimal integer.

• o: reads an unsigned octal integer.

• s: reads a string argument that spreads as much as possible, until the next white space,
the next scanning indication, or the end-of-input is reached. Hence, this conversion
always succeeds: it returns an empty string if the bounding condition holds when the
scan begins.

• S: reads a delimited string argument (delimiters and special escaped characters follow
the lexical conventions of Caml).

• c: reads a single character. To test the current input character without reading it,
specify a null �eld width, i.e. use speci�cation %0c. Raise Invalid_argument, if the
�eld width speci�cation is greater than 1.

• C: reads a single delimited character (delimiters and special escaped characters follow
the lexical conventions of Caml).

• f, e, E, g, G: reads an optionally signed �oating-point number in decimal notation, in
the style dddd.ddd e/E+-dd.

• F: reads a �oating point number according to the lexical conventions of Caml (hence
the decimal point is mandatory if the exponent part is not mentioned).

• B: reads a boolean argument (true or false).

• b: reads a boolean argument (for backward compatibility; do not use in new programs).

• ld, li, lu, lx, lX, lo: reads an int32 argument to the format speci�ed by the second
letter (decimal, hexadecimal, etc).

• nd, ni, nu, nx, nX, no: reads a nativeint argument to the format speci�ed by the
second letter.

• Ld, Li, Lu, Lx, LX, Lo: reads an int64 argument to the format speci�ed by the second
letter.

• [range]: reads characters that matches one of the characters mentioned in the range
of characters range (or not mentioned in it, if the range starts with ^). Reads a string
that can be empty, if no character in the input matches the range. The set of
characters from c1 to c2 (inclusively) is denoted by c1-c2. Hence, %[0-9] returns a
string representing a decimal number or an empty string if no decimal digit is found;
similarly, %[\\048-\\057\\065-\\070] returns a string of hexadecimal digits. If a
closing bracket appears in a range, it must occur as the �rst character of the range (or
just after the ^ in case of range negation); hence []] matches a] character and [^]]
matches any character that is not].

• { fmt %}: reads a format string argument to the format speci�ed by the internal
format fmt. The format string to be read must have the same type as the internal
format fmt. For instance, "%{%i%}" reads any format string that can read a value of

95

type int; hence Scanf.sscanf "fmt:\\\"number is %u\\\"" "fmt:%{%i%}" succeeds
and returns the format string "number is %u".

• \(fmt %\): scanning format substitution. Reads a format string to replace fmt. The
format string read must have the same type as fmt.

• l: applies f to the number of lines read so far.

• n: applies f to the number of characters read so far.

• N or L: applies f to the number of tokens read so far.

• !: matches the end of input condition.

• %: matches one % character in the input.

Following the % character introducing a conversion, there may be the special �ag _: the
conversion that follows occurs as usual, but the resulting value is discarded.

The �eld widths are composed of an optional integer literal indicating the maximal width of
the token to read. For instance, %6d reads an integer, having at most 6 decimal digits; %4f
reads a �oat with at most 4 characters; and %8[\\000-\\255] returns the next 8 characters
(or all the characters still available, if less than 8 characters are available in the input).

Scanning indications appear just after the string conversions s and [range] to delimit the
end of the token. A scanning indication is introduced by a @ character, followed by some
constant character c. It means that the string token should end just before the next
matching c (which is skipped). If no c character is encountered, the string token spreads as
much as possible. For instance, "%s@\t" reads a string up to the next tabulation character
or to the end of input. If a scanning indication @c does not follow a string conversion, it is
treated as a plain c character.

Raise Scanf.Scan_failure if the given input does not match the format.

Raise Failure if a conversion to a number is not possible.

Raise End_of_file if the end of input is encountered while some more characters are needed
to read the current conversion speci�cation (this means in particular that scanning a %s
conversion never raises exception End_of_file: if the end of input is reached the conversion
succeeds and simply returns "").

Notes:

• the scanning indications introduce slight di�erences in the syntax of Scanf format
strings compared to those used by the Printf module. However, scanning indications
are similar to those of the Format module; hence, when producing formatted text to be
scanned by !Scanf.bscanf, it is wise to use printing functions from Format (or, if you
need to use functions from Printf, banish or carefully double check the format strings
that contain '@' characters).

• in addition to relevant digits, '_' characters may appear inside numbers (this is
reminiscent to the usual Caml conventions). If stricter scanning is desired, use the
range conversion facility instead of the number conversions.

96

• the scanf facility is not intended for heavy duty lexical analysis and parsing. If it
appears not expressive enough for your needs, several alternative exists: regular
expressions (module Str), stream parsers, ocamllex-generated lexers,
ocamlyacc-generated parsers.

val fscanf :
Pervasives.in_channel ->
('a, Scanning.scanbuf, 'b) Pervasives.format -> 'a -> 'b

Same as Scanf.bscanf[34], but inputs from the given channel.

Warning: since all scanning functions operate from a scanning bu�er, be aware that each
fscanf invocation must allocate a new fresh scanning bu�er (unless careful use of partial
evaluation in the program). Hence, there are chances that some characters seem to be
skipped (in fact they are pending in the previously used bu�er). This happens in particular
when calling fscanf again after a scan involving a format that necessitates some look ahead
(such as a format that ends by skipping whitespace in the input).

To avoid confusion, consider using bscanf with an explicitly created scanning bu�er. Use for
instance Scanning.from_file f to allocate the scanning bu�er reading from �le f.

This method is not only clearer it is also faster, since scanning bu�ers to �les are optimized
for fast bu�erized reading.

val sscanf :
string -> ('a, Scanning.scanbuf, 'b) Pervasives.format -> 'a -> 'b

Same as Scanf.bscanf[34], but inputs from the given string.

val scanf : ('a, Scanning.scanbuf, 'b) Pervasives.format -> 'a -> 'b

Same as Scanf.bscanf[34], but reads from the prede�ned scanning bu�er
Scanf.Scanning.stdib[34] that is connected to stdin.

val kscanf :
Scanning.scanbuf ->
(Scanning.scanbuf -> exn -> 'a) ->
('b, Scanning.scanbuf, 'a) Pervasives.format -> 'b -> 'a

Same as Scanf.bscanf[34], but takes an additional function argument ef that is called in
case of error: if the scanning process or some conversion fails, the scanning function aborts
and applies the error handling function ef to the scanning bu�er and the exception that
aborted the scanning process.

val bscanf_format :
Scanning.scanbuf ->
('a, 'b, 'c, 'd) format4 -> (('a, 'b, 'c, 'd) format4 -> 'e) -> 'e
bscanf_format ib fmt f reads a format string token in bu�er ib, according to the format

string fmt, and applies the function f to the resulting format string value. Raises Scan_failure if
the format string value read has not the same type as fmt.

val sscanf_format :
string -> ('a, 'b, 'c, 'd) format4 -> ('a, 'b, 'c, 'd) format4

97

Same as Scanf.bscanf_format[34], but converts the given string to a format string.

35 Module Set : Sets over ordered types.

This module implements the set data structure, given a total ordering function over the set elements.
All operations over sets are purely applicative (no side-e�ects). The implementation uses balanced
binary trees, and is therefore reasonably e�cient: insertion and membership take time logarithmic
in the size of the set, for instance.

module type OrderedType =
sig

type t

The type of the set elements.

val compare : t -> t -> int

A total ordering function over the set elements. This is a two-argument function f such
that f e1 e2 is zero if the elements e1 and e2 are equal, f e1 e2 is strictly negative if
e1 is smaller than e2, and f e1 e2 is strictly positive if e1 is greater than e2.
Example: a suitable ordering function is the generic structural comparison function
Pervasives.compare[29].

end

Input signature of the functor Set.Make[35].

module type S =
sig

type elt

The type of the set elements.

type t

The type of sets.

val empty : t

The empty set.

val is_empty : t -> bool

Test whether a set is empty or not.

val mem : elt -> t -> bool

mem x s tests whether x belongs to the set s.

98

val add : elt -> t -> t

add x s returns a set containing all elements of s, plus x. If x was already in s, s is
returned unchanged.

val singleton : elt -> t

singleton x returns the one-element set containing only x.

val remove : elt -> t -> t

remove x s returns a set containing all elements of s, except x. If x was not in s, s is
returned unchanged.

val union : t -> t -> t

Set union.

val inter : t -> t -> t

Set intersection.

val diff : t -> t -> t

Set di�erence.

val compare : t -> t -> int

Total ordering between sets. Can be used as the ordering function for doing sets of sets.

val equal : t -> t -> bool

equal s1 s2 tests whether the sets s1 and s2 are equal, that is, contain equal elements.

val subset : t -> t -> bool

subset s1 s2 tests whether the set s1 is a subset of the set s2.

val iter : (elt -> unit) -> t -> unit

iter f s applies f in turn to all elements of s. The elements of s are presented to f in
increasing order with respect to the ordering over the type of the elements.

val fold : (elt -> 'a -> 'a) -> t -> 'a -> 'a

fold f s a computes (f xN ... (f x2 (f x1 a))...), where x1 ... xN are the
elements of s, in increasing order.

val for_all : (elt -> bool) -> t -> bool

for_all p s checks if all elements of the set satisfy the predicate p.

val exists : (elt -> bool) -> t -> bool

99

exists p s checks if at least one element of the set satis�es the predicate p.

val filter : (elt -> bool) -> t -> t

filter p s returns the set of all elements in s that satisfy predicate p.

val partition : (elt -> bool) -> t -> t * t

partition p s returns a pair of sets (s1, s2), where s1 is the set of all the elements
of s that satisfy the predicate p, and s2 is the set of all the elements of s that do not
satisfy p.

val cardinal : t -> int

Return the number of elements of a set.

val elements : t -> elt list

Return the list of all elements of the given set. The returned list is sorted in increasing
order with respect to the ordering Ord.compare, where Ord is the argument given to
Set.Make[35].

val min_elt : t -> elt

Return the smallest element of the given set (with respect to the Ord.compare
ordering), or raise Not_found if the set is empty.

val max_elt : t -> elt

Same as Set.S.min_elt[35], but returns the largest element of the given set.

val choose : t -> elt

Return one element of the given set, or raise Not_found if the set is empty. Which
element is chosen is unspeci�ed, but equal elements will be chosen for equal sets.

val split : elt -> t -> t * bool * t

split x s returns a triple (l, present, r), where l is the set of elements of s that
are strictly less than x; r is the set of elements of s that are strictly greater than x;
present is false if s contains no element equal to x, or true if s contains an element
equal to x.

end

Output signature of the functor Set.Make[35].

module Make :
functor (Ord : OrderedType) -> S with type elt = Ord.t

Functor building an implementation of the set structure given a totally ordered type.

100

36 Module Sort : Sorting and merging lists.

This module is obsolete and exists only for backward compatibility. The sorting functions in Array[2]
and List[20] should be used instead. The new functions are faster and use less memory.Sorting and
merging lists.

val list : ('a -> 'a -> bool) -> 'a list -> 'a list

Sort a list in increasing order according to an ordering predicate. The predicate should
return true if its �rst argument is less than or equal to its second argument.

val array : ('a -> 'a -> bool) -> 'a array -> unit

Sort an array in increasing order according to an ordering predicate. The predicate should
return true if its �rst argument is less than or equal to its second argument. The array is
sorted in place.

val merge : ('a -> 'a -> bool) -> 'a list -> 'a list -> 'a list

Merge two lists according to the given predicate. Assuming the two argument lists are sorted
according to the predicate, merge returns a sorted list containing the elements from the two
lists. The behavior is unde�ned if the two argument lists were not sorted.

37 Module Stack : Last-in �rst-out stacks.

This module implements stacks (LIFOs), with in-place modi�cation.

type 'a t

The type of stacks containing elements of type 'a.

exception Empty

Raised when Stack.pop[37] or Stack.top[37] is applied to an empty stack.

val create : unit -> 'a t

Return a new stack, initially empty.

val push : 'a -> 'a t -> unit

push x s adds the element x at the top of stack s.

val pop : 'a t -> 'a

pop s removes and returns the topmost element in stack s, or raises Empty if the stack is
empty.

val top : 'a t -> 'a

top s returns the topmost element in stack s, or raises Empty if the stack is empty.

val clear : 'a t -> unit

101

Discard all elements from a stack.

val copy : 'a t -> 'a t

Return a copy of the given stack.

val is_empty : 'a t -> bool

Return true if the given stack is empty, false otherwise.

val length : 'a t -> int

Return the number of elements in a stack.

val iter : ('a -> unit) -> 'a t -> unit

iter f s applies f in turn to all elements of s, from the element at the top of the stack to
the element at the bottom of the stack. The stack itself is unchanged.

38 Module StdLabels : Standard labeled libraries.

This meta-module provides labelized version of the Array[2], List[20] and String[40] modules.
They only di�er by their labels. Detailed interfaces can be found in arrayLabels.mli, listLabels.mli

and stringLabels.mli.

module Array :
sig

val length : 'a array -> int

val get : 'a array -> int -> 'a

val set : 'a array -> int -> 'a -> unit

val make : int -> 'a -> 'a array

val create : int -> 'a -> 'a array

val init : int -> f:(int -> 'a) -> 'a array

val make_matrix : dimx:int -> dimy:int -> 'a -> 'a array array

val create_matrix : dimx:int -> dimy:int -> 'a -> 'a array array

val append : 'a array -> 'a array -> 'a array

val concat : 'a array list -> 'a array

val sub : 'a array -> pos:int -> len:int -> 'a array

val copy : 'a array -> 'a array

val fill : 'a array -> pos:int -> len:int -> 'a -> unit

val blit :
src:'a array -> src_pos:int -> dst:'a array -> dst_pos:int -> len:int -> unit

val to_list : 'a array -> 'a list

val of_list : 'a list -> 'a array

102

val iter : f:('a -> unit) -> 'a array -> unit

val map : f:('a -> 'b) -> 'a array -> 'b array

val iteri : f:(int -> 'a -> unit) -> 'a array -> unit

val mapi : f:(int -> 'a -> 'b) -> 'a array -> 'b array

val fold_left : f:('a -> 'b -> 'a) -> init:'a -> 'b array -> 'a

val fold_right : f:('a -> 'b -> 'b) -> 'a array -> init:'b -> 'b

val sort : cmp:('a -> 'a -> int) -> 'a array -> unit

val stable_sort : cmp:('a -> 'a -> int) -> 'a array -> unit

val fast_sort : cmp:('a -> 'a -> int) -> 'a array -> unit

val unsafe_get : 'a array -> int -> 'a

val unsafe_set : 'a array -> int -> 'a -> unit

end

module List :
sig

val length : 'a list -> int

val hd : 'a list -> 'a

val tl : 'a list -> 'a list

val nth : 'a list -> int -> 'a

val rev : 'a list -> 'a list

val append : 'a list -> 'a list -> 'a list

val rev_append : 'a list -> 'a list -> 'a list

val concat : 'a list list -> 'a list

val flatten : 'a list list -> 'a list

val iter : f:('a -> unit) -> 'a list -> unit

val map : f:('a -> 'b) -> 'a list -> 'b list

val rev_map : f:('a -> 'b) -> 'a list -> 'b list

val fold_left : f:('a -> 'b -> 'a) -> init:'a -> 'b list -> 'a

val fold_right : f:('a -> 'b -> 'b) -> 'a list -> init:'b -> 'b

val iter2 : f:('a -> 'b -> unit) -> 'a list -> 'b list -> unit

val map2 : f:('a -> 'b -> 'c) -> 'a list -> 'b list -> 'c list

val rev_map2 : f:('a -> 'b -> 'c) -> 'a list -> 'b list -> 'c list

val fold_left2 :
f:('a -> 'b -> 'c -> 'a) -> init:'a -> 'b list -> 'c list -> 'a

val fold_right2 :
f:('a -> 'b -> 'c -> 'c) -> 'a list -> 'b list -> init:'c -> 'c

val for_all : f:('a -> bool) -> 'a list -> bool

val exists : f:('a -> bool) -> 'a list -> bool

val for_all2 : f:('a -> 'b -> bool) -> 'a list -> 'b list -> bool

103

val exists2 : f:('a -> 'b -> bool) -> 'a list -> 'b list -> bool

val mem : 'a -> set:'a list -> bool

val memq : 'a -> set:'a list -> bool

val find : f:('a -> bool) -> 'a list -> 'a

val filter : f:('a -> bool) -> 'a list -> 'a list

val find_all : f:('a -> bool) -> 'a list -> 'a list

val partition : f:('a -> bool) -> 'a list -> 'a list * 'a list

val assoc : 'a -> ('a * 'b) list -> 'b

val assq : 'a -> ('a * 'b) list -> 'b

val mem_assoc : 'a -> map:('a * 'b) list -> bool

val mem_assq : 'a -> map:('a * 'b) list -> bool

val remove_assoc : 'a -> ('a * 'b) list -> ('a * 'b) list

val remove_assq : 'a -> ('a * 'b) list -> ('a * 'b) list

val split : ('a * 'b) list -> 'a list * 'b list

val combine : 'a list -> 'b list -> ('a * 'b) list

val sort : cmp:('a -> 'a -> int) -> 'a list -> 'a list

val stable_sort : cmp:('a -> 'a -> int) -> 'a list -> 'a list

val fast_sort : cmp:('a -> 'a -> int) -> 'a list -> 'a list

val merge : cmp:('a -> 'a -> int) -> 'a list -> 'a list -> 'a list

end

module String :
sig

val length : string -> int

val get : string -> int -> char

val set : string -> int -> char -> unit

val create : int -> string

val make : int -> char -> string

val copy : string -> string

val sub : string -> pos:int -> len:int -> string

val fill : string -> pos:int -> len:int -> char -> unit

val blit :
src:string -> src_pos:int -> dst:string -> dst_pos:int -> len:int -> unit

val concat : sep:string -> string list -> string

val iter : f:(char -> unit) -> string -> unit

val escaped : string -> string

val index : string -> char -> int

val rindex : string -> char -> int

104

val index_from : string -> int -> char -> int

val rindex_from : string -> int -> char -> int

val contains : string -> char -> bool

val contains_from : string -> int -> char -> bool

val rcontains_from : string -> int -> char -> bool

val uppercase : string -> string

val lowercase : string -> string

val capitalize : string -> string

val uncapitalize : string -> string

type t = string

val compare : t -> t -> int

val unsafe_get : string -> int -> char

val unsafe_set : string -> int -> char -> unit

val unsafe_blit :
src:string -> src_pos:int -> dst:string -> dst_pos:int -> len:int -> unit

val unsafe_fill : string -> pos:int -> len:int -> char -> unit

end

39 Module Stream : Streams and parsers.

type 'a t

The type of streams holding values of type 'a.

exception Failure

Raised by parsers when none of the �rst components of the stream patterns is accepted.

exception Error of string

Raised by parsers when the �rst component of a stream pattern is accepted, but one of the
following components is rejected.

Stream builders
Warning: these functions create streams with fast access; it is illegal to mix them with streams

built with [< >]; would raise Failure when accessing such mixed streams.

val from : (int -> 'a option) -> 'a t

Stream.from f returns a stream built from the function f. To create a new stream element,
the function f is called with the current stream count. The user function f must return
either Some <value> for a value or None to specify the end of the stream.

val of_list : 'a list -> 'a t

Return the stream holding the elements of the list in the same order.

105

val of_string : string -> char t

Return the stream of the characters of the string parameter.

val of_channel : Pervasives.in_channel -> char t

Return the stream of the characters read from the input channel.

Stream iterator

val iter : ('a -> unit) -> 'a t -> unit

Stream.iter f s scans the whole stream s, applying function f in turn to each stream
element encountered.

Prede�ned parsers

val next : 'a t -> 'a

Return the �rst element of the stream and remove it from the stream. Raise Stream.Failure
if the stream is empty.

val empty : 'a t -> unit

Return () if the stream is empty, else raise Stream.Failure.

Useful functions

val peek : 'a t -> 'a option

Return Some of "the �rst element" of the stream, or None if the stream is empty.

val junk : 'a t -> unit

Remove the �rst element of the stream, possibly unfreezing it before.

val count : 'a t -> int

Return the current count of the stream elements, i.e. the number of the stream elements
discarded.

val npeek : int -> 'a t -> 'a list

npeek n returns the list of the n �rst elements of the stream, or all its remaining elements if
less than n elements are available.

40 Module String : String operations.

val length : string -> int

Return the length (number of characters) of the given string.

val get : string -> int -> char

106

String.get s n returns character number n in string s. The �rst character is character
number 0. The last character is character number String.length s - 1. You can also
write s.[n] instead of String.get s n.

Raise Invalid_argument "index out of bounds" if n is outside the range 0 to
(String.length s - 1).

val set : string -> int -> char -> unit

String.set s n c modi�es string s in place, replacing the character number n by c. You
can also write s.[n] <- c instead of String.set s n c. Raise Invalid_argument "index
out of bounds" if n is outside the range 0 to (String.length s - 1).

val create : int -> string

String.create n returns a fresh string of length n. The string initially contains arbitrary
characters. Raise Invalid_argument if n < 0 or n > Sys.max_string_length.

val make : int -> char -> string

String.make n c returns a fresh string of length n, �lled with the character c. Raise
Invalid_argument if n < 0 or n > Sys.max_string_length[42].

val copy : string -> string

Return a copy of the given string.

val sub : string -> int -> int -> string

String.sub s start len returns a fresh string of length len, containing the characters
number start to start + len - 1 of string s. Raise Invalid_argument if start and len
do not designate a valid substring of s; that is, if start < 0, or len < 0, or start + len >
String.length[40] s.

val fill : string -> int -> int -> char -> unit

String.fill s start len c modi�es string s in place, replacing the characters number
start to start + len - 1 by c. Raise Invalid_argument if start and len do not
designate a valid substring of s.

val blit : string -> int -> string -> int -> int -> unit

String.blit src srcoff dst dstoff len copies len characters from string src, starting
at character number srcoff, to string dst, starting at character number dstoff. It works
correctly even if src and dst are the same string, and the source and destination chunks
overlap. Raise Invalid_argument if srcoff and len do not designate a valid substring of
src, or if dstoff and len do not designate a valid substring of dst.

val concat : string -> string list -> string

String.concat sep sl concatenates the list of strings sl, inserting the separator string sep
between each.

val iter : (char -> unit) -> string -> unit

107

String.iter f s applies function f in turn to all the characters of s. It is equivalent to f
s.[0]; f s.[1]; ...; f s.[String.length s - 1]; ().

val escaped : string -> string

Return a copy of the argument, with special characters represented by escape sequences,
following the lexical conventions of Objective Caml. If there is no special character in the
argument, return the original string itself, not a copy.

val index : string -> char -> int

String.index s c returns the position of the leftmost occurrence of character c in string s.
Raise Not_found if c does not occur in s.

val rindex : string -> char -> int

String.rindex s c returns the position of the rightmost occurrence of character c in string
s. Raise Not_found if c does not occur in s.

val index_from : string -> int -> char -> int

Same as String.index[40], but start searching at the character position given as second
argument. String.index s c is equivalent to String.index_from s 0 c.

val rindex_from : string -> int -> char -> int

Same as String.rindex[40], but start searching at the character position given as second
argument. String.rindex s c is equivalent to String.rindex_from s (String.length s
- 1) c.

val contains : string -> char -> bool

String.contains s c tests if character c appears in the string s.

val contains_from : string -> int -> char -> bool

String.contains_from s start c tests if character c appears in the substring of s starting
from start to the end of s. Raise Invalid_argument if start is not a valid index of s.

val rcontains_from : string -> int -> char -> bool

String.rcontains_from s stop c tests if character c appears in the substring of s starting
from the beginning of s to index stop. Raise Invalid_argument if stop is not a valid index
of s.

val uppercase : string -> string

Return a copy of the argument, with all lowercase letters translated to uppercase, including
accented letters of the ISO Latin-1 (8859-1) character set.

val lowercase : string -> string

Return a copy of the argument, with all uppercase letters translated to lowercase, including
accented letters of the ISO Latin-1 (8859-1) character set.

108

val capitalize : string -> string

Return a copy of the argument, with the �rst character set to uppercase.

val uncapitalize : string -> string

Return a copy of the argument, with the �rst character set to lowercase.

type t = string

An alias for the type of strings.

val compare : t -> t -> int

The comparison function for strings, with the same speci�cation as
Pervasives.compare[29]. Along with the type t, this function compare allows the module
String to be passed as argument to the functors Set.Make[35] and Map.Make[22].

41 Module StringLabels : String operations.

val length : string -> int

Return the length (number of characters) of the given string.

val get : string -> int -> char

String.get s n returns character number n in string s. The �rst character is character
number 0. The last character is character number String.length s - 1. Raise
Invalid_argument if n is outside the range 0 to (String.length s - 1). You can also
write s.[n] instead of String.get s n.

val set : string -> int -> char -> unit

String.set s n c modi�es string s in place, replacing the character number n by c. Raise
Invalid_argument if n is outside the range 0 to (String.length s - 1). You can also
write s.[n] <- c instead of String.set s n c.

val create : int -> string

String.create n returns a fresh string of length n. The string initially contains arbitrary
characters. Raise Invalid_argument if n < 0 or n > Sys.max_string_length.

val make : int -> char -> string

String.make n c returns a fresh string of length n, �lled with the character c. Raise
Invalid_argument if n < 0 or n > Sys.max_string_length[42].

val copy : string -> string

Return a copy of the given string.

val sub : string -> pos:int -> len:int -> string

109

String.sub s start len returns a fresh string of length len, containing the characters
number start to start + len - 1 of string s. Raise Invalid_argument if start and len
do not designate a valid substring of s; that is, if start < 0, or len < 0, or start + len >
StringLabels.length[41] s.

val fill : string -> pos:int -> len:int -> char -> unit

String.fill s start len c modi�es string s in place, replacing the characters number
start to start + len - 1 by c. Raise Invalid_argument if start and len do not
designate a valid substring of s.

val blit :
src:string -> src_pos:int -> dst:string -> dst_pos:int -> len:int -> unit

String.blit src srcoff dst dstoff len copies len characters from string src, starting
at character number srcoff, to string dst, starting at character number dstoff. It works
correctly even if src and dst are the same string, and the source and destination chunks
overlap. Raise Invalid_argument if srcoff and len do not designate a valid substring of
src, or if dstoff and len do not designate a valid substring of dst.

val concat : sep:string -> string list -> string

String.concat sep sl concatenates the list of strings sl, inserting the separator string sep
between each.

val iter : f:(char -> unit) -> string -> unit

String.iter f s applies function f in turn to all the characters of s. It is equivalent to f
s.(0); f s.(1); ...; f s.(String.length s - 1); ().

val escaped : string -> string

Return a copy of the argument, with special characters represented by escape sequences,
following the lexical conventions of Objective Caml. If there is no special character in the
argument, return the original string itself, not a copy.

val index : string -> char -> int

String.index s c returns the position of the leftmost occurrence of character c in string s.
Raise Not_found if c does not occur in s.

val rindex : string -> char -> int

String.rindex s c returns the position of the rightmost occurrence of character c in string
s. Raise Not_found if c does not occur in s.

val index_from : string -> int -> char -> int

Same as StringLabels.index[41], but start searching at the character position given as
second argument. String.index s c is equivalent to String.index_from s 0 c.

val rindex_from : string -> int -> char -> int

110

Same as StringLabels.rindex[41], but start searching at the character position given as
second argument. String.rindex s c is equivalent to String.rindex_from s
(String.length s - 1) c.

val contains : string -> char -> bool

String.contains s c tests if character c appears in the string s.

val contains_from : string -> int -> char -> bool

String.contains_from s start c tests if character c appears in the substring of s starting
from start to the end of s. Raise Invalid_argument if start is not a valid index of s.

val rcontains_from : string -> int -> char -> bool

String.rcontains_from s stop c tests if character c appears in the substring of s starting
from the beginning of s to index stop. Raise Invalid_argument if stop is not a valid index
of s.

val uppercase : string -> string

Return a copy of the argument, with all lowercase letters translated to uppercase, including
accented letters of the ISO Latin-1 (8859-1) character set.

val lowercase : string -> string

Return a copy of the argument, with all uppercase letters translated to lowercase, including
accented letters of the ISO Latin-1 (8859-1) character set.

val capitalize : string -> string

Return a copy of the argument, with the �rst letter set to uppercase.

val uncapitalize : string -> string

Return a copy of the argument, with the �rst letter set to lowercase.

type t = string

An alias for the type of strings.

val compare : t -> t -> int

The comparison function for strings, with the same speci�cation as
Pervasives.compare[29]. Along with the type t, this function compare allows the module
String to be passed as argument to the functors Set.Make[35] and Map.Make[22].

42 Module Sys : System interface.

val argv : string array

111

The command line arguments given to the process. The �rst element is the command name
used to invoke the program. The following elements are the command-line arguments given
to the program.

val executable_name : string

The name of the �le containing the executable currently running.

val file_exists : string -> bool

Test if a �le with the given name exists.

val remove : string -> unit

Remove the given �le name from the �le system.

val rename : string -> string -> unit

Rename a �le. The �rst argument is the old name and the second is the new name. If there
is already another �le under the new name, rename may replace it, or raise an exception,
depending on your operating system.

val getenv : string -> string

Return the value associated to a variable in the process environment. Raise Not_found if the
variable is unbound.

val command : string -> int

Execute the given shell command and return its exit code.

val time : unit -> float

Return the processor time, in seconds, used by the program since the beginning of execution.

val chdir : string -> unit

Change the current working directory of the process.

val getcwd : unit -> string

Return the current working directory of the process.

val readdir : string -> string array

Return the names of all �les present in the given directory. Names denoting the current
directory and the parent directory ("." and ".." in Unix) are not returned. Each string in
the result is a �le name rather than a complete path. There is no guarantee that the name
strings in the resulting array will appear in any speci�c order; they are not, in particular,
guaranteed to appear in alphabetical order.

val interactive : bool Pervasives.ref

This reference is initially set to false in standalone programs and to true if the code is
being executed under the interactive toplevel system ocaml.

112

val os_type : string

Operating system currently executing the Caml program. One of

• "Unix" (for all Unix versions, including Linux and Mac OS X),

• "Win32" (for MS-Windows, OCaml compiled with MSVC++ or Mingw),

• "Cygwin" (for MS-Windows, OCaml compiled with Cygwin).

val word_size : int

Size of one word on the machine currently executing the Caml program, in bits: 32 or 64.

val max_string_length : int

Maximum length of a string.

val max_array_length : int

Maximum length of a normal array. The maximum length of a �oat array is
max_array_length/2 on 32-bit machines and max_array_length on 64-bit machines.

Signal handling

type signal_behavior =
| Signal_default
| Signal_ignore
| Signal_handle of (int -> unit)

What to do when receiving a signal:

• Signal_default: take the default behavior (usually: abort the program)

• Signal_ignore: ignore the signal

• Signal_handle f: call function f, giving it the signal number as argument.

val signal : int -> signal_behavior -> signal_behavior

Set the behavior of the system on receipt of a given signal. The �rst argument is the signal
number. Return the behavior previously associated with the signal. If the signal number is
invalid (or not available on your system), an Invalid_argument exception is raised.

val set_signal : int -> signal_behavior -> unit

Same as Sys.signal[42] but return value is ignored.

Signal numbers for the standard POSIX signals.

val sigabrt : int

Abnormal termination

val sigalrm : int

Timeout

val sigfpe : int

113

Arithmetic exception

val sighup : int

Hangup on controlling terminal

val sigill : int

Invalid hardware instruction

val sigint : int

Interactive interrupt (ctrl-C)

val sigkill : int

Termination (cannot be ignored)

val sigpipe : int

Broken pipe

val sigquit : int

Interactive termination

val sigsegv : int

Invalid memory reference

val sigterm : int

Termination

val sigusr1 : int

Application-de�ned signal 1

val sigusr2 : int

Application-de�ned signal 2

val sigchld : int

Child process terminated

val sigcont : int

Continue

val sigstop : int

Stop

val sigtstp : int

Interactive stop

val sigttin : int

114

Terminal read from background process

val sigttou : int

Terminal write from background process

val sigvtalrm : int

Timeout in virtual time

val sigprof : int

Pro�ling interrupt

exception Break

Exception raised on interactive interrupt if Sys.catch_break[42] is on.

val catch_break : bool -> unit

catch_break governs whether interactive interrupt (ctrl-C) terminates the program or raises
the Break exception. Call catch_break true to enable raising Break, and catch_break
false to let the system terminate the program on user interrupt.

val ocaml_version : string

ocaml_version is the version of Objective Caml. It is a string of the form
"major.minor[.patchlevel][+additional-info]" Where major, minor, and patchlevel
are integers, and additional-info is an arbitrary string. The [.patchlevel] and
[+additional-info] parts may be absent.

43 Module Weak : Arrays of weak pointers and hash tables of weak
pointers.

Low-level functions

type 'a t

The type of arrays of weak pointers (weak arrays). A weak pointer is a value that the
garbage collector may erase at any time. A weak pointer is said to be full if it points to a
value, empty if the value was erased by the GC. Note that weak arrays cannot be marshaled
using Pervasives.output_value[29] or the functions of the Marshal[23] module.

val create : int -> 'a t

Weak.create n returns a new weak array of length n. All the pointers are initially empty.
Raise Invalid_argument if n is negative or greater than Sys.max_array_length[42]-1.

val length : 'a t -> int

Weak.length ar returns the length (number of elements) of ar.

val set : 'a t -> int -> 'a option -> unit

115

Weak.set ar n (Some el) sets the nth cell of ar to be a (full) pointer to el; Weak.set ar
n None sets the nth cell of ar to empty. Raise Invalid_argument "Weak.set" if n is not in
the range 0 to Weak.length[43] a - 1.

val get : 'a t -> int -> 'a option

Weak.get ar n returns None if the nth cell of ar is empty, Some x (where x is the value) if
it is full. Raise Invalid_argument "Weak.get" if n is not in the range 0 to Weak.length[43]
a - 1.

val get_copy : 'a t -> int -> 'a option

Weak.get_copy ar n returns None if the nth cell of ar is empty, Some x (where x is a
(shallow) copy of the value) if it is full. In addition to pitfalls with mutable values, the
interesting di�erence with get is that get_copy does not prevent the incremental GC from
erasing the value in its current cycle (get may delay the erasure to the next GC cycle).
Raise Invalid_argument "Weak.get" if n is not in the range 0 to Weak.length[43] a - 1.

val check : 'a t -> int -> bool

Weak.check ar n returns true if the nth cell of ar is full, false if it is empty. Note that
even if Weak.check ar n returns true, a subsequent Weak.get[43] ar n can return None.

val fill : 'a t -> int -> int -> 'a option -> unit

Weak.fill ar ofs len el sets to el all pointers of ar from ofs to ofs + len - 1. Raise
Invalid_argument "Weak.fill" if ofs and len do not designate a valid subarray of a.

val blit : 'a t -> int -> 'a t -> int -> int -> unit

Weak.blit ar1 off1 ar2 off2 len copies len weak pointers from ar1 (starting at off1)
to ar2 (starting at off2). It works correctly even if ar1 and ar2 are the same. Raise
Invalid_argument "Weak.blit" if off1 and len do not designate a valid subarray of ar1,
or if off2 and len do not designate a valid subarray of ar2.

Weak hash tables
A weak hash table is a hashed set of values. Each value may magically disappear from the

set when it is not used by the rest of the program any more. This is normally used to share
data structures without inducing memory leaks. Weak hash tables are de�ned on values from a
Hashtbl.HashedType[15] module; the equal relation and hash function are taken from that module.
We will say that v is an instance of x if equal x v is true.

The equal relation must be able to work on a shallow copy of the values and give the same
result as with the values themselves.

module type S =
sig

type data

The type of the elements stored in the table.

type t

116

The type of tables that contain elements of type data. Note that weak hash tables
cannot be marshaled using Pervasives.output_value[29] or the functions of the
Marshal[23] module.

val create : int -> t

create n creates a new empty weak hash table, of initial size n. The table will grow as
needed.

val clear : t -> unit

Remove all elements from the table.

val merge : t -> data -> data

merge t x returns an instance of x found in t if any, or else adds x to t and return x.

val add : t -> data -> unit

add t x adds x to t. If there is already an instance of x in t, it is unspeci�ed which
one will be returned by subsequent calls to find and merge.

val remove : t -> data -> unit

remove t x removes from t one instance of x. Does nothing if there is no instance of x
in t.

val find : t -> data -> data

find t x returns an instance of x found in t. Raise Not_found if there is no such
element.

val find_all : t -> data -> data list

find_all t x returns a list of all the instances of x found in t.

val mem : t -> data -> bool

mem t x returns true if there is at least one instance of x in t, false otherwise.

val iter : (data -> unit) -> t -> unit

iter f t calls f on each element of t, in some unspeci�ed order. It is not speci�ed
what happens if f tries to change t itself.

val fold : (data -> 'a -> 'a) -> t -> 'a -> 'a

fold f t init computes (f d1 (... (f dN init))) where d1 ... dN are the
elements of t in some unspeci�ed order. It is not speci�ed what happens if f tries to
change t itself.

val count : t -> int

117

Count the number of elements in the table. count t gives the same result as fold
(fun _ n -> n+1) t 0 but does not delay the deallocation of the dead elements.

val stats : t -> int * int * int * int * int * int

Return statistics on the table. The numbers are, in order: table length, number of
entries, sum of bucket lengths, smallest bucket length, median bucket length, biggest
bucket length.

end

The output signature of the functor Weak.Make[43].

module Make :
functor (H : Hashtbl.HashedType) -> S with type data = H.t

Functor building an implementation of the weak hash table structure.

44 Module Unix : Interface to the Unix system

Error report

type error =
| E2BIG

Argument list too long

| EACCES

Permission denied

| EAGAIN

Resource temporarily unavailable; try again

| EBADF

Bad �le descriptor

| EBUSY

Resource unavailable

| ECHILD

No child process

| EDEADLK

Resource deadlock would occur

| EDOM

Domain error for math functions, etc.

| EEXIST

File exists

118

| EFAULT

Bad address

| EFBIG

File too large

| EINTR

Function interrupted by signal

| EINVAL

Invalid argument

| EIO

Hardware I/O error

| EISDIR

Is a directory

| EMFILE

Too many open �les by the process

| EMLINK

Too many links

| ENAMETOOLONG

Filename too long

| ENFILE

Too many open �les in the system

| ENODEV

No such device

| ENOENT

No such �le or directory

| ENOEXEC

Not an executable �le

| ENOLCK

No locks available

| ENOMEM

Not enough memory

| ENOSPC

No space left on device

| ENOSYS

Function not supported

| ENOTDIR

119

Not a directory

| ENOTEMPTY

Directory not empty

| ENOTTY

Inappropriate I/O control operation

| ENXIO

No such device or address

| EPERM

Operation not permitted

| EPIPE

Broken pipe

| ERANGE

Result too large

| EROFS

Read-only �le system

| ESPIPE

Invalid seek e.g. on a pipe

| ESRCH

No such process

| EXDEV

Invalid link

| EWOULDBLOCK

Operation would block

| EINPROGRESS

Operation now in progress

| EALREADY

Operation already in progress

| ENOTSOCK

Socket operation on non-socket

| EDESTADDRREQ

Destination address required

| EMSGSIZE

Message too long

| EPROTOTYPE

Protocol wrong type for socket

120

| ENOPROTOOPT

Protocol not available

| EPROTONOSUPPORT

Protocol not supported

| ESOCKTNOSUPPORT

Socket type not supported

| EOPNOTSUPP

Operation not supported on socket

| EPFNOSUPPORT

Protocol family not supported

| EAFNOSUPPORT

Address family not supported by protocol family

| EADDRINUSE

Address already in use

| EADDRNOTAVAIL

Can't assign requested address

| ENETDOWN

Network is down

| ENETUNREACH

Network is unreachable

| ENETRESET

Network dropped connection on reset

| ECONNABORTED

Software caused connection abort

| ECONNRESET

Connection reset by peer

| ENOBUFS

No bu�er space available

| EISCONN

Socket is already connected

| ENOTCONN

Socket is not connected

| ESHUTDOWN

Can't send after socket shutdown

| ETOOMANYREFS

121

Too many references: can't splice

| ETIMEDOUT

Connection timed out

| ECONNREFUSED

Connection refused

| EHOSTDOWN

Host is down

| EHOSTUNREACH

No route to host

| ELOOP

Too many levels of symbolic links

| EOVERFLOW

File size or position not representable

| EUNKNOWNERR of int

Unknown error

The type of error codes. Errors de�ned in the POSIX standard and additional errors from
UNIX98 and BSD. All other errors are mapped to EUNKNOWNERR.

exception Unix_error of error * string * string

Raised by the system calls below when an error is encountered. The �rst component is the
error code; the second component is the function name; the third component is the string
parameter to the function, if it has one, or the empty string otherwise.

val error_message : error -> string

Return a string describing the given error code.

val handle_unix_error : ('a -> 'b) -> 'a -> 'b

handle_unix_error f x applies f to x and returns the result. If the exception Unix_error
is raised, it prints a message describing the error and exits with code 2.

Access to the process environment

val environment : unit -> string array

Return the process environment, as an array of strings with the format �variable=value�.

val getenv : string -> string

Return the value associated to a variable in the process environment. Raise Not_found if the
variable is unbound. (This function is identical to Sys.getenv.)

val putenv : string -> string -> unit

Unix.putenv name value sets the value associated to a variable in the process environment.
name is the name of the environment variable, and value its new associated value.

122

Process handling

type process_status =
| WEXITED of int

The process terminated normally by exit; the argument is the return code.

| WSIGNALED of int

The process was killed by a signal; the argument is the signal number.

| WSTOPPED of int

The process was stopped by a signal; the argument is the signal number.

The termination status of a process.

type wait_flag =
| WNOHANG

do not block if no child has died yet, but immediately return with a pid equal to 0.

| WUNTRACED

report also the children that receive stop signals.

Flags for Unix.waitpid[44].

val execv : string -> string array -> 'a

execv prog args execute the program in �le prog, with the arguments args, and the
current process environment. These execv* functions never return: on success, the current
program is replaced by the new one; on failure, a Unix.Unix_error[44] exception is raised.

val execve : string -> string array -> string array -> 'a

Same as Unix.execv[44], except that the third argument provides the environment to the
program executed.

val execvp : string -> string array -> 'a

Same as Unix.execv[44], except that the program is searched in the path.

val execvpe : string -> string array -> string array -> 'a

Same as Unix.execve[44], except that the program is searched in the path.

val fork : unit -> int

Fork a new process. The returned integer is 0 for the child process, the pid of the child
process for the parent process.

val wait : unit -> int * process_status

Wait until one of the children processes die, and return its pid and termination status.

val waitpid : wait_flag list -> int -> int * process_status

123

Same as Unix.wait[44], but waits for the child process whose pid is given. A pid of -1
means wait for any child. A pid of 0 means wait for any child in the same process group as
the current process. Negative pid arguments represent process groups. The list of options
indicates whether waitpid should return immediately without waiting, or also report
stopped children.

val system : string -> process_status

Execute the given command, wait until it terminates, and return its termination status. The
string is interpreted by the shell /bin/sh and therefore can contain redirections, quotes,
variables, etc. The result WEXITED 127 indicates that the shell couldn't be executed.

val getpid : unit -> int

Return the pid of the process.

val getppid : unit -> int

Return the pid of the parent process.

val nice : int -> int

Change the process priority. The integer argument is added to the �nice� value. (Higher
values of the �nice� value mean lower priorities.) Return the new nice value.

Basic �le input/output

type file_descr

The abstract type of �le descriptors.

val stdin : file_descr

File descriptor for standard input.

val stdout : file_descr

File descriptor for standard output.

val stderr : file_descr

File descriptor for standard error.

type open_flag =
| O_RDONLY

Open for reading

| O_WRONLY

Open for writing

| O_RDWR

Open for reading and writing

| O_NONBLOCK

Open in non-blocking mode

124

| O_APPEND

Open for append

| O_CREAT

Create if nonexistent

| O_TRUNC

Truncate to 0 length if existing

| O_EXCL

Fail if existing

| O_NOCTTY

Don't make this dev a controlling tty

| O_DSYNC

Writes complete as `Synchronised I/O data integrity completion'

| O_SYNC

Writes complete as `Synchronised I/O �le integrity completion'

| O_RSYNC

Reads complete as writes (depending on O_SYNC/O_DSYNC)

The �ags to Unix.openfile[44].

type file_perm = int

The type of �le access rights, e.g. 0o640 is read and write for user, read for group, none for
others

val openfile : string -> open_flag list -> file_perm -> file_descr

Open the named �le with the given �ags. Third argument is the permissions to give to the
�le if it is created. Return a �le descriptor on the named �le.

val close : file_descr -> unit

Close a �le descriptor.

val read : file_descr -> string -> int -> int -> int

read fd buff ofs len reads len characters from descriptor fd, storing them in string
buff, starting at position ofs in string buff. Return the number of characters actually read.

val write : file_descr -> string -> int -> int -> int

write fd buff ofs len writes len characters to descriptor fd, taking them from string
buff, starting at position ofs in string buff. Return the number of characters actually
written. write repeats the writing operation until all characters have been written or an
error occurs.

val single_write : file_descr -> string -> int -> int -> int

125

Same as write, but attempts to write only once. Thus, if an error occurs, single_write
guarantees that no data has been written.

Interfacing with the standard input/output library

val in_channel_of_descr : file_descr -> Pervasives.in_channel

Create an input channel reading from the given descriptor. The channel is initially in binary
mode; use set_binary_mode_in ic false if text mode is desired.

val out_channel_of_descr : file_descr -> Pervasives.out_channel

Create an output channel writing on the given descriptor. The channel is initially in binary
mode; use set_binary_mode_out oc false if text mode is desired.

val descr_of_in_channel : Pervasives.in_channel -> file_descr

Return the descriptor corresponding to an input channel.

val descr_of_out_channel : Pervasives.out_channel -> file_descr

Return the descriptor corresponding to an output channel.

Seeking and truncating

type seek_command =
| SEEK_SET

indicates positions relative to the beginning of the �le

| SEEK_CUR

indicates positions relative to the current position

| SEEK_END

indicates positions relative to the end of the �le

Positioning modes for Unix.lseek[44].

val lseek : file_descr -> int -> seek_command -> int

Set the current position for a �le descriptor

val truncate : string -> int -> unit

Truncates the named �le to the given size.

val ftruncate : file_descr -> int -> unit

Truncates the �le corresponding to the given descriptor to the given size.

File status

type file_kind =
| S_REG

Regular �le

| S_DIR

Directory

126

| S_CHR

Character device

| S_BLK

Block device

| S_LNK

Symbolic link

| S_FIFO

Named pipe

| S_SOCK

Socket

type stats = {
st_dev : int ;

Device number

st_ino : int ;

Inode number

st_kind : file_kind ;

Kind of the �le

st_perm : file_perm ;

Access rights

st_nlink : int ;

Number of links

st_uid : int ;

User id of the owner

st_gid : int ;

Group ID of the �le's group

st_rdev : int ;

Device minor number

st_size : int ;

Size in bytes

st_atime : float ;

Last access time

st_mtime : float ;

Last modi�cation time

st_ctime : float ;

Last status change time

127

}

The informations returned by the Unix.stat[44] calls.

val stat : string -> stats

Return the informations for the named �le.

val lstat : string -> stats

Same as Unix.stat[44], but in case the �le is a symbolic link, return the informations for
the link itself.

val fstat : file_descr -> stats

Return the informations for the �le associated with the given descriptor.

File operations on large �les

module LargeFile :
sig

val lseek : Unix.file_descr -> int64 -> Unix.seek_command -> int64

val truncate : string -> int64 -> unit

val ftruncate : Unix.file_descr -> int64 -> unit

type stats = {
st_dev : int ;

Device number

st_ino : int ;

Inode number

st_kind : Unix.file_kind ;

Kind of the �le

st_perm : Unix.file_perm ;

Access rights

st_nlink : int ;

Number of links

st_uid : int ;

User id of the owner

st_gid : int ;

Group ID of the �le's group

st_rdev : int ;

Device minor number

st_size : int64 ;

128

Size in bytes

st_atime : float ;

Last access time

st_mtime : float ;

Last modi�cation time

st_ctime : float ;

Last status change time

}

val stat : string -> stats

val lstat : string -> stats

val fstat : Unix.file_descr -> stats

end

File operations on large �les. This sub-module provides 64-bit variants of the functions
Unix.lseek[44] (for positioning a �le descriptor), Unix.truncate[44] and
Unix.ftruncate[44] (for changing the size of a �le), and Unix.stat[44], Unix.lstat[44] and
Unix.fstat[44] (for obtaining information on �les). These alternate functions represent
positions and sizes by 64-bit integers (type int64) instead of regular integers (type int),
thus allowing operating on �les whose sizes are greater than max_int.

Operations on �le names

val unlink : string -> unit

Removes the named �le

val rename : string -> string -> unit

rename old new changes the name of a �le from old to new.

val link : string -> string -> unit

link source dest creates a hard link named dest to the �le named source.

File permissions and ownership

type access_permission =
| R_OK

Read permission

| W_OK

Write permission

| X_OK

Execution permission

| F_OK

129

File exists

Flags for the Unix.access[44] call.

val chmod : string -> file_perm -> unit

Change the permissions of the named �le.

val fchmod : file_descr -> file_perm -> unit

Change the permissions of an opened �le.

val chown : string -> int -> int -> unit

Change the owner uid and owner gid of the named �le.

val fchown : file_descr -> int -> int -> unit

Change the owner uid and owner gid of an opened �le.

val umask : int -> int

Set the process's �le mode creation mask, and return the previous mask.

val access : string -> access_permission list -> unit

Check that the process has the given permissions over the named �le. Raise Unix_error
otherwise.

Operations on �le descriptors

val dup : file_descr -> file_descr

Return a new �le descriptor referencing the same �le as the given descriptor.

val dup2 : file_descr -> file_descr -> unit

dup2 fd1 fd2 duplicates fd1 to fd2, closing fd2 if already opened.

val set_nonblock : file_descr -> unit

Set the �non-blocking� �ag on the given descriptor. When the non-blocking �ag is set,
reading on a descriptor on which there is temporarily no data available raises the EAGAIN or
EWOULDBLOCK error instead of blocking; writing on a descriptor on which there is temporarily
no room for writing also raises EAGAIN or EWOULDBLOCK.

val clear_nonblock : file_descr -> unit

Clear the �non-blocking� �ag on the given descriptor. See Unix.set_nonblock[44].

val set_close_on_exec : file_descr -> unit

Set the �close-on-exec� �ag on the given descriptor. A descriptor with the close-on-exec �ag
is automatically closed when the current process starts another program with one of the
exec functions.

val clear_close_on_exec : file_descr -> unit

Clear the �close-on-exec� �ag on the given descriptor. See Unix.set_close_on_exec[44].

130

Directories

val mkdir : string -> file_perm -> unit

Create a directory with the given permissions.

val rmdir : string -> unit

Remove an empty directory.

val chdir : string -> unit

Change the process working directory.

val getcwd : unit -> string

Return the name of the current working directory.

val chroot : string -> unit

Change the process root directory.

type dir_handle

The type of descriptors over opened directories.

val opendir : string -> dir_handle

Open a descriptor on a directory

val readdir : dir_handle -> string

Return the next entry in a directory.

Raises End_of_file when the end of the directory has been reached.

val rewinddir : dir_handle -> unit

Reposition the descriptor to the beginning of the directory

val closedir : dir_handle -> unit

Close a directory descriptor.

Pipes and redirections

val pipe : unit -> file_descr * file_descr

Create a pipe. The �rst component of the result is opened for reading, that's the exit to the
pipe. The second component is opened for writing, that's the entrance to the pipe.

val mkfifo : string -> file_perm -> unit

Create a named pipe with the given permissions.

High-level process and redirection management

val create_process :
string ->
string array -> file_descr -> file_descr -> file_descr -> int

131

create_process prog args new_stdin new_stdout new_stderr forks a new process that
executes the program in �le prog, with arguments args. The pid of the new process is
returned immediately; the new process executes concurrently with the current process. The
standard input and outputs of the new process are connected to the descriptors new_stdin,
new_stdout and new_stderr. Passing e.g. stdout for new_stdout prevents the redirection
and causes the new process to have the same standard output as the current process. The
executable �le prog is searched in the path. The new process has the same environment as
the current process.

val create_process_env :
string ->
string array ->
string array -> file_descr -> file_descr -> file_descr -> int

create_process_env prog args env new_stdin new_stdout new_stderr works as
Unix.create_process[44], except that the extra argument env speci�es the environment
passed to the program.

val open_process_in : string -> Pervasives.in_channel

High-level pipe and process management. This function runs the given command in parallel
with the program. The standard output of the command is redirected to a pipe, which can
be read via the returned input channel. The command is interpreted by the shell /bin/sh
(cf. system).

val open_process_out : string -> Pervasives.out_channel

Same as Unix.open_process_in[44], but redirect the standard input of the command to a
pipe. Data written to the returned output channel is sent to the standard input of the
command. Warning: writes on output channels are bu�ered, hence be careful to call
Pervasives.flush[29] at the right times to ensure correct synchronization.

val open_process : string -> Pervasives.in_channel * Pervasives.out_channel

Same as Unix.open_process_out[44], but redirects both the standard input and standard
output of the command to pipes connected to the two returned channels. The input channel
is connected to the output of the command, and the output channel to the input of the
command.

val open_process_full :
string ->
string array ->
Pervasives.in_channel * Pervasives.out_channel * Pervasives.in_channel

Similar to Unix.open_process[44], but the second argument speci�es the environment
passed to the command. The result is a triple of channels connected respectively to the
standard output, standard input, and standard error of the command.

val close_process_in : Pervasives.in_channel -> process_status

Close channels opened by Unix.open_process_in[44], wait for the associated command to
terminate, and return its termination status.

132

val close_process_out : Pervasives.out_channel -> process_status

Close channels opened by Unix.open_process_out[44], wait for the associated command to
terminate, and return its termination status.

val close_process :
Pervasives.in_channel * Pervasives.out_channel -> process_status

Close channels opened by Unix.open_process[44], wait for the associated command to
terminate, and return its termination status.

val close_process_full :
Pervasives.in_channel * Pervasives.out_channel * Pervasives.in_channel ->
process_status

Close channels opened by Unix.open_process_full[44], wait for the associated command to
terminate, and return its termination status.

Symbolic links

val symlink : string -> string -> unit

symlink source dest creates the �le dest as a symbolic link to the �le source.

val readlink : string -> string

Read the contents of a link.

Polling

val select :
file_descr list ->
file_descr list ->
file_descr list ->
float -> file_descr list * file_descr list * file_descr list

Wait until some input/output operations become possible on some channels. The three list
arguments are, respectively, a set of descriptors to check for reading (�rst argument), for
writing (second argument), or for exceptional conditions (third argument). The fourth
argument is the maximal timeout, in seconds; a negative fourth argument means no timeout
(unbounded wait). The result is composed of three sets of descriptors: those ready for
reading (�rst component), ready for writing (second component), and over which an
exceptional condition is pending (third component).

Locking

type lock_command =
| F_ULOCK

Unlock a region

| F_LOCK

Lock a region for writing, and block if already locked

| F_TLOCK

Lock a region for writing, or fail if already locked

133

| F_TEST

Test a region for other process locks

| F_RLOCK

Lock a region for reading, and block if already locked

| F_TRLOCK

Lock a region for reading, or fail if already locked

Commands for Unix.lockf[44].

val lockf : file_descr -> lock_command -> int -> unit

lockf fd cmd size puts a lock on a region of the �le opened as fd. The region starts at the
current read/write position for fd (as set by Unix.lseek[44]), and extends size bytes
forward if size is positive, size bytes backwards if size is negative, or to the end of the �le
if size is zero. A write lock prevents any other process from acquiring a read or write lock
on the region. A read lock prevents any other process from acquiring a write lock on the
region, but lets other processes acquire read locks on it.

The F_LOCK and F_TLOCK commands attempts to put a write lock on the speci�ed region.
The F_RLOCK and F_TRLOCK commands attempts to put a read lock on the speci�ed region.
If one or several locks put by another process prevent the current process from acquiring the
lock, F_LOCK and F_RLOCK block until these locks are removed, while F_TLOCK and F_TRLOCK
fail immediately with an exception. The F_ULOCK removes whatever locks the current
process has on the speci�ed region. Finally, the F_TEST command tests whether a write lock
can be acquired on the speci�ed region, without actually putting a lock. It returns
immediately if successful, or fails otherwise.

Signals Note: installation of signal handlers is performed via the functions Sys.signal[42] and
Sys.set_signal[42].

val kill : int -> int -> unit

kill pid sig sends signal number sig to the process with id pid.

type sigprocmask_command =
| SIG_SETMASK
| SIG_BLOCK
| SIG_UNBLOCK

val sigprocmask : sigprocmask_command -> int list -> int list

sigprocmask cmd sigs changes the set of blocked signals. If cmd is SIG_SETMASK, blocked
signals are set to those in the list sigs. If cmd is SIG_BLOCK, the signals in sigs are added to
the set of blocked signals. If cmd is SIG_UNBLOCK, the signals in sigs are removed from the
set of blocked signals. sigprocmask returns the set of previously blocked signals.

val sigpending : unit -> int list

Return the set of blocked signals that are currently pending.

val sigsuspend : int list -> unit

134

sigsuspend sigs atomically sets the blocked signals to sigs and waits for a non-ignored,
non-blocked signal to be delivered. On return, the blocked signals are reset to their initial
value.

val pause : unit -> unit

Wait until a non-ignored, non-blocked signal is delivered.

Time functions

type process_times = {
tms_utime : float ;

User time for the process

tms_stime : float ;

System time for the process

tms_cutime : float ;

User time for the children processes

tms_cstime : float ;

System time for the children processes

}

The execution times (CPU times) of a process.

type tm = {
tm_sec : int ;

Seconds 0..60

tm_min : int ;

Minutes 0..59

tm_hour : int ;

Hours 0..23

tm_mday : int ;

Day of month 1..31

tm_mon : int ;

Month of year 0..11

tm_year : int ;

Year - 1900

tm_wday : int ;

Day of week (Sunday is 0)

tm_yday : int ;

Day of year 0..365

tm_isdst : bool ;

135

Daylight time savings in e�ect

}

The type representing wallclock time and calendar date.

val time : unit -> float

Return the current time since 00:00:00 GMT, Jan. 1, 1970, in seconds.

val gettimeofday : unit -> float

Same as Unix.time[44], but with resolution better than 1 second.

val gmtime : float -> tm

Convert a time in seconds, as returned by Unix.time[44], into a date and a time. Assumes
UTC (Coordinated Universal Time), also known as GMT.

val localtime : float -> tm

Convert a time in seconds, as returned by Unix.time[44], into a date and a time. Assumes
the local time zone.

val mktime : tm -> float * tm

Convert a date and time, speci�ed by the tm argument, into a time in seconds, as returned
by Unix.time[44]. The tm_isdst, tm_wday and tm_yday �elds of tm are ignored. Also return
a normalized copy of the given tm record, with the tm_wday, tm_yday, and tm_isdst �elds
recomputed from the other �elds, and the other �elds normalized (so that, e.g., 40 October
is changed into 9 November). The tm argument is interpreted in the local time zone.

val alarm : int -> int

Schedule a SIGALRM signal after the given number of seconds.

val sleep : int -> unit

Stop execution for the given number of seconds.

val times : unit -> process_times

Return the execution times of the process.

val utimes : string -> float -> float -> unit

Set the last access time (second arg) and last modi�cation time (third arg) for a �le. Times
are expressed in seconds from 00:00:00 GMT, Jan. 1, 1970.

type interval_timer =
| ITIMER_REAL

decrements in real time, and sends the signal SIGALRM when expired.

| ITIMER_VIRTUAL

decrements in process virtual time, and sends SIGVTALRM when expired.

136

| ITIMER_PROF

(for pro�ling) decrements both when the process is running and when the system is
running on behalf of the process; it sends SIGPROF when expired.

The three kinds of interval timers.

type interval_timer_status = {
it_interval : float ;

Period

it_value : float ;

Current value of the timer

}

The type describing the status of an interval timer

val getitimer : interval_timer -> interval_timer_status

Return the current status of the given interval timer.

val setitimer :
interval_timer ->
interval_timer_status -> interval_timer_status

setitimer t s sets the interval timer t and returns its previous status. The s argument is
interpreted as follows: s.it_value, if nonzero, is the time to the next timer expiration;
s.it_interval, if nonzero, speci�es a value to be used in reloading it_value when the timer
expires. Setting s.it_value to zero disable the timer. Setting s.it_interval to zero causes
the timer to be disabled after its next expiration.

User id, group id

val getuid : unit -> int

Return the user id of the user executing the process.

val geteuid : unit -> int

Return the e�ective user id under which the process runs.

val setuid : int -> unit

Set the real user id and e�ective user id for the process.

val getgid : unit -> int

Return the group id of the user executing the process.

val getegid : unit -> int

Return the e�ective group id under which the process runs.

val setgid : int -> unit

Set the real group id and e�ective group id for the process.

137

val getgroups : unit -> int array

Return the list of groups to which the user executing the process belongs.

type passwd_entry = {
pw_name : string ;
pw_passwd : string ;
pw_uid : int ;
pw_gid : int ;
pw_gecos : string ;
pw_dir : string ;
pw_shell : string ;

}

Structure of entries in the passwd database.

type group_entry = {
gr_name : string ;
gr_passwd : string ;
gr_gid : int ;
gr_mem : string array ;

}

Structure of entries in the groups database.

val getlogin : unit -> string

Return the login name of the user executing the process.

val getpwnam : string -> passwd_entry

Find an entry in passwd with the given name, or raise Not_found.

val getgrnam : string -> group_entry

Find an entry in group with the given name, or raise Not_found.

val getpwuid : int -> passwd_entry

Find an entry in passwd with the given user id, or raise Not_found.

val getgrgid : int -> group_entry

Find an entry in group with the given group id, or raise Not_found.

Internet addresses

type inet_addr

The abstract type of Internet addresses.

val inet_addr_of_string : string -> inet_addr

Conversion from the printable representation of an Internet address to its internal
representation. The argument string consists of 4 numbers separated by periods
(XXX.YYY.ZZZ.TTT) for IPv4 addresses, and up to 8 numbers separated by colons for IPv6
addresses. Raise Failure when given a string that does not match these formats.

138

val string_of_inet_addr : inet_addr -> string

Return the printable representation of the given Internet address. See
Unix.inet_addr_of_string[44] for a description of the printable representation.

val inet_addr_any : inet_addr

A special IPv4 address, for use only with bind, representing all the Internet addresses that
the host machine possesses.

val inet_addr_loopback : inet_addr

A special IPv4 address representing the host machine (127.0.0.1).

val inet6_addr_any : inet_addr

A special IPv6 address, for use only with bind, representing all the Internet addresses that
the host machine possesses.

val inet6_addr_loopback : inet_addr

A special IPv6 address representing the host machine (::1).

Sockets

type socket_domain =
| PF_UNIX

Unix domain

| PF_INET

Internet domain (IPv4)

| PF_INET6

Internet domain (IPv6)

The type of socket domains.

type socket_type =
| SOCK_STREAM

Stream socket

| SOCK_DGRAM

Datagram socket

| SOCK_RAW

Raw socket

| SOCK_SEQPACKET

Sequenced packets socket

The type of socket kinds, specifying the semantics of communications.

type sockaddr =
| ADDR_UNIX of string
| ADDR_INET of inet_addr * int

139

The type of socket addresses. ADDR_UNIX name is a socket address in the Unix
domain; name is a �le name in the �le system. ADDR_INET(addr,port) is a socket
address in the Internet domain; addr is the Internet address of the machine, and port
is the port number.

val socket : socket_domain -> socket_type -> int -> file_descr

Create a new socket in the given domain, and with the given kind. The third argument is
the protocol type; 0 selects the default protocol for that kind of sockets.

val domain_of_sockaddr : sockaddr -> socket_domain

Return the socket domain adequate for the given socket address.

val socketpair :
socket_domain ->
socket_type -> int -> file_descr * file_descr

Create a pair of unnamed sockets, connected together.

val accept : file_descr -> file_descr * sockaddr

Accept connections on the given socket. The returned descriptor is a socket connected to the
client; the returned address is the address of the connecting client.

val bind : file_descr -> sockaddr -> unit

Bind a socket to an address.

val connect : file_descr -> sockaddr -> unit

Connect a socket to an address.

val listen : file_descr -> int -> unit

Set up a socket for receiving connection requests. The integer argument is the maximal
number of pending requests.

type shutdown_command =
| SHUTDOWN_RECEIVE

Close for receiving

| SHUTDOWN_SEND

Close for sending

| SHUTDOWN_ALL

Close both

The type of commands for shutdown.

val shutdown : file_descr -> shutdown_command -> unit

Shutdown a socket connection. SHUTDOWN_SEND as second argument causes reads on the
other end of the connection to return an end-of-�le condition. SHUTDOWN_RECEIVE causes
writes on the other end of the connection to return a closed pipe condition (SIGPIPE signal).

140

val getsockname : file_descr -> sockaddr

Return the address of the given socket.

val getpeername : file_descr -> sockaddr

Return the address of the host connected to the given socket.

type msg_flag =
| MSG_OOB
| MSG_DONTROUTE
| MSG_PEEK

The �ags for Unix.recv[44], Unix.recvfrom[44], Unix.send[44] and Unix.sendto[44].

val recv : file_descr -> string -> int -> int -> msg_flag list -> int

Receive data from a connected socket.

val recvfrom :
file_descr ->
string -> int -> int -> msg_flag list -> int * sockaddr

Receive data from an unconnected socket.

val send : file_descr -> string -> int -> int -> msg_flag list -> int

Send data over a connected socket.

val sendto :
file_descr ->
string -> int -> int -> msg_flag list -> sockaddr -> int

Send data over an unconnected socket.

Socket options

type socket_bool_option =
| SO_DEBUG

Record debugging information

| SO_BROADCAST

Permit sending of broadcast messages

| SO_REUSEADDR

Allow reuse of local addresses for bind

| SO_KEEPALIVE

Keep connection active

| SO_DONTROUTE

Bypass the standard routing algorithms

| SO_OOBINLINE

Leave out-of-band data in line

141

| SO_ACCEPTCONN

Report whether socket listening is enabled

The socket options that can be consulted with Unix.getsockopt[44] and modi�ed with
Unix.setsockopt[44]. These options have a boolean (true/false) value.

type socket_int_option =
| SO_SNDBUF

Size of send bu�er

| SO_RCVBUF

Size of received bu�er

| SO_ERROR

Report the error status and clear it

| SO_TYPE

Report the socket type

| SO_RCVLOWAT

Minimum number of bytes to process for input operations

| SO_SNDLOWAT

Minimum number of bytes to process for output operations

The socket options that can be consulted with Unix.getsockopt_int[44] and modi�ed with
Unix.setsockopt_int[44]. These options have an integer value.

type socket_optint_option =
| SO_LINGER

Whether to linger on closed connections that have data present, and for how long (in
seconds)

The socket options that can be consulted with Unix.getsockopt_optint[44] and modi�ed
with Unix.setsockopt_optint[44]. These options have a value of type int option, with
None meaning �disabled�.

type socket_float_option =
| SO_RCVTIMEO

Timeout for input operations

| SO_SNDTIMEO

Timeout for output operations

The socket options that can be consulted with Unix.getsockopt_float[44] and modi�ed
with Unix.setsockopt_float[44]. These options have a �oating-point value representing a
time in seconds. The value 0 means in�nite timeout.

val getsockopt : file_descr -> socket_bool_option -> bool

Return the current status of a boolean-valued option in the given socket.

142

val setsockopt : file_descr -> socket_bool_option -> bool -> unit

Set or clear a boolean-valued option in the given socket.

val getsockopt_int : file_descr -> socket_int_option -> int

Same as Unix.getsockopt[44] for an integer-valued socket option.

val setsockopt_int : file_descr -> socket_int_option -> int -> unit

Same as Unix.setsockopt[44] for an integer-valued socket option.

val getsockopt_optint : file_descr -> socket_optint_option -> int option

Same as Unix.getsockopt[44] for a socket option whose value is an int option.

val setsockopt_optint :
file_descr -> socket_optint_option -> int option -> unit

Same as Unix.setsockopt[44] for a socket option whose value is an int option.

val getsockopt_float : file_descr -> socket_float_option -> float

Same as Unix.getsockopt[44] for a socket option whose value is a �oating-point number.

val setsockopt_float : file_descr -> socket_float_option -> float -> unit

Same as Unix.setsockopt[44] for a socket option whose value is a �oating-point number.

High-level network connection functions

val open_connection :
sockaddr -> Pervasives.in_channel * Pervasives.out_channel

Connect to a server at the given address. Return a pair of bu�ered channels connected to
the server. Remember to call Pervasives.flush[29] on the output channel at the right
times to ensure correct synchronization.

val shutdown_connection : Pervasives.in_channel -> unit

�Shut down� a connection established with Unix.open_connection[44]; that is, transmit an
end-of-�le condition to the server reading on the other side of the connection.

val establish_server :
(Pervasives.in_channel -> Pervasives.out_channel -> unit) ->
sockaddr -> unit

Establish a server on the given address. The function given as �rst argument is called for
each connection with two bu�ered channels connected to the client. A new process is created
for each connection. The function Unix.establish_server[44] never returns normally.

Host and protocol databases

type host_entry = {
h_name : string ;
h_aliases : string array ;
h_addrtype : socket_domain ;
h_addr_list : inet_addr array ;

}

143

Structure of entries in the hosts database.

type protocol_entry = {
p_name : string ;
p_aliases : string array ;
p_proto : int ;

}

Structure of entries in the protocols database.

type service_entry = {
s_name : string ;
s_aliases : string array ;
s_port : int ;
s_proto : string ;

}

Structure of entries in the services database.

val gethostname : unit -> string

Return the name of the local host.

val gethostbyname : string -> host_entry

Find an entry in hosts with the given name, or raise Not_found.

val gethostbyaddr : inet_addr -> host_entry

Find an entry in hosts with the given address, or raise Not_found.

val getprotobyname : string -> protocol_entry

Find an entry in protocols with the given name, or raise Not_found.

val getprotobynumber : int -> protocol_entry

Find an entry in protocols with the given protocol number, or raise Not_found.

val getservbyname : string -> string -> service_entry

Find an entry in services with the given name, or raise Not_found.

val getservbyport : int -> string -> service_entry

Find an entry in services with the given service number, or raise Not_found.

type addr_info = {
ai_family : socket_domain ;

Socket domain

ai_socktype : socket_type ;

Socket type

ai_protocol : int ;

144

Socket protocol number

ai_addr : sockaddr ;

Address

ai_canonname : string ;

Canonical host name

}

Address information returned by Unix.getaddrinfo[44].

type getaddrinfo_option =
| AI_FAMILY of socket_domain

Impose the given socket domain

| AI_SOCKTYPE of socket_type

Impose the given socket type

| AI_PROTOCOL of int

Impose the given protocol

| AI_NUMERICHOST

Do not call name resolver, expect numeric IP address

| AI_CANONNAME

Fill the ai_canonname �eld of the result

| AI_PASSIVE

Set address to �any� address for use with Unix.bind[44]

Options to Unix.getaddrinfo[44].

val getaddrinfo :
string -> string -> getaddrinfo_option list -> addr_info list

getaddrinfo host service opts returns a list of Unix.addr_info[44] records describing
socket parameters and addresses suitable for communicating with the given host and service.
The empty list is returned if the host or service names are unknown, or the constraints
expressed in opts cannot be satis�ed.

host is either a host name or the string representation of an IP address. host can be given
as the empty string; in this case, the �any� address or the �loopback� address are used,
depending whether opts contains AI_PASSIVE. service is either a service name or the string
representation of a port number. service can be given as the empty string; in this case, the
port �eld of the returned addresses is set to 0. opts is a possibly empty list of options that
allows the caller to force a particular socket domain (e.g. IPv6 only or IPv4 only) or a
particular socket type (e.g. TCP only or UDP only).

type name_info = {
ni_hostname : string ;

Name or IP address of host

145

ni_service : string ;
}

Name of service or port number

Host and service information returned by Unix.getnameinfo[44].

type getnameinfo_option =
| NI_NOFQDN

Do not qualify local host names

| NI_NUMERICHOST

Always return host as IP address

| NI_NAMEREQD

Fail if host name cannot be determined

| NI_NUMERICSERV

Always return service as port number

| NI_DGRAM

Consider the service as UDP-based instead of the default TCP

Options to Unix.getnameinfo[44].

val getnameinfo : sockaddr -> getnameinfo_option list -> name_info

getnameinfo addr opts returns the host name and service name corresponding to the
socket address addr. opts is a possibly empty list of options that governs how these names
are obtained. Raise Not_found if an error occurs.

Terminal interface
The following functions implement the POSIX standard terminal interface. They provide control

over asynchronous communication ports and pseudo-terminals. Refer to the termios man page for
a complete description.

type terminal_io = {
mutable c_ignbrk : bool ;

Ignore the break condition.

mutable c_brkint : bool ;

Signal interrupt on break condition.

mutable c_ignpar : bool ;

Ignore characters with parity errors.

mutable c_parmrk : bool ;

Mark parity errors.

mutable c_inpck : bool ;

Enable parity check on input.

mutable c_istrip : bool ;

146

Strip 8th bit on input characters.

mutable c_inlcr : bool ;

Map NL to CR on input.

mutable c_igncr : bool ;

Ignore CR on input.

mutable c_icrnl : bool ;

Map CR to NL on input.

mutable c_ixon : bool ;

Recognize XON/XOFF characters on input.

mutable c_ixoff : bool ;

Emit XON/XOFF chars to control input �ow.

mutable c_opost : bool ;

Enable output processing.

mutable c_obaud : int ;

Output baud rate (0 means close connection).

mutable c_ibaud : int ;

Input baud rate.

mutable c_csize : int ;

Number of bits per character (5-8).

mutable c_cstopb : int ;

Number of stop bits (1-2).

mutable c_cread : bool ;

Reception is enabled.

mutable c_parenb : bool ;

Enable parity generation and detection.

mutable c_parodd : bool ;

Specify odd parity instead of even.

mutable c_hupcl : bool ;

Hang up on last close.

mutable c_clocal : bool ;

Ignore modem status lines.

mutable c_isig : bool ;

Generate signal on INTR, QUIT, SUSP.

mutable c_icanon : bool ;

Enable canonical processing (line bu�ering and editing)

147

mutable c_noflsh : bool ;

Disable �ush after INTR, QUIT, SUSP.

mutable c_echo : bool ;

Echo input characters.

mutable c_echoe : bool ;

Echo ERASE (to erase previous character).

mutable c_echok : bool ;

Echo KILL (to erase the current line).

mutable c_echonl : bool ;

Echo NL even if c_echo is not set.

mutable c_vintr : char ;

Interrupt character (usually ctrl-C).

mutable c_vquit : char ;

Quit character (usually ctrl-\).

mutable c_verase : char ;

Erase character (usually DEL or ctrl-H).

mutable c_vkill : char ;

Kill line character (usually ctrl-U).

mutable c_veof : char ;

End-of-�le character (usually ctrl-D).

mutable c_veol : char ;

Alternate end-of-line char. (usually none).

mutable c_vmin : int ;

Minimum number of characters to read before the read request is satis�ed.

mutable c_vtime : int ;

Maximum read wait (in 0.1s units).

mutable c_vstart : char ;

Start character (usually ctrl-Q).

mutable c_vstop : char ;

Stop character (usually ctrl-S).

}

val tcgetattr : file_descr -> terminal_io

Return the status of the terminal referred to by the given �le descriptor.

148

type setattr_when =
| TCSANOW
| TCSADRAIN
| TCSAFLUSH

val tcsetattr : file_descr -> setattr_when -> terminal_io -> unit

Set the status of the terminal referred to by the given �le descriptor. The second argument
indicates when the status change takes place: immediately (TCSANOW), when all pending
output has been transmitted (TCSADRAIN), or after �ushing all input that has been received
but not read (TCSAFLUSH). TCSADRAIN is recommended when changing the output
parameters; TCSAFLUSH, when changing the input parameters.

val tcsendbreak : file_descr -> int -> unit

Send a break condition on the given �le descriptor. The second argument is the duration of
the break, in 0.1s units; 0 means standard duration (0.25s).

val tcdrain : file_descr -> unit

Waits until all output written on the given �le descriptor has been transmitted.

type flush_queue =
| TCIFLUSH
| TCOFLUSH
| TCIOFLUSH

val tcflush : file_descr -> flush_queue -> unit

Discard data written on the given �le descriptor but not yet transmitted, or data received
but not yet read, depending on the second argument: TCIFLUSH �ushes data received but
not read, TCOFLUSH �ushes data written but not transmitted, and TCIOFLUSH �ushes both.

type flow_action =
| TCOOFF
| TCOON
| TCIOFF
| TCION

val tcflow : file_descr -> flow_action -> unit

Suspend or restart reception or transmission of data on the given �le descriptor, depending
on the second argument: TCOOFF suspends output, TCOON restarts output, TCIOFF transmits a
STOP character to suspend input, and TCION transmits a START character to restart input.

val setsid : unit -> int

Put the calling process in a new session and detach it from its controlling terminal.

45 Module Str : Regular expressions and high-level string process-
ing

Regular expressions

149

type regexp

The type of compiled regular expressions.

val regexp : string -> regexp

Compile a regular expression. The following constructs are recognized:

• . Matches any character except newline.

• * (post�x) Matches the preceding expression zero, one or several times

• + (post�x) Matches the preceding expression one or several times

• ? (post�x) Matches the preceding expression once or not at all

• [..] Character set. Ranges are denoted with -, as in [a-z]. An initial ^, as in
[^0-9], complements the set. To include a] character in a set, make it the �rst
character of the set. To include a - character in a set, make it the �rst or the last
character of the set.

• ^ Matches at beginning of line (either at the beginning of the matched string, or just
after a newline character).

• $ Matches at end of line (either at the end of the matched string, or just before a
newline character).

• \| (in�x) Alternative between two expressions.

• \(..\) Grouping and naming of the enclosed expression.

• \1 The text matched by the �rst \(...\) expression (\2 for the second expression,
and so on up to \9).

• \b Matches word boundaries.

• \ Quotes special characters. The special characters are $^.*+?[].

val regexp_case_fold : string -> regexp

Same as regexp, but the compiled expression will match text in a case-insensitive way:
uppercase and lowercase letters will be considered equivalent.

val quote : string -> string

Str.quote s returns a regexp string that matches exactly s and nothing else.

val regexp_string : string -> regexp

Str.regexp_string s returns a regular expression that matches exactly s and nothing else.

val regexp_string_case_fold : string -> regexp

Str.regexp_string_case_fold is similar to Str.regexp_string[45], but the regexp
matches in a case-insensitive way.

String matching and searching

val string_match : regexp -> string -> int -> bool

150

string_match r s start tests whether a substring of s that starts at position start
matches the regular expression r. The �rst character of a string has position 0, as usual.

val search_forward : regexp -> string -> int -> int

search_forward r s start searches the string s for a substring matching the regular
expression r. The search starts at position start and proceeds towards the end of the
string. Return the position of the �rst character of the matched substring, or raise
Not_found if no substring matches.

val search_backward : regexp -> string -> int -> int

search_backward r s last searches the string s for a substring matching the regular
expression r. The search �rst considers substrings that start at position last and proceeds
towards the beginning of string. Return the position of the �rst character of the matched
substring; raise Not_found if no substring matches.

val string_partial_match : regexp -> string -> int -> bool

Similar to Str.string_match[45], but also returns true if the argument string is a pre�x of a
string that matches. This includes the case of a true complete match.

val matched_string : string -> string

matched_string s returns the substring of s that was matched by the latest
Str.string_match[45], Str.search_forward[45] or Str.search_backward[45]. The user
must make sure that the parameter s is the same string that was passed to the matching or
searching function.

val match_beginning : unit -> int

match_beginning() returns the position of the �rst character of the substring that was
matched by Str.string_match[45], Str.search_forward[45] or Str.search_backward[45].

val match_end : unit -> int

match_end() returns the position of the character following the last character of the
substring that was matched by string_match, search_forward or search_backward.

val matched_group : int -> string -> string

matched_group n s returns the substring of s that was matched by the nth group \(...\)
of the regular expression during the latest Str.string_match[45], Str.search_forward[45]
or Str.search_backward[45]. The user must make sure that the parameter s is the same
string that was passed to the matching or searching function. matched_group n s raises
Not_found if the nth group of the regular expression was not matched. This can happen
with groups inside alternatives \|, options ? or repetitions *. For instance, the empty string
will match \(a\)*, but matched_group 1 "" will raise Not_found because the �rst group
itself was not matched.

val group_beginning : int -> int

151

group_beginning n returns the position of the �rst character of the substring that was
matched by the nth group of the regular expression.

Raises

• Not_found if the nth group of the regular expression was not matched.

• Invalid_argument if there are fewer than n groups in the regular expression.

val group_end : int -> int

group_end n returns the position of the character following the last character of substring
that was matched by the nth group of the regular expression.

Raises

• Not_found if the nth group of the regular expression was not matched.

• Invalid_argument if there are fewer than n groups in the regular expression.

Replacement

val global_replace : regexp -> string -> string -> string

global_replace regexp templ s returns a string identical to s, except that all substrings
of s that match regexp have been replaced by templ. The replacement template templ can
contain \1, \2, etc; these sequences will be replaced by the text matched by the
corresponding group in the regular expression. \0 stands for the text matched by the whole
regular expression.

val replace_first : regexp -> string -> string -> string

Same as Str.global_replace[45], except that only the �rst substring matching the regular
expression is replaced.

val global_substitute : regexp -> (string -> string) -> string -> string

global_substitute regexp subst s returns a string identical to s, except that all
substrings of s that match regexp have been replaced by the result of function subst. The
function subst is called once for each matching substring, and receives s (the whole text) as
argument.

val substitute_first : regexp -> (string -> string) -> string -> string

Same as Str.global_substitute[45], except that only the �rst substring matching the
regular expression is replaced.

val replace_matched : string -> string -> string

replace_matched repl s returns the replacement text repl in which \1, \2, etc. have been
replaced by the text matched by the corresponding groups in the most recent matching
operation. s must be the same string that was matched during this matching operation.

Splitting

val split : regexp -> string -> string list

152

split r s splits s into substrings, taking as delimiters the substrings that match r, and
returns the list of substrings. For instance, split (regexp "[\t]+") s splits s into
blank-separated words. An occurrence of the delimiter at the beginning and at the end of
the string is ignored.

val bounded_split : regexp -> string -> int -> string list

Same as Str.split[45], but splits into at most n substrings, where n is the extra integer
parameter.

val split_delim : regexp -> string -> string list

Same as Str.split[45] but occurrences of the delimiter at the beginning and at the end of
the string are recognized and returned as empty strings in the result. For instance,
split_delim (regexp " ") " abc " returns [""; "abc"; ""], while split with the same
arguments returns ["abc"].

val bounded_split_delim : regexp -> string -> int -> string list

Same as Str.bounded_split[45], but occurrences of the delimiter at the beginning and at
the end of the string are recognized and returned as empty strings in the result.

type split_result =
| Text of string
| Delim of string

val full_split : regexp -> string -> split_result list

Same as Str.split_delim[45], but returns the delimiters as well as the substrings contained
between delimiters. The former are tagged Delim in the result list; the latter are tagged
Text. For instance, full_split (regexp "[{}]") "{ab}" returns [Delim "{"; Text
"ab"; Delim "}"].

val bounded_full_split : regexp -> string -> int -> split_result list

Same as Str.bounded_split_delim[45], but returns the delimiters as well as the substrings
contained between delimiters. The former are tagged Delim in the result list; the latter are
tagged Text.

Extracting substrings

val string_before : string -> int -> string

string_before s n returns the substring of all characters of s that precede position n
(excluding the character at position n).

val string_after : string -> int -> string

string_after s n returns the substring of all characters of s that follow position n
(including the character at position n).

val first_chars : string -> int -> string

first_chars s n returns the �rst n characters of s. This is the same function as
Str.string_before[45].

153

val last_chars : string -> int -> string

last_chars s n returns the last n characters of s.

46 Module Bigarray : Large, multi-dimensional, numerical arrays.

This module implements multi-dimensional arrays of integers and �oating-point numbers, thereafter
referred to as �big arrays�. The implementation allows e�cient sharing of large numerical arrays
between Caml code and C or Fortran numerical libraries.

Concerning the naming conventions, users of this module are encouraged to do open Bigarray
in their source, then refer to array types and operations via short dot notation, e.g. Array1.t or
Array2.sub.

Big arrays support all the Caml ad-hoc polymorphic operations:

• comparisons (=, <>, <=, etc, as well as Pervasives.compare[29]);

• hashing (module Hash);

• and structured input-output (Pervasives.output_value[29] and Pervasives.input_value[29],
as well as the functions from the Marshal[23] module).

Element kinds
Big arrays can contain elements of the following kinds:

• IEEE single precision (32 bits) �oating-point numbers (Bigarray.float32_elt[46]),

• IEEE double precision (64 bits) �oating-point numbers (Bigarray.float64_elt[46]),

• IEEE single precision (2 * 32 bits) �oating-point complex numbers (Bigarray.complex32_elt[46]),

• IEEE double precision (2 * 64 bits) �oating-point complex numbers (Bigarray.complex64_elt[46]),

• 8-bit integers (signed or unsigned) (Bigarray.int8_signed_elt[46] or Bigarray.int8_unsigned_elt[46]),

• 16-bit integers (signed or unsigned) (Bigarray.int16_signed_elt[46] or Bigarray.int16_unsigned_elt[46]),

• Caml integers (signed, 31 bits on 32-bit architectures, 63 bits on 64-bit architectures) (Bigarray.int_elt[46]),

• 32-bit signed integer (Bigarray.int32_elt[46]),

• 64-bit signed integers (Bigarray.int64_elt[46]),

• platform-native signed integers (32 bits on 32-bit architectures, 64 bits on 64-bit architectures)
(Bigarray.nativeint_elt[46]).

Each element kind is represented at the type level by one of the abstract types de�ned below.

type float32_elt

type float64_elt

type complex32_elt

154

type complex64_elt

type int8_signed_elt

type int8_unsigned_elt

type int16_signed_elt

type int16_unsigned_elt

type int_elt

type int32_elt

type int64_elt

type nativeint_elt

type ('a, 'b) kind

To each element kind is associated a Caml type, which is the type of Caml values that can
be stored in the big array or read back from it. This type is not necessarily the same as the
type of the array elements proper: for instance, a big array whose elements are of kind
float32_elt contains 32-bit single precision �oats, but reading or writing one of its
elements from Caml uses the Caml type float, which is 64-bit double precision �oats.

The abstract type ('a, 'b) kind captures this association of a Caml type 'a for values
read or written in the big array, and of an element kind 'b which represents the actual
contents of the big array. The following prede�ned values of type kind list all possible
associations of Caml types with element kinds:

val float32 : (float, float32_elt) kind

See Bigarray.char[46].

val float64 : (float, float64_elt) kind

See Bigarray.char[46].

val complex32 : (Complex.t, complex32_elt) kind

See Bigarray.char[46].

val complex64 : (Complex.t, complex64_elt) kind

See Bigarray.char[46].

val int8_signed : (int, int8_signed_elt) kind

See Bigarray.char[46].

val int8_unsigned : (int, int8_unsigned_elt) kind

See Bigarray.char[46].

val int16_signed : (int, int16_signed_elt) kind

See Bigarray.char[46].

val int16_unsigned : (int, int16_unsigned_elt) kind

See Bigarray.char[46].

155

val int : (int, int_elt) kind

See Bigarray.char[46].

val int32 : (int32, int32_elt) kind

See Bigarray.char[46].

val int64 : (int64, int64_elt) kind

See Bigarray.char[46].

val nativeint : (nativeint, nativeint_elt) kind

See Bigarray.char[46].

val char : (char, int8_unsigned_elt) kind

As shown by the types of the values above, big arrays of kind float32_elt and
float64_elt are accessed using the Caml type float. Big arrays of complex kinds
complex32_elt, complex64_elt are accessed with the Caml type Complex.t[9]. Big arrays
of integer kinds are accessed using the smallest Caml integer type large enough to represent
the array elements: int for 8- and 16-bit integer bigarrays, as well as Caml-integer
bigarrays; int32 for 32-bit integer bigarrays; int64 for 64-bit integer bigarrays; and
nativeint for platform-native integer bigarrays. Finally, big arrays of kind
int8_unsigned_elt can also be accessed as arrays of characters instead of arrays of small
integers, by using the kind value char instead of int8_unsigned.

Array layouts

type c_layout

See Bigarray.fortran_layout[46].

type fortran_layout

To facilitate interoperability with existing C and Fortran code, this library supports two
di�erent memory layouts for big arrays, one compatible with the C conventions, the other
compatible with the Fortran conventions.

In the C-style layout, array indices start at 0, and multi-dimensional arrays are laid out in
row-major format. That is, for a two-dimensional array, all elements of row 0 are contiguous
in memory, followed by all elements of row 1, etc. In other terms, the array elements at
(x,y) and (x, y+1) are adjacent in memory.

In the Fortran-style layout, array indices start at 1, and multi-dimensional arrays are laid
out in column-major format. That is, for a two-dimensional array, all elements of column 0
are contiguous in memory, followed by all elements of column 1, etc. In other terms, the
array elements at (x,y) and (x+1, y) are adjacent in memory.

Each layout style is identi�ed at the type level by the abstract types Bigarray.c_layout[46]
and fortran_layout respectively.

type 'a layout

156

The type 'a layout represents one of the two supported memory layouts: C-style if 'a is
Bigarray.c_layout[46], Fortran-style if 'a is Bigarray.fortran_layout[46].

Supported layouts
The abstract values c_layout and fortran_layout represent the two supported layouts at the

level of values.

val c_layout : c_layout layout

val fortran_layout : fortran_layout layout
Generic arrays (of arbitrarily many dimensions)

module Genarray :
sig

type ('a, 'b, 'c) t

The type Genarray.t is the type of big arrays with variable numbers of dimensions.
Any number of dimensions between 1 and 16 is supported.
The three type parameters to Genarray.t identify the array element kind and layout,
as follows:

• the �rst parameter, 'a, is the Caml type for accessing array elements (float, int,
int32, int64, nativeint);

• the second parameter, 'b, is the actual kind of array elements (float32_elt,
float64_elt, int8_signed_elt, int8_unsigned_elt, etc);

• the third parameter, 'c, identi�es the array layout (c_layout or fortran_layout).

For instance, (float, float32_elt, fortran_layout) Genarray.t is the type of
generic big arrays containing 32-bit �oats in Fortran layout; reads and writes in this
array use the Caml type float.

val create :
('a, 'b) Bigarray.kind ->
'c Bigarray.layout -> int array -> ('a, 'b, 'c) t

Genarray.create kind layout dimensions returns a new big array whose element
kind is determined by the parameter kind (one of float32, float64, int8_signed, etc)
and whose layout is determined by the parameter layout (one of c_layout or
fortran_layout). The dimensions parameter is an array of integers that indicate the
size of the big array in each dimension. The length of dimensions determines the
number of dimensions of the bigarray.
For instance, Genarray.create int32 c_layout [|4;6;8|] returns a fresh big array
of 32-bit integers, in C layout, having three dimensions, the three dimensions being 4, 6
and 8 respectively.
Big arrays returned by Genarray.create are not initialized: the initial values of array
elements is unspeci�ed.
Genarray.create raises Invalid_arg if the number of dimensions is not in the range 1
to 16 inclusive, or if one of the dimensions is negative.

val num_dims : ('a, 'b, 'c) t -> int

157

Return the number of dimensions of the given big array.

val dims : ('a, 'b, 'c) t -> int array

Genarray.dims a returns all dimensions of the big array a, as an array of integers of
length Genarray.num_dims a.

val nth_dim : ('a, 'b, 'c) t -> int -> int

Genarray.nth_dim a n returns the n-th dimension of the big array a. The �rst
dimension corresponds to n = 0; the second dimension corresponds to n = 1; the last
dimension, to n = Genarray.num_dims a - 1. Raise Invalid_arg if n is less than 0 or
greater or equal than Genarray.num_dims a.

val kind : ('a, 'b, 'c) t -> ('a, 'b) Bigarray.kind

Return the kind of the given big array.

val layout : ('a, 'b, 'c) t -> 'c Bigarray.layout

Return the layout of the given big array.

val get : ('a, 'b, 'c) t -> int array -> 'a

Read an element of a generic big array. Genarray.get a [|i1; ...; iN|] returns the
element of a whose coordinates are i1 in the �rst dimension, i2 in the second
dimension, . . ., iN in the N-th dimension.
If a has C layout, the coordinates must be greater or equal than 0 and strictly less than
the corresponding dimensions of a. If a has Fortran layout, the coordinates must be
greater or equal than 1 and less or equal than the corresponding dimensions of a. Raise
Invalid_arg if the array a does not have exactly N dimensions, or if the coordinates are
outside the array bounds.
If N > 3, alternate syntax is provided: you can write a.{i1, i2, ..., iN} instead of
Genarray.get a [|i1; ...; iN|]. (The syntax a.{...} with one, two or three
coordinates is reserved for accessing one-, two- and three-dimensional arrays as
described below.)

val set : ('a, 'b, 'c) t -> int array -> 'a -> unit

Assign an element of a generic big array. Genarray.set a [|i1; ...; iN|] v stores
the value v in the element of a whose coordinates are i1 in the �rst dimension, i2 in
the second dimension, . . ., iN in the N-th dimension.
The array a must have exactly N dimensions, and all coordinates must lie inside the
array bounds, as described for Genarray.get; otherwise, Invalid_arg is raised.
If N > 3, alternate syntax is provided: you can write a.{i1, i2, ..., iN} <- v
instead of Genarray.set a [|i1; ...; iN|] v. (The syntax a.{...} <- v with one,
two or three coordinates is reserved for updating one-, two- and three-dimensional
arrays as described below.)

158

val sub_left :
('a, 'b, Bigarray.c_layout) t ->
int -> int -> ('a, 'b, Bigarray.c_layout) t

Extract a sub-array of the given big array by restricting the �rst (left-most) dimension.
Genarray.sub_left a ofs len returns a big array with the same number of
dimensions as a, and the same dimensions as a, except the �rst dimension, which
corresponds to the interval [ofs ... ofs + len - 1] of the �rst dimension of a. No
copying of elements is involved: the sub-array and the original array share the same
storage space. In other terms, the element at coordinates [|i1; ...; iN|] of the
sub-array is identical to the element at coordinates [|i1+ofs; ...; iN|] of the
original array a.
Genarray.sub_left applies only to big arrays in C layout. Raise Invalid_arg if ofs
and len do not designate a valid sub-array of a, that is, if ofs < 0, or len < 0, or ofs
+ len > Genarray.nth_dim a 0.

val sub_right :
('a, 'b, Bigarray.fortran_layout) t ->
int -> int -> ('a, 'b, Bigarray.fortran_layout) t

Extract a sub-array of the given big array by restricting the last (right-most)
dimension. Genarray.sub_right a ofs len returns a big array with the same number
of dimensions as a, and the same dimensions as a, except the last dimension, which
corresponds to the interval [ofs ... ofs + len - 1] of the last dimension of a. No
copying of elements is involved: the sub-array and the original array share the same
storage space. In other terms, the element at coordinates [|i1; ...; iN|] of the
sub-array is identical to the element at coordinates [|i1; ...; iN+ofs|] of the
original array a.
Genarray.sub_right applies only to big arrays in Fortran layout. Raise Invalid_arg
if ofs and len do not designate a valid sub-array of a, that is, if ofs < 1, or len < 0,
or ofs + len > Genarray.nth_dim a (Genarray.num_dims a - 1).

val slice_left :
('a, 'b, Bigarray.c_layout) t ->
int array -> ('a, 'b, Bigarray.c_layout) t

Extract a sub-array of lower dimension from the given big array by �xing one or several
of the �rst (left-most) coordinates. Genarray.slice_left a [|i1; ... ; iM|]
returns the �slice� of a obtained by setting the �rst M coordinates to i1, . . ., iM. If a has
N dimensions, the slice has dimension N - M, and the element at coordinates [|j1;
...; j(N-M)|] in the slice is identical to the element at coordinates [|i1; ...; iM;
j1; ...; j(N-M)|] in the original array a. No copying of elements is involved: the
slice and the original array share the same storage space.
Genarray.slice_left applies only to big arrays in C layout. Raise Invalid_arg if M
>= N, or if [|i1; ... ; iM|] is outside the bounds of a.

val slice_right :

159

('a, 'b, Bigarray.fortran_layout) t ->
int array -> ('a, 'b, Bigarray.fortran_layout) t

Extract a sub-array of lower dimension from the given big array by �xing one or several
of the last (right-most) coordinates. Genarray.slice_right a [|i1; ... ; iM|]
returns the �slice� of a obtained by setting the last M coordinates to i1, . . ., iM. If a has
N dimensions, the slice has dimension N - M, and the element at coordinates [|j1;
...; j(N-M)|] in the slice is identical to the element at coordinates [|j1; ...;
j(N-M); i1; ...; iM|] in the original array a. No copying of elements is involved:
the slice and the original array share the same storage space.
Genarray.slice_right applies only to big arrays in Fortran layout. Raise
Invalid_arg if M >= N, or if [|i1; ... ; iM|] is outside the bounds of a.

val blit : ('a, 'b, 'c) t -> ('a, 'b, 'c) t -> unit

Copy all elements of a big array in another big array. Genarray.blit src dst copies
all elements of src into dst. Both arrays src and dst must have the same number of
dimensions and equal dimensions. Copying a sub-array of src to a sub-array of dst can
be achieved by applying Genarray.blit to sub-array or slices of src and dst.

val fill : ('a, 'b, 'c) t -> 'a -> unit

Set all elements of a big array to a given value. Genarray.fill a v stores the value v
in all elements of the big array a. Setting only some elements of a to v can be achieved
by applying Genarray.fill to a sub-array or a slice of a.

val map_file :
Unix.file_descr ->
('a, 'b) Bigarray.kind ->
'c Bigarray.layout -> bool -> int array -> ('a, 'b, 'c) t

Memory mapping of a �le as a big array. Genarray.map_file fd kind layout shared
dims returns a big array of kind kind, layout layout, and dimensions as speci�ed in
dims. The data contained in this big array are the contents of the �le referred to by the
�le descriptor fd (as opened previously with Unix.openfile, for example). If shared is
true, all modi�cations performed on the array are re�ected in the �le. This requires
that fd be opened with write permissions. If shared is false, modi�cations performed
on the array are done in memory only, using copy-on-write of the modi�ed pages; the
underlying �le is not a�ected.
Genarray.map_file is much more e�cient than reading the whole �le in a big array,
modifying that big array, and writing it afterwards.
To adjust automatically the dimensions of the big array to the actual size of the �le,
the major dimension (that is, the �rst dimension for an array with C layout, and the
last dimension for an array with Fortran layout) can be given as -1.
Genarray.map_file then determines the major dimension from the size of the �le. The
�le must contain an integral number of sub-arrays as determined by the non-major
dimensions, otherwise Failure is raised.

160

If all dimensions of the big array are given, the �le size is matched against the size of
the big array. If the �le is larger than the big array, only the initial portion of the �le is
mapped to the big array. If the �le is smaller than the big array, the �le is
automatically grown to the size of the big array. This requires write permissions on fd.

end

One-dimensional arrays

module Array1 :
sig

type ('a, 'b, 'c) t

The type of one-dimensional big arrays whose elements have Caml type 'a,
representation kind 'b, and memory layout 'c.

val create :
('a, 'b) Bigarray.kind ->
'c Bigarray.layout -> int -> ('a, 'b, 'c) t

Array1.create kind layout dim returns a new bigarray of one dimension, whose size
is dim. kind and layout determine the array element kind and the array layout as
described for Genarray.create.

val dim : ('a, 'b, 'c) t -> int

Return the size (dimension) of the given one-dimensional big array.

val kind : ('a, 'b, 'c) t -> ('a, 'b) Bigarray.kind

Return the kind of the given big array.

val layout : ('a, 'b, 'c) t -> 'c Bigarray.layout

Return the layout of the given big array.

val get : ('a, 'b, 'c) t -> int -> 'a

Array1.get a x, or alternatively a.{x}, returns the element of a at index x. x must be
greater or equal than 0 and strictly less than Array1.dim a if a has C layout. If a has
Fortran layout, x must be greater or equal than 1 and less or equal than Array1.dim a.
Otherwise, Invalid_arg is raised.

val set : ('a, 'b, 'c) t -> int -> 'a -> unit

Array1.set a x v, also written a.{x} <- v, stores the value v at index x in a. x must
be inside the bounds of a as described in Bigarray.Array1.get[46]; otherwise,
Invalid_arg is raised.

val sub : ('a, 'b, 'c) t ->
int -> int -> ('a, 'b, 'c) t

161

Extract a sub-array of the given one-dimensional big array. See Genarray.sub_left for
more details.

val blit : ('a, 'b, 'c) t -> ('a, 'b, 'c) t -> unit

Copy the �rst big array to the second big array. See Genarray.blit for more details.

val fill : ('a, 'b, 'c) t -> 'a -> unit

Fill the given big array with the given value. See Genarray.fill for more details.

val of_array :
('a, 'b) Bigarray.kind ->
'c Bigarray.layout -> 'a array -> ('a, 'b, 'c) t

Build a one-dimensional big array initialized from the given array.

val map_file :
Unix.file_descr ->
('a, 'b) Bigarray.kind ->
'c Bigarray.layout -> bool -> int -> ('a, 'b, 'c) t

Memory mapping of a �le as a one-dimensional big array. See
Bigarray.Genarray.map_file[46] for more details.

end

One-dimensional arrays. The Array1 structure provides operations similar to those of
Bigarray.Genarray[46], but specialized to the case of one-dimensional arrays. (The Array2
and Array3 structures below provide operations specialized for two- and three-dimensional
arrays.) Statically knowing the number of dimensions of the array allows faster operations,
and more precise static type-checking.

Two-dimensional arrays

module Array2 :
sig

type ('a, 'b, 'c) t

The type of two-dimensional big arrays whose elements have Caml type 'a,
representation kind 'b, and memory layout 'c.

val create :
('a, 'b) Bigarray.kind ->
'c Bigarray.layout -> int -> int -> ('a, 'b, 'c) t

Array2.create kind layout dim1 dim2 returns a new bigarray of two dimension,
whose size is dim1 in the �rst dimension and dim2 in the second dimension. kind and
layout determine the array element kind and the array layout as described for
Bigarray.Genarray.create[46].

162

val dim1 : ('a, 'b, 'c) t -> int

Return the �rst dimension of the given two-dimensional big array.

val dim2 : ('a, 'b, 'c) t -> int

Return the second dimension of the given two-dimensional big array.

val kind : ('a, 'b, 'c) t -> ('a, 'b) Bigarray.kind

Return the kind of the given big array.

val layout : ('a, 'b, 'c) t -> 'c Bigarray.layout

Return the layout of the given big array.

val get : ('a, 'b, 'c) t -> int -> int -> 'a

Array2.get a x y, also written a.{x,y}, returns the element of a at coordinates (x,
y). x and y must be within the bounds of a, as described for
Bigarray.Genarray.get[46]; otherwise, Invalid_arg is raised.

val set : ('a, 'b, 'c) t -> int -> int -> 'a -> unit

Array2.set a x y v, or alternatively a.{x,y} <- v, stores the value v at coordinates
(x, y) in a. x and y must be within the bounds of a, as described for
Bigarray.Genarray.set[46]; otherwise, Invalid_arg is raised.

val sub_left :
('a, 'b, Bigarray.c_layout) t ->
int -> int -> ('a, 'b, Bigarray.c_layout) t

Extract a two-dimensional sub-array of the given two-dimensional big array by
restricting the �rst dimension. See Bigarray.Genarray.sub_left[46] for more details.
Array2.sub_left applies only to arrays with C layout.

val sub_right :
('a, 'b, Bigarray.fortran_layout) t ->
int -> int -> ('a, 'b, Bigarray.fortran_layout) t

Extract a two-dimensional sub-array of the given two-dimensional big array by
restricting the second dimension. See Bigarray.Genarray.sub_right[46] for more
details. Array2.sub_right applies only to arrays with Fortran layout.

val slice_left :
('a, 'b, Bigarray.c_layout) t ->
int -> ('a, 'b, Bigarray.c_layout) Bigarray.Array1.t

Extract a row (one-dimensional slice) of the given two-dimensional big array. The
integer parameter is the index of the row to extract. See
Bigarray.Genarray.slice_left[46] for more details. Array2.slice_left applies only
to arrays with C layout.

163

val slice_right :
('a, 'b, Bigarray.fortran_layout) t ->
int -> ('a, 'b, Bigarray.fortran_layout) Bigarray.Array1.t

Extract a column (one-dimensional slice) of the given two-dimensional big array. The
integer parameter is the index of the column to extract. See
Bigarray.Genarray.slice_right[46] for more details. Array2.slice_right applies
only to arrays with Fortran layout.

val blit : ('a, 'b, 'c) t -> ('a, 'b, 'c) t -> unit

Copy the �rst big array to the second big array. See Bigarray.Genarray.blit[46] for
more details.

val fill : ('a, 'b, 'c) t -> 'a -> unit

Fill the given big array with the given value. See Bigarray.Genarray.fill[46] for
more details.

val of_array :
('a, 'b) Bigarray.kind ->
'c Bigarray.layout -> 'a array array -> ('a, 'b, 'c) t

Build a two-dimensional big array initialized from the given array of arrays.

val map_file :
Unix.file_descr ->
('a, 'b) Bigarray.kind ->
'c Bigarray.layout -> bool -> int -> int -> ('a, 'b, 'c) t

Memory mapping of a �le as a two-dimensional big array. See
Bigarray.Genarray.map_file[46] for more details.

end

Two-dimensional arrays. The Array2 structure provides operations similar to those of
Bigarray.Genarray[46], but specialized to the case of two-dimensional arrays.

Three-dimensional arrays

module Array3 :
sig

type ('a, 'b, 'c) t

The type of three-dimensional big arrays whose elements have Caml type 'a,
representation kind 'b, and memory layout 'c.

val create :
('a, 'b) Bigarray.kind ->
'c Bigarray.layout -> int -> int -> int -> ('a, 'b, 'c) t

164

Array3.create kind layout dim1 dim2 dim3 returns a new bigarray of three
dimension, whose size is dim1 in the �rst dimension, dim2 in the second dimension, and
dim3 in the third. kind and layout determine the array element kind and the array
layout as described for Bigarray.Genarray.create[46].

val dim1 : ('a, 'b, 'c) t -> int

Return the �rst dimension of the given three-dimensional big array.

val dim2 : ('a, 'b, 'c) t -> int

Return the second dimension of the given three-dimensional big array.

val dim3 : ('a, 'b, 'c) t -> int

Return the third dimension of the given three-dimensional big array.

val kind : ('a, 'b, 'c) t -> ('a, 'b) Bigarray.kind

Return the kind of the given big array.

val layout : ('a, 'b, 'c) t -> 'c Bigarray.layout

Return the layout of the given big array.

val get : ('a, 'b, 'c) t -> int -> int -> int -> 'a

Array3.get a x y z, also written a.{x,y,z}, returns the element of a at coordinates
(x, y, z). x, y and z must be within the bounds of a, as described for
Bigarray.Genarray.get[46]; otherwise, Invalid_arg is raised.

val set : ('a, 'b, 'c) t -> int -> int -> int -> 'a -> unit

Array3.set a x y v, or alternatively a.{x,y,z} <- v, stores the value v at
coordinates (x, y, z) in a. x, y and z must be within the bounds of a, as described for
Bigarray.Genarray.set[46]; otherwise, Invalid_arg is raised.

val sub_left :
('a, 'b, Bigarray.c_layout) t ->
int -> int -> ('a, 'b, Bigarray.c_layout) t

Extract a three-dimensional sub-array of the given three-dimensional big array by
restricting the �rst dimension. See Bigarray.Genarray.sub_left[46] for more details.
Array3.sub_left applies only to arrays with C layout.

val sub_right :
('a, 'b, Bigarray.fortran_layout) t ->
int -> int -> ('a, 'b, Bigarray.fortran_layout) t

Extract a three-dimensional sub-array of the given three-dimensional big array by
restricting the second dimension. See Bigarray.Genarray.sub_right[46] for more
details. Array3.sub_right applies only to arrays with Fortran layout.

165

val slice_left_1 :
('a, 'b, Bigarray.c_layout) t ->
int -> int -> ('a, 'b, Bigarray.c_layout) Bigarray.Array1.t

Extract a one-dimensional slice of the given three-dimensional big array by �xing the
�rst two coordinates. The integer parameters are the coordinates of the slice to extract.
See Bigarray.Genarray.slice_left[46] for more details. Array3.slice_left_1
applies only to arrays with C layout.

val slice_right_1 :
('a, 'b, Bigarray.fortran_layout) t ->
int -> int -> ('a, 'b, Bigarray.fortran_layout) Bigarray.Array1.t

Extract a one-dimensional slice of the given three-dimensional big array by �xing the
last two coordinates. The integer parameters are the coordinates of the slice to extract.
See Bigarray.Genarray.slice_right[46] for more details. Array3.slice_right_1
applies only to arrays with Fortran layout.

val slice_left_2 :
('a, 'b, Bigarray.c_layout) t ->
int -> ('a, 'b, Bigarray.c_layout) Bigarray.Array2.t

Extract a two-dimensional slice of the given three-dimensional big array by �xing the
�rst coordinate. The integer parameter is the �rst coordinate of the slice to extract.
See Bigarray.Genarray.slice_left[46] for more details. Array3.slice_left_2
applies only to arrays with C layout.

val slice_right_2 :
('a, 'b, Bigarray.fortran_layout) t ->
int -> ('a, 'b, Bigarray.fortran_layout) Bigarray.Array2.t

Extract a two-dimensional slice of the given three-dimensional big array by �xing the
last coordinate. The integer parameter is the coordinate of the slice to extract. See
Bigarray.Genarray.slice_right[46] for more details. Array3.slice_right_2 applies
only to arrays with Fortran layout.

val blit : ('a, 'b, 'c) t -> ('a, 'b, 'c) t -> unit

Copy the �rst big array to the second big array. See Bigarray.Genarray.blit[46] for
more details.

val fill : ('a, 'b, 'c) t -> 'a -> unit

Fill the given big array with the given value. See Bigarray.Genarray.fill[46] for
more details.

val of_array :
('a, 'b) Bigarray.kind ->
'c Bigarray.layout -> 'a array array array -> ('a, 'b, 'c) t

166

Build a three-dimensional big array initialized from the given array of arrays of arrays.

val map_file :
Unix.file_descr ->
('a, 'b) Bigarray.kind ->
'c Bigarray.layout ->
bool -> int -> int -> int -> ('a, 'b, 'c) t

Memory mapping of a �le as a three-dimensional big array. See
Bigarray.Genarray.map_file[46] for more details.

end

Three-dimensional arrays. The Array3 structure provides operations similar to those of
Bigarray.Genarray[46], but specialized to the case of three-dimensional arrays.

Coercions between generic big arrays and �xed-dimension big arrays

val genarray_of_array1 : ('a, 'b, 'c) Array1.t -> ('a, 'b, 'c) Genarray.t

Return the generic big array corresponding to the given one-dimensional big array.

val genarray_of_array2 : ('a, 'b, 'c) Array2.t -> ('a, 'b, 'c) Genarray.t

Return the generic big array corresponding to the given two-dimensional big array.

val genarray_of_array3 : ('a, 'b, 'c) Array3.t -> ('a, 'b, 'c) Genarray.t

Return the generic big array corresponding to the given three-dimensional big array.

val array1_of_genarray : ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Array1.t

Return the one-dimensional big array corresponding to the given generic big array. Raise
Invalid_arg if the generic big array does not have exactly one dimension.

val array2_of_genarray : ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Array2.t

Return the two-dimensional big array corresponding to the given generic big array. Raise
Invalid_arg if the generic big array does not have exactly two dimensions.

val array3_of_genarray : ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Array3.t

Return the three-dimensional big array corresponding to the given generic big array. Raise
Invalid_arg if the generic big array does not have exactly three dimensions.

Re-shaping big arrays

val reshape :
('a, 'b, 'c) Genarray.t ->
int array -> ('a, 'b, 'c) Genarray.t

reshape b [|d1;...;dN|] converts the big array b to a N-dimensional array of dimensions
d1. . .dN. The returned array and the original array b share their data and have the same
layout. For instance, assuming that b is a one-dimensional array of dimension 12, reshape b
[|3;4|] returns a two-dimensional array b' of dimensions 3 and 4. If b has C layout, the

167

element (x,y) of b' corresponds to the element x * 3 + y of b. If b has Fortran layout, the
element (x,y) of b' corresponds to the element x + (y - 1) * 4 of b. The returned big
array must have exactly the same number of elements as the original big array b. That is,
the product of the dimensions of b must be equal to i1 * ... * iN. Otherwise,
Invalid_arg is raised.

val reshape_1 : ('a, 'b, 'c) Genarray.t -> int -> ('a, 'b, 'c) Array1.t

Specialized version of Bigarray.reshape[46] for reshaping to one-dimensional arrays.

val reshape_2 :
('a, 'b, 'c) Genarray.t ->
int -> int -> ('a, 'b, 'c) Array2.t

Specialized version of Bigarray.reshape[46] for reshaping to two-dimensional arrays.

val reshape_3 :
('a, 'b, 'c) Genarray.t ->
int -> int -> int -> ('a, 'b, 'c) Array3.t

Specialized version of Bigarray.reshape[46] for reshaping to three-dimensional arrays.

47 Module Num : Operation on arbitrary-precision numbers.

Numbers (type num) are arbitrary-precision rational numbers, plus the special elements 1/0 (in�nity)
and 0/0 (unde�ned).

type num =
| Int of int
| Big_int of Big_int.big_int
| Ratio of Ratio.ratio

The type of numbers.

Arithmetic operations

val (+/) : num -> num -> num

Same as Num.add_num[47].

val add_num : num -> num -> num

Addition

val minus_num : num -> num

Unary negation.

val (-/) : num -> num -> num

Same as Num.sub_num[47].

val sub_num : num -> num -> num

168

Subtraction

val (*/) : num -> num -> num

Same as Num.mult_num[47].

val mult_num : num -> num -> num

Multiplication

val square_num : num -> num

Squaring

val (//) : num -> num -> num

Same as Num.div_num[47].

val div_num : num -> num -> num

Division

val quo_num : num -> num -> num

Euclidean division: quotient.

val mod_num : num -> num -> num

Euclidean division: remainder.

val (**/) : num -> num -> num

Same as Num.power_num[47].

val power_num : num -> num -> num

Exponentiation

val abs_num : num -> num

Absolute value.

val succ_num : num -> num

succ n is n+1

val pred_num : num -> num

pred n is n-1

val incr_num : num Pervasives.ref -> unit

incr r is r:=!r+1, where r is a reference to a number.

val decr_num : num Pervasives.ref -> unit

decr r is r:=!r-1, where r is a reference to a number.

val is_integer_num : num -> bool

169

Test if a number is an integer

The four following functions approximate a number by an integer :

val integer_num : num -> num

integer_num n returns the integer closest to n. In case of ties, rounds towards zero.

val floor_num : num -> num

floor_num n returns the largest integer smaller or equal to n.

val round_num : num -> num

round_num n returns the integer closest to n. In case of ties, rounds o� zero.

val ceiling_num : num -> num

ceiling_num n returns the smallest integer bigger or equal to n.

val sign_num : num -> int

Return -1, 0 or 1 according to the sign of the argument.

Comparisons between numbers

val (=/) : num -> num -> bool

val (</) : num -> num -> bool

val (>/) : num -> num -> bool

val (<=/) : num -> num -> bool

val (>=/) : num -> num -> bool

val (<>/) : num -> num -> bool

val eq_num : num -> num -> bool

val lt_num : num -> num -> bool

val le_num : num -> num -> bool

val gt_num : num -> num -> bool

val ge_num : num -> num -> bool

val compare_num : num -> num -> int

Return -1, 0 or 1 if the �rst argument is less than, equal to, or greater than the second
argument.

val max_num : num -> num -> num

Return the greater of the two arguments.

val min_num : num -> num -> num

Return the smaller of the two arguments.

Coercions with strings

val string_of_num : num -> string

Convert a number to a string, using fractional notation.

170

val approx_num_fix : int -> num -> string

See Num.approx_num_exp[47].

val approx_num_exp : int -> num -> string

Approximate a number by a decimal. The �rst argument is the required precision. The
second argument is the number to approximate. Num.approx_num_fix[47] uses decimal
notation; the �rst argument is the number of digits after the decimal point. approx_num_exp
uses scienti�c (exponential) notation; the �rst argument is the number of digits in the
mantissa.

val num_of_string : string -> num

Convert a string to a number.

Coercions between numerical types

val int_of_num : num -> int

val num_of_int : int -> num

val nat_of_num : num -> Nat.nat

val num_of_nat : Nat.nat -> num

val num_of_big_int : Big_int.big_int -> num

val big_int_of_num : num -> Big_int.big_int

val ratio_of_num : num -> Ratio.ratio

val num_of_ratio : Ratio.ratio -> num

val float_of_num : num -> float

171

