
Apache XML-RPC Clients

Apache XML-RPC is an implementation of XML-RPC: Remote procedure calls are
transmitted as XML documents and the results are returned in the same way.

The most important feature of XML-RPC is portability: XML-RPC implementations are
available for almost any programming language. The protocol is intentionally restricted to
some typical data type, including integers, strings, arrays, and maps.

Apache XML-RPC is based on Java reflection: You trade flexibility for type safety and
compiler control. But why take the disadvantage? The client generator allows you to have
both flexibility and compiler control.

1. How it works

The client generator is roughly similar to the Proxy Generator: Assuming that you have
classes A, B, and C on the server, which are being called via XML-RPC, the generator
creates classes A', B', and C' with roughly the same set of public methods. The difference is,
that the latter classes have every method implemented as an XML-RPC call. However, this
XML-RPC call is completely transparent!

More precisely, if you have the following class on the server:

public class Calculator {
public int add(int i1, int i2) {

return i1 + i2;
}
public double multiply(double d1, double d2) {

return d1 * d2;
}

}

The generator will create a class for you, which is roughly similar to:

public class Calculator {
private XmlRpcCaller caller;
public Calculator(caller) {

this.caller = caller;
}

public int add(int i1, int i2) {
Vector v = new Vector();
v.add(new Integer(i1));

Page 1
Copyright © 2003-2004 Apache Software Foundation All rights reserved.

../patterns/proxy.html

v.add(new Integer(i2));
XmlRpcClient c = new XmlRpcClient(url);
Object o = caller.xmlRpcCall("Calculator.add", v);
return ((Integer) o).intValue();

}
public double add(double d1, double d2) {

Vector v = new Vector();
v.add(new Double(d1));
v.add(new Double(d2));
Object o = caller.xmlRpcCall("Calculator.add", v);
return ((Double) o).doubleValue();

}
}

In particular, note that the generated classes are automatically converting from or to primitive
types. A basic implementation for the XmlRpcCaller would be:

public class MyCaller implements org.apache.ws.jaxme.js.apps.XmlRpcCaller {
private final URL url;
public MyCaller(URL url) {

this.url = url;
}
public Object xmlRpcCall(String name, Vector params) throws Exception {

return new XmlRpcClient(url).execute(name, params);
}

}

2. The dispatcher

The generator may create one additional class for you, which is dedicated for the server: The
dispatcher. In the above example, a dispatcher would be:

public class Dispatcher implements org.apache.xmlrpc.XmlRpcHandler {
public Object execute(String pName, Vector pParams) throws Throwable {

if ("Calculator-add".equals(pName)) {
int i1 = ((Integer) params.get(0)).intValue();
int i2 = ((Integer) params.get(1)).intValue();
return new Integer(new Calculator().add(i1, i2));

} else if ("Calculator-multiply".equals(pName)) {
double d1 = ((Double) params.get(0)).doubleValue();
double d2 = ((Double) params.get(1)).doubleValue();
return new Double(new Calculator().multiply(d1, d2));

}
}

}

Note, that the dispatcher may very well be a static final instance variable. It is quite easy, to
embed the dispatcher into the server:

Apache XML-RPC Clients

Page 2
Copyright © 2003-2004 Apache Software Foundation All rights reserved.

../../apidocs/org/apache/ws/jaxme/js/apps/XmlRpcCaller.html

XmlRpcServer xmlrpc = new XmlRpcServer ();
xmlrpc.addHandler ("$default", new org.apache.xmlrpc.XmlRpcHandler() {

Dispatcher d = new Dispatcher();
public Object execute(String pName, Vector pVector) throws Exception {

try {
return d.invoke(pName, pVector);

} catch (Exception e) {
throw e;

} catch (Throwable t) {
throw new UndeclaredThrowableException(t);

}
}

});
byte[] result = xmlrpc.execute (request.getInputStream ());
response.setContentType ("text/xml");
response.setContentLength (result.length());
OutputStream out = response.getOutputStream();
out.write (result);
out.flush ();

3. Using the generator

The generator is implemented as an Ant task. A typical invocation will most probably look
like this:

<taskdef resource="org/apache/ws/jaxme/js/pattern/ant.properties"
classpathref="js.test.path"/>

<xmlRpcGenerator
targetPackage="com.foo.xmlrpc.client"

destDir="build/src">
<dispatcher name="com.foo.xmlrpc.server.Dispatcher"/>
<serverClasses dir="src" includes="com/foo/xmlrpc/server/XmlRpc*.java"/>

</xmlRpcGenerator>

The Ant task "xmlRpcGenerator" supports the following attributes:

Name Description Required
Default

classpathRef Specifies a reference to a
classpath. This classpath is
used, for loading the server
classes, if they are passed in
as compiled classes and not
Java sources.

No
Ant path

destDir Specifies the directory, where
sources are being generated. A
package structure is created
below the directory: If the target
package is
"com.foo.xmlrpc.client", and the

No
Current directory

Apache XML-RPC Clients

Page 3
Copyright © 2003-2004 Apache Software Foundation All rights reserved.

destination directory is "src",
then the generated classes will
appear in
"src/com/foo/xmlrpc/client".

targetPackage Specifies the package, in which
the generated sources are
being placed.

No
Root package

The Ant task also supports the following nested elements:

Name Description Required
Default

classpath An embedded class path, used
as a replacement for the
'classpathref' attribute. Using
this nested child element is
mutually exclusive with the
attribute.

No
Ant path

dispatcher Specifies, that a dispatcher is
being generated. The 'name'
attribute specifies the
dispatchers fully qualified class
name.
By default, the dispatcher will
implement
org.apache.xmlrpc.XmlRpcHandler.
This may be suppressed by
setting the
'implementingXmlRpcHandler'
attribute to false. This is mainly
usefull for the JaxMeJS test
suite.

No

serverClasses One or more file sets specifying
the server side classes, for
which clients are being
generated. These classes may
either be specified as sources
(in which case the Java parser
is used for scanning them, or
as compiled classes, in which
case Java reflection is being
used.

Yes

Apache XML-RPC Clients

Page 4
Copyright © 2003-2004 Apache Software Foundation All rights reserved.

../../apidocs/org/apache/ws/jaxme/js/util/JavaParser.html

	1 How it works
	2 The dispatcher
	3 Using the generator

