numpy.i: a SWIG Interface File for NumPy

Author: Bill Spotz
Institution: Sandia National Laboratories
Date: 29 March, 2007

Contents
Introduction

Using numpy.i
Available Typemaps

Input Arrays

In-Place Arrays

Argout Arrays

Output Arrays

Other Common Types: bool

Other Common Types: complex
Helper Functions

Macros

Routines
Beyond the Provided Typemaps

A Common Example
Other Situations
A Final Note

Acknowledgements

Introduction

The Simple Wrapper and Interface Generator (or SWIG) is a powerful tool for generating wrapper code
for interfacing to a wide variety of scripting languages. SWIG can parse header files, and using only the
code prototypes, create an interface to the target language. But SWIG is not omnipotent. For example,
it cannot know from the prototype:

double rms(double* seq, int n);


http://www.swig.org
http://www.swig.org
http://www.swig.org

what exactly seq is. Is it a single value to be altered in-place? Is it an array, and if so what is its
length? Is it input-only? Output-only? Input-output? SWIG cannot determine these details, and does
not attempt to do so.

Making an educated guess, humans can conclude that this is probably a routine that takes an input-
only array of length n of double values called seq and returns the root mean square. The default
behavior of SWIG, however, will be to create a wrapper function that compiles, but is nearly impossible
to use from the scripting language in the way the C routine was intended.

For python, the preferred way of handling contiguous (or technically, strided) blocks of homogeneous
data is with the module NumPy, which provides full object-oriented access to arrays of data. Therefore,
the most logical python interface for the rms function would be:

def rms(seq):

where seq would be a NumPy array of double values, and its length n would be extracted from seq
internally before being passed to the C routine. Even better, since NumPy supports construction of
arrays from arbitrary python sequences, seq itself could be a nearly arbitrary sequence (so long as each
element can be converted to a double) and the wrapper code would internally convert it to a NumPy
array before extracting its data and length.

SWIG allows these types of conversions to be defined via a mechanism called typemaps. This
document provides information on how to use numpy.i, a SWIG interface file that defines a series of
typemaps intended to make the type of array-related conversions described above relatively simple to
implement. For example, suppose that the rms function prototype defined above was in a header file
named rms.h. To obtain the python interface discussed above, your SWIG interface file would need the
following:

#{
#define SWIG_FILE_WITH_INIT
#include "rms.h"

h}
%include "numpy.i"

%init %{
import_array();

hY

%apply (doublex IN_ARRAY1, int DIM1) {(doublex seq, int n)};
%include "rms.h"

Typemaps are keyed off a list of one or more function arguments, either by type or by type and
name. We will refer to such lists as signatures. One of the many typemaps defined by numpy.i is used
above and has the signature (doublex IN_ARRAY1, int DIM1). The argument names are intended to
suggest that the double* argument is an input array of one dimension and that the int represents that
dimension. This is precisely the pattern in the rms prototype.

Most likely, no actual prototypes to be wrapped will have the argument names IN_ARRAY1 and DIM1.
We use the %apply directive to apply the typemap for one-dimensional input arrays of type double to
the actual prototype used by rms. Using numpy. i effectively, therefore, requires knowing what typemaps
are available and what they do.

Note that if the C function signature was in a different order:

double rms(int n, doublex seq);

that SWIG would not match the typemap signature given above with the argument list for rms.
Fortunately, numpy.i has a set of typemaps with the data pointer given last:

%apply (int DIM1, doublex IN_ARRAY1) {(int n, doublex seq)l};


http://www.swig.org
http://www.swig.org
http://www.python.org
http://numpy.scipy.org
http://www.python.org
http://numpy.scipy.org
http://numpy.scipy.org
http://www.python.org
http://numpy.scipy.org
http://www.swig.org
http://www.swig.org
http://www.python.org
http://www.swig.org
http://www.swig.org

Using numpy.i

The numpy . 1 file is currently located in the numpy/docs/swig sub-directory under the numpy installation
directory. Typically, you will want to copy it to the directory where you are developing your wrappers.
If it is ever adopted by SWIG developers, then it will be installed in a standard place where SWIG can
find it.

A simple module that only uses a single SWIG interface file should include the following:

w{

#define SWIG_FILE_WITH_INIT
%t

%include "numpy.i"

%init %{

import_array() ;

h}

Within a compiled python module, import_array() should only get called once. This could be in
a C/C++ file that you have written and is linked to the module. If this is the case, then none of your
interface files should #define SWIG_FILE_WITH_INIT or call import_array(). Or, this initialization
call could be in a wrapper file generated by SWIG from an interface file that has the %init block as
above. If this is the case, and you have more than one SWIG interface file, then only one interface file
should #define SWIG_FILE_WITH_INIT and call import_array().

Available Typemaps

The typemap directives provided by numpy.i for arrays of different data types, say double and int,
and dimensions of different types, say int or long, are identical to one another except for the C and
NumPy type specifications. The typemaps are therefore implemented (typically behind the scenes) via
a 1macro:

%numpy_typemaps (DATA_TYPE, DATA_TYPECODE, DIM_TYPE)
that can be invoked for appropriate (DATA_TYPE, DATA_TYPECODE, DIM_TYPE) triplets. For exam-
ple:
#numpy_typemaps (double, NPY_DOUBLE, int)
f%numpy_typemaps (int, NPY_INT , int)
The numpy . 1 interface file uses the %numpy_typemaps macro to implement typemaps for the following
C data types and int dimension types:
e signed char
e unsigned char
e short
e unsigned short
e int
e unsigned int
e long
e unsigned long
e long long
e unsigned long long
e float
e double

In the following descriptions, we reference a generic DATA_TYPE, which could be any of the C data
types listed above.


http://www.swig.org
http://www.swig.org
http://www.swig.org
http://www.python.org
http://www.swig.org
http://www.swig.org
http://numpy.scipy.org

Input Arrays

Input arrays are defined as arrays of data that are passed into a routine but are not altered in-place or
returned to the user. The python input array is therefore allowed to be almost any python sequence
(such as a list) that can be converted to the requested type of array. The input array signatures are

e (DATA_TYPE IN_ARRAY1[ANY])

e (DATA_TYPE* IN_ARRAY1, int DIM1)

e (int DIM1, DATA_TYPE* IN_ARRAY1)

e (DATA_TYPE IN_ARRAY2[ANY] [ANY])

e (DATA_TYPE+* IN_ARRAY2, int DIM1, int DIM2)

e (int DIM1, int DIM2, DATA_TYPE* IN_ARRAY2)

The first signature listed, (DATA_TYPE IN_ARRAY[ANY]) is for one-dimensional arrays with hard-

coded dimensions. Likewise, (DATA_TYPE IN_ARRAY2[ANY] [ANY]) is for two-dimensional arrays with
hard-coded dimensions.

In-Place Arrays

In-place arrays are defined as arrays that are modified in-place. The input values may or may not be
used, but the values at the time the function returns are significant. The provided python argument
must therefore be a NumPy array of the required type. The in-place signatures are

e (DATA_TYPE INPLACE_ARRAY1[ANY])

e (DATA_TYPE+* INPLACE_ARRAY1, int DIM1)

e (int DIM1, DATA_TYPE+ INPLACE_ARRAY1)

e (DATA_TYPE INPLACE_ARRAY2[ANY] [ANY])

e (DATA_TYPE* INPLACE_ARRAY2, int DIM1, int DIM2)

e (int DIM1, int DIM2, DATA_TYPE*x INPLACE_ARRAY2)

Argout Arrays

Argout arrays are arrays that appear in the input arguments in C, but are in fact output arrays. This
pattern occurs often when there is more than one output variable and the single return argument is
therefore not sufficient. In python, the convential way to return multiple arguments is to pack them
into a sequence (tuple, list, etc.) and return the sequence. This is what the argout typemaps do. If a
wrapped function that uses these argout typemaps has more than one return argument, they are packed
into a tuple or list, depending on the version of python. The python user does not pass these arrays in,
they simply get returned. The argout signatures are

e (DATA_TYPE ARGOUT_ARRAY1[ANY])

e (DATA_TYPE* ARGOUT_ARRAY1, int DIM1)
e (int DIM1, DATA_TYPE+* ARGOUT_ARRAY1)
e (DATA_TYPE ARGOUT_ARRAY2[ANY] [ANY])

These are typically used in situations where in C/C++, you would allocate a(n) array(s) on the
heap, and call the function to fill the array(s) values. In python, the arrays are allocated for you and
returned as new array objects.

Note that we support DATA_TYPE#* argout typemaps in 1D, but not 2D. This because of a quirk

with the SWIG typemap syntax and cannot be avoided. Note that for these types of 1D typemaps, the
python function will take a single argument representing DIM1.


http://www.python.org
http://www.python.org
http://www.python.org
http://numpy.scipy.org
http://www.python.org
http://www.python.org
http://www.python.org
http://www.swig.org

Output Arrays

The numpy.i interface file does not support typemaps for output arrays, for several reasons. First,
C/C++ function return arguments do not have names, so signatures for %typemap (out) do not include
names. This means that if numpy.i supported them, they would apply to all pointer return arguments
for the supported numeric types. This seems too dangerous. Second, C/C++ return arguments are
limited to a single value. This prevents obtaining dimension information in a general way. Third, arrays
with hard-coded lengths are not permitted as return arguments. In other words:

double[3] newVector(double x, double y, double z);
is not legal C/C++ syntax. Therefore, we cannot provide typemaps of the form:
%typemap (out) (TYPE[ANY]);

If you run into a situation where a function or method is returning a pointer to an array, your best
bet is to write your own version of the function to be wrapped, either with %extend for the case of class
methods or %ignore and %rename for the case of functions.

Other Common Types: bool

Note that C++ type bool is not supported in the list in the Available Typemaps section. NumPy bools
are a single byte, while the C++ bool is four bytes (at least on my system). Therefore:

%numpy_typemaps (bool, NPY_BOOL, int)

will result in typemaps that will produce code that reference improper data lengths. You can
implement the following macro expansion:

#numpy_typemaps (bool, NPY_UINT, int)

to fix the data length problem, and Input Arrays will work fine, but In-Place Arrays might fail
type-checking.

Other Common Types: complex

Typemap conversions for complex floating-point types is also not supported automatically. This is
because python and NumPy are written in C, which does not have native complex types. Both python
and NumPy implement their own (essentially equivalent) struct definitions for complex variables:

/* Python */
typedef struct {double real; double imag;} Py_complex;

/* NumPy */
typedef struct {float real, imag;} npy_cfloat;
typedef struct {double real, imag;} npy_cdouble;

We could have implemented:

%numpy_typemaps (Py_complex , NPY_DOUBLE , int)
#%numpy_typemaps (npy_cfloat , NPY_CFLOAT , int)
%numpy_typemaps (npy_cdouble, NPY_CDOUBLE, int)

which would have provided automatic type conversions for arrays of type Py_complex, npy_cfloat
and npy_cdouble. However, it seemed unlikely that there would be any independent (non-python,
non-NumPy) application code that people would be using SWIG to generate a python interface to,
that also used these definitions for complex types. More likely, these application codes will define their
own complex types, or in the case of C++, use std::complex. Assuming these data structures are
compatible with python and NumPy complex types, %numpy_typemap expansions as above (with the
user’s complex type substituted for the first argument) should work.


http://www.python.org
http://numpy.scipy.org
http://www.python.org
http://numpy.scipy.org
http://www.python.org
http://numpy.scipy.org
http://www.swig.org
http://www.python.org
http://numpy.scipy.org

Helper Functions

The numpy.i file containes several macros and routines that it uses internally to build its typemaps.
However, these functions may be useful elsewhere in your interface file.

Macros

is_array(a) Evaluates as true if a is non-NULL and can be cast to a PyArrayObjectx*.

array_type(a) Evaluates to the integer data type code of a, assuming a can be cast to a
PyArrayObjectx*.

array_dimensions(a) Evaluates to the integer number of dimensions of a, assuming a can
be cast to a PyArrayObject*.

array_size(a,i) Evaluates to the i-th dimension size of a, assuming a can be cast to a
PyArrayObjectx*.

array_is_contiguous(a) Evaluates as true if a is a contiguous array. Equivalent to (PyArray_ISCONTIGUQUS(a)).

Routines

char* pytype_string(PyObject* py_obj) Given a PyObject*, return a string describing
its type.

char* typecode_string(int typecode) Given a NumPy integer typecode, return a string
describing the type.

int type_match(int actual type, int desired_type) Make sure input has correct NumPy
type. Allow character and byte to match. Also allow int and long to match. This is
deprecated . You should use PyArray_EquivTypenums () instead.

PyArrayObject* obj_to_array_no_conversion(PyObject* input, int typecode) Given
a PyObjectx*, cast it to a PyArrayObject* if legal. If not, set the python error string
appropriately and return NULL.

PyArrayObject* obj_to_array_allow_conversion(PyObject* input, int typecode, int* is_new_object)
Convert the given PyObject* to a NumPy array with the given typecode. On Success,
return a valid PyArrayObject* with the correct type. On failure, the python error
string will be set and the routine returns NULL.

PyArrayObject* make_contiguous(PyArrayObject* ary, int* is_new_object, int min dims, int max
Given a PyArray0Object*, check to see if it is contiguous. If so, return the input pointer
and flag it as not a new object. If it is not contiguous, create a new PyArrayObject*
using the original data, flag it as a new object and return the pointer.

PyArrayObject* obj_to_array_contiguous_allow_conversion(PyObject* input, int typecode, int* is_n
Convert a given PyObject* to a contiguous PyArrayObject* of the specified type. If
the input object is not a contiguous PyArrayObject*, a new one will be created and
the new object flag will be set.

int require_contiguous(PyArrayObject* ary) Test whether a PyArrayObject* is con-
tiguous. If array is contiguous, return 1. Otherwise, set the python error string and
return 0.

int require_dimensions(PyArrayObject* ary, int exact_dimensions) Require the given
PyArray0Object* to have a specified number of dimensions. If the array has the speci-
fied number of dimensions, return 1. Otherwise, set the python error string and return
0.


http://numpy.scipy.org
http://numpy.scipy.org
http://numpy.scipy.org

int require_dimensions n(PyArrayObject* ary, int* exact_dimensions, int n) Require
the given PyArrayObject* to have one of a list of specified number of dimensions. If
the array has one of the specified number of dimensions, return 1. Otherwise, set the
python error string and return 0.

int require_size(PyArrayObject* ary, int* size, int n) Require the given PyArray-
Object* to have a specified shape. If the array has the specified shape, return 1.
Otherwise, set the python error string and return O.

Beyond the Provided Typemaps

There are many C or C++ array/NumPy array situations not covered by a simple %include "numpy.i"
and subsequent %apply directives.

A Common Example
Consider a reasonable prototype for a dot product function:
double dot(int len, double* vecl, double* vec2);
The python interface that we want is:
def dot(vecl, vec2):

The problem here is that there is one dimension argument and two array arguments, and our
typemaps are set up for dimensions that apply to a single array (in fact, SWIG does not provide a
mechanism for associating len with vec2 that takes two python input arguments). The recommended
solution is the following:

%apply (int DIM1, doublex IN_ARRAY1) {(int lenl, double* vecl),
(int len2, doublex* vec2)}
%rename (dot) my_dot;
%inline %{
double my_dot(int lenl, doublex vecl, int len2, doublex vec2) {
if (lenl != len2) {
PyErr_Format (PyExc_ValueError,
"Arrays of lengths (Y%d,%d) given",
lenl, len2);
return 0.0;
}
return dot(lenl, vecl, vec2);
}
%}

If the header file that contains the prototype for dot() also contains other prototypes that you
want to wrap, so that you need to %include this header file, then you will also need a %ignore dot;
directive, placed after the %rename and before the %include directives.

Other Situations
There are other wrapping situations in which numpy.i may be helpful when you encounter them.

e In some situations, it is possible that you could use the %numpy_templates macro
to implement typemaps for your own types. See the Other Common Types: bool or
Other Common Types: complex sections for examples. Another situation is if your
dimensions are of a type other than int (say long for example):


http://numpy.scipy.org
http://www.swig.org

#%numpy_typemaps (double, NPY_DOUBLE, long)

e You can use the code in numpy.i to write your own typemaps. For example, if you
had a three-dimensional array as a function argument, you could cut-and-paste the
appropriate two-dimensional typemap into your interface file. The modifications for
the third dimension would be trivial.

e Sometimes, the best approach is to use the %extend directive to define new methods
for your classes (or overload existing ones) that take a PyObject* (that either is or can
be converted to a PyArrayObject*) instead of a pointer to a buffer. In this case, the
helper routines in numpy.i can be very useful.

e Writing typemaps can be a bit nonintuitive. If you have specific questions about
writing SWIG typemaps for NumPy, the developers of numpy.i do monitor the Numpy-
discussion and Swig-user mail lists.

A Final Note

When you use the %apply directive, as is usually necessary to use numpy. i, it will remain in effect until
you tell SWIG that it shouldn’t be. If the arguments to the functions or methods that you are wrapping
have common names, such as length or vector, these typemaps may get applied in situations you do
not expect or want. Therefore, it is always a good idea to add a %clear directive after you are done
with a specific typemap:

%apply (doublex IN_ARRAY1, int DIM1) {(double* vector, int length)}
%include "my_header.h"
%clear (doublex vector, int length);

In general, you should target these typemap signatures specifically where you want them, and then
clear them after you are done.

Acknowledgements

Many people have worked to glue SWIG and NumPy together (as well as SWIG and the predecessors of
NumPy, Numeric and numarray). The effort to standardize this work into numpy.i began at the 2005
SciPy Conference with a conversation between Fernando Perez and myself. Fernando collected helper
functions and typemaps from Michael Hunter, Anna Omelchenko and Michael Sanner. Their work has
made this end result possible.

Generated on: 2007-04-01 02:30 UTC. Generated by Docutils from reStructuredText source.


http://www.swig.org
http://numpy.scipy.org
mailto:Numpy-discussion@scipy.org
mailto:Numpy-discussion@scipy.org
mailto:Swig-user@lists.sourceforge.net
http://www.swig.org
http://www.swig.org
http://numpy.scipy.org
http://www.swig.org
http://numpy.scipy.org
http://scipy.org
http://docutils.sourceforge.net/
http://docutils.sourceforge.net/rst.html

	Contents
	Introduction
	Using numpy.i
	Available Typemaps
	Input Arrays
	In-Place Arrays
	Argout Arrays
	Output Arrays
	Other Common Types: bool
	Other Common Types: complex

	Helper Functions
	Macros
	Routines

	Beyond the Provided Typemaps
	A Common Example
	Other Situations
	A Final Note

	Acknowledgements

