avr-libc Reference Manual
1.4.4

Generated by Doxygen 1.4.7

Fri Oct 27 22:37:24 2006

CONTENTS

Contents
1 AVRLibc 2
1.1 Introduction. 2
1.2 General information about thislibrary 2
1.3 SupportedDevices. 3
2 avr-libc Module Index 6
2.1 avrlibcModules 6
3 avr-libc Data Structure Index 8
3.1 avrlibcDataStructures. 8
4 avr-libc Page Index 8
4.1 avrlibcRelatedPages. L. 8
5 avr-libc Module Documentation 9
5.1 <assert.b-:Diagnosticso 9
5.1.1 Detailed Description. L. 9
5.1.2 Define Documentation 9
5.2 <avr/boot.h>: Bootloader Support Utilities. 9
5.2.1 Detailed Description., 9
5.2.2 Define Documentation 11
5.3 <avr/eeprom.ly: EEPROM handling. 16
5.3.1 Detailed Description. 16
5.3.2 Define Documentation 17
5.3.3 Function Documentation. 18
5.4 <avrf/io.l>: AVR device-specific 10 definitions 19
5.5 <avr/pgmspace}: Program Space String Utilities 20
5.5.1 Detailed Description. L 20
5.5.2 Define Documentation 21
5.5.3 Typedef Documentation 24
5.5.4 Function Documentation. 25

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

CONTENTS ii

5.6 Additional notes fromcavr/sfr_defs.b» 28
5.7 <avr/sleep.b-: Power Management and Sleep Modes. 30
5.7.1 Detailed Description. 0L 30
5.7.2 Define Documentation 31
5.7.3 Function Documentation. 32
5.8 <avr/version.b-: avr-libc version macros. 32
5.8.1 Detailed Description. L 32
5.8.2 Define Documentation 33
5.9 <avr/iwdt.h>: Watchdog timer handling. 34
5.9.1 Detailed Description. L 34
5.9.2 Define Documentation 35
5.10 <compat/deprecated:h Deprecateditems. 37
5.10.1 Detailed Description 37
5.10.2 Define Documentation 39
5.10.3 Function Documentation. 40
5.11 <compat/ina90.y: Compatibility with AR EWB 3.x 40
5.12 <ctype.h>: Character Operations. 41
5.12.1 Detailed Description L 41
5.12.2 Function Documentation. 41
5.13 <errno.h>: System Errors. Lo 43
5.13.1 Detailed Description L 43
5.13.2 Define Documentation 44
5.14 <inttypes.h>: Integer Type conversions 44
5.14.1 Detailed Description 44
5.14.2 Define Documentation 47
5.14.3 Typedef Documentation 56
5.15 <math.h>: Mathematics. 56
5.15.1 Detailed Description 56
5.15.2 Define Documentation 57
5.15.3 Function Documentation. 57
5.16 <setjmp.h>: Non-localgoto. 60

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

CONTENTS iii

5.16.1 Detailed Description 60
5.16.2 Function Documentation. 61
5.17 <stdint.h>: Standard Integer Types 62
5.17.1 Detailed Description L. 62
5.17.2 Define Documentation 66
5.17.3 Typedef Documentation 71
5.18 <stdio.h>: Standard 10 facilites 74
5.18.1 Detailed Description 74
5.18.2 Define Documentation 79
5.18.3 Function Documentation. 81
5.19 <stdlib.i>: General utilities. 92
5.19.1 Detailed Description 92
5.19.2 Define Documentation 94
5.19.3 Typedef Documentation 94
5.19.4 Function Documentation. 94
5.19.5 Variable Documentation 102
5.20 <string.h>: Strings. 102
5.20.1 Detailed Description L 102
5.20.2 Define Documentation 104
5.20.3 Function Documentation. 104
5.21 <util/crc16.h>: CRC Computations. 112
5.21.1 Detailed Description, 112
5.21.2 Function Documentation. 113
5.22 <util/delay.h>: Busy-waitdelay loops 115
5.22.1 Detailed Description 115
5.22.2 Function Documentation. 116
5.23 <«util/parity.h>: Parity bitgeneration 117
5.23.1 Detailed Description 117
5.23.2 Define Documentation 117
5.24 <util/twi.h>: TWI bit mask definitions 118
5.24.1 Detailed Description 118

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

CONTENTS iv

5.25

5.26

5.27

5.28

5.29

5.30

5.31

5.24.2 Define Documentation 119
<avrfinterrupt.b>: Interrupts. o oo 122
5.25.1 Detailed Description 122
5.25.2 Define Documentation 124
<avr/sfr_defs.b: Special functionregisters. 125
5.26.1 Detailed Description 125
5.26.2 Define Documentation 127
DEMOProjectS v v o o e e e 128
5.27.1 Detailed Description L 128
Asimpleproject 129
5.28.1 TheProject 129
5282 TheSourceCode. 132
5.28.3 CompilingandLinking 133
5.28.4 Examining the ObjectFile 134
5.28.5 LinkerMapFiles. 138
5.28.6 Generating IntelHex Files. 139
5.28.7 Letting Make Build the Project. 140
5.28.8 Referencetothesourcecode. 143
A more sophisticated project., 143
5.29.1 Hardwaresetup. 143
5.29.2 Functionaloverview. L 147
5.29.3 Acodewalkthrough. 147
5.29.4 Thesourcecode, 150
Using the standard 10 facilities. 150
5.30.1 Hardwaresetup. 151
5.30.2 Functionaloverview. L. 152
5.30.3 Acodewalkthrough. 152
5.30.4 Thesourcecode, 157
Example using the two-wire interface (TWI). 158
5.31.1 Introductioninto TWI. 158
5.31.2 The TWlexampleproject 158

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

CONTENTS Y

5.31.3 TheSourceCode. 159

6 avr-libc Data Structure Documentation 163
6.1 div_tStructReference. 163
6.1.1 Detailed Description. L 163

6.1.2 Field Documentation 163

6.2 Idiv_tStructReference 163
6.2.1 Detailed Description., 163

6.2.2 Field Documentation 163

7 avr-libc Page Documentation 164
7.1 Acknowledgments. 164
7.2 avr-libc and assembler programs. 165
7.2.1 Introduction 165

7.2.2 Invokingthecompiler. 165

7.2.3 Exampleprogram. o 166

7.2.4 Pseudo-opsandoperators. 170

7.3 Frequently Asked Questions 171
731 FAQIndex 171

7.3.2 My program doesn’t recognize a variable updated within an
interruptroutine L 172

7.3.3 | get"undefined reference to..." for functions like "sin()" . 172

7.3.4 How to permanently bind a variable to a register?. 173
7.3.5 How to modify MCUCR or WDTCR early?. 173
7.3.6 Whatisallthis_BV() stuffabout?. 174
737 CanluseC++tonthe AVR? 174
7.3.8 Shouldn't l initialize all my variables? 175

7.3.9 Why do some 16-bit timer registers sometimes get trashed176
7.3.10 How do | use a #define’'d constant in an asm statement?. 177

7.3.11 Why does the PC randomly jump around when single-stepping
through my programinavr-gdb?. 178

7.3.13 How do | pass an 10 port as a parameter to a function? . 180

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

CONTENTS Vi

7.4

7.5

7.6

7.3.14 What registers are used by the C compiler? 182
7.3.15 How do | put an array of strings completely in ROM?. . . 183
7.3.16 Howtouseexternal RAM?. 185
7.3.17 Which-Oflagtouse?. 186
7.3.18 How do | relocate code to a fixed address?. 187
7.3.19 My UART is generating nonsense! My ATmegal28 keeps
crashing! Port F is completely brokenl. 187
7.3.20 Why do all my "foo...bar" strings eat up the SRAM?. . . . 188
7.3.21 Why does the compiler compile an 8-bit operation that uses
bitwise operators into a 16-bit operation in assembly?. . . 189

7.3.22 How to detect RAM memory and variable overlap problemsP89

7.3.23 Isitreally impossible to program the ATtinyXXinC? . . . 190
7.3.24 What is this "clock skew detected" messsage? 190
7.3.25 Why are (many) interrupt flags cleared by writing a logical 1191
7.3.26 Why have "programmed" fuses the bitvalue.0?. 191
7.3.27 Which AVR-specific assembler operators are available? . 192
Inline Asm 192
74.1 GCCasmStatement. 193
742 AssemblerCode. 194
7.4.3 InputandOutputOperands 195
744 Clobbers. 199
745 AssemblerMacros oo 201
746 CStubFunctions 202
7.4.7 CNamesUsedinAssemblerCade. 203
748 Links 204
Usingmalloc() o 204
7.5.1 Introduction 204
7.5.2 Internalvs. externalRAM. oL 205
7.5.3 Tunablesformalloc). 206
7.5.4 Implementationdetails 208
Release Numbering and Methodology. 209
7.6.1 Release Version Numbering Scheme. 209

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

CONTENTS 1

7.7

7.8

7.9
7.10

7.11
7.12

7.6.2 ReleasingAVR Libc. 210
Memory Sections. L 212
7.7.1 The.textSection, 213
7.7.2 The.dataSection. 213
773 The.bssSection 213
7.7.4 The.eepromSection. 214
7.7.5 The.noinitSection 214
7.7.6 The.initNSections 214
7.7.7 The finiNSections 216
7.7.8 Using Sections in AssemblerCode 216
7.79 UsingSectionsinCCode 217
Installing the GNU Tool Chain 217
7.8.1 RequiredTools 218
7.82 OptionalTools. 219
7.8.3 GNU Binutils forthe AVRtarget 219
7.8.4 GCCforthe AVRtarget. 221
785 AVRLibc. 221
786 UISP 222
787 Avrdude 222
7.8.8 GDBforthe AVRtarget. 222
7.8.9 Simulavr 223
7.8.10 AvaRIice 223
Using the avrdude program. 224
Usingthe GNUtools. 226
7.10.1 Options for the C compileravr-gcc 226
7.10.2 Options for the assembleravr-as 231
7.10.3 Controlling thelinkeravr-ld. 233
TodoList 235
Deprecated List 235

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

1 AVR Libc 2

1 AVR Libc

1.1 Introduction

The latest version of this document is always available from
http://savannah.nongnu.org/projects/avr-libc/

The AVR Libc package provides a subset of the standard C librarpfioel AVR
8-bit RISC microcontrollers . In addition, the library provides the basic
startup code needed by most applications.

There is a wealth of information in this document which goes beyond simply describ-
ing the interfaces and routines provided by the library. We hope that this document
provides enough information to get a new AVR developer up to speed quickly using
the freely available development tools: binutils, gcc avr-libc and many others.

If you find yourself stuck on a problem which this document doesn’t quite address, you
may wish to post a message to the avr-gcc mailing list. Most of the developers of the
AVR binutils and gcc ports in addition to the devleopers of avr-libc subscribe to the list,
so you will usually be able to get your problem resolved. You can subscribe to the list
at http://lists.nongnu.org/mailman/listinfo/avr-gcc-list . Before posting to the list, you
might want to try reading thErequently Asked Questiorchapter of this document.

Note:

If you think you've found a bug, or have a suggestion for an improvement, ei-
ther in this documentation or in the library itself, please use the bug tracker
at https://savannah.nongnu.org/bugs/?group=avr-libc to ensure the issue won't be
forgotten.

1.2 General information about this library

In general, it has been the goal to stick as best as possible to established standards
while implementing this library. Commonly, this refers to the C library as described by
the ANSI X3.159-1989 and ISO/IEC 9899:1990 ("ANSI-C") standard, as well as parts

of their successor ISO/IEC 9899:1999 ("C99"). Some additions have been inspired by
other standards like IEEE Std 1003.1-1988 ("POSIX.1"), while other extensions are
purely AVR-specific (like the entire program-space string interface).

Unless otherwise noted, functions of this library aot guarenteed to be reentrant. In
particular, any functions that store local state are known to be non-reentrant, as well
as functions that manipulate 10 registers like the EEPROM access routines. If these
functions are used within both, standard and interrupt context, undefined behaviour
will result.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

http://savannah.nongnu.org/projects/avr-libc/
http://www.atmel.com/products/AVR/
http://www.atmel.com/products/AVR/
http://lists.nongnu.org/mailman/listinfo/avr-gcc-list
https://savannah.nongnu.org/bugs/?group=avr-libc

1.3 Supported Devices 3

1.3 Supported Devices

The following is a list of AVR devices currently supported by the library. Note that
actual support for some newer devices depends on the ability of the compiler/assembler
to support these devices at library compile-time.

AT90S Type Devices:

* at90s12001]
« at90s2313
« at90s2323
« at90s2333
« at90s2343
« at90s4414
« at90s4433
* at90s4434
. at90s8515
« at90c8534
- at90s8535

ATmega Type Devices:

e atmega8

e atmegalO3
e atmegal28
e atmegal280
e atmegal28l
* atmegal6

e atmegal6l

e atmegal62

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

1.3 Supported Devices

e atmegal63
e atmegal64p
e atmegal65
e atmegal68
* atmegal69
e atmega32

e atmega323
e atmega324p
e atmega325
e atmega3250
e atmega329
* atmega3290
e atmega48

e atmega406
e atmega6b4

* atmega640
* atmega644
* atmegab44p
* atmegab45
* atmega6450
* atmega649
¢ atmega6490
e atmega8515
¢ atmega8535

¢ atmega88

ATtiny Type Devices:

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

1.3 Supported Devices

e attiny11[1]
e attiny12[1]
* attinyl3

e attiny15[1]
* attiny22

* attiny24

* attiny25

* attiny26
 attiny261
* attiny28[1]
e attiny2313
 attiny44
 attiny45

* attiny461
* attiny84

* attiny85

* attiny861

Misc Devices:

* at94K|[2]

e at76c7113]
 at43ush320
* at43ush355
 at86rf401

* at90can32
* at90can64
* at90canl128

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

2 avr-libc Module Index 6

e at90pwm?2

e at90pwm3

* at90ush646
* at90ush647
¢ at90ush1286
¢ at90ush1287

Note:

[1] Assembly only. There is no direct support for these devices to be programmed
in C since they do not have a RAM based stack. Still, it could be possible to
program them in C, see theA\Q for an option.

Note:

[2] The at94K devices are a combination of FPGA and AVR microcontroller.
[TRoth-2002/11/12: Not sure of the level of support for these. More information
would be welcomed.]

Note:
[3] The at76c711 is a USB to fast serial interface bridge chip using an AVR core.

2 avr-libc Module Index

2.1 avr-libc Modules

Here is a list of all modules:

<assert.h>: Diagnostics 9
<avr/boot.h>: Bootloader Support Utilities 9
<avr/eeprom.h>: EEPROM handling 16
<avrfio.h>: AVR device-specific 10 definitions 19
<avr/pgmspace.h>: Program Space String Utilities 20
<avr/sleep.h>: Power Management and Sleep Modes 30

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

2.1 avr-libc Modules 7

<avr/version.h>: avr-libc version macros 32
<avr/wdt.h>: Watchdog timer handling 34
<compat/deprecated.h-: Deprecated items 37
<compat/ina90.h>: Compatibility with IAR EWB 3.x 40
<ctype.h>: Character Operations 41
<errno.h>: System Errors 43
<inttypes.h>: Integer Type conversions 44
<math.h>: Mathematics 56
<setjmp.h>: Non-local goto 60
<stdint.h>: Standard Integer Types 62
<stdio.h>: Standard 10 facilities 74
<stdlib.h>: General utilities 92
<string.h>: Strings 102
<util/crc16.h>: CRC Computations 112
<util/delay.h>: Busy-wait delay loops 115
<util/parity.h >: Parity bit generation 117
<util/twi.h >: TWI bit mask definitions 118
<avrfinterrupt.h >: Interrupts 122
<avr/sfr_defs.h>: Special function registers 125

Additional notes from <avr/sfr_defs.h> 28
Demo projects 128

A simple project 129

A more sophisticated project 143

Using the standard 10 facilities 150

Example using the two-wire interface (TWI) 158

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

3 avr-libc Data Structure Index 8

3 avr-libc Data Structure Index

3.1 avr-libc Data Structures

Here are the data structures with brief descriptions:
div_t 163

Idiv_t 163

4 avr-libc Page Index

4.1 avr-libc Related Pages

Here is a list of all related documentation pages:

Acknowledgments 164
avr-libc and assembler programs 165
Frequently Asked Questions 171
Inline Asm 192
Using malloc() 204
Release Numbering and Methodology 209
Memory Sections 212
Installing the GNU Tool Chain 217
Using the avrdude program 224
Using the GNU tools 226
Todo List 235
Deprecated List 235

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5 avr-libc Module Documentation 9

5 avr-libc Module Documentation

5.1 <assert.h>: Diagnostics

5.1.1 Detailed Description

#include <assert.h>

This header file defines a debugging aid.

As there is no standard error output stream available for many applications using this
library, the generation of a printable error message is not enabled by default. These
messages will only be generated if the application defines the macro

__ASSERT_USE_STDERR

before including thecassert.h > header file. By default, onlgbort()will be called
to halt the application.
Defines

» #defineasserfexpression)

5.1.2 Define Documentation

5.1.2.1 #define assert(expression)

Parameters:
expressionExpression to test for.
The assert()macro tests the given expression and if it is false, the calling process is

terminated. A diagnostic message is written to stderr and the furetiort()is called,
effectively terminating the program.

If expression is true, thassert(macro does nothing.

Theassert(mnacro may be removed at compile time by defining NDEBUG as a macro
(e.g., by using the compiler option -DNDEBUG).
5.2 <avr/boot.h>: Bootloader Support Utilities

5.2.1 Detailed Description

#include <avr/io.h>
#include <avr/boot.h>

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.2 <avr/boot.h>: Bootloader Support Utilities 10

The macros in this module provide a C language interface to the bootloader support
functionality of certain AVR processors. These macros are designed to work with all
sizes of flash memory.
Note:
Not all AVR processors provide bootloader support. See your processor datasheet
to see if it provides bootloader support.
Todo

From email with Marek: On smaller devices (all except ATmega64/128), SPM_-
REG is in the 1/O space, accessible with the shorter "in" and "out" instructions -
since the boot loader has a limited size, this could be an important optimization.

AP| Usage Example

The following code shows typical usage of the boot API.

#include <inttypes.h>
#include <avr/interrupt.h>
#include <avr/pgmspace.h>

void boot_program_page (uint32_t page, uint8_t *buf)
{

uintl6_t i;

uint8_t sreg;

/I Disable interrupts.

sreg = SREG;
cliQ);

eeprom_busy wait ();

boot_page_erase (page);
boot_spm_busy_wait (); /I Wait until the memory is erased.

for (i=0; i<SPM_PAGESIZE; i+=2)

{
/I Set up little-endian word.
uintl6_t w = *buf++;
w += (*buf++) << 8;
boot_page_fill (page + i, w);
}
boot_page_write (page); /I Store buffer in flash page.
boot_spm_busy_wait(); /I Wait until the memory is written.

/I Reenable RWW-section again. We need this if we want to jump back
/I to the application after bootloading.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.2 <avr/boot.h>: Bootloader Support Utilities 11

boot_rww_enable ();
/I Re-enable interrupts (if they were ever enabled).

SREG = sreg;

Defines

« #defineEBOOTLOADER_SECTION _ attribute__ ((section (".bootloader")))

« #defineboot_spm_interrupt_enalf)e_ SPM_REG= (uint8_{_BV(SPMIE))

e #define boot_spm_interrupt_disalfle (__SPM_REG &= (int8 _d~ -
BV(SPMIE))

 #defineboot_is_spm_interruft(_ SPM_REG & (int8_9) BV(SPMIE))

 #defineboot_rww_busf) (__ SPM_REG & (int8_) BV(__ COMMON_ASB))

« #defineboot_spm_bugy (__SPM_REG & (int8_) BV(SPMEN))

 #defineboot_spm_busy wdg)tdo{}while(boot_spm_busy())

» #defineGET_LOW_FUSE_BITS0x0000)

 #defineGET_LOCK_BITS(0x0001)

 #defineGET_EXTENDED_FUSE_BIT$0x0002)

 #defineGET_HIGH_FUSE_BITS0x0003)

« #defineboot_lock fuse bits_getddress)

 #defineboot_page_filladdress, data) __boot page_fill_normal(address, data)

 #defineboot_page eraéaddress) boot page_ erase normal(address)

 #defineboot_page writ@ddress) _ boot _page_write_normal(address)

 #defineboot_rww_enablg _ boot_rww_enable()

 #defineboot_lock_bits_séliock_bits) boot_lock bits_set(lock _bits)

« #defineboot_page_fill_safaddress, data)

 #defineboot_page erase_sédddress)

 #defineboot_page write_safaddress)

 #defineboot_rww_enable_safe

 #defineboot_lock bits_set safeck bits)

5.2.2 Define Documentation

5.2.2.1 #define boot_is_spm_interrupt() (_SPM_REG & uint8 t) -
BV(SPMIE))

Check if the SPM interrupt is enabled.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.2 <avr/boot.h>: Bootloader Support Utilities 12

5.2.2.2 #define boot_lock_bits_set(lock_bits) boot_lock_bits_set(lock bits)
Set the bootloader lock bits.

Parameters:

lock_bits A mask of which Boot Loader Lock Bits to set.

Note:

In this context, a 'set bit’ will be written to a zero value. Note also that only BLBxx
bits can be programmed by this command.

For example, to disallow the SPM instruction from writing to the Boot Loader memory
section of flash, you would use this macro as such:

boot_lock_bits_set (_BV (BLB12));

Note:

Like any lock bits, the Boot Loader Lock Bits, once set, cannot be cleared again
except by a chip erase which will in turn also erase the boot loader itself.

5.2.2.3 #define boot_lock_bits_set safe(lock_bits)

Value:

do {\
boot_spm_busy_wait(); \
eeprom_busy_wait(); \
boot_lock_bits_set (lock_bits); \

} while (0)

Same adoot_lock_bits_set@xcept waits for eeprom and spm operations to complete
before setting the lock bits.

5.2.2.4 #define boot_lock_fuse_bits get(address)

Value:

(__extension__({ \
uint8_t __ result; \
__asm__ __ volatile__ \

(\
"Idi r30, %3\n\t" \
“Idi r31, O\n\t" \
"sts %1, %2\n\t" \
“Ipm %0, Z\n\t"
2 "= (__result) \

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.2 <avr/boot.h>: Bootloader Support Utilities 13

: """ (_(SFR_MEM_ADDR(__SPM_REG)), \
"r'" ((uint8_t)__ BOOT_LOCK_BITS_SET), \
"M" (address) \
: "r0", "r30", "r31" \
)i \
__result; \

»

Read the lock or fuse bits atldress .

Parameteraddress can be any of GET_LOW_FUSE_BITS, GET_LOCK_BITS,
GET_EXTENDED_FUSE_BITS, or GET_HIGH_FUSE_BITS.

Note:

The lock and fuse bits returned are the physical values, i.e. a bit returned as 0
means the corresponding fuse or lock bit is programmed.

5.2.2.5 #define boot_page erase(address) __ boot_page_erase normal(address)

Erase the flash page that contains address.

Note:

address is a byte address in flash, not a word address.

5.2.2.6 #define boot_page_erase_safe(address)

Value:

do {\
boot_spm_busy_wait(); \
eeprom_busy_wait(); \
boot_page_erase (address); \
} while (0)

Same aboot_page_erasegxcept it waits for eeprom and spm operations to complete
before erasing the page.

5.2.2.7 #define boot_page_fill(address, data) _ boot_page_fill_normal(address,
data)

Fill the bootloader temporary page buffer for flash address with data word.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.2 <avr/boot.h>: Bootloader Support Utilities 14

Note:

The address is a byte address. The data is a word. The AVR writes data to the
buffer a word at a time, but addresses the buffer per byte! So, increment your
address by 2 between calls, and send 2 data bytes in a word format! The LSB of
the data is written to the lower address; the MSB of the data is written to the higher
address.

5.2.2.8 #define boot_page_fill_safe(address, data)

Value:

do {\
boot_spm_busy_wait(); \
eeprom_busy_wait(); \
boot_page_fill(address, data); \

} while (0)

Same adoot_page_fill(except it waits for eeprom and spm operations to complete
before filling the page.

5.2.2.9 #define boot_page write(address) __ boot_page_write_normal(address)

Write the bootloader temporary page buffer to flash page that contains address.

Note:

address is a byte address in flash, not a word address.

5.2.2.10 #define boot_page_write_safe(address)

Value:

do {\
boot_spm_busy_wait(); \
eeprom_busy_wait(); \
boot_page_write (address); \
} while (0)

Same aboot_page_write(@xcept it waits for eeprom and spm operations to complete
before writing the page.

5.2.2.11 #define boot_rww _busy() (_SPM_REG & uint8_t) BV(_ -
COMMON_ASB))

Check if the RWW section is busy.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.2 <avr/boot.h>: Bootloader Support Utilities 15

5.2.2.12 #define boot_rww_enable() __boot_rww_enable()

Enable the Read-While-Write memory section.

5.2.2.13 #define boot_rww_enable_safe()
Value:
do {\
boot_spm_busy_wait(); \
eeprom_busy_wait(); \

boot_rww_enable();
} while (0)

Same adoot_rww_enable(@xcept waits for eeprom and spm operations to complete
before enabling the RWW mameory.

5.2.2.14 #define boot_spm_busy() (_SPM_REG &iat8_t) BV(SPMEN))
Check if the SPM instruction is busy.

5.2.2.15 #define boot_spm_busy wait() do{}while(boot_spm_busy())
Wait while the SPM instruction is busy.

5.2.2.16 #define boot_spm_interrupt_disable() (__SPM_REG &=uint8_t)~_-
BV(SPMIE))

Disable the SPM interrupt.

5.2.2.17 #define boot_spm_interrupt_enable() (_ SPM_REG= (uint8_t)_-
BV(SPMIE))

Enable the SPM interrupt.

5.2.2.18 #define BOOTLOADER_SECTION __attribute_ ((section (".boot-
loader")))

Used to declare a function or variable to be placed into a new section called .boot-
loader. This section and its contents can then be relocated to any address (such as the
bootloader NRWW area) at link-time.

5.2.2.19 #define GET_EXTENDED_FUSE_BITS (0x0002)

address to read the extended fuse bits, using boot_lock_fuse_bits_get

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.3 <avr/eeprom.h>: EEPROM handling 16

5.2.2.20 #define GET_HIGH_FUSE_BITS (0x0003)

address to read the high fuse bits, using boot_lock_fuse_bits_get

5.2.2.21 #define GET_LOCK_BITS (0x0001)

address to read the lock bits, using boot_lock fuse_bits_get

5.2.2.22 #define GET_LOW_FUSE_BITS (0x0000)

address to read the low fuse bits, using boot_lock_fuse_bits_get

5.3 <avr/eeprom.h>: EEPROM handling

5.3.1 Detailed Description

#include <avr/eeprom.h>

This header file declares the interface to some simple library routines suitable for han-
dling the data EEPROM contained in the AVR microcontrollers. The implementation
uses a simple polled mode interface. Applications that require interrupt-controlled
EEPROM access to ensure that no time will be wasted in spinloops will have to deploy
their own implementation.

Note:

All of the read/write functions first make sure the EEPROM is ready to be ac-
cessed. Since this may cause long delays if a write operation is still pending, time-
critical applications should first poll the EEPROM e. g. uséggprom_is_ready()
before attempting any actual I/O.

This header file declares inline functions that call the assembler subroutines di-
rectly. This prevents that the compiler generates push/pops for the call-clobbered
registers. This way also a specific calling convention could be used for the eep-
rom routines e.g. by passing values in __tmp_reg__, eeprom addresses in X and
memory addresses in Z registers. Method is optimized for code size.

Presently supported are two locations of the EEPROM register set:
0x1F,0x20,0x21 and 0x1C,0x1D,0x1E (seeEEPROM_REG_LOCATIONS).

As these functions modify 1O registers, they are known to be non-reentrant. If any
of these functions are used from both, standard and interrupt context, the applica-
tions must ensure proper protection (e.g. by disabling interrupts before accessing
them).

avr-libc declarations

 #defineEEEMEM __ attribute__ ((section(".eeprom™)))

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.3 <avr/eeprom.h>: EEPROM handling 17

#defineeeprom_is_ready

#defineeeprom_busy_wadjitdo {} while (leeprom_is_ready())
uint8_teeprom_read_bytEonstuint8_txaddr)

uintl6_teeprom_read wor@tonstuintl6 txaddr)

void eeprom_read_blocKvoid xpointer_ram, const void«pointer_eeprom,
size_tn)

void eeprom_write_bytéuint8_txaddr,uint8_tvalue)

void eeprom_write_word@uint16_txaddr,uintl6_tvalue)

void eeprom_write_block(const void xpointer_ram, void«pointer_eeprom,
size_tn)

IAR C compatibility defines

e #define EEPUTaddr, val) eeprom_write_byte uiat8 _t «)(addr), (int8_-
t)(val))
« #define_ EEGET(var, addr) (var) = eeprom_read_bytai((t8_tx)(addr))

Defines

- #define_ EEPROM_REG_LOCATIONS_1C1D1E

5.3.2 Define Documentation

5.3.2.1 #define_EEPROM_REG_LOCATIONS_ _ 1C1D1E

In order to be able to work without a requiring a multilib approach for dealing with
controllers having the EEPROM registers at different positions in memory space, the
eeprom functions evaluate _ EEPROM_REG_LOCATIONS : It is assumed to be
defined by the device io header and contains 6 uppercase hex digits encoding the ad-
dresses of EECR,EEDR and EEAR. First two letters: EECR address. Second two
letters: EEDR address. Last two letters: EEAR address. The default 1C1D1E corre-
sponds to the register location that is valid for most controllers. The value of this define
symbol is used for appending it to the base name of the assembler functions.

5.3.2.2 #define _EEGET(var, addr) (var) = eeprom_read byte ({nt8 t
x)(addr))

Read a byte from EEPROM. Compatibility define for IAR C.

5.3.2.3 #define _EEPUT(addr, val) eeprom_write_byte ({nt8_t x)(addr),
(uint8_t)(val))

Write a byte to EEPROM. Compatibility define for IAR C.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.3 <avr/eeprom.h>: EEPROM handling 18

5.3.2.4 #define EEMEM __ attribute__ ((section(".eeprom™)))

Attribute expression causing a variable to be allocated within the .eeprom section.

5.3.2.5 #define eeprom_busy_wait() do {} while (leeprom_is_ready())

Loops until the eeprom is no longer busy.

Returns:

Nothing.

5.3.2.6 #define eeprom_is_ready()

Returns:

1 if EEPROM is ready for a new read/write operation, O if not.

5.3.3 Function Documentation
5.3.3.1 void eeprom_read block (void« pointer_ram const void x pointer_-
eeprom size_tn)

Read a block oh bytes from EEPROM addreg®inter_eeprom to pointer_-
ram. For constant rc= 256 bytes a library function is used. For block sizes unknown
at compile time or block sizes 256 an inline loop is expanded.

5.3.3.2 uint8_t eeprom_read_byte (constint8_t x addr)
Read one byte from EEPROM addreskir .

5.3.3.3 uint1l6_t eeprom_read_word (consuint16_t « addr)
Read one 16-bit word (little endian) from EEPROM addraddr .

5.3.3.4 void eeprom_write_block (const voidt pointer_ram void * pointer_-
eeprom size_tn)

Write a block ofn bytes to EEPROM addreg®inter_eeprom from pointer_-
ram.

5.3.3.5 void eeprom_write_byteint8_t x addr, uint8_t value)
Write a bytevalue to EEPROM addressddr .

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.4 <avrlio.h>: AVR device-specific |0 definitions 19

5.3.3.6 void eeprom_write_word (int16_t x addr, uint16_t value
Write a wordvalue to EEPROM addresaddr .

5.4 <avr/io.h>: AVR device-specific 10 definitions

#include <avr/io.h>

This header file includes the apropriate 10 definitions for the device that has been spec-
ified by the-mmcu= compiler command-line switch. This is done by diverting to the
appropriate filecavr/io XXXXh > which should never be included directly. Some
register names common to all AVR devices are defined directly witlawr/io.h >,

but most of the details come from the respective include file.

Note that this file always includes

#include <avr/sfr_defs.h>

See<auvr/sfr_defs.b-: Special function registerfer the details.

Included are definitions of the 10 register set and their respective bit values as specified
in the Atmel documentation. Note that Atmel is not very consistent in its naming
conventions, so even identical functions sometimes get different names on different
devices.

Also included are the specific names useable for interrupt function definitions as docu-
mented here.

Finally, the following macros are defined:

* RAMEND
A constant describing the last on-chip RAM location.

* XRAMEND

A constant describing the last possible location in RAM. This is equal to RA-
MEND for devices that do not allow for external RAM.

e E2END
A constant describing the address of the last EEPROM cell.

e FLASHEND
A constant describing the last byte address in flash ROM.

* SPM_PAGESIZE

For devices with bootloader support, the flash pagesize (in bytes) to be used for
the SPMinstruction.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.5 <avr/pgmspace.h>: Program Space String Ultilities 20

5.5 <avr/pgmspace.h>: Program Space String Utilities

5.5.1 Detailed Description

#include <avr/io.h>
#include <avr/pgmspace.h>

The functions in this module provide interfaces for a program to access data stored in
program space (flash memory) of the device. In order to use these functions, the target
device must support either th&Mor ELPMinstructions.

Note:

These functions are an attempt to provide some compatibility with header files
that come with IAR C, to make porting applications between different compilers
easier. This is not 100% compatibility though (GCC does not have full support for
multiple address spaces yet).

If you are working with strings which are completely based in ram, use the stan-
dard string functions described instring.h>: Strings

If possible, put your constant tables in the lower 64 KB andpgra_read_byte -
near()or pgm_read_word_near{istead ofpgm_read_byte far@Qr pgm_read_-
word_far()since it is more efficient that way, and you can still use the upper 64K
for executable code. All functions that are suffixed with R require their ar-
guments to be in the lower 64 KB of the flash ROM, as they do not use ELPM
instructions. This is normally not a big concern as the linker setup arranges any
program space constants declared using the macros from this header file so they
are placed right after the interrupt vectors, and in front of any executable code.
However, it can become a problem if there are too many of these constants, or for
bootloaders on devices with more than 64 KB of ROM.these functions will not
work in that situation.

Defines

» #definePROGMEM__ ATTR_PROGMEM___
¢ #definePSTR’S) ((const PROGMEM chax)(s))
« #definepgm_read_byte ne@ddress_short) _ LPM(t16_d(address_short))

 #define pgm_read _word_ne@ddress_short) __LPM_word{(t16_-
t)(address_short))
» #define pgm_read_dword_ne@ddress_short) _ LPM_dword{(t16_-

t)(address_short))
 #definepgm_read_byte_féaddress_long) _ ELPM({{nt32_)(address_long))

* #define pgm_read_word_féaddress_long) _ ELPM_word({nt32_-
t)(address_long))
e #define pgm_read_dword_féaddress_long) __ELPM_dword({(t32_-

t)(address_long))

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.5 <avr/pgmspace.h>: Program Space String Ultilities 21

#definepgm_read_byti@ddress_short) pgm_read_byte near(address_short)
#definepgm_read_wor@ddress_short) pgm_read_word_near(address_short)
#definegpgm_read_dwor@ddress_short) pgm_read_dword_near(address_short)
#definePGM_Pconstprog_chak

#definePGM_VOID_Pconstprog_voidsx

Typedefs

* typedef void PROGMEMrog_void

* typedef char PROGMENSrog_char

« typedef unsigned char PROGMEMog_uchar
* typedefint8_t PROGMEMprog_int8_t

« typedefuint8 tPROGMEMprog_uint8_t

¢ typedefintl6_tPROGMEMprog_intl6 t
 typedefuintl6 tPROGMEMprog_uintl6 t
« typedefint32_tPROGMEMprog_int32_t

* typedefuint32_tPROGMEMprog_uint32_t
« typedefint64 tPROGMEMprog_int64 _t

« typedefuint64_ tPROGMEMprog_uint64 t

Functions

« void x memcpy_Rvoid x, PGM_VOID_P, size_t)

* int strcasecmp_Rconst chax, PGM_P) _ ATTR_PURE_

« charx strcat_R(charx, PGM_P)

e int strcmp_HRconst chak, PGM_P) __ ATTR_PURE___

e charx strcpy_P(charx, PGM_P)

* size_tstrlcat_P(charx, PGM_P, size t)

« size_tstrlcpy_P(charx, PGM_P, size t)

 size_tstrlen_ (PGM_P) __ ATTR_CONST__

« int strncasecmp_Reonst chax, PGM_P, size t) ATTR_PURE_
e charx strncat_Hcharx, PGM_P, size_t)

e int strncmp_Rconst chak, PGM_P, size t) ATTR_PURE__
e charx strncpy_Rcharx, PGM_P, size_t)

¢ size_tstrnlen_ APGM_P, size_t) _ ATTR_CONST__

e charx strstr_P(const chax, PGM_P) _ ATTR_PURE___

5.5.2 Define Documentation

5.5.2.1 #define PGM_P congtrog_char

Used to declare a variable that is a pointer to a string in program space.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.5 <avr/pgmspace.h>: Program Space String Ultilities 22

5.5.2.2 #define pgm_read_byte(address_short) pgm_read_byte near(address_-
short)

Read a byte from the program space with a 16-bit (near) address.

Note:

The address is a byte address. The address is in the program space.

5.5.2.3 #define pgm_read_byte far(address_long) __ELPMI{Ot32_-
t)(address_long))

Read a byte from the program space with a 32-bit (far) address.

Note:

The address is a byte address. The address is in the program space.

5.5.2.4 #define pgm_read byte near(address_short) __LPM{Gt16_-
t)(address_short))

Read a byte from the program space with a 16-bit (near) address.

Note:

The address is a byte address. The address is in the program space.

5.5.2.5 #define pgm_read_dword(address_short) pgm_read_dword_-
near(address_short)

Read a double word from the program space with a 16-bit (near) address.

Note:

The address is a byte address. The address is in the program space.

5.5.2.6 #define pgm_read_dword_far(address_long) _ ELPM_dword(fit32_-
t)(address_long))

Read a double word from the program space with a 32-bit (far) address.

Note:

The address is a byte address. The address is in the program space.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.5 <avr/pgmspace.h>: Program Space String Ultilities 23

5.5.2.7 #define pgm_read_dword_near(address_short) __LPM_-
dword((uint16_t)(address_short))

Read a double word from the program space with a 16-bit (near) address.

Note:

The address is a byte address. The address is in the program space.

5.5.2.8 #define pgm_read_word(address_short) pgm_read_word_-
near(address_short)

Read a word from the program space with a 16-bit (near) address.

Note:

The address is a byte address. The address is in the program space.

5.5.2.9 #define pgm_read_word_far(address_long) _ ELPM_word(fit32_-
t)(address_long))

Read a word from the program space with a 32-bit (far) address.

Note:

The address is a byte address. The address is in the program space.

5.5.2.10 #define pgm_read_word_near(address_short) _ LPM_word{(t16_-
t)(address_short))

Read a word from the program space with a 16-bit (near) address.

Note:

The address is a byte address. The address is in the program space.

5.5.2.11 #define PGM_VOID_P congbrog_void x

Used to declare a generic pointer to an object in program space.

5.5.2.12 #define PROGMEM __ ATTR_PROGMEM__

Attribute to use in order to declare an object being located in flash ROM.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.5 <avr/pgmspace.h>: Program Space String Ultilities 24

5.5.2.13 #define PSTR(s) ((const PROGMEM chax)(s))
Used to declare a static pointer to a string in program space.
5.5.3 Typedef Documentation

5.5.3.1 prog_char

Type of a "char" object located in flash ROM.

5.5.3.2 prog_int16_t
Type of an "int16_t" object located in flash ROM.

5.5.3.3 prog_int32_t
Type of an "int32_t" object located in flash ROM.

5.5.3.4 prog_int64 _t
Type of an "int64_t" object located in flash ROM.

5.5.3.5 prog_int8 t
Type of an "int8_t" object located in flash ROM.

5.5.3.6 prog_uchar

Type of an "unsigned char" object located in flash ROM.

5.5.3.7 prog_uintl6_t
Type of an "uint16_t" object located in flash ROM.

5.5.3.8 prog_uint32_t
Type of an "uint32_t" object located in flash ROM.

5.5.3.9 prog_uint64 _t
Type of an "uint64_t" object located in flash ROM.

5.5.3.10 prog_uint8 t
Type of an "uint8_t" object located in flash ROM.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.5 <avr/pgmspace.h>: Program Space String Ultilities 25

5.5.3.11 prog_void

Type of a "void" object located in flash ROM. Does not make much sense by itself, but
can be used to declare a "voitiobject in flash ROM.

5.5.4 Function Documentation

5.5.4.1 voidx memcpy_P (void« dest PGM_VOID_P src, size_tn)
Thememcpy_P(function is similar tomemcpy() except the src string resides in pro-
gram space.

Returns:

Thememcpy_P(function returns a pointer to dest.

5.5.4.2 intstrcasecmp_P (const charsl, PGM_Ps2)

Compare two strings ignoring case.

The strcasecmp_Punction compares the two strings s1 and s2, ignoring the case of
the characters.

Parameters:

sl A pointer to a string in the devices SRAM.
s2 A pointer to a string in the devices Flash.

Returns:

Thestrcasecmp_Punction returns an integer less than, equal to, or greater than
zero if s1 is found, respectively, to be less than, to match, or be greater than s2.

5.5.4.3 charx strcat_P (char « dest PGM_P src)

The strcat_P(function is similar tostrcat()except that therc string must be located
in program space (flash).

Returns:

Thesstrcat()function returns a pointer to the resulting strishest

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.5 <avr/pgmspace.h>: Program Space String Ultilities 26

5.5.4.4 intstrcmp_P (const chak s1, PGM_Ps2

The strcmp_P()function is similar tostrcmp()except that s2 is pointer to a string in
program space.

Returns:

Thestrcmp_P(¥unction returns an integer less than, equal to, or greater than zero
if s1 is found, respectively, to be less than, to match, or be greater than s2.

5.5.4.5 charx strcpy_P (char* dest PGM_P src)

The strcpy_P()function is similar tostrcpy() except that src is a pointer to a string in
program space.

Returns:

Thestrcpy_P()function returns a pointer to the destination string dest.

5.5.4.6 size_tstricat_P (chak dst PGM_P, size_tsi2)
Concatenate two strings.

Thestricat_P(function is similar tostricat() except that therc string must be located
in program space (flash).

Appends src to string dst of size siz (unl&encat() siz is the full size of dst, not space
left). At most siz-1 characters will be copied. Always NULL terminates (unlesssiz
strlen(dst)).

Returns:

Thestrlcat_P()function returns strlen(src) + MIN(siz, strlen(initial dst)). If retval
>= siz, truncation occurred.

5.5.4.7 size_t strlcpy_P (char dst PGM_P, size_tsi2)
Copy a string from progmem to RAM.

Copy src to string dst of size siz. At most siz-1 characters will be copied. Always
NULL terminates (unless siz == 0).

Returns:

Thestrlcpy_P()function returns strlen(src). If retval= siz, truncation occurred.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.5 <avr/pgmspace.h>: Program Space String Ultilities 27

5.5.4.8 size tstrlen_P (PGM_Rrc)

The strlen_P()function is similar tostrlen() except that src is a pointer to a string in
program space.

Returns:

Thestrlen()function returns the number of characters in src.

5.5.4.9 intstrncasecmp_P (const char s1, PGM_P s2, size_tn)
Compare two strings ignoring case.

Thestrncasecmp_Pflinction is similar tasstrcasecmp_P(gxcept it only compares the
first n characters of s1.

Parameters:

sl A pointer to a string in the devices SRAM.

s2 A pointer to a string in the devices Flash.

n The maximum number of bytes to compare.
Returns:

Thestrcasecmp_Pgunction returns an integer less than, equal to, or greater than
zero if s1 (or the first n bytes thereof) is found, respectively, to be less than, to
match, or be greater than s2.

5.5.4.10 charx strncat_P (char « dest PGM_P src, size_tlen)
Concatenate two strings.

Thestrncat_P(Junction is similar testrncat() except that therc string must be located
in program space (flash).

Returns:

Thestrncat_P(function returns a pointer to the resulting string dest.

5.5.4.11 intstrncmp_P (const chak s1, PGM_P s2 size_tn)

Thestrncmp_P(function is similar tostrcmp_P()except it only compares the first (at
most) n characters of s1 and s2.

Returns:

Thestrnecmp_P(Junction returns an integer less than, equal to, or greater than zero
if s1 (or the first n bytes thereof) is found, respectively, to be less than, to match,
or be greater than s2.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.6 Additional notes from <avr/sfr_defs.h> 28

5.5.4.12 charx strncpy_P (char x dest PGM_P src, size_tn)

The strncpy_P(¥unction is similar tostrcpy_P()except that not more than n bytes of
src are copied. Thus, if there is no null byte among the first n bytes of src, the result
will not be null-terminated.

In the case where the length of src is less than that of n, the remainder of dest will be
padded with nulls.

Returns:

Thestrncpy_P(¥unction returns a pointer to the destination string dest.

5.5.4.13 size_tstrnlen_P (PGM_Brc, size_tlen)

Determine the length of a fixed-size string.

Thestrnlen_P(¥unction is similar tostrnlen() except thasrc is a pointer to a string
in program space.

Returns:

The strnlen_P function returns strlen_P(src), if that is less than or len if
there is no\0’ character among the firlgn characters pointed to ksrc .

5.5.4.14 char« strstr_P (const charx s1, PGM_P s2)
Locate a substring.

Thesstrstr_P()function finds the first occurrence of the substrgfyin the stringsl.
The terminating {0’ characters are not compared. Wiestr_P()function is similar to
strstr()except thas2 is pointer to a string in program space.

Returns:

Thestrstr_P(¥unction returns a pointer to the beginning of the substring, or NULL
if the substring is not found. 12 points to a string of zero length, the function
returnssl.

5.6 Additional notes from <avr/sfr_defs.h>

The <avr/sfr_defs.h > file is included by all of the<avr/ioXXXX.h > files,

which use macros defined here to make the special function register definitions look
like C variables or simple constants, depending on t8ER_ASM_COMPAdefine.
Some examples fromavr/iom128.h > to show how to define such macros:

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.6 Additional notes from <avr/sfr_defs.h> 29

#define PORTA _SFR_I08(0x1b)
#define TCNT1 _SFR_1016(0x2c)
#define PORTF _SFR_MEMS8(0x61)
#define TCNT3 _SFR_MEM16(0x88)

If _SFR_ASM_COMPA3not defined, C programs can use namesH&eRTAdirectly

in C expressions (also on the left side of assignment operators) and GCC will do the
right thing (use short I/O instructions if possible). TheSFR_OFFSETdefinition is

not used in any way in this case.

Define_SFR_ASM_COMPASS 1 to make these names work as simple constants (ad-
dresses of the I/O registers). This is necessary when included in preprocessed assem-
bler (x.S) source files, so it is done automatically fASSEMBLER __is defined. By
default, all addresses are defined as if they were memory addresses (laksést$n
instructions). To use these addresseimiaut instructions, you must subtract 0x20

from them.

For more backwards compatibility, insert the following at the start of your old assem-
bler source file:

#define __ SFR_OFFSET 0

This automatically subtracts 0x20 from 1/O space addresses, but it's a hack, so it is
recommended to change your source: wrap such addresses in macros defined here, as
shown below. After this is done, the SFR_OFFSETdefinition is no longer necessary

and can be removed.

Real example - this code could be used in a boot loader that is portable between devices
with SPMCRat different addresses.

<avr/iom163.h>: #define SPMCR _SFR_IO8(0x37)
<avr/iom128.h>: #define SPMCR _SFR_MEMB8(0x68)

#f _SFR_IO_REG_P(SPMCR)

out _SFR_IO_ADDR(SPMCR), r24
#else
sts _SFR_MEM_ADDR(SPMCR), r24
#endif
You can use tha/out/cbi/sbi/sbic/sbis instructions, without the SFR_ -

I0_REG_Ptest, if you know that the register is in the 1/0O space (as \BIREG for
example). If it isn't, the assembler will complain (I/O address out of range 0...0x3f),
so this should be fairly safe.

If you do not define_ SFR_OFFSET(so it will be 0x20 by default), all special register
addresses are defined as memory addresseSRE@is 0x5f), and (if code size and
speed are not important, and you don't like the ugly #if above) you can always use
Ids/sts to access them. But, this will not work if SFR_OFFSET!= 0x20, so use a
different macro (defined only if SFR_OFFSET== 0x20) for safety:

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.7 <avr/sleep.h>: Power Management and Sleep Modes 30

sts _SFR_ADDR(SPMCR), r24

In C programs, all 3 combinations o6FR_ASM_COMPAINd__ SFR_OFFSETare
supported - the SFR_ADDR(SPMCR)macro can be used to get the address of the
SPMCRegister (0x57 or 0x68 depending on device).

5.7 <avr/sleep.h>: Power Management and Sleep Modes

5.7.1 Detailed Description

#include <avr/sleep.h>

Use of theSLEEPInstruction can allow an application to reduce its power comsump-
tion considerably. AVR devices can be put into different sleep modes. Refer to the
datasheet for the details relating to the device you are using.

There are several macros provided in this header file to actually put the device into
sleep mode. The simplest way is to optionally set the desired sleep modesasing
sleep_mode() (it usually defaults to idle mode where the CPU is put on sleep but
all peripheral clocks are still running), and then ciflep_mode() . Unlessiitis the
purpose to lock the CPU hard (until a hardware reset), interrupts need to be enabled at
this point. This macro automatically takes care to enable the sleep mode in the CPU
before going to sleep, and disable it again afterwards.

As this combined macro might cause race conditions in some situations, the individual
steps of manipulating the sleep enable (SE) bit, and actually issuin§UBE&P in-
struction are provided in the macrskeep_enable() , Sleep_disable() , and
sleep_cpu() . This also allows for test-and-sleep scenarios that take care of not
missing the interrupt that will awake the device from sleep.

Example:

#include <avr/interrupt.h>
#include <avr/sleep.h>

cliQ);

if (some_condition) {
sleep_enable();
sei();
sleep_cpu();
sleep_disable();

sei();
This sequence ensures an atomic tesoofie_condition with interrupts being dis-

abled. If the condition is met, sleep mode will be prepared, an&tieEPinstruction
will be scheduled immediately after &8El instruction. As the intruction right after

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.7 <avr/sleep.h>: Power Management and Sleep Modes 31

the SEI is guaranteed to be executed before an interrupt could trigger, it is sure the
device will really be put on sleep.

Sleep Modes
Note:

Some of these modes are not available on all devices. See the datasheet for target
device for the available sleep modes.

« #defineSLEEP_MODE_IDLED

#defineSLEEP_MODE_ADC_BV(SMO)
#defineSLEEP_MODE_PWR_DOWNBV(SM1)

#defineSLEEP_ MODE_PWR_SAVE BV(SMO0)| BV(SM1))
#defineSLEEP_MODE_STANDBY(_BV(SM1)| _BV(SM2))

#define SLEEP_MODE_EXT_STANDBY (_BV(SMO0) | _BV(SM1) | _-
BV(SM2))

L]

Sleep Functions

 void set_sleep_mod@int8_tmode)
 void sleep_modévoid)

 void sleep_enablévoid)

 void sleep_disablévoid)

 void sleep_cpyvoid)

5.7.2 Define Documentation

5.7.2.1 #define SLEEP_MODE_ADC _BV(SMO0)
ADC Noise Reduction Mode.

5.7.2.2 #define SLEEP_MODE_EXT_STANDBY (_BV(SMO0) _BV(SM1) | _-
BV(SM2))

Extended Standby Mode.

5.7.2.3 #define SLEEP_MODE_IDLE O

Idle mode.

5.7.2.4 #define SLEEP_MODE_PWR_DOWN _BV(SM1)

Power Down Mode.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.8 <auvr/version.h>: avr-libc version macros 32

5.7.25 #define SLEEP_MODE_PWR_SAVE (_BV(SMO0)_BV(SM1))

Power Save Mode.

5.7.2.6 #define SLEEP_MODE_STANDBY (_BV(SM1)_BV(SM2))
Standby Mode.

5.7.3 Function Documentation

5.7.3.1 void set_sleep_modeift8 t mode

Select a sleep mode.

5.7.3.2 void sleep_cpu (void)

Put the device into sleep mode. The SE bit must be set beforehand, and it is recom-
mended to clear it afterwards.

5.7.3.3 void sleep_disable (void)
Clear the SE (sleep enable) bit.

5.7.3.4 void sleep_enable (void)
Set the SE (sleep enable) bit.

5.7.3.5 void sleep_mode (void)

Put the device in sleep mode. How the device is brought out of sleep mode depends on
the specific mode selected with thet_sleep_modeflinction. See the data sheet for
your device for more details.

5.8 <avr/version.h>: avr-libc version macros

5.8.1 Detailed Description

#include <avr/version.h>

This header file defines macros that contain version numbers and strings describing the
current version of avr-libc.

The version number itself basically consists of three pieces that are separated by a
dot: the major number, the minor number, and the revision number. For development

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.8 <auvr/version.h>: avr-libc version macros 33

versions (which use an odd minor number), the string representation additionally gets
the date code (YYYYMMDD) appended.

This file will also be included byavr/io.h >. That way, portable tests can be
implemented using<avr/io.h > that can be used in code that wants to remain
backwards-compatible to library versions prior to the date when the library version
API had been added, as referenced but undefined C preprocessor macros automatically
evaluate to 0.

Defines

« #define_ AVR_LIBC_VERSION_STRING_"1.4.4"
#define_ AVR_LIBC_VERSION__10404UL
#define_ AVR_LIBC_DATE_STRING__"20060420"
#define_ AVR_LIBC_DATE_20060420UL
#define_ AVR_LIBC_MAJOR__1

#define_ AVR_LIBC_MINOR__ 4

#define_ AVR_LIBC_REVISION__ 4

5.8.2 Define Documentation

5.8.2.1 #define__AVR_LIBC_DATE_ 20060420UL

Numerical representation of the release date.

5.8.2.2 #define __AVR_LIBC_DATE_STRING__ "20060420"

String literal representation of the release date.

5.8.2.3 #define __AVR_LIBC_MAJOR__ 1

Library major version number.

5.8.2.4 #define__AVR_LIBC_MINOR__ 4

Library minor version number.

5.8.2.5 #define__AVR_LIBC_REVISION__ 4

Library revision number.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.9 <avr/wdt.h>: Watchdog timer handling 34

5.8.2.6 #define __ AVR_LIBC_VERSION__ 10404UL
Numerical representation of the current library version.

In the numerical representation, the major number is multiplied by 10000, the minor
number by 100, and all three parts are then added. It is intented to provide a monoton-
ically increasing numerical value that can easily be used in numerical checks.

5.8.2.7 #define __AVR_LIBC_VERSION_STRING__ "1.4.4"

String literal representation of the current library version.

5.9 <avr/wdt.h>: Watchdog timer handling

5.9.1 Detailed Description

#include <avr/wdt.h>

This header file declares the interface to some inline macros handling the watchdog
timer present in many AVR devices. In order to prevent the watchdog timer configura-
tion from being accidentally altered by a crashing application, a special timed sequence
is required in order to change it. The macros within this header file handle the required
sequence automatically before changing any value. Interrupts will be disabled during
the manipulation.

Note:

Depending on the fuse configuration of the particular device, further restrictions
might apply, in particular it might be disallowed to turn off the watchdog timer.

Note that for newer devices (ATmega88 and newer, effectively any AVR that has the op-
tion to also generate interrupts), the watchdog timer remains active even after a system
reset (except a power-on condition), using the fastest prescaler value (approximately
15 ms). Itis therefore required to turn off the watchdog early during program startup,
the datasheet recommends a sequence like the following:

#include <stdint.h>
#include <avr/wdt.h>

uint8_t mcusr_mirror;

void get_mcusr(void) \
__attribute__((naked)) \
__attribute__ ((section(".init3")));
void get_mcusr(void)

mcusr_mirror = MCUSR,;
MCUSR = 0;

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.9 <avr/wdt.h>: Watchdog timer handling 35

wdt_disable();
}

Saving the value of MCUSR imcusr_mirror is only needed if the application
later wants to examine the reset source, but clearing in particular the watchdog reset
flag before disabling the watchdog is required, according to the datasheet.

Defines

o #definewdt_resef) __asm__ _ volatile__ ("wdr")
« #definewdt_disablé)

« #definewdt_enabl@imeout) _wdt_write(timeout)
e #defineWDTO_15MS0

* #defineWDTO_30MS1

* #defineWDTO_60MS2

* #defineWDTO_120MS3

* #defineWDTO_250M4

* #defineWDTO_500MS5

* #defineWDTO_1S6

* #defineWDTO_2S7

* #defineWDTO_4S8

* #defineWDTO_8S9

5.9.2 Define Documentation

5.9.2.1 #define wdt_disable()

Value:

_asm__ _ volatile__ (\
"in __tmp_reg__, _ SREG_ " "\n\it" \
"cli" "\n\t" \
"out %0, %1" "\n\t" \
"out %0, _ zero_reg__ " "\n\t" \
"out _ SREG__, tmp_reg_ " "\n\t" \
: [* no outputs */ \
:"I" (_SFR_IO_ADDR(_WD_CONTROL_REG)), \
"r" ((uint8_t)(_BV(_WD_CHANGE_BIT) | _BV(WDE))) \
20"\

Disable the watchdog timer, if possible. This attempts to turn off the Enable bit in the
watchdog control register. See the datasheet for details.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.9 <avr/wdt.h>: Watchdog timer handling 36

5.9.2.2 #define wdt_enable(timeout) _wdt_write(timeout)

Enable the watchdog timer, configuring it for expiry affieneout (which is a com-
bination of theWDPQhroughWDP2bits to write into theWDTCRegister; For those
devices that have W/DTCSRegister, it uses the combination of theDPOthrough

WDPDits).

See also the symbolic constat¥©TO_15M8$t al.

5.9.2.3 #define wdt_reset() __asm__ __ volatile__ ("wdr")

Reset the watchdog timer. When the watchdog timer is enabled, a call to this instruction
is required before the timer expires, otherwise a watchdog-initiated device reset will
occur.

5.9.2.4 #define WDTO_120MS 3
SeeWDTO_15MS

5.9.25 #define WDTO_15MS 0

Symbolic constants for the watchdog timeout. Since the watchdog timer is based on
a free-running RC oscillator, the times are approximate only and apply to a supply
voltage of 5 V. At lower supply voltages, the times will increase. For older devices,
the times will be as large as three times when operating at Vcc = 3 V, while the newer
devices (e. g. ATmegal28, ATmega8) only experience a negligible change.

Possible timeout values are: 15 ms, 30 ms, 60 ms, 120 ms, 250 ms, 500 ms, 1 s, 2 s.
(Some devices also allow for 4 s and 8 s.) Symbolic constants are formed by the prefix
WDTO, followed by the time.

Example that would select a watchdog timer expiry of approximately 500 ms:

wdt_enable(WDTO_500MS);

5.9.2.6 #define WDTO_1S6
SeeWDTO_15MS

5.9.2.7 #define WDTO_250MS 4
SeeWDTO_15MS

5.9.2.8 #define WDTO_2S7
SeeWDTO_15MS

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.10 <compat/deprecated.h>: Deprecated items 37

5.9.2.9 #define WDTO_30MS 1
SeeWDTO_15MS

5.9.2.10 #define WDTO_4S 8

SeeWDTO_15MSNote: This is only available on the ATtiny2313, ATtiny24, AT-
tiny44, ATtiny84, ATtiny25, ATtiny45, ATtiny85, ATtiny261, ATtiny461, ATtiny861,
ATmega48, ATmega88, ATmegal68, ATmegal64P, ATmega324P, ATmega644P,
ATmega644, ATmega640, ATmegal280, ATmegal281, ATmegad406, ATOOPWM2,
AT90PWM3, AT90USB646, ATO0USB647, ATO0USB1286, AT90USB1287.

5.9.2.11 #define WDTO_500MS 5
SeeWDTO0_15MS

5.9.2.12 #define WDTO_60MS 2
WDTO_15MS

5.9.2.13 #define WDTO_8S 9

SeeWDTO_15MSNote: This is only available on the ATtiny2313, ATtiny24, AT-
tiny44, ATtiny84, ATtiny25, ATtiny45, ATtiny85, ATtiny261, ATtiny461, ATtiny861,
ATmega48, ATmega88, ATmegal68, ATmegal64P, ATmega324P, ATmega644P,
ATmega644, ATmega640, ATmegal280, ATmegal281, ATmegad406, ATOOPWM2,
AT90PWM3, AT90USB646, ATO0USB647, ATO0USB1286, AT90USB1287.

5.10 <compat/deprecated.h-: Deprecated items
5.10.1 Detailed Description

This header file contains several items that used to be available in previous versions of
this library, but have eventually been deprecated over time.

#include <compat/deprected.h>

These items are supplied within that header file for backward compatibility reasons
only, so old source code that has been written for previous library versions could easily
be maintained until its end-of-life. Use of any of these items in new code is strongly

discouraged.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.10 <compat/deprecated.h>: Deprecated items 38

Allowing specific system-wide interrupts

In addition to globally enabling interrupts, each device’s particular interrupt needs to

be enabled separately if interrupts for this device are desired. While some devices
maintain their interrupt enable bit inside the device’s register set, external and timer
interrupts have system-wide configuration registers.

Example:

/I Enable timer 1 overflow interrupts.
timer_enable_int(_BV(TOIEL));

/I Do some work...

/I Disable all timer interrupts.
timer_enable_int(0);

Note:

Be careful when you use these functions. If you already have a different interrupt
enabled, you could inadvertantly disable it by enabling another intterupt.

 #defineenable_external_ifmhask) (__EICR = mask)
» #defineINTERRUPT(signame)
e static__inline__ voidimer_enable_infunsigned char ints)

Obsolete IO macros

Back in a time when AVR-GCC and avr-libc could not handle 10 port access in the di-
rect assignment form as they are handled now, all 10 port access had to be done through
specific macros that eventually resulted in inline assembly instructions performing the
desired action.

These macros became obsolete, as reading and writing 10 ports can be done by simply
using the 10 port name in an expression, and all bit manipulation (including those on
10 ports) can be done using generic C bit manipulation operators.

The macros in this group simulate the historical behaviour. While they are supposed to
be applied to 10 ports, the emulation actually uses standard C methods, so they could
be applied to arbitrary memory locations as well.

#defineinp(port) (port)

#defineoutp(port, val) (port) = (val)
#definesbi(port, bit) (port)|= (1 << (bit))
#definecbi(port, bit) (port) &=~(1 << (hit))

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.10 <compat/deprecated.h>: Deprecated items 39

5.10.2 Define Documentation

5.10.2.1 #define chi(port, bit) (port) &=~(1 << (bit))

Deprecated

Clearbit in 10 portport .

5.10.2.2 #define enable_external_int(mask) (__EICR = mask)

Deprecated

This macro gives access to tMSKregister (orEIMSK register if using an AVR
Mega device oGICR register for others). Although this macro is essentially the same
as assigning to the register, it does adapt slightly to the type of device being used. This
macro is unavailable if none of the registers listed above are defined.

5.10.2.3 #define inp(port) (port)

Deprecated

Read a value from an 10 pgobrt .

5.10.2.4 #define INTERRUPT(signhame)

Value:

void signame (void) __ attribute__ ((interrupt)); \
void signame (void)

Deprecated

Introduces an interrupt handler function that runs with global interrupts initially en-
abled. This allows interrupt handlers to be interrupted.

As this macro has been used by too many unsuspecting people in the past, it has been
deprecated, and will be removed in a future version of the library. Users who want to
legitimately re-enable interrupts in their interrupt handlers as quickly as possible are
encouraged to explicitly declare their handlers as descabege

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.11 <compat/ina90.h>: Compatibility with IAR EWB 3.x 40

5.10.2.5 #define outp(port, val) (port) = (val)

Deprecated

Write val to 1O portport .

5.10.2.6 #define shi(port, bit) (port)|= (1 << (bit))

Deprecated

Setbit in 10 portport .

5.10.3 Function Documentation

5.10.3.1 static __inline__ void timer_enable_int (unsigned charints)
[static]

Deprecated

This function modifies théimsk register. The value you pass \i@s is device
specific.

5.11 <compat/ina90.h>: Compatibility with IAR EWB 3.x

#include <compat/ina90.h>

This is an attempt to provide some compatibility with header files that come with IAR
C, to make porting applications between different compilers easier. No 100% compat-
ibility though.

Note:

For actual documentation, please see the IAR manual.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.12 <ctype.h>: Character Operations 41

5.12 <ctype.h>: Character Operations
5.12.1 Detailed Description
These functions perform various operations on characters.

#include <ctype.h>

Character classification routines

These functions perform character classification. They return true or false status de-
pending whether the character passed to the function falls into the function’s classifi-
cation (i.e.isdigit() returns true if its argument is any value '0’ though '9’, inclusive.)

e intisalnum(int__c) _ ATTR_CONST__
e intisalpha(int__c) __ATTR_CONST__
e intisascii(iint__c) __ ATTR_CONST__
e intisblank(int_c) _ATTR_CONST__
e intiscntrl(int__¢) _ ATTR_CONST__
e intisdigit(int_c) __ ATTR_CONST__
e intisgraph(int_c) _ ATTR_CONST__
e intislower(int_c) ATTR_CONST__
e intisprint(int__c) _ ATTR_CONST_
e intispunct(iint_c) ATTR_CONST _
e intisspacgint__c) ATTR_CONST _
e intisupper(int__c) _ ATTR_CONST _
e intisxdigit(int__c) __ ATTR_CONST__

Character convertion routines
If ¢ is not an unsigned char value,BOF, the behaviour of these functions is undefined.

e inttoascii(int__c) __ ATTR_CONST__
e inttolower(int__c) _ ATTR_CONST__
e inttoupper(int__c) _ ATTR_CONST _

5.12.2 Function Documentation

5.12.2.1 intisalnum (int__ ¢

Checks for an alphanumeric character. It is equivalent(isalpha(c) [l
isdigit(c))

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.12 <ctype.h>: Character Operations 42

5.12.2.2 intisalpha (int_ 0

Checks for an alphabetic character. It is equivalent (igupper(c) [l
islower(c))

5.12.2.3 intisascii (int__©

Checks whethet is a 7-bit unsigned char value that fits into the ASCII character set.

5.12.2.4 intisblank (int__ ¢

Checks for a blank character, that is, a space or a tab.

5.12.2.5 intiscntrl (int__ ¢

Checks for a control character.

5.12.2.6 intisdigit (int__0
Checks for a digit (0 through 9).

5.12.2.7 intisgraph (int__0

Checks for any printable character except space.

5.12.2.8 intislower (int__0

Checks for a lower-case character.

5.12.2.9 intisprint(int__ ¢

Checks for any printable character including space.

5.12.2.10 intispunct (int__¢

Checks for any printable character which is not a space or an alphanumeric character.

5.12.2.11 intisspace (int_©

Checks for white-space characters. For the avr-libc library, these are: space, form-
feed (\f"), newline ("\n’), carriage return {r’), horizontal tab (\t'), and vertical tab

(\V).

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.13 <errno.h>: System Errors 43

5.12.2.12 intisupper (int_ 0

Checks for an uppercase letter.

5.12.2.13 intisxdigit (int__0
Checks for a hexadecimal digits, i.e. one 0f0123456789abcdefABCDEF.

5.12.2.14 inttoascii (int_ 0

Convertsc to a 7-bit unsigned char value that fits into the ASCII character set, by
clearing the high-order bits.

Warning:

Many people will be unhappy if you use this function. This function will convert
accented letters into random characters.

5.12.2.15 inttolower (int__ 0

Converts the lettet to lower case, if possible.

5.12.2.16 inttoupper (int__ 0

Converts the letter to upper case, if possible.

5.13 <errno.h>: System Errors

5.13.1 Detailed Description

#include <errno.h>

Some functions in the library set the global variabteno when an error occurs. The
file, <errno.h >, provides symbolic names for various error codes.

Warning:

Theerrno global variable is not safe to use in a threaded or multi-task system. A
race condition can occur if a task is interrupted between the call whickisets

and when the task examinesno . If another task changesrno during this
time, the result will be incorrect for the interrupted task.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.14 <inttypes.h>: Integer Type conversions 44

Defines

* #defineEDOM 33
» #defineEERANGE 34

5.13.2 Define Documentation

5.13.2.1 #define EDOM 33

Domain error.

5.13.2.2 #define ERANGE 34

Range error.

5.14 <inttypes.h>: Integer Type conversions

5.14.1 Detailed Description

#include <inttypes.h>

This header file includes the exact-width integer definitions frostdint.h >, and
extends them with additional facilities provided by the implementation.

Currently, the extensions include two additional integer types that could hold a "far"
pointer (i.e. a code pointer that can address more than 64 KB), as well as standard
names for all printf and scanf formatting options that are supported by $kdio.h>:
Standard 10 facilities As the library does not support the full range of conversion
specifiers from 1SO 9899:1999, only those conversions that are actually implemented
will be listed here.

The idea behind these conversion macros is that, for each of the types defined by
<stdint.h>, a macro will be supplied that portably allows formatting an object of that
type inprintf() or scanf()operations. Example:

#include <inttypes.h>

uint8_t smallval;
int32_t longval;

printf("The hexadecimal value of smallval is " PRIx8
", the decimal value of longval is " PRId32 "\n",
smallval, longval);

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.14 <inttypes.h>: Integer Type conversions 45

macros for printf and scanf format specifiers

For C++, these are only included if __ STDC_LIMIT_MACROS is defined before in-
cluding <inttypes.h>.

* #definePRId8"d"

» #definePRIALEASTS8"d"
» #definePRIDFASTS8"d"

* #definePRIi8"i"

» #definePRIILEAST8"I"

* #definePRIIFAST8"{"

* #definePRId16"d"

* #definePRIDLEAST16"d"
o #definePRIDFAST16'd"
» #definePRIi16""

» #definePRIILEAST16""
* #definePRIIFAST16""

» #definePRId32"[d"

* #definePRIDLEAST32"|d"
* #definePRIDFAST32'ld"
» #definePRIi32"i"

* #definePRIILEAST32"li"
o #definePRIIFAST32"i"

» #definePRIDPTRPRIA16
» #definePRIIPTRPRIi16
« #definePRI08"0"

» #definePRIOLEAST8"0"
* #definePRIOFASTS8"0"

« #definePRIu8"u"

* #definePRIULEASTS8"U"
* #definePRIUFASTS8"u"

* #definePRIx8"x"

» #definePRIXLEAST8"X"
* #definePRIXFAST8"x"

» #definePRIX8"X"

» #definePRIXLEAST8"X"
* #definePRIXFAST8"X"

¢ #definePRIlo16"0"

* #definePRIOLEAST16"0"
¢ #definePRIOFAST16'0"
» #definePRIul16"u"

* #definePRIULEAST16"u"
o #definePRIUFAST16'u"

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

514

<inttypes.h>: Integer Type conversions

46

#definePRIx16"X"
#definePRIXLEAST16"X"
#definePRIXFAST16"x"
#definePRIX16"X"
#definePRIXLEAST16"X"
#definePRIXFAST16"X"
#definePRI032"|0"
#definePRIOLEAST32"l0"
#definePRIOFAST32'l0"
#definePRIu32"lu"
#definePRIULEAST32"Iu"
#definePRIUFAST32'|lu"
#definePRIx32"[x"
#definePRIXLEAST32"Ix"
#definePRIXFAST32"Ix"
#definePRIX32"IX"
#definePRIXLEAST32"IX"
#definePRIXFAST32"IX"
#definePRIOPTRPRI016
#definePRIUPTRPRIuU16
#definePRIXPTRPRIx16
#definePRIXPTRPRIX16
#defineSCNd16'd"
#defineSCNALEAST16'd"
#defineSCNAFAST16'd"
#defineSCNi16"i"
#defineSCNILEAST16""
#defineSCNIFAST16""
#defineSCNd32"ld"
#defineSCNdLEAST32'ld"
#defineSCNAFAST32'1d"
#defineSCNi32"[i"
#defineSCNILEAST32"li"
#defineSCNIFAST32"i"
#defineSCNdPTRSCNd16
#defineSCNIPTRSCNI16
#defineSCNo016"0"
#defineSCNoLEAST16'0"
#defineSCNOFAST16'0"
#defineSCNul6'u"”
#defineSCNULEAST16'u"
#defineSCNUFAST16'u"
#defineSCNx16"x"

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.14 <inttypes.h>: Integer Type conversions

47

* #defineSCNXLEAST16"X"
o #defineSCNXFAST16'X"

» #defineSCNo032'lo"

* #defineSCNoLEAST32'l0"
* #defineSCNoFAST32'l0"
» #defineSCNu32'lu"

¢ #defineSCNULEAST32'lu"
o #defineSCNuFAST32'lu”
o #defineSCNx32"Ix"

o #defineSCNxLEAST32"|x"
¢ #defineSCNxFAST32'Ix"
* #defineSCNoPTRSCNo16
¢ #defineSCNUPTRSCNul6
¢ #defineSCNxXPTRSCNXx16

Far pointers for memory access>64K
« typedefint32_tint_farptr_t
* typedefuint32_tuint_farptr_t

5.14.2 Define Documentation

5.14.2.1 #define PRId16 "d"

decimal printf format for int16_t

5.14.2.2 #define PRIM32 "Id"

decimal printf format for int32_t

5.14.2.3 #define PRId8 "d"

decimal printf format for int8_t

5.14.2.4 #define PRIDFAST16 "d"

decimal printf format for int_fast16_t

5.14.2.5 #define PRIDFAST32 "Id"

decimal printf format for int_fast32_t

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.14 <inttypes.h>: Integer Type conversions

48

5.14.2.6 #define PRIAFASTS "d"

decimal printf format for int_fast8 t

5.14.2.7 #define PRIDLEAST16 "d"

decimal printf format for int_least16_t

5.14.2.8 #define PRIALEAST32 "|d"

decimal printf format for int_least32_t

5.14.2.9 #define PRIALEASTS8 "d"

decimal printf format for int_least8_t

5.14.2.10 #define PRIDPTR PRId16

decimal printf format for intptr_t

5.14.2.11 #define PRIi16 "i"

integer printf format for int16_t

5.14.2.12 #define PRIi32 "Ii"

integer printf format for int32_t

5.14.2.13 #define PRIi8 "i"

integer printf format for int8_t

5.14.2.14 #define PRIIFAST16 "i"

integer printf format for int_fast16 _t

5.14.2.15 #define PRIIFAST32 "li"

integer printf format for int_fast32_t

5.14.2.16 #define PRIIFAST8 "i"

integer printf format for int_fast8_t

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.14 <inttypes.h>: Integer Type conversions

49

5.14.2.17 #define PRIILEAST16 "i"

integer printf format for int_least16_t

5.14.2.18 #define PRIILEAST32 "li"

integer printf format for int_least32_t

5.14.2.19 #define PRIILEAST8 "i"

integer printf format for int_least8_t

5.14.2.20 #define PRIIPTR PRIi16

integer printf format for intptr_t

5.14.2.21 #define PRI016 "0"

octal printf format for uint16_t

5.14.2.22 #define PRI032 "lo"

octal printf format for uint32_t

5.14.2.23 #define PRI08 "0"

octal printf format for uint8_t

5.14.2.24 #define PRIOFAST16 "0"

octal printf format for uint_fast16_t

5.14.2.25 #define PRIOFAST32 "lo"

octal printf format for uint_fast32_t

5.14.2.26 #define PRIOFASTS "0"

octal printf format for uint_fast8 t

5.14.2.27 #define PRIOLEAST16 "o"

octal printf format for uint_least16 _t

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.14 <inttypes.h>: Integer Type conversions

50

5.14.2.28 #define PRIOLEAST32 "lo"

octal printf format for uint_least32_t

5.14.2.29 #define PRIOLEASTS "o"

octal printf format for uint_least8_t

5.14.2.30 #define PRIOPTR PRI0o16

octal printf format for uintptr_t

5.14.2.31 #define PRIu16 "u"

decimal printf format for uint16_t

5.14.2.32 #define PRIu32 "lu"

decimal printf format for uint32_t

5.14.2.33 #define PRIu8 "u"

decimal printf format for uint8_t

5.14.2.34 #define PRIUFAST16 "u"

decimal printf format for uint_fast16_t

5.14.2.35 #define PRIUFAST32 "lu"

decimal printf format for uint_fast32_t

5.14.2.36 #define PRIUFASTS8 "u"

decimal printf format for uint_fast8 t

5.14.2.37 #define PRIULEAST16 "u"

decimal printf format for uint_least16_t

5.14.2.38 #define PRIULEAST32 "lu"

decimal printf format for uint_least32_t

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.14 <inttypes.h>: Integer Type conversions

51

5.14.2.39 #define PRIULEASTS "u"

decimal printf format for uint_least8_t

5.14.2.40 #define PRIUPTR PRIul6

decimal printf format for uintptr_t

5.14.2.41 #define PRIX16 "X"

uppercase hexadecimal printf format for uint16_t

5.14.2.42 #define PRIX16 "X"

hexadecimal printf format for uint16_t

5.14.2.43 #define PRIX32 "IX"

uppercase hexadecimal printf format for uint32_t

5.14.2.44 #define PRIX32 "Ix"

hexadecimal printf format for uint32_t

5.14.2.45 #define PRIX8 "X"

uppercase hexadecimal printf format for uint8_t

5.14.2.46 #define PRIX8 "x"

hexadecimal printf format for uint8_t

5.14.2.47 #define PRIXFAST16 "X"

uppercase hexadecimal printf format for uint_fast16 t

5.14.2.48 #define PRIXFAST16 "x"

hexadecimal printf format for uint_fast16_t

5.14.2.49 #define PRIXFAST32 "IX"

uppercase hexadecimal printf format for uint_fast32_t

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.14 <inttypes.h>: Integer Type conversions 52

5.14.2.50 #define PRIXFAST32 "Ix"

hexadecimal printf format for uint_fast32_t

5.14.2.51 #define PRIXFASTS "X"

uppercase hexadecimal printf format for uint_fast8_t

5.14.2.52 #define PRIXFAST8 "X"

hexadecimal printf format for uint_fast8_t

5.14.2.53 #define PRIXLEAST16 "X"

uppercase hexadecimal printf format for uint_least16_t

5.14.2.54 #define PRIXLEAST16 "X"

hexadecimal printf format for uint_least16 t

5.14.2.55 #define PRIXLEAST32 "IX"

uppercase hexadecimal printf format for uint_least32_t

5.14.2.56 #define PRIXLEAST32 "|x"

hexadecimal printf format for uint_least32_t

5.14.2.57 #define PRIXLEAST8 "X"

uppercase hexadecimal printf format for uint_least8 t

5.14.2.58 #define PRIXLEAST8 "X"

hexadecimal printf format for uint_least8 t

5.14.2.59 #define PRIXPTR PRIX16

uppercase hexadecimal printf format for uintptr_t

5.14.2.60 #define PRIXPTR PRIX16

hexadecimal printf format for uintptr_t

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.14 <inttypes.h>: Integer Type conversions

53

5.14.2.61 #define SCNd16 "d"

decimal scanf format for int16 t

5.14.2.62 #define SCNd32 "ld"

decimal scanf format for int32_t

5.14.2.63 #define SCNAFAST16 "d"

decimal scanf format for int_fast16_t

5.14.2.64 #define SCNdFAST32 "ld"

decimal scanf format for int_fast32_t

5.14.2.65 #define SCNALEAST16 "d"

decimal scanf format for int_least16 t

5.14.2.66 #define SCNALEAST32 "ld"

decimal scanf format for int_least32_t

5.14.2.67 #define SCNdPTR SCNd16

decimal scanf format for intptr_t

5.14.2.68 #define SCNi16 "i"

generic-integer scanf format for int16_t

5.14.2.69 #define SCNi32 "Ii"

generic-integer scanf format for int32_t

5.14.2.70 #define SCNiFAST16 "i"

generic-integer scanf format for int_fast16_t

5.14.2.71 #define SCNIFAST32 "li"

generic-integer scanf format for int_fast32_t

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.14 <inttypes.h>: Integer Type conversions

54

5.14.2.72 #define SCNILEAST16 "i"

generic-integer scanf format for int_least16_t

5.14.2.73 #define SCNILEAST32 "Ii"

generic-integer scanf format for int_least32_t

5.14.2.74 #define SCNIPTR SCNil6

generic-integer scanf format for intptr_t

5.14.2.75 #define SCNo16 "o"

octal scanf format for uint16_t

5.14.2.76 #define SCNo32 "lo"

octal scanf format for uint32_t

5.14.2.77 #define SCNoFAST16 "0"

octal scanf format for uint_fast16_t

5.14.2.78 #define SCNoOFAST32 "lo"

octal scanf format for uint_fast32_t

5.14.2.79 #define SCNoOLEAST16 "0"

octal scanf format for uint_least16 t

5.14.2.80 #define SCNoLEAST32 "lo"

octal scanf format for uint_least32_t

5.14.2.81 #define SCNoPTR SCNo016

octal scanf format for uintptr_t

5.14.2.82 #define SCNul6 "u"

decimal scanf format for uintl16_t

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.14 <inttypes.h>: Integer Type conversions

55

5.14.2.83 #define SCNu32 "lu"

decimal scanf format for uint32_t

5.14.2.84 #define SCNUFAST16 "u"

decimal scanf format for uint_fast16_t

5.14.2.85 #define SCNUFAST32 "lu"

decimal scanf format for uint_fast32_t

5.14.2.86 #define SCNULEAST16 "u"

decimal scanf format for uint_least16 _t

5.14.2.87 #define SCNULEAST32 "lu"

decimal scanf format for uint_least32_t

5.14.2.88 #define SCNuUPTR SCNul6

decimal scanf format for uintptr_t

5.14.2.89 #define SCNx16 "x"

hexadecimal scanf format for uint16_t

5.14.2.90 #define SCNx32 "Ix"

hexadecimal scanf format for uint32_t

5.14.2.91 #define SCNxFAST16 "X"

hexadecimal scanf format for uint_fast16 t

5.14.2.92 #define SCNxFAST32 "Ix"

hexadecimal scanf format for uint_fast32_t

5.14.2.93 #define SCNXLEAST16 "x"

hexadecimal scanf format for uint_least16 _t

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.15 <math.h>: Mathematics 56

5.14.2.94 #define SCNXLEAST32 "Ix"

hexadecimal scanf format for uint_least32_t

5.14.2.95 #define SCNXPTR SCNx16
hexadecimal scanf format for uintptr_t
5.14.3 Typedef Documentation
5.14.3.1 typedefnt32_tint farptr t

signed integer type that can hold a pointe64 KB

5.14.3.2 typedefiint32_t uint_farptr_t
unsigned integer type that can hold a pointeé4 KB

5.15 <math.h>: Mathematics

5.15.1 Detailed Description

#include <math.h>

This header file declares basic mathematics constants and functions.

Note:

In order to access the functions delcared herein, it is usually also required to addi-

tionally link against the libraryibm.a . See also the relatdehQ entry.

Defines

* #defineM_PI 3.141592653589793238462643
 #defineM_SQRT21.4142135623730950488016887

Functions

e doublecos(double _ x) ATTR_CONST
doublefabs(double _ x) _ ATTR_CONST__

doublefmod (double _ x, double _y) ATTR_CONST _
doublemodf(double __value, double _iptr)
doublesin(double _ x) ATTR_CONST
doublesqrt(double _ x) _ ATTR_CONST__

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.15 <math.h>: Mathematics 57

e doubletan(double _ x) ATTR_CONST__

« doublefloor (double _ x) ATTR_CONST

¢ doubleceil (double _ x) ATTR_CONST__

» doublefrexp (double __value, int__exp)

» doubleldexp(double __x,int__exp) _ ATTR_CONST__
e doubleexp(double _ x) ATTR_CONST

e doublecosh(double __ x) ATTR_CONST__

¢ doublesinh(double _ x) ATTR_CONST__

¢ doubletanh(double _ x) _ ATTR_CONST__

e doubleacos(double __ x) _ ATTR_CONST__

¢ doubleasin(double _ x) _ ATTR_CONST__

e doubleatan(double _ x) ATTR_CONST__

e doubleatan2(double __y, double _ x) _ ATTR_CONST__
e doublelog (double __ x) ATTR_CONST__

e doublelog10(double _ x) _ ATTR_CONST__

e doublepow (double __x, double __y) ATTR_CONST__
e intisnan(double __ x) _ ATTR_CONST__

e intisinf (double _ x) _ ATTR_CONST__

¢ doublesquargdouble __ x) _ ATTR_CONST___

5.15.2 Define Documentation

5.15.2.1 #define M_PI 3.141592653589793238462643

The constanpi .

5.15.2.2 #define M_SQRT2 1.4142135623730950488016887

The square root of 2.

5.15.3 Function Documentation

5.15.3.1 double acos (double x)

The acos()function computes the principal value of the arc cosing.oThe returned
value is in the range [0, pi] radians. A domain error occurs for arguments not in the
range [-1, +1].

5.15.3.2 double asin (double_x)

The asin() function computes the principal value of the arc sinexofThe returned
value is in the range [0, pi] radians. A domain error occurs for arguments not in the
range [-1, +1].

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.15 <math.h>: Mathematics 58

5.15.3.3 double atan (double X)

Theatan()function computes the principal value of the arc tangent.ofhe returned
value is in the range [0, pi] radians. A domain error occurs for arguments not in the
range [-1, +1].

5.15.3.4 double atan2 (double_y, double__ x)

The atan2()function computes the principal value of the arc tangent df x , using

the signs of both arguments to determine the quadrant of the return value. The returned
value is in the range [-pi, +pi] radians. If bothandy are zero, the global variable
errno is set toEDOM

5.15.3.5 double ceil (double x)

The ceil() function returns the smallest integral value greater than or equal éx-
pressed as a floating-point number.

5.15.3.6 double cos (double X)

Thecos()function returns the cosine af measured in radians.

5.15.3.7 double cosh (double Xx)

Thecosh()function returns the hyperbolic cosineof

5.15.3.8 double exp (double x)

Theexp()function returns the exponential valuexaf

5.15.3.9 double fabs (double_x)

Thefabs()function computes the absolute value of a floating-point number

5.15.3.10 double floor (double x)

Thefloor() function returns the largest integral value less than or equal ¢apressed
as a floating-point number.

5.15.3.11 double fmod (double_x, double__y)

The functionfmod() returns the floating-point remainderxf/ y .

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.15 <math.h>: Mathematics 59

5.15.3.12 double frexp (double valugint x __exp

The frexp() function breaks a floating-point number into a normalized fraction and an
integral power of 2. It stores the integer in tiné object pointed to bexp .

Thefrexp() function returns the value, such thak is a double with magnitude in the
interval [1/2, 1) or zero, andalue equalsx times 2 raised to the poweexp . If
value is zero, both parts of the result are zero.

5.15.3.13 intisinf (double__x)

The functionisinf() returns 1 if the argument is either positive or negative infinity,
otherwise 0.

5.15.3.14 intisnan (double_X)

The functionisnan()returns 1 if the argument represents a "not-a-number” (NaN)
object, otherwise 0.

5.15.3.15 double Idexp (double x, int __exp
Theldexp() function multiplies a floating-point number by an integral power of 2.
Theldexp() function returns the value of times 2 raised to the powexp .

If the resultant value would cause an overflow, the global variable errno is set to
ERANGE, and the value NaN is returned.

5.15.3.16 double log (double_x)
Thelog() function returns the natural logarithm of argumgnt

If the argument is less than or equal 0, a domain error will occur.

5.15.3.17 double log10 (double x)
Thelog10()function returns the logarithm of argumento base 10.

If the argument is less than or equal 0, a domain error will occur.

5.15.3.18 double modf (double_value doublex __iptr)

The modf() function breaks the argumewmtlue into integral and fractional parts,
each of which has the same sign as the argument. It stores the integral part as a double
in the object pointed to biptr

Themodf() function returns the signed fractional partvaflue .

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.16 <setjmp.h>: Non-local goto 60

5.15.3.19 double pow (double x, double__y)

The functionpow() returns the value of to the exponeny.

5.15.3.20 double sin (double_x)

Thesin() function returns the sine of, measured in radians.

5.15.3.21 double sinh (double x)

Thesinh() function returns the hyperbolic sine xf

5.15.3.22 double sqgrt (double_x)

Thesqrt()function returns the non-negative square root of

5.15.3.23 double square (double_x)

The functionsquare(yeturnsx * X.

Note:

This function does not belong to the C standard definition.

5.15.3.24 double tan (double_X)

Thetan()function returns the tangent &f measured in radians.

5.15.3.25 double tanh (double X)
Thetanh()function returns the hyperbolic tangentaf

5.16 <setjmp.h>: Non-local goto
5.16.1 Detailed Description

While the C language has the dreadgdo statement, it can only be used to jump to
a label in the same (local) function. In order to jump directly to another (non-local)
function, the C library provides thgetjmp()andlongjmp() functions. setjmp()and
longjmp() are useful for dealing with errors and interrupts encountered in a low-level
subroutine of a program.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.16 <setjmp.h>: Non-local goto 61

Note:

setjimp()andlongjmp() make programs hard to understand and maintain. If possi-
ble, an alternative should be used.

longjmp() can destroy changes made to global register variablesHseeo per-
manently bind a variable to a registgr?

For a very detailed discussion sétimp(Jlongjmp(), see Chapter 7 édfdvanced Pro-
gramming in the UNIX Environmeny W. Richard Stevens.

Example:

#include <setjmp.h>
jmp_buf env;
int main (void)

if (setjmp (env))

... handle error ...

}
while (1)

.. main processing loop which calls foo() some where ...
}

void foo (void)
.. blah, blah, blah ...
if (err)
{

longjmp (env, 1);

Functions

« int setimp(jmp_buf __ jmpb)

« void longimp (jmp_buf __jmpb, int __ret) _ ATTR_NORETURN__
5.16.2 Function Documentation

5.16.2.1 void longjmp (jmp_buf__jmph int __red

Non-local jump to a saved stack context.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.17 <stdint.h>: Standard Integer Types 62

#include <setjmp.h>

longjmp() restores the environment saved by the last calledfmp()with the corre-
sponding __jmpbargument. Aftetongjmp()is completed, program execution contin-
ues as if the corresponding call sétjmp()had just returned the value ret

Note:

longjmp() cannot cause O to be returned.ldhgjmp() is invoked with a second
argument of 0, 1 will be returned instead.

Parameters:

__jmpb Information saved by a previous call$etjmp()
__ret Value to return to the caller afetjmp()

Returns:

This function never returns.

5.16.2.2 intsetjmp (jmp_buf__jmpb

Save stack context for non-local goto.

#include <setjmp.h>

setjmp()saves the stack context/environment inmpbfor later use byongjmp(). The
stack context will be invalidated if the function which calleetjmp()returns.

Parameters:

__jmpb Variable of typejmp_buf which holds the stack information such that
the environment can be restored.

Returns:

setjimp() returns O if returning directly, and non-zero when returning from
longjmp()using the saved context.

5.17 <stdint.h>: Standard Integer Types

5.17.1 Detailed Description

#include <stdint.h>

Use [u]intN_t if you need exactly N bits.

Since these typedefs are mandated by the C99 standard, they are preferred over rolling
your own typedefs.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.17 <stdint.h>: Standard Integer Types 63

Limits of specified-width integer types

C++ implementations should define these macros only when _ STDC_LIMIT_-
MACROS is defined beforestdint.f> is included

o #defineINT8_MAX Ox7f

o #defineINT8_MIN (-INT8_MAX - 1)

o #defineUINT8_MAX (__CONCAT(INT8_MAX, U)*x 2U + 1U)

o #defineINT16_MAX Ox7fff

o #defineINT16_MIN (-INT16_MAX - 1)

o #defineUINT16_MAX (__CONCAT(INT16_MAX, U)x 2U + 1U)

o #defineINT32_MAX OxT7fffffffL

o #defineINT32_MIN (-INT32_MAX - 1L)

o #defineUINT32_MAX (__CONCAT(INT32_MAX, U)x 2UL + 1UL)
o #defineINT64_MAX OXTffffffffffffffLL

o #defineINT64_MIN (-INT64_MAX - 1LL)

 #defineUINT64_MAX (__CONCAT(INT64_MAX, U)x 2ULL + 1ULL)

Limits of minimum-width integer types

« #definelNT_LEAST8_MAX INT8_MAX

« #definelNT_LEAST8_MIN INT8_MIN

« #defineUINT_LEAST8_MAX UINT8_MAX

« #defineNT_LEAST16_MAX INT16_MAX

« #defineINT_LEAST16_MININT16_MIN

« #defineUINT_LEAST16_MAX UINT16_MAX
« #defineNT_LEAST32_MAX INT32_MAX

« #defineNT_LEAST32_MININT32_MIN

« #defineUINT_LEAST32_MAX UINT32_MAX
« #defineNT_LEAST64_MAX INT64_MAX

« #defineNT_LEAST64_MININT64_MIN

« #defineUINT_LEAST64_MAX UINT64_MAX

Limits of fastest minimum-width integer types

#defineINT_FAST8_MAXINT8_MAX
#defineINT_FAST8_MININT8_MIN
#defineUINT_FAST8_MAX UINT8_MAX
#defineINT_FAST16_MAXINT16_MAX
#defineINT_FAST16_MININT16_MIN
#defineUINT_FAST16_MAXUINT16_MAX
#defineINT_FAST32_MAXINT32_MAX

L]

L]

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.17 <stdint.h>: Standard Integer Types 64

#definelNT_FAST32_MININT32_MIN
#defineUINT_FAST32_MAXUINT32_MAX
#definelNT_FAST64_MAXINT64_MAX
#defineNT_FAST64_MININT64_MIN
#defineUINT_FAST64_MAXUINT64_MAX

Limits of integer types capable of holding object pointers

o #defineINTPTR_MAX INT16_MAX
o #defineINTPTR_MIN INT16_MIN
o #defineUINTPTR_MAX UINT16_MAX

Limits of greatest-width integer types

* #defineINTMAX_MAX INT64_MAX
o #defineINTMAX_MIN INT64_MIN
o #definetUINTMAX_MAX UINT64_MAX

Limits of other integer types

C++ implementations should define these macros only when __ STDC_LIMIT_-
MACROS is defined beforestdint.f> is included

#definePTRDIFF_MAXINT16_MAX
#definePTRDIFF_MININT16_MIN
#defineSIG_ATOMIC_MAX INT8_MAX
#defineSIG_ATOMIC_MIN INT8_MIN
#defineSIZE_MAX (__CONCAT(INT16_MAX, U))

Macros for integer constants
C++ implementations should define these macros only when __ STDC_CONSTANT _-
MACROS is defined beforestdint.hx> is included.

These definitions are valid for integer constants without suffix and for macros defined
as integer constant without suffix

L]

#definelNT8_C(value) ({nt8_t) value)
#defineUINT8_C(value) ((int8_ CONCAT(value, U))
#defineINT16_((value) value

#defineUINT16_(Q(value) _ CONCAT(value, U)
#defineINT32_((value) _ CONCAT(value, L)

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.17 <stdint.h>: Standard Integer Types 65

#defineUINT32_((value) _ CONCAT (value, UL)
#defineINT64_((value) __ CONCAT(value, LL)
#defineUINT64_(Q(value) _ CONCAT(value, ULL)
#defineINTMAX_C (value) _ CONCAT(value, LL)
#defineUINTMAX_C (value) _ CONCAT(value, ULL)

Exact-width integer types

Integer types having exactly the specified width

« typedef signed chant8_t

« typedef unsigned chaiint8_t

« typedef signed inint16_t

« typedef unsigned intint16_t

« typedef signed long inht32_t

« typedef unsigned long intint32_t

« typedef signed long long inht64 t

« typedef unsigned long long inint64 _t

Integer types capable of holding object pointers
These allow you to declare variables of the same size as a pointer.

* typedefintl6_tintptr_t
* typedefuintl6_tuintptr_t

Minimum-width integer types
Integer types having at least the specified width

¢ typedefint8_tint least8 t
 typedefuint8_tuint_least8 t

¢ typedefintl6_tint_leastl6 t
 typedefuintl6_tuint_least16 t
* typedefint32_tint_least32_t

* typedefuint32_tuint_least32_t
« typedefint64_tint_least64 t

« typedefuint64_tuint_least64 t

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.17 <stdint.h>: Standard Integer Types 66

Fastest minimum-width integer types
Integer types being usually fastest having at least the specified width

* typedefint8_tint fast8 t

« typedefuint8_tuint_fast8 t

« typedefintl6_tint fastl6 t

« typedefuintl6_tuint_fast16 t
« typedefint32_tint_fast32_t

« typedefuint32_tuint_fast32_t
« typedefint64_tint_fast64 t

« typedefuint64 _tuint_fast64 t

Greatest-width integer types

Types designating integer data capable of representing any value of any integer type in
the corresponding signed or unsigned category

« typedefinté4_tintmax_t
« typedefuint64_tuintmax_t

5.17.2 Define Documentation

5.17.2.1 #define INT16_C(value) value

define a constant of type int16 t

5.17.2.2 #define INT16_MAX Ox7fff

largest positive value an int16_t can hold.

5.17.2.3 #define INT16_MIN (-INT16_MAX - 1)

smallest negative value an intl6_t can hold.

5.17.2.4 #define INT32_C(value) _ CONCAT(value, L)

define a constant of type int32_t

5.17.2.5 #define INT32_MAX OXTfffffffL

largest positive value an int32_t can hold.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.17 <stdint.h>: Standard Integer Types

67

5.17.2.6 #define INT32_MIN (-INT32_MAX - 1L)

smallest negative value an int32_t can hold.

5.17.2.7 #define INT64_C(value) _ CONCAT(value, LL)

define a constant of type int64_t

5.17.2.8 #define INT64_MAX OX7fffffffffffLL

largest positive value an int64_t can hold.

5.17.2.9 #define INT64_MIN (-INT64_MAX - 1LL)

smallest negative value an int64_t can hold.

5.17.2.10 #define INT8_C(value) {(t8_t) value)

define a constant of type int8_t

5.17.2.11 #define INT8_MAX Ox7f

largest positive value an int8_t can hold.

5.17.2.12 #define INT8_MIN (-INT8_MAX - 1)

smallest negative value an int8_t can hold.

5.17.2.13 #define INT_FAST16_MAX INT16_MAX

largest positive value an int_fast16_t can hold.

5.17.2.14 #define INT_FAST16_MIN INT16_MIN

smallest negative value an int_fast16_t can hold.

5.17.2.15 #define INT_FAST32_MAX INT32_MAX

largest positive value an int_fast32_t can hold.

5.17.2.16 #define INT_FAST32_MIN INT32_MIN

smallest negative value an int_fast32_t can hold.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.17 <stdint.h>: Standard Integer Types 68

5.17.2.17 #define INT_FAST64_MAX INT64_MAX

largest positive value an int_fast64 _t can hold.

5.17.2.18 #define INT_FAST64_MIN INT64_MIN

smallest negative value an int_fast64_t can hold.

5.17.2.19 #define INT_FAST8_MAX INT8_MAX

largest positive value an int_fast8 t can hold.

5.17.2.20 #define INT_FAST8_MIN INT8_MIN

smallest negative value an int_fast8 t can hold.

5.17.2.21 #define INT_LEAST16_MAX INT16_MAX

largest positive value an int_least16_t can hold.

5.17.2.22 #define INT_LEAST16_MIN INT16_MIN

smallest negative value an int_least16_t can hold.

5.17.2.23 #define INT_LEAST32_MAX INT32_MAX

largest positive value an int_least32_t can hold.

5.17.2.24 #define INT_LEAST32_MIN INT32_MIN

smallest negative value an int_least32_t can hold.

5.17.2.25 #define INT_LEAST64_MAX INT64_MAX

largest positive value an int_least64_t can hold.

5.17.2.26 #define INT_LEAST64_MIN INT64_MIN

smallest negative value an int_least64 _t can hold.

5.17.2.27 #define INT_LEAST8_MAX INT8_MAX

largest positive value an int_least8 t can hold.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.17 <stdint.h>: Standard Integer Types

69

5.17.2.28 #define INT_LEAST8_MIN INT8_MIN

smallest negative value an int_least8 t can hold.

5.17.2.29 #define INTMAX_C(value) _ CONCAT(value, LL)

define a constant of type intmax_t

5.17.2.30 #define INTMAX_MAX INT64_MAX

largest positive value an intmax_t can hold.

5.17.2.31 #define INTMAX_MIN INT64_MIN

smallest negative value an intmax_t can hold.

5.17.2.32 #define INTPTR_MAX INT16_MAX

largest positive value an intptr_t can hold.

5.17.2.33 #define INTPTR_MIN INT16_MIN

smallest negative value an intptr_t can hold.

5.17.2.34 #define PTRDIFF_MAX INT16_MAX

largest positive value a ptrdiff_t can hold.

5.17.2.35 #define PTRDIFF_MIN INT16_MIN

smallest negative value a ptrdiff_t can hold.

5.17.2.36 #define SIG_ATOMIC_MAX INT8_MAX

largest positive value a sig_atomic_t can hold.

5.17.2.37 #define SIG_ATOMIC_MIN INT8_MIN

smallest negative value a sig_atomic_t can hold.

5.17.2.38 #define SIZE_MAX (__CONCAT(INT16_MAX, U))

largest value a size_t can hold.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.17 <stdint.h>: Standard Integer Types 70

5.17.2.39 #define UINT16_C(value) _ CONCAT(value, U)

define a constant of type uint16_t

5.17.2.40 #define UINT16_MAX (__ CONCAT(INT16_MAX, U)* 2U + 1U)

largest value an uint16_t can hold.

5.17.2.41 #define UINT32_C(value) _ CONCAT(value, UL)

define a constant of type uint32_t

5.17.2.42 #define UINT32_MAX (__CONCAT(INT32_MAX, U)* 2UL + 1UL)

largest value an uint32_t can hold.

5.17.2.43 #define UINT64_C(value) _ CONCAT(value, ULL)

define a constant of type uinté4_t

5.17.2.44 #define UINT64_MAX (__CONCAT(INT64_MAX, U) x 2ULL +
1ULL)

largest value an uint64_t can hold.

5.17.2.45 #define UINT8_C(value) (int8_t) _ CONCAT(value, U))

define a constant of type uint8_t

5.17.2.46 #define UINT8_MAX (__ CONCAT(INT8_MAX, U)* 2U + 1U)

largest value an uint8_t can hold.

5.17.2.47 #define UINT_FAST16_MAX UINT16_MAX

largest value an uint_fast16_t can hold.

5.17.2.48 #define UINT_FAST32_MAX UINT32_MAX

largest value an uint_fast32_t can hold.

5.17.2.49 #define UINT_FAST64_MAX UINT64_MAX

largest value an uint_fast64_t can hold.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.17 <stdint.h>: Standard Integer Types

71

5.17.2.50 #define UINT_FAST8_MAX UINT8_MAX

largest value an uint_fast8 t can hold.

5.17.2.51 #define UINT_LEAST16_MAX UINT16_MAX

largest value an uint_least16_t can hold.

5.17.2.52 #define UINT_LEAST32_MAX UINT32_MAX

largest value an uint_least32_t can hold.

5.17.2.53 #define UINT_LEAST64_MAX UINT64_MAX

largest value an uint_least64_t can hold.

5.17.2.54 #define UINT_LEAST8_MAX UINT8_MAX

largest value an uint_least8_t can hold.

5.17.2.55 #define UINTMAX_C(value) _ CONCAT(value, ULL)

define a constant of type uintmax_t

5.17.2.56 #define UINTMAX_MAX UINT64_MAX

largest value an uintmax_t can hold.

5.17.2.57 #define UINTPTR_MAX UINT16_MAX

largest value an uintptr_t can hold.

5.17.3 Typedef Documentation

5.17.3.1 typedef signed inint16_t
16-bit signed type.

5.17.3.2 typedef signed long inint32_t
32-bit signed type.

5.17.3.3 typedef signed long long inht64_t
64-bit signed type.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.17 <stdint.h>: Standard Integer Types

72

5.17.3.4 typedef signed chaint8 t
8-bit signed type.

5.17.3.5 typedefntl6 tint fastl6 t

fastest signed int with at least 16 bits.

5.17.3.6 typedefnt32_tint fast32 t

fastest signed int with at least 32 bits.

5.17.3.7 typedefnt64 tint fast64 t

fastest signed int with at least 64 bits.

5.17.3.8 typedefnt8_tint_fast8_t

fastest signed int with at least 8 bits.

5.17.3.9 typedefntl6 tint leastl6 t

signed int with at least 16 bits.

5.17.3.10 typedeint32_tint least32_t

signed int with at least 32 bits.

5.17.3.11 typedeint64 tint least64 t
signed int with at least 64 bits.

5.17.3.12 typedeint8_tint least8 t

signed int with at least 8 bits.

5.17.3.13 typedeint64 tintmax_t

largest signed int available.

5.17.3.14 typedeintl6_tintptr_t
Signed pointer compatible type.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.17 <stdint.h>: Standard Integer Types

73

5.17.3.15 typedef unsigned intiint16_t
16-bit unsigned type.

5.17.3.16 typedef unsigned long intint32_t
32-bit unsigned type.

5.17.3.17 typedef unsigned long long intint64 _t
64-bit unsigned type.

5.17.3.18 typedef unsigned chanint8_t
8-bit unsigned type.

5.17.3.19 typedetiintl6_t uint_fast16 t

fastest unsigned int with at least 16 bits.

5.17.3.20 typedetiint32_t uint fast32_t

fastest unsigned int with at least 32 bits.

5.17.3.21 typedetfiint64_t uint_fast64 t

fastest unsigned int with at least 64 bits.

5.17.3.22 typedetiint8_t uint_fast8 t

fastest unsigned int with at least 8 bits.

5.17.3.23 typedetiintl6_t uint leastl6 t

unsigned int with at least 16 bits.

5.17.3.24 typedetiint32_t uint_least32_t

unsigned int with at least 32 bits.

5.17.3.25 typedetiint64_t uint_least64 t

unsigned int with at least 64 bits.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.18 <stdio.h>: Standard 10 facilities 74

5.17.3.26 typedefiint8_t uint_least8 t

unsigned int with at least 8 bits.

5.17.3.27 typedetiint64_t uintmax_t

largest unsigned int available.

5.17.3.28 typedetiint16_t uintptr_t

Unsigned pointer compatible type.

5.18 <stdio.h>: Standard 10 facilities

5.18.1 Detailed Description

#include <stdio.h>

Introduction to the Standard IO facilities This file declares the standard 10 facili-

ties that are implemented avr-libc . Due to the nature of the underlying hardware,
only alimited subset of standard 10 is implemented. There is no actual file implementa-
tion available, so only device IO can be performed. Since there’s no operating system,
the application needs to provide enough details about their devices in order to make
them usable by the standard IO facilities.

Due to space constraints, some functionality has not been implemented at all (like some
of theprintf conversions that have been left out). Nevertheless, potential users of
this implementation should be warned: firantf andscanf families of functions,
although usually associated with presumably simple things like the famous "Hello,
world!" program, are actually fairly complex which causes their inclusion to eat up

a fair amount of code space. Also, they are not fast due to the nature of interpreting
the format string at run-time. Whenever possible, resorting to the (sometimes non-
standard) predetermined conversion facilities that are offered by avr-libc will usually
cost much less in terms of speed and code size.

Tunable options for code size vs. feature setIn order to allow programmers a code
size vs. functionality tradeoff, the functiariprintf() which is the heart of the printf
family can be selected in different flavours using linker options. See the documentation
of vfprintf() for a detailed description. The same appliesferanf()and thescanf

family of functions.

Outline of the chosen APl The standard strearstdin , stdout , andstderr are
provided, but contrary to the C standard, since avr-libc has no knowledge about appli-
cable devices, these streams are not already pre-initialized at application startup. Also,

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.18 <stdio.h>: Standard 10 facilities 75

since there is no notion of "file" whatsoever to avr-libc, there is no fundtpen()

that could be used to associate a stream to some device.n{(®Bed.) Instead, the
functionfdevopen() is provided to associate a stream to a device, where the device
needs to provide a function to send a character, to receive a character, or both. There
is no differentiation between "text" and "binary" streams inside avr-libc. Chargater

is sent literally down to the devicefsut() function. If the device requires a carriage
return (\r) character to be sent before the linefeedpit) routine must implement

this (seenote 9.

As an alternative method fdevopen() the macrddev_setup_stream(hight be used
to setup a user-supplied FILE structure.

It should be noted that the automatic conversion of a newline character into a carriage
return - newline sequence breaks binary transfers. If binary transfers are desired, no
automatic conversion should be performed, but instead any string that aims to issue a
CR-LF sequence must us&r \n" explicitly.

For convenience, the first call tldlevopen() that opens a stream for reading

will cause the resulting stream to be aliasedstdin . Likewise, the first call to
fdevopen() that opens a stream for writing will cause the resulting stream to be
aliased to bothstdout , andstderr . Thus, if the open was done with both, read
and write intent, all three standard streams will be identical. Note that these aliases are
indistinguishable from each other, thus calliictpse() on such a stream will also
effectively close all of its aliases¢te 3.

It is possible to tie additional user data to a stream, uileyg_set udata()The back-

end put and get functions can then extract this user data fasagget udata(and act
appropriately. For example, a single put function could be used to talk to two different
UARTSs that way, or the put and get functions could keep internal state between calls
there.

Format strings in flash ROM All the printf andscanf family functions come

in two flavours: the standard name, where the format string is expected to be in SRAM,
as well as a version with the suffix "_P" where the format string is expected to reside
in the flash ROM. The maciBSTR(explained in<avr/pgmspace:x: Program Space
String Utilities) becomes very handy for declaring these format strings.

Running stdio without malloc() By default,fdevopen()as well as the floating-point
versions of the printf and scanf family requimaalloc(). As this is often not desired in
the limited environment of a microcontroller, an alternative option is provided to run
completely withoumalloc().

The macrddev_setup_streami$ provided to prepare a user-supplied FILE buffer for
operation with stdio. If floating-point operation is desired, a user-supplied buffer can as
well be passed for the internal buffering for the floating-point numbers (and processing
of %[scanf data).

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.18 <stdio.h>: Standard 10 facilities 76

Example

#include <stdio.h>
static int uart_putchar(char ¢, FILE *stream);

static FILE mystdout = FDEV_SETUP_STREAM(uart_putchar, NULL,
_FDEV_SETUP_WRITE);

static int
uart_putchar(char c, FILE *stream)

{

if (c =="n)

uart_putchar(\r’, stream);
loop_until_bit_is_set(UCSRA, UDRE);
UDR = c;
return O;

}

int
main(void)

init_uart();
stdout = &mystdout;
printf("Hello, world!\n");

return 0O;

}

This example uses the initializer forflDEV_SETUP_STREAM(rather than the
function-likefdev_setup_stream(3o all data initialization happens during C start-up.

If streams initialized that way are no longer needed, they can be destroyed by first
calling the macrddev_close()and then destroying the object itself. No calf¢tose()
should be issued for these streams. While calidhgse()itself is harmless, it will cause

an undefined reference fi@e()and thus cause the linker to link the malloc module into
the application.

Notes

Note 1:

It might have been possible to implement a device abstraction that is compatible
with fopen() but since this would have required to parse a string, and to take all

the information needed either out of this string, or out of an additional table that

would need to be provided by the application, this approach was not taken.

Note 2:

This basically follows the Unix approach: if a device such as a terminal needs
special handling, it is in the domain of the terminal device driver to provide this

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.18 <stdio.h>: Standard 10 facilities 77

functionality. Thus, a simple function suitable mst() for fdevopen() that
talks to a UART interface might look like this:

int
uart_putchar(char c, FILE *stream)

if (c =="n")

uart_putchar('\r’);
loop_until_bit_is_set(UCSRA, UDRE);
UDR = c;
return 0O;

Note 3:

This implementation has been chosen because the cost of maintaining an alias
is considerably smaller than the cost of maintaining full copies of each stream.
Yet, providing an implementation that offers the complete set of standard
streams was deemed to be useful. Not only that wriprigtf() instead of
fprintf(mystream, ...) saves typing work, but since avr-gcc needs to re-
sort to pass all arguments of variadic functions on the stack (as opposed to passing
them in registers for functions that take a fixed number of parameters), the ability
to pass one parameter less by implystdin ~ will also save some execution time.

Defines

* #defineFILE struct __file

 #definestdin(__iob[0])

« #definestdout(__iob[1])

« #definestderr(__iob[2])

* #defineEOF(-1)

 #definefdev_set udafatream, u) do { (stream}> udata = u; } while(0)
 #definefdev_get udai@tream) ((stream)- udata)
« #definefdev_setup_streafstream, put, get, rwflag)
« #define FDEV_SETUP_READ_SRD

« #define_FDEV_SETUP_WRITE _SWR

« #define_FDEV_SETUP_RW__SRO__SWR)

« #define FDEV_ERR(-1)

« #define_FDEV_EOR(-2)

« #defineFDEV_SETUP_STREANput, get, rwflag)
 #definefdev_clos€)

» #defineputq__c, __ stream) fputc(__c, __ stream)
« #defineputchat__ c) fputc(__c, stdout)

« #definegetd _stream) fgetc(__stream)

« #definegetchaf) fgetc(stdin)

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.18 <stdio.h>: Standard 10 facilities 78

Functions

« int fclose(FILE x__stream)

e int vfprintf (FILE x__stream, const char _fmt, va_list __ap)

« int vfprintf_P (FILE x__stream, const char__fmt, va_list _ap)

 intfputc(int __c, FILEx__stream)

« int printf (const chas__fmt,...)

e int printf_P(const chak__fmt,...)

« int vprintf (const chak__fmt, va_list_ap)

e int sprintf(charx__s, const chat __fmt,...)

* int sprintf_P(charx__s, const chaf__fmt,...)

« int snprintf(charx__s, size_ t__n, constchar_fmt,...)

e int snprintf_P(charx__s, size_ t __n, const char_fmt,...)

e int vsprintf(char«__s, const chat__fmt, va_list ap)

« intvsprintf_P(charx__s, const chat__fmt, va_list ap)

e intvsnprintf(charx__s, size_t__n, const char_fmt, va_list ap)

e intvsnprintf_P(char«__s, size_t__n, const char_fmt, va_list ap)

« int fprintf (FILE x__stream, const char__fmt,...)

* int fprintf_P (FILE x__stream, const char__fmt,...)

« int fputs(const chak__str, FILEx__stream)

« int fputs_P(const chak__str, FILEx__stream)

« int puts(const chax__str)

« int puts_P(const chak__str)

 size_tfwrite (const voidx__ ptr, size t _ size, size t __nmemb, FIKE -
stream)

« int fgetc(FILE *__stream)

e intungetc(int __c, FILEx__stream)

 charx fgets(charx__str, int __size, FILE__stream)

e charx gets(charx__str)

 size tfread(void x__ ptr, size_t __ size, size t __nmemb, FILE stream)

« void clearerr(FILE x__stream)

« int feof (FILE x__stream)

« int ferror (FILE % __stream)

e int vfscanf(FILE x__stream, const char _fmt, va_list __ap)

« intvfscanf_P(FILE x__stream, const char fmt, va_list __ap)

« int fscanf(FILE *x__stream, const char_fmt,...)

« int fscanf_P(FILE x__stream, const char_fmt,...)

« int scanf(const char__ fmt,...)

 int scanf_Rconst chax__fmt,...)

« intvscanf(const chax__fmt, va_list__ap)

« int sscanflconst chax__ buf, const chax__fmt,...)

 intsscanf_Rconst chax__ buf, const chax__ fmt,...)

« int fflush (FILE xstream)

 FILE x fdevopen(int(xput)(char, FILEx), int(xget)(FILE x))

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.18 <stdio.h>: Standard 10 facilities 79

5.18.2 Define Documentation

5.18.2.1 #define FDEV_EOF (-2)
Return code for an end-of-file condition during device read.

To be used in the get function &fevopen()

5.18.2.2 #define _FDEV_ERR (-1)
Return code for an error condition during device read.

To be used in the get function &fevopen()

5.18.2.3 #define FDEV_SETUP_READ _ SRD

fdev_setup_streamyith read intent

5.18.2.4 #define_FDEV_SETUP_RW (__SRD SWR)

fdev_setup_streamyith read/write intent

5.18.2.5 #define _FDEV_SETUP_WRITE __SWR

fdev_setup_streamg)ith write intent

5.18.2.6 #define EOF (-1)

EOFdeclares the value that is returned by various standard 10 functions in case of an
error. Since the AVR platform (currently) doesn’t contain an abstraction for actual files,
its origin as "end of file" is somewhat meaningless here.

5.18.2.7 #define fdev_close()

This macro frees up any library resources that might be associatectngdmm . It
should be called istream is no longer needed, right before the application is going
to destroy thestream object itself.

(Currently, this macro evaluates to nothing, but this might change in future versions of
the library.)

5.18.2.8 #define fdev_get udata(stream) ((stream} udata)

This macro retrieves a pointer to user defined data from a FILE stream object.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.18 <stdio.h>: Standard 10 facilities 80

5.18.2.9 #define fdev_set udata(stream, u) do { (stream) udata = u; } while(0)

This macro inserts a pointer to user defined data into a FILE stream object.

The user data can be useful for tracking state in the put and get functions supplied to
thefdevopen()function.

5.18.2.10 #define FDEV_SETUP_STREAM(put, get, rwflag)
Initializer for a user-supplied stdio stream.

This macro acts similar tilev_setup_stream(put it is to be used as the initializer of
a variable of type FILE.

The remaining arguments are to be used as explainttin setup_stream()

5.18.2.11 #define fdev_setup_stream(stream, put, get, rwflag)
Setup a user-supplied buffer as an stdio stream.

This macro takes a user-supplied buftieam , and sets it up as a stream that is valid
for stdio operations, similar to one that has been obtained dynamicallyidi@rpen()
The buffer to setup must be of type FILE.

The argumentput andget are identical to those that need to be passédewopen()
Therwflag argument can take one of the values _FDEV_SETUP_READ, FDEV_-
SETUP_WRITE, or _FDEV_SETUP_RW, for read, write, or read/write intent, respec-
tively.

Note:

No assignments to the standard streams will be performéddyy setup_stream()
If standard streams are to be used, these need to be assigned by the user. See also
underRunning stdio without malloc()

5.18.2.12 #define FILE struct __file

FILE is the opaque structure that is passed around between the various standard 10
functions.

5.18.2.13 #define getc(__stream) fgetc(__stream)

The macragetc used to be a "fast" macro implementation with a functionality iden-
tical to fgetc() For space constraints, awvr-libc | it is just an alias fofgetc

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.18 <stdio.h>: Standard 10 facilities 81

5.18.2.14 #define getchar(void) fgetc(stdin)

The macrayetchar reads a character frogtdin . Return values and error handling
is identical tofgetc().

5.18.2.15 #define putc(__c, __stream) fputc(__c, _ stream)

The macrgoutc used to be a "fast" macro implementation with a functionality iden-
tical to fputc(). For space constraints, awr-libc | it is just an alias fofputc

5.18.2.16 #define putchar(__c) fputc(__c, stdout)

The macrgoutchar sends character to stdout

5.18.2.17 #define stderr (__iob[2])
Stream destined for error output. Unless specifically assigned, identistaldot

If stderr should point to another stream, the result of anoftievopen() must
be explicitly assigned to it without closing the previaiderr (since this would also
closestdout).

5.18.2.18 #define stdin (__iob[0])

Stream that will be used as an input stream by the simplified functions that don’t take
astream argument.

The first stream opened with read intent usfdgvopen() will be assigned to
stdin

5.18.2.19 #define stdout (__iob[1])

Stream that will be used as an output stream by the simplified functions that don'’t take
astream argument.

The first stream opened with write intent usidgvopen() will be assigned to both,
stdin , andstderr

5.18.3 Function Documentation

5.18.3.1 void clearerr (FILE « __stream

Clear the error and end-of-file flags stfeam .

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.18 <stdio.h>: Standard 10 facilities 82

5.18.3.2 intfclose (FILEx __ stream
This function closestream , and disallows and further 10 to and from it.

When usingdevopen()}to setup the stream, a call tdose()is needed in order to free
the internal resources allocated.

If the stream has been set up usifdev_setup_stream(pr FDEV_SETUP_-
STREAM(), usefdev_close(jnstead.

It currently always returns O (for success).

5.18.3.3 FILEx fdevopen (int(x)(char, FILE) put, int(x)(FILE =) ged
This function is a replacement féwpen()

It opens a stream for a device where the actual device implementation needs to be
provided by the application. If successful, a pointer to the structure for the opened
stream is returned. Reasons for a possible failure currently include that neither the
put northeget argument have been provided, thus attempting to open a stream with
no 10 intent at all, or that insufficient dynamic memory is available to establish a new
stream.

If the put function pointer is provided, the stream is opened with write intent. The
function passed asut shall take two arguments, the first a character to write to the
device, and the second a pointer to FILE, and shall return O if the output was successful,
and a nonzero value if the character could not be sent to the device.

If the get function pointer is provided, the stream is opened with read intent. The
function passed aget shall take a pointer to FILE as its single argument, and return
one character from the device, passed aman type. If an error occurs when trying

to read from the device, it shall returiFDEV_ERRIf an end-of-file condition was
reached while reading from the devicd&;sDEV_EOFshall be returned.

If both functions are provided, the stream is opened with read and write intent.

The first stream opened with read intent is assignetidim , and the first one opened
with write intent is assigned to bothtdout andstderr

fdevopen(usescalloc() (und thusmalloc() in order to allocate the storage for the new
stream.

Note:

If the macro __ STDIO_FDEVOPEN_COMPAT_12 is declared before including
<stdio.h>, a function prototype fofdevopen()will be chosen that is backwards
compatible with avr-libc version 1.2 and before. This is solely intented for pro-
viding a simple migration path without the need to immediately change all source
code. Do not use for new code.

5.18.3.4 intfeof (FILEx __ stream

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.18 <stdio.h>: Standard 10 facilities 83

Test the end-of-file flag aftream . This flag can only be cleared by a calldearerr()

5.18.3.5 intferror (FILE * __stream

Test the error flag aftream . This flag can only be cleared by a calldearerr()

5.18.3.6 int fflush (FILE * stream)
Flushstream .

This is a null operation provided for source-code compatibility only, as the standard 1O
implementation currently does not perform any buffering.

5.18.3.7 intfgetc (FILEx __ stream

The functionfgetc reads a character frostream . It returns the character, &OF
in case end-of-file was encountered or an error occurred. The rotgioi€sor ferror()
must be used to distinguish between both situations.

5.18.3.8 chax fgets (charx __str, int __size FILE __streamn)

Read at mossize - 1 bytes fromstream , until a newline character was encoun-
tered, and store the characters in the buffer pointed tetby. Unless an error was
encountered while reading, the string will then be terminated witlua character.

If an error was encountered, the function returns NULL and sets the error flag of
stream , which can be tested usirfgrror(). Otherwise, a pointer to the string will
be returned.

5.18.3.9 intfprintf (FILE x __streamconst charx __fmt ...

The functionfprintf performs formatted output tstream . Seevfprintf()
for details.

5.18.3.10 intfprintf_P (FILE % __ streamconst charx __ fmt, ..)

Variant offprintf() that uses &t string that resides in program memory.

5.18.3.11 intfputc (int__¢ FILE x __ stream

The functionfputc sends the character(though given as typmt) to stream . It
returns the character, @OFin case an error occurred.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.18 <stdio.h>: Standard 10 facilities 84

5.18.3.12 intfputs (constchar __ str, FILE * __ strean)
Write the string pointed to bgtr to streanstream .

Returns 0 on success and EOF on error.

5.18.3.13 intfputs_P (constchax __ str, FILE * __ stream)

Variant offputs()wherestr resides in program memory.

5.18.3.14 size_t fread (voidk __ ptr, size_t__size size_t__nmemb FILE * __ -
strean)

Readnmembobjects,size bytes each, fronstream , to the buffer pointed to by
ptr .

Returns the number of objects successfully read, inmembunless an input error
occured or end-of-file was encounteréebf() andferror() must be used to distinguish
between these two conditions.

5.18.3.15 intfscanf (FILEx __streamconst charx __fmt, ...)
The functionfscanf performs formatted input, reading the input data fretneam .

Seevfscanf()for details.

5.18.3.16 intfscanf P (FILEx __ streamconst charx _ fmt ..)

Variant offscanf()using afmt string in program memory.

5.18.3.17 size_t fwrite (const voig __ ptr, size_t__sizesize_t__nmemBFILE x
__stream

Write nmembobjects,size bytes each, tatream . The first byte of the first object
is referenced bytr .

Returns the number of objects successfully written, nreembunless an output error
occured.

5.18.3.18 chax gets (charx __stp

Similar tofgets()except that it will operate on streastdin , and the trailing newline
(if any) will not be stored in the string. Itis the caller’s responsibility to provide enough
storage to hold the characters read.

5.18.3.19 int printf (const charx __ fmt, ..)

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.18 <stdio.h>: Standard 10 facilities 85

The function printf performs formatted output to streamstderr . See
viprintf() for details.

5.18.3.20 int printf_P (const charx __ fmt, ..)

Variant of printf() that uses &mt string that resides in program memaory.

5.18.3.21 int puts (const chak __stp)

Write the string pointed to bgtr , and a trailing newline character, $tdout

5.18.3.22 intputs_P (constchax __ stn

Variant of puts()wherestr resides in program memory.

5.18.3.23 int scanf (const chax __fmt, ...
The functionscanf performs formatted input from streastdin

Seevfscanf()for details.

5.18.3.24 int scanf_P (const chaf _ fmt, ..)

Variant ofscanf()wherefmt resides in program memory.

5.18.3.25 intsnprintf (charx s size_t__n,constcharx _ fmt, ..)

Like sprintf() , but instead of assuming to be of infinite size, no more tham
characters (including the trailing NUL character) will be convertesl.to

Returns the number of characters that would have been writtenitdhere were
enough space.

5.18.3.26 intsnprintf_P (charx s size t n,constcharx __ fmt, ..)

Variant ofsnprintf() that uses &mt string that resides in program memory.

5.18.3.27 int sprintf (charx __§ const charx __fmt, ..)

Variant of printf() that sends the formatted characters to stsing

5.18.3.28 intsprintf_P (charx s constcharx __ fmt, ..)

Variant of sprintf() that uses &t string that resides in program memory.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.18 <stdio.h>: Standard 10 facilities 86

5.18.3.29 int sscanf (const char __ buf, const charx __ fmt, ..)

The functionsscanf performs formatted input, reading the input data from the buffer
pointed to bybuf .

Seevfscanf()for details.

5.18.3.30 intsscanf P (const char__ buf const charx __ fmt, ..)

Variant ofsscanf(using afmt string in program memory.

5.18.3.31 intungetc (int__¢ FILE % __strean)

Theungetc(function pushes the characte(converted to an unsigned char) back onto
the input stream pointed to tstream . The pushed-back character will be returned
by a subsequent read on the stream.

Currently, only a single character can be pushed back onto the stream.

Theungetc()function returns the character pushed back after the conversi&@Qeif
the operation fails. If the value of the argumentharacter equal&OF, the operation
will fail and the stream will remain unchanged.

5.18.3.32 int vfprintf (FILE * __ streamconst charx __ fmt va_list__ap

viprintf is the central facility of therintf ~ family of functions. It outputs values
to stream under control of a format string passedfint . The actual values to print
are passed as a variable argumentdfst

viprintf returns the number of characters writtensteeam , or EOFin case of
an error. Currently, this will only happen stream has not been opened with write
intent.

The format string is composed of zero or more directives: ordinary characters (not
99, which are copied unchanged to the output stream; and conversion specifications,
each of which results in fetching zero or more subsequent arguments. Each conversion
specification is introduced by tBécharacter. The arguments must properly correspond
(after type promotion) with the conversion specifier. After ¥hehe following appear

in sequence:

« Zero or more of the following flags:

— # The value should be converted to an "alternate form". For c, d, i, s, and
u conversions, this option has no effect. For o conversions, the precision of
the number is increased to force the first character of the output string to
a zero (except if a zero value is printed with an explicit precision of zero).
For x and X conversions, a hon-zero result has the string ‘0x’ (or ‘0X’ for
X conversions) prepended to it.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.18

<stdio.h>: Standard 10 facilities 87

— 0 (zero) Zero padding. For all conversions, the converted value is padded
on the left with zeros rather than blanks. If a precision is given with a
numeric conversion (d, i, o, u, i, X, and X), the 0 flag is ignored.

— - A negative field width flag; the converted value is to be left adjusted on
the field boundary. The converted value is padded on the right with blanks,
rather than on the left with blanks or zeros. A - overrides a 0 if both are
given.

— "’ (space) A blank should be left before a positive number produced by a
signed conversion (d, or i).

— + A sign must always be placed before a number produced by a signed
conversion. A + overrides a space if both are used.

An optional decimal digit string specifying a minimum field width. If the con-
verted value has fewer characters than the field width, it will be padded with
spaces on the left (or right, if the left-adjmshent flag has been given) to fill out
the field width.

An optional precision, in the form of a period . followed by an optional digit
string. If the digit string is omitted, the precision is taken as zero. This gives the
minimum number of digits to appear for d, i, 0, u, x, and X conversions, or the
maximum number of characters to be printed from a string foonversions.

An optionall length modifier, that specifies that the argument for the d, i, o, u,
X, or X conversion is dlong int" rather tharint .

A character that specifies the type of conversion to be applied.

The conversion specifiers and their meanings are:

L]

diouxX The int (or appropriate variant) argument is converted to signed decimal
(d and i), unsigned octal (0), unsigned decimal (u), or unsigned hexadecimal
(x and X) notation. The letters "abcdef" are used for x conversions; the letters
"ABCDEF" are used for X conversions. The precision, if any, gives the minimum
number of digits that must appear; if the converted value requires fewer digits, it
is padded on the left with zeros.

p Thevoid xargumentistaken as an unsigned integer, and converted similarly
as a%#xcommand would do.

¢ Theint argumentis converted to dansigned char" , and the resulting
character is written.

s The"char «" argument is expected to be a pointer to an array of character
type (pointer to a string). Characters from the array are written up to (but not
including) a terminating NUL character; if a precision is specified, no more than
the number specified are written. If a precision is given, no null character need
be present; if the precision is not specified, or is greater than the size of the array,
the array must contain a terminating NUL character.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.18 <stdio.h>: Standard 10 facilities 88

* %A %is written. No argument is converted. The complete conversion specifica-
tion is "%%".

« eE The double argument is rounded and converted in the format
"[[]d.ddde sdd" where there is one digit before the decimal-point charac-
ter and the number of digits after it is equal to the precision; if the precision
is missing, it is taken as 6; if the precision is zero, no decimal-point character
appears. ArkE conversion uses the lett&’ (rather thane’) to introduce
the exponent. The exponent always contains two digits; if the value is zero, the
exponent is 00.

» fF The double argument is rounded and converted to decimal notation in the
format "[-]ddd.ddd" , Where the number of digits after the decimal-point
character is equal to the precision specification. If the precision is missing, it is
taken as 6; if the precision is explicitly zero, no decimal-point character appears.
If a decimal point appears, at least one digit appears before it.

¢ gG The double argument is converted in styler e (or F or E for G conver-
sions). The precision specifies the number of significant digits. If the precision
is missing, 6 digits are given; if the precision is zero, it is treated as 1. Stige
used if the exponent from its conversion is less than -4 or greater than or equal to
the precision. Trailing zeros are removed from the fractional part of the result; a
decimal point appears only if it is followed by at least one digit.

« S Similar to thes format, except the pointer is expected to point to a program-
memory (ROM) string instead of a RAM string.

In no case does a non-existent or small field width cause truncation of a numeric field;
if the result of a conversion is wider than the field width, the field is expanded to contain
the conversion result.

Since the full implementation of all the mentioned features becomes fairly large, three
different flavours ofvfprintf() can be selected using linker options. The defait
printf() implements all the mentioned functionality except floating point conversions.

A minimized version ofvfprintf() is available that only implements the very basic in-
teger and string conversion facilities, but none of the additional options that can be
specified using conversion flags (these flags are parsed correctly from the format spec-
ification, but then simply ignored). This version can be requested using the following
compiler options

-WI,-u,vfprintf -lprintf_min

If the full functionality including the floating point conversions is required, the follow-
ing options should be used:

-WI,-u,vfprintf -lprintf_flt -Im

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.18 <stdio.h>: Standard 10 facilities 89

Limitations:

» The specified width and precision can be at most 127.

« For floating-point conversions, trailing digits will be lost if a number close to
DBL_MAX is converted with a precisior O.

5.18.3.33 int vfprintf_P (FILE % __streamconst charx __fmt, va_list__ap

Variant ofvfprintf() that uses &t string that resides in program memory.

5.18.3.34 int vfscanf (FILEx __streamconst charx __fmt va_list__ap
Formatted input. This function is the heart of $wanf family of functions.

Characters are read frostream and processed in a way describedfing . Conver-
sion results will be assigned to the parameters passeapvia

The format stringmt is scanned for conversion specifications. Anything that doesn’t
comprise a conversion specification is taken as text that is matched literally against
the input. White space in the format string will match any white space in the data
(including none), all other characters match only itself. Processing is aborted as soon as
the data and format string no longer match, or there is an error or end-of-file condition
onstream .

Most conversions skip leading white space before starting the actual conversion.

Conversions are introduced with the charaéterPossible options can follow ti¢é:

¢ ax indicating that the conversion should be performed but the conversion result
is to be discarded; no parameters will be processed &pm

« the characteh indicating that the argument is a pointerdioort int (rather
thanint),

« the charactel indicating that the argument is a pointerlemg int (rather
thanint , for integer type conversions), or a pointerdouble (for floating
point conversions).

In addition, a maximal field width may be specified as a nonzero positive decimal
integer, which will restrict the conversion to at most this many characters from the
input stream. This field width is limited to at most 127 characters which is also the
default value (except for the conversion that defaults to 1).

The following conversion flags are supported:

* %Matches a literabocharacter. This is not a conversion.

* d Matches an optionally signed decimal integer; the next pointer must be a
pointer toint .

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.18

<stdio.h>: Standard 10 facilities 90

i Matches an optionally signed integer; the next pointer must be a pointer to
int . The integer is read in base 16 if it begins with or 0X, in base 8 if it
begins withO, and in base 10 otherwise. Only characters that correspond to the
base are used.

0 Matches an octal integer; the next pointer must be a pointensigned
int .

u Matches an optionally signed decimal integer; the next pointer must be a
pointer tounsigned int

X Matches an optionally signed hexadecimal integer; the next pointer must be a
pointer tounsigned int

f Matches an optionally signed floating-point number; the next pointer must be
a pointer tdfloat

e, g, E, G Equivalenttd .

s Matches a sequence of non-white-space characters; the next pointer must be a
pointer tochar , and the array must be large enough to accept all the sequence
and the terminatin§lULcharacter. The input string stops at white space or at the
maximum field width, whichever occurs first.

¢ Matches a sequence of width count characters (default 1); the next pointer must
be a pointer tachar , and there must be enough room for all the characters (no
terminatingNUL is added). The usual skip of leading white space is suppressed.
To skip white space first, use an explicit space in the format.

[Matches a nonempty sequence of characters from the specified set of accepted
characters; the next pointer must be a pointehiar , and there must be enough
room for all the characters in the string, plus a terminatitg) character. The

usual skip of leading white space is suppressed. The string is to be made up
of characters in (or not in) a particular set; the set is defined by the characters
between the open bracket [character and a close bracket] character. The set
excludes those characters if the first character after the open bracket is a circum-
flex *. To include a close bracket in the set, make it the first character after the
open bracket or the circumflex; any other position will end the set. The hyphen
character is also special; when placed between two other characters, it adds all
intervening characters to the set. To include a hyphen, make it the last character
before the final close bracket. For instancé]0-9-] means the set @very-

thing except close bracket, zero through nine, and hypfiée string ends with

the appearance of a character not in the (or, with a circumflex, in) set or when
the field width runs out.

p Matches a pointer value (as printed pyn printf()); the next pointer must be
a pointer tovoid .

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.18 <stdio.h>: Standard 10 facilities 91

« n Nothing is expected; instead, the number of characters consumed thus far from
the input is stored through the next pointer, which must be a pointet to This
is not a conversion, although it can be suppressed with fzay.

These functions return the number of input items assigned, which can be fewer than
provided for, or even zero, in the event of a matching failure. Zero indicates that, while
there was input available, no conversions were assigned; typically this is due to an
invalid input character, such as an alphabetic character foc@version. The value
EOFis returned if an input failure occurs before any conversion such as an end-of-file
occurs. If an error or end-of-file occurs after conversion has begun, the number of
conversions which were successfully completed is returned.

By default, all the conversions described above are available except the floating-point
conversions, and th&][conversion. These conversions will be available in the ex-
tended version provided by the librdifgscanf flt.a . Note that either of these
conversions requires the availability of a buffer that needs to be obtained at run-time
usingmalloc(). If this buffer cannot be obtained, the operation is aborted, returning the
valueEOF To link a program against the extended version, use the following compiler
flags in the link stage:

-WI,-u,vfscanf -Iscanf_flt -Im

A third version is available for environments that are tight on space. This version is
provided in the librarfibscanf_min.a , and can be requested using the following
options in the link stage:

-WI,-u,vfscanf -Iscanf_min -Im

In addition to the restrictions of the standard version, this version implements no field
width specification, no conversion assignment suppression-fJaggn specification,

and no general format character matching at all. All charactefsmin that do not
comprise a conversion specification will simply be ignored, including white space (that
is normally used to consunamyamount of white space in the input stream). However,
the usual skip of initial white space in the formats that support it is implemented.

5.18.3.35 intvfscanf P (FILEx __ streamconst charx __ fmt, va_list__ap

Variant ofvfscanf()using afmt string in program memory.

5.18.3.36 int vprintf (const charx __fmt, va_list__ap

The functionvprintf performs formatted output to stresstdout , taking a vari-
able argument list as wfprintf().

Seevfprintf() for details.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.19 <stdlib.h>: General utilities 92

5.18.3.37 intvscanf (const chax _ fmt, va_list__ap

The functionvscanf performs formatted input from streastdin , taking a variable
argument list as infscanf()

Seevfscanf()for details.

5.18.3.38 intvsnprintf (charx __§size t n, constcharx __ fmt va_listap)

Like vsprintf() , but instead of assumirgy to be of infinite size, no more tham
characters (including the trailing NUL character) will be convertesl.to

Returns the number of characters that would have been writtenitadhere were
enough space.

5.18.3.39 intvsnprintf_P (charx __§ size t _n, const charx __fmt, va_list ap)

Variant ofvsnprintf() that uses &t string that resides in program memory.

5.18.3.40 intvsprintf (char+ s constcharx __ fmt, va_listap)

Like sprintf() but takes a variable argument list for the arguments.

5.18.3.41 intvsprintf_P (charx __s const charx __fmt va_listap)

Variant ofvsprintf() that uses &mt string that resides in program memory.

5.19 <stdlib.h>: General utilities

5.19.1 Detailed Description

#include <stdlib.h>

This file declares some basic C macros and functions as defined by the ISO standard,
plus some AVR-specific extensions.
Data Structures

e structdiv_t
e structldiv_t

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.19 <stdlib.h>: General utilities 93

Non-standard (i.e. non-1SO C) functions.

« #defineRANDOM_MAX Ox7FFFFFFF

e charx ltoa(longint __val, chax__s, int __radix)

e charx utoa(unsigned int __val, char__s, int __radix)

e charx ultoa(unsigned long int __val, char s, int __radix)
¢ long random(void)

« void srandom(unsigned long __seed)

¢ longrandom_runsigned long:ctx)

e charx itoa(int __val, char__s, int __radix)

Defines

 #defineRAND_MAX Ox7FFF

Typedefs

* typedefint§) __compar_fn_{const void«, const voidx)

Functions

e _inline__ voidabort(void) _ ATTR_NORETURN___

e intabs(int__i) _ ATTR_CONST__

e longlabs(long __ i) _ ATTR_CONST__

« void x bsearch(const void«__key, const void__base, size_ t __nmemb, size t
__size, int¢__compar)(const void, const voidk))

e div_t div (int __num, int _ denom) __asm__("__divmodhi4") _ ATTR_-

CONST__

e Idiv_t Idiv (long __num, long __denom) __asm__("__divmodsi4") _ ATTR_-
CONST__

¢ void gsort(void «__base, size_t __nmemb, size_t __ sizecompar_fn_t -
compar)

« longstrtol (const chak__nptr, chakx__endptr, int __base)
 unsigned longstrtoul(const chak__ nptr, chakx__endptr, int __base)
e _inline__ longatol(constchax__nptr) ATTR_PURE___

e _inline__ intatoi(const char__nptr) _ ATTR_PURE__

« void exit (int __status) _ ATTR_NORETURN__

 void x malloc(size_t __size) _ ATTR_MALLOC__

« void free (void x__ ptr)

 void calloc(size_t __nele, size_t__size) _ ATTR_MALLOC__

« void * realloc(void x__ptr, size_t__size) _ ATTR_MALLOC__
 doublestrtod(const chak__nptr, chakx__endptr)

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.19 <stdlib.h>: General utilities 94

doubleatof (const chak___nptr)
int rand(void)

void srand(unsigned int __seed)
« intrand_r(unsigned long:ctx)

Variables
e size_t malloc_margin
e charx __malloc_heap_start
e charx __malloc_heap_end

5.19.2 Define Documentation

5.19.2.1 #define RAND_MAX Ox7FFF
Highest number that can be generateddnyd()

5.19.2.2 #define RANDOM_MAX Ox7FFFFFFF
Highest number that can be generateddoydom()

5.19.3 Typedef Documentation

5.19.3.1 typedefint¢) _ compar_fn_{const void*, const void)

Comparision function type fagsort() just for convenience.

5.19.4 Function Documentation

5.19.4.1 _ inline__ void abort (void)

The abort() function causes abnormal program termination to occur. In the limited
AVR environment, execution is effectively halted by entering an infinite loop.

5.19.4.2 intabs (int_ i)

Theabs()function computes the absolute value of the integer

Note:

Theabs()andlabs()functions are builtins of gcc.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.19 <stdlib.h>: General utilities 95

5.19.4.3 double atof (const chax __ nptn

The atof() function converts the initial portion of the string pointed to ygtr to
double representation.

Itis equivalent to calling

strtod(nptr, (char **)NULL);

5.19.4.4 int atoi (const charx string)
Convert a string to an integer.

The atoi() function converts the initial portion of the string pointed to fygtr to
integer representation.

It is equivalent to:

(int)strtol(nptr, (char **)NULL, 10);

except thaatoi() does not detect errors.

5.19.4.5 long int atol (const cha string)
Convert a string to a long integer.

Theatol() function converts the initial portion of the string pointed todisingp to
integer representation.

Itis equivalent to:

strtol(nptr, (char **)NULL, 10);

except thaatol() does not detect errors.

5.19.4.6 voic bsearch (const void« __key const voidx __basesize t nmemb
size_t__sizeint(x)(const voidx, const void*) __compayj

The bsearch()function searches an array nfnembobjects, the initial member of

which is pointed to bybase, for a member that matches the object pointed to by

key . The size of each member of the array is specifiediby .

The contents of the array should be in ascending sorted order according to the compar-
ison function referenced bgompar . Thecompar routine is expected to have two
arguments which point to the key object and to an array member, in that order, and
should return an integer less than, equal to, or greater than zero if the key object is
found, respectively, to be less than, to match, or be greater than the array member.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.19 <stdlib.h>: General utilities 96

The bsearch(function returns a pointer to a matching member of the array, or a null
pointer if no match is found. If two members compare as equal, which member is
matched is unspecified.

5.19.4.7 void calloc (size_t nele size_t__siz@

Allocatenele elements okize each. Identical to callingnalloc() usingnele
x Size as argument, except the allocated memory will be cleared to zero.

5.19.4.8 div_tdiv(int __ num int __denon)

The div() function computes the valusum/denom and returns the quotient and re-
mainder in a structure nameliy_t that contains two int members namguabt and
rem.

5.19.4.9 void exit (int__statug

The exit() function terminates the application. Since there is no environment to re-
turn to,status is ignored, and code execution will eventually reach an infinite loop,
thereby effectively halting all code processing.

In a C++ context, global destructors will be called before halting execution.

5.19.4.10 void free (voidk __ ptr)

Thefree()function causes the allocated memory referenceptby to be made avail-
able for future allocations. Ibtr is NULL, no action occurs.

5.19.4.11 chaxitoa (int __val charx__sint __ radix)
Convert an integer to a string.

The functionitoa() converts the integer value frowal into an ASCII representation
that will be stored undes. The caller is responsible for providing sufficient storage in
S.

Note:

The minimal size of the buffes depends on the choice of radix. For example, if
the radix is 2 (binary), you need to supply a buffer with a minimal length ef 8
sizeof (int) + 1 characters, i.e. one character for each bit plus one for the string
terminator. Using a larger radix will require a smaller minimal buffer size.

Warning:

If the buffer is too small, you risk a buffer overflow.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.19 <stdlib.h>: General utilities 97

Conversion is done using thradix as base, which may be a number between 2
(binary conversion) and up to 36. fadix is greater than 10, the next digit after
‘9" will be the lettera’

If radix is 10 and val is negative, a minus sign will be prepended.

Theitoa() function returns the pointer passedsas

5.19.4.12 long labs (long i)

Thelabs()function computes the absolute value of the long intéger

Note:

Theabs()andlabs()functions are builtins of gcc.

5.19.4.13 Idiv_t Idiv (long __num long__denon)

Theldiv() function computes the valusum/denom and returns the quotient and re-
mainder in a structure namédiv_t that contains two long integer members named
quot andrem.

5.19.4.14 chax Itoa (longint __val charx__sint __radix)
Convert a long integer to a string.

The functionltoa() converts the long integer value fromal into an ASCII represen-
tation that will be stored undes. The caller is responsible for providing sufficient
storage irs.

Note:

The minimal size of the buffes depends on the choice of radix. For example,
if the radix is 2 (binary), you need to supply a buffer with a minimal length of 8
x sizeof (long int) + 1 characters, i.e. one character for each bit plus one for the
string terminator. Using a larger radix will require a smaller minimal buffer size.

Warning:
If the buffer is too small, you risk a buffer overflow.
Conversion is done using thadix as base, which may be a number between 2

(binary conversion) and up to 36. f&dix is greater than 10, the next digit after
'9" will be the lettera’

If radix is 10 and val is negative, a minus sign will be prepended.

Theltoa() function returns the pointer passedsas

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.19 <stdlib.h>: General utilities 98

5.19.4.15 void malloc (size_t__sizé

The malloc() function allocatesize bytes of memory. Ifimalloc() fails, a NULL
pointer is returned.

Note thatmalloc() doesnotinitialize the returned memory to zero bytes.

See the chapter abonralloc() usagdor implementation details.

5.19.4.16 void gsort (void« __basesize t nmembsize t size __compar_-
fn_t __compaj

Theqgsort()function is a modified partition-exchange sort, or quicksort.

The gsort() function sorts an array afmembobjects, the initial member of which is
pointed to bybase . The size of each object is specifieddige . The contents of the

array base are sorted in ascending order according to a comparison function pointed to
by compar , which requires two arguments pointing to the objects being compared.

The comparison function must return an integer less than, equal to, or greater than zero
if the first argument is considered to be respectively less than, equal to, or greater than
the second.

5.19.4.17 intrand (void)

Therand()function computes a sequence of pseudo-random integers in the range of 0
to RAND_MAXas defined by the header fitestdlib.t>).

Thesrand()function sets its argumested as the seed for a new sequence of pseudo-
random numbers to be returned and() These sequences are repeatable by calling
srand()with the same seed value.

If no seed value is provided, the functions are automatically seeded with a value of 1.

In compliance with the C standard, these functions operaiatonarguments. Since
the underlying algorithm already uses 32-bit calculations, this causes a loss of preci-
sion. Seeandom() for an alternate set of functions that retains full 32-bit precision.

5.19.4.18 intrand_r (unsigned longx ctx)

Variant of rand() that stores the context in the user-supplied variable locatetkat
instead of a static library variable so the function becomes re-entrant.

5.19.4.19 long random (void)

Therandom()function computes a sequence of pseudo-random integers in the range of
0 toRANDOM_MA(4s defined by the header fitestdlib.t>).

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.19 <stdlib.h>: General utilities 99

The srandom()function sets its argumergeed as the seed for a new sequence of
pseudo-random numbers to be returneddyd() These sequences are repeatable by
calling srandom(with the same seed value.

If no seed value is provided, the functions are automatically seeded with a value of 1.

5.19.4.20 long random_r (unsigned long ctx)

Variant ofrandom(Jthat stores the context in the user-supplied variable locateid at
instead of a static library variable so the function becomes re-entrant.

5.19.4.21 void realloc (void x __ptr, size_t__sizé

Therealloc()function tries to change the size of the region allocatqatratto the new
size value. It returns a pointer to the new region. The returned pointer might be the
same as the old pointer, or a pointer to a completely different region.

The contents of the returned region up to either the old or the new size value (whatever
is less) will be identical to the contents of the old region, even in case a new region had
to be allocated.

It is acceptable to pagdr as NULL, in which caseealloc()will behave identical to
malloc()

If the new memory cannot be allocatedalloc()returns NULL, and the region atr
will not be changed.

5.19.4.22 void srand (unsigned int_seedl

Pseudo-random number generator seedingrassd()

5.19.4.23 void srandom (unsigned long seedl

Pseudo-random number generator seedingresedom()

5.19.4.24 double strtod (const chax __nptr, char xx __endpt)

The strtod() function converts the initial portion of the string pointed torfgtr to
double representation.

The expected form of the string is an optional plus’() or minus sign (-)
followed by a sequence of digits optionally containing a decimal-point character, op-
tionally followed by an exponent. An exponent consists ofEEn or’e’ , followed

by an optional plus or minus sign, followed by a sequence of digits.

Leading white-space characters in the string are skipped.

Thestrtod()function returns the converted value, if any.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.19 <stdlib.h>: General utilities 100

If endptr is notNULL, a pointer to the character after the last character used in the
conversion is stored in the location referencechgptr

If no conversion is performed, zero is returned and the valugbf is stored in the
location referenced bgndptr

If the correct value would cause overflow, plus or mitldGE_VAlLis returned (ac-
cording to the sign of the value), altRANGEs stored inerrno . If the correct value
would cause underflow, zero is returned &RIANGHS stored irerrno .

FIXME: HUGE_VAL needs to be defined somewhere. The bit pattern is Ox7fffffff, but
what number would this be?

5.19.4.25 long strtol (const chax __nptr, char +x __endptrint __bas¢

The strtol() function converts the string inptr to a long value. The conversion is
done according to the given base, which must be between 2 and 36 inclusive, or be the
special value O.

The string may begin with an arbitrary amount of white space (as determined-by
pace() followed by a single optionat’ or’-" sign. Ifbase is zero or 16, the string
may then include &x" prefix, and the number will be read in base 16; otherwise, a
zero base is taken as 10 (decimal) unless the next charat®ér jsn which case it is
taken as 8 (octal).

The remainder of the string is converted to a long value in the obvious manner, stopping
at the first character which is not a valid digit in the given base. (In bases above 10, the
letter’A’ in either upper or lower case represents’'BO, represents 11, and so forth,
with 'Z’ representing 35.)

If endptr is not NULL, strtol() stores the address of the first invalid character in
«endptr . If there were no digits at all, howevestrtol() stores the original value of
nptr inendptr . (Thus, ifxnptr isnot’ \O' butxxendptr is’ \O' onreturn, the
entire string was valid.)

Thestrtol() function returns the result of the conversion, unless the value would under-
flow or overflow. If no conversion could be performed, 0 is returned. If an overflow or
underflow occurserrno is set toERANGE and the function return value is clamped

to LONG_MINor LONG_MAXespectively.

5.19.4.26 unsigned long strtoul (const chax __ nptr, char xx __endptr int __ -
base

Thestrtoul()function converts the string inptr to an unsigned long value. The con-
version is done according to the given base, which must be between 2 and 36 inclusive,
or be the special value 0.

The string may begin with an arbitrary amount of white space (as determined-by
pace() followed by a single optionak’ or’-" sign. Ifbase is zero or 16, the string
may then include 80x" prefix, and the number will be read in base 16; otherwise, a

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.19 <stdlib.h>: General utilities 101

zero base is taken as 10 (decimal) unless the next charadder jsn which case it is
taken as 8 (octal).

The remainder of the string is converted to an unsigned long value in the obvious
manner, stopping at the first character which is not a valid digit in the given base.
(In bases above 10, the lettédf in either upper or lower case represents "B,
represents 11, and so forth, wi#i representing 35.)

If endptr is not NULL, strtoul() stores the address of the first invalid character in
«endptr . If there were no digits at all, howevestrtoul() stores the original value of
nptr inendptr . (Thus, ifxnptr isnot’ \O' butxxendptr is’ \O' onreturn, the
entire string was valid.)

The strtoul() function return either the result of the conversion or, if there was a lead-
ing minus sign, the negation of the result of the conversion, unless the original (non-
negated) value would overflow; in the latter castetoul()returns ULONG_MAX, and
errno is set toERANGE If no conversion could be performed, O is returned.

5.19.4.27 chax ultoa (unsigned long int__val charx __sint __ radix)
Convert an unsigned long integer to a string.

The functionultoa() converts the unsigned long integer value freah into an ASCII
representation that will be stored underThe caller is responsible for providing suf-
ficient storage irs.

Note:

The minimal size of the buffes depends on the choice of radix. For example, if
the radix is 2 (binary), you need to supply a buffer with a minimal length ef 8
sizeof (unsigned long int) + 1 characters, i.e. one character for each bit plus one
for the string terminator. Using a larger radix will require a smaller minimal buffer
size.

Warning:

If the buffer is too small, you risk a buffer overflow.

Conversion is done using thradix as base, which may be a number between 2
(binary conversion) and up to 36. Hadix is greater than 10, the next digit after
‘9" will be the lettera’

Theultoa()function returns the pointer passedsas

5.19.4.28 chax utoa (unsigned int__val charx __sint _ radix)

Convert an unsigned integer to a string.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.20 <string.h>: Strings 102

The functionutoa()converts the unsigned integer value freal into an ASCII repre-
sentation that will be stored undgr The caller is responsible for providing sufficient
storage irs.

Note:

The minimal size of the buffes depends on the choice of radix. For example, if
the radix is 2 (binary), you need to supply a buffer with a minimal length ef 8
sizeof (unsigned int) + 1 characters, i.e. one character for each bit plus one for the
string terminator. Using a larger radix will require a smaller minimal buffer size.

Warning:

If the buffer is too small, you risk a buffer overflow.

Conversion is done using thradix as base, which may be a number between 2
(binary conversion) and up to 36. Hadix is greater than 10, the next digit after
'9" will be the lettera’

Theutoa()function returns the pointer passedsas
5.19.5 Variable Documentation
5.19.5.1 chak __malloc_heap_end

malloc() tunable

5.19.5.2 chax __malloc_heap_start

malloc() tunable

5.19.5.3 size_t malloc_margin
malloc() tunable
5.20 <string.h>: Strings

5.20.1 Detailed Description

#include <string.h>

The string functions perform string operations on NULL terminated strings.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.20 <string.h>: Strings 103

Note:

If the strings you are working on resident in program space (flash), you will need
to use the string functions describeddmavr/pgmspaceh: Program Space String
Utilities.

Defines

o #define FFIX)

Functions

e intffs (int) __ attribute_ ((const))

« intffsl (long) __attribute__ ((const))

« intffsll (long long) __ attribute_ ((const))

« void x* memccpy(void *, const voidx, int, size_t)

 void x memchr(const voidx, int, size t) ATTR_PURE___

¢ int memcmp(const voidx, const voidx, size_t) ATTR_PURE___
« void x* memcpy(void x, const voidx, size_t)

¢ void x memmovegvoid *, const voidx, size_t)

« void x memse{void *, int, size_t)

« int strcasecmifconst chak, const chax) _ ATTR_PURE___

« charsx strcat(charx, const chak)

« charsx strchr(const chak, int) _ ATTR_PURE_

« int strcmp(const chak, const chax) _ ATTR_PURE___

« charsx strcpy(charx, const chak)

* size_tstricat(charx, const chak, size_t)

* size_tstrlcpy(charx, const chak, size_t)

« size_tstrlen(const chak) __ ATTR_PURE___

e charx strlwr (charx)

« int strncasecmfconst chak, const chak, size_t) _ ATTR_PURE___
« charx strncat(charx, const chak, size_t)

« int strncmp(const chak, const chak, size_t) _ ATTR_PURE___
« charx strncpy(charx, const chak, size_t)

¢ size_tstrnlen(const chak, size_t) _ ATTR_PURE___

e charx strrchr(const chak, int) _ ATTR_PURE___

e charx strrev(charx)

e charx strsep(charxx, const chax)

e charsx strstr(const chak, const chax) _ ATTR_PURE__

e charx strtok_r(charx, const char, charsx)

e charx strupr(charx)

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.20 <string.h>: Strings 104

5.20.2 Define Documentation

5.20.2.1 #define _FFS(x)
This macro finds the first (least significant) bit set in the input value.

This macro is very similar to the functidfs() except that it evaluates its argument at
compile-time, so it should only be applied to compile-time constant expressions where
it will reduce to a constant itself. Application of this macro to expressions that are not
constant at compile-time is not recommended, and might result in a huge amount of
code generated.

Returns:

The FFS()macro returns the position of the first (least significant) bit set in the
word val, or 0 if no bits are set. The least significant bit is position 1.

5.20.3 Function Documentation

5.20.3.1 intffs (intval) const

This function finds the first (least significant) bit set in the input value.

Returns:
The ffs() function returns the position of the first (least significant) bit set in the
word val, or 0 if no bits are set. The least significant bit is position 1.

Note:

For expressions that are constant at compile time, consider usind-Efemacro
instead.

5.20.3.2 intffsl (long) const

Same asfs(), for an argument of type long.

5.20.3.3 intffsll (longlong) const

Same adfs(), for an argument of type long long.

5.20.3.4 void« memccpy (voidx dest const voidx src, int val, size_tlen)
Copy memory area.

Thememccpy(function copies no more than len bytes from memory area src to mem-
ory area dest, stopping when the character val is found.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.20 <string.h>: Strings 105

Returns:

Thememccpy(function returns a pointer to the next character in dest after val, or
NULL if val was not found in the first len characters of src.

5.20.3.5 void« memchr (const voidx src, int val, size_tlen)

Scan memory for a character.

The memchr()function scans the first len bytes of the memory area pointed to by src
for the character val. The first byte to match val (interpreted as an unsigned character)
stops the operation.

Returns:

The memchr()function returns a pointer to the matching byte or NULL if the
character does not occur in the given memory area.

5.20.3.6 int memcmp (const void: s1, const voidx s2, size_tlen)

Compare memory areas.

The memcmp()function compares the first len bytes of the memory areas s1 and s2.

The comparision is performed using unsigned char operations.

Returns:
Thememcmp(function returns an integer less than, equal to, or greater than zero
if the first len bytes of sl is found, respectively, to be less than, to match, or be
greater than the first len bytes of s2.

Note:
Be sure to store the result in a 16 bit variable since you may get incorrect results if
you use an unsigned char or char due to truncation.

Warning:

This function is not -mint8 compatible, although if you only care about testing for
equality, this function should be safe to use.

5.20.3.7 voidk memcpy (voidx* dest const voidx src, size_tlen)
Copy a memory area.

The memcpy()function copies len bytes from memory area src to memory area dest.
The memory areas may not overlap. Wsemmove()f the memory areas do overlap.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.20 <string.h>: Strings 106

Returns:

Thememcpy()function returns a pointer to dest.

5.20.3.8 void« memmove (void* dest const voidx src, size_tlen)
Copy memory area.

Thememmove(function copies len bytes from memory area src to memory area dest.
The memory areas may overlap.

Returns:

Thememmove(function returns a pointer to dest.

5.20.3.9 voidx memset (void« dest int val, size_tlen)
Fill memory with a constant byte.

The memset(Jfunction fills the first len bytes of the memory area pointed to by dest
with the constant byte val.

Returns:

Thememset(function returns a pointer to the memory area dest.

5.20.3.10 int strcasecmp (const char s1, const charx s2)
Compare two strings ignoring case.

Thestrcasecmp(function compares the two strings s1 and s2, ignoring the case of the
characters.

Returns:

The strcasecmp(junction returns an integer less than, equal to, or greater than
zero if sl is found, respectively, to be less than, to match, or be greater than s2.

5.20.3.11 char strcat (char x dest const charx src)
Concatenate two strings.

Thestrcat()function appends the src string to the dest string overwriting\tbechar-
acter at the end of dest, and then adds a terminati®igcharacter. The strings may not
overlap, and the dest string must have enough space for the result.

Returns:

Thestrcat()function returns a pointer to the resulting string dest.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.20 <string.h>: Strings 107

5.20.3.12 char strchr (const char * src, int val)
Locate character in string.

Thestrchr()function returns a pointer to the first occurrence of the character val in the
string src.

Here "character" means "byte" - these functions do not work with wide or multi-byte
characters.
Returns:

The strchr() function returns a pointer to the matched character or NULL if the
character is not found.

5.20.3.13 int strcmp (const chak s1, const charx s2)
Compare two strings.

Thestrcemp()function compares the two strings s1 and s2.

Returns:

The stremp()function returns an integer less than, equal to, or greater than zero if
sl is found, respectively, to be less than, to match, or be greater than s2.

5.20.3.14 char strcpy (char * dest const charx src)
Copy a string.

The strcpy() function copies the string pointed to by src (including the terminating
"\0’ character) to the array pointed to by dest. The strings may not overlap, and the
destination string dest must be large enough to receive the copy.

Returns:

Thestrcpy()function returns a pointer to the destination string dest.

Note:

If the destination string of atrcpy()is not large enough (that is, if the programmer
was stupid/lazy, and failed to check the size before copying) then anything might
happen. Overflowing fixed length strings is a favourite cracker technique.

5.20.3.15 size_t stricat (chak dst const charx src, size_tsi2)

Concatenate two strings.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.20 <string.h>: Strings 108

Appends src to string dst of size siz (unlgencat() siz is the full size of dst, not space
left). At most siz-1 characters will be copied. Always NULL terminates (unlesssiz
strlen(dst)).

Returns:

Thestrlcat()function returns strlen(src) + MIN(siz, strlen(initial dst)). If retvak
siz, truncation occurred.

5.20.3.16 size_t stricpy (chak dst, const charx src, size_tsi2)
Copy a string.

Copy src to string dst of size siz. At most siz-1 characters will be copied. Always
NULL terminates (unless siz == 0).

Returns:

Thestrlcpy() function returns strlen(src). If retval= siz, truncation occurred.

5.20.3.17 size_t strlen (const char src)
Calculate the length of a string.

Thestrlen()function calculates the length of the string src, not including the terminat-
ing '\0’ character.

Returns:

Thestrlen()function returns the number of characters in src.

5.20.3.18 char strlwr (char * string)
Convert a string to lower case.

Thestrlwr() function will convert a string to lower case. Only the upper case alphabetic
characters [A .. Z] are converted. Non-alphabetic characters will not be changed.

Returns:

Thestrlwr() function returns a pointer to the converted string.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.20 <string.h>: Strings 109

5.20.3.19 int strncasecmp (const char s1, const charx* s2, size_tlen)

Compare two strings ignoring case.

Thestrncasecmp(unction is similar tostrcasecmp()except it only compares the first
n characters of s1.

Returns:

The strncasecmp(function returns an integer less than, equal to, or greater than
zero if s1 (or the first n bytes thereof) is found, respectively, to be less than, to
match, or be greater than s2.

5.20.3.20 char strncat (char x dest const charx src, size_tlen)
Concatenate two strings.

Thestrncat()function is similar tostrcat() except that only the first n characters of src
are appended to dest.

Returns:

Thestrncat()function returns a pointer to the resulting string dest.

5.20.3.21 int strncmp (const chak s1, const charx s2, size_tlen)

Compare two strings.

Thestrncmp()function is similar tostrcmp() except it only compares the first (at most)
n characters of s1 and s2.

Returns:

The strncmp()function returns an integer less than, equal to, or greater than zero
if s1 (or the first n bytes thereof) is found, respectively, to be less than, to match,
or be greater than s2.

5.20.3.22 char strncpy (char x dest const charx src, size_tlen)
Copy a string.

The strncpy()function is similar tostrcpy() except that not more than n bytes of src
are copied. Thus, if there is no null byte among the first n bytes of src, the result will
not be null-terminated.

In the case where the length of src is less than that of n, the remainder of dest will be
padded with nulls.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.20 <string.h>: Strings 110

Returns:

Thestrncpy()function returns a pointer to the destination string dest.

5.20.3.23 size_t strnlen (const char src, size_tlen)

Determine the length of a fixed-size string.

The strnlen function returns the number of characters in the string pointed to by src, not
including the terminating\'0’ character, but at most len. In doing this, strnlen looks
only at the first len characters at src and never beyond src+len.

Returns:

The strnlen function returns strlen(src), if that is less than len, or len if there is no
"\ 0’ character among the first len characters pointed to by src.

5.20.3.24 chak strrchr (const char x* src, int val)
Locate character in string.

Thestrrchr()function returns a pointer to the last occurrence of the character val in the
string src.

Here "character" means "byte" - these functions do not work with wide or multi-byte
characters.
Returns:

The strrchr()function returns a pointer to the matched character or NULL if the
character is not found.

5.20.3.25 chak strrev (char * string)
Reverse a string.

Thestrrev()function reverses the order of the string.

Returns:

Thestrrev()function returns a pointer to the beginning of the reversed string.

5.20.3.26 char strsep (charsx string, const charx delim)

Parse a string into tokens.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.20 <string.h>: Strings 111

The strsep()function locates, in the string referenced #string, the first occurrence

of any character in the string delim (or the terminatiNg’’character) and replaces it

with a "\0’. The location of the next character after the delimiter character (or NULL,

if the end of the string was reached) is stored@tring. An “empty” field, i.e. one
caused by two adjacent delimiter characters, can be detected by comparing the location
referenced by the pointer returnedsstring to \0’.

Returns:

Thestrtok_r()function returns a pointer to the original valuesstring. If xstringp
is initially NULL, strsep(yeturns NULL.

5.20.3.27 chae strstr (const char x s1, const charx s2)

Locate a substring.

Thestrstr()function finds the first occurrence of the substré2gin the stringsl. The
terminating \0’ characters are not compared.

Returns:

The strstr()function returns a pointer to the beginning of the substring, or NULL
if the substring is not found. If s2 points to a string of zero length, the function
returns sl.

5.20.3.28 char« strtok_r (char « string, const charx delim, char xx last)
Parses the string s into tokens.

strtok_r parses the string s into tokens. The first call to strtok_r should have string as
its first argument. Subsequent calls should have the first argument set to NULL. If a
token ends with a delimiter, this delimiting character is overwritten withGa and a
pointer to the next character is saved for the next call to strtok_r. The delimiter string
delim may be different for each call. last is a user allocatedscpainter. It must be

the same while parsing the same string. strtok_r is a reentrant version of strtok().

Returns:

Thestrtok_r()function returns a pointer to the next token or NULL when no more
tokens are found.

5.20.3.29 chae strupr (char « string)
Convert a string to upper case.

Thestrupr()function will convert a string to upper case. Only the lower case alphabetic
characters [a .. z] are converted. Non-alphabetic characters will not be changed.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.21 <util/crc16.h>: CRC Computations 112

Returns:

The strupr()function returns a pointer to the converted string. The pointer is the
same as that passed in since the operation is perform in place.

5.21 <util/crcl6.h>: CRC Computations

5.21.1 Detailed Description

#include <util/crc16.h>

This header file provides a optimized inline functions for calculating cyclic redundancy
checks (CRC) using common polynomials.

References:

See the Dallas Semiconductor app note 27 for 8051 assembler example and general
CRC optimization suggestions. The table on the last page of the app note is the key to
understanding these implementations.

Jack Crenshaw’s "Implementing CRCs" article in the January 1992 isienbedded
Systems Programming his may be difficult to find, but it explains CRC’s in very clear
and concise terms. Well worth the effort to obtain a copy.

A typical application would look like:
/I Dallas iButton test vector.
uint8_t serno[] = { 0x02, Oxlc, Oxb8, Ox01, 0, O, 0, Oxa2 };
int
checkcrc(void)
{

uint8_t crc = 0, i;

for (i = 0; i < sizeof serno / sizeof serno[Q]; i++)
crc = _crc_ibutton_update(crc, sernoli]);

return crc; // must be 0

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.21 <util/crc16.h>: CRC Computations 113

Functions

e static __inline__uint16_t crc16 updatéuintl6 t crc,uint8_t__data)

e static__inline__uint16_t crc_xmodem_updafeintl6_t crc,uint8 t_ data)
 static __inline__uint16_t crc_ccitt_updatéuintl6_t_crc,uint8_t__data)
 static __inline__uint8 t_crc_ibutton_updat@int8_t__ crc,uint8_t__data)

5.21.2 Function Documentation
5.21.2.1 static __inline_ uintl6_t crcl6 _update (iintl6 t crg uint8 t -
data) [static]
Optimized CRC-16 calculation.
Polynomial: X*16 + x*15 + x*2 + 1 (0xa001)
Initial value: Oxffff
This CRC is normally used in disk-drive controllers.
The following is the equivalent functionality written in C.
uintl6_t
crcl6_update(uintl6_t crc, uint8_t a)
{ int i;

crc M= a;
for (i = 0; i < 8; ++i)
if (crc & 1)
crc = (crc >> 1) ~ 0xA001;
else
crc = (crc >> 1);

}

return crc;

5.21.2.2 static __inline_uintl6_t _crc_ccitt_update (uint16_t__ crc uint8_t __ -
data) [static]

Optimized CRC-CCITT calculation.

Polynomial: X'16 + x*12 + x5 + 1 (0x8408)

Initial value: Oxffff

This is the CRC used by PPP and IrDA.

See RFC1171 (PPP protocol) and IrDA IrLAP 1.1

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.21 <util/crc16.h>: CRC Computations 114

Note:

Although the CCITT polynomial is the same as that used by the Xmodem protocol,
they are quite different. The difference is in how the bits are shifted through the
alorgithm. Xmodem shifts the MSB of the CRC and the input first, while CCITT
shifts the LSB of the CRC and the input first.

The following is the equivalent functionality written in C.

uintl6_t
crc_ccitt_update (uintl6é_t crc, uint8_t data)

{
data "= lo8 (crc);
data ~= data << 4;

return ((((uintlé_t)data << 8) | hi8 (crc)) ~ (uint8_t)(data >> 4)
A ((uintl6_t)data << 3));

5.21.2.3 static __inline_uint8 t crc_ibutton_update uint8_t _ crg uint8_t -
_datg [static]

Optimized Dallas (now Maxim) iButton 8-bit CRC calculation.
Polynomial: X'8 + x5 + x*4 + 1 (0x8C)
Initial value: Ox0
Seehttp://www.maxim-ic.com/appnotes.cfm/appnote_number/27
The following is the equivalent functionality written in C.

uint8_t

_crc_ibutton_update(uint8_t crc, uint8_t data)

uint8_t i;

crc = crc /N data;
for i = 0; i < 8; i++)

{
if (crc & 0x01)
crc = (crc >> 1) ~ 0x8C;
else
crc >>= 1;
}
return crc;

5.21.2.4 static __inline__uintl6_t _crc_xmodem_update (intl6 t _ crg
uint8_t _ datg [static]

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

http://www.maxim-ic.com/appnotes.cfm/appnote_number/27

5.22 «<«util/delay.h>: Busy-wait delay loops 115

Optimized CRC-XMODEM calculation.

Polynomial: X'16 + x*12 + x*5 + 1 (0x1021)

Initial value: 0x0

This is the CRC used by the Xmodem-CRC protocol.

The following is the equivalent functionality written in C.

uintl6_t
crc_xmodem_update (uintl6é_t crc, uint8_t data)

{

int i;

crc = crc M ((uintlé_t)data << 8);
for (i=0; i<8; i++)

if (crc & 0x8000)

crc = (crc << 1) N 0x1021,;
else

crc <<= 1,

}

return crc;

5.22 <util/delay.h>: Busy-wait delay loops

5.22.1 Detailed Description

#define F_CPU 1000000UL // 1 MHz
/l#define F_CPU 14.7456E6
#include <util/delay.h>

Note:

As an alternative method, it is possible to pass the F_CPU macro down to the com-
piler from the Makefile. Obviously, in that case, #define statement should
be used.

The functions in this header file implement simple delay loops that perform a busy-
waiting. They are typically used to facilitate short delays in the program execution.

They are implemented as count-down loops with a well-known CPU cycle count per
loop iteration. As such, no other processing can occur simultaneously. It should be
kept in mind that the functions described here do not disable interrupts.

In general, for long delays, the use of hardware timers is much preferrable, as they
free the CPU, and allow for concurrent processing of other events while the timer is
running. However, in particular for very short delays, the overhead of setting up a
hardware timer is too much compared to the overall delay time.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.22 «<«util/delay.h>: Busy-wait delay loops 116

Two inline functions are provided for the actual delay algorithms.

Two wrapper functions allow the specification of microsecond, and millisecond delays
directly, using the application-supplied macro F_CPU as the CPU clock frequency (in
Hertz). These functions operate on double typed arguments, however when optimiza-
tion is turned on, the entire floating-point calculation will be done at compile-time.

Note:

When using delay _us(and_delay _ms()the expressions passed as arguments to
these functions shall be compile-time constants, otherwise the floating-point cal-
culations to setup the loops will be done at run-time, thereby drastically increasing
both the resulting code size, as well as the time required to setup the loops.

Functions

e void _delay loop_Xuint8_t_count)
e void _delay loop_Zuintl6_t count)
e void _delay _ugdouble _us)

e void delay_mgdouble __ms)

5.22.2 Function Documentation

5.22.2.1 void _delay loop_1u{nt8 t coun)

Delay loop using an 8-bit counter count , so up to 256 iterations are possible. (The
value 256 would have to be passed as 0.) The loop executes three CPU cycles per
iteration, not including the overhead the compiler needs to setup the counter register.

Thus, at a CPU speed of 1 MHz, delays of up to 768 microseconds can be achieved.

5.22.2.2 void delay loop_24nt16 t coun)

Delay loop using a 16-bit counter count , so up to 65536 iterations are possible.
(The value 65536 would have to be passed as 0.) The loop executes four CPU cycles
per iteration, not including the overhead the compiler requires to setup the counter
register pair.

Thus, at a CPU speed of 1 MHz, delays of up to about 262.1 milliseconds can be
achieved.

5.22.2.3 void _delay_ms (double_mg
Perform a delay of _ms milliseconds, using delay_loop_2()

The macro F_CPU is supposed to be defined to a constant defining the CPU clock
frequency (in Hertz).

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.23 <util/parity.h >: Parity bit generation 117

The maximal possible delay is 262.14 ms /F_CPU in MHz.

5.22.2.4 void _delay us (double ug
Perform a delay of us microseconds, usingdelay loop_1()

The macro F_CPU is supposed to be defined to a constant defining the CPU clock
frequency (in Hertz).

The maximal possible delay is 768 us / F_CPU in MHz.

5.23 <util/parity.h >: Parity bit generation

5.23.1 Detailed Description

#include <util/parity.h>

This header file contains optimized assembler code to calculate the parity bit for a byte.

Defines

« #defineparity_even_bital)

5.23.2 Define Documentation

5.23.2.1 #define parity_even_bit(val)

Value:
(__extension__({ \
unsigned char _ t; \
_asm__ (\
"mov __tmp_reg_ ,%0" "\n\t" \
"swap %0" "\n\t" \
"eor %0,__tmp_reg__ " "\n\t" \
"mov __tmp_reg_ ,%0" "\n\t" \
"Isr %0" "\n\t" \
"Isr %0" "\n\t" \
"eor %0,__tmp_reg_ " \
et () \
: "0" ((unsigned char)(val)) \
:"ro" \
) \
(Ct+1)>1) &1, \
M)
Returns:

1if val has an odd number of bits set.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.24 <utilltwi.h >: TWI bit mask definitions 118

5.24 <util/twi.h >: TWI bit mask definitions

5.24.1 Detailed Description

#include <util/twi.h>

This header file contains bit mask definitions for use with the AVR TWI interface.

TWSR values

Mnemonics:

TW_MT _xxx - master transmitter
TW_MR_xxx - master receiver
TW_ST_xxx - slave transmitter

TW_SR_xxx - slave receiver

o #defineTW_STARTO0x08

« #defineTW_REP_STARTOXx10

* #defineTW_MT_SLA_ACK 0x18

* #defineTW_MT_SLA_NACK 0x20

* #defineTW_MT_DATA_ACK 0x28

* #defineTW_MT_DATA_NACK 0x30

* #defineTW_MT_ARB_LOSTO0x38

* #defineTW_MR_ARB_LOSTOx38

* #defineTW_MR_SLA_ACK0x40

* #defineTW_MR_SLA_NACKO0x48

* #defineTW_MR_DATA_ACK 0x50

* #defineTW_MR_DATA_NACK 0x58

o #defineTW_ST_SLA_ACKOxA8

* #defineTW_ST_ARB_LOST_SLA_ACKOxBO
* #defineTW_ST_DATA_ACKO0xB8

* #defineTW_ST_DATA_NACK 0xCO

o #defineTW_ST_LAST_DATAOxC8
 #defineTW_SR_SLA_ACKO0x60

o #defineTW_SR_ARB_LOST_SLA_ACKOx68
o #defineTW_SR_GCALL_ACKO0x70

o #defineTW_SR_ARB_LOST_GCALL_ACKOx78
* #defineTW_SR_DATA_ACK0x80
 #defineTW_SR_DATA_NACKO0x88

o #defineTW_SR_GCALL_DATA_ACKO0x90
 #defineTW_SR_GCALL_DATA_NACKO0x98

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.24 <utilltwi.h >: TWI bit mask definitions 119

#defineTW_SR_STORXAO
#defineTW_NO_INFOOxF8
#defineTW_BUS_ERRORIX00
#defineTW_STATUS MASK
#defineTW_STATUS(TWSR & TW_STATUS_MASK)

L]

R/~W bit in SLA+R/W address field.
e #defineTW_READ 1
» #defineTW_WRITEO

5.24.2 Define Documentation

5.24.2.1 #define TW_BUS_ERROR 0x00

illegal start or stop condition

5.24.2.2 #define TW_MR_ARB_LOST 0x38
arbitration lost in SLA+R or NACK

5.24.2.3 #define TW_MR_DATA_ACK 0x50

data received, ACK returned

5.24.2.4 #define TW_MR_DATA_NACK 0x58

data received, NACK returned

5.24.2.5 #define TW_MR_SLA ACK 0x40
SLA+R transmitted, ACK received

5.24.2.6 #define TW_MR_SLA NACK 0x48
SLA+R transmitted, NACK received

5.24.2.7 #define TW_MT_ARB_LOST 0x38

arbitration lost in SLA+W or data

5.24.2.8 #define TW_MT_DATA_ACK 0x28

data transmitted, ACK received

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.24 <utilltwi.h >: TWI bit mask definitions 120

5.24.2.9 #define TW_MT_DATA_NACK 0x30

data transmitted, NACK received

5.24.2.10 #define TW_MT_SLA ACK 0x18
SLA+W transmitted, ACK received

5.24.2.11 #define TW_MT_SLA_NACK 0x20
SLA+W transmitted, NACK received

5.24.2.12 #define TW_NO_INFO 0xF8

no state information available

5.24.2.13 #define TW_READ 1
SLA+R address

5.24.2.14 #define TW_REP_START 0x10

repeated start condition transmitted

5.24.2.15 #define TW_SR_ARB_LOST_GCALL_ACK 0x78

arbitration lost in SLA+RW, general call received, ACK returned

5.24.2.16 #define TW_SR_ARB_LOST_SLA_ACK 0x68
arbitration lost in SLA+RW, SLA+W received, ACK returned

5.24.2.17 #define TW_SR_DATA_ACK 0x80

data received, ACK returned

5.24.2.18 #define TW_SR_DATA_NACK 0x88

data received, NACK returned

5.24.2.19 #define TW_SR_GCALL_ACK 0x70

general call received, ACK returned

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.24 <utilltwi.h >: TWI bit mask definitions 121

5.24.2.20 #define TW_SR_GCALL_DATA_ACK 0x90

general call data received, ACK returned

5.24.2.21 #define TW_SR_GCALL_DATA_NACK 0x98

general call data received, NACK returned

5.24.2.22 #define TW_SR_SLA ACK 0x60
SLA+W received, ACK returned

5.24.2.23 #define TW_SR_STOP 0xAO0

stop or repeated start condition received while selected

5.24.2.24 #define TW_ST_ARB_LOST_SLA ACK 0xB0O
arbitration lost in SLA+RW, SLA+R received, ACK returned

5.24.2.25 #define TW_ST_DATA_ACK 0xB8

data transmitted, ACK received

5.24.2.26 #define TW_ST_DATA_NACK 0xCO

data transmitted, NACK received

5.24.2.27 #define TW_ST_LAST_DATA 0xC8

last data byte transmitted, ACK received

5.24.2.28 #define TW_ST_SLA_ACK 0xA8
SLA+R received, ACK returned

5.24.2.29 #define TW_START 0x08

start condition transmitted

5.24.2.30 #define TW_STATUS (TWSR & TW_STATUS_MASK)
TWSR, masked by TW_STATUS_MASK

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.25 <avr/interrupt.h >: Interrupts 122

5.24.2.31 #define TW_STATUS_MASK

Value:

(_BV(TWST)|_BV(TWS6)|_BV(TWS5)|_BV(TWS4)|\
_BV(TWS3))

The lower 3 bits of TWSR are reserved on the ATmegal63. The 2 LSB carry the
prescaler bits on the newer ATmegas.

5.24.2.32 #define TW_WRITE 0
SLA+W address

5.25 <avr/interrupt.h >: Interrupts

5.25.1 Detailed Description
Note:

This discussion of interrupts was originally taken from Rich Neswold’s document.
SeeAcknowledgments

Introduction to avr-libc’s interrupt handling It's nearly impossible to find compil-

ers that agree on how to handle interrupt code. Since the C language tries to stay away
from machine dependent details, each compiler writer is forced to design their method
of support.

In the AVR-GCC environment, the vector table is predefined to point to interrupt rou-
tines with predetermined names. By using the appropriate name, your routine will be
called when the corresponding interrupt occurs. The device library provides a set of
default interrupt routines, which will get used if you don’t define your own.

Patching into the vector table is only one part of the problem. The compiler uses, by
convention, a set of registers when it's normally executing compiler-generated code.
It's important that these registers, as well as the status register, get saved and restored.
The extra code needed to do this is enabled by tagging the interrupt function with
attribute__ ((signal))

These details seem to make interrupt routines a little messy, but all these details are
handled by the Interrupt API. An interrupt routine is defined W&l (). This macro
register and mark the routine as an interrupt handler for the specified peripheral. The
following is an example definition of a handler for the ADC interrupt.

#include <avr/interrupt.h>

ISR(ADC_vect)
{

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.25 <avr/interrupt.h >: Interrupts 123

/I user code here

Refer to the chapter explainimgsembler programmirfgr an explanation about inter-
rupt routines written solely in assembler language.

Catch-all interrupt vector If an unexpected interrupt occurs (interrupt is enabled
and no handler is installed, which usually indicates a bug), then the default action is to
reset the device by jumping to the reset vector. You can override this by supplying a
function named __vector_default which should be defined witlfBR() as such.

#include <avr/interrupt.h>

ISR(__vector_default)
{

}

/I user code here

Nested interrupts The AVR hardware clears the global interrupt flag in SREG be-
fore entering an interrupt vector. Thus, normally interrupts will remain disabled inside
the handler until the handler exits, where the RETI instruction (that is emitted by the
compiler as part of the normal function epilogue for an interrupt handler) will even-
tually re-enable further interrupts. For that reason, interrupt handlers normally do not
nest. For most interrupt handlers, this is the desired behaviour, for some it is even
required in order to prevent infinitely recursive interrupts (like UART interrupts, or
level-triggered external interrupts). In rare circumstances though it might be desired to
re-enable the global interrupt flag as early as possible in the interrupt handler, in order
to not defer any other interrupt more than absolutely needed. This could be done using
an sei() instruction right at the beginning of the interrupt handler, but this still leaves
few instructions inside the compiler-generated function prologue to run with global in-
terrupts disabled. The compiler can be instructed to insert an SEI instruction right at
the beginning of an interrupt handler by declaring the handler the following way:

void XXX_vect(void) __ attribute__((interrupt));
void XXX_vect(void) {

.

whereXXX_vect is the name of a valid interrupt vector for the MCU type in question,
as explained below.

Chosing the vector: Interrupt vector names The interrupt is chosen by supplying
one of the symbols in following table.

There are currently two different styles present for naming the vectors. One form uses
names starting witBIG_, followed by a relatively verbose but arbitrarily chosen name

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.25 <avr/interrupt.h >: Interrupts 124

describing the interrupt vector. This has been the only available style in avr-libc up to
version 1.2.x.

Starting with avr-libc version 1.4.0, a second style of interrupt vector names has been
added, where a short phrase for the vector description is followedvbgt . The

short phrase matches the vector name as described in the datasheet of the respective
device (and in Atmel's XML files), with spaces replaced by an underscore and other
non-alphanumeric characters dropped. Using the suffiect is intented to improve
portability to other C compilers available for the AVR that use a similar naming con-
vention.

The historical naming style might become deprecated in a future release, so it is not
recommended for new projects.

Note:

TheISR() macro cannot really spell-check the argument passed to them. Thus, by
misspelling one of the names below in a call&R(), a function will be created
that, while possibly being usable as an interrupt function, is not actually wired into
the interrupt vector table. The compiler will generate a warning if it detects a sus-
piciously looking name of &R() function (i.e. one that after macro replacement
does not start with "__vector_").

Macros for writing interrupt handler functions

 #definel SR(vector)
 #defineSIGNAL(signame)
e #defineEEMPTY_INTERRUPTvector)

5.25.2 Define Documentation

5.25.2.1 #define EMPTY_INTERRUPT(vector)

Value:
void vector (void) __ attribute_ ((naked)); \
void vector (void) { __asm__ _ volatile__ ("reti" :); }

#include <avr/interrupt.h>

Defines an empty interrupt handler function. This will not generate any prolog or
epilog code and will only return from the ISR. Do not define a function body as this
will define it for you. Example:

EMPTY_INTERRUPT(ADC_vect);

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.26 <avr/sfr_defs.h>: Special function registers 125

5.25.2.2 #define ISR(vector)
Value:

void vector (void) _ attribute__ ((signal)); \
void vector (void)

#include <avr/interrupt.h>

Introduces an interrupt handler function (interrupt service routine) that runs with global
interrupts initially disabled.

vector must be one of the interrupt vector names that are valid for the particular
MCU type.

5.25.2.3 #define SIGNAL(signame)
Value:

void signame (void) __attribute__ ((signal)); \
void signame (void)

#include <avr/interrupt.h>

Introduces an interrupt handler function that runs with global interrupts initially dis-
abled.

This is the same as the ISR macro.

Note:

Do not use anymore in new code, it will be deprecated in a future release.

5.26 <avr/sfr_defs.h>: Special function registers
5.26.1 Detailed Description

When working with microcontrollers, many of the tasks usually consist of controlling
the peripherals that are connected to the device, respectively programming the subsys-
tems that are contained in the controller (which by itself communicate with the circuitry
connected to the controller).

The AVR series of microcontrollers offers two different paradigms to perform this task.
There’s a separate 10 address space available (as it is known from some high-level
CISC CPUs) that can be addressed with specific 10 instructions that are applicable to
some or all of the 10 address spaae (out , sbi etc.). The entire IO address space

is also made available asemory-mapped IQ. e. it can be accessed using all the

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.26 <avr/sfr_defs.h>: Special function registers 126

MCU instructions that are applicable to normal data memory. The 10 register space is
mapped into the data memory address space with an offset of 0x20 since the bottom
of this space is reserved for direct access to the MCU registers. (Actual SRAM is
available only behind the 10 register area, starting at either address 0x60, or 0x100
depending on the device.)

AVR Libc supports both these paradigms. While by default, the implementation uses
memory-mapped IO access, this is hidden from the programmer. So the programmer
can access IO registers either with a special functiondiki()

#include <avr/io.h>

outb(PORTA, 0x33);

or they can assign a value directly to the symbolic address:

PORTA = 0x33;

The compiler’s choice of which method to use when actually accessing the 1O port is
completely independent of the way the programmer chooses to write the code. So even
if the programmer uses the memory-mapped paradigm and writes

PORTA |= 0x40;

the compiler can optimize this into the use ofsin instruction (of course, provided
the target address is within the allowable range for this instruction, and the right-hand
side of the expression is a constant value known at compile-time).

The advantage of using the memory-mapped paradigm in C programs is that it makes
the programs more portable to other C compilers for the AVR platform. Some people

might also feel that this is more readable. For example, the following two statements

would be equivalent:

outb(DDRD, inb(DDRD) & ~LCDBITS);
DDRD &= ~LCDBITS;

The generated code is identical for both. Without optimization, the compiler strictly
generates code following the memory-mapped paradigm, while with optimization
turned on, code is generated using the (faster and smilett MCU instructions.

Note that special care must be taken when accessing some of the 16-bit timer 10 reg-
isters where access from both the main program and within an interrupt context can
happen. Se®@/hy do some 16-bit timer registers sometimes get trashed?

Porting programs that use sbi/cbi

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.26 <avr/sfr_defs.h>: Special function registers 127

As described above, access to the AVR single bit set and clear instructions are provided
via the standard C bit manipulation commands. The sbi and cbi commands are no
longer directly supported. shi (sfr,bit) can be replaced by=sfBV(bit) .

ie: sbi(PORTB, PBL)is now PORTB/=_BV(PB1)

This actually is more flexible than having sbi directly, as the optimizer will use a hard-
ware sbi if appropriate, or a read/or/write if not. You do not need to keep track of which
registers shi/cbi will operate on.

Likewise, cbi (sfr,bit) is now sfr &=(_BV(bit));

Modules

< Additional notes from<avr/sfr_defs.b

Bit manipulation

. #define_BV(bit) (1 << (bit))

IO register bit manipulation

« #definebit_is_se(sfr, bit) (SFR_BYTE(sfr) & BV(bit))

« #definebit_is_clea(sfr, bit) (!(_SFR_BYTE(sfr) & BV(bit)))
 #defineloop_until_bit_is_sdsfr, bit) do { } while (bit_is_clear(sfr, bit))
« #defineloop_until_bit_is_cledsfr, bit) do { } while (bit_is_set(sfr, bit))

5.26.2 Define Documentation
5.26.2.1 #define _BV(bit) (k< (bit))
#include <avr/io.h>

Converts a bit number into a byte value.

Note:

The bit shift is performed by the compiler which then inserts the result into the
code. Thus, there is no run-time overhead when usiig().

5.26.2.2 #define bit_is_clear(sfr, bit) (!(_SFR_BYTE(sfr) & _BV(bit)))

#include <avr/io.h>

Test whether bibit in 1O registersfr is clear. This will return non-zero if the bit is
clear, and a 0 if the bit is set.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.27 Demo projects 128

5.26.2.3 #define bit_is_set(sfr, bit) (SFR_BYTE(sfr) & _BV(bit))

#include <avr/io.h>

Test whether bibit in 10 registersfr is set. This will return a 0 if the bit is clear,
and non-zero if the bit is set.

5.26.2.4 #define loop_until_bit_is_clear(sfr, bit) do { } while (bit_is_set(sfr, bit))

#include <avr/io.h>

Wait until bit bit in 1O registersfr is clear.

5.26.2.5 #define loop_until_bit_is_set(sfr, bit) do { } while (bit_is_clear(sfr, bit))

#include <avr/io.h>

Wait until bit bit in IO registersfr is set.

5.27 Demo projects
5.27.1 Detailed Description

Various small demo projects are provided to illustrate several aspects of using the open-
source utilities for the AVR controller series. It should be kept in mind that these de-
mos serve mainly educational purposes, and are normally not directly suitable for use
in any production environment. Usually, they have been kept as simple as sufficient to
demonstrate one particular feature.

The simple projectis somewhat like the "Hello world!" application for a microcon-
troller, about the most simple project that can be done. It is explained in good detail,
to allow the reader to understand the basic concepts behind using the tools on an AVR
microcontroller.

The more sophisticated demo projdatiilds on top of that simple project, and adds
some controls to it. It touches a number of avr-libc’s basic concepts on its way.

A comprehensive example on using the standard IO facilitieshds to explain that
complex topic, using a practical microcontroller peripheral setup with one RS-232 con-
nection, and an HD44780-compatible industry-standard LCD display.

The Example using the two-wire interface (TWgyoject explains the use of the two-
wire hardware interface (also known as "12C") that is present on many AVR controllers.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.28 A simple project 129

While the simple demo is meant to run on about any AVR setup possible where a
LED could be connected to the OCR1[A] output, thaeyeandstdiodemos are mainly
targeted to the Atmel STK500 starter kit, and thé&/| example requires a controller
where some 24Cxx two-wire EEPPROM can be connected to. For the STK500 demos,
the default CPU (either an AT90S8515 or an ATmega8515) should be removed from
its socket, and the ATmegal6 that ships with the kit should be inserted into socket
SCKT3100A3. The ATmegalé6 offers an on-board ADC that is used itatgedemo,

and all AVRs with an ADC feature a different pinout than the industry-standard com-
patible devices.

In order to fully utilize thelargedemo, a female 10-pin header with cable, connecting
to a 10 kOhm potentiometer will be useful.

For thestdiodemo, an industry-standard HD44780-compatible LCD display of at least
16x1 characters will be needed. Among other things,Lti®4Linux project page
describes many things around these displays, including common pinouts.

Modules

« A simple project

« A more sophisticated project

» Using the standard IO facilities

» Example using the two-wire interface (TWI)

5.28 A simple project

At this point, you should have the GNU tools configured, built, and installed on your
system. In this chapter, we present a simple example of using the GNU tools in an AVR
project. After reading this chapter, you should have a better feel as to how the tools are
used and how Makefile can be configured.

5.28.1 The Project

This project will use the pulse-width modulat&®\W/Mto ramp an LED on and off every
two seconds. An AT90S2313 processor will be used as the controller. The circuit for
this demonstration is shown in tlsehematic diagramif you have a development Kkit,
you should be able to use it, rather than build the circuit, for this project.

Note:

Meanwhile, the AT90S2313 became obsolete. Either use its successor, the (pin-
compatible) ATtiny2313 for the project, or perhaps the ATmega8 or one of its

successors (ATmega48/88/168) which have become quite popular since the origi-
nal demo project had been established. For all these more modern devices, itis no

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

http://ssl.bulix.org/projects/lcd4linux/

5.28 A simple project 130

longer necessary to use an external crystal for clocking as they ship with the inter-
nal 1 MHz oscillator enabled, so C1, C2, and Q1 can be omitted. Normally, for
this experiment, the external circuitry on /RESET (R1, C3) can be omitted as well,
leaving only the AVR, the LED, the bypass capacitor C4, and perhaps R2. For the
ATmega8/48/88/168, use PBL1 (pin 15 at the DIP-28 package) to connect the LED
to. Additionally, this demo has been ported to many different other AVRs. The lo-
cation of the respective OC pin varies between different AVRs, and it is mandated
by the AVR hardware.

Icl
R | (SCK) PB7
< o RESET (M so) PB6
20K 3 ==3 2 £ (Mosl) PB5

g, XTAL2 PB4

. LED5MM
rR2 DL

(0Cl) PB3

XTAL1L Pr2

vee (Al N1) PB1

10 o (Al NO) PBO

J

See note [8] "W

(1 CP) PDB

v (T1) PD5

(T0) PD4

(1 NT1) PD3

(1 NTO) PD2

(TXD) PD1

(RXD) PDO
AT90S2313P

g I—llhT?
X

MEPRPRE BREREREE

Figure 1: Schematic of circuit for demo project

The source code is given otemo.c For the sake of this example, create a file called
demo.c containing this source code. Some of the more important parts of the code
are:

Note [1]:

As the AVR microcontroller series has been developed during the past years,
new features have been added over time. Even though the basic concepts of
the timer/counterl are still the same as they used to be back in early 2001 when
this simple demo was written initially, the names of registers and bits have been
changed slightly to reflect the new features. Also, the port and pin mapping of
the output compare match 1A (or 1 for older devices) pin which is used to control
the LED varies between different AVRs. The fitcompat.h tries to abstract
between all this differences using some preprocdafdefr statements, so the ac-

tual program itself can operate on a common set of symbolic names. The macros
defined by that file are:

¢ OCRthe name of the OCR register used to control the PWM (usually either
OCR1 or OCR1A)

« DDROGhe name of the DDR (data direction register) for the OC output

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.28 A simple project 131

¢ OC1the pin number of the OC1[A] output within its port

* TIMER1_TOPthe TOP value of the timer used for the PWM (1023 for 10-bit
PWNMs, 255 for devices that can only handle an 8-bit PWM)

* TIMER1_PWM_INIT the initialization bits to be set into control register 1A in
order to setup 10-bit (or 8-bit) phase and frequency correct PWM mode

* TIMER1_CLOCKSOURCHe clock bits to set in the respective control regis-
ter to start the PWM timer; usually the timer runs at full CPU clock for 10-bit
PWMs, while it runs on a prescaled clock for 8-bit PWMs

Note [2]:

ISR() is a macro that marks the function as an interrupt routine. In this case, the
function will get called when timer 1 overflows. Setting up interrupts is explained
in greater detail incavr/interrupt.h>: Interrupts

Note [3]:

The PWNs being used in 10-bit mode, so we need a 16-bit variable to remember
the current value.

Note [4]:
This section determines the new value of W&'M
Note [5]:

Here's where the newly computed value is loaded intoRNé¢Megister. Since

we are in an interrupt routine, it is safe to use a 16-bit assignment to the register.
Outside of an interrupt, the assignment should only be performed with interrupts

disabled if there’s a chance that an interrupt routine could also access this register
(or another register that us€EMB, see the appropriatéAQ entry.

Note [6]:

This routine gets called after a reset. It initializes FM&Mwnd enables interrupts.

Note [7]:

The main loop of the program does nothing — all the work is done by the interrupt
routine! Thesleep_mode() puts the processor on sleep until the next interrupt,
to conserve power. Of course, that probably won't be noticable as we are still
driving a LED, it is merely mentioned here to demonstrate the basic principle.

Note [8]:

Early AVR devices saturate their outputs at rather low currents when sourcing cur-
rent, so the LED can be connected directly, the resulting current through the LED

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.28 A simple project 132

will be about 15 mA. For modern parts (at least for the ATmega 128), however
Atmel has drastically increased the IO source capability, so when operating at 5
V Vce, R2 is needed. lIts value should be about 150 Ohms. When operating the
circuit at 3V, it can still be omitted though.

5.28.2 The Source Code

~
*

"THE BEER-WARE LICENSE" (Revision 42):

<joerg@FreeBSD.ORG> wrote this file. As long as you retain this notice you
can do whatever you want with this stuff. If we meet some day, and you think
this stuff is worth it, you can buy me a beer in return. Joerg Wunsch

EE . A N I

<

Simple AVR demonstration. Controls a LED that can be directly
connected from OC1/OC1A to GND. The brightness of the LED is
controlled with the PWM. After each period of the PWM, the PWM
value is either incremented or decremented, that's all.

$ld: demo.c,v 1.6.2.3 2006/01/05 21:33:08 joerg_wunsch Exp $

#include <inttypes.h>
#include <avr/io.h>
#include <avr/interrupt.h>
#include <avr/sleep.h>

#include "iocompat.h" /* Note [1] */

enum { UP, DOWN };

ISR (TIMER1_OVF_vect) /* Note [2] */
{
static uintl6_t pwm; /* Note [3] */
static uint8_t direction;
switch (direction) /* Note [4] */
{
case UP:
if (++pwm == TIMER1_TOP)
direction = DOWN;
break;
case DOWN:
if (--pwm == 0)
direction = UP;
break;
}
OCR = pwm; /* Note [5] */
}
void
ioinit (void) /* Note [6] */

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.28 A simple project 133

/* Timer 1 is 10-bit PWM (8-bit PWM on some ATtinys). */
TCCR1A = TIMER1_PWM_INIT;
/*
* Start timer 1.
*
* NB: TCCR1A and TCCRI1B could actually be the same register, so
* take care to not clobber it.
*
TCCR1B |= TIMER1_CLOCKSOURCE;
/*
* Run any device-dependent timer 1 setup hook if present.
*
/
#if defined(TIMER1_SETUP_HOOK)
TIMER1_SETUP_HOOKJ();
#endif

/* Set PWM value to 0. */
OCR = 0;

/* Enable OC1 as output. */
DDROC = _BV (OC1);

/* Enable timer 1 overflow interrupt. */
TIMSK = BV (TOIEL);

sei ();
}
int
main (void)
{
ioinit ();
/* loop forever, the interrupts are doing the rest */
for () * Note [7] */
sleep_mode();
return (0);
}

5.28.3 Compiling and Linking

This first thing that needs to be done is compile the source. When compiling, the
compiler needs to know the processor type so-thencu option is specified. The

-Os option will tell the compiler to optimize the code for efficient space usage (at the
possible expense of code execution speed).-g§hes used to embed debug info. The
debug info is useful for disassemblies and doesn’t end up in the .hex files, so | usually
specify it. Finally, the-c tells the compiler to compile and stop — don't link. This
demo is small enough that we could compile and link in one step. However, real-world
projects will have several modules and will typically need to break up the building of
the project into several compiles and one link.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.28 A simple project 134

$ avr-gcc -g -Os -mmcu=atmega8 -c demo.c

The compilation will create alemo.o file. Next we link it into a binary called
demo.elf

$ avr-gcc -g -mmcu=atmega8 -o demo.elf demo.o

It is important to specify the MCU type when linking. The compiler uses-theacu
option to choose start-up files and run-time libraries that get linked together. If this
option isn’t specified, the compiler defaults to the 8515 processor environment, which
is most certainly what you didn’t want.

5.28.4 Examining the Object File

Now we have a binary file. Can we do anything useful with it (besides put it into the
processor?) The GNU Binutils suite is made up of many useful tools for manipulating
object files that get generated. One toohis-objdump , which takes information
from the object file and displays it in many useful ways. Typing the command by itself
will cause it to list out its options.

For instance, to get a feel of the application’s size, theoption can be used. The
output of this option shows how much space is used in each of the sections (the .stab
and .stabstr sections hold the debugging information and won’t make it into the ROM
file).

An even more useful option S . This option disassembles the binary file and inter-
sperses the source code in the output! This method is much better, in my opinion, than
using the-S with the compiler because this listing includes routines from the libraries
and the vector table contents. Also, all the "fix-ups" have been satisfied. In other words,
the listing generated by this option reflects the actual code that the processor will run.

$ avr-objdump -h -S demo.elf > demo.Ist

Here’s the output as saved in tHemo.Ist file:

demo.elf: file format elf32-avr

Sections:

ldx Name Size VMA LMA File off Algn

0 .text 000000ec 00000000 00000000 00000094 2*+0
CONTENTS, ALLOC, LOAD, READONLY, CODE

1 .data 00000000 00800060 000000ec 00000180 2*+0
CONTENTS, ALLOC, LOAD, DATA

2 .bss 00000003 00800060 00800060 00000180 2**0
ALLOC

3 .noinit 00000000 00800063 00800063 00000180 2**0
CONTENTS

4 .eeprom 00000000 00810000 00810000 00000180 2*0

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.28 A simple project

135

5

6

.stab

.stabstr

CONTENTS
000007a4 00000000 00000000 00000180

CONTENTS, READONLY, DEBUGGING
00000912 00000000 00000000 00000924 2**Q
CONTENTS, READONLY, DEBUGGING
Disassembly of section .text:

00000000 <__vectors>:

0

: 12 c0

2: 73 c0

e:
10:
12:
14:
16:
18:
la:
1c:
le:
20:
22:
24:

00000026

26

28:
2a:
2c:
2e:
30:
32:

Qe oD

72 c0
71 c0
70 c0
6f c0
6e c0
6d cO
11 c0
6b cO0
6a c0
69 c0
68 c0
67 c0
66 cO0
65 c0
64 c0
63 c0
62 c0

111 24
1f be
cf e5
d4 e0
de bf
cd bf
4e c0

rimp
rimp
rimp
rimp
rimp
rimp
rimp
rimp
rimp
rimp
rjmp
rimp
rimp
rimp
rimp
rimp
rimp
rimp
rimp

<__ctors_end>:

+36

+230
+228
+226
+224

4222

+220
.+218
+34

4214
4212
.+210
.+208
.+206

+204

+202
.+200
.+198
.+196

eor rl, rl
out Ox3f, rl ; 63

Idi r28, Ox5F ;

; 0x26
; Oxea
; Oxea
; Oxea
; Oxea
; Oxea
; Oxea
; Oxea
; 0x34
; Oxea
Oxea
Oxea
; Oxea
; Oxea
; Oxea
; Oxea
; Oxea
Oxea
Oxea

95

Idi r29, 0x04 ; 4
out Ox3e, r29 ; 62
out Ox3d, r28 ; 61

rjmp

00000034 <__vector_8>:

enum { UP, DOWN };

.+156

; 0xdO

ISR (TIMER1_OVF vect) /* Note [2] */

{

34:
36:
38:
3a:
3c:
3e:
40:
42:
44:

1f 92
0f 92
of b6
of 92
11 24
2f 93
3f 93
8f 93
of 93

push
push

rl
r0

in r0, Ox3f ; 63

push

r0

eor rl, rl

push
push
push
push

rl8
r19
r24
25

static uintl6_t pwm; /* Note [3] */

static uint8_t direction;

switch (direction) /* Note [4] */
46: 80 91 62 00

Ids r24, 0x0062

<__ctors_end>
<__bad_interrupt>
<__bad_interrupt>
<_ bad_interrupt>
<__bad_interrupt>
<__bad_interrupt>
<__bad_interrupt>
<__ bad_interrupt>
<__vector_8>
<__bad_interrupt>
<__bad_interrupt>
<__bad_interrupt>
<__bad_interrupt>
<__bad_interrupt>
<__bad_interrupt>
<__bad_interrupt>
<__bad_interrupt>
<__bad_interrupt>
<__bad_interrupt>

<main>

2**2

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.28 A simple project

136

4a: 99 27 eor r25, r25

4c: 00 97 sbiw r24, 0x00 ; 0

4e: 39 fO breq .+14 ; Oxbe <_ SREG__+0x1f>
50: 01 97 sbiw r24, 0x01 ; 1

52: b9 fO breq .+46 ; 0x82 <__ SREG__+0x43>

54: 20 91 60 00 |Ids r18, 0x0060
58: 30 91 61 00 Ids r19, 0x0061
5c: 21 c0 rjmp .+66 ; Oxa0 < SREG__+0x61>

case UP:

if (++pwm == TIMER1_TOP)
5e: 20 91 60 00 Ids r18, 0x0060
62: 30 91 61 00 Ids r19, 0x0061
66: 2f 5f subi r18, OxFF ; 255
68: 3f 4f sbci r19, OxFF ; 255
6a: 30 93 61 00 sts 0x0061, r19
6e: 20 93 60 00 sts 0x0060, r18

72: 83 e0 Idi r24, 0x03 ; 3
74 2f 3f cpi rl8, OxFF ; 255
76: 38 07 cpc rl9, r24
78: 99 f4 brne .+38 ; Oxa0 < SREG__+0x61>
direction = DOWN;
7a: 81 e0 Idi r24, 0x01 ; 1
7c: 80 93 62 00 sts 0x0062, r24
80: Of c0 rmp .+30 ; Oxa0 <__SREG__+0x61>
break;
case DOWN:
if (--pwm == 0)

82: 20 91 60 00 Ids r18, 0x0060
86: 30 91 61 00 Ids r19, 0x0061
8a: 21 50 subi r18, 0x01 ; 1
8c: 30 40 sbci r19, 0x00 ; O
8e: 30 93 61 00 sts 0x0061, rl19
92: 20 93 60 00 sts 0x0060, r18

96: 21 15 cp rl8, r1
98: 31 05 cpc rl9, r1
9a: 11 f4 brne .+4 ; Oxa0 < SREG__+0x61>

direction = UP;
9c: 10 92 62 00 sts 0x0062, r1

break;

}

OCR = pwm; /* Note [5] */
a0: 3b bd out Ox2b, r19 ; 43
a2: 2a bd out Ox2a, rl8 ; 42
ad: 9f 91 pop r25
a6: 8f 91 pop r24
a8: 3f 91 pop r19
aa: 2f 91 pop rl8
ac: Of 90 pop r0
ae: Of be out Ox3f, r0 ; 63
b0: Of 90 pop r0
b2: 1f 90 pop rl
b4: 18 95 reti

000000b6 <ioinit>:

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.28 A simple project 137

}

void
ioinit (void) /* Note [6] */

/* Timer 1 is 10-bit PWM (8-bit PWM on some ATtinys). */
TCCR1A = TIMER1_PWM_INIT;

b6: 83 e8 Idi r24, 0x83 ; 131
b8: 8f bd out Ox2f, r24 ; 47
/*
* Start timer 1.
*
* NB: TCCR1A and TCCR1B could actually be the same register, so
* take care to not clobber it.
*
/

TCCR1B |= TIMER1_CLOCKSOURCE;
ba: 8e b5 in r24, Ox2e ; 46
bc: 81 60 ori 124, 0x01 ; 1
be: 8e bd out Ox2e, r24 ; 46

/*

* Run any device-dependent timer 1 setup hook if present.
*/

#if defined(TIMER1_SETUP_HOOK)
TIMER1_SETUP_HOOK();

#endif
/* Set PWM value to 0. */
OCR = 0;
c0: 1b bc out 0x2b, rl ; 43
c2: la bc out Ox2a, rl ; 42

/* Enable OC1 as output. */
DDROC = _BV (OCl);
c4: 82 e0 Idi r24, 0x02 ; 2
c6: 87 bb out 0x17, r24 ; 23

/* Enable timer 1 overflow interrupt. */
TIMSK = _BV (TOIE1);

c8: 84 e0 Idi r24, 0x04 ; 4

ca: 89 bf out 0x39, r24 ; 57
sei ();

cc: 78 94 sei

ce: 08 95 ret

000000d0 <main>:

}
int
main (void)
{
do: cf e5 Idi r28, Ox5F ; 95
d2: d4 e0 Idi r29, 0x04 ; 4
d4: de bf out Ox3e, r29 ; 62
d6: cd bf out Ox3d, r28 ; 61
ioinit ();
d8: ee df rcall .-36 ; Oxb6 <ioinit>

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.28 A simple project 138

[* loop forever, the interrupts are doing the rest */

for (;;) /* Note [7] */
sleep_mode();

da: 85 b7 in r24, 0x35 ; 53

dc: 80 68 ori r24, 0x80 ; 128

de: 85 bf out 0x35, r24 ; 53

e0: 88 95 sleep

e2: 85 b7 in r24, 0x35 ; 53

e4: 8f 77 andi r24, Ox7F ; 127

e6: 85 bf out 0x35, r24 ; 53

e8: f8 cf rfmp .-16 ; Oxda <main+0xa>

000000ea <__bad_interrupt>:
ea: 8a cf rmp .-236 ; 0XO <__heap_end>

5.28.5 Linker Map Files

avr-objdump is very useful, but sometimes it's necessary to see information about
the link that can only be generated by the linker. A map file contains this information.
A map file is useful for monitoring the sizes of your code and data. It also shows where
modules are loaded and which modules were loaded from libraries. It is yet another
view of your application. To get a map file, | usually addll,-Map,demo.map to

my link command. Relink the application using the following command to generate
demo.map (a portion of which is shown below).

$ avr-gcc -g -mmcu=atmega8 -WI,-Map,demo.map -o demo.elf demo.o

Some points of interest in thdlemo.map file are:

rela.plt

*(.rela.plt)

text 0x0000000000000000 Oxec

*(.vectors)

.vectors 0x0000000000000000 0x26 /usr/src/RPM/BUILD/avr-libc-1.4.4/avr/lib/avr4/atmega8/crtm8.0
0x0000000000000000 __vectors
0x0000000000000000 __vector_default
0x0000000000000026 __Cctors_start = .

The .text segment (where program instructions are stored) starts at location 0x0.

*(.fini2)
*(.finil)
*(.fini0)
0x00000000000000ec _etext = .
.data 0x0000000000800060 0x0 load address 0x00000000000000ec
0x0000000000800060 PROVIDE (__data_start, .)
*(.data)

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.28 A simple project 139

(.gnu.linkonce.d)

0x0000000000800060 . = ALIGN (0x2)
0x0000000000800060 _edata = .
0x0000000000800060 PROVIDE (__data_end, .)
.bss 0x0000000000800060 0x3
0x0000000000800060 PROVIDE (__bss_start, .)
*(.bss)
.bss 0x0000000000800060 0x3 demo.o
*(COMMON)
0x0000000000800063 PROVIDE (__bss_end, .)
0x00000000000000ec __data_load_start = LOADADDR (.data)
0x00000000000000ec _ data_load_end = (__data_load_start + SIZEOF (.data))
.noinit 0x0000000000800063 0x0
0x0000000000800063 PROVIDE (__noinit_start, .)
(.noinit)
0x0000000000800063 PROVIDE (__noinit_end, .)
0x0000000000800063 _end = .
0x0000000000800063 PROVIDE (__heap_start, .)
.eeprom 0x0000000000810000 0x0
(.eeprom®)
0x0000000000810000 __eeprom_end = .

The last address in the .text segment is locafinhl4 (denoted by etext), so the
instructions use up 276 bytes of FLASH.

The .data segment (where initialized static variables are stored) starts at |@bdibn
which is the first address after the register bank on an ATmega8 processor.

The next available address in the .data segment is also lo€dfith, so the application
has no initialized data.

The .bss segment (where uninitialized data is stored) starts at lo€atén

The next available address in the .bss segment is location 0x63, so the application uses
3 bytes of uninitialized data.

The .eeprom segment (where EEPROM variables are stored) starts at location 0x0.

The next available address in the .eeprom segment is also location 0x0, so there aren’t
any EEPROM variables.

5.28.6 Generating Intel Hex Files

We have a binary of the application, but how do we get it into the processor? Most (if
not all) programmers will not accept a GNU executable as an input file, so we need to
do a little more processing. The next step is to extract portions of the binary and save
the information into .hex files. The GNU utility that does this is calied-objcopy

The ROM contents can be pulled from our project’s binary and put into the file
demao.hex using the following command:

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.28 A simple project 140

$ avr-objcopy -j .text -j .data -O ihex demo.elf demo.hex

The resultingdemo.hex file contains:

:1000000012C073C072C071C070CO6FCO6ECO6DCOCE
:1000100011C06BCO6AC069C068C067C066C0O65COF7
:1000200064C063C062C011241FBECFESD4EODEBF50
:10003000CDBF4EC01F920F920FB60F9211242F9377
:100040003F938F939F93809162009927009739F097
:100050000197B9F0209160003091610021C020919A
:100060006000309161002F5F3F4F3093610020931B
:10007000600083E02F3F380799F481E080936200AD
:100080000FC02091600030916100215030403093CA
:100090006100209360002115310511F41092620077
:1000A0003BBD2ABD9F918F913F912F910F900FBE25
:1000BO000F901F90189583E88FBDSEB581608EBD1F
:1000C0001BBC1ABC82E087BB84E089BF789408958A
:1000D000CFESD4EODEBFCDBFEEDF85B7806885BF5A
:0CO0E000889585B78F7785BFF8CF8ACF51
:00000001FF

The-j option indicates that we want the information from the .text and .data segment
extracted. If we specify the EEPROM segment, we can generate a .hex file that can be
used to program the EEPROM:

$ avr-objcopy -j .eeprom --change-section-Ima .eeprom=0 -O ihex demo.elf demo_eeprom.hex
The resultingdemo_eeprom.hex file contains:

:00000001FF

which is an empty .hex file (which is expected, since we didn’t define any EEPROM
variables).

5.28.7 Letting Make Build the Project

Rather than type these commands over and over, they can all be placed in a make file.
To build the demo project usingake, save the following in a file calleMakefile

Note:
This Makefile can only be used as input for the GNU versionratke.

PRG = demo
OBJ = demo.o
#MCU_TARGET = at90s2313
#MCU_TARGET = at90s2333
#MCU_TARGET = at90s4414

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.28 A simple project 141

#MCU_TARGET = at90s4433

#MCU_TARGET = at90s4434

#MCU_TARGET = at90s8515

#MCU_TARGET = at90s8535

#MCU_TARGET = atmegal28
#MCU_TARGET = atmegal280
#MCU_TARGET = atmegal28l
#MCU_TARGET = atmegal6

#MCU_TARGET = atmegal63
#MCU_TARGET = atmegal64p
#MCU_TARGET = atmegal65
#MCU_TARGET = atmegal65p
#MCU_TARGET = atmegal68
#MCU_TARGET = atmegal69
#MCU_TARGET = atmegal69p
#MCU_TARGET = atmega32

#MCU_TARGET = atmega324p
#MCU_TARGET = atmega325
#MCU_TARGET = atmega3250
#MCU_TARGET = atmega329
#MCU_TARGET = atmega3290
#MCU_TARGET = atmega48

#MCU_TARGET = atmega64

#MCU_TARGET = atmega640
#MCU_TARGET = atmegab644
#MCU_TARGET = atmega644p
#MCU_TARGET = atmegab645
#MCU_TARGET = atmega6450
#MCU_TARGET = atmega649
#MCU_TARGET = atmega6490

MCU_TARGET = atmega8

#MCU_TARGET = atmega8515
#MCU_TARGET = atmega8535
#MCU_TARGET = atmega88
#MCU_TARGET = attiny2313
#MCU_TARGET = attiny24
#MCU_TARGET = attiny25
#MCU_TARGET = attiny26
#MCU_TARGET = attiny261
#MCU_TARGET = attiny44
#MCU_TARGET = attiny45
#MCU_TARGET = attiny461
#MCU_TARGET = attiny84
#MCU_TARGET = attiny85
#MCU_TARGET = attiny861
OPTIMIZE = -02

DEFS =

LIBS =

You should not have to change anything below here.
CcC = avr-gcc
Override is only needed by avr-lib build system.

override CFLAGS = -g -Wall $(OPTIMIZE) -mmcu=$(MCU_TARGET) $(DEFS)

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.28 A simple project

142

override LDFLAGS = -WI,-Map,$(PRG).map
OBJCOPY = avr-objcopy
OBJDUMP = avr-objdump

all: $(PRG).elf Ist text eeprom

$(PRG).elf: $(OBJ)
$(CC) $(CFLAGS) $(LDFLAGS) -0 $@ $" $(LIBS)

dependency:
demo.o: demo.c iocompat.h

clean:
rm -rf *.0 $(PRG).elf *.eps *.png *.pdf *.bak
rm -rf *Ist *map $(EXTRA_CLEAN_FILES)
Ist: $(PRG).Ist

%.Ist: %.elf
$(OBJDUMP) -h -S $< > $@

Rules for building the .text rom images
text: hex bin srec

hex: $(PRG).hex

bin: $(PRG).bin

srec: $(PRG).srec

%.hex: %.elf
$(OBJCOPY) -j .text -j .data -O ihex $< $@

%.srec: %.elf
$(OBJCOPY) -j .text -j .data -O srec $< $@

%.bin: %.elf
$(OBJCOPY) -j .text -j .data -O binary $< $@

Rules for building the .eeprom rom images
eeprom: ehex ebin esrec
ehex: $(PRG)_eeprom.hex
ebin: $(PRG)_eeprom.bin

esrec: $(PRG)_eeprom.srec

%_eeprom.hex: %.elf

$(OBJCOPY) -j .eeprom --change-section-Ima .eeprom=0 -O ihex $< $@

%_eeprom.srec: %.elf

$(OBJICOPY) -j .eeprom --change-section-lma .eeprom=0 -O srec $< $@

%_eeprom.bin: %.elf

$(OBJICOPY) -j .eeprom --change-section-lma .eeprom=0 -O binary $< $@

Every thing below here is used by avr-libc’s build system and can be ignored

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.29 A more sophisticated project 143

by the casual user.

FIG2DEV = fig2dev
EXTRA_CLEAN_FILES = *.hex *.bin *.srec

dox: eps png pdf
eps: $(PRG).eps
png: $(PRG).png
pdf: $(PRG).pdf

%.eps: %.fig
$(FIG2DEV) -L eps $< $@

%.pdf: %.fig
$(FIG2DEV) -L pdf $< $@

%.png: %.fig
$(FIG2DEV) -L png $< $@

5.28.8 Reference to the source code

The source code is installed under
$prefix/share/doc/avr-libc/examples/demo/ .

where$prefix s a configuration option. For Unix systems, it is usually set to either
/usr or/ust/local

5.29 A more sophisticated project

This project extends the basic idea of tieple projecto control a LED with a PWM
output, but adds methods to adjust the LED brightness. It employs a lot of the basic
concepts of avr-libc to achieve that goal.

Understanding this project assumes the simple project has been understood in full, as
well as being acquainted with the basic hardware concepts of an AVR microcontroller.

5.29.1 Hardware setup

The demo is set up in a way so it can be run on the ATmegal6 that ships with the
STK500 development kit. The only external part needed is a potentiometer attached to
the ADC. It is connected to a 10-pin ribbon cable for port A, both ends of the poten-
tiometer to pins 9 (GND) and 10 (VCC), and the wiper to pin 1 (port A0). A bypass
capacitor from pin 1 to pin 9 (like 47 nF) is recommendable.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.29 A more sophisticated project 144

Figure 2: Setup of the STK500

The coloured patch cables are used to provide various interconnections. As there are
only four of them in the STK500, there are two options to connect them for this demo.
The second option for the yellow-green cable is shown in parenthesis in the table.
Alternatively, the "squid" cable from the JTAG ICE kit can be used if available.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.29 A more sophisticated project 145
Port Header Color Function Connect to
DO 1 brown RxD RXD of the

RS-232
header

D1 2 grey TxD TXD of the
RS-232
header

D2 3 black button SWO (pin 1

"down" switches
header)

D3 4 red button "up" SW1 (pin 2
switches
header)

D4 5 green button SW2 (pin 3

"ADC" switches
header)

D5 6 blue LED LEDO (pin 1
LEDs header)

D6 7 (green) clock out LED1 (pin 2
LEDs header)

D7 8 white 1-second LED2 (pin 3

flash LEDs header)

GND 9 unused

VCC 10 unused

Figure 3: Wiring of the STK500

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.29 A more sophisticated project 146

The following picture shows the alternate wiring where LED1 is connected but SW2 is
not:

Figure 4: Wiring option #2 of the STK500

As an alternative, this demo can also be run on the popular ATmega8 controller, or its
successor ATmega88 as well as the ATmega48 and ATmegal68 variants of the latter.
These controllers do not have a port named "A", so their ADC inputs are located on
port C instead, thus the potentiometer needs to be attached to port C. Likewise, the
OCI1A output is not on port D pin 5 but on port B pin 1 (PB1). Thus, the above
cabling scheme needs to be changed so that PB1 connects to the LEDO pin. (PD6
remains unconnected.) When using the STK500, use one of the jumper cables for this
connection. All other port D pins should be connected the same way as described for
the ATmegal6 above.

When not using an STK500 starter kit, attach the LEDs through some resistor to Vcc
(low-active LEDs), and attach pushbuttons from the respective input pins to GND. The
internal pull-up resistors are enabled for the pushbutton pins, so no external resistors
are needed.

TheMCU_TARGEMacro in the Makefile needs to be adjusted appropriately.

The flash ROM and RAM consumption of this demo are way below the resources of
even an ATmega48. The major advantage of experimenting with the ATmegal6 (in
addition that it ships together with an STK500 anyway) is that it can be debugged
online via JTAG.

Note that in the explanation below, all port/pin names are applicable to the ATmegal6
setup.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.29 A more sophisticated project 147

5.29.2 Functional overview

PD6 will be toggled with each internal clock tick (approx. 10 ms). PD7 will flash once
per second.

PDO and PD1 are configured as UART 10, and can be used to connect the demo kit to
a PC (9600 Bd, 8N1 frame format). The demo application talks to the serial port, and
it can be controlled from the serial port.

PD2 through PD4 are configured as inputs, and control the application unless control
has been taken over by the serial port. Shorting PD2 to GND will decrease the current
PWM value, shorting PD3 to GND will increase it.

While PD4 is shorted to GND, one ADC conversion for channel 0 (ADC input is on
PAO) will be triggered each internal clock tick, and the resulting value will be used as
the PWM value. So the brightness of the LED follows the analog input value on PCO.
VAREF on the STK500 should be set to the same value as VCC.

When running in serial control mode, the function of the watchdog timer can be demon-
strated by typing an ‘r'. This will make the demo application run in a tight loop without
retriggering the watchdog so after some seconds, the watchdog will reset the MCU.
This situation can be figured out on startup by reading the MCUCSR register.

The current value of the PWM is backed up in an EEPROM cell after about 3 seconds
of idle time after the last change. If that EEPROM cell contains a reasonable (i. e.
non-erased) value at startup, it is taken as the initial value for the PWM. This virtually
preserves the last value across power cycles. By not updating the EEPROM immme-
diately but only after a timeout, EEPROM wear is reduced considerably compared to
immediately writing the value at each change.

5.29.3 A code walkthrough

This section explains the ideas behind individual parts of the code.s@itwee code
has been divided into numbered parts, and the following subsections explain each of
these parts.

5.29.3.1 Part 1: Macro definitions A number of preprocessor macros are defined
to improve readability and/or portability of the application.

The first macros describe the 10 pins our LEDs and pushbuttons are connected to. This
provides some kind of mini-HAL (hardware abstraction layer) so should some of the
connections be changed, they don’t need to be changed inside the code but only on
top. Note that the location of the PWM output itself is mandated by the hardware, so it
cannot be easily changed. As the ATmega48/88/168 controllers belong to a more recent
generation of AVRs, a number of register and bit names have been changed there, so
they are mapped back to their ATmega8/16 equivalents to keep the actual program code
portable.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.29 A more sophisticated project 148

The nameF_CPUis the conventional name to describe the CPU clock frequency of
the controller. This demo project just uses the internal calibrated 1 MHz RC oscillator
that is enabled by default. Note that when using ¢hail/delay.h > functions,
F_CPUneeds to be defined before including that file.

The remaining macros have their own comments in the source code. The macro
TMR1_SCALEhows how to use the preprocessor and the compiler’'s constant expres-
sion computation to calculate the value of timer 1's post-scaler in a way so it only

depends ofr_CPUand the desired software clock frequency. While the formula looks

a bit complicated, using a macro offers the advantage that the application will auto-
matically scale to new target softclock or master CPU frequencies without having to
manually re-calculate hardcoded constants.

5.29.3.2 Part 2: Variable definitions The intflags structure demonstrates a
way to allocate bit variables in memory. Each of the interrupt service routines just sets
one bit within that structure, and the application’s main loop then monitors the bits in
order to act appropriately.

Like all variables that are used to communicate values between an interrupt service
routine and the main application, it is declaredatile.

The variableee_pwmis not a variable in the classical C sense that could be used as an
Ivalue or within an expression to obtain its value. Instead, the

__attribute__ ((section(".eeprom")))

marks it as belonging to theEEPROM sectionThis section is merely used as a place-
holder so the compiler can arrange for each individual variable’s location in EEPROM.
The compiler will also keep track of initial values assigned, and usually the Makefile
is arranged to extract these initial values into a separate loaddigeflemo_-
eeprom .x in this case) that can be used to initialize the EEPROM.

The actual EEPROM IO must be performed manually.

Similarly, the variablancucsr is kept in the.noinit section in order to prevent it from
being cleared upon application startup.

5.29.3.3 Part 3: Interrupt service routines The ISR to handle timer 1's overflow
interrupt arranges for the software clock. While timer 1 runs the PWM, it calls its
overflow handler rather frequently, so th#®MR1_SCALEvalue is used as a postscaler
to reduce the internal software clock frequency further. If the software clock triggers,
it sets themr_int Dbitfield, and defers all further tasks to the main loop.

The ADC ISR just fetches the value from the ADC conversion, disables the ADC

interrupt again, and announces the presence of the new valueade¢hiant bitfield.

The interrupt is kept disabled while not needed, because the ADC will also be triggered
by executing the SLEEP instruction in idle mode (which is the default sleep mode).

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.29 A more sophisticated project 149

Another option would be to turn off the ADC completely here, but that increases the
ADC'’s startup time (not that it would matter much for this application).

5.29.3.4 Part4: Auxiliary functions The functionhandle_mcucsr() usestwo
__attribute__ declarators to achieve specific goals. First, it will instruct the com-
piler to place the generated code into timit3 section of the output. Thus, it will be-
come part of the application initialization sequence. This is done in order to fetch (and
clear) the reason of the last hardware reset fM@UCSRSs early as possible. There

is a short period of time where the next reset could already trigger before the current
reason has been evaluated. This also explains why the vanatlesr that mirrors

the register’s value needs to be placed into the .noinit section, because otherwise the
default initialization (which happens after .init3) would blank the value again.

As the initialization code is not called using CALL/RET instructions but rather con-
catenated together, the compiler needs to be instructed to omit the entire function pro-
logue and epilogue. This is performed by thekedattribute. So while syntactically,
handle_mcucsr() is a function to the compiler, the compiler will just emit the in-
structions for it without setting up any stack frame, and not even a RET instruction at
the end.

Functionioinit() centralizes all hardware setup. The very last part of that function
demonstrates the use of the EEPROM variggepwmto obtain an EEPROM address
that can in turn be applied as an argumergeprom_read_word()

The following functions handle UART character and string output. (UART input

is handled by an ISR.) There are two string output functiqurétstr() and
printstr_p() . The latter function fetches the string frggnogram memoryBoth
functions translate a newline character into a carriage return/newline sequence, so a
simple\n can be used in the source code.

The functionset_pwm() propagates the new PWM value to the PWM, performing
range checking. When the value has been changed, the new percentage will be an-
nounced on the serial link. The current value is mirrored in the varjataso others

can use it in calculations. In order to allow for a simple calculation of a percentage
value without requiring floating-point mathematics, the maximal value of the PWM is
restricted to 1000 rather than 1023, so a simple division by 10 can be used. Due to the
nature of the human eye, the difference in LED brightness between 1000 and 1023 is
not noticable anyway.

5.29.3.5 Part 5: main() At the start ofmain() , a variablemode is declared to
keep the current mode of operation. An enumeration is used to improve the readability.
By default, the compiler would allocate a variable of typefor an enumeration. The
packedattribute declarator instructs the compiler to use the smallest possible integer
type (which would be an 8-bit type here).

After some initialization actions, the application’s main loop follows. In an embedded
application, this is normally an infinite loop as there is nothing an application could

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.30 Using the standard IO facilities 150

"exit" into anyway.

At the beginning of the loop, the watchdog timer will be retriggered. If that timer is
not triggered for about 2 seconds, it will issue a hardware reset. Care needs to be taken
that no code path blocks longer than this, or it needs to frequently perform watchdog
resets of its own. An example of such a code path would be the string 10 functions: for
an overly large string to print (about 2000 characters at 9600 Bd), they might block for
too long.

The loop itself then acts on the interrupt indication bitfields as appropriate, and will
eventually put the CPU on sleep at its end to conserve power.

The first interrupt bit that is handled is the (software) timer, at a frequency of approx-
imately 100 Hz. TheCLOCKOUDin will be toggled here, so e. g. an oscilloscope
can be used on that pin to measure the accuracy of our software clock. Then, the LED
flasher for LED2 ("We are alive"-LED) is built. It will flash that LED for about 50

ms, and pause it for another 950 ms. Various actions depending on the operation mode
follow. Finally, the 3-second backup timer is implemented that will write the PWM
value back to EEPROM once it is not changing anymore.

The ADC interrupt will just adjust the PWM value only.

Finally, the UART Rx interrupt will dispatch on the last character received from the
UART.

All the string literals that are used as informational messages wittdam() are
placed inprogram memonrgo no SRAM needs to be allocated for them. This is done
by using the PSTR macro, and passing the strimitatstr_p()

5.29.4 The source code

The source code is installed under
$prefix/share/doc/avr-libc/examples/largedemo/largedemo.c ,

where$prefix is a configuration option. For Unix systems, it is usually set to either
Jusr or/usr/local

5.30 Using the standard IO facilities

This project illustrates how to use the standard 10 facilities (stdio) provided by this
library. It assumes a basic knowledge of how the stdio subsystem is used in standard C
applications, and concentrates on the differences in this library’s implementation that
mainly result from the differences of the microcontroller environment, compared to a
hosted environment of a standard computer.

This demo is meant to supplement th@cumentationnot to replace it.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.30 Using the standard IO facilities 151

5.30.1 Hardware setup

The demo is set up in a way so it can be run on the ATmegal6 that ships with the
STK500 development kit. The UART port needs to be connected to the RS-232 "spare"
port by a jumper cable that connects PDO0 to RxD and PD1 to TxD. The RS-232 channel
is set up as standard inpstdin) and standard outpustdout), respectively.

In order to have a different device available for a standard error chastdel{), an
industry-standard LCD display with an HD44780-compatible LCD controller has been
chosen. This display needs to be connected to port A of the STK500 in the following
way:

Port Header Function
A0 1 LCD D4
Al 2 LCD D5
A2 3 LCD D6
A3 4 LCD D7
A4 5 LCD R/~W
A5 6 LCDE
A6 7 LCDRS
A7 8 unused
GND 9 GND
VCC 10 Vce

Figure 5: Wiring of the STK500

The LCD controller is used in 4-bit mode, including polling the "busy" flag so the
R/~W line from the LCD controller needs to be connected. Note that the LCD con-

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.30 Using the standard IO facilities 152

troller has yet another supply pin that is used to adjust the LCD’s contrast (V5). Typ-
ically, that pin connects to a potentiometer between Vcc and GND. Often, it might
work to just connect that pin to GND, while leaving it unconnected usually yields an
unreadable display.

Port A has been chosen as 7 pins on a single port are needed to connect the LCD, yet all
other ports are already partially in use: port B has the pins for in-system programming
(ISP), port C has the ports for JTAG (can be used for debugging), and port D is used
for the UART connection.

5.30.2 Functional overview

The project consists of the following files:

 stdiodemo.c This is the main example file.

« defines.h Contains some global defines, like the LCD wiring

* hd44780.c Implementation of an HD44780 LCD display driver

* hd44780.h Interface declarations for the HD44780 driver

¢ lcd.c Implementation of LCD character 10 on top of the HD44780 driver
¢ lcd.h Interface declarations for the LCD driver

e uart.c Implementation of a character 10 driver for the internal UART

* uart.h Interface declarations for the UART driver

5.30.3 A code walkthrough

5.30.3.1 stdiodemo.c As usual, include files go first. While conventionally, system
header files (those in angular brackets.. >) go before application-specific header
files (in double quotes)ylefines.h comes as the first header file here. The main
reason is that this file defines the valueFofCPUwhich needs to be known before
including <utils/delay.h >,

The functionioinit() summarizes all hardware initialization tasks. As this function

is declared to be module-internal onktdtic), the compiler will notice its simplic-

ity, and with a reasonable optimization level in effect, it will inline that function. That
needs to be kept in mind when debugging, because the inlining might cause the debug-
ger to "jump around wildly" at a first glance when single-stepping.

The definitions ofuart_str ~ andlcd_str set up two stdio streams. The initial-
ization is done using thEDEV_SETUP_STREAM()nitializer template macro, so a
static object can be constructed that can be used for IO purposes. This initializer macro
takes three arguments, two function macros to connect the corresponding output and

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.30 Using the standard IO facilities 153

input functions, respectively, the third one describes the intent of the stream (read,
write, or both). Those functions that are not required by the specified intent (like the
input function forlcd_str which is specified to only perform output operations) can
be given adNULL

The streanuart_str corresponds to input and output operations performed over the
RS-232 connection to a terminal (e.g. from/to a PC running a terminal program), while
thelcd_str stream provides a method to display character data on the LCD text
display.

The functiondelay_1s() suspends program execution for approximately one sec-
ond. This is done using thedelay_ms() function from <util/delay.h >

which in turn needs th&_CPUmacro in order to adjust the cycle counts. As the
_delay_ms() function has a limited range of allowable argument values (depending
onF_CPU, a value of 10 ms has been chosen as the base delay which would be safe
for CPU frequencies of up to about 26 MHz. This function is then called 100 times to
accomodate for the actual one-second delay.

In a practical application, long delays like this one were better be handled by a hardware
timer, so the main CPU would be free for other tasks while waiting, or could be put on
sleep.

At the beginning omain() , after initializing the peripheral devices, the default stdio
streamsstdin , stdout , andstderr are set up by using the existing staffilt. E
stream objects. While this is not mandatory, the availabilitgtdfin andstdout
allows to use the shorthand functions (epgintf() instead offprintf()), and
stderr can mnemonically be referred to when sending out diagnostic messages.

Just for demonstration purposesdin andstdout are connected to a stream that
will perform UART IO, while stderr is arranged to output its data to the LCD text
display.

Finally, a main loop follows that accepts simple "commands" entered via the RS-232
connection, and performs a few simple actions based on the commands.

First, a prompt is sent out usimmgintf _P() (which takes grogram space string

The string is read into an internal buffer as one line of input, uiiets() . While it
would be also possible to ugets() (which implicitly reads fromstdin), gets()

has no control that the user’s input does not overflow the input buffer provided so it
should never be used at all.

If fgets() fails to read anything, the main loop is left. Of course, normally the main
loop of a microcontroller application is supposed to never finish, but again, for demon-
strational purposes, this explains the error handling of stéi@ts() will return

NULL in case of an input error or end-of-file condition on input. Both these condi-
tions are in the domain of the function that is used to establish the stremain;
putchar() in this case. In short, this function returns EOF in case of a serial line
"break” condition (extended start condition) has been recognized on the serial line.
Common PC terminal programs allow to assert this condition as some kind of out-of-
band signalling on an RS-232 connection.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.30 Using the standard IO facilities 154

When leaving the main loop, a goodbye message is sent to standard error output (i.e. to
the LCD), followed by three dots in one-second spacing, followed by a sequence that
will clear the LCD. Finally,main() will be terminated, and the library will add an
infinite loop, so only a CPU reset will be able to restart the application.

There are three "commands" recognized, each determined by the first letter of the line
entered (converted to lower case):

* The 'q’ (quit) command has the same effect of leaving the main loop.
e The'I' (LCD) command takes its second argument, and sends it to the LCD.

e The 'u’ (UART) command takes its second argument, and sends it back to the
UART connection.

Command recognition is done usiggcanf() where the first format in the format
string just skips over the command itself (as the assignment suppression modifier
given).

5.30.3.2 defines.h This file just contains a few peripheral definitions.

TheF_CPUmacro defines the CPU clock frequency, to be used in delay loops, as well
as in the UART baud rate calculation.

The macrdJART_BAUDlefines the RS-232 baud rate. Depending on the actual CPU
frequency, only a limited range of baud rates can be supported.

The remaining macros customize the 10 port and pins used for the HD44780 LCD
driver.

5.30.3.3 hd44780.h This file describes the public interface of the low-level LCD
driver that interfaces to the HD44780 LCD controller. Public functions are available to
initialize the controller into 4-bit mode, to wait for the controller’s busy bit to be clear,
and to read or write one byte from or to the controller.

As there are two different forms of controller 10, one to send a command or receive
the controller status (RS signal clear), and one to send or receive data to/from the
controller's SRAM (RS asserted), macros are provided that build on the mentioned
function primitives.

Finally, macros are provided for all the controller commands to allow them to be used
symbolically. The HD44780 datasheet explains these basic functions of the controller
in more detail.

5.30.3.4 hd44780.c This is the implementation of the low-level HD44780 LCD
controller driver.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.30 Using the standard IO facilities 155

On top, a few preprocessor glueing tricks are used to establish symbolic access to
the hardware port pins the LCD controller is attached to, based on the application’s
definitions made imefines.h

The hd44780_pulse_e() function asserts a short pulse to the controller’s E (en-
able) pin.

As the controller is used in 4-bit interface mode, all byte 10 to/from the controller
needs to be handled as two nibble 10s. The functiai¥4780_outnibble() and
hd44780_innibble() implement this. They do not belong to the public interface,
so they are declared static.

Building upon these, the public functiohgl44780_outbyte() andhd44780_-
inbyte() transfer one byte to/from the controller.

The functionhd44780_wait_ready() waits for the controller to become ready,
by continuously polling the controller’s status (which is read by performing a byte read
with the RS signal cleard), and examining the BUSY flag within the status byte. This
function needs to be called before performing any controller 10.

Finally, hd44780 init() initializes the LCD controller into 4-bit mode, based on

the initialization sequence mandated by the datasheet. As the BUSY flag cannot be
examined yet at this point, this is the only part of this code where timed delays are
used. While the controller can perform a power-on reset when certain constraints on
the power supply rise time are met, always calling the software initialization routine
at startup ensures the controller will be in a known state. This function also puts the
interface into 4-bit mode (which would not be done automatically after a power-on
reset).

5.30.3.5 Icd.h This function declares the public interface of the higher-level (char-
acter |O) LCD driver.

5.30.3.6 Icd.c The implementation of the higher-level LCD driver. This driver
builds on top of the HD44780 low-level LCD controller driver, and offers a character
10 interface suitable for direct use by the standard IO facilities. Where the low-level
HD44780 driver deals with setting up controller SRAM addresses, writing data to the
controller's SRAM, and controlling display functions like clearing the display, or mov-
ing the cursor, this high-level driver allows to just write a character to the LCD, in the
assumption this will somehow show up on the display.

Control characters can be handled at this level, and used to perform specific actions
on the LCD. Currently, there is only one control character that is being dealt with: a
newline character\f) is taken as an indication to clear the display and set the cursor
into its initial position upon reception of the next character, so a "new line" of text
can be displayed. Therefore, a received newline character is remembered until more
characters have been sent by the application, and will only then cause the display to be
cleared before continuing. This provides a convenient abstraction where full lines of

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.30 Using the standard IO facilities 156

text can be sent to the driver, and will remain visible at the LCD until the next line is
to be displayed.

Further control characters could be implemented, e. g. using a set of escape sequences.
That way, it would be possible to implement self-scrolling display lines etc.

The public functiorcd_init() first calls the initialization entry point of the lower-
level HD44780 driver, and then sets up the LCD in a way we'd like to (display cleared,
non-blinking cursor enabled, SRAM addresses are increasing so characters will be
written left to right).

The public functioricd_putchar() takes arguments that make it suitable for be-
ing passed asput() function pointer to the stdio stream initialization functions and
macros f{devopen() , FDEV_SETUP_STREAM(etc.). Thus, it takes two argu-
ments, the character to display itself, and a reference to the underlying stream object,
and it is expected to return O upon success.

This function remembers the last unprocessed newline character seen in the function-
local static variablel_seen . If a newline character is encountered, it will simply set
this variable to a true value, and return to the caller. As soon as the first non-newline
character is to be displayed with seen still true, the LCD controller is told to clear

the display, put the cursor home, and restart at SRAM address 0. All other characters
are sent to the display.

The single static function-internal variabté seen works for this purpose. If mul-

tiple LCDs should be controlled using the same set of driver functions, that would not
work anymore, as a way is heeded to distinguish between the various displays. This is
where the second parameter can be used, the reference to the stream itself: instead of
keeping the state inside a private variable of the function, it can be kept inside a private
object that is attached to the stream itself. A reference to that private object can be at-
tached to the stream (e.g. inside the functimh init() that then also needs to be
passed a reference to the stream) usttey _set_udata() , and can be accessed
insidelcd_putchar() usingfdev_get udata()

5.30.3.7 wuart.h Public interface definition for the RS-232 UART driver, much like
in lcd.hexcept there is now also a character input function available.

As the RS-232 input is line-buffered in this example, the md&xo BUFSIZE deter-
mines the size of that buffer.

5.30.3.8 wuart.c This implements an stdio-compatible RS-232 driver using an
AVR’s standard UART (or USART in asynchronous operation mode). Both, char-
acter output as well as character input operations are implemented. Character output
takes care of converting the internal newlreinto its external representation carriage
return/line feed r \n).

Character input is organized as a line-buffered operation that allows to minimally edit
the current line until it is "sent” to the application when either a carriage return (

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.30 Using the standard IO facilities 157

or newline {n) character is received from the terminal. The line editing functions
implemented are:

» \b (back space) or177 (delete) deletes the previous character
» ~u (control-U, ASCII NAK) deletes the entire input buffer

« “w (control-W, ASCII ETB) deletes the previous input word, delimited by white
space

* "r (control-R, ASCII DC2) sends ¥ , then reprints the buffer (refresh)

« \t (tabulator) will be replaced by a single space

The functionuart_init() takes care of all hardware initialization that is required to
put the UART into a mode with 8 data bits, no parity, one stop bit (commonly referred
to as 8N1) at the baud rate configured in defines.h. At low CPU clock frequencies, the
U2Xbit in the UART is set, reducing the oversampling from 16x to 8x, which allows
for a 9600 Bd rate to be achieved with tolerable error using the default 1 MHz RC
oscillator.

The public functionuart_putchar() again has suitable arguments for direct use
by the stdio stream interface. It performs t{reinto \r \n translation by recursively
calling itself when it sees an character. Just for demonstration purposes,\gne
(audible bell, ASCII BEL) character is implemented by sending a strirggderr

so it will be displayed on the LCD.

The public functioruart_getchar() implements the line editor. If there are char-
acters available in the line buffer (variabdeg is notNULL), the next character will
be returned from the buffer without any UART interaction.

If there are no characters inside the line buffer, the input loop will be entered. Charac-
ters will be read from the UART, and processed accordingly. If the UART signalled a
framing error FE bit set), typically caused by the terminal sendinlin@ breakcon-

dition (start condition held much longer than one character period), the function will
return an end-of-file condition using-DEV_EOF-If there was a data overrun condi-
tion on input DORYit set), an error condition will be returned aBDEV_ERR

Line editing characters are handled inside the loop, potentially modifying the buffer
status. If characters are attempted to be entered beyond the size of the line buffer, their
reception is refused, and\a character is sent to the terminal. I§a or \n character is

seen, the variablp (receive pointer) is set to the beginning of the buffer, the loop is
left, and the first character of the buffer will be returned to the application. (If no other
characters have been entered, this will just be the newline character, and the buffer is
marked as being exhausted immediately again.)

5.30.4 The source code

The source code is installed under

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.31 Example using the two-wire interface (TWI) 158

$prefix/share/doc/avr-libc/examples/stdiodemo/ ,

where$prefix is a configuration option. For Unix systems, it is usually set to either
lusr or/usr/local

5.31 Example using the two-wire interface (TWI)

Some newer devices of the ATmega series contain builtin support for interfacing the
microcontroller to a two-wire bus, called TWI. This is essentially the same called 12C
by Philips, but that term is avoided in Atmel’s documentation due to patenting issues.

For the original Philips documentation, see

http://www.semiconductors.philips.com/buses/i2c/index.html

5.31.1 Introduction into TWI

The two-wire interface consists of two signal lines nans&A (serial data) an&CL
(serial clock) (plus a ground line, of course). All devices participating in the bus are
connected together, using open-drain driver circuitry, so the wires must be terminated
using appropriate pullup resistors. The pullups must be small enough to recharge
the line capacity in short enough time compared to the desired maximal clock fre-
quency, yet large enough so all drivers will not be overloaded. There are formulas in
the datasheet that help selecting the pullups.

Devices can either act as a master to the bus (i. e., they initiate a transfer), or as a
slave (they only act when being called by a master). The bus is multi-master capable,

and a particular device implementation can act as either master or slave at different

times. Devices are addressed using a 7-bit address (coordinated by Philips) transfered
as the first byte after the so-called start condition. The LSB of that byte<®\Ri. e.

it determines whether the request to the slave is to read or write data during the next

cycles. (There is also an option to have devices using 10-bit addresses but that is not
covered by this example.)

5.31.2 The TWI example project

The ATmega TWI hardware supports both, master and slave operation. This example
will only demonstrate how to use an AVR microcontroller as TWI master. The imple-
mentation is kept simple in order to concentrate on the steps that are required to talk to
a TWI slave, so all processing is done in polled-mode, waiting for the TWI interface to
indicate that the next processing step is due (by setting the TWINT interrupt bit). If it
is desired to have the entire TWI communication happen in "background", all this can
be implemented in an interrupt-controlled way, where only the start condition needs to
be triggered from outside the interrupt routine.

There is a variety of slave devices available that can be connected to a TWI bus. For the

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

http://www.semiconductors.philips.com/buses/i2c/index.html

5.31 Example using the two-wire interface (TWI) 159

purpose of this example, an EEPROM device out of the industry-sta@d@k series

has been chosen (whetecan be one 081, 02, 04, 08, or 16) which are available from
various vendors. The choice was almost arbitrary, mainly triggered by the fact that an
EEPROM device is being talked to in both directions, reading and writing the slave
device, so the example will demonstrate the details of both.

Usually, there is probably not much need to add more EEPROM to an ATmega system
that way: the smallest possible AVR device that offers hardware TWI support is the
ATmega8 which comes with 512 bytes of EEPROM, which is equivalent to an 24C04
device. The ATmegal28 already comes with twice as much EEPROM as the 24C16
would offer. One exception might be to use an externally connected EEPROM device
that is removable; e. g. SDRAM PC memory comes with an integrated TWI EEPROM
that carries the RAM configuration information.

5.31.3 The Source Code

The source code is installed under
$prefix/share/doc/avr-libc/examples/twitest/twitest.c ,
whereS$prefix is a configuration option. For Unix systems, it is usually set to either
lusr or/usr/local

Note [1]

The header filecutil/twi.h > contains some macro definitions for symbolic con-
stants used in the TWI status register. These definitions match the names used in the
Atmel datasheet except that all names have been prefixedwith

Note [2]

The clock is used in timer calculations done by the compiler, for the UART baud rate
and the TWI clock rate.

Note [3]

The address assigned for the 24Cxx EEPROM consists of 1010 in the upper four bits.
The following three bits are normally available as slave sub-addresses, allowing to
operate more than one device of the same type on a single bus, where the actual sub-
address used for each device is configured by hardware strapping. However, since the
next data packet following the device selection only allows for 8 bits that are used as

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.31 Example using the two-wire interface (TWI) 160

an EEPROM address, devices that require more than 8 address bits (24C04 and above)
"steal" subaddress bits and use them for the EEPROM cell address bits 9 to 11 as re-
quired. This example simply assumes all subaddress bits are 0 for the smaller devices,
so the EO, E1, and E2 inputs of the 24Cxx must be grounded.

Note [4]

For slow clocks, enable the 2 x U[S]ART clock multiplier, to improve the baud rate
error. This will allow a 9600 Bd communication using the standard 1 MHz calibrated
RC oscillator. See also the Baud rate tables in the datasheets.

Note [5]

The datasheet explains why a minimum TWBR value of 10 should be maintained when
running in master mode. Thus, for system clocks below 3.6 MHz, we cannot run the
bus at the intented clock rate of 100 kHz but have to slow down accordingly.

Note [6]

This function is used by the standard output facilities that are utilized in this example
for debugging and demonstration purposes.

Note [7]

In order to shorten the data to be sent over the TWI bus, the 24Cxx EEPROMSs support
multiple data bytes transfered within a single request, maintaining an internal address
counter that is updated after each data byte transfered successfully. When reading
data, one request can read the entire device memory if desired (the counter would wrap
around and start back from 0 when reaching the end of the device).

Note [8]

When reading the EEPROM, a first device selection must be made with write intent
(R/~W bit set to 0 indicating a write operation) in order to transfer the EEPROM ad-
dress to start reading from. This is callethster transmitter modeEach completion

of a particular step in TWI communication is indicated by an asserted TWINT bit in

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.31 Example using the two-wire interface (TWI) 161

TWCR. (An interrupt would be generated if allowed.) After performing any actions
that are needed for the next communication step, the interrupt condition must be man-
ually cleared bysettingthe TWINT bit. Unlike with many other interrupt sources, this
would even be required when using a true interrupt routine, since as soon as TWINT is
re-asserted, the next bus transaction will start.

Note [9]

Since the TWI bus is multi-master capable, there is potential for a bus contention when
one master starts to access the bus. Normally, the TWI bus interface unit will detect this
situation, and will not initiate a start condition while the bus is busy. However, in case
two masters were starting at exactly the same time, the way bus arbitration works, there
is always a chance that one master could lose arbitration of the bus during any transmit
operation. A master that has lost arbitration is required by the protocol to immediately
cease talking on the bus; in particular it must not initiate a stop condition in order to not
corrupt the ongoing transfer from the active master. In this example, upon detecting a
lost arbitration condition, the entire transfer is going to be restarted. This will cause a
new start condition to be initiated, which will normally be delayed until the currently
active master has released the bus.

Note [10]

Next, the device slave is going to be reselected (using a so-called repeated start con-
dition which is meant to guarantee that the bus arbitration will remain at the current
master) using the same slave address (SLA), but this time with read intesd\{ Rit

set to 1) in order to request the device slave to start transfering data from the slave to
the master in the next packet.

Note [11]

If the EEPROM device is still busy writing one or more cells after a previous write
request, it will simply leave its bus interface drivers at high impedance, and does not
respond to a selection in any way at all. The master selecting the device will see the
high level at SDA after transfering the SLA+R/W packet as a NACK to its selection
request. Thus, the select process is simply started over (effectively causipgaded

start conditior), until the device will eventually respond. This polling procedure is
recommended in the 24Cxx datasheet in order to minimize the busy wait time when
writing. Note that in case a device is broken and never responds to a selection (e. g.
since it is no longer present at all), this will cause an infinite loop. Thus the maximal
number of iterations made until the device is declared to be not responding at all, and
an error is returned, will be limited to MAX_ITER.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

5.31 Example using the two-wire interface (TWI) 162

Note [12]

This is calledmaster receiver modé¢he bus master still supplies the SCL clock, but the
device slave drives the SDA line with the appropriate data. After 8 data bits, the master
responds with an ACK bit (SDA driven low) in order to request another data transfer
from the slave, or it can leave the SDA line high (NACK), indicating to the slave that
it is going to stop the transfer now. Assertion of ACK is handled by setting the TWEA
bit in TWCR when starting the current transfer.

Note [13]

The control word sent out in order to initiate the transfer of the next data packet is
initially set up to assert the TWEA bit. During the last loop iteration, TWEA is de-
asserted so the client will get informed that no further transfer is desired.

Note [14]

Except in the case of lost arbitration, all bus transactions must properly be terminated
by the master initiating a stop condition.

Note [15]

Writing to the EEPROM device is simpler than reading, since only a master transmitter
mode transfer is needed. Note that the first packet after the SLA+W selection is always
considered to be the EEPROM address for the next operation. (This packet is exactly
the same as the one above sent before starting to read the device.) In case a master
transmitter mode transfer is going to send more than one data packet, all following
packets will be considered data bytes to write at the indicated address. The internal
address pointer will be incremented after each write operation.

Note [16]

24Cxx devices can become write-protected by strapping tHIC pin to logic high.
(Leaving it unconnected is explicitly allowed, and constitutes logic low level, i. e. no
write protection.) In case of a write protected device, all data transfer attempts will be
NACKed by the device. Note that some devices might not implement this.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

6 avr-libc Data Structure Documentation 163

6 avr-libc Data Structure Documentation

6.1 div_t Struct Reference
6.1.1 Detailed Description

Result type for functiorliv().

Data Fields

* int quot
e intrem

6.1.2 Field Documentation
6.1.2.1 intdiv_t::quot

The Quotient.

6.1.2.2 intdiv_t:irem
The Remainder.

The documentation for this struct was generated from the following file:

* stdlib.h

6.2 Idiv_t Struct Reference
6.2.1 Detailed Description

Result type for functiomdiv().

Data Fields

¢ longquot
e longrem

6.2.2 Field Documentation

6.2.2.1 longdiv_t::quot
The Quotient.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

7 avr-libc Page Documentation 164

6.2.2.2 longldiv_t::rem
The Remainder.

The documentation for this struct was generated from the following file:

« stdlib.h

7 avr-libc Page Documentation

7.1 Acknowledgments

This document tries to tie together the labors of a large group of people. Without
these individuals’ efforts, we wouldn't have a terrificge set of tools to develop AVR
projects. We all owe thanks to:

« The GCC Team, which produced a very capable set of development tools for an
amazing number of platforms and processors.

» Denis Chertykov [denisc@overta.ru] for making the AVR-specific changes to
the GNU tools.

« Denis Chertykov and Marek Michalkiewiczjarekm@linux.org.pl] for devel-
oping the standard libraries and startup codedéR-GCC.

» Uros Platise for developing the AVR programmer taop.

« Joerg Wunsch joerg@FreeBSD.ORG] for adding all the AVR development
tools to the FreeBSD liittp://www.freebsd.org] ports tree and for providing the
basics for thalemo project

¢ Brian Dean [bsd@bsdhome.com] for developiagrdude (an alternative to
uisp) and for contributingdocumentatiorwhich describes how to use ifvr-
dude was previously calledvrprog.

 Eric Weddington [eric@evcohs.com] for maintaining thWWinAVR package
and thus making the continued improvements to the Opensource AVR toolchain
available to many users.

¢ Rich Neswold for writing the original avr-tools document (which he graciously
allowed to be merged into this document) and his improvements tdehe
project

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

mailto:denisc@overta.ru
mailto:marekm@linux.org.pl
mailto:joerg@FreeBSD.ORG
http://www.freebsd.org
mailto:bsd@bsdhome.com
mailto:eric@evcohs.com

7.2 avr-libc and assembler programs 165

« Theodore A. Roth for having been a long-time maintainer of many of the tools
(AVR-Libc , the AVR port of GDB, AVaRICE, uisp, avrdude).

« All the people who currently maintain the tools, and/or have submitted sugges-
tions, patches and bug reports. (See the AUTHORS files of the various tools.)

¢ And lastly, all the users who use the software. If nobody used the software, we
would probably not be very motivated to continue to develop it. Keep those bug
reports coming. ;-)

7.2 avr-libc and assembler programs
7.2.1 Introduction

There might be several reasons to write code for AVR microcontrollers using plain
assembler source code. Among them are:

¢ Code for devices that do not have RAM and are thus not supported by the C
compiler.

» Code for very time-critical applications.

« Special tweaks that cannot be done in C.

Usually, all but the first could probably be done easily usingrhiee assemblefiacility
of the compiler.

Although avr-libc is primarily targeted to support programming AVR microcontrollers
using the C (and C++) language, there’s limited support for direct assembler usage as
well. The benefits of it are:

« Use of the C preprocessor and thus the ability to use the same symbolic constants
that are available to C programs, as well as a flexible macro concept that can use
any valid C identifier as a macro (whereas the assembler's macro concept is
basically targeted to use a macro in place of an assembler instruction).

¢ Use of the runtime framework like automatically assigning interrupt vectors. For
devices that have RAMnitializing the RAM variablesan also be utilized.

7.2.2 Invoking the compiler

For the purpose described in this document, the assembler and linker are usually not
invoked manually, but rather using the C compiler fronteadr{gcc) that in turn
will call the assembler and linker as required.

This approach has the following advantages:

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

7.2 avr-libc and assembler programs 166

« There is basically only one program to be called direetlyrgcc , regardless
of the actual source language used.

» The invokation of the C preprocessor will be automatic, and will include the
appropriate options to locate required include files in the filesystem.

« The invokation of the linker will be automatic, and will include the appropri-
ate options to locate additional libraries as well as the application start-up code
(crt XXX.o0) and linker script.

Note that the invokation of the C preprocessor will be automatic when the filename
provided for the assembiler file ends in .S (the capital letter "s"). This would even apply
to operating systems that use case-insensitive filesystems since the actual decision is
made based on the case of the filename suffix given on the command-line, not based on
the actual filename from the file system.

Alternatively, the language can explicitly be specified using the
assembler-with-cpp option.

7.2.3 Example program

The following annotated example features a simple 100 kHz square wave generator
using an AT90S1200 clocked with a 10.7 MHz crystal. Pin PD6 will be used for the
square wave output.

#include <avr/io.h> ; Note [1]
work = 16 ; Note [2]
tmp = 17
intmp = 19
intsav = 0
SQUARE = PD6 ; Note [3]
; Note [4]:
tmconst= 10700000 / 200000 ; 100 kHz => 200000 edges/s
fuzz= 8 ; # clocks in ISR until TCNTO is set

.section .text

.global main ; Note [5]
main:

rcall ioinit
1

rjmp 1b ; Note [6]

.global TIMERO_OVF_vect ; Note [7]
TIMERO_OVF_vect:

Idi inttmp, 256 - tmconst + fuzz

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

7.2 avr-libc and assembler programs 167

out _SFR_IO_ADDR(TCNTOQ), inttmp ; Note [8]
in intsav, _SFR_IO_ADDR(SREG) ; Note [9]
shic _SFR_IO_ADDR(PORTD), SQUARE
rmp 1f
shi _SFR_IO_ADDR(PORTD), SQUARE
rjmp 2f
1: chi _SFR_IO_ADDR(PORTD), SQUARE
2:
out _SFR_IO_ADDR(SREG), intsav
reti
ioinit:
shi _SFR_IO_ADDR(DDRD), SQUARE
Idi work, _BV(TOIEQ)
out _SFR_IO_ADDR(TIMSK), work
Idi work, _BV(CS00) ; tmr0: CK/1
out _SFR_IO_ADDR(TCCRO0), work
Idi work, 256 - tmconst
out _SFR_IO_ADDR(TCNTO), work
sei
ret
.global __vector_default ; Note [10]

__vector_default:
reti

.end

Note [1]

As in C programs, this includes the central processor-specific file containing the 10 port
definitions for the device. Note that not all include files can be included into assembler
sources.

Note [2]

Assignment of registers to symbolic names used locally. Another option would be to
use a C preprocessor macro instead:

#define work 16

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

7.2 avr-libc and assembler programs 168

Note [3]

Our bit number for the square wave output. Note that the right-hand side consists of a
CPP macro which will be substituted by its value (6 in this case) before actually being
passed to the assembler.

Note [4]

The assembler uses integer operations in the host-defined integer size (32 bits or longer)
when evaluating expressions. This is in contrast to the C compiler that uses the C type
int by default in order to calculate constant integer expressions.

In order to get a 100 kHz output, we need to toggle the PD6 line 200000 times per
second. Since we use timer 0 without any prescaling options in order to get the de-
sired frequency and accuracy, we already run into serious timing considerations: while
accepting and processing the timer overflow interrupt, the timer already continues to
count. When pre-loading thECCNTOregister, we therefore have to account for the
number of clock cycles required for interrupt acknowledge and for the instructions to
reloadTCCNTO(4 clock cycles for interrupt acknowledge, 2 cycles for the jump from
the interrupt vector, 2 cycles for the 2 instructions that re[0@CNTQ. This is what

the constantuzz is for.

Note [5]

External functions need to be declared to be .glolain is the application entry
point that will be jumped to from the ininitalization routinedns1200.0

Note [6]

The main loop is just a single jump back to itself. Square wave generation itself is
completely handled by the timer 0 overflow interrupt servicesléep instruction
(using idle mode) could be used as well, but probably would not conserve much energy
anyway since the interrupt service is executed quite frequently.

Note [7]

Interrupt functions can get the usual names that are also available to C programs. The
linker will then put them into the appropriate interrupt vector slots. Note that they must

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

7.2 avr-libc and assembler programs 169

be declared .global in order to be acceptable for this purpose. This will only work if
<avrfio.h > has been included. Note that the assembler or linker have no chance
to check the correct spelling of an interrupt function, so it should be double-checked.
(When analyzing the resulting object file usiagr-objdump or avr-nm , a name

like _ vector_ N should appear, withl being a small integer number.)

Note [8]

As explained in the section abospecial function registershe actual 1O port address
should be obtained using the mact®FR_IO_ADDR (The AT90S1200 does not have
RAM thus the memory-mapped approach to access the 10 registers is not available. It
would be slower than usinig /out instructions anyway.)

Since the operation to reloalCCNTOis time-critical, it is even performed before
savingSREG Obviously, this requires that the instructions involved would not change
any of the flag bits irSREG

Note [9]

Interrupt routines must not clobber the global CPU state. Thus, it is usually necessary
to save at least the state of the flag bitSREG (Note that this serves as an example
here only since actually, all the following instructions would not mo@RECeither,

but that's not commonly the case.)

Also, it must be made sure that registers used inside the interrupt routine do not conflict
with those used outside. In the case of a RAM-less device like the AT90S1200, this can
only be done by agreeing on a set of registers to be used exclusively inside the interrupt
routine; there would not be any other chance to "save" a register anywhere.

If the interrupt routine is to be linked together with C modules, care must be taken
to follow theregister usage guidelinémposed by the C compiler. Also, any register
modified inside the interrupt sevice needs to be saved, usually on the stack.

Note [10]

As explained irinterrupts a global "catch-all" interrupt handler that gets all unassigned
interrupt vectors can be installed using the nameector_default . This must

be .global, and obviously, should end ineti instruction. (By default, a jump to
location 0 would be implied instead.)

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

7.2 avr-libc and assembler programs 170

7.2.4 Pseudo-ops and operators

The available pseudo-ops in the assembler are described in the GNU assembler (gas)
manual. The manual can be found online as part of the current binutils release under
http://sources.redhat.com/binutils/.

As gas comes from a Unix origin, its pseudo-op and overall assembler syntax is slightly
different than the one being used by other assemblers. Numeric constants follow the C
notation (prefix0x for hexadecimal constants), expressions use a C-like syntax.

Some common pseudo-ops include:

.byte allocates single byte constants

« .ascii allocates a non-terminated string of characters

« .asciz allocates g0-terminated string of characters (C string)
 .data switches to the .data section (initialized RAM variables)

« .text switches to the .text section (code and ROM constants)

¢ .set declares a symbol as a constant expression (identical to .equ)

« .global (or .globl) declares a public symbol that is visible to the linker (e. g.
function entry point, global variable)

.extern declares a symbol to be externally defined; this is effectively a comment
only, as gas treats all undefined symbols it encounters as globally undefined any-
way

Note that .org is available in gas as well, but is a fairly pointless pseudo-op in an as-
sembler environment that uses relocatable object files, as it is the linker that determines
the final position of some object in ROM or RAM.

Along with the architecture-independent standard operators, there are some AVR-
specific operators available which are unfortunately not yet described in the official
documentation. The most notable operators are:

* lo8 Takes the least significant 8 bits of a 16-bit integer

» hi8 Takes the most significant 8 bits of a 16-bit integer

e pmTakes a program-memory (ROM) address, and converts it into a RAM ad-
dress. This implies a division by 2 as the AVR handles ROM addresses as 16-bit

words (e.g. in anJMP or ICALL instruction), and can also handle relocatable
symbols on the right-hand side.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

http://sources.redhat.com/binutils/.

7.3 Frequently Asked Questions 171

Example:

Idi r24, lo8(pm(somefunc))
Idi r25, hi8(pm(somefunc))
call something

This passes the address of functisomefunc as the first parameter to function
something

7.3

Frequently Asked Questions

7.3.1 FAQ Index

© 00 N o g b~ W N

=
o

11.
12.
13.
14.
15.
16.
17.
18.

. My program doesn’t recognize a variable updated within an interrupt routine
. 1 get "undefined reference to..." for functions like "sin()"

. How to permanently bind a variable to a register?

. How to modify MCUCR or WDTCR early?

. What is all this _BV() stuff about?

. Can | use C++ on the AVR?

. Shouldn't I initialize all my variables?

. Why do some 16-bit timer registers sometimes get trashed?

. How do | use a #define’'d constant in an asm statement?

. Why does the PC randomly jump around when single-stepping through my pro-

gram in avr-gdb?

How do | trace an assembler file in avr-gdb?

How do | pass an IO port as a parameter to a function?
What registers are used by the C compiler?

How do | put an array of strings completely in ROM?
How to use external RAM?

Which -O flag to use?

How do | relocate code to a fixed address?

My UART is generating nonsense! My ATmegal28 keeps crashing! Port F is
completely broken!

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

7.3 Frequently Asked Questions 172

19. Why do all my "foo...bar" strings eat up the SRAM?

20. Why does the compiler compile an 8-bit operation that uses bitwise operators
into a 16-bit operation in assembly?

21. How to detect RAM memory and variable overlap problems?
22. Is it really impossible to program the ATtinyXX in C?

23. What is this "clock skew detected" messsage?

24. Why are (many) interrupt flags cleared by writing a logical 1?
25. Why have "programmed" fuses the bit value 0?

26. Which AVR-specific assembler operators are available?
7.3.2 My program doesn’t recognize a variable updated within an interrupt rou-
tine
When using the optimizer, in a loop like the following one:

uint8_t flag;
ISR(SOME_vect) {
flag = 1,
}
while (flag == 0) {
}
the compiler will typically acceslag only once, and optimize further accesses com-
pletely away, since its code path analysis shows that nothing inside the loop could
change the value dlag anyway. To tell the compiler that this variable could be

changed outside the scope of its code path analysis (e. g. from within an interrupt
routine), the variable needs to be declared like:

volatile uint8_t flag;

Back toFAQ Index

7.3.3 | get"undefined reference to..." for functions like "sin()"

In order to access the mathematical functions that are declaredniath.h >, the
linker needs to be told to also link the mathematical librioyn.a

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

7.3 Frequently Asked Questions 173

Typically, system libraries likéibm.a are given to the final C compiler command
line that performs the linking step by adding a flim at the end. (That is, the initial
lib and the filename suffix from the library are written immediately aftdrflag. So
for a libfoo.a library, -Ifoo needs to be provided.) This will make the linker
search the library in a path known to the system.

An alternative would be to specify the full path to tliem.a file at the same place

on the command line, i. eafter all the object files £.0). However, since this re-
quires knowledge of where the build system will exactly find those library files, this is
deprecated for system libraries.

Back toFAQ Index

7.3.4 How to permanently bind a variable to a register?
This can be done with

register unsigned char counter asm("r3");

Typically, it should be possible to use r2 through r15 that way.
SeeC Names Used in Assembler Cofie more details.

Back toFAQ Index

7.3.5 How to modify MCUCR or WDTCR early?

The method of early initializationJCUCRWDTCRr anything else) is different (and
more flexible) in the current version. Basically, write a small assembler file which
looks like this:

;; begin xram.S

#include <avrf/io.h>

.section .initl,"ax",@progbits

di r16, BV(SRE) | _BV(SRW)
out _SFR_IO_ADDR(MCUCR),r16

;v end xram.S

Assemble it, link the resultingram.o with other files in your program, and this piece
of code will be inserted in initialization code, which is run right after reset. See the
linker script for comments about the neinit N sections (which one to use, etc.).

The advantage of this method is that you can insert any initialization code you want
(just remember that this is very early startup — no stack and zero_reg__ yet),
and no program memory space is wasted if this feature is not used.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

7.3 Frequently Asked Questions 174

There should be no need to modify linker scripts anymore, except for some very spe-
cial cases. It is best to leave stack at its default value (end of internal SRAM

— faster, and required on some devices like ATmegal61l because of errata), and add
-WI,-Tdata,0x801100 to start the data section above the stack.

For more information on using sections, ddemory Sections There is also an ex-
ample forUsing Sections in C CodeNote that in C code, any such function would
preferrably be placed into section .init3 as the code in .init2 ensures the internal regis-
ter__zero_reg__ is already cleared.

Back toFAQ Index

7.3.6 Whatis all this _BV() stuff about?

When performing low-level output work, which is a very central point in microcon-
troller programming, it is quite common that a particular bit needs to be set or cleared
in some 10 register. While the device documentation provides mnemonic names for
the various bits in the 10 registers, and #éR device-specific 10 definitiongeflect

these names in definitions for numerical constants, a way is needed to convert a bit
number (usually within a byte register) into a byte value that can be assigned directly
to the register. However, sometimes the direct bit numbers are needed as well (e. g. in
anSBI() instruction), so the definitions cannot usefully be made as byte values in the
first place.

So in order to access a particular bit number as a byte value, us@&ihg macro.

Of course, the implementation of this macro is just the usual bit shift (which is done
by the compiler anyway, thus doesn’t impose any run-time penalty), so the following
applies:

_BV(3) => 1 << 3 => 0x08
However, using the macro often makes the program better readable.

"BV" stands for "bit value", in case someone might ask you. :-)

Example: clock timer 2 with full 10 clock CS2x = 0b001), toggle OC2 output on
compare matchGOMR = 0b01), and clear timer on compare mat€i C2=1). Make
OC2 (PD7) an output.

TCCR2 = _BV(COM20)|_BV(CTC2)|_BV(CS20);
DDRD = _BV(PD7);

Back toFAQ Index

7.3.7 Canluse C++ onthe AVR?

Basically yes, C++ is supported (assuming your compiler has been configured and
compiled to support it, of course). Source files ending in .cc, .cpp or .C will automati-

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

7.3 Frequently Asked Questions 175

cally cause the compiler frontend to invoke the C++ compiler. Alternatively, the C++
compiler could be explicitly called by the naragr-c++

However, there’s currently no support flilostdc++ |, the standard support library
needed for a complete C++ implementation. This imposes a number of restrictions on
the C++ programs that can be compiled. Among them are:

« Obviously, none of the C++ related standard functions, classes, and template
classes are available.

* The operatorsiew anddelete are not implemented, attempting to use them
will cause the linker to complain about undefined external references. (This
could perhaps be fixed.)

« Some of the supplied include files are not C++ safe, i. e. they need to be wrapped
into

extern "C" { . . .}

(This could certainly be fixed, too.)

» Exceptions are not supported. Since exceptions are enabled by default in the
C++ frontend, they explicitly need to be turned off uskfigo-exceptions
in the compiler options. Failing this, the linker will complain about an undefined
external reference to_gxx_personality_sjO

Constructors and destructase supported though, including global ones.

When programming C++ in space- and runtime-sensitive environments like microcon-
trollers, extra care should be taken to avoid unwanted side effects of the C++ calling
conventions like implied copy constructors that could be called upon function invo-
cation etc. These things could easily add up into a considerable amount of time and
program memory wasted. Thus, casual inspection of the generated assembler code
(using the-S compiler option) seems to be warranted.

Back toFAQ Index

7.3.8 Shouldn't I initialize all my variables?

Global and static variables are guaranteed to be initialized to 0 by the C standard.
avr-gcc does this by placing the appropriate code into section .init4 TeeeinitN
Section$. With respect to the standard, this sentence is somewhat simplified (because
the standard allows for machines where the actual bit pattern used differs from all bits
being 0), but for the AVR target, in general, all integer-type variables are set to 0, all
pointers to a NULL pointer, and all floating-point variables to 0.0.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

7.3 Frequently Asked Questions 176

As long as these variables are not initialized (i. e. they don’t have an equal sign and
an initialization expression to the right within the definition of the variable), they go
into the .bsssection of the file. This section simply records the size of the variable,
but otherwise doesn’'t consume space, neither within the object file nor within flash
memory. (Of course, being a variable, it will consume space in the target's SRAM.)

In contrast, global and static variables that have an initializer go intaditasection

of the file. This will cause them to consume space in the object file (in order to record
the initializing value)andin the flash ROM of the target device. The latter is needed
since the flash ROM is the only way that the compiler can tell the target device the
value this variable is going to be initialized to.

Now if some programmer "wants to make doubly sure" their variables really get a 0
at program startup, and adds an initializer just containing 0 on the right-hand side,
they waste space. While this waste of space applies to virtually any platform C is
implemented on, it's usually not noticeable on larger machines like PCs, while the
waste of flash ROM storage can be very painful on a small microcontroller like the
AVR.

So in general, variables should only be explicitly initialized if the initial value is non-
zero.

Note:

Recent versions of GCC are now smart enough to detect this situation, and revert
variables that are explicitly initialized to 0 to the .bss section. Still, other compilers
might not do that optimization, and as the C standard guarantees the initialization,
it is safe to rely onit.

Back toFAQ Index

7.3.9 Why do some 16-bit timer registers sometimes get trashed?

Some of the timer-related 16-bit IO registers use a temporary register (called TEMP in
the Atmel datasheet) to guarantee an atomic access to the register despite the fact that
two separate 8-bit IO transfers are required to actually move the data. Typically, this
includes access to the current timer/counter value regis@N{n), the input capture
register (CRn), and write access to the output compare regis®GRM). Refer to

the actual datasheet for each device’s set of registers that involves the TEMP register.

When accessing one of the registers that use TEMP from the main application, and
possibly any other one from within an interrupt routine, care must be taken that no
access from within an interrupt context could clobber the TEMP register data of an
in-progress transaction that has just started elsewhere.

To protect interrupt routines against other interrupt routines, it's usually best to use the
ISR() macro when declaring the interrupt function, and to ensure that interrupts are still
disabled when accessing those 16-bit timer registers.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

7.3 Frequently Asked Questions 177

Within the main program, access to those registers could be encapsulated in calls to the
cli() and sei() macros. If the status of the global interrupt flag before accessing one of
those registers is uncertain, something like the following example code can be used.

uintl6_t
read_timer1(void)

{
uint8_t sreg;
uintl6_t val;
sreg = SREG;
cli);
val = TCNTL;
SREG = sreg;

return val;

Back toFAQ Index

7.3.10 How do | use a #define'd constant in an asm statement?
So you tried this:

asm volatile("sbi 0x18,0x07;");

Which works. When you do the same thing but replace the address of the port by its
macro name, like this:

asm volatile("sbi PORTB,0x07;");

you get a compilation errotError: constant value required”

PORTBIs a precompiler definition included in the processor specific file included in
avrfio.h . As you may know, the precompiler will not touch strings &0ORTB
instead 0f0x18 , gets passed to the assembler. One way to avoid this problem is:

asm volatile("sbi %0, 0x07" : "I" (_SFR_IO_ADDR(PORTB)):);

Note:

For C programs, rather use the standard C bit operators instead, so the above would
be expressed &0RTB|= (1 << 7). The optimizer will take care to trans-
form this into a single SBI instruction, assuming the operands allow for this.

Back toFAQ Index

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

7.3 Frequently Asked Questions 178

7.3.11 Why does the PC randomly jump around when single-stepping through
my program in avr-gdb?

When compiling a program with both optimizatior®() and debug information-¢)

which is fortunately possible iavr-gcc , the code watched in the debugger is opti-
mized code. While it is not guaranteed, very often this code runs with the exact same
optimizations as it would run without thg switch.

This can have unwanted side effects. Since the compiler is free to reorder code ex-
ecution as long as the semantics do not change, code is often rearranged in order to
make it possible to use a single branch instruction for conditional operations. Branch
instructions can only cover a short range for the target PC (-63 through +64 words from
the current PC). If a branch instruction cannot be used directly, the compiler needs to
work around it by combining a skip instruction together with a relative junmd)
instruction, which will need one additional word of ROM.

Another side effect of optimzation is that variable usage is restricted to the area of code
where it is actually used. So if a variable was placed in a register at the beginning of
some function, this same register can be re-used later on if the compiler notices that the
first variable is no longer used inside that function, even though the variable is still in
lexical scope. When trying to examine the variableim-gdb , the displayed result

will then look garbled.

So in order to avoid these side effects, optimization can be turned off while debugging.
However, some of these optimizations might also have the side effect of uncovering
bugs that would otherwise not be obvious, so it must be noted that turning off opti-
mization can easily change the bug pattern. In most cases, you are better off leaving
optimizations enabled while debugging.

Back toFAQ Index

7.3.12 How do | trace an assembiler file in avr-gdb?

When using theg compiler optionavr-gcc only generates line number and other
debug information for C (and C++) files that pass the compiler. Functions that don’t
have line number information will be completely skipped by a sirsggep command

in gdb. This includes functions linked from a standard library, but by default also
functions defined in an assembler source file, sincegheompiler switch does not
apply to the assembler.

So in order to debug an assembler input file (possibly one that has to be passed through
the C preprocessor), it's the assembler that needs to be told to include line-number
information into the output file. (Other debug information like data types and variable
allocation cannot be generated, since unlike a compiler, the assembler basically doesn't
know about this.) This is done using the (GNU) assembler optistabs

Example:

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

7.3 Frequently Asked Questions 179

$ avr-as -mmcu=atmegal28 --gstabs -o foo.o foo.s

When the assembler is not called directly but through the C compiler frontend
(either implicitly by passing a source file ending in .S, or explicitly ushxg
assembler-with-cpp), the compiler frontend needs to be told to pass the
-gstabs option down to the assembler. This is done usWa,-gstabs . Please

take care tanly pass this option when compiling an assembler input file. Otherwise,
the assembler code that results from the C compilation stage will also get line number
information, which confuses the debugger.

Note:

You can also useWa,-gstabs since the compiler will add the exttd for
you.

Example:

$ EXTRA_OPTS="-Wall -mmcu=atmegal28 -x assembler-with-cpp"
$ avr-gcc -Wa,--gstabs ${EXTRA_OPTS} -c -0 foo.o foo.S

Also note that the debugger might get confused when entering a piece of code that has
a non-local label before, since it then takes this label as the name of a new function that
appears to have been entered. Thus, the best practice to avoid this confusion is to only
use non-local labels when declaring a new function, and restrict anything else to local
labels. Local labels consist just of a number only. References to these labels consist
of the number, followed by the lettdr for a backward reference, érfor a forward
reference. These local labels may be re-used within the source file, references will pick
the closest label with the same number and given direction.

Example:

myfunc: push rl6

push ri7

push ri8

push YL

push YH

eor rl6, rlé ; start loop

Idi YL, lo8(sometable)

Idi YH, hi8(sometable)

rmp 2f ; jump to loop test at end
1: Id r1l7, Y+ ; loop continues here

breq 1f ; return from myfunc prematurely

inc rl6
2: cmp rl6, ri8

brlo 1b ; jump back to top of loop
1: pop YH

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

7.3 Frequently Asked Questions 180
pop YL
pop rl8
pop r17
pop r16
ret
Back toFAQ Index

7.3.13 How do | pass an IO port as a parameter to a function?

Consider this example code:

#include <inttypes.h>
#include <avr/io.h>

void
set_bits_func_wrong (volatile uint8_t port, uint8_t mask)
{
port |= mask;
void
set_bits_func_correct (volatile uint8_t *port, uint8_t mask)
{
*port |= mask;
}

#define set_bits_macro(port,mask) ((port) |= (mask))

int main (void)

{
set_bits_func_wrong (PORTB, Oxaa);
set_bits_func_correct (&PORTB, 0x55);
set_bits_macro (PORTB, 0xf0);
return (0);
}
The first function will generate object code which is not even close to what is intended.
The major problem arises when the function is called. When the compiler sees this call,

it will actually pass the value of theORTBregister (using afN instruction), instead
of passing the address BORTHe.g. memory mapped io addr @38 , io port0Ox18
for the megal28). This is seen clearly when looking at the disassembly of the call:

set_bits_func_wrong (PORTB, Oxaa);

10a: 6a ea Idi r22, OxAA ; 170
10c: 88 b3 in r24, 0x18 ;24
10e: Oe 94 65 00 call Oxca

So, the function, once called, only sees the value of the port register and knows nothing
about which port it came from. At this point, whatever object code is generated for

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

7.3 Frequently Asked Questions 181

the function by the compiler is irrelevant. The interested reader can examine the full
disassembly to see that the function’s body is completely fubar.

The second function shows how to pass (by reference) the memory mapped address of
the io port to the function so that you can read and write to it in the function. Here’s
the object code generated for the function call:

set_bits_func_correct (&PORTB, 0x55);

112: 65 e5 Idi r22, 0x55 ; 85
114: 88 e3 Idi r24, 0x38 ; 56
116: 90 e0 Idi r25, 0x00 ; 0
118: Oe 94 7c 00 call 0xf8

You can clearly see th&ix0038 is correctly passed for the address of the io port.
Looking at the disassembled object code for the body of the function, we can see that
the function is indeed performing the operation we intended:

void
set_bits_func_correct (volatile uint8_t *port, uint8_t mask)

{

f8: fc 01 movw r30, r24
*port |= mask;
fa: 80 81 Id 24, Z
fc: 86 2b or r24, r22
fe: 80 83 st Z, r24
}
100: 08 95 ret

Notice that we are accessing the io port vialtileandST instructions.

Theport parameter must be volatile to avoid a compiler warning.

Note:

Because of the nature of thid andOUTassembly instructions, they can not be
used inside the function when passing the port in this way. Readers interested in
the details should consult thestruction Setlata sheet.

Finally we come to the macro version of the operation. In this contrived example, the
macro is the most efficient method with respect to both execution speed and code size:

set_bits_macro (PORTB, 0xf0);

1llc: 88 b3 in r24, 0x18 ;24
1lle: 80 6f ori r24, OxFO ;240
120: 88 bb out 0x18, r24 ; 24

Of course, in a real application, you might be doing a lot more in your function which
uses a passed by reference io port address and thus the use of a function over a macro
could save you some code space, but still at a cost of execution speed.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

7.3 Frequently Asked Questions 182

Care should be taken when such an indirect port access is going to one of the 16-bit
IO registers where the order of write access is critical (like some timer registers). All
versions of avr-gcc up to 3.3 will generate instructions that use the wrong access order
in this situation (since with normal memory operands where the order doesn’t matter,
this sometimes yields shorter code).

See http://mail.nongnu.org/archive/html/avr-libc-dev/2003-01/msg00044.html for a
possible workaround.

avr-gcc versions after 3.3 have been fixed in a way where this optimization will be
disabled if the respective pointer variable is declared todiatile , so the correct
behaviour for 16-bit 10 ports can be forced that way.

Back toFAQ Index

7.3.14 What registers are used by the C compiler?

» Data types:

char is 8 bits,int is 16 bitslong is 32 bits,long long is 64 bitsfloat and
double are 32 bits (this is the only supported floating point format), pointers
are 16 bits (function pointers are word addresses, to allow addressing the whole
128K program memory space on the ATmega devices witB4 KB of flash
ROM). There is amint8 option (seeOptions for the C compiler avr-ggt¢o
makeint 8 bits, but that is not supported by avr-libc and violates C standards
(int mustbe at least 16 bits). It may be removed in a future release.

e Call-used registers (r18-r27, r30-r31):

May be allocated by gcc for local data. Yowayuse them freely in assembler
subroutines. Calling C subroutines can clobber any of them - the caller is re-
sponsible for saving and restoring.

« Call-saved registers (r2-r17, r28-r29):

May be allocated by gcc for local data. Calling C subroutines leaves them un-
changed. Assembler subroutines are responsible for saving and restoring these
registers, if changed. r29:r28 (Y pointer) is used as a frame pointer (points to
local data on stack) if necessary.

 Fixed registers (r0, r1):
Never allocated by gcc for local data, but often used for fixed purposes:

rO - temporary register, can be clobbered by any C code (except interrupt handlers
which save it),maybe used to remember something for a while within one piece of
assembler code

rl - assumed to be always zero in any C cadaybe used to remember something for
a while within one piece of assembler code, buistthen be cleared after uselq

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

http://mail.nongnu.org/archive/html/avr-libc-dev/2003-01/msg00044.html

7.3 Frequently Asked Questions 183

rl). This includes any use of tHgmul[s[u]] instructions, which return their
result in r1:r0. Interrupt handlers save and clear rl1 on entry, and restore rl on exit (in
case it was non-zero).

¢ Function call conventions:

Arguments - allocated left to right, r25 to r8. All arguments are aligned to start in
even-numbered registers (odd-sized arguments, incluthiag , have one free
register above them). This allows making better use ohtbgwinstruction on

the enhanced core.

If too many, those that don't fit are passed on the stack.

Return values: 8-bit in r24 (not r25!), 16-bit in r25:r24, up to 32 bits in r22-r25, up to
64 bits in r18-r25. 8-bit return values are zero/sign-extended to 16 bits by the caller
(unsigned char is more efficient tharsigned char - justclr r25). Argu-
ments to functions with variable argument lists (printf etc.) are all passed on stack, and
char is extended tant .

Warning:
There was no such alignment before 2000-07-01, including the old patches for

gcc-2.95.2. Check your old assembler subroutines, and adjust them accordingly.

Back toFAQ Index

7.3.15 How do | put an array of strings completely in ROM?

There are times when you may need an array of strings which will never be modified.
In this case, you don’t want to waste ram storing the constant strings. The most obvious
(and incorrect) thing to do is this:

#include <avr/pgmspace.h>

PGM_P array[2] PROGMEM = {
"Foo",
"Bar"

h
int main (void)
char buf[32];

strcpy_P (buf, array[1]);
return O;

}

The result is not want you want though. What you end up with is the array stored in
ROM, while the individual strings end up in RAM (in the .data section).

To work around this, you need to do something like this:

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

7.3 Frequently Asked Questions 184

#include <avr/pgmspace.h>

const char foo[] PROGMEM = "Foo";
const char bar[] PROGMEM = "Bar";
PGM_P array[2] PROGMEM = {
foo,
bar

h
int main (void)
char buf{32];
PGM_P p;
int i
memcpy_P(&p, &arrayli], sizeof(PGM_P));

strepy_P(buf, p);
return O;

Looking at the disassembly of the resulting object file we see that array is in flash as
such:

00000026 <array>:
26: 2e 00 .word 0x002e ; 7?77?27
28: 2a 00 .word 0x002a ; 7?7?77

0000002a <bar>:
2a: 42 61 72 00 Bar.

0000002e <foo>:
2e: 46 6f 6f 00 Foo.

foo is at addr 0x002e.
bar is at addr 0x002a.
array is at addr 0x0026.

Then in main we see this:

memcpy_P(&p, &arrayl[i], sizeof(PGM_P));

70: 66 Of add 122, r22

72: 77 1f adc r23, r23

74: 6a 5d subi r22, OxDA ; 218
76: 7t 4f shci r23, OxFF ; 255
78: 42 e0 Idi r20, 0x02 ;2
7a: 50 e0 Idi r21, 0x00 ; 0
7c: ce 01 movw r24, r28

7e: 81 96 adiw r24, 0x21 ;33
80: 08 do rcall +16 ; 0x92

This code reads the pointer to the desired string from the ROM taiody into a
register pair.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

7.3 Frequently Asked Questions 185

The value ofi (in r22:r23) is doubled to accomodate for the word offset required to
access array[], then the address of array (0x26) is added, by subtracting the negated
address (0xffda). The address of varigblis computed by adding its offset within the
stack frame (33) to the Y pointer register, andmcpy_Pis called.

strcpy_P(buf, p);

82 69 al ldd 122, Y+33 ; 0x21
84: 7a al ldd 123, Y+34 ; 0x22
86: ce 01 movw r24, r28

88: 01 96 adiw r24, 0x01 ;1
8a: Oc do rcall +24 ; Oxad

This will finally copy the ROM string into the local bufféruf .

Variablep (located at Y+33) is read, and passed together with the address of buf (Y+1)
to strcpy_P. This will copy the string from ROM tduf .

Note that when using a compile-time constant index, omitting the first step (reading
the pointer from ROM vianemcpy_B usually remains unnoticed, since the compiler
would then optimize the code for accessargay at compile-time.

Back toFAQ Index

7.3.16 How to use external RAM?

Well, there is no universal answer to this question; it depends on what the external
RAM is going to be used for.

Basically, the bitSRE(SRAM enable) in theCUCRegister needs to be set in order

to enable the external memory interface. Depending on the device to be used, and
the application details, further registers affecting the external memory operation like
XMCRAand XMCRBand/or further bits ilMCUCRnight be configured. Refer to the
datasheet for details.

If the external RAM is going to be used to store the variables from the C program
(i. e., the .data and/or .bss segment) in that memory area, it is essential to set up the
external memory interface early during ttevice initializationso the initialization of

these variable will take place. Referttmw to modify MCUCR or WDTCR earlyfor

a description how to do this using few lines of assembler code, or to the chapter about
memory sections for aexample written in C

The explanation ofmalloc() contains adiscussiorabout the use of internal RAM vs.
external RAM in particular with respect to the various possible locations ofi¢a@

(area reserved fanalloc()). It also explains the linker command-line options that are
required to move the memory regions away from their respective standard locations in
internal RAM.

Finally, if the application simply wants to use the additional RAM for private data
storage kept outside the domain of the C compiler (e. g. througfaa x variable

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

7.3 Frequently Asked Questions 186

initialized directly to a particular address), it would be sufficient to defer the initializa-
tion of the external RAM interface to the beginningro&in(), so no tweaking of the

.init3 section is necessary. The same applies if only the heap is going to be located
there, since the application start-up code does not affect the heap.

Itis not recommended to locate the stack in external RAM. In general, accessing exter-
nal RAM is slower than internal RAM, and errata of some AVR devices even prevent
this configuration from working properly at all.

Back toFAQ Index

7.3.17 Which -O flag to use?

There’s a common misconception that larger numbers behin@tloption might auto-
matically cause "better" optimization. First, there’s no universal definition for "better",
with optimization often being a speed vs. code size tradeoff. Segetadled discus-
sionfor which option affects which part of the code generation.

A test case was run on an ATmegal28 to judge the effect of compiling the library itself
using different optimization levels. The following table lists the results. The test case
consisted of around 2 KB of strings to sort. Test #1 ugsdrt() using the standard
library strcmp() test #2 used a function that sorted the strings by their size (thus had
two calls tostrlen()per invocation).

When comparing the resulting code size, it should be noted that a floating point version
of fvprintf() was linked into the binary (in order to print out the time elapsed) which

is entirely not affected by the different optimization levels, and added about 2.5 KB to
the code.

Optimization Size of .text Time for test #1 Time for test #2
flags

-03 6898 903 s 19.7 ms

-02 6666 972us 20.1 ms

-Os 6618 955 s 20.1 ms

-Os 6474 972us 20.1 ms
-mcall-prologues

(The difference between 95% and 972us was just a single timer-tick, so take this
with a grain of salt.)

So generally, it seem®s -mcall-prologues is the most universal "best" opti-
mization level. Only applications that need to get the last few percent of speed benefit
from using-O3.

Back toFAQ Index

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

7.3 Frequently Asked Questions 187

7.3.18 How do | relocate code to a fixed address?

First, the code should be put into a neamed section This is done with a section
attribute:

__attribute___ ((section (".bootloader")))

In this example, .bootloader is the name of the new section. This attribute needs to be
placed after the prototype of any function to force the function into the new section.

void boot(void) __ attribute__ ((section (".bootloader")));

To relocate the section to a fixed address the linker-#agtion-start is used.
This option can be passed to the linker using-tw compiler option

-WI,--section-start=.bootloader=0x1E000

The name after section-start is the name of the section to be relocated. The number
after the section name is the beginning address of the named section.

Back toFAQ Index

7.3.19 My UART is generating nonsense! My ATmegal28 keeps crashing! Port
F is completely broken!

Well, certain odd problems arise out of the situation that the AVR devices as shipped
by Atmel often come with a default fuse bit configuration that doesn’t match the user’s
expectations. Here is a list of things to care for:

« All devices that have an internal RC oscillator ship with the fuse enabled that
causes the device to run off this oscillator, instead of an external crystal. This
often remains unnoticed until the first attempt is made to use something critical
in timing, like UART communication.

« The ATmegal28 ships with the fuse enabled that turns this device into AT-
megal03 compatibility mode. This means that some ports are not fully usable,
and in particular that the internal SRAM is located at lower addresses. Since by
default, the stack is located at the top of internal SRAM, a program compiled for
an ATmegal28 running on such a device will immediately crash upon the first
function call (or rather, upon the first function return).

¢ Devices with a JTAG interface have ti@ AGENfuse programmed by default.
This will make the respective port pins that are used for the JTAG interface un-
available for regular 10.

Back toFAQ Index

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

7.3 Frequently Asked Questions 188

7.3.20 Why do all my "foo...bar" strings eat up the SRAM?

By default, all strings are handled as all other initialized variables: they occupy RAM
(even though the compiler might warn you when it detects write attempts to these RAM
locations), and occupy the same amount of flash ROM so they can be initialized to the
actual string by startup code. The compiler can optimize multiple identical strings into
a single one, but obviously only for one compilation unit (i. e., a single C source file).

That way, any string literal will be a valid argument to any C function that expects a
const char xargument.

Of course, this is going to waste a lot of SRAM. Pmogram Space String Utilities
method is described how such constant data can be moved out to flash ROM. How-
ever, a constant string located in flash ROM is no longer a valid argument to pass to a
function that expects eonst char x-type string, since the AVR processor needs
the special instructiohPMto access these strings. Thus, separate functions are needed
that take this into account. Many of the standard C library functions have equivalents
available where one of the string arguments can be located in flash ROM. Private func-
tions in the applications need to handle this, too. For example, the following can be
used to implement simple debugging messages that will be sent through a UART:

#include <inttypes.h>
#include <avr/io.h>
#include <avr/pgmspace.h>

int
uart_putchar(char c)

if (c =="\n")
uart_putchar(’\r’);
loop_until_bit_is_set(USR, UDRE);
UDR = ¢;
return O; /* so it could be used for fdevopen(), too */

}

void
debug_P(const char *addr)
{

char c;

while ((c = pgm_read_byte(addr++)))
uart_putchar(c);
}

int
main(void)

ioinit(); /* initialize UART, ... */
debug_P(PSTR("foo was here\n"));
return O;

}

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

7.3 Frequently Asked Questions 189

Note:

By convention, the suffix P to the function name is used as an indication that
this function is going to accept a "program-space string". Note also the use of the
PSTR()macro.

Back toFAQ Index

7.3.21 Why does the compiler compile an 8-bit operation that uses bitwise oper-
ators into a 16-bit operation in assembly?

Bitwise operations in Standard C will automatically promote their operands to an int,
which is (by default) 16 bits in avr-gcc.

To work around this use typecasts on the operands, including literals, to declare that
the values are to be 8 bit operands.

This may be especially important when clearing a bit:
var &= ~mask; /* wrong way! */

The bitwise "not" operator~{) will also promote the value imask to an int. To keep
it an 8-bit value, typecast before the "not" operator:

var &= (unsigned char)~mask;

Back toFAQ Index

7.3.22 How to detect RAM memory and variable overlap problems?

You can simply ruravr-nm on your output (ELF) file. Run it with then option, and
it will sort the symbols numerically (by default, they are sorted alphabetically).

Look for the symbol_end, that's the first address in RAM that is not allocated by

a variable. (avr-gcc internally adds 0x800000 to all data/bss variable addresses, so
please ignore this offset.) Then, the run-time initialization code initializes the stack
pointer (by default) to point to the last avaialable address in (internal) SRAM. Thus,
the region betweenend and the end of SRAM is what is available for stack. (If your
application usesnalloc() which e. g. also can happen insigentf(), the heap for
dynamic memory is also located there. Skng malloc())

The amount of stack required for your application cannot be determined that easily.
For example, if you recursively call a function and forget to break that recursion, the
amount of stack required is infinite. :-) You can look at the generated assembler code
(avr-gcc ... -S), there’s a comment in each generated assembler file that tells
you the frame size for each generated function. That's the amount of stack required for

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

7.3 Frequently Asked Questions 190

this function, you have to add up that for all functions where you know that the calls
could be nested.

Back toFAQ Index

7.3.23 Is it really impossible to program the ATtinyXX in C?

While some small AVRs are not directly supported by the C compiler since they do not
have a RAM-based stack (and some do not even have RAM at all), it is possible anyway
to use the general-purpose registers as a RAM replacement since they are mapped into
the data memory region.

Bruce D. Lightner wrote an excellent description of how to do this, and offers this
together with a toolkit on his web page:

http://lightner.net/avr/ATtinyAvrGee.html

Back toFAQ Index

7.3.24 What is this "clock skew detected" messsage?

It's a known problem of the MS-DOS FAT file system. Since the FAT file system has
only a granularity of 2 seconds for maintaining a file’s timestamp, and it seems that
some MS-DOS derivative (Win9x) perhaps rounds up the current time to the next sec-
ond when calculating the timestamp of an updated file in case the current time cannot
be represented in FAT’s terms, this causes a situation whake sees a "file coming

from the future”.

Since all make decisions are based on file timestamps, and their dependencies, make
warns about this situation.

Solution: don't use inferior file systems / operating systems. Neither Unix file systems
nor HPFS (aka NTFS) do experience that problem.

Workaround: after saving the file, wait a second before startiage. Or simply
ignore the warning. If you are paranoid, executmake clean all to make sure
everything gets rebuilt.

In networked environments where the files are accessed from a file server, this message
can also happen if the file server’s clock differs too much from the network client’s
clock. In this case, the solution is to use a proper time keeping protocol on both sys-
tems, like NTP. As a workaround, synchronize the client’'s clock frequently with the
server’s clock.

Back toFAQ Index

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

http://lightner.net/avr/ATtinyAvrGcc.html

7.3 Frequently Asked Questions 191

7.3.25 Why are (many) interrupt flags cleared by writing a logical 1?

Usually, each interrupt has its own interrupt flag bit in some control register, indicating
the specified interrupt condition has been met by representing a logical 1 in the respec-
tive bit position. When working with interrupt handlers, this interrupt flag bit usually
gets cleared automatically in the course of processing the interrupt, sometimes by just
calling the handler at all, sometimes (e. g. for the U[S]JART) by reading a particular
hardware register that will normally happen anyway when processing the interrupt.

From the hardware’s point of view, an interrupt is asserted as long as the respective bit
is set, while global interrupts are enabled. Thus, it is essential to have the bit cleared
before interrupts get re-enabled again (which usually happens when returning from an
interrupt handler).

Only few subsystems require an explicit action to clear the interrupt request when using
interrupt handlers. (The notable exception is the TWI interface, where clearing the
interrupt indicates to proceed with the TWI bus hardware handshake, so it's never done
automatically.)

However, if no normal interrupt handlers are to be used, or in order to make extra
sure any pending interrupt gets cleared before re-activating global interrupts (e. g.
an external edge-triggered one), it can be necessary to explicitly clear the respective
hardware interrupt bit by software. This is usually done by writing a logical 1 into this
bit position. This seems to be illogical at first, the bit position already carries a logical
1 when reading it, so why does writing a logical 1 taliar the interrupt bit?

The solution is simple: writing a logical 1 to it requires only a sin@QleTinstruction,

and it is clear that only this single interrupt request bit will be cleared. There is no need
to perform a read-modify-write cycle (like, @Bl instruction), since all bits in these
control registers are interrupt bits, and writing a logical 0 to the remaining bits (as it
is done by the simpl®©UTinstruction) will not alter them, so there is no risk of any
race condition that might accidentally clear another interrupt request bit. So instead of
writing

TIFR |= _BV(TOVO); /* wrong! */
simply use
TIFR = _BV(TOVO);

Back toFAQ Index

7.3.26 Why have "programmed" fuses the bit value 0?

Basically, fuses are just a bit in a special EEPROM area. For technical reasons, erased
E[E]JPROM cells have all bits set to the value 1, so unprogrammed fuses also have a
logical 1. Conversely, programmed fuse cells read out as bit value 0.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

7.4 Inline Asm 192

Back toFAQ Index

7.3.27 Which AVR-specific assembler operators are available?

SeePseudo-ops and operators

Back toFAQ Index

7.4 Inline Asm

AVR-GCC
Inline Assembler Cookbook
About this Document

The GNU C compiler for Atmel AVR RISC processors offers, to embed assembly
language code into C programs. This cool feature may be used for manually optimizing
time critical parts of the software or to use specific processor instruction, which are not
available in the C language.

Because of a lack of documentation, especially for the AVR version of the compiler, it
may take some time to figure out the implementation details by studying the compiler
and assembler source code. There are also a few sample programs available in the net.
Hopefully this document will help to increase their number.

It's assumed, that you are familiar with writing AVR assembler programs, because this
is not an AVR assembler programming tutorial. It's not a C language tutorial either.

Note that this document does not cover file written completely in assembler language,
refer toavr-libc and assembler prograrfes this.

Copyright (C) 2001-2002 by egnite Software GmbH

Permission is granted to copy and distribute verbatim copies of this manual provided

that the copyright notice and this permission notice are preserved on all copies. Permis-
sion is granted to copy and distribute modified versions of this manual provided that

the entire resulting derived work is distributed under the terms of a permission notice

identical to this one.

This document describes version 3.3 of the compiler. There may be some parts, which
hadn’t been completely understood by the author himself and not all samples had been
tested so far. Because the author is German and not familiar with the English language,
there are definitely some typos and syntax errors in the text. As a programmer the
author knows, that a wrong documentation sometimes might be worse than none. Any-
way, he decided to offer his little knowledge to the public, in the hope to get enough
response to improve this document. Feel free to contact the author via e-mail. For the
latest release chedktp://www.ethernut.de/.

Herne, 17th of May 2002 Harald Kipp harald.kipp-at-egnite.de

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

http://www.ethernut.de/.

7.4 Inline Asm 193

Note:

As of 26th of July 2002, this document has been merged into the
documentation for avr-libc. The latest version is now available at
http://savannah.nongnu.org/projects/avr-libc/.

7.4.1 GCC asm Statement
Let’s start with a simple example of reading a value from port D:

asm("in %0, %1" : "=r" (value) : "I" (_SFR_IO_ADDR(PORTD)));
Eachasm statement is devided by colons into (up to) four parts:

1. The assembler instructions, defined as a single string constant:
"“in %0, %1"

2. Alist of output operands, separated by commas. Our example uses just one:
"=r" (value)

3. A comma separated list of input operands. Again our example uses one operand
only:

"I" (_SFR_IO_ADDR(PORTD))

4. Clobbered registers, left empty in our example.

You can write assembler instructions in much the same way as you would write assem-
bler programs. However, registers and constants are used in a different way if they refer
to expressions of your C program. The connection between registers and C operands is
specified in the second and third part of #emn instruction, the list of input and output
operands, respectively. The general form is

asm(code : output operand list : input operand list [: clobber list]);

In the code section, operands are referenced by a percent sign followed by a single digit.
0 refers to the firsi to the second operand and so forth. From the above example:

0 refers to"=r" (value) and
1 refersto"l' (_SFR_IO_ADDR(PORTD))

This may still look a little odd now, but the syntax of an operand list will be explained
soon. Let us first examine the part of a compiler listing which may have been generated
from our example:

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

http://savannah.nongnu.org/projects/avr-libc/.

7.4 Inline Asm 194

Ids r24,value
I* #APP */

in r24, 12
/* #NOAPP */

sts value,r24

The comments have been added by the compiler to inform the assembler that the in-
cluded code was not generated by the compilation of C statements, but by inline as-
sembler statements. The compiler selected regigterfor storage of the value read
from PORTDThe compiler could have selected any other register, though. It may not
explicitely load or store the value and it may even decide not to include your assembler
code at all. All these decisions are part of the compiler’'s optimization strategy. For
example, if you never use the variable value in the remaining part of the C program,
the compiler will most likely remove your code unless you switched off optimization.
To avoid this, you can add the volatile attribute to #sen statement:

asm volatile("in %0, %1" : "=r" (value) : "I' (_SFR_IO_ADDR(PORTD)));

The last part of th@asm instruction, the clobber list, is mainly used to tell the compiler
about modifications done by the assembler code. This part may be omitted, all other
parts are required, but may be left empty. If your assembler routine won't use any
input or output operand, two colons must still follow the assembler code string. A
good example is a simple statement to disable interrupts:

asm volatile("cli"::);

7.4.2 Assembler Code

You can use the same assembler instruction mnemonics as you'd use with any other
AVR assembler. And you can write as many assembler statements into one code string
as you like and your flash memory is able to hold.

Note:

The available assembler directives vary from one assembler to another.

To make it more readable, you should put each statement on a seperate line:

asm volatile("nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
2);

The linefeed and tab characters will make the assembler listing generated by the com-
piler more readable. It may look a bit odd for the first time, but that’s the way the
compiler creates it's own assembler code.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

7.4 Inline Asm 195

You may also make use of some special registers.

Symbol Register

__SREG___ Status register at address Ox3F

_SP H Stack pointer high byte at address 0x3E
_SP L Stack pointer low byte at address 0x3D
__tmp_reg__ Register r0, used for temporary storage
__zero_reg___ Register r1, always zero

Registerr0 may be freely used by your assembler code and need not be restored at
the end of your code. It's a good idea to usémp_reqg_ and__zero reg__

instead ofrO orrl, justin case a nhew compiler version changes the register usage
definitions.

7.4.3 Input and Output Operands

Each input and output operand is described by a constraint string followed by a C
expression in paranthesesVR-GCC3.3 knows the following constraint characters:

Note:

The most up-to-date and detailed information on contraints for the avr can be found
in the gcc manual.

The x register isr27:r26 , they register isr29:r28 , and thez register is
r31:r30

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

7.4 Inline Asm 196

Constraint Used for Range

a Simple upper registers | r16 to r23

b Base pointer registers | vy, z
pairs

d Upper register rl6 tor31

e Pointer register pairs XY, Z

G Floating point constant | 0.0

I 6-bit positive integer Oto 63
constant

J 6-bit negative integer -63t0 0
constant

K Integer constant 2

L Integer constant 0

I Lower registers rOtorl5s

M 8-bit integer constant 0to 255

N Integer constant -1

o Integer constant 8, 16, 24

P Integer constant 1

q Stack pointer register SPH:SPL

r Any register rOtor3l

t Temporary register r0

w Special upper register r24,r26, r28, r30
pairs

X Pointer register pair X X (r27:r26)

y Pointer register pair Y y (r29:r28)

z Pointer register pair Z z (r31:r30)

These definitions seem not to fit properly to the AVR instruction set. The author’s as-
sumption is, that this part of the compiler has never been really finished in this version,
but that assumption may be wrong. The selection of the proper contraint depends on
the range of the constants or registers, which must be acceptable to the AVR instruction
they are used with. The C compiler doesn’t check any line of your assembler code. But
it is able to check the constraint against your C expression. However, if you specify
the wrong constraints, then the compiler may silently pass wrong code to the assem-
bler. And, of course, the assembler will fail with some cryptic output or internal errors.
For example, if you specify the constralint and you are using this register with an
"ori" instruction in your assembler code, then the compiler may select any register.
This will fail, if the compiler chooses2 to r15 . (It will never choose0 orrl,
because these are uses for special purposes.) That's why the correct constraint in that
case is'd" . On the other hand, if you use the constraMt , the compiler will make

sure that you don’t pass anything else but an 8-bit value. Later on we will see how to
pass multibyte expression results to the assembler code.

The following table shows all AVR assembler mnemonics which require operands, and
the related contraints. Because of the improper constraint definitions in version 3.3,
they aren't strict enough. There is, for example, no constraint, which restricts integer

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

7.4 Inline Asm

197

constants to the range 0 to 7 for bit set and bit clear operations.

Mnemonic Constraints Mnemonic Constraints

adc rr add rr

adiw w, | and rr

andi d,M asr r

bclr I bld rl

brbc llabel brbs I,label

bset I bst rl

cbi Il cbr d,l

com r cp rr

cpc r,r cpi d,M

cpse rr dec r

elpm t,z eor rr

in rl inc r

Id re Idd r,b

Idi d,M Ids r,label

[pm t,z Isl r

Isr r mov rr

movw r,r mul r,r

neg r or r,r

ori d,M out lr

pop r push r

rol r ror r

sbc rr sbci d,M

sbi Il shic Il

sbiw w, | sbr d,M

sbrc rl sbrs rl

ser d st er

std b,r sts label,r

sub rr subi d,M

swap r
Constraint characters may be prepended by a single constraint modifier. Contraints
without a modifier specify read-only operands. Modifiers are:

Modifier Specifies

= Write-only operand, usually used for all

output operands.
+ Read-write operand (not supported by
inline assembler)
& Register should be used for output only

Output operands must be write-only and the C expression result must be an Ivalue,
which means that the operands must be valid on the left side of assignments. Note,
that the compiler will not check if the operands are of reasonable type for the kind of
operation used in the assembler instructions.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

7.4 Inline Asm 198

Input operands are, you guessed it, read-only. But what if you need the same operand
for input and output? As stated above, read-write operands are not supported in inline
assembler code. But there is another solution. For input operators it is possible to use
a single digit in the constraint string. Using digit n tells the compiler to use the same
register as for the n-th operand, starting with zero. Here is an example:

asm volatile("swap %0" : "=r* (value) : "0" (value));

This statement will swap the nibbles of an 8-bit variable named value. Constaint

tells the compiler, to use the same input register as for the first operand. Note however,
that this doesn’t automatically imply the reverse case. The compiler may choose the
same registers for input and output, even if not told to do so. This is not a problem in
most cases, but may be fatal if the output operator is modified by the assembler code
before the input operator is used. In the situation where your code depends on different
registers used for input and output operands, you must adt ¢bastraint modifier to

your output operand. The following example demonstrates this problem:

asm volatile("in %0,%1" “\n\t"
"out %1, %2" "\n\t"
1 "=&r" (input)

: "I" (_SFR_IO_ADDR(port)), "r* (output)
)i

In this example an input value is read from a port and then an output value is written to
the same port. If the compiler would have choosen the same register for input and out-
put, then the output value would have been destroyed on the first assembler instruction.
Fortunately, this example uses ®eonstraint modifier to instruct the compiler not to
select any register for the output value, which is used for any of the input operands.
Back to swapping. Here is the code to swap high and low byte of a 16-bit value:

asm volatile("mov __tmp_reg__, %A0" "\n\t"

"mov %A0, %B0" "\n\t"
"mov %BO0, _ tmp_reg_ " "\n\t"
2=t (value)
: "0" (value)
First you will notice the usage of register tmp_reg__ , which we listed among

other special registers in tfesssembler Codsection. You can use this register without
saving its contents. Completely new are those letdemadB in %A0and%B0 In fact
they refer to two different 8-bit registers, both containing a part of value.

Another example to swap bytes of a 32-bit value:

asm volatile("mov __tmp_reg__, %A0" "\n\t"
"mov %A0, %DO0" "\n\t"
"mov %DO0, _ tmp_reg__ " "\n\t"
"mov __tmp_reg__, %B0" "\n\t"

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

7.4 Inline Asm 199

"mov %B0, %CO0" "\n\t"
"mov %CO0, _ tmp_reg_ " "\n\t"
:"=r" (value)

1 "0" (value)

If operands do not fit into a single register, the compiler will automatically assign
enough registers to hold the entire operand. In the assembler code yiAOBErefer

to the lowest byte of the first operarthAlto the lowest byte of the second operand
and so on. The next byte of the first operand willbBQ the next byté&6COand so on.

This also implies, that it is often neccessary to cast the type of an input operand to the
desired size.

A final problem may arise while using pointer register pairs. If you define an input
operand

e (pi)

and the compiler selects regis#(r30:r31), then

%A0refers tor30 and

%BO0refers tor31 .

But both versions will fail during the assembly stage of the compiler, if you explicitely
needz, like in

Id r24,z

If you write

Id r24, %a0

with a lower casa following the percent sign, then the compiler will create the proper
assembler line.

7.4.4 Clobbers

As stated previously, the last part of them statement, the list of clobbers, may be
omitted, including the colon seperator. However, if you are using registers, which
had not been passed as operands, you need to inform the compiler about this. The
following example will do an atomic increment. It increments an 8-bit value pointed

to by a pointer variable in one go, without being interrupted by an interrupt routine
or another thread in a multithreaded environment. Note, that we must use a pointer,
because the incremented value needs to be stored before interrupts are enabled.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

7.4 Inline Asm 200

asm volatile(

“cli" “\n\t"
"Id r24, %a0" “\n\t"
"inc r24" "\n\t"
"st %a0, r24" "\n\t"
"sei" “\n\t"
: "e" (ptr)

1 "r24"

The compiler might produce the following code:

cli

Id r24, Z
inc r24
st Z, r24
sei

One easy solution to avoid clobbering registt is, to make use of the special tem-
porary register _tmp_reg__ defined by the compiler.

asm volatile(

“cli" "\n\t"
“Id __tmp_reg__, %a0" “\n\t"

"inc __tmp_reg_" "\n\t"

"st %a0, _ tmp_reg_ " "\n\t"

"sei" “\n\t"
: "e" (ptr)

The compiler is prepared to reload this register next time it uses it. Another problem
with the above code is, that it should not be called in code sections, where interrupts
are disabled and should be kept disabled, because it will enable interrupts at the end.
We may store the current status, but then we need another register. Again we can solve
this without clobbering a fixed, but let the compiler select it. This could be done with
the help of a local C variable.

{
uint8_t s;
asm volatile(
"in %0, _ SREG__" "\n\t"
“cli "\n\t"
"Id __tmp_reg__, %al" "\n\t"
“inc __tmp_reg_ " “\n\t"
"st %al, _ tmp_reg_ " "\n\t"
"out _ SREG__, %0" “\n\t"
D "=&r" ()
: "e" (ptr)
)
}

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

7.4 Inline Asm 201

Now every thing seems correct, but it isn't really. The assembler code modifies the
variable, thatptr points to. The compiler will not recognize this and may keep its
value in any of the other registers. Not only does the compiler work with the wrong
value, but the assembler code does too. The C program may have modified the value
too, but the compiler didn’t update the memory location for optimization reasons. The
worst thing you can do in this case is:

uint8_t s;

asm volatile(
"in %0, _ SREG__" "\n\t"
“cli "\n\t"
“Id __tmp_reg__, %al" "\n\t"
"inc __tmp_reg_" “\n\t"
"st %al, _ tmp_reg_ " "\nit"
"out _ SREG__, %0" “\n\t"
2 "=&r" ()
. "e" (ptr)
: "memory"

The special clobber "memory" informs the compiler that the assembler code may mod-
ify any memory location. It forces the compiler to update all variables for which the
contents are currently held in a register before executing the assembler code. And of
course, everything has to be reloaded again after this code.

In most situations, a much better solution would be to declare the pointer destination
itself volatile:

volatile uint8_t *ptr;

This way, the compiler expects the value pointed tophy to be changed and will
load it whenever used and store it whenever modified.

Situations in which you need clobbers are very rare. In most cases there will be better
ways. Clobbered registers will force the compiler to store their values before and reload
them after your assembler code. Avoiding clobbers gives the compiler more freedom
while optimizing your code.

7.4.5 Assembler Macros

In order to reuse your assembler language parts, it is useful to define them as macros
and put them into include files. AVR Libc comes with a bunch of them, which could be
found in the directoravr/include . Using such include files may produce compiler
warnings, if they are used in modules, which are compiled in strict ANSI mode. To
avoid that, you can write_asm___ instead ofasmand__ volatile instead of
volatile . These are equivalent aliases.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

7.4 Inline Asm 202

Another problem with reused macros arises if you are using labels. In such
cases you may make use of the special patternvhich is replaced by a unique
number on eachasm statement. The following code had been taken from
avr/include/iomacros.h

#define loop_until_bit_is_clear(port,bit) \

__asm__ _ volatile__ (\
"L_%=: " "shic %0, %1" "\n\t" \
"rimp L_%=" \
: [* no outputs */ \
: "I" (_SFR_IO_ADDR(port)),
“I" (bit)

When used for the first timé,_= may be translated tb_1404 , the next usage might
createl 1405 or whatever. In any case, the labels became unique too.

Another option is to use Unix-assembler style numeric labels. They are explained in
How do | trace an assembler file in avr-gdiihe above example would then look like:

#define loop_until_bit_is_clear(port,bit)

__asm__ _ volatile__ (
"1: " "shic %0, %1" "\n\t"
"rimp 1b"

. [* no outputs */
2 "I" (_SFR_IO_ADDR(port)),
"I" (bit)

7.4.6 C Stub Functions

Macro definitions will include the same assembler code whenever they are referenced.
This may not be acceptable for larger routines. In this case you may define a C stub
function, containing nothing other than your assembler code.

void delay(uint8_t ms)

{
uintl6_t cnt;
asm volatile (
e
"L dil%=:" "\n\t"
"mov %A0, %A2" "\n\t"
"mov %BO0, %B2" "\n"
"L_dI2%=:" "\n\t"
"shiw %A0, 1" "\n\t"
"brne L_dI2%=" "\n\t"
"dec %1" "\n\t"
"brne L_dI1%=" "\n\t"
»"=&wW" (cnt)
2" (ms), "r* (delay_count)
)
}

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

7.4 Inline Asm 203

The purpose of this function is to delay the program execution by a specified number
of milliseconds using a counting loop. The global 16 bit variable delay count must
contain the CPU clock frequency in Hertz divided by 4000 and must have been set
before calling this routine for the first time. As described in thebbersection, the
routine uses a local variable to hold a temporary value.

Another use for a local variable is a return value. The following function returns a 16
bit value read from two successive port addresses.

uintl6_t inw(uint8_t port)

uintl6_t result;
asm volatile (
"in %A0,%1" "\n\t"
"in %BO0,(%1) + 1"
:"=r" (result)
: "I (_SFR_IO_ADDR(port))

return result;

}

Note:

inw() is supplied by avr-libc.

7.4.7 C Names Used in Assembler Code

By defaultAVR-GCCQuses the same symbolic names of functions or variables in C and
assembler code. You can specify a different name for the assembler code by using a
special form of theasm statement:

unsigned long value asm("clock”) = 3686400;

This statement instructs the compiler to use the symbol name clock rather than value.
This makes sense only for external or static variables, because local variables do not
have symbolic names in the assembler code. However, local variables may be held in
registers.

With AVR-GCCyou can specify the use of a specific register:

void Count(void)

{

register unsigned char counter asm("r3");

.. some code...
asm volatile("clr r3");
.. more code...

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

7.5 Using malloc() 204

The assembler instructiotclr r3" , will clear the variable counteAVR-GCQwill

not completely reserve the specified register. If the optimizer recognizes that the vari-
able will not be referenced any longer, the register may be re-used. But the compiler
is not able to check wether this register usage conflicts with any predefined register. If
you reserve too many registers in this way, the compiler may even run out of registers
during code generation.

In order to change the name of a function, you need a prototype declaration, because
the compiler will not accept thesm keyword in the function definition:

extern long Calc(void) asm ("CALCULATE");

Calling the functionCalc() will create assembler instructions to call the function
CALCULATE

7.4.8 Links

For a more thorough discussion of inline assembly usage, see the gcc user manual. The
latest version of the gcc manual is always available hatg://gcc.gnu.org/onlinedocs/

7.5 Using malloc()
7.5.1 Introduction

On a simple device like a microcontroller, implementing dynamic memory allocation
is quite a challenge.

Many of the devices that are possible targets of avr-libc have a minimal amount of
RAM. The smallest parts supported by the C environment come with 128 bytes of
RAM. This needs to be shared between initialized and uninitialized varisdBes¢ns

.data and .bss), the dynamic memory allocator, and the stack that is used for calling
subroutines and storing local (automatic) variables.

Also, unlike larger architectures, there is no hardware-supported memory management
which could help in separating the mentioned RAM regions from being overwritten by
each other.

The standard RAM layout is to place .data variables first, from the beginning of the
internal RAM, followed by .bss. The stack is started from the top of internal RAM,
growing downwards. The so-called "heap" available for the dynamic memory allocator
will be placed beyond the end of .bss. Thus, there’s no risk that dynamic memory will
ever collide with the RAM variables (unless there were bugs in the implementation of
the allocator). There is still a risk that the heap and stack could collide if there are large
requirements for either dynamic memory or stack space. The former can even happen
if the allocations aren't all that large but dynamic memory allocations get fragmented

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

http://gcc.gnu.org/onlinedocs/

7.5 Using malloc() 205

over time such that new requests don't quite fit into the "holes" of previously freed
regions. Large stack space requirements can arise in a C function containing large
and/or numerous local variables or when recursively calling function.

Note:

The pictures shown in this document represent typical situations where the RAM
locations refer to an ATmegal28. The memory addresses used are not displayed
in alinear scale.

0x0100
OX10FF
0x1100

OXFFFF

on-board RAM

external RAM

.data
variables

TL— SP L RAMEND

brkval (<= *SP - __malloc_margin)
__malloc_heap_start == __heap_start

__bss_end

_ data_end == __bss_start

data start

Figure 6: RAM map of a device with internal RAM

Finally, there's a challenge to make the memory allocator simple enough so the code
size requirements will remain low, yet powerful enough to avoid unnecessary memory
fragmentation and to get it all done with reasonably few CPU cycles since microcon-

trollers aren’t only often low on space, but also run at much lower speeds than the
typical PC these days.

The memory allocator implemented in avr-libc tries to cope with all of these con-
straints, and offers some tuning options that can be used if there are more resources
available than in the default configuration.

7.5.2 Internal vs. external RAM

Obviously, the constraints are much harder to satisfy in the default configuration where
only internal RAM is available. Extreme care must be taken to avoid a stack-heap
collision, both by making sure functions aren’t nesting too deeply, and don'’t require

too much stack space for local variables, as well as by being cautious with allocating
too much dynamic memory.

If external RAM is available, it is strongly recommended to move the heap into the ex-
ternal RAM, regardless of whether or not the variables from the .data and .bss sections
are also going to be located there. The stack should always be kept in internal RAM.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

7.5 Using malloc() 206

Some devices even require this, and in general, internal RAM can be accessed faster
since no extra wait states are required. When using dynamic memory allocation and
stack and heap are separated in distinct memory areas, this is the safest way to avoid a
stack-heap collision.

7.5.3 Tunables for malloc()

There are a number of variables that can be tuned to adapt the behawiadlof()

to the expected requirements and constraints of the application. Any changes to these
tunables should be made before the very first cathtdloc() Note that some library
functions might also use dynamic memory (notably those fromktbilio.h>: Stan-

dard 10 facilitie3, so make sure the changes will be done early enough in the startup
sequence.

The variables _malloc_heap_start and__malloc_heap_end can be used

to restrict themalloc() function to a certain memory region. These variables are stati-
cally initialized to pointto__heap_start and__heap_end , respectively, where
__heap_start isfilled in by the linker to point just beyond .bss, ancheap_end

is set to 0 which makemalloc()assume the heap is below the stack.

If the heap is going to be moved to external RAM,malloc_heap_end mustbe
adjusted accordingly. This can either be done at run-time, by writing directly to this
variable, or it can be done automatically at link-time, by adjusting the value of the
symbol__heap_end .

The following example shows a linker command to relocate the entire .data and .bss
segments, and the heap to location 0x1100 in external RAM. The heap will extend up
to address Oxffff.

avr-gcc ... -WI,-Tdata=0x801100,--defsym=__heap_end=0x8O0ffff ...

Note:

Seeexplanatiorfor offset 0xX800000. See the chapter abasing gccfor the-WI
options.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

7.5 Using malloc() 207

on—-board RAM external RAM

0x0100
OX10FF
0x1100
OXFFFF

.data
variables

SP J & __malloc_heap_end == __heap_end
RAMEND brkval
__malloc_heap_start == __heap_start
__bss_end
__data_end == __bss_start

data start

Figure 7: Internal RAM: stack only, external RAM: variables and heap

If dynamic memory should be placed in external RAM, while keeping the variables in
internal RAM, something like the following could be used. Note that for demonstration
purposes, the assignment of the various regions has not been made adjacent in this
example, so there are "holes" below and above the heap in external RAM that remain
completely unaccessible by regular variables or dynamic memory allocations (shown
in light bisque color in the picture below).

avr-gcc ... -WIl,--defsym=__heap_start=0x802000,--defsym=__heap_end=0x803fff ...

external RAM

on-board RAM

0x0100
Ox10FF
0x1100
OX3FFF
OXFFFF

0x200

.data
variables

SP —f L __malloc_heap_end == __heap_end
RAMEND brkval
__bss_end __malloc_heap_start == __heap_start

__data_end == __bss_start

data start

Figure 8: Internal RAM: variables and stack, external RAM: heap

If __malloc_heap_end is 0, the allocator attempts to detect the bottom of stack
in order to prevent a stack-heap collision when extending the actual size of the heap
to gain more space for dynamic memory. It will not try to go beyond the current

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

7.5 Using malloc() 208

stack limit, decreased by malloc_margin bytes. Thus, all possible stack frames
of interrupt routines that could interrupt the current function, plus all further nested
function calls must not require more stack space, or they will risk colliding with the
data segment.

The default value of _malloc_margin is setto 32.

7.5.4 Implementation details

Dynamic memory allocation requests will be returned with a two-byte header
prepended that records the size of the allocation. This is later uséckdy The
returned address points just beyond that header. Thus, if the application accidentally
writes before the returned memory region, the internal consistency of the memory al-
locator is compromised.

The implementation maintains a simple freelist that accounts for memory blocks that
have been returned in previous calldree(). Note that all of this memory is considered

to be successfully added to the heap already, so no further checks against stack-heap
collisions are done when recycling memory from the freelist.

The freelist itself is not maintained as a separate data structure, but rather by modifying
the contents of the freed memory to contain pointers chaining the pieces together. That
way, no additional memory is reqired to maintain this list except for a variable that
keeps track of the lowest memory segment available for reallocation. Since both, a
chain pointer and the size of the chunk need to be recorded in each chunk, the minimum
chunk size on the freelist is four bytes.

When allocating memory, first the freelist is walked to see if it could satisfy the request.
If there’s a chunk available on the freelist that will fit the request exactly, it will be
taken, disconnected from the freelist, and returned to the caller. If no exact match could
be found, the closest match that would just satisfy the request will be used. The chunk
will normally be split up into one to be returned to the caller, and another (smaller)
one that will remain on the freelist. In case this chunk was only up to two bytes larger
than the request, the request will simply be altered internally to also account for these
additional bytes since no separate freelist entry could be split off in that case.

If nothing could be found on the freelist, heap extension is attempted. This is where
__malloc_margin will be considered if the heap is operating below the stack, or
where__malloc_heap_end will be verified otherwise.

If the remaining memory is insufficient to satisfy the requiskt] L will eventually be
returned to the caller.

When callingfree(), a new freelist entry will be prepared. An attempt is then made to
aggregate the new entry with possible adjacent entries, yielding a single larger entry
available for further allocations. That way, the potential for heap fragmentation is
hopefully reduced.

A call to realloc()first determines whether the operation is about to grow or shrink the

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

7.6 Release Numbering and Methodology 209

current allocation. When shrinking, the case is easy: the existing chunk is split, and the
tail of the region that is no longer to be used is passed to the stafida(ifunction for
insertion into the freelist. Checks are first made whether the tail chunk is large enough
to hold a chunk of its own at all, otherwisealloc()will simply do nothing, and return

the original region.

When growing the region, it is first checked whether the existing allocation can be ex-

tended in-place. If so, this is done, and the original pointer is returned without copying

any data contents. As a side-effect, this check will also record the size of the largest
chunk on the freelist.

If the region cannot be extended in-place, but the old chunk is at the top of heap, and
the above freelist walk did not reveal a large enough chunk on the freelist to satisfy
the new request, an attempt is made to quickly extend this topmost chunk (and thus
the heap), so no need arises to copy over the existing data. If there’s no more space
available in the heap (same check is done amsaiioc()), the entire request will fail.

Otherwise malloc() will be called with the new request size, the existing data will be
copied over, anfree()will be called on the old region.

7.6 Release Numbering and Methodology
7.6.1 Release Version Numbering Scheme

7.6.1.1 Stable Versions A stable release will always have a minor number that is

an even number. This implies that you should be able to upgrade to a new version of
the library with the same major and minor numbers without fear that any of the APIs
have changed. The only changes that should be made to a stable branch are bug fixes
and under some circumstances, additional functionality (e.g. adding support for a new
device).

If major version number has changed, this implies that the required versions of gcc and
binutils have changed. Consult the README file in the toplevel directory of the AVR
Libc source for which versions are required.

7.6.1.2 Development Versions The major version number of a development series
is always the same as the last stable release.

The minor version number of a development series is always an odd number and is 1
more than the last stable release.

The patch version number of a development series is always 0 until a new branch is cut
at which point the patch number is changed to 90 to denote the branch is approaching
a release and the date appended to the version to denote that it is still in development.

All versions in development in cvs will also always have the date appended as a fourth
version number. The format of the date will be YYYYMMDD.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

7.6 Release Numbering and Methodology 210

So, the development version number will look like this:

1.1.0.20030825

While a pre-release version number on a branch (destined to become either 1.2 or 2.0)
will look like this:

1.1.90.20030828

7.6.2 Releasing AVR Libc

The information in this section is only relevant to AVR Libc developers and can be
ignored by end users.

Note:

In what follows, | assume you know how to use cvs and how to checkout multiple
source trees in a single directory without having them clobber each other. If you
don’t know how to do this, you probably shouldn’t be making releases or cutting
branches.

7.6.2.1 Creating a cvs branch The following steps should be taken to cut a branch
in cvs:

1. Check out a fresh source tree from cvs HEAD.

2. Update the NEWS file with pending release number and commit to cvs HEAD:
Change "Changes since avr-likdast_release:" to "Changes in avr-libc-
<this_relelase:".

3. Set the branch-point tag (settirgnajor> and<minor> accordingly):

‘cvs tag avr-libc<major>_<minor>-branchpoint’

4. Create the branch:

‘cvs tag -b avr-libc<major>_<minor>-branch’

5. Update the package version in configure.ac and commit configure.ac to cvs
HEAD:

Change minor number to next odd value.

6. Update the NEWS file and commit to cvs HEAD:
Add "Changes since avr-libethis_release:"

7. Check out a new tree for the branch:
‘cvs co -r avr-libc<major>_<minor>-branch’

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

7.6 Release Numbering and Methodology 211
8. Update the package version in configure.ac and commit configure.ac to cvs
branch:
Change the patch number to 90 to denote that this now a branch leading up to a
release. Be sure to leave thelate> part of the version.
9. Bring the build system up to date by running bootstrap and configure.
10. Perform a 'make distcheck’ and make sure it succeeds. This will create the
shapshot source tarball. This should be considered the first release candidate.
11. Upload the snapshot tarball to savannah.
12. Announce the branch and the branch tag to the avr-libc-dev list so other devel-
opers can checkout the branch.
Note:

CVS tags do not allow the use of periods ().

7.6.2.2 Making a release A stable release will only be done on a branch, not from
the cvs HEAD.

The following steps should be taken when making a release:

. Make sure the source tree you are working from is on the correct branch:

'cvs update -r avr-libcmajor>_<minor>-branch’

. Update the package version in configure.in and commit it to cvs.

. Update the gnu tool chain version requirements in the README and commit to

CVS.

. Update the ChangeLog file to note the release and commit to cvs on the branch:

Add "Released avr-libesthis_release."

. Update the NEWS file with pending release number and commit to cvs:

Change "Changes since avr-likdast_release:" to "Changes in avr-libc-
<this_relelase:".

. Bring the build system up to date by running bootstrap and configure.

. Perform a 'make distcheck’ and make sure it succeeds. This will create the

source tarball.

. Tag the release:

‘cvs tag avr-libc<major>_<minor>_<patch>-release’

. Upload the tarball to savannah.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

7.7 Memory Sections 212

10. Update the NEWS file, and commit to cvs:
Add "Changes since avr-libesmajor>_<minor>_<patch>:"

11. Generate the latest documentation and upload to savannah.

12. Announce the release.

The following hypothetical diagram should help clarify version and branch relation-
ships.

HEAD 1.0 Branch 1.2 Branch
cvs tag avr-libc-1_0-branchpoint —$

set version to 1.1.0.<date>
cvs tag —b avr-libc-1_0-branch

set version to 0.90.90.<date>

E set versionto 1.0]

cvs tag avr-libc-1_0O-release

set version to 1.0.0.<date>

i

setversionto 1.0.1
vs tag avr-libc-1_0_1-release

'

cvs tag avr-libc-1_2-branchpoint
set version to 1.3.0.<date> cvs tag —b avr-libc—-1_2-branch

set version to 1.1.90.<date>

'

set versionto 1.2
cvs tag avr-libc-1_2-release

cvs tag avr-libc-2.0-branchpoint +
set version to 2.1.0.<date>

'

Figure 9: Release tree

7.7 Memory Sections

Remarks:
Need to list all the sections which are available to the avr.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

7.7 Memory Sections 213

Weak Bindings

FIXME: need to discuss the .weak directive.

The following describes the various sections available.

7.7.1 The .text Section

The .text section contains the actual machine instructions which make up your program.
This section is further subdivided by the .initN and .finiN sections dicussed below.

Note:

The avr-size program (part of binutils), coming from a Unix background,
doesn’t account for the .data initialization space added to the .text section, so in
order to know how much flash the final program will consume, one needs to add
the values for both, .text and .data (but not .bss), while the amount of pre-allocated
SRAM is the sum of .data and .bss.

7.7.2 The .data Section

This section contains static data which was defined in your code. Things like the fol-
lowing would end up in .data:

char err_str[] = "Your program has died a horrible death!";

struct point pt = { 1, 1 };

It is possible to tell the linker the SRAM address of the beginning of the .data section.
This is accomplished by addinyVl,-Tdata, addr to theavr-gcc command
used to the link your program. Not thatdldr must be offset by adding 0x800000
the to real SRAM address so that the linker knows that the address is in the SRAM
memory space. Thus, if you want the .data section to start at 0x1100, pass 0x801100
at the address to the linker. [offsetplained

Note:

When usingnalloc() inthe application (which could even happen inside library
calls),additional adjustmentare required.

7.7.3 The .bss Section

Uninitialized global or static variables end up in the .bss section.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

7.7 Memory Sections 214

7.7.4 The .eeprom Section

This is where eeprom variables are stored.

7.7.5 The .noinit Section

This sections is a part of the .bss section. What makes the .noinit section special is that
variables which are defined as such:

int foo __ attribute__ ((section (".noinit")));

will not be initialized to zero during startup as would normal .bss data.

Only uninitialized variables can be placed in the .noinit section. Thus, the following
code will causavr-gcc to issue an error:

int bar __ attribute__ ((section (".noinit"))) = Oxaa;

It is possible to tell the linker explicitly where to place the .noinit section by adding
-WI,-section-start=.noinit=0x802000 to theavr-gcc command line

at the linking stage. For example, suppose you wish to place the .noinit section at
SRAM address 0x2000:

$ avr-gcc ... -WIl,--section-start=.noinit=0x802000 ...

Note:

Because of the Harvard architecture of the AVR devices, you must manually add
0x800000 to the address you pass to the linker as the start of the section. Oth-
erwise, the linker thinks you want to put the .noinit section into the .text section
instead of .data/.bss and will complain.

Alternatively, you can write your own linker script to automate this. [FIXME: need an
example or ref to dox for writing linker scripts.]

7.7.6 The .initN Sections
These sections are used to define the startup code from reset up through the start of
main(). These all are subparts of thext section

The purpose of these sections is to allow for more specific placement of code within
your program.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

7.7 Memory Sections 215

Note:

Sometimes, it is convenient to think of the .initN and .finiN sections as functions,
but in reality they are just symbolic names which tell the linker where to stick a
chunk of code which isota function. Notice that the examples fmmandC can

not be called as functions and should not be jumped into.

The.initN sections are executed in order from 0 to 9.
.init0:

Weakly bound to __init(). If user defines __init(), it will be jumped into immedi-
ately after a reset.

.initl:
Unused. User definable.
.init2:

In C programs, weakly bound to initialize the stack, and to clear __zero reg

(r1).
.init3:
Unused. User definable.

.init4:

For devices with> 64 KB of ROM, .init4 defines the code which takes care of copying
the contents of .data from the flash to SRAM. For all other devices, this code as well
as the code to zero out the .bss section is loaded from libgcc.a.

init5:
Unused. User definable.
.init6:
Unused for C programs, but used for constructors in C++ programs.
Anit7:
Unused. User definable.
init8:
Unused. User definable.
.init9:

Jumps into main().

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

7.7 Memory Sections 216

7.7.7 The .finiN Sections

These sections are used to define the exit code executed after return from main() or a
call toexit(). These all are subparts of tttext section

The .finiN sections are executed in descending order from 9 to 0.

finito:
Unused. User definable. This is effectively where _exit() starts.
fini8:
Unused. User definable.
fini7:
Unused. User definable.
fini6:
Unused for C programs, but used for destructors in C++ programs.
fini5:
Unused. User definable.
fini4:
Unused. User definable.
fini3:
Unused. User definable.
fini2:
Unused. User definable.
finil:
Unused. User definable.
finiO:
Goes into an infinite loop after program termination and completion of any _exit()

code (execution of code in the .fini$ -finil sections).

7.7.8 Using Sections in Assembler Code

Example:

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

7.8 Installing the GNU Tool Chain 217

#include <avr/io.h>

.section .init1,"ax",@progbits

Idi ro, Oxff
out _SFR_IO_ADDR(PORTB), r0
out _SFR_IO_ADDR(DDRB), r0
Note:
The,"ax",@progbits tells the assembler that the section is allocatable ("a"),

executable ("x") and contains data ("@progbits"). For more detailed information
on the .section directive, see the gas user manual.

7.7.9 Using Sections in C Code
Example:

#include <avr/io.h>

void my_init_portb (void) __ attribute__ ((naked)) \
__attribute__ ((section (".init3")));

void
my_init_portb (void)

PORTB = Oxff;
DDRB = O0xff;
}

Note:

Section .init3 is used in this example, as this ensures the ineraalo_reg_-
_ has already been set up. The code generated by the compiler might blindly rely
on__zero reg__ beingreally 0.

7.8 Installing the GNU Tool Chain

Note:

This discussion was taken directly from Rich Neswold’s document. A8keowl-
edgmentp

This discussion is Unix specific. [FIXME: troth/2002-08-13: we need a volunteer
to add windows specific notes to these instructions.]

This chapter shows how to build and install a complete development environment for
the AVR processors using the GNU toolset.

The default behaviour for most of these tools is to install every thing under the
lusr/local directory. In order to keep the AVR tools separate from the base

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

7.8 Installing the GNU Tool Chain 218

system, it is usually better to install everything intasr/local/avr . If the
lusr/local/avr directory does not exist, you should create it before trying to
install anything. You will needoot access to install there. If you don’'t have root
access to the system, you can alternatively install in your home directory, for exam-
ple, in$HOME/local/avr . Where you install is a completely arbitrary decision, but
should be consistent for all the tools.

You specify the installation directory by using thegrefix=dir option with the
configure script. It is important to install all the AVR tools in the same directory
or some of the tools will not work correctly. To ensure consistency and simplify the
discussion, we will us8PREFIX to refer to whatever directory you wish to install in.
You can set this as an environment variable if you wish as such (using a Bourne-like
shell):

$ PREFIX=$HOME/local/avr
$ export PREFIX

Note:

Be sure that you have yol®ATHenvironment variable set to search the direc-
tory you install everything ifbeforeyou start installing anything. For example, if
you use-prefix=$PREFIX , you must havéPREFIX/bin in your exported
PATH As such:

$ PATH=$PATH:$PREFIX/bin
$ export PATH

Warning:
If you haveCCset to anything other thaavr-gcc in your environment, this will
cause the configure script to fail. It is best to not h@set at all.

Note:

It is usually the best to use the latest released version of each of the tools.

7.8.1 Required Tools

* GNU Binutils
http://sources.redhat.com/binutils/
Installation

« GCC
http://gcc.gnu.org/
Installation

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

http://sources.redhat.com/binutils/
http://gcc.gnu.org/

7.8 Installing the GNU Tool Chain 219

e AVR Libc
http://savannah.gnu.org/projects/avr-libc/
Installation

7.8.2 Optional Tools

You can develop programs for AVR devices without the following tools. They may or
may not be of use for you.

* uisp
http://savannah.gnu.org/projects/uisp/
Installation

* avrdude
http://savannah.nongnu.org/projects/avrdude/
Installation
Usage Notes

* GDB
http://sources.redhat.com/gdb/
Installation

e Simulavr
http://savannah.gnu.org/projects/simulavr/
Installation

« AVaRice
http://avarice.sourceforge.net/
Installation

7.8.3 GNU Binutils for the AVR target

The binutils package provides all the low-level utilities needed in building and ma-
nipulating object files. Once installed, your environment will have an AVR assembler
(avr-as), linker (avr-Ild), and librarian &vr-ar andavr-ranlib). In addi-

tion, you get tools which extract data from object filasrtobjcopy), dissassem-

ble object file informationgvr-objdump), and strip information from object files
(avr-strip). Before we can build the C compiler, these tools need to be in place.

Download and unpack the source files:

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

http://savannah.gnu.org/projects/avr-libc/
http://savannah.gnu.org/projects/uisp/
http://savannah.nongnu.org/projects/avrdude/
http://sources.redhat.com/gdb/
http://savannah.gnu.org/projects/simulavr/
http://avarice.sourceforge.net/

7.8 Installing the GNU Tool Chain 220

$ bunzip2 -c binutils-<version>.tar.bz2 | tar xf -
$ cd binutils-<version>

Note:

Replace <version> with the version of the package you downloaded.
If you obtained a gzip compressed file (.gz), gs@zip instead ofounzip2 .

It is usually a good idea to configure and bullchutils in a subdirectory so as not
to pollute the source with the compiled files. This is recommended bpitheils
developers.

$ mkdir obj-avr
$ cd obj-avr

The next step is to configure and build the tools. This is done by supplying arguments
to theconfigure script that enable the AVR-specific options.

$../configure --prefix=$PREFIX --target=avr --disable-nls

If you don't specify the-prefix option, the tools will get installed in the
usr/local hierarchy (i.e. the binaries will get installed fasr/local/bin ,
the info pages get installed iasr/local/info , etc.) Since these tools are chang-
ing frequently, It is preferrable to put them in a location that is easily removed.

Whenconfigure is run, it generates a lot of messages while it determines what
is available on your operating system. When it finishes, it will have created several
Makefile s that are custom tailored to your platform. At this point, you can build the
project.

$ make

Note:

BSD users should note that the projeditakefile uses GNUmake syntax.
This means FreeBSD users may need to build the tools by gsnadxe.

If the tools compiled cleanly, you're ready to install them. If you specified a destination
that isn’t owned by your account, you'll needot access to install them. To install:

$ make install

You should now have the programs from binutils installed BR&REFIX/bin . Don’t
forget toset your PATHenvironment variable before going to build avr-gcc.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

7.8 Installing the GNU Tool Chain 221

7.8.4 GCC for the AVR target
Warning:

You must install avr-binutilsand make sure yoyrath is sefproperly before in-
stalling avr-gcc.

The steps to buildvr-gcc are essentially same as fainutils:

bunzip2 -c gcc-<version>.tar.bz2 | tar xf -

cd gcc-<version>

mkdir obj-avr

cd obj-avr

.Iconfigure --prefix=$PREFIX --target=avr --enable-languages=c,c++ \
--disable-nls --with-dwarf2

make

make install

& B @D B BH P B

To save your self some download time, you can alternatively download only the
gce-core- <version >.tar.bz2 and gcc-c++- <version >.tar.bz2

parts of the gcc. Also, if you don't need C++ support, you only need the core part
and should only enable the C language support.

Note:

Early versions of these tools did not support C++.
The stdc++ libs are not included with C++ for AVR due to the size limitations of
the devices.

7.8.5 AVR Libc
Warning:

You must install avr-binutils avr-gccand make sure youpath is setproperly
before installing avr-libc.

Note:

If you have obtained the latest avr-libc from cvs, you will have to run the
bootstrap script before using either of the build methods described below.

To build and install avr-libc:

$ gunzip -c avr-libc-<version>.tar.gz | tar xf -
$ cd avr-libc-<version>

$./configure --build="./config.guess’ --host=avr
$ make

$ make install

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

7.8 Installing the GNU Tool Chain 222

Note:

Other configure options might follow, notably —prefix in order to change the direc-
tory prefix for the installed files from its defaulisr/local

7.8.6 UISP
Uisp also uses theonfigure system, so to build and install:

gunzip -c uisp-<version>.tar.gz | tar xf -
cd uisp-<version>

mkdir obj-avr

cd obj-avr

.Iconfigure --prefix=$PREFIX

make

make install

P B P PP L

7.8.7 Avrdude

Note:

It has been ported to windows (via cygwin) and linux. Other unix systems should
be trivial to port to.

avrdude is part of the FreeBSD ports system. To install it, simply do the following:

cd /usr/ports/devel/avrdude
make install

Note:

Installation into the default location usually requires root permissions. However,
running the program only requires access permissions to the apprauoigte
device.

Building and installing on other systems should usedthefigure system, as such:

gunzip -c avrdude-<version>.tar.gz | tar xf -
cd avrdude-<version>

mkdir obj-avr

cd obj-avr

.Iconfigure --prefix=$PREFIX

make

make install

B BHPHPHH P

7.8.8 GDB for the AVR target

Gdb also uses theonfigure system, so to build and install:

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

7.8 Installing the GNU Tool Chain 223

bunzip2 -c gdb-<version>.tar.bz2 | tar xf -
cd gdb-<version>

mkdir obj-avr

cd obj-avr

.Iconfigure --prefix=$PREFIX --target=avr
make

make install

B BLPHPHHPH

Note:

If you are planning on usingvr-gdb , you will probably want to install either
simulavror avaricesince avr-gdb needs one of these to run as a a remote target
backend.

7.8.9 Simulavr
Simulavr also uses theonfigure system, so to build and install:

gunzip -c simulavr-<version>.tar.gz | tar xf -
cd simulavr-<version>

mkdir obj-avr

cd obj-avr

.Iconfigure --prefix=$PREFIX

make

make install

R e

Note:

You might want to have already installegr-binutils avr-gccandavr-libc if you
want to have the test programs built in the simulavr source.

7.8.10 AVaRice

Note:

These install notes are not applicable to avarice-1.5 or older. You probably don't
want to use anything that old anyways since there have been many improvements
and bug fixes since the 1.5 release.

AVaRice also uses theonfigure system, so to build and install:

gunzip -c avarice-<version>.tar.gz | tar xf -
cd avarice-<version>

mkdir obj-avr

cd obj-avr

.Iconfigure --prefix=$PREFIX

make

make install

R

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

7.9 Using the avrdude program 224

Note:

AVaRice uses the bfd library for accessing various binary file formats. You may
need to tell the configure script where to find the lib and headers for the link to
work. This is usually done by invoking the configure script like this (Replace
<hdr_path > with the path to théfd.h file on your system. Replacgelib_-

path > with the path tdibbfd.a on your system.):

$ CPPFLAGS=-I<hdr_path> LDFLAGS=-L<lib_path> ../configure --prefix=$PREFIX

7.9 Using the avrdude program

Note:

This section was contributed by Brian Deansd@bsdhome.com].
The avrdude program was previously called avrprog. The name was changed to
avoid confusion with the avrprog program that Atmel ships with AvrStudio.

avrdude is a program that is used to update or read the flash and EEPROM memories
of Atmel AVR microcontrollers on FreeBSD Unix. It supports the Atmel serial pro-
gramming protocol using the PC’s parallel port and can upload either a raw binary file
or an Intel Hex format file. It can also be used in an interactive mode to individually
update EEPROM cells, fuse bits, and/or lock bits (if their access is supported by the
Atmel serial programming protocol.) The main flash instruction memory of the AVR
can also be programmed in interactive mode, however this is not very useful because
one can only turn bits off. The only way to turn flash bits on is to erase the entire
memory (usingavrdude 's -e option).

avrdude is part of the FreeBSD ports system. To install it, simply do the following:

cd /usr/ports/devel/avrdude
make install

Once installedavrdude can program processors using the contents of the .hex file
specified on the command line. In this example, therfilgn.hex is burned into the
flash memory:

avrdude -p 2313 -e -m flash -i main.hex

avrdude: AVR device initialized and ready to accept instructions

avrdude: Device signature = 0x1e9101

avrdude: erasing chip

avrdude: done.

avrdude: reading input file "main.hex"

avrdude: input file main.hex auto detected as Intel Hex

avrdude: writing flash:

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

mailto:bsd@bsdhome.com

7.9 Using the avrdude program 225

1749 0x00

avrdude: 1750 bytes of flash written

avrdude: verifying flash memory against main.hex:
avrdude: reading on-chip flash data:

1749 0x00

avrdude: verifying ...

avrdude: 1750 bytes of flash verified

avrdude done. Thank you.

The-p 2313 option letsavrdude know that we are operating on an AT90S2313
chip. This option specifies the device id and is matched up with the device of the same
id in avrdude ’s configuration file (fusr/local/etc/avrdude .conf). To list

valid parts, specify thev option. The-e option instructsavrdude to perform a
chip-erase before programming; this is almost always necessary before programming
the flash. Them flash option indicates that we want to upload data into the flash
memory, while-i main.hex specifies the name of the input file.

The EEPROM is uploaded in the same way, the only difference is that you would use
-m eeprom instead ofm flash

To use interactive mode, use tHe option:

avrdude -p 2313 -t

avrdude: AVR device initialized and ready to accept instructions
avrdude: Device signature = 0x1e9101

avrdude>

The " command displays a list of valid
commands:

avrdude> ?
>>> 7

Valid commands:

dump : dump memory : dump <memtype> <addr> <N-Bytes>
read : alias for dump

write : write memory : write <memtype> <addr> <bl> <b2> ... <bN>
erase : perform a chip erase

sig . display device signature bytes

part : display the current part information

send : send a raw command : send <bl> <b2> <b3> <b4>
help . help

? . help

quit :quit

Use the ’'part’ command to display valid memory types for use with the
‘"dump’ and ‘write’ commands.

avrdude>

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

7.10 Using the GNU tools 226

7.10 Using the GNU tools

This is a short summary of the AVR-specific aspects of using the GNU tools. Normally,
the generic documentation of these tools is fairly large and maintaintxiinfo
files. Command-line options are explained in detail in the manual page.

7.10.1 Options for the C compiler avr-gcc

7.10.1.1 Machine-specific options for the AVR The following machine-specific
options are recognized by the C compiler frontend.

¢ -mmcu=architecture

Compile code foarchitecture Currently known architectures are

avrl Simple CPU core, only assembler
support

avr2 "Classic" CPU core, up to 8 KB of
ROM

avr3 "Classic" CPU core, more than 8 KB af
ROM

avrd "Enhanced" CPU core, up to 8 KB of
ROM

avrb "Enhanced" CPU core, more than 8 KB
of ROM

By default, code is generated for the avr2 architecture.

Note that when only usingnmcu=architecturebut no-mmcu=MCU type including
the file <avr/fio.h > cannot work since it cannot decide which device’s definitions
to select.

e -mmcu=MCU type

The following MCU types are currently understood by avr-gcc. The table matches
them against the corresponding avr-gcc architecture name, and shows the preprocessor
symbol declared by thenmcu option.

Architecture| MCU name | Macro

avrl at90s1200 | _ AVR_AT90S1200
avrl attiny11 __AVR_ATtinyl1l
avrl attiny12 __AVR_ATtiny12
avrl attiny15 __AVR_ATtinyl5
avrl attiny28 __AVR_ATtiny28
avr2 at90s2313 | _ AVR_AT90S2313

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

7.10 Using the GNU tools

227

Architecture| MCU name | Macro

avr2 at90s2323 | _ AVR_AT90S2323
avr2 at90s2333 | _ AVR_AT90S2333
avr2 at90s2343 | _ AVR_AT90S2343
avr2 attiny22 __AVR_ATtiny22
avr2 attiny24 __AVR_ATtiny24__
avr2 attiny25 __AVR_ATtiny25
avr2 attiny26 __ AVR_ATtiny26___
avr2 attiny261 ___AVR_ATtiny261
avr2 attiny44 __AVR_ATtiny44
avr2 attiny45 __AVR_ATtiny4d5
avr2 attiny461 __AVR_ATtiny461__
avr2 attiny84 __AVR_ATtiny84
avr2 attiny85 __AVR_ATtiny85
avr2 attiny861 __AVR_ATtiny861
avr2 at90s4414 | _ AVR_AT90S4414
avr2 at90s4433 | _ AVR_AT90S4433
avr2 at90s4434 | _ AVR_AT90S4434
avr2 at90s8515 | _ AVR_AT90S8515
avr2 at90c8534 | _ AVR_AT90C8534
avr2 at90s8535 | AVR_AT90S8535
avr2 at86rf401 __AVR_AT86RF401__
avr2 attiny13 __AVR_ATtiny13__
avr2 attiny2313 | _ AVR_ATtiny2313__
avr3 atmegalO3 | _ AVR_ATmegalO3
avr3 atmega603 | _ AVR_ATmega603___
avr3 at43usb320 | _ AVR_AT43USB320_
avr3 at43usb355 | _ AVR_AT43USB355
avr3 at76c711 __AVR_AT76C711
avr4 atmega48 __AVR_ATmega48
avr4 atmega8 __AVR_ATmega8__
avr4 atmega8515| _ AVR_ATmega8515
avr4 atmega8535| _ AVR_ATmega8535
avrd atmega88 __AVR_ATmega88
avr4 at90pwm2 | _ AVR_AT90PWM2___
avr4 at90pwm3 | _ AVR_AT90PWM3__
avrb at90can32 | _ AVR_AT90CAN32___
avrb at90can64 | _ AVR_AT90CAN64
avrb at90canl28 | _ AVR_AT90CAN128
avrs at90ush646 | AVR_ATI90USB646
avrb at90ush647 | _ AVR_ATI0USB647__
avrb at90ush1286 AVR_AT90USB1286 |
avrb at90usbh1287 _ AVR_AT90USB1287 |
avrs atmegal28 | _ AVR_ATmegal28__

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

7.10 Using the GNU tools

228

Architecture| MCU name | Macro
avrs atmegal?280| _ AVR_ATmegal280
avrs atmegal281| AVR_ATmegal281
avrs atmegal6 __AVR_ATmegal6
avrs atmegal6l | _ AVR_ATmegal6l
avrs atmegal62 | _ AVR_ATmegal62__
avrs atmegal63 | _ AVR_ATmegal63
avrs atmegal64p| _ AVR_ATmegal64P__
avrs atmegal65 | _ AVR_ATmegal65
avrs atmegal68 | _ AVR_ATmegal68__
avrs atmegal69 | _ AVR_ATmegal69
avrs atmega32 __AVR_ATmega32__
avrs atmega323 | _ AVR_ATmega323__
avrs atmega324p| _ AVR_ATmega324P___
avrb atmega325 | _ AVR_ATmega325
avrb atmega3250| _ AVR_ATmega3250_
avrb atmega329 | _ AVR_ATmega329
avrs atmega3290| _ AVR_ATmega3290_
avrb atmegad06 | _ AVR_ATmegad06
avrs atmega64 __ AVR_ATmegab4
avrb atmega640 | _ AVR_ATmega640
avrs atmega644 | _ AVR_ATmega644
avrs atmega644p| _ AVR_ATmega644P___
avrS atmega645 | _ AVR_ATmega645
avrb atmega6450| _ AVR_ATmega6450
avrs atmega649 | _ AVR_ATmega649
avrs atmega6490| _ AVR_ATmega6490
avrb at94k __AVR_AT94K__

e -morderl

e -morder2

Change the order of register assignment. The default is

r24,r25,r18,r19, r20, r21,r22,r23, r30, r31, 26, r27,r28, r29, r17, r16, r15, r14, r13,

r12,r11,r10,r9,r8,r7,16,r5,r4,r3,r2, 10, rl1

Order 1 uses

r18, r19, r20, r21, r22,r23, r24, r25, r30, r31, 126, r27, 28, r29, r17, r16, r15, r14, r13,

r12,r11,r10,r9,r8,r7,16,r5,r4,r3,r2, 10, rl

Order 2 uses

125, r24,r23,r22,r21, r20,r19, r18, r30, r31, 26, r27, r28, r29, r17, r16, r15, r14, r13,

r12,r11,r10,r9,r8,r7,r6,r5,r4,r3,r2,rl, r0

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

7.10 Using the GNU tools 229

* -mint8

Assumeint to be an 8-bit integer. Note that this is not really supported by
avr-libc , so it should normally not be used. The default is to use 16-bit integers.

e -mno-interrupts

Generates code that changes the stack pointer without disabling interrupts. Normally,
the state of the status regist8REGis saved in a temporary register, interrupts are
disabled while changing the stack pointer, 8REGs restored.

« -mcall-prologues

Use subroutines for function prologue/epilogue. For complex functions that use many
registers (that needs to be saved/restored on function entry/exit), this saves some space
at the cost of a slightly increased execution time.

e -minit-stack= nnnn

Set the initial stack pointer tonnn By default, the stack pointer is initialized to the
symbol__stack , which is set tdtRAMENDYy the run-time initialization code.

* -mtiny-stack
Change only the low 8 bits of the stack pointer.
¢ -mno-tablejump

Do not generate tablejump instructions. By default, jump tables can be used to op-
timize switch statements. When turned off, sequences of compare statements are
used instead. Jump tables are usually faster to execute on average, but in particular for
switch statements where most of the jumps would go to the default label, they might
waste a bit of flash memory.

* -mshort-calls

Userjmp/rcall (limited range) on>8K devices. Oravr2 andavr4 architec-
tures (less than 8 KB or flash memory), this is always the caseav@ andavr5
architectures, calls and jumps to targets outside the current function will by default use
jmp/call instructions that can cover the entire address range, but that require more
flash ROM and execution time.

e -mrtl

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

7.10 Using the GNU tools 230

Dump the internal compilation result called "RTL" into comments in the generated
assembler code. Used for debugging avr-gcc.

* -msize

Dump the address, size, and relative cost of each statement into comments in the gen-
erated assembler code. Used for debugging avr-gcc.

* -mdeb

Generate lots of debugging informationgmlerr

7.10.1.2 Selected general compiler optionsThe following general gcc options
might be of some interest to AVR users.

* -On

Optimization leveln. Increasingn is meant to optimize more, an optimization level of
0 means no optimization at all, which is the default if 1@ option is present. The
special optionOs is meant to turn on alO2 optimizations that are not expected to
increase code size.

Note that atO3, gcc attempts to inline all "simple” functions. For the AVR target,
this will normally constitute a large pessimization due to the code increasement. The
only other optimization turned on witlD3 is -frename-registers , Which could
rather be enabled manually instead.

A simple-O option is equivalent teO1.

Note also that turning off all optimizations will prevent some warnings from being
issued since the generation of those warnings depends on code analysis steps that are
only performed when optimizing (unreachable code, unused variables).

See also thappropriate FAQ entrfor issues regarding debugging optimized code.

* -Wa, assembler-options

e -WI, linker-options

Pass the listed options to the assembler, or linker, respectively.

* g

Generate debugging information that can be used by avr-gdb.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

7.10 Using the GNU tools 231

« -ffreestanding

Assume a "freestanding" environment as per the C standard. This turns off automatic
builtin functions (though they can still be reached by prependinguiltin_ to

the actual function name). It also makes the compiler not complain wrien()

is declared with avoid return type which makes some sense in a microcontroller
environment where the application cannot meaningfully provide a return value to its
environment (in most casesain() won'’t even return anyway). However, this also
turns off all optimizations normally done by the compiler which assume that functions
known by a certain name behave as described by the standard. E. g., applying the
function strlen() to a literal string will normally cause the compiler to immediately
replace that call by the actual length of the string, while wifteestanding ,it

will always callstrlen()at run-time.

« -funsigned-char

Make any unqualfiedhar type an unsigned char. Without this option, they default to
a signed char.

 -funsigned-bitfields
Make any unqualified bitfield type unsigned. By default, they are signed.

« -fshort-enums
Allocate to anenum type only as many bytes as it needs for the declared range of
possible values. Specifically, the enum type will be equivalent to the smallest integer
type which has enough room.

« -fpack-struct

Pack all structure members together without holes.

7.10.2 Options for the assembler avr-as
7.10.2.1 Machine-specific assembler options

e -mmcu=architecture
¢ -mmcu=MCU name
avr-as understands the samamcu= options asavr-gcc By default, avr2 is assumed,

but this can be altered by using the appropriate .arch pseudo-instruction inside the
assembler source file.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

7.10 Using the GNU tools 232

« -mall-opcodes

Turns off opcode checking for the actual MCU type, and allows any possible AVR
opcode to be assembled.

* -mno-skip-bug

Don't emit a warning when trying to skip a 2-word instruction with a
CPSE/SBIC/SBIS/SBRC/SBRS instruction. Early AVR devices suffered from a
hardware bug where these instructions could not be properly skipped.

* -mno-wrap

For RIMP/RCALLinstructions, don’t allow the target address to wrap around for de-
vices that have more than 8 KB of memory.

e -gstabs

Generate .stabs debugging symbols for assembler source lines. This enables avr-gdb
to trace through assembler source files. This optiaist notbe used when assembling
sources that have been generated by the C compiler; these files already contain the
appropriate line number information from the C source files.

e -afcdhimns=file]
Turn on the assembler listing. The sub-options are:

» c omit false conditionals

d omit debugging directives

h include high-level source

L]

| include assembly
¢ minclude macro expansions
¢ n omit forms processing

« s include symbols

=file set the name of the listing file

The various sub-options can be combined into a sirayleption list;=file must be the
last one in that case.

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

7.10 Using the GNU tools 233

7.10.2.2 Examples for assembler options passed through the C compileRe-
member that assembler options can be passed from the C compiler fronteneéaing
(seeabovg, so in order to include the C source code into the assembler listing in
file foo.Ist , when compilingoo.c , the following compiler command-line can be
used:

$ avr-gcc -¢c -O foo.c -0 foo.0 -Wa,-ahls=foo.Ist

In order to pass an assembler file through the C preprocessor first, and have the assem-
bler generate line number debugging information for it, the following command can be
used:

$ avr-gcc -c -x assembler-with-cpp -0 foo.o0 foo.S -Wa,--gstabs

Note that on Unix systems that have case-distinguishing file systems, specifying a file
name with the suffix .S (upper-case letter S) will make the compiler automatically
assumex assembler-with-cpp , while using .s would pass the file directly to

the assembler (no preprocessing done).

7.10.3 Controlling the linker avr-Id

7.10.3.1 Selected linker options While there are no machine-specific options for
avr-ld, a number of the standard options might be of interest to AVR users.

¢ -| name

Locate the archive library namelilb namea, and use it to resolve currently
unresolved symbols from it. The library is searched along a path that con-
sists of builtin pathname entries that have been specified at compile time (e. g.
lusr/local/avr/lib on Unix systems), possibly extended by pathname entries
as specified byL options (that must precede tHe options on the command-line).

» -L path

Additional location to look for archive libraries requested-byoptions.
e -defsym symbol=expr

Define a global symbadymbolusingexpras the value.
. -M

Print a linker map testdout

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

7.10 Using the GNU tools 234

e -Map mapfile
Print a linker map tanapfile
o -cref

Output a cross reference table to the map file (in cd&ap is also present), or to
stdout

* -section-start sectionname=org

Start sectiorsectionnamat absolute addressg.

e -Thss org
e -Tdata org
e -Ttext org

Start thebss , data , ortext section abrg, respectively.
e -T scriptfile

Use scriptfile as the linker script, replacing the default linker script. De-
fault linker scripts are stored in a system-specific location (e. g. under
lusr/local/avr/lib/ldscripts on Unix systems), and consist of the AVR
architecture name (avr2 through avr5) with the suffix .x appended. They describe how
the variousmemory sectionwiill be linked together.

7.10.3.2 Passing linker options from the C compiler By default, all unknown
non-option arguments on the avr-gcc command-line (i. e., all filename arguments that
don’t have a suffix that is handled by avr-gcc) are passed straight to the linker. Thus,
all files ending in .o (object files) and .a (object libraries) are provided to the linker.

System libraries are usually not passed by their explicit flename but rather using the
-l option which uses an abbreviated form of the archive filename (see above). avr-
libc ships two system librariedibc.a , andlibm.a . While the standard library
libc.a will always be searched for unresolved references when the linker is started
using the C compiler frontend (i. e., there’s always at least one imgdltiedoption),

the mathematics librafjpm.a needs to be explicitly requested usihg . See also
theentry in the FAQexplaining this.

Conventionally, Makefiles use thmake macroLDLIBS to keep track ofl (and
possibly-L) options that should only be appended to the C compiler command-line

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

7.11 Todo List 235

when linking the final binary. In contrast, the madmFLAGSIs used to store other
command-line options to the C compiler that should be passed as options during the
linking stage. The difference is that options are placed early on the command-line,
while libraries are put at the end since they are to be used to resolve global symbols
that are still unresolved at this point.

Specific linker flags can be passed from the C compiler command-line using/the
compiler option, seabove This option requires that there be no spaces in the appended
linker option, while some of the linker options above (li#éap or -defsym) would

require a space. In these situations, the space can be replaced by an equal sign as
well. For example, the following command-line can be used to confipile into an
executable, and also produce a link map that contains a cross-reference list in the file
foo.map:

$ avr-gcc -O -0 foo.out -WI,-Map=foo.map -WI,--cref foo.c

Alternatively, a comma as a placeholder will be replaced by a space before passing the
option to the linker. So for a device with external SRAM, the following command-line
would cause the linker to place the data segment at address 0x2000 in the SRAM:

$ avr-gcc -mmcu=atmegal28 -o foo.out -WI,-Tdata,0x802000

See the explanation of tlata sectiorior why 0x800000 needs to be added to the ac-
tual value. Note that unlessminit-stack option has been given when compiling

the C source file that contains the functioain() , the stack will still remain in inter-

nal RAM, through the symbol stack that is provided by the run-time startup code.
This is probably a good idea anyway (since internal RAM access is faster), and even
required for some early devices that had hardware bugs preventing them from using
a stack in external RAM. Note also that the heaprfalloc() will still be placed

after all the variables in the data section, so in this situation, no stack/heap collision
can occur.

7.11 Todo List
Group avr_boot From email with Marek: On smaller devices (all except AT-
mega64/128), SPM_REG is in the I/O space, accessible with the shorter "in"

and "out" instructions - since the boot loader has a limited size, this could be an
important optimization.

7.12 Deprecated List

Global enable_external_int

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

7.12 Deprecated List 236

Global INTERRUPT

Global timer_enable_int

Global inp

Global outp

Global sbi

Global cbi

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

Index

$PATH, 217

$PREFIX,217

—prefix,217

<assert.b-: Diagnostics8

<avr/boot.h-: Bootloader Support
Utilities, 8

<avr/eeprom.ir: EEPROM handling,
15

<avrlinterrupt.h>: Interrupts,121

<avrfio.h>: AVR device-specific 10
definitions,18

<avr/pgmspacei: Program Space
String Utilities, 19

<avr/sfr_defs.b-: Special function
registers124

<avr/sleep.b-: Power Management
and Sleep Mode29

<avr/version.h-: avr-libc version

macros31
<avr/wdt.h>: Watchdog timer han-
dling, 33
<compat/deprecatedh Deprecated
items,36

<compat/ina90.k: Compatibility
with IAR EWB 3.x, 39

<ctype.h>: Character Operationd0

<errno.h>: System Errors42

<inttypes.h>: Integer Type conver-
sions,43

<math.h>: Mathematicsb5

<setjmp.h>: Non-local goto59

<stdint.h>: Standard Integer Types,
61

<stdio.h>: Standard IO facilities73

<stdlib.l>: General utilities91

<string.h>: Strings,101

<util/crc16.h>: CRC Computations,
111

<util/delay.f>: Busy-wait delay
loops,114

<util/parity.h>: Parity bit generation,
116

<util/twi.h>: TWI bit mask defini-

tions, 117

BV

avr_sfr,126
_EEGET

avr_eeproml6
_EEPUT

avr_eeproml6
_FDEV_EOF

avr_stdio,78
_FDEV_ERR

avr_stdio,78
_FDEV_SETUP_READ

avr_stdio,78
_FDEV_SETUP_RW

avr_stdio,78
_FDEV_SETUP_WRITE

avr_stdio,78
_FFS

avr_string,103
__AVR_LIBC_DATE_

avr_version32
__AVR_LIBC_DATE_STRING___

avr_version32
__AVR_LIBC_MAJOR__

avr_version32
__AVR_LIBC_MINOR__

avr_version32
__AVR_LIBC_REVISION___

avr_version32
__AVR_LIBC_VERSION_-

STRING__

avr_version33
__AVR_LIBC_VERSION__

avr_version32

__EEPROM_REG_LOCATIONS__

avr_eeproml6
__compar_fn_t

avr_stdlib,93
__malloc_heap_end

avr_stdlib,101
__malloc_heap_start

INDEX

238

avr_stdlib,101
__malloc_margin
avr_stdlib,101
_crcl6_update
util_crc,112
_crc_ccitt_update
util_crc,112
_crc_ibutton_update
util_crc,113
_crc_xmodem_update
util_crc,113
_delay _loop_1
util_delay,115
_delay_loop_2
util_delay,115
_delay_ms
util_delay,115
_delay_us
util_delay,116

A more sophisticated project42
A simple project128
abort

avr_stdlib,93
abs

avr_stdlib,93
acos

avr_math56
Additional notes from <avr/sfr_-

defs.h>, 27

asin

avr_math56
assert

avr_assertg
atan

avr_math56
atan2

avr_math57
atof

avr_stdlib,93
atoi

avr_stdlib,94
atol

avr_stdlib,94
avr_assert

assert8

avr_boot
boot_is_spm_interrup,0
boot_lock bits_setl0
boot_lock bits_set_saf&l
boot_lock fuse_bits_get1
boot page_eras#&?
boot _page erase saie
boot_page_fill12
boot_page_fill_safel,3
boot_page_writel3
boot_page_ write_safé3
boot_rww_busy13
boot_rww_enablel3
boot rww_enable_safé4
boot_spm_busyl4
boot_spm_busy wait,4
boot _spm_interrupt_disablé&4
boot_spm_interrupt_enabl&4
BOOTLOADER_SECTION14
GET_EXTENDED_FUSE_-

BITS, 14

GET_HIGH_FUSE_BITS14
GET_LOCK_BITS,15
GET_LOW_FUSE_BITS15

avr_eeprom
_EEGET,16
_EEPUT,16
__EEPROM_REG_-

LOCATIONS__,16

EEMEM, 16
eeprom_busy waifl,7
eeprom_is_ready,7
eeprom_read_block,7
eeprom_read_bytd,7
eeprom_read_word,7
eeprom_write_blockl7
eeprom_write_bytel7
eeprom_write_wordl7

avr_errno
EDOM, 43
ERANGE, 43

avr_interrupts
EMPTY_INTERRUPT 123
ISR,123
SIGNAL, 124

avr_inttypes

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

INDEX

239

int_farptr_t,55
PRId16,46
PRId32,46
PRId8,46
PRIJFAST1646
PRIAFAST3246
PRIAFAST8,46
PRIALEAST1647
PRIALEAST3247
PRIILEASTS8,47
PRIAPTR 47
PRIi16,47
PRIi32,47
PRIi8,47
PRIIFAST16,47
PRIIFAST32,47
PRIIFASTS8,47
PRIILEAST16,47
PRIILEAST32,48
PRIILEASTS,48
PRIIPTR,48
PRI016,48
PRI1032,48
PRI08,48
PRIOFAST1648
PRIOFAST3248
PRIOFAST8/48
PRIOLEAST16/48
PRIOLEAST3248
PRIOLEASTS8,49
PRIOPTR 49
PRIu16,49
PRIu32,49
PRIu8,49
PRIUFAST1649
PRIUFAST3249
PRIUFAST8,49
PRIULEAST16,49
PRIULEAST3249
PRIULEASTS8,49
PRIUPTR 50
PRIX16,50
PRIx16,50
PRIX32,50
PRIx32,50
PRIX8,50

PRIx8,50
PRIXFAST16,50
PRIXFAST16,50
PRIXFAST32,50
PRIXFAST32,50
PRIXFASTS,51
PRIXFAST8,51
PRIXLEAST16,51
PRIXLEAST16,51
PRIXLEAST32,51
PRIXLEAST32,51
PRIXLEASTS,51
PRIXLEASTS,51
PRIXPTR,51
PRIXPTR,51
SCNd1651
SCNd3252
SCNdFAST1652
SCNdFAST3252
SCNdLEAST1652
SCNdLEAST3252
SCNdPTR52
SCNi16,52
SCNi32,52
SCNIiFAST1652
SCNIFAST3252
SCNILEAST16,52
SCNILEAST32,53
SCNiPTR,53
SCNo016,53
SCNo032,53
SCNOoFAST1653
SCNOoFAST3253
SCNOLEAST1653
SCNOLEAST3253
SCNoPTR53
SCNu16,53
SCNu32,53
SCNuUFAST1654
SCNuUFAST3254
SCNULEAST1654
SCNULEAST3254
SCNuPTR54
SCNx16,54
SCNx32,54
SCNxFAST1654

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

INDEX 240
SCNxFAST3254 prog_char23
SCNXLEAST16,54 prog_intl6 t23
SCNXLEAST3254 prog_int32_t23
SCNxPTR55 prog_int64 t23
uint_farptr_t,55 prog_int8 t23

avr_math prog_uchar23
acos 56 prog_uintl6 t23
asin,56 prog_uint32_t23
atan,56 prog_uint64 t23
atan257 prog_uint8_t23
ceil, 57 prog_void,23
c0s,57 PROGMEM,22
cosh,57 PSTR,22
exp,57 strcasecmp_R24
fabs,57 strcat_P24
floor, 57 strcmp_P24
fmod, 57 strcpy_PR25
frexp, 57 stricat_P 25
isinf, 58 stricpy_P.25
isnan,58 strlen_P25
Idexp,58 strncasecmp_PR6
log, 58 strncat_P26
log10,58 strncmp_P26
M_PI, 56 strncpy_P26
M_SQRT2,56 strnlen_P27
modf,58 strstr_ P27
pow, 58 avr_sfr
sin,59 _BV, 126
sinh,59 bit_is_clear]126
sqrt,59 bit_is_set,126
squareb59 loop_until_bit_is_clear127
tan,59 loop_until_bit_is_set] 27
tanh,59 avr_sleep

avr_pgmspace set_sleep_mod8&1
memcpy_P24 sleep_cpu3l
PGM_P,20 sleep_disable31
pgm_read_byte20 sleep_enableg1
pgm_read byte fapl sleep_mode3l
pgm_read_byte ne&tl SLEEP_MODE_ADCZ30
pgm_read_dword?1 SLEEP_MODE_EXT_-
pgm_read_dword_faP1 STANDBY, 30
pgm_read_dword_ne&atl SLEEP_MODE_IDLE30
pgm_read_word22 SLEEP_MODE_PWR_DOWN,
pgm_read_word_fag2 30
pgm_read_word_nea2? SLEEP_MODE_PWR_SAVE30
PGM_VOID_P,22 SLEEP_MODE_STANDBY 31

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

int_fastl6 t71
INT_FAST32_MAX, 66
INT_FAST32_MIN,66
int_fast32_t71
INT_FAST64_MAX,66
INT_FAST64_MIN,67
int_fast64 t71
INT_FAST8_MAX, 67
INT_FAST8_MIN, 67
int_fast8 t,71
INT_LEAST16_MAX, 67
INT_LEAST16_MIN, 67
int_leastl6 t71
INT_LEAST32_MAX, 67
INT_LEAST32_MIN,67
int_least32_t71
INT_LEAST64_MAX, 67
INT_LEAST64_MIN, 67
int_least64 t71
INT_LEAST8_MAX, 67
INT_LEAST8_MIN, 67
int_least8 t71
INTMAX_C, 68
INTMAX_MAX, 68
INTMAX_MIN, 68
intmax_t,71
INTPTR_MAX, 68

INDEX 241

avr_stdint INTPTR_MIN, 68
INT16_C,65 intptr_t, 71
INT16_MAX, 65 PTRDIFF_MAX, 68
INT16_MIN, 65 PTRDIFF_MIN,68
intl6_t,70 SIG_ATOMIC_MAX, 68
INT32_C,65 SIG_ATOMIC_MIN, 68
INT32_MAX, 65 SIZE_MAX, 68
INT32_MIN, 65 UINT16_C,68
int32_t,70 UINT16_MAX, 69
INT64_C,66 uintl6_t,71
INT64_MAX, 66 UINT32_C,69
INT64_MIN, 66 UINT32_MAX, 69
inté4_t,70 uint32_t,72
INT8_C,66 UINT64_C,69
INT8_MAX, 66 UINT64_MAX, 69
INT8_MIN, 66 uinté4_t,72
int8_t, 70 UINT8_C, 69
INT_FAST16_MAX, 66 UINT8_MAX, 69
INT_FAST16_MIN,66 uint8_t,72

UINT_FAST16_MAX, 69
uint_fastl6_t7/2
UINT_FAST32_MAX, 69
uint_fast32_ty72
UINT_FAST64_MAX, 69
uint_fast64 t72
UINT_FAST8_MAX, 69
uint_fast8_t,72
UINT_LEAST16_MAX, 70
uint_least16_t72
UINT_LEAST32_MAX, 70
uint_least32_t72
UINT_LEAST64_MAX, 70
uint_least64 t72
UINT_LEAST8_MAX, 70
uint_least8 t72
UINTMAX_C, 70
UINTMAX_MAX, 70
uintmax_t,73
UINTPTR_MAX, 70
uintptr_t,73

avr_stdio

_FDEV_EOF,78
_FDEV_ERR/78
_FDEV_SETUP_READ78
_FDEV_SETUP_RW78
_FDEV_SETUP_WRITE7S

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

INDEX

242

clearerr80

EOF,78

fclose,80

fdev_close/8
fdev_get_udata/8

fdev_set udat&;8
FDEV_SETUP_STREAMY79

fdev_setup_streani9 vsprintf,91
fdevopen81 vsprintf_P,91

feof, 81 avr_stdlib

ferror, 82 __compar_fn_t93
fflush, 82 __malloc_heap_end01
fgetc,82 __malloc_heap_start01
fgets,82 __malloc_margin101
FILE, 79 abort,93

fprintf, 82 abs,93

fprintf_P,82 atof, 93

fputc, 82 atoi, 94

fputs, 82 atol,94

fputs_ P33 bsearch94

fread,83 calloc,95

fscanf,83 div, 95

fscanf_P83 exit, 95

fwrite, 83 free,95

getc,79 itoa, 95

getchar,79 labs,96

gets,83 Idiv, 96

printf, 83 ltoa, 96

printf_P,84 malloc,96

putc,80 gsort,97

putchar,30 rand,97

puts,84 RAND_MAX, 93
puts_ P84 rand_r,97

scanf,84 random,97

scanf P34 RANDOM_MAX, 93
snprintf,84 random_r98
snprintf_P .84 realloc,98

sprintf, 84 srand 98
sprintf_P,84 srandom98
sscanfg84 strtod,98
sscanf_P85 strtol, 99

stderr,80 strtoul,99

stdin,80 ultoa,100

stdout,80 utoa,100

ungetc,85 avr_string

vfprintf, 85 _FFS,103

vfprintf_P, 88
vfscanf,88
vfscanf P90
vprintf, 90
vscanf,90
vsnprintf,91

vsnprintf_P91

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

INDEX

243

ffs, 103

ffsl, 103

ffsll, 103

memccpy, 103

memchr,104

memcmp,104

memcpy,104

memmove,105

memset,105

strcasecmpl05

strcat,105

strchr,105

strcmp,106

strcpy,106

stricat,106

stricpy, 107

strlen,107

striwr, 107

strncasecm.07

strncat,108

strncmp,108

strncpy,108

strnlen,109

strrchr,109

strrev,109

strsep,109

strstr,110

strtok_r,110

strupr,110

avr_version

__AVR_LIBC_DATE_,32

__AVR_LIBC_DATE_-
STRING__,32

__AVR_LIBC_MAJOR__ 32

__AVR_LIBC_MINOR__ ,32

__AVR_LIBC_REVISION__32

__AVR_LIBC_VERSION_-
STRING__,33

__AVR_LIBC VERSION__ 32

avr_watchdog

wdt_disable34

wdt_enable34

wdt_reset35

WDTO_120MS,35

WDTO_15MS,35

WDTO_1S,35

WDTO_250MS 35
WDTO_2S,35
WDTO_30MS,35
WDTO_4S,36
WDTO_500MS 36
WDTO_60MS,36
WDTO_8S,36
avrdude, usage23
avrprog, usage223

bit_is_clear
avr_sfr,126
bit_is_set
avr_sfr,126
boot _is_spm_interrupt
avr_boot,10
boot_lock_bits_set
avr_boot,10
boot_lock_bits_set safe
avr_boot,11
boot_lock fuse bits_get
avr_boot,11
boot_page_erase
avr_boot,12
boot_page_erase_safe
avr_boot,12
boot_page_fill
avr_boot,12
boot_page_fill_safe
avr_boot,13
boot page_write
avr_boot,13
boot_page_ write_safe
avr_boot,13
boot_rww_busy
avr_boot,13
boot_rww_enable
avr_boot,13
boot rww_enable safe
avr_boot,14
boot_spm_busy
avr_boot,14
boot_spm_busy_wait
avr_boot,14
boot_spm_interrupt_disable
avr_boot,14

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

INDEX 244

boot_spm_interrupt_enable disassemblingl 33
avr_boot,14 div
BOOTLOADER_SECTION avr_stdlib,95
avr_boot,14 div_t, 162
bsearch quot,162
avr_stdlib,94 rem,162
calloc EDOM
avr_stdlib,95 avr_errno43
chi EEMEM
deprecated_item883 avr_eeprom16
ceil eeprom_busy_wait
avr_math57 avr_eeproml?
clearerr eeprom_is_ready
avr_stdio80 avr_eeproml?7
cos eeprom_read_block
avr_mathb57 avr_eeproml?
cosh eeprom_read_byte
avr_math57 avr_eeproml?7
ctype eeprom_read_word
isalnum,40 avr_eeproml?7
isalpha 40 eeprom_write_block
isascii,41 avr_eeproml?7
isblank,41 eeprom_write_byte
iscntrl, 41 avr_eeproml?7
isdigit, 41 eeprom_write_word
isgraph41 avr_eeproml?7
islower,41 EMPTY_INTERRUPT
isprint, 41 avr_interrupts123
ispunct,41 enable_external_int
isspaced4l deprecated_item88
isupper41 EOF
isxdigit, 42 avr_stdio,78
toascii,42 ERANGE
tolower,42 avr_errno43
toupper4?2 Example using the two-wire interface
(TWI), 157
Demo projects127 exit
deprecated_items avr stdlib,95
Cbi, 38 exp N
enable_external_in88 avr_math57
inp, 38
INTERRUPT,38 fabs
outp,38 avr_math57
shi, 39 FAQ, 170
timer_enable_int39 fclose

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

INDEX 245
avr_stdio80 avr_stdio83
fdev_close free
avr_stdio,78 avr_stdlib,95
fdev_get_udata frexp
avr_stdio,78 avr_mathp7
fdev_set _udata fscanf
avr_stdio,78 avr_stdio,83
FDEV_SETUP_STREAM fscanf_P
avr_stdio,79 avr_stdio83
fdev_setup_stream fwrite
avr_stdio,79 avr_stdio83
fdevopen
avr stdio81 GET_EXTENDED_FUSE_BITS
feof avr_boot,14
avr stdio81 GET_HIGH_FUSE_BITS
ferror B avr_boot,14
avr Stdi0,82 GET_LOCK_B|TS
flush avr_boot,15
avr_stdio82 GET_LOW_FUSE_BITS
ffs B avr_boot,15
avr_string,103 getc
ffsl avr_stdio,79
avr_string,103 getchar
frsll avr_stdio,79
avr_string,103 gets
fgetc avr_stdio,83
avr_stdio82)
fgets Inp _
avr stdio 82 deprecated_item88
FILE installation,216
avr stdio 79 installation, avarice222
floor installation, avr-libc220
avr math57 installation, avrdude221
fmod installation, avrprog221
avr math57 installation, binutils218
forintf - installation, gcc220
avr stdio 82 Installation, gdb221
forintf =3 installation, simulavr222
avr stdio 82 installation, uisp221
foutc - INT16_C
avr stdio 82 avr_stdint,65
fputs - INT16_MAX
avr stdio82 avr_stdint,65
fouts P INT16_MIN
avr stdio 83 avr_stdint,65
fread - intl6 t

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

INDEX

246

avr_stdint,70
INT32_C
avr_stdint,65
INT32_MAX
avr_stdint,65
INT32_MIN
avr_stdint,65
int32_t
avr_stdint,70
INT64_C
avr_stdint,66
INT64_MAX
avr_stdint,66
INT64_MIN
avr_stdint,66
int64_t
avr_stdint,70
INT8_C
avr_stdint,66
INT8_MAX
avr_stdint,66
INT8_MIN
avr_stdint,66
int8_t
avr_stdint,70
int_farptr_t
avr_inttypesp5
INT_FAST16_MAX
avr_stdint,66
INT_FAST16_MIN
avr_stdint,66
int_fastl6_t
avr_stdint,71
INT_FAST32_MAX
avr_stdint,66
INT_FAST32_MIN
avr_stdint,66
int_fast32_t
avr_stdint,71
INT_FAST64_MAX
avr_stdint,66
INT_FAST64_MIN
avr_stdint,67
int_fast64 t
avr_stdint,71
INT_FAST8_MAX

avr_stdint,67
INT_FAST8_MIN
avr_stdint,67
int_fast8 t
avr_stdint,71
INT_LEAST16_MAX
avr_stdint,67
INT_LEAST16_MIN
avr_stdint,67
int_least16 t
avr_stdint,71
INT_LEAST32_MAX
avr_stdint,67
INT_LEAST32_MIN
avr_stdint,67
int_least32_t
avr_stdint,71
INT_LEAST64_MAX
avr_stdint,67
INT_LEAST64_MIN
avr_stdint,67
int_least64 t
avr_stdint,71
INT_LEAST8_MAX
avr_stdint,67
INT_LEAST8_MIN
avr_stdint,67
int_least8 t
avr_stdint,71
INTERRUPT
deprecated_item88
INTMAX_C
avr_stdint,68
INTMAX_MAX
avr_stdint,68
INTMAX_MIN
avr_stdint,68
intmax_t
avr_stdint,71
INTPTR_MAX
avr_stdint,68
INTPTR_MIN
avr_stdint,68
intptr_t
avr_stdint,71
isalnum

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

INDEX 247
ctype,40 avr_math58

isalpha longjmp
ctype,40 setjmp,60

isascii loop_until_bit_is_clear
ctype,41 avr_sfr,127

isblank loop_until_bit_is_set
ctype,41 avr_sfr,127

iscntrl ltoa
ctype,41 avr_stdlib,96

isdigit
ctype,41 M_PI

isgraph avr_mathp6
ctype,41 M_SQRT2

isinf avr_mathp6
avr_mathp8 malloc

islower avr_stdlib,96
ctype,41 memccpy

isnan avr_string,103
avr_math58 memchr

isprint avr_string,104
ctype,41 memcmp

ispunct avr_string,104
ctype,41 memcpy

ISR avr_string,104
avr_interrupts123 memcpy_P

isspace avr_pgmspace4
ctype,41 memmove

isupper avr_string,105
ctype,41 memset

isxdigit avr_string,105
ctype,42 modf

itoa avr_mathb58
avr_stdlib,95

outp

labs deprecated_item88
avr_stdlib,96) .

Idexp parity_even_bit
avr math58 Ut||_par|ty,116

ldiv PGM_P
avr_stdlib,96 avr_pgmspace;0

div_t, 162 pgm_read_byte
quot, 162 avr_pgmspace;0
rem.162 pgm_read_byte_far

log ' avr_pgmspacel
avr math58 pgm_read_byte near

log10 - avr_pgmspacel

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

INDEX

248

pgm_read_dword
avr_pgmspacel
pgm_read_dword_far
avr_pgmspacel
pgm_read_dword_near
avr_pgmspacel
pgm_read_word
avr_pgmspace2
pgm_read_word_far
avr_pgmspace2
pgm_read_word_near
avr_pgmspace2
PGM_VOID_P
avr_pgmspace2
pow
avr_math58
PRId16
avr_inttypes46
PRId32
avr_inttypes46
PRId8
avr_inttypes46
PRIDFAST16
avr_inttypes46
PRIJFAST32
avr_inttypes46
PRIJFAST8
avr_inttypes46
PRIILEAST16
avr_inttypes47
PRIJLEAST32
avr_inttypes47
PRIJLEASTS
avr_inttypes47
PRIDPTR
avr_inttypes47
PRIi16
avr_inttypes47
PRIi32
avr_inttypes47
PRIi8
avr_inttypes47
PRIIFAST16
avr_inttypesa7
PRIIFAST32
avr_inttypes47

PRIIFAST8
avr_inttypes47
PRIILEAST16
avr_inttypes47
PRIILEAST32
avr_inttypes48
PRIILEASTS
avr_inttypes48
PRIIPTR
avr_inttypes48
printf
avr_stdio83
printf_P
avr_stdio84
PRIo16
avr_inttypes48
PRI032
avr_inttypes48
PRI0o8
avr_inttypes48
PRIOFAST16
avr_inttypes48
PRIOFAST32
avr_inttypes48
PRIOFAST8
avr_inttypes48
PRIOLEAST16
avr_inttypes48
PRIOLEAST32
avr_inttypes48
PRIOLEASTS
avr_inttypes49
PRIOPTR
avr_inttypes49
PRIul16
avr_inttypes49
PRIu32
avr_inttypes49
PRIu8
avr_inttypes49
PRIUFAST16
avr_inttypes49
PRIUFAST32
avr_inttypes49
PRIUFAST8
avr_inttypes49

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

INDEX

249

PRIULEAST16
avr_inttypes49
PRIULEAST32
avr_inttypes49
PRIULEASTS
avr_inttypes49
PRIUPTR
avr_inttypes50
PRIX16
avr_inttypes50
PRIX16
avr_inttypess0
PRIX32
avr_inttypess0
PRIx32
avr_inttypesp0
PRIX8
avr_inttypes50
PRIx8
avr_inttypes50
PRIXFAST16
avr_inttypess0
PRIXFAST16
avr_inttypes50
PRIXFAST32
avr_inttypes50
PRIXFAST32
avr_inttypess0
PRIXFAST8
avr_inttypespl
PRIXFAST8
avr_inttypespl
PRIXLEAST16
avr_inttypesbl
PRIXLEAST16
avr_inttypes51
PRIXLEAST32
avr_inttypesb1
PRIXLEAST32
avr_inttypesbl
PRIXLEASTS
avr_inttypesb51
PRIXLEASTS
avr_inttypesbs1
PRIXPTR
avr_inttypespl

PRIXPTR
avr_inttypesb1
prog_char
avr_pgmspace3
prog_intl6 t
avr_pgmspace3
prog_int32_t
avr_pgmspace3
prog_int64_t
avr_pgmspace3
prog_int8 t
avr_pgmspace3
prog_uchar
avr_pgmspace3
prog_uintl6_t
avr_pgmspace3
prog_uint32_t
avr_pgmspace3
prog_uint64_t
avr_pgmspace3
prog_uint8 t
avr_pgmspace3
prog_void
avr_pgmspace3
PROGMEM
avr_pgmspace2
PSTR
avr_pgmspace2
PTRDIFF_MAX
avr_stdint,68
PTRDIFF_MIN
avr_stdint,68
putc
avr_stdio80
putchar
avr_stdio80
puts
avr_stdio 84
puts_P
avr_stdio 84

gsort
avr_stdlib,97
quot
div_t, 162
Idiv_t, 162

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

INDEX 250
rand SCNILEAST16
avr_stdlib,97 avr_inttypesb2
RAND_MAX SCNILEAST32
avr_stdlib,93 avr_inttypes53
rand_r SCNIiPTR
avr_stdlib,97 avr_inttypesp3
random SCNo16
avr_stdlib,97 avr_inttypesp3
RANDOM_MAX SCNo32
avr_stdlib,93 avr_inttypesp3
random_r SCNOFAST16
avr_stdlib,98 avr_inttypesb3
realloc SCNOFAST32
avr_stdlib,98 avr_inttypesp3
rem SCNoOLEAST16
div_t, 162 avr_inttypesb3
Idiv_t, 162 SCNOLEAST32
avr_inttypess3
sbi SCNoPTR
deprecated_item89 avr_inttypes53
scanf SCNulé
avr_stdio84 avr_inttypesp3
scanf P SCNu32
avr_stdio84 avr_inttypes53
SCNd16 SCNuUFAST16
avr_inttypespl avr_inttypesp4
SCNd32 SCNuUFAST32
avr_inttypes52 avr_inttypesb4
SCNdFAST16 SCNULEAST16
avr_inttypes52 avr_inttypesb4
SCNdJFAST32 SCNULEAST32
avr_inttypess2 avr_inttypesb4
SCNdLEAST16 SCNuUPTR
avr_inttypes52 avr_inttypess4
SCNdLEAST32 SCNx16
avr_inttypes52 avr_inttypesb4
SCNdPTR SCNx32
avr_inttypes52 avr_inttypesp4
SCNil6 SCNxFAST16
avr_inttypes52 avr_inttypess4
SCNi32 SCNxFAST32
avr_inttypesp2 avr_inttypesp4
SCNIFAST16 SCNXLEAST16
avr_inttypes52 avr_inttypesb4
SCNIFAST32 SCNXLEAST32

avr_inttypesp2

avr_inttypesb4

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

INDEX 251
SCNxPTR avr_stdio 84

avr_inttypesb5 sqrt
set_sleep_mode avr_math59

avr_sleep31l square
setjmp avr_mathp9

longjmp,60 srand

setjmp,61 avr_stdlib,98
SIG_ATOMIC_MAX srandom

avr_stdint,68 avr_stdlib,98
SIG_ATOMIC_MIN sscanf

avr_stdint,68 avr_stdio84
SIGNAL sscanf P

avr_interrupts124 avr_stdio,85
sin stderr

avr_math59 avr_stdio80
sinh stdin

avr_mathp9 avr_stdio 80
SIZE_MAX stdout

avr_stdint,68 avr_stdio80
sleep_cpu strcasecmp

avr_sleep31l avr_string,105
sleep_disable strcasecmp_P

avr_sleep31l avr_pgmspace4
sleep_enable strcat

avr_sleep31 avr_string,105
sleep_mode strcat_P

avr_sleep31l avr_pgmspace4
SLEEP_MODE_ADC strchr

avr_sleep30 avr_string,105
SLEEP_MODE_EXT_STANDBY strcmp

avr_sleep30 avr_string,106
SLEEP_MODE_IDLE strcmp_P

avr_sleep30 avr_pgmspace4
SLEEP_MODE_PWR_DOWN strepy

avr_sleep30 avr_string,106
SLEEP_MODE_PWR_SAVE strcpy_P

avr_sleep30 avr_pgmspaces
SLEEP_MODE_STANDBY strlcat

avr_sleep31 avr_string,106
snprintf stricat_P

avr_stdio,84 avr_pgmspace5
snprintf_P stricpy

avr_stdio,84 avr_string,107
sprintf stricpy_P

avr_stdio84 avr_pgmspaces
sprintf_P strlen

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

INDEX

252

avr_string,107
strlen_P

avr_pgmspace5
striwr

avr_string,107
strncasecmp

avr_string,107
strncasecmp_P

avr_pgmspace,6
strncat

avr_string,108
strncat_P

avr_pgmspace6
strncmp

avr_string,108
strncmp_P

avr_pgmspace6
strncpy

avr_string,108
strncpy_P

avr_pgmspace6
strnlen

avr_string,109
strnlen_P

avr_pgmspace,7
strrchr

avr_string,109
strrev

avr_string,109
strsep

avr_string,109
strstr

avr_string,110
strstr_P

avr_pgmspace7
strtod

avr_stdlib,98
strtok_r

avr_string,110
strtol

avr_stdlib,99
strtoul

avr_stdlib,99
strupr

avr_string,110
supported device®,

tan
avr_math59
tanh
avr_mathp9
timer_enable_int
deprecated_item89
toascii
ctype,42
tolower
ctype,42
tools, optional218
tools, required217
toupper
ctype,42
TW_BUS_ERROR
util_twi, 118
TW_MR_ARB_LOST
util_twi, 118
TW_MR_DATA_ACK
util_twi, 118
TW_MR_DATA_NACK
util_twi, 118
TW_MR_SLA_ACK
util_twi, 118
TW_MR_SLA_NACK
util_twi, 118
TW_MT_ARB_LOST
util_twi, 118
TW_MT_DATA_ACK
util_twi, 118
TW_MT_DATA_NACK
util_twi, 118
TW_MT_SLA_ACK
util_twi, 119
TW_MT_SLA_NACK
util_twi, 119
TW_NO_INFO
util_twi, 119
TW_READ
util_twi, 119
TW_REP_START
util_twi, 119
TW_SR_ARB_LOST_GCALL_ACK
util_twi, 119
TW_SR_ARB_LOST_SLA ACK
util_twi, 119

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

INDEX

253

TW_SR_DATA_ACK
util_twi, 119
TW_SR_DATA_NACK
util_twi, 119
TW_SR_GCALL_ACK
util_twi, 119

TW_SR_GCALL_DATA_ACK

util_twi, 119

TW_SR_GCALL_DATA_NACK

util_twi, 120
TW_SR_SLA_ACK

util_twi, 120
TW_SR_STOP

util_twi, 120

TW_ST_ARB_LOST_SLA_ACK

util_twi, 120
TW_ST_DATA_ACK
util_twi, 120
TW_ST_DATA_NACK
util_twi, 120
TW_ST_LAST_DATA
util_twi, 120

TW_ST_SLA ACK
util_twi, 120
TW_START
util_twi, 120
TW_STATUS
util_twi, 120
TW_STATUS_MASK
util_twi, 120
TW_WRITE
util_twi, 121

UINT16_C
avr_stdint,68
UINT16_MAX
avr_stdint,69
uintl6_t
avr_stdint,71
UINT32_C
avr_stdint,69
UINT32_MAX
avr_stdint,69
uint32_t
avr_stdint,72
UINT64_C

avr_stdint,69
UINT64_MAX
avr_stdint,69
uinté4 _t
avr_stdint,72
UINT8_C
avr_stdint,69
UINT8_MAX
avr_stdint,69
uint8_t
avr_stdint,72
uint_farptr_t
avr_inttypess5
UINT_FAST16_MAX
avr_stdint,69
uint_fastl6 _t
avr_stdint,72
UINT_FAST32_MAX
avr_stdint,69
uint_fast32 t
avr_stdint,72
UINT_FAST64_MAX
avr_stdint,69
uint_fast64 t
avr_stdint,72
UINT_FAST8 MAX
avr_stdint,69
uint_fast8_t
avr_stdint,72
UINT_LEAST16_MAX
avr_stdint,70
uint_least16 t
avr_stdint,72
UINT_LEAST32_MAX
avr_stdint,70
uint_least32_t
avr_stdint,72
UINT_LEAST64_MAX
avr_stdint,70
uint_least64 t
avr_stdint,72
UINT_LEAST8 _MAX
avr_stdint,70
uint_least8 t
avr_stdint,72
UINTMAX_C

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

INDEX

254

avr_stdint,70
UINTMAX_MAX
avr_stdint,70
uintmax_t
avr_stdint,73
UINTPTR_MAX
avr_stdint,70
uintptr_t
avr_stdint,73
ultoa
avr_stdlib,100
ungetc
avr_stdio85
Using the standard 10 facilitied 49
util_crc
_crcl6_updatel12
_crc_ccitt_updatel 12
_crc_ibutton_update,13
_crc_xmodem_updaté&]13
util_delay
_delay_loop_1115
_delay _loop_2115
_delay_ms115
_delay usl116
util_parity
parity_even_bit116
util_twi
TW_BUS_ERROR]118
TW_MR_ARB_LOST,118
TW_MR_DATA ACK, 118
TW_MR_DATA NACK, 118
TW_MR_SLA_ACK,118
TW_MR_SLA_NACK, 118
TW_MT_ARB_LOST,118
TW_MT_DATA_ACK, 118
TW_MT_DATA NACK, 118
TW_MT_SLA_ACK, 119
TW_MT_SLA_NACK, 119
TW_NO_INFO,119
TW_READ, 119
TW_REP_START119

TW_SR_ARB_LOST_GCALL_-

ACK, 119

TW_SR_ARB_LOST_SLA -
ACK, 119

TW_SR_DATA_ACK,119

utoa

TW_SR_DATA_NACK,119
TW_SR_GCALL_ACK,119
TW_SR_GCALL_DATA_ACK,
119
TW_SR_GCALL_DATA_-
NACK, 120
TW_SR_SLA_ACK,120
TW_SR_STOP120
TW_ST_ARB_LOST SLA -
ACK, 120
TW_ST_DATA_ACK, 120
TW_ST_DATA_NACK, 120
TW_ST_LAST_DATA,120
TW_ST_SLA_ACK,120
TW_START,120
TW_STATUS,120
TW_STATUS_MASK,120
TW_WRITE, 121

avr_stdlib,100

viprintf

avr_stdio85

vfprintf_P

avr_stdio88

vfscanf

avr_stdio88

vfscanf_P

avr_stdio90

vprintf

avr_stdio 90

vscanf

avr_stdio 90

vsnprintf

avr_stdio91

vsnprintf_P

avr_stdio91

vsprintf

avr_stdio91

vsprintf_P

avr_stdio91

wdt_disable

avr_watchdog34

wdt_enable

avr_watchdog34

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

INDEX

255

wdt_reset
avr_watchdog35
WDTO_120MS
avr_watchdog35
WDTO_15MS
avr_watchdog35
WDTO_1S
avr_watchdog35
WDTO_250MS
avr_watchdog35
WDTO_2S
avr_watchdog35
WDTO_30MS
avr_watchdog35
WDTO_4S
avr_watchdog36
WDTO_500MS
avr_watchdog36
WDTO_60MS
avr_watchdog36
WDTO_8S
avr_watchdog36

Generated on Fri Oct 27 22:37:24 2006 for avr-libc by Doxygen

	AVR Libc
	Introduction
	General information about this library
	Supported Devices

	avr-libc Module Index
	avr-libc Modules

	avr-libc Data Structure Index
	avr-libc Data Structures

	avr-libc Page Index
	avr-libc Related Pages

	avr-libc Module Documentation
	<assert.h>: Diagnostics
	Detailed Description
	Define Documentation

	<avr/boot.h>: Bootloader Support Utilities
	Detailed Description
	Define Documentation

	<avr/eeprom.h>: EEPROM handling
	Detailed Description
	Define Documentation
	Function Documentation

	<avr/io.h>: AVR device-specific IO definitions
	<avr/pgmspace.h>: Program Space String Utilities
	Detailed Description
	Define Documentation
	Typedef Documentation
	Function Documentation

	Additional notes from <avr/sfr_defs.h>
	<avr/sleep.h>: Power Management and Sleep Modes
	Detailed Description
	Define Documentation
	Function Documentation

	<avr/version.h>: avr-libc version macros
	Detailed Description
	Define Documentation

	<avr/wdt.h>: Watchdog timer handling
	Detailed Description
	Define Documentation

	<compat/deprecated.h>: Deprecated items
	Detailed Description
	Define Documentation
	Function Documentation

	<compat/ina90.h>: Compatibility with IAR EWB 3.x
	<ctype.h>: Character Operations
	Detailed Description
	Function Documentation

	<errno.h>: System Errors
	Detailed Description
	Define Documentation

	<inttypes.h>: Integer Type conversions
	Detailed Description
	Define Documentation
	Typedef Documentation

	<math.h>: Mathematics
	Detailed Description
	Define Documentation
	Function Documentation

	<setjmp.h>: Non-local goto
	Detailed Description
	Function Documentation

	<stdint.h>: Standard Integer Types
	Detailed Description
	Define Documentation
	Typedef Documentation

	<stdio.h>: Standard IO facilities
	Detailed Description
	Define Documentation
	Function Documentation

	<stdlib.h>: General utilities
	Detailed Description
	Define Documentation
	Typedef Documentation
	Function Documentation
	Variable Documentation

	<string.h>: Strings
	Detailed Description
	Define Documentation
	Function Documentation

	<util/crc16.h>: CRC Computations
	Detailed Description
	Function Documentation

	<util/delay.h>: Busy-wait delay loops
	Detailed Description
	Function Documentation

	<util/parity.h>: Parity bit generation
	Detailed Description
	Define Documentation

	<util/twi.h>: TWI bit mask definitions
	Detailed Description
	Define Documentation

	<avr/interrupt.h>: Interrupts
	Detailed Description
	Define Documentation

	<avr/sfr_defs.h>: Special function registers
	Detailed Description
	Define Documentation

	Demo projects
	Detailed Description

	A simple project
	The Project
	The Source Code
	Compiling and Linking
	Examining the Object File
	Linker Map Files
	Generating Intel Hex Files
	Letting Make Build the Project
	Reference to the source code

	A more sophisticated project
	Hardware setup
	Functional overview
	A code walkthrough
	The source code

	Using the standard IO facilities
	Hardware setup
	Functional overview
	A code walkthrough
	The source code

	Example using the two-wire interface (TWI)
	Introduction into TWI
	The TWI example project
	The Source Code

	avr-libc Data Structure Documentation
	div_t Struct Reference
	Detailed Description
	Field Documentation

	ldiv_t Struct Reference
	Detailed Description
	Field Documentation

	avr-libc Page Documentation
	Acknowledgments
	avr-libc and assembler programs
	Introduction
	Invoking the compiler
	Example program
	Pseudo-ops and operators

	Frequently Asked Questions
	FAQ Index
	My program doesn't recognize a variable updated within an interrupt routine
	I get `¨undefined reference to...`¨ for functions like `¨sin()`¨
	How to permanently bind a variable to a register?
	How to modify MCUCR or WDTCR early?
	What is all this _BV() stuff about?
	Can I use C++ on the AVR?
	Shouldn't I initialize all my variables?
	Why do some 16-bit timer registers sometimes get trashed?
	How do I use a #define'd constant in an asm statement?
	Why does the PC randomly jump around when single-stepping through my program in avr-gdb?
	How do I trace an assembler file in avr-gdb?
	How do I pass an IO port as a parameter to a function?
	What registers are used by the C compiler?
	How do I put an array of strings completely in ROM?
	How to use external RAM?
	Which -O flag to use?
	How do I relocate code to a fixed address?
	My UART is generating nonsense! My ATmega128 keeps crashing! Port F is completely broken!
	Why do all my `¨foo...bar`¨ strings eat up the SRAM?
	Why does the compiler compile an 8-bit operation that uses bitwise operators into a 16-bit operation in assembly?
	How to detect RAM memory and variable overlap problems?
	Is it really impossible to program the ATtinyXX in C?
	What is this `¨clock skew detected`¨ messsage?
	Why are (many) interrupt flags cleared by writing a logical 1?
	Why have `¨programmed`¨ fuses the bit value 0?
	Which AVR-specific assembler operators are available?

	Inline Asm
	GCC asm Statement
	Assembler Code
	Input and Output Operands
	Clobbers
	Assembler Macros
	C Stub Functions
	C Names Used in Assembler Code
	Links

	Using malloc()
	Introduction
	Internal vs. external RAM
	Tunables for malloc()
	Implementation details

	Release Numbering and Methodology
	Release Version Numbering Scheme
	Releasing AVR Libc

	Memory Sections
	The .text Section
	The .data Section
	The .bss Section
	The .eeprom Section
	The .noinit Section
	The .initN Sections
	The .finiN Sections
	Using Sections in Assembler Code
	Using Sections in C Code

	Installing the GNU Tool Chain
	Required Tools
	Optional Tools
	GNU Binutils for the AVR target
	GCC for the AVR target
	AVR Libc
	UISP
	Avrdude
	GDB for the AVR target
	Simulavr
	AVaRice

	Using the avrdude program
	Using the GNU tools
	Options for the C compiler avr-gcc
	Options for the assembler avr-as
	Controlling the linker avr-ld

	Todo List
	Deprecated List

