Relational Implementation of
EMdF and MQL

Ulrik Petersen

March 11, 2006

Copyright (C) 2001-2005 Ulrik Petersen
This documentis made available under the Creative Commutnbution-
Sharealike license version 2.5.

See

http://creati vecommons.org/licenses/ by-sa/ 2.5/

for what that means.

Please visit the Emdros website for the latest news and dawlst

http://endros. org

Abstract

In this report, | document some of my ideas on implementikrgEMdF model in an RDBMS.
The emphasis is on showing how the data domains of the EMdEehtad be implemented in
tables, using SQL2. It documents Emdros version 1.2.052el

In chapter 1, | give some preliminaries, including convensi used in this document. In
chapter 2, | show how to implement the meta-data of the EMd&ahio an RDBMS. In chapter
3, I show how to implement the objects in the EMdF model. Inptéa4, | show the way in
which all of the commands of the full MQL access languagediate into SQL statements.

Contents

1 Preliminaries 6
1.1 Introduction 6
1.2 Assumptions on the implementation 6

1.2.1 Thethreesequencesofids 6
1.2.2 Allnames are storedaslower-case 7
1.3 Conventionsused e 7

2 Meta-data 8
2.1 Introduction 8
2.2 schema_Vversion e 9

221 SQLtemplate 9
2.2.2 Explanation 9
223 Example 9
2.3 sequence_0,sequence_l,andsequence 2 9
231 SQLtemplate 9
2.3.2 Explanation 9
233 Example 10
2.4 enumerationS e 10
241 SQLtemplate 10
242 Explanation 10
243 Example 11
2.5 enumeration_constantso e 11
251 SQLtemplate 11
2.5.2 Explanation 11
253 Example 11
2.6 object types e 13
26.1 SQLtemplate 13
2.6.2 Explanation 13
2.6.3 Example 13
2.7 features 31
271 SQLtemplate 13
2.7.2 Explanation 14
2.7.3 Example 15

CONTENTS 2

2.8 MIN_M e e e e 15
28.1 SQLtemplate 15
2.8.2 Explanation 15
2.8.3 Example 16

29 MaxX_M e 16
29.1 SQLtemplate 16
2.9.2 Explanation 16
2.9.3 Example e 16

2.10 monadsets e 71
2.10.1 SQLtemplate 17
2.10.2 Explanation
2.10.3 Example 17

3 Object_dm data 18

3.1 Introduction L e 18

3.2 OT_objects e 91
3.21 SQLtemplate 19
3.2.2 Explanation 19
3.2.3 Example 20

3.3 Monadsetencoding 21

3.4 OT_mdf FEATURE_NAME set. 21
34.1 SQLtemplate 21
3.4.2 Explanation e 22
3.4.3 Example e 22

4 Implementing the MQL commands 24

4.1 Introduction e e 24

4.2 Database manipulation o . 24
421 CREATEDATABASE e 24
422 USEDATABASE e 26
423 DROPDATABASE e 27

4.3 Objecttype manipulation 28
4.3.1 CREATEOBJECTTYPE 28
4.3.2 UPDATEOBJECTTYPE 30
4.3.3 DROPOBJECTTYPE it 31

4.4 Enumeration manipulation L e 32
441 CREATEENUMERATION 32
4.42 UPDATE ENUMERATION 33
443 DROPENUMERATION e 35

4.5 Segmentmanipulation e 36
451 CREATESEGMENT i 36

4.6 QUEIYING o e e e 37

4.6.1 SELECTOBJECTS 37

CONTENTS 3
4.6.2 SELECTOBJECTSAT e 38
46.3 SELECTOBJECTTYPES 38
4.6.4 SELECTFEATURES 39
4.6.5 SELECTENUMERATIONS. 40
4.6.6 SELECT ENUMERATION CONSTANTS 40
4.6.7 SELECT OBJECT TYPES USING ENUMERATION 41

4.7 Objectmanipulation. 42
471 CREATEOBJECTFROMMONADS 42
47.2 CREATEOBJECTFROMID DS 43
4.7.3 CREATE OBJECT FROM (focus |all|) QUERY 44
474 UPDATEOBJECTSBYMONADS 45
475 UPDATEOBJECTSBYID DS 46
4.7.6 UPDATE OBJECTS BY (focus|all|)QUERY 47
4.7.7 DELETEOBJECTSBYMONADS 48
47.8 DELETEOBJECTSBYID DS 48
4.7.9 DELETE OBJECTSBY (focus|all|)QUERY 49

4.8 Feature manipulation e 50
48.1 GETFEATURES e 50

A Copying this document 51

Al Introduction L 51

A.2 Creative Commons Deed (for all documentation) 51

List of Tables

2.1 enumeration_constantsexample 12
2.2 Bit-setflags for object_typestable 13
2.3 Bit-set flags for object_typestable 13
2.4 object_typesexample 14
2.5 Feature type ids for standard atomictypes 15
2.6 Feature type flags for standard atomictypes 15
2.7 Examples of features. Note how the feature_type_idhHeasgdlue of 1 for strings
(seetable 2.5). 6 1
2.8 Exampleofmin_m 6 1
29 Exampleofmin_m 71
3.1 SQL types correspondingto EMdFtypes. 20
3.2 Example of OT_Objects (Phrase Objects) 20

List of Figures

Chapter 1

Preliminaries

1.1 Introduction

In this report, it is my aim to succinctly describe most of nagas on how to implement the
EMdF model in a Relational Database Management Systeng assubset of SQL2.
The data is split into two neatly segregated kinds of data:

e meta-data and

e Object_dm data.

The meta-data maintains information about object typesmeamations, and sequences of ids.
The object_dm data is made on a per-object type basis. Tinetste of this report reflects this
segregation: chapter 2 deals with meta-data, whereasesttageals with object_dm data.
Chapter 4 details how to implement all of the MQL statemestsgiSQL2.
In this chapter, | give some preliminaries.

1.2 Assumptions on the implementation

1.2.1 The three sequences of ids

Three sequences of ids are assumed to exist in each EMdFadatabne sequence for assigning
object id_ds, one sequence for assigning type ids (obje& kys, enumeration type ids, and
feature type ids), and one for everything else (see secti®n 2

When autogenerating an id from a given sequence, we readuth®er of the relevant se-
guence from this table, and update the tuple with this valug gne, ready for next time we need
an autogenerated id.

CHAPTER 1. PRELIMINARIES 7

1.2.2 All names are stored as lower-case

The names of all object types, enumerations, and featueestared as all-lower-case. This
makes it easy to search for them later. However, enumerabostants are case-sensitive, so
they are not stored lower-case.

1.3 Conventions used

| employ a number of conventions in this document:

1.

Throughout, the shorthand “OT” is used to mean “Objectelyphis is especially impor-
tantin SQL templates.

When referring to tables in the text, the tables are in tbdem typeface, and are enclosed
in “double quotes.”

When referring to table attributes in the text, the attiés are in the typewriter typeface,
and are enclosed irdbubl e quot es”

In SQL code, anything enclosed in { curly braces } is meartd replaced with a value de-
scribed within the curly braces. E.g., “SET is_true = { 0 | Infeans that, when executing
the SQL code, the value used to ses" t r ue” must be either “0” or “1”.

Throughout, examples of table data are given. Where glgwgolved, the ids are meant to
be consistent throughout this document, so that you shau#bke to follow the references
to the right tuples.

Chapter 2

Meta-data

2.1 Introduction

This chapter, | detail all of the tables necessary for maimg the meta-data in the EMdF
database. For each table, | write on three subjects:

1. An SQL template for creating the table,
2. An explanation, including a rationale, and

3. An example, to show the theory in practice.
The following tables are needed for storing meta-data:

e schema_version
e sequence_0

e sequence_1

e sequence_2

e enumerations

e enumeration_constants
e Object _types

o features

e Min_m

e max_m

e monad_sets

e OT_objects
These will be described in turn below.

CHAPTER 2. META-DATA 9

2.2 schema_ version

2.2.1 SQL template

CREATE TABLE schena_version (
dummy_id | NTEGER PRI MARY KEY NOT NULL,
schenma_version | NT NOT NULL

)

2.2.2 Explanation

This table contains, in numerical form, the version of thieesna in use. The values are defined
in emdf.h in the sources. This was added in version 1.2.8%r€he dummy _id is always 0, and
there is always exactly one row in the table.

2.2.3 Example

The table looks like this:
| dummy_id| schema_versioh
.0 | 5 |

2.3 sequence_ 0, sequence_1, and sequence_2

2.3.1 SQL template

CREATE TABLE sequence_0 (
sequence_id I NTEGER PRI MARY KEY NOT NULL,
sequence_val ue I NT NOT NULL

);

CREATE TABLE sequence_1 (
sequence_i d | NTEGER PRI MARY KEY NOT NULL,
sequence_val ue I NT NOT NULL

);

CREATE TABLE sequence_ 2 (
sequence_i d | NTEGER PRI MARY KEY NOT NULL,
sequence_val ue I NT NOT NULL

);

2.3.2 Explanation

These tables are for maintaining information on the thregieeces of ids that must exist in an
EMdF database. See section 1.2.1 for background informatio

CHAPTER 2. META-DATA 10

The “sequence_i d” attribute is meant to take on one of the following two values

| Value | C/C++ preprocessor #DEFINE Meaning

0 SEQUENCE_OBJECT_ID D$The sequence is for object id_ds

1 SEQUENCE_TYPE_IDS The sequence for object type ids, enumeration type ids, eaid
2 SEQUENCE_OTHER_IDS The sequence is for all other ids

The “sequence_val ue” attribute then lists the value of the next id to be taken foatt
sequence.

All three must be initialized to 1. However, when drawingfréisEQUENCE_TYPE_IDs,
the actual value will be shift-lefted SEQUENCE_TYPE_IDKBE_LOWER_BITS. This is
currently 16, meaning that the seugence can in reality onhag far as 2715 (32768) before
wrapping around into negative numbers.

NOTE: This may be implemented differently for each backend.

2.3.3 Example

The tables should look like this right after initializatiohthe database:

| sequence_id sequence_valug
. 0 | 1 |
| sequence_id sequence_valug
. 1] 1 |
| sequence_id sequence_valug
L2] 1 |

2.4 enumerations

2.4.1 SQL template

CREATE TABLE enunerations (
enum.i d | NTEGER PRI MARY KEY NOT NULL,
enum nane VARCHAR(255) NOT NULL

);

2.4.2 Explanation

This table is the master table for the data domain of enumnoastlt lists, for each enumeration in
the database, its enum_id and its human-readable nameh&rable, “enumeration_constants,”
then lists all of the constants for each enumeration type.
The “enum_i d” attribute is taken from the “sequence_1" table, i.e., fiiva SEQUENCE_TYPE_IDS
sequence.
The “enum_nane” attribute is what the user entered when creating the enatoer.

CHAPTER 2. META-DATA 11

2.4.3 Example

As an example, the following enumerations might be defined:

| enum_id| enum_name |
65536 | phrase_type t
131072 | part_of_speech_|t
983040 | clause_type t

2.5 enumeration_constants

2.5.1 SQL template

CREATE TABLE enunerati on_constants (
enum i d | NT NOT NULL,
enum val ue_name VARCHAR(255) NOT NULL,
val ue I NT NOT NULL,
Is_default CHAR(1) NOT NULL,
PRI MARY KEY (enum.i d, enum val ue_nane)

);

2.5.2 Explanation

This table lists, for each enumeration specified in the taat@merations,” data pertaining to all
of the constants in the enumeration:

e The enum_id (see below).
e The human-readable name of the constaah(fm val ue_nane”),
e The value itself (val ue”), and

¢ A boolean specifying whether this is the default or notg* def aul t 7). The only valid
values for this attribute are 'Y’ and 'N’.

The enum_ids are drawn from SEQUENCE_TYPE_IDS, but of aoahsft-lefted as explained
in Section 2.3 which starts on page 9.

2.5.3 Example

For the two enumerations defined in the previous sectioryahees in table 2.1 might be defined.

CHAPTER 2. META-DATA

| enum_id| enum_value_namg value| default_value|

65536 | ptNotAppliccable -1 Y’
65536 | VP 1 "N’
65536 | NP 2 "N’
65536 | NPpers 3 ‘N’
131072 | pspNotAppliccable] -1 Y’
131072 | psp_article 0 "N’
131072 | psp_verb 1 ‘N’
131072 | psp_noun 2 ‘N’
131072 | psp_proper_noun 3 ‘N’
131072 | psp_adverb 4 ‘N’
196608 | prsNotAppliccable| -1 Y’
196608 | prs_singular 1 "N’
196608 | prs_dual 2 ‘N’
196608 | prs_plural 3 ‘N’
262144 | gndNotAppliccable -1 Y’
262144 | gnd_masculine 1 "N’
262144 | gnd_feminine 2 "N’
983040 | ct_Way0 1 "N’
983040 | ct_Xaqtl 2 "N’

Table 2.1: enumeration_constants example

CHAPTER 2. META-DATA 13

| #define | value | meaning

OT_RANGE_MASK 0x00000007 Bit-mask for these values

OT_WITH_MULTIPLE_RANGE_OBJECTS 0x00000000 Object type has multiple-range obje¢

OT_WITH_SINGLE_RANGE_OBJECTS | 0x00000001] Object type has single-range objects

OT_WITH_SINGLE_MONAD_OBJECTS | 0x00000002 Object type has single-monad object

Table 2.2: Bit-set flags for object_types table

S

| #define | value | meaning
OT_MONAD_UNIQUENESS_MASK 0x00000078 Bit-mask for these values
OT_WITHOUT_UNIQUE_MONADS 0x00000000 Monads may not be unique
OT_HAVING_UNIQUE_FIRST_MONADS 0x00000008 All first monads are unique
OT_HAVING_UNIQUE_FIRST_AND LAST _MONADS 0x00000010 All first and last monads are unic

Table 2.3: Bit-set flags for object_types table

2.6 object_types

2.6.1 SQL template

CREATE TABLE obj ect _types (
obj ect _type_id | NTEGER PRI MARY KEY NOT NULL,
obj ect _type_nane VARCHAR(255) NOT NULL,
obj ect _type flags | NT NOT NULL

);
2.6.2 Explanation

This table is the master table for object types. It storeseéxh object type, its id, its human-
readable name, and an “INT”-encoded set of integers of flalys.id is autogenerated, upon cre-
ation of the object type, from the “sequence_1" table, using the “SEQUENCES_TYPE_IDS”

sequence. The flags are taken from Tables 2.2 and 2.3. Ndtthéhflags in Table 2.2 are not
bitfield flags, but form a three-bit integer. The same is tslie flags in Table 2.3.

2.6.3 Example

Table 2.4 shows some sample object types.

2.7 features

2.7.1 SQL template
CREATE TABLE features (

CHAPTER 2. META-DATA 14

| type_id | type_namg object_type_flag$
327680 | Word 0x00000001
851968 | Phrase 0x0
1048576| Clause 0x0

Table 2.4: object_types example

object _type_id I NT NOT NULL,

f eat ure_nanme VARCHAR(255) NOT NULL,
feature type_id I NT NOT NULL,

defaul t _val ue VARCHAR(1000) NOT NULL,
conmput ed CHAR(1) NOT NULL DEFAULT 'N,

PRI MARY KEY (object_type_id, feature_nane)

)

2.7.2 Explanation

This table is analogous to the “enumeration_constant$étdblists, for each feature:

The object type id denoting the object type with which feature is associateddbj ect _type_i d”),

The feature name in human-readable forfref@t ur e_nane”),

1.
2.
3. Afeature typeid (feat ure_t ype_i d”). More on this in a moment,
4. A string representing the default valuel€f aul t _val ue”), and

5.

A one-CHAR boolean indicating whether the feature is coteg ('Y’) or stored ('N’)
(“comput ed”).

The attribute bbj ect _t ype_i d” references thedbj ect _t ype_i d” attribute of the “ob-

ject_types” table.
The attribute f eat ur e_t ype_i d” can take on values from the following two sources:

1. For standard atomic types, the value will be compositeitwibe OR of one of the values
described in table 2.5 and possibly one of the values destitbtable 2.6. Note that of the
standard atomic types, only INTEGER and ID_D can have thelTkBRE_ TYPE_LIST_OF

bit set.

2. For enumerations, the value will be any value from teetm i d” attribute of the “enu-
merations” table, possibly with the FEATURE_TYPE_LIST_OiFset.

CHAPTER 2. META-DATA 15

Only FEATURE_TYPE_STRING and FEATURE_TYPE_ASCII can htheeFEATURE_TYPE_AS_SET
bit set. If set, there is an additional table, OT_mdf FEATRJRIAME_set (described in Sec-
tion 3.4 on page 21), which holds the strings as well as an.idTlden this id_d is used in
OT_objects in lieu of the string. This is more compact, ang gige a speed increase.

Only the standard atomic types (not enumerations) may heEATURE_TYPE_WITH_INDEX
bit set. If set, the EMdF layer will put an index on the featuFbe index may be dropped again
with the DROP INDEXES MQL statement, or with the external age indices(1) program.
However, this bit will not be cleared by such operationstdis there and tells the EMdF layer
to add the index to the feature if a CREATE INDEXES MQL statatris issued for the object
type, or if manage_indices(1) is invoked to create indexethe object type.

| value| C/C++ preprocessor #DEFINESQL-type in object tables

0 | FEATURE_TYPE_INTEGER] INT
1 | FEATURE_TYPE _STRING | TEXT
2 | FEATURE_TYPE_ASCII TEXT
3 | FEATURE_TYPE_ID D INT

Table 2.5: Feature type ids for standard atomic types

2.7.3 Example

Examples of features are given in table 2.7.

2.8 min_m

2.8.1 SQL template

CREATE TABLE min_m (
dummy_id | NTEGER PRI MARY KEY NOT NULL,
min_m | NT NOT NULL

)

2.8.2 Explanation

This table stores the smallest monad in the database. duidsyalways 0.

| value | C/C++ preprocessor #define | Meaning |
(Ox00000100L) FEATURE_TYPE_WITH_INDEX| If set, the feature is indexed
(Ox00000200L) FEATURE_TYPE_AS_SET If set, the feature’s value is drawn from a set
(Ox00000400L) FEATURE_TYPE_LIST_OF If set, the feature is a list.

Table 2.6: Feature type flags for standard atomic types

CHAPTER 2. META-DATA

| object_type_id feature_name feature_type_id default_value

| computed|

327680 psp 131072 pspNotAppliccable ‘N’
327680 person 196608 prsNotAppliccable ‘N’
327680 gender 262144 gndNotAppliccable 'N’
327680 surface 1 ‘N’
327680 lexeme 1 "N’

: : : "N’
851968 phrase_type 65536 pt_NotAppliccable ‘N’

: : : "N’
1048576 clause_type 983040 ctWayO ‘N’

Table 2.7: Examples of features. Note how the feature_figideas the value of 1 for strings (see
table 2.5).

2.8.3 Example

An example is given in table 2.8.

| dummy_id| min_m |
.o [1 |

Table 2.8: Example of min_m

2.9 max_m

2.9.1 SQL template

CREATE TABLE max_m (
dummy_i d | NTEGER PRI MARY KEY NOT NULL,
max_m | NT NOT NULL

)

2.9.2 Explanation
This table stores the largest monad in the database. durdnsyaliways 0.

2.9.3 Example

An example is given in table 2.9.

CHAPTER 2. META-DATA 17

| dummy_id| max_m|
[0 |138019

Table 2.9: Example of min_m

2.10 monad sets

2.10.1 SQL template

CREATE TABLE nonad_sets (
nonad_set i d | NTEGER PRI MARY KEY NOT NULL,
nonad_set _nanme VARCHAR(255) NOT NULL
);
CREATE TABLE nopnad_sets_nonads (
nonad_set id I NT NOT NULL,
nse_first I NT NOT NULL,
nse_| ast | NT NOT NULL,
PRI MARY KEY (nonad_set _id, nse_first)

);
2.10.2 Explanation

The “nonad_set s” table is for storing monad set IDs (built from the “sequernktable, i.e.,
from the SEQUENCE_OTHER_IDS sequence) and monad set ndme&ronad_set s_nonad”
table is for storing the actual monad sets, mse by mse.

2.10.3 Example

As an example, consider the following tables:

| monad_set_id monad_set_name |

131072 Pentateuch
196608 My_book_collection

| monad_set_id mse_first| mse_las
131072 1 113226
196608 1 52547
196608 176800 | 212900
196608 394700 | 430154

The “Pentateuch” monad-set consists of the monads { 1-18 B2¢hereas the “My_book_collection”
monad-set consists of the monads { 1-52547, 176800-213%33(7,00-430154 }.

Chapter 3

Object_dm data

3.1 Introduction

In this chapter, | describe the tables needed for each otyjeet

There are three basic schemas for object types. The firsidbwiaen the object type has been
declared WITH MULTIPLE RANGE OBJECTS, or hasn’t been gively RANGE declaration.
The second is valid when the object type has been declaretHVSINGLE RANGE OBJECTS.
The third is valid when the object type has been delcared WSTRGLE MONAD OBJECTS.

In all three cases, the only table involved is:

e OT_objects

An object type that has been declared WITH SINGLE RANGE OBD&Can only hold objects
that consist of a single monad span, i.e., a single monade®eat, from A to B. An object
type that has been declaed WITH SINGLE MONAD OBJECTS can bolg objects that are
singleton sets (i.e., have only 1 monad in their monad set).oBject that has been declared
WITH MULTIPLE RANGE OBJECTS can hold arbitrary monad sets.

The “range types” just described have a bearingndich fields are present. There is an
additional distinction, namely “WITHOUT UNIQUE MONADS” HAVING UNIQUE FIRST
MONADS”, and “HAVING UNIQUE FIRST AND LAST MONADS” . This diginction has a
bearing on what the primary key is:

1. If “WITHOUT UNIQUE MONADS?” is specified (or none of theserte is specified),
then the primary key will be the object_id_d. This means thate is no restriction on the
uniqueness of the first (and last) monads.

2. If*HAVING UNIQUE FIRST MONADS” is specified, then the priary key is first_monad.
This means that the user promises never to create any twotshjgth this object type
which have the same first monad. Objects need not be unigbeimfirst monads across
object types: It is only within an object type that this nesalkold.

18

CHAPTER 3. OBJECT_DM DATA 19

3. If “HAVING UNIQUE FIRST AND LAST MONADS" is specified, therthe primary key
is (first_monad, last._ monad). This means that the user gesmiever to create any two
objects with this object type which have the same first angd#inee last monads, regardless
of whether the two objects have the same monad set or not.

If a STRING or ASCII feature is declared “FROM SET”, then acpétable is created for that
feature:

e OT_mdf FEATURE NAME._set

This is described in Section 3.4 on page 21.

3.2 OT_objects

3.2.1 SQL template

CREATE TABLE OT_obj ect s(
obj ect _id_d I NTEGER PRI MARY KEY NOT NULL,
-- first_nonad is always there
first_nonad | NT NOT NULL,
-- last _nmonad is not there for WTH SI NGLE MONAD OBJECTS
| ast _nmonad | NT NOT NULL,
-- nonads is not there except for WTH MJULTI PLE RANGE
nonads TEXT NOT NULL, OBJECTS
[... list of stored features ...]

),

3.2.2 Explanation

This table is the master table for storing objects of type BE0F. each object, the following are
given:

1. The objectid_d (“object_id_d"),

2. The first monad, for easy reference (“first_monad”),

3. The last monad, for easy reference (“last_monad”), and
4. The monad-set, encoded in a special way (see below).
5

. Values for all of the stored features of the object.

CHAPTER 3. OBJECT_DM DATA 20

| EMdF type | SQL type | Comment |
INTEGER INTEGER 32-bit integer
ID_ D INTEGER 32-bit integer
ASCI SQL_TEXT_TYPE
STRING SQL_TEXT_TYPE
Enumeration constants INTEGER 32-bit integer
List of INTEGER SQL_TEXT_TYPE
Listof ID_D SQL_TEXT_TYPE
List of Enumeration constantsSQL_TEXT _TYPE

Table 3.1: SQL types corresponding to EMdF types

The “object_id_d” attribute is either auto-generated fritva “sequence_0” table, i.e., using the
SEQUENCE_OBJECT_ID_DS sequence, or it is explicitly givEne “object_id_d” attribute is
also the source for the special, read-only feature “seldt th on each object_dm type.

The reason why the first and last monads are here will becorparapt when we discuss
how to implement MQL queries.

The last_monad column is not present if the object type has beclared WITH SINGLE
MONAD OBJECTS. The monads column is only present when theablype has been declared
WITH SINGLE RANGE OBJECTS or WITH MULTIPLE RANGE OBJECTS.

The types of the stored features are given in Table 3.1.

Note that ASCII, STRING, and lists are stored as the SQL_TERYPE, which varies be-
tween the backends. It is basically a long string. For lidig, value is a space-surrounded,
space-delimited list of integers. For example, the lis2), would be represented as:

1237

This makes for searching with LIKE '% 1 %’ and the like.

3.2.3 Example

In table 3.2, | have listed four objects of type Phrase.

| object_id_d| first_monad| last_monad phrase_type

201 4 7 5
202 8 8 1
203 9 10 2
203 12 15 2

Table 3.2: Example of OT_Objects (Phrase_Objects)

CHAPTER 3. OBJECT_DM DATA 21

3.3 Monad set encoding

The monad set encoding (in column OT_objects.monads)sstmearbitrary monad set effi-
ciently, as a text-string. The format is as follows:

1. Each number is stored in a base-64 encoding that is desdoilow.

2. The monad setis seen as a series of numbers. The currebénignstored as the difference
between the actual number and the preview number (whered¢iveops number is defined
as 0 for the first number).

3. The separator between monad set elements is the chayacitdrus the monad set element
chain is a 'y’-separated list of monad set elements.

4. Singleton monad set elements are just stored as thaesingiber.

5. Non-singleton monad set elements are stored as two ngmb#r the character 'z’ in
between.

The base-64 encoding will be explained below. For now, legime an example to illustrate the
principles above.

The monad-set { 1-3, 5, 7-10 } would, if we were using base-d8tbre the numbers, be
stored as “1z2y2y2z3". Let us break this down. There arestmenad-set elements: “1z2”, “2”,
and “2z3". The first translates to “1-3” because 1+2 = 3 (tgkime previous “1” and adding “2”
makes “3”). The second translates to “5” because the prewas 3, and when we add 2, we
get 5. The third monad set element translates to “7-10" beedbt+2=7" and “7+3=10" (again
taking the previous number and adding the current number).

The base-64 encoding is very straightforward: The 32-bmber is broken down into 5 6-bit
chunks and one 2-bit chunk (the 2 most significant bits). tlegfrom the chunk that has the
most significant non-null bit, each chunk is written as thisitbvalue plus 48 (i.e., ASCII '0’).
Thus the above set would be written as exactly “1z2y2y2z3".

3.4 OT_mdf FEATURE NAME_set

3.4.1 SQL template

-- This is optimzed for finding string

-- string values fromid_ds (for

-- querying.)

CREATE TABLE OT_ndf FEATURE _NAME set (
id_d I NTEGER PRI MARY KEY NOT NULL
string val ue TEXT NOT NULL

);

This is so we can al so quickly

CHAPTER 3. OBJECT_DM DATA 22

-- find id_ds fromstring val ues

-- (for inserting/updating)

CREATE | NDEX OT_ndf FEATURE_NAME_set i
ON OT_ndf FEATURE_NAME_set

(string_val ue)

3.4.2 Explanation

If a STRING or ASCII feature of an object type is declared “RRGET”, this table will be
created. Any strings which are assigned to this feature @figect when it is created or updated
will be drawn from this table. Instead of storing the strimgthe feature, the id_d is stored
instead. This gives a space savings, and often also a tinmegsaespecially on MySQL and
PostgreSQL. SQLite may see no difference, or even worseipeaince.

When an object is created or updated, and the object typeitdhwtibelongs has a STRING
or ASCII feature which is declared “FROM SET", then this &li$ consulted to see if the
string exists in it already. If it does not, then it is addeddan id_d is assigned from the
SEQUENCE_OTHER_ID_DS sequence. Then thatid_d is usecimtleu of the string in the
object’s feature. If the string does exist in this table,ithed from that row is used.

Note that features of type ID_D, INTEGER, and ENUM cannot belared “FROM SET".
This is because it makes no sense: There is no space savidger@ainly no time savings, since
in all these cases, the integer can be stored directly.

3.4.3 Example

CREATE OBJECT TYPE [Word surface : STRI NG FROM SET; |

word mdf surface set:
| id_d | string_value|

21 A
22 horse
23 is
24 a
25 horse.

word_objects (“A horse is a horse is a horse.”):

CHAPTER 3. OBJECT_DM DATA

| object_id_d] first_monad| mdf_surface]

1 1 21
2 2 22
3 3 23
4 4 24
5 5 22
6 6 23
7 7 24
8 8 25

Chapter 4

Implementing the MQL commands

4.1 Introduction

In this chapter, | treat all of the commands of the new MQL amolsin some detail how they
can be implemented using fragments of SQL. | follow the stmecof chapter 2 of “Towards a
new MQL.”

4.2 Database manipulation

4.2.1 CREATE DATABASE
42.1.1 Weeder
Nothing to do.

4.2.1.2 Symbol-checker
Nothing to do.

4.2.1.3 Type-checker
Nothing to do.

4.2.1.4 Monads-checker
Nothing to do.

4.2.1.5 Interpreter

The following needs to be done when creating a database:

1. Create the physical database in the server.

24

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS

Create and initialize the “schema_version” table.

Create and initialize the “sequence_0", “sequence _rid,“aequence_2" tables.
Create the “enumerations” table.

Create the “enumeration_constants” table.

Create the “object_types” table.

Create the “features” table.

Create the “monad_sets” table.

© © N o 00 b~ W D

Create the “monad_sets _monads” table.

4.2.1.6 SQL fragments

The SQL to do the above is as follows (in one transaction):

CREATE DATABASE { dat abase_nane }
CREATE TABLE schena_version (
dummy_i d | NTEGER PRI MARY KEY NOT NULL
schema_version | NT NOT NULL
);
| NSERT | NTO schena_version (dumy_id, schema_version)
VALUES (0, { schema-version });
CREATE TABLE sequence_0 (
sequence_id | NTEGER PRI MARY KEY NOT NULL
sequence_val ue I NT NOT NULL
);
CREATE TABLE sequence_1 (
sequence_i d | NTEGER PRI MARY KEY NOT NULL
sequence_val ue I NT NOT NULL
);
CREATE TABLE sequence_2 (
sequence_i d | NTEGER PRI MARY KEY NOT NULL
sequence_val ue I NT NOT NULL
);
| NSERT | NTO sequence_0 (sequence_id, sequence_val ue)
VALUES ({ SEQUENCES OBJECT ID DS} , 1)
| NSERT | NTO sequence_1 (sequence_id, sequence_val ue)
VALUES ({ SEQUENCES TYPE IDS } , 1)
| NSERT | NTO sequence_2 (sequence_id, sequence_val ue)
VALUES ({ SEQUENCES OTHER IDS } , 1)

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS

CREATE TABLE enunerations (
enum_ i d | NTEGER PRI MARY KEY NOT NULL,
enum nanme VARCHAR(255) NOT NULL
)
CREATE TABLE enuneration_constants (
enum i d | NT NOT NULL,
enum val ue_name VARCHAR(255) NOT NULL,
val ue | NT NOT NULL,
I s_default CHAR(1) NOT NULL,
PRI MARY KEY (enum.id, enum val ue_nane)
)
CREATE TABLE obj ect _types (
obj ect _type_id I NTEGER PRI MARY KEY NOT NULL,
obj ect _type_nane VARCHAR(255) NOT NULL
)
CREATE TABLE features (
obj ect _type_id I NT NOT NULL,
feat ure_nane VARCHAR(255) NOT NULL,
feature_type_id I NT NOT NULL,
conput ed CHAR(1) NOT NULL DEFAULT ' N,
PRI MARY KEY (object_type_id, feature_nane)
)
CREATE TABLE nonad_sets (
nmonad_set id | NTEGER PRI MARY KEY NOT NULL,
nonad_set _nanme VARCHAR(255) NOT NULL
);
CREATE TABLE nonad_sets_npnads (
nonad_set id I NT NOT NULL,
nmse_first I NT NOT NULL,
nmse_| ast | NT NOT NULL,
PRI MARY KEY (nonad_set _id, nse_first)

);

4.2.2 USE DATABASE
4.2.2.1 Weeder
Nothing to do.

4.2.2.2 Symbol-checker

The symbol checker should check that the database exists.

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 27

4.2.2.3 Type-checker
Nothing to do.

4.2.2.4 Monads-checker
Nothing to do.

4.2.2.5 Interpreter

How to do this will vary from database server to databaseesehdon’t think it can always be
done in SQL. On the contrary, PostgreSQL seems to coupleections tightly with databases,
so it should rather be on a connection-level

4.2.3 DROP DATABASE
4.2.3.1 Weeder
Nothing to do.

4.2.3.2 Symbol-checker

The symbol checker should check that the database exists.

4.2.3.3 Type-checker
Nothing to do.

4.2.3.4 Monads-checker
Nothing to do.

4.2.3.5 Interpreter
e Drop the database. This is usually an easy DROP DATABASIE stant.

4.2.3.6 SQL fragments
DROP DATABASE { dat abase_nane }

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 28

4.3 Object type manipulation

4.3.1 CREATE OBJECT TYPE
4.3.1.1 Weeder

e Check that the feature “self” is not declared.

4.3.1.2 Symbol-checker
e Check that the object type does not already exist.
e Check that the enumerations exist for the features whossstgpe enumerations.
e Check that, within these enumerations, any default spatific which is an enumeration
constant, does exist in that enumeration.
4.3.1.3 Type-checker

e Assign type-ID to each feature, based on the type-nameisiihe of the standard types,
then assign its corresponding ID (see table 2.5). If it is mmn@eration type, then assign
the enum_id of the enumeration.

e Check that the type of each feature matches the type of aayldspecification. In doing
S0, provide, in the AST, a string representing the defaditeséor any feature that does not
have a default specification. Itis an error to specify angatéf the type is an enumeration.
It must be an enumeration constant. The reason is that we maustdata integrity, and
this is an easy way of ensuring that for enumerations.

4.3.1.4 Monads-checker

Nothing to do.

4.3.1.5 Interpreter
e Create the object type in table “object_types”
o Create all the tables associated with the object type (Ojectd etc.)

e Create all the features

4.3.1.6 SQL fragments

4.3.1.6.1 Checking for (non-)existence of object type
SELECT obj ect _type_id
FROM obj ect _types
VWHERE obj ect _type nane = '{ object _type nane }’

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 29

4.3.1.6.2 Checking for (non-)existence of enumeration

SELECT enum.id
FROM enuner at i ons
WHERE enum nane = ’'{ enuneration-nanme }’

4.3.1.6.3 Checking for (non-)existence of enumeration cetant

SELECT enum val ue_nane
FROM enuner ati on_constants EC, enunerations E

WHERE EC. enum val ue_nanme = ’{ enunerati on-constant-nane }’
AND EC. enum.id = E.enum.id
AND E. enum nane = ' { enuneration-nane }’

4.3.1.6.4 Creating the object type

| NSERT | NTO obj ect _types (object _type_ id, object type nane)
VALUES ({ auto-generated id }, { object _type nane })

4.3.1.6.5 Creating the tables associated with the objectpg

CREATE TABLE OT_obj ect s(
object id d | NTEGER PRI MARY KEY NOT NULL,
first_nonad | NT NOT NULL,
| ast _nmonad | NT NOT NULL,
nonads TEXT NOT NULL,
[... list of stored features ...]

)

4.3.1.6.6 Creating all the features For each feature:

| NSERT | NTO features (
obj ect type_id,
f eat ure_nane,
feature_type_id,
def aul t _val ue,
conput ed
)
VALUES (
{ object type id: fromthe creation of the object type },
{ feature_nane : feature_nane },
{ feature type_ id : taken from AST },

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 30

{ default_value : string fromAST },
{ conputed : 'Y /'N based on the presence or
absence of the T_KEY_COVWUTED keywor d}

4.3.2 UPDATE OBJECT TYPE
4.3.2.1 Weeder

e Check that the feature “self” is neither added nor removed.

4.3.2.2 Symbol-checker

e Check that the object type already exists. In doing so, ste®bject type id somewhere
in the AST.

Check that all the features that are to be removed do exist.

Check that all the features that are to be added do not exist.

Check that the enumerations exist for the new features wiypes are enumerations.

Check that, within these enumerations, any default spatiic which is an enumeration
constant, does exist in that enumeration.
4.3.2.3 Type-checker

e Assign type-ID to each feature that is to be added, basedeotyie-name. If it is one of
the standard types, then assign its corresponding ID (bé=2db). If it is an enumeration
type, then assign the enum_id of the enumeration.

e Check that the type of each feature matches the type of aayldspecification. In doing
so, provide, in the AST, a string representing the defauliejaboth for those feature
additions that do and those that don’t have a default spatidit. It is an error to specify
an integer if the type is an enumeration. It must be an enuroareonstant. The reason is
that we must have data integrity, and this is an easy way afrgrggthat for enumerations.

4.3.2.4 Monads-checker

Nothing to do.

4.3.2.5 Interpreter
e Add the features that are to be added.

e Remove the features that are to be removed.

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 31

4.3.2.6 SQL fragments

4.3.2.6.1 Checking for (non-)existence of a feature

SELECT feature_type_id, default_val ue, conputed
FROM f eat ur es
WHERE obj ect type_id

= { object type_id }
AND feature nane =

"{ feature-name }’
4.3.2.6.2 Adding a feature to the OT_objects table
ALTER TABLE OT_obj ects ADD { encoded feature-nane }
{ SQ.-type } NOT NULL
4.3.2.6.3 Removing a feature from the OT_objects table

ALTER TABLE OT_obj ects DROP { encoded feature-nane }

4.3.2.6.4 Removing a feature from the features table

DELETE FROM f eat ur es
VWHERE obj ect _type_ id

= { object type id }
AND feature nane =

"{ feature-name }’

4.3.3 DROP OBJECT TYPE
4.3.3.1 Weeder
Nothing to do.

4.3.3.2 Symbol-checker
e Check that the object type exists. In doing so, it shouldestioe object type id in the AST.

4.3.3.3 Type-checker
Nothing to do.

4.3.3.4 Monads-checker
Nothing to do.

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 32

4.3.3.5 Interpreter
e Drop all the tables associated with the object type.
e Delete all features associated with the object type.

e Delete the object type from the “object_types” table.

4.3.3.6 SQL fragments

DROP TABLE OT _obj ects

DELETE FROM f eat ures

WHERE obj ect _type_id = { object type_id fromAST }
DELETE FROM obj ect types

WHERE obj ect _type_id = { object type_id fromAST }

4.4 Enumeration manipulation

44.1 CREATE ENUMERATION
44.1.1 Weeder

e Check that at most oneet_decl ar at i on” has the “DEFAULT” keyword, and set a
boolean for each member of the list of declarations sayingthdr it is the default or not.
If none has the “DEFAULT” keyword, then set the boolean of fing item in the list to
“true.”

4.4.1.2 Symbol-checker

e Check that no other enumeration by the same name existslglrea

e Check that no enumeration constant already exists by thesrgaven in any of the ec-
declarations.

e Assign a value in the AST to each ec-declaration, eitherdaseits position in the se-
guence, or based on its initialization.

4.4.1.3 Type-checker
Nothing to do.

4.4.1.4 Monads-checker
Nothing to do.

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 33

4.4.1.5 Interpreter

e Create the enumeration using an autogenerated ID.

e Add all the enumeration constants to the table.

4.4.1.6 SQL fragments

4.4.1.6.1 Creating the enumeration

| NSERT | NTO enunerations (enum.id, enum nane)
VALUES ({ auto-generated id }, { nanme } }

4.4.1.6.2 Add an enumeration constant

| NSERT | NTO enuner ati on_constants (
enum.id,
enum val ue_nane,
val ue,
i s_default

)

VALUES (
{ enumid : The auto-generated id used to create the enum},
{ enum val ue_nane : ec-nane },
{ value : ec-val ue},
{ is_default : "Y/'N }

4.4.2 UPDATE ENUMERATION
44.2.1 Weeder

e Check that at most one enumeration-constant update ha®HEAULT” keyword, and
set a boolean for each member of the list of updates sayinghehi is the default or not.
If none has the “DEFAULT” keyword, then none of these bootesinould be true. Either
set a boolean in the top-level AST node of the MQL statememiravide a function which
lets one know, whether one of the additions or updates ha®IEEAULT” keyword.

4.4.2.2 Symbol-checker
e Check that the enumeration exists already.
e Check that for all additions, the enumeration constanteddid not exist already.

e Check that, for all updates, the enumeration constantstaga@dready exist.

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 34

e Check that all constants being removed do exist.

e Check whether the current default is being removed. If ithen another default should
be specified, either as an update or as an addition (use theanoor function mentioned
under “weeder” above).

4.4.2.3 Type-checker
Nothing to do.

4.4.2.4 Monads-checker
Nothing to do.

4.4.2.5 Interpreter

Remove all the constants being removed.

Add all the constants being added.

Update all the constants being updated.

If there was a new specification of the “DEFAULT” constant:

— Remove thei‘s_def aul t ” status from the current default.
— Update the new default constant so thai is* def aul t ”.

4.4.2.6 SQL fragments
4.4.2.6.1 Checking which is the default enumeration conste

SELECT enum val ue_namne

FROM enuner ati on_const ants

WHERE enum.id = { enuneration-id }
AND is default ='Y

4.4.2.6.2 Checking for the (non)-existence of an enumerati See section 4.3.1.
4.4.2.6.3 Checking for the (non)-existence of an enumerati constant See section 4.3.1.

4.4.2.6.4 Removing a constant

DELETE
FROM enuner ati on_constants
WHERE enumid = { enuneration-id }
AND enum val ue_nane = { nanme of constant to delete }

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 35

4.4.2.6.5 Adding a constant See section 4.4.1.

4.4.2.6.6 Updating a constant

UPDATE enuner ati on_constants
SET value = { new val ue }
WHERE enumid = { enuneration-id }
AND enum val ue_nane = { nanme of constant to update }
4.4.2.6.7 Removing the “is_default” status from the currehdefault

UPDATE enuneration_constants

SET is _default ='N

WHERE enum.id = { enuneration-id }
4.4.2.6.8 Setthe new default

UPDATE enuneration_constants
SET is_default ='Y
WHERE enum.id = { enuneration-id }
AND enum val ue_nane = { nanme of new default }

4.4.3 DROP ENUMERATION
4.4.3.1 Weeder
Nothing to do.

4.4.3.2 Symbol-checker

e Check that the enumeration does exist. In doing so, storethen_id” of the enumeration
inthe AST.

4.4.3.3 Type-checker
Nothing to do.

4.4.3.4 Monads-checker
Nothing to do.

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 36

4.4.3.5 Interpreter

e Remove all the enumeration constants associated with thaemtion from table “enu-
meration_constants”.

e Remove the enumeration itself from table “enumerations”

4.4.3.6 SQL fragments

4.4.3.6.1 Checking that the enumeration exists See section 4.3.1.

4.4.3.6.2 Removing all enumeration constants associatedmthe enumeration

DELETE
FROM enuner ati on_const ants
WHERE enum.id = { enuneration-id }

4.4.3.6.3 Removing the enumeration itself

DELETE
FROM enuner at i ons
WHERE enum.id = { enuneration-id }

4.5 Segment manipulation

451 CREATE SEGMENT
45.1.1 Weeder

e Check that the range is monotonic, i.e., that the secondentie greater than or equal to
the first integer.

e Check that the range consists of positive numbers.

45.1.2 Symbol-checker
Nothing to do.

45.1.3 Type-checker
Nothing to do.

45.1.4 Monads-checker
Nothing to do.

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 37

4.5.1.5 Interpreter

e Currently, nothing. In the future: Add as a single-range auset.

45.1.6 SQL fragments

None.

4.6 Querying

4.6.1 SELECTOBJECTS
4.6.1.1 Weeder
e Check everything as described in the “MQL query-subset’udoent.

e Check that the monad set in the AST consists of only posithaotonic ranges.

4.6.1.2 Symbol-checker
e Check everything as described in the “MQL query-subsetUdoent.

4.6.1.3 Type-checker
e Check everything as described in the “MQL query-subset’udoent.

4.6.1.4 Monads-checker

e Build the monad set of the “IN” clause, if it is there. Store thonad set in the AST. If it
isn't there, store “1..MAX_MONAD.”

4.6.1.5 Interpreter

This should follow the retrieval functions given in the “MQ@Query subset” document. Below |
list some of the SQL fragments which are needed for implemgnhese functions.

4.6.1.6 SQL fragments
4.6.1.6.1 Getting inst(T,U)

SELECT object _id d

FROM OT_obj ects

WHERE { U.first() } <= first_nonad
AND | ast_nmonad <= { U last() }

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS

4.6.1.6.2 Retrieve features from an object

SELECT { feature-nanes }
FROM OT_obj ect s
WHERE object id d = { object id d }

4.6.2 SELECT OBJECTS AT
46.2.1 Weeder

e Check that the integer is positive.

4.6.2.2 Symbol-checker
e Check that the object type exists.

4.6.2.3 Type-checker
Nothing to do.

4.6.2.4 Monads-checker
Nothing to do.

4.6.2.5 Interpreter
Just asks the SQL database.

4.6.3 SELECT OBJECT TYPES
4.6.3.1 Weeder
Nothing to do.

4.6.3.2 Symbol-checker
Nothing to do.

4.6.3.3 Type-checker
Nothing to do.

4.6.3.4 Monads-checker
Nothing to do.

38

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 39

4.6.3.5 Interpreter
Just asks the SQL database.

4.6.3.6 SQL fragments

4.6.3.6.1 Asking for the object types available
SELECT obj ect _type_nane
FROM obj ect _types

46.4 SELECT FEATURES
4.6.4.1 Weeder
Nothing to do.

4.6.4.2 Symbol-checker
e Check that the object type actually exists. In doing soesitsrobject type_id in the AST.

4.6.4.3 Type-checker
Nothing to do.

4.6.4.4 Monads-checker
Nothing to do.

4.6.4.5 Interpreter

o Ask the database server for the answer.

e Translate feature type_ids to strings. Only for enumerationstants does this involve
guerying the database.

e Translate the “computed” ‘Y’/'N’ boolean to a real boolean.

4.6.4.6 SQL fragments
4.6.4.6.1 Asking for the features of an object type

SELECT feature_nane, feature type id, default_val ue, conputed
FROM f eat ur es
WHERE obj ect _type_id = { object type_id }

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS

4.6.4.6.2 Translating feature type_ids to strings

SELECT enum _name
FROM enuner at i ons
WHERE enumid = { feature type_id }

4.6.5 SELECT ENUMERATIONS
4.6.5.1 Weeder
Nothing to do.

4.6.5.2 Symbol-checker
Nothing to do.

4.6.5.3 Type-checker
Nothing to do.

4.6.5.4 Monads-checker
Nothing to do.

4.6.5.5 Interpreter

e Just ask the database server.

4.6.5.6 SQL fragments

4.6.5.6.1 Asking for the enumerations available
SELECT enum nane
FROM enuner at i ons

46.6 SELECT ENUMERATION CONSTANTS
4.6.6.1 Weeder
Nothing to do.

4.6.6.2 Symbol-checker

40

e Check that the enumeration actually exists. In doing seegtee enum_id in the AST.

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 41

4.6.6.3 Type-checker
Nothing to do.

4.6.6.4 Monads-checker
Nothing to do.

4.6.6.5 Interpreter

e Ask the database server for the answer.

e Convert the value to an integer and thes* def aul t ”'Y’/'N’ boolean to a real boolean.

4.6.6.6 SQL fragments

4.6.6.6.1 Asking for the enumeration constants of an enumation

SELECT enum val ue_nane, value, is_default
FROM enuner ati on_constants
WHERE enum.id = { enuneration id from AST }

4.6.7 SELECT OBJECT TYPES USING ENUMERATION
4.6.7.1 Weeder
Nothing to do.

4.6.7.2 Symbol-checker

e Check that the enumeration exists. In doing so, store iteeinlin the AST.

4.6.7.3 Type-checker
Nothing to do.

4.6.7.4 Monads-checker
Nothing to do.

4.6.7.5 Interpreter

o Ask the database server for the answer

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 42

4.6.7.6 SQL fragments

SELECT obj ect _type_nane
FROM obj ect _types
WHERE obj ect _type_id IN
(SELECT object type_ id
FROM f eat ur es
WHERE feature_type id = { enuneration id }

)

4.7 Object manipulation

4.7.1 CREATE OBJECT FROM MONADS
47.1.1 Weeder

e Check that bbj ect _t ype_nane”is neither all_m, nor any_m, nor pow_m.
e Check that the feature “self” is not assigned a value.

e Check that all the ranges of monads are positive and mormtoni

4.7.1.2 Symbol-checker

e If the user specified an id_d, check that this id_d is not inalssady.
e Check that the object type exists. In doing so, store itsailhyge _id in the AST.
e Check that no feture is assigned which the object type doelsave.

e Make sure that all features are given a value. If a featureigiven a value, then use the
default value.

4.7.1.3 Type-checker

e Assign a type to each feature-assignment.

e Check for type-compatibility.

4.7.1.4 Monads-checker

e Build the set of monads from the monads in the AST.

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS

4.7.1.5 Interpreter

¢ If the user did not specify an id_d, autogenerate one.

¢ Insert the object and monads in “OT_objects”

4.7.1.6 SQL fragments
4.7.1.6.1 Getting the default value of all features for an glect id_d.

SELECT feature_name, default val ue
FROM f eat ur es
VWHERE obj ect type id = { object type_ id }

4.7.1.6.2 Inserting the object in “OT_objects.”

| NSERT | NTO OT_obj ects (
obj ect type_id,
first_nonad,
| ast _nonad,
[+ features x/

)
VALUES (
{ object _type_id},
{ first nonad },
{ last nonad },
[+ features =/
)

4.7.2 CREATE OBJECT FROM ID_DS
47.2.1 Weeder

e Check that bbj ect _t ype_nan®e”is neither all_m, nor any_m, nor pow_m.
e Check that the feature “self” is not assigned a value.

e Check that none of the id_ds in the list are NIL.

4.7.2.2 Symbol-checker

¢ If the user specified an id_d, check that this id_d is not inalszady.

e Check that the object type exists. In doing so, store itsaithyge id in the AST.

e Check that no feture is assigned which the object type doelsave.

43

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 44

e Make sure that all features are given a value. If a featureigiven a value, then use the
default value.

4.7.2.3 Type-checker

e Assign a type to each feature-assignment.

e Check for type-compatibility.

4.7.2.4 Monads-checker

e Get the set of monads from the id_ds.

4.7.2.5 Interpreter

¢ If the user did not specify an id_d, autogenerate one.

¢ Insert the object and monads in “OT_objects”

4.7.2.6 SQL fragments

4.7.3 CREATE OBJECT FROM (focus | all |) QUERY
4.7.3.1 Weeder
e Check everything that must be checked for a SELECT OBJECESyqu

e Check that the feature “self” is not assigned a value.

e Check that bbj ect _t ype_nane”is neither all_m, pow_m, or any_m.

4.7.3.2 Symbol-checker
e Check everything that must be checked for a SELECT OBJECESyqu

If the user specified an id_d, check that this id_d is not inalssady.

Check that the object type exists. In doing so, store itsattyge id in the AST.

Check that no feture is assigned which the object type doesave.

Make sure that all features are given a value. If a featuretigiven a value, then use the
default value.

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 45

4.7.3.3 Type-checker
e Check everything that must be checked for a SELECT OBJECES/qu

e Assign a type to each feature-assignment.

e Check for type-compatibility.

4.7.3.4 Monads-checker
e Check everything that must be checked for the SELECT OBJEGLIESy.
e Run the query.

e Get the set of monads from the query.

4.7.3.5 Interpreter
o If the user did not specify an id_d, autogenerate one.

¢ Insert the object and monads in “OT_objects”

4.7.3.6 SQL fragments

4.7.4 UPDATE OBJECTS BY MONADS

4.7.4.1 Weeder
e Check that the object type is neither all_m, nor any_m, nev_pu.
e Check that self is not assigned to.

e Check that all the ranges of monads are positive and mormtoni

4.7.4.2 Symbol-checker
e Check that the object type actually exists. In doing soesitsrobject type_id in the AST.
e Check that the object type has all the features that arersebig new value.

e Check that the features which are assigned are not compeaéarés.

4.7.4.3 Type-checker
e Check that there is type-compatibility between the featared their values.

4.7.4.4 Monads-checker

e Build the set of monads from the monads in the AST.

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 46

4.7.4.5 Interpreter

e Get the objects which are part_of the set of monads. Thisvsestep process:

— Find all the objects which are wholly contained within theders of the set of mon-
ads.

— Load each object one by one and check whether it should bededlbecause it is
part_of the set of monads.

e Update the objects

4.7.4.6 SQL fragments
4.7.4.6.1 Updating an object

UPDATE OT_obj ects
SET { (feature = value), (feature = value), ... }
VWHERE object id d ={ object id d }

4.7.5 UPDATE OBJECTSBY ID_DS
475.1 Weeder

e Check that the object type is neither all_m, nor any_m, nev_pu.
e Check that self is not assigned to.

e Check that none of the id_ds in the list are NIL.

4.7.5.2 Symbol-checker
e Check that the object type actually exists. In doing soesitsrobject type_id in the AST.

e Check that the object type has all the features that arersesbig new value.
e Check that the features which are assigned are not compedéuatés.

e Check that the objects with the id_ds exist.

4.7.5.3 Type-checker
e Check that there is type-compatibility between the featared their values.

e Check that the objects with the id_ds are of the specified. type

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS a7

4.7.5.4 Monads-checker
Nothing to do.

4.7.5.5 Interpreter
e Update the objects

4.7.5.6 SQL fragments

4.7.6 UPDATE OBJECTS BY (focus | all |) QUERY
4.7.6.1 Weeder

e Check that the object type is neither all_m, nor any_m, nev_pu.
e Check that self is not assigned to.

e Check everything that must be checked for a SELECT OBJECESyqu

4.7.6.2 Symbol-checker
e Check everything that must be checked for a SELECT OBJECESyqu

e Check that the object type actually exists. In doing soesitsrobject type_id in the AST.
e Check that the object type has all the features that arersesbig new value.

e Check that the features which are assigned are not compedé&atés.

4.7.6.3 Type-checker
e Check everything that must be checked for a SELECT OBJECESyqu

e Check that there is type-compatibility between the featared their values.

4.7.6.4 Monads-checker
e Check everything that must be checked for the query.

4.7.6.5 Interpreter
e Run the query.

e Get the set of objects:

— Ifitis an ALL query, filter the returned set of objects by thigen object type.

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 48

— Ifitis a FOCUS query, first filter by focus, then filter by objegpe.

e Update the objects

4.7.7 DELETE OBJECTS BY MONADS
47.7.1 Weeder

e Check that all the ranges of monads are positive and mormtoni

4.7.7.2 Symbol-checker
e Check that the object type exists.

4.7.7.3 Type-checker
Nothing to do.

4.7.7.4 Monads-checker

e Build the set of monads from the monads in the AST.

4.7.7.5 Interpreter

e Getthe object id_ds of the objects which are part_of the fselomads. See the section on
UPDATE OBJECTS BY MONADS for how to do this.

e Delete the objects and monads from OT_objects

4.7.7.6 SQL fragments
4.7.7.6.1 Deleting an object from OT_objects

DELETE
FROM OT_obj ects
VWHERE object _id d ={ object id d }

4.7.8 DELETE OBJECTSBY ID_DS
4.7.8.1 Weeder
e Check that none of the id_ds in the list are NIL.

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS

4.7.8.2 Symbol-checker
e Check that the object type exists.

e Check that all the id_ds refer to objects that exist and ate@fiven type.

4.7.8.3 Type-checker
Nothing to do

4.7.8.4 Monads-checker
Nothing to do.

4.7.8.5 Interpreter

e Delete the objects from OT_objects

4.7.9 DELETE OBJECTS BY (focus | all |) QUERY
4.7.9.1 Weeder
e Check everything that must be checked for a SELECT OBJECESyqu

4.7.9.2 Symbol-checker
e Check everything that must be checked for a SELECT OBJECESyqu

e Check that the object type exists.

4.7.9.3 Type-checker
e Check everything that must be checked for a SELECT OBJECES/qu

4.7.9.4 Monads-checker
e Check everything that must be checked for a SELECT OBJECES/qu

4.7.9.5 Interpreter
e Run the query.

e Get the object id_ds from the query:

— Ifitis an ALL query, filter the returned set of objects by thigen object type.

— Ifitis a FOCUS query, first filter by focus, then filter by objegpe.

49

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS

e Delete the objects from OT_objects

4.8 Feature manipulation

48.1 GETFEATURES
4.8.1.1 Weeder
Nothing to do.

4.8.1.2 Symbol-checker
e Check that the object type exists. In doing so, store itsaithyge _id in the AST.

e Check that the objects with the given id_ds exists.
e Check that the objects all belong to the same type, namelgribeiven.

e Check that the features exist for the given object type.

4.8.1.3 Type-checker
Nothing to do

4.8.1.4 Monads-checker
Nothing to do.

4.8.1.5 Interpreter

e Ask the database for the answer.

50

Appendix A

Copying this document

A.1 Introduction

All Emdros documentation is provided under the Creative @ams Attribution-Sharealike li-
cense version 2.5. This license is included below, and canlts seen at:

http://creati vecommons.org/licenses/ by-sa/ 2.5/

A.2 Creative Commons Deed (for all documentation)
Attribution-ShareAlike 2.5

CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT
PROVIDE LEGAL SERVICES. DISTRIBUTION OF THIS LICENSE DOESON' CREATE
AN ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIES THIS
INFORMATION ON AN "AS-IS" BASIS. CREATIVE COMMONS MAKES NO
WARRANTIES REGARDING THE INFORMATION PROVIDED, AND DISCLAVS
LIABILITY FOR DAMAGES RESULTING FROM ITS USE.

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF T8I
CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THBVORK IS
PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USBF THE
WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGH_.AW
IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCHP
AND AGREE TO BEBOUND BY THE TERMS OF THIS LICENSE. THE LICENSOGRANTS
YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCHRNCE
OF SUCH TERMS AND CONDITIONS.

1. Definitions

51

APPENDIX A. COPYING THIS DOCUMENT 52

(a) "Collective Work" means a work, such as a periodical issue, anthology or emcycl
pedia, in which the Work in its entirety in unmodified formoagy with a number of
other contributions, constituting separate and indepeinderks in themselves, are
assembled into a collective whole. A work that constitut€o#ective Work will not
be considered a Derivative Work (as defined below) for th@ases of this License.

(b) "Derivative Work" means a work based upon the Work or upon the Work and other
pre-existing works, such as a translation, musical armareget, dramatization, fic-
tionalization, motion picture version, sound recording raproduction, abridgment,
condensation, or any other form in which the Work may be redeansformed, or
adapted, except that a work that constitutes a CollectivekWial not be consid-
ered a Derivative Work for the purpose of this License. Ferakoidance of doubt,
where the Work is a musical composition or sound recording stynchronization of
the Work in timed-relation with a moving image ("synchingVill be considered a
Derivative Work for the purpose of this License.

(c) "Licensor" means the individual or entity that offers the Work under titvens of
this License.

(d) "Original Author" means the individual or entity who created the Work.

(e) "Work" means the copyrightable work of authorship offered undeit¢inms of this
License.

() "You" means an individual or entity exercising rights under thisebhse who has
not previously violated the terms of this License with redfe the Work, or who has
received express permission from the Licensor to exeragtegs under this License
despite a previous violation.

(g) "License Elements" means the following high-level license attributes as setkby
Licensor and indicated in the title of this License: Attrilaun, ShareAlike.

2. Fair Use Rights. Nothing in this license is intended to reduce, limit, or riestany rights
arising from fair use, first sale or other limitations on thxelesive rights of the copyright
owner under copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License, Liceheteby grants
You a worldwide, royalty-free, non-exclusive, perpetual the duration of the applicable
copyright) license to exercise the rights in the Work asestdtelow:

(a) to reproduce the Work, to incorporate the Work into onenore Collective Works,
and to reproduce the Work as incorporated in the Collectioekd/

(b) to create and reproduce Derivative Works;

(c) to distribute copies or phonorecords of, display putliperform publicly, and per-
form publicly by means of a digital audio transmission therkacluding as incor-
porated in Collective Works;

APPENDIX A. COPYING THIS DOCUMENT 53

(d) to distribute copies or phonorecords of, display pufliperform publicly, and per-
form publicly by means of a digital audio transmission Dative Works.

(e) For the avoidance of doubt, where the work is a musicalpmsition:

i. Performance Royalties Under Blanket LicensesLicensor waives the exclu-
sive right to collect, whether individually or via a perfoamce rights society
(e.g. ASCAP, BMI, SESAC), royalties for the public perfonnea or public dig-
ital performance (e.g. webcast) of the Work.

ii. Mechanical Rights and Statutory Royalties. Licensor waives the exclusive
right to collect, whether individually or via a music righgeciety or designated
agent (e.g. Harry Fox Agency), royalties for any phonordcéou create from
the Work ("cover version™) and distribute, subject to thenpailsory license cre-
ated by 17 USC Section 115 of the US Copyright Act (or the emjaivt in other
jurisdictions).

() Webcasting Rights and Statutory RoyaltiesFor the avoidance of doubt, where the
Work is a sound recording, Licensor waives the exclusivatrig collect, whether
individually or via a performance-rights society (e.g. 8d&Exchange), royalties for
the public digital performance (e.g. webcast) of the Wouhject to the compulsory
license created by 17 USC Section 114 of the US Copyright éwcthle equivalent in
other jurisdictions).

The above rights may be exercised in all media and formatsheh@ow known or here-

after devised. The above rights include the right to maké socdifications as are techni-
cally necessary to exercise the rights in other media anddts. All rights not expressly
granted by Licensor are hereby reserved.

4. Restrictions. The license granted in Section 3 above is expressly madecuiy and
limited by the following restrictions:

(&) You may distribute, publicly display, publicly performr publicly digitally perform
the Work only under the terms of this License, and You muduthe a copy of, or
the Uniform Resource Identifier for, this License with evenpy or phonorecord
of the Work You distribute, publicly display, publicly perim, or publicly digitally
perform. You may not offer or impose any terms on the Work #i&dr or restrict
the terms of this License or the recipients’ exercise of tghts granted hereunder.
You may not sublicense the Work. You must keep intact allagstithat refer to this
License and to the disclaimer of warranties. You may notrithste, publicly dis-
play, publicly perform, or publicly digitally perform the @k with any technological
measures that control access or use of the Work in a mannensistent with the
terms of this License Agreement. The above applies to th&k\A®incorporated in a
Collective Work, but this does not require the Collectiver®apart from the Work
itself to be made subject to the terms of this License. If Y@mate a Collective Work,
upon notice from any Licensor You must, to the extent prattie, remove from the

APPENDIX A. COPYING THIS DOCUMENT 54

(b)

(©)

Collective Work any credit as required by clause 4(c), asiested. If You create a
Derivative Work, upon notice from any Licensor You must,he extent practicable,
remove from the Derivative Work any credit as required byisia4(c), as requested.

You may distribute, publicly display, publicly perforrar publicly digitally perform
a Derivative Work only under the terms of this License, arlaggsion of this License
with the same License Elements as this License, or a Cre@ovemons iCommons
license that contains the same License Elements as thisdacg.g. Attribution-
ShareAlike 2.5 Japan). You must include a copy of, or the &fnifResource Iden-
tifier for, this License or other license specified in the jjweg sentence with every
copy or phonorecord of each Derivative Work You distribygeblicly display, pub-
licly perform, or publicly digitally perform. You may not &dr or impose any terms
on the Derivative Works that alter or restrict the terms a$ thicense or the recipi-
ents’ exercise of the rights granted hereunder, and You keegb intact all notices
that refer to this License and to the disclaimer of warramtdou may not distribute,
publicly display, publicly perform, or publicly digitallperform the Derivative Work
with any technological measures that control access or tigged/Nork in a man-
ner inconsistent with the terms of this License Agreemeihe dabove applies to the
Derivative Work as incorporated in a Collective Work, buistdoes not require the
Collective Work apart from the Derivative Work itself to beade subject to the terms
of this License.

If you distribute, publicly display, publicly perfornoy publicly digitally perform the
Work or any Derivative Works or Collective Works, You mustekeintact all copy-
right notices for the Work and provide, reasonable to theiomacr means You are
utilizing: (i) the name of the Original Author (or pseudonyihapplicable) if sup-
plied, and/or (ii) if the Original Author and/or Licensor slgnate another party or
parties (e.g. a sponsor institute, publishing entity, jaly for attribution in Licen-
sor’s copyright notice, terms of service or by other reabdmaneans, the name of
such party or parties; the title of the Work if supplied; te #xtent reasonably practi-
cable, the Uniform Resource Identifier, if any, that Licarsuecifies to be associated
with the Work, unless such URI does not refer to the copyrigitice or licensing
information for the Work; and in the case of a Derivative Waaikcredit identifying
the use of the Work in the Derivative Work (e.g., "French slation of the Work by
Original Author," or "Screenplay based on original Work bgigihal Author"). Such
credit may be implemented in any reasonable manner; prdyldmvever, that in the
case of a Derivative Work or Collective Work, at a minimum swecedit will appear
where any other comparable authorship credit appears aadnanner at least as
prominent as such other comparable authorship credit.

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE AGREED TO BY THE PARTIES IN WRITING, LICENER
OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANS
OF ANY KIND CONCERNING THE MATERIALS, EXPRESS, IMPLIED, STRU-

APPENDIX A. COPYING THIS DOCUMENT 55

TORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTES OF
TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR PURPOSHNONIN-
FRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCARY,

OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVER
ABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPHD
WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability.

EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, INNO EVENT W.L
LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL,
INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGESARIS-
ING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination

(a) This License and the rights granted hereunder will teat@ automatically upon any
breach by You of the terms of this License. Individuals oiites¢ who have received
Derivative Works or Collective Works from You under this keiese, however, will
not have their licenses terminated provided such indiMglga entities remain in
full compliance with those licenses. Sections 1, 2, 5, 6,nd & will survive any
termination of this License.

(b) Subject to the above terms and conditions, the licensietgd here is perpetual (for
the duration of the applicable copyright in the Work). Ndtwgtanding the above,
Licensor reserves the right to release the Work under d@iffelicense terms or to
stop distributing the Work at any time; provided, howevettany such election will
not serve to withdraw this License (or any other license lizat been, or is required
to be, granted under the terms of this License), and thisnseeavill continue in full
force and effect unless terminated as stated above.

8. Miscellaneous

(a) Each time You distribute or publicly digitally perforring Work or a Collective Work,
the Licensor offers to the recipient a license to the Work lo@ $ame terms and
conditions as the license granted to You under this License.

(b) Each time You distribute or publicly digitally perform@erivative Work, Licensor
offers to the recipient a license to the original Work on tams terms and conditions
as the license granted to You under this License.

(c) If any provision of this License is invalid or unenfortda under applicable law, it
shall not affect the validity or enforceability of the remder of the terms of this
License, and without further action by the parties to thissagient, such provision
shall be reformed to the minimum extent necessary to make @awvision valid and
enforceable.

APPENDIX A. COPYING THIS DOCUMENT 56

(d) No term or provision of this License shall be deemed waeved no breach consented
to unless such waiver or consent shall be in writing and signethe party to be
charged with such waiver or consent.

(e) This License constitutes the entire agreement betweseparties with respect to the
Work licensed here. There are no understandings, agresmoergpresentations with
respect to the Work not specified here. Licensor shall notmb by any additional
provisions that may appear in any communication from Youis Tlicense may not
be modified without the mutual written agreement of the Lgmrand You.

Creative Commons is not a party to this License, and makes no
warranty whatsoever in connection with the Work. Creativat=
mons will not be liable to You or any party on any legal theayy f
any damages whatsoever, including without limitation aegeyal,
special, incidental or consequential damages arising mmection
to this license. Notwithstanding the foregoing two (2) seees,
if Creative Commons has expressly identified itself as tloehsor
hereunder, it shall have all rights and obligations of Lsamn

Except for the limited purpose of indicating to the publiath
the Work is licensed under the CCPL, neither party will use th
trademark "Creative Commons" or any related trademark go o
of Creative Commons without the prior written consent of &ine
Commons. Any permitted use will be in compliance with Cre-
ative Commons’ then-current trademark usage guideliresyay
be published on its website or otherwise made available ugon

quest from time to time. _
Creative Commons may be contacted at http://creativecamrmoay/

