Emdros Query Guide

Ulrik Petersen

January 24, 2006

Abstract
This guide will show you how to use the Emdros Corpus Queryesgsto
query your data. It assumes that you have already importeddata into Emdros,
and simply want to start querying. It is aimed at the non+técdi person, though
familiarity with corpus linguistics is assumed.

Contents

1 Introduction 2
2 The database model 2
3 Getting started 3
4 Comments 3

5 Gentle introduction 4
51 Blocks e
5.1.1 Objectblocks
5.1.2 Powerblock
5.1.3 Gaphblocks
5.2 Theoverruling principleof MQL L.
5.3 Stringsofblocks
5.4 Embeddingofblocks

mm‘h-b-b-b'b

6 Blocks in more detail 6

6.1 Objectblocks 6
6.1.1 Feature-restrictions L 6
6.1.2 Feature-comparisonform. 6
6.1.3 Values. 7
6.1.4 Comparisonoperators 7
6.1.5 ThelNoperator. 7
6.1.6 TheHASoperator 7

6.2 Powerblocks 8
6.2.1 Limitingwith<and<=..................... 8
6.2.2 Limiting with BETWEEN XANDY 8

6.3 Gapblocks 9
6.3.1 Introduction. 9
6.3.2 Optionalgapblocks 9
6.3.3 Automatic insertion of optionalgap blocks 9

7 Advanced topics 10

7.1 Introduction 10
7.2 Objectblocks 10
7.2.1 Objectreferences ("AS”) oL 10
7.2.2 FOCUS/RETRIEVE/NORETRIEVE 11
7.2.3 Innerstringofblocks L. 11
7.2.4 FIRST/LAST/FIRSTANDLAST 12
7.2.5 Regularexpressionoperators 12
726 Kleenestar 13
7.27 NOTEXIST e e e 14
7.3 Stringsofblocks L 15
7.3.1 ORbetweenstringsofblocks 15
7.3.2 Restrictions on OR (more on the AS keyword) 17
A Values 18
Al Atomicvalues 18
A2 LIStS . . . o 18
B Lexical rules 18
C Regular expressions 19
C.1 Characterclasses i 20
C.2 Grouping v v e e 20
C.3 KleeneStar(*) e 20
C.4 KleenePlus(+) e 21
C5 OR(]) -« v o oo 21
C.6 Escapes e 21
C.7 Anycharacter 21

1 Introduction

This query guide will show you how to query your data with thadtos Corpus Query
Systemt It is aimed at a non-technical (i.e., non-programmer) readigt assumes
familiarity with corpus linguistics.

2 The database model

The EMdF model underlying Emdros has four concepts:
1. Monads
2. Objects

3. Object types

4. Features

Ihttp://www.emdros.org/

A monad is simply an integer, no more, no less.
An object is a set of monads, and belongs to an object type.
An object type groups a set of objects with similar charasties. Examples would
include “Word”, “Phrase”, “Clause”, “Page”, “Chapter”, the”, “Book”, etc.
The object type of an object determins what features it hdsafure is an attribute.
Examples would include “Word.part_of speech”, “Wordfage”, “Word.lemma”, “Phrase.phrase_type”,
“Phrase.function”, “Chapter.chapter_number”, etc.
The set of monads of an object is quite arbitrary, in that @édeot be contiguous,
but may have one or more gaps. This is useful to model thikgselinbedded relative
clauses and postpositive conjunctions.

A feature “take on” exactly one type. This type is one of thkofeing:
Integer (e.,g., 1, 3, 100, 133, etc.)

id_d (this is a unique integer identifying an object, £1¢3,1003, etc.)
enumeration (see below)

list of any of the above

S

string of characters (e.g., 'This is my string.’)

An enumeration is a database-dependent set of labels. Thhusxact enumerations
available to you depend on what enumerations are availallar database. Examples
could be, if you have an enumeration called “part_of sp&échmight contain labels
like “noun”, “verb”, “adjective”, “adverb”, etc. Enumerains are also sometimes used
for phrasal categories like “NP”, “PP”, etc. Again, the eixeategories available to you

are dependent on what is available in your database; thegestexamples.

3 Getting started
At the beginning of every query, you must have this incaotati

SELECT ALL OBJECTS
WHERE

This tells Emdros that you wish to issue a linguistic querin this guide, we will
mostly omit this incantation, since it is common to all qesri

NOTE: If you are using Emdros through an interface not preditly the author of
Emdros, your interface designer may have chosen to let yatitbim stanza.

4 Comments

In this guide, we will often show comments in the queries. réhare two kinds of
comments, but we will only show examples of one kind, namie¢ydne that begins
with two slashes:

/I This is a comment

2The MQL language caters to much more than just linguistiaigagbut the rest is mainly concerned
with database maintenance and display of data, and so as&l®tihe scope of this query guide. See the
MQL User’s Guide for more information on these other queyety.

This kind of comment starts with the two slashes, and extertti¢ end of the line.
Such comments are ignored by Emdros.
The other kind is described in Appendix B on page 18.

5 Gentle introduction
5.1 Blocks
A “block” looks for something in the database. There aredhdads of blocks:

1. Obiject blocks —look for objects.
2. Power blocks — used to mean “arbitrary space within sunding the context”.

3. Gap blocks — look for “gaps” in the surrounding context.

5.1.1 Object blocks

A simple object block looks like this:
[word]

This looks for an object of type word.

5.1.2 Power block

A simple power block looks like this:

It is simply two dots next to each other.

5.1.3 Gap blocks

A simple gap block looks like this:
[9ap]

If you wish the gap to be optional, you can put a question méek the “gap” keyword:
[9ap?]

This is called an “optional gap block”.

5.2 The overruling principle of MQL
The overarching principle of MQL is:

The structure of the query
mirrors
the structure of the objects found
with respect to sequence and embedding.

4

This means that:

1. If two blocks are next to each other in the query, the obj#wty find must be
adjacent in the database:

[Al
[B]

2. Ifablock A is embedded inside another block B in the quitign the object that
block A finds must be embedded inside the object that block dsfin

B

]

[A] /I A object must be embedded in B

5.3 Strings of blocks

You can place blocks next to each other and thus look for agstof blocks. For
example, the query:

[phrase]
[phrase]

looks for two phrases that are adjacent in the database.

5.4 Embedding of blocks

You can embed (strings of) blocks in another block:

[Clause
[Phrase]
[Phrase]
[Phrase]

]

This query would find clauses inside of which there are attldagse phrases. The
phrases must be adjacent.

If you use the “power block”, you should always do so withim ttontext of a
surrounding block:

[Clause
[Phrase]

.[i?’hrase]
]

This would find all clauses in which there were at least twoagbs, but the phrases
need not be adjacent.

The reason you should always use a surrounding context wsiaeg the power
block is that otherwise, all combinations in the databaselwdt appears before the
power block and what appears after it will be retrieved, vahidll probably be more
data than you will want to deal with. The language does natlidis using a power
block at the outermost level, it might just return too muckedar your liking.

6 Blocks in more detall

In this section, we explain blocks in more detail: First abja@ocks, then power blocks,
and finally gap blocks.

6.1 Object blocks

As stated before, object blocks at their simplest look Ihis:t
[Phrase]

This query will find all phrases in the database. The wordtrigfiter the opening
bracket (“[) is the object type you wish to search for. Theeixcategories of object
type available to you depend on your database.

6.1.1 Feature-restrictions

You can search for feature-restrictions:

[Word surface='see’]

This finds all words whose surface-feature is the string™.see
You can use arbitrary Boolean expressions with featurgicéisns with the opera-
tors AND, OR, NOT, and grouping (i.e., parentheses):

[Phrase phrase_type=NP
AND (function = Subj OR function = Obj)
AND NOT self = 13082

]

This will find all phrases whose type is NP, and whose funcisogither Subj(ect) or
Obj(ect), and whose “self” feature is not 13082.

6.1.2 Feature-comparison form

Each feature-comparison is of the form:
feature operator value

For example, in the feature-comparison
phrase_type = NP

“type” is the feature, “=" is the operator, and “NP” is the val
The feature-comparisons must always appear in this orders,Tfor example, you
cannot say:

* NP = phrase_type // This won't work

3The “*" in front is meant to signify that the example is errooas, in accordance with the usual conven-
tion in linguistic writing.

Op. | Meaning Left-hand-side feature must be Right-hand-side value must b}a

= Equality integer, string, id_d, enumeration, ligt Same as left-hand-side
<> Inequality integer, string, id_d, enumeration Same as left-hand-side

< Less than integer, string, id_d, enumeration Same as left-hand-side
<= Less than or equal to integer, string, id_d, enumeration Same as left-hand-side

> Greater than integer, string, id_d, enumeration Same as left-hand-side
>= Greater than or equal tg integer, string, id_d, enumeration Same as left-hand-side

~ Regular expression string string

I~ Negated regular expr. | string string

IN List-membership integer, id_d, enumeration list
HAS | List-membership list integer, id_d, enumeration

Table 1: Comparison operators

6.1.3 Values

For details on values, such as integers and strings, pleas&mpendix A on page 18.
Briefly:

e integers and id_ds are written as usual (e.g., 1, 100, 15, et

e it is recommended that strings be written surrounded byglsimquotes’, not
"double quotes*.

e enumeration constants are written as they are declared metabase. Of course,
this is database-dependent. Examples could be (this mfayfldm your database):
NP, PP, AP, noun, verb.

6.1.4 Comparison operators

The operators available to you are listed in Table 1.

6.1.5 The IN operator

The IN operator is used like this:

[Word psp IN (noun,adjective,conjunction,article)]

That is, the left-hand-side must be a feature that is eithémtager, an id_d, or an enu-
meration, and the right-hand-side must be a comma-sepdrstt®f values in paren-
theses.

6.1.6 The HAS operator

The HAS operator is the inverse: It looks for a single valua list-feature:

[Word semantic_categories HAS royal]

4The reason is that double-quote-strings treat many chasaspecially, so you may need to “escape”
certain characters. See Appendix B on page 18 for details.

6.2 Power blocks

Power blocks are used to mean “an arbitrary stretch of space”

[Clause
[Phrase]

ti:’hrase]
]

This will find all clauses which have at least two phrases, iasitle such clauses, all
combinations of two phrases. The two phrases need not beeadja

6.2.1 Limiting with <and <=

You can limit the scope of the power-block like this:

[Clause
[Phrase]
. <=5 /| The space may only be up to 5 monads long
[Phrase]

]

This also exists in a “strictly less than” version:

[Clause
[Phrase]
. <5 /I The space may only be up to 4 monads long
[Phrase]

]

Exactly how many linguistic units a monad constitutes inrydatabase is dependent
on how the database was designed. It may be “word”, “morpHhgipleoneme”, “sen-
tence”, or none of these. Ask the person who designed théasdahow they treated

“monad granularity” if in doubt.

6.2.2 Limiting with BETWEEN X AND Y

The power block can also be used like this:

[Clause
[Phrase]
. BETWEEN 3 AND 5 // The space must be at least 3
/l and at most 5 monads long.
[Phrase]

]

This is equivalent to “3 <= X <= 5", where X is the length of thteesch in monads.

6.3 Gap blocks
6.3.1 Introduction

Gap blocks are used to look for “gaps” in the surrounding erhtFor example, some
linguists would hold that the sentence:

e The door, which opened towards the East, was blue.
in fact consists of two clauses, namely:

e The door... was blue.

e which opened towards the East

and that “which opened towards the East” isilaling, not a child, of the clause “The
door ... was blue.”

In such a scenario, there would be a “gap” in the clause “Tto¥ da was blue”,
corresponding to the embedded relative clause.

You can look for such cases with the gap block:

[Clause

[gap
[clause clause_type = relative]
]

]

6.3.2 Optional gap blocks

You can specify that a gap block may be optional, by placingestion mark after the
“gap” keyword:

[Phrase
[word psp=article]
[gap?
[word first and last psp = conjunction]
]

[word psp=noun]

]

This would look for all phrases in which there is an articlellJdwed optionally by a

gap inside of which the sole word is a conjunction. After tipti@nal gap, there must
be a word which is a noun. This occurs, e.g., in classical KGretere postpositive
conjunctions abound. These are usually constituents ahehlevel, but intervene in
the phrase and/or clause in which they stand. Thus they wpwddrise to a “gap”.

6.3.3 Automatic insertion of optional gap blocks

An optional gap block is inserted between other blocks byadkf This is to safeguard
against not finding cases such as the above with the posyeasinjunction. Thus the
following:

[Phrase
[word psp=article]
[word psp=noun]

]

would also find the cases where a postpositive conjunctitanianed between the
article and the noun. Thus the above does not really meaththairticle and the noun
must be adjacent; it really means that they must be adjaggndring any gaps in
between.

If you want to turn this automatic insertion off, you can mam exclamation mark
(“) between the blocks:

[Phrase
/I The ! turns off insertion of optional gap block
[word psp=article]!
[word psp=noun]

]

This will ensure that the article and the noun really are @eljg, and that no gaps
intervene.

7 Advanced topics

7.1 Introduction

This section explains some “advanced” topics. By “advaheesldo not mean that
they are difficult to grasp; rather, we merely mean that theydt belong to the “ba-
sics” of writing an MQL query. In addition, taking a “spirgbproach to learning” is a
philosophy to which we subscribe.

7.2 Object blocks
7.2.1 Objectreferences (“AS")

You can give an object a name, and refer back to it later in thezyg

[Clause AS container // the AS keyword assigns the name
[Phrase parent = container.self]
]

The AS keyword must appear right after the object type narGéa(fse” in this exam-
ple). After the AS keyword, you can write the name you wantite go the object.

Later in the query, you can then refer to a feature on the nasbgsgtt by means of
the “dot-notation”. In the above example, the “parent” teatof the “Phrase” object
type is compared with the “self” feature of the “Clause” aitje

This can be used with any operator, so long ad#ftehand-sideis a feature (e.qg.,
“parent”), and theight-hand-sideis the object reference usage (e.g., “container.self”).
Thus you cannot say:

5The “self” feature gives the id_d of the object in question.

10

* [Clause AS container
[Phrase container.self = parent] // This won't work
/I switch them around to make it work.

]

7.2.2 FOCUS/RETRIEVE/NORETRIEVE
You can specify that an object must be in FOCUS:

[Clause FOCUS]

How this shows up in your results depends on the implememtati the display tool.
Alternatively, you can explicitly say that something must be retrieved:

[Clause NORETRIEVE]

You can also explicitly say that it must be retrieved (thisimsecessary, as all objects
are retrieved by default):

[Clause RETRIEVE]

If you have an object reference declaration on a block, theirfOCUS/RETRIEVE/NORETRIEVE
keyword must come after the object reference declararitgomd before any feature-
restrictions:

[Clause
AS C1 /l 1. Object reference declaration
FOCUS /I 2. Focus-specification

clause_type = Wayyiqtol // 3. Feature-restriction

7.2.3 Inner string of blocks

You can, as already shown, have an inner string of blockdénan object block:

[Clause
[Phrase]
[Phrase]
[Phrase]

]

This will find all clauses that have at least three phrasadeéns
The inner string of blocks must come after any feature-i&ins:

[Clause
AS C1 /I 1. Object reference declaration
FOCUS /I 2. Focus-specification
clause_type = Wayyiqtol // 3. Feature-restriction
[Word] /I 4. Inner string of blocks
[Phrase]
[Phrase]

11

7.2.4 FIRST/LAST/FIRST AND LAST

You can specify that an object block must be FIRST, LAST, ®$T AND LAST in
its surrounding context:

/I Example 1:
[Clause

[Phrase FIRST AND LAST] // must be the only phrase in its conte xt
]

/I Example 2:
[Clause
[Phrase FIRST] // Must be first
[Phrase LAST] // Must be last
]

The FIRST/LAST/FIRST AND LAST specification must come betwany FOCUS/RETRIEVE/NORETRIVE
specification and any feature-restrictions:

[Sentence
[Clause
AS C1 /l 1. Object reference declaration
FOCUS /I 2. Focus-specification
FIRST AND LAST /I 3. FIRST/LAST/FIRST-AND-LAST spec.
clause_type = Wayyiqtol // 4. Feature-restriction
[Word] /I 5. Inner string of blocks
[Phrase]
[Phrase]

]

7.2.5 Regular expression operators

The “~” and “I~” operators work with Perfscompatible regular expressionsn the
right-hand-side:

/I finds both "see" and "See"

[Word surface ~ '[Ss]ee’]

/I finds everything that is neither "my" nor "your"
[Word surface !~ '(my)|(your)’]

Note that if you use the “backslash” escape-operator withutdie-quote-strings", you
need to escape it twice:
/I This will find a literatl $ followed by a literal dot.

[Word surface ~ "\$\."]

Thus it is often easier to use 'single quote strings’ withulag expressions:

6perl is a programming language, and Perl5 is version 5 ofghguage.
"For details on regular expressions, please see Appendix

12

/I This will find a literatl $ followed by a literal dot.
[Word surface ~ '$.]

For details, please see Appendix B on page 18.

7.2.6 Kleene star
You can have a Kleene star construction on any object bloelguaery:

[Phrase
/I Note the + at the end
[Word psp IN (article,noun,conjunction,adjective)]

*

]

This query will find all phrases, inside of which there areazer more adjacent words
whose parts of speech are either article, noun, conjunctiadjective. This would
find many noun phrases.

The Kleene star means “find me zero or more like this”.

You can also specify a set of integers that gives the numbiEmes required:

/I Example 1:
[Phrase
[Word] *={0,1} // This makes the word optional (0 or 1 times)

]

/I Example 2:

/I This finds all clauses in which the first phrase is a subjec

/I followed by exactly 3 non-subject, non-adjunct prases,

/I followed by an adjunct phrase.

[Clause
[Phrase FIRST function = Subject]
/I There must be exactly three phrases between the subject..
[Phrase NOT function IN (Subject,Adjunct)] * {3}

/I ... and the adjunct
[Phrase function = Adjunct]

]

/I Example 3:
[Clause
/I Finds such phrases 1,2,3,5,6,7, or 9 and above times
[Phrase
function = Subj OR function = Obj
] *{1-3,5-7,9-}

/I But still only within the surrounding clause

]

The following restrictions apply:

e You cannot have an object reference declaration (using th&eyword) on an
object block on which you also have a Kleene Star. For exantipie is NOT
allowed:

13

* [Phrase as pl] =* // OOPS! Not allowed to have both AS and Kleene Star!

[Phrase function=pl.functino]

e You cannot use an object reference that has been declardd arsobject block
with a Kleene Star, if the usage is outside the object blodk thie Kleene Star.
If it is used inside, you can. Thus this is NOT allowed:

* [Phrase
[Word as wl]
1+ // OOPS! Kleene Star on Phrase...
[Word surface=w1.surface] // so we can't “see” the referenc

o Whereas this is: allowed:

[Phrase
[Word as wl]

[Word lexeme=wl.lexeme]
]1* /I This =+ is OK; we don't “cross” it when we use the reference!

7.2.7 NOTEXIST
You can specify that an object block must “not exist” with tNeOTEXIST” keyword:

[Sentence
NOTEXIST [Word surface = ’see’]
]

This finds all sentences in which the word “see” does not occur
Note how this is very different from saying:

[Sentence
[Word surface <> ’see’]
]

This would find all sentences which has a word which is not™s&kat would include
sentences which did have the word “see”, but which also hiaeratords.

You are allowed to intermix NOTEXIST with other blocks in tek@me context. For
example, this is allowed:

[Clause
[Phrase]
NOTEXIST [Word surface="food"]
[Word surface="glue"]

]

What that means is that we want clauses inside of which tiseagphraseright after
which there is a Word with surface="glue”. From the end of the Pémastil the end of
the Clause, there must not exist a Word with surface="food".

14

e here!

So: a) The NOTEXIST block is regarded as not being presentvaoasidering
the surrounding blocks. That is why the “glue” word must tghtiafter the Phrase in
order for this query to match. Essentially, a NOTEXIST bldas “zero width” with
respect to consecutiveness. b) The NOTEXIST block is lodkedtarting at the end
of the previous block (or the start of the context if the NOTEX block is the first)
and running to the end of the context.

You are allowed to use NOTEXIST more than once in any givertexdn For
example, this is allowed:

[Sentence
NOTEXIST [Word surface = ’see’]
NOTEXIST [Word surface = 'the’]

]

This would find all sentences inside of which neither a worthvgurface="see” nor
a word with surface="the” exists. Because the NOTEXIST klaith surface="see”
is the first in the context, the word “see” must not occur angmehwithin the sen-
tence. Because a NOTEXIST block has “zero width” with resp@consecutiveness,
it means that the domain within which a word with surface®"tmust not occur is
also anywhere within the sentence.

You cannot use an object reference that has been declarsidéima NOTEXIST,
except if you also use it “inside” the same NOTEXIST. Thus gaannot say:

* [Clause
[Phrase
NOTEXIST[Word as wl surface="food"]
]

I/ OOPS! The NOTEXIST intervenes, so we can’'t “see” wl here..
[Word part_of _speech=wl.part_of speech]
]

But you can say:

[Clause
NOTEXIST [Phrase
[Word as wl part_of speech=noun]

/I This is OK! NOTEXIST does not intervene,
/I but stands above both!
[Word part_of speech <> wl.part_of speech]

]

7.3 Strings of blocks
7.3.1 OR between strings of blocks

A “string of blocks” is an unbroken sequence of object blogk@wer blocks, and/or
gap blocks. You can put an “OR” keyword in between two sucimgs:. The result
will be as though you had issued two separate queries, witrstiing of blocks taken
away and the other left in (and the OR taken out as well), thesrversa for the second
query. This is useful, e.g. to search for different comborad of a given sequence of
phrases with specific functions:

15

[Clause
[Phrase
[Phrase
[Phrase
[Phrase
or
[Phrase
[Phrase
[Phrase
[Phrase

]

function
function
function
function

function
function
function
function

Subj]

Pred]

Objc] /I Here the object comes before
Adjunct] // the adjunct

Subj]

Pred]

Adjunct] // Here the adjunct comes before
Objc] /I the object

As mentioned, the OR construct works between strings ofkslodt doesn’t matter
what kind of block is involved (object block, power block,@eap block), so you could

also say:
[Clause
[Phrase
[Phrase

function

function

Subj]

Obijc]

OR // The OR Works between on the one hand Subj..Objc
/I and on the other hand, Objc..Adjunct
[Phrase function = Objc]

[Phrase function = Adjunct]

]

[gap [Clause clause_type = Appositional]]

Or even:
[Clause
OR
[Phrase
[Phrase

]

function
function

Obijc]
Adjunct]

You can also have more than one OR between more than twostifridocks:

/I Finds all triples of object, adjunct, and complement
/I where either the object or the complement is first.
/I To find all six combinations (i.e., also adjunct first),
/I simply add two more ORs with the right orders of phrases.

[Clause
[Phrase
[Phrase
[Phrase
OR
[Phrase
[Phrase
[Phrase

function
function
functino

function
functino
function

Obijc]
Adjunct]
Complement]

Objc]

Complement]
Adjunct]

16

OR

[Phrase functino
[Phrase function
[Phrase function
OR

[Phrase functino
[Phrase function
[Phrase function

Complement]
Objc]
Adjunct]

Complement]
Adjunct]
Obijc]

]

7.3.2 Restrictions on OR (more on the AS keyword)

There is one restriction pertaining to OR: When you have aregfce between two
objects (using the AS keyword, see Section 7.2.1 on pagetiié), both the object
block on which you use the AS keyword, and the object block bittvyou use the
reference, must be within the SAME string of blocks. The eseannot cross an OR.
Thus you cannot say:

* [Clause
[Phrase AS p1]
OR
[Phrase function = pl.function] // OOPS! lllegal because it
/I crosses the OR construct!

]

Nor can you say:

* [Clause
[Phrase
[Phrase AS p2]
]

OR
[Phrase function = p2.function] // OOPS! lllegal because it
Il crosses the OR construct!

]

When we said that both the declaration (with the “AS” keywaadd the usage must
be within the same string of blocks, we did not mean that treetio be at the same
level, like this:

[Clause
[Phrase AS p1l]
[Phrase function <> pl.function] // This is OK, since it does
OR /I cross the OR.

| [gap]

These two, the declaration and the usage, are at the sanhe Bautdt is OK to have
one of them be more deeply nested than the other:

[Clause

17

not

[Phrase

[Phrase AS p1l] // This is more deeply nested than the usage

]

[Phrase function <> pl.function] // This is OK, since it does
OR Il cross the OR.

[9ap]

A Values

Al

Atomic values

There are four kinds of atomic values:

R

A.2

integer: e.g. 0, 1, 42, 976, 1000, etc.
id_d: Like integers, but can also be NIL (no value).
enumeration: Whatever is defined in your database.

string: Enclosed in "double quotes" or 'single quotes’.

Lists

You can build lists out of integers, id_ds, and enumeratitrels, but you cannot cur-
rently build lists of out strings.
Lists are enclosed in (parentheses), and are comma-sepakFatr example:

1.
2.
3.

List of integer: (0,1000,23,76)
List of id_d: (NIL, 13200)
List of enum label: (NP,AP,PP)

A list can also have a single value inside, e.g., (NP).

B

Lexical rules

. Whitespace is ignored except to separate tokens, andrigst

. Everything except enumeration-labels and strings is-tilsensitive. Enumera-

tion labels and strings ARE case-sensitive.

. Reserved words (such as “object”, “create”, “type”, etoay not be used except

as reserved words. That is, you cannot, say, have a featlied ¢gype” or an
enumeration constant called “object”.

. Strings can be of two kinds: Either surrounded by "doubletgs", or surrounded

by 'single quotes’. Both may contain newlines. Backslashegle "double-

guote-strings" behave as escape-characters accordingpbte Z. Backslashes
inside of 'single-quote-strings’ behave as backslashed,ia fact you cannot
escape anything inside of a 'single-quote-string’.

18

not

| Escape| Meaning

\n line feed (ASCII 0x0a)

\t horizontal tab (ASCII 0x09)
\v vertical tab (ASCII 0x0b)

\b backspace (ASCII 0x08)

\a alert/bell (ASCII 0x07)

\f form feed (ASCII 0xQc)

\r carriage-return (ASCII 0x0d)

\\ \
\? ?
\! i)

\H n

\XYZ | The character with octal-based number XYZ (e.g., \040 men8R)
\xXY | The character with hexadecimal-based number XY (e.g. \x@@nimg 32)

Table 2: Backslash-escapes in "double-quote-strings"

5. Comments are ignored when parsing MQL. There are two kinds

/I This kind starts with two slashes.
/I It extends to the end of the line.
/I Thus if you want multiple lines commented out,

/I you have to start each new line with the double slash.
[+ This is the other kind of comment.
It may extend over multiple lines. It begins with
slash-star and ends with star-slash.
*/

6. Anidentifier starts with an underscore or the letters A-Z or the letters H-it
is longer than 1 character, it continues with underscoedtgrs from A-Z, letters
from a-z, or digits in the range 0-9. Thus it conforms to thgular expression
'_A-Za-z][_A-Za-z0-9]*.

7. Database naméspbject type names, feature names, enumeration names, enu-
meration labels, and monad set names must be identifiers.

C Regular expressions

This is a crash course in regular expressions. Regular egjores (or RegExes) are a
way of specifying a set of strings, which in Emdros can be usetbmpare a string-
feature against many values at once. For example, if you twiskarch for both “See”
and “see” at once, you can use the regular expression cosopari

surface ~ '[Ss]ee’
The effect is as if you had said:

surface = 'See’ OR surface = ’'see’

8Except on SQLite, where a database name may be non-idestifierthat case, however, it must be
expressed as a "string" or a 'string’.

19

C.1 Character classes

You can specify character-classes with the [square bratk&icharacter-class is a set
of characters that are looked for at once. A simple exampigahvoe:

[AaBbCc]

This would look for the letters A, B, C, a, b, and c all at ondgust one of them was
present, the whole character class would match.
The above could also be rewritten as:

[A-Ca-c]

This is because, inside a character class, the dash (alsmlkasminus) means “from
the previous character to the next character, both inatisivhus if you wish to search
for the characters A-Z, you can say [A-Z]. If you wish to sdafor a minus, and
include the minus in the character class, you can put it febté character class:

[A-Z-]

This would search for the letters A-Z, but would also seamstilie minus.
If you wish to negate the character class, you can put thée {(H&) at the begin-
ning of the class:

["A-Z]
This would search for all charactegescept the letters A-Z (thus it would also search
for the letters a-z, since regular expressions are casatise.
C.2 Grouping
You can group sequences of characters or character clagbgsarentheses:
(se[ea])

The utility of grouping will be apparent shortly.

C.3 Kleene Star (*)
You can specify that something must occur zero or more times:
[A-Za-z0-9] =

This would search for the characters A-Z, a-z, and 0-9, aay thay occur 0 or more
times after each other. Thus both “, “a”, “aA, “aAZ”, and “e’ would match.

The Kleene Star applies only to the previous characteradhar class, or group.
Thus if you wish a whole string of characters to be repeated,ijust use grouping:

(elar) =

ST "

This would match *”, “elar”, “elarelar”, “elarelarelar”,te.
If you say:

elar =

" ow " " ow

then “ela”, “elar”, “elarr”, “elarrr”, etc. will be matched

20

C.4 Kleene Plus (+)

The Kleene Plus (specified with “+") is similar to the KleertarSexcept that it matches
one or more times, not zero or more times:

utterance ~ 'My precious+’

would match any of “My precious”, “My preciouss”, “My preaisss”, etc.
Again, the Kleene Plus applies only to the previous charactaracter class, or
group. If you wish to repeat a whole string, then it must beugex with parentheses.

C5 OR(])

You can specify that either of two characters, characteses, or groups should match,
with the “or” construct (which in the regular expressiongi§”):

(sea)|(lake)

This would match either “sea” or “lake”.

As with the Kleene Star, the | applies only to the surroundivgcharacters, char-
acter classes, or groups. Thus if you do wish to either of tiogs, you must put
parentheses around both strings, as in the “sea or lake” gesabove. If you say:

sea|lake

then the two strings “selake” or “seaake” will be matched.

C.6 Escapes

If you wish to match one of the characters that have a speaahing, e.g., “[", 1",
et 4 ete., then you must put a backslash (“\) in frat: “\[?, “\]", “*”, etc.

Of course, a backslash also has special meaning, so if ydutwisatch a back-
slash, you must escape it, too: “\\".

C.7 Any character

If you wish to match “any character”, there is a shorthandtlf@ character class that
matches “all characters”; It is simply a dot (also known asqu:

We the people. *

This would match any string which started with the letters"tife people” and which
then continued with zero or more characters of any kind.
Note that if you wish to match a period, you need to escapedhegh “\.".

21

