Mon May 14 04:42:58 2007

Asterisk developer's documentation


dsp.c

Go to the documentation of this file.
00001 /*
00002  * Asterisk -- An open source telephony toolkit.
00003  *
00004  * Copyright (C) 1999 - 2005, Digium, Inc.
00005  *
00006  * Mark Spencer <markster@digium.com>
00007  *
00008  * Goertzel routines are borrowed from Steve Underwood's tremendous work on the
00009  * DTMF detector.
00010  *
00011  * See http://www.asterisk.org for more information about
00012  * the Asterisk project. Please do not directly contact
00013  * any of the maintainers of this project for assistance;
00014  * the project provides a web site, mailing lists and IRC
00015  * channels for your use.
00016  *
00017  * This program is free software, distributed under the terms of
00018  * the GNU General Public License Version 2. See the LICENSE file
00019  * at the top of the source tree.
00020  */
00021 
00022 /*! \file
00023  *
00024  * \brief Convenience Signal Processing routines
00025  *
00026  * \author Mark Spencer <markster@digium.com>
00027  * \author Steve Underwood <steveu@coppice.org>
00028  */
00029 
00030 /* Some routines from tone_detect.c by Steven Underwood as published under the zapata library */
00031 /*
00032    tone_detect.c - General telephony tone detection, and specific
00033                         detection of DTMF.
00034 
00035         Copyright (C) 2001  Steve Underwood <steveu@coppice.org>
00036 
00037         Despite my general liking of the GPL, I place this code in the
00038         public domain for the benefit of all mankind - even the slimy
00039         ones who might try to proprietize my work and use it to my
00040         detriment.
00041 */
00042 
00043 #include "asterisk.h"
00044 
00045 ASTERISK_FILE_VERSION(__FILE__, "$Revision$")
00046 
00047 #include <sys/types.h>
00048 #include <stdlib.h>
00049 #include <unistd.h>
00050 #include <string.h>
00051 #include <math.h>
00052 #include <errno.h>
00053 #include <stdio.h>
00054 
00055 #include "asterisk/frame.h"
00056 #include "asterisk/channel.h"
00057 #include "asterisk/logger.h"
00058 #include "asterisk/dsp.h"
00059 #include "asterisk/ulaw.h"
00060 #include "asterisk/alaw.h"
00061 #include "asterisk/utils.h"
00062 
00063 /*! Number of goertzels for progress detect */
00064 enum gsamp_size {
00065    GSAMP_SIZE_NA = 183,       /*!< North America - 350, 440, 480, 620, 950, 1400, 1800 Hz */
00066    GSAMP_SIZE_CR = 188,       /*!< Costa Rica, Brazil - Only care about 425 Hz */
00067    GSAMP_SIZE_UK = 160        /*!< UK disconnect goertzel feed - should trigger 400hz */
00068 };
00069 
00070 enum prog_mode {
00071    PROG_MODE_NA = 0,
00072    PROG_MODE_CR,
00073    PROG_MODE_UK
00074 };
00075 
00076 enum freq_index { 
00077    /*! For US modes { */
00078    HZ_350 = 0,
00079    HZ_440,
00080    HZ_480,
00081    HZ_620,
00082    HZ_950,
00083    HZ_1400,
00084    HZ_1800, /*!< } */
00085 
00086    /*! For CR/BR modes */
00087    HZ_425 = 0,
00088 
00089    /*! For UK mode */
00090    HZ_400 = 0
00091 };
00092 
00093 static struct progalias {
00094    char *name;
00095    enum prog_mode mode;
00096 } aliases[] = {
00097    { "us", PROG_MODE_NA },
00098    { "ca", PROG_MODE_NA },
00099    { "cr", PROG_MODE_CR },
00100    { "br", PROG_MODE_CR },
00101    { "uk", PROG_MODE_UK },
00102 };
00103 
00104 static struct progress {
00105    enum gsamp_size size;
00106    int freqs[7];
00107 } modes[] = {
00108    { GSAMP_SIZE_NA, { 350, 440, 480, 620, 950, 1400, 1800 } }, /*!< North America */
00109    { GSAMP_SIZE_CR, { 425 } },                                 /*!< Costa Rica, Brazil */
00110    { GSAMP_SIZE_UK, { 400 } },                                 /*!< UK */
00111 };
00112 
00113 #define DEFAULT_THRESHOLD  512
00114 
00115 enum busy_detect {
00116    BUSY_PERCENT = 10,      /*!< The percentage difference between the two last silence periods */
00117    BUSY_PAT_PERCENT = 7,   /*!< The percentage difference between measured and actual pattern */
00118    BUSY_THRESHOLD = 100,   /*!< Max number of ms difference between max and min times in busy */
00119    BUSY_MIN = 75,          /*!< Busy must be at least 80 ms in half-cadence */
00120    BUSY_MAX =3100          /*!< Busy can't be longer than 3100 ms in half-cadence */
00121 };
00122 
00123 /*! Remember last 15 units */
00124 #define DSP_HISTORY     15
00125 
00126 /*! Define if you want the fax detector -- NOT RECOMMENDED IN -STABLE */
00127 #define FAX_DETECT
00128 
00129 #define TONE_THRESH     10.0  /*!< How much louder the tone should be than channel energy */
00130 #define TONE_MIN_THRESH    1e8   /*!< How much tone there should be at least to attempt */
00131 
00132 /*! All THRESH_XXX values are in GSAMP_SIZE chunks (us = 22ms) */
00133 enum gsamp_thresh {
00134    THRESH_RING = 8,           /*!< Need at least 150ms ring to accept */
00135    THRESH_TALK = 2,           /*!< Talk detection does not work continuously */
00136    THRESH_BUSY = 4,           /*!< Need at least 80ms to accept */
00137    THRESH_CONGESTION = 4,     /*!< Need at least 80ms to accept */
00138    THRESH_HANGUP = 60,        /*!< Need at least 1300ms to accept hangup */
00139    THRESH_RING2ANSWER = 300   /*!< Timeout from start of ring to answer (about 6600 ms) */
00140 };
00141 
00142 #define  MAX_DTMF_DIGITS      128
00143 
00144 /* Basic DTMF specs:
00145  *
00146  * Minimum tone on = 40ms
00147  * Minimum tone off = 50ms
00148  * Maximum digit rate = 10 per second
00149  * Normal twist <= 8dB accepted
00150  * Reverse twist <= 4dB accepted
00151  * S/N >= 15dB will detect OK
00152  * Attenuation <= 26dB will detect OK
00153  * Frequency tolerance +- 1.5% will detect, +-3.5% will reject
00154  */
00155 
00156 #define DTMF_THRESHOLD     8.0e7
00157 #define FAX_THRESHOLD      8.0e7
00158 #define FAX_2ND_HARMONIC   2.0     /* 4dB */
00159 #define DTMF_NORMAL_TWIST  6.3     /* 8dB */
00160 #ifdef   RADIO_RELAX
00161 #define DTMF_REVERSE_TWIST          ((digitmode & DSP_DIGITMODE_RELAXDTMF) ? 6.5 : 2.5)     /* 4dB normal */
00162 #else
00163 #define DTMF_REVERSE_TWIST          ((digitmode & DSP_DIGITMODE_RELAXDTMF) ? 4.0 : 2.5)     /* 4dB normal */
00164 #endif
00165 #define DTMF_RELATIVE_PEAK_ROW   6.3     /* 8dB */
00166 #define DTMF_RELATIVE_PEAK_COL   6.3     /* 8dB */
00167 #define DTMF_2ND_HARMONIC_ROW       ((digitmode & DSP_DIGITMODE_RELAXDTMF) ? 1.7 : 2.5)     /* 4dB normal */
00168 #define DTMF_2ND_HARMONIC_COL 63.1    /* 18dB */
00169 #define DTMF_TO_TOTAL_ENERGY  42.0
00170 
00171 #ifdef OLD_DSP_ROUTINES
00172 #define MF_THRESHOLD    8.0e7
00173 #define MF_NORMAL_TWIST    5.3     /* 8dB */
00174 #define MF_REVERSE_TWIST   4.0     /* was 2.5 */
00175 #define MF_RELATIVE_PEAK   5.3     /* 8dB */
00176 #define MF_2ND_HARMONIC    1.7   /* was 2.5  */
00177 #else
00178 #define BELL_MF_THRESHOLD  1.6e9
00179 #define BELL_MF_TWIST      4.0     /* 6dB */
00180 #define BELL_MF_RELATIVE_PEAK 12.6    /* 11dB */
00181 #endif
00182 
00183 #if !defined(BUSYDETECT_MARTIN) && !defined(BUSYDETECT) && !defined(BUSYDETECT_TONEONLY) && !defined(BUSYDETECT_COMPARE_TONE_AND_SILENCE)
00184 #define BUSYDETECT_MARTIN
00185 #endif
00186 
00187 typedef struct {
00188    float v2;
00189    float v3;
00190    float fac;
00191 #ifndef OLD_DSP_ROUTINES
00192    int samples;
00193 #endif   
00194 } goertzel_state_t;
00195 
00196 typedef struct
00197 {
00198    goertzel_state_t row_out[4];
00199    goertzel_state_t col_out[4];
00200 #ifdef FAX_DETECT
00201    goertzel_state_t fax_tone;
00202 #endif
00203 #ifdef OLD_DSP_ROUTINES
00204    goertzel_state_t row_out2nd[4];
00205    goertzel_state_t col_out2nd[4];
00206 #ifdef FAX_DETECT
00207    goertzel_state_t fax_tone2nd;    
00208 #endif
00209    int hit1;
00210    int hit2;
00211    int hit3;
00212    int hit4;
00213 #else
00214    int hits[3];
00215 #endif   
00216    int mhit;
00217    float energy;
00218    int current_sample;
00219 
00220    char digits[MAX_DTMF_DIGITS + 1];
00221    
00222    int current_digits;
00223    int detected_digits;
00224    int lost_digits;
00225    int digit_hits[16];
00226 #ifdef FAX_DETECT
00227    int fax_hits;
00228 #endif
00229 } dtmf_detect_state_t;
00230 
00231 typedef struct
00232 {
00233    goertzel_state_t tone_out[6];
00234    int mhit;
00235 #ifdef OLD_DSP_ROUTINES
00236    int hit1;
00237    int hit2;
00238    int hit3;
00239    int hit4;
00240    goertzel_state_t tone_out2nd[6];
00241    float energy;
00242 #else
00243    int hits[5];
00244 #endif
00245    int current_sample;
00246    
00247    char digits[MAX_DTMF_DIGITS + 1];
00248 
00249    int current_digits;
00250    int detected_digits;
00251    int lost_digits;
00252 #ifdef FAX_DETECT
00253    int fax_hits;
00254 #endif
00255 } mf_detect_state_t;
00256 
00257 static float dtmf_row[] =
00258 {
00259    697.0,  770.0,  852.0,  941.0
00260 };
00261 static float dtmf_col[] =
00262 {
00263    1209.0, 1336.0, 1477.0, 1633.0
00264 };
00265 
00266 static float mf_tones[] =
00267 {
00268    700.0, 900.0, 1100.0, 1300.0, 1500.0, 1700.0
00269 };
00270 
00271 #ifdef FAX_DETECT
00272 static float fax_freq = 1100.0;
00273 #endif
00274 
00275 static char dtmf_positions[] = "123A" "456B" "789C" "*0#D";
00276 
00277 #ifdef OLD_DSP_ROUTINES
00278 static char mf_hit[6][6] = {
00279    /*  700 + */ {   0, '1', '2', '4', '7', 'C' },
00280    /*  900 + */ { '1',   0, '3', '5', '8', 'A' },
00281    /* 1100 + */ { '2', '3',   0, '6', '9', '*' },
00282    /* 1300 + */ { '4', '5', '6',   0, '0', 'B' },
00283    /* 1500 + */ { '7', '8', '9', '0',  0, '#' },
00284    /* 1700 + */ { 'C', 'A', '*', 'B', '#',  0  },
00285 };
00286 #else
00287 static char bell_mf_positions[] = "1247C-358A--69*---0B----#";
00288 #endif
00289 
00290 static inline void goertzel_sample(goertzel_state_t *s, short sample)
00291 {
00292    float v1;
00293    float fsamp  = sample;
00294    
00295    v1 = s->v2;
00296    s->v2 = s->v3;
00297    s->v3 = s->fac * s->v2 - v1 + fsamp;
00298 }
00299 
00300 static inline void goertzel_update(goertzel_state_t *s, short *samps, int count)
00301 {
00302    int i;
00303    
00304    for (i=0;i<count;i++) 
00305       goertzel_sample(s, samps[i]);
00306 }
00307 
00308 
00309 static inline float goertzel_result(goertzel_state_t *s)
00310 {
00311    return s->v3 * s->v3 + s->v2 * s->v2 - s->v2 * s->v3 * s->fac;
00312 }
00313 
00314 static inline void goertzel_init(goertzel_state_t *s, float freq, int samples)
00315 {
00316    s->v2 = s->v3 = 0.0;
00317    s->fac = 2.0 * cos(2.0 * M_PI * (freq / 8000.0));
00318 #ifndef OLD_DSP_ROUTINES
00319    s->samples = samples;
00320 #endif
00321 }
00322 
00323 static inline void goertzel_reset(goertzel_state_t *s)
00324 {
00325    s->v2 = s->v3 = 0.0;
00326 }
00327 
00328 struct ast_dsp {
00329    struct ast_frame f;
00330    int threshold;
00331    int totalsilence;
00332    int totalnoise;
00333    int features;
00334    int ringtimeout;
00335    int busymaybe;
00336    int busycount;
00337    int busy_tonelength;
00338    int busy_quietlength;
00339    int historicnoise[DSP_HISTORY];
00340    int historicsilence[DSP_HISTORY];
00341    goertzel_state_t freqs[7];
00342    int freqcount;
00343    int gsamps;
00344    enum gsamp_size gsamp_size;
00345    enum prog_mode progmode;
00346    int tstate;
00347    int tcount;
00348    int digitmode;
00349    int thinkdigit;
00350    float genergy;
00351    union {
00352       dtmf_detect_state_t dtmf;
00353       mf_detect_state_t mf;
00354    } td;
00355 };
00356 
00357 static void ast_dtmf_detect_init (dtmf_detect_state_t *s)
00358 {
00359    int i;
00360 
00361 #ifdef OLD_DSP_ROUTINES
00362    s->hit1 = 
00363    s->mhit = 
00364    s->hit3 =
00365    s->hit4 = 
00366    s->hit2 = 0;
00367 #else
00368    s->hits[0] = s->hits[1] = s->hits[2] = 0;
00369 #endif
00370    for (i = 0;  i < 4;  i++) {
00371       goertzel_init (&s->row_out[i], dtmf_row[i], 102);
00372       goertzel_init (&s->col_out[i], dtmf_col[i], 102);
00373 #ifdef OLD_DSP_ROUTINES
00374       goertzel_init (&s->row_out2nd[i], dtmf_row[i] * 2.0, 102);
00375       goertzel_init (&s->col_out2nd[i], dtmf_col[i] * 2.0, 102);
00376 #endif   
00377       s->energy = 0.0;
00378    }
00379 #ifdef FAX_DETECT
00380    /* Same for the fax dector */
00381    goertzel_init (&s->fax_tone, fax_freq, 102);
00382 
00383 #ifdef OLD_DSP_ROUTINES
00384    /* Same for the fax dector 2nd harmonic */
00385    goertzel_init (&s->fax_tone2nd, fax_freq * 2.0, 102);
00386 #endif   
00387 #endif /* FAX_DETECT */
00388    s->current_sample = 0;
00389    s->detected_digits = 0;
00390    s->current_digits = 0;
00391    memset(&s->digits, 0, sizeof(s->digits));
00392    s->lost_digits = 0;
00393    s->digits[0] = '\0';
00394 }
00395 
00396 static void ast_mf_detect_init (mf_detect_state_t *s)
00397 {
00398    int i;
00399 #ifdef OLD_DSP_ROUTINES
00400    s->hit1 = 
00401    s->hit2 = 0;
00402 #else 
00403    s->hits[0] = s->hits[1] = s->hits[2] = s->hits[3] = s->hits[4] = 0;
00404 #endif
00405    for (i = 0;  i < 6;  i++) {
00406       goertzel_init (&s->tone_out[i], mf_tones[i], 160);
00407 #ifdef OLD_DSP_ROUTINES
00408       goertzel_init (&s->tone_out2nd[i], mf_tones[i] * 2.0, 160);
00409       s->energy = 0.0;
00410 #endif
00411    }
00412    s->current_digits = 0;
00413    memset(&s->digits, 0, sizeof(s->digits));
00414    s->current_sample = 0;
00415    s->detected_digits = 0;
00416    s->lost_digits = 0;
00417    s->digits[0] = '\0';
00418    s->mhit = 0;
00419 }
00420 
00421 static int dtmf_detect (dtmf_detect_state_t *s, int16_t amp[], int samples, 
00422        int digitmode, int *writeback, int faxdetect)
00423 {
00424    float row_energy[4];
00425    float col_energy[4];
00426 #ifdef FAX_DETECT
00427    float fax_energy;
00428 #ifdef OLD_DSP_ROUTINES
00429    float fax_energy_2nd;
00430 #endif   
00431 #endif /* FAX_DETECT */
00432    float famp;
00433    float v1;
00434    int i;
00435    int j;
00436    int sample;
00437    int best_row;
00438    int best_col;
00439    int hit;
00440    int limit;
00441 
00442    hit = 0;
00443    for (sample = 0;  sample < samples;  sample = limit) {
00444       /* 102 is optimised to meet the DTMF specs. */
00445       if ((samples - sample) >= (102 - s->current_sample))
00446          limit = sample + (102 - s->current_sample);
00447       else
00448          limit = samples;
00449 #if defined(USE_3DNOW)
00450       _dtmf_goertzel_update (s->row_out, amp + sample, limit - sample);
00451       _dtmf_goertzel_update (s->col_out, amp + sample, limit - sample);
00452 #ifdef OLD_DSP_ROUTINES
00453       _dtmf_goertzel_update (s->row_out2nd, amp + sample, limit2 - sample);
00454       _dtmf_goertzel_update (s->col_out2nd, amp + sample, limit2 - sample);
00455 #endif      
00456       /* XXX Need to fax detect for 3dnow too XXX */
00457       #warning "Fax Support Broken"
00458 #else
00459       /* The following unrolled loop takes only 35% (rough estimate) of the 
00460          time of a rolled loop on the machine on which it was developed */
00461       for (j=sample;j<limit;j++) {
00462          famp = amp[j];
00463          s->energy += famp*famp;
00464          /* With GCC 2.95, the following unrolled code seems to take about 35%
00465             (rough estimate) as long as a neat little 0-3 loop */
00466          v1 = s->row_out[0].v2;
00467          s->row_out[0].v2 = s->row_out[0].v3;
00468          s->row_out[0].v3 = s->row_out[0].fac*s->row_out[0].v2 - v1 + famp;
00469          v1 = s->col_out[0].v2;
00470          s->col_out[0].v2 = s->col_out[0].v3;
00471          s->col_out[0].v3 = s->col_out[0].fac*s->col_out[0].v2 - v1 + famp;
00472          v1 = s->row_out[1].v2;
00473          s->row_out[1].v2 = s->row_out[1].v3;
00474          s->row_out[1].v3 = s->row_out[1].fac*s->row_out[1].v2 - v1 + famp;
00475          v1 = s->col_out[1].v2;
00476          s->col_out[1].v2 = s->col_out[1].v3;
00477          s->col_out[1].v3 = s->col_out[1].fac*s->col_out[1].v2 - v1 + famp;
00478          v1 = s->row_out[2].v2;
00479          s->row_out[2].v2 = s->row_out[2].v3;
00480          s->row_out[2].v3 = s->row_out[2].fac*s->row_out[2].v2 - v1 + famp;
00481          v1 = s->col_out[2].v2;
00482          s->col_out[2].v2 = s->col_out[2].v3;
00483          s->col_out[2].v3 = s->col_out[2].fac*s->col_out[2].v2 - v1 + famp;
00484          v1 = s->row_out[3].v2;
00485          s->row_out[3].v2 = s->row_out[3].v3;
00486          s->row_out[3].v3 = s->row_out[3].fac*s->row_out[3].v2 - v1 + famp;
00487          v1 = s->col_out[3].v2;
00488          s->col_out[3].v2 = s->col_out[3].v3;
00489          s->col_out[3].v3 = s->col_out[3].fac*s->col_out[3].v2 - v1 + famp;
00490 #ifdef FAX_DETECT
00491          /* Update fax tone */
00492          v1 = s->fax_tone.v2;
00493          s->fax_tone.v2 = s->fax_tone.v3;
00494          s->fax_tone.v3 = s->fax_tone.fac*s->fax_tone.v2 - v1 + famp;
00495 #endif /* FAX_DETECT */
00496 #ifdef OLD_DSP_ROUTINES
00497          v1 = s->col_out2nd[0].v2;
00498          s->col_out2nd[0].v2 = s->col_out2nd[0].v3;
00499          s->col_out2nd[0].v3 = s->col_out2nd[0].fac*s->col_out2nd[0].v2 - v1 + famp;
00500          v1 = s->row_out2nd[0].v2;
00501          s->row_out2nd[0].v2 = s->row_out2nd[0].v3;
00502          s->row_out2nd[0].v3 = s->row_out2nd[0].fac*s->row_out2nd[0].v2 - v1 + famp;
00503          v1 = s->col_out2nd[1].v2;
00504          s->col_out2nd[1].v2 = s->col_out2nd[1].v3;
00505          s->col_out2nd[1].v3 = s->col_out2nd[1].fac*s->col_out2nd[1].v2 - v1 + famp;
00506          v1 = s->row_out2nd[1].v2;
00507          s->row_out2nd[1].v2 = s->row_out2nd[1].v3;
00508          s->row_out2nd[1].v3 = s->row_out2nd[1].fac*s->row_out2nd[1].v2 - v1 + famp;
00509          v1 = s->col_out2nd[2].v2;
00510          s->col_out2nd[2].v2 = s->col_out2nd[2].v3;
00511          s->col_out2nd[2].v3 = s->col_out2nd[2].fac*s->col_out2nd[2].v2 - v1 + famp;
00512          v1 = s->row_out2nd[2].v2;
00513          s->row_out2nd[2].v2 = s->row_out2nd[2].v3;
00514          s->row_out2nd[2].v3 = s->row_out2nd[2].fac*s->row_out2nd[2].v2 - v1 + famp;
00515          v1 = s->col_out2nd[3].v2;
00516          s->col_out2nd[3].v2 = s->col_out2nd[3].v3;
00517          s->col_out2nd[3].v3 = s->col_out2nd[3].fac*s->col_out2nd[3].v2 - v1 + famp;
00518          v1 = s->row_out2nd[3].v2;
00519          s->row_out2nd[3].v2 = s->row_out2nd[3].v3;
00520          s->row_out2nd[3].v3 = s->row_out2nd[3].fac*s->row_out2nd[3].v2 - v1 + famp;
00521 #ifdef FAX_DETECT
00522          /* Update fax tone */            
00523          v1 = s->fax_tone.v2;
00524          s->fax_tone2nd.v2 = s->fax_tone2nd.v3;
00525          s->fax_tone2nd.v3 = s->fax_tone2nd.fac*s->fax_tone2nd.v2 - v1 + famp;
00526 #endif /* FAX_DETECT */
00527 #endif
00528       }
00529 #endif
00530       s->current_sample += (limit - sample);
00531       if (s->current_sample < 102) {
00532          if (hit && !((digitmode & DSP_DIGITMODE_NOQUELCH))) {
00533             /* If we had a hit last time, go ahead and clear this out since likely it
00534                will be another hit */
00535             for (i=sample;i<limit;i++) 
00536                amp[i] = 0;
00537             *writeback = 1;
00538          }
00539          continue;
00540       }
00541 #ifdef FAX_DETECT
00542       /* Detect the fax energy, too */
00543       fax_energy = goertzel_result(&s->fax_tone);
00544 #endif
00545       /* We are at the end of a DTMF detection block */
00546       /* Find the peak row and the peak column */
00547       row_energy[0] = goertzel_result (&s->row_out[0]);
00548       col_energy[0] = goertzel_result (&s->col_out[0]);
00549 
00550       for (best_row = best_col = 0, i = 1;  i < 4;  i++) {
00551          row_energy[i] = goertzel_result (&s->row_out[i]);
00552          if (row_energy[i] > row_energy[best_row])
00553             best_row = i;
00554          col_energy[i] = goertzel_result (&s->col_out[i]);
00555          if (col_energy[i] > col_energy[best_col])
00556             best_col = i;
00557       }
00558       hit = 0;
00559       /* Basic signal level test and the twist test */
00560       if (row_energy[best_row] >= DTMF_THRESHOLD && 
00561           col_energy[best_col] >= DTMF_THRESHOLD &&
00562           col_energy[best_col] < row_energy[best_row]*DTMF_REVERSE_TWIST &&
00563           col_energy[best_col]*DTMF_NORMAL_TWIST > row_energy[best_row]) {
00564          /* Relative peak test */
00565          for (i = 0;  i < 4;  i++) {
00566             if ((i != best_col &&
00567                 col_energy[i]*DTMF_RELATIVE_PEAK_COL > col_energy[best_col]) ||
00568                 (i != best_row 
00569                  && row_energy[i]*DTMF_RELATIVE_PEAK_ROW > row_energy[best_row])) {
00570                break;
00571             }
00572          }
00573 #ifdef OLD_DSP_ROUTINES
00574          /* ... and second harmonic test */
00575          if (i >= 4 && 
00576              (row_energy[best_row] + col_energy[best_col]) > 42.0*s->energy &&
00577                       goertzel_result(&s->col_out2nd[best_col])*DTMF_2ND_HARMONIC_COL < col_energy[best_col]
00578              && goertzel_result(&s->row_out2nd[best_row])*DTMF_2ND_HARMONIC_ROW < row_energy[best_row]) {
00579 #else
00580          /* ... and fraction of total energy test */
00581          if (i >= 4 &&
00582              (row_energy[best_row] + col_energy[best_col]) > DTMF_TO_TOTAL_ENERGY*s->energy) {
00583 #endif
00584             /* Got a hit */
00585             hit = dtmf_positions[(best_row << 2) + best_col];
00586             if (!(digitmode & DSP_DIGITMODE_NOQUELCH)) {
00587                /* Zero out frame data if this is part DTMF */
00588                for (i=sample;i<limit;i++) 
00589                   amp[i] = 0;
00590                *writeback = 1;
00591             }
00592             /* Look for two successive similar results */
00593             /* The logic in the next test is:
00594                We need two successive identical clean detects, with
00595                something different preceeding it. This can work with
00596                back to back differing digits. More importantly, it
00597                can work with nasty phones that give a very wobbly start
00598                to a digit */
00599 #ifdef OLD_DSP_ROUTINES
00600             if (hit == s->hit3  &&  s->hit3 != s->hit2) {
00601                s->mhit = hit;
00602                s->digit_hits[(best_row << 2) + best_col]++;
00603                s->detected_digits++;
00604                if (s->current_digits < MAX_DTMF_DIGITS) {
00605                   s->digits[s->current_digits++] = hit;
00606                   s->digits[s->current_digits] = '\0';
00607                } else {
00608                   s->lost_digits++;
00609                }
00610             }
00611 #else          
00612             if (hit == s->hits[2]  &&  hit != s->hits[1]  &&  hit != s->hits[0]) {
00613                s->mhit = hit;
00614                s->digit_hits[(best_row << 2) + best_col]++;
00615                s->detected_digits++;
00616                if (s->current_digits < MAX_DTMF_DIGITS) {
00617                   s->digits[s->current_digits++] = hit;
00618                   s->digits[s->current_digits] = '\0';
00619                } else {
00620                   s->lost_digits++;
00621                }
00622             }
00623 #endif
00624          }
00625       } 
00626 #ifdef FAX_DETECT
00627       if (!hit && (fax_energy >= FAX_THRESHOLD) && 
00628          (fax_energy >= DTMF_TO_TOTAL_ENERGY*s->energy) &&
00629          (faxdetect)) {
00630 #if 0
00631          printf("Fax energy/Second Harmonic: %f\n", fax_energy);
00632 #endif               
00633          /* XXX Probably need better checking than just this the energy XXX */
00634          hit = 'f';
00635          s->fax_hits++;
00636       } else {
00637          if (s->fax_hits > 5) {
00638             hit = 'f';
00639             s->mhit = 'f';
00640             s->detected_digits++;
00641             if (s->current_digits < MAX_DTMF_DIGITS) {
00642                s->digits[s->current_digits++] = hit;
00643                s->digits[s->current_digits] = '\0';
00644             } else {
00645                s->lost_digits++;
00646             }
00647          }
00648          s->fax_hits = 0;
00649       }
00650 #endif /* FAX_DETECT */
00651 #ifdef OLD_DSP_ROUTINES
00652       s->hit1 = s->hit2;
00653       s->hit2 = s->hit3;
00654       s->hit3 = hit;
00655 #else
00656       s->hits[0] = s->hits[1];
00657       s->hits[1] = s->hits[2];
00658       s->hits[2] = hit;
00659 #endif      
00660       /* Reinitialise the detector for the next block */
00661       for (i = 0;  i < 4;  i++) {
00662          goertzel_reset(&s->row_out[i]);
00663          goertzel_reset(&s->col_out[i]);
00664 #ifdef OLD_DSP_ROUTINES
00665          goertzel_reset(&s->row_out2nd[i]);
00666          goertzel_reset(&s->col_out2nd[i]);
00667 #endif         
00668       }
00669 #ifdef FAX_DETECT
00670       goertzel_reset (&s->fax_tone);
00671 #ifdef OLD_DSP_ROUTINES
00672       goertzel_reset (&s->fax_tone2nd);
00673 #endif         
00674 #endif
00675       s->energy = 0.0;
00676       s->current_sample = 0;
00677    }
00678    if ((!s->mhit) || (s->mhit != hit)) {
00679       s->mhit = 0;
00680       return(0);
00681    }
00682    return (hit);
00683 }
00684 
00685 /* MF goertzel size */
00686 #ifdef OLD_DSP_ROUTINES
00687 #define  MF_GSIZE 160
00688 #else
00689 #define MF_GSIZE 120
00690 #endif
00691 
00692 static int mf_detect (mf_detect_state_t *s, int16_t amp[],
00693                  int samples, int digitmode, int *writeback)
00694 {
00695 #ifdef OLD_DSP_ROUTINES
00696    float tone_energy[6];
00697    int best1;
00698    int best2;
00699    float max;
00700    int sofarsogood;
00701 #else
00702    float energy[6];
00703    int best;
00704    int second_best;
00705 #endif
00706    float famp;
00707    float v1;
00708    int i;
00709    int j;
00710    int sample;
00711    int hit;
00712    int limit;
00713 
00714    hit = 0;
00715    for (sample = 0;  sample < samples;  sample = limit) {
00716       /* 80 is optimised to meet the MF specs. */
00717       if ((samples - sample) >= (MF_GSIZE - s->current_sample))
00718          limit = sample + (MF_GSIZE - s->current_sample);
00719       else
00720          limit = samples;
00721 #if defined(USE_3DNOW)
00722       _dtmf_goertzel_update (s->row_out, amp + sample, limit - sample);
00723       _dtmf_goertzel_update (s->col_out, amp + sample, limit - sample);
00724 #ifdef OLD_DSP_ROUTINES
00725       _dtmf_goertzel_update (s->row_out2nd, amp + sample, limit2 - sample);
00726       _dtmf_goertzel_update (s->col_out2nd, amp + sample, limit2 - sample);
00727 #endif
00728       /* XXX Need to fax detect for 3dnow too XXX */
00729       #warning "Fax Support Broken"
00730 #else
00731       /* The following unrolled loop takes only 35% (rough estimate) of the 
00732          time of a rolled loop on the machine on which it was developed */
00733       for (j = sample;  j < limit;  j++) {
00734          famp = amp[j];
00735 #ifdef OLD_DSP_ROUTINES
00736          s->energy += famp*famp;
00737 #endif
00738          /* With GCC 2.95, the following unrolled code seems to take about 35%
00739             (rough estimate) as long as a neat little 0-3 loop */
00740          v1 = s->tone_out[0].v2;
00741          s->tone_out[0].v2 = s->tone_out[0].v3;
00742          s->tone_out[0].v3 = s->tone_out[0].fac*s->tone_out[0].v2 - v1 + famp;
00743          v1 = s->tone_out[1].v2;
00744          s->tone_out[1].v2 = s->tone_out[1].v3;
00745          s->tone_out[1].v3 = s->tone_out[1].fac*s->tone_out[1].v2 - v1 + famp;
00746          v1 = s->tone_out[2].v2;
00747          s->tone_out[2].v2 = s->tone_out[2].v3;
00748          s->tone_out[2].v3 = s->tone_out[2].fac*s->tone_out[2].v2 - v1 + famp;
00749          v1 = s->tone_out[3].v2;
00750          s->tone_out[3].v2 = s->tone_out[3].v3;
00751          s->tone_out[3].v3 = s->tone_out[3].fac*s->tone_out[3].v2 - v1 + famp;
00752          v1 = s->tone_out[4].v2;
00753          s->tone_out[4].v2 = s->tone_out[4].v3;
00754          s->tone_out[4].v3 = s->tone_out[4].fac*s->tone_out[4].v2 - v1 + famp;
00755          v1 = s->tone_out[5].v2;
00756          s->tone_out[5].v2 = s->tone_out[5].v3;
00757          s->tone_out[5].v3 = s->tone_out[5].fac*s->tone_out[5].v2 - v1 + famp;
00758 #ifdef OLD_DSP_ROUTINES
00759          v1 = s->tone_out2nd[0].v2;
00760          s->tone_out2nd[0].v2 = s->tone_out2nd[0].v3;
00761          s->tone_out2nd[0].v3 = s->tone_out2nd[0].fac*s->tone_out2nd[0].v2 - v1 + famp;
00762          v1 = s->tone_out2nd[1].v2;
00763          s->tone_out2nd[1].v2 = s->tone_out2nd[1].v3;
00764          s->tone_out2nd[1].v3 = s->tone_out2nd[1].fac*s->tone_out2nd[1].v2 - v1 + famp;
00765          v1 = s->tone_out2nd[2].v2;
00766          s->tone_out2nd[2].v2 = s->tone_out2nd[2].v3;
00767          s->tone_out2nd[2].v3 = s->tone_out2nd[2].fac*s->tone_out2nd[2].v2 - v1 + famp;
00768          v1 = s->tone_out2nd[3].v2;
00769          s->tone_out2nd[3].v2 = s->tone_out2nd[3].v3;
00770          s->tone_out2nd[3].v3 = s->tone_out2nd[3].fac*s->tone_out2nd[3].v2 - v1 + famp;
00771          v1 = s->tone_out2nd[4].v2;
00772          s->tone_out2nd[4].v2 = s->tone_out2nd[4].v3;
00773          s->tone_out2nd[4].v3 = s->tone_out2nd[4].fac*s->tone_out2nd[2].v2 - v1 + famp;
00774          v1 = s->tone_out2nd[3].v2;
00775          s->tone_out2nd[5].v2 = s->tone_out2nd[6].v3;
00776          s->tone_out2nd[5].v3 = s->tone_out2nd[6].fac*s->tone_out2nd[3].v2 - v1 + famp;
00777 #endif
00778       }
00779 #endif
00780       s->current_sample += (limit - sample);
00781       if (s->current_sample < MF_GSIZE) {
00782          if (hit && !((digitmode & DSP_DIGITMODE_NOQUELCH))) {
00783             /* If we had a hit last time, go ahead and clear this out since likely it
00784                will be another hit */
00785             for (i=sample;i<limit;i++) 
00786                amp[i] = 0;
00787             *writeback = 1;
00788          }
00789          continue;
00790       }
00791 #ifdef OLD_DSP_ROUTINES    
00792       /* We're at the end of an MF detection block.  Go ahead and calculate
00793          all the energies. */
00794       for (i=0;i<6;i++) {
00795          tone_energy[i] = goertzel_result(&s->tone_out[i]);
00796       }
00797       /* Find highest */
00798       best1 = 0;
00799       max = tone_energy[0];
00800       for (i=1;i<6;i++) {
00801          if (tone_energy[i] > max) {
00802             max = tone_energy[i];
00803             best1 = i;
00804          }
00805       }
00806 
00807       /* Find 2nd highest */
00808       if (best1) {
00809          max = tone_energy[0];
00810          best2 = 0;
00811       } else {
00812          max = tone_energy[1];
00813          best2 = 1;
00814       }
00815 
00816       for (i=0;i<6;i++) {
00817          if (i == best1) continue;
00818          if (tone_energy[i] > max) {
00819             max = tone_energy[i];
00820             best2 = i;
00821          }
00822       }
00823       hit = 0;
00824       if (best1 != best2) 
00825          sofarsogood=1;
00826       else 
00827          sofarsogood=0;
00828       /* Check for relative energies */
00829       for (i=0;i<6;i++) {
00830          if (i == best1) 
00831             continue;
00832          if (i == best2) 
00833             continue;
00834          if (tone_energy[best1] < tone_energy[i] * MF_RELATIVE_PEAK) {
00835             sofarsogood = 0;
00836             break;
00837          }
00838          if (tone_energy[best2] < tone_energy[i] * MF_RELATIVE_PEAK) {
00839             sofarsogood = 0;
00840             break;
00841          }
00842       }
00843       
00844       if (sofarsogood) {
00845          /* Check for 2nd harmonic */
00846          if (goertzel_result(&s->tone_out2nd[best1]) * MF_2ND_HARMONIC > tone_energy[best1]) 
00847             sofarsogood = 0;
00848          else if (goertzel_result(&s->tone_out2nd[best2]) * MF_2ND_HARMONIC > tone_energy[best2])
00849             sofarsogood = 0;
00850       }
00851       if (sofarsogood) {
00852          hit = mf_hit[best1][best2];
00853          if (!(digitmode & DSP_DIGITMODE_NOQUELCH)) {
00854             /* Zero out frame data if this is part DTMF */
00855             for (i=sample;i<limit;i++) 
00856                amp[i] = 0;
00857             *writeback = 1;
00858          }
00859          /* Look for two consecutive clean hits */
00860          if ((hit == s->hit3) && (s->hit3 != s->hit2)) {
00861             s->mhit = hit;
00862             s->detected_digits++;
00863             if (s->current_digits < MAX_DTMF_DIGITS - 2) {
00864                s->digits[s->current_digits++] = hit;
00865                s->digits[s->current_digits] = '\0';
00866             } else {
00867                s->lost_digits++;
00868             }
00869          }
00870       }
00871       
00872       s->hit1 = s->hit2;
00873       s->hit2 = s->hit3;
00874       s->hit3 = hit;
00875       /* Reinitialise the detector for the next block */
00876       for (i = 0;  i < 6;  i++) {
00877          goertzel_reset(&s->tone_out[i]);
00878          goertzel_reset(&s->tone_out2nd[i]);
00879       }
00880       s->energy = 0.0;
00881       s->current_sample = 0;
00882    }
00883 #else
00884       /* We're at the end of an MF detection block.  */
00885       /* Find the two highest energies. The spec says to look for
00886          two tones and two tones only. Taking this literally -ie
00887          only two tones pass the minimum threshold - doesn't work
00888          well. The sinc function mess, due to rectangular windowing
00889          ensure that! Find the two highest energies and ensure they
00890          are considerably stronger than any of the others. */
00891       energy[0] = goertzel_result(&s->tone_out[0]);
00892       energy[1] = goertzel_result(&s->tone_out[1]);
00893       if (energy[0] > energy[1]) {
00894          best = 0;
00895          second_best = 1;
00896       } else {
00897          best = 1;
00898          second_best = 0;
00899       }
00900       /*endif*/
00901       for (i=2;i<6;i++) {
00902          energy[i] = goertzel_result(&s->tone_out[i]);
00903          if (energy[i] >= energy[best]) {
00904             second_best = best;
00905             best = i;
00906          } else if (energy[i] >= energy[second_best]) {
00907             second_best = i;
00908          }
00909       }
00910       /* Basic signal level and twist tests */
00911       hit = 0;
00912       if (energy[best] >= BELL_MF_THRESHOLD && energy[second_best] >= BELL_MF_THRESHOLD
00913                && energy[best] < energy[second_best]*BELL_MF_TWIST
00914                && energy[best]*BELL_MF_TWIST > energy[second_best]) {
00915          /* Relative peak test */
00916          hit = -1;
00917          for (i=0;i<6;i++) {
00918             if (i != best && i != second_best) {
00919                if (energy[i]*BELL_MF_RELATIVE_PEAK >= energy[second_best]) {
00920                   /* The best two are not clearly the best */
00921                   hit = 0;
00922                   break;
00923                }
00924             }
00925          }
00926       }
00927       if (hit) {
00928          /* Get the values into ascending order */
00929          if (second_best < best) {
00930             i = best;
00931             best = second_best;
00932             second_best = i;
00933          }
00934          best = best*5 + second_best - 1;
00935          hit = bell_mf_positions[best];
00936          /* Look for two successive similar results */
00937          /* The logic in the next test is:
00938             For KP we need 4 successive identical clean detects, with
00939             two blocks of something different preceeding it. For anything
00940             else we need two successive identical clean detects, with
00941             two blocks of something different preceeding it. */
00942          if (hit == s->hits[4] && hit == s->hits[3] &&
00943             ((hit != '*' && hit != s->hits[2] && hit != s->hits[1])||
00944              (hit == '*' && hit == s->hits[2] && hit != s->hits[1] && 
00945              hit != s->hits[0]))) {
00946             s->detected_digits++;
00947             if (s->current_digits < MAX_DTMF_DIGITS) {
00948                s->digits[s->current_digits++] = hit;
00949                s->digits[s->current_digits] = '\0';
00950             } else {
00951                s->lost_digits++;
00952             }
00953          }
00954       } else {
00955          hit = 0;
00956       }
00957       s->hits[0] = s->hits[1];
00958       s->hits[1] = s->hits[2];
00959       s->hits[2] = s->hits[3];
00960       s->hits[3] = s->hits[4];
00961       s->hits[4] = hit;
00962       /* Reinitialise the detector for the next block */
00963       for (i = 0;  i < 6;  i++)
00964          goertzel_reset(&s->tone_out[i]);
00965       s->current_sample = 0;
00966    }
00967 #endif   
00968    if ((!s->mhit) || (s->mhit != hit)) {
00969       s->mhit = 0;
00970       return(0);
00971    }
00972    return (hit);
00973 }
00974 
00975 static int __ast_dsp_digitdetect(struct ast_dsp *dsp, short *s, int len, int *writeback)
00976 {
00977    int res;
00978    
00979    if (dsp->digitmode & DSP_DIGITMODE_MF)
00980       res = mf_detect(&dsp->td.mf, s, len, dsp->digitmode & DSP_DIGITMODE_RELAXDTMF, writeback);
00981    else
00982       res = dtmf_detect(&dsp->td.dtmf, s, len, dsp->digitmode & DSP_DIGITMODE_RELAXDTMF, writeback, dsp->features & DSP_FEATURE_FAX_DETECT);
00983    return res;
00984 }
00985 
00986 int ast_dsp_digitdetect(struct ast_dsp *dsp, struct ast_frame *inf)
00987 {
00988    short *s;
00989    int len;
00990    int ign=0;
00991 
00992    if (inf->frametype != AST_FRAME_VOICE) {
00993       ast_log(LOG_WARNING, "Can't check call progress of non-voice frames\n");
00994       return 0;
00995    }
00996    if (inf->subclass != AST_FORMAT_SLINEAR) {
00997       ast_log(LOG_WARNING, "Can only check call progress in signed-linear frames\n");
00998       return 0;
00999    }
01000    s = inf->data;
01001    len = inf->datalen / 2;
01002    return __ast_dsp_digitdetect(dsp, s, len, &ign);
01003 }
01004 
01005 static inline int pair_there(float p1, float p2, float i1, float i2, float e)
01006 {
01007    /* See if p1 and p2 are there, relative to i1 and i2 and total energy */
01008    /* Make sure absolute levels are high enough */
01009    if ((p1 < TONE_MIN_THRESH) || (p2 < TONE_MIN_THRESH))
01010       return 0;
01011    /* Amplify ignored stuff */
01012    i2 *= TONE_THRESH;
01013    i1 *= TONE_THRESH;
01014    e *= TONE_THRESH;
01015    /* Check first tone */
01016    if ((p1 < i1) || (p1 < i2) || (p1 < e))
01017       return 0;
01018    /* And second */
01019    if ((p2 < i1) || (p2 < i2) || (p2 < e))
01020       return 0;
01021    /* Guess it's there... */
01022    return 1;
01023 }
01024 
01025 int ast_dsp_getdigits (struct ast_dsp *dsp, char *buf, int max)
01026 {
01027    if (dsp->digitmode & DSP_DIGITMODE_MF) {
01028       if (max > dsp->td.mf.current_digits)
01029          max = dsp->td.mf.current_digits;
01030       if (max > 0) {
01031          memcpy(buf, dsp->td.mf.digits, max);
01032          memmove(dsp->td.mf.digits, dsp->td.mf.digits + max, dsp->td.mf.current_digits - max);
01033          dsp->td.mf.current_digits -= max;
01034       }
01035       buf[max] = '\0';
01036       return  max;
01037    } else {
01038       if (max > dsp->td.dtmf.current_digits)
01039          max = dsp->td.dtmf.current_digits;
01040       if (max > 0) {
01041          memcpy (buf, dsp->td.dtmf.digits, max);
01042          memmove (dsp->td.dtmf.digits, dsp->td.dtmf.digits + max, dsp->td.dtmf.current_digits - max);
01043          dsp->td.dtmf.current_digits -= max;
01044       }
01045       buf[max] = '\0';
01046       return  max;
01047    }
01048 }
01049 
01050 static int __ast_dsp_call_progress(struct ast_dsp *dsp, short *s, int len)
01051 {
01052    int x;
01053    int y;
01054    int pass;
01055    int newstate = DSP_TONE_STATE_SILENCE;
01056    int res = 0;
01057    while(len) {
01058       /* Take the lesser of the number of samples we need and what we have */
01059       pass = len;
01060       if (pass > dsp->gsamp_size - dsp->gsamps) 
01061          pass = dsp->gsamp_size - dsp->gsamps;
01062       for (x=0;x<pass;x++) {
01063          for (y=0;y<dsp->freqcount;y++) 
01064             goertzel_sample(&dsp->freqs[y], s[x]);
01065          dsp->genergy += s[x] * s[x];
01066       }
01067       s += pass;
01068       dsp->gsamps += pass;
01069       len -= pass;
01070       if (dsp->gsamps == dsp->gsamp_size) {
01071          float hz[7];
01072          for (y=0;y<7;y++)
01073             hz[y] = goertzel_result(&dsp->freqs[y]);
01074 #if 0
01075          printf("\n350:     425:     440:     480:     620:     950:     1400:    1800:    Energy:   \n");
01076          printf("%.2e %.2e %.2e %.2e %.2e %.2e %.2e %.2e %.2e\n", 
01077             hz[HZ_350], hz[HZ_425], hz[HZ_440], hz[HZ_480], hz[HZ_620], hz[HZ_950], hz[HZ_1400], hz[HZ_1800], dsp->genergy);
01078 #endif
01079          switch(dsp->progmode) {
01080          case PROG_MODE_NA:
01081             if (pair_there(hz[HZ_480], hz[HZ_620], hz[HZ_350], hz[HZ_440], dsp->genergy)) {
01082                newstate = DSP_TONE_STATE_BUSY;
01083             } else if (pair_there(hz[HZ_440], hz[HZ_480], hz[HZ_350], hz[HZ_620], dsp->genergy)) {
01084                newstate = DSP_TONE_STATE_RINGING;
01085             } else if (pair_there(hz[HZ_350], hz[HZ_440], hz[HZ_480], hz[HZ_620], dsp->genergy)) {
01086                newstate = DSP_TONE_STATE_DIALTONE;
01087             } else if (hz[HZ_950] > TONE_MIN_THRESH * TONE_THRESH) {
01088                newstate = DSP_TONE_STATE_SPECIAL1;
01089             } else if (hz[HZ_1400] > TONE_MIN_THRESH * TONE_THRESH) {
01090                if (dsp->tstate == DSP_TONE_STATE_SPECIAL1)
01091                   newstate = DSP_TONE_STATE_SPECIAL2;
01092             } else if (hz[HZ_1800] > TONE_MIN_THRESH * TONE_THRESH) {
01093                if (dsp->tstate == DSP_TONE_STATE_SPECIAL2)
01094                   newstate = DSP_TONE_STATE_SPECIAL3;
01095             } else if (dsp->genergy > TONE_MIN_THRESH * TONE_THRESH) {
01096                newstate = DSP_TONE_STATE_TALKING;
01097             } else
01098                newstate = DSP_TONE_STATE_SILENCE;
01099             break;
01100          case PROG_MODE_CR:
01101             if (hz[HZ_425] > TONE_MIN_THRESH * TONE_THRESH) {
01102                newstate = DSP_TONE_STATE_RINGING;
01103             } else if (dsp->genergy > TONE_MIN_THRESH * TONE_THRESH) {
01104                newstate = DSP_TONE_STATE_TALKING;
01105             } else
01106                newstate = DSP_TONE_STATE_SILENCE;
01107             break;
01108          case PROG_MODE_UK:
01109             if (hz[HZ_400] > TONE_MIN_THRESH * TONE_THRESH) {
01110                newstate = DSP_TONE_STATE_HUNGUP;
01111             }
01112             break;
01113          default:
01114             ast_log(LOG_WARNING, "Can't process in unknown prog mode '%d'\n", dsp->progmode);
01115          }
01116          if (newstate == dsp->tstate) {
01117             dsp->tcount++;
01118             if (dsp->ringtimeout)
01119                dsp->ringtimeout++;
01120             switch (dsp->tstate) {
01121                case DSP_TONE_STATE_RINGING:
01122                   if ((dsp->features & DSP_PROGRESS_RINGING) &&
01123                       (dsp->tcount==THRESH_RING)) {
01124                      res = AST_CONTROL_RINGING;
01125                      dsp->ringtimeout= 1;
01126                   }
01127                   break;
01128                case DSP_TONE_STATE_BUSY:
01129                   if ((dsp->features & DSP_PROGRESS_BUSY) &&
01130                       (dsp->tcount==THRESH_BUSY)) {
01131                      res = AST_CONTROL_BUSY;
01132                      dsp->features &= ~DSP_FEATURE_CALL_PROGRESS;
01133                   }
01134                   break;
01135                case DSP_TONE_STATE_TALKING:
01136                   if ((dsp->features & DSP_PROGRESS_TALK) &&
01137                       (dsp->tcount==THRESH_TALK)) {
01138                      res = AST_CONTROL_ANSWER;
01139                      dsp->features &= ~DSP_FEATURE_CALL_PROGRESS;
01140                   }
01141                   break;
01142                case DSP_TONE_STATE_SPECIAL3:
01143                   if ((dsp->features & DSP_PROGRESS_CONGESTION) &&
01144                       (dsp->tcount==THRESH_CONGESTION)) {
01145                      res = AST_CONTROL_CONGESTION;
01146                      dsp->features &= ~DSP_FEATURE_CALL_PROGRESS;
01147                   }
01148                   break;
01149                case DSP_TONE_STATE_HUNGUP:
01150                   if ((dsp->features & DSP_FEATURE_CALL_PROGRESS) &&
01151                       (dsp->tcount==THRESH_HANGUP)) {
01152                      res = AST_CONTROL_HANGUP;
01153                      dsp->features &= ~DSP_FEATURE_CALL_PROGRESS;
01154                   }
01155                   break;
01156             }
01157             if (dsp->ringtimeout==THRESH_RING2ANSWER) {
01158 #if 0
01159                ast_log(LOG_NOTICE, "Consider call as answered because of timeout after last ring\n");
01160 #endif
01161                res = AST_CONTROL_ANSWER;
01162                dsp->features &= ~DSP_FEATURE_CALL_PROGRESS;
01163             }
01164          } else {
01165 #if 0
01166             ast_log(LOG_NOTICE, "Stop state %d with duration %d\n", dsp->tstate, dsp->tcount);
01167             ast_log(LOG_NOTICE, "Start state %d\n", newstate);
01168 #endif
01169             dsp->tstate = newstate;
01170             dsp->tcount = 1;
01171          }
01172          
01173          /* Reset goertzel */                
01174          for (x=0;x<7;x++)
01175             dsp->freqs[x].v2 = dsp->freqs[x].v3 = 0.0;
01176          dsp->gsamps = 0;
01177          dsp->genergy = 0.0;
01178       }
01179    }
01180 #if 0
01181    if (res)
01182       printf("Returning %d\n", res);
01183 #endif      
01184    return res;
01185 }
01186 
01187 int ast_dsp_call_progress(struct ast_dsp *dsp, struct ast_frame *inf)
01188 {
01189    if (inf->frametype != AST_FRAME_VOICE) {
01190       ast_log(LOG_WARNING, "Can't check call progress of non-voice frames\n");
01191       return 0;
01192    }
01193    if (inf->subclass != AST_FORMAT_SLINEAR) {
01194       ast_log(LOG_WARNING, "Can only check call progress in signed-linear frames\n");
01195       return 0;
01196    }
01197    return __ast_dsp_call_progress(dsp, inf->data, inf->datalen / 2);
01198 }
01199 
01200 static int __ast_dsp_silence(struct ast_dsp *dsp, short *s, int len, int *totalsilence)
01201 {
01202    int accum;
01203    int x;
01204    int res = 0;
01205 
01206    if (!len)
01207       return 0;
01208    accum = 0;
01209    for (x=0;x<len; x++) 
01210       accum += abs(s[x]);
01211    accum /= len;
01212    if (accum < dsp->threshold) {
01213       /* Silent */
01214       dsp->totalsilence += len/8;
01215       if (dsp->totalnoise) {
01216          /* Move and save history */
01217          memmove(dsp->historicnoise + DSP_HISTORY - dsp->busycount, dsp->historicnoise + DSP_HISTORY - dsp->busycount +1, dsp->busycount*sizeof(dsp->historicnoise[0]));
01218          dsp->historicnoise[DSP_HISTORY - 1] = dsp->totalnoise;
01219 /* we don't want to check for busydetect that frequently */
01220 #if 0
01221          dsp->busymaybe = 1;
01222 #endif
01223       }
01224       dsp->totalnoise = 0;
01225       res = 1;
01226    } else {
01227       /* Not silent */
01228       dsp->totalnoise += len/8;
01229       if (dsp->totalsilence) {
01230          int silence1 = dsp->historicsilence[DSP_HISTORY - 1];
01231          int silence2 = dsp->historicsilence[DSP_HISTORY - 2];
01232          /* Move and save history */
01233          memmove(dsp->historicsilence + DSP_HISTORY - dsp->busycount, dsp->historicsilence + DSP_HISTORY - dsp->busycount + 1, dsp->busycount*sizeof(dsp->historicsilence[0]));
01234          dsp->historicsilence[DSP_HISTORY - 1] = dsp->totalsilence;
01235          /* check if the previous sample differs only by BUSY_PERCENT from the one before it */
01236          if (silence1 < silence2) {
01237             if (silence1 + silence1*BUSY_PERCENT/100 >= silence2)
01238                dsp->busymaybe = 1;
01239             else 
01240                dsp->busymaybe = 0;
01241          } else {
01242             if (silence1 - silence1*BUSY_PERCENT/100 <= silence2)
01243                dsp->busymaybe = 1;
01244             else 
01245                dsp->busymaybe = 0;
01246          }
01247       }
01248       dsp->totalsilence = 0;
01249    }
01250    if (totalsilence)
01251       *totalsilence = dsp->totalsilence;
01252    return res;
01253 }
01254 
01255 #ifdef BUSYDETECT_MARTIN
01256 int ast_dsp_busydetect(struct ast_dsp *dsp)
01257 {
01258    int res = 0, x;
01259 #ifndef BUSYDETECT_TONEONLY
01260    int avgsilence = 0, hitsilence = 0;
01261 #endif
01262    int avgtone = 0, hittone = 0;
01263    if (!dsp->busymaybe)
01264       return res;
01265    for (x=DSP_HISTORY - dsp->busycount;x<DSP_HISTORY;x++) {
01266 #ifndef BUSYDETECT_TONEONLY
01267       avgsilence += dsp->historicsilence[x];
01268 #endif
01269       avgtone += dsp->historicnoise[x];
01270    }
01271 #ifndef BUSYDETECT_TONEONLY
01272    avgsilence /= dsp->busycount;
01273 #endif
01274    avgtone /= dsp->busycount;
01275    for (x=DSP_HISTORY - dsp->busycount;x<DSP_HISTORY;x++) {
01276 #ifndef BUSYDETECT_TONEONLY
01277       if (avgsilence > dsp->historicsilence[x]) {
01278          if (avgsilence - (avgsilence*BUSY_PERCENT/100) <= dsp->historicsilence[x])
01279             hitsilence++;
01280       } else {
01281          if (avgsilence + (avgsilence*BUSY_PERCENT/100) >= dsp->historicsilence[x])
01282             hitsilence++;
01283       }
01284 #endif
01285       if (avgtone > dsp->historicnoise[x]) {
01286          if (avgtone - (avgtone*BUSY_PERCENT/100) <= dsp->historicnoise[x])
01287             hittone++;
01288       } else {
01289          if (avgtone + (avgtone*BUSY_PERCENT/100) >= dsp->historicnoise[x])
01290             hittone++;
01291       }
01292    }
01293 #ifndef BUSYDETECT_TONEONLY
01294    if ((hittone >= dsp->busycount - 1) && (hitsilence >= dsp->busycount - 1) && 
01295        (avgtone >= BUSY_MIN && avgtone <= BUSY_MAX) && 
01296        (avgsilence >= BUSY_MIN && avgsilence <= BUSY_MAX)) {
01297 #else
01298    if ((hittone >= dsp->busycount - 1) && (avgtone >= BUSY_MIN && avgtone <= BUSY_MAX)) {
01299 #endif
01300 #ifdef BUSYDETECT_COMPARE_TONE_AND_SILENCE
01301 #ifdef BUSYDETECT_TONEONLY
01302 #error You cant use BUSYDETECT_TONEONLY together with BUSYDETECT_COMPARE_TONE_AND_SILENCE
01303 #endif
01304       if (avgtone > avgsilence) {
01305          if (avgtone - avgtone*BUSY_PERCENT/100 <= avgsilence)
01306             res = 1;
01307       } else {
01308          if (avgtone + avgtone*BUSY_PERCENT/100 >= avgsilence)
01309             res = 1;
01310       }
01311 #else
01312       res = 1;
01313 #endif
01314    }
01315    /* If we know the expected busy tone length, check we are in the range */
01316    if (res && (dsp->busy_tonelength > 0)) {
01317       if (abs(avgtone - dsp->busy_tonelength) > (dsp->busy_tonelength*BUSY_PAT_PERCENT/100)) {
01318 #if 0
01319          ast_log(LOG_NOTICE, "busy detector: avgtone of %d not close enough to desired %d\n",
01320                   avgtone, dsp->busy_tonelength);
01321 #endif
01322          res = 0;
01323       }
01324    }
01325 #ifndef BUSYDETECT_TONEONLY
01326    /* If we know the expected busy tone silent-period length, check we are in the range */
01327    if (res && (dsp->busy_quietlength > 0)) {
01328       if (abs(avgsilence - dsp->busy_quietlength) > (dsp->busy_quietlength*BUSY_PAT_PERCENT/100)) {
01329 #if 0
01330          ast_log(LOG_NOTICE, "busy detector: avgsilence of %d not close enough to desired %d\n",
01331                   avgsilence, dsp->busy_quietlength);
01332 #endif
01333          res = 0;
01334       }
01335    }
01336 #endif
01337 #ifndef BUSYDETECT_TONEONLY
01338 #if 1
01339    if (res)
01340       ast_log(LOG_DEBUG, "ast_dsp_busydetect detected busy, avgtone: %d, avgsilence %d\n", avgtone, avgsilence);
01341 #endif
01342 #endif
01343    return res;
01344 }
01345 #endif
01346 
01347 #ifdef BUSYDETECT
01348 int ast_dsp_busydetect(struct ast_dsp *dsp)
01349 {
01350    int x;
01351    int res = 0;
01352    int max, min;
01353 
01354 #if 0
01355    if (dsp->busy_hits > 5);
01356    return 0;
01357 #endif
01358    if (dsp->busymaybe) {
01359 #if 0
01360       printf("Maybe busy!\n");
01361 #endif      
01362       dsp->busymaybe = 0;
01363       min = 9999;
01364       max = 0;
01365       for (x=DSP_HISTORY - dsp->busycount;x<DSP_HISTORY;x++) {
01366 #if 0
01367          printf("Silence: %d, Noise: %d\n", dsp->historicsilence[x], dsp->historicnoise[x]);
01368 #endif         
01369          if (dsp->historicsilence[x] < min)
01370             min = dsp->historicsilence[x];
01371          if (dsp->historicnoise[x] < min)
01372             min = dsp->historicnoise[x];
01373          if (dsp->historicsilence[x] > max)
01374             max = dsp->historicsilence[x];
01375          if (dsp->historicnoise[x] > max)
01376             max = dsp->historicnoise[x];
01377       }
01378       if ((max - min < BUSY_THRESHOLD) && (max < BUSY_MAX) && (min > BUSY_MIN)) {
01379 #if 0
01380          printf("Busy!\n");
01381 #endif         
01382          res = 1;
01383       }
01384 #if 0
01385       printf("Min: %d, max: %d\n", min, max);
01386 #endif      
01387    }
01388    return res;
01389 }
01390 #endif
01391 
01392 int ast_dsp_silence(struct ast_dsp *dsp, struct ast_frame *f, int *totalsilence)
01393 {
01394    short *s;
01395    int len;
01396    
01397    if (f->frametype != AST_FRAME_VOICE) {
01398       ast_log(LOG_WARNING, "Can't calculate silence on a non-voice frame\n");
01399       return 0;
01400    }
01401    if (f->subclass != AST_FORMAT_SLINEAR) {
01402       ast_log(LOG_WARNING, "Can only calculate silence on signed-linear frames :(\n");
01403       return 0;
01404    }
01405    s = f->data;
01406    len = f->datalen/2;
01407    return __ast_dsp_silence(dsp, s, len, totalsilence);
01408 }
01409 
01410 struct ast_frame *ast_dsp_process(struct ast_channel *chan, struct ast_dsp *dsp, struct ast_frame *af)
01411 {
01412    int silence;
01413    int res;
01414    int digit;
01415    int x;
01416    short *shortdata;
01417    unsigned char *odata;
01418    int len;
01419    int writeback = 0;
01420 
01421 #define FIX_INF(inf) do { \
01422       if (writeback) { \
01423          switch(inf->subclass) { \
01424          case AST_FORMAT_SLINEAR: \
01425             break; \
01426          case AST_FORMAT_ULAW: \
01427             for (x=0;x<len;x++) \
01428                odata[x] = AST_LIN2MU((unsigned short)shortdata[x]); \
01429             break; \
01430          case AST_FORMAT_ALAW: \
01431             for (x=0;x<len;x++) \
01432                odata[x] = AST_LIN2A((unsigned short)shortdata[x]); \
01433             break; \
01434          } \
01435       } \
01436    } while(0) 
01437 
01438    if (!af)
01439       return NULL;
01440    if (af->frametype != AST_FRAME_VOICE)
01441       return af;
01442    odata = af->data;
01443    len = af->datalen;
01444    /* Make sure we have short data */
01445    switch(af->subclass) {
01446    case AST_FORMAT_SLINEAR:
01447       shortdata = af->data;
01448       len = af->datalen / 2;
01449       break;
01450    case AST_FORMAT_ULAW:
01451       shortdata = alloca(af->datalen * 2);
01452       for (x = 0;x < len; x++) 
01453          shortdata[x] = AST_MULAW(odata[x]);
01454       break;
01455    case AST_FORMAT_ALAW:
01456       shortdata = alloca(af->datalen * 2);
01457       for (x = 0; x < len; x++) 
01458          shortdata[x] = AST_ALAW(odata[x]);
01459       break;
01460    default:
01461       ast_log(LOG_WARNING, "Inband DTMF is not supported on codec %s. Use RFC2833\n", ast_getformatname(af->subclass));
01462       return af;
01463    }
01464    silence = __ast_dsp_silence(dsp, shortdata, len, NULL);
01465    if ((dsp->features & DSP_FEATURE_SILENCE_SUPPRESS) && silence) {
01466       memset(&dsp->f, 0, sizeof(dsp->f));
01467       dsp->f.frametype = AST_FRAME_NULL;
01468       return &dsp->f;
01469    }
01470    if ((dsp->features & DSP_FEATURE_BUSY_DETECT) && ast_dsp_busydetect(dsp)) {
01471       chan->_softhangup |= AST_SOFTHANGUP_DEV;
01472       memset(&dsp->f, 0, sizeof(dsp->f));
01473       dsp->f.frametype = AST_FRAME_CONTROL;
01474       dsp->f.subclass = AST_CONTROL_BUSY;
01475       ast_log(LOG_DEBUG, "Requesting Hangup because the busy tone was detected on channel %s\n", chan->name);
01476       return &dsp->f;
01477    }
01478    if ((dsp->features & DSP_FEATURE_DTMF_DETECT)) {
01479       digit = __ast_dsp_digitdetect(dsp, shortdata, len, &writeback);
01480 #if 0
01481       if (digit)
01482          printf("Performing digit detection returned %d, digitmode is %d\n", digit, dsp->digitmode);
01483 #endif         
01484       if (dsp->digitmode & (DSP_DIGITMODE_MUTECONF | DSP_DIGITMODE_MUTEMAX)) {
01485          if (!dsp->thinkdigit) {
01486             if (digit) {
01487                /* Looks like we might have something.  
01488                 * Request a conference mute for the moment */
01489                memset(&dsp->f, 0, sizeof(dsp->f));
01490                dsp->f.frametype = AST_FRAME_DTMF;
01491                dsp->f.subclass = 'm';
01492                dsp->thinkdigit = 'x';
01493                FIX_INF(af);
01494                if (chan)
01495                   ast_queue_frame(chan, af);
01496                ast_frfree(af);
01497                return &dsp->f;
01498             }
01499          } else {
01500             if (digit) {
01501                /* Thought we saw one last time.  Pretty sure we really have now */
01502                if ((dsp->thinkdigit != 'x') && (dsp->thinkdigit != digit)) {
01503                   /* If we found a digit, and we're changing digits, go
01504                      ahead and send this one, but DON'T stop confmute because
01505                      we're detecting something else, too... */
01506                   memset(&dsp->f, 0, sizeof(dsp->f));
01507                   dsp->f.frametype = AST_FRAME_DTMF_END;
01508                   dsp->f.subclass = dsp->thinkdigit;
01509                   FIX_INF(af);
01510                   if (chan)
01511                      ast_queue_frame(chan, af);
01512                   ast_frfree(af);
01513                } else {
01514                   dsp->thinkdigit = digit;
01515                   memset(&dsp->f, 0, sizeof(dsp->f));
01516                   dsp->f.frametype = AST_FRAME_DTMF_BEGIN;
01517                   dsp->f.subclass = dsp->thinkdigit;
01518                   FIX_INF(af);
01519                   if (chan)
01520                      ast_queue_frame(chan, af);
01521                   ast_frfree(af);
01522                }
01523                return &dsp->f;
01524             } else {
01525                memset(&dsp->f, 0, sizeof(dsp->f));
01526                if (dsp->thinkdigit != 'x') {
01527                   /* If we found a digit, send it now */
01528                   dsp->f.frametype = AST_FRAME_DTMF_END;
01529                   dsp->f.subclass = dsp->thinkdigit;
01530                   dsp->thinkdigit = 0;
01531                } else {
01532                   dsp->f.frametype = AST_FRAME_DTMF;
01533                   dsp->f.subclass = 'u';
01534                   dsp->thinkdigit = 0;
01535                }
01536                FIX_INF(af);
01537                if (chan)
01538                   ast_queue_frame(chan, af);
01539                ast_frfree(af);
01540                return &dsp->f;
01541             }
01542          }
01543       } else if (!digit) {
01544          /* Only check when there is *not* a hit... */
01545          if (dsp->digitmode & DSP_DIGITMODE_MF) {
01546             if (dsp->td.mf.current_digits) {
01547                memset(&dsp->f, 0, sizeof(dsp->f));
01548                dsp->f.frametype = AST_FRAME_DTMF;
01549                dsp->f.subclass = dsp->td.mf.digits[0];
01550                memmove(dsp->td.mf.digits, dsp->td.mf.digits + 1, dsp->td.mf.current_digits);
01551                dsp->td.mf.current_digits--;
01552                FIX_INF(af);
01553                if (chan)
01554                   ast_queue_frame(chan, af);
01555                ast_frfree(af);
01556                return &dsp->f;
01557             }
01558          } else {
01559             if (dsp->td.dtmf.current_digits) {
01560                memset(&dsp->f, 0, sizeof(dsp->f));
01561                dsp->f.frametype = AST_FRAME_DTMF_END;
01562                dsp->f.subclass = dsp->td.dtmf.digits[0];
01563                memmove(dsp->td.dtmf.digits, dsp->td.dtmf.digits + 1, dsp->td.dtmf.current_digits);
01564                dsp->td.dtmf.current_digits--;
01565                FIX_INF(af);
01566                if (chan)
01567                   ast_queue_frame(chan, af);
01568                ast_frfree(af);
01569                return &dsp->f;
01570             }
01571          }
01572       }
01573    }
01574    if ((dsp->features & DSP_FEATURE_CALL_PROGRESS)) {
01575       res = __ast_dsp_call_progress(dsp, shortdata, len);
01576       if (res) {
01577          switch(res) {
01578          case AST_CONTROL_ANSWER:
01579          case AST_CONTROL_BUSY:
01580          case AST_CONTROL_RINGING:
01581          case AST_CONTROL_CONGESTION:
01582          case AST_CONTROL_HANGUP:
01583             memset(&dsp->f, 0, sizeof(dsp->f));
01584             dsp->f.frametype = AST_FRAME_CONTROL;
01585             dsp->f.subclass = res;
01586             dsp->f.src = "dsp_progress";
01587             if (chan) 
01588                ast_queue_frame(chan, &dsp->f);
01589             break;
01590          default:
01591             ast_log(LOG_WARNING, "Don't know how to represent call progress message %d\n", res);
01592          }
01593       }
01594    }
01595    FIX_INF(af);
01596    return af;
01597 }
01598 
01599 static void ast_dsp_prog_reset(struct ast_dsp *dsp)
01600 {
01601    int max = 0;
01602    int x;
01603    
01604    dsp->gsamp_size = modes[dsp->progmode].size;
01605    dsp->gsamps = 0;
01606    for (x=0;x<sizeof(modes[dsp->progmode].freqs) / sizeof(modes[dsp->progmode].freqs[0]);x++) {
01607       if (modes[dsp->progmode].freqs[x]) {
01608          goertzel_init(&dsp->freqs[x], (float)modes[dsp->progmode].freqs[x], dsp->gsamp_size);
01609          max = x + 1;
01610       }
01611    }
01612    dsp->freqcount = max;
01613    dsp->ringtimeout= 0;
01614 }
01615 
01616 struct ast_dsp *ast_dsp_new(void)
01617 {
01618    struct ast_dsp *dsp;
01619    
01620    if ((dsp = ast_calloc(1, sizeof(*dsp)))) {      
01621       dsp->threshold = DEFAULT_THRESHOLD;
01622       dsp->features = DSP_FEATURE_SILENCE_SUPPRESS;
01623       dsp->busycount = DSP_HISTORY;
01624       /* Initialize DTMF detector */
01625       ast_dtmf_detect_init(&dsp->td.dtmf);
01626       /* Initialize initial DSP progress detect parameters */
01627       ast_dsp_prog_reset(dsp);
01628    }
01629    return dsp;
01630 }
01631 
01632 void ast_dsp_set_features(struct ast_dsp *dsp, int features)
01633 {
01634    dsp->features = features;
01635 }
01636 
01637 void ast_dsp_free(struct ast_dsp *dsp)
01638 {
01639    free(dsp);
01640 }
01641 
01642 void ast_dsp_set_threshold(struct ast_dsp *dsp, int threshold)
01643 {
01644    dsp->threshold = threshold;
01645 }
01646 
01647 void ast_dsp_set_busy_count(struct ast_dsp *dsp, int cadences)
01648 {
01649    if (cadences < 4)
01650       cadences = 4;
01651    if (cadences > DSP_HISTORY)
01652       cadences = DSP_HISTORY;
01653    dsp->busycount = cadences;
01654 }
01655 
01656 void ast_dsp_set_busy_pattern(struct ast_dsp *dsp, int tonelength, int quietlength)
01657 {
01658    dsp->busy_tonelength = tonelength;
01659    dsp->busy_quietlength = quietlength;
01660    ast_log(LOG_DEBUG, "dsp busy pattern set to %d,%d\n", tonelength, quietlength);
01661 }
01662 
01663 void ast_dsp_digitreset(struct ast_dsp *dsp)
01664 {
01665    int i;
01666    
01667    dsp->thinkdigit = 0;
01668    if (dsp->digitmode & DSP_DIGITMODE_MF) {
01669       memset(dsp->td.mf.digits, 0, sizeof(dsp->td.mf.digits));
01670       dsp->td.mf.current_digits = 0;
01671       /* Reinitialise the detector for the next block */
01672       for (i = 0;  i < 6;  i++) {
01673          goertzel_reset(&dsp->td.mf.tone_out[i]);
01674 #ifdef OLD_DSP_ROUTINES
01675          goertzel_reset(&dsp->td.mf.tone_out2nd[i]);
01676 #endif         
01677       }
01678 #ifdef OLD_DSP_ROUTINES
01679       dsp->td.mf.energy = 0.0;
01680       dsp->td.mf.hit1 = dsp->td.mf.hit2 = dsp->td.mf.hit3 = dsp->td.mf.hit4 = dsp->td.mf.mhit = 0;
01681 #else
01682       dsp->td.mf.hits[4] = dsp->td.mf.hits[3] = dsp->td.mf.hits[2] = dsp->td.mf.hits[1] = dsp->td.mf.hits[0] = dsp->td.mf.mhit = 0;
01683 #endif      
01684       dsp->td.mf.current_sample = 0;
01685    } else {
01686       memset(dsp->td.dtmf.digits, 0, sizeof(dsp->td.dtmf.digits));
01687       dsp->td.dtmf.current_digits = 0;
01688       /* Reinitialise the detector for the next block */
01689       for (i = 0;  i < 4;  i++) {
01690          goertzel_reset(&dsp->td.dtmf.row_out[i]);
01691          goertzel_reset(&dsp->td.dtmf.col_out[i]);
01692 #ifdef OLD_DSP_ROUTINES
01693          goertzel_reset(&dsp->td.dtmf.row_out2nd[i]);
01694          goertzel_reset(&dsp->td.dtmf.col_out2nd[i]);
01695 #endif         
01696       }
01697 #ifdef FAX_DETECT
01698       goertzel_reset (&dsp->td.dtmf.fax_tone);
01699 #endif
01700 #ifdef OLD_DSP_ROUTINES
01701 #ifdef FAX_DETECT
01702       goertzel_reset (&dsp->td.dtmf.fax_tone2nd);
01703 #endif
01704       dsp->td.dtmf.hit1 = dsp->td.dtmf.hit2 = dsp->td.dtmf.hit3 = dsp->td.dtmf.hit4 = dsp->td.dtmf.mhit = 0;
01705 #else
01706       dsp->td.dtmf.hits[2] = dsp->td.dtmf.hits[1] = dsp->td.dtmf.hits[0] =  dsp->td.dtmf.mhit = 0;
01707 #endif      
01708       dsp->td.dtmf.energy = 0.0;
01709       dsp->td.dtmf.current_sample = 0;
01710    }
01711 }
01712 
01713 void ast_dsp_reset(struct ast_dsp *dsp)
01714 {
01715    int x;
01716    
01717    dsp->totalsilence = 0;
01718    dsp->gsamps = 0;
01719    for (x=0;x<4;x++)
01720       dsp->freqs[x].v2 = dsp->freqs[x].v3 = 0.0;
01721    memset(dsp->historicsilence, 0, sizeof(dsp->historicsilence));
01722    memset(dsp->historicnoise, 0, sizeof(dsp->historicnoise));  
01723    dsp->ringtimeout= 0;
01724 }
01725 
01726 int ast_dsp_digitmode(struct ast_dsp *dsp, int digitmode)
01727 {
01728    int new;
01729    int old;
01730    
01731    old = dsp->digitmode & (DSP_DIGITMODE_DTMF | DSP_DIGITMODE_MF | DSP_DIGITMODE_MUTECONF | DSP_DIGITMODE_MUTEMAX);
01732    new = digitmode & (DSP_DIGITMODE_DTMF | DSP_DIGITMODE_MF | DSP_DIGITMODE_MUTECONF | DSP_DIGITMODE_MUTEMAX);
01733    if (old != new) {
01734       /* Must initialize structures if switching from MF to DTMF or vice-versa */
01735       if (new & DSP_DIGITMODE_MF)
01736          ast_mf_detect_init(&dsp->td.mf);
01737       else
01738          ast_dtmf_detect_init(&dsp->td.dtmf);
01739    }
01740    dsp->digitmode = digitmode;
01741    return 0;
01742 }
01743 
01744 int ast_dsp_set_call_progress_zone(struct ast_dsp *dsp, char *zone)
01745 {
01746    int x;
01747    
01748    for (x=0;x<sizeof(aliases) / sizeof(aliases[0]);x++) {
01749       if (!strcasecmp(aliases[x].name, zone)) {
01750          dsp->progmode = aliases[x].mode;
01751          ast_dsp_prog_reset(dsp);
01752          return 0;
01753       }
01754    }
01755    return -1;
01756 }
01757 
01758 int ast_dsp_get_tstate(struct ast_dsp *dsp) 
01759 {
01760    return dsp->tstate;
01761 }
01762 
01763 int ast_dsp_get_tcount(struct ast_dsp *dsp) 
01764 {
01765    return dsp->tcount;
01766 }

Generated on Mon May 14 04:42:58 2007 for Asterisk - the Open Source PBX by  doxygen 1.5.1