THE LIFELINES PROGRAMMING
SUBSYSTEM AND REPORT
GENERATOR

LifeLines Version 3.0.37

Thomas T. Wetmore , IV

THE LIFELINES PROGRAMMING SUBSYSTEM AND REPORT GENERATOR : LifeLines Version 3.0.37
by Thomas T. Wetmore , IV

Table of Contents

1. Report Programming MaNUALcc.cceieeieiiiiese et sae st esae e s aesre e tesreennensesneennas 1
1.1 INTRODUCTION.coiiiteeiteitiete et eieesteseestesteetesbesteesassbessaesbesseesbesteesssssesssessesssesbestesssensesseenses 1
2. LIFELINES PROGRAMMING REFERENCEcccoiiitieietectecte ettt ettt sbe s 6
2.1. Procedures and FUNCHQNS..........cocviiieeece ettt ettt re s snesreenesbeennenns 6
A o 1 1010 1 T=T o] = SR 6
P T = 1 (=] 1=] £ 7
2.4, EXPIESSIONS.eititirietireetertete sttt st ae bt et s e ebese b st b et b e st s b e bt se e bt se ekt st ek e st eb et e b et b e Rt nbe bt naene e 9
P2 T Tt [0 T LT T L U= 9
P2 S T = 1011 T 0T a1 o 1 10
2.7.VAIUE TYPES ..ottt e bbbt bbb e b et b etk b et bttt b e a e 10
2.8. Arithmetic and LOGIC FUNCLIONS........ccoiiiriereerieeeee sttt 12
2.9, PEISON FUNCHOMNS.....ueiitii ettt ettt sttt et et e e sae s et e e s beesbessabeebeesbessabesbeebessbesansesnbessreas 17
2.20. FaMIlY FUNCHONScotitiieeteeeteestet ettt ettt st 26
2.11. Other tyPeS Of FECOIUS.....ueiiteietet ettt b ettt en e 30
N i I O U] T 1 T OO 31
N G T = o] L= U g s 1 o] L= OO UORO 35
2.14. GEDCOM NOGE FUNCHOMS......cccveetieitee e et eteecee ettt e steeeteesbeesseeebessteesseesseesaneenseenseesanes 36
2.15. Event and Date FUNCLIONS.........cccoiiiiicece ettt ettt e ete et s snreebeesanas 39
2.16. Value EXraction FUNCHOMS........cccoieiee ettt ettt e s tee et sbeesreesaeesbeesbeesbeesanesnreenneesanes 44
2.17. User INteraction FUNCHIONS........cocoieiee ettt ettt ettt ete e saaeereebeesanas 46
2.18. SEHNQG FUNCLIONS. ..ottt ettt s b e e bbb e e 49
2.19. OULPUL MOAE FUNCHONS....ccuiitiiiiieeeere ettt sttt s b e b sr e 55
2.20. Person Set Functions and GEDCOM EXtractiQn.........ccccceecveeieeeee e 58
2.21. Record Update FUNCLIONS........cccoveiieecee ettt st e et aesae e sae s ensenreennennas 64
2.22. Record LinKiNG FUNCHIOMNS.........ccoveiiece ettt st nas 65
2.23. MiSCEllANEOUS FUNCLIONS........eiiiieeiee ittt ettt et e et st sreesbe e sabe s sreesbeesaaesnseenneesaees 66
2.24. Deprecated FUNCHOMS.cccoiiieeiee et e et e et sae e e s aesneentesreennennes 70

List of Examples

1-1. Example of ahnentafel report
1-2. Example of ahnentafel report

LT 1) S 2

Chapter 1. Report Programming Manual

1.1. INTRODUCTION

The LifeLines programming subsystem lets you produce reports in any style or layout. You may generate
files in troff, Postscript, TeX, SGML or any other ASCII-based format, for further text processing and
printing. You access the report generator by choosing the r command from the main menu. You may also
use the programming subsystem to create query and other processing programs that write their results
directly upon the screen. For example, there is a LifeLines program that computes the relationship
between any two persons in a database.

Each LifeLines program is written in the LifeLines programming language, and the programs are stored
in normal files. When you direct LifeLines to run a program, it asks you for the name of the program file,
asks you where you want the program’s output written, and then runs the program.

For example, say you want LifeLines to generate an ahnentafel. Such a report might look like:
Example 1-1. Example of ahnentafel report

. Thomas Trask WETMORE IV

. 18 December 1949, New London, Connecticut
. Thomas Trask WETMORE Il

. 15 October 1925, New London, Connecticut
. Joan Marie HANCOCK

. 6 June 1928, New London, Connecticut

. Thomas Trask WETMORE Jr

. 5 May 1896, New London, Connecticut

. 8 November 1970, New London, Connecticut
. Vivian Genevieve BROWN

. 5 April 1896, Mondovi, Wisconsin

. Richard James HANCOCK

. 18 August 1904, New London, Connecticut

. 24 December 1976, Waterford, Connecticut

. Muriel Armstrong SMITH

. 28 October 1905, New Haven, Connecticut

. Thomas Trask WETMORE Sr

. 13 March 1866, St. Mary’s Bay, Nova Scotia

. 17 February 1947, New London, Connecticut
. Margaret Ellen KANEEN

. 27 October 1859, Liverpool, England

. 10 May 1900, New London, Connecticut

.. lots more

O T LW N TTOUTDUO T MMATDTWTOTDNIT PR

Chapter 1. Report Programming Manual
Here is a LifeLines program that generates this report:

Example 1-2. Example of ahnentafel report script

proc main ()
{
getindi(indi)
list(ilist)
list(alist)
enqueue(ilist, indi)
enqueue(alist, 1)
while (indi, dequeue(ilist)) {
set(ahnen, dequeue(alist))
d(ahnen) ". " name(indi) nl()
if (e, birth(indi)) { " b. " long(e) nl() }
if (e, death(indi)) { " d. " long(e) nl() }
if (par, father(indi)) {
enqueue(ilist, par)
enqueue(alist, mul(2,ahnen))
}
if (par,mother(indi)) {
enqueue(ilist, par)
enqueue(alist, add(1,mul(2,ahnen)))

Say this program is in the filthnen . When you choose threoption from the main menu, LifeLines asks:

What is the name of the report program?
enter string:

You enterahnen . Since the program generates a report, LifeLines asks where to write that report:

What is the name of the output file?
enter file name:

You enter a file name, sayy.ahnen . LifeLines reads the program ahnen, executes the program, and
writes the report output tmy.ahnen . LifeLines reports any syntax or run-time errors found while trying
to run the program.

Chapter 1. Report Programming Manual

A LifeLines program is made up of procedures and functions; every program must contain at least one
procedure nameghain . Themain procedure runs first; it may call other procedures, functions and
built-in functions. In the ahnentafel example there is only one procedure.

A procedure body is a sequence of statements. In the example program the first five statements are:

getindi(indi)
list(ilist)

list(alist)
enqueue(ilist, indi)
enqueue(alist, 1)

The first statement calls thygetindi (get individual) built-in function, which causes LifeLines to ask
you to identify a person using the zip browse style of identification:

Identify person for interpreted report
enter name:

After you identify a person, he or she is assigned to the variatlle. The next two statements declare
two list variablesijlist ~ andalist . Lists hold sequences of things; there are operations for placing
things on lists, taking things off, and iterating through the list elements. In the exaltisple, holds a
list of ancestors, in ahnentafel order, who have not yet been reported oalisandholds their
respective ahnentafel numbers.

The next two statements call tkequeue function, adding the first members to both lists. The person
identified by thegetindi ~ function is made the first memberidét , and the number one, this
person’s ahnentafel number, is made the first membalisdf .

The rest of the program is:

while (indi, dequeue(ilist)) {
set(ahnen, dequeue(alist))
d(ahnen) ". " name(indi) nl()
if (e, birth(indi)) { " b. " long(e) nl() }
if (e, death(indi)) { " d. " long(e) nl() }
if (par, father(indi)) {
enqueue(ilist, par)
enqueue(alist, mul(2,ahnen))
}
if (par, mother(indi)) {
enqueue(ilist, par)
enqueue(alist, add(1,mul(2,ahnen)))
}
}

Chapter 1. Report Programming Manual

This is a loop that iteratively removes persons and their ahnentafel numbers from the two lists, and then
prints their names and birth and death information. If the persons have parents in the database, their
parents and their parents’ ahnentafel numbers are then put at the ends of the lists. The loop iterates until
the list is empty.

The loop is a while loop statement. The line:

while (indi, dequeue(ilist)) {

removes (vialequeue) a person fronilist , and assigns the person to variaipidi . As long as there
are persons offist , another iteration of the loop follows.

The statement:

set(ahnen, dequeue(alist))

is an assignment statement. The second argument is evaluated; its value is assigned to the first argument,
which must be a variable. Here the next numbedlist is removed and assigned to variahteen .
This is the ahnentafel number of the person just removed flism .

The line:

d(@hnen) ". " name(indi) nl()

contains four expression statements; when expressions are used as statements, their values, if any, are
treated as strings and written directly to the report output file.drfumction converts its integer

argument to a numeric string. The ". " is a literal (constant) string valuenaime function returns the

default form of a person’s name. The function returns a string containing the newline character.

The next two lines:

if (e, birth(indi)) { " b. " long(e) nl() }
if (e, death(indi)) { " d. " long(e) nl() }

write out basic birth and death information about a person. These lines are if statements. The second
argument in the conditional is evaluated and assigned to the first argument, which must be a variable. The
first if statement calls the birth function, returning the first birth event in a person’s record. If the event
exists it is assigned to variabde and the body (the items between the curly brackets) of the if statement

is executed. The body consists of three expression statements: a literal, and callsrig thadn!
functions.Long takes arevent and returns the values of the fiBATEandPLACIlines in the event.

Finally in the program is:

Chapter 1. Report Programming Manual

if (par, father(indi)) {
enqueue(ilist,par)
enqueue(alist,mul(2,ahnen))

}

if (par,mother(indi)) {
enqueue(ilist,par)
enqueue(alist,add(1,mul(2,ahnen)))

}

These lines add the father and mother of the current person, if either or both are in the database, to

ilist . They also compute and add the parents’ ahnentafel numbealistto . A father’s ahnentafel

number is twice that of his child. A mother’s ahnentafel number is twice that of her child plus one. These
values are computed with timeul andadd functions.

Chapter 2. LIFELINES PROGRAMMING
REFERENCE

LifeLines programs are stored in files you edit with a screen editor. Programs are not edited from within
the LifeLines program; edit them as you would any text file. The programs may be stored in any
directories; they do not have to be kept in or associated with LifeLines databases. You may set the
LLPROGRANMS shell variable to hold a list of directories that LifeLines will use to automatically search
for programs when you request program execution.

2.1. Procedures and Functions

A LifeLines program is made up of one or more procedures and functions. A procedure has format:

proc name(params) { statements }

Name is the name of the procedure, params is an optional list of parameters separated by commas, and
statements is a list of statements that make up the procedure body. Report generation begins with the first
statement in the procedure naneain . Procedures may call other procedures and functions. Procedures
are called with the call statement described below.When a procedure is called, the statements making up
its body are executed.

A function has format:

func name(params) { statements }

Name, params and statements are defined as in procedures. Functions may call other procedures and
functions. When a function is called the statements that make it up are executed. A function differs from
a procedure by returning a value to the procedure or function that calls it. Values are returned by the
return statement, described below. Recursive functions are allowed. A function is called by invoking it in
an expression.

Function and procedure parameters are passed by value except for list, set and table types which are
passed by reference. Redeclaration of a parameter instantiates a new variable of the stated or implied
type. The previous instance continues to exist in the scope of the caller.

Chapter 2. LIFELINES PROGRAMMING REFERENCE

2.2. Comments
You may comment your LifeLines programs using the following notation:

/*...comment text including any characters except */... */

Comments begin with & and end with & . Comments may appear on lines of their own or on lines
that have program constructs. Comments may span many lines. Comments may not be nested.

2.3. Statements

There are a number of statement types. The simplest is an expression statement, an expression that is not
part of any other statement or expression. Expressions are defined more fully below. An expression
statement is evaluated, and if its value is non-null (non-zero), it is assumed to be a string, and written to
the program output file. If its value is null, nothing is written to the output file. For example, the

expression

name(indi)

, Where indi is a person, returns the person’s name and writes it to the output file. On the other hand, the
expression

set(n, nspouses(indi))

assigns the variablethe number of spouses that persadi has, but sinceet returns null, nothing is
written to the output file.

The programming language includes if statements, while statements and procedure call statements, with
the following formats:

if ([varb,] expr) { statements }
[elsif ([varb], expr) { statements }]*
[else { statements }]

while (Jvarb,] expr) { statements }

call name(args)

Square brackets indicate optional parts of the statement syntax. An if statement is executed by first
evaluating the conditional expression in the if clause. If non-zero, the statements in the if clause are
evaluated, and the rest of the if statement, if any, is ignored. If the value is zero, and there is an elsif

Chapter 2. LIFELINES PROGRAMMING REFERENCE

clause following, the conditional in the elsif clause is evaluated, and if non-zero, the statements in that
clause are executed. Conditionals are evaluated until one of them is non-zero, or until there are no more.
If no conditional is non-zero, and if the if statement ends with an else clause, the statements in the else
clause are executed. There are two forms of conditional expressions. If the conditional is a single
expression, it is simply evaluated. If the conditional is a variable followed by an expression, the
expression is evaluated and its value is assigned to the variable.

Note that if treats null strings as false, but empty strings as true. This has the benefit that
if (birth(indi))

will return true if there is a BIRT record, even if it is empty, but will return false if there is no BIRT
record at all.

The while statement provides a looping mechanism. The conditional is evaluated, and if non-zero, the
body of the loop is executed. After each iteration the expression is reevaluated; as long as it remains
non-zero, the loop is repeated.

The call statement provides procedure calls. Name must match one of the procedures defined in the
report program. Args is a list of argument expressions separated by commas. Recursion is allowed. When
a call is executed, the values of its arguments are evaluated and used to initialize the procedure’s
parameters. The procedure is then executed. When the procedure completes, execution resumes with the
first item after the call.

The following report language statements are commonly encountered only near the top of a report:
char_encoding(string)

require(string)

option(string)

include(string)

global(varb)

The char_encoding statement specifies what character encoding scheme is used by the report, so that the
report processor can correctly interpret bytes not in ASCII (e.g., accented letters). An example specifying
a character encoding common in Western Europe:

char_encoding("1ISO-8859-1")

The option statement allows the report writer to specify options. The only option currently available is
"explicitvars”, which causes any use of variables not previously declared or set to be reported as a
parsing error. The require statement allows the report writer to specify that this report needs a version of
the report interpreter no older than that specified. The include statement includes the contents of another

Chapter 2. LIFELINES PROGRAMMING REFERENCE

file into the current file; itstring expression is the name of another LifeLines program file. It is
described in more detail below. The global statement must be used outside the scope of any procedure or
function; it declares aariable to have global scope.

The report language also includes the following statements, which mimic some common programming
languages:

set(varb, expr)
continue()
break()

return([expr])

The set statement is the assignment statemenéxpreession is evaluated, and its value is assigned

to thevariable . The continue statement jumps to the bottom of the current loop, but does not leave

the loop. The break statement breaks out of the most closely nested loop. The return statement returns
from the current procedure or function. Procedures have return statements without expressions; functions
have return statements with expressions. None of these statements return a value, so none has a direct
effect on program output.

In addition to these conventional statements, the report generator provides other iterator statements for
looping through genealogical and other types of data. For example, the children statement iterates
through the children of a family, the spouses statement iterates through the spouses of a person, and the
families statement iterates through the families that a person is a spouse or parent in. A number of
arguments to the iterator are set with values for each iteration. After completion of the iteration, these
variables have the value null. These iterators and others are described in more detail later under the
appropriate data types.

2.4. Expressions

There are four types of expressions: literals, numbers, variables and built-in or user defined function calls.

A literal is any string enclosed in double quotes; its value is itself. A number is any integer or floating
point constant; its value is itself. A variable is a named location that can be assigned different values
during program execution. The value of a variable is the last value assigned to it. Variables do not have
fixed type; at different times in a program, the same variable may be assigned data of completely
different types. An identifier followed by comma-separated list of expressions enclosed in parentheses, is
either a call to a built-in function or a call to a user-defined function.

Chapter 2. LIFELINES PROGRAMMING REFERENCE

2.5. Include Feature

The LifeLines programming language provides an include feature. Using this feature one LifeLines
program can refer to other LifeLines programs. This feature is provided by the include statement:

include(string)

where string is a quoted string that is the name of another LifeLines program file. When an include
statement is encountered, the program that it refers to is read at that point, exactly as if the contents of
included file had been in the body of the original file at that point. This allows you to create LifeLines
program library files that can be used by many programs. Included files may in turn contain include
statements, and so on to any depth. LifeLines will use the LLPROGRAMS shell variable, if set, to search
for the include files. Each file included with a include statement is only read once. If multiple include
statements are encountered that include the same file, only the first statement has any effect.

The only main procedure actually executed is the one in the report the user chose. main procedures in
other reports which are included do not get run. This allows a module intended to be included in other
programs to have a main procedure for test purposes. If multiple functions or procedures with the same
name are included (other than the name main) a runtime error is generated and the program is not run.

2.6. Built-in Functions

There is a long list of built-in functions, and this list will continue to grow for some time. The first
subsection below describes the value types used in LifeLines programs; these are the types of variables,
function parameters and function return values. In the remaining sections the built-in functions are
separated into logical categories and described.

2.7. Value Types

ANY

union of all types

BOOL

boolean (0 represents false; anything else represents true)

10

Chapter 2. LIFELINES PROGRAMMING REFERENCE

EVENT

event; reference to substructure of nodes in a GEDCOM record (reference)

FAM

family; reference to a GEDCOM FAM record (reference)

FLOAT

floating point number (may be used anywhere an INT may be used)

INDI

person; reference to a GEDCOM INDI record (reference)

INT

integer (on most systems a 32-bit signed value)

LIST

arbitrary length list of any values (reference)

NODE

GEDCOM node; reference to a line in a GEDCOM tree/record (reference)

NUMBER

union of all arithmetic types (INT and FLOAT)

11

Chapter 2. LIFELINES PROGRAMMING REFERENCE

SET

arbitrary length set of persons (reference)

STRING

text string

TABLE

keyed look-up table (reference)

VOID

type with no values

In the summaries of built-in functions below, each function is shown with its argument types and its
return type. The types are from the preceding list. Sometimes an argument to a built-in function must be
a variable; when this is so its type is givenxasx_V, where XXX is one of the types above. The built-ins

do not check the types of their arguments. Variables can hold values of any type, though at any one time
they will hold values of only one type. Note that EVENT is a subtype of NODE, and BOOL is a subtype
of INT. Built-ins with type VOID actually return null (zero) values.

Reference types (denoted above in parentheses) obey "pointer semantics”, which is to say that assigning
one to another variable results in both variables pointing at the same data (no copy is made). Therefore, if
you pass a string to a function which changes the string, the caller does not see the change, because a
string is not a reference type. On the other hand, if you pass a table to a function which alters the table,
the caller does see the change, because a table is a reference type.

12

Chapter 2. LIFELINES PROGRAMMING REFERENCE

2.8. Arithmetic and Logic Functions

NUMBERadd (NUMBER NUMBER ...);

addition - two to 32 arguments

NUMBERsub (NUMBER NUMBER

subtraction

NUMBERmul (NUMBER NUMBER ...);

multiplication - two to 32 arguments

NUMBERdiv (NUMBER NUMBER

division

INT mod(INT, INT);

modulus (remainder)

13

NUMBERexp (NUMBER INT);

exponentiation

NUMBERneg (NUMBER

negation

FLOAT float (INT);

convert int to float

INT int (FLOAT);

convert float to int

VOID incr (NUMBER

increment variable by one

Chapter 2. LIFELINES PROGRAMMING REFERENCE

14

VOID decr (NUMBER

decrement variable by one

BOOL and(BOOL, BOOL ...);

logical and - two to 32 arguments

BOOL or (BOOL. BOOL ...):

logical or - two to 32 arguments

BOOL not (BOOL;

logical not

BOOL eq(ANY, ANY);

equality (not strings)

Chapter 2. LIFELINES PROGRAMMING REFERENCE

15

Chapter 2. LIFELINES PROGRAMMING REFERENCE

BOOL ne(ANY, ANY);

non-equality

BOOLIt (ANY, ANY);

less than

BOOL gt (ANY, ANY);

greater than

BOOL le (ANY, ANY);

less than or equal

BOOL ge(ANY, ANY);

greater than or equal

Add, sub, mul anddiv do normal arithmetic of integer or floating values. If any operand is float, the
result is float. Functionadd andmul can have two to 32 arguments; the sum or product of the full set of
arguments is computed. Functiohg anddiv have two arguments eactyb subtracts its second

16

Chapter 2. LIFELINES PROGRAMMING REFERENCE

argument from its first, andiv divides its first argument by its second. Thed function returns the
remainder after dividing the first parameter by the second. If the second argundentdomodis zero,
these functions return 0 and generate a run time eEsprperforms integer exponentiatiodeg negates

its argument. The functiorfivat andint can be used to explicitly convert a value to float or int where
needed.

Incr anddecr increment by one and decrement by one, respectively, the value of a variable. The
argument to both functions must be a variable.

And andor do logical operations. Both functions take two to 32 arguments. All arguments are and’ed or
or'ed together, respectively. The arguments are evaluated from left to right, but only up to the point
where the final value of the function becomes knotet. does the logical not operation.

Eq, ne, It ,le , gt andge evaluate the six ordering relationships between two integers.

2.9. Person Functions

STRING name(INDI , BOOL;

default name of

STRING fullname (INDI, BOOL BOOL INT);

many name forms of

STRING surname (INDI);

surname of

17

Chapter 2. LIFELINES PROGRAMMING REFERENCE

STRING givens (INDI);

given names of

STRING trimname (INDI, INT);

trimmed name of

EVENT birth (INDI);

first birth event of

EVENT death (INDI);

first death event of

EVENT baptism (INDI);

first baptism event of

18

EVENT burial (INDI);

first burial event of

INDI father (INDI);

first father of

INDI mother (INDI);

first mother of

INDI nextsib (INDI);

next (younger) sibling of

INDI prevsib (INDI);

previous (older) sibling of

Chapter 2. LIFELINES PROGRAMMING REFERENCE

19

STRING sex (INDI);

sex of

BOOL male (INDI);

male predicate

BOOL female (INDI);

female predicate

STRING pn(INDI, INT);

pronoun referring to

INT nspouses (INDI);

number of spouses of

Chapter 2. LIFELINES PROGRAMMING REFERENCE

20

Chapter 2. LIFELINES PROGRAMMING REFERENCE

INT nfamilies (INDI);

number of families (as spouse/parent) of

FAM parents (INDI);

first parents’ family of

STRING title (INDI);

first title of

STRING key (INDI|FAM , BOOL;

internal key of (work for families also)

STRING soundex (INDI);

SOUNDEX code of

21

NODEinode (INDI);

root GEDCOM node of

NODEroot (INDI);

root GEDCOM node of

INDI indi (STRING);

find person with key value

INDI firstindi (void);

first person in database in key order

INDI lastindi (void);

last person in database in key order

Chapter 2. LIFELINES PROGRAMMING REFERENCE

22

Chapter 2. LIFELINES PROGRAMMING REFERENCE

INDI nextindi (INDI);

next person in database in key order

INDI previndi (INDI);

previous person in database in key order

spouses (INDI, INDI, FAM INT) { commands }

loop through all spouses of

families (INDI', FAM INDI, INT) { commands }

loop through all families (as spouse) of

forindi (INDI, INT) { commands }

loop through all persons in database

mothers (INDI, INDIL_V , FAM_V, INT) { commands }

loop through all female parents of a person

23

Chapter 2. LIFELINES PROGRAMMING REFERENCE

fathers (INDI, INDI_V , FAM_V, INT) { commands }

loop through all male parents of a person

Parents (INDI, FAM |INT) { commands }

loop through all familes a person is a child of

These functions take a person as a parameter and return information about him or her.

Namereturns the default name of a person; this is the name found on thé fXgtMEline in the

person’s record; the slashes are removed and the surname is made all capitatsan take an optional
second parameter - if it is true the function acts as described above; if false, the surname is kept exactly
as itis in the record.

Fullname returns the name of a person in a variety of formats. If the second parameter is true the
surname is shown in upper case; otherwise the surname is as in the record. If the third parameter is true
the parts of the name are shown in the order as found in the record; otherwise the surname is given first,
followed by a comma, followed by the other name parts. The fourth parameter specifies the maximum
length field that can be used to show the name; various conversions occur if it is necessary to shorten the
name to fit this length.

Surname returns the surname of the person, as found in theffirsSLAMHine; the slashes are removed.
Givens returns the given names of the person in the same order and format as found in theNi$tiE

line of the recordTrimname returns the default name of the person trimmed to the maximum character
length given in the second variable.

Birth , death , baptism andburial return the first birth, death, baptism and burial event in the
person’s record, respectively. An event is a lelheGEDCOMode. If there is no matching event these
functions return null.

Father , mother , nextsib andprevsib return the father, mother, next younger sibling and next older
sibling of the person, respectively. If the person has more than one father (mothiath¢he (mother)
function returns the first one. These functions return null if there is no person in the role.

24

Chapter 2. LIFELINES PROGRAMMING REFERENCE

Sex returns the person’s sex as the string M if the person is male, F if the person is female, or U if the
sex of the person is not knowklale andfemale return true if the person is male or female,
respectively, or false if not.

Pn generates pronouns, useful when generating English text; the second parameter selects the type of
pronoun:

He/She
he/she
His/Her
his/her
him/her

A W N PR O

Nspouses returns the number of spouses the person has in the databaségraifids returns the
number of families the person is a parent/spouse in; these two values are not necessarily the same.
Parents returns the first family that the person is a child in.

Title returns the value of the firdt TITL line in the recordKey returns the key value of a person or
family; it there is a second parameter and it is non-null, the lealdioigF will be stripped.Soundex
returns the Soundex code of the person.

Root andinode return the root node of the person’'s GEDCOM node tree. Note that an INDI value is
not a NODE value. If you want to process the nodes within a person node tree, you must first use the
root orinode function to get the root of the person node tieeot andinode are synonyms.

Indi returns the person who's key is passed as an argument; if no person has it kegturns null.

Firstindi ~ , nextindi andprevindi allow you to iterate through all persons in the database.
Firstindi returns the first person in the database in key oidettindi returns the next person after
the argument person in key orderevindi returns the previous person before the argument person in
key order.

Spouses is an iterator that loops through each spouse a person has. The first argument is a person. The
second argument is a person variable that iterates through the first person’s spouses. The third argument
is a family variable that iterates through the families the person and each spouse are in. The fourth
argument is an integer variable that counts the iterations.

Families is an iterator that loops through the families a person was a spouse/parent in. The first
argument is a person. The second argument is a family variable that iterates through the families the first
person was a spouse/parent in. The third argument iterates through the spouses from the families; if there
is no spouse in a particular family, the variable is set to null for that iteration. The fourth argument is an
integer variable that counts the iterations.

25

Chapter 2. LIFELINES PROGRAMMING REFERENCE

Forindi is an iterator that loops through every person in the database in ascending key order. Its first
parameter is a variable that iterates through the persons; its second parameter is an integer counter
variable that counts the persons starting at one.

mothers is an iterator that loops through every female parent of the specified individual. Its first

parameter is a person; its third parameter is a family variable that iterates through the familes that the
person is a child in; its second parameter is a person variable that is the female parent associated with the
family in the third parameter; The fourth parameter is a variable that counts the families returned starting
at one.

Parents is an iterator that loops through every family that a person is a child in. Note: This iterator's
name begins with a capital P. There is another function of the same name that begins with a lower case p.
Its first parameter is a person; its second parameter is a family variable that iterates through the familes
that the person is a child in; and the third parameter is a variable that counts the families returned starting
at one.

Forindi is an iterator that loops through every person in the database in ascending key order. Its first
parameter is a variable that iterates through the persons; its second parameter is an integer counter
variable that counts the persons starting at one.

2.10. Family Functions

EVENT marriage (FAM);

first marriage event of

INDI husband (FAM);

first husband/father of

26

INDI wife (FAM;

first wife/mother of

INT nchildren (FAM);

number of children in

INDI firstchild (FAM);

first child of

INDI lastchild (FAM);

last child of

STRING key (FAM|INDI , BOOL;

internal key of (works for persons also)

Chapter 2. LIFELINES PROGRAMMING REFERENCE

27

NODEfnode (FAM);

root GEDCOM node of

NODEroot (FAM);

root GEDCOM node of

FAM fam (STRING);

find family from key

FAM firstftam (void);

first family in database in key order

FAM lastfam (void);

last family in database in key order

Chapter 2. LIFELINES PROGRAMMING REFERENCE

28

Chapter 2. LIFELINES PROGRAMMING REFERENCE

FAM nextfam (FAM);

next family in database in key order

FAM prevfam (FAM);

previous family in database in key order

children (FAM INDI_V , INT_V) { commands }

loop through children of family

forfam (FAM_V, INT_V) { commands }

loop through all families in database

These functions take a family as an argument and return information about it.

Marriage returns the first marriage event found in the family record, if any; it returns null if there is no
marriage event.

Husband returns the first husband/father of the family, if any; avifé returns the first wife/mother of
the family, if any. Each returns null if the requested person is not in the family.

Nchildren returns the number of children in the family.

Firstchild andlastchild return the first child and last child in a family, respectively.

29

Chapter 2. LIFELINES PROGRAMMING REFERENCE

Key was described in the section on person functions.

Root andfnode return the root node of a family GEDCOM node tree. Note that a FAM value is not a
NODE value. If you want to process the nodes within a family node tree, you must finstatseor
fnode function to get the root of the family node tré@ot andfnode are synonyms.

Famreturns the family who's key is passed as an argument; if no family has tharkeseturns null.

Firsttam , nexttam andprevfam allow you to iterate through all families in the databaSestfam
returns the first family in the database in key ordxtfam returns the next family after the argument
family in key orderPrevfam returns the previous family before the argument family in key order.

Children is an iterator that loops through the children in a family. Its first parameter is a family
expression; its second parameter is a variable that iterates through each child,; its third parameter is an
integer counter variable that counts the children starting at one. These two variables may be used within
the loop body.

Forfam is an iterator that loops through every family in the database in ascending key order. Its first
parameter is a variable that iterates through the families; its second parameter is an integer counter
variable that counts the families starting at one.

2.11. Other types of records

forsour (NODE_VY INT) { commands }

loop through all sources in database

foreven (NODE_V INT) { commands }

loop through all EVEN nodes in database

30

Chapter 2. LIFELINES PROGRAMMING REFERENCE

forothr (NODE_V INT) { commands }

loop through all other (notes, etc.) nodes in database

forsour is an iterator that loops through all the Source nodes in the database. Its first argument is the
SOUR record and its second parameter is an integer counter variable that counts the sources elements
starting at oneforeven is an iterator that loops through all the Event nodes in the database. Its first
argument is the EVEN record and its second parameter is an integer counter variable that counts the
events elements starting at of@othr is an iterator that loops through all the Other nodes in the
database. Its first argument is the record (NOTE, etc.) and its second parameter is an integer counter
variable that counts the nodes starting at one.

2.12. List Functions

VOID list (LIST_V);

declare a list

BOOL empty (LIST);

check if list is empty

INT length (LIST);

length of list

31

VOID enqueue (LIST, ANY);

enqueue element on list

ANY dequeue (LIST);

dequeue and return element from list

VOID requeue (LIST, ANY);

requeue an element on list

VOID push (LIST, ANY);

push element on list

ANY pop (LIST);

pop and return element from list

Chapter 2. LIFELINES PROGRAMMING REFERENCE

32

VOID setel (LIST, INT, ANY);

array element assignment

ANY getel (LIST, INT);

array element selection

BOOL inlist (LIST, ANY);

is second argument in list.

VOID sort (LIST, LIST);

sort list elements

VOID rsort (LIST, LIST);

reverse sort list elements

Chapter 2. LIFELINES PROGRAMMING REFERENCE

33

Chapter 2. LIFELINES PROGRAMMING REFERENCE

LIST dup(LIST);

duplicate a list

forlist (LIST, ANY_V, INT_V) { commands }

loop through all elements of list

LifeLines provides general purpose lists that can be accessed as queues, stacks or arrays. A list must be
declared with théist function before it can be used. Redeclaring an existing variable witlisthe

clears it and restores it to being an empty list. If the argument to list() is the name of a parameter to the
current routine, the reference to the calling routines list is removed and a new list is created.

A list can have any number of elemerisnpty returns true if the list has no elements and false
otherwiseLength returns the length of the list. The only parameter to both is a list. The following
diagram indicates how the various access functions for a list interact:

Enqueue, dequeue andrequeue provide queue access to a liEhqueue adds an element to the back
of a queuedequeue removes and returns the element from the front of a queuerggndue adds an
element to the front of a queue. The first parameter to all three is a list, and the second parameter to
enqueue andrequeue is the value to be added to the queue and can be any value.

Push andpop provide stack access to a liuush pushes an element on the stack, pog removes and
returns the most recently pushed element from the stack. The first parameter to both is a list, and the
second parameter push is the value to be pushed on the stack and can be of any type.

Setel andgetel provide array access to a liSetel sets a value of an array element, aatkl

returns the value of an array element. The first parameter to both is a list; the second parameter to both is
an integer index into the array; and the third parametsetel is the value to assign to the array

element and can be of any type. Array elements are indexed starting at one. Unassigned elements are
assumed to be null (0). Arrays automatically grow in size to accommodate the largest index value that is
used. Passing 0 references the last element at the other end from 1, and -1 the one before it, etc.

34

Chapter 2. LIFELINES PROGRAMMING REFERENCE

inlist compares the second argument with each element in the list. If it finds a mich returns
true.

sort andrsort sort a list, using the elements of the second array to determine the new order. Both lists
are reordered, so essentially both are sorted using the sort order of the second argument. (If only one
argument is given, it is sorted on its own elements.) rsort sorts in order reverse of sort. The order that sort
produces places the smallest element at position 1, and the largest element at the end of the list, such that
dequeue will remove the smallest element.

dup creates a copy of a list. If b is a list, the functiset (a,b) makes the variable a a reference to the list
b. If you want to make a new list, you must use (adup (b)).

Forlist is an iterator that loops through the element in a list. Its first parameter is a LIST expression; its
second parameter is a variable that iterates through the list elements; and its third parameter is an integer
counter variable that counts the list elements starting at one.

2.13. Table Functions

VOID table (TABLE_V);

declare a table

VOID insert (TABLE, STRING, ANY);

insert entry in table

ANY lookup (TABLE, STRING);

lookup and return entry from table

35

Chapter 2. LIFELINES PROGRAMMING REFERENCE

These functions provide general purpose, keyed tables. A table must be declared veittethe
function before it can be used.

Insert adds an object and its key to a table. Its first parameter is a table; the second parameter is the
object’s key; and the third parameter is the object itself. The key must be a string and the object can be
any value. If there already is an object in the table with that key, the old object is replaced with the new.

Lookup retrieves an object from a table. Its first parameter is a table, and the second parameter is the
object’s key. The function returns the object with that key from the table; if there is no such object, null is
returned.

2.14. GEDCOM Node Functions

STRING xref (NODB;

cross reference index of

STRING tag (NODE;

tag of

STRING value (NODE;

value of

36

NODEparent (NODE;

parent node of

NODEchild (NODE;

first child of

NODEsibling (NODE;

next sibling of

NODE savenode (NODE;

copy a node structure

INT level (NODE;

level of a node

Chapter 2. LIFELINES PROGRAMMING REFERENCE

37

Chapter 2. LIFELINES PROGRAMMING REFERENCE

fornodes (NODE NODE_V { commands }

loop through child nodes

fornotes (ANY, STRING) { commands }

loop through notes on a node

traverse (NODE NODE_V INT_V) { commands }

loop through all descendent nodes

These functions provide access to the components of a GEDCOM node. All take a GEDCOM node as
their only parameter, and each returns a different value associated with the node.

Xref returns the cross reference index of the node, if &xy;returns the tag of the node; anaue
returns the value of the node, if any. If there is no cross referemsfe, returns null; if there is no value,
value returns null.

Parent returns the parent node of the node, if attyild returns the first child node of the node, if any;
andsibling returns the next sibling node of the node, if any. Whenever there is no such related node,
these functions return null. These three functions allow simple navigation through a GEDCOM node tree.

Savenode makes a copy of the node, and the substructure of nodes below the node, that is passed to it.
Beware: the memory used to make the copy is never returned to the system.

Thelevel function returns the level of the node.

Fornodes is an iterator that loops through the child nodes of a GEDCOM node. Its first argument is a
node expression, and its second parameter is a variable that iterates through each direct child node of the
first node.

38

Chapter 2. LIFELINES PROGRAMMING REFERENCE

Fornotes is an iterator that loops through the NOTE nodes of a GEDCOM node. Its first argument is a
node expression, and its second parameter is a variable that returns the value of the NOTE. The value
includes processed sub CONC and CONT records.

Traverse is an iterator providing a general method for traversing GEDCOM trees. Its first parameter is

a node expression; its second parameter is a variable that iterates over every node under the first node in a
top down, left to right manner; and its third parameter is a variable that is set to the level of the current
node in the iteration.

2.15. Event and Date Functions

STRING date (EVENT);

date of, value of firsDATEline

STRING place (EVENT);

place of, value of firsPLACline

STRING year (EVENT);

year or, 1st string of 3-4 digits in 1&tATEline

STRING long (EVENT);

date and place, values of BATEandPLACIlines

39

STRING short (EVENT);

date and place of, abbreviated from

EVENT gettoday (void);

returns the ‘event’ of the current date

VOID dayformat (INT);

set day format for stddate calls

VOID monthformat (INT);

set month format for stddate calls

VOID yearformat (INT);

set year format for stddate calls

Chapter 2. LIFELINES PROGRAMMING REFERENCE

40

VOID eraformat (INT);

set era format for stddate calls

VOID dateformat (INT);

set date format for stddate calls

VOID datepic (STRING);

set custom date format for stddate calls

STRING stddate (EVENT|STRING);

date of, in current format

VOID complexformat (INT);

set complex date format

Chapter 2. LIFELINES PROGRAMMING REFERENCE

41

Chapter 2. LIFELINES PROGRAMMING REFERENCE

VOID complexpic (INT, STRING);

set custom complex date picture string

STRING complexdate (EVENT|STRING);

date of, in current complex format

These functions extract information about the dates and places of events.

Date returns the value of the fir@ATEline in an event, a node in a GEDCOM record treeate finds
the firstDATEline one level deeper than the event ndelace returns the value of the fir6tLACline in
an eventYear returns the first three or four digit number in the value of the B¥&TEline in an event;
this number is assumed to be the year of the event.

Long returns the verbatim values of the fiBATEandPLACIines in an event, concatenated together

and separated by a comnshort abbreviates information from the firBSIATEandPLACIines,

concatenates the shortened information together with a comma separator and returns it. An abbreviated
date is its year; an abbreviated place is the last component in the value, further abbreviated if the
component has an entry in the place abbreviation table.

Gettoday creates an event that has today’s date inDAg Eline.

The next seven functions are used to format dates in a variety of Wayfermat , monthformat
yearformat , eraformat , anddateformat select style options for formatting the day, month, year,
era, and overall date structusgddate returns dates in the selected styatepic allows specifying a
custom pattern that overrides the date format selecteddaitfiormat . The string supplied specifies

the placement of the day, month and year in the string with %d, %m and %y. A null argument disables
the overrided format. The argumentdiddate is normally an event and the date is extracted from the
event and formatted. If the argument is a date string it is converted using the current date formats.

The next three functions provide for more complex formatting of dates. Taking into account the abt, est,
cal, bef, aft, fr and to qualifiers on GEDCOM datesmplexformat selects the format to use. The

format effects only the complex picture, not the format of the date itself. The funagiioplexpic can

be used to specify a custom picture string for any or all of the 9 custom format strings. The custom string

42

Chapter 2. LIFELINES PROGRAMMING REFERENCE
can be canceled by passing a null for the string. When a custom picture string is provided it overrides

both the abbreviated and full word picture stringsmplexdate formats the date similarly tstddate
but with the addition of the complex date format string selected.

The day format codes passedittyformat are:

0 leave space before single digit days
1 use leading 0 before single digit days
2 no space or leading 0 before single digit days

The month format codes passedionthformat are:

number with space before single digit months

number with leading zero before single digit months

number with no space or zero before single digit months
upper case abbreviation (eg, JAN, FEB) (localized)
capitalized abbreviation (eg, Jan, Feb) (localized)

upper case full word (eg, JANUARY, FEBRUARY) (localized)
capitalized full word (eg, January, February) (localized)
lower case abbreviation (eg, jan, feb) (localized)

lower case full word (eg, january, february) (localized)

upper case abbreviation in English per GEDCOM (eg, JAN, FEB)
10 lower case roman letter (eg, i, ii)

11 upper case roman letter (eg, I, II)

© 0O N O Ul WN P O

The year format codes passed/tarformat are:

0 use leading spaces before years with less than four digits
1 use leading 0 before years with less than four digits
2 no space or leading 0 before years

The era format codes passecktaformat are:

0 no AD/BC markers

1 trailing B.C. if appropriate

2 trailing A.D. or B.C.

11 trailing BC if appropriate

12 trailing AD or BC

21 trailing B.C.E. if appropriate
22 trailing C.E. or B.C.E.

31 trailing BC if appropriate

32 trailing CE or BCE

43

Chapter 2. LIFELINES PROGRAMMING REFERENCE
The full date formats passeddaidate are:

da mo yr

mo da, yr
mo/dalyr
da/molyr
mo-da-yr
da-mo-yr

modayr

damoyr

yr mo da
yr/mo/da
yr-mo-da
yrmoda

yr (year only, omitting all else)
da/mo yr

(As in GEDCOM)

© 0N O O~ W DN PP O

e e e
A WN R O

The complex date formats selected by thenplexformat ~ and used byomplexdate are:

Mode Example
use abbreviations in uppercase ABT 1 JAN 2002
use abbreviations in titlecase Abt 1 JAN 2002

0o N O 0o~ W

use uppercased full words
use titlecased full words

use abbreviations in lowercase

use lowercase full words

ABOUT 1 JAN 2002

About 1 JAN 2002
abt 1 JAN 2002

about 1 JAN 2002

The complex date string pictures that can be overridden withdhglexpic are:

0o N O Ol WN B O

Abbreviation
abt %1

est %1

cal %1

bef %1

aft %1

bet %1 and %2
fr %1

to %1

fr %1 to %2

Full word
about %1
estimated %1
calculated %1
before %1
after %1
between %1 and %2
from %1
to %1
from %1 to $2

44

Chapter 2. LIFELINES PROGRAMMING REFERENCE

2.16. Value Extraction Functions

VOID extractdate (NODE INT_V,

extract a date

VOID extractnames (NODE LIST_V,

extract a name

VOID extractplaces (NODE LIST_V,

extract a place

VOID extracttokens (STRING, LIST_V,

extract tokens

INT_V,

INT_V);

INT_V, INT_V);

INT_V);

INT_V, STRING);

VOID extractdatestr (VARB VARB VARB VARB VARB STRING);

extract date from string

45

Chapter 2. LIFELINES PROGRAMMING REFERENCE

Value extraction functions read the values of certain lines and return those values in extracted form.

Extractdate extracts date values from either an event nodeAT Enode. The first parameter must be

a node; if its tag IDATE, the date is extracted from the value of that node; if its tag iD#0LE, the date

is extracted from the firdDATEline one level below the argument node. The remaining three arguments
are variables. The first is assigned the integer value of the extracted day; the second is assigned the
integer value of the extracted month; and the third is assigned the integer value of the extracted year.

Extractnames extracts name components frolNAMHine. Its first argument is either dNDI or a
NAMEnode. If it is aNAMHine, the components are extracted from the value of that node; if it is an

INDI line, the components are extracted from the value of theNi#gd¥IHine in the person record. The
second argument is a list that will hold the extracted components. The third argument is an integer
variable that is set to the number of extracted components. The fourth argument is a variable that is set to
the index (starting at one) of the surname component;, ttiearacters are removed from around the

surname component. If there is no surname this argument variable is set to zero.

Extractplaces extracts place components fronPaACnode. The first argument is a node; if its tag is
PLAC, the places are extracted from the value of the node; if its tag iBIDAC, places are extracted

from the firstPLACIine one level below the argument node. The second parameter is a list that will hold
the extracted components. The third argument is an integer variable that is set to the number of extracted
components. Place components are defined by the comma-separated portiord #fGhalue; leading

and trailing white space is removed from the components, while all internal white space is retained.

Extracttokens extracts tokens from a string and places them in a list. The first argument is the string
to extract tokens from. The second argument is the list to hold the tokens. The third argument is an
integer variable that is set to the number of tokens extracted. The fourth parameter is the string of
delimiter characters thaktracttokens uses to break the input string into tokens.

extractdatestr extracts date values from &TRING. It is intended for internal verification of date
extraction code. The remaining five arguments are variables. The second is assigned the integer value of
the extracted day; the third is assigned the integer value of the extracted month; and the fourth is
assigned the integer value of the extracted year.

2.17. User Interaction Functions

VOID getindi (INDI_V , STRING);

identify person through user interface

46

Chapter 2. LIFELINES PROGRAMMING REFERENCE

VOID getindiset (SET_V, STRING);

identify set of persons through user interface

VOID getfam (FAM_V);

identify family through user interface

VOID getint (INT_V, STRING);

get integer through user interface

VOID getstr (STRING_V, STRING);

get string through user interface

INDI choosechild (INDI|FAM);

select child of person/family through user interface

47

Chapter 2. LIFELINES PROGRAMMING REFERENCE

FAM choosefam (INDI);

select family person is in as spouse

INDI chooseindi (SET);

select person from set of persons

INDI choosespouse (INDI);

select spouse of person

SET choosesubset (SET);

select a subset of persons from set of persons

INT menuchoose (LIST, STRING);

select from a list of options

These functions interact with the user to get information needed by the program.

48

Chapter 2. LIFELINES PROGRAMMING REFERENCE
Getindi asks the user to identify a person. The first argument is a variable that is set to the person. The
second is an optional string to use as a pro@ptindiset asks the user to identify a set of persons.

Getfam asks the user identify a familgetint andgetstr ask the user enter an integer and string,
respectively.

Choosechild asks the user select a child of a family or person; its single argument is a person or
family; it return the childChoosefam has the user select a family that a person is in as a spouse; its
argument is a person; it returns the famyooseindi has the user select one person from a set of
persons; its argument in a set of persons; it returns the chosen pehsorespouse has the user select
a spouse of a person; its argument is a person; it returns the chosen spmusesubset has the user
select a subset of persons from a set of persons; its argument is the chosen subset.

Menuchoose allows the user to select from an arbitrary menu. The first argument is a list of strings
making up the items in the menu; the second, optional argument is a prompt string for the menu;
menuchoose returns the integer index of the item selected by the user; if the user doesn'’t select an item,
zero is returned.

2.18. String Functions

STRING lower (STRING);

convert to lower case

STRING upper (STRING);

convert to upper case

STRING capitalize (STRING);

capitalize first letter

49

Chapter 2. LIFELINES PROGRAMMING REFERENCE

STRING titlecase (STRING);

capitalize first letter of each word

STRING trim (STRING, INT);

trim to length

STRING rjustify ~ (STRING, INT);

right justify in field

STRING concat (STRING, STRING ...);

catenate two strings

STRING strconcat (STRING, STRING ...);

catenate two strings

50

INT strlen (STRING);

number of characters in string

STRING substring((STRING, INT, INT);

substring function

INT index (STRING, STRING, INT);

index function

STRING d(INT);

number as decimal string

STRING f (FLOAT, INT);

number as floating point string

Chapter 2. LIFELINES PROGRAMMING REFERENCE

51

Chapter 2. LIFELINES PROGRAMMING REFERENCE

STRING card (INT);

number in cardinal formdpe, two, ...)

STRING ord (INT);

number in ordinal formf{rst, second, ...)

STRING alpha (INT);

convert number to Latin lettea(b, ...)

STRING roman (INT);

number in Roman numeral form (i, ...)

STRING strsoundex (STRING);

find SOUNDEX value of arbitrary string

52

Chapter 2. LIFELINES PROGRAMMING REFERENCE

INT strtoint (STRING);

convert numeric string to integer

INT atoi (STRING);

convert numeric string to integer

INT strcmp (STRING, STRING);

general string compare

BOOL egstr (STRING, STRING);

compare strings for equality

BOOL nestr (STRING, STRING);

compare strings for inequality

These functions provide string handling. Prior to version 3.0.6, many of them used an approach to
memory management chosen for absolute minimal memory footprint. A function using this approach
constructed its output string in its own string buffer, reusing that buffer each time it was called. When a

53

Chapter 2. LIFELINES PROGRAMMING REFERENCE

function using this approach returned a string value it returned its buffer. In consequence the strings
returned by these functions were to be either used or saved before the function was called again.

Lower andupper convert the letters in their arguments to lower or upper case, respectively.

Capitalize ~ converts the first character of the argument, if it is a letter, to upper caser andupper
historically used the buffer return methadpitalize operates on and returns its argument.

tittecase converts the first letter of each word if it is a letter, to upper case and all other characters to
lower case.

Trim shortens a string to the length specified by the second parameter. If the string is already of that
length or shorter the string is not changBgustify right justifies a string into another string of the

length specified by the second parameter. If the original string is shorter than the justified string, blanks
are inserted to the left of the original string; if the string is longer than the justified string, the original
string is truncated on the rightrim historically used the buffer return methaoflstify creates and
returns a new string.

Concat andstrconcat catenate strings and return the result. They are identical functions. They may
take two to 32 string arguments; null arguments are allowed. The arguments are concatenated together
into a single, newly allocated string, which is returned.

Strlen returns the length of the string argument.

Substring returns a substring of the first argument string. The second and third arguments are the
indices of the first and last characters in the argument string to use to form the substring. The indexes are
relative oneSubstring historically used the buffer return method.

Index returns the character index of the nth occurrence of a substring within a string. The index is the
relative one character offset to the beginning of the substring. The first argument is the string; the second
argument is the substring; and the third argument is the occurrence number.

D, card , ord , alpha androman convert integers to stringb.converts an integer to a numeric string;
card converts an integer to a cardinal number string ¢éeg, two, three); ord converts an integer
to an ordinal number (edjrst, second, third); alpha converts an integer to a letter (eg, b,

c); androman converts an integer to a Roman numeral (ggj, iii).

Thef function converts a float to a string. The optional second argument specifies the precision of the
output. The default precision is 2.

Strsoundex converts an arbitrary string to a SOUNDEX value. Non-ASCII text characters are ignored
in the string.

Strtoint converts a numeric string to an integatoi is identical tostrtoint

54

Chapter 2. LIFELINES PROGRAMMING REFERENCE

Strcmp compares two strings and returns an integer that is less than zero, equal to zero, or greater than
zero, if, respectively, the first string is lexicographically less than, equal to, or greater than the second
string.Egstr andnestr return whether two strings are equal or not equal, respectSetmp |,

Egstr , andnestr all treat null strings as empty strings, which is to say they pretend that a null string is
actually "". This means that all null and empty strings compare as equal.

2.19. Output Mode Functions

VOID linemode (void);

use line output mode

VOID pagemode(INT, INT);

use page output mode with given page size

VOID col (INT);

position to column in output

INT getcol (void);

get current column in output

55

Chapter 2. LIFELINES PROGRAMMING REFERENCE

VOID row (INT);

position to row in output

VOID pos(INT, INT);

position to (row, col) coordinate in output

VOID pageout (void);

output page buffer

STRING nl (void);

newline character

STRING sp (void);

space character

56

Chapter 2. LIFELINES PROGRAMMING REFERENCE

STRING qt (void);

double quote character

VOID newfile (STRING, BOOL;

send program output to this file

STRING outfile (void);

return name of current program output file

VOID copyfile (STRING);

copy file contents to program output file

VOID print (STRING, STRING ...);

print string to standard output window

Reports can be generated in two modes, line mode and page hiagleode selects line mode and
pagemode selects page mode; line mode is the default. The first paramaiegémode is the number
of rows per page; the second parameter is the number of columns per page. When in the line mode report

57

Chapter 2. LIFELINES PROGRAMMING REFERENCE

output is written directly to the output file as the program runs, line by line. When in page mode output is
buffered into pages which are written to the output file whageout is called. Page mode is useful for
generating charts (eg, pedigree charts or box charts) where it is convenient to compute the
two-dimensional location of output.

Col positions output to the given column. If the current column is greater than the argument, col
positions output to the given column on the next li@el works in both modesGetcol returns the
current column in the output.

Rowpositions output to the first character in the given reaw can only be used in page mode.

Pos positions output to a specified row and column coordinate; the first argument specifies the row, and
the second specifies the colunfas can only be used in page mode.

NI write a new line character to the output fitg; writes a space character to the output file; gnd
writes a quote character to the output file. Note thaand\' can be used within string values to
represent the newline and double quote characters.

Newfile specifies the name of the report output file. Its first argument is the file’s name; its second
argument is an append flag - if its value is non-zero the report appends to this file; if its value is zero the
report overwrites the contents of the filkewfile can be called many times; this allows a single report
program to generate many report output files during one execution. Programs are not required to use
newfile ;ifitis not used then LifeLines automatically asks for the name of the report output file.

Outfile returns the name of the current report output file.

Copyfile copies the contents of a file to the report output file; its argument is a string whose value is the
name of a file; if the file name is not absolute nor relative, then the LLPROGRAMS environment
variable, if set, will be used to search for the file; the file is opened and its contents copied to the report
output file.

Print prints its argument string to the standard output windamt may have one to 32 arguments.

2.20. Person Set Functions and GEDCOM Extraction

VOID indiset (SET_V);

declare a set variable

58

SET addtoset (SET, INDI, ANY);

add a person to a set

SET deletefromset (SET, INDI, BOOL;

remove a person from a set

INT lengthset (SET);

size of a set

SET union (SET, SET);

union of two sets

SET intersect (SET, SET);

intersection of two sets

Chapter 2. LIFELINES PROGRAMMING REFERENCE

59

SET difference (SET, SET);

difference of two sets

SET parentset (SET);

set of all parents

SET childset (SET);

set of all children

SET spouseset (SET);

set of all spouses

SET siblingset (SET);

set of all siblings

Chapter 2. LIFELINES PROGRAMMING REFERENCE

60

SET ancestorset (SET);

set of all ancestors

SET descendentset (SET);

set of all descendents

SET descendantset (SET);

same as descendentset; spelling

SET uniqueset (SET);

remove duplicates from set

VOID namesort (SET);

sort indiset by name

Chapter 2. LIFELINES PROGRAMMING REFERENCE

61

Chapter 2. LIFELINES PROGRAMMING REFERENCE

VOID keysort (SET);

sort indiset by key values

VOID valuesort (SET);

sort indiset by auxiliary values

VOID genindiset (STRING, SET);

generate indiset from GEDCOM name string

BOOL inset (SET, INDI);

true if the Individual is in the set.

forindiset (SET, INDI_V, ANY_V, INT_V) { commands }

loop through all persons in person set

These functions allow you to manipulate person sets. A person set is a potentially large set of persons;
each person may have an arbitrary value associated with him/her. A person set must be declared with the
indiset function before it can be used.

62

Chapter 2. LIFELINES PROGRAMMING REFERENCE

Addtoset adds a person to a set. The first argument is the set; the second argument is the person; and
the third argument may be any value. The same person may be added to a set more than once, each time
with a different valueDeletefromset ~ removes a person from a set. The first argument is the set; the
second argument is the person; if the third parameter is true all of the person’s entries are removed from
the set; if false only the first entry is remove@ngthset returns the number of persons in a person set.

Union , intersect ~ anddifference return the set union, set intersection and set difference,

respectively, of two person sets. Each functions takes two person sets as arguments and returns a third
person set. The functions actually modify their argument sets, both reordering them into canonical key
order and removing any duplicates (these operations are necessary to easily implement these types of set
functions).

Parentset , childset , spouseset andsiblingset return the set of all parents, set of all children,
set of all spouses and set of all siblings, respectively, of the set of persons in their argument. In all cases
there is no change to the argument person set.

Ancestorset returns the set all ancestors of all persons in the argumemestendentset returns
the set of all descendents of all persons in the argumerbestendantset is the same as
descendentset ; it allows an alternate spelling.

Uniqueset sorts a person set by key value and then removes all entries with duplicate keys; the input set
is modified and returned.

Namesort , keysort andvaluesort sort a set of persons by name, by key and by associated value,
respectively.

Each person in a person set has an associated value. When a person is added to adg#buyeth , the

value is explicitly assigned. When new sets are created by other functions, a number of rules are used to
associate values with persons as they are added to the new setsteatset |, childset and

spouseset the values are copied from the first input set person that causes the new person to be added
to the set. Founion , intersect anddifference , the values are copied from the values in the first

input set, except in the casewfion , when persons are taken from the second set alone, in which case
the values come from there. Faicestorset ~ anddescendantset the value is set to the number of
generations the new person is away fromfitet person in the input set that the new person is related to.

If the new person is related to more than one person in the input set, the value is set for the nearest
relationship; that is, the value is as low as possitsiduesort ~ sorts a person set by the values of these
auxiliary values.

Genindiset generates the set of persons that matches a string whose value is a name in GEDCOM
format.Genindiset uses the same algorithm that matches names entered at the browse prompt or by
the user interactiopetindiset ~ function.

Inset returns true if the the specified individual is in the SET.

63

Chapter 2. LIFELINES PROGRAMMING REFERENCE

Forindiset is an iterator that loops through each person in an indiset. The first parameter is an indiset.
The second parameter is a variable that iterates through each person in the set. The third parameter
iterates through the values associated with the persons. The fourth parameter is an integer variable that
counts the iterations.

2.21. Record Update Functions

NODEcreatenode (STRING, STRING);

create a GEDCOM node

VOID addnode (NODE NODE NODE;

add a node to a GEDCOM tree

VOID detachnode (NODE;

delete a node from a GEDCOM tree

VOID writeindi (INDI);

write a person back to the database

64

Chapter 2. LIFELINES PROGRAMMING REFERENCE

VOID writefam (FAM);

write a family back to the database

These functions allow you to modify an internal GEDCOM node tree.

Createnode creates a GEDCOM node; the two arguments are tag and value strings, respectively; the
value string can be nulhddnode adds a node to a node tree. The first argument is the new node; the
second is the node in the tree that becomes the parent of the new node; the third is the node in the tree
that becomes the previous sibling of the new node; this argument is null if the new node is to become the
first child of the parentDetachnode removes a node from a node treeiteindi writes an individual

record back to the database, amitefam writes a family record back to the database, allowing the

report to make permanent changes to the database.

The node functions only change data in memory; there is no effect on the database until and unless
writeindi orwritefam are called. These functions may be changed or extended in the future to allow
database changes.

2.22. Record Linking Functions

BOOL reference (STRING);

determine if string is a cross reference

NODEdereference (STRING);

reference cross reference or key to node tree

65

Chapter 2. LIFELINES PROGRAMMING REFERENCE

NODEgetrecord (STRING);

same as dereference

These functions allow you to recognize values that are cross references and to read the records they refer
to. Reference returns true if its string argument is a cross reference value, that is, the internal key of

one of the records in the databaBereference returns the node tree of the record referred to by its

cross reference string argume@etrecord is a synonym fotereference

2.23. Miscellaneous Functions

VOID lock (INDI[FAM);

lock a person or family in memory

VOID unlock (INDI|FAM);

unlock a person or family from memory

STRING database (void);

return name of current database

66

Chapter 2. LIFELINES PROGRAMMING REFERENCE

STRING program (void);

return name of current program

STRING version (void);

return version of LifeLines program

VOID system (STRING);

execute string as a UNIX shell command

INT heapused (void);

amount of heap used for windows

STRING getproperty (STRING);

extract system or user property. Function available after v3.0.5.

67

Chapter 2. LIFELINES PROGRAMMING REFERENCE

STRING setlocale (STRING);

set the locale

STRING bytecode (STRING, STRING);

encode a string in a codeset

STRING convertcode (STRING, STRING, STRING);

convert string from one codeset to another

VOID debug (BOOLEAN

set interperter debug mode

STRING pvalue (ANY);

dump information about a pvalue

68

Chapter 2. LIFELINES PROGRAMMING REFERENCE

VOID free (ANY);

free space associated with a variable

Lock andunlock are used to lock a person or family into RAM memory, and to unlock a person or
family from RAM memory, respectively.

Database returns the name of the current database, useful in titling repootgam returns the name
of the current report prograriersion returns the version of the running LifeLines program, eg,
3.0.37

System executes its string argument as a UNIX (or MS-Windows as appropriate) shell command, by
invoking the system shell. This will not occur if the user has chosen to disallow report system calls (via
the DenySystemCalls user option).

Theheapused function returns the amount of system heap that is in use at the time. This is implemented
only on windows.

Thegetproperty function extracts system or user properties. Properties are named
group.subgroup.property, group.property or even property. The keys are available at the moment can be
found in the ll-userguide under System and User Properties.

Thesetlocale function sets the locale and returns the previous setting of locale.

Thebytecode function converts the supplied string with escape codes to the current codeset, or to the
codeset specified by the optional second parameter if specified. A escaped code is a dollar sign ($)
followed by 2 hex characters, e.g. $C1.

Theconvertcode function converts a string to another codeset. In the two argument form, the second
argument is the destination codeset, and the source codeset is the internal codeset. In the 3 argument
form, the second argument is the source codeset and the third argument is the destination codeset.

Thedebug function turns on or off programming debugging. When enabled gobs of information is
printed as a LifeLines program is run. This can be useful to figure out why a program is not behaving as
expected.

69

Chapter 2. LIFELINES PROGRAMMING REFERENCE

Thepvalue function returns a string that represents the contents of a variable in the interpreter. This is
present for debug purposes.

The functionfree deallocates space associated with the variable provided as argument 1. Care must be
taken when free is used in a function on a variable which is a parameter to the function. free will not
effect the variable in the calling program.

2.24. Deprecated Functions

The functionality of the following three functiongetindimsg , getintmsg andgetstrmsg IS how
available using the optional parametemefindi , getint andgetstr . These functions should no
longer be used as they will be removed from a future version of Lifelines.

VOID getindimsg (INDI_V , STRING);

identify person through user interface

VOID getintmsg (INT_V, STRING);

get integer through user interface

VOID getstrmsg (STRING_V, STRING);

get string through user interface

Three functions are available for to generate GEDCOM format output to the report output file of all
persons in the argument person set. These functions do not in most cases generate consistent and usable

output. This can be done with a program, but it is suggested that these routines are probably not what you
really wanted.

70

Chapter 2. LIFELINES PROGRAMMING REFERENCE

Gengedcom output contains a person record for each person in the set, and all the family records that
link at least two of the persons in the set together. This function is provided for backward compatibility.
Source, Event and Other(X) record pointers are output unmodified, but none of their records are output -
this yields an inconsistent output.

Gengedcomweak output does not contain Source, Event or Other(X) record pointers or their records.
Gengedcomstrong includes the Source, Event and Other(X) record pointers and all top-level nodes
referenced by them.

VOID gengedcom (SET);

generate GEDCOM file from person set

VOID gengedcomweak (SET);

generate GEDCOM file from person set

VOID gengedcomstrong (SET);

generate GEDCOM file from person set

By the release of version 3.0.6, all string values are local copies, andvtteandstrsave functions

should be entirely unnecessadggave is present only for compatibility reasons. Previously it duplicated

its argument (to prevent strings from becoming stale; this is not currently necessary (and this function no
longer does anythingptrsave is the same function asve .

71

STRING save (STRING);

save and return copy of string

STRING strsave (STRING);

same as save function

Usedetachnode instead ofdeletenode

VOID deletenode (NODE;

delete a node from a GEDCOM tree

Chapter 2. LIFELINES PROGRAMMING REFERENCE

72

	THE LIFELINES PROGRAMMING SUBSYSTEM AND REPORT GENERATOR
	Table of Contents
	List of Examples
	Chapter 1. Report Programming Manual
	1.1. INTRODUCTION

	Chapter 2. LIFELINES PROGRAMMING REFERENCE
	2.1. Procedures and Functions
	2.2. Comments
	2.3. Statements
	2.4. Expressions
	2.5. Include Feature
	2.6. Builtin Functions
	2.7. Value Types
	ANY
	BOOL
	EVENT
	FAM
	FLOAT
	INDI
	INT
	LIST
	NODE
	NUMBER
	SET
	STRING
	TABLE
	VOID
	2.8. Arithmetic and Logic Functions
	NUMBER add(NUMBER, NUMBER ...);
	NUMBER sub(NUMBER, NUMBER);
	NUMBER mul(NUMBER, NUMBER ...);
	NUMBER div(NUMBER, NUMBER);
	INT mod(INT, INT);
	NUMBER exp(NUMBER, INT);
	NUMBER neg(NUMBER);
	FLOAT float(INT);
	INT int(FLOAT);
	VOID incr(NUMBER);
	VOID decr(NUMBER);
	BOOL and(BOOL, BOOL ...);
	BOOL or(BOOL, BOOL ...);
	BOOL not(BOOL);
	BOOL eq(ANY, ANY);
	BOOL ne(ANY, ANY);
	BOOL lt(ANY, ANY);
	BOOL gt(ANY, ANY);
	BOOL le(ANY, ANY);
	BOOL ge(ANY, ANY);
	2.9. Person Functions
	STRING name(INDI, BOOL);
	STRING fullname(INDI, BOOL, BOOL, INT);
	STRING surname(INDI);
	STRING givens(INDI);
	STRING trimname(INDI, INT);
	EVENT birth(INDI);
	EVENT death(INDI);
	EVENT baptism(INDI);
	EVENT burial(INDI);
	INDI father(INDI);
	INDI mother(INDI);
	INDI nextsib(INDI);
	INDI prevsib(INDI);
	STRING sex(INDI);
	BOOL male(INDI);
	BOOL female(INDI);
	STRING pn(INDI, INT);
	INT nspouses(INDI);
	INT nfamilies(INDI);
	FAM parents(INDI);
	STRING title(INDI);
	STRING key(INDI|FAM, BOOL);
	STRING soundex(INDI);
	NODE inode(INDI);
	NODE root(INDI);
	INDI indi(STRING);
	INDI firstindi(void);
	INDI lastindi(void);
	INDI nextindi(INDI);
	INDI previndi(INDI);
	spouses (INDI, INDI, FAM, INT) { commands }
	families (INDI, FAM, INDI, INT) { commands }
	forindi (INDI, INT) { commands }
	mothers (INDI, INDIV, FAMV, INT) { commands }
	fathers (INDI, INDIV, FAMV, INT) { commands }
	Parents (INDI, FAM, INT) { commands }
	2.10. Family Functions
	EVENT marriage(FAM);
	INDI husband(FAM);
	INDI wife(FAM);
	INT nchildren(FAM);
	INDI firstchild(FAM);
	INDI lastchild(FAM);
	STRING key(FAM|INDI, BOOL);
	NODE fnode(FAM);
	NODE root(FAM);
	FAM fam(STRING);
	FAM firstfam(void);
	FAM lastfam(void);
	FAM nextfam(FAM);
	FAM prevfam(FAM);
	children (FAM, INDIV, INTV) { commands }
	forfam (FAMV, INTV) { commands }
	2.11. Other types of records
	forsour (NODEV, INT) { commands }
	foreven (NODEV, INT) { commands }
	forothr (NODEV, INT) { commands }
	2.12. List Functions
	VOID list(LISTV);
	BOOL empty(LIST);
	INT length(LIST);
	VOID enqueue(LIST, ANY);
	ANY dequeue(LIST);
	VOID requeue(LIST, ANY);
	VOID push(LIST, ANY);
	ANY pop(LIST);
	VOID setel(LIST, INT, ANY);
	ANY getel(LIST, INT);
	BOOL inlist(LIST, ANY);
	VOID sort(LIST, LIST);
	VOID rsort(LIST, LIST);
	LIST dup(LIST);
	forlist (LIST, ANYV, INTV) { commands }
	2.13. Table Functions
	VOID table(TABLEV);
	VOID insert(TABLE, STRING, ANY);
	ANY lookup(TABLE, STRING);
	2.14. GEDCOM Node Functions
	STRING xref(NODE);
	STRING tag(NODE);
	STRING value(NODE);
	NODE parent(NODE);
	NODE child(NODE);
	NODE sibling(NODE);
	NODE savenode(NODE);
	INT level(NODE);
	fornodes (NODE, NODEV) { commands }
	fornotes (ANY, STRING) { commands }
	traverse (NODE, NODEV, INTV) { commands }
	2.15. Event and Date Functions
	STRING date(EVENT);
	STRING place(EVENT);
	STRING year(EVENT);
	STRING long(EVENT);
	STRING short(EVENT);
	EVENT gettoday(void);
	VOID dayformat(INT);
	VOID monthformat(INT);
	VOID yearformat(INT);
	VOID eraformat(INT);
	VOID dateformat(INT);
	VOID datepic(STRING);
	STRING stddate(EVENT|STRING);
	VOID complexformat(INT);
	VOID complexpic(INT, STRING);
	STRING complexdate(EVENT|STRING);
	2.16. Value Extraction Functions
	VOID extractdate(NODE, INTV, INTV, INTV);
	VOID extractnames(NODE, LISTV, INTV, INTV);
	VOID extractplaces(NODE, LISTV, INTV);
	VOID extracttokens(STRING, LISTV, INTV, STRING);
	VOID extractdatestr(VARB, VARB, VARB, VARB, VARB, STRING);
	2.17. User Interaction Functions
	VOID getindi(INDIV, STRING);
	VOID getindiset(SETV, STRING);
	VOID getfam(FAMV);
	VOID getint(INTV, STRING);
	VOID getstr(STRINGV, STRING);
	INDI choosechild(INDI|FAM);
	FAM choosefam(INDI);
	INDI chooseindi(SET);
	INDI choosespouse(INDI);
	SET choosesubset(SET);
	INT menuchoose(LIST, STRING);
	2.18. String Functions
	STRING lower(STRING);
	STRING upper(STRING);
	STRING capitalize(STRING);
	STRING titlecase(STRING);
	STRING trim(STRING, INT);
	STRING rjustify(STRING, INT);
	STRING concat(STRING, STRING ...);
	STRING strconcat(STRING, STRING ...);
	INT strlen(STRING);
	STRING substring((STRING, INT, INT);
	INT index(STRING, STRING, INT);
	STRING d(INT);
	STRING f(FLOAT, INT);
	STRING card(INT);
	STRING ord(INT);
	STRING alpha(INT);
	STRING roman(INT);
	STRING strsoundex(STRING);
	INT strtoint(STRING);
	INT atoi(STRING);
	INT strcmp(STRING, STRING);
	BOOL eqstr(STRING, STRING);
	BOOL nestr(STRING, STRING);
	2.19. Output Mode Functions
	VOID linemode(void);
	VOID pagemode(INT, INT);
	VOID col(INT);
	INT getcol(void);
	VOID row(INT);
	VOID pos(INT, INT);
	VOID pageout(void);
	STRING nl(void);
	STRING sp(void);
	STRING qt(void);
	VOID newfile(STRING, BOOL);
	STRING outfile(void);
	VOID copyfile(STRING);
	VOID print(STRING, STRING ...);
	2.20. Person Set Functions and GEDCOM Extraction
	VOID indiset(SETV);
	SET addtoset(SET, INDI, ANY);
	SET deletefromset(SET, INDI, BOOL);
	INT lengthset(SET);
	SET union(SET, SET);
	SET intersect(SET, SET);
	SET difference(SET, SET);
	SET parentset(SET);
	SET childset(SET);
	SET spouseset(SET);
	SET siblingset(SET);
	SET ancestorset(SET);
	SET descendentset(SET);
	SET descendantset(SET);
	SET uniqueset(SET);
	VOID namesort(SET);
	VOID keysort(SET);
	VOID valuesort(SET);
	VOID genindiset(STRING, SET);
	BOOL inset(SET, INDI);
	forindiset(SET, INDIV, ANYV, INTV) { commands }
	2.21. Record Update Functions
	NODE createnode(STRING, STRING);
	VOID addnode(NODE, NODE, NODE);
	VOID detachnode(NODE);
	VOID writeindi(INDI);
	VOID writefam(FAM);
	2.22. Record Linking Functions
	BOOL reference(STRING);
	NODE dereference(STRING);
	NODE getrecord(STRING);
	2.23. Miscellaneous Functions
	VOID lock(INDI|FAM);
	VOID unlock(INDI|FAM);
	STRING database(void);
	STRING program(void);
	STRING version(void);
	VOID system(STRING);
	INT heapused(void);
	STRING getproperty(STRING);
	STRING setlocale(STRING);
	STRING bytecode(STRING, STRING);
	STRING convertcode(STRING, STRING, STRING);
	VOID debug(BOOLEAN);
	STRING pvalue(ANY);
	VOID free(ANY);
	2.24. Deprecated Functions
	VOID getindimsg(INDIV, STRING);
	VOID getintmsg(INTV, STRING);
	VOID getstrmsg(STRINGV, STRING);
	VOID gengedcom(SET);
	VOID gengedcomweak(SET);
	VOID gengedcomstrong(SET);
	STRING save(STRING);
	STRING strsave(STRING);
	VOID deletenode(NODE);

