
Bio::SearchIO HOWTO
Jason Stajich
Duke University 1

University Program in Genetics 2

Center for Genome Technology 3

Duke University Medical Center
Box 3568

Durham, North Carolina 27710-3568
USA

jason-at-bioperl.org

This is a HOWTO written in DocBook (SGML) for the reasoning behind the creation of
the Bio::SearchIO system, how to use it, and how one goes about writing new adaptors
to different output formats. We will also describe how the Bio::SearchIO::Writer modules
work for outputting various formats from Bio::Search objects.

Table of Contents
Background ..3
Design ...3
Parsing with Bio::SearchIO...3
Implementation...4
Writing and formatting output...5
Extending SearchIO..6

Background
One of the most common and necessary tasks in bioinformatics is parsing analysis
reports so that one can write programs which can help interpret the sheer volume
of data that can be produced by processing many sequences. To this end the Bioperl
project has produced a number of parsers for the ubiquitous BLAST report. Steve
Chervitz wrote one of the first Bioperl modules for BLAST called Bio::Tools::Blast.
Ian Korf allowed us to import and modify his BPlite (Blast Parser) Bio::Tools::BPlite
module into Bioperl. This is of course in a sea of BLAST parsers that have been writ-
ten by numerous people, but we will only cover the ones associated directly with the
Bioperl project in this document. One of the reasons for writing yet another BLAST
parser in the form of Bio::SearchIO is that even though both Bio::Tools::Blast and
Bio::Tools::BPlite did their job correctly, could parse WU-BLAST and NCBI-BLAST
output, they did not adequately genericize what they were doing. By this we mean
everything was written around the BLAST format and was not easily applicable to
parsing say, FastA alignments or a new alignment format. One of the powerful fea-
tures of the Object-Oriented framework in Bioperl is the ability to read in say, a se-
quence file, in different formats or from different data sources like a database or XML-
flatfile, and have the program code process the sequences objects in the same manner.
We wanted to have this capability in place for analysis reports as well and thus the
generic design of the Bio::SearchIO module.

Design
The Bio::SearchIO system was designed with the following assumptions. That all re-
ports parsed with it could be separated into a hierarchy of components. The Result
which is the entire analysis for a single query sequence. Multiple results can be con-
catenated together into a single file (i.e. running blastall with a fasta database as the
input file rather than a single sequence). Each result is a set of Hits for the query se-
quence. Hits are sequences in the searched database which could be aligned to the
query sequence and met the minimal search parameters such as e-value threshold.
Each Hit has one or more High-scoring segment Pairs (HSP)s which are the align-
ments of the query and hit sequence. So each Result has a set of one or more Hits
and each Hit has a set of one or more HSPs. This relationship can be used to describe
results from all pairwise alignment programs including BLAST, FastA, and imple-
mentations of the Smith-Waterman and Needleman-Wunsch algorithms.

A design pattern, called Factory, is utilized in object oriented programming to
separate the entity which process data from objects which will hold the information
produced. In the same manner that the Bio::SeqIO module is used to parse different
file formats and produces objects which are Bio::PrimarySeqI compliant, we have
written Bio::SearchIO to produce the Bio::Search objects. Sequences are a little less
complicated so there is only one primary object (Bio::PrimarySeqI) which Search
results need three main components to represent the data processed in a file:
Bio::Search::Result::ResultI (top level results), Bio::Search::Hit::HitI (hits) and
Bio::Search::HSP::HSPI (HSPs). The Bio::SearchIO object is then a factory which
produces Bio::Search::Result::ResultI objects and the Bio::Search::Result::ResultI
objects contain information about the query, the database searched, and the full
collection of Hits found for the query.

Parsing with Bio::SearchIO
This section is going to describe how to use the SearchIO system to process reports.
We’ll describe BLAST and FastA reports. The idea is that once you understand the
methods associated with the objects you won’t need to know anything special about
new parsers.

Here’s an example which processes a BLAST report finding all the hits where the
HSPs are > 100 residues and the percent identity is < 75 percent.

3

Bio::SearchIO HOWTO

use strict;
use Bio::SearchIO;

my $in = new Bio::SearchIO(-format => ’blast’,
-file => ’report.bls’);

while(my $result = $in->next_result) {
while(my $hit = $result->next_hit) {

while(my $hsp = $hit->next_hsp) {
if($hsp->length(’total’) > 100 &&

$hsp->percent_identity >= 75) {
print "Hit= ", $hit->name,

", len=",$hsp->length(’total’),
", percent_id=", $hsp->percent_identity, "\n";

}
}

}
}

You can read up on the Bio::Search::HSP::HSPI object that is produced by
Bio::SearchIO to see what other methods besides length and percent_identity
are supported. The best place for this http://doc.bioperl.org which provides
HTML-ified version of the Perl POD (Plain Old Documentation) that is embedded
in every (well written) Perl module.

Note. There is some confusion often associated by the objects because of the nature
of the active development of this system. Steve Chervitz and myself (Jason)
have implemented different parsers in this system. Steve created the psiblast
parser (which does parse regular blast files too) and a host of objects named
Bio::Search::XXX::BlastXXX where XXX is HSP, Hit, and Result. These objects are
created by his Bio::SearchIO::psiblast implementation. The objects I have created are
called Bio::Search::XXX::GenericXXX where again XXX is HSP, Hit, and Result.
Because of some of the assumptions made in Steve’s implementation and his
utilization of what is known as ’lazy parsing’, it is probably not going to be
very easy to maintain his system without his help. While I have tried (perhaps
unsuccessfully?) to make my implementations much easier to follow because all
the parsing is done in one module. The important take home message is that you
cannot assume that methods in the BlastXXX objects are in fact implemented by the
GenericHSP objects. More than likely the BlastXXX objects will be deprecated and
dismantled as their functionality is ported to the GenericHSP objects.

Implementation
This section is going to describe how the SearchIO system was implemented, it is
probably not necessary to understand all of this unless you are curious or want to
implement your own Bio::SearchIO parser. We have utilized an event-based system
to process these reports. This is analagous to the SAX (Simple API for XML) system
used to process XML documents. Event based parsing can be simply thought of as
simple start and end events. When you hit the beginning of a report a start event is
thrown, when you hit the end of the report an end event is thrown. So the report
events are paired, and everything else that is thrown in between the paired start
and end events is related to that report. Another way to think of it is as if you pick a
number and color for a card in a standard deck. Let’s say you pick red and 2. The you
start dealing cards from our deck and pile them one on top of each other. When you
see your first red 2 you start a new pile, and start dealing cards onto that pile until
you see the next red 2. Everything in your pile that happened between when you saw
the beginning red 2 and ending red 2 is data you’ll want to keep and process. In the
same way all the events you see between a pair of start and end events (like ’report’ or
’hsp’) are data associated with object or child object in its hierarchy. A listener object
processes all of these events, in our example the listener is the table where the stack
of cards is sitting, and later it is the hand which moves the pile of cards when a new

4

Bio::SearchIO HOWTO

stack is started. The listener will take the events and process them. We’ve neglected
to tell you of a third event that is thrown and caught. This is the characters event in
SAX terminology which is simply data. So one sends a start event, then some data,
then an end event. This process is analagous to a finite state machine in computer
science (and I’m sure the computer scientists reading this right are already yawning)
where what we do with data received is dependent on the state we’re in. The state
that the listener is in is affected by the events that are processed.

A small caveat, in an ideal situation a processor would throw events and not need
to keep any state about where it is, it would just be processing data and the listener
would manage the information and state. However, a lot of the parsing of these hu-
man readable reports requires contextual information to apply the correct regular
expressions. So in fact the event thrower has to know what state it is in and apply
different methods based on this. In contrast the XML parsers simply keep track of
what state they are in, but can process all the data with the same system of reading
the tag and sending the data that is inbetween the XML start and end tags.

All of this framework has been built up so to implement a new parser one only needs
to write a module that produces the appropriate start and end events and the exist-
ing framework will do the work of creating the objects for you. Here’s how we’ve
implemented event-based parsing for Bio::SearchIO. The Bio::SearchIO is just the
front-end to this process, in fact the processing of these reports is done by different
modules in the Bio/SearchIO directory. So if you look at your bioperl distribution
at the modules in Bio/SearchIO you’ll see modules in there like: blast.pm, fasta.pm,
blastxml.pm, SearchResultEventBuilder.pm, EventHandlerI.pm (depending on what
version of the toolkit there may be more modules in there). There is also a SearchWri-
terI.pm and Writer directory in there but we’ll save that for later. If you don’t have
the distribution handy you can navigate this at the bioperl CVSweb page5.

Lets use the blast.pm module as an example to describe the relationship of the mod-
ules in this dir (could have subsituted any of the other format parsers like fasta.pm
or blastxml.pm - these are always lowercase for historical reasons). The module has
some features you should look for - the first is the hash in the BEGIN block called
%MAPPING. This key value pairs here are the shorthand for how we map events
from this module to general event names. This is only necessary because if we have
an XML processor (see the blastxml.pm module) the event names will be the same
as the XML tag names (like <Hsp_bit-score> in the NCBI BLAST XML DTD). So
to make this general we’ll make sure all of the events inside our parser map to the
values in the %MAPPING hash - we can call them whatever we want inside this
module. Some of the events map to hash references (like Statistics_db-len) this is so
we can map multiple values to the same top-level attribute field but we know they
will be stored as a hash value in the subsequent object (in this example, keyed by the
name ’dbentries’). The capital "RESULT", "HSP", or "HIT" in the value name allow
us to encode the event state in the event so we don’t have to pass in two values. It
also easy for someone to quickly read the list of events and know which ones are
related to Hits and which ones are related to HSPs. The listener in our architecture
is the Bio::SearchIO::SearchResultEventBuilder. This object is attatched as a listener
through the Bio::SearchIO method add_EventListener. In fact you could have multi-
ple event listeners and they could do different things. In our case we want to create
Bio::Search objects, but an event listener could just as easily be propigating data di-
rectly into a database based on the events. The SearchResultEventBuilder takes the
events thrown by the SearchIO classes and builds the appropriate Bio::Search::HSP::
object from it.

Sometimes special objects are needed that are extensions beyond what the Gener-
icHSP or GenericHit objects are meant to represent. For this case we have imple-
mented Bio::SearchIO::SearchResultEventBuilder so that it can use factories for creat-
ing its resulting Bio::Search objects - see Bio::SearchIO::hmmer _initialize method for
an example of how this can be set.

5

Bio::SearchIO HOWTO

Writing and formatting output
Often people want to write back out a BLAST report for users who are most
confortable with that output or if you want to visualize the context of a weakly
aligned region to use human intuition to score the confidence of a putative
homologue. Bio::SearchIO is for parsing in the data and Bio::SearchIO::Writer is for
outputting the information. The simpliest way to output data as a pseudo-BLAST
HTML format is as follows.

my $writerhtml = new Bio::SearchIO::Writer::HTMLResultWriter();
my $outhtml = new Bio::SearchIO(-writer => $writerhtml,

-file => ">searchio.html");
get a result from Bio::SearchIO parsing or build it up in memory
$out->write_result($result);

If you wanted to get the output as a string rather than write it out to a file, simply use
the following.

$writerhtml->to_string($result);

The HTMLResultWriter supports setting your own remote database url for the se-
quence links in the event you’d like to point to your own SRS or local HTTP based
connection to the sequence data, simply use the remote_database_url method which
accepts a sequence type as input (protein or nucleotide).

You can also override the id_parser() method to define what are the unique IDs from
these sequence ids in the event you would like to use something other than accession
number that is gleaned from the sequence string.

If your data is instead stored in a database you could build the Bio::Search objects up
in memory directly from your database and then use the Writer object to output the
data. Currently their is also a Bio::SearchIO::Writer::TextResultWriter which supports
writing BLAST textfile output.

Extending SearchIO
The framework for Bio::SearchIO is just a starting point for parsing these reports
and creating objects which represent the information. If you would like to create
your own set of objects which extend the current functionality we have built the
system so that it will support this. For example, if you’ve built your own HSP ob-
ject which supports a special operation like, realign_with_sw which might realign
the HSP via a Smith-Waterman algorithm pulling extra bases from the flanking se-
quence. You might call your module Bio::Search::HSP::RealignHSP and put it in a file
called Bio/Search/HSP/RealignHSP.pm. Note that you don’t have to put this file
directly in the bioperl src directory - you can create your own local directory struc-
ture that is in parallel to the bioperl release src code as long as you have updated
your PERL5LIB to contain your local directory or use the ’use lib’ directive in your
script. Also, you don’t have to use the namespace Bio::Search::HSP as namespaces
don’t mean anything about object inheritance in perl, but we reccommend you name
things in a logical manner so that others might read your code and if you feel en-
couraged to donate your code to the project it might easily integrated with existing
modules.

So, you’re going to write your new special module, you do need to make sure it
inherits from the base Bio::Search::HSP::HSPI object. Additionally unless you want
to reimplement all the initialization state in the current Bio::Search::HSP::GenericHSP
you should just plan to extend that object. You need to follow the chained constructor
system that we have setup so that the arguments are properly processed. Here is a

6

Bio::SearchIO HOWTO

sample of what your code might look like (don’t forget to write your own POD so
that it will be documented, I’ve left it off here to keep things simple).

package Bio::Search::HSP::RealignHSP;
use strict;
use Bio::Search::HSP::GenericHSP;
use vars qw(@ISA); # for inheritance
@ISA = qw(Bio::Search::HSP::GenericHSP); # RealignHSP inherits from GenericHSP

sub new {
my ($class,@args) = @_;
my $self = $class->SUPER::new(@args); # chained contructor

process the 1 additional argument this object supports
my ($ownarg1) = $self->_rearrange([OWNARG1],@args);

return $self; # remember to pass the object reference back out
}

sub realign_hsp {
my ($self) = @_;
implement my special realign method here

}

The above code gives you a skeleton of how to start to implement your object. To
register it so that it is used when the SearchIO systems makes HSPs you just need to
call a couple of functions. The code below outlines them.

use Bio::SearchIO;
use Bio::Search::HSP::HSPFactory;
use Bio::Search::Hit::HitFactory;

setup the blast parser, you can do this with and SearchIO parser however
my $searchio = new Bio::SearchIO(-file => $blastfile,

-format =>’blast’);
build HSP factory with a certain type of HSPs to make
the default is Bio::Search::HSP::GenericHSP
my $hspfact = new Bio::Seach::HSP::HSPFactory(-type =>

’Bio::Search::HSP::RealignHSP’);
if you wanted to replace the Hit factory you can do this as well
additionally there is an analagous
Bio::Search::Result::ResultFactory for setting custom Result objects
my $hitfact = new Bio::Seach::Hit::HitFactory(-type =>

’Bio::Search::Hit::SUPERDUPER_Hit’);
$searchio->_eventHandler->register_factory(’hsp’, $hspfact);
$searchio->_eventHandler->register_factory(’hit’, $hitfact);

We have to register the HSPFactory which is the object which will create
HSPI objects, by allowing this to be built by a factory rather than a hardcoded
Bio::Search::HSP::GenericHSP->new(...) call we are permitting a user from taking
advantage of the whole parsing structure and the ability to slot their own object into
the process rather than reimplementing very much. We think this is very powerful
and is worth the system overhead which may not permit this to be as efficient in
parsing as we would like. Future work will hopefully address speed and memory
issues with this parser. Volunteers and improvement code is always welcome.

7

Bio::SearchIO HOWTO

Notes
1. http://www.duke.edu

2. http://upg.duke.edu

3. http://cgt.genetics.duke.edu

4. http://doc.bioperl.org

5. http://cvs.open-bio.org/cgi-bin/viewcvs/viewcvs.cgi/bioperl-
live/Bio/SearchIO/?cvsroot=bioperl

8

	Table of Contents
	Background
	Design
	Parsing with Bio::SearchIO
	Implementation
	Writing and formatting output
	Extending SearchIO

