
Bio::Graphics HOWTO
Lincoln Stein

Cold Spring Harbor Laboratory 1

lstein@cshl.org

This HOWTO describes how to render sequence data graphically in a horizontal map. It
applies to a variety of situations ranging from rendering the feature table of a GenBank
entry, to graphing the positions and scores of a BLAST search, to rendering a clone map.
It describes the programmatic interface to the Bio::Graphics module, and discusses how
to create dynamic web pages using Bio::DB::GFF and the gbrowse package.

Table of Contents
Introduction ...3
Preliminaries..3
Getting Started ..3
Adding a Scale to the Image ...5
Improving the Image..7
Parsing Real BLAST Output...8
Rendering Features from a GenBank or EMBL File ..12
A Better Version of the Feature Renderer ..14
Summary...18

Introduction
This HOWTO describes the Bio::Graphics module, and some of the applications that
were built on top of it. Bio::Graphics was designed to solve the following common
problems:

• You have a list of BLAST hits on a sequence and you want to generate a picture
that shows where the hits go and what their score is.

• You have a big GenBank file with a complex feature table, and you want to render
the positions of the genes, repeats, promoters and other features.

• You have a list of ESTs that you’ve mapped to a genome, and you want to show
how they align.

• You have created a clone fingerprint map, and you want to display it.

The Bio::Graphics module was designed to solve these problems. In addition, using
the Bio::DB::GFF module (part of BioPerl) and the gbrowse program (available from
http://www.gmod.org) you can create interactive web pages to explore your data.

This document takes you through a few common applications of Bio::Graphics in a
cookbook fashion.

Preliminaries
Bio::Graphics is dependent on GD, a Perl module for generating bitmapped
graphics written by the author. GD in turn is dependent on libgd, a C library written
by Thomas Boutell, formerly also of Cold Spring Harbor Laboratory. To use
Bio::Graphics, you must have both these software libraries installed.

If you are on a Linux system, you might already have GD installed. To verify, run the
following command:

% perl -MGD -e ’print $GD::VERSION’;

If the program prints out a version number, you are in luck. Otherwise, if you get a
"Can’t locate GD.pm" error, you’ll have to install the module. For users of ActiveState
Perl this is very easy. Just start up the PPM program and issue the command "install
GD". For users of other versions of Perl, you should go to www.cpan.org, download
a recent version of the GD module, unpack it, and follow the installation directions.
You may also need to upgrade to a recent version of the libgd C library.

If the program prints out a version number, you are in luck. Otherwise, if you get a
"Can’t locate GD.pm" error, you’ll have to install the module. For users of ActiveState
Perl this is very easy. Just start up the PPM program and issue the command "install
GD". For users of other versions of Perl, you should go to www.cpan.org, download
a recent version of the GD module, unpack it, and follow the installation directions.

You may need to upgrade to a recent version of the libgd C library. At the time this
was written, there were two versions of libgd. libgd version 1.8.4 is the stable version,
and corresponds to GD version 1.43. libgd version 2.0.1 is the beta version; although
it has many cool features, it also has a few known bugs (which Bio::Graphics works
around). If you use libgd 2.0.1 or higher, be sure it matches GD version 2.0.1 or higher.

You will also need to install the Text::Shellwords module, which is available from
CPAN.

3

Bio::Graphics HOWTO

Getting Started
Our first example will be rendering a table of BLAST hits on a sequence that is ex-
actly 1000 residues long. For now, we’re ignoring finicky little details like HSPs, and
assume that each hit is a single span from start to end. Also, we’ll be using the BLAST
score rather than P or E value. Later on, we’ll switch to using real BLAST output
parsed by the Bio::SearchIO module, but for now, our table looks like this:

hit score start end
hsHOX3 381 2 200
scHOX3 210 2 210
xlHOX3 800 2 200
hsHOX2 1000 380 921
scHOX2 812 402 972
xlHOX2 1200 400 970
BUM 400 300 620
PRES1 127 310 700

Figure 1. Simple blast hit file (data1.txt)

Our first attempt to parse and render this file looks like this:

Example 1. Rendering the simple blast hit file (render1.pl)

0 #!/usr/bin/perl

1 # This is code example 1 in the Graphics-HOWTO
2 use strict;
3 use Bio::Graphics;
4 use Bio::SeqFeature::Generic;

5 my $panel = Bio::Graphics::Panel- >new(-length = > 1000,-width = > 800);
6 my $track = $panel- >add_track(-glyph = > ’generic’,-label = > 1);

7 while (<>) { # read blast file
8 chomp;
9 next if /^\#/; # ignore comments

10 my($name,$score,$start,$end) = split /\t+/;
11 my $feature = Bio::SeqFeature::Generic- >new(-seq_id= >$name,-score= >$score,
12 -start= >$start,-end= >$end);
13 $track- >add_feature($feature);
14 }

15 print $panel- >png;

The script begins by loading the Bio::Graphics module (line 3), which in
turn brings in a number of other modules that we’ll use later. We also load
Bio::SeqFeature::Generic in order to create a series of Bio::SeqFeatureI objects
for rendering. We then create a Bio::Graphics::Panel object by calling its new()
method, specifying that the panel is to correspond to a sequence that is 1000 residues
long, and has a physical width of 800 bp (line 5). The Panel can contain multiple
horizontal tracks, each of which has its own way of rendering features (called a
"glyph"), color, labeling convention, and so forth. In this simple example, we create a
single track by calling the panel object’s add_track() method (line 6), specify a glyph
type of "generic", and ask that the objects in the track be labeled by providing a true
value to the -label argument. This gives us a track object that we can add our hits to.

We’re now ready to render the blast hit file. We loop through it (line 7-14),
stripping off the comments, and parsing out the name, score and range (line 10).

4

Bio::Graphics HOWTO

We now need a Bio::SeqI object to place in the track. The easiest way to do this is
to create a Bio::SeqFeature::Generic object, which is similar to Bio::PrimarySeq,
except that it provides a way of attaching start and end positions to the sequence,
as well as such nebulous but useful attributes as the "score" and "source". The
Bio::SeqFeature::Generic->new() method, invoked in line 11, takes arguments
corresponding to the name of each hit, its start and end coordinates, and its score.

After creating the feature object, we add it to the track by calling the track’s
add_feature() method (line 13).

After processing all the hits, we call the panel’s png() method to render them and
convert it into a Portable Network Graphics file, the contents of which are printed
to standard output. We can now view the result by piping it to our favorite image
display program.

% render1.pl data1.txt | display -

Figure 2. Rendering BLAST hits

Users of operating systems that don’t support pipes can simply redirect the output
to a file and view it in their favorite image program.

Adding a Scale to the Image
This is all very nice, but it’s missing two essential components:

• It doesn’t have a scale.

• It doesn’t distinguish between hits with different scores.

Example 2 fixes these problems

Example 2. Rendering the blast hit file with scores and scale

0 #!/usr/bin/perl

1 # This is code example 2 in the Graphics-HOWTO
2 use strict;
3 use lib ’/home/lstein/projects/bioperl-live’;
4 use Bio::Graphics;
5 use Bio::SeqFeature::Generic;

6 my $panel = Bio::Graphics::Panel- >new(-length = > 1000,
7 -width = > 800,
8 -pad_left = > 10,
9 -pad_right = > 10,

10);
11 my $full_length = Bio::SeqFeature::Generic- >new(-start= >1,-end= >1000);

5

Bio::Graphics HOWTO

12 $panel- >add_track($full_length,
13 -glyph = > ’arrow’,
14 -tick = > 2,
15 -fgcolor = > ’black’,
16 -double = > 1,
17);

18 my $track = $panel- >add_track(-glyph = > ’graded_segments’,
19 -label = > 1,
20 -bgcolor = > ’blue’,
21 -min_score = > 0,
22 -max_score = > 1000);

23 while (<>) { # read blast file
24 chomp;
25 next if /^\#/; # ignore comments
26 my($name,$score,$start,$end) = split /\t+/;
27 my $feature = Bio::SeqFeature::Generic- >new(-seq_id= >$name,-score= >$score,
28 -start= >$start,-end= >$end);
29 $track- >add_feature($feature);
30 }

31 print $panel- >png;

There are several changes to look at. The first is minor. We’d like to put a bound-
ary around the left and right edges of the image so that the features don’t bump
up against the margin, so we specify a 10 pixel leeway with the -pad_left and
-pad_right arguments in line 5.

The next change is more subtle. We want to draw a scale all the way across the im-
age. To do this, we create a track to contain the scale, and a feature that spans the
track from the start to the end. Line 11 creates the feature, giving its start and end
coordinates. Lines 12-17 create a new track containing this feature. Unlike the pre-
vious example, in which we created the track first and then added features one at
a time with add_feature(), we show here how to add feature(s) directly in the call to
add_track(). If the first argument to add_track is either a single feature or a feature ar-
ray ref, then add_track() will automatically incorporate the feature(s) into the track in
a single efficient step. The remainder of the arguments configure the track as before.
The -glyph argument says to use the "arrow" glyph. The -tick argument indicates that
the arrow should contain tick marks, and that both major and minor ticks should be
shown (tick type of "2"). We set the foreground color to black, and request that arrows
should be placed at both ends (-double =>1).
2

In lines 18-22, we get a bit fancier with the blast hit track. Now, instead of creating a
generic glyph, we use the "graded_segments" glyph. This glyph takes the specified
background color for the feature, and either darkens or lightens it according to its
score. We specify the base background color (-bgcolor => ’blue’), and the minimum
and maximum scores to scale to (-min_score and -max_score). (You may need to ex-
periment with the min and max scores in order to get the glyph to scale the colors the
way you want.) The remainder of the program is the same.

When we run the modified script, we get this image.

6

Bio::Graphics HOWTO

Figure 3. The improved image

Improving the Image
Before we move into displaying gapped alignments, let’s tweak the image slightly so
that higher scoring hits appear at the top of the image, and the score itself is printed
in red underneath each hit. The changes are shown in Example 3.

Example 3. Rendering the blast hit file with scores and scale

0 #!/usr/bin/perl

1 # This is code example 3 in the Graphics-HOWTO
2 use strict;
3 use lib ’/home/lstein/projects/bioperl-live’;
4 use Bio::Graphics;
5 use Bio::SeqFeature::Generic;

6 my $panel = Bio::Graphics::Panel- >new(-length = > 1000,
7 -width = > 800,
8 -pad_left = > 10,
9 -pad_right = > 10,

10);
11 my $full_length = Bio::SeqFeature::Generic- >new(-start= >1,-end= >1000);
12 $panel- >add_track($full_length,
13 -glyph = > ’arrow’,
14 -tick = > 2,
15 -fgcolor = > ’black’,
16 -double = > 1,
17);

18 my $track = $panel- >add_track(-glyph = > ’graded_segments’,
19 -label = > 1,
20 -bgcolor = > ’blue’,
21 -min_score = > 0,
22 -max_score = > 1000,
23 -font2color = > ’red’,
24 -sort_order = > ’high_score’,
25 -description = > sub {
26 my $feature = shift;
27 my $score = $feature- >score;
28 return "score=$score";
29 });

30 while (<>) { # read blast file
31 chomp;

7

Bio::Graphics HOWTO

32 next if /^\#/; # ignore comments
33 my($name,$score,$start,$end) = split /\t+/;
34 my $feature = Bio::SeqFeature::Generic- >new(-score= >$score,
35 -seq_id= >$name,
36 -start= >$start,-end= >$end);
37 $track- >add_feature($feature);
38 }

39 print $panel- >png;

There are two changes to look at. The first appears in line 24, where we pass the -
sort_order option to the call that creates the blast hit track. -sort_order changes
the way that features sort from top to bottom, and will accept a number of prepack-
aged sort orders or a coderef for custom sorting. In this case, we pass a prepackaged
sort order of high_score , which sorts the hits from top to bottom in reverse order
of their score.

The second change is more complicated, and involves the -description option that
appears in the add_track() call on lines 25-28. The value of -description will
be printed beneath each feature. We could pass -description a constant string,
but that would simply print the same string under each feature. Instead we pass -
description a code reference to a subroutine that will be invoked while the picture
is being rendered. This subroutine will be passed the current feature, and must return
the string to use as the value of the description. In our code, we simply fetch out the
BLAST hit’s score using its score() method, and incorporate that into the description
string.

Tip: The ability to use a code reference as a configuration option isn’t unique to
-description . In fact, you can use a code reference for any of the options passed to
add_track().

Another minor change is the use of -font2color in line 23. This simply sets the
color used for the description strings. Figure 4 shows the effect of these changes.

Figure 4. The image with descriptions and sorted hits

8

Bio::Graphics HOWTO

Parsing Real BLAST Output
From here it’s just a small step to writing a general purpose utility that will
read a BLAST file, parse its output, and output a picture. The key is to use the
Bio::SearchIO infrastructure because it produces Bio::SeqFeatureI similarity hits
that can be rendered directly by Bio::Graphics .

Code example 4 shows the new utility.

Example 4. Parsing and Rendering a Real BLAST File with Bio::SearchIO

0 #!/usr/bin/perl

1 # This is code example 4 in the Graphics-HOWTO
2 use strict;
3 use lib "$ENV{HOME}/projects/bioperl-live";
4 use Bio::Graphics;
5 use Bio::SearchIO;

6 my $file = shift or die "Usage: render4.pl <blast file >\n";

7 my $searchio = Bio::SearchIO- >new(-file = > $file,
8 -format = > ’blast’) or die "parse failed";

9 my $result = $searchio- >next_result() or die "no result";

10 my $panel = Bio::Graphics::Panel- >new(-length = > $result- >query_length,
11 -width = > 800,
12 -pad_left = > 10,
13 -pad_right = > 10,
14);

15 my $full_length = Bio::SeqFeature::Generic- >new(-start= >1,-end= >$result-
>query_length,

16 -seq_id= >$result-
>query_name);

17 $panel- >add_track($full_length,
18 -glyph = > ’arrow’,
19 -tick = > 2,
20 -fgcolor = > ’black’,
21 -double = > 1,
22 -label = > 1,
23);

24 my $track = $panel- >add_track(-glyph = > ’graded_segments’,
25 -label = > 1,
26 -connector = > ’dashed’,
27 -bgcolor = > ’blue’,
28 -font2color = > ’red’,
29 -sort_order = > ’high_score’,
30 -description = > sub {
31 my $feature = shift;
32 return unless $feature- >has_tag(’description’);
33 my ($description) = $feature- >each_tag_value(’description’);
34 my $score = $feature- >score;
35 "$description, score=$score";
36 });

37 while(my $hit = $result- >next_hit) {
38 next unless $hit- >significance < 1E-20;
39 my $feature = Bio::SeqFeature::Generic- >new(-score = > $hit- >raw_score,
40 -seq_id = > $hit- >name,
41 -tag = > {

9

Bio::Graphics HOWTO

42 descrip-
tion = > $hit- >description

43 },
44);
45 while(my $hsp = $hit- >next_hsp) {
46 $feature- >add_sub_SeqFeature($hsp,’EXPAND’);
47 }

48 $track- >add_feature($feature);
49 }

50 print $panel- >png;

In lines 6-7 we read the name of the file that contains the BLAST results from the
command line, and pass it to Bio::SearchIO- >new() , returning a Bio::SearchIO
object. We read a single result from the searchIO object (line 9). This assumes that the
BLAST output file contains a single run of BLAST only.

We then initialize the panel and tracks as before. The only change here is in lines
24-36, where we create the track for the BLAST hits. The -description option has
now been enhanced to create a line of text that incorporates the "description" tag from
the feature object as well as its similarity score. There’s also a slight change in line 26,
where we introduce the -connector option. This allows us to configure a line that
connects the segments of a discontinuous feature, such as the HSPs in a BLAST hit.
In this case, we asked the rendering engine to produce a dashed connector line.

The remainder of the script retrieves each of the hits from the BLAST file, creates a
Feature object representing the hit, and then retrieves each HSP and incorporates it
into the feature. Line 37 begins a while() loop that retrieves each of the similarity hits
in turn. We filter the hit by its significance, throwing out any that have an expectation
value greater than 1E-20 (you will have to adjust this in your own utilities). We then
use the information in the hit to construct a Bio::SeqFeature::Generic object (lines
39-44). Notice how the name of the hit and the score are used to initialize the feature,
and how the description is turned into a tag named "description."

The start and end bounds of the hit are determined by the union of its HSPs. We
loop through each of the hit’s HSPs by calling its next_hsp() method, and add each
HSP to the newly-created hit feature by calling the feature’s add_sub_SeqFeature()
method (line 46). The EXPANDparameter instructs the feature to expand its start and
end coordinates to enclose the added subfeature.

Once all the HSPs are added to the feature, we insert the feature into the track as
before using the track’s add_feature() function.

Figure 5 shows the output from a sample BLAST hit file.

10

Bio::Graphics HOWTO

Figure 5. Output from the BLAST parsing and rendering script

11

Bio::Graphics HOWTO

The next section will demonstrate how to parse and display feature tables from Gen-
Bank and EMBL.

Rendering Features from a GenBank or EMBL File
With Bio::Graphics you can render the feature table of a GenBank or EMBL file
quite easily. The trick is to use Bio::SeqIO to generate a set of Bio::SeqFeatureI
objects, and to use those features to populate tracks. For simplicity’s sake, we will
sort each feature by its primary tag (such as "exon") and create a new track for each
tag type.

Code example 5 shows the code for rendering an EMBL or GenBank entry.

Example 5. The embl2picture.pl script turns any EMBL or GenBank entry into a
graphical rendering

0 #!/usr/bin/perl

1 # file: embl2picture.pl
2 # This is code example 5 in the Graphics-HOWTO
3 # Author: Lincoln Stein

4 use strict;
5 use lib "$ENV{HOME}/projects/bioperl-live";
6 use Bio::Graphics;
7 use Bio::SeqIO;
8 use Bio::SeqFeature::Generic;

9 my $file = shift or die "provide a sequence file as the argument";
10 my $io = Bio::SeqIO- >new(-file= >$file) or die "couldn’t create Bio::SeqIO";
11 my $seq = $io- >next_seq or die "couldn’t find a se-

quence in the file";
12 my $wholeseq = Bio::SeqFeature::Generic- >new(-start= >1,-end= >$seq-

>length,
13 -seq_id= >$seq- >display_name);

14 my @features = $seq- >all_SeqFeatures;

15 # sort features by their primary tags
16 my %sorted_features;
17 for my $f (@features) {
18 my $tag = $f- >primary_tag;
19 push @{$sorted_features{$tag}},$f;
20 }

21 my $panel = Bio::Graphics::Panel- >new(
22 -length = > $seq- >length,
23 -key_style = > ’between’,
24 -width = > 800,
25 -pad_left = > 10,
26 -pad_right = > 10,
27);
28 $panel- >add_track($wholeseq,
29 -glyph = > ’arrow’,
30 -bump = > 0,
31 -double= >1,
32 -tick = > 2);

33 $panel- >add_track($wholeseq,
34 -glyph = > ’generic’,
35 -bgcolor = > ’blue’,

12

Bio::Graphics HOWTO

36 -label = > 1,
37);

38 # general case
39 my @colors = qw(cyan orange blue purple green chartreuse magenta yel-

low aqua);
40 my $idx = 0;
41 for my $tag (sort keys %sorted_features) {
42 my $features = $sorted_features{$tag};
43 $panel- >add_track($features,
44 -glyph = > ’generic’,
45 -bgcolor = > $colors[$idx++ % @colors],
46 -fgcolor = > ’black’,
47 -font2color = > ’red’,
48 -key = > "${tag}s",
49 -bump = > +1,
50 -height = > 8,
51 -label = > 1,
52 -description = > 1,
53);
54 }

55 print $panel- >png;
56 exit 0;

The way this script works is simple. After the library load preamble, the script reads
the name of the GenBank or EMBL file from the command line (line 8). It passes the
filename to Bio::SeqIO ’s new() method, and reads the first sequence object from it
(lines 9-10). If anything goes wrong, the script dies with an error message.

The returned object is a Bio::SeqI object, which has a length but no defined start or
end coordinates. We would like to create a drawable Bio::SeqFeatureI object to use
for the scale, so we generate a new Bio::SeqFeature::Generic object that goes from a
start of 1 to the length of the sequence. (lines 12-13).

The script reads the features from the sequence object by calling all_SeqFeatures() ,
and then sorts each feature by its primary tag into a hash of array references named
%sorted_features (lines 14-20).

Next, we create the Bio::Graphics::Panel object (lines 21-27). As in previous ex-
amples, we specify the width of the image, as well as some extra white space to pad
out the left and right borders.

We now add two tracks, one for the scale (lines 28-32) and the other for the sequence
as a whole (33-37). As in the earlier examples, we pass add_track() the sequence
object as the first argument before the options so that the object is incorporated into
the track immediately.

We are now ready to create a track for each feature type. In order to distinguish the
tracks by color, we initialize an array of 9 color names and simply cycle through them
(lines 38-54). For each feature tag, we retrieve the corresponding list of features from
%sorted_features (line 42) and create a track for it using the "generic" glyph and
the next color in the list (lines 43-53). We set the -label and -description options
to the value "1". This signals Bio::Graphics that it should do the best it can to choose
useful label and description values on its own.

After adding all the feature types, we call the panel’s png() method to generate a
graphic file, which we print to STDOUT.

Figure 6 shows an exmaple of the output of this script.

13

Bio::Graphics HOWTO

Figure 6. The embl2picture.pl script

A Better Version of the Feature Renderer
The previous example’s rendering has numerous deficiencies. For one thing, there
are no lines connecting the various CDS rectangles in the CDS track to show how
they are organized into a spliced transcript. For another, the repetition of the source
tag "EMBL/GenBank/SwissProt" is not particularly illuminating.

However, it’s quite easy to customize the display, making the script into a generally
useful utility. The revised code is shown in example 6.

Example 6. The embl2picture.pl script turns any EMBL or GenBank entry into a
graphical rendering

0 #!/usr/bin/perl

1 # file: embl2picture.pl

14

Bio::Graphics HOWTO

2 # This is code example 6 in the Graphics-HOWTO
3 # Author: Lincoln Stein

4 use strict;
5 use lib "$ENV{HOME}/projects/bioperl-live";
6 use Bio::Graphics;
7 use Bio::SeqIO;

8 use constant USAGE = ><<END;
9 Usage: $0 <file >

10 Render a GenBank/EMBL entry into drawable form.
11 Return as a GIF or PNG image on standard output.

12 File must be in embl, genbank, or another SeqIO-
13 recognized format. Only the first entry will be
14 rendered.

15 Example to try:
16 embl2picture.pl factor7.embl | display -

17 END

18 my $file = shift or die USAGE;
19 my $io = Bio::SeqIO- >new(-file= >$file) or die USAGE;
20 my $seq = $io- >next_seq or die USAGE;
21 my $wholeseq = Bio::SeqFeature::Generic- >new(-start= >1,-end= >$seq-

>length,
22 -seq_id= >$seq- >display_name);

23 my @features = $seq- >all_SeqFeatures;

24 # sort features by their primary tags
25 my %sorted_features;
26 for my $f (@features) {
27 my $tag = $f- >primary_tag;
28 push @{$sorted_features{$tag}},$f;
29 }

30 my $panel = Bio::Graphics::Panel- >new(
31 -length = > $seq- >length,
32 -key_style = > ’between’,
33 -width = > 800,
34 -pad_left = > 10,
35 -pad_right = > 10,
36);
37 $panel- >add_track($wholeseq,
38 -glyph = > ’arrow’,
39 -bump = > 0,
40 -double= >1,
41 -tick = > 2);

42 $panel- >add_track($wholeseq,
43 -glyph = > ’generic’,
44 -bgcolor = > ’blue’,
45 -label = > 1,
46);

47 # special cases
48 if ($sorted_features{CDS}) {
49 $panel- >add_track($sorted_features{CDS},
50 -glyph = > ’transcript2’,
51 -bgcolor = > ’orange’,
52 -fgcolor = > ’black’,
53 -font2color = > ’red’,
54 -key = > ’CDS’,
55 -bump = > +1,

15

Bio::Graphics HOWTO

56 -height = > 12,
57 -label = > \&gene_label,
58 -description= > \&gene_description,
59);
60 delete $sorted_features{’CDS’};
61 }

62 if ($sorted_features{tRNA}) {
63 $panel- >add_track($sorted_features{tRNA},
64 -glyph = > ’transcript2’,
65 -bgcolor = > ’red’,
66 -fgcolor = > ’black’,
67 -font2color = > ’red’,
68 -key = > ’tRNAs’,
69 -bump = > +1,
70 -height = > 12,
71 -label = > \&gene_label,
72);
73 delete $sorted_features{tRNA};
74 }

75 # general case
76 my @colors = qw(cyan orange blue purple green chartreuse magenta yel-

low aqua);
77 my $idx = 0;
78 for my $tag (sort keys %sorted_features) {
79 my $features = $sorted_features{$tag};
80 $panel- >add_track($features,
81 -glyph = > ’generic’,
82 -bgcolor = > $colors[$idx++ % @colors],
83 -fgcolor = > ’black’,
84 -font2color = > ’red’,
85 -key = > "${tag}s",
86 -bump = > +1,
87 -height = > 8,
88 -description = > \&generic_description
89);
90 }

91 print $panel- >png;
92 exit 0;

93 sub gene_label {
94 my $feature = shift;
95 my @notes;
96 foreach (qw(product gene)) {
97 next unless $feature- >has_tag($_);
98 @notes = $feature- >each_tag_value($_);
99 last;

100 }
101 $notes[0];
102 }

103 sub gene_description {
104 my $feature = shift;
105 my @notes;
106 foreach (qw(note)) {
107 next unless $feature- >has_tag($_);
108 @notes = $feature- >each_tag_value($_);
109 last;
110 }
111 return unless @notes;
112 substr($notes[0],30) = ’...’ if length $notes[0] > 30;
113 $notes[0];
114 }

16

Bio::Graphics HOWTO

115 sub generic_description {
116 my $feature = shift;
117 my $description;
118 foreach ($feature- >all_tags) {
119 my @values = $feature- >each_tag_value($_);
120 $description .= $_ eq ’note’ ? "@values" : "$_=@values; ";
121 }
122 $description =~ s/; $//; # get rid of last
123 $description;
124 }

At 124 lines, this is the longest example in this HOWTO, but the changes are straight-
forward. The major difference occurs in lines 47-61 and 62-74, where we handle two
special cases: "CDS" records and "tRNAs". For these two feature types we would like
to draw the features like genes using the "transcript2" glyph. This glyph draws in-
verted V’s for introns, if there are any, and will turn the last (or only) exon into an
arrow to indicate the direction of transcription.

First we look to see whether there are any features with the primary tag of "CDS"
(lines 47-61). If so, we create a track for them using the desired glyph. Line 49 shows
how to add several features to a track at creation time. If the first argument to
add_track() is an array reference, all the features contained in the array will be
incorporated into the track. We provide custom code references for the -label and
-description options. As we shall see later, the subroutines these code references
point to are responsible for extracting names and descriptions for the coding
regions. After we handle this special case, we remove the CDS feature type from the
%sorted_features array.

We do the same thing for tRNA features, but with a different color scheme (lines
62-74).

Having dealt with the special cases, we render the remaining feature types using
the same code we used earlier. The only change is that instead of allowing
Bio::Graphics::Panel to guess at the description from the feature’s source tag,
we use the -description option to point to a subroutine that will generate more
informative description strings.

The gene_label() (lines 93-102) and gene_description() (lines 103-114)
subroutines are simple. The first one searches the feature for the tags "product"
and/or "gene" and uses the first one it finds as the label for the feature. The
gene_description() subroutine is similar, except that it returns the value of the
first tag named "note". If the description is over 30 characters long, it is truncated.

The generic_description() (lines 115-124) is invoked to generate descriptions of
all non-gene features. We simply concatenate together the names and values of tags.
For example the entry:

source 1..12850
/db_xref="taxon:9606"
/organism="Homo sapiens"
/map="13q34"

will be turned into the description string "db_xref=taxon:9606; organism=Homo
Sapiens; map=13q34".

After adding all the feature types, we call the panel’s png() method to generate a
graphic file, which we print to STDOUT.

Figure 7 shows an exmaple of the output of this script.

17

Bio::Graphics HOWTO

Figure 7. The embl2picture.pl script

Summary
In summary, we have seen how to use the Bio::Graphics module to generate rep-
resentations of sequence features as horizontal maps. We applied these techniques
to two common problems: rendering the output of a BLAST run, and rendering the
feature table of a GenBank/EMBL entry.

The graphics module is quite flexible. In addition to the options that we have seen,
there are glyphs for generating point-like features such as SNPs, specialized glyphs
that draw GC content and open reading frames, and glyphs that generate histograms,
bar charts and other types of graphs. Bio::Graphics has been used to represent
physical (clone) maps, radiation hybrid maps, EST clusters, cytogenetic maps, re-
striction maps, and much more.

Although we haven’t shown it, Bio::Graphics provides support for generating
HTML image maps. The Generic Genome Browser3 uses this facility to generate
clickable, browsable images of the genome from a variety of genome databases.

Another application you should investigate is the render_sequence.pl script. This
script uses the BioFetch interface to fetch GenBank/EMBL/SwissProt entries dynam-
ically from the web before rendering them into PNG images.

18

Bio::Graphics HOWTO

Finally, if you find yourself constantly tweaking the graphic options, you might be
interested in Bio::Graphics::FeatureFile , a utility module for interpreting and
rendering a simple tab-delimited format for sequence features. feature_draw.pl is a
Perl script built on top of this module, which you can find in the Bioperl distribution.

Notes
1. http://www.cshl.org

2. Obtain the list of glyphs by running perldoc on Bio::Graphics::Glyph. Obtain a
description of the glyph options by running perldoc on individual glyphs, for
example "perldoc Bio::Graphics::Glyph::arrow."

3. http://www.gmod.org

19

Bio::Graphics HOWTO

20

	Table of Contents
	Introduction
	Preliminaries
	Getting Started
	Adding a Scale to the Image
	Improving the Image
	Parsing Real BLAST Output
	Rendering Features from a GenBank or EMBL File
	A Better Version of the Feature Renderer
	Summary

