Maxima Manual

MAXIMA is a fairly complete computer algebra system.

This system MAXIMA is a COMMON LISP implementation due to William F. Schelter, and
is based on the original implementation of Macsyma at MIT, as distributed by the Department
of Energy. I now have permission from DOE to make derivative copies, and in particular to
distribute it under the GNU public license. See the file COPYING included in the distribution.
Thus these files may now be redistributed under the terms of GNU public license.

Maxima Manual

Chapter 1: Introduction to MAXIMA 3

1 Introduction to MAXIMA

Start MAXIMA with the command "maxima". MAXIMA will display version information
and a prompt. End each MAXIMA command with a semicolon. End the session with the
command "quit();". Here’s a sample session:

sonia$ maxima

GCL (GNU Common Lisp) Version(2.3) Tue Mar 21 14:15:15 CST 2000
Licensed under GNU Library General Public License

Contains Enhancements by W. Schelter

Maxima 5.4 Tue Mar 21 14:14:45 CST 2000 (enhancements by W. Schelter)
Licensed under the GNU Public License (see file COPYING)

(C1) factor(10!);

8 4 2

(D1) 2 3 5 7
(C2) expand((x+y)~6);

6 5 2 4 3 3 4 2 5 6
(D2) y +6xy +15x y +20x y +15x y +6x y+x
(C3) factor(x"6-1);

2 2

(D3) -1 x+1) x -x+1) (x +x+1)

(C4) quit(Q);

sonia$

MAXIMA can search the info pages. Use the describe command to show all the commands
and variables containing a string, and optionally their documentation:

(C1) describe(factor);

DONTFACTOR : (maxima.info)Definitions for Matrices and ..
EXPANDWRT_FACTORED :Definitions for Simplification.
FACTOR :Definitions for Polynomials.
FACTORFLAG :Definitions for Polynomials.
FACTORIAL :Definitions for Number Theory.
FACTOROUT :Definitions for Polynomials.
FACTORSUM :Definitions for Polynomials.
GCFACTOR :Definitions for Polynomials.
GFACTOR :Definitions for Polynomials.
9: GFACTORSUM :Definitions for Polynomials.
10: MINFACTORIAL :Definitions for Number Theory.
11: NUMFACTOR :Definitions for Special Functions.
12: SAVEFACTORS :Definitions for Polynomials.
13: SCALEFACTORS :Definitions for Miscellaneous Options.
14: SOLVEFACTORS :Definitions for Equatiomns.
Enter n, all, none, or multiple choices eg 1 3 : 2 8;

00 ~NO Ok W+~ O

Info from file /d/linux/local/lib/maxima-5.4/info/maxima.info:

- Function: FACTOR (EXP)
factors the expression exp, containing any number of variables or
functions, into factors irreducible over the integers.
FACTOR(exp, p) factors exp over the field of integers with an
element adjoined whose minimum polynomial is p. FACTORFLAG[FALSE]
if FALSE suppresses the factoring of integer factors of rational
expressions. DONTFACTOR may be set to a list of variables with

4 Maxima Manual

respect to which factoring is not to occur. (It is initially
empty). Factoring also will not take place with respect to any
variables which are less important (using the variable ordering
assumed for CRE form) than those on the DONTFACTOR list.
SAVEFACTORS [FALSE] if TRUE causes the factors of an expression
which is a product of factors to be saved by certain functions in
order to speed up later factorizations of expressions containing
some of the same factors. BERLEFACT[TRUE] if FALSE then the
Kronecker factoring algorithm will be used otherwise the Berlekamp
algorithm, which is the default, will be used. INTFACLIM[1000] is
the largest divisor which will be tried when factoring a bignum
integer. If set to FALSE (this is the case when the user calls
FACTOR explicitly), or if the integer is a fixnum (i.e. fits in
one machine word), complete factorization of the integer will be
attempted. The user’s setting of INTFACLIM is used for internal
calls to FACTOR. Thus, INTFACLIM may be reset to prevent MACSYMA
from taking an inordinately long time factoring large integers.
NEWFAC[FALSE] may be set to true to use the new factoring routines.
Do EXAMPLE(FACTOR); for examples.

- Function: GFACTOR (EXP)
factors the polynomial exp over the Gaussian integers (i. e.
with SQRT(-1) = %I adjoined). This is like FACTOR(exp,A**2+1)
where A is %I.
(C1) GFACTOR(X*%4-1);
(b1) X -1 X+1 X+ %D X - %D
(©)D) FALSE
To use a result in later calculations, you can assign it to a variable or refer to it by its
automatically supplied label. In addition, 7 refers to the most recent calculated result:

(C2) u:expand((x+y)~6);

6 5 2 4 3 3 4 2 5 6

(D2) y +6xy +15x y +20x y +15x y +6x y+x
(C3) diff(u,x);

5 4 2 3 3 2 4 5
(D3) 6y +30xy +60x y +60x y +30x y+6cx
(C4) factor(d3);

5

(D4) 6 (y + x)

MAXIMA knows about complex numbers and numerical constants:
(C6) cos(%pi);

(D6) -1
(CT) %he™ (hix%pi);

(D7) -1
MAXIMA can do differential and integral calculus:
(C8) u:expand((x+y)~6);

6 5 2 4 3 3 4 2 5 6
(D8) y +6xy +15x y +20x y +15x y +6x y+x
(C9) diff (%,x);

Chapter 1: Introduction to MAXIMA 5

5 4 2 3 3 2 4 5
(D9) 6y +30xy +60x y +60x y +30x y+6x
(C10) integrate(1/(1+x73),x);
2x-1
2 ATAN (-—-----)
LOG(x - x + 1) SQRT(3) LOG(x + 1)
(D10) - mmmmmmmmmm o + mmmmmm o + mmmmmm o
6 SQRT(3) 3

MAXIMA can solve linear systems and cubic equations:
(C11) linsolve([3*x + 4xy = 7, 2*x + axy = 13], [x,yl);

(D11) [X = ———mmmmm -]
(C12) solve(x°3 - 3%x"2 + b*x = 15, x);

(D12) [x = - SQRT(5) %I, x = SQRT(5) %I, x = 3]
MAXIMA can solve nonlinear sets of equations. Note that if you don’t want a result printed,
you can finish your command with $ instead of ;.

(C13) eql: x72 + 3*x*y + y~2 = 0%
(C14) eq2: 3*x + y = 1%

(C15) solve(leql, eq2]);

3 SQRT(B) + 7 SQRT(5) + 3
(D15) [[y = - e , X = ———————————],
2 2
3 SQRT(5) - 7 SQRT(5) - 3
ly = ———- B S 1]
2 2

Under the X window system, MAXIMA can generate plots of one or more functions:
(C13) plot2d(sin(x)/x, [x,-20,20]);

(YMIN -3.0 YMAX 3.0 0.29999999999999999)
(D13) 0
(C14) plot2d([atan(x), erf(x), tanh(x)], [x,-5,51);

(YMIN -3.0 YMAX 3.0 0.29999999999999999)
(YMIN -3.0 YMAX 3.0 0.29999999999999999)
(YMIN -3.0 YMAX 3.0 0.29999999999999999)
(D14) 0
(C15) plot3d(sin(sqrt(x"2+y~2))/sqrt(x"2+y~2), [x,-12,12], [y,-12,12]);

(D15) 0
Moving the cursor to the top left corner of the plot window will pop up a menu that will,
among other things, let you generate a PostScript file of the plot. (By default, the file is placed
in your home directory.) You can rotate a 3D plot.

Maxima Manual

Chapter 2: Help 7

2 Help

2.1 Introduction to Help

The most useful online help command is DESCRIBE which obtains help on all commands con-
taining a particular string. Here by command we mean a built in operator such as INTEGRATE
or FACTOR etc. As a typing short cut you may type ? fact in lieu of describe("fact")

(C3) ? inte;

0: (maxima.info)Integration.

1: Introduction to Integration.

2: Definitions for Integration.

3: INTERRUPTS.

4: ASKINTEGER :Definitions for Simplification.

5: DISPLAY_FORMAT_INTERNAL :Definitions for Input and Output.
6: INTEGERP :Definitions for Miscellaneous Options.

7: INTEGRATE :Definitions for Integration.

8: INTEGRATION_CONSTANT_COUNTER :Definitions for Integration.

9: INTERPOLATE :Definitions for Numerical.
Enter n, all, none, or multiple choices eg 1 3 : 7 8;

Info from file /d/linux2/local/share/info/maxima.info:

- Function: INTEGRATE (EXP, VAR)
integrates exp with respect to var or returns an integral
expression (the noun form) if it cannot perform the integration
(see note 1 below). Roughly speaking three stages are used:

In the above the user said he wanted items 7 and 8. Note the ; following the two numbers.
He might have typed all to see help on all the items.

2.2 Lisp and Maxima

All of Maxima is of course written in lisp. There is a naming convention for functions
and variables: All symbols which begin with a "$" sign at lisp level, are read with the "$"
sign stripped off at Macsyma level. For example, there are two lisp functions TRANSLATE
and $STRANSLATE. If at macsyma level you enter TRANSLATE(FOO); the function which is
called is the $translate function. To access the other function you must prefix with a "?". Note
you may not put a space after the ? since that would indicate you were looking for help!

(C1) ?TRANSLATE(FO00);
Of course, this may well not do what you wanted it to do since it is a completely different
function.
To enter a lisp command you may use
(C1) :lisp (foo 1 2)

or to get a lisp prompt use to_lisp();, or alternately type Ctrl-c to enter into a debug
break. This will cause a lisp break loop to be entered. You could now evaluate $d2 and view
the value of the line label D2, in its internal lisp format. Typing :q will quit to top level, if you
are in a debug break. If you had exited maxima with to_lisp(); then you should type

MAXIMA> (run)
at the lisp prompt, to restart the Maxima session.

If you intend to write lisp functions to be called at macsyma level you should name them
by names beginning with a "$". Note that all symbols typed at lisp level are automatically
read in upper case, unless you do something like |$odeSolve| to force the case to be respected.
Maxima interprets symbols as mixed case, if the symbol has already been read before or at the

8 Maxima Manual

time it was first read there was not an already existing symbol with the same letters but upper
case only. Thus if you type

(C1) Integrate;
(D1) INTEGRATE
(C2) Integ;
(D2) Integ

The symbol Integrate already existed in upper case since it is a Maxima primitive, but
INTEG, does not already exist, so the Integ is permitted. This may seem a little bizarre, but
we wish to keep old maxima code working, which assumes that Maxima primitives may be in
upper or lower case. An advantage of this system is that if you type in lower case, you will
immediately see which are the maxima keywords and functions.

To enter Maxima forms at lisp level, you may use the #$ macro.
(setq $foo #$[x,yl$)
This will have the same effect as entering

(C1)F00: [X,Y];

except that foo will not appear in the VALUES list. In order to view foo in macsyma printed
format you may type

(displa $foo)

In this documentation when we wish to refer to a macsyma symbol we shall generally omit
the $ just as you would when typing at macsyma level. This will cause confusion when we also
wish to refer to a lisp symbol. In this case we shall usually try to use lower case for the lisp
symbol and upper case for the macsyma symbol. For example LIST for $list and list for the lisp
symbol whose printname is "list".

Since functions defined using the MAXIMA language are not ordinary lisp functions, you
must use mfuncall to call them. For example:

(D2) FOO(X, Y) =X +Y + 3

then at lisp level

CL-MAXIMA>> (mfuncall ’$foo 4 5)
12

A number of lisp functions are shadowed in the maxima package. This is because their use
within maxima is not compatible with the definition as a system function. For example typep
behaves differently common lisp than it did in Maclisp. If you want to refer to the zeta lisp
typep while in the maxima package you should use global:typep (or cl:typep for common lisp).
Thus

(macsyma:typep ’(1 2)) ==> ’list
(lisp:typep ’(1 2))==> error (lisp:type-of ’(1 2))==> ’cons

To see which symbols are shadowed look in "src/maxima-package.lisp" or do a describe of
the package at lisp level.

2.3 Garbage Collection

Symbolic computation tends to create a good deal of garbage, and effective handling of this
can be crucial to successful completion of some programs.

Under GCL, on UNIX systems where the mprotect system call is available (including SUN
OS 4.0 and some variants of BSD) a stratified garbage collection is available. This limits the
collection to pages which have been recently written to. See the GCL documentation under
ALLOCATE and GBC. At the lisp level doing (setq si::*notify-gbc* t) will help you determine
which areas might need more space.

Chapter 2: Help 9

2.4 Documentation

The source for the documentation is in ‘.texi’ texinfo format. From this format we can

produce the info files used by the online commands ? and describe. Also html and pdf files
can be produced.

Additionally there are examples so that you may do

example (integrate) ;
(C4) example(integrate);
(C5) test(f):=BLOCK([u],u:INTEGRATE(f,x),RATSIMP(f-DIFF(u,x)));
(D5) test(f) := BLOCK([u]l, u :
INTEGRATE(f, x), RATSIMP(f - DIFF(u, x)));
(CB) test(SIN(x));
(D6) 0
(C7) test(1/(x+1));
(D7) 0
(C8) test(1/(x"2+1));
(D8) 0
(C9) INTEGRATE(SIN(X)"3,X);

2.5 Definitions for Help

DEMO (file) Function
this is the same as BATCH but pauses after each command line and continues when a
space is typed (you may need to type ; followed by a newline, if running under xmaxima).
The demo files have suffix .dem

DESCRIBE (cmd) Function
This command prints documentation on all commands which contain the substring "cmd".
Thus

(C1) describe("integ");

0: (maxima.info)Integration.

1: Introduction to Integration.

2: Definitions for Integration.

3: ASKINTEGER :Definitions for Simplification.

Enter n, all, none, or multiple choices eg 1 3 : 2 3;
Info from file /d/linux2/local/share/info/maxima.info:
Definitions for Integration

- Function: CHANGEVAR (EXP,F(X,Y),Y,X)

see Section 2.1 [Introduction to Help|, page 7

EXAMPLE (command) Function
will start up a demonstration of how command works on some expressions. After each
command line it will pause and wait for a space to be typed, as in the DEMO command.

The name of the file containing the examples is given by the variable manual_demo, which
defaults to "maxima.demo".

10

Maxima Manual

Chapter 3: Command Line 11

3 Command Line

3.1 Introduction to Command Line

%TH (i) Function
is the ith previous computation. That is, if the next expression to be computed is D(j)
this is D(j-i). This is useful in BATCH files or for referring to a group of D expressions.
For example, if SUM is initialized to 0 then FOR I:1 THRU 10 DO SUM:SUM+%TH(I)
will set SUM to the sum of the last ten D expressions.

nom operator

- (single quote) has the effect of preventing evaluation. E.g. '(F(X)) means do not evaluate
the expression F(X). 'F(X) means return the noun form of F applied to [X].

" n operator

- (two single quotes) causes an extra evaluation to occur. E.g. ”c4; will re-execute line
C4. 7(F(X)) means evaluate the expression F(X) an extra time. ”F(X) means return the
verb form of F applied to [X].

3.2 Definitions for Command Line

ALIAS (newnamel, oldnamel, newname2, oldname?2, ...) Function
provides an alternate name for a (user or system) function, variable, array, etc. Any even
number of arguments may be used.

DEBUG () Function
LISPDEBUGMODE(); DEBUGPRINTMODE(); and DEBUG(); make available to the
user debugging features used by systems programmers. These tools are powerful, and
although some conventions are different from the usual macsyma level it is felt their use
is very intuitive. [Some printout may be verbose for slow terminals, there are switches for
controlling this.] These commands were designed for the user who must debug translated
macsyma code, as such they are a boon. See MACDOC;TRDEBG USAGE for more
information.

DEBUGMODE Variable
default: [FALSE] - causes MACSYMA to enter a MACSYMA break loop whenever a
MACSYMA error occurs if it is TRUE and to terminate that mode if it is FALSE. If it is
set to ALL then the user may examine BACKTRACE for the list of functions currently
entered.

DEBUGPRINTMODE () Function
LISPDEBUGMODE(); DEBUGPRINTMODE(); and DEBUG(); make available to the
user debugging features used by systems programmers. These tools are powerful, and
although some conventions are different from the usual macsyma level it is felt their use
is very intuitive. [Some printout may be verbose for slow terminals, there are switches for
controlling this.] These commands were designed for the user who must debug translated
macsyma code, as such they are a boon. See MACDOC;TRDEBG USAGE for more
information.

EV (exp, argl, ..., argn) Function
is one of MACSYMA'’s most powerful and versatile commands. It evaluates the expression
exp in the environment specified by the argi. This is done in steps, as follows:

12

Maxima Manual

(1) First the environment is set up by scanning the argi which may be as follows:
SIMP causes exp to be simplified regardless of the setting of the switch SIMP which
inhibits simplification if FALSE. NOEVAL supresses the evaluation phase of EV (see
step (4) below). This is useful in conjunction with the other switches and in causing
exp to be resimplified without being reevaluated. EXPAND causes expansion. EX-
PAND(m,n) causes expansion, setting the values of MAXPOSEX and MAXNEGEX
to m and n respectively. DETOUT causes any matrix inverses computed in exp
to have their determinant kept outside of the inverse rather than dividing through
each element. DIFF causes all differentiations indicated in exp to be performed.
DERIVLIST(varl,...,vark) causes only differentiations with respect to the indicated
variables. FLOAT causes non-integral rational numbers to be converted to floating
point. NUMER causes some mathematical functions (including exponentiation) with
numerical arguments to be evaluated in floating point. It causes variables in exp which
have been given numervals to be replaced by their values. It also sets the FLOAT
switch on. PRED causes predicates (expressions which evaluate to TRUE or FALSE)
to be evaluated. EVAL causes an extra post-evaluation of exp to occur. (See step
(5) below.) E where E is an atom declared to be an EVFLAG causes E to be bound
to TRUE during the evaluation of exp. V:expression (or alternately V=expression)
causes V to be bound to the value of expression during the evaluation of exp. Note
that if V is a MACSYMA option, then expression is used for its value during the
evaluation of exp. If more than one argument to EV is of this type then the binding
is done in parallel. If V is a non-atomic expression then a substitution rather than
a binding is performed. E where E, a function name, has been declared to be an
EVFUN causes E to be applied to exp. Any other function names (e.g. SUM) cause
evaluation of occurrences of those names in exp as though they were verbs. In addi-
tion a function occurring in exp (say F(args)) may be defined locally for the purpose
of this evaluation of exp by giving F(args):=body as an argument to EV. If an atom
not mentioned above or a subscripted variable or subscripted expression was given as
an argument, it is evaluated and if the result is an equation or assignment then the
indicated binding or substitution is performed. If the result is a list then the members
of the list are treated as if they were additional arguments given to EV. This permits
a list of equations to be given (e.g. [X=1, Y=A**2]) or a list of names of equations
(e.g. [E1,E2] where E1 and E2 are equations) such as that returned by SOLVE. The
argi of EV may be given in any order with the exception of substitution equations
which are handled in sequence, left to right, and EVFUNS which are composed, e.g.
EV(exp,RATSIMP,REALPART) is handled as REALPART(RATSIMP (exp)). The
SIMP, NUMER, FLOAT, and PRED switches may also be set locally in a block, or
globally at the "top level" in MACSYMA so that they will remain in effect until being
reset. If exp is in CRE form then EV will return a result in CRE form provided the
NUMER and FLOAT switches are not both TRUE.

(2) During step (1), a list is made of the non-subscripted variables appearing on
the left side of equations in the argi or in the value of some argi if the value is an
equation. The variables (both subscripted variables which do not have associated
array functions, and non-subscripted variables) in the expression exp are replaced by
their global values, except for those appearing in this list. Usually, exp is just a label
or % (as in (C2) below), so this step simply retrieves the expression named by the
label, so that EV may work on it.

(3) If any substitutions are indicated by the argi, they are carried out now.

(4) The resulting expression is then re-evaluated (unless one of the argi was NOEVAL)
and simplified according the the argi. Note that any function calls in exp will be
carried out after the variables in it are evaluated and that EV(F (X)) thus may behave
like F(EV(X)).
(5) If one of the argi was EVAL, steps (3) and (4) are repeated.

Examples

(C1) SIN(X)+COS(Y)+(W+1)**2+’DIFF (SIN(W) ,W);
d 2
(D1) COS(Y) + SIN(X) + -- SIN(W) + (W + 1)

Chapter 3: Command Line

13

dw
(C2) EV(%,SIN,EXPAND,DIFF,X=2,Y=1);
2
(D2) COS(W) + W + 2 W + COS(1) + 1.90929742

An alternate top level syntax has been provided for EV, whereby one may just type in its
arguments, without the EV(). That is, one may write simply

exp, argl,

...,argn.

This is not permitted as part of another expression, i.e. in functions, blocks, etc.

EVFLAG

(C4) X+Y,X:A+Y,Y:2;
(D4) Y+ A+ 2

(Notice the parallel binding process)

(C5) 2%xX-3*%Y=3$
(CB) -3%xX+2xY=-4$
(C7) SOLVE([D5,D6]1);

SOLUTION
1
(E7) Y= - -
5
6
(E8) X = -
5
(D8) [E7, E8]
(C9) D6,D8;
(D9) -4= -4
(C10) X+1/X > GAMMA(1/2);
1
(D10) X + - > SQRT(%PI)
X
(c11) %,NUMER,X=1/2;
(D11) 2.5 > 1.7724539
(C12) %,PRED;
(D12) TRUE

Variable

default: [] - the list of things known to the EV function. An item will be bound to TRUE
during the execution of EV if it is mentioned in the call to EV, e.g. EV(%,numer);. Initial
evflags are

FLOAT, PRED, SIMP, NUMER, DETOUT, EXPONENTIALIZE, DEMOIVRE,
KEEPFLOAT, LISTARITH, TRIGEXPAND, SIMPSUM, ALGEBRAIC,
RATALGDENOM, FACTORFLAG, %EMODE, LOGARC, LOGNUMER,
RADEXPAND, RATSIMPEXPONS, RATMX, RATFAC, INFEVAL, J%ENUMER,
PROGRAMMODE, LOGNEGINT, LOGABS, LETRAT, HALFANGLES,
EXPTISOLATE, ISOLATE_WRT_TIMES, SUMEXPAND, CAUCHYSUM,
NUMER_PBRANCH, M1PBRANCH, DOTSCRULES, and LOGEXPAND.

EVFUN

Variable

- the list of functions known to the EV function which will get applied if their name
is mentioned. Initial evfuns are FACTOR, TRIGEXPAND, TRIGREDUCE, BFLOAT,
RATSIMP, RATEXPAND, RADCAN, LOGCONTRACT, RECTFORM, and POLAR-
FORM.

INFEVAL

leads to an "infinite evaluation"
til it stops changing.

special symbol

mode. EV repeatedly evaluates an expression un-

To prevent a variable, say X, from being evaluated away in

14 Maxima Manual

this mode, simply include X='X as an argument to EV. Of course expressions such as
EV(X,X=X+1,INFEVAL); will generate an infinite loop. CAVEAT EVALUATOR.

KILL (argl, arg2, ...) Function
eliminates its arguments from the MACSYMA system. If argi is a variable (including a
single array element), function, or array, the designated item with all of its properties is
removed from core. If argi=LABELS then all input, intermediate, and output lines to
date (but not other named items) are eliminated. If argi=CLABELS then only input lines
will be eliminated; if argi=ELABELS then only intermediate E-lines will be eliminated;
if argi=DLABELS only the output lines will be eliminated. If argi is the name of any of
the other information lists (the elements of the MACSYMA variable INFOLISTS), then
every item in that class (and its properties) is KILLed and if argi=ALL then every item
on every information list previously defined as well as LABELS is KILLed. If argi=a
number (say n), then the last n lines (i.e. the lines with the last n line numbers) are
deleted. If argi is of the form [m,n| then all lines with numbers between m and n in-
clusive are killed. Note that KILL(VALUES) or KILL(variable) will not free the storage
occupied unless the labels which are pointing to the same expressions are also KILLed.
Thus if a large expression was assigned to X on line C7 one should do KILL(D7) as
well as KILL(X) to release the storage occupied. KILL(ALLBUT (namel,...,namek) will
do a KILL(ALL) except it will not KILL the names specified. (Note: namei means a
name such as U, V, F, G, not an infolist such as FUNCTIONS.) KILL removes all prop-
erties from the given argument thus KILL(VALUES) will kill all properties associated
with every item on the VALUES list whereas the REMOVE set of functions (REM-
VALUE,REMFUNCTION,REMARRAY ,REMRULE) remove a specific property. Also
the latter print out a list of names or FALSE if the specific argument doesn’t exist whereas
KILL always has value "DONE" even if the named item doesn’t exist. Note that killing
expressions will not help the problem which occurs on MC indicated by "NO CORE -
FASLOAD" which results when either too many FASL files have been loaded in or when
allocation level has gotten too high. In either of these cases, no amount of killing will
cause the size of these spaces to decrease. Killing expressions only causes some spaces to
get emptied out but not made smaller.

LABELS (char) Function
takes a char C, D, or E as arg and generates a list of all C-labels, D-labels, or E- labels,
respectively. If you've generated many E- labels via SOLVE, then

FIRST (REST (LABELS(C)))

reminds you what the last C-label was. LABELS will take as arg any symbolic name, so
if you have reset INCHAR, OUTCHAR, or LINECHAR, it will return the list of labels
whose first character matches the first character of the arg you give to LABELS. The
variable, LABELS, default: [], is a list of C, D, and E lines which are bound.

LASTTIME Variable
- the time to compute the last expression in milliseconds presented as a list of "time" and
"gctime".

LINENUM Variable
- the line number of the last expression.

MYOPTIONS Variable
default: [| - all options ever reset by the user (whether or not they get reset to their default
value).

NOLABELS Variable

default: [FALSE] - if TRUE then no labels will be bound except for E lines generated by
the solve functions. This is most useful in the "BATCH" mode where it eliminates the
need to do KILL(LABELS) in order to free up storage.

Chapter 3: Command Line 15

OPTIONSET Variable
default: [FALSE] - if TRUE, MACSYMA will print out a message whenever a MACSYMA
option is reset. This is useful if the user is doubtful of the spelling of some option and
wants to make sure that the variable he assigned a value to was truly an option variable.

PLAYBACK (arg) Function
"plays back" input and output lines. If arg=n (a number) the last n expressions (Ci,
Di, and Ei count as 1 each) are "played-back", while if arg is omitted, all lines are.
If arg=INPUT then only input lines are played back. If arg=[m,n| then all lines with
numbers from m to n inclusive are played-back. If m=n then [m] is sufficient for arg.
Arg=SLOW places PLAYBACK in a slow-mode similar to DEMO’s (as opposed to the
"fast" BATCH). This is useful in conjunction with SAVE or STRINGOUT when creat-
ing a secondary-storage file in order to pick out useful expressions. If arg=TIME then
the computation times are displayed as well as the expressions. If arg=GCTIME or
TOTALTIME, then a complete breakdown of computation times are displayed, as with
SHOWTIME:ALL;. Arg=STRING strings-out (see STRING function) all input lines
when playing back rather than displaying them. If ARG=GRIND "grind" mode can also
be turned on (for processing input lines) (see GRIND). One may include any number of
options as in PLAYBACK([5,10],20,TIME,SLOW).

PRINTPROPS (a, i) Function
will display the property with the indicator i associated with the atom a. a may also be a
list of atoms or the atom ALL in which case all of the atoms with the given property will
be used. For example, PRINTPROPS([F,G],ATVALUE). PRINTPROPS is for properties
that cannot otherwise be displayed, i.e. for ATVALUE, ATOMGRAD, GRADEF, and
MATCHDECLARE.

PROMPT Variable
default: [_] is the prompt symbol of the DEMO function, PLAYBACK(SLOW) mode, and
(MACSYMA-BREAK).

QUIT () Function
kills the current MACSYMA but doesn’t affect the user’s other jobs; equivalent to exiting
to DCL and stopping the MACSYMA process. One may "quit" to MACSYMA top-level
by typing Control-C Control-G; Control-C gets NIL’s interrupt prompt, at which one
types either Control-G or just G. Typing X at the Interrupt prompt will cause a quit in
a computation started within a MACSYMA-BREAK without disrupting the suspended
main computation.

REMFUNCTION (f1, 2, ...) Function
removes the user defined functions f1,f2,... from MACSYMA. If there is only one argument
of ALL then all functions are removed.

RESET () Function
causes all MACSYMA options to be set to their default values. (Please note that this does
not include features of terminals such as LINEL which can only be changed by assignment
as they are not considered to be computational features of MACSYMA.)

RESTORE (file-specification) Function
reinitializes all quantities filed away by a use of the SAVE or STORE functions, in a prior
MACSYMA session, from the file given by file-specification without bringing them into
core.

SHOWTIME Variable
default: [FALSE] - if TRUE then the computation time will be printed automatically
with each output expression. By setting SHOWTIME:ALL, in addition to the cpu time
MACSYMA now also prints out (when not zero) the amount of time spent in garbage

16 Maxima Manual

collection (gc) in the course of a computation. This time is of course included in the time
printed out as "time=" . (It should be noted that since the "time=" time only includes
computation time and not any intermediate display time or time it takes to load in out-
of-core files, and since it is difficult to ascribe "responsibility" for gc’s, the gctime printed
will include all gctime incurred in the course of the computation and hence may in rare
cases even be larger than "time=").

SSTATUS (feature,package) Function
- meaning SET STATUS. It can be used to SSTATUS(FEATURE, HACK_PACKAGE)
so that STATUS(FEATURE, HACK_PACKAGE) will then return TRUE. This can be
useful for package writers, to keep track of what FEATURES they have loaded in.

TOBREAK () Function
causes the MACSYMA break which was left by typing TOPLEVEL; to be re-entered. If
TOBREAK is given any argument whatsoever, then the break will be exited, which is
equivalent to typing TOBREAK() immediately followed by EXIT;.

TOPLEVEL () Function
During a break one may type TOPLEVEL;. This will cause top-level MACSYMA to be
entered recursively. Labels will now be bound as usual. Everything will be identical to
the previous top-level state except that the computation which was interrupted is saved.
The function TOBREAK() will cause the break which was left by typing TOPLEVEL; to
be re-entered. If TOBREAK is given any argument whatsoever, then the break will be
exited, which is equivalent to typing TOBREAK() immediately followed by EXIT;.

TO_LISP () Function
enters the LISP system under MACSYMA. This is useful on those systems where control-
uparrow is not available for this function.

TTYINTFUN Variable
default: [FALSE] - Governs the function which will be run whenever the User-interrupt-
character is typed. To use this feature, one sets TTYINTFUN (default FALSE meaning
feature not in use) to a function of no arguments. Then whenever (e.g.) ~U (control-U) is
typed, this function is run. E.g. suppose you have a FOR statement loop which increments
I, and you want an easy way of checking on the value of I while the FOR statement is
running. You can do: TTYINTFUN:PRINTI$ PRINTI():=PRINT(I)$, then whenever
you type (e.g.) ~U you get the check you want.

TTYINTNUM Variable
default: [21] (the ascii value of Control-U (“U), U being the 21st letter of the alphabet).
This controls what character becomes the User-interrupt-character. ~U was chosen for it
mnemonic value. Most users should not reset TTYINTNUM unless they are already using
~U for something else.

VALUES Variable
default:[] - all bound atoms, i.e. user variables, not MACSYMA Options or Switches, (set
up by : , :: , or functional binding).

Chapter 4: Operators 17

4 Operators

4.1 NARY

- An NARY operator is used to denote a function of any number of arguments, each of which
is separated by an occurrence of the operator, e.g. A+B or A+B+C. The NARY("x") function is
a syntax extension function to declare x to be an NARY operator. Do DESCRIBE(SYNTAX);
for more details. Functions may be DECLAREd to be NARY. If DECLARE(J,NARY); is done,
this tells the simplifier to simplify, e.g. J(J(A,B),J(C,D)) to J(A, B, C, D).

4.2 NOFIX

- NOFIX operators are used to denote functions of no arguments. The mere presence of such
an operator in a command will cause the corresponding function to be evaluated. For example,
when one types "exit;" to exit from a MACSYMA break, "exit" is behaving similar to a NOFIX
operator. The function NOFIX("x") is a syntax extension function which declares x to be a
NOFIX operator. Do DESCRIBE(SYNTAX); for more details.

4.3 OPERATOR
- See OPERATORS

4.4 POSTFIX

- POSTFIX operators like the PREFIX variety denote functions of a single argument, but in
this case the argument immediately precedes an occurrence of the operator in the input string,
e.g. 3! . The POSTFIX("x") function is a syntax extension function to declare x to be a
POSTFIX operator. Do DESCRIBE(SYNTAX); for details.

4.5 PREFIX

- A PREFIX operator is one which signifies a function of one argument, which argument
immediately follows an occurrence of the operator. PREFIX("x") is a syntax extension function
to declare x to be a PREFIX operator. Do DESCRIBE(SYNTAX); for more details.

4.6 Definitions for Operators

nin

The factorial operator, which is the product of all the integers from 1 up to its argument.
Thus 5! = 1*2*3*4*5 = 120. The value of /the option FACTLIM (default: [-1]) gives the
highest factorial which is automatically expanded. If it is -1 then all integers are expanded.
See also the FACTORIAL, MINFACTORIAL, and FACTCOMB commands.

nifn
Stands for double factorial which is defined as the product of all the consecutive odd (or
even) integers from 1 (or 2) to the odd (or even) argument. Thus 8!! is 2*4*6*8 = 384.

operator

operator

nAEN operator

The logical operator "Not equals".

The dot operator, for matrix (non-commutative) multiplication. When "." is used in this
way, spaces should be left on both sides of it, e.g. A . B. This distinguishes it plainly
from a decimal point in a floating point number. Do APROPOS(DOT); for a list of the
switches which affect the dot operator. DESCRIBE(switch-name); will explain them.

operator

18 Maxima Manual

e operator
The assignment operator. E.g. A:3 sets the variable A to 3.

MNeott operator
Assignment operator. :: assigns the value of the expression on its right to the value of the
quantity on its left, which must evaluate to an atomic variable or subscripted variable.

Mog=" operator
The "::=" is used instead of ":=" to indicate that what follows is a macro definition,
rather than an ordinary functional definition. See DESCRIBE(MACROS).

Me=" operator
The function definition operator. E.g. F(X):=SIN(X) defines a function F.

=" operator
denotes an equation to MACSYMA. To the pattern matcher in MACSYMA it denotes
a total relation that holds between two expressions if and only if the expressions are
syntactically identical.

ABS (exp) Function
returns the absolute value exp. If exp is complex, returns the complex modulus of exp.

ADDITIVE special symbol
- If DECLARE(F,ADDITIVE) has been executed, then: (1) If F is univariate, whenever
the simplifier encounters F applied to a sum, F will be distributed over that sum. Le.
F(Y+X); will simplify to F(Y)+F(X). (2) If F is a function of 2 or more arguments, ad-
ditivity is defined as additivity in the first argument to F, as in the case of 'SUM or
'INTEGRATE, ie. F(H(X)+G(X),X); will simplify to F(H(X),X)+F(G(X),X). This sim-
plification does not occur when F is applied to expressions of the form SUM(X[I],I,lower-
limit,upper-limit).

ALLBUT keyword
works with the PART commands (i.e. PART, INPART, SUBSTPART, SUBSTINPART,
DPART, and LPART). For example,

if EXPR is E+D+C+B+A,
then PART(EXPR, [2,5]);
while
PART (EXPR,ALLBUT(2,5))==>E+C+B
It also works with the KILL command,
KILL(ALLBUT (namel, ... ,namek))

will do a KILL(ALL) except it will not KILL the names specified. Note: namei means a
name such as function name such as U, F, FOO, or G, not an infolist such as FUNCTIONS.

ANTISYMMETRIC declaration
- If DECLARE(H,ANTISYMMETRIC); is done, this tells the simplifier that H is an-
tisymmetric. E.g. H(X,Z,Y) will simplify to - H(X, Y, Z). That is, it will give (-1)"n
times the result given by SYMMETRIC or COMMUTATIVE, where n is the number of
interchanges of two arguments necessary to convert it to that form.

CABS (exp) Function

returns the complex absolute value (the complex modulus) of exp.

COMMUTATIVE declaration
- If DECLARE(H,COMMUTATIVE); is done, this tells the simplifier that H is a com-
mutative function. E.g. H(X,Z,Y) will simplify to H(X, Y, Z). This is the same as
SYMMETRIC.

Chapter 4: Operators 19

ENTIER (X) Function
largest integer <= X where X is numeric. FIX (as in FIXnum) is a synonym for this, so
FIX(X); is precisely the same.

EQUAL (exprl,expr2) Function
used with an "IS", returns TRUE (or FALSE) if and only if exprl and expr2 are
equal (or not equal) for all possible values of their variables (as determined by RAT-
SIMP). Thus IS(EQUAL((X+1)**2,X**2+2*X+1)) returns TRUE whereas if X is unbound
IS((X+1)*#2=X**2+2*X+1) returns FALSE. Note also that IS(RAT(0)=0) gives FALSE
but IS(EQUAL(RAT(0),0)) gives TRUE. If a determination can’t be made with EQUAL
then a simplified but equivalent form is returned whereas = always causes either TRUE
or FALSE to be returned. All variables occurring in exp are presumed to be real valued.
EV(exp,PRED) is equivalent to IS(exp).

(C1) IS(X**2 >= 2%X-1);

(D1) TRUE
(C2) ASSUME(A>1);
(D2) DONE
(C3) IS(LOG(LOG(A+1)+1)>0 AND A~2+1>2%A);
(D3) TRUE
EVAL Function
causes an extra post-evaluation of exp to occur.
EVENP (exp) Function
is TRUE if exp is an even integer. FALSE is returned in all other cases.
FIX (x) Function
a synonym for ENTIER(X) - largest integer <= X where X is numeric.
FULLMAP (fn, expl, ...) Function

is similar to MAP but it will keep mapping down all subexpressions until the main oper-
ators are no longer the same. The user should be aware that FULLMAP is used by the
MACSYMA simplifier for certain matrix manipulations; thus, the user might see an error
message concerning FULLMAP even though FULLMAP was not explicitly called by the
user.

(C1) A+Bx*C$

(C2) FULLMAP(G,%);

(D2) G(B) G(C) + G(A)
(C3) MAP(G,D1);

(D3) G(B C) + G(A)

FULLMAPL (fn, listl, ...) Function
is similar to FULLMAP but it only maps onto lists and matrices

(C1) FULLMAPL("+",[3,[4,5]1]1,[[A,1],[0,-1.5]1);
(D1) [[A + 3, 4], [4, 3.5]]

IS (exp) Function
attempts to determine whether exp (which must evaluate to a predicate) is provable from
the facts in the current data base. IS returns TRUE if the predicate is true for all values
of its variables consistent with the data base and returns FALSE if it is false for all such
values. Otherwise, its action depends on the setting of the switch PREDERROR (default:
TRUE). IS errs out if the value of PREDERROR is TRUE and returns UNKNOWN if
PREDERROR is FALSE.

20 Maxima Manual

ISQRT (X) Function

takes one integer argument and returns the "integer SQRT" of its absolute value.

MAX (X1, X2, ..)) Function
yields the maximum of its arguments (or returns a simplified form if some of its arguments
are non-numeric).

MIN (X1, X2, ...) Function
yields the minimum of its arguments (or returns a simplified form if some of its arguments
are non-numeric).

MOD (poly) Function
converts the polynomial poly to a modular representation with respect to the current mod-
ulus which is the value of the variable MODULUS. MOD(poly,m) specifies a MODULUS

m to be used for converting poly, if it is desired to override the current global value of
MODULUS. See DESCRIBE(MODULUS); .

ODDP (exp) Function
is TRUE if exp is an odd integer. FALSE is returned in all other cases.

PRED operator
(EVFLAG) causes predicates (expressions which evaluate to TRUE or FALSE) to be
evaluated.

RANDOM (X) Function

returns a random integer between 0 and X-1. If no argument is given then a random integer
between -27(29) and 27(29) -1 is returned. If X is FALSE then the random sequence is
restarted from the beginning. Note that the range of the returned result when no argument
is given differs in NIL MACSYMA from that of PDP-10 and Multics MACSYMA, which
is -27(35) to 27(35) -1. This range is the range of the FIXNUM datatype of the underlying
LISP.

SIGN (exp) Function
attempts to determine the sign of its specified expression on the basis of the facts in
the current data base. It returns one of the following answers: POS (positive), NEG
(negative), ZERO, PZ (positive or zero), NZ (negative or zero), PN (positive or negative),
or PNZ (positive, negative, or zero, i.e. nothing known).

SIGNUM (X) Function
if X<0 then -1 else if X>0 then 1 else 0. If X is not numeric then a simplified but equivalent
form is returned. For example, SIGNUM(-X) gives -SIGNUM(X).

SORT (list,optional-predicate) Function
sorts the list using a suitable optional-predicate of two arguments (such as "<" or OR-
DERLESSP). If the optional-predicate is not given, then MACSYMA'’s built-in ordering
predicate is used.

SQRT (X) Function
the square root of X. It is represented internally by X~(1/2). Also see ROOTSCON-
TRACT. RADEXPAND[TRUE] - if TRUE will cause nth roots of factors of a product
which are powers of n to be pulled outside of the radical, e.g. SQRT(16*X"~2) will become
4*X only if RADEXPAND is TRUE.

SQRTDISPFLAG Variable
default: [TRUE] - if FALSE causes SQRT to display with exponent 1/2.

Chapter 4: Operators 21

SUBLIS (list,expr) Function

allows multiple substitutions into an expression in parallel. Sample syntax:

SUBLIS([A=B,B=A],SIN(A)+C0S(B));
=> SIN(B) + COS(A)

The variable SUBLIS_APPLY_LAMBDA |TRUE] controls simplification after SUBLIS. For
full documentation, see the file SHARE2;SUBLIS INFO.

SUBLIST (L,F) Function
returns the list of elements of the list L for which the function F returns TRUE. E.g.,
SUBLIST([1,2,3,4], EVENP); returns [2,4].

SUBLIS_APPLY_LAMBDA Variable
default:[TRUE] - controls whether LAMBDA'’s substituted are applied in simplification
after SUBLIS is used or whether you have to do an EV to get things to apply. TRUE
means do the application.

SUBST (a, b, ¢) Function
substitutes a for b in ¢. b must be an atom, or a complete subexpression of ¢. For example,
X+Y+Z is a complete subexpression of 2*(X+Y+Z)/W while X+Y is not. When b does
not have these characteristics, one may sometimes use SUBSTPART or RATSUBST (see
below). Alternatively, if b is of the form e/f then one could use SUBST (a*f,e,c) while if b
is of the form e**(1/f) then one could use SUBST(a**f,e,c). The SUBST command also
discerns the XY in X~-Y so that SUBST(A,SQRT(X),1/SQRT(X)) yields 1/A. a and b
may also be operators of an expression enclosed in "s or they may be function names. If one
wishes to substitute for the independent variable in derivative forms then the AT function
(see below) should be used. Note: SUBST is an alias for SUBSTITUTE. SUBST(eql,exp)
or SUBST([eql,...,eqk],exp) are other permissible forms. The eqi are equations indicating
substitutions to be made. For each equation, the right side will be substituted for the
left in the expression exp. EXPTSUBST[FALSE] if TRUE permits substitutions like
Y for ZE**X in ZE**(A*X) to take place. OPSUBST[TRUE] if FALSE, SUBST will
not attempt to substitute into the operator of an expression. E.g. (OPSUBST:FALSE,
SUBST(X"2,R,R+R|[0])); will work.

(C1) SUBST(A,X+Y,X+(X+Y) *x2+Y) ;

2
(D1) Y+ X+ A
(C2) SUBST(-%I,%I,A+B*%I);
(D2) A-%I B

(Note that C2 is one way of obtaining the complex conjugate of an analytic expression.)
For further examples, do EXAMPLE(SUBST);

SUBSTINPART (x, exp, nl, ...) Function
is like SUBSTPART but works on the internal representation of exp.

(C1) X.’DIFF(F(X),X,2);

2
d
(D1) X . (-— FX)
2
dx
(C2) SUBSTINPART(D**2,%,2);
2
(D2) X.D
(C3) SUBSTINPART(F1,F[1](X+1),0);
(D3) F1(X + 1)

Additional Information
If the last argument to a part function is a list of indices then

22 Maxima Manual

several subexpressions are picked out, each one corresponding to an
index of the list. Thus

(C1) PART(X+Y+Z,[1,31);

(D1) Z+X
PIECE holds the value of the last expression selected when using the
part functions. It is set during the execution of the function and
thus may be referred to in the function itself as shown below.
If PARTSWITCH[FALSE] is set to TRUE then END is returned when a
selected part of an expression doesn’t exist, otherwise an error
message is given.
(C1) 27*Y**3+54*xX*Yk*k2+36* Xk k2% Y+Y+8*X*x*x3+X+1 ;

3 2 2 3

(D1) 27 Y +54 XY +36X Y+Y+8X +X+1
(C2) PART(D1,2,[1,3]);

2
(D2) 54 Y
(C3) SQRT(PIECE/54);
(D3) Y
(C4) SUBSTPART (FACTOR(PIECE),D1,[1,2,3,51);
3
(D4) BY+2X) +Y+X+1
(C5) 1/X+Y/X-1/Z;
1 Y 1
(D5) - -+ -+ -
Z X X
(C6) SUBSTPART (XTHRU(PIECE),Y%,[2,3]1);
Y+1 1
(D6) ——— - -
X Z

Also, setting the option INFLAG to TRUE and calling PART /SUBSTPART is the same
as calling INPART /SUBSTINPART.

SUBSTPART (x, exp, nl, ..., nk) Function
substitutes x for the subexpression picked out by the rest of the arguments as in PART.
It returns the new value of exp. x may be some operator to be substituted for an operator
of exp. In some cases it needs to be enclosed in "s (e.g. SUBSTPART("+",A*B,0); -> B

+A).
(C1) 1/(X**2+2);
1
oy ==
2
X +2
(C2) SUBSTPART(3/2,%,2,1,2);
1
o ===
3/2
X + 2
(C3) A*X+F(B,Y);
(D3) A X+ F(@B, Y)
(C4) SUBSTPART("+",%,1,0);
(D4) X+ F@B, YY) +A

Also, setting the option INFLAG to TRUE and calling PART/SUBSTPART is the same
as calling INPART /SUBSTINPART.

Chapter 4: Operators 23

SUBVARP (exp) Function
is TRUE if exp is a subscripted variable, for example A[I].

SYMBOLP (exp) Function
returns TRUE if "exp" is a "symbol" or "name", else FALSE. Le., in effect, SYM-
BOLP(X):=ATOM(X) AND NOT NUMBERP(X)$.

UNORDER () Function
stops the aliasing created by the last use of the ordering commands ORDERGREAT
and ORDERLESS. ORDERGREAT and ORDERLESS may not be used more than
one time each without calling UNORDER. Do DESCRIBE(ORDERGREAT); and DE-
SCRIBE(ORDERLESS);, and also do EXAMPLE(UNORDER); for specifics.

VECTORPOTENTIAL (givencurl) Function
Returns the vector potential of a given curl vector, in the current coordinate system.
POTENTIALZEROLOC has a similar role as for POTENTIAL, but the order of the
left-hand sides of the equations must be a cyclic permutation of the coordinate variables.

XTHRU (exp) Function
combines all terms of exp (which should be a sum) over a common denominator without
expanding products and exponentiated sums as RATSIMP does. XTHRU cancels common
factors in the numerator and denominator of rational expressions but only if the factors
are explicit. Sometimes it is better to use XTHRU before RATSIMPing an expression in
order to cause explicit factors of the ged of the numerator and denominator to be canceled
thus simplifying the expression to be RATSIMPed.

(C1) ((X+2)**x20-2%Y) / (X+Y) **20+ (X+Y) #*—19-X/ (X+Y) **20;

20
1 X X + 2) -2Y
(b e — mmmeeo + mmmmmm e
19 20 20
Y + X Y + X Y + X)
(C2) XTHRU(%);
20
X + 2) -Y
o) e
20
Y + X)
ZEROEQUIV (exp,var) Function

tests whether the expression exp in the variable var is equivalent to zero. It re-
turns either TRUE, FALSE, or DONTKNOW. For example ZEROEQUIV (SIN(2*X) -
2*SIN(X)*COS(X),X) returns TRUE and ZEROEQUIV(%E~X+X,X) returns FALSE. On
the other hand ZEROEQUIV(LOG(A*B) - LOG(A) - LOG(B),A) will return DONT-
KNOW because of the presence of an extra parameter. The restrictions are: (1) Do not
use functions that MACSYMA does not know how to differentiate and evaluate. (2) If
the expression has poles on the real line, there may be errors in the result (but this is
unlikely to occur). (3) If the expression contains functions which are not solutions to first
order differential equations (e.g. Bessel functions) there may be incorrect results. (4) The
algorithm uses evaluation at randomly chosen points for carefully selected subexpressions.
This is always a somewhat hazardous business, although the algorithm tries to minimize
the potential for error.

24

Maxima Manual

Chapter 5: Expressions 25

5 Expressions

5.1 Introduction to Expressions

There are a number of reserved words which cannot be used as variable names. Their use
would cause a possibly cryptic syntax error.

INTEGRATE NEXT FROM DIFF
IN AT LIMIT SUM
FOR AND ELSEIF THEN
ELSE DO OR IF
UNLESS PRODUCT WHILE THRU
STEP

Most things in MAXIMA are expressions. A sequence of expressions can be made into an
expression by separating them by commas and putting parentheses around them. This is similar
to the C comma expression.

(C29) x:3%

(C30) joe: (x:x+1,x:x%x);

(D30) 16

(C31) joe:(if (x >17) then 2 else 4);

(D31) 4

(C32) joe:(if (x >17) then x:2 else joe:4,joe+x);
(D32) 20

Even loops in maxima are expressions, although the value they return is the not too useful
DONE

(C33) joe:(x:1,for i from 1 thru 10 do (x:x*i));
(D33) DONE

whereas what you really want is probably to include a third term in the comma expression
which actually gives back the value.

(C34) joe:(x:1,for i from 1 thru 10 do (x:x*i),x);
(D34) 3628800

5.2 ASSIGNMENT

- There are two assignment operators in MACSYMA, : and :: . E.g. A:3 sets the variable A
to 3. :: assigns the value of the expression on its right to the value of the quantity on its left,
which must evaluate to an atomic variable or subscripted variable.

5.3 COMPLEX

- A complex expression is specified in MACSYMA by adding the real part of the expression
to %I times the imaginary part. Thus the roots of the equation X~2-4*X+13=0 are 2+3*%I and
2-3*%I. Note that simplification of products of complex expressions can be effected by expanding
the product. Simplification of quotients, roots, and other functions of complex expressions can
usually be accomplished by using the REALPART, IMAGPART, RECTFORM, POLARFORM,
ABS, CARG functions.

5.4 INEQUALITY

- MACSYMA has the usual inequality operators: less than: < greater than: > greater than
or equal to: >= less than or equal to: <=

26 Maxima Manual

5.5 SYNTAX

- It is possible to add new operators to MACSYMA (infix, prefix, postfix, unary, or matchfix
with given precedences), to remove existing operators, or to redefine the precedence of existing
operators. While MACSYMA'’s syntax should be adequate for most ordinary applications, it is
possible to define new operators or eliminate predefined ones that get in the user’s way. The
extension mechanism is rather straightforward and should be evident from the examples below.

(C1) PREFIX("DDX")$
(C2) DDX Y$
/* means "DDX"(Y) */
(C3) INFIX("<-")$
(C4) A<-DDX Y$
/* means "<-"(A,"DDX"(Y)) */

For each of the types of operator except SPECIAL, there is a corresponding creation func-
tion that will give the lexeme specified the corresponding parsing properties. Thus "PRE-
FIX("DDX")" will make "DDX" a prefix operator just like "-" or "NOT". Of course, cer-
tain extension functions require additional information such as the matching keyword for a
matchfix operator. In addition, binding powers and parts of speech must be specified for all
keywords defined. This is done by passing additional arguments to the extension functions.
If a user does not specify these additional parameters, MACSYMA will assign default val-
ues. The six extension functions with binding powers and parts of speech defaults (enclosed in
brackets) are summarized below. PREFIX(operator, rbp[180], rpos[ANY], pos[ANY]) POST-
FIX(operator, 1bp[180], Ipos|[ANY], pos|ANY]) INFIX(operator, 1bp[180], rbp[180], lpos[ANY],
rpos[ANY],pos[ANY]) NARY (operator, bp[180], argpos[ANY], pos[ANY]) NOFIX(operator,
pos[ANY]) MATCHFIX(operator, match, argpos[ANY], pos[ANY]) The defaults have been
provided so that a user who does not wish to concern himself with parts of speech or bind-
ing powers may simply omit those arguments to the extension functions. Thus the following are
all equivalent. PREFIX("DDX",180,ANY,ANY)$ PREFIX("DDX",180)$ PREFIX("DDX")$
It is also possible to remove the syntax properties of an operator by using the functions RE-
MOVE or KILL. Specifically, "REMOVE("DDX",0OP)" or "KILL("DDX")" will return "DDX"
to operand status; but in the second case all the other properties of "DDX" will also be removed.

(C20) PREFIX("DDX",180,ANY,ANY)$
(C21) DDXYZ;

(D21) DDX YZ

(C26) "ddx"(u):=u+4;

(D26) DDX u :=u + 4
(C27) ddx 8;

(D27) 12

5.6 Definitions for Expressions

AT (exp, list) Function
will evaluate exp (which may be any expression) with the variables assuming the values
as specified for them in the list of equations or the single equation similar to that given
to the ATVALUE function. If a subexpression depends on any of the variables in list but
it hasn’t had an atvalue specified and it can’t be evaluated then a noun form of the AT
will be returned which will display in a two-dimensional form. Do EXAMPLE(AT); for
an example.

Chapter 5: Expressions 27

BOX (expr) Function
returns expr enclosed in a box. The box is actually part of the expression.

BOX (expr,label)
encloses expr in a labelled box. label is a name which will be truncated in display if it is

too long. BOXCHAR]["] - is the character used to draw the box in this and in the DPART
and LPART functions.

BOXCHAR Variable
default: ["] is the character used to draw the box in the BOX and in the DPART and
LPART functions.

CONSTANT special operator

- makes ai a constant as is %PI.

CONSTANTP (exp) Function
is TRUE if exp is a constant (i.e. composed of numbers and %PI, %E, %I or any variables
bound to a constant or DECLAREd constant) else FALSE. Any function whose arguments
are constant is also considered to be a constant.

CONTRACT (exp) Function
carries out all possible contractions in exp, which may be any well-formed combination of
sums and products. This function uses the information given to the DEFCON function.
Since all tensors are considered to be symmetric in all indices, the indices are sorted into
alphabetical order. Also all dummy indices are renamed using the symbols !1,!12.... to
permit the expression to be simplified as much as possible by reducing equivalent terms
to a canonical form. For best results exp should be fully expanded. RATEXPAND is
the fastest way to expand products and powers of sums if there are no variables in the
denominators of the terms. The GCD switch should be FALSE if ged cancellations are
unnecessary.

DECLARE (al, f1, a2, 2, ...) Function
gives the atom ai the flag fi. The ai’s and fi’s may also be lists of atoms and flags
respectively in which case each of the atoms gets all of the properties. The possible flags
and their meanings are:

CONSTANT - makes ai a constant as is %PI.

MAINVAR - makes ai a MAINVAR. The ordering scale for atoms: numbers < constants
(e.g. %E,%PI) < scalars < other variables < mainvars.

SCALAR - makes ai a scalar.

NONSCALAR - makes ai behave as does a list or matrix with respect to the dot operator.
NOUN - makes the function ai a noun so that it won’t be evaluated automatically.

EVFUN - makes ai known to the EV function so that it will get applied if its name is
mentioned. Initial evfuns are

FACTOR, TRIGEXPAND,

TRIGREDUCE, BFLOAT, RATSIMP, RATEXPAND, and RADCAN
EVFLAG - makes ai known to the EV function so that it will be bound to TRUE during
the execution of EV if it is mentioned. Initial evflags are

FLOAT, PRED, SIMP, NUMER, DETOUT, EXPONENTIALIZE, DEMOIVRE,

KEEPFLOAT, LISTARITH, TRIGEXPAND, SIMPSUM, ALGEBRAIC,

RATALGDENOM, FACTORFLAG, %EMODE, LOGARC, LOGNUMER,

RADEXPAND, RATSIMPEXPONS, RATMX, RATFAC, INFEVAL, JENUMER,

PROGRAMMODE, LOGNEGINT, LOGABS, LETRAT, HALFANGLES,

EXPTISOLATE, ISOLATE_WRT_TIMES, SUMEXPAND, CAUCHYSUM,

NUMER_PBRANCH, M1PBRANCH, DOTSCRULES, and LOGEXPAND
BINDTEST - causes ai to signal an error if it ever is used in a computation unbound.
DECLARE([varl, var2, ...], BINDTEST) causes MACSYMA to give an error message
whenever any of the vari occur unbound in a computation. MACSYMA currently recog-
nizes and uses the following features of objects:

28 Maxima Manual

EVEN, 0DD, INTEGER, RATIONAL, IRRATIONAL, REAL, IMAGINARY,
and COMPLEX

he useful features of functions include:

INCREASING,
DECREASING, ODDFUN (odd function), EVENFUN (even function),
COMMUTATIVE (or SYMMETRIC), ANTISYMMETRIC, LASSOCIATIVE and
RASSOCIATIVE

DECLARE(F,INCREASING) is in all respects equivalent to
ASSUME (KIND (F, INCREASING))

The ai and fi may also be lists of objects or features. The command
FEATUREP (object ,feature)

may be used to determine if an object has been DECLAREd to have "feature". See
DESCRIBE(FEATURES); .

DISOLATE (exp, varl, var2, ..., varN) Function
is similar to ISOLATE(exp, var) (Do DESCRIBE(ISOLATE);) except that it enables the
user to isolate more than one variable simultaneously. This might be useful, for example,
if one were attempting to change variables in a multiple integration, and that variable
change involved two or more of the integration variables. This function is autoloaded
from ‘simplification/disol.mac’. A demo is available by demo("disol")$.

DISPFORM (exp) Function
returns the external representation of exp (wrt its main operator). This should be
useful in conjunction with PART which also deals with the external representation.
Suppose EXP is -A . Then the internal representation of EXP is "*"(-1,A), while
the external representation is "-"(A). DISPFORM(exp,ALL) converts the entire expres-
sion (not just the top-level) to external format. For example, if EXP:SIN(SQRT (X)),
then FREEOF(SQRT,EXP) and FREEOF (SQRT,DISPFORM(EXP)) give TRUE, while
FREEOF (SQRT,DISPFORM(EXP,ALL)) gives FALSE.

DISTRIB (exp) Function
distributes sums over products. It differs from EXPAND in that it works at only the
top level of an expression, i.e. it doesn’t recurse and it is faster than EXPAND. It dif-
fers from MULTTHRU in that it expands all sums at that level. For example, DIS-
TRIB((A+B)*(C+D)) > A C+ A D + B C + B D MULTTHRU ((A+B)*(C+D)) ->
(A + B) C+ (A + B) D DISTRIB (1/((A+B)*(C+D))) -> 1/ ((A+B) *(C+D)) EX-
PAND(1/((A+B)*(C+D)),1,0) >1/(AC+AD+B C+BD)

DPART (exp, nl, ..., nk) Function
selects the same subexpression as PART, but instead of just returning that subexpression
as its value, it returns the whole expression with the selected subexpression displayed
inside a box. The box is actually part of the expression.

(C1) DPART(X+Y/Z%%2,1,2,1);
Y
(D1) ——+ X
2
ok kk k
* 7 %
ok kk k

EXP (X) Function
the exponential function. It is represented internally as %E~X. DEMOIVRE[FALSE] -
if TRUE will cause %E~(A+B*%I) to become %E~A*(COS(B)+%I*SIN(B)) if B is free

Chapter 5: Expressions 29

of %I. A and B are not expanded. %EMODE[TRUE] - when TRUE %E~(%PI*%I*X)
will be simplified as follows: it will become COS(%PI*X)+%I*SIN(%PI*X) if X is an
integer or a multiple of 1/2, 1/3, 1/4, or 1/6 and thus will simplify further. For other
numerical X it will become %E~(%PI*%I*Y) where Y is X-2*k for some integer k such
that ABS(Y)<1. If %EMODE is FALSE no simplification of %E~(%PI*%I*X) will take
place. %ENUMER[FALSE] - when TRUE will cause %E to be converted into 2.718...
whenever NUMER is TRUE. The default is that this conversion will take place only if the
exponent in %E"~X evaluates to a number.

EXPTISOLATE Variable
default: [FALSE] if TRUE will cause ISOLATE (expr,var); to examine exponents of atoms
(like %E) which contain var.

EXPTSUBST Variable
default: [FALSE] if TRUE permits substitutions such as Y for %E**X in %E**(A*X) to
take place.

FREEOF (x1, x2, ..., exp) Function

yields TRUE if the xi do not occur in exp and FALSE otherwise. The xi are atoms or
they may be subscripted names, functions (e.g. SIN(X)), or operators enclosed in "s. If
'var’ is a "dummy variable" of ’exp’, then FREEOF (var,exp); will return TRUE. "Dummy
variables" are mathematical things like the index of a sum or product, the limit variable,
and the definite integration variable. Example: FREEOF(I,’SUM(F(I),I,0,N)); returns
TRUE. Do EXAMPLE(FREEOF); for more examples.

GENFACT (X,Y, 2) Function
is the generalized factorial of X which is: X*(X-Z)*(X-2*Z)*..*(X-(Y-1)*Z). Thus, for
integral X, GENFACT(X,X,1)=X! and GENFACT(X,X/2,2)=X!l

IMAGPART (exp) Function

returns the imaginary part of the expression exp.

INDICES (exp) Function
returns a list of two elements. The first is a list of the free indices in exp (those that occur
only once); the second is the list of dummy indices in exp (those that occur exactly twice).

INFIX (op) Function
- INFIX operators are used to denote functions of two arguments, one given before the
operator and one after, e.g. A~2. The INFIX("x") function is a syntax extention function
to declare x to be an INFIX operator. Do DESCRIBE(SYNTAX); for more details.

INFLAG Variable
default: [FALSE] if set to TRUE, the functions for part extraction will look at the internal
form of exp. Note that the simplifier re-orders expressions. Thus FIRST(X+Y) will
be X if INFLAG is TRUE and Y if INFLAG is FALSE. (FIRST(Y+X) gives the same
results). Also, setting INFLAG to TRUE and calling PART/SUBSTPART is the same
as calling INPART/SUBSTINPART. Functions affected by the setting of INFLAG are:
PART, SUBSTPART, FIRST, REST, LAST, LENGTH, the FOR ... IN construct, MAP,
FULLMAP, MAPLIST, REVEAL and PICKAPART.

INPART (exp, nl, ..., nk) Function
is similar to PART but works on the internal representation of the expression rather than
the displayed form and thus may be faster since no formatting is done. Care should be
taken with respect to the order of subexpressions in sums and products (since the order
of variables in the internal form is often different from that in the displayed form) and in
dealing with unary minus, subtraction, and division (since these operators are removed
from the expression). PART(X+Y,0) or INPART(X+Y,0) yield +, though in order to refer
to the operator it must be enclosed in "s. For example ...IF INPART(D9,0)="+" THEN

30 Maxima Manual

(C1) X+Y+WxZ;

(D1) WZ+Y+X
(C2) INPART(D1,3,2);
(D2) Z
(C3) PART(D1,1,2);
(D3) Z
(C4) PLIMIT(F(X)**xG(X+1),X,0,MINUS);
GX + 1)
(D4) LIMIT F(X)
X ->0-
(C5) INPART(%,1,2);
(D5) G(X + 1)
ISOLATE (exp, var) Function

returns exp with subexpressions which are sums and which do not contain var replaced by
intermediate expression labels (these being atomic symbols like E1, E2, ...). This is often
useful to avoid unnecessary expansion of subexpressions which don’t contain the variable of
interest. Since the intermediate labels are bound to the subexpressions they can all be sub-
stituted back by evaluating the expression in which they occur. EXPTISOLATE[FALSE]
if TRUE will cause ISOLATE to examine exponents of atoms (like %E) which contain var.
ISOLATE_WRT_TIMES[FALSE] if TRUE, then ISOLATE will also isolate wrt products.
E.g. compare both settings of the switch on ISOLATE(EXPAND((A+B+C)~2),C); . Do
EXAMPLE(ISOLATE); for examples.

ISOLATE_WRT_TIMES Variable
default: [FALSE] - if set to TRUE, then ISOLATE will also isolate wrt products. E.g.
compare both settings of the switch on ISOLATE(EXPAND((A+B+C)~2),C); .

LISTCONSTVARS Variable
default: [FALSE] - if TRUE will cause LISTOFVARS to include %E, %PI, %I, and any
variables declared constant in the list it returns if they appear in the expression LISTOF-
VARS is called on. The default is to omit these.

LISTDUMMY VARS Variable
default: [TRUE] - if FALSE, "dummy variables" in the expression will not be included
in the list returned by LISTOFVARS. (The meaning of "dummy variables" is as given
in DESCRIBE(FREEOF): "Dummy variables" are mathematical things like the index of
a sum or product, the limit variable, and the definite integration variable.) Example:
LISTOFVARS(’SUM(F(I),I,0,N)); gives [I,N] if LISTDUMMY VARS is TRUE, and [N] if
LISTDUMMYVARS is FALSE.

LISTOFVARS (exp) Function
yields a list of the variables in exp. LISTCONSTVARSIFALSE] if TRUE will cause
LISTOFVARS to include %E, %PI, %I, and any variables declared constant in the list it
returns if they appear in exp. The default is to omit these.

(C1) LISTOFVARS(F(X[1]1+Y)/G**(2+A));
(D1) [X[11, Y, A, G]

LFREEOF (list, exp) Function
For each member m of list, calls FREEOF (m,exp). It returns false if any call to FREEOF
does and true otherwise.

Chapter 5: Expressions 31

LOPOW (exp, v) Function

the lowest exponent of v which explicitly appears in exp. Thus
LOPOW ((X+Y) **2+ (X+Y) **A , X+Y) ==> MIN(A,2)

LPART (label, expr, nl, ..., nk) Function
is similar to DPART but uses a labelled box. A labelled box is similar to the one produced
by DPART but it has a name in the top line.

MULTTHRU (exp) Function
multiplies a factor (which should be a sum) of exp by the other factors of exp. That is
exp is f1*f2*.. . *fn where at least one factor, say fi, is a sum of terms. Each term in that
sum is multiplied by the other factors in the product. (Namely all the factors except
fi). MULTTHRU does not expand exponentiated sums. This function is the fastest way
to distribute products (commutative or noncommutative) over sums. Since quotients
are represented as products MULTTHRU can be used to divide sums by products as
well. MULTTHRU (expl, exp2) multiplies each term in exp2 (which should be a sum
or an equation) by expl. If expl is not itself a sum then this form is equivalent to

MULTTHRU (expl*exp2).
(C1) X/ (X-Y)*x2-1/(X-Y)-F(X)/(X-Y)**3;
1 X F(X)
(D1) - o o e
X-Y 2 3

X -Y) X -Y)
(C2) MULTTHRU((X-Y)**3,%);

2
(D2) - X-Y) +XX-Y) -FX
(C3) RATEXPAND(D2);
2
(D3) -Y +XY-FX
(C4) ((A+B)**10*S**x2+2xA*B*xS+ (A*B) **2) / (A*B*S**2) ;
10 2 2 2
(B +A) S +2ABS+A B
(D4) = e
2
ABS
(C5) MULTTHRU (%) ;
10
2 A B (B + A)
(D5) -+ ——= 4+ ——————
S 2 A B
S

(notice that (B+A)**10 is not expanded)

(C6) MULTTHRU(A. (B+C. (D+E)+F)) ;

(D6) A.F+A.(C.(E+D)+4A.B
(compare with similar example under EXPAND)

NOUNIFY () Function
returns the noun form of the function name f. This is needed if one wishes to refer to the
name of a verb function as if it were a noun. Note that some verb functions will return
their noun forms if they can’t be evaluated for certain arguments. This is also the form
returned if a function call is preceded by a quote.

32 Maxima Manual

NTERMS (exp) Function
gives the number of terms that exp would have if it were fully expanded out and no can-
cellations or combination of terms occurred. Note that expressions like SIN(E), SQRT(E),
EXP(E), etc. count as just one term regardless of how many terms E has (if it is a sum).

OP (exp) Function
Returns the operator of the expression, and functions the same way as PART(exp,0).
It observes the setting of the INPART flag. It may not return the same value as the
commercial Macsyma.

OPERATORP (exp, ool) Function
Uses OP to get the operator of the expression and either compares it to ool, if it is a
operator, or checks if it is a member of ool if it is a list.

OPTIMIZE (exp) Function
returns an expression that produces the same value and side effects as exp but does so
more efficiently by avoiding the recomputation of common subexpressions. OPTIMIZE

also has the side effect of "collapsing" its argument so that all common subexpressions
are shared. Do EXAMPLE(OPTIMIZE); for examples.

OPTIMPREFIX Variable
default: [%] - The prefix used for generated symbols by the OPTIMIZE command.

ORDERGREAT (VI, ..., Vn) Function
sets up aliases for the variables V1, ..., Vn such that V1 > V2 > ... > Vn > any other
variable not mentioned as an argument. See also ORDERLESS. Caveat: do EXAM-
PLE(ORDERGREAT); for some specifics.

ORDERGREATP (expl,exp2) Function
returns TRUE if exp2 precedes expl in the ordering set up with the ORDERGREAT
function (see DESCRIBE(ORDERGREAT);).

ORDERLESS (V1, ..., Vn) Function
sets up aliases for the variables V1, ..., Vn such that V1 < V2 < ... < Vn < any other
variable not mentioned as an argument. Thus the complete ordering scale is: numerical
constants < declared constants < declared scalars < first argument to ORDERLESS < ...
< last argument to ORDERLESS < variables which begin with A < ... < variables which
begin with Z < last argument to ORDERGREAT < ... < first argument to ORDERGREAT
< declared MAINVARs. Caveat: do EXAMPLE(ORDERLESS); for some specifics. For
another ordering scheme, see DESCRIBE(MAINVAR);.

ORDERLESSP (expl,exp2) Function
returns TRUE if expl precedes exp2 in the ordering set up by the ORDERLESS command
(see DESCRIBE(ORDERLESS);).

PART (exp, nl, ..., nk) Function
deals with the displayed form of exp. It obtains the part of exp as specified by the indices
nl,...nk. First part nl of exp is obtained, then part n2 of that, etc. The result is part nk
of ... part n2 of part nl of exp. Thus PART(Z+2*Y,2,1) yields 2. PART can be used to
obtain an element of a list, a row of a matrix, etc. If the last argument to a Part function
is a list of indices then several subexpressions are picked out, each one corresponding to
an index of the list. Thus PART(X+Y+Z,[1,3]) is Z+X. PIECE holds the last expression
selected when using the Part functions. It is set during the execution of the function and
thus may be referred to in the function itself as shown below. If PARTSWITCH[FALSE]
is set to TRUE then END is returned when a selected part of an expression doesn’t exist,
otherwise an error message is given. For examples, do EXAMPLE(PART);

Chapter 5: Expressions 33

PARTITION (exp, var) Function
returns a list of two expressions. They are (1) the factors of exp (if it is a product), the
terms of exp (if it is a sum), or the list (if it is a list) which don’t contain var and, (2) the
factors, terms, or list which do.

(C1) PARTITION (2*A*X*F(X),X);

(D1) [2A, XFX]
(C2) PARTITION(A+B,X);
(D2) [A+B, 0]
(C3) PARTITION([A,B,F(A),C],A);
(D3) [[B,C],[A,F(A)]]
PARTSWITCH Variable

default: [FALSE] - if set to TRUE then END is returned when a selected part of an
expression doesn’t exist, otherwise an error message is given.

PICKAPART (exp,depth) Function
will assign E labels to all subexpressions of exp down to the specified integer depth. This
is useful for dealing with large expressions and for automatically assigning parts of an
expression to a variable without having to use the part functions.

(C1) EXP:(A+B)/2+SIN(X"2)/3-LOG(1+SQRT(X+1));

2
SIN(X) B + A
(D1) - LOG(SQRT(X + 1) + 1) + —————— + ————
3 2
(C2) PICKAPART(%,1);
(E2) - LOG(SQRT(X + 1) + 1)
2
SIN(X)
(e ===
3
B+ A
(2
2
(D4) E4 + E3 + E2
PIECE Variable

- holds the last expression selected when using the Part functions. It is set during the
execution of the function and thus may be referred to in the function itself.

POWERS (expr, var) Function
gives the powers of var occuring in expr. To use it, do LOAD(POWERS);. For details on
usage, do PRINTFILE("powers.usg");.

PRODUCT (exp, ind, lo, hi) Function
gives the product of the values of exp as the index ind varies from lo to hi. The evaluation
is similar to that of SUM. No simplification of products is available at this time. If hi
is one less than lo, we have an "empty product" and PRODUCT returns 1 rather than

erring out. Also see DESCRIBE(PRODHACK).

(C1) PRODUCT(X+Ix*(I+1)/2,1,1,4);
(D1) X +1) X+3) X+6) X+ 10)

34 Maxima Manual

REALPART (exp) Function
gives the real part of exp. REALPART and IMAGPART will work on expressions involving
trigonometic and hyperbolic functions, as well as SQRT, LOG, and exponentiation.

RECTFORM (exp) Function

returns an expression of the form A + B*%I, where A and B are purely real.

REMBOX (expr, arg) Function
removes boxes from expr according to arg. If arg is UNLABELED then all unlabelled
boxes are removed. If arg is the name of some label then only boxes with that label are
removed. If arg is omitted then all boxes labelled and unlabelled are removed.

SUM (exp, ind, lo, hi) Function
performs a summation of the values of exp as the index ind varies from lo to hi. If the
upper and lower limits differ by an integer then each term in the sum is evaluated and
added together. Otherwise, if the SIMPSUM [FALSE] is TRUE the result is simplified.
This simplification may sometimes be able to produce a closed form. If SIMPSUM is
FALSE or if ’'SUM is used, the value is a sum noun form which is a representation of
the sigma notation used in mathematics. If hi is one less than lo, we have an "empty
sum" and SUM returns 0 rather than erring out. Sums may be differentiated, added,
subtracted, or multiplied with some automatic simplification being performed. Also see
DESCRIBE(SUMHACK). CAUCHYSUM[FALSE] when TRUE causes the Cauchy prod-
uct to be used when multiplying sums together rather than the usual product. In the
Cauchy product the index of the inner summation is a function of the index of the outer
one rather than varying independently. GENINDEX]I] is the alphabetic prefix used to
generate the next variable of summation. GENSUMNUM][0] is the numeric suffix used to
generate the next variable of summation. If it is set to FALSE then the index will consist
only of GENINDEX with no numeric suffix. Do EXAMPLE(SUM); for examples. See
also SUMCONTRACT, INTOSUM, BASHINDICES, and NICEINDICES.

LSUM (exp, ind, list) Function
performs the sum of EXP for each element IND of the LIST.

(C10) 1sum(x~i,i,[1,2,71);

7 2
(D10) X +x +X
If the last element LIST argument does not evaluate, or does not evaluate to a Maxima
list then the answer is left in noun form

(C13) 1lsum(i~2,i,rootsof(x"3-1));

(D13) > i

3
i in ROOTSOF(x - 1)

VERB special symbol
- the opposite of "noun", i.e. a function form which "does something" ("action" - for
most functions the usual case). E.g. INTEGRATE integrates a function, unless it is
DECLAREd to be a "noun", in which case it represents the INTEGRAL of the function.
See NOUN, NOUNIFY, and VERBIFY.

VERBIFY ({) Function
returns the function name f in its verb form (See also VERB, NOUN, and NOUNIFY).

Chapter 6: Simplification 35

6 Simplification

6.1 Definitions for Simplification

APPLY_NOUNS (exp) Function
causes the application of noun forms in an expression. E.g. EXP:’DIFF(X~2/2,X); AP-
PLY_NOUNS(EXP); gives X. This gives the same result as EV(EXP,NOUNS); except
that it can be faster and use less storage. It also can be used in translated code, where EV
may cause problems. Note that it is called APPLY_NOUNS, not EV_NOUNS, because
what it does is to APPLY the rules corresponding to the noun-form operators, which is
not evaluation.

ASKEXP Variable
default: [] contains the expression upon which ASKSIGN is called. A user may enter a
MACSYMA break with ~A and inspect this expression in order to answer questions asked
by ASKSIGN.

ASKINTEGER (exp,<optional-arg>) Function
exp is any valid macsyma expression and optional-arg is EVEN,ODD INTEGER and
defaults to INTEGER if not given. This function attempts to determine from the data-
base whether exp is EVEN, ODD or just an INTEGER. It will ask the user if it cannot
tell otherwise and attempt to install the information in the data-base if possible.

ASKSIGN (exp) Function
first attempts to determine whether the specified expression is positive, negative, or zero.
If it cannot, it asks the user the necessary questions to complete its deduction. The user’s

answer is recorded in the data base for the duration of the current computation (one
"C-line"). The value of ASKSIGN is one of POS, NEG, or ZERO.

DEMOIVRE Variable
default: [FALSE] if TRUE will cause

HE~ (A+Bx}%I) ==> %E"A*(COS(B)+%I*SIN(B))

if B is free of %I. A and B are not expanded. DEMOIVRE:TRUE; is the way to reverse
the effect of EXPONENTIALIZE: TRUE;

DEMOIVRE(exp) will cause the conversion without setting the switch or having to re-
evaluate the expression with EV.

DOMAIN Variable
default: [REAL] - if set to COMPLEX, SQRT(X"2) will remain SQRT(X"2) instead of
returning ABS(X). The notion of a "domain" of simplification is still in its infancy, and
controls little more than this at the moment.

EXPAND (exp) Function
will cause products of sums and exponentiated sums to be multiplied out, numerators of
rational expressions which are sums to be split into their respective terms, and multipli-
cation (commutative and non-commutative) to be distributed over addition at all levels of
exp. For polynomials one should usually use RATEXPAND which uses a more efficient al-
gorithm (see DESCRIBE(RATEXPAND);). MAXNEGEX[1000] and MAXPOSEX[1000]
control the maximum negative and positive exponents, respectively, which will expand.
EXPAND(exp,p,n) expands exp, using p for MAXPOSEX and n for MAXNEGEX. This
is useful in order to expand part but not all of an expression. EXPONJ0] - the expo-
nent of the largest negative power which is automatically expanded (independent of calls
to EXPAND). For example if EXPON is 4 then (X+1)~(-5) will not be automatically
expanded. EXPOPI[0] - the highest positive exponent which is automatically expanded.
Thus (X+1)"3, when typed, will be automatically expanded only if EXPOP is greater than

36 Maxima Manual

or equal to 3. If it is desired to have (X+1)"N expanded where N is greater than EXPOP
then executing EXPAND((X+1)"N) will work only if MAXPOSEX is not less than N. The
EXPAND flag used with EV (see EV) causes expansion.

The file ‘simplification/facexp.mac’ contains several related functions (in particular
FACSUM, FACTORFACSUM and COLLECTTERMS, which are autoloaded) and vari-
ables (NEXTLAYERFACTOR and FACSUM_COMBINE) that provide the user with
the ability to structure expressions by controlled expansion. Brief function descrip-
tions are available in ‘simplification/facexp.usg’. A demo is available by doing
demo ("facexp")$.

EXPANDWRT (exp,varl,var2,...) Function
expands exp with respect to the vari. All products involving the vari appear explicitly.
The form returned will be free of products of sums of expressions that are not free of the
vari. The vari may be variables, operators, or expressions. By default, denominators are
not expanded, but this can be controlled by means of the switch EXPANDWRT_DENOM.
This function is autoloaded from ‘simplification/stopex.mac’.

EXPANDWRT_DENOM Variable
default:[FALSE] controls the treatment of rational expressions by EXPANDWRT. If
TRUE, then both the numerator and denominator of the expression will be expanded
according to the arguments of EXPANDWRT, but if EXPANDWRT_DENOM is FALSE,
then only the numerator will be expanded in that way.

EXPANDWRT_FACTORED (exp, varl, var2, ..., varN) Function
is similar to EXPANDWRT, but treats expressions that are products somewhat differently.
EXPANDWRT_FACTORED will perform the required expansion only on those factors
of exp that contain the variables in its argument list argument list. This function is
autoloaded from ‘simplification/stopex.mac’.

EXPON Variable
default: [0] - the exponent of the largest negative power which is automatically expanded
(independent of calls to EXPAND). For example if EXPON is 4 then (X+1)~(-5) will not
be automatically expanded.

EXPONENTIALIZE Variable
default: [FALSE] if TRUE will cause all circular and hyperbolic functions to be converted
to exponential form. (Setting DEMOIVRE:TRUE; will reverse the effect.) EXPONEN-
TIALIZE(exp) will cause the conversion to exponential form of an expression without
setting the switch or having to re-evaluate the expression with EV.

EXPOP Variable
default: [0] - the highest positive exponent which is automatically expanded. Thus
(X+1)"3, when typed, will be automatically expanded only if EXPOP is greater than
or equal to 3. If it is desired to have (X+1)"n expanded where n is greater than EXPOP
then executing EXPAND((X+1)"n) will work only if MAXPOSEX is not less than n.

FACTLIM Variable
default: [-1] gives the highest factorial which is automatically expanded. If it is -1 then
all integers are expanded.

INTOSUM (expr) Function
will take all things that a summation is multiplied by, and put them inside the summation.
If the index is used in the outside expression, then the function tries to find a reasonable
index, the same as it does for SUMCONTRACT. This is essentially the reverse idea of
the OUTATIVE property of summations, but note that it does not remove this property,
it only bypasses it. In some cases, a SCANMAP(MULTTHRU,expr) may be necessary
before the INTOSUM.

Chapter 6: Simplification 37

LASSOCIATIVE declaration
- If DECLARE(G,LASSOCIATIVE); is done, this tells the simplifier that G is left-
associative. E.g. G(G(A,B),G(C,D)) will simplify to G(G(G(A,B),C),D).

LINEAR declaration
- One of MACSYMA’s OPPROPERTIES. For univariate f so declared, "expansion"
F(X+Y) -> F(X)+F(Y), F(A*X) -> A*F(X) takes place where A is a "constant". For
functions F of >=2 args, "linearity" is defined to be as in the case of 'SUM or 'INTE-
GRATE, i.e. F(A*X+B,X) -> A*F(X,X)+B*F(1,X) for A,B FREEOF X. (LINEAR is just
ADDITIVE + OUTATIVE.)

MAINVAR declaration
- You may DECLARE variables to be MAINVAR. The ordering scale for atoms is essen-
tially: numbers < constants (e.g. %E,%PI) < scalars < other variables < mainvars. E.g.
compare EXPAND((X+Y)"4); with (DECLARE(X,MAINVAR), EXPAND((X+Y)"4)); .
(Note: Care should be taken if you elect to use the above feature. E.g. if you subtract an
expression in which X is a MAINVAR from one in which X isn’t a MAINVAR, resimplifi-
cation e.g. with EV (expression,SIMP) may be necessary if cancellation is to occur. Also,
if you SAVE an expression in which X is a MAINVAR, you probably should also SAVE
X.)

MAXAPPLYDEPTH Variable
default: [10000] - the maximum depth to which APPLY1 and APPLY?2 will delve.

MAXAPPLYHEIGHT Variable
default: [10000] - the maximum height to which APPLYB1 will reach before giving up.

MAXNEGEX Variable
default: [1000] - the largest negative exponent which will be expanded by the EXPAND
command (see also MAXPOSEX).

MAXPOSEX Variable
default: [1000] - the largest exponent which will be expanded with the EXPAND command
(see also MAXNEGEX).

MULTIPLICATIVE declaration
- If DECLARE(F,MULTIPLICATIVE) has been executed, then: (1) If F is univariate,
whenever the simplifier encounters F applied to a product, F will be distributed over that
product. Le. F(X*Y); will simplify to F(X)*F(Y). (2) If F is a function of 2 or more
arguments, multiplicativity is defined as multiplicativity in the first argument to F, i.e.
F(G(X)*H(X),X); will simplify to F(G(X),X)*F(H(X),X). This simplification does not
occur when F is applied to expressions of the form PRODUCT (X[I],I,lower-limit,upper-
limit).

NEGDISTRIB Variable
default: [TRUE] - when TRUE allows -1 to be distributed over an expression. E.g. -
(X+Y) becomes -Y-X. Setting it to FALSE will allow -(X+Y) to be displayed like that.
This is sometimes useful but be very careful: like the SIMP flag, this is one flag you do
not want to set to FALSE as a matter of course or necessarily for other than local use in

your MACSYMA.

NEGSUMDISPFLAG Variable
default: [TRUE] - when TRUE, X-Y displays as X-Y instead of as -Y+X. Setting it to
FALSE causes the special check in display for the difference of two expressions to not be
done. One application is that thus A+%I*B and A-%I*B may both be displayed the same
way.

38 Maxima Manual

NOEVAL special symbol
- suppresses the evaluation phase of EV. This is useful in conjunction with other switches
and in causing expressions to be resimplified without being reevaluated.

NOUN declaration
- One of the options of the DECLARE command. It makes a function so DECLAREd a
"noun", meaning that it won’t be evaluated automatically.

NOUNDISP Variable
default: [FALSE] - if TRUE will cause NOUNS to display with a single quote. This switch
is always TRUE when displaying function definitions.

NOUNS special symbol
(EVFLAG) when used as an option to the EV command, converts all "noun" forms
occurring in the expression being EV’d to "verbs", i.e. evaluates them. See also NOUN,
NOUNIFY, VERB, and VERBIFY.

NUMER special symbol
causes some mathematical functions (including exponentiation) with numerical arguments
to be evaluated in floating point. It causes variables in exp which have been given numer-
vals to be replaced by their values. It also sets the FLOAT switch on.

NUMERVAL (varl, expl, var2, exp2, ...) Function
declares vari to have a numerval of expi which is evaluated and substituted for the variable
in any expressions in which the variable occurs if the NUMER flag is TRUE. (see the EV
function).

OPPROPERTIES Variable
- the list of the special operator-properties handled by the MACSYMA simplifier: LIN-
EAR, ADDITIVE, MULTIPLICATIVE, OUTATIVE, EVENFUN, ODDFUN, COMMU-
TATIVE, SYMMETRIC, ANTISYMMETRIC, NARY, LASSOCIATIVE, and RASSO-
CIATIVE.

OPSUBST Variable
default:[TRUE] - if FALSE, SUBST will not attempt to substitute into the operator of an
expression. E.g. (OPSUBST:FALSE, SUBST(X"2,R,R+R[0])); will work.

OUTATIVE declaration
- If DECLARE(F,OUTATIVE) has been executed, then: (1) If F is univariate, whenever
the simplifier encounters F applied to a product, that product will be partitioned into
factors that are constant and factors that are not and the constant factors will be pulled
out. Le. F(A*X); will simplify to A*F(X) where A is a constant. Non-atomic constant
factors will not be pulled out. (2) If F is a function of 2 or more arguments, outativity
is defined as in the case of 'SUM or 'INTEGRATE, i.e. F(A*G(X),X); will simplify to
A*F(G(X),X) for A free-of X. Initially, 'SUM, INTEGRATE, and 'LIMIT are declared
to be OUTATIVE.

POSFUN declaration
_ POSitive FUNction, e.g. DECLARE(F,POSFUN); IS(F(X)>0); -> TRUE.

PRODHACK Variable
default: [FALSE] - if set to TRUE then PRODUCT(F(I),1,3,1); will yield 1/F(2), by the
identity PRODUCT(F(I),L,A,B) = 1/PRODUCT(F(I),[,B+1,A’1) when A>B.

Chapter 6: Simplification 39

RADCAN (exp) Function
simplifies exp, which can contain logs, exponentials, and radicals, by converting it into
a form which is canonical over a large class of expressions and a given ordering of vari-
ables; that is, all functionally equivalent forms are mapped into a unique form. For a
somewhat larger class of expressions, RADCAN produces a regular form. Two equiv-
alent expressions in this class will not necessarily have the same appearance, but their
difference will be simplified by RADCAN to zero. For some expressions RADCAN can
be quite time consuming. This is the cost of exploring certain relationships among the
components of the expression for simplifications based on factoring and partial-fraction
expansions of exponents. %E_TO_NUMLOG (default: [FALSE]) - when set to TRUE, for
"r" some rational number, and "x" some expression, %E~(r*LOG(x)) will be simplified
into x”r . RADEXPAND[TRUE] when set to FALSE will inhibit certain transformations:
RADCAN(SQRT(1-X)) will remain SQRT(1-X) and will not become %I SQRT(X-1).
RADCAN(SQRT(X"~2-2*X+1)) will remain SQRT(X"2-2*X + 1) and will not be trans-
formed to X- 1. Do EXAMPLE(RADCAN); for examples.

RADEXPAND Variable
default: [TRUE] - if set to ALL will cause nth roots of factors of a product which are pow-
ers of n to be pulled outside of the radical. E.g. if RADEXPAND is ALL, SQRT(16*X"2)
will become 4*X . More particularly, consider SQRT(X"2). (a) If RADEXPAND is ALL or
ASSUME(X>0) has been done, SQRT(X"2) will become X. (b) If RADEXPAND is TRUE
and DOMAIN is REAL (its default), SQRT(X"2) will become ABS(X). (c) If RADEX-
PAND is FALSE, or RADEXPAND is TRUE and DOMAIN is COMPLEX, SQRT(X"2)
will be returned. (The notion of DOMAIN with settings of REAL or COMPLEX is still
in its infancy. Note that its setting here only matters when RADEXPAND is TRUE.)

RADPRODEXPAND Variable
- this switch has been renamed RADEXPAND.
RADSUBSTFLAG Variable

default: [FALSE] - if TRUE permits RATSUBST to make substitutions such as U for
SQRT(X) in X.

RASSOCIATIVE declaration
- If DECLARE(G,RASSOCIATIVE); is done, this tells the simplifier that G is right-
associative. E.g. G(G(A,B),G(C,D)) will simplify to G(A,G(B,G(C,D))).

SCSIMP (exp,rulel, rule2,...,rulen) Function
Sequential Comparative Simplification [Stoute]) takes an expression (its first argument)
and a set of identities, or rules (its other arguments) and tries simplifying. If a smaller
expression is obtained, the process repeats. Otherwise after all simplifications are tried,
it returns the original answer. For examples, try EXAMPLE(SCSIMP); .

SIMP Function
causes exp to be simplified regardless of the setting of the switch SIMP which inhibits
simplification if FALSE.

SIMPSUM Variable
default: [FALSE] - if TRUE, the result of a SUM is simplified. This simplification may
sometimes be able to produce a closed form. If SIMPSUM is FALSE or if 'SUM is used,
the value is a sum noun form which is a representation of the sigma notation used in
mathematics.

SUMCONTRACT (expr) Function
will combine all sums of an addition that have upper and lower bounds that differ by
constants. The result will be an expression containing one summation for each set of such
summations added to all appropriate extra terms that had to be extracted to form this
sum. SUMCONTRACT will combine all compatible sums and use one of the indices from
one of the sums if it can, and then try to form a reasonable index if it cannot use any

supplied. It may be necessary to do an INTOSUM (expr) before the SUMCONTRACT.

40 Maxima Manual

SUMEXPAND Variable
default: [FALSE] if TRUE, products of sums and exponentiated sums are converted into
nested sums. For example:

SUMEXPAND : TRUES

SUM(F(I),I,0,M)=*SUM(G(J),J,0,N); ->
>SUM(’SUM(F(I1)*G(I2),12,0,N),I1,0,M)

SUM(F(I),I,0,M)"2; -> ’SUM(’SUM(F(I3)*F(I4),I4,0,M),I3,0,M

If FALSE, they are left alone. See also CAUCHYSUM.

SUMHACK Variable
default: [FALSE] - if set to TRUE then SUM(F(I),1,3,1); will yield -F(2), by the identity
SUM(F(I),L,A,B) = - SUM(F(I),[,B+1,A-1) when A>B.

SUMSPLITFACT Variable
default: [TRUE] - if set to FALSE will cause MINFACTORIAL to be applied after a
FACTCOMB.

SYMMETRIC declaration

- If DECLARE(H,SYMMETRIC); is done, this tells the simplifier that H is a symmetric
function. E.g. H(X,Z,Y) will simplify to H(X, Y, Z). This is the same as COMMUTATIVE.

UNKNOWN (exp) Function

returns TRUE iff exp contains an operator or function not known to the built-in simplifier.

Chapter 7: Plotting 41

7 Plotting

7.1 Definitions for Plotting

IN_NETMATH [FALSE] Variable
If not nil, then plot2d will output a representation of the plot which is suitable for openplot
functions.

OPENPLOT_CURVES Iist rest-options Function

Takes a list of curves such as
[[x1,y1,x2,y2,...],[ul,vl,u2,v2,...],..]
or
[[[x1,y1], [x2,y2],...],..]
and plots them. This is similar to xgraph_curves, but uses the open plot routines. Ad-
dtional symbol arguments may be given such as "{xrange -3 4}" The following plots
two curves, using big points, labeling the first one jim and the second one jane.

openplot_curves([["{plotpoints 1} {pointsize 6} {label jim}
{text {xaxislabel {joe is nice}}}"] ,
(1,2,3,4,5,6,7,8],
["{label jane} {color pink } "], [3,1,4,2,5,711);
Some other special keywords are xfun, color, plotpoints, linecolors, pointsize, nolines,
bargraph, labelposition, xaxislabel, and yaxislabel.

PLOT2D (expr,range,...,options,..) Function
PLOT2D ([exprl,expr2,..,exprn],xrange,...,options,..) Function
PLOT2D (parametric_expr) Function
PLOT2D ([..,expr,..,parametric_expr,..],xrange,...,options) Function

EXPR is an expression to be plotted on y axis as a function of 1 variable. RANGE is
of the form [var,min,max| and expr is assumed to be an expression to be plotted against
VAR. In the second form of the function a list of expressions may be given to plot against
VAR. Truncation in the y direction will be performed, for the default y range. It may be
specified as an option or using SET_PLOT_OPTION.

(C1) plot2d(sin(x), [x,-5,5]);

(C2) plot2d(sec(x), [x,-2,2], [y,-20,20], [nticks,200]);
Anywhere there may be an EXPR you may also use a parametric expression: PARA-
METRIC_EXPR is a Maxima list of the form [parametric, xexpr, yexpr, trange,
..options] Here XEXPR and YEXPR are functions of 1 variable VAR which is the first
element of the range TRANGE. The plot is of the path traced out by the pair [XEXPR,
YEXPR] as VAR varies in TRANGE. In the following example, we plot a circle, then we
do the plot with only a few points used, so that we get a star, and finally we plot this
together with an ordinary function of X.

(C1) plot2d([parametric,cos(t),sin(t), [t,-Y%pi*2,%pi*2]]);
(C2) plot2d([parametric,cos(t),sin(t), [t,-%pi*2,%pix*2],

[nticks,81]);
(C3) plot2d([x~3+2, [parametric,cos(t),sin(t), [t,-5,5]1]1],
[x,-3,3]);
xgraph_curves (list) Function

graphs the list of ‘point sets’ given in list by using xgraph.
A point set may be of the form

[x0,y0,x1,y1,x2,y2,...] or
[[XO’YO] B [Xl,yl:l ERRE] -]
A point set may also contain symbols which give labels or other information.

42

PLOT_OPTIONS

Maxima Manual

xgraph_curves([pt_setl,pt_set2,pt_set3]);

would graph the three point sets as three curves.

pt_set:append(["NoLines: True",'"LargePixels: true"],

[x0,y0,x1,y1,...1)

would make the point set [and subsequent ones|, have no lines between points, and to use
large pixels. See the man page on xgraph for more options to specify.

pt_set:append([concat ("\"","x"2+y")], [x0,y0,x1,y1,...])
would make there be a "label" of "x"2+y" for this particular point set. The " at the
beginning is what tells xgraph this is a label.

pt_set:append([concat("TitleText: Sample Data")], [x0,...]1)
would make the main title of the plot be "Sample Data" instead of "Maxima PLot".
To make a bar graph with bars which are .2 units wide, and to plot two possibly different
such bar graphs:

xgraph_curves (
[append (["BarGraph: true","NoLines: true","BarWidth: .2"],
create_list([i-.2,1i"2],i,1,3)),
append (["BarGraph: true","NoLines: true","BarWidth: .2"],
create_list([i+.2,.7%xi"2],1,1,3))
1;

A temporary file ‘xgraph-out’ is used.

Members of this list indicate defaults for plotting. They may be altered using
SET_PLOT_OPTION

[x, - 3, 3]
Ly, - 3, 3]
are the x range and y range respectively.
[TRANSFORM_XY, FALSE] if not false, should be the output of
make_transform([x,y,z], [fi(x,y,z),f2(x,y,2),£3(x,y,2)]1)
which produces a transformation from 3 space to 3 space, which will be applied to the
graph. A built in one is polar_xy which gives the same as

make_transform([r,th,z], [r*cos(th),r*sin(th),z])

[RUN_VIEWER,TRUE] if not false, means run the viewer software - don’t just output a
data file.

[GRID,30,30] means plot3d should divide the x range into 30 intervals and similarly the
y range.

[COLOUR_Z,false] applies to colouring done with plot_format ps.

[PLOT_FORMAT,OPENMATH] is for plot3d and currently OPENMATH, GNUPLOT,
PS, and GEOMVIEW are supported.

There are good quality public domain viewers for these formats. They are openmath, izic,
gnuplot, ghostview, and geomview.

The Openmath viewer is in the distribution, and is based on tcl/tk. The executable is
‘maxima/bin/omplotdata’. The viewer lets you zoom in, slide around, and rotate (if 3
dimensional). This format is also the one used by netmath, for making plots with Netmath.
(see ‘http://www.ma.utexas.edu/users/wfs/netmath.html’)

geomview is from the Geometry Center at the University of Minnesota, and is available
from ‘http://www.geom.umn.edu/software/download/geomview.html’ or by anony-
mous ftp from ‘ftp://ftp.geom.umn. edu/pub/software/geomview/’. It is currently not
quite as pretty as izic, but provides excellent support for multiple objects and multiple
lights.

Variable

Chapter 7: Plotting 43

gnuplot is everywhere as is ghostview. We also provide mgnuplot, a tcl interface for
gnuplot, which lets you rotate the plots using the mouse and a scale.

izic is available by ftp from zenon.inria.fr. Contact one of
{fournier kajler,mourrain}@sophia.inria.fr.
It has beautiful colour gouraud shading, and very fast wireframe. It runs on X windows.

PLOT3D (expr,xrange,yrange,...,options,..) Function
PLOT3D ([exprl,expr2,expr3],xrange,yrange,...,options,..) Function
plot3d(2~(-u~2+v~2), [u,-5,5], [v,-7,7]);
would plot z = 27 (-u"2+v~2) with u and v varying in [-5,5] and [-7,7] respectively, and
with u on the x axis, and v on the y axis.
An example of the second pattern of arguments is

plot3d([cos(x)*(3+y*cos(x/2)),sin(x)*(3+y*cos(x/2)) ,y*sin(x/2)],
[x,-%pi,%pil, [y,-1,1],[’grid,50,15])
which will plot a moebius band, parametrized by the 3 expressions given as the first

argument to plot3d. An additional optional argument [grid,50,15] gives the grid number
of rectangles in the x direction and y direction.

/* REal part of z ~ 1/3 */
plot3d(r~.33*cos(th/3), [r,0,1], [th,0,6%%pil],

[’grid, 12,801, [’PLOT_FORMAT,ps],

[’ TRANSFORM_XY,POLAR_TO_XY], [’VIEW_DIRECTION,1,1,1.4],

[’COLOUR_Z,true])
Here the View_direction indicates the direction from which we take a projection. We
actually do this from infinitely far away, but parallel to the line from view_direction to
the origin. This is currently only used in ’ps’ plot_format, since the other viewers allow
interactive rotating of the object.

Another example is a moebius band:
plot3d([cos(x)*(3+y*cos(x/2)),
sin(x)*(3+y*cos(x/2)),y*sin(x/2)],
[x,-%pi,%pil, [y,-1,11,[’grid,50,15]);
or a klein bottle:
plot3d([6xcos(x)*(cos(x/2)*cos(y)+sin(x/2)*sin(2*y)+3.0) - 10.0,
-5*xsin(x)*(cos(x/2)*cos(y)+sin(x/2)*sin(2%y)+3.0),
5x(-sin(x/2)*cos(y)+cos(x/2)*sin(2*y))],
[x,-%pi,%pil, [y,-%pi,%pil, [’grid,40,40])
or a torus
plot3d([cos(y)*(10.0+6*cos(x)),
sin(y)*(10.0+6%*cos(x)),
-6*xsin(x)], [x,0,2+%pil, [y,0,2x%pil,
[’grid,40,40])
We can output to gnplot too:
plot3d(2~(x"2-y~2), [x,-1,1],[y,-2,2], [plot_format,gnuplot])

Sometimes you may need to define a function to plot the expression. All the arguments to
plot3d are evaluated before being passed to plot3d, and so trying to make an expression
which does just what you want may be difficult, and it is just easier to make a function.

M:MATRIX([1,2,3,4],[1,2,3,2],[1,2,3,4]1,[1,2,3,31)%
f(x,y) :=float (M[?round(x),?round(y)]);
plot3d(f, [x,1,4],[y,1,4],[’grid,4,4]);

PLOT2D_PS (expr,range) Function
writes to pstream a sequence of postscript commands which plot EXPR for RANGE.
EXPR should be an expression of 1 variable. RANGE should be of the form [vari-
able,min,max| over which to plot expr. see CLOSEPS.

44 Maxima Manual

CLOSEPS () Function
This should usually becalled at the end of a sequence of plotting commands. It closes the
current output stream PSTREAM, and sets it to nil. It also may be called at the start of
a plot, to ensure pstream is closed if it was open. All commands which write to pstream,
open it if necessary. CLOSEPS is separate from the other plotting commands, since we
may want to plot 2 ranges or superimpose several plots, and so must keep the stream
open.

SET_PLOT_OPTION (option) Function
option is of the format of one of the elements of the PLOT_OPTIONS list. Thus

SET_PLOT_OPTION([grid,30,40])

would change the default grid used by plot3d. Note that if the symbol grid has a value,
then you should quote it here:

SET_PLOT_OPTION([’ grid, 30, 40])
so that the value will not be substituted.

PSDRAW_CURVE (ptlist) Function
Draws a curve connecting the points in PTLIST. The latter may be of the form
[x0,y0,x1,y1,...] or [[x0,y0],[x1,yl],...] The function JOIN is handy for taking a list of
x’s and a list of y’s and splicing them together. PSDRAW_CURVE simply invokes the
more primitive function PSCURVE. Here is the definition:

(defun $psdraw_curve (lis)
(p "newpath")
($pscurve 1lis)
(p "stroke"))

?DRAW2D may also be used to produce a list
pointsl:?draw2d(1/x,[.05,10],.03)

PSCOM (com) Function
COM will be inserted in the poscript file eg

pscom("4.5 72 mul 5.5 72 mul translate 14 14 scale");

Chapter 8: Input and Output 45

8 Input and Output

8.1 Introduction to Input and Output

8.2 FILES

- A file is simply an area on a particular storage device which contains data or text. The only
storage devices which are used on the MC machine are disks and tapes. Files on the disks are
figuratively grouped into "directories". A directory is just a list of all the files stored under a
given user name. Do DESCRIBE(FILEOP); for details of how you may inspect your files using
MACSYMA. Other commands which deal with files are: SAVE, FASSAVE, STORE, LOAD,
LOADFILE, RESTORE, UNSTORE, STRINGOUT, BATCH, BATCON, DEMO, WRITE-
FILE, CLOSEFILE, DELFILE, REMFILE, and APPENDFILE.

8.3 PLAYBACK

It is possible to play back the input lines in a temporary scroll down window, and so not lose
ones current work. This can be done by typing Function E. A numeric argument tells it the line
number to start at, otherwise it will go back about 40 lines.

8.4 Definitions for Input and Output

% Variable
The last D-line computed by MACSYMA (whether or not it was printed out). (See also
%%.)

%% Variable

The value of the last computation performed while in a (MACSYMA-BREAK). Also may
be used in compound statements in the nth statement to refer to the value of the (n-1)th
statement. E.g. F(N):=(INTEGRATE(X"N,X),SUBST(3,X,%%)-SUBST(2,X,%%));
is in essence equivalent to F(N):=BLOCK([%%], %%INTEGRATE(X"N,X),
SUBST(3,X,%%)-SUBST(2,X,%%)); This will also work for communicating between the
(n-1)th and nth (non-atomic) BLOCK statements.

%EDISPFLAG Variable
default: [FALSE] - if TRUE, MACSYMA displays %E to a negative exponent as a quotient,
ie. NE~-X as 1/%E~X.

%TH (i) Function
is the ith previous computation. That is, if the next expression to be computed is D(j)
this is D(j-i). This is useful in BATCH files or for referring to a group of D expressions.
For example, if SUM is initialized to 0 then FOR I:1 THRU 10 DO SUM:SUM+%TH(I)
will set SUM to the sum of the last ten D expressions.

nen special symbol
- As prefix to a function or variable name, signifies that the function or variable is a LISP
token, not a MACSYMA token. Two question marks typed together, 77, will flush the
current MACSYMA command line.

ABSBOXCHAR Variable
default: [!] is the character used to draw absolute value signs around expressions which
are more than a single line high.

46 Maxima Manual

APPENDFILE (filenamel, filename2, DSK, directory) Function
is like WRITEFILE(DSK,directory) but appends to the file whose name is specified by the
first two arguments. A subsequent CLOSEFILE will delete the original file and rename
the appended file.

BACKUP () Function
To "back up" and see what you did, see PLAYBACK.

BATCH (file-specification) Function
reads in and evaluates MACSYMA command lines from a file - A facility for executing
command lines stored on a disk file rather than in the usual on-line mode. This facility has
several uses, namely to provide a reservoir for working command lines, for giving error-
free demonstrations, or helping in organizing one’s thinking in complex problem-solving
situations where modifications may be done via a text editor. A batch file consists of a
set of MACSYMA command lines, each with its terminating ; or $, which may be further
separated by spaces, carriage- returns, form-feeds, and the like. The BATCH function calls
for reading in the command lines from the file one at a time, echoing them on the user
console, and executing them in turn. Control is returned to the user console only when
serious errors occur or when the end of the file is met. Of course, the user may quit out of
the file-processing by typing control-G at any point. BATCH files may be created using a
text editor or by use of the STRINGOUT command. Do DESCRIBE(STRINGOUT) for
details DESCRIBE(FILE); and DESCRIBE(FILES); have additional information on how
the file argument is interpreted, and files in general.

BATCHKILL Variable
default: [FALSE] if TRUE then the effect of all previous BATCH files is nullified because
a KILL(ALL) and a RESET() will be done automatically when the next one is read in. If
BATCHKILL is bound to any other atom then a KILL of the value of BATCHKILL will
be done.

BATCHLOAD (file-specification) Function

Batches in the file silently without terminal output or labels.

BATCON (argument) Function

continues BATCHing in a file which was interrupted.

BATCOUNT Variable
default: [0] may be set to the number of the last expression BATCHed in from a file.
Thus BATCON(BATCOUNT-1) will resume BATCHing from the expression before the
last BATCHed in from before.

BOTHCASES Variable
default: [TRUE] if TRUE will cause MAXIMA to retain lower case text as well as upper
case. Note, however, that the names of any MAXIMA special variables or functions are in
upper case. The default is now TRUE since it makes code more readable, allowing users
to have names like SeriesSolve.

Because of this we make the system variables and functions all upper case, and users may
enter them however they like (in upper or lower). But all other variables and functions
are case sensitive. When you print out your program using for example grind(fundef(f))
then you will see that the symbols like 'TF’, ’SIN’.... all appear in upper case whereas non
system symbols appear in the case which you used.

This is implemented as follows: If the symbol is being encountered for the first time, if the
upper case version is in the package and has a nontrivial function or property list, then
the upper case symbol is used, and it is recorded on the mixed case one, that the upper
case should be used in future. If a symbol is already in the package then it is just used.
In effect this means that most old programs should continue to work, and that new ones
may write sln, Sin, SIN, sin etc and they will all be interpreted as SIN. However if they
write MySin this will be different from MYSIN, because MYSIN is not a system function
or variable.

Chapter 8: Input and Output 47

SeriesSolve(f,x):=
if (f = sin)

and this is read as

SeriesSolve(f,x):=
IF (f = SIN)

CHANGE_FILEDEFAULTS Variable
default: [TRUE] on PDP10 systems, and FALSE elsewhere. Controls whether the user
doing a LOADFILE or BATCH has his file defaults changed to the file LOADFILEd or
BATCHed. The TRUE setting is for people who like DDT-style file defaulting. The
FALSE setting is for people who like the conventions of other operating systems, who
like LISP-style file defaulting, or who write packages which do LOADFILEs or BATCHes
which should not interfere with their user’s file defaults.

CLOSEFILE (filenamel, filename2) Function
closes a file opened by WRITEFILE and gives it the name filenamel filename2. (On a Lisp
Machine one need only say CLOSEFILE();.) Thus to save a file consisting of the display
of all input and output during some part of a session with MACSYMA the user issues
a WRITEFILE, transacts with MACSYMA, then issues a CLOSEFILE. The user can
also issue the PLAYBACK function after a WRITEFILE to save the display of previous
transactions. (Note that what is saved this way is a copy of the display of expressions
not the expressions themselves). To save the actual expression in internal form the SAVE
function may be used. The expression can then be brought back into MACSYMA via
the LOADFILE function. To save the expression in a linear form which may then be
BATCHed in later, the STRINGOUT function is used.

COLLAPSE (expression) Function
collapses" its argument by causing all of its common (i.e. equal) subexpressions to share
(i.e. use the same cells), thereby saving space. (COLLAPSE is a subroutine used by the
OPTIMIZE command.) Thus, calling COLLAPSE may be useful before using FASSAVE
or after loading in a SAVE file. You can collapse several expressions together by using
COLLAPSE([exprl,...,exprN])$. Similarly, you can collapse the elements of the array A
by doing COLLAPSE(LISTARRAY(’A))$.

CONCAT (argl, arg2, ...) Function
evaluates its arguments and returns the concatenation of their values resulting in a name
or a quoted string the type being given by that of the first argument. Thus if X is bound
to 1 and D is unbound then CONCAT(X,2)="12" and CONCAT(D,X+1)=D2.

SCONCAT (argl, arg2, ...) Function
evaluates its arguments and concatenates them into a string. Unlike CONCAT, the argu-
ments do NOT need to be atoms. The result is a Common Lisp String.

(C5) sconcat("xx[",3,"]:",expand((x+y)~3));
(D5) xx[3]:Y"3+3*X*Y " 2+3+X"2*Y+X"3
The resulting string could be used in conjunction with print.

CURSORDISP Variable
default: [TRUE] If TRUE, causes expressions to be drawn by the displayer in logical
sequence. This only works with a console which can do cursor movement. If FALSE,
expressions are simply printed line by line. CURSORDISP is FALSE when a WRITEFILE
is in effect.

DIREC Variable
- The value of this variable is the default file directory for SAVE, STORE, FASSAVE, and
STRINGOUT. It is initialized to the user’s login name, if he has a disk directory, and to
one of the USERSI directories otherwise. DIREC determines to what directory disk files
will be written.

48 Maxima Manual

DISP (exprl,expr2, ...) Function
is like DISPLAY but only the value of the arguments are displayed rather than equations.
This is useful for complicated arguments which don’t have names or where only the value
of the argument is of interest and not the name.

DISPCON (tensorl,tensor2,...) Function
displays the contraction properties of the tensori as were given to DEFCON. DISP-
CON(ALL) displays all the contraction properties which were defined.

DISPLAY (exprl, expr2, ...) Function
displays equations whose left side is expri unevaluated, and whose right side is the value of
the expression centered on the line. This function is useful in blocks and FOR statements
in order to have intermediate results displayed. The arguments to DISPLAY are usually
atoms, subscripted variables, or function calls. (see the DISP function)

(C1) DISPLAY(BI[1,2]);

(D) DONE

DISPLAY2D Variable
default: [TRUE] - if set to FALSE will cause the standard display to be a string (1-
dimensional) form rather than a display (2-dimensional) form. This may be of benefit for
users on printing consoles who would like to conserve paper.

DISPLAY FORMAT_INTERNAL Variable
default: [FALSE] - if set to TRUE will cause expressions to be displayed without being
transformed in ways that hide the internal mathematical representation. The display then
corresponds to what the INPART command returns rather than the PART command.

Examples:
User PART INPART
a-b; A-B A+ (-1)B
-1
a/b; - A B
1/2
sqrt (x); SQRT (X) X
4 X 4
Xx4/3; -== - X
3 3
DISPTERMS (expr) Function

displays its argument in parts one below the other. That is, first the operator of ’expr’
is displayed, then each term in a sum, or factor in a product, or part of a more gen-
eral expression is displayed separately. This is useful if expr is too large to be other-
wise displayed. For example if P1, P2, ... are very large expressions then the display
program may run out of storage space in trying to display P1+P2+... all at once. How-
ever, DISPTERMS(P1+P2+...) will display P1, then below it P2, etc. When not using
DISPTERMS, if an exponential expression is too wide to be displayed as A**B it will
appear as EXPT(A,B) (or as NCEXPT(A,B) in the case of A~"B).

DSKALL Variable
default: [] If TRUE will cause values, functions, arrays, and rules to be written periodically
onto the disk in addition to labelled expressions. TRUE is the default value whereas if
DSKALL is FALSE then only labelled expresions will be written.

Chapter 8: Input and Output 49

ERROR_SIZE Variable
default: [20 for a display terminal, 10 for others|. controls the size of error messages.
For example, let U:(C"D~E+B+A)/(COS(X-1)+1); . U has an error size of 24. So if
ERRORCSIZE has value < 24 then

(C1) ERROR("The function", F00,"doesn’t like", U,"as input.");
prints as:

The function FOO doesn’t like ERREXP1 as input.

If ERROR_SIZE>24 then as:

The function FOO doesn’t like --———————-——--—- as input.
COS(X - 1) +1

Expressions larger than ERROR_SIZE are replaced by symbols, and the symbols are set
to the expressions. The symbols are taken from the user-settable list

ERROR_SYMS: [ERREXP1,ERREXP2,ERREXP3]

. The default value of this switch might change depending on user experience. If you find
the defaults either too big or two small for your tastes, send mail to MACSYMA.

ERROR_SYMS Variable
default: [ERREXP1,ERREXP2 ERREXP3] - In error messages, expressions larger than
ERROR_SIZE are replaced by symbols, and the symbols are set to the expressions. The
symbols are taken from the list ERROR_SYMS, and are initially ERREXP1, ERREXP2,
ERREXP3, etc. After an error message is printed, e.g. "The function FOO doesn’t like
ERREXP1 as input.", the user can type ERREXP1; to see the expression. ERROR_SYMS
may be set by the user to a different set of symbols, if desired.

EXPT (A,B) Function
if an exponential expression is too wide to be displayed as A°B it will appear as
EXPT(A,B) (or as NCEXPT(A,B) in the case of A~"B).

EXPTDISPFLAG Variable
default: [TRUE] - if TRUE, MACSYMA displays expressions with negative exponents
using quotients e.g., X**(-1) as 1/X.

FASSAVE (args) Function
is similar to SAVE but produces a FASL file in which the sharing of subexpressions which
are shared in core is preserved in the file created. Hence, expressions which have common
subexpressions will consume less space when loaded back from a file created by FASSAVE
rather than by SAVE. Files created with FASSAVE are reloaded using LOADFILE, just
as files created with SAVE. FASSAVE returns a list of the form [<name of file><size of
file in blocks>,...] where ... are the things saved. Warnings are printed out in the case of
large files. FASSAVE may be used while a WRITEFILE is in progress.

FILEDEFAULTS () Function
returns the current default filename, in whatever format is used by the specific Mac-
syma implementation. (See DESCRIBE(FILE) for what that format is.) This is the file
specification used by LOADFILE, BATCH, and a number of other file-accessing com-
mands. FILEDEFAULTS('file) - sets the current filedefaults to "file". The argument to
FILEDEFAULTS is evaulated as it is anticipated that the command will be used mainly
in programs. The "file" need not be a real file, so one can use this function e.g. if one’s
real purpose is to set only the "device" field to something, where one does not care about
the settings of the other fields.

50 Maxima Manual

FILENAME Variable
default: [] - The value of this variable is the first name of the files which are generated by
the automatic disk storage scheme. The default value is the first three characters of the
user’s login name concatenated with the lowest unused integer, e.g. ECRI.

FILENAME_MERGE ("filenamel","filename2",...) Function
; merges together filenames. What this means is that it returns "filenamel" except that
missing components come from the corresponding components of "filename2", and if they
are missing there, then from "filename3".

FILENUM Variable
default: [0] - The default second file name for files generated by SAVE, STRINGOUT, or
FASSAVE if no file names are specified by the user. It is an integer, and is incremented
by one each time a new file is written.

FILE_SEARCH Variable
- this is a list of files naming directories to search by LOAD and a number of other
functions. The default value of this is a list of the various SHARE directories used by
Macsyma. FILE_SEARCH("filename"); searches on those directories and devices speci-
fied by the FILE_.SEARCH_LISP, FILE_SEARCH_MAXIMA and FILE_.SEARCH_DEMO
variables, and returns the name of the first file it finds. This function is invoked by the
LOAD function, which is why LOAD("FFT") finds and loads share/fft.mac. You may
add a path to the appropriate list. Note that the format of the paths allows specifying
multiple extensions and multiple paths.

"/home/wfs/###.{o,1lisp,mac,mc}"
"/home/{wfs,joe}/###.{0,1lisp,mac,mc}t"

The "###’ is replaced by the actual filename passed. File_.SEARCH first checks if the
actual name passed exists, before substituting it in the various patterns.

FILE_STRING_PRINT Variable
default: [FALSE| on MC, [TRUE] elsewhere. If TRUE, filenames are output as strings;
if FALSE, as lists. For example, the message when an out of core file is loaded into
MACSYMA (e.g. the LIMIT package), appears on MC in list format as LIMIT FASL
DSK MACSYM being loaded and in string format as: DSK:MACSYM;LIMIT FASL being
loaded The string format is like the top level (DDT) file specifications.

FILE_TYPE ("filename") Function
; returns FASL, LISP, or MACSYMA, depending on what kind of file it is. FASL means
a compiled Lisp file, which normally has an extension of .VAS in NIL.

GRIND (arg) Function
prints out arg in a more readable format than the STRING command. It returns a D-
line as value. The GRIND switch, default: [FALSE], if TRUE will cause the STRING,
STRINGOUT, and PLAYBACK commands to use "grind" mode instead of "string" mode.
For PLAYBACK, "grind" mode can also be turned on (for processing input lines) by
specifying GRIND as an option.

IBASE Variable
default: [10] - the base for inputting numbers.

INCHAR Variable
default: [C] - the alphabetic prefix of the names of expressions typed by the user.

LDISP (exprl,expr2,...) Function
is like DISP but also generates intermediate labels.

Chapter 8: Input and Output 51

LDISPLAY (exprl,expr2,...) Function
is like DISPLAY but also generates intermediate labels.

LINECHAR Variable

default: [E] - the alphabetic prefix of the names of intermediate displayed expressions.

LINEDISP Variable
default: [TRUE] - Allows the use of line graphics in the drawing of equations on those
systems which support them (e.g. the Lisp Machine). This can be disabled by setting
LINEDISP to FALSE. It is automatically disabled during WRITEFILE.

LINEL Variable
default: [] - the number of characters which are printed on a line. It is initially set by
MACSYMA to the line length of the type of terminal being used (as far as is known) but
may be reset at any time by the user. The user may have to reset it in DDT with :TCTYP
as well.

LOAD ("filename") Function
; takes one argument, a filename represented as a "string" (i.e. inside quotation marks),
or as list (e.g. inside square brackets), and locates and loads in the indicated file. If no
directory is specified, it then searches the SHAREI directories and any other directories
listed in the FILE_.SEARCH variable and loads the indicated file. LOAD("EIGEN")
will load the eigen package without the need for the user to be aware of the details of
whether the package was compiled, translated, saved, or fassaved, i.e. LOAD will work
on both LOADFILEable and BATCHable files. Note: LOAD will use BATCHLOAD if
it finds the file is BATCHable (which means that it will BATCH the file in "silently"
without terminal output or labels). Other MACSYMA commands to load in files are:
LOADFILE, RESTORE, BATCH, and DEMO. Do DESCRIBE(command); for details.
LOADFILE and RESTORE work for files written with SAVE; BATCH and DEMO for
those files written with STRINGOUT or created as lists of commands with a text editor.
If load can’t find the file, check the value FILE_SEARCH to make sure that it contains
an appropriate template.

(C4) load("eigen");
MACSYMA BUG: Unknown file type NIL

Error: macsyma error

Error signalled by MEVAL1.

Broken at $LOAD. Type :H for Help.
MAXIMA>>:q

By examining the file system we find the file is actually in
/public/maxima/share/eigen.mc. So we add that to the file_search
path. This can be done at start up (see init.lsp) or,
else it can be done and then the system resaved
once it has been customized for local directories and pathnames.
At lisp level we would do
(in-package "MAXIMA")
(setq $file_search ($append (list ’(mlist)

"/tmp/foo.mac" "/tmp/foo.mc") $file_search))
and at maxima level:

(C5) file_search:append(["/public/maxima/share/foo.mc"],
file_search)$
(C6) load("eigen");

batching /usr/public/maxima/share/eigen.mc
(D6) #/public/maxima/share/eigen.mc

52 Maxima Manual

(C7) eigenvalues(matrix([a,bl,[c,d]));

2 2
- SQRT(D -2 AD+4BC+A)+D+A
@O7) [,
2
2 2
SQRT(D -2 AD+4BC+A)+D+A
------------------------------------- 1, [1, 1]1]
2
LOADFILE (filename) Function

loads a file as designated by its arguments. This function may be used to bring back
quantities that were stored from a prior MACSYMA session by use of the SAVE or STORE
functions. Specify the pathname as on your operating system. For unix this would be
" /home/wfs/foo.mc" for example.

LOADPRINT Variable
default: [TRUE] - governs the printing of messages accompanying loading of files. The
following options are available: TRUE means always print the message; 'LOADFILE
means print only when the LOADFILE command is used; ’AUTOLOAD means print
only when a file is automatically loaded in (e.g. the integration file SIN FASL); FALSE
means never print the loading message.

NOSTRING (arg) Function
displays all input lines when playing back rather than STRINGing them. If arg is GRIND
then the display will be in a more readable format. One may include any number of

options as in PLAYBACK([5,10],20, TIME,SLOW).

OBASE Variable
default: [10] the base for display of numbers.

OUTCHAR Variable
default: [D] - the alphabetic prefix of the names of outputted expressions.

PACKAGEFILE Variable
default:[FALSE] - Package designers who use SAVE, FASSAVE, or TRANSLATE to cre-
ate packages (files) for others to use may want to set PACKAGEFILE:TRUES$ to prevent
information from being added to MACSYMA'’s information-lists (e.g. VALUES, FUNC-
TIONS) except where necessary when the file is loaded in. In this way, the contents of
the package will not get in the user’s way when he adds his own data. Note that this will
not solve the problem of possible name conflicts. Also note that the flag simply affects

what is output to the package file. Setting the flag to TRUE is also useful for creating
MACSYMA init files.

PARSEWINDOW Variable
default:[10] - the maximum number of "lexical tokens" that are printed out on each side
of the error-point when a syntax (parsing) error occurs. This option is especially useful
on slow terminals. Setting it to -1 causes the entire input string to be printed out when
an error occurs.

PFEFORMAT Variable
default: [FALSE] - if TRUE will cause rational numbers to display in a linear form and
denominators which are integers to display as rational number multipliers.

Chapter 8: Input and Output 53

PRINT (expl, exp2, ...) Function
evaluates and displays its arguments one after the other "on a line" starting at the leftmost
position. If expi is unbound or is preceded by a single quote or is enclosed in "s then it is
printed literally. For example, PRINT("THE VALUE OF X IS ",X). The value returned
by PRINT is the value of its last argument. No intermediate lines are generated. (For
"printing" files, see the PRINTFILE function.)

SPRINT (expl, exp2, ...) Function
evaluates and displays its arguments one after the other "on a line" starting at the leftmost
position. The numbers are printed with the ’-” right next to the number, and it disregards
line length.

TCL_OUTPUT (LIST INDEX &optional-skip) Function
prints a TCL list based on LIST extracting the INDEX slot. Here skip defaults to 2,
meaning that every other element will be printed if the argument is of the form a list of
numbers, rathter than a list of lists. For example:

TCL_OUTPUT([x1,y1,x2,y2,x3,y3],1) --> {x1 x2 x3 }
TCL_OUTPUT([x1,y1,x2,y2,x3,y3]1,2) -—> {yl y2 y3 }
TCL_OUTPUT([1,2,3,4,5,6],1,3) —-—> {1 4}
TCL_OUTPUT([1,2,3,4,5,6],2,3) --> {2 5}

READ (stringl, ...) Function
prints its arguments, then reads in and evaluates one expression. For example:

A:READ("ENTER THE NUMBER OF VALUES").

READONLY (stringl,...) Function
prints its arguments, then reads in an expression (which in contrast to READ is not
evaluated).

REVEAL (exp,depth) Function

will display exp to the specified integer depth with the length of each part indicated. Sums
will be displayed as Sum(n) and products as Product(n) where n is the number of subparts
of the sum or product. Exponentials will be displayed as Expt.

(C1) INTEGRATE(1/(X"3+2),X)$

(C2) REVEAL(%,2);

(D2) Negterm + Quotient + Quotient
(C3) REVEAL(D1,3);

(D3) - Quotient + -————————- + -
Product(2) Product(2)

RMXCHAR Variable
default: []] - The character used to display the (right) delimiter of a matrix (see also
LMXCHAR).

SAVE (filename,argl, arg2,...,argi) Function

saves quantities described by its arguments on disk and keeps them in core also. The arg’s
are the expressions to be SAVEd. ALL is the simplest, but note that saving ALL will save
the entire contents of your MACSYMA, which in the case of a large computation may
result in a large file. VALUES, FUNCTIONS, or any other items on the INFOLISTS (do
DESCRIBE(INFOLISTS); for the list) may be SAVEd, as may functions and variables
by name. C and D lines may also be saved, but it is better to give them explicit names,
which may be done in the command line, e.g. SAVE(RES1=D15); Files saved with SAVE
should be reloaded with LOADFILE. SAVE returns the pathname where the items were
saved.

54 Maxima Manual

SAVEDEF Variable
default: [TRUE] - if TRUE will cause the MACSYMA version of a user function to
remain when the function is TRANSLATEd. This permits the definition to be displayed
by DISPFUN and allows the function to be edited. If SAVEDEF is FALSE, the names of
translated functions are removed from the FUNCTIONS list.

SHOW (exp) Function
will display exp with the indexed objects in it shown having covariant indices as sub-
scripts,contravariant indices as superscripts. The derivative indices will be displayed as
subscripts, separated from the covariant indices by a comma.

SHOWRATVARS (exp) Function
returns a list of the RATVARS (CRE variables) of exp.

STARDISP Variable
default: [FALSE] - if TRUE will cause multiplication to be displayed explicitly with an *
between operands.

STRING (expr) Function
converts expr to MACSYMA'’s linear notation (similar to FORTRAN’s) just as if it had
been typed in and puts expr into the buffer for possible editing (in which case expr is
usually Ci) The STRING’ed expression should not be used in a computation.

STRINGOUT (args) Function
will output an expression to a file in a linear format. Such files are then used by the
BATCH or DEMO commands. STRINGOUT (file-specification, A1, A2, ...) outputs to a
file given by file-specification ([filenamel,filename2,DSK, directory]) the values given by
A1,A2,.. in a MACSYMA readable format. The file-specification may be omitted, in
which case the default values will be used. The Ai are usually C labels or may be INPUT
meaning the value of all C labels. Another option is to make ai FUNCTIONS which
will cause all of the user’s function definitions to be strungout (i.e. all those retrieved by
DISPFUN(ALL)). Likewise the ai may be VALUES, and all the variables to which the user
has assigned values will be strungout. ai may also be a list [m,n] which means to stringout
all labels in the range m through n inclusive. This function may be used to create a file
of FORTRAN statements by doing some simple editing on the strungout expressions. If
the GRIND switch is set to TRUE, then STRINGOUT will use GRIND format instead of
STRING format. Note: a STRINGOUT may be done while a WRITEFILE is in progress.

TEX (expr) Function
TEX (expr,filename) Function
TEX (label filename) Function

In the case of a label, a left-equation-number will be produced. in case a file-name is
supplied, the output will be appended to the file.

(C1) integrate(1/(1+x73),x);

2x -1
2 ATAN(-------)
LOG(x - x + 1) SQRT(3) LOG(x + 1)
(D1) - mmm + + —————————
6 SQRT(3) 3

(C2) tex(dl);

$$-{{\log \left(x"{2}-x+1\right)}\over{6}}
+{{\arctan {{2\>x-1F\over{\sqrt{3}}}}\over{\sqrt{3}}}
+{{\log \left(x+1\right)}\over{3}}\legno{\tt (D1)}$$
(D2) (D1)
(C6) tex(integrate(sin(x),x));

Chapter 8: Input and Output 55

$$-\cos x$$
(D6) FALSE
(C7) tex(dl,"/tmp/jo.tex");

(D7) (D1)
where the last expression will be appended to the file ‘/tmp/jo.tex’

SYSTEM (command) Function
Execute COMMAND as a subprocess. The command will be passed to the default shell
for execution. System is not supported by all operating systems, but generally exists in
the unix environment. if hist is a list of frequencies which you wish to plot as a bar graph
using xgraph.

(C1) (with_stdout("_hist.out",
for i:1 thru length(hist) do (
print(i,hist[i]))),
system("xgraph -bar -brw .7 -nl < _hist.out"));
In order to make the plot be done in the background (returning control to maxima) and
remove the temporary file after it is done do:

system(" (xgraph -bar -brw .7 -nl < _hist.out; rm -f _hist.out)&")

TTYOFF Variable
default: [FALSE] - if TRUE stops printing output to the console.

WITH_STDOUT (file,stmt1,stmt2,...) macro
Opens file and then evaluates stmt1, stmt2, Any printing to standard output goes to
the file instead of the terminal. It always returns FALSE. Note the binding of display2d
to be false, otherwise the printing will have things like "- 3" instead of "-3".

mygnuplot (f,var,range,number_ticks):=
block([numer:true,display2d:false],
with_stdout ("/tmp/gnu",
for x:range[1] thru range[2] step
(range[2]-range[1])/number_ticks
do (print(x,at(f,var=x)))),
system("echo \"set data style lines; set title ",
f,"’ ;plot ’/tmp/gnu’
;pause 10 \" | gnuplot"));

(C8) with_stdout("/home/wfs/joe",

n:10,

for i:8 thru n

do(print("factorial(",i,") gives ",i!)));

(D8) FALSE
(C9) system("cat /home/wfs/joe");
factorial(8) gives 40320
factorial(9) gives 362880
factorial(10) gives 3628800
(D9) 0

WRITEFILE (DSK, directory) Function
opens up a file for writing. On a Lisp Machine one uses WRITEFILE("filename"). All
interaction between the user and MACSYMA is then recorded in this file, just as it is on
the console. Such a file is a transcript of the session, and is not reloadable or batchable
into MACSYMA again. (See also CLOSEFILE.)

56

Maxima Manual

Chapter 9: Floating Point 57

9 Floating Point

9.1 Definitions for Floating Point

BFFAC (exp,n) Function
BFLOAT version of the Factorial (shifted Gamma) function. The 2nd argument is how
many digits to retain and return, it’s a good idea to request a couple of extra. This
function is available by doing LOAD(BFFAC); .

ALGEPSILON Variable
The default value is 10°-8. The value of ALGEPSILON is used by ALGSYS.

BFLOAT (X) Function
converts all numbers and functions of numbers to bigfloat numbers. Setting FPPREC][16]
to N, sets the bigfloat precision to N digits. If FLOAT2BF[FALSE] is FALSE a warning
message is printed when a floating point number is converted into a bigfloat number (since
this may lead to loss of precision).

BFLOATP (exp) Function
is TRUE if exp is a bigfloat number else FALSE.

BFPSI (n,zfpprec) Function
gives polygammas of real arg and integer order. For digamma, BFPSIO(z,fpprec) is
more direct. Note -BFPSIO(1,fpprec) provides BFLOATed %GAMMA. To use this do
LOAD(BFFAC);

BFTORAT Variable

default: [FALSE] controls the conversion of bfloats to rational numbers. If
BFTORAT :FALSE

RATEPSILON will be used to control the conversion (this results in relatively small
rational numbers). If

BFTORAT : TRUE
, the rational number generated will accurately represent the bfloat.

BFTRUNC Variable
default: [TRUE] causes trailing zeroes in non-zero bigfloat numbers not to be displayed.
Thus, if BFTRUNC:FALSE, BFLOAT(1); displays as 1.000000000000000B0. Otherwise,
this is displayed as 1.0B0.

CBFAC (z(fpprec) Function
a factorial for complex bfloats. It may be used by doing LOAD(BFAC); For more details
see share2/bfac.usg.

FLOAT (exp) Function
converts integers, rational numbers and bigfloats in exp to floating point numbers. It is
also an EVFLAG, FLOAT causes non-integral rational numbers and bigfloat numbers to
be converted to floating point.

FLOAT2BF Variable
default: [FALSE] if FALSE, a warning message is printed when a floating point number
is converted into a bigfloat number (since this may lead to loss of precision).

58 Maxima Manual

FLOATDEFUNK Function
- is a utility for making floating point functions from mathematical expression. It
will take the input expression and FLOAT it, then OPTIMIZE it, and then insert
MODE_DECLAREations for all the variables. This is THE way to use ROMBERG,
PLOT?2, INTERPOLATE, etc. e.g. EXP:some-hairy-macsyma-expression;

FLOATDEFUNK (’F, [’X] ,EXP) ;

will define the function F(X) for you. (Do PRINTFILE(MCOMPI,DOC,MAXDOC); for
more details.)

FLOATNUMP (exp) Function
is TRUE if exp is a floating point number else FALSE.

FPPREC Variable
default: [16] - Floating Point PRECision. Can be set to an integer representing the desired
precision.

FPPRINTPREC Variable

default: [0] - The number of digits to print when printing a bigfloat number, making it
possible to compute with a large number of digits of precision, but have the answer printed
out with a smaller number of digits. If FPPRINTPREC is 0 (the default), or >= FPPREC,
then the value of FPPREC controls the number of digits used for printing. However, if
FPPRINTPREC has a value between 2 and FPPREC-1, then it controls the number of
digits used. (The minimal number of digits used is 2, one to the left of the point and one
to the right. The value 1 for FPPRINTPREC is illegal.)

7TROUND (x,&optional-divisor) Function
round the floating point X to the nearest integer. The argument must be a regular system
float, not a bigfloat. The ? beginning the name indicates this is normal common lisp

function.
(C3) ?round(-2.8);
(D3) -3
TTRUNCATE (x,&optional-divisor) Function

truncate the floating point X towards 0, to become an integer. The argument must be a
regular system float, not a bigfloat. The 7 beginning the name indicates this is normal
common lisp function.

(C4) ?truncate(-2.8);
(D4) -2

(C5) ?truncate(2.4);
(D5) 2

(C6) 7?truncate(2.8);
(D6) 2

ZUNDERFLOW Variable
default: [TRUE] - if FALSE, an error will be signaled if floating point underflow oc-
curs. Currently in NIL Macsyma, all floating-point underflow, floating-point overflow,
and division-by-zero errors signal errors, and this switch is ignored.

Chapter 10: Contexts 59

10 Contexts

10.1 Definitions for Contexts

ACTIVATE (contl, cont2, ...) Function
causes the specified contexts conti to be activated. The facts in these contexts are used in
making deductions and retrieving information. The facts in these contexts are not listed
when FACTS(); is done. The variable ACTIVECONTEXTS is the list of contexts which
are active by way of the ACTIVATE function.

ACTIVECONTEXTS Variable
default: [] is a list of the contexts which are active by way of the ACTIVATE function, as
opposed to being active because they are subcontexts of the current context.

ASSUME (predl, pred2, ...) Function
First checks the specified predicates for redundancy and consistency with the current data
base. If the predicates are consistent and non-redundant, they are added to the data base;
if inconsistent or redundant, no action is taken. ASSUME returns a list whose entries are
the predicates added to the data base and the atoms REDUNDANT or INCONSISTENT
where applicable.

ASSUMESCALAR Variable
default: [TRUE] - helps govern whether expressions exp for which

NONSCALARP (exp) is FALSE

are assumed to behave like scalars for certain transformations as follows: Let exp represent
any non-list/non-matrix, and [1,2,3] any list or matrix.

exp.[1,2,3]; ==>
[exp, 2*exp, 3*exp]

if ASSUMESCALAR is TRUE or SCALARP(exp) is TRUE or CONSTANTP (exp) is
TRUE. If ASSUMESCALAR is TRUE, such expressions will behave like scalars only
for the commutative operators, but not for ".". If ASSUMESCALAR is FALSE, such
expressions will behave like non-scalars. If ASSUMESCALAR is ALL, such expressions
will behave like scalars for all the operators listed above.

ASSUME_POS Variable
default:[FALSE] - When using INTEGRATE, etc. one often introduces parameters which
are real and positive or one’s calculations can often be constructed so that this is true.
There is a switch ASSUME_POS (default FALSE) such that if set to TRUE, MACSYMA
will assume one’s parameters are positive. The intention here is to cut down on the
number of questions MACSYMA needs to ask. Obviously, ASSUME information or any
contextual information present will take precedence. The user can control what is consid-
ered to be a parameter for this purpose. Parameters by default are those which satisfy
SYMBOLP(x) OR SUBVARP(x). The user can change this by setting the option AS-
SUME_POS_PRED |[default FALSE] to the name of a predicate function of one argument.
E.g. if you want only symbols to be parameters, you can do ASSUME_POS:TRUE$
ASSUME_POS_PRED:’SYMBOLP$ SIGN(A); -> POS, SIGN(A[1]); -> PNZ.

ASSUME_POS_PRED Variable
default:[FALSE] - may be set to one argument to control what will be considered a pa-
rameter for the "assumptions" that INTEGRATE will make... see ASSUME and AS-
SUME_POS .

60 Maxima Manual

CONTEXT Variable
default: INITIAL. Whenever a user assumes a new fact, it is placed in the context named
as the current value of the variable CONTEXT. Similarly, FORGET references the current
value of CONTEXT. To change contexts, simply bind CONTEXT to the desired context.
If the specified context does not exist it will be created by an invisible call to NEWCON-
TEXT. The context specified by the value of CONTEXT is automatically activated. (Do
DESCRIBE(CONTEXTS); for a general description of the CONTEXT mechanism.)

CONTEXTS Variable
default: [INITIAL,GLOBAL] is a list of the contexts which currently exist, including the
currently active context. The context mechanism makes it possible for a user to bind
together and name a selected portion of his data base, called a context. Once this is
done, the user can have MACSYMA assume or forget large numbers of facts merely by
activating or deactivating their context. Any symbolic atom can be a context, and the
facts contained in that context will be retained in storage until the user destroys them
individually by using FORGET or destroys them as a whole by using KILL to destroy
the context to which they belong. Contexts exist in a formal hierarchy, with the root
always being the context GLOBAL, which contains information about MACSYMA that
some functions need. When in a given context, all the facts in that context are "active"
(meaning that they are used in deductions and retrievals) as are all the facts in any context
which is an inferior of that context. When a fresh MACSYMA is started up, the user is
in a context called INITIAL, which has GLOBAL as a subcontext. The functions which
deal with contexts are: FACTS, NEWCONTEXT, SUPCONTEXT, KILLCONTEXT,
ACTIVATE, DEACTIVATE, ASSUME, and FORGET.

DEACTIVATE (contl, cont2, ...) Function

causes the specified contexts conti to be deactivated.

FACTS (item) Function
If ’item’ is the name of a context then FACTS returns a list of the facts in the specified
context. If no argument is given, it lists the current context. If ’item’ is not the name
of a context then it returns a list of the facts known about ’item’ in the current context.
Facts that are active, but in a different context, are not listed.

FEATURES declaration
- MACSYMA has built-in properties which are handled by the data base. These are
called FEATURES. One can do DECLARE(N,INTEGER), etc. One can also DECLARE
one’s own FEATURES by e.g. DECLARE(INCREASING, FEATURE); which will then
allow one to say DECLARE(F, INCREASING);. One can then check if F is INCREAS-
ING by using the predicate FEATUREP via FEATUREP(F, INCREASING). There is
an infolist FEATURES which is a list of known FEATURES. At present known FEA-
TURES are: INTEGER, NONINTEGER, EVEN, ODD, RATIONAL, IRRATTIONAL,
REAL, IMAGINARY, COMPLEX, ANALYTIC, INCREASING, DECREASING, ODD-
FUN, EVENFUN, POSFUN, COMMUTATIVE, LASSOCIATIVE, RASSOCIATIVE,
SYMMETRIC, and ANTISYMMETRIC. [Note: system "features" may be checked with
STATUS(FEATURE, ...); See DESCRIBE(STATUS); or DESCRIBE(FEATURE); for de-
tails.]

FORGET (predl, pred2, ...) Function
removes relations established by ASSUME. The predicates may be expressions equivalent
to (but not necessarily identical to) those previously ASSUMEd. FORGET (list) is also a
legal form.

KILLCONTEXT (contextl,context2,...,contextn) Function
kills the specified contexts. If one of them is the current context, the new current context
will become the first available subcontext of the current context which has not been
killed. If the first available unkilled context is GLOBAL then INITIAL is used instead.

If the INITIAL context is killed, a new INITIAL is created, which is empty of facts.
KILLCONTEXT doesn’t allow the user to kill a context which is currently active, either
because it is a subcontext of the current context, or by use of the function ACTIVATE.

Chapter 10: Contexts 61

NEWCONTEXT (name) Function
creates a new (empty) context, called name, which has GLOBAL as its only subcontext.
The new context created will become the currently active context.

SUPCONTEXT (name,context) Function
will create a new context (called name) whose subcontext is context. If context is not
specified, the current context will be assumed. If it is specified, context must exist.

62

Maxima Manual

Chapter 11: Polynomials 63

11 Polynomials

11.1 Introduction to Polynomials

Polynomials are stored in maxima either in General Form or as Cannonical Rational Expres-
sions (CRE) form. The latter is a standard form, and is used internally by operations such as
factor, ratsimp, and so on.

Canonical Rational Expressions constitute a kind of representation which is especially suitable
for expanded polynomials and rational functions (as well as for partially factored polynomials
and rational functions when RATFAC[FALSE] is set to TRUE). In this CRE form an ordering of
variables (from most to least main) is assumed for each expression. Polynomials are represented
recursively by a list consisting of the main variable followed by a series of pairs of expressions,
one for each term of the polynomial. The first member of each pair is the exponent of the main
variable in that term and the second member is the coefficient of that term which could be a
number or a polynomial in another variable again represented in this form. Thus the principal
part of the CRE form of 3*X~2-1is (X 2 3 0 -1) and that of 2*X*Y+X-3is (Y 1 (X 12)0 (X 1
1 0-3)) assuming Y is the main variable, and is (X 1 (Y 120 1) 0 -3) assuming X is the main
variable. "Main"-ness is usually determined by reverse alphabetical order. The "variables" of
a CRE expression needn’t be atomic. In fact any subexpression whose main operator is not + -
* / or ~ with integer power will be considered a "variable" of the expression (in CRE form) in
which it occurs. For example the CRE variables of the expression X+SIN(X+1)+2*SQRT(X)+1
are X, SQRT(X), and SIN(X+1). If the user does not specify an ordering of variables by using
the RATVARS function MACSYMA will choose an alphabetic one. In general, CRE’s represent
rational expressions, that is, ratios of polynomials, where the numerator and denominator have
no common factors, and the denominator is positive. The internal form is essentially a pair
of polynomials (the numerator and denominator) preceded by the variable ordering list. If an
expression to be displayed is in CRE form or if it contains any subexpressions in CRE form,
the symbol /R/ will follow the line label. See the RAT function for converting an expression to
CRE form. An extended CRE form is used for the representation of Taylor series. The notion
of a rational expression is extended so that the exponents of the variables can be positive or
negative rational numbers rather than just positive integers and the coefficients can themselves
be rational expressions as described above rather than just polynomials. These are represented
internally by a recursive polynomial form which is similar to and is a generalization of CRE
form, but carries additional information such as the degree of truncation. As with CRE form,
the symbol /T/ follows the line label of such expressions.

11.2 Definitions for Polynomials

ALGEBRAIC Variable
default: [FALSE] must be set to TRUE in order for the simplification of algebraic integers
to take effect.

BERLEFACT Variable
default: [TRUE] if FALSE then the Kronecker factoring algorithm will be used otherwise
the Berlekamp algorithm, which is the default, will be used.

BEZOUT (pl, p2, var) Function
an alternative to the RESULTANT command. It returns a matrix. DETERMINANT of
this matrix is the desired resultant.

BOTHCOEF (exp, var) Function
returns a list whose first member is the coefficient of var in exp (as found by RATCOEF
if exp is in CRE form otherwise by COEFF) and whose second member is the remaining
part of exp. That is, [A,B] where exp=A*var+B.

64 Maxima Manual

(C1) ISLINEAR(EXP,VAR):=BLOCK([C],
C:BOTHCOEF (RAT (EXP,VAR) ,VAR),
IS(FREEOF (VAR,C) AND C[1]#0))$

(C2) ISLINEAR((R**2-(X-R)**2)/X,X);

(D2) TRUE

COEFF (exp, v, n) Function

obtains the coefficient of v**n in exp. n may be omitted if it is 1. v may be an atom,
or complete subexpression of exp e.g., X, SIN(X), A[I+1], X+Y, etc. (In the last case
the expression (X+Y) should occur in exp). Sometimes it may be necessary to expand or
factor exp in order to make v™n explicit. This is not done automatically by COEFF.

(C1) COEFF (2*%A*TAN (X)+TAN (X) +B=5*TAN(X)+3,TAN(X));

(D1) 2 A+1=25

(C2) COEFF (Y+X*%E**X+1,X,0);

(D2) Y + 1

COMBINE (exp) Function

simplifies the sum exp by combining terms with the same denominator into a single term.

CONTENT (pl, varl, ..., varn) Function
returns a list whose first element is the greatest common divisor of the coefficients of the
terms of the polynomial pl in the variable varn (this is the content) and whose second
element is the polynomial pl divided by the content.

(C1) CONTENT (2*X*Y+4*X**2%xY**2,Y) ;
(©)Y) [2%X, 2*X*Y**2+Y] .

DENOM (exp) Function

returns the denominator of the rational expression exp.

DIVIDE (pl, p2, varl, ..., varn) Function
computes the quotient and remainder of the polynomial pl divided by the polynomial p2,
in a main polynomial variable, varn. The other variables are as in the RATVARS function.
The result is a list whose first element is the quotient and whose second element is the

remainder.
(C1) DIVIDE(X+Y,X-Y,X);
(D1) [1, 2 Y]
(C2) DIVIDE(X+Y,X-Y);

(Note that Y is the main variable in C2)

ELIMINATE ([eql,eq2,...,eqn],[v1,v2,...,vk]) Function
eliminates variables from equations (or expressions assumed equal to zero) by taking suc-
cessive resultants. This returns a list of n-k expressions with the k variables vl,...,vk
eliminated. First v1 is eliminated yielding n-1 expressions, then v2 is, etc. If k=n then a
single expression in a list is returned free of the variables v1,...,vk. In this case SOLVE is
called to solve the last resultant for the last variable. Example:

(C1) EXP1:2%X"2+Y*X+Z;

(D1) Z+XY+2X

Chapter 11: Polynomials 65

(C2) EXP2:3%X+5*Y-Z-1;
(D2) -Z+5Y+3X-1
(C3) EXP3:Z"2+X-Y"2+5;

2 2
(D3) Z -Y +X+5
(C4) ELIMINATE([EXP3,EXP2,EXP1],L[Y,Z]);
8 7 6 5 4
(D3) [7425 X - 1170 X + 1299 X + 12076 X + 22887 X

3 2
- 5154 X - 1291 X + 7688 X + 15376]

EZGCD (pl, p2, ...) Function
gives a list whose first element is the g.c.d of the polynomials p1,p2,... and whose remaining
elements are the polynomials divided by the g.c.d. This always uses the EZGCD algorithm.

FACEXPAND Variable
default: [TRUE] controls whether the irreducible factors returned by FACTOR are in
expanded (the default) or recursive (normal CRE) form.

FACTCOMB (exp) Function
tries to combine the coefficients of factorials in exp with the factorials themselves by
converting, for example, (N+1)*N! into (N+1)!. SUMSPLITFACT[TRUE] if set to FALSE
will cause MINFACTORIAL to be applied after a FACTCOMB.

(C1) (N+1)"B*N!~B;

B B
(D1 N+ 1) N!
(C2) FACTCOMB(%);

FACTOR (exp) Function
factors the expression exp, containing any number of variables or functions, into factors
irreducible over the integers. FACTOR(exp, p) factors exp over the field of integers with
an element adjoined whose minimum polynomial is p. FACTORFLAG[FALSE] if FALSE
suppresses the factoring of integer factors of rational expressions. DONTFACTOR may
be set to a list of variables with respect to which factoring is not to occur. (It is initially
empty). Factoring also will not take place with respect to any variables which are less
important (using the variable ordering assumed for CRE form) than those on the DONT-
FACTOR list. SAVEFACTORSIFALSE] if TRUE causes the factors of an expression
which is a product of factors to be saved by certain functions in order to speed up later
factorizations of expressions containing some of the same factors. BERLEFACT[TRUE] if
FALSE then the Kronecker factoring algorithm will be used otherwise the Berlekamp al-
gorithm, which is the default, will be used. INTFACLIM[1000] is the largest divisor which
will be tried when factoring a bignum integer. If set to FALSE (this is the case when the
user calls FACTOR explicitly), or if the integer is a fixnum (i.e. fits in one machine word),
complete factorization of the integer will be attempted. The user’s setting of INTFACLIM
is used for internal calls to FACTOR. Thus, INTFACLIM may be reset to prevent MAC-
SYMA from taking an inordinately long time factoring large integers. NEWFAC[FALSE]
may be set to true to use the new factoring routines. Do EXAMPLE(FACTOR); for
examples.

FACTORFLAG Variable
default: [FALSE] if FALSE suppresses the factoring of integer factors of rational expres-
sions.

66 Maxima Manual

FACTOROUT (exp,varl,var2,...) Function
rearranges the sum exp into a sum of terms of the form f(varl,var2,...)*g where g is a
product of expressions not containing the vari’s and f is factored.

FACTORSUM (exp) Function
tries to group terms in factors of exp which are sums into groups of terms such that their
sum is factorable. It can recover the result of EXPAND((X+Y)~2+(Z+W)~2) but it can’t
recover EXPAND((X+1)~2+(X+Y)"2) because the terms have variables in common.

(C1) (X+1)*((U+V) ~2+A* (W+Z) ~2) ,EXPAND;

2 2 2 2
(D1) AXZ +AZ +2AWXZ+2AWZ+AW X+V X

2 2 2 2
+2UVX+U X+AW +V +2U0V+U
(C2) FACTORSUM(%) ;
2 2

(D2) X+1) A Z+wW +@+W)

FASTTIMES (p1, p2) Function
multiplies the polynomials pl and p2 by using a special algorithm for multiplication of
polynomials. They should be multivariate, dense, and nearly the same size. Classical
multiplication is of order N*M where N and M are the degrees. FASTTIMES is of order
MAX(N,M)**1.585.

FULLRATSIMP (exp) Function
When non-rational expressions are involved, one call to RATSIMP followed as is usual
by non-rational ("general") simplification may not be sufficient to return a simplified
result. Sometimes, more than one such call may be necessary. The command FULL-
RATSIMP makes this process convenient. FULLRATSIMP repeatedly applies RATSIMP
followed by non-rational simplification to an expression until no further change occurs.
For example, consider For the expression EXP: (X~ (A/2)+1)"2*(X"~(A/2)-1)"2/(X~A-1)
. RATSIMP(EXP); gives (X~(2*A)-2*X~A+1)/(X"~A-1) . FULLRATSIMP(EXP); gives
X~A-1. The problem may be seen by looking at RAT(EXP); which gives ((X~(A/2))"4-
2*(X~(A/2))"2+1)/(X"~A-1) . FULLRATSIMP (exp,varl,...,varn) takes one or more argu-
ments similar to RATSIMP and RAT.

FULLRATSUBST (a,b,c) Function
is the same as RATSUBST except that it calls itself recursively on its result until that
result stops changing. This function is useful when the replacement expression and the
replaced expression have one or more variables in common. FULLRATSUBST will also
accept its arguments in the format of LRATSUBST. That is, the first argument may be a
single substitution equation or a list of such equations, while the second argument is the
expression being processed. There is a demo available by DEMO("lrats.dem"); .

GCD (pl, p2, varl, ...) Function
computes the greatest common divisor of pl and p2. The flag GCD[SPMOD] determines
which algorithm is employed. Setting GCD to EZ, EEZ, SUBRES, RED, or SPMOD
selects the EZGCD, New EEZ GCD, subresultant PRS, reduced, or modular algorithm,
respectively. If GCD:FALSE then GCD(pl,p2,var) will always return 1 for all var. Many
functions (e.g. RATSIMP, FACTOR, etc.) cause ged’s to be taken implicitly. For ho-
mogeneous polynomials it is recommended that GCD:SUBRES be used. To take the
ged when an algebraic is present, e.g. GCD(X"2-2*SQRT(2)*X+2,X-SQRT(2)); , ALGE-
BRAIC must be TRUE and GCD must not be EZ. SUBRES is a new algorithm, and
people who have been using the RED setting should probably change it to SUBRES. The
GCD flag, default: [SPMOD)], if FALSE will also prevent the greatest common divisor from
being taken when expressions are converted to CRE form. This will sometimes speed the
calculation if gcds are not required.

Chapter 11: Polynomials 67

GCDEX (fg) Function

GCDEX (f,g,var) Function
returns a list containing [a,b,u] where u is the ged of f and g, and u = a*f + b*g. The
arguments f and g should b univariate polynomials, or else polynomials in VAR a supplied
main variable since we need to be in a principal ideal domain for this to work. The gcd
means the ged regarding f and g as univariate polynomials with coefficients being rational
functions in the other variables.

The algorithm is simply the euclidean algorithm, where we have a sequence of
lis[i]:[ali]l,b[i],r[i]] .. which are all perpendicular to [f,g,-1] and the next
one is built as if q = quotient(r[i]/r[i+1]) then 1is[i+2]:1lis[i]-g*1is[i+1], and
it terminates at 1is[i+1] when the remainder r[i+2] is zero.

(C1) gecdex(x72+1,x73+4);

(D1)/R/ [- ——————————— R , 1]

(C2) di.[x"2+1,x"3+4,-1];

(D2) 0
note that the ged in the following is 1 since we work in k(y) [x], not the y+1 we would
expect in k [y, x]

(C4) gedex(x*x(y+1),y"2-1,x);

(D4) 0, -———-- , 11

GCFACTOR (n) Function
factors the gaussian integer n over the gaussians, i.e. numbers of the form a + b i where
a and b are rational integers (i.e. ordinary integers). Factors are normalized by making a
and b non-negative.

GFACTOR (exp) Function
factors the polynomial exp over the Gaussian integers (i. e. with SQRT(-1) = %I ad-
joined). This is like FACTOR (exp,A**2+1) where A is %I.

(C1) GFACTOR(X**4-1);
(©)Y) X -1 X+1) X+7%D) X-%D

GFACTORSUM (exp) Function
is similar to FACTORSUM but applies GFACTOR instead of FACTOR.

HIPOW (exp, v) Function
the highest explicit exponent of v in exp. Sometimes it may be necessary to expand exp
since this is not done automatically by HIPOW. Thus HIPOW (Y**3*X**2+X*Y**4 X)
is 2.

INTFACLIM Variable
default: [1000] is the largest divisor which will be tried when factoring a bignum integer.
If set to FALSE (this is the case when the user calls FACTOR explicitly), or if the integer
is a fixnum (i.e. fits in one machine word), complete factorization of the integer will be

68 Maxima Manual

attempted. The user’s setting of INTFACLIM is used for internal calls to FACTOR. Thus,
INTFACLIM may be reset to prevent MACSYMA from taking an inordinately long time
factoring large integers.

KEEPFLOAT Variable
default: [FALSE] - if set to TRUE will prevent floating point numbers from being ratio-
nalized when expressions which contain them are converted to CRE form.

LRATSUBST (list,exp) Function
is analogous to SUBST(list_of_equations,exp) except that it uses RATSUBST instead of
SUBST. The first argument of LRATSUBST must be an equation or a list of equations
identical in format to that accepted by SUBST (see DESCRIBE(SUBST);). The substi-
tutions are made in the order given by the list of equations, that is, from left to right. A
demo is available by doing DEMO("lrats.dem"); .

MODULUS Variable
default: [FALSE] - if set to a positive prime p, then all arithmetic in the rational function
routines will be done modulo p. That is all integers will be reduced to less than p/2
in absolute value (if p=2 then all integers are reduced to 1 or 0). This is the so called
"balanced" modulus system, e.g. N MOD 5 = -2, -1, 0, 1, or 2. Warning: If EXP is
already in CRE form when you reset MODULUS, then you may need to re-rat EXP, e.g.
EXP:RAT(RATDISREP(EXP)), in order to get correct results. (If MODULUS is set to
a positive non-prime integer, this setting will be accepted, but a warning will be given.)

NEWFAC Variable
default: [FALSE], if TRUE then FACTOR will use the new factoring routines.

NUM (exp) Function

obtains the numerator, expl, of the rational expression exp = expl/exp2.

QUOTIENT (pl, p2, varl, ...) Function
computes the quotient of the polynomial pl divided by the polynomial p2.

RAT (exp, v, ..., vn) Function
converts exp to CRE form by expanding and combining all terms over a common denom-
inator and cancelling out the greatest common divisor of the numerator and denominator
as well as converting floating point numbers to rational numbers within a tolerance of
RATEPSILON][2.0E-8]. The variables are ordered according to the v1,...,vn as in RAT-
VARS, if these are specified. RAT does not generally simplify functions other than + ,
-, *, /., and exponentiation to an integer power whereas RATSIMP does handle these

cases. Note that atoms (numbers and names) in CRE form are not the same as they are in
the general form. Thus RAT(X)- X results in RAT(0) which has a different internal rep-
resentation than 0. RATFAC[FALSE] when TRUE invokes a partially factored form for
CRE rational expressions. During rational operations the expression is maintained as fully
factored as possible without an actual call to the factor package. This should always save
space and may save some time in some computations. The numerator and denominator are
still made relatively prime (e.g. RAT((X"2-1)"4/(X+1)"2); yields (X-1)~4*(X+1)"2), but
the factors within each part may not be relatively prime. RATPRINT[TRUE] if FALSE
suppresses the printout of the message informing the user of the conversion of floating
point numbers to rational numbers. KEEPFLOAT[FALSE] if TRUE prevents floating
point numbers from being converted to rational numbers. (Also see the RATEXPAND
and RATSIMP functions.)

(C1) ((X-2%Y)**4/ (Xx*2-4xY**x2) *x%2+1) * (Y+A) * (2*Y+X)
/ (AxY*x2+X*x*2) ;

Y +4A) 2Y+X) (—————-—————- + 1)

Chapter 11: Polynomials 69

2 2 2
X -4vY)
o1y 00— e
2 2
4Y +X

(C2) RAT(%,Y,AX);

2A+2Y
o2/R/ =

X+2Y

RATALGDENOM Variable

default: [TRUE] - if TRUE allows rationalization of denominators wrt. radicals to take
effect. To do this one must use CRE form in algebraic mode.

RATCOEF (exp, v, n) Function

returns the coefficient, C, of the expression v**n in the expression exp. n may be omitted
if it is 1. C will be free (except possibly in a non-rational sense) of the variables in v. If
no coefficient of this type exists, zero will be returned. RATCOEF expands and rationally
simplifies its first argument and thus it may produce answers different from those of
COEFF which is purely syntactic. Thus RATCOEF((X+1)/Y+X,X) returns (Y+1)/Y
whereas COEFF returns 1. RATCOEF(exp,v,0), viewing exp as a sum, gives a sum
of those terms which do not contain v. Therefore if v occurs to any negative powers,
RATCOEF should not be used. Since exp is rationally simplified before it is examined,
coefficients may not appear quite the way they were envisioned.

(C1) S:A*X+B*X+5$
(C2) RATCOEF(S,A+B);
(D2) X

RATDENOM (exp) Function
obtains the denominator of the rational expression exp. If exp is in general form then the
DENOM function should be used instead, unless one wishes to get a CRE result.

RATDENOMDIVIDE Variable
default: [TRUE] - if FALSE will stop the splitting up of the terms of the numerator of
RATEXPANDed expressions from occurring.

RATDIFF (exp, var) Function
differentiates the rational expression exp (which must be a ratio of polynomials or a
polynomial in the variable var) with respect to var. For rational expressions this is much
faster than DIFF. The result is left in CRE form. However, RATDIFF should not be used
on factored CRE forms; use DIFF instead for such expressions.

(C1) (4*xX**3+10%X-11)/ (X**x5+5) ;
3
4 X + 10 X - 11
(e

(C2) MODULUS:3$
(C3) MOD(D1);

(D3) e

70 Maxima Manual

4 3 2
X +X +X +X+1
(C4) RATDIFF(D1,X);

(D4) e

RATDISREP (exp) Function
changes its argument from CRE form to general form. This is sometimes convenient if one
wishes to stop the "contagion", or use rational functions in non-rational contexts. Most
CRE functions will work on either CRE or non-CRE expressions, but the answers may
take different forms. If RATDISREP is given a non-CRE for an argument, it returns its
argument, unchanged. See also TOTALDISREP.

RATEPSILON Variable
default: [2.0E-8] - the tolerance used in the conversion of floating point numbers to rational
numbers.

RATEXPAND (exp) Function

expands exp by multiplying out products of sums and exponentiated sums, combining
fractions over a common denominator, cancelling the greatest common divisor of the nu-
merator and denominator, then splitting the numerator (if a sum) into its respective terms
divided by the denominator. This is accomplished by converting exp to CRE form and
then back to general form. The switch RATEXPAND, default: [FALSE], if TRUE will
cause CRE expressions to be fully expanded when they are converted back to general form
or displayed, while if it is FALSE then they will be put into a recursive form. (see RAT-
SIMP) RATDENOMDIVIDE[TRUE] - if FALSE will stop the splitting up of the terms of
the numerator of RATEXPANDed expressions from occurring. KEEPFLOAT[FALSE] if
set to TRUE will prevent floating point numbers from being rationalized when expressions
which contain them are converted to CRE form.

(C1) RATEXPAND ((2%X-3%Y) **3) ;

3 2 2 3
(D1) -27Y +54XY -36X Y+8X
(C2) (X-1)/(X+1)**2+1/(X-1);
X-1 1
(€07 Tt + ————-
2 X-1
X+ 1D
(C3) EXPAND(D2);
X 1 1
(3 mmmmmmmmmmes — e + -
2 2 X-1

(C4) RATEXPAND(D2);

€0 ettt + oo

Chapter 11: Polynomials 71

RATFAC Variable
default: [FALSE] - when TRUE invokes a partially factored form for CRE rational ex-
pressions. During rational operations the expression is maintained as fully factored as
possible without an actual call to the factor package. This should always save space and
may save some time in some computations. The numerator and denominator are still
made relatively prime, for example RAT((X"2 -1)74/(X+1)"2); yields (X-1)"4*(X+1)"2),
but the factors within each part may not be relatively prime. In the CTENSR (Compo-
nent Tensor Manipulation) Package, if RATFAC is TRUE, it causes the Ricci, Einstein,
Riemann, and Weyl tensors and the Scalar Curvature to be factored automatically. **
This should only be set for cases where the tensorial components are known to consist
of few terms **. Note: The RATFAC and RATWEIGHT schemes are incompatible and
may not both be used at the same time.

RATNUMER (exp) Function
obtains the numerator of the rational expression exp. If exp is in general form then the
NUM function should be used instead, unless one wishes to get a CRE result.

RATNUMP (exp) Function
is TRUE if exp is a rational number (includes integers) else FALSE.

RATP (exp) Function
is TRUE if exp is in CRE or extended CRE form else FALSE.

RATPRINT Variable
default: [TRUE] - if FALSE suppresses the printout of the message informing the user of
the conversion of floating point numbers to rational numbers.

RATSIMP (exp) Function
rationally" simplifies (similar to RATEXPAND) the expression exp and all of its subex-
pressions including the arguments to non- rational functions. The result is returned as the
quotient of two polynomials in a recursive form, i.e. the coefficients of the main variable
are polynomials in the other variables. Variables may, as in RATEXPAND, include non-
rational functions (e.g. SIN(X**2+1)) but with RATSIMP, the arguments to non-rational
functions are rationally simplified. Note that RATSIMP is affected by some of the variables
which affect RATEXPAND. RATSIMP (exp,v1,v2,...,vn) - enables rational simplification
with the specification of variable ordering as in RATVARS. RATSIMPEXPONS[FALSE]

- if TRUE will cause exponents of expressions to be RATSIMPed automatically during

simplification.
(C1) SIN(X/(X~2+X))=%E" ((LOG(X)+1)**2-L0OG (X) **2) ;
2 2
X (LOG(X) + 1) - LOG (X)
(D1) SIN(------) = %E
2
X +X
(C2) RATSIMP(%);
1 2
(D2) SIN(-----) = %E X
X+ 1
(C3) ((X-1)**(3/2)-(X+1)*SQRT(X-1))/SART((X-1)*(X+1));
3/2
X -1 - SQRT(X - 1) X + 1)

(D3) mmmmmmmmmmmm e
SQRT(X - 1) SQRT(X + 1)
(C4) RATSIMP(%);

(D4) B —
SQRT(X + 1)

72 Maxima Manual

(C5) ZXx*x(A+1/A) ,RATSIMPEXPONS:TRUE;

(D5) X

RATSIMPEXPONS Variable
default: [FALSE] - if TRUE will cause exponents of expressions to be RATSIMPed auto-
matically during simplification.

RATSUBST (a, b,) Function
substitutes a for b in ¢. b may be a sum, product, power, etc. RATSUBST knows some-
thing of the meaning of expressions whereas SUBST does a purely syntactic substitution.
Thus SUBST(A,X+Y,X+Y+Z) returns X+Y+Z whereas RATSUBST would return Z+A.
RADSUBSTFLAG[FALSE] if TRUE permits RATSUBST to make substitutions like U
for SQRT(X) in X. Do EXAMPLE(RATSUBST); for examples.

RATVARS (varl, var2, ..., varn) Function
forms its n arguments into a list in which the rightmost variable varn will be the main
variable of future rational expressions in which it occurs, and the other variables will follow
in sequence. If a variable is missing from the RATVARS list, it will be given lower priority
than the leftmost variable varl. The arguments to RATVARS can be either variables or
non-rational functions (e.g. SIN(X)). The variable RATVARS is a list of the arguments
which have been given to this function.

RATWEIGHT (vi, wi, ..., vn, wn) Function
assigns a weight of wi to the variable vi. This causes a term to be replaced by 0 if its
weight exceeds the value of the variable RATWTLVL [default is FALSE which means no
truncation|. The weight of a term is the sum of the products of the weight of a variable
in the term times its power. Thus the weight of 3*v1**2*v2 is 2*w1+w2. This truncation
occurs only when multiplying or exponentiating CRE forms of expressions.

(C5) RATWEIGHT(A,1,B,1);

(D5) [(B, 11, [A, 11]
(C6) EXP1:RAT(A+B+1)$

(CT) %**2;

2 2
(D7) /R/ B + (2A+2)B+A +2A+1
(C8) RATWTLVL:1$
(C9) EXP1x%%*2;
(D9) /R/ 2B +2A+1

Note: The RATFAC and RATWEIGHT schemes are incompatible and may not both be
used at the same time.

RATWEIGHTS Variable
- a list of weight assignments (set up by the RATWEIGHT function), RATWEIGHTS; or
RATWEIGHT(); will show you the list.

KILL(...,RATWEIGHTS)
and

SAVE(...,RATWEIGHTS) ;
both work.

Chapter 11: Polynomials 73

RATWEYL Variable
default: [] - one of the switches controlling the simplification of components of the Weyl
conformal tensor; if TRUE, then the components will be rationally simplified; if FACRAT
is TRUE then the results will be factored as well.

RATWTLVL Variable
default: [FALSE] - used in combination with the RATWEIGHT function to control the
truncation of rational (CRE form) expressions (for the default value of FALSE, no trun-
cation occurs).

REMAINDER (pl1, p2, varl, ...) Function
computes the remainder of the polynomial pl divided by the polynomial p2.

RESULTANT (pl, p2, var) Function
computes the resultant of the two polynomials pl and p2, eliminating the variable var.
The resultant is a determinant of the coefficients of var in pl and p2 which equals zero if
and only if pl and p2 have a non-constant factor in common. If pl or p2 can be factored, it
may be desirable to call FACTOR before calling RESULTANT. RESULTANT[SUBRES] -
controls which algorithm will be used to compute the resultant. SUBRES for subresultant
prs [the default], MOD for modular resultant algorithm, and RED for reduced prs. On
most problems SUBRES should be best. On some large degree univariate or bivariate
problems MOD may be better. Another alternative is the BEZOUT command which
takes the same arguments as RESULTANT and returns a matrix. DETERMINANT of
this matrix is the desired resultant.

SAVEFACTORS Variable
default: [FALSE] - if TRUE causes the factors of an expression which is a product of factors
to be saved by certain functions in order to speed up later factorizations of expressions
containing some of the same factors.

SQFR (exp) Function
is similar to FACTOR except that the polynomial factors are "square-free." That is, they
have factors only of degree one. This algorithm, which is also used by the first stage of
FACTOR, utilizes the fact that a polynomial has in common with its nth derivative all
its factors of degree > n. Thus by taking gcds with the polynomial of the derivatives with
respect to each variable in the polynomial, all factors of degree > 1 can be found.

(C1) SQFR(4*X**4+4*X*k*x3-3*xX**2-4*X-1) ;
2 2
(D1) X -1) 22X+ 1)

TELLRAT (poly) Function
adds to the ring of algebraic integers known to MACSYMA, the element which is the solu-
tion of the polynomial with integer coefficients. MACSYMA initially knows about %I and
all roots of integers. TELLRAT(X); means substitute 0 for X in rational functions. There
is a command UNTELLRAT which takes kernels and removes TELLRAT properties.
When TELLRATIng a multivariate polynomial, e.g. TELLRAT(X"2-Y"2);, there would
be an ambiguity as to whether to substitute Y~2 for X~2 or vice versa. The system will pick
a particular ordering, but if the user wants to specify which, e.g. TELLRAT(Y"2=X"2);
provides a syntax which says replace Y~2 by X~2. TELLRAT and UNTELLRAT both
can take any number of arguments, and TELLRAT(); returns a list of the current substi-
tutions. Note: When you TELLRAT reducible polynomials, you want to be careful not
to attempt to rationalize a denominator with a zero divisor. E.g. TELLRAT(W~3-1)$
ALGEBRAIC:TRUE$ RAT(1/(W~2-W)); will give "quotient by zero". This error can
be avoided by setting RATALGDENOM:FALSES$. ALGEBRAIC[FALSE| must be set
to TRUE in order for the simplification of algebraic integers to take effect. Do EXAM-
PLE(TELLRAT); for examples.

74 Maxima Manual

TOTALDISREP (exp) Function
converts every subexpression of exp from CRE to general form. If exp is itself in CRE
form then this is identical to RATDISREP but if not then RATDISREP would return exp
unchanged while TOTALDISREP would "totally disrep" it. This is useful for ratdisrep-
ping expressions e.g., equations, lists, matrices, etc. which have some subexpressions in

CRE form.

UNTELLRAT (x) Function
takes kernels and removes TELLRAT properties.

Chapter 12: Constants

12 Constants

12.1 Definitions for Constants

E

- The base of natural logarithms, e, is represented in MACSYMA as %E.

FALSE
- the Boolean constant, false. (NIL in LISP)

MINF

- real minus infinity.

PI
"pi" is represented in MACSYMA as %PI.

TRUE
- the Boolean constant, true. (T in LISP)

75

Variable

Variable

Variable

Variable

Variable

76

Maxima Manual

Chapter 13: Logarithms 7

13 Logarithms

13.1 Definitions for Logarithms

LOG (X) Function

the natural logarithm.

LOGEXPAND|TRUE] - causes LOG(A"B) to become B*LOG(A). If it is set to ALL,
LOG(A*B) will also simplify to LOG(A)+LOG(B). If it is set to SUPER, then LOG(A/B)
will also simplify to LOG(A)-LOG(B) for rational numbers a/b, a#1. (LOG(1/B), for B

integer, always simplifies.) If it is set to FALSE, all of these simplifications will be turned
off.

LOGSIMP|TRUE] - if FALSE then no simplification of %E to a power containing LOG’s

is done.

LOGNUMER[FALSE] - if TRUE then negative floating point arguments to LOG will
always be converted to their absolute value before the log is taken. If NUMER is also
TRUE, then negative integer arguments to LOG will also be converted to their absolute
value.

LOGNEGINT[FALSE] - if TRUE implements the rule LOG(-n) -> LOG(n)+%i*%pi for n
a positive integer.

%E_TONUMLOG|FALSE] - when TRUE, "r" some rational number, and "x" some ex-
pression, ZE~ (r*LOG(x)) will be simplified into x"r . It should be noted that the RAD-

CAN command also does this transformation, and more complicated transformations of
this ilk as well. The LOGCONTRACT command "contracts" expressions containing LOG.

LOGABS Variable
default: [FALSE] - when doing indefinite integration where logs are generated, e.g. INTE-
GRATE(1/X,X), the answer is given in terms of LOG(ABS(...)) if LOGABS is TRUE, but
in terms of LOG(...) if LOGABS is FALSE. For definite integration, the LOGABS:TRUE
setting is used, because here "evaluation" of the indefinite integral at the endpoints is
often needed.

LOGARC Variable
default: [FALSE] - if TRUE will cause the inverse circular and hyperbolic functions to be
converted into logarithmic form. LOGARC(exp) will cause this conversion for a particular
expression without setting the switch or having to re-evaluate the expression with EV.

LOGCONCOEFFP Variable
default:[FALSE] - controls which coefficients are contracted when using LOGCON-
TRACT. It may be set to the name of a predicate function of one argument. E.g.
if you like to generate SQRTS, you can do LOGCONCOEFFP’LOGCONFUN$ LOG-
CONFUN(M):=FEATUREP(M,INTEGER) OR RATNUMP(M)$. Then LOGCON-
TRACT(1/2*LOG(X)); will give LOG(SQRT(X)).

LOGCONTRACT (exp) Function
recursively scans an exp, transforming subexpressions of the form al*LOG(bl) +
a2*LOG(b2) + ¢ into LOG(RATSIMP(b1~al * b2"a2)) + ¢

(C1) 2+ (A*LOG(X) + 2xA*LOG(Y))$
(C2) LOGCONTRACT (%) ;

2 4
(D3) A LOGEX Y)

If you do DECLARE(N,INTEGER): then LOGCONTRACT(2*A*N*LOG(X)); gives
A*LOG(X"(2*N)). The coefficients that "contract" in this manner are those such as the 2
and the N here which satisfy FEATUREP (coeff,INTEGER). The user can control which

78 Maxima Manual

coefficients are contracted by setting the option LOGCONCOEFFP[FALSE] to the name
of a predicate function of one argument. E.g. if you like to generate SQRTS, you can do
LOGCONCOEFFP:"LOGCONFUN$ LOGCONFUN(M):=FEATUREP(M,INTEGER)
OR RATNUMP(M)$. Then LOGCONTRACT (1/2*LOG(X)); will give LOG(SQRT(X)).

LOGEXPAND Variable
default: [TRUE] - causes LOG(A"B) to become B*LOG(A). If it is set to ALL, LOG(A*B)
will also simplify to LOG(A)+LOG(B). If it is set to SUPER, then LOG(A/B) will also
simplify to LOG(A)-LOG(B) for rational numbers a/b, a#1. (LOG(1/B), for B integer,
always simplifies.) If it is set to FALSE, all of these simplifications will be turned off.

LOGNEGINT Variable
default: [FALSE] - if TRUE implements the rule LOG(-n) -> LOG(n)+%i*%pi for n a
positive integer.

LOGNUMER Variable
default: [FALSE] - if TRUE then negative floating point arguments to LOG will always
be converted to their absolute value before the log is taken. If NUMER is also TRUE,
then negative integer arguments to LOG will also be converted to their absolute value.

LOGSIMP Variable
default: [TRUE] - if FALSE then no simplification of %E to a power containing LOG’s is
done.

PLOG (X) Function
the principal branch of the complex-valued natural logarithm with -%PI < CARG(X) <=
+%PI .

POLARFORM (exp) Function

returns R*NE~(%I*THETA) where R and THETA are purely real.

Chapter 14: Trigonometric 79

14 Trigonometric

14.1 Introduction to Trigonometric

- MACSYMA has many Trig functions defined. Not all Trig identities are programmed, but it
is possible for the user to add many of them using the pattern matching capabilities of the system.
The Trig functions defined in MACSYMA are: ACOS, ACOSH, ACOT, ACOTH, ACSC, AC-
SCH, ASEC, ASECH, ASIN, ASINH, ATAN, ATANH, COS, COSH, COT, COTH, CSC, CSCH,
SEC, SECH, SIN, SINH, TAN, and TANH. There are a number of commands especially for
handling Trig functions, see TRIGEXPAND, TRIGREDUCE, and the switch TRIGSIGN. Two
SHARE packages extend the simplification rules built into MACSYMA, NTRIG and ATRIGI.
Do DESCRIBE(cmd) for details.

14.2 Definitions for Trigonometric

ACOS Function
- Arc Cosine

ACOSH Function
- Hyperbolic Arc Cosine

ACOT Function
- Arc Cotangent

ACOTH Function
- Hyperbolic Arc Cotangent

ACSC Function
- Arc Cosecant

ACSCH Function
- Hyperbolic Arc Cosecant

ASEC Function
- Arc Secant

ASECH Function
- Hyperbolic Arc Secant

ASIN Function
- Arc Sine

ASINH Function

- Hyperbolic Arc Sine

ATAN Function
- Arc Tangent

ATAN2 (Y,X) Function
yields the value of ATAN(Y/X) in the interval -%PI to %PL.

ATANH Function
- Hyperbolic Arc Tangent

80 Maxima Manual

ATRIG1 Function
- SHARE1;ATRIG1 FASL contains several additional simplification rules for inverse trig
functions. Together with rules already known to Macsyma, the following angles are fully
implemented: 0, %P1/6, %PI1/4, %PI/3, and %PI/2. Corresponding angles in the other
three quadrants are also available. Do LOAD(ATRIG1); to use them.

COS Function
- Cosine

COSH Function
- Hyperbolic Cosine

coT Function
- Cotangent

COTH Function
- Hyperbolic Cotangent

CSC Function
- Cosecant

CSCH Function
- Hyperbolic Cosecant

HALFANGLES Variable
default: [FALSE] - if TRUE causes half-angles to be simplified away.

SEC Function
- Secant

SECH Function
- Hyperbolic Secant

SIN Function
- Sine

SINH Function
- Hyperbolic Sine

TAN Function
- Tangent

TANH Function

- Hyperbolic Tangent

TRIGEXPAND (exp) Function
expands trigonometric and hyperbolic functions of sums of angles and of multiple an-
gles occurring in exp. For best results, exp should be expanded. To enhance user con-
trol of simplification, this function expands only one level at a time, expanding sums
of angles or multiple angles. To obtain full expansion into sines and cosines immedi-
ately, set the switch TRIGEXPAND:TRUE. TRIGEXPAND default: [FALSE] - if TRUE
causes expansion of all expressions containing SINs and COSs occurring subsequently.
HALFANGLES[FALSE] - if TRUE causes half-angles to be simplified away. TRIGEX-
PANDPLUS[TRUE] - controls the "sum" rule for TRIGEXPAND, expansion of sums
(e.g. SIN(X+Y)) will take place only if TRIGEXPANDPLUS is TRUE. TRIGEXPAND-
TIMES[TRUE] - controls the "product" rule for TRIGEXPAND, expansion of products
(e.g. SIN(2*X)) will take place only if TRIGEXPANDTIMES is TRUE.

Chapter 14: Trigonometric 81

(C1) X+SIN(3*X)/SIN(X),TRIGEXPAND=TRUE,EXPAND;

2 2

(D1) - SIN (X) + 3 C0S (X) + X

(C2) TRIGEXPAND (SIN(10%X+Y));

(D2) C0S(10 X) SIN(Y) + SIN(10 X) COS(Y)
TRIGEXPANDPLUS Variable

default: [TRUE] - controls the "sum" rule for TRIGEXPAND. Thus, when the TRIGEX-
PAND command is used or the TRIGEXPAND switch set to TRUE, expansion of sums
(e.g. SIN(X+Y)) will take place only if TRIGEXPANDPLUS is TRUE.

TRIGEXPANDTIMES Variable
default: [TRUE] - controls the "product" rule for TRIGEXPAND. Thus, when the TRIG-
EXPAND command is used or the TRIGEXPAND switch set to TRUE, expansion of
products (e.g. SIN(2*X)) will take place only if TRIGEXPANDTIMES is TRUE.

TRIGINVERSES Variable
default: [ALL] - controls the simplification of the composition of trig and hyperbolic func-
tions with their inverse functions: If ALL, both e.g. ATAN(TAN(X)) and TAN(ATAN(X))
simplify to X. If TRUE, the arcfunction(function(x)) simplification is turned off. If FALSE,
both the arcfun(fun(x)) and fun(arcfun(x)) simplifications are turned off.

TRIGREDUCE (exp, var) Function
combines products and powers of trigonometric and hyperbolic SINs and COSs of var
into those of multiples of var. It also tries to eliminate these functions when they occur in

denominators. If var is omitted then all variables in exp are used. Also see the POISSIMP
function (6.6).
(C4) TRIGREDUCE(-SIN(X)"2+3%C0S(X) ~2+X);
(D4) 2 C0s(2 X) +X+1
The trigonometric simplification routines will use declared
information in some simple cases. Declarations about variables are
used as follows, e.g.
(C5) DECLARE(J, INTEGER, E, EVEN, 0, ODD)$
(C6) SIN(X + (E + 1/2)*}PI)$

(D6) COS (X)
(C7) SIN(X + (0 + 1/2) %PI);
(D7) - C0S(X)
TRIGSIGN Variable

default: [TRUE] - if TRUE permits simplification of negative arguments to trigonometric
functions. E.g., SIN(-X) will become -SIN(X) only if TRIGSIGN is TRUE.

TRIGSIMP (expr) Function
employs the identities sin(x)~2 + cos(x)"2 = 1 and cosh(x)"2 - sinh(x)"2 = 1 to simplify
expressions containing tan, sec, etc. to sin, cos, sinh, cosh so that further simplification
may be obtained by using TRIGREDUCE on the result. Some examples may be seen by
doing DEMO("trgsmp.dem"); . See also the TRIGSUM function.

TRIGRAT (trigexp) Function
gives a canonical simplifyed quasilinear form of a trigonometrical expression; trigexp is
a rational fraction of several sin, cos or tan, the arguments of them are linear forms in
some variables (or kernels) and %pi/n (n integer) with integer coefficients. The result
is a simplifyed fraction with numerator and denominator linear in sin and cos. Thus
TRIGRAT linearize always when it is possible.(written by D. Lazard).

Maxima Manual

(c1) trigrat(sin(3*a)/sin(a+%pi/3));

(d1) sqrt(3) sin(2 a) + cos(2 a) - 1

Here is another example (for which the function was intended); see [Davenport, Siret,
Tournier, Calcul Formel, Masson (or in english, Addison-Wesley), section 1.5.5, Morley
theorem). Timings are on VAX 780.

(c4) c:%pi/3-a-b;
%pi
(d4) -b-a+ --—-
3
(c5) Dbc:sin(a)*sin(3*c)/sin(a+b);
sin(a) sin(3 b + 3 a)
(b))
sin(b + a)
(c6) ba:bc,c=a,a=c$
(c7) ac2:ba"2+bc~2-2%bcxbaxcos(b);
2 2

sin (a) sin (3 b + 3 a)

sin (b + a)

%pi
2 sin(a) sin(3 a) cos(b) sin(b + a - ---) sin(3 b + 3 a)
3
%pi
sin(a - ---) sin(b + a)
3
2 2 pi
sin (3 a) sin (b + a - ---)
3
+ ___________________________
2 hpi
sin (a - ---)
3

(c9) trigrat(ac2);
Totaltime= 65866 msec. GCtime= 7716 msec.

(d9)
- (sqrt(3) sin(4 b + 4 a) - cos(4 b + 4 a)

2 sqrt(3) sin(4 b + 2 a)

2 cos(4 b+ 2a) - 2sqrt(3) sin(2 b+ 4 a) + 2 cos(2b + 4 a)

+

4 sqrt(3) sin(2 b + 2 a) - 8 cos(2 b +2a) -4 cos(2b -2 a)

+

Chapter 14: Trigonometric

+ sqrt(3) sin(4 b) - cos(4 b) - 2 sqrt(3) sin(2 b) + 10 cos(2 b)
+ sqrt(3) sin(4 a) - cos(4 a) - 2 sqrt(3) sin(2 a) + 10 cos(2 a)

- 9)/4

83

84

Maxima Manual

Chapter 15: Special Functions 85

15 Special Functions

15.1 Introduction to Special Functions

[index](expr) - Bessel Funct 1st Kind (in SPECINT) %J

[index](expr) %K
Bessel Funct 2nd Kind (in SPECINT)
Constant, in ODE2

15.2 GAMALG

- A Dirac gamma matrix algebra program which takes traces of and does manipulations on
gamma matrices in n dimensions. It may be loaded into MACSYMA by LOADFILE("gam");
A preliminary manual is contained in the file SHARE;GAM USAGE and may be printed using
PRINTFILE(GAM,USAGE,SHARE);

15.3 SPECINT

- The Hypergeometric Special Functions Package HYPGEO is still under development. At the
moment it will find the Laplace Transform or rather, the integral from 0 to INF of some special
functions or combinations of them. The factor, EXP(-P*var) must be explicitly stated. The
syntax is as follows: SPECINT(EXP(-P*var)*expr,var); where var is the variable of integration
and expr may be any expression containing special functions (at your own risk). Special function
notation follows:

%J [index] (expr) Bessel Funct 1st Kind

%K [index] (expr) " " 2nd Kind
%HIBES[1() Modified Bessel Funct 1st Kind
JHEL 1C D Hermite Poly

L 1C) Legendre Funct

ML 1C) Legendre of second kind
HSTRUVEL 1() Struve H Function
LSTRUVEL 1() " L Function

#FL 1C0, 00 ,expr) Hypergeometric Function
GAMMA ()

GAMMAGREEK ()

GAMMAINCOMPLETE ()

SLOMMEL

HML O Whittaker Funct 1st Kind
MO " " 2nd "

For a better feeling for what it can do, do DEMO(HYPGEO,DEMO,SHAREL); .

15.4 Definitions for Special Functions

AIRY (X) Function
returns the Airy function Ai of real argument X. The file SHARE1;AIRY FASL contains
routines to evaluate the Airy functions Ai(X), Bi(X), and their derivatives dAi(X), dBi(X).

Ai and Bi satisfy the AIRY eqn diff(y(x),x,2)-x*y(x)=0. Read SHAREIL;AIRY USAGE
for details.

ASYMP Function
- A preliminary version of a program to find the asymptotic behavior of Feynman dia-
grams has been installed on the SHARETL; directory. For further information, see the file
SHARE1;ASYMP USAGE. (For Asymptotic Analysis functions, see ASYMPA.)

86 Maxima Manual

ASYMPA Function
- Asymptotic Analysis - The file SHARE1;ASYMPA > contains simplification functions
for asymptotic analysis, including the big-O and little-o functions that are widely used in
complexity analysis and numerical analysis. Do BATCH("asympa.mc"); . (For asymptotic
behavior of Feynman diagrams, see ASYMP.)

BESSEL (Z,A) Function
returns the Bessel function J for complex Z and real A > 0.0 . Also an array BESSELAR-
RAY is set up such that BESSELARRAY|I] = J[I+A- ENTIER(A)](Z).

BESSEL_J [v](2) Function
The Bessel function of the first kind of order v and argument z. It is defined by

&S] (_1)k (g)v—‘er

Zk!l“(v—i—k—l—l)

k=0

BESSEL.Y [v](2) Function

The Bessel function of the second kind of order v and argument z. It is defined by

cos (mv) J,(z) — J_(2)

sin (7 v)

when v is not an integer. When v is an integer n, the limit as v approaches n is taken.

BESSEL_I [v]|(2) Function
The modified Bessel function of the first kind of order v and argument z. It is defined by

%) 1 Py v+2k
E:k:!rv+k+1)(2>

A
BESSEL_K [v](2) Function
The modified Bessel function of the second kind of order v and argument z. It is defined
by

mese(mv) (I-,(z) — 1,(2))
2
when v is not an integer. If v is an integer n, then the limit as v approaches n is taken.

BESSELEXPAND Variable
default: FALSE Controls expansion of the Bessel functions when the order half of an odd
integer. In this case, the Bessel functions can be expanded in terms of other elementary
functions. When BESSELEXPAND is true, the Bessel function is expanded.

(C1) bessel_j[3/21(z);

(D1) BESSEL_J (2)
3/2

(C2) besselexpand:true;

(D2) TRUE
(C3) bessel_jl[3/2]1(z);

C0S(z) SIN(z)

(D3) e
SQRT (%PI)

Chapter 15: Special Functions 87

BETA (X,Y) Function
same as GAMMA (X)*GAMMA (Y)/GAMMA (X+Y).

GAMMA (X) Function
the gamma function. GAMMA (I)=(I-1)! for I a positive integer. For the Euler-Mascheroni
constant, see %XGAMMA. See also the MAKEGAMMA function. The variable GAM-
MALIM[1000000] (which see) controls simplification of the gamma function.

GAMMALIM Variable
default: [1000000] controls simplification of the gamma function for integral and rational
number arguments. If the absolute value of the argument is not greater than GAMMALIM,
then simplification will occur. Note that the FACTLIM switch controls simplification of
the result of GAMMA of an integer argument as well.

INTOPOIS (A) Function
converts A into a Poisson encoding.

MAKEFACT (exp) Function
transforms occurrences of binomial,gamma, and beta functions in exp to factorials.

MAKEGAMMA (exp) Function
transforms occurrences of binomial factorial, and beta functions in exp to gamma func-
tions.

NUMFACTOR (exp) Function

gives the numerical factor multiplying the expression exp which should be a single term.
If the ged of all the terms in a sum is desired the CONTENT function may be used.

(C1) GAMMA(7/2);

(D1) 15 SQRT (%PI)
8
(C2) NUMFACTOR (%) ;
15
(D2) -
8
OUTOFPOIS (4) Function

converts A from Poisson encoding to general representation. If A is not in Poisson form, it
will make the conversion, i.e. it will look like the result of OUTOFPOIS(INTOPOIS(A)).
This function is thus a canonical simplifier for sums of powers of SIN’s and COS’s of a
particular type.

POISDIFF (A, B) Function
differentiates A with respect to B. B must occur only in the trig arguments or only in the
coeflicients.

POISEXPT (A, B) Function

B a positive integer) is functionally identical to INTOPOIS(A**B).

POISINT (A, B) Function
integrates in a similarly restricted sense (to POISDIFF). Non-periodic terms in B are
dropped if B is in the trig arguments.

88 Maxima Manual

POISLIM Variable
default: [5] - determines the domain of the coefficients in the arguments of the trig func-
tions. The initial value of 5 corresponds to the interval [-27(5-1)+1,27(5-1)], or [-15,16],
but it can be set to [-27(n-1)+1, 27(n-1)].

POISMAP (series, sinfn, cosfn) Function
will map the functions sinfn on the sine terms and cosfn on the cosine terms of the poisson
series given. sinfn and cosfn are functions of two arguments which are a coefficient and a
trigonometric part of a term in series respectively.

POISPLUS (A, B) Function
is functionally identical to INTOPOIS(A+B).

POISSIMP (4) Function

converts A into a Poisson series for A in general representation.

POISSON special symbol

- The Symbol /P/ follows the line label of Poisson series expressions.

POISSUBST (A, B, C) Function
substitutes A for B in C. C is a Poisson series. (1) Where B is a variable U, V, W, X, Y,
or Z then A must be an expression linear in those variables (e.g. 6¥*U+4*V). (2) Where B
is other than those variables, then A must also be free of those variables, and furthermore,
free of sines or cosines. POISSUBST(A, B, C, D, N) is a special type of substitution
which operates on A and B as in type (1) above, but where D is a Poisson series, expands
COS(D) and SIN(D) to order N so as to provide the result of substituting A+D for B

in C. The idea is that D is an expansion in terms of a small parameter. For example,
POISSUBST(U,V,COS(V),E,3) results in COS(U)*(1-E~2/2) - SIN(U)*(E-E"~3/6).

POISTIMES (A, B) Function
is functionally identical to INTOPOIS(A*B).

POISTRIM () Function
is a reserved function name which (if the user has defined it) gets applied during Poisson
multiplication. It is a predicate function of 6 arguments which are the coefficients of the
U, V..., Z in a term. Terms for which POISTRIM is TRUE (for the coefficients of that
term) are eliminated during multiplication.

PRINTPOIS (A) Function
prints a Poisson series in a readable format. In common with OUTOFPOIS, it will convert
A into a Poisson encoding first, if necessary.

PSI (X) Function
derivative of LOG(GAMMA(X)). At this time, MACSYMA does not have numerical evalu-
ation capabilities for PSI. For information on the PSI[N](X) notation, see POLYGAMMA.

Chapter 16: Orthogonal Polynomials 89

16 Orthogonal Polynomials

16.1 Introduction to Orthogonal Polynomials

The specfun package, located in the share directory, contains Maxima code for the evaluation
of all orthogonal polynomials listed in Chapter 22 of Abramowitz and Stegun. These include
Chebyshev, Laguerre, Hermite, Jacobi, Legendre, and ultraspherical (Gegenbauer) polynomi-
als. Additionally, specfun contains code for spherical Bessel, spherical Hankel, and spherical
harmonic functions.

The following table lists each function in specfun, its Maxima name, restrictions on its argu-
ments (m and n must be integers), and a reference to the algorithm specfun uses to evaluate it.
With few exceptions, specfun follows the conventions of Abramowitz and Stegun. Before you
use specfun, check that specfun’s conventions match your expectations.

A&S refers to Abramowitz and Stegun, Handbook of Mathematical Functions (10th printing,
December 1972), G&R to Gradshteyn and Ryzhik, Table of Integrals, Series, and Products (1980
corrected and enlarged edition), and Merzbacher to Quantum Mechanics (2ed, 1970).

Function Mazima Name Restrictions Reference(s)
Chebyshev T chebyshev_t(n, x) n>—1 A&S 22.5.31
Chebyshev U chebyshev_u(n, x n>-—1 A&S 22.5.32
generalized Laguerre gen_laguerre(n,a,x) n>—1 A&S page 789
Laguerre laguerre(n,x) n>—1 A&S 22.5.67
Hermite hermite(n,x) n>—1 A&S 22.4.40, 22.5.41
Jacobi jacobi_p(n,a,b,x) n>-—1ab>—-1 A&S page 789
associated Legendre P assoc_legendre_p(n,m,x)n > —1 A&S 22.5.37, 8.6.6,
8.2.5

associated Legendre Q assoc_legendre_q(n,m,x)n > —1,m > —1 G & R 8.706
Legendre P legendre_p(n,m,x) n>-—1 A&S 22.5.35
Legendre Q legendre_q(n,m,x) n>-—1 A&S 8.6.19
spherical Hankel 1st spherical_hankell(n, n > —1 A&S 10.1.36

x)
spherical Hankel 2nd spherical_hankel2(n, n > —1 A&S 10.1.17

)
spherical Bessel J spherical_bessel_j(n,x) n > —1 A&S 10.1.8, 10.1.15
spherical Bessel Y spherical_bessel_y(n,x) n > —1 A&S 10.1.9, 10.1.15
spherical harmonic spherical_harmonic(n,mx,»)—1, |m| <=n Merzbacher 9.64
ultraspherical ultraspherical(n,a,x) n > —1 A&S 22.5.27
(Gegenbauer)

The specfun package is primarily intended for symbolic computation. It is hoped that it
gives accurate floating point results as well; however, no claims are made that the algorithms
are well suited for numerical evaluation. Some effort, however, has been made to provide good
numerical performance. When all arguments, except for the order, are floats (but not bfloats),
many functions in specfun call a float modedeclared version of the Jacobi function. This greatly
speeds floating point evaluation of the orthogonal polynomials.

specfun handles most domain errors by returning an unevaluated function. No attempt has
been made to define simplification rules (based on recursion relations) for unevaluated functions.
Users should be aware that it is possible for an expression involving sums of unevaluated special
functions to vanish, yet Maxima is unable to reduce it to zero. Be careful.

To access functions in specfun, you must first load specfun.o. Alternatively, you may append
autoload statements to your init.lsp file (located in your working directory). To autoload the
hermite function, for example, append

(defprop |$hermite| #"specfun.o" autoload)
(add2lnc ’|$hermite| $props)

to your init.lsp file. An example use of specfun is

(c1) load("specfun.o")$
(c2) [hermite(0,x) ,hermite(1,x) ,hermite(2,x)];

90 Maxima Manual

(d2) [1,2%x,-2%(1-2%xx"2)]
(c3) diff(hermite(n,x),x);
(d3) 2*n*hermite(n-1,x)

When using the compiled version of specfun, be especially careful to use the correct number
of function arguments; calling them with too few arguments may generate a fatal error messages.
For example

(c1) load("specfun")$

/* chebyshev_t requires two arguments. */

(c2) chebyshev_t(8);

Error: Caught fatal error [memory may be damaged]

Fast links are on: do (si::use-fast-links nil) for debugging
Error signalled by MMAPCAR.

Broken at SIMPLIFY. Type :H for Help.

Maxima code translated into Lisp handles such errors more gracefully. If specfun.LISP is
installed on your machine, the same computation results in a clear error message. For example

(c1) load("specfun.LISP")$

(c2) chebyshev_t(8);

Error: Expected 2 args but received 1 args

Fast links are on: do (si::use-fast-links nil) for debugging
Error signalled by MACSYMA-TOP-LEVEL.

Broken at |$CHEBYSHEV_T|. Type :H for Help.

Generally, compiled code runs faster than translated code; however, translated code may be
better for program development.

For some functions, when the order is symbolic but has been declared to be an integer,
specfun will return a series representation. (The series representation is not used by specfun
for any computations.) You may use this feature to find symbolic values for special values
orthogonal polynomials. An example:

(c1) load("specfun")$

(c2) legendre_p(n,1);

(d2) legendre_p(n, 1)

/* Declare n to be an integer; now legendre_p(n,1) evaluates to 1. */
(c3) declare(n,integer)$

(c4) legendre_p(n,1);

(da4) 1
(cb) ultraspherical(n,3/2,1);
(d4) (n+1)*gamma (n+3) / (2*gamma (n+2))

Although the preceding example doesn’t show it, two terms of the sum are added outside
the summation. Removing these two terms avoids errors associated with 0° terms in a sum that
should evaluate to 1, but evaluate to 0 in a Maxima summation. Because the sum index runs
from 1 to n — 1, the lower sum index will exceed the upper sum index when n = 0; setting
sumhack to true provides a fix. For example:

(c1) load("specfun.o")$
(c2) declare(n,integer)$
(c3) e : legendre_p(n,x)$
(c4) ev(e,sum,n=0);
Lower bound to SUM: 1
is greater than the upper bound: - 1
-- an error. Quitting. To debug this try DEBUGMODE(TRUE) ;)
(cb) ev(e,sum,n=0),sumhack : true;
(d5) 1

Most functions in specfun have a gradef property; derivatives with respect to the order or
other function parameters aren’t unevaluated.

The specfun package and its documentation were written by Barton Willis of the University
of Nebraska at Kearney. It is released under the terms of the General Public License (GPL).
Send bug reports and comments on this package to willisb@unk.edu. In your report, please
include Maxima and specfun version information. The specfun version may be found using get:

Chapter 16: Orthogonal Polynomials 91

(c2) get(’specfun,’version);
(d2) 110

16.2 Definitions for Orthogonal Polynomials

ASSOC_LEGENDRE_P (n, m, x) Function
[specfun package| return the associated Legendre function of the first kind for integers
n > —1 and m > —1. When |m| > n and n >= 0, we have assoc,egendre,(n,m,z) =
0. Reference: A&S 22.5.37 page 779, A&S 8.6.6 (second equation) page 334, and A&S
8.2.5 page 333. To access this function, load("specfun"). See [ASSOC_LEGENDRE_Q],
page 91, [LEGENDRE_P], page 92, and [LEGENDRE_Q)], page 92.

ASSOC_LEGENDRE_Q (n, m, x) Function

[specfun package| return the associated Legendre function of the second kind for integers
n > —1and m > —1.

Reference: Gradshteyn and Ryzhik 8.706 page 1000.
To access this function, load("specfun").
See also ASSOC_LEGENDRE_P, LEGENDRE_P, and LEGENDRE_Q.

CHEBYSHEV_T (n, x) Function
[specfun package] return the Chebyshev function of the first kind for integers n > —1.

Reference: A&S 22.5.31 page 778 and A&S 6.1.22 page 256.
To access this function, load("specfun").

See also CHEBYSHEV _U.
CHEBYSHEV _U (n, x) Function

[specfun package] return the Chebyshev function of the second kind for integers n > —1.
Reference: A&S, 22.8.3 page 783 and A&S 6.1.22 page 256.

To access this function, load("specfun").

See also CHEBYSHEV _T.

GEN_LAGUERRE (n, a, x) Function
[specfun package] return the generalized Laguerre polynomial for integers n > —1.
To access this function, load("specfun").
Reference: table on page 789 in A&S.

HERMITE (n,x) Function

[specfun package] return the Hermite polynomial for integers n > —1.
To access this function, load("specfun").
Reference: A&S 22.5.40 and 22.5.41, page 779.

JACOBI_P (n, a, b, x) Function
[specfun package] return the Jacobi polynomial for integers n > —1 and a and b symbolic
ora > —1 and b > —1. (The Jacobi polynomials are actually defined for all a and b;
however, the Jacobi polynomial weight (1 — x)%(1 + x)® isn’t integrable for a <= —1 or
b<=-1.)

When a,b, and x are floats (but not bfloats) specfun calls a special modedeclared ver-
sion of jacobi,. For numerical values, the modedeclared version is much faster than the
other version. Many functions in specfun are computed as a special case of the Jacobi
polynomials; they also enjoy the speed boost from the modedeclared version of jacobi.

If n has been declared to be an integer, jacobi,(n,a,b, z) returns a summation represen-
tation for the Jacobi function. Because Maxima simplifies 0° to 0 in a sum, two terms of
the sum are added outside the summation.

To access this function, load("specfun").
Reference: table on page 789 in A&S.

92 Maxima Manual

LAGUERRE (n, x) Function

[specfun package] return the Laguerre polynomial for integers n > —1.
Reference: A&S 22.5.16, page 778 and A&S page 789.

To access this function, load("specfun").

See also GEN_LAGUERRE.

LEGENDRE_P (n, x) Function

[specfun package| return the Legendre polynomial of the first kind for integers n > —1.
Reference: A&S 22.5.35 page 779.

To access this function, load("specfun").

See [LEGENDRE_Q], page 92.

LEGENDRE_Q (n, x) Function
[specfun package] return the Legendre polynomial of the first kind for integers n > —1.

Reference: A&S 8.6.19 page 334.
To access this function, load("specfun").
See also LEGENDRE_P.

SPHERICAL_BESSEL_J (n, x) Function

[specfun package| return the spherical Bessel function of the first kind for integers n > —1.
Reference: A&S 10.1.8 page 437 and A&S 10.1.15 page 439.
To access this function, load("specfun").

See also SPHERICAL_HANKEL1, SPHERICAL_HANKEL2, and SPHERI-
CAL_BESSEL_Y.

SPHERICAL_BESSEL.Y (n, x) Function
[specfun package| return the spherical Bessel function of the second kind for integers
n > —1.

Reference: A&S 10.1.9 page 437 and 10.1.15 page 439.
To access this function, load("specfun").

See also SPHERICAL_HANKEL1, SPHERICAL HANKEL2, and SPHERI-
CAL_BESSEL._Y.

SPHERICAL_HANKEL1 (n,x) Function

[specfun package] return the spherical hankel function of the first kind for integers n > —1.
Reference: A&S 10.1.36 page 439.
To access this function, load("specfun").

See also SPHERICAL_HANKEL2, SPHERICAL_BESSEL_J, and SPHERI-
CAL_BESSEL._Y.

SPHERICAL_HANKEL2 (n,x) Function
[specfun package] return the spherical hankel function of the second kind for integers
n > —1.

Reference: A&S 10.1.17 page 439.

To access this function, load("specfun").

See also SPHERICAL_HANKELI, SPHERICAL_BESSEL_J, and SPHERI-
CAL_BESSEL_Y.

SPHERICAL_HARMONIC (n, m, x, y) Function
[specfun package| return the spherical harmonic function for integers n > —1 and |m| <=
n

Reference: Merzbacher 9.64.
To access this function, load("specfun").
See also ASSOC_LEGENDRE_P

Chapter 16: Orthogonal Polynomials 93

Function

ULTRASPHERICAL (n,a,x)

[specfun package] return the ultraspherical polynomials for integers n > —1. The ultras-
pherical polynomials are also known as Gegenbauer polynomials.

Reference: A&S 22.5.27

To access this function, load("specfun").

See also JACOBI_P.

94

Maxima Manual

Chapter 17: Elliptic Functions 95

17 Elliptic Functions

17.1 Introduction to Elliptic Functions and Integrals

Maxima includes support for Jacobian elliptic functions and for complete and incomplete el-
liptic integrals. This includes symbolic manipulation of these functions and numerical evaluation
as well. Definitions of these functions and many of their properties can by found in Abramowitz
and Stegun, Chapter 16-17. As much as possible, we use the definitions and relationships given
there.

In particular, all elliptic functions and integrals use the parameter m instead of the modulus
k or the modular angle «. This is one area where we differ from Abramowitz and Stegun who
use the modular angle for the elliptic functions. The following relationships are true:

m = k?

and
k =sino

The elliptic functions and integrals are primarily intended to support symbolic computation.
Therefore, most of derivatives of the functions and integrals are known. However, if floating-
point values are given, a floating-point result is returned.

Support for most of the other properties of elliptic functions and integrals other than deriva-
tives has not yet been written.

Some examples of elliptic functions:
(C1) jacobi_sn(u,m);

(D1) JACOBI_SN(u, m)

(C2) jacobi_sn(u,1);

(D2) TANH (u)

(€C3) jacobi_sn(u,0);

(D3) SIN(u)

(C4) diff(jacobi_sn(u,m),u);

(D4) JACOBI_CN(u, m) JACOBI_DN(u, m)

(C5) diff(jacobi_sn(u,m),m);
(D5) JACOBI_CN(u, m) JACOBI_DN(u, m)

ELLIPTIC_E(ASIN(JACOBI_SN(u, m)), m)

(U = mmmm e)/ (2 m)
1 -m
2
JACOBI_CN (u, m) JACOBI_SN(u, m)
+ ________________________________
2 (1 - m

Some examples of elliptic integrals:
(C1) elliptic_f(phi,m);

(D1) ELLIPTIC_F(PHI, m)
(C2) elliptic_f(phi,0);
(D2) PHI
(C3) elliptic_f(phi,1);
PHI %PI
(D3) LOG(TAN(--- + ---))
2 4

(C4) elliptic_e(phi,1);
(D4) SIN(PHI)
(C5) elliptic_e(phi,O0);

96

(D5) PHI
(C6) elliptic_kc(1/2);
1
(D6) ELLIPTIC_XC(-)
2
(C7) makegamma (%) ;
21
GAMMA (-)
4

on mmmmmm—————
4 SQRT(%PI)
(C8) diff(elliptic_f(phi,m),phi);

(8 e

SQRT(1 - m SIN (PHI))
(C9) diff(elliptic_f(phi,m),m);

ELLIPTIC_E(PHI, m) - (1 - m) ELLIPTIC_F(PHI, m)
(D9) (=== m o

COS(PHI) SIN(PHI)

-)/(2 (1 - m)

2
SQRT(1 - m SIN (PHI))

Maxima Manual

Support for elliptic functions and integrals was written by Raymond Toy. It is placed under
the terms of the General Public License (GPL) that governs the distribution of Maxima.

17.2 Definitions for Elliptic Functions

JACOBI_SN (u, m)

The Jacobian elliptic function sn(u,m).

JACOBI_CN (u, m)

The Jacobian elliptic function cn(u,m).

JACOBI_DN (u, m)

The Jacobian elliptic function dn(u,m).

JACOBI_NS (u, m)

The Jacobian elliptic function ns(u,m) = 1/sn(u, m).

JACOBI_SC (u, m)

The Jacobian elliptic function sc(u, m) = sn(u, m)/cn(u, m).

JACOBI_SD (u, m)

The Jacobian elliptic function sd(u, m) = sn(u, m)/dn(u,m).

JACOBI_NC (u, m)

The Jacobian elliptic function nc(u,m) = 1/en(u, m).

JACOBI_CS (u, m)

The Jacobian elliptic function cs(u, m) = cn(u, m)/sn(u, m).

JACOBI_CD (u, m)

The Jacobian elliptic function cd(u, m) = en(u, m)/dn(u, m).

Function

Function

Function

Function

Function

Function

Function

Function

Function

Chapter 17: Elliptic Functions

JACOBI_ND (u, m)

The Jacobian elliptic function nc(u,m) = 1/en(u, m).

JACOBI.DS (u, m)

The Jacobian elliptic function ds(u, m) = dn(u, m)/sn(u, m).

JACOBI.DC (u, m)

The Jacobian elliptic function de(u, m) = dn(u, m)/cn(u, m).

INVERSE_JACOBI_SN (u, m)

The inverse of the Jacobian elliptic function sn(u,m).

INVERSE_JACOBI_CN (u, m)

The inverse of the Jacobian elliptic function cn(u, m).

INVERSE_JACOBI_DN (u, m)

The inverse of the Jacobian elliptic function dn(u,m).

INVERSE_JACOBI.NS (u, m)

The inverse of the Jacobian elliptic function ns(u, m).

INVERSE_JACOBI_SC (u, m)

The inverse of the Jacobian elliptic function sc(u, m).

INVERSE_JACOBI_SD (u, m)

The inverse of the Jacobian elliptic function sd(u,m).

INVERSE_JACOBI_NC (u, m)

The inverse of the Jacobian elliptic function ne(u, m).

INVERSE_JACOBI_CS (u, m)

The inverse of the Jacobian elliptic function es(u, m).

INVERSE_JACOBI_CD (u, m)

The inverse of the Jacobian elliptic function cd(u, m).

INVERSE_JACOBI_ND (u, m)

The inverse of the Jacobian elliptic function ne(u, m).

INVERSE_JACOBI_DS (u, m)

The inverse of the Jacobian elliptic function ds(u,m).

INVERSE_JACOBI_DC (u, m)

The inverse of the Jacobian elliptic function dc(u, m).

97

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

98 Maxima Manual

17.3 Definitions for Elliptic Integrals

ELLIPTIC_F (phi, m) Function
The incomplete elliptic integral of the first kind, defined as

/¢ o
0 V1—msin*6
See also [ELLIPTIC_E], page 98, [ELLIPTIC_KC], page 98

ELLIPTIC_E (phi, m) Function
The incomplete elliptic integral of the second kind, defined as See also [ELLIPTIC_E],
page 98, [ELLIPTIC_EC], page 98

ELLIPTIC_EU (u, m) Function
The incomplete elliptic integral of the second kind, defined as

v T 1 —mt?
d dv = dt
/o n(v, m)dv /0 T p
where 7 = sn(u,m)

This is related to ELLIPTICE by

E(u,m) = E(¢,m)
where ¢ = sin™ " sn(u,m), m) See also [ELLIPTIC_E], page 98.

ELLIPTIC_PI (n, phi, m) Function
The incomplete elliptic integral of the third kind, defined as

/¢’ do
0 (1 —nsin®f)v1—msin®6

Only the derivative with respect to phi is known by MAXIMA.

ELLIPTIC_KC (m) Function
The complete elliptic integral of the first kind, defined as

/’2’ do
0 V1—msin®6
For certain values of m, the value of the integral is known in terms of Gamma functions.

Use MAKEGAMMA to evaluate them.

ELLIPTIC_EC (m) Function
The complete elliptic integral of the second kind, defined as

/E V1— m sin® 0d6
0

For certain values of m, the value of the integral is known in terms of Gamma functions.
Use MAKEGAMMA to evaluate them.

Chapter 18: Limits 99

18 Limits

18.1 Definitions for Limits

LHOSPITALLIM Variable
default: [4] - the maximum number of times L’Hospital’s rule is used in LIMIT. This
prevents infinite looping in cases like LIMIT(COT(X)/CSC(X),X,0).

LIMIT (exp, var, val, dir) Function
finds the limit of exp as the real variable var approaches the value val from the direction
dir. Dir may have the value PLUS for a limit from above, MINUS for a limit from below,
or may be omitted (implying a two-sided limit is to be computed). For the method see
Wang, P., "Evaluation of Definite Integrals by Symbolic Manipulation" - Ph.D. Thesis
- MAC TR-92 October 1971. LIMIT uses the following special symbols: INF (positive
infinity) and MINF (negative infinity). On output it may also use UND (undefined),
IND (indefinite but bounded) and INFINITY (complex infinity). LHOSPITALLIM[4] is
the maximum number of times L’Hospital’s rule is used in LIMIT. This prevents infinite
looping in cases like LIMIT(COT(X)/CSC(X),X,0). TLIMSWITCH[FALSE| when true
will cause the limit package to use Taylor series when possible. LIMSUBST[FALSE] pre-
vents LIMIT from attempting substitutions on unknown forms. This is to avoid bugs like
LIMIT(F(N)/F(N+1),N,INF); giving 1. Setting LIMSUBST to TRUE will allow such sub-
stitutions. Since LIMIT is often called upon to simplify constant expressions, for example,
INF-1, LIMIT may be used in such cases with only one argument, e.g. LIMIT(INF-1);
Do EXAMPLE(LIMIT); for examples.

TLIMIT (exp,var,val,dir) Function
is just the function LIMIT with TLIMSWITCH set to TRUE.

TLIMSWITCH Variable
default: [FALSE] - if true will cause the limit package to use Taylor series when possible.

100 Maxima Manual

Chapter 19: Differentiation 101

19 Differentiation

19.1 Definitions for Differentiation

ANTID (G,X,U(X)) Function
A routine for evaluating integrals of expressions involving an arbitrary unspecified func-
tion and its derivatives. It may be used by LOAD(ANTID); , after which, the function
ANTIDIFF may be used. E.g. ANTIDIFF(G,X,U(X)); where G is the expression in-
volving U(X) (U(X) arbitrary) and its derivatives, whose integral with respect to X is
desired. The functions NONZEROANDFREEOF and LINEAR are also defined, as well
as ANTID. ANTID is the same as ANTIDIFF except that it returns a list of two parts,
the first part is the integrated part of the expression and the second part of the list is the
non-integrable remainder.

ANTIDIFF - Function
See ANTID.
ATOMGRAD property

- the atomic gradient property of an expression. May be set by GRADEF.

ATVALUE (form, list, value) Function

enables the user to assign the boundary value value to form at the points specified by list.

(C1) ATVALUE(F(X,Y), [X=0,Y=1],A**2)$
The form must be a function, f(vl1,v2,...), or a derivative,

DIFF(f(v1,v2,...),vi,ni,vj,nj,...) in which the functional arguments explicitly appear (ni is
the order of differentiation with respect vi). The list of equations determine the "bound-
ary" at which the value is given; list may be a list of equations, as above, or a single
equation, vi = expr. The symbols @1, @2,... will be used to represent the functional vari-
ables v1,v2,... when atvalues are displayed. PRINTPROPS([f1, {2,...], ATVALUE) will
display the atvalues of the functions f1,f2,... as specified in previously given uses of the
ATVALUE function. If the list contains just one element then the element can be given
without being in a list. If a first argument of ALL is given then atvalues for all functions
which have them will be displayed. Do EXAMPLE(ATVALUE); for an example.

CARTAN - Function
The exterior calculus of differential forms is a basic tool of differential geometry developed
by Elie Cartan and has important applications in the theory of partial differential equa-
tions. The present implementation is due to F.B. Estabrook and H.D. Wahlquist. The
program is self-explanatory and can be accessed by doing batch("cartan"); which will give
a description with examples.

DEL (v) Function
This is the differential of the variable v. This commonly occurs when DIFF is called
without the dependent variable being given. Then the differential of the expression is
computed. For example:

(C1) diff(x);

(D1) DEL (x)
(C2) diff(x"2);

(D2) 2 x DEL(x)
(C3) diff(sin(x"2));

2
(D3) 2 x CO0S(x) DEL(x)

102 Maxima Manual

DELTA (t) Function
This is the Dirac Delta function. Currently only LAPLACE knows about the DELTA
function:

(C1) LAPLACE(DELTA(T-A)*SIN(B*T),T,S);
Is A positive, negative or zero?

POS;
- AS
(D) SIN(A B) J%E
DEPENDENCIES Variable
default: [| - the list of atoms which have functional dependencies (set up by the DE-

PENDS or GRADEF functions). The command DEPENDENCIES has been replaced by
the DEPENDS command. Do DESCRIBE(DEPENDS);

DEPENDS (funlistl,varlist1,funlist2,varlist2,...) Function
declares functional dependencies for variables to be used by DIFF.

DEPENDS ([F,G], [X,Y], [R,S], [U,V,W],U,T)

informs DIFF that F and G depend on X and Y, that R and S depend on U,V, and W,
and that U depends on T. The arguments to DEPENDS are evaluated. The variables
in each funlist are declared to depend on all the variables in the next varlist. A funlist
can contain the name of an atomic variable or array. In the latter case, it is assumed
that all the elements of the array depend on all the variables in the succeeding varlist.
Initially, DIFF(F,X) is 0; executing DEPENDS(F,X) causes future differentiations of F
with respect to X to give dF/dX or Y (if DERIVABBREV:TRUE).

(C1) DEPENDS([F,G], [X,Y],[R,S],[U,V,W],U,T);

(D1) [F(X, V), G(X, Y), R(U, V, W), S, V, W, U(T)]
(C2) DEPENDENCIES;
(D2) [F(X, V), GX, Y), R(U, V, W), S, V, W), U(T)]
(C3) DIFF(R.S,U);

dR ds
(D3) -— . S8S+R . -

du du

Since MACSYMA knows the chain rule for symbolic derivatives, it takes advantage of the
given dependencies as follows:

(C4) DIFF(R.S,T);

dR dU ds du

(D4) (== --) .S +R . (- -9)
dU 4T dU dT

If we set

(C5) DERIVABBREV:TRUE;

(D5) TRUE

then re-executing the command C4, we obtain

(C6) ’’C4;

(D6) (R U) .8S+R. (S U)
U T U T

To eliminate a previously declared dependency, the REMOVE command can be used. For
example, to say that R no longer depends on U as declared in C1, the user can type

REMOVE (R, DEPENDENCY)
This will eliminate all dependencies that may have been declared for R.
(C7) REMOVE(R,DEPENDENCY) ;
(D7) DONE
(c8) ’°C4;
(D8) R. (5 U)

Chapter 19: Differentiation 103

U T

CAVEAT: DIFF is the only MACSYMA command which uses DEPENDENCIES informa-
tion. The arguments to INTEGRATE, LAPLACE, etc. must be given their dependencies
explicitly in the command, e.g., INTEGRATE(F(X),X).

DERIVABBREV Variable
default: [FALSE] if TRUE will cause derivatives to display as subscripts.

DERIVDEGREE (exp, dv, iv) Function
finds the highest degree of the derivative of the dependent variable dv with respect to the
independent variable iv occuring in exp.

(C1) °DIFF(Y,X,2)+’DIFF(Y,Z,3)*2+ DIFF(Y,X)*X**2$
(C2) DERIVDEGREE(%,Y,X);

(D2) 2
DERIVLIST (varl,...,vark) Function
causes only differentiations with respect to the indicated variables, within the EV com-
mand.
DERIVSUBST Variable

default: [FALSE] - controls non-syntactic substitutions such as
SUBST (X, ’DIFF(Y,T), ’DIFF(Y,T,2));
If DERIVSUBST is set to true, this gives 'DIFF(X,T).

DIFF (exp, vl, nl, v2, n2, ...) Function
DIFF differentiates exp with respect to each vi, ni times. If just the first derivative with
respect to one variable is desired then the form DIFF(exp,v) may be used. If the noun
form of the function is required (as, for example, when writing a differential equation),
'DIFF should be used and this will display in a two dimensional format. DERIVAB-
BREV[FALSE] if TRUE will cause derivatives to display as subscripts. DIFF(exp) gives
the "total differential”, that is, the sum of the derivatives of exp with respect to each of
its variables times the function DEL of the variable. No further simplification of DEL is
offered.

(C1) DIFF(EXP(F(X)),X,2);

2

F(X) d F(X) d 2
(D1) HE (--- F(X)) + JE (= (FX)N)
2 dX

dX
(C2) DERIVABBREV:TRUE$
(C3) ’INTEGRATE(F(X,Y),Y,G(X) ,H(X));

H(X)

(D3) F(X, Y) 4y

N H /AN

G(X)
(C4) DIFF(%,X);
H(X)
/
C
(D4) I F(X, Y) dY + F(X, HX)) H(X) - F(X, GX)) GX)

104 Maxima Manual

] X X X
/
G(X)

For the tensor package, the following modifications have been incorporated: 1) the deriva-
tives of any indexed objects in exp will have the variables vi appended as additional
arguments. Then all the derivative indices will be sorted. 2) the vi may be integers from
1 up to the value of the variable DIMENSION|default value: 4]. This will cause the differ-
entiation to be carried out wrt the vith member of the list COORDINATES which should
be set to a list of the names of the coordinates, e.g., [x,y,z,t]. If COORDINATES is bound
to an atomic variable, then that variable subscripted by vi will be used for the variable of
differentiation. This permits an array of coordinate names or subscripted names like X[1],
X[2],... to be used. If COORDINATES has not been assigned a value, then the variables
will be treated as in 1) above.

DIFF special symbol
[flag] for ev causes all differentiations indicated in exp to be performed.

DSCALAR (function) Function

applies the scalar d’Alembertian to the scalar function.
(C41) DEPENDENCIES(FIELD(R));

(D41) [FIELD(R)]
(C42) DSCALAR(FIELD);
(D43)
-M
%E ((FIELD N - FIELD M + 2 FIELD) R + 4 FIELD)
R R R R R R R
2 R
EXPRESS (expression) Function

The result uses the noun form of any derivatives arising from expansion of the vector
differential operators. To force evaluation of these derivatives, the built-in EV function
can be used together with the DIFF evflag, after using the built-in DEPENDS function
to establish any new implicit dependencies.

GENDIFF Function
Sometimes DIFF(E,X,N) can be reduced even though N is symbolic.

batch("gendif")$
and you can try, for example,
DIFF (%E~ (A*X),X,Q)

by using GENDIFF rather than DIFF. Unevaluable items come out quoted. Some items
are in terms of "GENFACT", which see.

GRADEF (f(x1, ..., xn), g1, ..., gn) Function
defines the derivatives of the function f with respect to its n arguments. That is, df/dxi =
gi, etc. If fewer than n gradients, say i, are given, then they refer to the first i arguments
of f. The xi are merely dummy variables as in function definition headers and are used to
indicate the ith argument of f. All arguments to GRADEF except the first are evaluated so
that if g is a defined function then it is invoked and the result is used. Gradients are needed
when, for example, a function is not known explicitly but its first derivatives are and it
is desired to obtain higher order derivatives. GRADEF may also be used to redefine
the derivatives of MACSYMA'’s predefined functions (e.g. GRADEF(SIN(X),SQRT(1-
SIN(X)**2))). It is not permissible to use GRADEF on subscripted functions. GRADEFS

Chapter 19: Differentiation 105

is a list of the functions which have been given gradients by use of the GRADEF command
(i.e. GRADEF(f(x1, ..., xn), g1, ..., gn)). PRINTPROPS([f1,f2,...], GRADEF) may be used
to display the gradefs of the functions f1,2,.. GRADEF(a,v,exp) may be used to state
that the derivative of the atomic variable a with respect to v is exp. This automatically
does a DEPENDS(a,v). PRINTPROPS([al,a2,..., ATOMGRAD) may be used to display
the atomic gradient properties of al,a2,...

GRADEFS Variable
default: [| - a list of the functions which have been given gradients by use of the GRADEF
command (i.e. GRADEF(f(x1, ..., xn), gl, ..., gn).)

LAPLACE (exp, ovar, lvar) Function
takes the Laplace transform of exp with respect to the variable ovar and transform pa-
rameter lvar. Exp may only involve the functions EXP, LOG, SIN, COS, SINH, COSH,
and ERF. It may also be a linear, constant coefficient differential equation in which case
ATVALUE of the dependent variable will be used. These may be supplied either be-
fore or after the transform is taken. Since the initial conditions must be specified at
zero, if one has boundary conditions imposed elsewhere he can impose these on the gen-
eral solution and eliminate the constants by solving the general solution for them and
substituting their values back. Exp may also involve convolution integrals. Functional
relationships must be explicitly represented in order for LAPLACE to work properly.
That is, if F depends on X and Y it must be written as F(X,Y) wherever F occurs as in
LAPLACE('DIFF(F(X,Y),X),X,S). LAPLACE is not affected by DEPENDENCIES set
up with the DEPENDS command.

(C1) LAPLACE (%E#x (2%T+A)*SIN(T)T,T,S);
A
2% (S - 2)
O3 D I —

UNDIFF (exp) Function
returns an expression equivalent to exp but with all derivatives of indexed objects re-
placed by the noun form of the DIFF function with arguments which would yield that
indexed object if the differentiation were carried out. This is useful when it is desired to

replace a differentiated indexed object with some function definition and then carry out
the differentiation by saying EV(...,.DIFF).

106 Maxima Manual

Chapter 20: Integration 107

20 Integration

20.1 Introduction to Integration

MACSYMA has several routines for handling integration. The INTEGRATE command
makes use of most of them. There is also the ANTID package, which handles an unspecified
function (and its derivatives, of course). For numerical uses, there is the ROMBERG function.
There is also an adaptave integrator which uses the Newton-Cotes 8 panel quadrature rule,
called QUANCS. Hypergeometric Functions are being worked on, do DESCRIBE(SPECINT);
for details. Generally speaking, MACSYMA only handles integrals which are integrable in terms
of the "elementary functions" (rational functions, trigonometrics, logs, exponentials, radicals,
etc.) and a few extensions (error function, dilogarithm). It does not handle integrals in terms
of unknown functions such as g(x) and h(x).

20.2 Definitions for Integration

CHANGEVAR (exp,f(x,y),y,x) Function

makes the change of variable given by f(x,y) = 0 in all integrals occurring in exp with
integration with respect to x; y is the new variable.

(C1) ’INTEGRATE(%E**SQRT (A*Y),Y,0,4);

4
/
[SQRT(A) SQRT(Y)
(D1) I (%E) day
]
/
0
(C2) CHANGEVAR(D1,Y-Z"2/A,Z,Y);
2 SQRT(A)
/
[yA
21 Z %E dz
]
/
0
(D4) e
A

CHANGEVAR may also be used to changes in the indices of a sum or product. However,
it must be realized that when a change is made in a sum or product, this change must be
a shift, i.e. I=J+ ..., not a higher degree function. E.g.

(C3) SUM(A[I]*X~(I-2),I,0,INF);

INF

\ I-2
(D3) > A X

/ I

I =20
(C4) CHANGEVAR(%,I-2-N,N,I);

INF

\ N
(D4) > A X

108 Maxima Manual

DBLINT (’F,’R,’S,a,b) Function
a double-integral routine which was written in top-level macsyma and then translated
and compiled to machine code. Use LOAD(DBLINT); to access this package. It uses the
Simpson’s Rule method in both the x and y directions to calculate /B /S(X) | | | | F(X,Y)
DY DX . | | /A /R(X) The function F(X,Y) must be a translated or compiled function
of two variables, and R(X) and S(X) must each be a translated or compiled function of
one variable, while a and b must be floating point numbers. The routine has two global
variables which determine the number of divisions of the x and y intervals: DBLINT_X
and DBLINT_Y, both of which are initially 10, and can be changed independently to
other integer values (there are 2¥*DBLINT_X+1 points computed in the x direction, and
2*DBLINT_Y+1 in the y direction). The routine subdivides the X axis and then for
each value of X it first computes R(X) and S(X); then the Y axis between R(X) and
S(X) is subdivided and the integral along the Y axis is performed using Simpson’s Rule;
then the integral along the X axis is done using Simpson’s Rule with the function values
being the Y-integrals. This procedure may be numerically unstable for a great variety of
reasons, but is reasonably fast: avoid using it on highly oscillatory functions and functions
with singularities (poles or branch points in the region). The Y integrals depend on how
far apart R(X) and S(X) are, so if the distance S(X)-R(X) varies rapidly with X, there
may be substantial errors arising from truncation with different step-sizes in the various
Y integrals. One can increase DBLINT_X and DBLINT.Y in an effort to improve the
coverage of the region, at the expense of computation time. The function values are not
saved, so if the function is very time-consuming, you will have to wait for re-computation
if you change anything (sorry). It is required that the functions F, R, and S be either
translated or compiled prior to calling DBLINT. This will result in orders of magnitude
speed improvement over interpreted code in many cases! The file SHARE1;DBLINT
DEMO can be run in batch or demo mode to illustrate the usage on a sample problem;
the file SHARE1;DBLNT DEMOL1 is an extension of the DEMO which also makes use
of other numerical aids, FLOATDEFUNK and QUANCS. Please send all bug notes and
questions to LPH

DEFINT (exp, var, low, high) Function
DEFinite INTegration, the same as INTEGRATE(exp,var,low,high). This uses symbolic
methods, if you wish to use a numerical method try ROMBERG (exp,var,low,high).

ERF (X) Function
the error function, whose derivative is: 2*EXP(-X~2)/SQRT(%PI).

ERFFLAG Variable
default: [TRUE] if FALSE prevents RISCH from introducing the ERF function in the
answer if there were none in the integrand to begin with.

ERRINTSCE Variable
default: [TRUE] - If a call to the INTSCE routine is not of the form

EXP (A*X+B) *C0S (C*X) “N*SIN (C*X)

then the regular integration program will be invoked if the switch ERRINTSCE[TRUE]
is TRUE. If it is FALSE then INTSCE will err out.

ILT (exp, lvar, ovar) Function
takes the inverse Laplace transform of exp with respect to lvar and parameter ovar. exp
must be a ratio of polynomials whose denominator has only linear and quadratic factors.
By using the functions LAPLACE and ILT together with the SOLVE or LINSOLVE
functions the user can solve a single differential or convolution integral equation or a set
of them.

Chapter 20: Integration 109

(C1) ’INTEGRATE(SINH(A*X)*F(T-X),X,0,T)+B*F(T)=T**2;
T

2

(D) (SINH(A X) F(T - X)) dX + B F(T) =T

O NH HMAYN

(C2) LAPLACE(%,T,S);
A LAPLACE(F(T), T, S)

(D2) —mmmmmmmmm—mm———— -
2 2
S - A
2
+ B LAPLACE(F(T), T, S) = ——
3
S
(C3) LINSOLVE([%],[’LAPLACE(F(T),T,S)1);
SOLUTION
2 2
28 -2A4A
(E3) LAPLACE(F(T), T, 8) = ————————————
5 2 3
BS + (A-A B)S
(D3) [E3]

(C4) ILT(E3,S,T);
IS AB (AB - 1) POSITIVE, NEGATIVE, OR ZERO?

POS;
2
SQRT(A) SQRT(A B - B) T
2 QOSH(=mmmmmmmmmmmmmmmmmmmmm e)
B
(D4) F(T) = = =mmmmmmmmmmmmmmmeeemeeeeeeeee o
A
2
AT 2
+ —————— + o
AB-1 3 2 2
A B -2A B+ A
INTEGRATE (exp, var) Function

integrates exp with respect to var or returns an integral expression (the noun form) if
it cannot perform the integration (see note 1 below). Roughly speaking three stages are
used:

e (1) INTEGRATE sees if the integrand is of the form F(G(X))*DIFF(G(X),X) by
testing whether the derivative of some subexpression (i.e. G(X) in the above case)
divides the integrand. If so it looks up F in a table of integrals and substitutes G(X)
for X in the integral of F. This may make use of gradients in taking the derivative.
(If an unknown function appears in the integrand it must be eliminated in this stage
or else INTEGRATE will return the noun form of the integrand.)

e (2) INTEGRATE tries to match the integrand to a form for which a specific method
can be used, e.g. trigonometric substitutions.

e (3) If the first two stages fail it uses the Risch algorithm. Functional relationships
must be explicitly represented in order for INTEGRATE to work properly. INTE-
GRATE is not affected by DEPENDENCIES set up with the DEPENDS command.

110 Maxima Manual

INTEGRATE(exp, var, low, high) finds the definite integral of exp with respect to var
from low to high or returns the noun form if it cannot perform the integration. The
limits should not contain var. Several methods are used, including direct substitution
in the indefinite integral and contour integration. Improper integrals may use the
names INF for positive infinity and MINF for negative infinity. If an integral "form"
is desired for manipulation (for example, an integral which cannot be computed until
some numbers are substituted for some parameters), the noun form INTEGRATE
may be used and this will display with an integral sign. (See Note 1 below.) The
function LDEFINT uses LIMIT to evaluate the integral at the lower and upper limits.
Sometimes during integration the user may be asked what the sign of an expression
is. Suitable responses are POS;, ZERO;, or NEG;.

(C1) INTEGRATE(SIN(X)**3,X);
3
Cos (X)
oy e - COS(X)
3
(C2) INTEGRATE (X**A/(X+1)**(5/2),X,0,INF);
IS A+ 1 POSITIVE, NEGATIVE, OR ZERO?

POS;
IS 2 A - 3 POSITIVE, NEGATIVE, OR ZERO?
NEG;
3
(D2) BETA(A + 1, - - A)
2

(C3) GRADEF(Q(X),SIN(X**2));

(D3) Qx)

(C4) DIFF(LOG(QC(R(X))),X);
d 2
(-- R(X)) SIN(R (X))
dx

Dma) e

QREX))
(C5) INTEGRATE(Y%,X);
(D5) LOG(Q(R(X)))

(Note 1) The fact that MACSYMA does not perform certain integrals does not always
imply that the integral does not exist in closed form. In the example below the integration
call returns the noun form but the integral can be found fairly easily. For example, one
can compute the roots of X"3+X+1 = 0 to rewrite the integrand in the form

1/ ((X-A)*(X-B) *(X-C))

where A, B and C are the roots. MACSYMA will integrate this equivalent form although
the integral is quite complicated.

(C6) INTEGRATE(1/(X"3+X+1),X);

(D6) I ——mmmmmme- dx

/X +X+1

INTEGRATION_CONSTANT_COUNTER Variable
- a counter which is updated each time a constant of integration (called by MACSYMA,
e.g., "INTEGRATIONCONSTANT1") is introduced into an expression by indefinite in-
tegration of an equation.

Chapter 20: Integration 111

INTEGRATE_USE_ROOTSOF Variable
default: [false] If not false then when the denominator of an rational function cannot be
factored, we give the integral in a form which is a sum over the roots of the denominator:

(C4) integrate(1/(1+x+x"5),x);

/ 2
[x -4x+5
I —— dx 2x+1
1 3 2 2 5 ATAN(-------)
/x - x +1 LOG(kx +x+ 1) SQRT(3)
(D4) == — oo + oo
7 14 7 SQRT(3)
but now we set the flag to be true and the first part of the integral will undergo further
simplification.

(C5) INTEGRATE_USE_ROOTSOF:true;

(D5) TRUE
(C6) integrate(1/(1+x+x"5),x);

==== 2
\ (%R1 - 4 %R1 + 5) LOG(x - %R1)
> _______________________________
/ 2
==== 3 %R1 - 2 %R1
3 2
%R1 in ROOTSOF(x - x + 1)
(DB) === mmmmmm
7
2 x + 1
2 5 ATAN(-------)
LOG(x + x + 1) SQRT(3)
- o ———— — — ———————— + _______________
14 7 SQRT(3)

Note that it may be that we want to approximate the roots in the complex plane, and
then provide the function factored, since we will then be able to group the roots and their
complex conjugates, so as to give a better answer.

INTSCE (expr,var) Function
INTSCE LISP contains a routine, written by Richard Bogen, for integrating products of
sines,cosines and exponentials of the form

EXP (A*X+B) *COS (C*X) "N*SIN(C*X) "M
The call is INTSCE(expr,var) expr may be any expression, but if it is not in the above form
then the regular integration program will be invoked if the switch ERRINTSCE[TRUE]
is TRUE. If it is FALSE then INTSCE will err out.

LDEFINT (exp,var,ll,ul) Function
yields the definite integral of exp by using LIMIT to evaluate the indefinite integral of exp
with respect to var at the upper limit ul and at the lower limit 1l.

POTENTIAL (givengradient) Function

The calculation makes use of the global variable
POTENTIALZEROLOC[0]
which must be NONLIST or of the form

112 Maxima Manual

[indeterminatej=expressionj, indeterminatek=expressionk, ...]

the former being equivalent to the nonlist expression for all right-hand sides in the latter.
The indicated right-hand sides are used as the lower limit of integration. The success
of the integrations may depend upon their values and order. POTENTIALZEROLOC is
initially set to O.

QQ Function
- The file SHARE1;QQ FASL (which may be loaded with LOAD("QQ");) contains a func-
tion QUANCS which can take either 3 or 4 arguments. The 3 arg version computes the
integral of the function specified as the first argument over the interval from lo to hi as in
QUANCS(’function name,lo,hi); . The function name should be quoted. The 4 arg ver-
sion will compute the integral of the function or expression (first arg) with respect to the
variable (second arg) over the interval from lo to hi as in QUANCS(<f(x) or expression in
x> x,l0,hi). The method used is the Newton-Cotes 8th order polynomial quadrature, and
the routine is adaptive. It will thus spend time dividing the interval only when necessary
to achieve the error conditions specified by the global variables QUANC8_RELERR (de-
fault value=1.0e-4) and QUANCS8_ABSERR (default value=1.0e-8) which give the relative
error test: |integral(function)-computed value|< quanc8_relerr™ |integral(function)| and

the absolute error test: |integral(function)-computed value|<quanc8_abserr. Do PRINT-
FILE(QQ,USAGE,SHARE]1) for details.

QUANCS (’function name,lo,hi) Function
An adaptive integrator, available in SHARE1;QQ FASL. DEMO and USAGE files are
provided. The method is to use Newton-Cotes 8-panel quadrature rule, hence the function
name QUANCS, available in 3 or 4 arg versions. Absolute and relative error checks are

used. To use it do LOAD("QQ"); For more details do DESCRIBE(QQ); .

RESIDUE (exp, var, val) Function
computes the residue in the complex plane of the expression exp when the variable var
assumes the value val. The residue is the coefficient of (var-val)**(-1) in the Laurent series

for exp.
(C1) RESIDUE(S/(S**2+Ax*2) ,S,A*x%I);
1
(D1) -
2
(C2) RESIDUE(SIN(A*X)/X*%4,X,0);
3
A
(D2) - -
6
RISCH (exp, var) Function

integrates exp with respect to var using the transcendental case of the Risch algorithm.
(The algebraic case of the Risch algorithm has not been implemented.) This currently
handles the cases of nested exponentials and logarithms which the main part of INTE-
GRATE can’t do. INTEGRATE will automatically apply RISCH if given these cases.
ERFFLAG[TRUE] - if FALSE prevents RISCH from introducing the ERF function in the
answer if there were none in the integrand to begin with.

(C1) RISCH(X"2*ERF(X),X);

2 2
- X X 3 2
%E (%E SQRT(%PI) X ERF(X) + X + 1)
(D1) e
3 SQRT(%PI)
(C2) DIFF(%,X),RATSIMP;

Chapter 20: Integration 113

2
(D2) X ERF(X)

ROMBERG (exp,var,ll,ul) Function
or ROMBERG (exp,ll,ul) - Romberg Integration. You need not load in any file
to use ROMBERG, it is autoloading. There are two ways to use this function.
The first is an inefficient way like the definite integral version of INTEGRATE:
ROMBERG (<integrand>,<variable of integration>,<lower limit>, <upper limit>);

Examples:
ROMBERG (SIN(Y),Y,1,%PI);
TIME= 39 MSEC. 1.5403023
F(X):=1/(X"5+X+1);
ROMBERG (F (X) ,X,1.5,0);
TIME= 162 MSEC. - 0.75293843

The second is an efficient way that is used as follows:
ROMBERG (<function name>,<lower limit>,<upper limit>);

Example:
F(X) :=(MODE_DECLARE([FUNCTION(F) ,X],FLOAT),1/(X"5+X+1));
TRANSLATE(F) ;
ROMBERG(F,1.5,0);
TIME= 13 MSEC. - 0.75293843

The first argument must be a TRANSLATEd or compiled function. (If it is compiled it
must be declared to return a FLONUM.) If the first argument is not already TRANS-
LATEd, ROMBERG will not attempt to TRANSLATE it but will give an error. The
accuracy of the integration is governed by the global variables ROMBERGTOL (default
value 1.E-4) and ROMBERGIT (default value 11). ROMBERG will return a result if
the relative difference in successive approximations is less than ROMBERGTOL. It will
try halving the stepsize ROMBERGIT times before it gives up. The number of iter-
ations and function evaluations which ROMBERG will do is governed by ROMBER-
GABS and ROMBERGMIN, do DESCRIBE(ROMBERGABS,ROMBERGMIN); for de-
tails. ROMBERG may be called recursively and thus can do double and triple integrals.

Example:
INTEGRATE (INTEGRATE (X*Y/ (X+Y),Y,0,X/2) ,X,1,3);
13/3 (2 LOG(2/3) + 1)
% ,NUMER;
0.81930233
DEFINE_VARIABLE(X,0.0,FLOAT,"Global variable in function F")$
F(Y) :=(MODE_DECLARE(Y,FLOAT), X*Y/(X+Y))$
G(X) :=ROMBERG(’F,0,X/2)$
ROMBERG(G,1,3);
0.8193023
The advantage with this way is that the function F can be used for other purposes, like
plotting. The disadvantage is that you have to think up a name for both the function F
and its free variable X. Or, without the global:
G1(X) :=(MODE_DECLARE (X,FLOAT) , ROMBERG (X*Y/(X+Y),Y,0,X/2))$
ROMBERG(G1,1,3);
0.8193023
The advantage here is shortness.

Q(A,B) :=ROMBERG (ROMBERG (X*Y/ (X+Y),Y,0,X/2) ,X,A,B)$
Q(1,3);
0.8193023

It is even shorter this way, and the variables do not need to be declared because they are
in the context of ROMBERG. Use of ROMBERG for multiple integrals can have great

114 Maxima Manual

disadvantages, though. The amount of extra calculation needed because of the geometric
information thrown away by expressing multiple integrals this way can be incredible.
The user should be sure to understand and use the ROMBERGTOL and ROMBERGIT
switches.

ROMBERGABS Variable
default: [0.0] (0.0B0) Assuming that successive estimates produced by ROMBERG are
Y[0], Y[1], Y[2] etc., then ROMBERG will return after N iterations if (roughly speaking)
(ABS(Y[N]-Y[N-1]) <= ROMBERGABS OR ABS(Y[N]-Y|[N-1])/(IF Y[N]=0.0 THEN 1.0
ELSE Y[N]) <= ROMBERGTOL) is TRUE. (The condition on the number of iterations
given by ROMBERGMIN must also be satisfied.) Thus if ROMBERGABS is 0.0 (the
default) you just get the relative error test. The usefulness of the additional variable
comes when you want to perform an integral, where the dominant contribution comes
from a small region. Then you can do the integral over the small dominant region first,
using the relative accuracy check, followed by the integral over the rest of the region using
the absolute accuracy check. Example: Suppose you want to compute

Integral (exp(-x),x,0,50)

(numerically) with a relative accuracy of 1 part in 10000000. Define the function. N is a
counter, so we can see how many function evaluations were needed.

F(X) :=(MODE_DECLARE (N, INTEGER, X ,FLOAT) ,N:N+1,EXP(-X))$
TRANSLATE(F) $
/* First of all try doing the whole integral at once */
BLOCK ([ROMBERGTOL: 1 .E-6 ,ROMBERABS:0.] ,N:0,ROMBERG(F,0,50)) ;
==> 1.00000003
N; ==> 257 /* Number of function evaluationsx*/

Now do the integral intelligently, by first doing Integral(exp(-x),x,0,10) and then setting
ROMBERGABS to 1.E-6*(this partial integral).

BLOCK ([ROMBERGTOL: 1.E-6 ,ROMBERGABS:0.,SUM:0.],
N:0,SUM:ROMBERG (F,0,10) ,ROMBERGABS : SUM*ROMBERGTOL ,ROMBERGTOL: 0. ,
SUM+ROMBERG(F,10,50)); ==> 1.00000001 /* Same as before */
N; ==> 130
So if F(X) were a function that took a long time to compute, the second method would
be about 2 times quicker.

ROMBERGIT Variable
default: [11] - The accuracy of the ROMBERG integration command is governed by the
global variables ROMBERGTOLI1.E-4] and ROMBERGIT[11]. ROMBERG will return a
result if the relative difference in successive approximations is less than ROMBERGTOL.

It will try halving the stepsize ROMBERGIT times before it gives up.

ROMBERGMIN Variable
default: [0] - governs the minimum number of function evaluations that ROMBERG will
make. ROMBERG will evaluate its first arg. at least 2°(ROMBERGMIN+2)+1 times.
This is useful for integrating oscillatory functions, when the normal converge test might
sometimes wrongly pass.

ROMBERGTOL Variable
default: [1.E-4] - The accuracy of the ROMBERG integration command is governed by the
global variables ROMBERGTOL[1.E-4] and ROMBERGIT[11]. ROMBERG will return a
result if the relative difference in successive approximations is less than ROMBERGTOL.

It will try halving the stepsize ROMBERGIT times before it gives up.

TLDEFINT (exp,var,ll,ul) Function
is just LDEFINT with TLIMSWITCH set to TRUE.

Chapter 21: Equations 115

21 Equations

21.1 Definitions for Equations

%RNUM_LIST Variable
default: [] - When %R variables are introduced in solutions by the ALGSYS command,
they are added to %RNUM_LIST in the order they are created. This is convenient for

doing substitutions into the solution later on. It’s recommended to use this list rather
than doing CONCAT("%R,J).

ALGEXACT Variable
default: [FALSE]| affects the behavior of ALGSYS as follows: If ALGEXACT is TRUE,
ALGSYS always calls SOLVE and then uses REALROOTS on SOLVE’s failures. If AL-
GEXACT is FALSE, SOLVE is called only if the eliminant was not univariate, or if it
was a quadratic or biquadratic. Thus ALGEXACT:TRUE doesn’t guarantee only exact
solutions, just that ALGSYS will first try as hard as it can to give exact solutions, and
only yield approximations when all else fails.

ALGSYS ([expl, exp2, ...], [varl, var2, ...]) Function
solves the list of simultaneous polynomials or polynomial equations (which can be non-
linear) for the list of variables. The symbols %R1, %R2, etc. will be used to represent
arbitrary parameters when needed for the solution (the variable %RNUM_LIST holds
these). In the process described below, ALGSYS is entered recursively if necessary. The
method is as follows: (1) First the equations are FACTORed and split into subsystems.
(2) For each subsystem Si, an equation E and a variable var are selected (the var is chosen
to have lowest nonzero degree). Then the resultant of E and Ej with respect to var is
computed for each of the remaining equations Ej in the subsystem Si. This yields a new
subsystem S’i in one fewer variables (var has been eliminated). The process now returns
to (1). (3) Eventually, a subsystem consisting of a single equation is obtained. If the
equation is multivariate and no approximations in the form of floating point numbers
have been introduced, then SOLVE is called to find an exact solution. (The user should
realize that SOLVE may not be able to produce a solution or if it does the solution may
be a very large expression.) If the equation is univariate and is either linear, quadratic,
or bi-quadratic, then again SOLVE is called if no approximations have been introduced.
If approximations have been introduced or the equation is not univariate and neither
linear, quadratic, or bi-quadratic, then if the switch REALONLY[FALSE] is TRUE, the
function REALROQOTS is called to find the real-valued solutions. If REALONLY:FALSE
then ALLROQOTS is called which looks for real and complex-valued solutions. If ALGSYS
produces a solution which has fewer significant digits than required, the user can change the
value of ALGEPSILON[10"8] to a higher value. If ALGEXACT[FALSE] is set to TRUE,
SOLVE will always be called. (4) Finally, the solutions obtained in step (3) are re-inserted
into previous levels and the solution process returns to (1). The user should be aware
of several caveats: When ALGSYS encounters a multivariate equation which contains
floating point approximations (usually due to its failing to find exact solutions at an earlier
stage), then it does not attempt to apply exact methods to such equations and instead
prints the message: "ALGSYS cannot solve - system too complicated." Interactions with
RADCAN can produce large or complicated expressions. In that case, the user may use
PICKAPART or REVEAL to analyze the solution. Occasionally, RADCAN may introduce
an apparent %I into a solution which is actually real-valued. Do EXAMPLE(ALGSYS);
for examples.

ALLROOTS (poly) Function
finds all the real and complex roots of the real polynomial poly which must be univariate
and may be an equation, e.g. poly=0. For complex polynomials an algorithm by Jenkins
and Traub is used (Algorithm 419, Comm. ACM, vol. 15, (1972), p. 97). For real polyno-
mials the algorithm used is due to Jenkins (Algorithm 493, TOMS, vol. 1, (1975), p.178).

116 Maxima Manual

The flag POLYFACTORI[FALSE] when true causes ALLROOTS to factor the polynomial
over the real numbers if the polynomial is real, or over the complex numbers, if the poly-
nomial is complex. ALLROOTS may give inaccurate results in case of multiple roots. (If
poly is real and you get inaccurate answers, you may want to try ALLROOTS(%I*poly);)
Do EXAMPLE(ALLROOTS); for an example. ALLROOTS rejects non-polynomials. It
requires that the numerator after RATting should be a polynomial, and it requires that
the denominator be at most a complex number. As a result of this ALLROOTS will
always return an equivalent (but factored) expression, if POLYFACTOR is TRUE.

BACKSUBST Variable
default: [TRUE] if set to FALSE will prevent back substitution after the equations have
been triangularized. This may be necessary in very big problems where back substitution
would cause the generation of extremely large expressions. (On MC this could cause
storage capacity to be exceeded.)

BREAKUP Variable
default: [TRUE] if FALSE will cause SOLVE to express the solutions of cubic or quartic
equations as single expressions rather than as made up of several common subexpressions

which is the default. BREAKUP:TRUE only works when PROGRAMMODE is FALSE.

DIMENSION (equation or list of equations) Function
The file "sharel/dimen.mc" contains functions for automatic dimensional analysis.
LOAD(DIMEN); will load it up for you. There is a demonstration available in
sharel/dimen.dem. Do DEMO("dimen"); to run it.

DISPFLAG Variable
default: [TRUE] if set to FALSE within a BLOCK will inhibit the display of output gen-
erated by the solve functions called from within the BLOCK. Termination of the BLOCK
with a dollar sign, $, sets DISPFLAG to FALSE.

FUNCSOLVE (eqn,g(t)) Function
gives [g(t) = ...] or [], depending on whether or not there exists a rational fcn g(t) satisfying
eqn, which must be a first order, linear polynomial in (for this case) g(t) and g(t+1).

(C1) FUNCSOLVE((N+1)*F0OO(N)-(N+3)*FOO(N+1)/(N+1) =
(N-1)/(N+2) ,FOO(N)) ;

(©)Y) FOO(N) = ——————mm—mo—— -
N+ 1) (N + 2)

Warning: this is a very rudimentary implementation—-many safety checks and obvious
generalizations are missing.

GLOBALSOLVE Variable
default: [FALSE] if set to TRUE then variables which are SOLVEd for will be set to the
solution of the set of simultaneous equations.

IEQN (ie,unk,tech,n,guess) Function
Integral Equation solving routine. Do LOAD(INTEQN); to access it. CAVEAT: To free
some storage, a KILL(LABELS) is included in this file. Therefore, before loading the
integral equation package, the user should give names to any expressions he wants to
keep. ie is the integral equation; unk is the unknown function; tech is the technique to be
tried from those given above (tech = FIRST means: try the first technique which finds
a solution; tech = ALL means: try all applicable techniques); n is the maximum number
of terms to take for TAYLOR, NEUMANN, FIRSTKINDSERIES, or FREDSERIES (it
is also the maximum depth of recursion for the differentiation method); guess is the
initial guess for NEUMANN or FIRSTKINDSERIES. Default values for the 2nd thru
5th parameters are: unk: P(X), where P is the first function encountered in an integrand

Chapter 21: Equations 117

which is unknown to MACSYMA and X is the variable which occurs as an argument
to the first occurrence of P found outside of an integral in the case of SECONDKIND
equations, or is the only other variable besides the variable of integration in FIRSTKIND
equations. If the attempt to search for X fails, the user will be asked to supply the
independent variable; tech: FIRST; n: 1; guess: NONE, which will cause NEUMANN
and FIRSTKINDSERIES to use F(X) as an initial guess.

IEQNPRINT Variable
default: [TRUE] - governs the behavior of the result returned by the IEQN command
(which see). If IEQNPRINT is set to FALSE, the lists returned by the IEQN function are
of the form [SOLUTION, TECHNIQUE USED, NTERMS, FLAG] where FLAG is absent
if the solution is exact. Otherwise, it is the word APPROXIMATE or INCOMPLETE
corresponding to an inexact or non-closed form solution, respectively. If a series method
was used, NTERMS gives the number of terms taken (which could be less than the n given
to TEQN if an error prevented generation of further terms).

LHS (eqn) Function
the left side of the equation eqn.

LINSOLVE ([expl, exp2, ..], [varl, var2, ...]) Function
solves the list of simultaneous linear equations for the list of variables. The expi must each
be polynomials in the variables and may be equations. If GLOBALSOLVE[FALSE] is set
to TRUE then variables which are SOLVEd for will be set to the solution of the set of simul-
taneous equations. BACKSUBST|[TRUE] if set to FALSE will prevent back substitution
after the equations have been triangularized. This may be necessary in very big problems
where back substitution would cause the generation of extremely large expressions. (On
MC this could cause the storage capacity to be exceeded.) LINSOLVE_PARAMS|[TRUE]
If TRUE, LINSOLVE also generates the %Ri symbols used to represent arbitrary param-
eters described in the manual under ALGSYS. If FALSE, LINSOLVE behaves as before,
i.e. when it meets up with an under-determined system of equations, it solves for some of
the variables in terms of others.

(C1) X+Z=Y$

(C2) 2*%A*xX-Y=2%A*x*x2$

(C3) Y-2xZ=2$%

(C4) LINSOLVE([D1,D2,D3],[X,Y,Z]),GLOBALSOLVE:TRUE;

SOLUTION
(E4) X:A+1
(E5) Y : 2 A
(E6) Z : A -1
(D6) [E4, E5, E6]
LINSOLVEWARN Variable

default: [TRUE] - if FALSE will cause the message "Dependent equations eliminated" to
be suppressed.

LINSOLVE_PARAMS Variable
default: [TRUE] - If TRUE, LINSOLVE also generates the %Ri symbols used to represent
arbitrary parameters described in the manual under ALGSYS. If FALSE, LINSOLVE
behaves as before, i.e. when it meets up with an under-determined system of equations,
it solves for some of the variables in terms of others.

MULTIPLICITIES Variable
default: [NOT_SET_YET] - will be set to a list of the multiplicities of the individual
solutions returned by SOLVE or REALROOTS.

118 Maxima Manual

NROOTS (poly, low, high) Function
finds the number of real roots of the real univariate polynomial poly in the half-open
interval (low,high]. The endpoints of the interval may also be MINF,INF respectively for
minus infinity and plus infinity. The method of Sturm sequences is used.

(C1) POLY1:X#**10-2*X**x4+1/2$

(C2) NROOTS(POLY1,-6,9.1);

RAT REPLACED 0.5 BY 1/2 = 0.5

(D2) 4

NTHROOT (p,n) Function
where p is a polynomial with integer coefficients and n is a positive integer returns q, a
polynomial over the integers, such that q"n=p or prints an error message indicating that
p is not a perfect nth power. This routine is much faster than FACTOR or even SQFR.

PROGRAMMODE Variable
default: [TRUE] - when FALSE will cause SOLVE, REALROOTS, ALLROOTS, and
LINSOLVE to print E-labels (intermediate line labels) to label answers. When TRUE,
SOLVE, etc. return answers as elements in a list. (Except when BACKSUBST is set to
FALSE, in which case PROGRAMMODE:FALSE is also used.)

REALONLY Variable
default: [FALSE] - if TRUE causes ALGSYS to return only those solutions which are free
of %l.

REALROOTS (poly, bound) Function

finds all of the real roots of the real univariate polynomial poly within a tolerance of bound
which, if less than 1, causes all integral roots to be found exactly. The parameter bound
may be arbitrarily small in order to achieve any desired accuracy. The first argument
may also be an equation. REALROOTS sets MULTIPLICITIES, useful in case of mul-
tiple roots. REALROOTS(poly) is equivalent to REALROOTS(poly, ROOTSEPSILON).
ROOTSEPSILON][1.0E-7] is a real number used to establish the confidence interval for
the roots. Do EXAMPLE(REALROOTS); for an example.

RHS (eqn) Function
the right side of the equation eqn.

ROOTSCONMODE Variable
default: [TRUE] - Determines the behavior of the ROOTSCONTRACT command. Do
DESCRIBE(ROOTSCONTRACT); for details.

ROOTSCONTRACT (exp) Function

converts products of roots into roots of products. For example,
ROOTSCONTRACT (SQRT (X)*Y~(3/2)) ==> SQRT(X*Y"3)

When RADEXPAND is TRUE and DOMAIN is REAL (their defaults), ROOTSCON-
TRACT converts ABS into SQRT, e.g.

ROOTSCONTRACT (ABS(X)*SQRT(Y)) ==> SQRT(X"2xY)

There is an option ROOTSCONMODE (default value TRUE), affecting ROOTSCON-
TRACT as follows:

Problem Value of Result of applying
ROOTSCONMODE ROOTSCONTRACT

X~ (1/2)*Y~(3/2) FALSE (X*Y~3) "~ (1/2)

Chapter 21: Equations 119

X~ (1/2) %Y~ (1/4) FALSE X~ (1/2)*Y~(1/4)
X~ (1/2)*Y~(1/4) TRUE (X*Y~(1/2))~(1/2)
X~ (1/2)*Y~(1/3) TRUE X~ (1/2)*Y~(1/3)
X~ (1/2) %Y~ (1/4) ALL (X72%Y) "~ (1/4)

X~ (1/2)*Y~(1/3) ALL (X"3%Y"2) " (1/6)

The above examples and more may be tried out by typing
EXAMPLE (ROOTSCONTRACT) ;

When ROOTSCONMODE is FALSE, ROOTSCONTRACT contracts only wrt rational
number exponents whose denominators are the same. The key to the ROOTSCON-
MODE:TRUE$ examples is simply that 2 divides into 4 but not into 3. ROOTSCON-
MODE:ALLS$ involves taking the lem (least common multiple) of the denominators of
the exponents. ROOTSCONTRACT uses RATSIMP in a manner similar to LOGCON-
TRACT (see the manual).

ROOTSEPSILON Variable
default: [1.0E-7] - a real number used to establish the confidence interval for the roots
found by the REALROOTS function.

SOLVE (exp, var) Function
solves the algebraic equation exp for the variable var and returns a list of solution equations
in var. If exp is not an equation, it is assumed to be an expression to be set equal to zero.
Var may be a function (e.g. F(X)), or other non-atomic expression except a sum or
product. It may be omitted if exp contains only one variable. Exp may be a rational
expression, and may contain trigonometric functions, exponentials, etc. The following
method is used: Let E be the expression and X be the variable. If E is linear in X then
it is trivially solved for X. Otherwise if E is of the form A*X**N+B then the result is
(-B/A)**(1/N) times the Nth roots of unity. If E is not linear in X then the ged of the
exponents of X in E (say N) is divided into the exponents and the multiplicity of the
roots is multiplied by N. Then SOLVE is called again on the result. If E factors then
SOLVE is called on each of the factors. Finally SOLVE will use the quadratic, cubic, or
quartic formulas where necessary. In the case where E is a polynomial in some function
of the variable to be solved for, say F(X), then it is first solved for F(X) (call the result
C), then the equation F(X)=C can be solved for X provided the inverse of the function
F is known. BREAKUP[TRUE] if FALSE will cause SOLVE to express the solutions of
cubic or quartic equations as single expressions rather than as made up of several common
subexpressions which is the default. MULTIPLICITIES[INOT_SET_YET] - will be set to a
list of the multiplicities of the individual solutions returned by SOLVE, REALROOTS, or
ALLROOTS. Try APROPOS(SOLVE) for the switches which affect SOLVE. DESCRIBE
may then by used on the individual switch names if their purpose is not clear. SOLVE([eql,
.., eqn], [vl, ..., vn]) solves a system of simultaneous (linear or non-linear) polynomial
equations by calling LINSOLVE or ALGSYS and returns a list of the solution lists in the
variables. In the case of LINSOLVE this list would contain a single list of solutions. It
takes two lists as arguments. The first list (eqi, i=1,...,n) represents the equations to be
solved; the second list is a list of the unknowns to be determined. If the total number
of variables in the equations is equal to the number of equations, the second argument-
list may be omitted. For linear systems if the given equations are not compatible, the
message INCONSISTENT will be displayed (see the SOLVE_INCONSISTENT_ERROR
switch); if no unique solution exists, then SINGULAR will be displayed. For examples,
do EXAMPLE(SOLVE);

SOLVEDECOMPOSES Variable
default: [TRUE] - if TRUE, will induce SOLVE to use POLYDECOMP (see POLYDE-
COMP) in attempting to solve polynomials.

SOLVEEXPLICIT Variable
default: [FALSE] - if TRUE, inhibits SOLVE from returning implicit solutions i.e. of the
form F(x)=0.

120 Maxima Manual

SOLVEFACTORS Variable
default: [TRUE] - if FALSE then SOLVE will not try to factor the expression. The FALSE
setting may be desired in some cases where factoring is not necessary.

SOLVENULLWARN Variable
default: [TRUE] - if TRUE the user will be warned if he calls SOLVE with either a null
equation list or a null variable list. For example, SOLVE(([],[]); would print two warning
messages and return [].

SOLVERADCAN Variable
default: [FALSE] - if TRUE then SOLVE will use RADCAN which will make SOLVE
slower but will allow certain problems containing exponentials and logs to be solved.

SOLVETRIGWARN Variable
default: [TRUE] - if set to FALSE will inhibit printing by SOLVE of the warning message
saying that it is using inverse trigonometric functions to solve the equation, and thereby
losing solutions.

SOLVE_INCONSISTENT_ERROR Variable
default: [TRUE] - If TRUE, SOLVE and LINSOLVE give an error if they meet up with a
set of inconsistent linear equations, e.g. SOLVE([A+B=1,A+B=2|). If FALSE, they return
] in this case. (This is the new mode, previously gotten only by calling ALGSYS.)

ZRPOLY Function
- This is no longer available in Maxima. See ALLROOTS for a function to compute the
roots of a polynomial.

ZSOLVE Function

This is not available with Maxima anymore. Documentation is left for historical purposes.

- For those who can make use of approximate numerical solutions to problems, there is
a package which calls a routine which has been translated from the IMSL fortran library
to solve N simultaneous non-linear equations in N unknowns. It uses black-box tech-
niques that probably aren’t desirable if an exact solution can be obtained from one of the
smarter solvers (LINSOLVE, ALGSYS, etc). But for things that the other solvers don’t
attempt to handle, this can probably give some very useful results. For documentation,
do PRINTFILE("zsolve.usg");. For a demo do batch("zsolve.mc")$

Chapter 22: Differential Equations 121

22 Differential Equations

22.1 Definitions for Differential Equations

DESOLVE ([eql,...,eqn],[varl,...,varn]) Function
where the eq’s are differential equations in the dependent variables varl,...,varn. The func-
tional relationships must be explicitly indicated in both the equations and the variables.
For example

(C1) ’DIFF(F,X,2)=SIN(X)+’DIFF(G,X);

(C2) ’DIFF(F,X)+X"2-F=2%’DIFF(G,X,2);

is NOT the proper format. The correct way is:

(C3) ’DIFF(F(X),X,2)=SIN(X)+’DIFF(G(X),X);

(C4) ’DIFF(F(X),X)+X"2-F(X)=2*%’DIFF(G(X),X,2);

The call is then DESOLVE([D3,D4], [F(X),G(X)1);

If initial conditions at O are known, they should be supplied before
calling DESOLVE by using ATVALUE.

(C11) °’DIFF(F(X),X)="DIFF(G(X),X)+SIN(X);

d d
(D11) -- F(X) = —- G(X) + SIN(X)
dx dx
(C12) ’DIFF(G(X),X,2)="DIFF(F(X),X)-C0S(X);
2
d d
(D12) -—— G(X) = -- F(X) - COS(X)
2 dx
dx
(C13) ATVALUE(’DIFF(G(X),X),X=0,A);
(D13) A
(C14) ATVALUE(F(X),X=0,1);
(D14) 1
(C15) DESOLVE([D11,D12], [F(X),G(X)1);
X X

(D16) [F(X)=A %E - A+1, G(X) = COS(X) + A JE - A + G(0) - 1]
/* VERIFICATION */
(C17) [D11,D12],D16,DIFF;
X X X X
(D17) [AJE =AJE , A%E - COS(X) = A J%E - COS(X)]

If DESOLVE cannot obtain a solution, it returns "FALSE".

IC1 (exp,var,var) Function
In order to solve initial value problems (IVPs) and boundary value problems (BVPs), the
routine IC1 is available in the ODE2 package for first order equations, and IC2 and BC2
for second order IVPs and BVPs, respectively. Do LOAD(ODE2) to access these. They
are used as in the following examples:

(C3) IC1(D2,X=%PI,Y=0);

CosS(X) + 1
(D3) Y = = oo
3
X
(C4) ’DIFF(Y,X,2) + Y*’DIFF(Y,X)"3 = 0;
2
dy dy 3

(D4) =+ Y () =0

122 Maxima Manual

2 dX
dX
(C5) ODE2(%,Y,X);
3
Y -6 %KLY -6X
670 N = %K2
3
(C8) RATSIMP(IC2(D7,X=0,Y=0,’DIFF(Y,X)=2));
3
2Y -3Y+6X
(D9) S ——— -0
3
(C10) BC2(D7,X=0,Y=1,X=1,Y=3);
3
Y -10Y -6X
(D11) mmmmmmmmmmmeee- --3
3
ODE (equation,y,x) Function

This no longer exists in Maxima. The documentation is left here for historical purposes.

a pot-pourri of Ordinary Differential solvers combined in such a way as to attempt more
and more difficult methods as each fails. For example, the first attempt is with ODE2, so
therefore, a user using ODE can assume he has all the capabilities of ODE2 at the very
beginning and if he has been using ODE2 in programs they will still run if he substitutes
ODE (the returned values, and calling sequence are identical). In addition, ODE has a
number of user features which can assist an experienced ODE solver if the basic system
cannot handle the equation. The equation is of the same form as required for ODE2
(which see) and the y and x are dependent and independent variables, as with ODE2. For
more details, do PRINTFILE(ODE,USAGE,SHARE); .

ODE2 (exp,dvar,ivar) Function
takes three arguments: an ODE of first or second order (only the left hand side need be
given if the right hand side is 0), the dependent variable, and the independent variable.
When successful, it returns either an explicit or implicit solution for the dependent vari-
able. %C is used to represent the constant in the case of first order equations, and %K1
and %K2 the constants for second order equations. If ODE2 cannot obtain a solution
for whatever reason, it returns FALSE, after perhaps printing out an error message. The
methods implemented for first order equations in the order in which they are tested are:
linear, separable, exact - perhaps requiring an integrating factor, homogeneous, Bernoulli’s
equation, and a generalized homogeneous method. For second order: constant coefficient,
exact, linear homogeneous with non-constant coefficients which can be transformed to
constant coefficient, the Euler or equidimensional equation, the method of variation of
parameters, and equations which are free of either the independent or of the dependent
variable so that they can be reduced to two first order linear equations to be solved se-
quentially. In the course of solving ODEs, several variables are set purely for informational
purposes: METHOD denotes the method of solution used e.g. LINEAR, INTFACTOR
denotes any integrating factor used, ODEINDEX denotes the index for Bernoulli’s method
or for the generalized homogeneous method, and YP denotes the particular solution for
the variation of parameters technique.

Chapter 23: Numerical 123

23 Numerical

23.1 Introduction to Numerical

23.2 DCADRE

The following is obsolete and does not exist in Maxima 5.9. We leave the documentation
here for historical purposes.

To make an interface to fortran libraries in the current MAXIMA look at the examples
in "maxima/src/fortdef.Isp" - The IMSL version of Romberg integration is now available in
Macsyma. For documentation, Do PRINTFILE(DCADRE,USAGE,IMSL1); . For a demo, do
batch("dcadre.mc"); This is a numerical integration package using cautious, adaptive Romberg
extrapolation. The DCADRE package is written to call the IMSL fortran library routine
DCADRE. This is documentation for that program. Send bugs/comments to KMP To load
this package, do

LOADFILE("ims1")$

For a demo of this package, do

batch("dcadre.mc") ;

The worker function takes the following syntax: IMSL_ROMBERG(fn,low,hi) where fn is
a function of 1 argument; low and hi should be the lower and upper bounds of integration.
fn must return floating point values. IMSL_ROMBERG (exp,var,low,hi) where exp should be
integrated over the range var=low to hi. The result of evaluating exp must always be a floating
point number. FAST_IMSL_ROMBERG(fn,low,hi) This function does no error checking but
may achieve a speed gain over the IMSL_ROMBERG function. It expects that fn is a Lisp
function (or translated Macsyma function) which accepts a floating point argument and that it
always returns a floating point value.

Returns either [SUCCESS, answer, error| where answer is the result of the integration and
error is the estimated bound on the absolute error of the output, DCADRE, as described in
PURPOSE below. or [WARNING, n, answer, error] where n is a warning code, answer is
the answer, and error is the estimated bound on the absolute error of the output, DCADRE,
as described in PURPOSE below. The following warnings may occur: 65 = One or more
singularities were successfully handled. 66 = In some subinterval(s), the estimate of the integral
was accepted merely because the estimated error was small, even though no regular behavior
was recognized. or [ERROR, errorcode|] where error code is the IMSL-generated error code.
The following error codes may occur: 131 = Failure due to insufficient internal working storage.
132 = Failure. This may be due to too much noise in function (relative to the given error
requirements) or due to an ill-behaved integrand. 133 = RERR is greater than 0.1 or less than
0.0 or is too small for the precision of the machine.

The following flags have an influence upon the operation of IMSL_ROMBERG —
ROMBERG_AERR [Default 1.0E-5] — Desired absolute error in answer.
ROMBERG_RERR [Default 0.0] — Desired relative error in the answer.

Note: If IMSL signals an error, a message will be printed on the user’s console stating
the nature of the error. (This error message may be supressed by setting IMSLVERBOSE to
FALSE.)

Note: Because this uses a translated Fortran routine, it may not be recursively invoked. It
does not call itself, but the user should be aware that he may not type ~A in the middle of an
IMSL_ROMBERG computation, begin another calculation using the same package, and expect
to win — IMSL_ROMBERG will complain if it was already doing one project when you invoke
it. This should cause minimal problems.

Purpose (modified version of the IMSL documentation)

DCADRE attempts to solve the following problem: Given a real-valued function F of one
argument, two real numbers A and B, find a number

DCADRE such that:

124 Maxima Manual

| /B | [| / B I
L | L L I
| I F(x)dx - DCADRE | <= max [ROMBERG_AERR, ROMBERG_RERR * | I F(x)dx |
] I L |] |
| /A I [| / A I

Algorithm (modified version of the IMSL documentation)

This routine uses a scheme whereby DCADRE is computed as the sum of estimates for the in-
tegral of F(x) over suitably chosen subintervals of the given interval of integration. Starting with
the interval of integration itself as the first such subinterval, cautious Romberg extrapolation
is used to find an acceptable estimate on a given subinterval. If this attempt fails, the subin-
terval is divided into two subintervals of equal length, each of which is considered separately.
Programming Notes (modified version of the IMSL documentation)

e 1. DCADRE (the translated-Fortran base for IMSL_ROMBERG) can, in many cases, han-
dle jump discontinuities and certain algebraic discontinuities. See reference for full details.

e 2. The relative error parameter ROMBERG_RERR must be in the interval [0.0,0.1]. For
example, ROMBERG_RERR=0.1 indicates that the estimate of the intergral is to be cor-
rect to one digit, where as ROMBERG_RERR=1.0E-4 calls for four digits of accuracy. If
DCADRE determines that the relative accuracy requirement cannot be satisfied, IER is set
to 133 (ROMBERG_RERR should be large enough that, when added to 100.0, the result is
a number greater than 100.0 (this will not be true of very tiny floating point numbers due
to the nature of machine arithmetic)).

e 3. The absolute error parameter, ROMBERG_AERR, should be nonnegative. In order to
give a reasonable value for ROMBERG_AERR, the user must know the approximate mag-
nitude of the integral being computed. In many cases, it is satisfactory to use AERR=0.0.
In this case, only the relative error requirement is satisfied in the compuatation.

e 4. We quote from the reference, “A very cautious man would accept DCADRE only if IER
[the warning or error code| is 0 or 65. The merely reasonable man would keep the faith
even if IER is 66. The adventurous man is quite often right in accepting DCADRE even if
the IER is 131 or 132.” Even when IER is not 0, DCADRE returns the best estimate that
has been computed.

For references on this technique, see de Boor, Calr, “CADRE: An Algorithm for Numerical
Quadrature,” Mathematical Software (John R. Rice, Ed.), New York, Academic Press, 1971,
Chapter 7.

23.3 ELLIPT

- A package on the SHARE directory for Numerical routines for Elliptic Functions and
Complete Elliptic Integrals. (Notation of Abramowitz and Stegun, Chs 16 and 17) Do
LOAD(ELLIPT); to use this package. At present all arguments MUST be floating point. You’ll
get nonsense otherwise. Be warned. The functions available are: Jacobian elliptic functions

AM(U,M) - amplitude with modulus M

AM1(U,M1) - amplitude with complementary modulus M1
AM(U,M) :=AM1(U,1-M); so use AM1 if M ~ 1

SN(U,M) :=SIN(AM(U,M));

CN(U,M) :=C0S (AM(U,M)) ;

DN (U,M) : =SQRT (1-M*SN(U,M) "2) ;

(These functions come defined like this. Others CD, NS etc. may be
similarly defined.)

Complete Elliptic Integrals

ELLIPTK(M) - Complete elliptic integral of first kind
ELLIPTK1(M1) - Same but with complementary modulus.
ELLIPTK(M) :=ELLIPTK1(1-M); so use if M ~ 1

ELLIPTE(M) - Complete elliptic integral of second kind
ELLIPTE1(M1) - Same but with complementary modulus.
ELLIPTE(M) :=ELLIPTE1(1-M); so use if M ~ 1

—_ e e e

Chapter 23: Numerical 125

23.4 FOURIER

- There is a Fast Fourier Transform package, do DESCRIBE(FFT) for details. There is
also a Fourier Series package. It may be loaded with LOAD(FOURIE). It will also calcu-
late Fourier integral coefficients and has various other functions to do such things as replace
all occurrences of F(ARG) by ARG in expression (like changing ABS(a*x+b) to a*x+b). Do
PRINTFILE(FOURIE,USAGE,DSK,SHARE1); for a list of the functions included.

23.5 NDIFFQ

a package residing on the SHARE directory for numerical solutions of differential equations.
LOAD("NDIFFQ"); will load it in for use. An example of its use would be:

Define_Variable(N,0.3,FLOAT);

Define_Variable(H,0.175,FLOAT);

F(X,E) :=(Mode_Declare([X,E],FLOAT) ,N*EXP (X) / (E+X~ (2xH) *EXP (H*X))) ;
Compile(F);

Array([X,E],FLOAT,35);

Init_Float_Array(X,1.0E-3,6.85); /* Fills X with the interval */

E[0]:5.0; /* Initial condition */
Runge_Kutta(F,X,E); /* Solve it x/
Graph2(X,E); /* Graph the solution */

p.s. Runge Kutta(F,X,E,E_Prime) would be the call for a second-order equation.

23.6 Definitions for Numerical

FFT (real-array, imag-array) Function
Fast Fourier Transform. This package may be loaded by doing LOAD(FFT); There is also
an IFT command, for Inverse Fourier Transform. These functions perform a (complex)
fast fourier transform on either 1 or 2 dimensional FLOATING-POINT arrays, obtained
by:

ARRAY (<ary>,FLOAT,<diml1>); or
ARRAY (<ary>,FLOAT,<dim1>,<dim2>) ;

For 1D arrays
<diml> = 2°n-1

and for 2D arrays
<dim1>=<dim2>=2"n-1

(i.e. the array is square). (Recall that MACSYMA arrays are indexed from a 0 ori-
gin so that there will be 2°n and (2°n)~2 arrays elements in the above two cases.)
This package also contains two other functions, POLARTORECT and RECTTOPO-
LAR. Do DESCRIBE(cmd) for details. For details on the implementation, do PRINT-
FILE(FFT,USAGE,SHARE); .

FORTINDENT Variable
default: [0] - controls the left margin indentation of expressions printed out by the FOR-~
TRAN command. 0 gives normal printout (i.e. 6 spaces), and positive values will causes
the expressions to be printed farther to the right.

FORTMX (name,matrix) Function
converts a MACSYMA matrix into a sequence of FORTRAN assignment statements of
the form name(i,j)=<corresponding matrix element>. This command is now obsolete.
FORTMX (name,matrix); may now be done as FORTRAN (name=matrix);. (If "name" is
bound, FORTRAN ('name=matrix); may be necessary.) Please convert code that uses the
FORTMX command as it may be flushed some day.

126 Maxima Manual

FORTRAN (exp) Function
converts exp into a FORTRAN linear expression in legal FORTRAN with 6 spaces inserted
at the beginning of each line, continuation lines, and ** rather than ~ for exponentiation.
When the option FORTSPACES[FALSE] is TRUE, the FORTRAN command fills out
to 80 columns using spaces. If FORTRAN is called on a bound symbolic atom, e.g.
FORTRAN(X); where X:A*B$ has been done, then X={value of X}, e.g. X=A*B will
be generated. In particular, if e.g. M:-MATRIX(...); has been done, then FORTRAN(M);
will generate the appropriate assignment statements of the form name(i,j)=<corresponding
matrix element>. FORTINDENT/[0] controls the left margin of expressions printed out, 0
is the normal margin (i.e. indented 6 spaces), increasing it will cause the expression to be
printed further to the right.

FORTSPACES Variable
default: [FALSE] - if TRUE, the FORTRAN command fills out to 80 columns using spaces.
HORNER (exp, var) Function

will convert exp into a rearranged representation as in Horner’s rule, using var as the
main variable if it is specified. Var may also be omitted in which case the main variable
of the CRE form of exp is used. HORNER sometimes improves stability if expr is to be
numerically evaluated. It is also useful if MACSYMA is used to generate programs to be
run in FORTRAN (see DESCRIBE(STRINGOUT);)

(C1) 1.0E-20%X"2-5.5%X+5.2E20;
2
(D1) 1.0E-20 X - 5.5 X + 5.2E+20
(C2) HORNER(Y%,X),KEEPFLOAT:TRUE;
(D2) X (1.0E-20 X - 5.5) + 5.2E+20
(C3) D1,X=1.0E20;
ARITHMETIC OVERFLOW
(C4) D2,X=1.0E20;
(D4) 6.9999999E+19

IFT (real-array, imag-array) Function
Inverse Fourier Transform. Do LOAD(FFT); to load in this package. These func-
tions (FFT and IFT) perform a (complex) fast fourier transform on either 1 or 2 di-
mensional FLOATING-POINT arrays, obtained by: ARRAY (<ary> FLOAT ,<dim1>); or
ARRAY (<ary> FLOAT <dim1>,<dim2>); For 1D arrays <dim1> must equal 2°n-1, and
for 2D arrays <dim1>=<dim2>=2"n-1 (i.e. the array is square). (Recall that MAC-
SYMA arrays are indexed from a 0 origin so that there will be 2°n and (2°n)"2 ar-
rays elements in the above two cases.) For details on the implementation, do PRINT-
FILE(FFT,USAGE,SHARE); .

INTERPOLATE (func,x,a,b) Function
finds the zero of func as x varies. The last two args give the range to look in. The
function must have a different sign at each endpoint. If this condition is not met, the
action of the of the function is governed by INTPOLERROR|TRUE]). If INTPOLER-
ROR is TRUE then an error occurs, otherwise the value of INTPOLERROR is returned
(thus for plotting INTPOLERROR might be set to 0.0). Otherwise (given that MAC-
SYMA can evaluate the first argument in the specified range, and that it is continuous)
INTERPOLATE is guaranteed to come up with the zero (or one of them if there is more
than one zero). The accuracy of INTERPOLATE is governed by INTPOLABSI0.0] and
INTPOLRELI0.0] which must be non-negative floating point numbers. INTERPOLATE
will stop when the first arg evaluates to something less than or equal to INTPOLABS
or if successive approximants to the root differ by no more than INTPOLREL * <one
of the approximants>. The default values of INTPOLABS and INTPOLREL are 0.0 so
INTERPOLATE gets as good an answer as is possible with the single precision arithmetic
we have. The first arg may be an equation. The order of the last two args is irrelevant.
Thus

Chapter 23: Numerical 127

INTERPOLATE (SIN(X)=X/2,X,%PI,.1);
is equivalent to

INTERPOLATE (SIN(X)=X/2,X,.1,%PI);
The method used is a binary search in the range specified by the last two args. When
it thinks the function is close enough to being linear, it starts using linear interpolation.
An alternative syntax has been added to interpolate, this replaces the first two arguments
by a function name. The function MUST be TRANSLATEd or compiled function of one
argument. No checking of the result is done, so make sure the function returns a floating
point number.

F(X) :=(MODE_DECLARE (X,FLOAT) ,SIN(X)-X/2.0) ;

INTERPOLATE(SIN(X)-X/2,X,0.1,%PI) time= 60 msec
INTERPOLATE(F(X) ,X,0.1,%PI); time= 68 msec
TRANSLATE(F) ;

INTERPOLATE(F(X),X,0.1,%PI); time= 26 msec
INTERPOLATE(F,0.1,%PI); time= 5 msec

There is also a Newton method interpolation routine, do DESCRIBE(NEWTON); .

INTPOLABS Variable
default: [0.0] - The accuracy of the INTERPOLATE command is governed by INTPO-
LABSJ[0.0] and INTPOLREL[0.0] which must be non-negative floating point numbers.
INTERPOLATE will stop when the first arg evaluates to something less than or equal to
INTPOLABS or if successive approximants to the root differ by no more than INTPOL-
REL * <one of the approximants>. The default values of INTPOLABS and INTPOLREL
are 0.0 so INTERPOLATE gets as good an answer as is possible with the single precision
arithmetic we have.

INTPOLERROR Variable
default: [TRUE] - Governs the behavior of INTERPOLATE. When INTERPOLATE is
called, it determines whether or not the function to be interpolated satisfies the condition
that the values of the function at the endpoints of the interpolation interval are opposite
in sign. If they are of opposite sign, the interpolation proceeds. If they are of like sign,
and INTPOLERROR is TRUE, then an error is signaled. If they are of like sign and INT-
POLERROR is not TRUE, the value of INTPOLERROR is returned. Thus for plotting,
INTPOLERROR might be set to 0.0.

INTPOLREL Variable
default: [0.0] - The accuracy of the INTERPOLATE command is governed by INTPO-
LABSJ[0.0] and INTPOLREL[0.0] which must be non-negative floating point numbers.
INTERPOLATE will stop when the first arg evaluates to something less than or equal to
INTPOLABS or if successive approximants to the root differ by no more than INTPOL-
REL * <one of the approximants>. The default values of INTPOLABS and INTPOLREL
are 0.0 so INTERPOLATE gets as good an answer as is possible with the single precision
arithmetic we have.

NEWTON (exp,var,X0,eps) Function
The file NEWTON 1 on the SHARE directory contains a function which will do interpo-
lation using Newton’s method. It may be accessed by LOAD(NEWTON); . The Newton
method can do things that INTERPOLATE will refuse to handle, since INTERPOLATE
requires that everything evaluate to a flonum. Thus NEWTON(x"2-a"2,x,a/2,a~2/100);
will say that it can’t tell if flonum*a~2<a~2/100. Doing ASSUME(a>0); and then doing
NEWTON again works. You get x=a+<small flonum>*a which is symbolic all the way.
INTERPOLATE(x"2-a~2,x,a/2,2*a); complains that .5*a is not flonum... An adaptive in-
tegrator which uses the Newton-Cotes 8 panel quadrature rule is available in SHARE1;QQ
FASL. Do DESCRIBE(QQ) for details.

POLARTORECT (magnitude-array, phase-array) Function
converts from magnitude and phase form into real and imaginary form putting the real
part in the magnitude array and the imaginary part into the phase array

128 Maxima Manual

<real>=<magnitude>*C0S(<phase>) ==>
<imaginary>=<magnitude>*SIN(<phase>
This function is part of the FFT package. Do LOAD(FFT); to use it. Like FFT and IFT

this function accepts 1 or 2 dimensional arrays. However, the array dimensions need not
be a power of 2, nor need the 2D arrays be square.

RECTTOPOLAR (real-array, imag-array) Function
undoes POLARTORECT. The phase is given in the range from -%PI to %PI. This function
is part of the FFT package. Do LOAD(FFT); to use it. Like FFT and IFT this function
accepts 1 or 2 dimensional arrays. However, the array dimensions need not be a power of
2, nor need the 2D arrays be square.

Chapter 24: Statistics 129

24 Statistics

24.1 Definitions for Statistics

GAUSS (mean,sd) Function
returns a random floating point number from a normal distribution with mean MEAN and
standard deviation SD. This is part of the BESSEL function package, do LOAD(BESSEL);
to use it.

130 Maxima Manual

Chapter 25: Arrays and Tables 131

25 Arrays and Tables

25.1 Definitions for Arrays and Tables

ARRAY (name, diml, dim2, ..., dimk) Function
ARRAY (name, type, diml, dim2, ..., dimk) Function
This sets up a k-dimensional array. A maximum of five dimensions may be used. In the
first form, a general array is created. In the second form, an array meant to have elements
of the specified type is created. TYPE can be fixnum for integers of limited size or flonum
for floating-point numbers.

The subscripts for the ith dimension are the integers running from 0 to dimi. If the user
assigns to a subscripted variable before declaring the corresponding array, an undeclared
array is set up. If the user has more than one array to be set up the same way, they may all
be set up at the same time, by ARRAY ([list-of-names],dim1, dim2, ..., dimk). Undeclared
arrays, otherwise known as hashed arrays (because hash coding is done on the subscripts),
are more general than declared arrays. The user does not declare their maximum size, and
they grow dynamically by hashing as more elements are assigned values. The subscripts
of undeclared arrays need not even be numbers. However, unless an array is rather sparse,
it is probably more efficient to declare it when possible than to leave it undeclared. The
ARRAY function can be used to transform an undeclared array into a declared array.

ARRAYAPPLY (array,[subl, ... ,subk]) Function
is like APPLY except the first argument is an array.

ARRAYINFO (a) Function
returns a list of information about the array a. For hashed arrays it returns a list of
"HASHED", the number of subscripts, and the subscripts of every element which has a
value. For declared arrays it returns a list of "DECLARED", the number of subscripts,
and the bounds that were given the the ARRAY function when it was called on a. Do
EXAMPLE(ARRAYINFO); for an example.

ARRAYMAKE (name,|il,i2,...]) Function

returns namelil,i2,...].

ARRAYS Variable
default: [] a list of all the arrays that have been allocated, both declared and undeclared.
Functions which deal with arrays are: ARRAY, ARRAYAPPLY, ARRAYINFO, ARRAY-
MAKE, FILLARRAY, LISTARRAY, and REARRAY.

BASHINDICES (expr) Function
- transforms the expression expr by giving each summation and product a unique in-
dex. This gives CHANGEVAR greater precision when it is working with summations or
products. The form of the unique index is J<number>. The quantity <number> is deter-
mined by referring to GENSUMNUM, which can be changed by the user. For example,
GENSUMNUM:0$ resets it.

FILLARRAY (array,list-or-array) Function
fills array from list-or-array. If array is a floating-point (integer) array then list-or-array
should be either a list of floating-point (integer) numbers or another floating-point (integer)
array. If the dimensions of the arrays are different array is filled in row-major order. If
there are not enough elements in list-or-array the last element is used to fill out the rest of
array. If there are too many the remaining ones are thrown away. FILLARRAY returns
its first argument.

132 Maxima Manual

GETCHAR (a, i) Function
returns the ith character of the quoted string or atomic name a. This function is useful
in manipulating the LABELS list.

LISTARRAY (array) Function
returns a list of the elements of a declared or hashed array. the order is row-major.
Elements which you have not defined yet will be represented by F#H#HH#HF#.

MAKE_ARRAY (type,diml,dim2,...,dimn) Function
- creates an array. "type" may be 'ANY, 'WLONUM, "FIXNUM, '"HASHED or 'FUNC-
TIONAL. This is similar to the ARRAY command, except that the created array is
a functional array object. The advantage of this over ARRAY is that it doesn’t have a
name, and once a pointer to it goes away, it will also go away. e.g. Y:IMAKE_ARRAY(....);
Y now points to an object which takes up space, but do Y:FALSE, and Y no longer points
to that object, so the object will get garbage collected. Note: the "dimi" here are different
from the ARRAY command, since they go from 0 to i-1, i.e. a "dimension" of 10 means
you have elements from 0 to 9. Y:MAKE_ARRAY(FUNCTIONAL,’FHASHED,1) - The
second argument to MAKE_ARRAY in this case is the function to call to calculate ar-
ray elements, and the rest of the arguments are passed recursively to MAKE_ARRAY to
generate the "memory" for the array function object.

REARRAY (array,diml, ... ,dimk) Function
can be used to change the size or dimensions of an array. The new array will be filled with
the elements of the old one in row-major order. If the old array was too small, FALSE,
0.0 or 0 will be used to fill the remaining elements, depending on the type of the array.
The type of the array cannot be changed.

REMARRAY (namel, name2, ...) Function
removes arrays and array associated functions and frees the storage occupied. If name is
ALL then all arrays are removed. It may be necessary to use this function if it is desired
to redefine the values in a hashed array.

USE_FAST_ARRAYS Variable
[TRUE on Lispm] - If TRUE then only two types of arrays are recognized.

1) The art-q array (t in common lisp) which may have several dimensions indexed by
integers, and may hold any lisp or macsyma object as an entry. To construct such an
array, enter A:MAKE_ARRAY(ANY,3,4); then A will have as value, an array with twelve
slots, and the indexing is zero based.

2) The Hash_table array which is the default type of array created if one does B[X+1]:Y "2
(and B is not already an array,a list, or a matrix— if it were one of these an error would
be caused since x+1 would not be a valid subscript for an art-q array,a list or a matrix).
Its indices (also known as keys) may be any object. It only takes ONE KEY at a time
(B[X+1,U]:Y would ignore the u) Referencing is done by B[X+1]==> Y~2. Of course the
key may be a list, eg B[[x+1,u]]:y would be valid. This is in- compatible with the old
Macsyma hash arrays, but saves consing.

An advantage of storing the arrays as values of the symbol is that the usual conventions
about local variables of a function apply to arrays as well. The Hash_table type also
uses less consing and is more efficient than the old type of macsyma hashar. To obtain
consistent behaviour in translated and compiled code set TRANSLATE_FAST_ARRAYS
[TRUE] to be TRUE.

Chapter 26: Matrices and Linear Algebra 133

26 Matrices and Linear Algebra

26.1 Introduction to Matrices and Linear Algebra

26.1.1 DOT

- . The dot operator, for matrix (non-commutative) multiplication. When "." is used in this
way, spaces should be left on both sides of it, e.g. A . B. This distinguishes it plainly from a
decimal point in a floating point number. Do APROPOS(DOT); for a list of the switches which
affect the dot operator.

26.1.2 VECTORS

- The file SHARE;VECT > contains a vector analysis package, share/vect.dem contains a
corresponding demonstration, and SHARE;VECT ORTH contains definitions of various orthog-
onal curvilinear coordinate systems. LOAD(VECT); will load this package for you. The vector
analysis package can combine and simplify symbolic expressions including dot products and
cross products, together with the gradient, divergence, curl, and Laplacian operators. The
distribution of these operators over sums or products is under user control, as are various
other expansions, including expansion into components in any specific orthogonal coordinate
systems. There is also a capability for deriving the scalar or vector potential of a field. The
package contains the following commands: VECTORSIMP, SCALEFACTORS, EXPRESS, PO-
TENTIAL, and VECTORPOTENTIAL. Do DESCRIBE(cmd) on these command names, or
PRINTFILE(VECT,USAGE,SHARE); for details. Warning: The VECT package declares "."
to be a commutative operator.

26.2 Definitions for Matrices and Linear Algebra

ADDCOL (M,list1,list2,...,listn) Function
appends the column(s) given by the one or more lists (or matrices) onto the matrix M.

ADDROW (M,list1,list2,...,listn) Function
appends the row(s) given by the one or more lists (or matrices) onto the matrix M.

ADJOINT (matrix) Function

computes the adjoint of a matrix.

AUGCOEFMATRIX ([eql, ...], [varl, ..]) Function
the augmented coefficient matrix for the variables varl,... of the system of linear equations
eql,.... This is the coefficient matrix with a column adjoined for the constant terms in each
equation (i.e. those not dependent upon varl,...). Do EXAMPLE(AUGCOEFMATRIX);
for an example.

CHARPOLY (M, var) Function
computes the characteristic polynomial for Matrix M with respect to var. That is, DE-
TERMINANT(M - DIAGMATRIX(LENGTH(M),var)). For examples of this command,
do EXAMPLE(CHARPOLY); .

COEFMATRIX ([eql, ..], [varl, ...]) Function

the coefficient matrix for the variables varl,... of the system of linear equations eql,...

COL (M,i) Function
gives a matrix of the ith column of the matrix M.

134 Maxima Manual

COLUMNVECTOR (X) Function
a function in the EIGEN package. Do LOAD(EIGEN) to use it. COLUMNVECTOR
takes a LIST as its argument and returns a column vector the components of which are
the elements of the list. The first element is the first component,...etc...(This is useful if you
want to use parts of the outputs of the functions in this package in matrix calculations.)

CONJUGATE (X) Function
a function in the EIGEN package on the SHARE directory. It returns the complex conju-
gate of its argument. This package may be loaded by LOAD(EIGEN); . For a complete
description of this package, do PRINTFILE("eigen.usg"); .

COPYMATRIX (M) Function
creates a copy of the matrix M. This is the only way to make a copy aside from recreating
M elementwise. Copying a matrix may be useful when SETELMX is used.

DETERMINANT (M) Function
computes the determinant of M by a method similar to Gaussian elimination. The form
of the result depends upon the setting of the switch RATMX. There is a special rou-
tine for dealing with sparse determininants which can be used by setting the switches

RATMX:TRUE and SPARSE:TRUE.

DETOUT Variable
default: [FALSE] if TRUE will cause the determinant of a matrix whose inverse is com-
puted to be kept outside of the inverse. For this switch to have an effect DOALLMXOPS
and DOSCMXOPS should be FALSE (see their descriptions). Alternatively this switch
can be given to EV which causes the other two to be set correctly.

DIAGMATRIX (n, x) Function
returns a diagonal matrix of size n by n with the diagonal elements all x. An identity
matrix is created by DIAGMATRIX(n,1), or one may use IDENT(n).

DOALLMXOPS Variable
default: [TRUE] if TRUE all operations relating to matrices are carried out. If it is FALSE
then the setting of the individual DOT switches govern which operations are performed.

DOMXEXPT Variable
default: [TRUE] if TRUE,

YE"MATRIX([1,2],[3,4]) ==>
MATRIX([%E,%E"2], [%E~3,%E"4])

In general, this transformation affects expressions of the form <base>~<power> where
<base> is an expression assumed scalar or constant, and <power> is a list or matrix. This
transformation is turned off if this switch is set to FALSE.

DOMXMXOPS Variable
default: [TRUE] if TRUE then all matrix-matrix or matrix-list operations are carried out
(but not scalar-matrix operations); if this switch is FALSE they are not.

DOMXNCTIMES Variable

default: [FALSE] Causes non-commutative products of matrices to be carried out.

DONTFACTOR Variable
default: [] may be set to a list of variables with respect to which factoring is not to occur.
(It is initially empty). Factoring also will not take place with respect to any variables
which are less important (using the variable ordering assumed for CRE form) than those

on the DONTFACTOR list.

Chapter 26: Matrices and Linear Algebra 135

DOSCMXOPS Variable
default: [FALSE] if TRUE then scalar-matrix operations are performed.

DOSCMXPLUS Variable
default: [FALSE] if TRUE will cause SCALAR + MATRIX to give a matrix answer. This
switch is not subsumed under DOALLMXOPS.

DOTONSCSIMP Variable
default: [TRUE] Causes a non-commutative product of zero and a nonscalar term to be
simplified to a commutative product.

DOTOSIMP Variable
default: [TRUE] Causes a non-commutative product of zero and a scalar term to be
simplified to a commutative product.

DOT1SIMP Variable
default: [TRUE] Causes a non-commutative product of one and another term to be sim-
plified to a commutative product.

DOTASSOC Variable
default: [TRUE] when TRUE causes (A.B).C to simplify to A.(B.C)

DOTCONSTRULES Variable
default: [TRUE] Causes a non-commutative product of a constant and another term to be
simplified to a commutative product. Turning on this flag effectively turns on DOTOSIMP,
DOTONSCSIMP, and DOT1SIMP as well.

DOTDISTRIB Variable
default: [FALSE] if TRUE will cause A.(B+C) to simplify to A.B+A.C

DOTEXPTSIMP Variable
default: [TRUE] when TRUE causes A.A to simplify to A~"2

DOTIDENT Variable
default: [1] The value to be returned by X~"0.

DOTSCRULES Variable
default: [FALSE] when TRUE will cause A.SC or SC.A to simplify to SC*A and A.(SC*B)
to simplify to SC*(A.B)

ECHELON (M) Function
produces the echelon form of the matrix M. That is, M with elementary row operations
performed on it such that the first non-zero element in each row in the resulting matrix
is a one and the column elements under the first one in each row are all zero.

[2 1 -A -5B]
(D2) []
[A B c]

(C3) ECHELON(D2);

—
|

(D3)

l_|ﬁl8l_|l_|l_|f_|l_|
=
N
o
1+
o
-
e
i

136 Maxima Manual

EIGENVALUES (mat) Function
There is a package on the SHARE; directory which contains functions for computing
EIGENVALUES and EIGENVECTORS and related matrix computations. For informa-
tion on it do PRINTFILE(EIGEN,USAGE,SHARE); . EIGENVALUES(mat) takes a
MATRIX as its argument and returns a list of lists the first sublist of which is the list
of eigenvalues of the matrix and the other sublist of which is the list of the multiplici-
ties of the eigenvalues in the corresponding order. [The MACSYMA function SOLVE
is used here to find the roots of the characteristic polynomial of the matrix. Sometimes
SOLVE may not be able to find the roots of the polynomial;in that case nothing in this
package except CONJUGATE, INNERPRODUCT, UNITVECTOR, COLUMNVECTOR
and GRAMSCHMIDT will work unless you know the eigenvalues. In some cases SOLVE
may generate very messy eigenvalues. You may want to simplify the answers yourself
before you go on. There are provisions for this and they will be explained below. (This
usually happens when SOLVE returns a not-so-obviously real expression for an eigenvalue
which is supposed to be real...)] The EIGENVALUES command is available directly from
MACSYMA. To use the other functions you must have loaded in the EIGEN package,
either by a previous call to EIGENVALUES, or by doing LOADFILE("eigen"); .

EIGENVECTORS (MAT) Function
takes a MATRIX as its argument and returns a list of lists the first sublist of which
is the output of the EIGENVALUES command and the other sublists of which are the
eigenvectors of the matrix corresponding to those eigenvalues respectively. This function
will work directly from MACSYMA, but if you wish to take advantage of the flags for
controlling it (see below), you must first load in the EIGEN package from the SHARE; di-
rectory. You may do that by LOADFILE("eigen");. The flags that affect this function are:
NONDIAGONALIZABLE[FALSE] will be set to TRUE or FALSE depending on whether
the matrix is nondiagonalizable or diagonalizable after an EIGENVECTORS command is
executed. HERMITTANMATRIX[FALSE] If set to TRUE will cause the degenerate eigen-
vectors of the hermitian matrix to be orthogonalized using the Gram-Schmidt algorithm.
KNOWNEIGVALS[FALSE] If set to TRUE the EIGEN package will assume the eigenval-
ues of the matrix are known to the user and stored under the global name LISTEIGVALS.
LISTEIGVALS should be set to a list similar to the output of the EEIGENVALUES com-
mand. (The MACSYMA function ALGSYS is used here to solve for the eigenvectors.
Sometimes if the eigenvalues are messy, ALGSYS may not be able to produce a solution.
In that case you are advised to try to simplify the eigenvalues by first finding them us-
ing EIGENVALUES command and then using whatever marvelous tricks you might have
to reduce them to something simpler. You can then use the KNOWNEIGVALS flag to
proceed further.)

EMATRIX (m, n, x, i, j) Function
will create an m by n matrix all of whose elements are zero except for the i,j element which
is x.

ENTERMATRIX (m, n) Function

allows one to enter a matrix element by element with MACSYMA requesting values for
each of the m*n entries.

(C1) ENTERMATRIX(3,3);
Is the matrix 1. Diagonal 2. Symmetric 3. Antisymmetric
4. General

Answer 1, 2, 3 or 4
1;

Row 1 Column 1:

Row 2 Column 2:

Row 3 Column 3: C;
Matrix entered.

Chapter 26: Matrices and Linear Algebra 137

(D) [0 B 0]
[]
[0 O C]
GENMATRIX (array, i2, j2, i1, j1) Function

generates a matrix from the array using array(il,j1) for the first (upper-left) element and
array(i2,j2) for the last (lower-right) element of the matrix. If jl=il then j1 may be
omitted. If jl=il=1 then il and j1 may both be omitted. If a selected element of the
array doesn’t exist a symbolic one will be used.

(C1) HII,J]:=1/(I+J-1)$%
(C2) GENMATRIX(H,3,3);

[1 1]
(1 - -
[2 3]
L]
(1 1 1]
(D2) - - -]
[2 3 4]
L]
(1 1 1]
- - -1
[3 4 5]
GRAMSCHMIDT (X) Function

a function in the EIGEN package. Do LOAD(EIGEN) to use it. GRAMSCHMIDT takes
a LIST of lists the sublists of which are of equal length and not necessarily orthogonal
(with respect to the innerproduct defined above) as its argument and returns a similar list
each sublist of which is orthogonal to all others. (Returned results may contain integers
that are factored. This is due to the fact that the MACSYMA function FACTOR is used
to simplify each substage of the Gram-Schmidt algorithm. This prevents the expressions
from getting very messy and helps to reduce the sizes of the numbers that are produced
along the way.)

HACH (a,b,m,n,) Function
An implementation of Hacijan’s linear programming algorithm is available by doing
BATCH("kach.mc"$. Details of use are available by doing BATCH("kach.dem");

IDENT (n) Function

produces an n by n identity matrix.

INNERPRODUCT (X,Y) Function
a function in the EIGEN package. Do LOAD(EIGEN) to use it. INNERPRODUCT
takes two LISTS of equal length as its arguments and returns their inner (scalar) product
defined by (Complex Conjugate of X).Y (The "dot" operation is the same as the usual
one defined for vectors).

INVERT (matrix) Function
finds the inverse of a matrix using the adjoint method. This allows a user to com-
pute the inverse of a matrix with bfloat entries or polynomials with floating pt. co-
efficients without converting to cre-form. The DETERMINANT command is used
to compute cofactors, so if RATMX is FALSE (the default) the inverse is computed
without changing the representation of the elements. The current implementation

138 Maxima Manual

is inefficient for matrices of high order. The DETOUT flag if true keeps the de-
terminant factored out of the inverse. Note: the results are not automatically ex-
panded. If the matrix originally had polynomial entries, better appearing output can
be generated by EXPAND(INVERT (mat)),DETOUT. If it is desirable to then divide
through by the determinant this can be accomplished by XTHRU(%) or alternatively
from scratch by EXPAND(ADJOINT(mat))/EXPAND(DETERMINANT (mat)). IN-
VERT (mat):=ADJOINT(mat)/ DETERMINANT (mat). See also DESCRIBE("~""); for

another method of inverting a matrix.

LMXCHAR Variable
default: [[] - The character used to display the (left) delimiter of a matrix (see also
RMXCHAR).

MATRIX (rowl, ..., rown) Function

defines a rectangular matrix with the indicated rows. Each row has the form of a list of
expressions, e.g. [A; X**2 Y, 0] is a list of 4 elements. There are a number of MAC-
SYMA commands which deal with matrices, for example: DETERMINANT, CHAR-
POLY, GENMATRIX, ADDCOL, ADDROW, COPYMATRIX, TRANSPOSE, ECHE-
LON, and RANK. There is also a package on the SHARE directory for computing EIGEN-
VALUES. Try DESCRIBE on these for more information. Matrix multiplication is effected
by using the dot operator, ".", which is also convenient if the user wishes to represent
other non-commutative algebraic operations. The exponential of the "." operation is "~~"
. Thus, for a matrix A, A.A = A~"2 and, if it exists, A~"-1 is the inverse of A. The oper-
ations +,-,* ** are all element-by-element operations; all operations are normally carried
out in full, including the . (dot) operation. Many switches exist for controlling simplifica-
tion rules involving dot and matrix-list operations. Options Relating to Matrices: LMX-
CHAR, RMXCHAR, RATMX, LISTARITH, DETOUT, DOALLMXOPS, DOMXEXPT
DOMXMXOPS, DOSCMXOPS, DOSCMXPLUS, SCALARMATRIX, and SPARSE. Do
DESCRIBE(option) for details on them.

MATRIXMAP (fn, M) Function

will map the function fn onto each element of the matrix M.

MATRIXP (exp) Function
is TRUE if exp is a matrix else FALSE.

MATRIX_ELEMENT_ADD Variable
default: [+] - May be set to "?"; may also be the name of a function, or a LAMBDA

expression. In this way, a rich variety of algebraic structures may be simulated. For more
details, do DEMO("matrix.dem1"); and DEMO("matrix.dem2");.

MATRIX_ELEMENT_MULT Variable
default: [*] - May be set to "."; may also be the name of a function, or a LAMBDA
expression. In this way, a rich variety of algebraic structures may be simulated. For more
details, do DEMO("matrix.dem1"); and DEMO("matrix.dem2");

MATRIX_ELEMENT_TRANSPOSE Variable
default: [FALSE] - Other useful settings are TRANSPOSE and NONSCALARS; may
also be the name of a function, or a LAMBDA expression. In this way, a rich variety of

algebraic structures may be simulated. For more details, do DEMO("matrix.dem1"); and
DEMO("matrix.dem2");.

MATTRACE (M) Function
computes the trace [sum of the elements on the main diagonal] of the square matrix M.
It is used by NCHARPOLY, an alternative to MACSYMA’s CHARPOLY. It is used by
doing LOADFILE("nchrpl");

Chapter 26: Matrices and Linear Algebra 139

MINOR (M, i, j) Function

computes the i,j minor of the matrix M. That is, M with row i and column j removed.

NCEXPT (A,B) Function
if an (non-commutative) exponential expression is too wide to be displayed as A~"B it
will appear as NCEXPT(A,B).

NCHARPOLY (M,var) Function
finds the characteristic polynomial of the matrix M with respect to var. This is an alterna-
tive to MACSYMA’s CHARPOLY. NCHARPOLY works by computing traces of powers
of the given matrix, which are known to be equal to sums of powers of the roots of the char-
acteristic polynomial. From these quantities the symmetric functions of the roots can be
calculated, which are nothing more than the coefficients of the characteristic polynomial.
CHARPOLY works by forming the determinant of VAR * IDENT [N] - A. Thus NCHAR-
POLY wins, for example, in the case of large dense matrices filled with integers, since it
avoids polynomial arithmetic altogether. It may be used by doing LOADFILE("nchrpl");

NEWDET (M,n) Function
also computes the determinant of M but uses the Johnson-Gentleman tree minor algo-
rithm. M may be the name of a matrix or array. The argument n is the order; it is
optional if M is a matrix.

NONSCALAR declaration
- makes ai behave as does a list or matrix with respect to the dot operator.

NONSCALARP (exp) Function
is TRUE if exp is a non-scalar, i.e. it contains atoms declared as non-scalars, lists, or
matrices.

PERMANENT (M,n) Function

computes the permanent of the matrix M. A permanent is like a determinant but with no
sign changes.

RANK (M) Function
computes the rank of the matrix M. That is, the order of the largest non-singular subde-
terminant of M. Caveat: RANK may return the wrong answer if it cannot determine that
a matrix element that is equivalent to zero is indeed so.

RATMX Variable
default: [FALSE] - if FALSE will cause determinant and matrix addition, subtraction,
and multiplication to be performed in the representation of the matrix elements and will
cause the result of matrix inversion to be left in general representation. If it is TRUE, the
4 operations mentioned above will be performed in CRE form and the result of matrix
inverse will be in CRE form. Note that this may cause the elements to be expanded
(depending on the setting of RATFAC) which might not always be desired.

ROW (M, i) Function

gives a matrix of the ith row of matrix M.

SCALARMATRIXP Variable
default: [TRUE] - if TRUE, then whenever a 1 x 1 matrix is produced as a result of
computing the dot product of matrices it will be converted to a scalar, namely the only
element of the matrix. If set to ALL, then this conversion occurs whenever a 1 x 1 matrix
is simplified. If set to FALSE, no conversion will be done.

SETELMX (x, i, j, M) Function
changes the i,j element of M to x. The altered matrix is returned as the value. The
notation M[i,j]:x may also be used, altering M in a similar manner, but returning x as the
value.

140 Maxima Manual

SIMILARITYTRANSFORM (MAT) Function
a function in the EIGEN package. Do LOAD(EIGEN) to use it. SIMILARITYTRANS-
FORM takes a MATRIX as its argument and returns a list which is the output of the
UNITEIGENVECTORS command. In addition if the flag NONDIAGONALIZABLE
is FALSE two global matrices LEFTMATRIX and RIGHTMATRIX will be generated.
These matrices have the property that LEFTMATRIX.MAT.RIGHTMATRIX is a diag-
onal matrix with the eigenvalues of MAT on the diagonal. If NONDIAGONALIZABLE
is TRUE these two matrices will not be generated. If the flag HERMITIANMATRIX
is TRUE then LEFTMATRIX is the complex conjugate of the transpose of RIGHTMA-
TRIX. Otherwise LEFTMATRIX is the inverse of RIGHTMATRIX. RIGHTMATRIX is
the matrix the columns of which are the unit eigenvectors of MAT. The other flags (see
DESCRIBE(EIGENVALUES); and DESCRIBE(EIGENVECTORS);) have the same ef-
fects since SIMILARITYTRANSFORM calls the other functions in the package in order
to be able to form RIGHTMATRIX.

SPARSE Variable
default: [FALSE] - if TRUE and if RATMX:TRUE then DETERMINANT will use special
routines for computing sparse determinants.

SUBMATRIX (ml, ..., M, nl, ...) Function
creates a new matrix composed of the matrix M with rows mi deleted, and columns ni
deleted.

TRANSPOSE (M) Function

produces the transpose of the matrix M.

TRIANGULARIZE (M) Function

produces the upper triangular form of the matrix M which needn’t be square.

UNITEIGENVECTORS (MAT) Function
a function in the EIGEN package. Do LOAD(EIGEN) to use it. UNITEIGENVECTORS
takes a MATRIX as its argument and returns a list of lists the first sublist of which is the
output of the EIGENVALUES command and the other sublists of which are the unit eigen-
vectors of the matrix corresponding to those eigenvalues respectively. The flags mentioned
in the description of the EIGENVECTORS command have the same effects in this one as
well. In addition there is a flag which may be useful : KNOWNEIGVECTS[FALSE] - If set
to TRUE the EIGEN package will assume that the eigenvectors of the matrix are known
to the user and are stored under the global name LISTEIGVECTS. LISTEIGVECTS
should be set to a list similar to the output of the EIGENVECTORS command. (If
KNOWNEIGVECTS is set to TRUE and the list of eigenvectors is given the setting of
the flag NONDIAGONALIZABLE may not be correct. If that is the case please set it to
the correct value. The author assumes that the user knows what he is doing and will not
try to diagonalize a matrix the eigenvectors of which do not span the vector space of the
appropriate dimension...)

UNITVECTOR (X) Function
a function in the EIGEN package. Do LOAD(EIGEN) to use it. UNITVECTOR takes a
LIST as its argument and returns a unit list. (i.e. a list with unit magnitude).

VECTORSIMP (vectorexpression) Function
This function employs additional simplifications, together with various optional expansions
according to the settings of the following global flags:

EXPANDALL, EXPANDDOT, EXPANDDOTPLUS, EXPANDCROSS, EXPANDCROSSPLUS,
EXPANDCROSSCROSS, EXPANDGRAD, EXPANDGRADPLUS, EXPANDGRADPROD,
EXPANDDIV, EXPANDDIVPLUS, EXPANDDIVPROD, EXPANDCURL, EXPANDCURLPLUS,
EXPANDCURLCURL, EXPANDLAPLACIAN, EXPANDLAPLACIANPLUS,
EXPANDLAPLACIANPROD.

Chapter 26: Matrices and Linear Algebra 141

All these flags have default value FALSE. The PLUS suffix refers to employing additiv-
ity or distributivity. The PROD suffix refers to the expansion for an operand that is
any kind of product. EXPANDCROSSCROSS refers to replacing p~(q~r) with (p.r)*q-
(p-q)*r, and EXPANDCURLCURL refers to replacing CURL CURL p with GRAD DIV
p + DIV GRAD p. EXPANDCROSS:TRUE has the same effect as EXPANDCROSS-
PLUS:EXPANDCROSSCROSS:TRUE, etc. Two other flags, EXPANDPLUS and EX-
PANDPROD, have the same effect as setting all similarly suffixed flags true. When
TRUE, another flag named EXPANDLAPLACIANTODIVGRAD, replaces the LAPLA-
CIAN operator with the composition DIV GRAD. All of these flags are initially FALSE.
For convenience, all of these flags have been declared EVFLAG. For orthogonal curvilinear
coordinates, the global variables COORDINATES[[X,Y,Z]], DIMENSION|3|, SF[[1,1,1]],
and SFPRODI1] are set by the function invocation

VECT_CROSS Variable
default:[FALSE] - If TRUE allows DIFF(X~Y,T) to work where ~ is defined in
SHARE;VECT (where VECT_CROSS is set to TRUE, anyway.)

ZEROMATRIX (m,n) Function

takes integers m,n as arguments and returns an m by n matrix of 0’s.

" special symbol
- [and | are the characters which MACSYMA uses to delimit a list.

142 Maxima Manual

Chapter 27: Affine 143

27 Affine

27.1 Definitions for Affine

FAST_LINSOLVE (eqns,variables) Function
Solves the linear system of equations EQNS for the variables VARIABLES and returns
a result suitable to SUBLIS. The function is faster than linsolve for system of equations
which are sparse.

GROBNER_BASIS (eqns) Function

Takes as argument a macsyma list of equations and returns a grobner basis for them.
The function POLYSIMP may now be used to simplify other functions relative to the
equations.

GROBNER_BASIS([3*X~2+1,Y*X])$

POLYSIMP(Y~2*X+X"3*9+2)==> -3*x+2

Polysimp(f)==> 0 if and only if f is in the ideal generated by the EQNS ie. if and only if
f is a polynomial combination of the elements of EQNS.

SET_UP_DOT_SIMPLIFICATIONS (eqns,[check-thru-degree]) Function

The eqns are polynomial equations in non commutative variables. The value of CUR-
RENT_VARIABLES is the list of variables used for computing degrees. The equations
must be homogeneous, in order for the procedure to terminate.
If you have checked overlapping simplifications in DOT_SIMPLIFICATIONS above the
degree of f, then the following is true: DOTSIMP(f)==> 0 if and only if f is in the ideal
generated by the EQNS ie. if and only if f is a polynomial combination of the elements of
EQNS.

The degree is that returned by NC_.DEGREE. This in turn is influenced by the weights
of individual variables.

DECLARE_WEIGHT (varl,wtl,var2,wt2,...) Function
Assigns VAR weight WT1, VAR2 weight wt2.. These are the weights used in computing
NC_DEGREE.

NC_DEGREE (poly) Function

Degree of a non commutative polynomial. See DECLARE_WEIGHTS.

DOTSIMP () Function
==> (if and only if f is in the ideal generated by the EQNS ie. if and only if f is a
polynomial combination of the elements of EQNS.

FAST CENTRAL_ELEMENTS (variables,degree) Function
if SET_UP_DOT_SIMPLIFICATIONS has been previously done, finds the central poly-
nomials in the variables in the given degree, For example:

set_up_dot_simplifications([y.x+x.y],3);
fast_central_elements([x,y],2);
ly.y,x.x];

CHECK_OVERLAPS (degree,add-to-simps) Function
checks the overlaps thru degree, making sure that you have sufficient simplification rules
in each degree, for dotsimp to work correctly. This process can be speeded up if you
know before hand what the dimension of the space of monomials is. If it is of finite global
dimension, then HILBERT should be used. If you don’t know the monomial dimensions,
do not specify a RANK_FUNCTIION. An optional third argument RESET, false says
don’t bother to query about resetting things.

144 Maxima Manual

MONO (vari,n) Function
VARI is a list of variables. Returns the list of independent monomials relative to the
current dot_simplifications, in degree N

MONOMIAL_DIMENSIONS (n) Function

Compute the hilbert series through degreen n for the current algebra.

EXTRACT_LINEAR_EQUATIONS (List_nc_polys,monoms) Function
Makes a list of the coefficients of the polynomials in list_nc_polys of the monoms.
MONOMS is a list of noncommutative monomials. The coefficients should be scalars.
Use LIST_NC_MONOMIALS to build the list of monoms.

LIST NC_MONOMIALS (polys_or_list) Function

returns a list of the non commutative monomials occurring in a polynomial or a collection
of polynomials.

PCOEFF (poly monom [variables-to-exclude-from-cof (list-variables Function
monom)))
This function is called from lisp level, and uses internal poly format.

CL-MAXIMA>>(setq me (st-rat #3$x"2*uty+1$))
(#:Y 110 (#:X 2 (#:U 1 1) 0 1))

CL-MAXIMA>>(pcoeff me (st-rat #$x"2$))
(#:U 1 1)

Rule: if a variable appears in monom it must be to the exact power, and if it is in variables
to exclude it may not appear unless it was in monom to the exact power. (pcoeff pol 1 ..)
will exclude variables like substituting them to be zero.

NEW-DISREP (poly) Function

From lisp this returns the general maxima format for an arg which is in st-rat form:

(displa(new-disrep (setq me (st-rat #$x"2*u+y+1$))))

2
Y+UX +1

CREATE_LIST (form,varl,list1,var2,list2,...) Function
Create a list by evaluating FORM with VAR1 bound to each element of LIST1, and for
each such binding bind VAR2 to each element of LIST2,... The number of elements in the
result will be length(list1)*length(list2)*... Each VARn must actually be a symbol-it will
not be evaluated. The LISTn args will be evaluated once at the beginning of the iteration.

(C82) create_listl(x"i,i,[1,3,7]1);
(D82) [X,X"3,X°7]
With a double iteration:

(C79) create_list([i,j],i,[a,b],j,[e,f,h]);
(D79) [[A,E]1,[A,F]1,[A,H],[B,E],[B,F],[B,H]]

Instead of LISTn two args maybe supplied each of which should evaluate to a number.
These will be the inclusive lower and upper bounds for the iteration.

(C81) create_list([i,jl,i,[1,2,3],j,1,1);
(ps1) [[1,1],[2,1]1,([2,2],(8,1],([3,2],[3,3]]

Note that the limits or list for the j variable can depend on the current value of i.

Chapter 27: Affine 145

ALL_DOTSIMP_DENOMS Variable
if its value is FALSE the denominators encountered in getting dotsimps will not be col-
lected. To collect the denoms

ALL_DOTSIMP_DENOMS: [];
and they will be nconc’d onto the end of the list.

146 Maxima Manual

Chapter 28: Tensor 147

28 Tensor

28.1 Introduction to Tensor

- Indicial Tensor Manipulation package. It may be loaded by LOADFILE("itensr"); A
manual for the Tensor packages is available in share/tensor.descr. A demo is available by
DEMO("itenso.dem1"); (and additional demos are in ("itenso.dem2"), ("itenso.dem3") and
following).

- There are two tensor packages in MACSYMA, CTENSR and ITENSR. CTENSR is Com-
ponent Tensor Manipulation, and may be accessed with LOAD(CTENSR); . ITENSR is Indicial
Tensor Manipulation, and is loaded by doing LOAD(ITENSR); A manual for CTENSR AND
ITENSR is available from the LCS Publications Office. Request MIT /LCS/TM-167. In addition,
demos exist on the TENSOR; directory under the filenames CTENSO DEMO1, DEMO2, etc.
and ITENSO DEMO1, DEMO2, etc. Do DEMO("ctenso.dem1"); or DEMO("itenso.dem2");
Send bugs or comments to RP or TENSOR.

28.2 Definitions for Tensor

CANFORM (exp) Function

[Tensor Package] Simplifies exp by renaming dummy indices and reordering all indices
as dictated by symmetry conditions imposed on them. If ALLSYM is TRUE then all
indices are assumed symmetric, otherwise symmetry information provided by DECSYM
declarations will be used. The dummy indices are renamed in the same manner as in the
RENAME function. When CANFORM is applied to a large expression the calculation
may take a considerable amount of time. This time can be shortened by calling RENAME
on the expression first. Also see the example under DECSYM. Note: CANFORM may
not be able to reduce an expression completely to its simplest form although it will always
return a mathematically correct result.

CANTEN (exp) Function
[Tensor Package| Simplifies exp by renaming (see RENAME) and permuting dummy in-
dices. CANTEN is restricted to sums of tensor products in which no derivatives are
present. As such it is limited and should only be used if CANFORM is not capable of
carrying out the required simplification.

CARG (exp) Function
returns the argument (phase angle) of exp. Due to the conventions and restrictions,
principal value cannot be guaranteed unless exp is numeric.

COUNTER Variable

default: [1] determines the numerical suffix to be used in generating the next dummy
index in the tensor package. The prefix is determined by the option DUMMY X[#].

DEFCON (tensorl,<tensor2,tensor3>) Function
gives tensorl the property that the contraction of a product of tensorl and tensor2 results
in tensord with the appropriate indices. If only one argument, tensorl, is given, then the
contraction of the product of tensorl with any indexed object having the appropriate in-
dices (say tensor) will yield an indexed object with that name, i.e.tensor, and with a new
set of indices reflecting the contractions performed. For example, if METRIC: G, then
DEFCON(G) will implement the raising and lowering of indices through contraction with
the metric tensor. More than one DEFCON can be given for the same indexed object;
the latest one given which applies in a particular contraction will be used. CONTRAC-
TIONS is a list of those indexed objects which have been given contraction properties

with DEFCON.

148 Maxima Manual

FLUSH (exp,tensorl,tensor2,...) Function
Tensor Package - will set to zero, in exp, all occurrences of the tensori that have no
derivative indices.

FLUSHD (exp,tensorl,tensor2,...) Function
Tensor Package - will set to zero, in exp, all occurrences of the tensori that have derivative
indices.

FLUSHND (exp,tensor,n) Function

Tensor Package - will set to zero, in exp, all occurrences of the differentiated object tensor
that have n or more derivative indices as the following example demonstrates.

(C1) SHOW(A([I],[J,R],K,R)+A(C[I],[J,R,S],K,R,S));
JRS J R
(D1) A + A
I,KR S I,KR
(C2) SHOW(FLUSHND(D1,A,3));
JR
(D2) A
I,KR

KDELTA (L1,L2) Function
is the generalized Kronecker delta function defined in the Tensor package with L1 the list
of covariant indices and L2 the list of contravariant indices. KDELTA([i],[j]) returns the
ordinary Kronecker delta. The command EV(EXP,KDELTA) causes the evaluation of an
expression containing KDELTA({],[]) to the dimension of the manifold.

LC (L) Function
is the permutation (or Levi-Civita) tensor which yields 1 if the list L consists of an even
permutation of integers, -1 if it consists of an odd permutation, and 0 if some indices in L
are repeated.

LORENTZ (exp) Function
imposes the Lorentz condition by substituting 0 for all indexed objects in exp that have
a derivative index identical to a contravariant index.

MAKEBOX (exp) Function
will display exp in the same manner as SHOW; however, any tensor d’Alembertian oc-
curring in exp will be indicated using the symbol []. For example, [|P([M],[N]) represents
G([J,[LJ])*P([M],[N].LJ).

METRIC (G) Function
specifies the metric by assigning the variable METRIC:G; in addition, the contraction
properties of the metric G are set up by executing the commands DEFCON(G), DEF-
CON(G,G,KDELTA). The variable METRIC, default: [], is bound to the metric, assigned
by the METRIC(g) command.

NTERMSG () Function
gives the user a quick picture of the "size" of the Einstein tensor. It returns a list of pairs
whose second elements give the number of terms in the components specified by the first
elements.

NTERMSRCI () Function
returns a list of pairs, whose second elements give the number of terms in the RICCI
component specified by the first elements. In this way, it is possible to quickly find the
non-zero expressions and attempt simplification.

Chapter 28: Tensor 149

NZETA (2) Function

returns the complex value of the Plasma Dispersion Function for complex Z.
NZETAR(Z) ==> REALPART(NZETA(Z))

NZETAI(Z) returns IMAGPART(NZETA(Z)). This function is related to the complex
error function by

NZETA(Z) = YI*SQRT(%PI)*EXP(-Z"2)*(1-ERF(-%I*Z)).

RAISERIEMANN (dis) Function
returns the contravariant components of the Riemann curvature tensor as array elements

URJ|LJ,K,L]. These are displayed if dis is TRUE.

RATEINSTEIN Variable

default: [| - if TRUE rational simplification will be performed on the non-zero components
of Einstein tensors; if FACRAT:TRUE then the components will also be factored.

RATRIEMAN Variable
- This switch has been renamed RATRIEMANN.

RATRIEMANN Variable
default: [] - one of the switches which controls simplification of Riemann tensors; if TRUE,

then rational simplification will be done; if FACRAT: TRUE then each of the components
will also be factored.

REMCON (tensorl,tensor2,...) Function
removes all the contraction properties from the tensori. REMCON(ALL) removes all
contraction properties from all indexed objects.

RICCICOM (dis) Function
Tensor package) This function first computes the covariant components LRi,j] of the Ricci
tensor (LR is a mnemonic for "lower Ricci"). Then the mixed Ricci tensor is computed
using the contravariant metric tensor. If the value of the argument to RICCICOM is
TRUE, then these mixed components, RICCI[i,j] (the index i is covariant and the index j
is contravariant), will be displayed directly. Otherwise, RICCICOM(FALSE) will simply
compute the entries of the array RICCI[i,j] without displaying the results.

RINVARIANT () Function

Tensor package) forms the invariant obtained by contracting the tensors
R[i,j,k,1]*UR[1i,],k,1].

This object is not

automatically simplified since it can be very large.

SCURVATURE () Function
returns the scalar curvature (obtained by contracting the Ricci tensor) of the Riemannian
manifold with the given metric.

SETUP () Function

this has been renamed to TSETUP(); Sets up a metric for Tensor calculations.

WEYL (dis) Function
computes the Weyl conformal tensor. If the argument dis is TRUE, the non-zero compo-
nents W[L,J,K,L] will be displayed to the user. Otherwise, these components will simply
be computed and stored. If the switch RATWEYL is set to TRUE, then the components
will be rationally simplified; if FACRAT is TRUE then the results will be factored as well.

150 Maxima Manual

Chapter 29: Ctensor 151

29 Ctensor

29.1 Introduction to Ctensor

- Component Tensor Manipulation Package. To use the CTENSR package, type TSETUP();
which automatically loads it from within MACSYMA (if it is not already loaded) and then
prompts the user to input his coordinate system. The user is first asked to specify the dimension
of the manifold. If the dimension is 2, 3 or 4 then the list of coordinates defaults to [X,Y], [X,Y,Z]
or [X,Y,Z,T] respectively. These names may be changed by assigning a new list of coordinates
to the variable OMEGA (described below) and the user is queried about this. ** Care must be
taken to avoid the coordinate names conflicting with other object definitions **. Next, the user
enters the metric either directly or from a file by specifying its ordinal position. As an example
of a file of common metrics, see TENSOR;METRIC FILE. The metric is stored in the matrix
LG. Finally, the metric inverse is computed and stored in the matrix UG. One has the option of
carrying out all calculations in a power series. A sample protocol is begun below for the static,
spherically symmetric metric (standard coordinates) which will be applied to the problem of
deriving Einstein’s vacuum equations (which lead to the Schwarzschild solution) as an example.
Many of the functions in CTENSR will be displayed for the standard metric as examples.

(C2) TSETUP();

Enter the dimension of the coordinate system:
4;

Do you wish to change the coordinate names?
N;

Do you want to

1. Enter a new metric?

2. Enter a metric from a file?

3. Approximate a metric with a Taylor series?
Enter 1, 2 or 3

13

Is the matrix 1. Diagonal 2. Symmetric 3. Antisymmetric 4. General
Answer 1, 2, 3 or 4

1;

Row 1 Column 1: A;

Row 2 Column 2: X~"2;

Row 3 Column 3: X 2%SIN(Y)"2;
Row 4 Column 4: -D;

Matrix entered.

Enter functional dependencies with the DEPENDS function or ’N’ if none
DEPENDS([A,D],X);

Do you wish to see the metric?

Y;
[A O 0 0 1
[]
[2]
[0 X 0 0 1]
[]
[2 2]
[0 O X SIN (Y) 0 1
[]
[LO O 0 - D]

Do you wish to see the metric inverse?
N;

152 Maxima Manual

29.2 Definitions for Ctensor

CHR1 ([i,j,k]) Function
yields the Christoffel symbol of the first kind via the definition

(g +g -g)/2 .
ik, j jk,1i i,k
To evaluate the Christoffel symbols for a particular metric, the variable METRIC must
be assigned a name as in the example under CHR2.

CHR2 ([i,j],[k]) Function
yields the Christoffel symbol of the second kind defined by the relation
ks
CHR2([i,j],[k]) =g (g +g -g)/2
is,] js,1i ij,s
CHRISTOF (arg) Function

A function in the CTENSR (Component Tensor Manipulation) package. It computes the
Christoffel symbols of both kinds. The arg determines which results are to be immediately
displayed. The Christoffel symbols of the first and second kinds are stored in the arrays
LCS[i,j,k] and MCSJi,j,k] respectively and defined to be symmetric in the first two indices.
If the argument to CHRISTOF is LCS or MCS then the unique non-zero values of LCS[i,j k|
or MCS]Ji,j,k], respectively, will be displayed. If the argument is ALL then the unique non-
zero values of LCS[i,j,k] and MCS][i,j, k] will be displayed. If the argument is FALSE then
the display of the elements will not occur. The array elements MCS[i,j,k] are defined in
such a manner that the final index is contravariant.

COVDIFF (exp,vl,v2,...) Function
yields the covariant derivative of exp with respect to the variables vi in terms of the
Christoffel symbols of the second kind (CHR2). In order to evaluate these, one should use
EV(exp,CHR2).

CURVATURE ([i,j,k,[1]) Function

Indicial Tensor Package) yields the Riemann curvature tensor in terms of the Christoffel
symbols of the second kind (CHR2). The following notation is used:

h h h %1 h
CURVATURE = - CHR2 - CHR2 CHR2 + CHR2
ijk ik,j VAR ik ig.k
h %1
+ CHR2 CHR2
%1 k ij
DIAGMETRIC Variable

default:[] - An option in the CTENSR (Component Tensor Manipulation) package. If
DIAGMETRIC is TRUE special routines compute all geometrical objects (which contain
the metric tensor explicitly) by taking into consideration the diagonality of the metric.
Reduced run times will, of course, result. Note: this option is set automatically by
TSETUP if a diagonal metric is specified.

DIM Variable
default:[4] - An option in the CTENSR (Component Tensor Manipulation) package. DIM
is the dimension of the manifold with the default 4. The command DIM:N; will reset the
dimension to any other integral value.

Chapter 29: Ctensor 153

EINSTEIN (dis) Function
A function in the CTENSR (Component Tensor Manipulation) package. EINSTEIN com-
putes the mixed Einstein tensor after the Christoffel symbols and Ricci tensor have been
obtained (with the functions CHRISTOF and RICCICOM). If the argument dis is TRUE,
then the non-zero values of the mixed Einstein tensor G[i,j] will be displayed where j is
the contravariant index. RATEINSTEIN[TRUE] if TRUE will cause the rational simplifi-
cation on these components. If RATFAC[FALSE] is TRUE then the components will also
be factored.

LRICCICOM (dis) Function
A function in the CTENSR (Component Tensor Manipulation) package. LRICCICOM
computes the covariant (symmetric) components LR[i,j] of the Ricci tensor. If the argu-
ment dis is TRUE, then the non-zero components are displayed.

MOTION (dis) Function
A function in the CTENSR (Component Tensor Manipulation) package. MOTION com-
putes the geodesic equations of motion for a given metric. They are stored in the array
EM][i]. If the argument dis is TRUE then these equations are displayed.

OMEGA Variable
default:[] - An option in the CTENSR (Component Tensor Manipulation) package.
OMEGA assigns a list of coordinates to the variable. While normally defined when
the function TSETUP is called, one may redefine the coordinates with the assignment
OMEGA:[j1,j2,...jn] where the j’s are the new coordinate names. A call to OMEGA will
return the coordinate name list. Also see DESCRIBE(TSETUP); .

RIEMANN (dis) Function
A function in the CTENSR (Component Tensor Manipulation) Package. RIEMANN
computes the Riemann curvature tensor from the given metric and the corresponding
Christoffel symbols. If dis is TRUE, the non-zero components RJi,j,k,l] will be displayed.
All the indicated indices are covariant. As with the Einstein tensor, various switches set by
the user control the simplification of the components of the Riemann tensor. If RATRIE-
MAN|TRUE] is TRUE then rational simplification will be done. If RATFAC[FALSE] is
TRUE then each of the components will also be factored.

TRANSFORM Function
- The TRANSFORM command in the CTENSR package has been renamed to TTRANS-
FORM.

TSETUP () Function

A function in the CTENSR (Component Tensor Manipulation) package which automat-
ically loads the CTENSR package from within MACSYMA (if it is not already loaded)
and then prompts the user to make use of it. Do DESCRIBE(CTENSR); for more details.

TTRANSFORM (matrix) Function
A function in the CTENSR (Component Tensor Manipulation) package which will perform
a coordinate transformation upon an arbitrary square symmetric matrix. The user must
input the functions which define the transformation. (Formerly called TRANSFORM.)

154 Maxima Manual

Chapter 30: Series 155

30 Series

30.1 Introduction to Series

Maxima contains functions Taylor and Powerseries for finding the series of differentiable
functions. It also has tools such as Nusum capable of finding the closed form of some series.
Operations such as addition and multiplication work as usual on series. This section presents
the various global various variables which control the expansion.

30.2 Definitions for Series

CAUCHYSUM Variable
default: [FALSE] - When multiplying together sums with INF as their upper limit, if SUM-
EXPAND is TRUE and CAUCHYSUM is set to TRUE then the Cauchy product will be
used rather than the usual product. In the Cauchy product the index of the inner summa-

tion is a function of the index of the outer one rather than varying independently. That is:
SUM(F(I),1,0,INF)*SUM(G(J),J,0,INF) becomes SUM(SUM(F(I)*G(J-1),1,0,J),J,0,INF)

DEFTAYLOR (function, exp) Function
allows the user to define the Taylor series (about 0) of an arbitrary function of one variable
as exp which may be a polynomial in that variable or which may be given implicitly as

a power series using the SUM function. In order to display the information given to
DEFTAYLOR one can use POWERSERIES(F(X),X,0). (see below).

(C1) DEFTAYLOR(F(X) ,X**2+SUM(X**I/ (2**xI*I!%*2)

I1,4,INF));
(b [F]
(C2) TAYLOR(%E#**SQRT(F(X)),X,0,4);
2 3 4
X 3073 X 12817 X
(D2)/R/ 1 +X+ -+ ————— + - +
2 18432 307200
MAXTAYORDER Variable

default: [TRUE] - if TRUE, then during algebraic manipulation of (truncated) Taylor
series, TAYLOR will try to retain as many terms as are certain to be correct.

NICEINDICES (expr) Function
will take the expression and change all the indices of sums and products to something easily
understandable. It makes each index it can "I" | unless "I" is in the internal expression,
in which case it sequentially tries J,K,L,M,N 10,I11,12,13,14,... until it finds a legal index.

NICEINDICESPREF Variable
default: [I,J,K,L,M,N] - the list which NICEINDICES uses to find indices for sums and
products. This allows the user to set the order of preference of how NICEINDICES
finds the "nice indices". E.g. NICEINDICESPREF:[Q,R,S,T,INDEX]$. Then if
NICEINDICES finds that it cannot use any of these as indices in a particular summation,

it uses the first as a base to try and tack on numbers. Here, if the list is exhausted, QO,
then Q1, etc, will be tried.

NUSUM (exp,var,low,high) Function
performs indefinite summation of exp with respect to var using a decision procedure due
to R.W. Gosper. exp and the potential answer must be expressible as products of nth
powers, factorials, binomials, and rational functions. The terms "definite" and "indefinite

156

PADE (taylor-series,num-deg-bound,denom-deg-bound)

POWERDISP

POWERSERIES (exp, var, pt)

Maxima Manual

summation" are used analogously to "definite" and "indefinite integration". To sum
indefinitely means to give a closed form for the sum over intervals of variable length, not
just e.g. 0 to inf. Thus, since there is no formula for the general partial sum of the
binomial series, NUSUM can’t do it.

returns a list of all rational functions which have the given taylor-series expansion where
the sum of the degrees of the numerator and the denominator is less than or equal to the
truncation level of the power series, i.e. are "best" approximants, and which additionally
satisfy the specified degree bounds. Its first argument must be a univariate taylor-series;
the second and third are positive integers specifying degree bounds on the numerator and
denominator. PADE’s first argument can also be a Laurent series, and the degree bounds
can be INF which causes all rational functions whose total degree is less than or equal to
the length of the power series to be returned. Total degree is num-degree + denom-degree.
Length of a power series is "truncation level" + 1 - minimum(0,"order of series").

(C15) ff:taylor(1+x+x"2+x"3,x,0,3);

2 3
(D15) /T/ 1+X+X +X +.
(C16) pade(ff,1,1);
1
(D16) [- -]
X -1

(c1) ff:taylor(-(83787+X"10-45552%X"9-187296%X"8
+387072*X " 7+86016*X~6-1507328*X"5
+1966080%X " 4+4194304%X"~3-25165824%X "2
+67108864*X-134217728)

/134217728,%,0,10) ;

(C25) PADE(ff,4,4);

(D25) T[]

There is no rational function of degree 4 numerator/denominator, with this power series
expansion. You must in general have degree of the numerator and degree of the denomina-
tor adding up to at least the degree of the power series, in order to have enough unknown
coefficients to solve.

(C26) PADE(ff,5,5);
(D26) [-(520256329%X"5-96719020632*X~4-489651410240%X"3
-1619100813312%X"2 -2176885157888%X-2386516803584)
/ (47041365435%X~5+381702613848%X"4+1360678489152*X"3
+2856700692480%X "2
+3370143559680%X+2386516803584)]

default: [FALSE] - if TRUE will cause sums to be displayed with their terms in the
reverse order. Thus polynomials would display as truncated power series, i.e., with the
lowest power first.

generates the general form of the power series expansion for exp in the variable var about
the point pt (which may be INF for infinity). If POWERSERIES is unable to expand exp,
the TAYLOR function may give the first several terms of the series. VERBOSE[FALSE]
- if TRUE will cause comments about the progress of POWERSERIES to be printed as
the execution of it proceeds.

(C1) VERBOSE:TRUE$
(C2) POWERSERIES(LOG(SIN(X)/X),X,0);

Can’t expand
LOG(SIN(X))

Function

Variable

Function

Chapter 30: Series 157

So we’ll try again after applying the rule:

d
/ -= (SIN(X))
[ax
LOG(SIN(X)) = I ——————————- dx
1 SIN(X)
/
In the first simplification we have returned:
/
L
I COT(X) dX - LOG(X)
]
/
INF
==== I1 2 1I1 2 11
\ -1 2 BERN(2 I1) X
> ______________________________
/ I1 (2 I1)!
I1 =1
(D2) mmmmmmm e
2
PSEXPAND Variable

default: [FALSE] - if TRUE will cause extended rational function expressions to display
fully expanded. (RATEXPAND will also cause this.) If FALSE, multivariate expressions
will be displayed just as in the rational function package. If PSEXPAND:MULTI, then
terms with the same total degree in the variables are grouped together.

REVERT (expression,variable) Function
Does reversion of Taylor Series. "Variable" is the variable the original Taylor expansion
is in. Do LOAD(REVERT) to access this function. Try

REVERT2 (expression,variable,hipower)

also. REVERT only works on expansions around 0.

SRRAT (exp) Function
this command has been renamed to TAYTORAT.

TAYLOR (exp, var, pt, pow) Function
expands the expression exp in a truncated Taylor series (or Laurent series, if required) in
the variable var around the point pt. The terms through (var-pt)**pow are generated. If
exp is of the form f(var)/g(var) and g(var) has no terms up to degree pow then TAYLOR
will try to expand g(var) up to degree 2*pow. If there are still no non-zero terms TAY-
LOR will keep doubling the degree of the expansion of g(var) until reaching pow*2**n
where n is the value of the variable TAYLORDEPTH|3]. If MAXTAYORDER[FALSE] is
set to TRUE, then during algebraic manipulation of (truncated) Taylor series, TAYLOR
will try to retain as many terms as are certain to be correct. Do EXAMPLE(TAYLOR);
for examples. TAYLOR(exp,[varl,ptl,ordl],[var2,pt2,ord2],...) returns a truncated power
series in the variables vari about the points pti, truncated at ordi. PSEXPAND[FALSE] if
TRUE will cause extended rational function expressions to display fully expanded. (RA-
TEXPAND will also cause this.) If FALSE, multivariate expressions will be displayed just
as in the rational function package. If PSEXPAND:MULTI, then terms with the same
total degree in the variables are grouped together. TAYLOR(exp, [varl, var2, . . .|, pt,
ord) where each of pt and ord may be replaced by a list which will correspond to the list

158 Maxima Manual

of variables. that is, the nth items on each of the lists will be associated together. TAY-
LOR(exp, [x,pt,ord, ASYMP]) will give an expansion of exp in negative powers of (x-pt).
The highest order term will be (x-pt)~(-ord). The ASYMP is a syntactic device and not
to be assigned to. See also the TAYLOR_LOGEXPAND switch for controlling expansion.

TAYLORDEPTH Variable
default: [3] - If there are still no non-zero terms TAYLOR will keep doubling the degree
of the expansion of g(var) until reaching pow*2**n where n is the value of the variable
TAYLORDEPTH]3].

TAYLORINFO (exp) Function
returns FALSE if exp is not a Taylor series. Otherwise, a list of lists is returned describing
the particulars of the Taylor expansion. For example,

(C3) TAYLOR((1-Y"2)/(1-X),X,0,3,[Y,A,INF]);

2 2
(D3)/R/ 1 - A -2A (Y -4) - (Y -4
2 2
+ (1 -4 -2A((Y-4A)-((-48)KX
2 2 2
+ (1 -4 -2A((Y-A4A)-(Y-4))KX
2 2 3
+ (1 -4 -2A((0-4A)-((0-1)KX
O
(C4) TAYLORINFO(D3);
(D4) (LY, A, INF], [X, O, 3]]
TAYLORP (exp) Function

a predicate function which returns TRUE if and only if the expression ’exp’ is in Taylor
series representation.

TAYLOR_LOGEXPAND Variable
default: [TRUE] controls expansions of logarithms in TAYLOR series. When TRUE all
log’s are expanded fully so that zero-recognition problems involving logarithmic identities
do not disturb the expansion process. However, this scheme is not always mathematically
correct since it ignores branch information. If TAYLOR_LOGEXPAND is set to FALSE,
then the only expansion of log’s that will occur is that necessary to obtain a formal power
series.

TAYLOR_ORDER_COEFFICIENTS Variable
default: [TRUE] controls the ordering of coefficients in the expression. The default
(TRUE) is that coefficients of taylor series will be ordered canonically.

TAYLOR_SIMPLIFIER Function

- A function of one argument which TAYLOR uses to simplify coefficients of power series.

TAYLOR_TRUNCATE_POLYNOMIALS Variable
default: [TRUE] When FALSE polynomials input to TAYLOR are considered to have infi-
nite precison; otherwise (the default) they are truncated based upon the input truncation
levels.

TAYTORAT (exp) Function
converts exp from TAYLOR form to CRE form, i.e. it is like RAT(RATDISREP (exp))
although much faster.

Chapter 30: Series 159

TRUNC (exp) Function
causes exp which is in general representation to be displayed as if its sums were truncated
Taylor series. E.g. compare EXP1:X"2+X+1; with EXP2: TRUNC(X~2+X+1); . Note that
IS(EXP1=EXP2); gives TRUE.

UNSUM (fun,n) Function
is the first backward difference fun(n) - fun(n-1).

(C1) G(P):=P*4"N/BINOMIAL(2%N,N);

N
P4
(D1) G(P) 1= —-——m——mm——m -
BINOMIAL(2 N, N)
(C2) G(N~4);
4 N
N 4
627 I e e

BINOMIAL(2 N, N)
(C3) NUSUM(D2,N,0,N);

4 3 2 N
2 (N+1) (B3N + 112 N + 18 N - 22 N + 3) 4 2
(D3) e
693 BINOMIAL(2 N, N) 3117
(C4) UNSUM(%,N);
4 N
N 4
7
BINOMIAL(2 N, N)
VERBOSE Variable

default: [FALSE] - if TRUE will cause comments about the progress of POWERSERIES
to be printed as the execution of it proceeds.

160 Maxima Manual

Chapter 31: Number Theory 161

31 Number Theory

31.1 Definitions for Number Theory

BERN (x) Function
gives the Xth Bernoulli number for integer X. ZEROBERN[TRUE] if set to FALSE ex-
cludes the zero BERNOULLI numbers. (See also BURN).

BERNPOLY (v, n) Function

generates the nth Bernoulli polynomial in the variable v.

BFZETA (exp,n) Function
BFLOAT version of the Riemann Zeta function. The 2nd argument is how many digits to

retain and return, it’s a good idea to request a couple of extra. This function is available
by doing LOAD(BFFAC); .

BGZETA (S, FPPREC) Function
BGZETA is like BZETA, but avoids arithmetic overflow errors on large arguments, is faster
on medium size arguments (say S=55, FPPREC=69), and is slightly slower on small argu-
ments. It may eventually replace BZETA. BGZETA is available by doing LOAD(BFAC);.

BHZETA (S,H,FPPREC) Function
gives FPPREC digits of

SUM((K+H) "-S,K,0, INF)
This is available by doing LOAD(BFFAC);.

BINOMIAL (X, Y) Function
the binomial coefficient X*(X-1)*..*(X-Y+1)/Y!. If X and Y are integers, then the nu-
merical value of the binomial coefficient is computed. If Y, or the value X-Y, is an integer,
the binomial coefficient is expressed as a polynomial.

BURN (N) Function
is like BERN(N), but without computing all of the uncomputed Bernoullis of smaller
index. So BURN works efficiently for large, isolated N. (BERN(402) takes about 645
secs vs 13.5 secs for BURN(402). BERN’s time growth seems to be exponential, while
BURN’s is about cubic. But if next you do BERN(404), it only takes 12 secs, since BERN
remembers all in an array, whereas BURN(404) will take maybe 14 secs or maybe 25,
depending on whether MACSYMA needs to BELOAT a better value of %PI.) BURN is
available by doing LOAD(BFFAC);. BURN uses an observation of WGD that (rational)
Bernoulli numbers can be approximated by (transcendental) zetas with tolerable efficiency.

BZETA Function
- This function is obsolete, see BFZETA.

CF (exp) Function
converts exp into a continued fraction. exp is an expression composed of arithmetic opera-
tors and lists which represent continued fractions. A continued fraction a+1/(b+1/(c+...))
is represented by the list [a,b,c,...]. a,b,c,.. must be integers. Exp may also involve
SQRT(n) where n is an integer. In this case CF will give as many terms of the continued
fraction as the value of the variable CFLENGTH][1] times the period. Thus the default
is to give one period. (CF binds LISTARITH to FALSE so that it may carry out its
function.)

162 Maxima Manual

CFDISREP (list) Function
converts the continued fraction represented by list into general representation.
(C1) CF([1,2,-3]1+[1,-2,11);
(Dl) [1 E) 1) 1 E) 2]
(C2) CFDISREP(%);

(D2) 1+ ==

CFEXPAND (x) Function
gives a matrix of the numerators and denominators of the next-to-last and last convergents
of the continued fraction x.

(C1) CF(SQRT(3));
(Dl) [1’ 1) 2’ 1’ 2’ 1’ 2) 1]
(C2) CFEXPAND (%) ;

[71 97]
(D2) []
[41 56]
(c3) D2[1,2]1/D2[2,2] ,NUMER;
(D3) 1.7321429
CFLENGTH Variable

default: [1] controls the number of terms of the continued fraction the function CF will
give, as the value CFLENGTH[1] times the period. Thus the default is to give one period.

CGAMMA Function
- The Gamma function in the complex plane. Do LOAD(CGAMMA) to use these func-
tions. Functions Cgamma, Cgamma2, and LogCgamma2. These functions evaluate the
Gamma function over the complex plane using the algorithm of Kuki, CACM algorithm
421. Calculations are performed in single precision and the relative error is typically
around 1.0E-7; evaluation at one point costs less than 1 msec. The algorithm provides for
an error estimate, but the Macsyma implementation currently does not use it. Cgamma
is the general function and may be called with a symbolic or numeric argument. With
symbolic arguments, it returns as is; with real floating or rational arguments, it uses the
Macsyma Gamma function; and for complex numeric arguments, it uses the Kuki algo-
rithm. Cgamma2 of two arguments, real and imaginary, is for numeric arguments only;
LogCgamma2 is the same, but the log-gamma function is calculated. These two functions
are somewhat more efficient.

CGAMMA?2 Function
- See CGAMMA.
DIVSUM (n,k) Function

adds up all the factors of n raised to the kth power. If only one argument is given then k
is assumed to be 1.

EULER (X) Function
gives the Xth Euler number for integer X. For the Euler-Mascheroni constant, see

%GAMMA.

Chapter 31: Number Theory 163

FACTORIAL (X) Function
The factorial function. FACTORIAL(X) = X! . See also MINFACTORIAL and FACT-
COMB. The factorial operator is !, and the double factorial operator is !!.

FIB (X) Function
the Xth Fibonacci number with FIB(0)=0, FIB(1)=1, and FIB(-N)=(-1)"(N+1) *FIB(N).
PREVFIB is FIB(X-1), the Fibonacci number preceding the last one computed.

FIBTOPHI (exp) Function
converts FIB(n) to its closed form definition. This involves the constant %PHI (=
(SQRT(5)+1)/2 = 1.618033989). If you want the Rational Function Package to know
About %PHI do TELLRAT (%PHI~2-%PHI-1)$ ALGEBRAIC:TRUES .

INRT (X,n) Function
takes two integer arguments, X and n, and returns the integer nth root of the absolute
value of X.

JACOBI (p,q) Function

is the Jacobi symbol of p and q.

LCM (expl,exp2,...) Function
returns the Least Common Multiple of its arguments. Do LOAD(FUNCTS); to access
this function.

MAXPRIME Variable
default: [489318] - the largest number which may be given to the PRIME(n) command,
which returns the nth prime.

MINFACTORIAL (exp) Function
examines exp for occurrences of two factorials which differ by an integer. It then turns
one into a polynomial times the other. If exp involves binomial coefficients then they will
be converted into ratios of factorials.

(C1) N!'/(N+1)!;

N!
o ==
(N + 1)!
(C2) MINFACTORIAL(%);
1
@ ===
N+1
PARTFRAC (exp, var) Function

expands the expression exp in partial fractions with respect to the main variable, var.
PARTFRAC does a complete partial fraction decomposition. The algorithm employed is
based on the fact that the denominators of the partial fraction expansion (the factors of
the original denominator) are relatively prime. The numerators can be written as linear
combinations of denominators, and the expansion falls out. See EXAMPLE(PARTFRAC);
for examples.

PRIME (n) Function
gives the nth prime. MAXPRIME[489318] is the largest number accepted as argument.
Note: The PRIME command does not work in maxima, since it required a large file of
primes, which most users do not want. PRIMEP does work however.

164 Maxima Manual

PRIMEP (n) Function
returns TRUE if n is a prime, FALSE if not.
QUNIT (n) Function

gives the principal unit of the real quadratic number field SQRT(n) where n is an integer,
i.e. the element whose norm is unity. This amounts to solving Pell’s equation A**2-

n*B**2=1.
(C1) QUNIT(17);
(D1) SQRT (17)+4
(C2) EXPAND(%*(SQRT(17)-4));
(D2) 1

TOTIENT (n)

Function
is the number of integers less than or equal to n which are relatively prime to n.

ZEROBERN Variable

default: [TRUE] - if set to FALSE excludes the zero BERNOULLI numbers. (See the
BERN function.)

ZETA (X) Function
gives the Riemann zeta function for certain integer values of X.
ZETA%PI Variable

default: [TRUE] - if FALSE, suppresses ZETA(n) giving coeff*%PI"n for n even.

Chapter 32: Symmetries 165

32 Symmetries

32.1 Definitions for Symmetries

COMP2PUI (n, I) Function
re’alise le passage des fonctions syme’triques comple‘tes, donnee’s dans la liste 1, aux
fonctions syme’triques e’le’'mentaires de 0 a‘ n. Si la liste 1 contient moins de n+1 e’le’'ments
les valeurs formelles viennent la completer. Le premier e’le’'ment de la liste 1 donne le
cardinal de I'alphabet si il existe, sinon on le met e’gal a n.

COMP2PUI(3,[4,g]1);
2 3
(4, g, - g +2h2, g -3 h2 g+ 3 h3]

CONT2PART (pc,lvar) Function
rend le polyno~me partitionne’ associe’ a‘ la forme contracte’e pc dont les variables sont
dans lvar.

pC : 2%a”3*b*x"4*y + x"5$
CONT2PART (pc, [x,y]1);
3
[[2a b, 4, 11, [1, 5]]

Autres fonctions de changements de repre’sentations :
CONTRACT, EXPLOSE, PART2CONT, PARTPOL, TCONTRACT, TPARTPOL.

CONTRACT (psym,lvar) Function
rend une forme contracte’e (i.e. un mono~me par orbite sous laction du groupe
syme’trique) du polyno~me psym en les variables contenues dans la liste lvar. La fonc-
tion EXPLOSE re’alise 'ope’ration inverse. La fonction TCONTRACT teste en plus la
syme’trie du polyno~me.

psym : EXPLOSE(2%a”3*b*x~4x*y, [x,y,z]);

3 4 3 4 3 4
2a byz +2a bxz +2a by z
3 4 3 4 3 4
+2a bx z+2a bxy +2a bx y

CONTRACT (psym, [x,y,z]);

3 4
2a bx y

Autres fonctions de changements de repre’sentations :
CONT2PART, EXPLOSE, PART2CONT, PARTPOL, TCONTRACT, TPARTPOL.

DIRECT ([P1,...,Pn],y,f,[lvarl,...,Ilvarn]) Function
calcul I'image directe (voir M. GIUSTL,D. LAZARD et A. VALIBOUZE, ISSAC 1988,
Rome) associe’e a‘ la fonction f, en les listes de variables lvarl,...,lvarn, et aux polyno~mes
P1,...,Pn d’une variable y. l'arite’ de la fonction f est importante pour le calcul. Ainsi, si
I’expression de f ne depend pas d’une variable, non seulement il est inutile de donner cette
variable mais cela diminue conside’rablement lees calculs si on ne le fait pas.

166

Maxima Manual

DIRECT([z"2 - el*x z + e2, z"2 - fi*x z + £2], z, bxv + a*u,
[[u, v], [a, bl]);

2 2 2
z —el f1 z-4e2 £f2 + el f2 + e2 f1

DIRECT([z"3-el*z"2+e2*z-e3,z"2 - flx z + £f2], z, b*v + a*u,
[[u, vl, [a, bl1);

6 5 4 2 4 2 4
Y -2E1F1lY -6E2F2Y +2E1 F2Y +2E2F1 Y

2 2 4
+E1 F1 Y

3 3 3 3 3 3
+ 9E3F1F2Y +5E1E2F1F2Y -2E1 F1F2Y -2E3F1 Y

3 3 2 2 2 2 2 2 4 2 2
-2E1E2F1 Y +9E2 F2 Y -6E1 E2F2 Y +E1 F2 Y

2 2 2 2 2 2 2 2
-9E1E3F1 F2Y -6E2 F1 F2Y +3E1l E2F1 F2Y

4 2
+ 2El1 E3F1 Y

2 4 2 2 2 2
+E2 F1 Y -27E2E3F1F2 Y+ 9El E3F1F2 Y

2 2
+ 3E1E2 F1F2 Y

3 2 3 2 3
- El1 E2F1F2 Y+ 15 E2E3F1 F2Y-2El E3F1 F2Y

2 3
- E1E2 F1 F2Y

5 2 3 3 3 3
- 2E2E3F1 Y -27E3 F2 + 18 E1 E2 E3 F2 - 4 E1 E3 F2

2 2 3 2 2 2 2 2 3 2 2
+E1 E2 F2 + 27 E3 F1 F2 -9 E1E2E3F1 F2 + E1 E3F1 F2

3 2 2 2 4 4 2 6
+E2 F1 F2 - 9E3 F1 F2 + E1 E2 E3F1 F2 + E3 F1

Recherche du polyno~me dont les racines sont les somme a+u ou a est racine de z~2 - el*
z + e2 et u est racine de z°2 - f1* z + £2

DIRECT([z"2 - elx z + e2,z°2 - fi1x z + £2], z,a+u, [[ul,[al]);

Chapter 32: Symmetries 167

4 3 3 2 2 2 2 2
Y -2F1Y -2E1Y +2F2Y +F1 Y +3E1F1Y +2E2Y

2 2
+E1 Y
2 2
2F1F2Y-2E1F2Y-E1F1l Y-2E2F1Y-E1 F1Y

2
2 E1 E2Y + F2

2 2 2
El1 F1 F2 -2E2F2+El F2+ E2F1 + E1 E2 F1 + E2

+

DIRECT peut prendre deux drapeaux possibles : ELEMENTAIRES et PUISSANCES
(valeur par de’faut) qui permettent de de’composer les polyno~mes syme’triques apparais-
sant dans ce calcul par les fonctions syme’triques e’le’mentaires ou les fonctions puissances
respectivement.

fonctions de SYM utilis’ees dans cette fonction :

MULTI_ORBIT (donc ORBIT), PUI_DIRECT, MULTI_ELEM
(donc ELEM), MULTI_PUI (donc PUI), PUI2ELE, ELE2PUI
(si le drapeau DIRECT est a‘ PUISSANCES).

ELE2COMP (m,) Function
passe des fonctions syme’triques e’le’'mentaires aux fonctions comple‘tes. Similaire a‘

COMP2ELE et COMP2PUI
autres fonctions de changements de bases :

COMP2ELE, COMP2PUI, ELE2PUI, ELEM, MON2SCHUR, MULTI_ELEM,
MULTI_PUI, PUI, PUI2COMP, PUI2ELE, PUIREDUC, SCHUR2COMP.

ELE2POLYNOME (1,2) Function
donne le polyno~me en z dont les fonctions syme’triques e’le’'mentaires des racines sont
dans la liste 1. 1=[n,el,...,en] ou‘ n est le degre’ du polyno~me et ei la i-ie‘'me fonction
syme’trique e’le’'mentaire.

ele2polynome([2,el,e2],2);

2
Z -E1Z+ E2

polynome2ele(x"7-14%x"5 + 56*x"3 - 56%X + 22,%);

[7, o, - 14, 0, 56, 0, - 56, - 22]
ele2polynome([7, O, - 14, 0, 56, 0, - 56, - 22],x);

7 5 3
X - 14X +56X -56X+ 22

la re’ciproque : POLYNOME2ELE(p,z)
autres fonctions a‘ voir :

POLYNOME2ELE, PUI2POLYNOME.

168 Maxima Manual

ELE2PUI (m, I) Function
passe des fonctions syme’triques e’le’'mentaires aux fonctions comple‘tes. Similaire a‘
COMP2ELE et COMP2PUI

autres fonctions de changements de bases :

COMP2ELE, COMP2PUI, ELE2COMP, ELEM, MON2SCHUR, MULTI_ELEM,
MULTI_PUI, PUI, PUI2COMP, PUI2ELE, PUIREDUC, SCHUR2COMP.

ELEM (ele,sym,lvar) Function
de’compose le polyno~me syme’trique sym, en les variables contenues de la liste lvar, par
les fonctions syme’triques e’le’'mentaires contenues dans la liste ele. Si le premier e’le’ment
de ele est donne’ ce sera le cardinal de ’alphabet sinon on prendra le degre’ du polyno~me
sym. Si il manque des valeurs a‘ la liste ele des valeurs formelles du type "ei" sont
rajoute’es. Le polyno™me sym peut etre donne’ sous 3 formes diffe’rentes : contracte’e
(ELEM doit alors valoir 1 sa valeur par de’faut), partitionne’e (ELEM doit alors valoir 3)
ou e’tendue (i.e. le polyno~me en entier) (ELEM doit alors valoir 2). L’utilsation de la
fonction PUI se re’alise sur le me“me mode‘le.

Sur un alphabet de cardinal 3 avec el, la premie‘re fonction syme’trique e’le’mentaire,
valant 7, le polyno~me syme’trique en 3 variables dont la forme contracte’e (ne de’pendant
ici que de deux de ses variables) est x"4-2*x*y se de’compose ainsi en les fonctions
syme’triques e’le’'mentaires :

ELEM([3,7],x"4-2*x*y, [x,y]);

2
28 e3 + 2 e2 - 198 e2 + 2401

autres fonctions de changements de bases :

COMP2ELE, COMP2PUI, ELE2COMP, ELE2PUI, MON2SCHUR, MULTI_ELEM,
MULTI_PUI, PUI, PUI2COMP, PUI2ELE, PUIREDUC, SCHUR2COMP.

EXPLOSE (pc,lvar) Function
rend le polyno~me syme’trique associe’ a‘ la forme contracte’e pc. La liste lvar contient
les variables.

EXPLOSE (a*x +1, [x,y,2]);

(x+y+2z)a+1

Autres fonctions de changements de repre’sentations :
CONTRACT, CONT2PART, PART2CONT, PARTPOL, TCONTRACT, TPARTPOL.

KOSTKA (partl,part2) Function
e’crite par P. ESPERET) calcule le nombre de kostka associe’ aux partition partl et part2

kostka([3,3,3],[2,2,2,1,1,1]1);

LGTREILLIS (n,m) Function

rend la liste des partitions de poids n et de longueur m.
LGTREILLIS(4,2);

(3, 1], [2, 2]]

Voir e’galement : LTREILLIS, TREILLIS et TREINAT.

Chapter 32: Symmetries 169

LTREILLIS (n,m) Function

rend la liste des partitions de poids n et de longueur infe’rieure ou e’gale a‘ m.
ltreillis(4,2);
(4, ol, (3, 11, [2, 2]]

Voir e’galement : LGTREILLIS, TREILLIS et TREINAT.

MON2SCHUR () Function
la liste 1 repre’sente la fonction de Schur S_1: On a 1=[i1,i2,...,iq] avec il <= 12 <= ... <=
iq . La fonction de Schur est S_[i1,i2...,iq] est le mineur de la matrice infinie (h_{i-j}) i>=1,
j>=1 compose’ des q premie‘res lignes et des colonnes i1+1,i2+2.....iq+q.
On e’crit cette fonction de Schur en fonction des formes monomiales en utilisant les fonc-
tions TREINAT et KOSTKA. La forme rendue est un polyno~me syme’trique dans une
de ses repre’sentations contracte’es avec les variables x1, x2, ...

mon2schur([1,1,1]);
X1 X2 X3
mon2schur ([3]);

2 3
X1 X2 X3 + X1 X2 + X1
MON2SCHUR([1,2]);
2
2 x1 x2 x3 + x1 x2

ce qui veut dire que pour 3 variables cela donne :

2 x1 x2 x3 + x172 x2 + x272 x1 + x172 x3 + x372 x1
+ x272 x3 + x372 x2

autres fonctions de changements de bases :

COMP2ELE, COMP2PUI, ELE2COMP, ELE2PUI, ELEM, MULTI_ELEM,
MULTI_PUI, PUI, PUI2COMP, PUI2ELE, PUIREDUC, SCHUR2COMP.

MULTI_ELEM (lelem,multi_pc,l_var) Function
de’compose un polyno~me multi-syme’trique sous la forme multi-contracte’e multi_pc en
les groupes de variables contenue dans la liste de listes l_var sur les groupes de fonctions
syme’triques e’le’'mentaires contenues dans l_elem.

MULTI_LELEM([[2,e1,e2],[2,{1,£2]],a*x+a~2+x"3,[[x,y],[a,b]]);
23-2f2+fl+elfl-3ele2+el
autres fonctions de changements de bases :

COMP2ELE, COMP2PUI, ELE2COMP, ELE2PUI, ELEM,

MON2SCHUR, MULTI_PUI, PUI, PUI2COMP, PUIZ2ELE,
PUIREDUC, SCHUR2COMP.

MULTI_ORBIT (P,[lvarl, lvar2,...,Ivarp]) Function
P est un polyno™me en I’ensemble des variables contenues dans les listes lvarl, lvar2 ...
lvarp. Cette fonction rame‘ne I'orbite du polyno~me P sous I’action du produit des groupes
syme’triques des ensembles de variables repre’sente’s par ces p LISTES.

170 Maxima Manual

MULTI_ORBIT (a*x+bxy, [[x,y], [a,b]]);
[by+ax,ay+bxl]
multi_orbit(x+y+2%*a, [[x,y],[a,b,c]]);

[Y+X+2C, Y+X+2B, Y+ X+ 2 A]

voir e’galement : ORBIT pour 'action d’un seul groupe syme’trique

MULTI_PUI Function
est a‘ la fonction PUI ce que la fonction MULTI_LELEM est a‘ la fonction ELEM.

MULTI_PUI([[2,p1,p2],[2,t1,t2]],a*x+a"2+x"3, [[x,y], [a,b]]);

T2 + P1 T1 + -——-—-= - ——-

MULTINOMIAL (r,part) Function

ou’ r est le poids de la partition part. Cette fonction rame‘ne le coefficient multinomial
associe’ : siles parts de la partitions part sont i1, i2, ..., ik, le re’sultat de MULTINOMIAL
est rl/(illi2!...ik!).

MULTSYM (ppartl, ppart2,N) Function
re’alise le produit de deux polyno“mes syme’triques de N variables en ne travaillant
que modulo l'action du groupe syme’trique d’ordre N. Les polyno~mes sont dans leur
repre’sentation partitionne’e.

Soient les 2 polyno~mes syme’triques en x, y : 3%(x+y) + 2*x*y et 5*(x"2+y~2) dont les
formes partitionne’es sont respectivement [[3,1],[2,1,1]] et [[5,2]], alors leur produit sera
donne’ par :

MULTSYM([[3,1],[2,1,11]1,[[5,21]1,2);

(fzo, 3, 11, [15, 2, 1], [15, 3, 0]]

soit 10%(x"3*y+y~3*x)+15%(x~2*y +y~2*x) +15(x"3+y"3)
Fonctions de changements de repre’sentations d’un polyno~me syme’trique :

CONTRACT, CONT2PART, EXPLOSE, PART2CONT, PARTPOL, TCONTRACT,
TPARTPOL.

ORBIT (P,lvar) Function
calcul l'orbite du polyno™me P en les variables de la liste lvar sous l'action du groupe
syme’trique de I’ensemble des variables contenues dans la liste lvar.

orbit (axx+b*y, [x,y]);

[AY+BX, BY+ AX]
orbit (2*xx+x~2, [x,y]);
2 2

Chapter 32: Symmetries 171

[Y +2Y, X + 2X]

voir e’galement : MULTI_ORBIT pour I'action d’un produit de groupes syme’triques sur
un polyno~me.

PART2CONT (ppart,lvar) Function
passe de la forme partitionne’e a‘ la forme contracte’e d’un polyno~me syme’trique. La
forme contracte’e est rendue avec les variables contenues dans lvar.

PART2CONT ([[2*a"3*b,4,1]1], [x,y]1);

3 4
2a bx y

Autres fonctions de changements de repre’sentations :
CONTRACT, CONT2PART, EXPLOSE, PARTPOL, TCONTRACT, TPARTPOL.

PARTPOL (psym, lvar) Function
psym est un polyno~me syme’trique en les variables de lvar. Cette fonction rame‘ne sa
repre’sentation partitionne’e.

PARTPOL (~a* (x+y) +3*x*y, [x,y]) ;

(s, 1, 11, [- a, 1, 0]]

Autres fonctions de changements de repre’sentations :
CONTRACT, CONT2PART, EXPLOSE, PART2CONT, TCONTRACT, TPARTPOL.

PERMUT () Function

rame‘ne la liste des permutations de la liste 1.

POLYNOME2ELE (p,x) Function
donne la liste 1=[n,el,...,en] ou‘ n est le degre’ du polyno me p en la variable x et ei la
i-ieme fonction syme’trique e’le’mentaire des racines de p.

POLYNOME2ELE(x"7-14*x"5 + 56%x"3 - 56*X + 22,x);
(7, 0, - 14, 0, 56, 0, - 56, - 22]
ELE2POLYNOME([7, O, - 14, 0, 56, 0, - 56, - 22],x);

7 5 3
X - 14X +56X -561X+ 22

la re’ciproque : ELE2POLYNOME(],x)

PRODRAC (L,K) Function
L est une liste contenant les fonctions syme’triques e’le’'mentaires sur un ensemble A.

PRODRAC rend le polyno~me dont les racines sont les produits K a‘ K des e’le’'ments de
A.

PUI (pui,sym,lvar) Function
de’compose le polyno~me syme’trique sym, en les variables contenues de la liste lvar, par
les fonctions puissances contenues dans la liste pui. Si le premier e’le’'ment de pui est
donne’ ce sera le cardinal de I’alphabet sinon on prendra le degre’ du polyno~me sym. Si

172 Maxima Manual

il manque des valeurs a‘ la liste pui, des valeurs formelles du type "pi" sont rajoute’es. Le
polyno~me sym peut etre donne’ sous 3 formes diffe’rentes : contracte’e (PUI doit alors
valoir 1 sa valeur par de’faut), partitionne’e (PUI doit alors valoir 3) ou e’tendue (i.e. le
polyno~me en entier) (PUI doit alors valoir 2). La fonction ELEM s’utilise de la me~me
manie‘re.

PUI;

1
PUI([3,a,b],uxx*y*z, [x,y,2]);

3
(a -3ba+2p3)u

6

autres fonctions de changements de bases :

COMP2ELE, COMP2PUI, ELE2COMP, ELE2PUI, ELEM, MON2SCHUR,
MULTI_ELEM, MULTI_PUI, PUI2COMP, PUI2ELE, PUIREDUC,
SCHUR2COMP .

PUI2ZCOMP (N,LPUI) Function
rend la liste des N premie‘res fonctions comple‘tes (avec en te“te le cardinal) en fonction
des fonctions puissance donne’es dans la liste LPUI. Si la liste LPUI est vide le cardinal
est N sinon c’est son premier e’le’'ment similaire a* COMP2ELE et COMP2PUIL

PUI2COMP (2, [1);

2

PUI2COMP(3,[2,a1]);

2 3
al +p2 al + 3 p2 al + 2 p3
(2, al, ———————- y TTTTTTTmmooo oo]
2 6

Autres fonctions de changements de bases :

COMP2ELE, COMP2PUI, ELE2COMP, ELE2PUI, ELEM,
MON2SCHUR, MULTI_ELEM, MULTI_PUI, PUI, PUIZ2ELE,
PUIREDUC, SCHUR2COMP.

PUI2ELE (N,LPUI) Function
re’alise le passage des fonctions puissances aux fonctions syme’triques e’le’mentaires.
Si le drapeau PUI2ELE est GIRARD, on re’cupe‘re la liste des fonctions syme’triques
e’le’'mentaires de 1 a‘ N, et s’il est e’gal a* CLOSE, la Nie‘me fonction syme’trique
e’le’'mentaire.

Autres fonctions de changements de bases :

COMP2ELE, COMP2PUI, ELE2COMP, ELE2PUI, ELEM,
MON2SCHUR, MULTI_ELEM, MULTI_PUI, PUI, PUI2COMP,

Chapter 32: Symmetries 173

PUIREDUC, SCHUR2COMP.

PUI2POLYNOME (X,LPUI) Function
calcul le polyno~me en X dont les fonctions puissances des racines sont donne’es dans la
liste LPUI.

(C6) polynome2ele(x~3-4*x"2+5xx-1,x) ;
(D6) (3, 4, 5, 1]
(C7) ele2pui(3,%);
(D7) (3, 4, 6, 7]
(C8) pui2polynome(x,%) ;

3 2
(D8) X -4X +5X-1

Autres fonctions a‘ voir :

POLYNOME2ELE, ELE2POLYNOME.

PUI_DIRECT (ORBITE,[lvarl,...,Ivarn],[d1,d2,...,dn]) Function
Soit f un polynome en n blocs de variables lvarl,...,lvarn. Soit ci le nombre de variables
dans lvari . Et SC le produit des n groupes syme’triques de degre’ cl,...,cn. Ce groupe
agit naturellement sur f La liste ORBITE est 1'orbite, note’e SC(f), de la fonction f sous
I'action de SC. (Cette liste peut e~ tre obtenue avec la fonction : MULTI_.ORBIT). Les
di sont des entiers tels que cl<=dl, c2<=d2,...,cn<=dn. Soit SD le produit des groupes
syme’triques S_.d1 x S_d2 x...x S_dn.

la fonction pui_direct rame‘ne les N premie‘res fonctions puissances de SD(f) de’duites des
fonctions puissances de SC(f) ou‘ N est le cardinal de SD(f).

Le re’sultat est rendue sous forme multi-contracte’e par rapport a SD. i.e. on ne conserve
qu'un e’le’'ment par orbite sous 'action de SD).

L:[[x,y],[a,p]]$
PUI_DIRECT(MULTI_ORBIT(a*x+bxy, L), L,[2,2]);

2 2
[ax,4abxy+a x]

PUI_DIRECT (MULTI_ORBIT (a*x+b*y, L), L,[3,2]);

2 2 2 2 3 3
[2AX, 4ABXY+2A X,3A BX Y+2A X,

2 2 2 2 3 3 4 4
12A B XY +4A BX Y+2A X,

3 2 3 2 4 4 5 5
10A B X Y +5A BX Y+2A X,

3 3 3 3 4 2 4 2 5 5 6 6
40 A B X Y +15A B X Y +6A BX Y+2A X1

PUI_DIRECT([y+x+2%c, y+x+2%b, y+x+2*al,[[x,y],[a,b,c]],[2,3]);

2 2
[3x+2a, 6xy+3x +4ax+4a,

174 Maxima Manual

2 3 2 2 3
9x y+12axy+3x +6ax +12a x+8al

PUI_DIRECT([y+x+2%c, y+x+2*b, y+x+2*al,[[x,y],[a,b,c]l],[3,4]);

PUIREDUC (N,LPUI) Function
LPUI est une liste dont le premier e’le’'ment est un entier M. PUIREDUC donne les N
premie‘res fonctions puissances en fonction des M premie‘res.

PUIREDUC(3, [2]);

3
3 pl p2 - pl
[2, pl, p2, ——————————-—-]
2
RESOLVANTE (p,x.f[x1,...,xd]) Function

calcule la re’solvante du polyno~me p de la variable x et de degre’ n >= d par la fonction
f exprime’e en les variables x1,....,xd. Il est important pour 'efficacite’ des calculs de
ne pas mettre dans la liste [x1,...,xd] les variables n’intervenant pas dans la fonction de
transformation f.

Afin de rendre plus efficaces les calculs on peut mettre des drapeaux a‘ la variable RE-
SOLVANTE afin que des algorithmes ade’quates soient utilise’s :

Si la fonction f est unitaire :
e un polyno~me d’une variable,
e line’aire ,
e alterne’e,
e une somme de variables,
e syme’trique en les variables qui apparaissent dans son expression,
e un produit de variables,
e la fonction de la re’solvante de Cayley (utilisable qu’en degre’ 5)

(x1*x2+x2%x3+x3*x4+x4*x5+x5%x1 -
(x1*x3+x3*%x5+x5*x2+x2*x4+x4%x1)) "2

generale,

le drapeau de RESOLVANTE pourra e”tre respectivement :
e unitaire,
e lineaire,
e alternee,
e somme,

produit,
e cayley,
e generale.

resolvante:unitaire;
resolvante(x~7-14%x"5 + 56%x~3 - 56%X + 22,x,x"3-1, [x]);

7 6 5 4 3 2
Y +7Y -539Y - 1841 Y + 51443 Y + 315133 Y + 376999 Y

Chapter 32: Symmetries 175

+ 125253

resolvante : lineaire;
resolvante(x"4-1,x,x1+2*x2+3%x3, [x1,x2,x3]) ;

24 20 16 12 8 4
Y + 80 Y + 7520 Y + 1107200 Y + 49475840 Y + 344489984 Y
+ 655360000
Meme solution pour :

resolvante : general;

resolvante (x"4-1,x,x1+2*x2+3%x3, [x1,x2,x3]) ;

resolvante (x"4-1,x,x1+2*x2+3*x3, [x1,x2,x3,x4])
direct([x"4-1],x,x1+2*x2+3*x3, [[x1,x2,x3]]);

resolvante:lineaire$
resolvante(x~4-1,x,x1+x2+x3, [x1,x2,x3);

4
Y -1

resolvante:symetrique$
resolvante(x~4-1,x,x1+x2+x3, [x1,x2,x3]);

4
Y -1
resolvante (x~4+x+1,x,x1-x2, [x1,x2]);
12 8 6 4 2
Y +8Y +26Y - 112 Y + 216 Y + 229

resolvante:alternee$
resolvante(x~4+x+1,x,x1-x2, [x1,x2]);

12 8 6 4 2
Y +8Y +26Y -112Y + 216 Y + 229

resolvante:produit;
resolvante (x"7-7*x+3,x,x1*x2*x3, [x1,x2,x3]);

35 33 29 28 27 26 24
Y -7Y -1029Y + 135 Y + 7203 Y -756Y + 1323 Y

23 22 21 20 19
352947 Y - 46305 Y - 2463339 Y + 324135 Y - 30618 Y

+

18
453789 Y

17 15 14 12
40246444 Y + 282225202 Y - 44274492 Y + 155098503 Y

11
12252303 Y

+

176 Maxima Manual

10 9 8 7 6
+ 2893401 Y - 171532242 Y + 6751269 Y + 2657205 Y - 94517766 Y
5 3

- 3720087 Y + 26040609 Y + 14348907

resolvante:symetrique$
resolvante (x~7-T*x+3,x,x1*x2*x3, [x1,x2,x3]);

35 33 29 28 27 26 24
Y -7Y -1029 Y + 135 Y + 7203 Y -756Y + 1323 Y

23 22 21 20 19
+ 352947 Y - 46305 Y - 2463339 Y + 324135 Y - 30618 Y

18
- 453789 Y

17 15 14 12
- 40246444 Y + 282225202 Y - 44274492 Y + 155098503 Y

11
+ 12252303 Y

10 9 8 7 6
+ 2893401 Y - 171532242 Y + 6751269 Y + 2657205 Y - 94517766 Y

5 3
- 3720087 Y + 26040609 Y + 14348907

resolvante:cayley$
resolvante (x"5-4*x"2+x+1,x,a, []);

" resolvante de Cayley "

6 5 4 3 2
X - 40 X + 4080 X - 92928 X + 3772160 X + 37880832 X + 93392896

Pour la re’solvante de Cayley, les 2 derniers arguments sont neutres et le polyno~me donne’
en entre’e doit ne’cessairement e”tre de degre’ 5.

Voir e’galement :

RESOLVANTE_BIPARTITE, RESOLVANTE_PRODUIT_SYM,
RESOLVANTE_UNITAIRE, RESOLVANTE_ALTERNEE1l, RESOLVANTE_KLEIN,
RESOLVANTE_KLEIN3, RESOLVANTE_VIERER, RESOLVANTE_DIEDRALE.

RESOLVANTE_ALTERNEE1 (p,x) Function
calcule la transformation de p(x) de degre n par la fonction $\prod_{1\leq i<j\leq n-1}
(xd-xj)$.

Voir e’galement :

RESOLVANTE_PRODUIT_SYM, RESOLVANTE_UNITAIRE,
RESOLVANTE , RESOLVANTE_KLEIN, RESOLVANTE_KLEIN3,
RESOLVANTE_VIERER, RESOLVANTE_DIEDRALE, RESOLVANTE_BIPARTITE.

Chapter 32: Symmetries 177

RESOLVANTE_BIPARTITE (p,x) Function
calcule la transformation de p(x) de degre n (n pair) par la fonction $x_1x_2\ldots
x_{n/2}+x_{n/2+1}\ldotsx_n$

Voir e’galement :
RESOLVANTE_PRODUIT_SYM, RESOLVANTE_UNITAIRE,

RESOLVANTE , RESOLVANTE_KLEIN, RESOLVANTE_KLEIN3,
RESOLVANTE_VIERER, RESOLVANTE_DIEDRALE,RESOLVANTE_ALTERNEE1

RESOLVANTE_BIPARTITE(x"6+108,%);

10 8 6 4
Y - 972 Y + 314928 Y - 34012224 Y

Voir e’galement :

RESOLVANTE_PRODUIT_SYM, RESOLVANTE_UNITAIRE,
RESOLVANTE, RESOLVANTE_KLEIN, RESOLVANTE_KLEIN3,
RESOLVANTE_VIERER, RESOLVANTE_DIEDRALE,
RESOLVANTE_ALTERNEE1.

RESOLVANTE _DIEDRALE (p,x) Function

calcule la transformation de p(x) par la fonction x_1x_2+x_3x_4.

resolvante_diedrale(x"5-3*x"4+1,x) ;

15 12 11 10 9 8 7 6
X -21X -81X - 21X +207 X + 1134 X + 2331 X - 945 X

5 4 3 2
- 4970 X - 18333 X - 29079 X - 20745 X - 25326 X - 697

Voir e’galement :

RESOLVANTE_PRODUIT_SYM, RESOLVANTE_UNITAIRE,
RESOLVANTE_ALTERNEE1, RESOLVANTE_KLEIN, RESOLVANTE_KLEIN3,
RESOLVANTE_VIERER, RESOLVANTE.

RESOLVANTE_KLEIN (p,x) Function

calcule la transformation de p(x) par la fonction x_1x_2x_4+x_4.
Voir e’galement :

RESOLVANTE_PRODUIT_SYM, RESOLVANTE_UNITAIRE,
RESOLVANTE_ALTERNEE1, RESOLVANTE, RESOLVANTE_KLEIN3,
RESOLVANTE_VIERER, RESOLVANTE_DIEDRALE.

RESOLVANTE_KLEINS3 (p,x) Function

calcule la transformation de p(x) par la fonction x_1x_2x_4+x_4.
Voir e’galement :

RESOLVANTE_PRODUIT_SYM, RESOLVANTE_UNITAIRE,
RESOLVANTE_ALTERNEE1, RESOLVANTE_KLEIN, RESOLVANTE,
RESOLVANTE_VIERER, RESOLVANTE_DIEDRALE.

178 Maxima Manual

RESOLVANTE_PRODUIT_SYM (p,x) Function

calcule la liste toutes les r\’esolvantes produit du polyn\~ome p(x).

resolvante_produit_sym(x~5+3%x"4+2%x-1,x) ;

5 4 10 8 7 6 5 4
[y +3vy +2yYy-1,Y -2Y -21Y -31Y -14Y -Y
3
+ 14 Y
2 10 8 7 6 5 4 3 2

+3Y +1,Y +3Y +14Y -Y -14Y -31Yy -21Y -2%Y

5 4
+1,Y -2Y -3Y-1, Y- 1]

resolvante:produit$
esolvante (x~5+3*x"4+2*x-1,x,a*xb*c, [a,b,c]);

10 8 7 6 5 4 3 2
Y +3Y +14Yy -Y -14Y -31Y -21Y -2Y +1

Voir e’galement :
RESOLVANTE, RESOLVANTE_UNITAIRE,
RESOLVANTE_ALTERNEE1, RESOLVANTE_KLEIN, RESOLVANTE_KLEIN3,
RESOLVANTE_VIERER, RESOLVANTE_DIEDRALE.

RESOLVANTE_UNITAIRE (p,q,x) Function

calcule la r\’esolvante du polyn\~ome p(x) par le polyn\~ome q(x).

Voir e’galement :
RESOLVANTE_PRODUIT_SYM, RESOLVANTE,
RESOLVANTE_ALTERNEE1, RESOLVANTE_KLEIN, RESOLVANTE_KLEIN3,
RESOLVANTE_VIERER, RESOLVANTE_DIEDRALE.

RESOLVANTE_VIERER (p,x) Function

calcule la transformation de p(x) par la fonction x_1x_2-x_3x_4.

Voir e’galement :
RESOLVANTE_PRODUIT_SYM, RESOLVANTE_UNITAIRE,
RESOLVANTE_ALTERNEE1, RESOLVANTE_KLEIN, RESOLVANTE_KLEIN3,
RESOLVANTE, RESOLVANTE_DIEDRALE.

SCHUR2COMP (P,lvar) Function
: P est un polyno~mes en les variables contenues dans la liste 1_var. Chacune des variables
de l_var repre’sente une fonction syme’trique comple‘te. On repre’sente dans l_var la ie‘'me
fonction syme’trique comple‘te comme la concate’nation de la lettre h avec ’entier i : hi.
Cette fonction donne 'expression de P en fonction des fonctions de Schur.

SCHUR2COMP (h1*h2-h3, [h1,h2,h3]);

Chapter 32: Symmetries 179

1, 2
SCHUR2COMP (a*h3, [h3]) ;

s a
3

SOMRAC (liste,K) Function
la liste contient les fonctions syme’triques e’le’mentaires d’un polyno“me P . On calcul le
polyno~mes dont les racines sont les sommes K a‘ K distinctes des racines de P.

Voir e’galement PRODRAC.

TCONTRACT (pollvar) Function
teste si le polyno~me pol est syme’trique en les variables contenues dans la liste Ivar. Si
oui il rend une forme contracte’e comme la fonction CONTRACT.

Autres fonctions de changements de repre’sentations :
CONTRACT, CONT2PART, EXPLOSE, PART2CONT, PARTPOL, TPARTPOL.

TPARTPOL (pol,lvar) Function
teste si le polyno~™me pol est syme’trique en les variables contenues dans la liste lvar. Si
oui il rend sa forme partionne’e comme la fonction PARTPOL.

Autres fonctions de changements de repre’sentations :

CONTRACT, CONT2PART, EXPLOSE, PART2CONT, PARTPOL, TCONTRACT.

TREILLIS (n) Function

rame‘ne toutes les partitions de poids n.
treillis(4);
(41, (s, 11, (2, 21, [2, 1, 1], [1, 1, 1, 1]]

Voir e¢’galement : LGTREILLIS, LTREILLIS et TREINAT.

TREINAT Function
TREINAT (part) rame‘ne la liste des partitions infe’rieures a‘ la partition part pour l'ordre
naturel.

treinat ([5]);

[[5]1]
treinat([1,1,1,1,1]);

(rsl, 4, 11, (3, 21, [3, 1, 11, [2, 2, 1], [2, 1, 1, 1],
[1, 1, 1, 1, 11]
treinat ([3,2]);
(051, [4, 11, [3, 2]1]

Voir e¢’galement : LGTREILLIS, LTREILLIS et TREILLIS.

180 Maxima Manual

Chapter 33: Groups

33 Groups

33.1 Definitions for Groups

TODD_COXETER (relations,subgroup)

181

Function

Find the order of G/H where G is the Free Group modulo RELATIONS, and H is the
subgroup of G generated by SUBGROUP. SUBGROUP is an optional argument, de-
faulting to []. In doing this it produces a multiplication table for the right action of
G on G/H, where the cosets are enumerated [H,Hg2,Hg3,...] This can be seen inter-
nally in the $todd_coxeter_state. The multiplication tables for the variables are in ta-
ble:todd_coxeter_state[2] Then tableli] gives the table for the ith variable. mulcoset(coset,i)

:= table[varnum]|[coset];
Example:

(C1) symet(n):=create_list(if (j - i) = 1 then (p(i,j))""3 else

if (not i = j) then (p(i,j))~"2 else p(i,i) , j,1,n-1,i,1,3);

<3>
(D1) SYMET(N) := CREATE_LIST(IF J - I = 1 THEN P(I, J)

<2>
ELSE (IF NOT I = J THEN P(I, J)
ELSE P(I, I)), J, 1, N -1, I, 1, D)
(€2) p(i,j) :=concat(x,i).concat(x,j);

(D2) P(I, J) := CONCAT(X, I) . CONCAT(X, J)
(C3) symet(5);
<3> <2>
(D3) [X1 . X1, (X1 . X2) , X2 . X2, (X1 . X3) , (X2 .
<2> <2> <3>
X3 . X3, (X1 . X4) , (X2 . X4) , (X3 . X4) , X4 .

(C4) todd_coxeter(d3);

Rows tried 426
(D4) 120
(C5) todd_coxeter(d3, [x1]);

Rows tried 213
(D5) 60
(C6) todd_coxeter(d3, [x1,x2]);

Rows tried 71

(D6) 20

(C7) table:todd_coxeter_state[2]$

(C8) table:todd_coxeter_statel[2]$

(C9) tablell];

(D9) {Array: FIXNUM #(0 2 1 37 6
16 10 18 19 15 0 0 0 O

4

5
00
a

8 11 17 9 12 14 13 20
00 000000 OQ}
e

3

Note only the elements 1 thru 20 of this array d9 are meaningful. table[1][4] = 7 indicates

cosetd.varl = coset7?

182 Maxima Manual

Chapter 34: Runtime Environment 183

34 Runtime Environment

34.1 Introduction for Runtime Environment

- A file which is loaded automatically for you when you start up a MACSYMA, to customize
MACSYMA for you. It is possible to have an init file written as a BATCH file of macsyma
commands. We hope this makes it easier for users to customize their macsyma environment.
Here is an example init file

/*—*-macsyma-*-*/
setup_autoload("share\;bessel",jO,jl,jn);
showtime:all; comgrind:true;

The strange looking comment at the top of the file "/*-*-macsyma-*-*/" tells that it is
a macsyma-language file. Also: "SETUP_AUTOLOAD" can be used to make functions in
BATCH files autoloading, meaning that you can then use (for instance, here) the functions JO,
J1 and Jn from the BESSEL package directly because when you use the function the BESSEL
package will be loaded in for you automatically. If the second file name in the argument to
SETUP_AUTOLOAD is not specified (the preferred usage) then the standard search for second
file names of "FASL", "TRLISP", and ">" is done.

34.2 INTERRUPTS

- There are several ways the user can interrupt a MACSYMA computation, usually with
a control character. Do DESCRIBE(CHARACTERS); for details. MACSYMA will also be
interrupted if ~Z (control-Z) is typed, as this will exit back to Unix shell level Usually Control-C
interrupts the computation putting you in a break loop. Typing :t should give you top level
maxima back again.

34.3 Definitions for Runtime Environment

ALARMCLOCK (argl, arg2, arg3) Function
will execute the function of no arguments whose name is arg3 when the time specified by
argl and arg2 elapses. If argl is the atom "TIME" then arg3 will be executed after arg?2
seconds of real-time has elapsed while if argl is the atom "RUNTIME" then arg3 will be
executed after arg2 milliseconds of cpu time. If arg2 is negative then the argl timer is
shut off.

ALLOC Function
takes any number of arguments which are the same as the replies to the "run out of
space" question. It increases allocations accordingly. E.g. If the user knows initially that
his problem will require much space, he can say ALLOC(4); to allocate the maximum
amount initially. See also the DYNAMALLOC switch.

BUG ("message") Function
similar to mail, sends a message to MACSYMA Mail. This may be used for reporting
bugs or suspected bugs in MACSYMA. Expressions may be included by referring to them,
outside double quotes, e.g. BUG("I am trying to integrate",D3,"but it asks for more list
space. What should I do?");

CLEARSCREEN () Function

Clears the screen. The same as typing control-L.

CONTINUE Function
- Control-~ typed while in MACSYMA causes LISP to be entered. The user can now type
any LISP S-expression and have it evaluated. Typing (CONTINUE) or ~G (control-G)
causes MACSYMA to be re-entered.

184 Maxima Manual

DDT () Function
Exits from MACSYMA to the operating system level. (The same as control-Z on ITS, or
control-C on Tops-20.)

DELFILE (file-specification) Function
will delete the file given by the file-specification (i.e. firstname, secondname, device, user)
from the given device.

DISKFREE () Function
With no args or an arg of TRUE, will return the total number of free blocks of disk space
in the system. With an arg of 0, 1, or 13, it will return the number of free blocks of
diskspace on the respective disk pack. With an arg of SECONDARY or PRIMARY, it
will return the total number of free blocks of disk space on the secondary or primary disk
pack respectively.

FEATURE declaration

- A nice adjunct to the system. STATUS(FEATURE) gives you a list of system features.
At present the list for MC is: MACSYMA, NOLDMSG, MACLISP, PDP10, BIGNUM,
FASLOAD, HUNK, FUNARG, ROMAN, NEWIO, SFA, PAGING, MC, and ITS. Any
of these "features" may be given as a second argument to STATUS(FEATURE,...); If
the specified feature exists, TRUE will be returned, else FALSE. Note: these are system
features, and not really "user related". See also DESCRIBE(features); for more user-
oriented features.

FEATUREP (a,f) Function
attempts to determine whether the object a has the feature f on the basis of the facts in
the current data base. If so, it returns TRUE, else FALSE. See DESCRIBE(FEATURES);

(C1) DECLARE(J,EVEN)$
(C2) FEATUREP(J,INTEGER);
(D2) TRUE

ROOM () Function
types out a verbose description of the state of storage and stack management in the
Macsyma. This simply utilizes the Lisp ROOM function. ROOM(FALSE) - types out a
very terse description, containing most of the same information.

STATUS (arg) Function
will return miscellaneous status information about the user’s MACSYMA depending upon
the arg given. Permissible arguments and results are as follows:

e TIME - the time used so far in the computation.

e DAY - the day of the week.

e DATE - a list of the year, month, and day.

e DAYTIME - a list of the hour, minute, and second.

e RUNTIME - accumulated cpu time times the atom "MILLISECONDS" in the current
MACSYMA.

REALTIME - the real time (in sec) elapsed since the user started up his MACSYMA.
GCTIME - the garbage collection time used so far in the current computation.
TOTALGCTIME - gives the total garbage collection time used in MACSYMA so far.
FREECORE - the number of blocks of core your MACSYMA can expand before it
runs out of address space. (A block is 1024 words.) Subtracting that value from
250*BLOCKS (the maximum you can get on MC) tells you how many blocks of core
your MACSYMA is using up. (A MACSYMA with no "fix" file starts at approx. 191
blocks.)

Chapter 34: Runtime Environment 185

e FEATURE - gives you a list of system features. At present the list for MC is: MAC-
SYMA, NOLDMSG, MACLISP, PDP10, BIGNUM, FASLOAD, HUNK, FUNARG,
ROMAN, NEWIO, SFA, PAGING, MC, and ITS. Any of these "features" may be
given as a second argument to STATUS(FEATURE,...); If the specified feature exists,
TRUE will be returned, else FALSE. Note: these are system features, and not really
"user related".

For information about your files, see the FILEDEFAULTS(); command.

TIME (Dil, Di2, ...) Function
gives a list of the times in milliseconds taken to compute the Di. (Note: the Variable
SHOWTIME, default: [FALSE], may be set to TRUE to have computation times printed
out with each D-line.)

186 Maxima Manual

Chapter 35: Miscellaneous Options 187

35 Miscellaneous Options

35.1 Introduction to Miscellaneous Options

In this section various options are discussed which have a global effect on the operation of
maxima. Also various lists such as the list of all user defined functions, are discussed.

35.2 SHARE

- The SHARE directory on MC or on a DEC20 version of MACSYMA contains programs,
information files, etc. which are considered to be of interest to the MACSYMA community.
Most files on SHARE; are not part of the MACSYMA system per se and must be loaded
individually by the user, e.g. LOADFILE("array");. Many files on SHARE; were contributed
by MACSYMA users. Do PRINTFILE(SHARE,USAGE,SHARE); for more details and the
conventions for contributing to the SHARE directory. For an annotated "table of contents" of
the directory, do: PRINTFILE(SHARE,> SHARE);

35.3 Definitions for Miscellaneous Options

ALIASES Variable
default: [] atoms which have a user defined alias (set up by the ALIAS, ORDERGREAT,
ORDERLESS functions or by DECLAREing the atom a NOUN).

ALLSYM Variable
default: [TRUE] - If TRUE then all indexed objects are assumed symmetric in all of
their covariant and contravariant indices. If FALSE then no symmetries of any kind are
assumed in these indices. Derivative indices are always taken to be symmetric.

ALPHABETIC declaration
Adds to MACSYMA'’s alphabet which initially contains the letters A-Z, % and _. Thus,
DECLARE("~",ALPHABETIC) enables NEW~VALUE to be used as a name.

APROPOS (string) Function
takes a character string as argument and looks at all the MACSYMA names for ones
with that string appearing anywhere within them. Thus, APROPOS(EXP); will return
a long list of all the flags and functions which have EXP as part of their names, such as
EXPAND, EXP, EXPONENTIALIZE. Thus if you can only remember part of the name
of something you can use this command to find the rest of the name. Similarily, you could
say APROPOS(TR.); to find a list of many of the switches relating to the TRANSLATOR
(most of which begin with TR.).

ARGS (exp) Function

returns a list of the args of exp. Le. it is essentially equivalent to
SUBSTPART (" [",exp,0)
Both ARGS and SUBSTPART depend on the setting of INFLAG.

DUMMY (il,i2,...) Function
will set each index il,i2,... to name of the form !n where n is a positive integer. This
guarantees that dummy indices which are needed in forming expressions will not conflict
with indices already in use. COUNTER|default 1] determines the numerical suffix to
be used in generating the next dummy index. The prefix is determined by the option

DUMMYX]!].

188 Maxima Manual

GENINDEX Variable
default: [I] is the alphabetic prefix used to generate the next variable of summation when
necessary.

GENSUMNUM Variable

[0] is the numeric suffix used to generate the next variable of summation. If it is set to
FALSE then the index will consist only of GENINDEX with no numeric suffix.

INF Variable
- real positive infinity.

INFINITY Variable
- complex infinity, an infinite magnitude of arbitrary phase angle. (See also INF and
MINF.)

INFOLISTS Variable

default: [] a list of the names of all of the information lists in MACSYMA. These are:
LABELS - all bound C,D, and E labels. VALUES - all bound atoms, i.e. user vari-

ables, not MACSYMA Options or Switches, (set up by : , :: , or functional binding).
FUNCTIONS - all user defined functions (set up by f(x):=...). ARRAYS - declared and
undeclared arrays (set up by : , :: , or :=..) MACROS - any Macros defined by the

user. MYOPTIONS - all options ever reset by the user (whether or not they get reset
to their default value). RULES - user defined pattern matching and simplification rules
(set up by TELLSIMP, TELLSIMPAFTER, DEFMATCH, or, DEFRULE.) ALIASES
- atoms which have a user defined alias (set up by the ALIAS, ORDERGREAT, OR-
DERLESS functions or by DECLAREing the atom a NOUN). DEPENDENCIES - atoms
which have functional dependencies (set up by the DEPENDS or GRADEF functions).
GRADEFS - functions which have user defined derivatives (set up by the GRADEF func-
tion). PROPS - atoms which have any property other than those mentioned above, such
as atvalues, matchdeclares, etc. as well as properties specified in the DECLARE function.
LET_RULE_PACKAGES - a list of all the user-defined let rule packages plus the special
package DEFAULT_LET_RULE_PACKAGE. (DEFAULT_LET_RULE_PACKAGE is the
name of the rule package used when one is not explicitly set by the user.)

INTEGERP (exp) Function
is TRUE if exp is an integer else FALSE.

M1PBRANCH Variable
default: [FALSE] - "principal branch for -1 to a power". Quantities such as (-1)~(1/3) [i.e.
"odd" rational exponent] and (-1)~(1/4) [i.e. "even" rational exponent| are now handled
as indicated in the following chart:

DOMAIN:REAL(default)

(-1)°(1/3): -1
(-1)"(1/4): -1~ 1/4)

DOMAIN:COMPLEX
M1PBRANCH:FALSE(default) M1PBRANCH:TRUE

(-1)"(1/3) 1/2+)i*sqrt(3)/2
-1~ 1/4) sqrt (2) /2+%i*sqrt(2) /2
NUMBERP (exp) Function
is TRUE if exp is an integer, a rational number, a floating point number or a bigfloat else
FALSE.
PROPERTIES (a) Function

will yield a list showing the names of all the properties associated with the atom a.

Chapter 35: Miscellaneous Options 189

PROPS special symbol
- atoms which have any property other than those explicitly mentioned in INFOLISTS,
such as atvalues, matchdeclares, etc. as well as properties specified in the DECLARE
function.

PROPVARS (prop) Function
yields a list of those atoms on the PROPS list which have the property indicated by prop.
Thus PROPVARS(ATVALUE) will yield a list of atoms which have atvalues.

PUT (a, p, i) Function
associates with the atom a the property p with the indicator i. This enables the user to
give an atom any arbitrary property.

QPUT (a, p, i) Function

is similar to PUT but it doesn’t have its arguments evaluated.

REM (a, i) Function

removes the property indicated by i from the atom a.

REMOVE (args) Function
will remove some or all of the properties associated with variables or functions. RE-
MOVE(al, pl, a2, p2, ...) removes the property pi from the atom ai. Ai and pi may also
be lists as with DECLARE. Pi may be any property e.g. FUNCTION, MODE_DECLARE,
etc. It may also be TRANSFUN implying that the translated LISP version of the function
is to be removed. This is useful if one wishes to have the MACSYMA version of the func-
tion executed rather than the translated version. Pi may also be OP or OPERATOR to
remove a syntax extension given to ai (see Appendix II). If ai is "ALL" then the property
indicated by pi is removed from all atoms which have it. Unlike the more specific remove
functions (REMVALUE, REMARRAY, REMFUNCTION, and REMRULE) REMOVE
does not indicate when a given property is non-existent; it always returns "DONE".

REMVALUE (namel, name2, ...) Function
removes the values of user variables (which can be subscripted) from the system. If name
is ALL then the values of all user variables are removed. Values are those items given
names by the user as opposed to those which are automatically labeled by MACSYMA as

Ci, Di, or Ei.

RENAME (exp) Function
returns an expression equivalent to exp but with the dummy indices in each term chosen
from the set [!1,!2,...]. Each dummy index in a product will be different; for a sum

RENAME will try to make each dummy index in a sum the same. In addition, the indices
will be sorted alphanumerically.

RNCOMBINE (exp) Function
transforms exp by combining all terms of exp that have identical denominators or denom-
inators that differ from each other by numerical factors only. This is slightly different
from the behavior of COMBINE, which collects terms that have identical denominators.
Setting PFEFORMAT:TRUE and using COMBINE will achieve results similar to those
that can be obtained with RNCOMBINE, but RNCOMBINE takes the additional step
of cross-multiplying numerical denominator factors. This results in neater forms, and the
possiblity of recognizing some cancellations. Bugs to ASB.

SCALARP (exp) Function
is TRUE if exp is a number, constant, or variable DECLAREd SCALAR, or composed
entirely of numbers, constants, and such variables, but not containing matrices or lists.

190 Maxima Manual

SCALEFACTORS (coordinatetransform) Function
Here coordinatetransform evaluates to the form [[expressionl, expression2, ...], indetermi-
natel, indeterminat2, ...], where indeterminatel, indeterminate2, etc. are the curvilinear
coordinate variables and where a set of rectangular Cartesian components is given in terms
of the curvilinear coordinates by [expressionl, expression2, ...]. COORDINATES is set
to the vector [indeterminatel, indeterminate2,...], and DIMENSION is set to the length
of this vector. SF[1], SF[2], ..., SF[DIMENSION] are set to the coordinate scale factors,
and SFPROD is set to the product of these scale factors. Initially, COORDINATES is
(X, Y, Z], DIMENSION is 3, and SF[1]=SF[2]=SF[3]=SFPROD=1, corresponding to 3-
dimensional rectangular Cartesian coordinates. To expand an expression into physical
components in the current coordinate system, there is a function with usage of the form

SETUP_AUTOLOAD (file,funcl,...,funcN) Function
which takes two or more arguments: a file specification, and one or more function names,
"funcl", and which indicates that if a call to "funcl" is made and "funcl" is not defined,
that the file specified by "file" is to be automatically loaded in via LOAD, which file should
contain a definition for "funcI". (This is the process by which calling e.g. INTEGRATE in
a fresh MACSYMA causes various files to be loaded in.) As with the other file-handling
commands in MACSYMA, the arguments to SETUP_AUTOLOAD are not evaluated.
Example: SETUP_AUTOLOAD("bessel")$ J1(0.0); . Note: SETUP_AUTOLOAD does

not work for array functions.

Chapter 36: Rules and Patterns 191

36 Rules and Patterns

36.1 Introduction to Rules and Patterns

This section discusses user defined pattern matching and simplification rules (set up by
TELLSIMP, TELLSIMPAFTER, DEFMATCH, or, DEFRULE.) You may affect the main sim-
plification procedures, or else have your rules applied explicityly using APPLY1 and APPLY?2.
There are additional mechanisms for polynomials rules under TELLRAT, and for commutative
and non commutative algebra in chapter on AFFINE.

36.2 Definitions for Rules and Patterns

APPLY1 (exp, rulel, ..., rulen) Function
repeatedly applies the first rule to exp until it fails, then repeatedly applies the same rule to
all subexpressions of exp, left-to-right, until the first rule has failed on all subexpressions.
Call the result of transforming exp in this manner exp’. Then the second rule is applied
in the same fashion starting at the top of exp’. When the final rule fails on the final
subexpression, the application is finished.

APPLY?2 (exp, rulel, ..., rulen) Function
differs from APPLY1 in that if the first rule fails on a given subexpression, then the
second rule is repeatedly applied, etc. Only if they all fail on a given subexpression
is the whole set of rules repeatedly applied to the next subexpression. If one of the
rules succeeds, then the same subexpression is reprocessed, starting with the first rule.
MAXAPPLYDEPTH[10000] is the maximum depth to which APPLY1 and APPLY2 will
delve.

APPLYB1 (exp, rulel, ..., rulen) Function
is similar to APPLY1 but works from the "bottom up" instead of from the "top down".
That is, it processes the smallest subexpression of exp, then the next smallest, etc.
MAXAPPLYHEIGHT[10000] - is the maximum height to which APPLYBI1 will reach
before giving up.

CURRENT_LET_RULE_PACKAGE Variable
default:[DEFAULT LET _RULE_PACKAGE] - the name of the rule package that is
presently being used. The user may reset this variable to the name of any rule pack-
age previously defined via the LET command. Whenever any of the functions comprising
the let package are called with no package name the value of

CURRENT_LET_RULE_PACKAGE

is used. If a call such as LETSIMP (expr,rule_pkg name); is made, the rule pack-
age rule_pkg_name is used for that LETSIMP command only, i.e. the value of CUR-
RENT_LET_RULE_PACKAGE is not changed.

DEFAULT_LET_RULE_PACKAGE Variable
- the name of the rule package used when one is not explicitly set by the user with LET
or by changing the value of CURRENT_LET_RULE_PACKAGE.

DEFMATCH (progname, pattern, parml, ..., parmn) Function
creates a function of n+1 arguments with the name progname which tests an expression to
see if it can match a particular pattern. The pattern is some expression containing pattern
variables and parameters. The parms are given explicitly as arguments to DEFMATCH
while the pattern variables (if supplied) were given implicitly in a previous MATCHDE-
CLARE function. The first argument to the created function progname, is an expression
to be matched against the "pattern" and the other n arguments are the actual variables
occurring in the expression which are to take the place of dummy variables occurring in

192 Maxima Manual

the "pattern". Thus the parms in the DEFMATCH are like the dummy arguments to
the SUBROUTINE statement in FORTRAN. When the function is "called" the actual

arguments are substituted. For example:

(C1) NONZEROANDFREEOF (X,E):= IF E#0 AND FREEOF (X,E)
THEN TRUE ELSE FALSE$
(IS(E#0 AND FREEQF(X,E)) is an equivalent function
definition)
(C2) MATCHDECLARE (A,NONZEROANDFREEOQF (X) ,B,FREEQF(X))$
(C3) DEFMATCH(LINEAR,A*X+B,X)$
This has caused the function LINEAR(exp,varl) to be defined. It

tests exp to see if it is of the form A*varl+B where A and B do not contain varl and A is not
zero. DEFMATCHed functions return (if the match is successful) a list of equations whose
left sides are the pattern variables and parms and whose right sides are the expressions
which the pattern variables and parameters matched. The pattern variables, but not the
parameters, are set to the matched expressions. If the match fails, the function returns
FALSE. Thus LINEAR(3*Z+(Y+1)*Z+Y**2Z) would return [B=Y**2, A=Y+4, X=Z].
Any variables not declared as pattern variables in MATCHDECLARE or as parameters
in DEFMATCH which occur in pattern will match only themselves so that if the third
argument to the DEFMATCH in (C4) had been omitted, then LINEAR would only match
expressions linear in X, not in any other variable. A pattern which contains no parameters
or pattern variables returns TRUE if the match succeeds. Do EXAMPLE(DEFMATCH);

for more examples.

DEFRULE (rulename, pattern, replacement) Function

defines and names a replacement rule for the given pattern. If the rule named rulename
is applied to an expression (by one of the APPLY functions below), every subexpression
matching the pattern will be replaced by the replacement. All variables in the replacement
which have been assigned values by the pattern match are assigned those values in the
replacement which is then simplified. The rules themselves can be treated as functions
which will transform an expression by one operation of the pattern match and replacement.
If the pattern fails, the original expression is returned.

DISPRULE (rulenamel, rulename?2, ...) Function
will display rules with the names rulenamel, rulename2, as were given by DEFRULE,
TELLSIMP, or TELLSIMPAFTER or a pattern defined by DEFMATCH. For example,
the first rule modifying SIN will be called SINRULE1. DISPRULE(ALL); will display all

rules.

LET (prod, repl, predname, argl, arg2, ..., argn) Function
defines a substitution rule for LETSIMP such that prod gets replaced by repl. prod is a
product of positive or negative powers of the following types of terms:

e (1) Atoms which LETSIMP will search for literally unless previous to calling LET-
SIMP the MATCHDECLARE function is used to associate a predicate with the atom.
In this case LETSIMP will match the atom to any term of a product satisfying the
predicate.

e (2) Kernels such as SIN(X), N!, F(X,Y), etc. As with atoms above LETSIMP will look
for a literal match unless MATCHDECLARE is used to associate a predicate with
the argument of the kernel. A term to a positive power will only match a term having
at least that power in the expression being LETSIMPed. A term to a negative power
on the other hand will only match a term with a power at least as negative. In the
case of negative powers in "product" the switch LETRAT must be set to TRUE (see
below). If a predicate is included in the LET function followed by a list of arguments,
a tentative match (i.e. one that would be accepted if the predicate were omitted)
will be accepted only if predname(argl’,...,argn’) evaluates to TRUE where argi’ is
the value matched to argi. The argi may be the name of any atom or the argument
of any kernel appearing in prod. repl may be any rational expression. If any of the

Chapter 36: Rules and Patterns 193

atoms or arguments from prod appear in repl the appropriate substitutions will be
made.

LETRAT[FALSE] when FALSE, LETSIMP will simplify the numerator and denomina-
tor of expr independently and return the result. Substitutions such as N!/N goes to
(N-1)! will fail. To handle such situations LETRAT should be set to TRUE, then the
numerator, denominator, and their quotient will be simplified in that order. These sub-
stitution functions allow you to work with several rulepackages at once. Each rulepackage
can contain any number of LETed rules and is referred to by a user supplied name.
To insert a rule into the rulepackage name, do LET([prod,repl,pred,argl,...|,;name). To
apply the rules in rulepackage name, do LETSIMP(expr, name). The function LET-
SIMP (expr,namel,name2,...) is equivalent to doing LETSIMP (expr,namel) followed by
LETSIMP(%,name2) etc. CURRENT_LET_RULE_PACKAGE is the name of the rule
package that is presently being used. The user may reset this variable to the name
of any rule package previously defined via the LET command. Whenever any of the
functions comprising the let package are called with no package name the value of CUR-
RENT_LET_RULE_PACKAGE is used. If a call such as LETSIMP (expr,rule_pkg_name);
is made, the rule package rule_pkg_name is used for that LETSIMP command only,
i.e. the value of CURRENT_LET_RULE_PACKAGE is not changed. There is a DE-
FAULT_LET_RULE_PACKAGE which is assumed when no other name is supplied to
any of the functions. Whenever a LET includes a rulepackage name that is used as the

CURRENT_LET_RULE_PACKAGE.

LETRAT Variable
default: [FALSE] - when FALSE, LETSIMP will simplify the numerator and denominator
of expr independently and return the result. Substitutions such as N!/N goes to (N-1)!
will fail. To handle such situations LETRAT should be set to TRUE, then the numerator,
denominator, and their quotient will be simplified in that order.

LETRULES () Function
displays the rules in the current rulepackage. LETRULES(name) displays the rules in the
named rulepackage. The current rulepackage is the value of

CURRENT_LET_RULE_PACKAGE
The initial value of the rules is

DEFAULT_LET_RULE_PACKAGE

LETSIMP (exp) Function
will continually apply the substitution rules previously defined by the function LET until
no further change is made to exp. LETSIMP (expr,rule_pkg name); will cause the rule

package rule_pkg name to be used for that LETSIMP command only, i.e. the value of
CURRENT_LET_RULE_PACKAGE is not changed.

LET_RULE_PACKAGES Variable
default:[DEFAULT _LET _RULE_PACKAGE] - The value of LET_RULE_PACKAGES is a
list of all the user-defined let rule packages plus the special package

DEFAULT_LET_RULE_PACKAGE
This is the name of the rule package used when one is not explicitly set by the user.

MATCHDECLARE (patternvar, predicate, ...) Function
associates a predicate with a pattern variable so that the variable will only match expres-
sions for which the predicate is not FALSE. (The matching is accomplished by one of the
functions described below). For example after

MATCHDECLARE (Q, FREEQF (X, %E))

is executed, Q will match any expression not containing X or %E. If the match succeeds
then the variable is set to the matched expression. The predicate (in this case FREEOF)
is written without the last argument which should be the one against which the pattern
variable is to be tested. Note that the patternvar and the arguments to the predicate

194 Maxima Manual

are evaluated at the time the match is performed. The odd numbered argument may
also be a list of pattern variables all of which are to have the associated predicate. Any
even number of arguments may be given. For pattern matching, predicates refer to func-
tions which are either FALSE or not FALSE (any non FALSE value acts like TRUE).
MATCHDECLARE(var,TRUE) will permit var to match any expression.

MATCHFIX Function
- MATCHFIX operators are used to denote functions of any number of arguments which
are passed to the function as a list. The arguments occur between the main operator
and its "matching" delimiter. The MATCHFIX("x",...) function is a syntax extension
function which declares x to be a MATCHFIX operator. The default binding power is
180, and the ARGS inside may be anything.

(C1) matchfix("[","[");

(Dl) n|||
(C2) lal+b;

(D2) b + (lal)
(€3) I(a,b)l;

(D3) Ibl
(C4) |[a,bll;

(D4) | [a, bl

(C9) |x|:=IF NUMBERP(x) THEN ABS(x)
ELSE (IF LISTP(x) AND APPLY("and",MAP(NUMBERP,x))
THEN SUM(x[i]~2,i,1,LENGTH(x))~0.5 ELSE BUILDQ([u:x],lul))$

(C10) 1[1,2,311;

(D10) 3.741657386773941
(C18) |-71;
(D18) 7

(C19) |[a,bll;

(D19) | [a, bl

REMLET (prod, name) Function

deletes the substitution rule, prod —> repl, most recently defined by the LET function.
If name is supplied the rule is deleted from the rule package name. REMLET() and
REMLET(ALL) delete all substitution rules from the current rulepackage. If the name
of a rulepackage is supplied, e.g. REMLET(ALL,name), the rulepackage, name, is also
deleted. If a substitution is to be changed using the same product, REMLET need not
be called, just redefine the substitution using the same product (literally) with the LET
function and the new replacement and/or predicate name. Should REMLET (product)
now be called the original substitution rule will be revived.

REMRULE (function, rulename) Function
will remove a rule with the name rulename from the function which was placed there by
DEFRULE, DEFMATCH, TELLSIMP, or TELLSIMPAFTER. If rule-name is ALL, then
all rules will be removed.

Chapter 36: Rules and Patterns 195

TELLSIMP (pattern, replacement) Function
is similar to TELLSIMPAFTER but places new information before old so that it is applied
before the built-in simplification rules. TELLSIMP is used when it is important to modify
the expression before the simplifier works on it, for instance if the simplifier "knows"
something about the expression, but what it returns is not to your liking. If the simplifier
"knows" something about the main operator of the expression, but is simply not doing
enough for you, you probably want to use TELLSIMPAFTER. The pattern may not be a
sum, product, single variable, or number. RULES is a list of names having simplification
rules added to them by DEFRULE, DEFMATCH, TELLSIMP, or TELLSIMPAFTER.
Do EXAMPLE(TELLSIMP); for examples.

TELLSIMPAFTER (pattern, replacement) Function
defines a replacement for pattern which the MACSYMA simplifier uses after it applies
the built-in simplification rules. The pattern may be anything but a single variable or a
number.

196 Maxima Manual

Chapter 37: Lists 197

37 Lists

37.1 Introduction to Lists

Lists are the basic building block for maxima and lisp. All data types other than arrays,
hash tables, numbers are represented as lisp lists, These lisp lists have the form

((mplus) $A 2)
to indicate an expression A+2. At maxima level one would see the infix notation A+2. Maxima
also has lists which are printed as

(1, 2, 7, x+y]
for a list with 4 elements. Internally this corresponds to a lisp list of the form

((mlist) 1 2 7 ((mplus) $X $Y))
The flag which denotes the type field of the maxima expression is a list itself, since after it has
been through the simplifier the list would become

((mlist simp) 1 2 7 ((mplus simp) $X $Y))

37.2 Definitions for Lists

APPEND (listl, list2, ...) Function
returns a single list of the elements of list1 followed by the elements of list2,... APPEND
also works on general expressions, e.g. APPEND(F(A,B), F(C,D,E)); -> F(A,B,C,D,E).
Do EXAMPLE(APPEND); for an example.

ASSOC (exp) Function
This function searches for the key in the left hand side of the input list of the form [x,y,z...]
where each of the list elements is a expression of a binary operand and 2 elements. For
example x=1, 273, [a,b] etc. The key checked againts the first operand and and returns
the second operand if the key is found. If the key is not found it either returns the default
value if supplied or false.

ATOM (exp) Function
is TRUE if exp is atomic (i.e. a number or name) else FALSE. Thus ATOM(5) is TRUE
while ATOM(A[1]) and ATOM(SIN(X)) are FALSE. (Assuming A[1] and X are unbound.)

CONS (exp, list) Function
returns a new list constructed of the element exp as its first element, followed by the
elements of list. CONS also works on other expressions, e.g. CONS(X, F(A,B,C)); ->
F(X,A,B,C).

COPYLIST (L) Function
creates a copy of the list L.

DELETE (expl, exp2) Function
removes all occurrences of expl from exp2. Expl may be a term of exp2 (if it is a sum)
or a factor of exp2 (if it is a product).

(C1) DELETE(SIN(X),X+SIN(X)+Y);
(D1) Y + X

DELETE(expl, exp2, integer) removes the first integer occurrences of expl from exp?2.
Of course, if there are fewer than integer occurrences of expl in exp2 then all occurrences

will be deleted.

198 Maxima Manual

ENDCONS (exp, list) Function
returns a new list consisting of the elements of list followed by exp. ENDCONS also works
on general expressions, e.g. ENDCONS(X, F(A,B,C)); -> F(A,B,C,X).

EVERY (exp) Function
This function takes a list, or a positive number of arguments and returns true if all its
arguments are not false.

FIRST (exp) SECOND (exp) .. TENTH (exp) Function

yields the first part of exp which may result in the first element of a list, the first row of a
matrix, the first term of a sum, etc. Note that FIRST and its related functions, REST and
LAST, work on the form of exp which is displayed not the form which is typed on input.
If the variable INFLAG [FALSE] is set to TRUE however, these functions will look at the
internal form of exp. Note that the simplifier re-orders expressions. Thus FIRST(X+Y)
will be X if INFLAG is TRUE and Y if INFLAG is FALSE. (FIRST(Y+X) gives the same
results). The functions SECOND .. TENTH yield the second through the tenth part of
their input argument.

FLATTEN (exp) Function
Takes a list of the form [[1,2],[3,4]] and returns [1,2,3,4].

GET (a, i) Function
retrieves the user property indicated by i associated with atom a or returns FALSE if a
doesn’t have property i.

(C1) PUT(Y%E, ’TRANSCENDENTAL, >TYPE);
(D) TRANSCENDENTAL
(C2) PUT(%PI,’ T TRANSCENDENTAL, TYPE)$
(C3) PUT(%I,’ALGEBRAIC,’TYPE)S$
(C4) TYPEOF(EXP) := BLOCK(I[QI,
IF NUMBERP (EXP)
THEN RETURN(’ALGEBRAIC),
IF NOT ATOM(EXP)
THEN RETURN(MAPLIST(’TYPEQF, EXP)),
Q : GET(EXP, ’TYPE),
IF Q=FALSE
THEN ERRCATCH(ERROR(EXP,"is not numeric.")) ELSE Q)$
(C5) TYPEOF (2%%E+X*)PI) ;
X is not numeric.

(D5) [[TRANSCENDENTAL, []], [ALGEBRAIC, TRANSCENDENTAL]]
(C6) TYPEOF (2*%E+%PI) ;
(D6) [TRANSCENDENTAL, [ALGEBRAIC, TRANSCENDENTAL]]
LAST (exp) Function
yields the last part (term, row, element, etc.) of the exp.
LENGTH (exp) Function

gives (by default) the number of parts in the external (displayed) form of exp. For lists
this is the number of elements, for matrices it is the number of rows, and for sums it
is the number of terms. (See DISPFORM). The LENGTH command is affected by the
INFLAG switch [default FALSE]. So, e.g. LENGTH(A/(B*C)); gives 2 if INFLAG is
FALSE (Assuming EXPTDISPFLAG is TRUE), but 3 if INFLAG is TRUE (the internal
representation is essentially A*B~-1*C~-1).

LISTARITH Variable
default: [TRUE] - if FALSE causes any arithmetic operations with lists to be suppressed;
when TRUE, list-matrix operations are contagious causing lists to be converted to matrices
yielding a result which is always a matrix. However, list-list operations should return lists.

Chapter 37: Lists 199

LISTP (exp) Function
is TRUE if exp is a list else FALSE.

MAKELIST (exp,var,lo,hi) Function
returns a list as value. MAKELIST may be called as MAKELIST (exp,var,lo,hi) ["lo" and
"hi" must be integers|, or as MAKELIST (exp,var,list). In the first case MAKELIST is
analogous to SUM, whereas in the second case MAKELIST is similar to MAP. Examples:

MAKELIST (CONCAT(X,I),I,1,6) yields [X1,X2,X3,X4,X5,X6]
MAKELIST(X=Y,Y, [A,B,C]) yields [X=A,X=B,X=C]

MEMBER (exp, list) Function
returns TRUE if exp occurs as a member of list (not within a member). Otherwise FALSE
is returned. Member also works on non-list expressions, e.g. MEMBER(B, F(A,B,C)); ->
TRUE.

REST (exp, n) Function
yields exp with its first n elements removed if n is positive and its last -n elements removed
if n is negative. If nis 1 it may be omitted. Exp may be a list, matrix, or other expression.

REVERSE (list) Function
reverses the order of the members of the list (not the members themselves). REVERSE
also works on general expressions, e.g. REVERSE(A=B); gives B=A. REVERSE default:
[FALSE] - in the Plotting functions, if TRUE cause a left-handed coordinate system to be
assumed.

200 Maxima Manual

Chapter 38: Function Definition 201

38 Function Definition

38.1 Introduction to Function Definition

38.2 FUNCTION

- To define a function in MACSYMA you use the := operator. E.g.
F(X) :=SIN(X)
defines a function F. Anonmyous functions may also be created using LAMBDA. For example
lambda([i,jl, ...)
can be used instead of F where

F(I,J):=BLOCK([], ...);
MAP (LAMBDA ([I],I+1),L)

would return a list with 1 added to each term.

You may also define a function with a variable number of arguments, by having a final
argument which is assigned to a list of the extra arguments:

(€8) £([ul):=u;
(c9) £(1,2,3,4);
(D9) [1, 2, 3, 4]
(C11) f(a,b,[ul):=[a,b,ul;
(c12) £(1,2,3,4,5,6);
(D12) (1, 2, [3, 4, 5, 611
The right hand side of a function is an expression. Thus if you want a sequence of expressions,
you do

f(x) :=(exprl,expr2,....,exprn);
and the value of exprn is what is returned by the function.

If you wish to make a return from some expression inside the function then you must use
block and return.

block([],exprl,...,if(a>10) then return(a),...exprn)

is itelf an expression, and so could take the place of the right hand side of a function definition.
Here it may happen that the return happens earlier than the last expression.

The first [] in the block, may contain a list of variables and variable assignments, such
as [a:3,b,c: [1], which would cause the three variables a,b,and ¢ to not refer to their global
values, but rather have these special values for as long as the code executes inside the block, or
inside functions called from inside the block. This is called dynamic binding, since the variables
last from the start of the block to the time it exits. Once you return from the block, or throw
out of it, the old values (if any) of the variables will be restored. It is certainly a good idea to
protect your variables in this way. Note that the assignments in the block variables, are done in
parallel. This means, that if you had used c:a in the above, the value of ¢ would have been the
value of a at the time you just entered the block, but before a was bound. Thus doing something
like

block([a:a],exprl,... a:a+3,...exprn)

will protect the external value of a from being altered, but would let you access what that
value was. Thus the right hand side of the assignments, is evaluated in the entering context,
before any binding occurs. Using just block([x], .. would cause the x to have itself as value,
just as if it would have if you entered a fresh MAXIMA session.

The actual arguments to a function are treated in exactly same way as the variables in a
block. Thus in
f(x) :=(expril,...exprn);
and
£f(1);
we would have a similar context for evaluation of the expressions as if we had done

202 Maxima Manual

block([x:1],expri,...exprn)

Inside functions, when the right hand side of a definition, may be computed at runtime, it is
useful to use define and possibly buildg.

38.3 MACROS

BUILDQ ([varlist],expression); Function
EXPRESSION is any single MAXIMA expression and VARLIST is a list of elements of
the form <atom> or <atom>:<value>

38.3.1 Semantics

The <value>s in the <varlist> are evaluated left to right (the syntax <atom> is equivalent
to <atom>:<atom>). then these values are substituted into <expression> in parallel. If any
<atom> appears as a single argument to the special form SPLICE (i.e. SPLICE(<atom>))
inside <expression>, then the value associated with that <atom> must be a macsyma list, and
it is spliced into <expression> instead of substituted.

38.3.2 SIMPLIFICATION

The arguments to BUILDQ need to be protected from simplification until the substitutions
have been carried out. This code should affect that by using ’.

buildq can be useful for building functions on the fly. One of the powerful things about
MAXIMA is that you can have your functions define other functions to help solve the problem.
Further below we discuss building a recursive function, for a series solution. This defining of
functions inside functions usually uses define, which evaluates its arguments. A number of
examples are included under splice.

SPLICE (atom) Function
This is used with buildq to construct a list. This is handy for making argument lists, in
conjunction with BUILDQ

MPRINT([X]) ::= BUILDQ([U : x1],
if (debuglevel > 3) print(splice(u)));

Including a call like
MPRINT ("matrix is ",MAT,"with length",LENGTH(MAT))
is equivalent to putting in the line

IF DEBUGLEVEL > 3
THEN PRINT("matrix is ",MAT,"with length",
LENGTH(MAT))

A more non trivial example would try to display the variable values AND their names.
MSHOW(A,B,C)

should become
PRINT(’A,"=",A,",",’B,"=",B,", and",’C,"=",C)

so that if it occurs as a line in a program we can print values.

(C101) foo(x,y,z):=mshow(x,y,z);
(C102) foo(1,2,3);
X=1,Y=2, and Z = 3

The actual definition of mshow is the following. Note how buildq lets you build ’"QUOTED’
structure, so that the >u lets you get the variable name. Note that in macros, the RESULT
is a piece of code which will then be substituted for the macro and evaluated.

Chapter 38: Function Definition 203

MSHOW([1is])::=BLOCK([ans: [],N:LENGTH(1is)],
FOR i THRU N DO
(ans:APPEND (ans,
BUILDQ([u:1is[il],
[)u,u:u’u])) s
IF i < N
THEN ans
: APPEND (ans,
IF i < N-1 THEN [","]
ELSE [", and"])),
BUILDQ([U:ans] ,PRINT(SPLICE(u))))

The splice also works to put arguments into algebraic operations:

(C108) BUILDQ([A:’[B,C,D]],+SPLICE(A));

(D108) D+C+B
Note how the simplification only occurs AFTER the substitution, The operation applying
to the splice in the first cae is the + while in the second it is the *, yet logically you
might thing splice(a)+splice(A) could be replaced by 2*splice(A). No simplification
takes place with the buildq To understand what SPLICE is doing with the algebra you
must understand that for MAXIMA, a formula an operation like A+B+C is really internally
similar to +(A,B,C), and similarly for multiplication. Thus *(2,B,C,D) is 2*B*C*D

(C114) BUILDQ([A:’[B,C,D]],+SPLICE(A));

(D114) D+C+B

(C111) BUILDQ([A:’[B,C,D]],SPLICE(A)+SPLICE(A));
(D111) 2*D+2%C+2*B
but

(C112) BUILDQ([A:’[B,C,D]],2*SPLICE(A));

(D112) 2%B*C*D
Finally the buildq can be invaluable for building recursive functions. Suppose your pro-
gram is solving a differential equation using the series method, and has determined that
it needs to build a recursion relation

FIN] :=(-((N"2-2%N+1) *F [N-1]+F [N-2] +F [N-3]) / (N~ 2-N))

and it must do this on the fly inside your function. Now you would really like to add
expand.

F [N] : =EXPAND ((- ((N"2-2*N+1) *F [N-1]+F [N-2] +F [N-3])
/(N"2-N))) ;

but how do you build this code. You want the expand to happen each time the function
runs, NOT before it.

kill(f),
val: (-((N"2-2xN+1)*F [N-1] +F [N-2]+F [N-3])/(N"2-N)),
define(f [n] ,buildq([u:val],expand(u))),

does the job. This might be useful, since when you do

With the Expand
(c28) f[6];
(D28) -AA1/8-13%AA0/180

where as without it is kept unsimplified, and even after 6 terms it becomes:

(Cc25) f[6];
(D25) (5% (4% (-3%x(-2*%(AA1+AAQ)+AA1+AAQ) /2
- (AA1+AAQ) /2+AA1)
/3
-(-2%x(AA1+AAQ)+AA1+AAQ) /6+(-AA1-AAOQ)/2)
/4
+(-3%(-2% (AA1+AAQ) +AA1+AA0) /2
- (AA1+AAQ) /2+AA1)

204 Maxima Manual

/12-(2x (AA1+AAO) -AA1-AAO) /6)
/30

The expression quickly becomes complicated if not simplified at each stage, so the sim-
plification must be part of the definition. Hence the buildq is useful for building the
form.

38.4 OPTIMIZATION

The optimu files no longer exist in Maxima. The documentation is left here for historical
purposes.

When using TRANSLATE and generating code with MACSYMA, there are a number of
techniques which can save time and be helpful. Do DEMO("optimu.dem") for a demonstration.
In particular, the function FLOATDEFUNK from TRANSL;OPTIMU FASL, creates a function
definition from a math-like expression, but it optimizes it (with OPTIMIZE) and puts in the
MODE_DECLAREations needed to COMPILE correctly. (This can be done by hand, of course).
The demo will only run in a fresh macsyma.

38.5 Definitions for Function Definition

APPLY (function, list) Function
gives the result of applying the function to the list of its arguments. This is useful when
it is desired to compute the arguments to a function before applying that function. For
example, if L is the list [1, 5, -10.2, 4, 3], then APPLY(MIN,L) gives -10.2. APPLY is
also useful when calling functions which do not have their arguments evaluated if it is
desired to cause evaluation of them. For example, if FILESPEC is a variable bound to
the list [TEST, CASE] then APPLY(CLOSEFILE,FILESPEC) is equivalent to CLOSE-
FILE(TEST,CASE). In general the first argument to APPLY should be preceded by a
" to make it evaluate to itself. Since some atomic variables have the same name as cer-
tain functions the values of the variable would be used rather than the function because
APPLY has its first argument evaluated as well as its second.

BINDTEST (ai) Function

causes ai to signal an error if it ever is used in a computation unbound.

BLOCK ([v1,...,vk], statementl,...,statementj) Function
Blocks in MACSYMA are somewhat analogous to subroutines in FORTRAN or procedures
in ALGOL or PL/I. Blocks are like compound statements but also enable the user to label
statements within the block and to assign "dummy" variables to values which are local
to the block. The vi are variables which are local to the BLOCK and the stmti are any
MACSYMA expressions. If no variables are to be made local then the list may be omitted.
A block uses these local variables to avoid conflict with variables having the same names
used outside of the block (i.e. global to the block). In this case, upon entry to the block, the
global values are saved onto a stack and are inaccessible while the block is being executed.
The local variables then are unbound so that they evaluate to themselves. They may be
bound to arbitrary values within the block but when the block is exited the saved values
are restored to these variables. The values created in the block for these local variables
are lost. Where a variable is used within a block and is not in the list of local variables
for that block it will be the same as the variable used outside of the block. If it is desired
to save and restore other local properties besides VALUE, for example ARRAY (except
for complete arrays), FUNCTION, DEPENDENCIES, ATVALUE, MATCHDECLARE,
ATOMGRAD, CONSTANT, and NONSCALAR then the function LOCAL should be
used inside of the block with arguments being the names of the variables. The value of
the block is the value of the last statement or the value of the argument to the function
RETURN which may be used to exit explicitly from the block. The function GO may be
used to transfer control to the statement of the block that is tagged with the argument to
GO. To tag a statement, precede it by an atomic argument as another statement in the

Chapter 38: Function Definition 205

BLOCK. For example: BLOCK([X],X:1,LOOP,X:X+1,...,GO(LOOP),...). The argument
to GO must be the name of a tag appearing within the BLOCK. One cannot use GO to
transfer to a tag in a BLOCK other than the one containing the GO. Blocks typically
appear on the right side of a function definition but can be used in other places as well.

BREAK (argl, ...) Function
will evaluate and print its arguments and will then cause a (MACSYMA-BREAK) at
which point the user can examine and change his environment. Upon typing EXIT; the
computation resumes. Control-A (~A) will enter a MACSYMA-BREAK from any point
interactively. EXIT; will continue the computation. Control-X may be used inside the
MACSYMA-BREAK to quit locally, without quitting the main computation.

BUILDQ Macro
- See DESCRIBE(MACROS); .

CATCH (expl,...,expn) Function
evaluates its arguments one by one; if the structure of the expi leads to the evaluation
of an expression of the form THROW (arg), then the value of the CATCH is the value
of THROW ((arg). This "non-local return" thus goes through any depth of nesting to the
nearest enclosing CATCH. There must be a CATCH corresponding to a THROW, else
an error is generated. If the evaluation of the expi does not lead to the evaluation of any
THROW then the value of the CATCH is the value of expn.

(C1) G(L):=CATCH(MAP (LAMBDA([X],
IF X<0 THEN THROW(X) ELSE F(X)),L));
(Cc2) G([1,2,3,71);

(D2) [F(1), F(2), F(3), F(M]
(C3) G([1,2,-3,71);
(D3) -3

The function G returns a list of F of each element of L if L consists only of non-negative
numbers; otherwise, G "catches" the first negative element of L and "throws" it up.

COMPFILE ([filespec], 1, 12, ..., fn) Function
Compiles functions fi into the file "filespec". For convenience, see the COMPILE function.

COMPGRIND Variable
default: [FALSE] when TRUE function definitions output by COMPFILE are pretty-
printed.

COMPILE (f) Function

The COMPILE command is a convenience feature in macsyma. It handles the call-
ing of the function COMPFILE, which translates macsyma functions into lisp, the
calling of the lisp compiler on the file produced by COMPFILE, and the loading of
the output of the compiler, know as a FASL file, into the macsyma. It also checks
the compiler comment listing output file for certain common errors. Do PRINT-
FILE(MCOMPI,DOC,MAXDOC); for more details. COMPILE(); causes macsyma to
prompt for arguments. COMPILE(functionl,function2,...); compiles the functions, it
uses the name of functionl as the first name of the file to put the lisp output. COM-
PILE(ALL); or COMPILE(FUNCTIONS); will compile all functions. COMPILE(|[file-
name],functionl,function2,...); N.B. all arguments are evaluated, just like a normal func-
tion (it is a normal function!). Therefore, if you have variables with the same name as
part of the file you can not ignore that fact.

COMPILE_LISP_FILE ("input filename") Function
which takes an optional second argument of "output filename," can be used in conjunction
with

TRANSLATE_FILE("filename").
For convenience you might define

206 Maxima Manual

Compile_and_load (FILENAME) :=
LOAD(COMPILE_LISP_FILE(TRANSLATE_FILE(FILENAME) [2]))[2]);

These file-oriented commands are to be preferred over the use of COMPILE, COMPFILE,
and the TRANSLATE SAVE combination.

DEFINE (f(x1, ...), body) Function
is equivalent to f(x1,...):="body but when used inside functions it happens at execution
time rather than at the time of definition of the function which contains it.

DEFINE_VARIABLE Function
(name,default-binding,mode,optional-documentation)
introduces a global variable into the MACSYMA environment. This is for user-written
packages, which are often translated or compiled. Thus

DEFINE_VARIABLE(F0OO,TRUE,BOOLEAN) ;
does the following;:
(1) MODE_DECLARE(FOO,BOOLEAN); sets it up for the translator.
(2) If the variable is unbound, it sets it: FOO:TRUE.
(3) DECLARE(FOO,SPECIAL); declares it special.

(4) Sets up an assign property for it to make sure that it never gets set to a value of the
wrong mode. E.g. FOO:44 would be an error once FOO is defined BOOLEAN.

See DESCRIBE(MODE_DECLARE); for a list of the possible "modes". The optional
4th argument is a documentation string. When TRANSLATE_FILE is used on a pack-
age which includes documentation strings, a second file is output in addition to the LISP
file which will contain the documentation strings, formatted suitably for use in manu-
als, usage files, or (for instance) DESCRIBE. With any variable which has been DE-
FINE_VARIABLE’d with mode other than ANY, you can give a VALUE_CHECK prop-
erty, which is a function of one argument called on the value the user is trying to set the
variable to.

PUT(’G5,LAMBDA([U] ,IF U#°G5 THEN ERROR("Don’t set G5")),
’VALUE_CHECK) ;
Use DEFINE_VARIABLE(G5,’G5,ANY_CHECK, "this ain’t supposed to be set by anyone
but me.") ANY_CHECK is a mode which means the same as ANY, but which keeps
DEFINE_VARIABLE from optimizing away the assign property.

DISPFUN (11, 12, ...) Function
displays the definition of the user defined functions f1, f2, ... which may also be the names
of array associated functions, subscripted functions, or functions with constant subscripts
which are the same as those used when the functions were defined. DISPFUN(ALL) will
display all user defined functions as given on the FUNCTIONS and ARRAYS lists except
subscripted functions with constant subscripts. E.g. if the user has defined a function
F(x), DISPFUN(F); will display the definition.

FUNCTIONS Variable
default: [] - all user defined functions (set up by f(x):=...).

FUNDEF (functionname) Function
returns the function definition associated with "functionname". FUNDEF (fnname); is
similar to DISPFUN(fnname); except that FUNDEF does not invoke display.

FUNMAKE (name,[argl,...,argn]) Function

returns name(argl,...,argn) without calling the function name.

LOCAL (v1, v2, ...) Function
causes the variables v1,v2,... to be local with respect to all the properties in the statement
in which this function is used. LOCAL may only be used in BLOCKSs, in the body
of function definitions or LAMBDA expressions, or in the EV function and only one
occurrence is permitted in each. LOCAL is independent of CONTEXT.

Chapter 38: Function Definition 207

MACROEXPANSION Variable
default:[FALSE] - Controls advanced features which affect the efficiency of macros. Pos-
sible settings: FALSE — Macros expand normally each time they are called. EXPAND
— The first time a particular call is evaluated, the expansion is "remembered" internally,
so that it doesn’t have to be recomputed on subsequent calls making subsequent calls
faster. The macro call still GRINDs and DISPLAYs normally, however extra memory is
required to remember all of the expansions. DISPLACE — The first time a particular call
is evaluated, the expansion is substituted for the call. This requires slightly less storage
than when MACROEXPANSION is set to EXPAND and is just as fast, but has the dis-
advantage that the original macro call is no longer remembered and hence the expansion
will be seen if DISPLAY or GRIND is called. See documentation for TRANSLATE and
MACROS for more details.

MODE_CHECKP Variable
default: [TRUE] - If TRUE, MODE_DECLARE checks the modes of bound variables.

MODE_CHECK_ERRORP Variable
default: [FALSE] - If TRUE, MODE_DECLARE calls error.

MODE_CHECK_WARNP Variable
default: [TRUE] - If TRUE, mode errors are described.

MODE_DECLARE (y1, model, y2, mode2, ...) Function

MODEDECLARE is a synonym for this. MODE_DECLARE is used to declare the modes
of variables and functions for subsequent translation or compilation of functions. Its
arguments are pairs consisting of a variable yi, and a mode which is one of BOOLEAN,
FIXNUM, NUMBER, RATIONAL, or FLOAT. Each yi may also be a list of variables all
of which are declared to have modei. If yi is an array, and if every element of the array
which is referenced has a value then ARRAY (yi, COMPLETE, diml, dim2, ...) rather
than

ARRAY (yi, diml, dim2, ...)
should be used when first declaring the bounds of the array. If all the elements of the

array are of mode FIXNUM (FLOAT), use FIXNUM (FLOAT) instead of COMPLETE.
Also if every element of the array is of the same mode, say m, then

MODE_DECLARE (COMPLETEARRAY (yi) ,m))

should be used for efficient translation. Also numeric code using arrays can be made to
run faster by declaring the expected size of the array, as in:

MODE_DECLARE (COMPLETEARRAY (A[10,10]) ,FLOAT)

for a floating point number array which is 10 x 10. Additionally one may declare the mode
of the result of a function by using FUNCTION(F1,F2,...) as an argument; here F1,F2,...
are the names of functions. For example the expression,

MODE_DECLARE ([FUNCTION(F1,F2,...),X],FIXNUM,Q,
COMPLETEARRAY (Q) ,FLOAT)

declares that X and the values returned by F1,F2.... are single-word integers and that
Q is an array of floating point numbers. MODE_DECLARE is used either immedi-
ately inside of a function definition or at top-level for global variables. Do PRINT-
FILE(MCOMPI,DOC,MAXDOC); for some examples of the use of MODE_DECLARE

in translation and compilation.

MODE_IDENTITY (argl,arg2) Function
A special form used with MODE_DECLARE and MACROS to delcare, e.g., a
list of lists of flonums, or other compound data object. The first argument to
MODE_IDENTITY is a primitive value mode name as given to MODE_DECLARE (i.e.
[FLOAT,FIXNUM,NUMBER, LIST,ANY]), and the second argument is an expression
which is evaluated and returned as the value of MODE_IDENTITY. However, if the
return value is not allowed by the mode declared in the first argument, an error or

208 Maxima Manual

warning is signalled. The important thing is that the MODE of the expression as
determined by the MACSYMA to Lisp translator, will be that given as the first
argument, independent of anything that goes on in the second argument. E.g. X:3.3;
MODE_IDENTITY (FIXNUM,X); is an error. MODE_IDENTITY (FLONUM,X) returns
3.3 . This has a number of uses, e.g., if you knew that FIRST(L) returned a number then
you might write MODE_IDENTITY (NUMBER,FIRST(L)). However, a more efficient
way to do it would be to define a new primitive,

FIRSTNUMB (X) : :=BUILDQ([X] ,MODE_IDENTITY (NUMBER,X));
and use FIRSTNUMB every time you take the first of a list of numbers.

TRANSBIND Variable
default: [FALSE] - if TRUE removes global declarations in the local context. This applies
to variables which are formal parameters to functions which one is TRANSLATE-ing from
MACSYMA code to LISP.

TRANSCOMPILE Variable
default:[FALSE] - if true, TRANSLATE will generate the declarations necessary for pos-
sible compilation. The COMPFILE command uses TRANSCOMPILE: TRUE;.

TRANSLATE (f1, 12, ...) Function
translates the user defined functions f1,f2,... from the MACSYMA language to LISP (i.e.
it makes them EXPRs). This results in a gain in speed when they are called. There is now
a version of macsyma with the macsyma to lisp translator pre-loaded into it. It is available
by typing :TM (for TranslateMacsyma) at DDT level. When given a file name, E.g. :TM
GJC;TMTEST > , it gives that file to the function TRANSLATE_FILE, and proceeds
without further user interaction. If no file name is given, :TM gives a regular macsyma
"(C1)" line. P.s. A user init file with second name "TM" will be loaded if it exists. You
may just want to link this to your macsyma init file. Functions to be translated should
include a call to MODE_DECLARE at the beginning when possible in order to produce
more efficient code. For example:

F(X1,X2,...):=BLOCK([v1,v2,...],
MODE_DECLARE(v1,model,v2,mode2,...),...)

where the X1,X2,... are the parameters to the function and the v1,v2,... are the local
variables. The names of translated functions are removed from the FUNCTIONS list if
SAVEDEF is FALSE (see below) and are added to the PROPS lists. Functions should not
be translated unless they are fully debugged. Also, expressions are assumed simplified; if
they are not, correct but non- optimal code gets generated. Thus, the user should not set
the SIMP switch to FALSE which inhibits simplification of the expressions to be translated.
The switch TRANSLATE, default: [FALSE], If TRUE, causes automatic translation of
a user’s function to LISP. Note that translated functions may not run identically to the
way they did before translation as certain incompatabilities may exist between the LISP
and MACSYMA versions. Principally, the RAT function with more than one argument
and the RATVARS function should not be used if any variables are MODE_DECLAREd
CRE. Also the PREDERROR:FALSE setting will not translate. SAVEDEF[TRUE] - if
TRUE will cause the MACSYMA version of a user function to remain when the function is
TRANSLATEd. This permits the definition to be displayed by DISPFUN and allows the
function to be edited. TRANSRUN[TRUE] - if FALSE will cause the interpreted version of
all functions to be run (provided they are still around) rather than the translated version.
One can translate functions stored in a file by giving TRANSLATE an argument which is
a file specification. This is a list of the form [fnl,fn2,DSK,dir] where fnl fn2 is the name
of the file of MACSYMA functions, and dir is the name of a file directory. The result
returned by TRANSLATE is a list of the names of the functions TRANSLATEd. In the
case of a file translation the corresponding element of the list is a list of the first and
second new file names containing the LISP code resulting from the translation. This will
be fnl LISP on the disk directory dir. The file of LISP code may be read into MACSYMA
by using the LOADFILE function.

Chapter 38: Function Definition 209

TRANSLATE_FILE (file) Function
translates a file of MACSYMA code into a file of LISP code. It takes one or two argu-
ments. The first argument is the name of the MACSYMA file, and the optional second
argument is the name of the LISP file to produce. The second argument defaults to
the first argument with second file name the value of TR_.OUTPUT_FILE_DEFAULT
which defaults to TRLISP. For example: TRANSLATE_FILE("test.mc")); will trans-
late "test.mc" to "test.LISP". Also produced is a file of translator warning messages of
various degrees of severity. The second file name is always UNLISP. This file contains valu-
able (albeit obsure for some) information for tracking down bugs in translated code. Do
APROPOS(TR.) to get a list of TR (for TRANSLATE) switches. In summary, TRANS-
LATE_FILE("foo.mc"), LOADFILE("foo.LISP") is "=" to BATCH("foo.mc") modulo
certain restrictions (the use of 7 and % for example).

TRANSRUN Variable
default: [TRUE] - if FALSE will cause the interpreted version of all functions to be run
(provided they are still around) rather than the translated version.

TR_ARRAY_AS_REF Variable
default: [TRUE] - If TRUE runtime code uses the value of the variable as the array.

TR_BOUND_FUNCTION_APPLYP Variable

default: [TRUE] - Gives a warning if a bound variable is found being used as a function.

TR_FILE_TTY_MESSAGESP Variable
default: [FALSE] - Determines whether messages generated by TRANSLATE _FILE during
translation of a file will be sent to the TTY. If FALSE (the default), messages about
translation of the file are only inserted into the UNLISP file. If TRUE, the messages are
sent to the TTY and are also inserted into the UNLISP file.

TR_FLOAT _CAN_BRANCH_COMPLEX Variable
default: [TRUE] - States whether the arc functions might return complex results. The arc
functions are SQRT, LOG, ACOS, etc. e.g. When it is TRUE then ACOS(X) will be of
mode ANY even if X is of mode FLOAT. When FALSE then ACOS(X) will be of mode
FLOAT if and only if X is of mode FLOAT.

TR_FUNCTION_CALL_DEFAULT Variable
default: [GENERAL] - FALSE means give up and call MEVAL, EXPR means assume Lisp
fixed arg function. GENERAL, the default gives code good for MEXPRS and MLEXPRS
but not MACROS. GENERAL assures variable bindings are correct in compiled code. In
GENERAL mode, when translating F(X), if F is a bound variable, then it assumes that
APPLY(F,[X]) is meant, and translates a such, with apropriate warning. There is no need
to turn this off. With the default settings, no warning messages implies full compatibility
of translated and compiled code with the macsyma interpreter.

TR_GEN_TAGS Variable
default: [FALSE]| - If TRUE, TRANSLATE_FILE generates a TAGS file for use by the

text editor.

TR_NUMER Variable
default: [FALSE] - If TRUE numer properties are used for atoms which have them, e.g.
%PL.

TR_OPTIMIZE_MAX_LOOP Variable

default: [100] - The maximum number of times the macro-expansion and optimization
pass of the translator will loop in considering a form. This is to catch MACRO expansion
errors, and non-terminating optimization properties.

210 Maxima Manual

TR_-OUTPUT_FILE_DEFAULT Variable
default: [TRLISP] - This is the second file name to be used for translated lisp output.

TR_PREDICATE_BRAIN_DAMAGE Variable
default: [FALSE] - If TRUE, output possible multiple evaluations in an attempt to inter-
face to the COMPARE package.

TR_SEMICOMPILE Variable
default: [FALSE] - If TRUE TRANSLATE_FILE and COMPFILE output forms which

will be macroexpanded but not compiled into machine code by the lisp compiler.

TR_STATE_VARS Variable
default:

[TRANSCOMPILE, TR_SEMICOMPILE,

TR_WARN_UNDECLARED, TR_WARN_MEVAL, TR_WARN_FEXPR, TR_WARN_MODE,

TR_WARN_UNDEFINED_VARIABLE, TR_FUNCTION_CALL_DEFAULT,
TR_ARRAY_AS_REF,TR_NUMER]

The list of the switches that affect the form of the translated output. This information is
useful to system people when trying to debug the translator. By comparing the translated
product to what should have been produced for a given state, it is possible to track down
bugs.

TR_-TRUE_NAME_OF_FILE BEING_TRANSLATED Variable
default: [FALSE] is bound to the quoted string form of the true name of the file most
recently translated by TRANSLATE_FILE.

TR_VERSION Variable
- The version number of the translator.

TR_WARNINGS_GET () Function
Prints a list of warnings which have been given by the translator during the current
translation.

TR_-WARN_BAD_FUNCTION_CALLS Variable

default: [TRUE] - Gives a warning when when function calls are being made which may
not be correct due to improper declarations that were made at translate time.

TR_WARN_FEXPR Variable
default: [COMPFILE] - Gives a warning if any FEXPRs are encountered. FEXPRs
should not normally be output in translated code, all legitimate special program forms
are translated.

TR_WARN_MEVAL Variable
default: [COMPFILE] - Gives a warning if the function MEVAL gets called. If MEVAL
is called that indicates problems in the translation.

TR_-WARN_MODE Variable
default: [ALL] - Gives a warning when variables are assigned values inappropriate for their
mode.

TR_-WARN_UNDECLARED Variable
default: [COMPILE] - Determines when to send warnings about undeclared variables to
the TTY.

TR_WARN_UNDEFINED_VARIABLE Variable

default: [ALL] - Gives a warning when undefined global variables are seen.

Chapter 38: Function Definition 211

TR_WINDY Variable
default: [TRUE] - Generate "helpfull" comments and programming hints.

UNDECLAREDWARN Variable
default: [COMPFILE] - A switch in the Translator. There are four relevant settings:
SETTING | ACTION FALSE | never

print warning messages. COMPFILE | warn when in COMPFILE TRANSLATE
| warn when in TRANSLATE and when TRANSLATE:TRUE ALL | warn in
COMPFILE and TRANSLATE Do
MODE_DECLARE(<variable>,ANY) to declare a variable to be a general macsyma
variable (i.e. not limited to being FLOAT or FIXNUM). The extra work in declaring all
your variables in code to be compiled should pay off.

COMPILE_FILE (filename,&optional-outfile) Function
It takes filename which contains macsyma code, and translates this to lisp and then
compiles the result. It returns a list of four files (the original file,translation, notes on
translation and the compiled code).

DECLARE_TRANSLATED (FNI1,FN2..) Function
When translating a file of macsyma code to lisp, it is important for the translator to know
which functions it sees in the file are to be called as translated or compiled functions, and
which ones are just macsyma functions or undefined. Putting this declaration at the top of
the file, lets it know that although a symbol does which does not yet have a lisp function
value, will have one at call time. (MFUNCTION-CALL fn argl arg2..) is generated
when the translator does not know fn is going to be a lisp function.

212 Maxima Manual

Chapter 39: Program Flow 213

39 Program Flow

39.1 Introduction to Program Flow

MACSYMA provides a DO loop for iteration, as well as more primitive constructs such as

GO.

39.2 Definitions for Program Flow

BACKTRACE Variable
default: [| (when DEBUGMODE:ALL has been done) has as value a list of all functions
currently entered.

DO special operator
- The DO statement is used for performing iteration. Due to its great generality the
DO statement will be described in two parts. First the usual form will be given which
is analogous to that used in several other programming languages (FORTRAN, ALGOL,
PL/I, etc.); then the other features will be mentioned. 1. There are three variants of this
form that differ only in their terminating conditions. They are:

e (a) FOR variable : initial-value STEP increment THRU limit DO body
e (b) FOR variable : initial-value STEP increment WHILE condition DO body
e (c) FOR variable : initial-value STEP increment UNLESS condition DO body

(Alternatively, the STEP may be given after the termination condition or limit.) The
initial-value, increment, limit, and body can be any expressions. If the increment is 1 then
"STEP 1" may be omitted. The execution of the DO statement proceeds by first assigning
the initial-value to the variable (henceforth called the control-variable). Then: (1) If the
control-variable has exceeded the limit of a THRU specification, or if the condition of the
UNLESS is TRUE, or if the condition of the WHILE is FALSE then the DO terminates.
(2) The body is evaluated. (3) The increment is added to the control-variable. The process
from (1) to (3) is performed repeatedly until the termination condition is satisfied. One
may also give several termination conditions in which case the DO terminates when any of
them is satisfied. In general the THRU test is satisfied when the control-variable is greater
than the limit if the increment was non-negative, or when the control-variable is less than
the limit if the increment was negative. The increment and limit may be non-numeric
expressions as long as this inequality can be determined. However, unless the increment is
syntactically negative (e.g. is a negative number) at the time the DO statement is input,
MACSYMA assumes it will be positive when the DO is executed. If it is not positive,
then the DO may not terminate properly. Note that the limit, increment, and termination
condition are evaluated each time through the loop. Thus if any of these involve much
computation, and yield a result that does not change during all the executions of the body,
then it is more efficient to set a variable to their value prior to the DO and use this variable
in the DO form. The value normally returned by a DO statement is the atom DONE,
as every statement in MACSYMA returns a value. However, the function RETURN may
be used inside the body to exit the DO prematurely and give it any desired value. Note
however that a RETURN within a DO that occurs in a BLOCK will exit only the DO
and not the BLOCK. Note also that the GO function may not be used to exit from a DO
into a surrounding BLOCK. The control-variable is always local to the DO and thus any
variable may be used without affecting the value of a variable with the same name outside
of the DO. The control-variable is unbound after the DO terminates.

(c1) FOR A:-3 THRU 26 STEP 7 DO LDISPLAY(A)S$

(E1) A=-3
(E2) A= 4
(E3) A =11
(E4) A = 18
(E5) A =25

The function LDISPLAY generates intermediate labels; DISPLAY does not.

214

Maxima Manual

(ce) S:0%

(C7) FOR I:1 WHILE I<=10 DO S:S+I;
(D7) DONE

(c8) s;

(D8) 55

Note that the condition in C7 is equivalent to UNLESS I > 10 and also THRU 10

(C9) SERIES:1$
(C10) TERM:EXP(SIN(X))$
(C11) FOR P:1 UNLESS P>7 DO
(TERM:DIFF (TERM,X) /P,
SERIES:SERIES+SUBST (X=0,TERM)*X"P)$
(C12) SERIES;
7 6 5 4 2
(D12) X X X X X
—— = m—— = == = —— 4+ —— + X + 1
96 240 15 8 2
which gives 8 terms of the Taylor series for e“sin(x).
(C13) POLY:0$
(C14) FOR I:1 THRU 5 DO
FOR J:I STEP -1 THRU 1 DO
POLY:POLY+I*X"~J$
(C15) POLY;
5 4 3 2
(D15) 5X +9X +12X + 14X + 15X
(C16) GUESS:-3.0%
(C17) FOR I:1 THRU 10 DO (GUESS:SUBST(GUESS,X,.5%(X+10/X)),
IF ABS(GUESS~2-10)<.00005 THEN RETURN(GUESS));
(D17) - 3.1622807

This example computes the negative square root of 10 using the Newton- Raphson iteration
a maximum of 10 times. Had the convergence criterion not been met the value returned
would have been "DONE". Additional Forms of the DO Statement Instead of always
adding a quantity to the control-variable one may sometimes wish to change it in some
other way for each iteration. In this case one may use "NEXT expression" instead of
"STEP increment". This will cause the control-variable to be set to the result of evaluating
expression each time through the loop.

(C1) FOR COUNT:2 NEXT 3*COUNT THRU 20
DO DISPLAY(COUNT)$

COUNT = 2
COUNT = 6
COUNT = 18

As an alternative to FOR variable:value ...DO... the syntax FOR variable FROM value
...DO... may be used. This permits the "FROM value" to be placed after the step or next
value or after the termination condition. If "FROM value" is omitted then 1 is used as
the initial value. Sometimes one may be interested in performing an iteration where the
control-variable is never actually used. It is thus permissible to give only the termination
conditions omitting the initialization and updating information as in the following example
to compute the square-root of 5 using a poor initial guess.

(C1) X:1000;

(C2) THRU 10 WHILE X#0.0 DO X:.5%(X+5.0/X)$
(C3) X;

(D3) 2.236068

If it is desired one may even omit the termination conditions entirely and just give "DO
body" which will continue to evaluate the body indefinitely. In this case the function
RETURN should be used to terminate execution of the DO.

(C1) NEWTON(F,GUESS) :=

Chapter 39: Program Flow 215

BLOCK ([NUMER, Y1,
LOCAL (DF) ,
NUMER : TRUE,,
DEFINE(DF (X) ,DIFF (F(X),X)),
DO (Y:DF(GUESS),
IF Y=0.0 THEN ERROR("Derivative at:",GUESS," is zero."),
GUESS : GUESS-F (GUESS) /Y,
IF ABS(F(GUESS))<5.0E-6 THEN RETURN(GUESS)))$
(C2) SQR(X):=X"2-5.0%$
(C3) NEWTON(SQR,1000) ;
(D3) 2.236068

(Note that RETURN, when executed, causes the current value of GUESS to be returned
as the value of the DO. The BLOCK is exited and this value of the DO is returned as the
value of the BLOCK because the DO is the last statement in the block.) One other form
of the DO is available in MACSYMA. The syntax is:

FOR variable IN list [end-tests] DO body

The members of the list are any expressions which will successively be assigned to the
variable on each iteration of the body. The optional end-tests can be used to terminate
execution of the DO; otherwise it will terminate when the list is exhausted or when a
RETURN is executed in the body. (In fact, list may be any non-atomic expression, and
successive parts are taken.)

(C1) FOR F IN [LOG, RHO, ATAN] DO LDISP(F(1))$

(E1) 0
(E2) RHO(1)
WPI
(E3) -—=
4
(C4) EV(E3,NUMER);
(D4) 0.78539816
ERRCATCH (expl, exp2, ...) Function

evaluates its arguments one by one and returns a list of the value of the last one if no
error occurs. If an error occurs in the evaluation of any arguments, ERRCATCH "catches"
the error and immediately returns [| (the empty list). This function is useful in BATCH
files where one suspects an error might occur which would otherwise have terminated the
BATCH if the error weren’t caught.

ERREXP Variable
default: [ERREXP] When an error occurs in the course of a computation, MACSYMA
prints out an error message and terminates the computation. ERREXP is set to the
offending expression and the message "ERREXP contains the offending expression" is
printed. The user can then type ERREXP; to see this and hopefully find the problem.

ERROR (argl, arg2, ...) Function
will evaluate and print its arguments and then will cause an error return to top level
MACSYMA or to the nearest enclosing ERRCATCH. This is useful for breaking out of
nested functions if an error condition is detected, or wherever one can’t type control-".
The variable ERROR is set to a list describing the error, the first of it being a string of
text, and the rest the objects in question. ERRORMSG(); is the preferred way to see the
last error message. ERRORFUN default: [FALSE] - if set to the name of a function of no
arguments will cause that function to be executed whenever an error occurs. This is useful
in BATCH files where the user may want his MACSYMA killed or his terminal logged
out if an error occurs. In these cases ERRORFUN would be set to QUIT or LOGOUT.

216 Maxima Manual

ERRORFUN Variable
default: [FALSE] - if set to the name of a function of no arguments will cause that function
to be executed whenever an error occurs. This is useful in BATCH files where the user

may want his MACSYMA killed or his terminal logged out if an error occurs. In these
cases ERRORFUN would be set to QUIT or LOGOUT.

ERRORMSG () Function
reprints the last error message. This is very helpful if you are using a display console and
the message has gone off the screen. The variable ERROR is set to a list describing the
error, the first of it being a string of text, and the rest the objects in question. TTYINT-
FUN:LAMBDA ([, ERRORMSG(),PRINT(""))$ will set up the user-interrupt character
(“U) to reprint the message.

FOR special operator
- Used in iterations, do DESCRIBE("DO"); for a description of MACSYMA’s iteration
facilities.

GO (tag) Function

is used within a BLOCK to transfer control to the statement of the block which is tagged
with the argument to GO. To tag a statement, precede it by an atomic argument as
another statement in the BLOCK. For example:

BLOCK([X],X:1,L00P,X+1,...,GO(LOOP),...)

. The argument to GO must be the name of a tag appearing in the same BLOCK. One
cannot use GO to transfer to tag in a BLOCK other than the one containing the GO.

IF special operator
- The IF statement is used for conditional execution. The syntax is:

IF condition THEN expressionl ELSE expression2.

The result of an IF statement is expressionl if condition is true and expression2 if it is
false. expressionl and expression2 are any MACSYMA expressions (including nested IF
statements), and condition is an expression which evaluates to TRUE or FALSE and is
composed of relational and logical operators which are as follows:

Operator name Symbol Type
greater than > relational infix
equal to = , EQUAL e
not equal to # S
less than < e
greater than >=
or equal to v
less than <=
or equal to e
and AND logical infix
or OR n n
not NOT logical prefix
LISPDEBUGMODE () Function

LISPDEBUGMODE(); DEBUGPRINTMODE(); and DEBUG(); make available to the
user debugging features used by systems programmers. These tools are powerful, and
although some conventions are different from the usual macsyma level it is felt their use
is very intuitive. [Some printout may be verbose for slow terminals, there are switches for
controlling this.]| These commands were designed for the user who must debug translated
macsyma code, as such they are a boon. See MACDOC;TRDEBG USAGE for more
information.

Chapter 39: Program Flow 217

MAP (fn, expl, exp2, ...) Function
returns an expression whose leading operator is the same as that of the expi but whose
subparts are the results of applying fn to the corresponding subparts of the expi. Fn is
either the name of a function of n arguments (where n is the number of expi) or is a
LAMBDA form of n arguments. MAPERROR[TRUE] - if FALSE will cause all of the
mapping functions to (1) stop when they finish going down the shortest expi if not all of
the expi are of the same length and (2) apply fn to [expl, exp2,...] if the expi are not all
the same type of object. If MAPERROR is TRUE then an error message will be given
in the above two instances. One of the uses of this function is to MAP a function (e.g.
PARTFRAC) onto each term of a very large expression where it ordinarily wouldn’t be
possible to use the function on the entire expression due to an exhaustion of list storage
space in the course of the computation.

(C1) MAP(F,X+A*Y+Bx*Z);

(D1) F(B Z) + F(AY) + F(X)
(C2) MAP(LAMBDA([U] ,PARTFRAC(U,X)) ,X+1/(X"3+4*X"2+5xX+2));
1 1 1
(€257 ittt + —m—————- +X
X+ 2 X+ 1 2
X+ 1
(C3) MAP(RATSIMP, X/(X"2+X)+(Y"2+Y)/Y);
1
(D3) Y + ————- +1
X +1
(C4) MAP("=",[A,B],[-0.5,3]);
(D4) [A=-0.5, B=3]
MAPATOM (expr) Function

is TRUE if and only if expr is treated by the MAPping routines as an "atom", a unit.
"Mapatoms" are atoms, numbers (including rational numbers), and subscripted variables.

MAPERROR Variable
default: [TRUE] - if FALSE will cause all of the mapping functions, for example

MAP(fn,expl,exp2,...))

to (1) stop when they finish going down the shortest expi if not all of the expi are of the
same length and (2) apply fn to [expl, exp2,...] if the expi are not all the same type of
object. If MAPERROR is TRUE then an error message will be given in the above two
instances.

MAPLIST (fn, expl, exp2, ...) Function
yields a list of the applications of fn to the parts of the expi. This differs from
MAP(fn,expl,exp2,...) which returns an expression with the same main operator as expi
has (except for simplifications and the case where MAP does an APPLY). Fn is of the
same form as in MAP.

PREDERROR Variable
default: [TRUE] - If TRUE, an error message is signalled whenever the predicate of an
IF statement or an IS function fails to evaluate to either TRUE or FALSE. If FALSE,
UNKNOWN is returned instead in this case. The PREDERROR:FALSE mode is not
supported in translated code.

RETURN (value) Function
may be used to exit explicitly from a BLOCK, bringing its argument. Do DE-
SCRIBE(BLOCK); for more information.

218 Maxima Manual

SCANMAP (function,exp) Function
recursively applies function to exp, in a "top down" manner. This is most useful when
"complete" factorization is desired, for example:

(C1) EXP:(A™2+2xA+1)*Y + X"2%
(C2) SCANMAP(FACTOR,EXP);
2 2

(D2) (A+1) Y+X
Note the way in which SCANMAP applies the given function FACTOR to the constituent
subexpressions of exp; if another form of exp is presented to SCANMAP then the result
may be different. Thus, D2 is not recovered when SCANMAP is applied to the expanded
form of exp:

(C3) SCANMAP(FACTOR,EXPAND (EXP));
2 2

(D3) A Y+2AY+Y+X
Here is another example of the way in which SCANMAP recursively applies a given
function to all subexpressions, including exponents:

(C4) EXPR : UxV~(A*X+B) + C$

(C5) SCANMAP(’F, EXPR);

F(F(F(A) F(X)) + F(B))

(D5) F(F(F(U) F(F(V))) + F(C))
SCANMAP (function,expression, BOTTOMUP) applies function to exp in a "bottom-up"
manner. E.g., for undefined F,

SCANMAP (F,A*X+B) ->

F(AxX+B) -> F(F(A*X)+F(B)) -> F(F(F(A)*F(X))+F(B))
SCANMAP (F, A*X+B,BOTTOMUP) -> F(A)*F(X)+F(B)
-> F(F(A)*F(X))+F(B) ->
F(F(F(A)*F(X))+F(B))

In this case, you get the same answer both ways.

THROW (exp) Function
evaluates exp and throws the value back to the most recent CATCH. THROW is used
with CATCH as a structured nonlocal exit mechanism.

Chapter 40: Debugging 219

40 Debugging

40.1 Source Level Debugging

Maxima has source level capabilities. A user can set a breakpoint at a line in a file, and
then step line by line from there. The call stack may be examined, together with the variables
bound at that level. If the user is running the code under GNU emacs in a shell window (dbl
shell), or is running xmaxima the graphical interface version, then if he stops at a break point,
he will see his current position in the source file which will be displayed in the other half of
the window, either highlighted in red, or with a little arrow pointing at the right line. He can
advance single lines at a time by typing M-n (Alt-n) or alternately by entering :n. To see the
names of the keyword commands type :help (or :h). In general commands may be abbreviated
if the abbreviation is unique. If not unique the alternatives will be listed.

Under Emacs you should run in a dbl shell, which requires the dbl.el file in the elisp directory.
Make sure you install the elisp files or add the maxima elisp directory to your path: eg add the
following to your ‘.emacs’ file or the site-init.el

(setq load-path (cons "/usr/local/maxima-5.5/elisp" load-path))
(autoload ’dbl "dbl")

then in emacs
M-x dbl

should start a shell window in which you can run programs, for example maxima, gcl, gdb
etc. This shell window also knows about source level debugging, and display of source code in
the other window.

maxima
Maxima 5.5 Wed Apr 18 19:02:00 CDT 2001 (with enhancements by W. Schelter).
Licensed under the GNU Public License (see file COPYING)
(C1) batchload("/tmp/joe.mac");
(D1) /tmp/joe.mac
(C2) :br joe
Turning on debugging debugmode (true)
Bkpt 0 for joe (in /tmp/joe.mac line 8)
(C2) foo0(2,3);
Bkpt 0:(joe.mac 8)
(dbm:1) :bt <-- :bt typed here gives a backtrace
#0: joe(y=b5) (joe.mac line 8)
#1: foo(x=2,y=3) (joe.mac line 5)
(joe.mac 9) <-- Here type M-n to advance line
(joe.mac 10) <-- Here type M-n to advance line
In the other buffer the source code
appears with an arrow.

(dbm:1) wu; Investigate value of ’u
28

(dbm:1) u:33; Alter it to be 33

(dbm:1) :r :r Resumes the computation
(D3) 1094

The actual file /tmp/joe.mac is the following:

foo(x,y):=(
X:xX+2,
y:y+2,
x:joe(y),
x+y) ;

joe(y) :=block([u:y~2],

220 Maxima Manual

u:u+3,
u:u"2,
u);

If you are running in Gnu Emacs then if you are looking at the file joe.mac, you may set a
break point at a certain line of that file by typing C-x space. This figures out which function
your cursor is in, and then it sees which line of that function you are on. If you are on say
line 2 of joe, then it will insert in the other window :br joe 2 the command to break joe at its
second line. To have this enabled you must have maxima-mode.el on in the window in which
the file joe.mac is visiting. There are additional commands available in that file window, such
as evaluating the function into the maxima, by typing Alt-Control-x

40.2 Keyword Commands

Break commands start with ’:”. Thus to evaluate a lisp form you may type :1lisp followed
by the argument which is the form to be evaluated.

(€3) :1lisp (+ 2 3)
5

The number of arguments taken depends on the particular command. Also you need not
type the whole command, just enough to be unique among the keyword commands. Thus :br
would suffice for :break. The current commands are:

:break Set a breakpoint in the specified FUNCTION at the specified LINE offset from the
beginning of the function. If FUNCTION is given as a string, then it is presumed
to be a FILE and LINE is the offset from the beginning of the file.

:bt Undocumented

:continue
Continue the computation.

:delete Delete all breakpoints, or if arguments are supplied delete the specified breakpoints
:disable Disable the specified breakpoints, or all if none are specified

:enable Enable the specified breakpoints, or all if none are specified

:frame With an argument print the selected stack frame. Otherwise the current frame.
:help Print help on a break command or with no arguments on all break commands
:info Undocumented

:lisp Evaluate the lisp form following on the line

:lisp-quiet

Evaluate its arg as a lisp form without printing a prompt.

:next Like :step, except that subroutine calls are stepped over

1quit Quit this level

:resume Continue the computation.

:step Step program until it reaches a new source line
1top Throw to top level

40.3 Definitions for Debugging

REFCHECK Variable
default: [FALSE] - if TRUE causes a message to be printed each time a bound variable is
used for the first time in a computation.

REMTRACE () Function
This function is no longer used with the new TRACE package.

Chapter 40: Debugging 221

SETCHECK Variable
default: [FALSE] - if set to a list of variables (which can be subscripted) will cause a
printout whenever the variables, or subscripted occurrences of them, are bound (with : or
:: or function argument binding). The printout consists of the variable and the value it
is bound to. SETCHECK may be set to ALL or TRUE thereby including all variables.
Note: No printout is generated when a SETCHECKed variable is set to itself, e.g. X:’X.

SETCHECKBREAK Variable
default: [FALSE] - if set to TRUE will cause a (MACSYMA-BREAK) to occur whenever
the variables on the SETCHECK list are bound. The break occurs before the binding is
done. At this point, SETVAL holds the value to which the variable is about to be set.
Hence, one may change this value by resetting SETVAL.

SETVAL Variable
- holds the value to which a variable is about to be set when a SETCHECKBREAK occurs.
Hence, one may change this value by resetting SETVAL. (See SETCHECKBREAK).

TIMER (F) Function
will put a timer-wrapper on the function F, within the TRACE package, i.e. it will print
out the time spent in computing F.

TIMER_DEVALUE Variable
default: [FALSE] - when set to TRUE then the time charged against a function is the
time spent dynamically inside the function devalued by the time spent inside other TIMED
functions.

TIMER_INFO (F) Function
will print the information on timing which is stored also as GET(’F,’CALLS);
GET('F,RUNTIME); and GET(’F,GCTIME); . This is a TRACE package function.

TRACE (namel, name2, ...) Function
gives a trace printout whenever the functions mentioned are called. TRACE() prints a
list of the functions currently under TRACE. On MC see MACDOC;TRACE USAGE for
more information. Also, DEMO("trace.dem"); . To remove tracing, see UNTRACE.

TRACE_OPTIONS (F,optionl,option2,...) Function
gives the function F the options indicated. An option is either a keyword or an expres-
sion. The possible Keywords are: Keyword Meaning of return value
—— NOPRINT If TRUE do no printing. BREAK If TRUE give a breakpoint.
LISP_PRINT If TRUE use lisp printing. INFO Extra info to print. ERRORCATCH If
TRUE errors are caught. A keyword means that the option is in effect. Using a keyword as
an expression, e.g. NOPRINT (predicate_function) means to apply the predicate_function
(which is user-defined) to some arguments to determine if the option is in effect. The
argument list to this predicate_function is always [LEVEL, DIRECTION, FUNCTION,
ITEM] where LEVEL is the recursion level for the function. DIRECTION is either EN-
TER or EXIT. FUNCTION is the name of the function. ITEM is either the argument
list or the return value. On MC see DEMO("trace.dem"); for more details.

UNTRACE (namel, ...) Function
removes tracing invoked by the TRACE function. UNTRACE() removes tracing from all
functions.

222 Maxima Manual

Chapter 41: Indices 223

41 Indices

224 Maxima Manual

Appendix A: Function and Variable Index 225

Appendix A Function and Variable Index

" ANTID o oo e e 101
W 17 ANTIDIFF.................................... 101
wyu 17 ANTISYMMETRIC................................. 18
L 17 APPEND ... 197
o 11 APPENDFILE.......................ccccoo..o... 46
LU 11 APPLY .. 204
woa T 17 APPLY_NOUNS................................... 35
wen T 18 APPLYL..... 191
woew | TTTmoemrrrmmTTIIITIIII 18 APPLY2.... 191
Woeaw T 18 APPLYBL ... 191
Weow T 18 APROPOS...................cooiiiiiii 187
won T 18 ARGS ... 187
won T 45 ARRAY ... 131
wpe 141 ARRAYAPPLY.............................o. 131
ARRAYINFO . . oot e 131
ARRAYMAKE . . o o oo e e 131
% ARRAYS ...ttt 131
\ ASEC . oo e 79
b D SEG T
YEDISPELAG .+« o vos e e, 45 ﬁ:iﬂH """"""""""""""""""""" Zg
SRNUM_LIST . ..\ttt 115 o oot
W LT 1 am ASKEXP...... 35
’ ASKINTEGER . . .+ v oveee e 35
ASKSIGN « .ot 35
? ASSOC v o e et 197
’ ASSOC_LEGENDRE_P ...\ o oot 91
3701001 D 58 ASSOC_LEGENDRE.Qo oo 91
PTRUNCATE -« .+ e o oo e e e e 58 pSSUME 59
ASSUME_POS . . . o v oo oo 59
[ASSUME_POS_PRED . ..o sveee e 59
ASSUMESCALAR .+« o v oeee et 59
[index] (exXpr)o 85 ASYMP .ot 85
ASYMPA . oo oo 86
AT 26
A ATAN .o oo e 79
ABS o oo 18 ATAND oo 79
ABSBOXCHAR e e e s 45 ATANH . .. e 79
ACOS . .. e, 79 ATOM ..o 197
ACOSH . oo oo 79 ATOMGRAD oo e 101
ACOT o oo oo 79 ATRIGL .ot e 80
ACOTH s e s s, 79 ATVALUE 101
ACSC .o 70 AUGCOEFMATRIX ... ooose e 133
ACSCH . .o v e 79
ACTIVATE . . .ot e 59 B
ACTIVECONTEXTS . .o v oo 59
ADDCOL . v e e e e e 133 BACKSUBST . ..ot 116
ADDITIVE ..o veee e e e 18 BACKTRACE.\ 213
ADDROW .+ v oo e e e e 133 BACKUP . ..ot e 46
ADJOINT . . oot e 133 BASHINDICES.vooeoeee e, 131
ATRY .o e 85 BATCH . . oot e e 46
ALARMCLOCK . .+« oo v oo e 183 BATCHKILL 'ovooe e, 46
ALGEBRAIC . . o\ oo e, 63 BATCHLOAD . ..o oo 46
ALGEPSILON . . .o vee et 57 BATCON . v oo e e e e 46
ALGEXACT . o v oo e 115 BATCOUNT . .o ooe e e 46
ALGSYS oo 115 BERLEFACT . . otse e, 63
ALTAS oo e T1 BERN oottt 161
ALTASES . oot e 187 BERNPOLY . ..o 161
ALL_DOTSIMP_DENOMS . .. ovooeeeaeen 145 BESSEL . ..ot 86
ALLBUT « v oot e e e 18 BESSEL_T .. .veeee e 86
ALLOC v oo e e e 183 BESSEL_J ..o 86
ALLROOTS © v ovee e e 115 BESSEL K ..o ooveee e, 86
ALLSYM . oo 187 BESSEL_Y ..o 86

ALPHABETIC. 187 BESSELEXPAND. ... 86

226

BETA . oot e e e e 87
BEZOUT . .. oot e e e e e e 63
BEFAC . . oot 57
BELOAT . . oot et 57
BFLOATP . .o oot 57
BEPST . .ottt 57
BETORAT . . oot et 57
BETRUNC . . . oot 57
BFZETA . .\ oo oot 161
BGZETA . .o o oot 161
BHZETA . oo oo e e e e 161
BINDTEST - v e eeee e e et 204
BINOMIAL . . ovoee e e e 161
BLOCK -+ oo et e e e 204
BOTHCASES . . o v oot e e e 46
BOTHCOEF . . . o e eeoee e e e et 63
1210). G 27
BOXCHAR . . o\ oo et 27
BREAK . . oot e 205
BREAKUP . . oot e et 116
BUG .o et et 183
BUILDQ. .« v eveeeee e et 202, 205
21030 161
BZETA .. oot e 161
C

CABS oot e 18
CANFORM . . .o v oo 147
CANTEN . oo e, 147
CARG .« o v e e e e 147
CARTAN . o oo, 101
CATCH . o oo e 205
CAUCHYSUM . . oo et 155
CBFAC . o oot e e e 57
CF oot 161
CEDISREP . . oo oot 162
CFEXPAND . . oo et 162
CFLENGTH . .o oo et e 162
COAMMA . .o oo et 162
COAMMAD . . .ot e 162
CHANGE_FILEDEFAULTS . ..ot 47
CHANGEVAR . . .o v oe e et 107
CHARPOLY . .. ooee e e 133
CHEBYSHEV_T. ..ot 91
CHEBYSHEV_U. . ..ot 91
CHECK_OVERLAPSot 143
[0:1: S 152
[0:1: 152
CHRISTOF . ..ot e e 152
CLEARSCREENttt 183
CLOSEFILEottt 47
CLOSEPS . . . ettt e e 44
[¢00)o1 3 64
COEFMATRIX . v oot e 133
[o/0) A 133
COLLAPSEot 47
COLLECTTERMS . .. v oeee e 36
COLUMNVECTORo vveveee e e 134
COMBINEt 64
COMMUTATIVE . . oo e e 18
COMP2PUL ooee e 165
COMPFILE . ..o e e 205
COMPGRINDt e e e 205
COMPILE ...t 205
COMPILE_FILE., 211

COMPILE_LISP_FILE 205

Maxima Manual

CONCAT . .o oo e e 47
CONJUGATEo oo 134
CONS . oo e e 197
CONSTANT ee oot e e 27
CONSTANTP . ..o oo 27
CONT2PARTo e 165
CONTENT . oo et 64
[610) 42 « S 60
CONTEXTSo e e 60
CONTINUEt 183
CONTRACT . ..o 27, 165
COPYLIST .. e 197
COPYMATRIX . ..o e 134
COS . et e 80
COSH . oo e e e 80
COT oo e e e e 80
COTH - o oo e e e e 80
COUNTER . . - e e e e e 147
COVDIFF . .o et 152
CREATE_LIST . ..o e 144
CSC et 80
o1 : D 80
CURRENT_LET_RULE_PACKAGE.................... 191
CURSORDISPt 47
CURVATURE oot e e e 152
D

DBLINT ... e 108
DT .. e 184
DEACTIVATE. e, 60
DEBUGot e 11
DEBUGMODE . . . oo ee e e e 11
DEBUGPRINTMODE eeeeeeeeeeeee 11
DECLAREot e e e 27
DECLARE_TRANSLATED 211
DECLARE_WEIGHT, 143
DEFAULT_LET_RULE_PACKAGE. 191
DEFCON . . oot e e e el 147
DEFINEt el 206
DEFINE_VARIABLEcoouuneneennn... 206
DEFINT . ..o et 108
DEFMATCHo oo e et 191
DEFRULEot e e e 192
DEFTAYLORo e e 155
1o A 101
DELETEttt 197
DELFILE ...t 184
DELTA . ..o e e e e e 102
DEMO . ..ot e e e e e 9
DEMOIVREot 35
DENOM . . .o e e e 64
DEPENDENCIES oo e e e 102
DEPENDS . ..ot e e 102
DERIVABBREVo 103
DERIVDEGREE. 103
DERIVLISTo 103
DERIVSUBST . . oo e e 103
DESCRIBEt 9
DESOLVEo et e e 121
DETERMINANTo 134
DETOUT . . oo e e e e e 134
DIAGMATRIX . ..o e 134
DIAGMETRIC 152
DIFF ...t 103, 104
DIM .o 152
DIMENSIONo 116

Appendix A: Function and Variable Index

DIREC 47
DIRECTo e 165
DISKFREE......, 184
DISOLATE 28
DISP .. 48
DISPCON 48
DISPFLAG i 116
DISPFORM....... ... i 28
DISPFUN 206
DISPLAY 48
DISPLAY_FORMAT_INTERNAL...................... 48
DISPLAY2D 48
DISPRULE...... ... i 192
DISPTERMS 48
DISTRIBot ieieeas 28
DIVIDE 64
DIVSUM o 162
DO . 213
DOALLMXOPS . .. oo 134
DOMAIN ... 35
DOMXEXPT 134
DOMXMXOPS 134
DOMXNCTIMES.o 134
DONTFACTOR.ot 134
DOSCMXOPS 135
DOSCMXPLUS 135
DOTONSCSIMP. 135
DOTOSIMP 135
DOTISIMPt e 135
DOTASSOCo 135
DOTCONSTRULES 135
DOTDISTRIB...... .o 135
DOTEXPTSIMP...... ... 135
DOTIDENTt 135
DOTSCRULESot 135
DOTSIMP e 143
DPART . .. 28
DSCALARo 104
DSKALL . .ot 48
DUMMY ... 187
E

E o 75
ECHELON e 135
EIGENVALUES. 136
EIGENVECTORS.o, 136
EINSTEIN...... .o 153
ELE2COMP 167
ELE2POLYNOME. 167
ELE2PUIL 168
ELEM . ..o 168
ELIMINATE. 64
ELLIPTIC E.... ... 98
ELLIPTIC_EC..o 98
ELLIPTIC_EU. 98
ELLIPTIC_F 98
ELLIPTIC_KC..o 98
ELLIPTIC_PI...... ... i, 98
EMATRIX 136
ENDCONS . ..ot e 198
ENTERMATRIX....... 136
ENTIER ..o 19
EQUAL . .. 19
ERF ... 108
ERFFLAG 108

227
ERREXP 215
ERRINTSCE 108
ERROR 215
ERROR_SIZE. i 49
ERROR_SYMS 49
ERRORFUN 216
ERRORMSG 216
EULER 162
BV 11
EVAL .. 19
EVENP 19
EVERY 198
EVFLAG 13
EVFUN . ..o 13
EXAMPLEo 9
EXP oo 28
EXPAND . ..o 35
EXPANDWRT 36
EXPANDWRT_DENOM, 36
EXPANDWRT_FACTORED 36
EXPLOSEot 168
EXPON . .o 36
EXPONENTIALIZE 36
EXPOP . ..o 36
EXPRESS 104
EXPT . 49
EXPTDISPFLAG. 49
EXPTISOLATE. 29
EXPTSUBSTot 29
EXTRACT_LINEAR_EQUATIONS.................... 144
EZGCD 65
F
FACEXPAND 65
FACSUMo 36
FACSUM_COMBINE 36
FACTCOMB 65
FACTLIM s 36
FACTORo 65
FACTORFACSUM. 36
FACTORFLAGo 65
FACTORIAL e 163
FACTOROUT 66
FACTORSUM. 66
FACTS ..o 60
FALSE 75
FASSAVE 49
FAST_CENTRAL_ELEMENTS....................... 143
FAST_LINSOLVE, 143
FASTTIMES 66
FEATURE i 184
FEATUREP i 184
FEATURES 60
FFT . 125
FIB ... 163
FIBTOPHI........ ... 163
FILE_SEARCH.......... i, 50
FILE_STRING_PRINT 50
FILE_TYPE..... i 50
FILEDEFAULTS. 49
FILENAME 50
FILENAME_MERGE 50
FILENUM it 50
FILLARRAY 131
FIRST ... 198
FIX 19

228

FLATTEN(EXP) - o oo 198
FLOAT . . 57
FLOAT2BF . ..o e 57
FLOATDEFUNK. 58
FLOATNUMPo 58
FLUSH . . oo e 148
FLUSHDo e 148
FLUSHNDt 148
FOR ..o 216
FORGETo e 60
FORTINDENTo 125
FORTMX . .ot e e e 125
FORTRAN . . .o 126
FORTSPACES e 126
FPPREC e 58
FPPRINTPREC. 58
FREEQF e 29
FULLMAP . . oo e 19
FULLMAPL . . .o e 19
FULLRATSIMPt 66
FULLRATSUBST . . .ottt 66
FUNCSOLVE. e 116
FUNCTIONS.ot 206
FUNDEF . ..o e e 206
FUNMAKE i 206
G

GAMMA . . 87
GAMMALTIM ... e 87
GAUSS .. 129
GCD .ot 66
GCDEX . . oot 67
GCFACTORt 67
GEN_LAGUERRE. 91
GENDIFF ... 104
GENFACT . . .o e 29
GENINDEXttt 188
GENMATRIX . ..o e 137
GENSUMNUM. 188
GET ... 198
GETCHAR . . . e 132
GFACTORo 67
GFACTORSUM. . . .ttt e e 67
GLOBALSOLVE. . ..ot e 116
GO .o 216
GRADEF 104
GRADEFS . . . 105
GRAMSCHMIDTo i 137
GRIND ... 50
GROBNER_BASTIS e 143
H

HACH 137
HALFANGLES e 80
HERMITE e 91
HIPOW ..o 67
HORNERo 126

Maxima Manual

I

IBASE . oot 50
TCL e 121
IDENT « oot e e e e e 137
TEQN . oo e e 116
TEQNPRINT . .. ovotee e 117
TF ot 216
TFT o oo e e 126
TLT @ e 108
IMAGPART . . v oo et 29
IN_NETMATH . ..ot 41
INCHAR . oot e e e 50
INDICES . . v oeeee e e 29
INF @ oo e e 188
INFEVAL . oot e e e 13
INFINITY o oooeeee e e e e, 188
501 G 29
INFLAG . oo e et e e e e 29
INFOLISTS . v oeeee e e e 188
INNERPRODUCT oveeeee e e e 137
INPART . .ot 29
10,1 S 163
INTEGERP . . oot 188
INTEGRATE . . . ovoee e e e 109
INTEGRATE_USE_ROOTSOF, 110
INTEGRATION_CONSTANT_COUNTER 110
INTERPOLATE . . . o ooveee et 126
INTFACLIM ...t e 67
INTOPOIS . . vevee e e e e 87
INTOSUM . .ot 36
INTPOLABS . .. oot 127
INTPOLERROR . . . e eveee e e 127
INTPOLREL ovoeee e e 127
INTSCE . . oot et 111
INVERSE_JACOBI_CD . veeeeeeee e 97
INVERSE_JACOBI_CN .. oeeeee e 97
INVERSE_JACOBI_CS .. oeeeie e 97
INVERSE_JACOBI_DC . . eeeee e 97
INVERSE_JACOBI_DN ... oeeeie e 97
INVERSE_JACOBI_DS ... oeieieaeaeeee 97
INVERSE_JACOBI_NC ..ot 97
INVERSE_JACOBI_ND ... oeeeeeaee e 97
INVERSE_JACOBI_NS . ..o, 97
INVERSE_JACOBI_SC . .oveieieaeeeeee 97
INVERSE_JACOBI_SD ... oeeeee e 97
INVERSE_JACOBI_SN ... 97
INVERT . oot 137
IS o 19
ISOLATE . .. ooee e e e e 30
ISOLATE_WRT_TIMESooioianaeeaen.. 30
ISQRT - voeeee e e e e e 20
J

JACOBI ..ot 163
JACOBI_CD ..o e 96
JACOBI_CN ..ot e e e e 96
JACOBI_CS ..o e e 96
JACOBI_DC . . .o eeee e e e e 97
JACOBI DN .. oo e e 96
JACOBI DS ..ot 97
JACOBI_NC . . .o e e 96
JACOBI_ND . ..o 97
JACOBI_NS .. .ottt 96
JACOBI_P oo 91
JACOBI_SC ..ot 96

JACOBI_SD ...t 96

Appendix A: Function and Variable Index

JACOBI_SN. ..o 96
K

KDELTA 148
KEEPFLOAT 68
KILL ..o 14
KILLCONTEXT.o 60
KOSTKA 168
L

LABELS . ..o 14
LAGUERRE 92
LAPLACE 105
LASSOCIATIVE. i 37
LAST . 198
LASTTIME 14
LC 148
LCM . 163
LDEFINT e 111
LDISP .. 50
LDISPLAY 51
LEGENDRE_P....... i 92
LEGENDRE_Q..........o i 92
LENGTH 198
LET .o 192
LET_RULE_PACKAGES 193
LETRAT 193
LETRULES 193
LETSIMP 193
LFREEQFo 30
LGTREILLIS. 168
LHOSPITALLIM.t 99
LHS . 117
LIMIT ... e 99
LINEAR 37
LINECHAR 51
LINEDISP 51
LINEL ... 51
LINENUM.o e 14
LINSOLVEo 117
LINSOLVE_PARAMS 117
LINSOLVEWARN......... i, 117
LISPDEBUGMODE, 216
LIST_NC_MONOMIALSo, 144
LISTARITH. 198
LISTARRAY 132
LISTCONSTVARS. 30
LISTDUMMYVARS. 30
LISTOFVARS 30
LISTP .. 199
LMXCHARo 138
LOAD . .o 51
LOADFILE.o 52
LOADPRINT e 52
LOCAL . ..o 206
LOG .. 7
LOGABS . ..o 7
LOGARC . ..o 77
LOGCONCOEFFP. 77
LOGCONTRACTo 77
LOGEXPANDo 78
LOGNEGINT o 78
LOGNUMERt 78
LOGSIMPt e 78

229
LORENTZ 148
LPART . .. 31
LRATSUBSTot 68
LRICCICOM.ot 153
LSUM .. 34
LTREILLIS. 169
M
MIPBRANCH........ ... 188
MACROEXPANSION 207
MAINVAR ... 37
MAKE_ARRAY 132
MAKEBOX 148
MAKEFACTo e 87
MAKEGAMMA 87
MAKELIST ... o e 199
MAP . 217
MAPATOM 217
MAPERROR...... i, 217
MAPLIST . ..o 217
MATCHDECLARE. 193
MATCHFIX i 194
MATRIX ..o 138
MATRIX_ELEMENT _ADD.......................... 138
MATRIX_ELEMENT _MULT 138
MATRIX_ELEMENT_TRANSPOSE.................... 138
MATRIXMAP e 138
MATRIXP 138
MATTRACE 138
MAX . 20
MAXAPPLYDEPTH............ 37
MAXAPPLYHEIGHT 37
MAXNEGEX 37
MAXPOSEX . ..o 37
MAXPRIME i 163
MAXTAYORDER. 155
MEMBERo 199
METRIC e 148
MIN .« 20
MINF .. 75
MINFACTORIAL. i 163
MINOR 139
MOD ..o 20
MODE_CHECK_ERRORP 207
MODE_CHECK_WARNP 207
MODE_CHECKP. 207
MODE_DECLARE........ 207
MODE_IDENTITY, 207
MODULUSot et 68
MON2SCHUR 169
MONO ..o 144
MONOMIAL_DIMENSIONS......... 144
MOTION e 153
MULTI_ELEM...... ... 169
MULTI_ORBIT......... .o 169
MULTI_PUIL........ . i 170
MULTINOMIAL. i 170
MULTIPLICATIVE 37
MULTIPLICITIES, 117
MULTSYM . ..o 170
MULTTHRUo e 31
MYOPTIONS 14

230

N

NC_DEGREE......... 143
NCEXPT ... 139
NCHARPOLY 139
NEGDISTRIB...... ... 37
NEGSUMDISPFLAG 37
NEW-DISREP.........., 144
NEWCONTEXTot 61
NEWDET e 139
NEWFAC 68
NEWTONo 127
NEXTLAYERFACTOR 36
NICEINDICES....... 155
NICEINDICESPREFc...... 155
NOEVAL . ..o 38
NOLABELSo e 14
NONSCALARo 139
NONSCALARP 139
NOSTRING 52
NOUN ..o 38
NOUNDISPt 38
NOUNIFYo 31
NOUNS . .o 38
NROOTS ... 118
NTERMS . .. o 31
NTERMSGo 148
NTERMSRCI 148
NTHROOT 118
NUM .. 68
NUMBERPo 188
NUMER 38
NUMERVAL 38
NUMFACTORo 87
NUSUM e 155
NZETA . .o 149
@)

OBASE ..o 52
ODDP ..ot 20
ODE . .. 122
ODE2 ... 122
OMEGA 153
OP 32
OPENPLOT_CURVES, 41
OPERATORP 32
OPPROPERTIES............ ... 38
OPSUBST . ..o 38
OPTIMIZE e 32
OPTIMPREFIX...... ... 32
OPTIONSET 15
ORBIT ... 170
ORDERGREAT 32
ORDERGREATP. i 32
ORDERLESS 32
ORDERLESSP i 32
QUTATIVE 38
OUTCHARo 52

OUTOFPOIS 87

Maxima Manual

P

PACKAGEFILE. 52
PADE 156
PARSEWINDOW. 52
PART .. 32
PART2CONT e 171
PARTFRAC 163
PARTITION...... ... 33
PARTPOLo 171
PARTSWITCH. 33
PCOEFF 144
PERMANENT 139
PERMUT 171
PFEFORMATo 52
P o 75
PICKAPART 33
PIECE 33
PLAYBACKo 15
PLOG . ..o 78
PLOT_OPTIONS....... ... 42
PLOT2D ... 41
PLOT2D_PS 43
PLOT3D ..ottt 43
POISDIFFt 87
POISEXPTo 87
POISINT ... o 87
POISLIM. ... 88
POISMAPo 88
POISPLUSo 88
POISSIMP e 88
POISSON 88
POISSUBSTo 88
POISTIMES 88
POISTRIM. 88
POLARFORM. 78
POLARTORECT 127
POLYNOME2ELE. 171
POSFUN 38
POTENTIAL...... ... 111
POWERDISP 156
POWERS 33
POWERSERIES........ 156
PRED 20
PREDERROR. 217
PRIME 163
PRIMEP 164
PRINT ... 53
PRINTPOIS..... ... 88
PRINTPROPS 15
PRODHACK o 38
PRODRAC 171
PRODUCTt 33
PROGRAMMODE. i 118
PROMPT 15
PROPERTIES. 188
PROPS ... 189
PROPVARS 189
PSCOM ... 44
PSDRAW_CURVE. 44
PSEXPAND 157
PSI . 88
PUIL .. 171
PUI_DIRECT........ 173
PUI2COMP 172
PUI2ELE...... ... 172
PUI2POLYNOME. 173
PUIREDUC...... i 174

Appendix A: Function and Variable Index

PUT . 189
Q

QPUT .. 189
QQ . 112
QUANCS . .. 112
QUIT ..o 15
QUNIT ... e 164
QUOTIENTo 68
R

RADCANo 39
RADEXPAND 39
RADPRODEXPAND. 39
RADSUBSTFLAG. i 39
RAISERIEMANN. 149
RANDOM 20
RANK . ..o 139
RASSOCIATIVE. 39
RAT . 68
RATALGDENOM.o 69
RATCOEF e 69
RATDENOM.o 69
RATDENOMDIVIDEot 69
RATDIFF 69
RATDISREP 70
RATEINSTEIN. 149
RATEPSILON 70
RATEXPAND 70
RATFAC 70
RATMX . .o 139
RATNUMER 71
RATNUMP 71
RATP .. 71
RATPRINT e 71
RATRIEMAN 149
RATRIEMANN. 149
RATSIMP ... e 71
RATSIMPEXPONS. 72
RATSUBST oo 72
RATVARS 72
RATWEIGHT 72
RATWEIGHTS 72
RATWEYL 73
RATWTLVL o 73
READ 53
READONLY 53
REALONLYo 118
REALPART 34
REALROOTS 118
REARRAY 132
RECTFORM. 34
RECTTOPOLAR. 128
REFCHECK 220
REM 189
REMAINDER 73
REMARRAY 132
REMBOX 34
REMCON 149
REMFUNCTION., 15
REMLET 194
REMOVE 189
REMRULE 194
REMTRACE 220

REMVALUE 189

231
RENAME 189
RESET ... 15
RESIDUE i 112
RESOLVANTE. 174
RESOLVANTE_ALTERNEELl 176
RESOLVANTE_BIPARTITE........................ 176
RESOLVANTE_DIEDRALE......................... 177
RESOLVANTE_KLEIN 177
RESOLVANTE_KLEIN3 177
RESOLVANTE_PRODUIT_SYM...................... 178
RESOLVANTE_UNITAIRE......................... 178
RESOLVANTE_VIERER 178
REST ..o 199
RESTOREo 15
RESULTANT 73
RETURN 217
REVEALo 53
REVERSE 199
REVERT 157
RHS .. 118
RICCICOM.o 149
RIEMANN 153
RINVARIANT 149
RISCH..... ... 112
RMXCHAR 53
RNCOMBINE. 189
ROMBERG 113
ROMBERGABS 114
ROMBERGIT........., 114
ROMBERGMIN. 114
ROMBERGTOL. 114
ROOM 184
ROOTSCONMODE.ot 118
ROOTSCONTRACT o 118
ROOTSEPSILON. 119
ROW . ..o 139
S
SAVE . .o 53
SAVEDEF 54
SAVEFACTORS 73
SCALARMATRIXP 139
SCALARP 189
SCALEFACTORS. 190
SCANMAP 218
SCHUR2COMP i 178
SCONCAT . .. 47
SCSIMP ... 39
SCURVATURE. 149
SEC . 80
SECH . .o 80
SET_PLOT_OPTIONo, 44
SET_UP_DOT_SIMPLIFICATIONS 143
SETCHECK 221
SETCHECKBREAK i 221
SETELMXt 139
SETUP 149
SETUP_AUTOLOAD 190
SETVAL 221
SHOW . .o 54
SHOWRATVARS 54
SHOWTIME s 15
SIGN ..o 20
SIGNUM . ..o 20
SIMILARITYTRANSFORM......................... 140
SIMP .. 39

232

SIMPSUM . . .ot e 39
SIN .« 80
30.1: S 80
SOLVE ..o e e e e 119
SOLVE_INCONSISTENT_ERROR.................... 120
SOLVEDECOMPOSES ovoeeee e 119
SOLVEEXPLICIT .. oveeeee e 119
SOLVEFACTORS . .« .o veveee e 120
SOLVENULLWARNot 120
SOLVERADCAN oee e e 120
SOLVETRIGWARN . ..ot 120
SOMRAC . .+ v oo et e e e 179
0]y 20
SPARSE . .+ v eeeeee e 140
SPHERICAL_BESSEL_J . ..o oeeeeee e, 92
SPHERICAL_BESSEL_Y ... oeeeee e, 92
SPHERTCAL_HANKELL . .o voeeeeee e, 92
SPHERTICAL_HANKEL2o voeeeeee e, 92
SPHERICAL_HARMONIC ... oeeeeee e 92
SPLICE . .ottt e 202
SPRINT . . v oeeee e e e e e 53
SAFR -« e vttt 73
18]y 20
SQRTDISPFLAG . .« oo oo et e 20
SRRAT . oottt e e 157
SSTATUS . . e vttt 16
STARDISPot e e 54
STATUS . .o et et e e 184
STRING . . v oeee et e e e e 54
STRINGOUT - . e v eeeeeee e e 54
SUBLIS . vttt e e et e 21
SUBLIS_APPLY_LAMBDA . ..o, 21
SUBLIST ...ttt e e e 21
SUBMATRIX . . .o oeee e e e e 140
1)1y 21
SUBSTINPARTot e 21
SUBSTPART . . o v eeeeeee e e e 22
SUBVARP . . .ottt e e 22
SUM .ot 34
SUMCONTRACT . . v eeeee e et e 39
SUMEXPAND . . oot e 40
SUMHACK . . .o v eeee e e e e 40
SUMSPLITFACT . . e v eee e e e 40
10):2¢00) v o0, U 61
3 ¢01:10) 9 23
SYMMETRICo 40
SYSTEM . oot 55
T

TAN oo 80
TANH . oo e e 80
TAYLOR . oot e e e e 157
TAYLOR_LOGEXPANDo, 158
TAYLOR_ORDER_COEFFICIENTS 158
TAYLOR_SIMPLIFIERoouornannnnannn... 158
TAYLOR_TRUNCATE_POLYNOMIALS 158
TAYLORDEPTH. . .. oo e 158
TAYLORINFOot e e e e 158
TAYLORP . . oot e e 158
TAYTORAT . .. oot et e 158
TCL_OUTPUT . . . oo e e et e 53
TCONTRACT . . e ee e e e e e 179
TELLRAT . . oottt 73
TELLSIMP . oottt et 195
TELLSIMPAFTER . ..ot 195

Maxima Manual

THROWo 218
TIME 185
TIMER 221
TIMER_DEVALUE 221
TIMER_INFO............i .. 221
TLDEFINT 114
TLIMIT ... e 99
TLIMSWITCH.o 99
TO_LISP ..t 16
TOBREAK 16
TODD_COXETER. 181
TOPLEVEL 16
TOTALDISREP. 74
TOTIENT e 164
TPARTPOL 179
TR_ARRAY_AS REF 209
TR_BOUND_FUNCTION_APPLYP.................... 209
TR_FILE_TTY_MESSAGESP....................... 209
TR_FLOAT_CAN_BRANCH_COMPLEX 209
TR_FUNCTION_CALL_DEFAULT.................... 209
TR_GEN_TAGS........ 209
TR_NUMER 209
TR_OPTIMIZE_MAX_LOOP........................ 209
TR_OUTPUT_FILE_DEFAULT...................... 210
TR_PREDICATE_BRAIN_DAMAGE 210
TR_SEMICOMPILE, 210
TR_STATE_VARS 210
TR_TRUE_NAME_OF _FILE_BEING_TRANSLATED...... 210
TR_VERSION.......... ... 210
TR_WARN_BAD_FUNCTION_CALLS 210
TR_WARN_FEXPR 210
TR_WARN_MEVAL 210
TR_WARN_MODE........... 210
TR_WARN_UNDECLARED 210
TR_WARN_UNDEFINED_VARIABLE 210
TR_WARNINGS_GET, 210
TR_WINDY 211
TRACE 221
TRACE_OPTIONS 221
TRANSBIND 208
TRANSCOMPILE. 208
TRANSFORM. 153
TRANSLATE 208
TRANSLATE_FILE o, 209
TRANSPOSE 140
TRANSRUN 209
TREILLIS 179
TREINATo 179
TRIANGULARIZE ioi.. 140
TRIGEXPAND....... ... 80
TRIGEXPANDPLUS, 81
TRIGEXPANDTIMES 81
TRIGINVERSES. 81
TRIGRAT 81
TRIGREDUCE. 81
TRIGSIGNo i 81
TRIGSIMP 81
TRUE 75
TRUNC . ..o 159
TSETUP ... 153
TTRANSFORM. 153
TTYINTFUN. ... e 16
TTYINTNUM.o e 16
TTYOFF .. 55

Appendix A: Function and Variable Index

U

ULTRASPHERICAL 93
UNDECLAREDWARN 211
UNDIFF e 105
UNITEIGENVECTORS, 140
UNITVECTOR........ ..o 140
UNKNOWN 40
UNORDER 23
UNSUM . .o 159
UNTELLRAT 74
UNTRACE 221
USE_FAST_ARRAYS 132
A%

VALUES 16
VECT_CROSS. 141
VECTORPOTENTIAL, 23
VECTORSIMP. 140
VERB 34
VERBIFY 34
VERBOSE 159

233
WEYL ... 149
WITH_STDOUT....... ..., 55
WRITEFILE....... 55
X
XEraph_CUTVEeS........c.uuiiiinneineinna.. 41
XTHRU . ..o 23
Z
ZEROBERN 164
ZEROEQUIV. 23
ZEROMATRIX 141
ZETA . 164
ZETAYLPT . oo 164
ZRPOLY ... 120
ZSOLVE 120

ZUNDERFLOW. 58

234 Maxima Manual

Short Contents

O© 00 31 O Ot = W N =

LW W W W W W W W W W N NDMNDNDDNDDNDDNDDNDDN DN o = = = s s
© 0 I O T i W N = O © 00 ~J O Ui W N = O © 0 ~J O UL i W NN = O

... 1
Introduction to MAXIMA .. oo v v ittt e i ieeenennnens 3
Y 7
Command Line......ccoettteeennnnnneeeeeeeenennns 11
OpErators v v v v v oo oo oo v v v essssesssnnnossssss 17
EXPressions o o o o v v v v oo eeeeeeeeonooeeoosooeeens 25
SIMpPHfication o v v v v oo v et e ettt it s s eeennoossssss 35
Plotting . o v o oo v v eee ettt it iiieeeneeeeeessnnnns 41
Input and OUtPUL « & ¢ v v v v v e vt s ittt e eeveneosssssss 45
Floating Point « v v v v o i v i ii et et iiiiiennnens o7
Contexts oo oot v s s vvsneeeeeeeosseesonnnoonansss 59
Polynomials « o o o v v v v it i ettt i it it i e 63
CoNStantS v v o o oo oo oo oo vveeeessssssssssoeessssss 75
Logarithms « v v v v v s nne ettt it iiinnnnneeeeeenns 7
TrigonometriCe v v v v v oo oo e oot oo evevoooeesooeeeeneos 79
Special Functions « e v oo oo v vt i ot e e veeeeeeeeesenss 85
Orthogonal Polynomials. . ..o oo e e i iiiieenn.. 89
Elliptic FUNCtions « o o o o v v v v v vt e oo ennooooooneenns 95
LimitsS o o v v oo oo e oo v e ooooesosoeossocsssocsssssss 99
Differentiation. . o o v oo v v oo oo s et eeeeeeesooossseas 101
Integration o v v v v v ettt ittt i ooonnnns 107
BEquations. e oo et e e eenneeeeeeeeeeeenonoooeossees 115
Differential EqUations « v v v v v v v v e e v e s v e veeeoooneesss 121
Numerical o o v oo o v e o s e eeeseeessoesssocossonsss 123
T 811 129
Arraysand Tables . o o o o i o v ittt i 131
Matrices and Linear Algebra ..o v oo v v v v e v ieeeeeennns 133
Affine oo v s i ittt i it i i e e sttt sseeesssssossssnnns 143
) T) 147
01175 510 151
SEIIES e o o o o s s oo oo eoosssssssosssssssssssssssseaes 155
Number Theory . .ooveeeeee e ittt eeeeeennns 161
SYMIMETTIES v v v o o v v v oo oo vvoeeeoossssssssoesssans 165
GTOUDS ¢ ¢ e o o000 oo oo ooueeeesossssssssssssssssss 181
Runtime Environmento oo v e e e i i eeenens 183
Miscellaneous Options « o v v v oo v v v v v oottt veeenoonnnns 187
Rules and Patterns « o oo v o v v oo v v v v e eeeeeeeeennnn 191
LiStS o o v oo e st e e et e e s s eessoeessoesssoccssonsss 197
Function Definition . .« v v v v v vttt i i iinnnnnn. 201

i Maxima Manual

40 Debugging o o v v o v v v v v e eeoesseoeeseeecssossssss 219
4] TNAICES ¢ v v v o o v v v oo oo vooooeeoeooooooooooosoocooeees 223
A TFunction and Variable IndexX « v v v v v v e v vt et e et v eeeeeens 225

Table of Contents

... 1
1 Introduction to MAXIMA 3
2 Help....ooviiii i, 7
2.1 Imtroduction to Help......... 7
2.2 Lispand Maxima.oouuiin .. 7
2.3 Garbage Collectiono 8
2.4 Documentation............. ... 9
2.5 Definitions for Help............ 9
3 Command Line...................ooeeo.... 11
3.1 Imtroduction to Command Line.............................. 11
3.2 Definitions for Command Line............................... 11
4 OperatorsS........eeeeeeeitrneennnnnneeennsss 17
4.1 NARY .. 17
4.2 NOFIX . oo 17
4.3 OPERATOR. ... 17
4.4 POSTEIX ..o 17
4.5 PREFIX ... 17
4.6 Definitions for Operators...............cooiiinneiinea... 17
5 EXPressionseeeuiiieeeennneeennnns 25
5.1 Introduction to Expressions 25
5.2 ASSIGNMENT 25
5.3 COMPLEX ... o 25
54 INEQUALITY ... 25
5.5 SYNT AX 26
5.6 Definitions for Expressions 26
6 Simplification 35
6.1 Definitions for Simplification 35
7 Plotting.........co0iiiiiiiiiiiiiiieenns, 41
7.1 Definitions for Plotting 41
8 Imputand Output 45
8.1 Introduction to Input and Output 45
8.2 FILES. ... 45
8.3 PLAYBACK 45
8.4 Definitions for Input and Output 45
9 Floating Point............................... 57
9.1 Definitions for Floating Point................... 57
10 Contexts.......covviiiiiiiiiinnnnnnnennns 59

10.1 Definitions for Contexts.cooo ... 59

iii

v

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Maxima Manual

Polynomials................................ 63
11.1 Introduction to Polynomials................................ 63
11.2 Definitions for Polynomials................................. 63

Constants...........coiiiiiinnnnnnnnnnnn. 75
12.1 Definitions for Constants. 75

Logarithms................... 77
13.1 Definitions for Logarithms 7

Trigonometric................ e, 79
14.1 Introduction to Trigonometric.............................. 79
14.2 Definitions for Trigonometric............................... 79

Special Functions........................... 85
15.1 Introduction to Special Functions........................... 85
15.2 GAMALG . ..o 85
153 SPECINT ... 85
15.4 Definitions for Special Functions............................ 85

Orthogonal Polynomials..................... 89
16.1 Introduction to Orthogonal Polynomials..................... 89
16.2 Definitions for Orthogonal Polynomials...................... 91

Elliptic Functions........................... 95
17.1 Introduction to Elliptic Functions and Integrals.............. 95
17.2 Definitions for Elliptic Functions 96
17.3 Definitions for Elliptic Integrals 98

Limits ...t 99
18.1 Definitions for Limits........... i 99

Differentiation 101
19.1 Definitions for Differentiation 101

Integration.....................ii.... 107
20.1 Introduction to Integration................................ 107
20.2 Definitions for Integration............... 107

Equations................ .. i, 115
21.1 Definitions for Equations............. 115

Differential Equations...................... 121
22.1 Definitions for Differential Equations....................... 121

Numerical o .. 123
23.1 Introduction to Numerical 123
23.2 DCADRE ... 123
23.3 ELLIPT ... 124
23.4 FOURIERo 125
23.5 NDIFFQ ... e 125
23.6 Definitions for Numerical 125

Statistics..........coiiiiiiiiiiiini... 129

24.1 Definitions for Statistics 129

25

26

27

28

29

30

31

32

33

34

35

36

37

Arrays and Tables......................... 131

25.1 Definitions for Arrays and Tables.......................... 131
Matrices and Linear Algebra............... 133
26.1 Introduction to Matrices and Linear Algebra 133

26.1.1 DOT ... 133

26.1.2 VECTORS. 133
26.2 Definitions for Matrices and Linear Algebra 133
AN & 310 < S 143
27.1 Definitions for Affine 143
B 1Y 0 7= 0) 147
28.1 Introduction to Tensor............ ..., 147
28.2 Definitions for Tensor. 147
L@ =Y 4 =0) oS 151
29.1 Introduction to Ctensor.uuuiiiiian... 151
29.2 Definitions for Ctensor.co .. 152
<Y <Y< PR 155
30.1 Introduction to Series..............o. ... 155
30.2 Definitions for Series. 155
Number Theory, 161
31.1 Definitions for Number Theory 161
Symmetriesooiiiiiiiiinnnnnnnn. 165
32.1 Definitions for Symmetries.............. 165
Groups ..o vvi ittt ittt e 181
33.1 Definitions for Groupscoviiineinnn... 181
Runtime Environment 183
34.1 Introduction for Runtime Environment..................... 183
34.2 INTERRUPTS. ... 183
34.3 Definitions for Runtime Environment 183
Miscellaneous Options 187
35.1 Introduction to Miscellaneous Options 187
35.2 SHARE 187
35.3 Definitions for Miscellaneous Options 187
Rules and Patterns 191
36.1 Introduction to Rules and Patterns 191
36.2 Definitions for Rules and Patterns 191
| D 13 = S 197
37.1 Introduction to Lists 197

37.2 Definitions for Listsot 197

vi Maxima Manual

38 Function Definition........................ 201
38.1 Introduction to Function Definition..................... ... 201

38.2 FUNCTIONo 201

38.3 MACROS . o 202

38.3.1 SemantiCs....... ..ot 202

38.3.2 SIMPLIFICATION ... 202

38.4 OPTIMIZATIONo 204

38.5 Definitions for Function Definition.................. 204

39 Program Flow................. 213
39.1 Introduction to Program Flow............................. 213

39.2 Definitions for Program Flow.............................. 213

40 Debuggingcoiiiiiiiiiiiiiiinnn.. 219
40.1 Source Level Debugging., 219

40.2 Keyword Commandsovuiiiiiiiiiiiinnnaea .. 220

40.3 Definitions for Debugging 220

41 Indices........coviiiiiiiiiiiiiiiiiinnnnn. 223

Appendix A Function and Variable Index...... 225

	
	Introduction to MAXIMA
	Help
	Introduction to Help
	Lisp and Maxima
	Garbage Collection
	Documentation
	Definitions for Help

	Command Line
	Introduction to Command Line
	Definitions for Command Line

	Operators
	NARY
	NOFIX
	OPERATOR
	POSTFIX
	PREFIX
	Definitions for Operators

	Expressions
	Introduction to Expressions
	ASSIGNMENT
	COMPLEX
	INEQUALITY
	SYNTAX
	Definitions for Expressions

	Simplification
	Definitions for Simplification

	Plotting
	Definitions for Plotting

	Input and Output
	Introduction to Input and Output
	FILES
	PLAYBACK
	Definitions for Input and Output

	Floating Point
	Definitions for Floating Point

	Contexts
	Definitions for Contexts

	Polynomials
	Introduction to Polynomials
	Definitions for Polynomials

	Constants
	Definitions for Constants

	Logarithms
	Definitions for Logarithms

	Trigonometric
	Introduction to Trigonometric
	Definitions for Trigonometric

	Special Functions
	Introduction to Special Functions
	GAMALG
	SPECINT
	Definitions for Special Functions

	Orthogonal Polynomials
	Introduction to Orthogonal Polynomials
	Definitions for Orthogonal Polynomials

	Elliptic Functions
	Introduction to Elliptic Functions and Integrals
	Definitions for Elliptic Functions
	Definitions for Elliptic Integrals

	Limits
	Definitions for Limits

	Differentiation
	Definitions for Differentiation

	Integration
	Introduction to Integration
	Definitions for Integration

	Equations
	Definitions for Equations

	Differential Equations
	Definitions for Differential Equations

	Numerical
	Introduction to Numerical
	DCADRE
	ELLIPT
	FOURIER
	NDIFFQ
	Definitions for Numerical

	Statistics
	Definitions for Statistics

	Arrays and Tables
	Definitions for Arrays and Tables

	Matrices and Linear Algebra
	Introduction to Matrices and Linear Algebra
	DOT
	VECTORS

	Definitions for Matrices and Linear Algebra

	Affine
	Definitions for Affine

	Tensor
	Introduction to Tensor
	Definitions for Tensor

	Ctensor
	Introduction to Ctensor
	Definitions for Ctensor

	Series
	Introduction to Series
	Definitions for Series

	Number Theory
	Definitions for Number Theory

	Symmetries
	Definitions for Symmetries

	Groups
	Definitions for Groups

	Runtime Environment
	Introduction for Runtime Environment
	INTERRUPTS
	Definitions for Runtime Environment

	Miscellaneous Options
	Introduction to Miscellaneous Options
	SHARE
	Definitions for Miscellaneous Options

	Rules and Patterns
	Introduction to Rules and Patterns
	Definitions for Rules and Patterns

	Lists
	Introduction to Lists
	Definitions for Lists

	Function Definition
	Introduction to Function Definition
	FUNCTION
	MACROS
	Semantics
	SIMPLIFICATION

	OPTIMIZATION
	Definitions for Function Definition

	Program Flow
	Introduction to Program Flow
	Definitions for Program Flow

	Debugging
	Source Level Debugging
	Keyword Commands
	Definitions for Debugging

	Indices
	Function and Variable Index

