
Subversion: The Definitive Guide

by Ben Collins-Sussman, Brian W. Fitzpatrick, and C. Michael Pilato

Subversion: The Definitive Guide
by Ben Collins-Sussman, Brian W. Fitzpatrick, and C. Michael Pilato

Published (TBA)

Table of Contents
Preface ...

Audience ..10
How This Book is Organized .. 10
Conventions used in this book .. 10
This Book is Free ... 11
Acknowledgements ..11

1. Introduction ...
What is Subversion? ...1
Subversion'sHistory ...1
Subversion'sFeatures ..1
InstallingSubversion ..2
Subversion's components ...2

2. Basic Concepts ...
TheRepository ..4
VersioningModels ...5

The Problem of File-Sharing .. 5
The Lock-Modify-Unlock Solution ..5
The Copy-Modify-Merge Solution ..7

Subversion in action ...9
Workingcopies ...9
Revisions..12
How working copies track the repository .. 14
The limitations of mixed revisions ... 14

Summary ..15
3. Guided Tour ..

Help! ...16
Import ..16
Revisions: Numbers, Keywords, and Dates, Oh My! ... 16

RevisionNumbers ..16
RevisionKeywords ..16
RevisionDates ..17

InitialCheckout ...18
BasicWorkcycle ..19

Update Your Working Copy ... 20
Make Changes to Your Working Copy ... 20
Examine Your Changes ...21
Resolving conflicts (Merging others' changes) ... 26
Commit your changes ...29

ExaminingHistory ...30
svn log ...30
svndiff ..31
svncat ...33
svn list ...33
A Final Word on History ... 34

Other Frequently Used Commands .. 34
svncleanup ...34
svn import ..34
Summary ..35

4. Branching and Merging ...
What's a branch? ..36
Usingbranches ..37

Creating a branch ...38
Working with your branch ... 40

iv

The moral of the story ... 42
Copying changes between branches ... 42

The repeated merge problem .. 44
Removing a change from the repository .. 45
Switching a working copy .. 45
Tags ..47

Creating a simple tag .. 47
Creating a complex tag .. 47

Branchmaintenance ...48
Repository layout ...48
Data lifetimes ..49

Summary ..49
5. Repository Administration ..

RepositoryBasics ...51
Understanding Transactions and Revisions .. 51
UnversionedProperties ...52

Repository Creation and Configuration ... 52
Hookscripts ..53
Berkeley DB configuration ..55

RepositoryMaintenance ..55
An Administrator's Toolkit ...55
RepositoryCleanup ..60
Repository recovery ..62
Migrating a repository ...63
RepositoryBackup ...66

Networking a Repository ...66
httpd, the Apache HTTP Server .. 66
svnserve, a Custom Subversion Server ... 70

Addingprojects ...70
Choosing a Repository Layout .. 70
Creating the Layout, and Importing Initial Data ... 72

Summary ..73
6. Advanced Topics ..

Run-time Configuration Area ...74
Configuration Area Layout ..74
Configuration and the Windows Registry .. 75
ConfigurationOptions ...76

Properties ...78
WhyProperties? ..78
ManipulatingProperties ..79
Specialproperties ...82

ExternalsDefinitions ..87
Vendorbranches ..88

7. Developer Information ...
Layered Library Design ...93

RepositoryLayer ...95
Repository Access Layer ...99
ClientLayer ..101

Using the APIs ..102
The Apache Portable Runtime Library ... 102
URL and Path Requirements .. 102
Using Languages Other than C and C++ ... 103

Inside the Working Copy Administration Area ... 104
The Entries File ...105
Pristine Copies and Property Files ... 106
The Authentication Area ..106

WebDAV ...107
Programming with Memory Pools ... 107

Subversion: The Definitive Guide

v

Contributing to Subversion ..109
Join the Community ...110
Get the Source Code ... 110
Become Familiar with Community Policies ... 110
Make and Test Your Changes ... 111
Donate Your Changes ...111

8. Subversion Complete Reference ..
The Subversion Command Line Client: svn ... 112

Switches ...112
svnsubcommands ..115

svnadmin ..169
svnlook ..180

Switches ...180
A. Subversion for CVS Users ...

Revision Numbers Are Different Now .. 192
Directoryversions ..192
More Disconnected Operations ...193
Distinction Between Status and Update .. 193
Branches and Tags ...194
Meta-dataProperties ...194
Conflict resolution ..195
Binary files and translation .. 195
VersionedModules ..195

B. CVS Repository Migration ...
C.Troubleshooting ...
D.FAQ? ..
E. Other Subversion Clients ...
F. Third Party Tools ...
Glossary ...

Subversion: The Definitive Guide

vi

List of Figures
2.1. A typical client/server system ... 4
2.2. The problem to avoid .. 5
2.3. The lock-modify-unlock solution ... 6
2.4. The copy-modify-merge solution ... 7
2.5. ...copy-modify-merge continued ..8
2.6. The repository's filesystem ... 10
2.7. The repository ...12
4.1. Branches of development ... 36
4.2. Starting repository layout ... 37
4.3. Repository with new copy .. 39
4.4. The branching of one file's history ... 41
5.1. One suggested repository layout. ... 71
5.2. Another suggested repository layout. .. 72
7.1. Subversion's "Big Picture" ... 94
7.2. Files and directories in two dimensions ... 96
7.3. Revisioning Time—the third dimension! .. 96

vii

List of Tables
7.1. A brief inventory of the Subversion libraries .. 93

viii

List of Examples
5.1. Using svnshell to navigate the repository .. 58
5.2. txn-info.sh (reporting outstanding transactions) .. 61
5.3. Using incremental repository dumps .. 65
6.1. Sample registration entries (.REG) file. .. 75
7.1. Using the Repository Layer .. 97
7.2. Using the Repository Layer with Python ... 103
7.3. A simple script to check out a working copy. ... 104
7.4. Contents of a typical .svn/entries file .. 105
7.5. Effective pool usage ... 108

ix

Preface
"Find a good opening quote." --Anonymous

In the world of open-source software, the Concurrent Versions System (CVS) has long been the tool of choice for
version control. And rightly so. CVS itself is free software, and its wonderful “non-locking” development
model—which allows dozens of far-flung programmers to share their work—fits the collaborative model of the
open-source world very well. CVS and its semi-chaotic development model have become cornerstones of open-
source culture.

But like many tools, CVS is starting to show its age. Subversion is a relatively new version control system designed
to be the successor to CVS. The designers set out to win the hearts of CVS users in two ways: by creating a open-
source version control system with a similar design (and "look and feel") as CVS, and by attempting to fix most of
CVS's noticeable flaws. While the result isn't necessarily the next great evolution in version control design, Subver-
sion is is very powerful, very useable, and very flexible.

Audience
This book is written for computer literate folk who want to use Subversion to manage their data. While Subversion
runs on a number of different operating systems, its primary user interface is command-line based. For that reason,
the examples in this book assume the reader is using a Unix-like operating system, and is relatively comfortable with
Unix and command-line interfaces.

Most readers are probably programmers or sysadmins who need to track changes to source code; this is the most
common use for Subversion, and therefore it is the scenario underlying all of the book's examples. But keep in mind
that Subversion can be used to manage changes to any sort of information: images, music, databases, documenta-
tion, and so on. To Subversion, all data is just data.

While this book is written with the assumption that the reader has never used version control, we've also tried to
make it easy for former CVS users to get up to speed quickly. Special sidebars may discuss CVS from time to time,
and a special appendix summarizes most of the differences between CVS and Subversion.

How This Book is Organized
The first three chapters of this book form a general introduction to Subversion. We begin with a discussion of Sub-
version's features, discuss its design and user model, and then lead into a guided tour. All readers, regardless of ex-
perience, should read these chapters. They form the backbone of the rest of the book.

Chapters four, five, and six discuss the more complex topics of branching, repository administration, and other ad-
vanced features such as properties, externals, and access control. Sysadmins and power-users will definitely want to
read these chapters.

Chapter seven is specially written for programmers who want to use Subversion's APIs in their own software, or
want to work on Subversion itself.

The book ends with reference material. Chapter eight is a reference guide for all Subversion commands, and the ap-
pendices cover a number of useful topics. These are the chapters you're mostly likely to come back to after you've
finished the book.

Conventions used in this book
O'Reilly almost certainly needs to fill this in, depending on how they typeset the book.

x

Note that the source code examples are just that—examples. While they will compile with the proper compiler in-
cantations, they are intended to illustrate the problem at hand, not necessarily serve as examples of good program-
ming style.

This Book is Free
This book started out as bits of documentation written by Subversion project developers, which were then coalesced
into a single work and rewritten. As such, it has always had the same free, open-source license as Subversion itself.
In fact, the book was written in the public eye, as a part of Subversion. This means two things:

• You will always find the latest version of this book in Subversion's own source tree.

• You can distribute and make changes to this book however you wish — it's under a free license. Of course,
rather than distribute your own private version of this book, we'd much rather you send feedback and patches to
the Subversion developer community. See Section , “Contributing to Subversion” to learn about joining this
community.

You can send publishing comments and questions to O'Reilly here: ###insert boilerplate.

A relatively recent online version of this book can be found at http://www.svnbook.org.

Acknowledgements
Huge list of thanks to the many svn developers who sent patches/feedback on this book.

Also, individual-author acknowledgements to specific friends and family.

Preface

xi

Chapter 1. Introduction
Version control is the art of managing changes to information. It has long been a critical tool to programmers, who
typically spend their time making small changes to software and then undoing those changes the next day. Imagine a
team of these programmers working concurrently, and you can see why a good version control system is needed to
manage the potential chaos.

What is Subversion?
Subversion is a free/open-source version control system. That is, Subversion manages files and directories over
time. The tree of files are placed into a central repository. The repository is much like an ordinary file server, except
that it remembers every change ever made to your files and directories. This allows you to recover older versions of
your data, or examine the history of how your data changed. In this regard, many people think of a version control
system as a sort of “time machine”.

Some version control systems are also software configuration management (SCM) systems. These systems are
specifically tailored to manage trees of source code, and have many features that are specific to software develop-
ment (such as natively understanding programming languages). Subversion, however, is not one of these systems; it
is a general system that can be used to manage any sort of collection of files, including source code.

Subversion's History
In 1995, Karl Fogel and Jim Blandy founded Cyclic Software, a company for commercially supporting and improv-
ing the Concurrent Versions System (CVS). Cyclic made the first public release of a network-enabled CVS
(contributed by Cygnus software.) In 1999, Karl Fogel published a book about CVS and the open-source develop-
ment model it enables. Karl and Jim had long talked about writing a replacement for CVS; Jim had even drafted a
new, theoretical repository design, and had come up with a good project name. Finally, in February of 2000, Brian
Behlendorf of CollabNet (http://www.collab.net) offered Karl a full-time job to write a CVS replacement.
Karl gathered a team together and work began in May. Because Subversion was developed openly under a free li-
cense, it quickly attracted a community of developers.

The original design team settled on some simple goals. It was decided that Subversion should be a functional re-
placement for CVS; it should match CVS's features, preserve the same development model, but still fix the most ob-
vious flaws. And Subversion should be similar enough to CVS such that any CVS user could start using it with little
effort.

After fourteen months of coding, Subversion became “self-hosting” on August 31, 2001. That is, Subversion devel-
opers stopped using CVS to manage Subversion's own source code and started using Subversion instead.

While CollabNet is credited with initiating and funding a very large chunk of the work (it pays the salaries of a few
full-time Subversion developers), the project is still a typical open-source project, governed by the usual meritocratic
rules. CollabNet owns the copyright on the code, but that copyright is an Apache/BSD-style license which is fully
compliant with the Debian Free Software Guidelines. In other words, anyone is free to download, modify, and redis-
tribute Subversion as he pleases; no permission from CollabNet or anyone else is required.

Subversion's Features
How does Subversion improve upon CVS's design? Here's a short list to whet your appetite. If you're not familiar
with CVS, you may not understand all of these features. Fear not: Chapter 2 will provide you with a gentle introduc-
tion to version control.

Directory versioning The Subversion repository doesn't only track the history of individual files; instead, it
implements a “virtual” versioned filesystem that tracks changes to trees over time.

1

Files and directories are versioned. As a result, there are real client-side move and
copy commands that operate on files and directories.

Atomic commits A commit either goes into the repository completely, or not all. This allows developers
to commit changes as logical “changesets”.

Versioned metadata Each file and directory has an invisible set of “properties” attached. You can invent
and store any arbitrary key/value pairs you wish. Properties are versioned over time,
just like file contents.

Choice of network layers Subversion has an abstracted notion of repository access, making it easy for people to
implement new network mechanisms. Subversion's “advanced” network server is a
module for the Apache web server, which speaks a variant of HTTP called WebDAV/
DeltaV. This gives Subversion a big advantage in stability and interoperability, and
provides various key features for free: authentication, authorization, wire compression,
and repository browsing, for example. A smaller, standalone svn server process is also
available. This server speaks a custom protocol which can be easily tunneled over ssh.

Consistent data handling Subversion expresses file differences using a binary differencing algorithm, which
works identically on both text (human-readable) and binary (human-unreadable) files.
Both types of files are stored equally compressed in the repository, and differences are
transmitted in both directions across the network.

Efficient branching and taggingThere's no need for branching/tagging to be proportional to project size. Subversion
creates branches and tags by simply copying the project, using a mechanism similar to
a hard-link. Thus these operations take only a very small, constant amount of time.

Hackability Subversion has no historical baggage; it is implemented a collection of shared C li-
braries with well-defined APIs. This makes Subversion extremely maintainable and
usable by other applications and languages.

Installing Subversion
Subversion is built on a portablility layer called APR (the Apache Portable Runtime library). This means Subversion
should work on any operating system that the Apache httpd server runs on: Windows, Linux, all flavors of BSD,
Mac OS X, Netware, and others.

The easiest way to get Subversion is to find a binary package of some sort for your operating system. Subversion's
website (http://subversion.tigris.org) often has binaries available for download, posted by volunteers. The
site usually contains graphical installer packages for users for Microsoft operating systems. If you run a Unix-like
operating system, you can use your system's native package-distribution system (rpm, deb, ports tree) to get Subver-
sion.

Alternately, you can build Subversion directly from source code. From the website, you can download the latest
source-code release. After unpacking it, follow the instructions in INSTALL to build it. Note that released source
package contains everything you need to build a commandline-client capable of talking to a remote repository (in
particular, the apr, apr-util, and neon libraries.) But Subversion has many other dependencies, such as Berkeley DB
and possibly Apache httpd. If you want to do a “full” build, make sure you have all of packages documented in the
INSTALL file. If you plan to work on Subversion itself, you can use your client program to grab the latest, bleeding-
edge source code. This is documented in Section , “Get the Source Code”.

Subversion's components
Subversion, once installed, has a number of different pieces. Here's a quick overview of what you get.

Introduction

2

svn The command-line client program. This is the main tool used to manage data, and its use
is covered in Chapters 2, 3, 4, and 6.

svnlook A tool for inspecting a Subversion repository, discussed in Chapter 5.

svnadmin A tool for tweaking or repairing a Subversion repository, used mainly by system admin-
istrators, also discussed in Chapter 5.

mod_dav_svn A plug-in module for the Apache-2.X web server; used to make your repository available
to others over a network. Discussed in Chapter 5.

svnserve A standalone server program, runnable as a daemon process; another way to make your
repository available to others over a network. Discussed in Chapter 5.

svnversion A program for reporting the mixed-revision state of a working copy. (See Chapter 2 to
understand mixed-revision working copies.)

Assuming you have Subversion installed correctly, you should be ready to start. The next two chapters will walk
you through the usage of the command-line client program.

Introduction

3

Chapter 2. Basic Concepts
This chapter is a short, casual introduction to Subversion. If you're new to version control, this chapter is definitely
for you. We begin with a discussion of general version control concepts, work our way into the specific ideas behind
Subversion, and show some simple examples of Subversion in use.

Even though the examples in this chapter show people sharing collections of program source code, keep in mind that
Subversion can manage any sort of file collection -- it's not limited to helping computer programmers.

The Repository
Subversion is a centralized system for sharing information. At its core is a repository, which is a central store of
data. The repository stores information in the form of a filesystem tree—a typical hierarchy of files and directories.
Any number of clients connect to the repository, and then read or write to these files. By writing data, a client makes
the information available to others; by reading data, the client receives information from others.

Figure 2.1. A typical client/server system

So why is this interesting? So far, this sounds like the definition of a typical file server. And indeed, the repository is
a kind of file server, but it's not your usual breed. What makes the Subversion repository special is that it remembers
every change ever written to it: every change to every file, and even changes to the directory tree itself, such as the
addition, deletion, and rearrangement of files and directories.

When a client reads data from the repository, it normally sees only the latest version of the filesystem tree. But the
client also has the ability to view previous states of the filesystem. For example, a client can ask historical questions
like, "what did this directory contain last Wednesday?", or "who was the last person to change this file, and what
changes did they make?" These are the sorts of questions that are at the heart of any version control system: systems

4

that are designed to record and track changes to data over time.

Versioning Models
The Problem of File-Sharing

All version control systems have to solve the same fundamental problem: how will the system allow users to share
information, but prevent them from accidentally stepping on each other's feet? It's all too easy for users to acciden-
tally overwrite each other's changes in the repository.

Consider this scenario: suppose we have two co-workers, Jane and Joe. They each decide to edit the same repository
file at the same time. If Joe saves his changes to the repository first, then it's possible that (a few moments later) Jane
could accidentally overwrite them with her own new version of the file. While Joe's version of the file won't be lost
forever (because the system remembers every change), any changes Joe made won't be present in Jane's newer ver-
sion of the file, because she never saw Joe's changes to begin with. Joe's work is still effectively lost—or at least
missing from the latest version of the file—and probably by accident. This is definitely a situation we want to avoid!

Figure 2.2. The problem to avoid

The Lock-Modify-Unlock Solution

Basic Concepts

5

Many version control systems use a lock-modify-unlock model to address this problem, which is a very simple solu-
tion. In such a system, the repository allows only one person to change a file at a time. First Joe must "lock" the file
before he can begin making changes to it. Locking a file is a lot like borrowing a book from the library; if Joe has
locked a file, then Jane cannot make any changes to it. If she tries to lock the file, the repository will deny the re-
quest. All she can do is read the file, and wait for Joe to finish his changes and release his lock. After Joe unlocks the
file, his turn is over, and now Jane can take her turn by locking and editing.

Figure 2.3. The lock-modify-unlock solution

The problem with the lock-modify-unlock model is that it's a bit restrictive, and often becomes a roadblock for
users:

• Locking may cause administrative problems. Sometimes Joe will lock a file and then forget about it. Meanwhile,
because Jane is still waiting to edit the file, her hands are tied. And then Joe goes on vacation. Now Jane has to
get an administrator to release Joe's lock. The situation ends up causing a lot of unnecessary delay and wasted
time.

• Locking may cause unnecessary serialization. What if Joe is editing the beginning of a text file, and Jane simply
wants to edit the end of the same file? These changes don't overlap at all. They could easily edit the file simulta-
neously, and no great harm would come, assuming the changes were properly merged together. There's no need
for them to take turns in this situation.

Basic Concepts

6

• Locking may create a false sense of security. Pretend that Joe locks and edits file A, while Jane simultaneously
locks and edits file B. But suppose that A and B depend on one another, and the changes made to each are se-
mantically incompatible. Suddenly A and B don't work together anymore. The locking system was powerless to
prevent the problem—yet it somehow provided a sense of false security. It's easy for Joe and Jane to imagine
that by locking files, each is beginning a safe, insulated task, and thus inhibits them from discussing their incom-
patible changes early on.

The Copy-Modify-Merge Solution
Subversion, CVS, and other version control systems use a copy-modify-merge model as an alternative to locking. In
this model, each user's client reads the repository and creates a personal working copy of the file or project. Users
then work in parallel, modifying their private copies. Finally, the private copies are merged together into a new, final
version. The version control system often assists with the merging, but ultimately a human being is responsible for
making it happen correctly.

Here's an example. Say that Joe and Jane each create working copies of the same project, copied from the repository.
They work concurrently, and make changes to the same file "A" within their copies. Jane saves her changes to the
repository first. When Joe attempts to save his changes later, the repository informs him that his file A is out-of-date.
In other words, that file A in the repository has somehow changed since he last copied it. So Joe asks his client to
merge any new changes from the repository into his working copy of file A. Chances are that Jane's changes don't
overlap with his own; so once he has both sets of changes integrated, he saves his working copy back to the reposi-
tory.

Figure 2.4. The copy-modify-merge solution

Basic Concepts

7

Figure 2.5. ...copy-modify-merge continued

Basic Concepts

8

But what if Jane's changes do overlap with Joe's changes? What then? This situation is called a conflict, and it's usu-
ally not much of a problem. When Joe asks his client to merge the latest repository changes into his working copy,
his copy of file A is somehow flagged as being in a state of conflict: he'll be able to see both sets of conflicting
changes, and manually choose between them. Note that software can't automatically resolve conflicts; only humans
are capable of understanding and making the necessary intelligent choices. Once Joe has manually resolved the
overlapping changes (perhaps by discussing the conflict with Jane!), he can safely save the merged file back to the
repository.

The copy-modify-merge model may sound a bit chaotic, but in practice, it runs extremely smoothly. Users can work
in parallel, never waiting for one another. When they work on the same files, it turns out that most of their concur-
rent changes don't overlap at all; conflicts are infrequent. And the amount of time it takes to resolve conflicts is far
less than the time lost by a locking system.

In the end, it all comes down to one critical factor: user communication. When users communicate poorly, both syn-
tactic and semantic conflicts increase. No system can force users to communicate perfectly, and no system can de-
tect semantic conflicts. So there's no point in being lulled into a false promise that a locking system will somehow
prevent conflicts; in practice, locking seems to inhibit productivity more than anything else.

Subversion in action
Working copies

You've already read about working copies; now we'll demonstrate how the Subversion client creates and uses them.

Basic Concepts

9

A Subversion working copy is an ordinary directory tree on your local system, containing a collection of files. You
can edit these files however you wish, and if they're source code files, you can compile your program from them in
the usual way. Your working copy is your own private work area: Subversion will never incorporate other people's
changes, nor make your own changes available to others, until you explicitly tell it to do so.

After you've made some changes to the files in your working copy and verified that they work properly, Subversion
provides you with commands to "publish" your changes to the other people working with you on your project (by
writing to the repository). If other people publish their own changes, Subversion provides you with commands to
merge those changes into your working directory (by reading from the repository).

A working copy also contains some extra files, created and maintained by Subversion, to help it carry out these com-
mands. In particular, each directory in your working copy contains a subdirectory named .svn, also known as the
working copy administrative directory. The files in each administrative directory help Subversion recognize which
files contain unpublished changes, and which files are out-of-date with respect to others' work.

A typical Subversion repository often holds the files (or source code) for several projects; usually, each project is a
subdirectory in the repository's filesystem tree. In this arrangement, a user's working copy will usually correspond to
a particular subtree of the repository.

For example, suppose you have a repository that contains two software projects.

Figure 2.6. The repository's filesystem

Basic Concepts

10

In other words, the repository's root directory has two subdirectories: paint and calc.

To get a working copy, you must check out some subtree of the repository. (The term "check out" may sound like it
has something to do with locking or reserving resources, but it doesn't; it simply creates a private copy of the project
for you.) For example, If you check out /calc, you will get a working copy like this:

$ svn checkout http://svn.example.com/repos/calc
A calc
A calc/Makefile
A calc/integer.c
A calc/button.c

$ ls -a calc
Makefile integer.c button.c .svn/

The list of letter A's indicates that Subversion is adding a number of items to your working copy. You now have a
personal copy of the repository's /calc directory, with one additional entry—.svn—which holds the extra infor-
mation needed by Subversion, as mentioned earlier.

Suppose you make changes to button.c. Since the .svn directory remembers the file's modification date and orig-
inal contents, Subversion can tell that you've changed the file. However, Subversion does not make your changes

Basic Concepts

11

public until you explicitly tell it to. The act of publishing your changes is more commonly known as committing (or
checking in) changes to the repository.

To publish your changes to others, you can use Subversion's commit command:

$ svn commit button.c
Sending button.c
Transmitting file data..
Committed revision 57.

Now your changes to button.c have been committed to the repository; if another user checks out a working copy
of /calc, they will see your changes in the latest version of the file.

Suppose you have a collaborator, Sally, who checked out a working copy of /calc at the same time you did. When
you commit your change to button.c, Sally's working copy is left unchanged; Subversion only modifies working
copies at the user's request.

To bring her project up to date, Sally can ask Subversion to update her working copy, by using the Subversion up-
date command. This will incorporate your changes into her working copy, as well as any others that have been com-
mitted since she checked it out.

$ pwd
/home/sally/calc

$ ls -a
.svn/ Makefile integer.c button.c

$ svn update
U button.c

The output from the svn update command indicates that Subversion updated the contents of button.c. Note that
Sally didn't need to specify which files to update; Subversion uses the information in the .svn directory, and further
information in the repository, to decide which files need to be brought up to date.

Revisions
A svn commit operation can publish changes to any number of files and directories as a single atomic transaction.
In your working copy, you can change files' contents, create, delete, rename and copy files and directories, and then
commit the complete set of changes as a unit.

In the repository, each commit is treated as an atomic transaction: either all the commit's changes take place, or none
of them take place. Subversion tries to retain this atomicity in the face of program crashes, system crashes, network
problems, and other users' actions.

Each time the repository accepts a commit, this creates a new state of the filesystem tree, called a revision. Each re-
vision is assigned a unique natural number, one greater than the number of the previous revision. The initial revision
of a freshly created repository is numbered zero, and consists of nothing but an empty root directory.

A nice way to visualize the repository is as a series of trees. Imagine an array of revision numbers, starting at 0,
stretching from left to right. Each revision number has a filesystem tree hanging below it, and each tree is a snap-
“shot” of the way the repository looked after each commit.

Figure 2.7. The repository

Basic Concepts

12

Global revision numbers

Unlike those of many other version control systems, Subversion's revision numbers apply to entire trees, not indi-
vidual files. Each revision number selects an entire tree, a particular state of the repository after some committed
change. Another way to think about it is that revision N represents the state of the repository filesystem after the Nth
commit. When a Subversion user talks about ``revision 5 of foo.c'', they really mean ``foo.c as it appears in revi-
sion 5.'' Notice that in general, revisions N and M of a file do not necessarily differ! Because CVS uses per-file revi-
sions numbers, CVS users might want to look at Appendix A, "SVN for CVS Users", for more details.

It's important to note that working copies do not always correspond to any single revision in the repository; they
may contain files from several different revisions. For example, suppose you check out a working copy from a
repository whose most recent revision is 4:

calc/Makefile:4
integer.c:4
button.c:4

At the moment, this working directory corresponds exactly to revision 4 in the repository. However, suppose you
make a change to button.c, and commit that change. Assuming no other commits have taken place, your commit
will create revision 5 of the repository, and your working copy will now look like this:

calc/Makefile:4
integer.c:4
button.c:5

Suppose that, at this point, Sally commits a change to integer.c, creating revision 6. If you use svn update to
bring your working copy up to date, then it will look like this:

calc/Makefile:6
integer.c:6
button.c:6

Sally's changes to integer.c will appear in your working copy, and your change will still be present in button.c.
In this example, the text of Makefile is identical in revisions 4, 5, and 6, but Subversion will mark your working
copy of Makefile with revision 6 to indicate that it is still current. So, after you do a clean update at the top of your
working copy, it will generally correspond to exactly one revision in the repository.

Basic Concepts

13

How working copies track the repository
For each file in a working directory, Subversion records two essential pieces of information in the .svn/ adminis-
trative area:

• what revision your working file is based on (this is called the file's working revision), and

• a timestamp recording when the local copy was last updated by the repository.

Given this information, by talking to the repository, Subversion can tell which of the following four states a working
file is in:

Unchanged, and current The file is unchanged in the working directory, and no changes to that file have been
committed to the repository since its working revision. A svn commit of the file will
do nothing, and a svn update of the file will do nothing.

Locally changed, and current The file has been changed in the working directory, and no changes to that file have
been committed to the repository since its base revision. There are local changes that
have not been committed to the repository, thus a svn commit of the file will succeed
in publishing your changes, and a svn update of the file will do nothing.

Unchanged, and out-of-date The file has not been changed in the working directory, but it has been changed in the
repository. The file should eventually be updated, to make it current with the public
revision. A svn commit of the file will do nothing, and a svn update of the file will
fold the latest changes into your working copy.

Locally changed, and out-of-dateThe file has been changed both in the working directory, and in the repository. A svn
commit of the file will fail with an "out-of-date" error. The file should be updated
first; a svn update command will attempt to merge the public changes with the local
changes. If Subversion can't complete the merge in a plausible way automatically, it
leaves it to the user to resolve the conflict.

This may sound like a lot to keep track of, but the svn status command will show you the state of any item in your
working copy. For more information on that command, see Section , “svn status”.

The limitations of mixed revisions
As a general principle, Subversion tries to be as flexible as possible. One special kind of flexibility is the ability to
have a working copy containing mixed revision numbers.

At first, it may not be entirely clear why this sort of flexibliity is considered a feature, and not a liability. After com-
pleting a commit to the repository, the freshly committed files and directories are at more recent working revision
than the rest of the working copy. It looks like a bit of a mess. As demonstrated earlier, the working copy can always
be brought to a single working revision by running svn update. Why would someone deliberately want a mixture of
working revisions?

Assuming your project is sufficiently complex, you'll discover that it's sometimes nice to forcibly “backdate” por-
tions of your working copy to an earlier revision; you'll learn how to do that in Chapter 3. Perhaps you'd like to test
an earlier version of a sub-module, contained in a subdirectory, or perhaps you'd like to examine a number of previ-
ous versions of a file in the context of the latest tree.

However you make use of mixed-revisions in your working copy, there are limitations to this flexibility.

First, you cannot commit the deletion of a file or directory which isn't fully up-to-date. If a newer version of the item
exists in the repository, your attempt to delete will be rejected, to prevent you from accidentally destroying changes

Basic Concepts

14

you've not yet seen.

Second, you cannot commit a metadata change to a directory unless it's fully up-to-date. You'll learn about attaching
“properties” to items in Chapter 6. A directory's working revision defines a specific set of entries and properties, and
thus committing a property change to an out-of-date directory may destroy properties you've not yet seen.

Summary
We've covered a number of fundamental Subversion concepts in this chapter:

• We've introduced the notions of the central repository, the client working copy, and the array of repository revi-
sion trees.

• We've seen some simple examples of how two collaborators can use Subversion to publish and receive changes
from one another, using the 'copy-modify-merge' model.

• We've talked a bit about the way Subversion tracks and manages information in a working copy.

At this point, you should have a good idea of how Subversion works in the most general sense. Armed with this
knowledge, you should now be ready to jump into the next chapter, which is a detailed tour of Subversion's com-
mands and features.

Basic Concepts

15

Chapter 3. Guided Tour
Now we will go into the details of using Subversion. By the time you reach the end of this chapter, you will be able
to perform almost all the tasks you need to use Subversion in a normal day's work. You'll start with an initial check-
out of your code, and walk through making changes and examining those changes. You'll also see how to bring
changes made by others into your working copy, examine them, and work through any conflicts that might arise.

Note that this chapter is not meant to be an exhaustive list of all Subversion's commands—rather, it's a conversa-
tional introduction to the most common Subversion tasks you'll encounter. This chapter assumes that you've read
and understood Chapter 2, Basic Concepts and are familiar with the general model of Subversion. For a complete
reference of all commands, see Chapter 8, Subversion Complete Reference.

Help!
Before reading on, here is the most important command you'll ever need when using Subversion: svn help. The Sub-
version command-line client tries to be self-documenting—at any time, a quick svn help <subcommand> will de-
scribe the syntax, switches, and behavior of the subcommand.

Import
You use svn import to import a new project into a Subversion repository. While this is most likely the very first
thing you will do when you set up your Subversion server, it's not something that happens very often. For a detailed
description of import, see Section , “svn import” later in this chapter.

Revisions: Numbers, Keywords, and Dates, Oh My!
Before we go on, you should know a bit about how to identify a particular revision in your repository. As you
learned in Section , “Revisions”, a revision is a “snapshot” of the repository at a particular moment in time. As you
continue to commit and grow your repository, you need a mechanism for identifying these snapshots.

You specify these revisions by using the --revision (-r) switch plus the revision you want (svn --revision REV)
or you can specify a range by separating two revisions with a colon (svn --revision REV1:REV2). And subversion
lets you refer to these revisions by number, keyword, or date.

Revision Numbers
When you create a new Subversion repository, it begins its life at revision zero and each successive commit in-
creases the revision number by one. After your commit completes, the Subversion client informs you of the new re-
vision number:

$ svn commit --message "Corrected number of cheese slices."
Sending sandwich.txt
Transmitting file data .
Committed revision 3.

If at any point in the future you want to refer to that revision (We'll see how and why we might want to do that later
in this chapter), you can refer to it as “3”.

Revision Keywords
The Subversion client understands a number of revision keywords. These keywords can be used instead of integer

16

arguments to the --revision switch, and are resolved into specific revision numbers by Subversion:

HEAD The latest revision in the repository.

BASE The “pristine” revision of an item in a working copy.

COMMITTED The last revision in which an item changed.

PREV The revision just before the last revision in which an item changed. (Technically, COMMIT-
TED - 1).

Here are some examples of revision keywords in action (don't worry if the commands don't make sense yet; we'll be
explaining these commands as we go through the chapter):

$ svn diff --revision PREV:COMMITTED foo.c
shows the last change committed to foo.c

$ svn log --revision HEAD
shows log message for the latest repository commit

$ svn diff --revision HEAD
compares your working file (with local mods) to the latest version
in the repository.

$ svn diff --revision BASE:HEAD foo.c
compares your “pristine” foo.c (no local mods) with the
latest version in the repository

$ svn log --revision BASE:HEAD
shows all commit logs since you last updated

$ svn update --revision PREV foo.c
rewinds the last change on foo.c.
(foo.c's working revision is decreased.)

These keywords allow you to perform many common (and helpful) operations without having to look up specific re-
vision numbers or remember the exact revision of your working copy.

Revision Dates
Anywhere that you specify a revision number or revision keyword, you can also specify a date by specifying the
date inside curly braces “{}”. You can even access a range of changes in the repository using both dates and revi-
sions together!

Subversion accepts an incredible number of date formats —just remember to use quotes around any date that con-
tains spaces. Here are just a few of the formats that Subversion accepts:

$ svn co --revision {2/17/02}
$ svn co --revision {"17 Feb"}
$ svn co --revision {"17 Feb 2002"}
$ svn co --revision {"17 Feb 2002 15:30"}
$ svn co --revision {"17 Feb 2002 15:30:12 GMT"}
$ svn co --revision {"10 days ago"}
$ svn co --revision {"last week"}
$ svn co --revision {"yesterday"}
…

When you specify a date as a revision, Subversion finds the most recent revision of the repository as of that date:

Guided Tour

17

$ svn log --revision {11/28/2002}
--
rev 12: ira | 2002-11-27 12:31:51 -0600 (Wed, 27 Nov 2002) | 6 lines
…

Is Subversion a Day Early?

If you specify a single date as a revision without specifying a time of day (for example 11/27/02, you may think
that Subversion should give you the last revision that took place on the 27th of November. Instead, you'll get back a
revision from the 26th, or even earlier. Remember that Subversion will find the most recent revision of the reposi-
tory as of the date you give. If you give a date without a timestamp, like 11/27/02, Subversion assumes a time of
00:00:00, so looking for the most recent revision won't return anything on the day of the 27th.

If you want to include the 27th in your search, you can either specify the 27th with the time ("27 Nov 2002
23:59"), or just specify the next day ("28 Nov 2002").

You can also use a range of dates. Subversion will find all revisions between both dates, inclusive:

$ svn log --revision {2002-11-20}:{2002-11-29}
…

As we pointed out, you can also mix dates and revisions:

$svn log -r {11/20/02}:4040

Initial Checkout
Most of the time, you will start using a Subversion repository by doing a checkout of your project. “Checking out” a
repository creates a copy of it on your local machine. This copy contains the HEAD (latest revision) of the Subversion
repository that you specify on the command line:

$ svn co http://svn.collab.net/repos/svn/trunk
A trunk/subversion.dsw
A trunk/svn_check.dsp
A trunk/COMMITTERS
A trunk/configure.in
A trunk/IDEAS
…
Checked out revision 2499.

Repository Layout

If you're wondering what trunk is all about in the above URL, it's part of the way that we recommend you lay out
your Subversion repository. That is, when you create a new Subversion repository, you should make three top-level
directories: trunk, tags, and branches. This may seem a little odd at the moment, but we'll talk a lot more about
these in Chapter 4, Branching and Merging.

Guided Tour

18

Although the above example checks out the trunk directory, you can just as easily check out any deep subdirectory
of a repository by specifying the subdirectory in the checkout URL:

$ svn co http://svn.collab.net/repos/svn/trunk/doc/book/tools
A tools/readme-dblite.html
A tools/fo-stylesheet.xsl
A tools/svnbook.el
A tools/dtd
A tools/dtd/dblite.dtd
…
Checked out revision 3678.

Since Subversion uses a “copy-modify-merge” model instead of “lock-modify-unlock,” (see Chapter 2, Basic Con-
cepts) you're now ready to start making changes to the files and directories that you've checked out, known collec-
tively as your working copy. You can even delete the entire working copy and forget about it—there's no need to no-
tify the Subversion server unless you're ready to commit a new file or directory, or changes to existing ones.

What's with the .svn directory?

Every directory in a working copy contains an administrative area, a subdirectory named .svn. Usually, directory
listing commands won't show this subdirectory, but it is nevertheless an important directory. Whatever you do, don't
delete or change anything in the administrative area! Subversion depends on it to manage your working copy.

While you can certainly check out a working copy with the URL of the repository as the only argument, you can
also specify a directory after your repository URL. This places your working copy into the new directory that you
name. For example:

$ svn co http://svn.collab.net/repos/svn/trunk subv
A subv/subversion.dsw
A subv/svn_check.dsp
A subv/COMMITTERS
A subv/configure.in
A subv/IDEAS
…
Checked out revision 2499.

That will place your working copy in a directory named subv instead of a directory named trunk as we did previ-
ously.

Basic Workcycle
Subversion has numerous features, options, bells and whistles, but on a day-to-day basis, odds are that you will only
use a few of them. In this section we'll run through the most common things that you might find yourself doing with
Subversion in the course of a day's work.

The typical work cycle looks like this:

• Update your working copy

• Make changes

• Examine your changes

Guided Tour

19

• Merge others' changes

• Commit your changes

Update Your Working Copy
When working on a project with a team, you'll want to update your working copy: that is, receive any changes from
other developers on the project. You'll use svn update to bring your working copy into sync with the latest revision
in the repository.

$ svn update
U ./foo.c
U ./bar.c
Updated to revision 2.

In this case, someone else checked in modifications to both foo.c and bar.c since the last time you updated, and
Subversion has updated your working copy to include those changes.

Let's examine the output of svn update a bit more. When the server sends changes to your working copy, a letter
code is displayed next to each item to let you know what actions Subversion performed to bring your working copy
up-to-date:

U foo File foo was Updated (received changes from the server).

A foo File or directory foo was Added to your working copy.

D foo File or directory foo was Deleted from your working copy.

R foo File or directory foo was Replaced in your working copy; that is, foo was deleted, and a
new item with the same name was added. While they may have the same name, the reposi-
tory considers them to be distinct objects with distinct histories.

G foo File foo received new changes from the repository, but your local copy of the file had your
modifications. The changes did not intersect, however, so Subversion has merGed the
repository's changes into the file without a problem.

C foo File foo received Conflicting changes from the server. The changes from the server directly
overlap your own changes to the file. No need to panic, though. This overlap needs to be
resolved by a human (you); we discuss this situation later in this chapter.

Make Changes to Your Working Copy
Now you can to get to work and make changes in your working copy. It's usually most convenient to decide on a
particular change (or set of changes) to make, such as writing a new feature, fixing a bug, etc. The Subversion com-
mands that you will use here are svn add, svn delete, svn copy, and svn move. However, if you are merely editing a
file (or files) that is already in Subversion, you may not need to use any of these commands until you commit.
Changes you can make to your working copy:

File changes This is the simplest sort of change. You don't need to tell Subversion that you intend
to change a file; just make your changes. Subversion will be able to automatically de-
tect which files have been changed.

Guided Tour

20

1Of course, nothing is ever totally deleted from the repository—just from the HEAD of the repository. You
can get back anything you delete by checking out (or updating your working copy) a revision earlier than
the one in which you deleted it.

Tree changes You can ask Subversion to “mark” files and directories for scheduled removal, addi-
tion, copying, or moving. While these changes may take place immediately in your
working copy, no additions or removals will happen in the repository until you decide
to commit.

To make file changes, just use your text editor, word processor, or graphics program—whatever tool you would nor-
mally use. Subversion handles binary files just as easily as it handles text files (and just as efficiently too).

Here is an overview of the four Subversion subcommands that you'll use most often to make tree changes (we'll
cover svn import and svn mkdir later).

svn add foo Schedule foo to be added to the repository. When you next commit, foo will become
a child of its parent directory. Note that if foo is a directory, everything underneath
foo will be scheduled for addition. If you only want to schedule foo itself, pass the -
-nonrecursive (-N) switch.

svn delete foo Schedule foo to be deleted from the repository. If foo is a file, it is immediately
deleted from your working copy. If foo is a directory, it is not deleted, but Subversion
schedules it for deletion. When you commit your changes, foo will be removed from
your working copy and the repository. 1

svn copy foo bar Create a new item bar as a duplicate of foo. bar is automatically scheduled for addi-
tion. When bar is added to the repository on the next commit, its copy-history is
recorded (as having originally come from foo.)

svn move foo bar This command is exactly the same as running svn copy foo bar; svn delete foo. That
is, bar is scheduled for addition as a copy of foo, and foo is scheduled for removal.

Changing the Repository Without a Working Copy

Earlier in this chapter, we said that you have to commit any changes that you make in order for the repository to re-
flect these changes. That's not entirely true—there are some use-cases that immediately commit tree changes to the
repository. This only happens when a subcommand is operating directly on a URL, rather than on a working-copy
path. (In particular, specific uses of svn mkdir, svn copy, svn move, and svn delete can work with URLs).

URL operations behave in this manner because commands that operate on a working copy can use the working copy
as a sort of “staging area” to set up your changes before committing them to the repository. Commands that operate
on URLs don't have this luxury, so when you operate directly on a URL, any of the above actions represent an im-
mediate commit.

Examine Your Changes
Once you've finished making changes, you need to commit them to the repository, but before you do so, it's usually
a good idea to take a look at exactly what you've changed. By examining your changes before you commit, you can
not only make a more accurate log message, but you may discover that you've inadvertently changed a file, and this
gives you a chance to revert those changes before committing. You can see exactly what changes you've made by
using svn status, svn diff, and svn revert. You will usually use the first two commands to find out what files have
changed in your working copy, and then perhaps the third to revert some (or all) of those changes.

Subversion has been optimized to help you with this task, and is able to do many things without communicating
with the repository. In particular, your working copy contains a secret cached “pristine” copy of each version con-
trolled file within the .svn area. Because of this, Subversion can quickly show you how your working files have
changed, or even allow you to undo your changes without contacting the repository.

Guided Tour

21

svn status

You'll probably use the svn status command more than any other Subversion command.

CVS Users: Hold That Update!

You're probably used to using cvs update to see what changes you've made to your working copy. svn status will
give you all the information you need regarding what has changed in your working copy—without accessing the
repository.

In Subversion, update does just that—it updates your working copy with any changes committed to the repository
since the last time you've updated your working copy. You'll have to break the habit of using the update command
to see what local modifications you've made.

If you run svn status at the top of your working copy with no arguments, it will detect all file and tree changes
you've made. This example is designed to show all the different status codes that svn status can return. Note that the
text following # is not printed by svn status.

$ svn status
L ./abc.c # svn has a lock in its .svn directory for abc.c

M ./bar.c # the content in bar.c has local modifications
M ./baz.c # baz.c has property but no content modifications

? ./foo.o # svn doesn't manage foo.o
! ./foo.c # svn knows foo.c but a non-svn program deleted it
~ ./qux # versioned as dir, but is file, or vice versa
A + ./moved_dir # added with history of where it came from
M + ./moved_dir/README # added with history and has local modifications
D ./stuff/fish.c # this file is scheduled for deletion
A ./stuff/loot/bloo.h # this file is scheduled for addition
C ./stuff/loot/lump.c # this file has conflicts from an update

S ./stuff/squawk # this file or dir has been switched to a branch

In this output format svn status prints five columns of characters, followed by several whitespace characters, fol-
lowed by a file or directory name. The first column tells the status of a file or directory and/or its contents. The
codes printed here are:

A file_or_dir The file or directory file_or_dir has been scheduled for addition into the reposi-
tory.

M file The contents of file file have been modified.

D file_or_dir The file or directory file_or_dir has been scheduled for deletion from the reposi-
tory.

? file_or_dir The file or directory file_or_dir is not under version control. You can silence the
question marks by either passing the --quiet (-q) switch to svn status, or by setting
the svn:ignore property on the parent directory. For more information on ignored
files, see Section , “svn:ignore”.

! file_or_dir The file or directory file_or_dir is under version control but is missing from the
working copy. This happens if the file or directory is removed using a non-Subversion
command. A quick svn update or svn revert file_or_dir will restore the missing file
or directory.

~ file_or_dir The file or directory file_or_dir is in the repository as one kind of object, but
what's actually in your working copy is some other kind. For example, Subversion

Guided Tour

22

might have a file in the repository, but you removed the file and created a directory in
its place, without using the svn delete nor svn add commands.

C file file_or_dir is in a state of conflict. That is, changes received from the server dur-
ing an update overlap with local changes that you have in your working copy. You
must resolve this conflict before committing your changes to the repository.

The second column tells the status of a file or directory's properties. If an M appears in the second column, then the
properties have been modified, otherwise a whitespace will be printed.

The third column will only show whitespace or an L which means that Subversion has locked the item in the.svn
working area. You will see an L if you run svn status in a directory where an svn commit is in progress—perhaps
when you are editing the log message. If Subversion is not running, then presumably Subversion was interrupted and
the lock needs to be cleaned up by running svn cleanup (more about that later in this chapter).

The fourth column will only show whitespace or a + which means that the file or directory is scheduled to be added
or modified with additional attached history. This typically happens when you svn move or svn copy a file or direc-
tory. If you see A +, this means the item is scheduled for addition-with-history. It could be a file, or the root of a
copied directory. + means the item is part of a subtree scheduled for addition-with-history, i.e. some parent got
copied, and it's just coming along for the ride. M + means the item is part of a subtree scheduled for addition-
with-history, and it has local modifications. When you commit, first the parent will be added-with-history (copied),
which means this file will automatically exist in the copy. Then the local modifications will be uploaded into the
copy.

The fifth column will only show whitespace or an S. This signifies that the file or directory has been switched from
the path of the rest of the working copy (using svn switch) to a branch.

If you pass a specific path to svn status, it gives you information about that item alone:

$ svn status stuff/fish.c
D stuff/fish.c

svn status also has a --verbose (-v) switch, which will show you the status of every item in your working copy,
even if it has not been changed:

$ svn status --verbose
M 44 23 sally ./README

44 30 sally ./INSTALL
M 44 20 harry ./bar.c

44 18 ira ./stuff
44 35 harry ./stuff/trout.c

D 44 19 ira ./stuff/fish.c
44 21 sally ./stuff/things

A 0 ? ? ./stuff/things/bloo.h
44 36 harry ./stuff/things/gloo.c

This is the “long form” output of svn status. The first column remains same, but the second column shows the
working-revision of the item. The third and fourth columns show the revision in which the item last changed, and
who changed it.

None of the above invocations to svn status contact the repository, they work only locally by comparing the meta-
data in the .svn directory with the working copy. Finally, there is the --show-updates (-u) switch, which
contacts the repository and adds information about things that are out-of-date:

$ svn status --show-updates --verbose

Guided Tour

23

M * 44 23 sally ./README
M 44 20 harry ./bar.c

* 44 35 harry ./stuff/trout.c
D 44 19 ira ./stuff/fish.c
A 0 ? ? ./stuff/things/bloo.h

Notice the two asterisks: if you were to run svn update at this point, you would receive changes to README
andtrout.c. This tells you some very useful information—you'll need to update and get the server changes on
README before you commit, or the repository will reject your commit for being out-of-date. (More on this subject
later).

svn diff

Another way to examine your changes is with the svn diff command. You can find out exactly how you've modified
things by running svn diff with no arguments, which prints out file changes in unified diff format:

$ svn diff
Index: ./bar.c
===
--- ./bar.c
+++ ./bar.c Mon Jul 15 17:58:18 2002
@@ -1,7 +1,12 @@
+#include <sys/types.h>
+#include <sys/stat.h>
+#include <unistd.h>
+
+#include <stdio.h>

int main(void) {
- printf("Sixty-four slices of American Cheese...\n");
+ printf("Sixty-five slices of American Cheese...\n");
return 0;
}

Index: ./README
===
--- ./README
+++ ./README Mon Jul 15 17:58:18 2002
@@ -193,3 +193,4 @@
+Note to self: pick up laundry.

Index: ./stuff/fish.c
===
--- ./stuff/fish.c
+++ ./stuff/fish.c Mon Jul 15 17:58:18 2002
-Welcome to the file known as 'fish'.
-Information on fish will be here soon.

Index: ./stuff/things/bloo.h
===
--- ./stuff/things/bloo.h
+++ ./stuff/things/bloo.h Mon Jul 15 17:58:18 2002
+Here is a new file to describe
+things about bloo.

The svn diff command produces this output by comparing your working files against the cached “pristine” copies
within the .svn area. Files scheduled for addition are displayed as all added-text, and files scheduled for deletion
are displayed as all deleted text.

Output is displayed in unified diff format. That is, removed lines are prefaced with a - and added lines are prefaced
with a +. svn diff also prints filename and offset information useful to the patch program, so you can generate
“patches” by redirecting the diff output to a file:

Guided Tour

24

$ svn diff > patchfile

You could, for example, email the patchfile to another developer for review or testing prior to commit.

svn revert

Now suppose you see the above diff output, and realize that your changes to README are a mistake; perhaps you ac-
cidentally typed that text into the wrong file in your editor.

This is a perfect opportunity to use svn revert.

$ svn revert README
Reverted ./README

Subversion reverts the file to its pre-modified state by overwriting it with the cached “pristine” copy from the .svn
area. But also note that svn revert can undo any scheduled operations—for example, you might decide that you
don't want to add a new file after all:

$ svn status foo
? foo

$ svn add foo
A foo

$ svn revert foo
Reverted foo

$ svn status foo
? foo

Or perhaps you mistakenly removed a file from version control:

$ svn status README
README

$ svn delete README
D README

$ svn revert README
Reverted README

$ svn status README
README

Look Ma! No Network!

All three of these commands (svn status, svn diff, and svn revert) can be used without any network access. This
makes it easy to manage your changes-in-progress when you are somewhere without a network connection (e.g.
traveling on an airplane, riding on a commuter train, on the flight deck of the Space Shuttle, etc.).

Subversion does this by keeping private caches of pristine versions of each versioned file inside of the .svn admin-
istrative areas. This allows Subversion to report—and revert—local modifications to those files without network ac-

Guided Tour

25

cess. This cache (called the "text-base") also allows Subversion to send the user's local modifications during a com-
mit to the server as a compressed delta against the pristine version. Having this cache is a tremendous benefit—even
if you have a fast net connection, it's much faster to send only a file's changes rather than the whole file to the server.
At first glance, this might not seem that important, but imagine the repercussions if you try to commit a 1 line
change to a 400MB file and have to send the whole file to the server!

Resolving conflicts (Merging others' changes)
We've already seen how svn status -u can predict conflicts. Suppose you run svn update and some interesting
things occur:

$ svn update
U ./INSTALL
G ./README
C ./bar.c

The U and G codes are no cause for concern; those files cleanly absorbed changes from the repository. The files
marked with U contained no local changes but were Updated with changes from the repository. The G stands for
merGed, which means that the file had local changes to begin with, but the changes coming from the repository
didn't overlap in any way.

But the C stands for conflict. This means that the changes from the server overlapped with your own, and now you
have to manually choose between them.

Whenever a conflict occurs, your Subversion client does the three things:

• Subversion prints a C during the update, and remembers that the file is “conflicted.”

• Subversion places conflict markers into the file, to visibly demonstrate the overlapping areas.

• For every conflicted file, Subversion places three extra files in your working copy:

filename.*.mine This is your file as it existed in your working copy before you updated your work-
ing copy—that is, without conflict markers. This file has your latest changes in it
and nothing else.

filename.*.rOLDREV This is the file that was the BASE revision before you updated your working copy.
That is, the file that you checked out before you made your latest edits.

filename.*.rNEWREV This is the file that your Subversion client just received from the server when you
updated your working copy. This file corresponds to the HEAD revision of the
repository.

Here * represents some random digits that Subversion chooses, OLDREV is the revision number of the file in your
.svn directory, and NEWREV is the revision number of the repository HEAD.

For example, Sally makes changes to the file sandwich.txt in the repository. Harry has just changed the file in his
working copy and checked it in. Sally updates her working copy before checking in and she gets a conflict:

$ svn update
C sandwich.txt

Guided Tour

26

Updated to revision 2.
$ ls -1
sandwich.txt
sandwich.txt.r2
sandwich.txt.r1
sandwich.txt.mine
$

At this point, Subversion will not allow you to commit the file sandwich.txt until the three temporary files are re-
moved.

$ svn ci --message "Add a few more things"
subversion/libsvn_client/commit.c:654: (apr_err=155015, src_err=0)
svn: A conflict in the working copy obstructs the current operation
svn: Commit failed (details follow):
subversion/libsvn_client/commit_util.c:180: (apr_err=155015, src_err=0)
svn: Aborting commit: '/home/sally/svn-work/sandwich.txt' remains in conflict.

If you get a conflict, you need to do one of three things:

• Merge the conflicted text “by hand” (by examining and editing the conflict markers within the file).

• Copy one of the temporary files on top of your working file.

• Run svn revert <filename> to throw away all of your local changes.

Once you've resolved the conflict, you need to let Subversion know by removing the three temporary files. When
those files are gone, Subversion no longer considers the file to be in a state of conflict anymore.

$ svn resolve sandwich.txt
Resolved conflicted state of sandwich.txt

Merging conflicts by hand

Merging conflicts by hand can be quite intimidating the first time you attempt it, but with a little practice, it can be-
come as easy as falling off a bike.

Here's an example. Let's say that, due to a miscommunication between you and your collaborator, Sally, both edit
the file named sandwich.txt at the same time. Sally commits her changes, and when you go to update your work-
ing copy, you get a conflict and we're going to have to edit sandwich.txt to resolve the conflicts. First, let's take a
look at the file:

Top piece of bread
Mayonnaise
Lettuce
Tomato
Provolone
<<<<<<< .mine
Salami
Mortadella
Prosciutto
=======
Sauerkraut
Grilled Chicken
>>>>>>> .r2
Creole Mustard

Guided Tour

27

2And if you ask them for it, they may very well ride you out of town on a rail

Bottom piece of bread

The strings of less-than signs, equal signs, and greater-than signs are called conflict markers. The text between the
first two sets of markers is composed of the changes you made in the conflicting area:

<<<<<<< .mine
Salami
Mortadella
Prosciutto
=======

Whereas the text between the second and third sets of conflict markers is the text from Sally's commit:

=======
Sauerkraut
Grilled Chicken
>>>>>>> .r2

Usually you won't want to just delete the conflict markers and Sally's changes—she's going to be awfully surprised
when the sandwich arrives and it's not what she wanted. So this is where you pick up the phone or walk across the
office and explain to Sally that you can't get sauerkraut from an Italian deli.2 Once you've agreed on the changes you
will check in, edit your file and remove the conflict markers.

Top piece of bread
Mayonnaise
Lettuce
Tomato
Provolone
Salami
Mortadella
Prosciutto
Creole Mustard
Bottom piece of bread

Now run svn resolve and you're now ready to commit your changes:

$ svn resolve sandwich.txt
$ svn commit -m "Go ahead and use my sandwich, discarding Sally's edits."

Remember, if you ever get confused while editing the conflicted file, you can always consult the three files that Sub-
version creates for you in your working copy—including your file as it was before you updated.

Copying a file onto your working file

If you get a conflict and decide that you want to throw out your changes, you can merely copy one of the temporary
files created by Subversion over the file in your working copy:

$ svn update
C sandwich.txt
Updated to revision 2.
$ ls sandwich.*
sandwich.txt sandwich.txt.mine sandwich.txt.r2 sandwich.txt.r1

Guided Tour

28

$ cp sandwich.txt.r2 sandwich.txt
$ svn resolve
$ svn commit -m "Go ahead and use Sally's sandwich, discarding my edits."

Punting: Using svn revert

If you get a conflict, and upon examination decide that you want to throw out your changes and start your edits
again, just revert your changes:

$ svn revert sandwich.txt
Reverted sandwich.txt
$ ls sandwich.*
sandwich.txt

Note that when you revert a conflicted file, you don't have to run svn resolve.

Now you're ready to check in your changes. Note that svn resolve, unlike most of the other commands we've dealt
with in this chapter, requires an argument. In any case, you want to be careful and only run svn resolve when you're
certain that you've fixed the conflict in your file—once the temporary files are removed, Subversion will let you
commit a file with conflict markers.

Commit your changes
Finally! Your edits are finished, you've merged all changes from the server, and you're ready to commit your
changes to the repository.

The svn commit command sends all of your changes to the repository. When you commit a change, you need to
supply a log message, describing your change. Your log message will be attached to the new revision you create. If
your log message is brief, you may wish to supply it on the command line using the --message (or -m):

$ svn commit --message "Corrected number of cheese slices."
Sending sandwich
Transmitting file data .
Committed revision 3.

However, if you've been composing your log message as you work, you may want to tell Subversion to get the mes-
sage from a file by passing the filename with the --file switch:

svn ci --file logmsg
Sending sandwich
Transmitting file data .
Committed revision 4.

If you fail to specify either the --message or --file switch, then Subversion will automatically launch your fa-
vorite editor (as defined in the environment variable $EDITOR) for composing a log message.

The repository doesn't know or care if your changes make any sense as a whole; it only checks to make sure that no-
body else has changed any of the same files that you did when you weren't looking. If somebody has done that, the
entire commit will fail with a message informing you that one or more of your files is out-of-date:

$ svn commit --message "Add another rule"
Sending rules.txt

Guided Tour

29

subversion/libsvn_client/commit.c:655: (apr_err=160028, src_err=0)
svn: Transaction is out of date
svn: Commit failed (details follow):
subversion/libsvn_repos/commit.c:112: (apr_err=160028, src_err=0)
svn: out of date: `rules.txt' in txn `g'
$

At this point, you need to run svn update, deal with any merges or conflicts that result, and attempt your commit
again.

That covers the basic work cycle for using Subversion. There are many other features in Subversion that you can use
to manage your repository and working copy, but you can get by quite easily using only the commands that we've
discussed so far in this chapter.

Examining History
As we mentioned earlier, the repository is like a time machine. It keeps a record of every change ever committed,
and allows you to explore this history by examining previous versions of files and directories as well as the metadata
that accompanies them. With a single Subversion command, you can check out (or restore an existing working copy)
the repository exactly as it was at any date or revision number in the past. However, sometimes you just want to peer
into the past instead of going into the past.

There are several commands that can provide you with historical data from the repository. svn log shows you broad
information: log messages attached to revisions, and which paths changed in each revision. svn diff, on the other
hand, can show you the specific details of how a file changed over time. svn cat can be used to retrieve any file as it
existed in a particular revision number and display it on your screen. And finally, svn list can display the files in a
directory for any given revision.

svn log
To find out information about the history of a file or directory, use the svn log command. svn log will provide you
with a record of who made changes to a file or directory, at what revision it changed, the time and date of that revi-
sion, and, if it was provided, the log message that accompanied the commit.

$ svn log
--
rev 3: sally | Mon, 15 Jul 2002 18:03:46 -0500 | 1 line

Added include lines and corrected # of cheese slices.
--
rev 2: harry | Mon, 15 Jul 2002 17:47:57 -0500 | 1 line

Added main() methods.
--
rev 1: sally | Mon, 15 Jul 2002 17:40:08 -0500 | 2 lines

Initial import
--

Note that the log messages are printed in reverse chronological order by default. If you wish to see a different range
of revisions in a particular order, or just a single revision, pass the --revision (-r) switch:

$ svn log --revision 5:19 # shows logs 5 through 19 in chronological order

$ svn log -r 19:5 # shows logs 5 through 19 in reverse order

$ svn log -r 8 # shows log for revision 8

Guided Tour

30

You can also examine the log history of a single file or directory. For example:

$ svn log foo.c
…
$ svn log http://foo.com/svn/trunk/code/foo.c
…

These will display log messages only for those revisions in which the working file (or URL) changed.

If you want even more information about a file or directory, svn log also takes a --verbose (-v) switch. Because
Subversion allows you to move and copy files and directories, it is important to be able to track path changes in the
filesystem, so in verbose mode, svn log will include a list of changed-paths in a revision in its output:

$ svn log -r 8 -v
--
rev 8: sally | 2002-07-14 08:15:29 -0500 | 1 line
Changed paths:
U /trunk/code/foo.c
U /trunk/code/bar.h
A /trunk/code/doc/README

Frozzled the sub-space winch.

--

Why Does svn log Gives Me an Empty Response?

After working with Subversion for a bit, most users will come across something like this:

$ svn log -r 2
--
$

At first glance, this seems like an error, but you need to remember that while revisions are repository-wide, svn log
operates on a path in the repository (If you supply no path, Subversion defaults to "."). As a result, if you're operat-
ing in a subdirectory of your working copy and attempt to log a revision where nothing beneath your current direc-
tory changed, Subversion will give you an empty log. If you want to see what changed in that revision, try running
the same command from the top directory of your working copy.

svn diff
We've already seen svn diff before—it displays file differences in unified diff format; it was used to show the local
modifications made to our working copy before committing to the repository.

In fact, it turns out that there are three distinct uses of svn diff:

• Examine local changes

• Compare your working copy to the repository

• Compare repository to repository

Guided Tour

31

Examining local changes

As we've seen, invoking svn diff with no switches will compare your working files to the cached “pristine” copies in
the.svn area:

$ svn diff
Index: rules.txt
===
--- rules.txt (revision 3)
+++ rules.txt (working copy)
@@ -1,4 +1,5 @@
Be kind to others
Freedom = Responsibility
Everything in moderation

-Chew with your mouth open
+Chew with your mouth closed
+Listen when others are speaking
$

Comparing working copy to repository

If a single --revision (-r) number is passed, then your working copy is compared to the specified revision in the
repository.

$ svn diff --revision 3 rules.txt
Index: rules.txt
===
--- rules.txt (revision 3)
+++ rules.txt (working copy)
@@ -1,4 +1,5 @@
Be kind to others
Freedom = Responsibility
Everything in moderation

-Chew with your mouth open
+Chew with your mouth closed
+Listen when others are speaking
$

Comparing repository to repository

If two revision numbers, separated by a colon, are passed via --revision (-r), then the two revisions are directly
compared.

$ svn diff --revision 2:3 rules.txt
Index: rules.txt
===
--- rules.txt (revision 2)
+++ rules.txt (revision 3)
@@ -1,4 +1,4 @@
Be kind to others

-Freedom = Chocolate Ice Cream
+Freedom = Responsibility
Everything in moderation
Chew with your mouth closed

$

Not only can you use svn diff to compare files in your working copy to the repository, but if you supply a URL ar-
gument, you can examine the differences between items in the repository without even having a working copy. This

Guided Tour

32

is especially useful if you wish to inspect changes in a file when you don't have a working copy on your local ma-
chine:

$ svn diff --revision 4:5 http://svn.red-bean.com/repos/example/trunk/text/rules.txt
…
$

svn cat
If you want to examine an earlier version of a file and not necessarily the differences between two files, you can use
svn cat:

$ svn cat --revision 2 rules.txt
Be kind to others
Freedom = Chocolate Ice Cream
Everything in moderation
Chew with your mouth closed
$

You can also redirect the output directly into a file:

$ svn cat --revision 2 rules.txt > rules.txt.v2
$

You're probably wondering why we don't just use svn update --revision to update the file to the older revision.
There are a few reasons why we might prefer to use svn cat.

First, you may want to see the differences between two revisions of a file using an external diff program (perhaps a
graphical one, or perhaps your file is in such a format that the output of unified diff is nonsensical). In this case,
you'll need to grab a copy of the old revision, redirect it to a file, and pass both that and the file in your working
copy to your external diff program.

Sometimes it's easier to look at an older version of a file in its entirety as opposed to just the differences between it
and another revision.

svn list
The svn list command shows you what files are in a repository directory without actually downloading the files to
your local machine:

$ svn list http://svn.collab.net/repos/svn
README
branches/
clients/
tags/
trunk/

If you want a more detailed listing, pass the --verbose (-v) flag to get output like this.

$ svn list --verbose http://svn.collab.net/repos/svn
_ 2755 kfogel 1331 Jul 28 02:07 README
_ 2773 sussman 0 Jul 29 15:07 branches/

Guided Tour

33

3See? We told you that Subversion was a time machine.

_ 2769 cmpilato 0 Jul 29 12:07 clients/
_ 2698 rooneg 0 Jul 24 18:07 tags/
_ 2785 brane 0 Jul 29 19:07 trunk/

The columns tell you if a file has any properties (“P” if it does, “_” if it doesn't), the revision it was last updated at,
the user who last updated it, the size if it is a file, the date it was last updated, and the item's name.

A Final Word on History
In addition to all of the above commands, you can use svn update and svn checkout with the --revision switch
to take an entire working copy “back in time” 3:

$ svn checkout --revision 1729 # Checks out a new working copy at r1729
…
$ svn update --revision 1729 # Updates an existing working copy to r1729
…

Other Frequently Used Commands
While not as frequently used as the commands previously discussed in this chapter, you will need these commands
on occasion.

svn cleanup
When Subversion modifies your working copy (or any information within .svn), it tries to do so as safely as possi-
ble. Before changing anything, it writes its intentions to a logfile, executes the commands in the logfile, then re-
moves the logfile (This is similar in design to a journaled filesystem). If a Subversion operation is interrupted (If you
hit Control-C, or if the machine crashes, for example), the logfiles remain on disk. By re-executing the logfiles, Sub-
version can complete the previously started operation, and your working copy can get itself back into a consistent
state.

And this is exactly what svn cleanup does: it searches your working copy and runs any leftover logs, removing
locks in the process. If Subversion ever tells you that some part of your working copy is “locked”, then this is the
command that you should run. Also, svn status will display an L next to locked items:

$ svn status
L ./somedir

M ./somedir/foo.c

$ svn cleanup
$ svn status
M ./somedir/foo.c

svn import
The import command is a quick way to move an unversioned tree of files into a repository.

There are two ways to use this command:

$ svnadmin create /usr/local/svn/newrepos
$ svn import file:///usr/local/svn/newrepos mytree

Guided Tour

34

Adding mytree/foo.c
Adding mytree/bar.c
Adding mytree/subdir
Adding mytree/subdir/quux.h
Transmitting file data....
Committed revision 1.

The above example places the contents of directory mytree directly into the root of the repository:

/foo.c
/bar.c
/subdir
/subdir/quux.h

If you give svn import a third argument, it will use the argument as the name of a new subdirectory to create within
the URL.

$ svnadmin create /usr/local/svn/newrepos
$ svn import file:///usr/local/svn/newrepos mytree fooproject
Adding mytree/foo.c
Adding mytree/bar.c
Adding mytree/subdir
Adding mytree/subdir/quux.h
Transmitting file data....
Committed revision 1.

The repository would now look like this:

/fooproject/foo.c
/fooproject/bar.c
/fooproject/subdir
/fooproject/subdir/quux.h

Summary
Now we've covered most of the Subversion client commands. Notable exceptions are those dealing with branching
and merging (see Chapter 4, Branching and Merging) and properties (see Section , “Properties”). However, you may
want to take a moment to skim through Chapter 8, Subversion Complete Reference to get an idea of all the many dif-
ferent commands that Subversion has—and how you can use them to make your work easier.

Guided Tour

35

Chapter 4. Branching and Merging
Branching, tagging, and merging are concepts common to almost all version control systems. If you're not familiar
with these ideas, we provide a good introduction in this chapter. If you are familiar, then hopefully you'll find it in-
teresting to see how Subversion implements these ideas.

Branching is a fundamental part of version control. If you're going to allow Subversion to manage your data, then
this is a feature you'll eventually come to depend on. This chapter assumes that you're already familiar with Subver-
sion's basic concepts (Chapter 2, Basic Concepts).

What's a branch?
Suppose it's your job to maintain a document for a division in your company, a handbook of some sort. One day a
different division asks you for the same handbook, but with a few parts 'tweaked' for them, since they do things
slightly differently.

What do you do in this situation? You do the obvious thing: you make a second copy of your document, and begin
maintaining the two copies separately. As each department asks you to make small changes, you incorporate them
into one copy or the other.

You often want to make the same change to both copies. For example, if you discover a typo in the first copy, it's
very likely that the same typo exists in the second copy. The two documents are almost the same, after all; they only
differ in small, specific ways.

This is the basic concept of a branch — namely, a line of development that exists independently of another line, yet
still shares a common history if you look far enough back in time. A branch always begins life as a copy of some-
thing, and moves on from there, generating its own history.

Figure 4.1. Branches of development

36

Subversion has commands to help you maintain parallel branches of your files and directories. It allows you to cre-
ate branches by copying your data, and remembers that the copies are related to one another. It also helps you dupli-
cate changes from one branch to another. Finally, it can make portions of your working copy reflect different
branches, so that you can "mix and match" different lines of development in your daily work.

Using branches
At this point, you should understand how each commit creates an entire new filesystem tree (called a "revision") in
the repository. If not, go back and read about revisions in Section , “Revisions”.

For this chapter, we'll go back to the same example from Chapter 2. Remember that you and your collaborator,
Sally, are sharing a repository that contains two projects, paint and calc. Notice, however, that this time some-
body has created two new top-level directories in the repository, called trunk and branches. The projects them-
selves are subdirectories of trunk, which we'll explain later on.

Figure 4.2. Starting repository layout

Branching and Merging

37

As before, assume that you and Sally both have working copies of the /trunk/calc project.

Let's say that you've been given the task of performing a radical reorganization of the project. It will take a long time
to calc, and will affect all the files in the project. The problem here is that you don't want to interfere with Sally, who
is in the process of fixing small bugs here and there. She's depending on the fact that the latest version of the project
is always usable. If you start committing your changes bit-by-bit, you'll surely break things for Sally.

One strategy is to crawl into a hole: you and Sally can stop sharing information for a week or two. That is, start gut-
ting and reorganizing all the files in your working copy, but don't commit or update until you're completely finished
with the task. There are a number of problems with this, though. First, it's not very safe. Most people like to save
their work to the repository frequently, should something bad accidentally happen to their working copy. Second, it's
not very flexible. If you do your work on different computers (perhaps you have a working copy of /trunk/calc
on two different machines), you'll need to manually copy your changes back and forth, or just do all the work on a
single computer. Finally, when you're finished, you might find it very difficult to commit your changes. Sally (or
others) may have made many other changes in the repository that are difficult to merge into your working copy --
especially all at once.

The better solution is to create your own branch, or line of development, in the repository. This allows you to save
your half-broken work frequently without interfering with others, yet you can still selectively share information with
your collaborators. You'll see exactly how this works later on.

Creating a branch
Creating a branch is very simple -- you make a copy of the project in the repository using the svn copy command.
Subversion is not only able to copy single files, but whole directories as well. In this case, you want to make a copy
of the /trunk/calc directory. Where should the new copy live? Whereever you wish -- it's a matter of project pol-
icy. Let's say that your team has a policy of creating branches in the /branches/calc area of the repository, and
you want to name your branch "my-calc-branch". You'll want to create a new directory, /
branches/calc/my-calc-branch, which starts as a copy of /trunk/calc.

There are two different ways to make a copy. We'll demonstrate the messy way first, just to make the concept clear.

Branching and Merging

38

To begin, check out a working copy of the root (/) of the repository:

$ svn checkout http://svn.example.com/repos bigwc
A bigwc/branches/
A bigwc/branches/calc
A bigwc/branches/paint
A bigwc/trunk/
A bigwc/trunk/calc
A bigwc/trunk/calc/Makefile
A bigwc/trunk/calc/integer.c
A bigwc/trunk/calc/button.c
A bigwc/trunk/paint
A bigwc/trunk/paint/Makefile
A bigwc/trunk/paint/canvas.c
A bigwc/trunk/paint/brush.c
Checked out revision 340.

Making a copy is now simply a matter of passing two working-copy paths to the svn copy command:

$ cd bigwc
$ svn copy trunk/calc branches/calc/my-calc-branch
$ svn status
A + branches/calc/my-calc-branch

In this case, the svn copy command recursively copies the trunk/calc working directory to a new working direc-
tory, branches/calc/my-calc-branch. As you can see from the svn status command, the new directory is now
scheduled for addition to the repository. But also notice the + sign next to the letter A. This indicates that the sched-
uled addition is a copy of something, not something new. When you commit your changes, Subversion will create /
branches/calc/my-calc-branch in the repository by copying /trunk/calc, rather than resending all of the
working copy data over the network:

$ svn commit -m "Creating a private branch of /trunk/calc."
Adding branches/calc/my-calc-branch
Committed revision 341.

And now the easier method of creating a branch, which we should have told you about in first place: svn copy is
able to operate on two URLs.

$ svn copy http://svn.example.com/repos/trunk/calc \
http://svn.example.com/repos/branches/calc/my-calc-branch \

-m "Creating a private branch of /trunk/calc"

Committed revision 341.

There's really no difference between these two methods. Both procedures create a new directory in revision 341, and
the new directory is a copy of /trunk/calc. Notice that the second method, however, performs an immediate com-
mit. It's an easier procedure, because it doesn't require you to check out a large mirror of the repository. In fact, this
technique doesn't even require you to have a working copy at all.

Figure 4.3. Repository with new copy

Branching and Merging

39

Cheap copies

Subversion's repository has a clever design. When you copy a directory, you don't need to worry about the reposi-
tory growing huge -- Subversion doesn't actually duplicate any data. Instead, it creates a new directory entry that
points to an existing tree. If you're a Unix user, this is the same concept as a hard-link. From there, the copy is said
to be "lazy". That is, if you commit a change to one file within the copied directory, then only that file changes -- the
rest of the files continue to exist as links to the original files in the original directory.

This is why you'll often hear Subversion users talk about "cheap copies". It doesn't matter how large the directory is
-- it takes a very tiny, constant amount of time to make a copy of it. In fact, this feature is the basis of how commits
work in Subversion: each revision is a "cheap copy" of the previous revision, with a few items lazily changed
within. (To read more about this, visit Subversion's website and read about the "bubble up" method in Subversion's
design documents.)

The point here is that copies are cheap, both in time and space. Make branches as often as you want.

Working with your branch
Now that you've created a new branch of the project, you can check out a new working copy to start using it:

$ svn checkout http://svn.example.com/repos/branches/calc/my-calc-branch
A my-calc-branch/Makefile
A my-calc-branch/integer.c
A my-calc-branch/button.c
Checked out revision 341.

Branching and Merging

40

There's nothing special about this working copy; it simply mirrors a different location of the repository. When you
commit changes, however, Sally won't ever see them when she updates. Her working copy is of /trunk/calc.

Let's pretend that a week goes by, and the following commits happen:

• You make a change to /branches/calc/my-calc-branch/button.c, which creates revision 342.

• You make a change to /branches/calc/my-calc-branch/integer.c, which creates revision 343.

• Sally makes a change to /trunk/calc/integer.c, which creates revision 344.

There are now two independent lines of development happening on integer.c:

Figure 4.4. The branching of one file's history

Things get interesting when you look at the history of changes made to your copy of integer.c:

$ pwd
/home/user/my-calc-branch

$ svn log integer.c
--
rev 343: user | 2002-11-07 15:27:56 -0600 (Thu, 07 Nov 2002) | 2 lines

* integer.c: frozzled the wazjub.

--
rev 303: sally | 2002-10-29 21:14:35 -0600 (Tue, 29 Oct 2002) | 2 lines

Branching and Merging

41

* integer.c: changed a docstring.

--
rev 98: sally | 2002-02-22 15:35:29 -0600 (Fri, 22 Feb 2002) | 2 lines

* integer.c: adding this file to the project.

--

Notice that Subversion is tracing the history of your integer.c all the way back through time, traversing the point
where it was copied. (Remember that your branch was created in revision 341.) Now look what happens when Sally
runs the same command on her copy of the file:

$ pwd
/home/sally/calc

$ svn log integer.c
--
rev 344: sally | 2002-11-07 15:27:56 -0600 (Thu, 07 Nov 2002) | 2 lines

* integer.c: fix a bunch of spelling errors.

--
rev 303: sally | 2002-10-29 21:14:35 -0600 (Tue, 29 Oct 2002) | 2 lines

* integer.c: changed a docstring.

--
rev 98: sally | 2002-02-22 15:35:29 -0600 (Fri, 22 Feb 2002) | 2 lines

* integer.c: adding this file to the project.

--

Sally sees her own revision 344 change, but not the change you made in revision 343. As far as Subversion is con-
cerned, these two commits affected different files in different repository locations. However, Subversion does show
that the two files share a common history. Before the branch-copy was made in revision 341, they used to be the
same file. That's why you and Sally both see revisions 303 and 98.

The moral of the story
There are two important lessons that you should remember from this section.

1. Unlike many other version control systems, Subversion's branches exist a normal filesystem directories in the
repository, not in some extra dimension.

2. Subversion has no internal concept of a "branch" — only copies. When you copy a directory, the resulting di-
rectory is only a "branch" because you attach that meaning to it. You may think of the directory differently, or
treat it differently, but to Subversion it's just an ordinary directory that happens to have been created by copy-
ing.

Copying changes between branches
Now you and Sally are working on parallel branches of the project. The good news is that you're not interfering with
each other. The bad news is that it's very easy to drift too far apart. Remember that one of the problems with the
"crawl in a hole" strategy is that by the time you're finished with your branch, it may be near-impossible to merge
your changes back into the main branch without a huge number of conflicts.

Branching and Merging

42

Instead, you and Sally should continue to share changes as you work. It's up to you to decide which changes are
worth sharing; Subversion gives you the ability to selectively "copy" changes between branches.

In the previous section, we mentioned that both you and Sally made changes to integer.c on different branches. If
you look at Sally's log message for revision 344, you can see that she fixed some spelling errors. No doubt, your
copy of the same file still has the same spelling errors. It's likely that your future changes to this file will be affecting
the same areas that have the spelling errors, so you're in for some potential conflicts when you merge your branches
someday. It's better, then, to receive Sally's change now, before you start working too heavily in the same places.

It's time to use the svn merge command. This command, it turns out, is a very close cousin to the svn diff command
(which you read about in Chapter 3). Both commands are able to compare any two objects in the repository and de-
scribe the differences. For example, you can ask svn diff to show you the exact change made by Sally in revision
344:

$ svn diff -r 343:344 http://svn.example.com/repos/trunk/calc

Index: integer.c
===
--- integer.c (revision 343)
+++ integer.c (revision 344)
@@ -147,7 +147,7 @@

case 6: sprintf(info->operating_system, "HPFS (OS/2 or NT)"); break;
case 7: sprintf(info->operating_system, "Macintosh"); break;
case 8: sprintf(info->operating_system, "Z-System"); break;

- case 9: sprintf(info->operating_system, "CPM"); break;
+ case 9: sprintf(info->operating_system, "CP/M"); break;

case 10: sprintf(info->operating_system, "TOPS-20"); break;
case 11: sprintf(info->operating_system, "NTFS (Windows NT)"); break;
case 12: sprintf(info->operating_system, "QDOS"); break;

@@ -164,7 +164,7 @@
low = (unsigned short) read_byte(gzfile); /* read LSB */
high = (unsigned short) read_byte(gzfile); /* read MSB */
high = high << 8; /* interpret MSB correctly */

- total = low + high; /* add them togethe for correct total */
+ total = low + high; /* add them together for correct total */

info->extra_header = (unsigned char *) my_malloc(total);
fread(info->extra_header, total, 1, gzfile);

@@ -241,7 +241,7 @@
Store the offset with ftell() ! */

if ((info->data_offset = ftell(gzfile))== -1) {
- printf("error: ftell() retturned -1.\n");
+ printf("error: ftell() returned -1.\n");

exit(1);
}

@@ -249,7 +249,7 @@
printf("I believe start of compressed data is %u\n", info->data_offset);
#endif

- /* Set postion eight bytes from the end of the file. */
+ /* Set position eight bytes from the end of the file. */

if (fseek(gzfile, -8, SEEK_END)) {
printf("error: fseek() returned non-zero\n");

The svn merge is almost exactly the same. Instead of printing the differences to your terminal, however, it applies
them directly to your working copy as local modifications:

$ svn merge -r 343:344 http://svn.example.com/repos/trunk/calc
U integer.c

$ svn status
M integer.c

Branching and Merging

43

4In the future, the Subversion project plans to use (or invent) an expanded patch format that describes tree-changes.

The output of svn merge shows that your copy of integer.c was patched. It now contains Sally's change — it has
been "copied" from her branch to your working copy, and now exists as a local modification. At this point, it's up to
you to review the local modification and make sure it works correctly.

In another scenario, it's possible that things may not have gone so well, and that integer.c may have entered a
conflicted state. You might need to resolve the conflict using standard procedures (see Chapter 3), or if you decide
that the merge was a bad idea altogether, simply give up and svn revert the local change.

But assuming the you've reviewed the merged change, you can svn commit the change as usual. At that point, the
change has been merged into your repository branch. In version control terminology, this act of copying changes be-
tween branches is commonly called porting changes.

Why not use patches instead?

A question may be on your mind, especially if you're a Unix user: why bother to use svn merge at all? Why not sim-
ply use the operating system's patch command to accomplish the same job? For example:

$ svn diff -r 343:344 http://svn.example.com/repos/trunk/calc > patchfile
$ patch -p0 < patchfile
Patching file integer.c using Plan A...
Hunk #1 succeeded at 147.
Hunk #2 succeeded at 164.
Hunk #3 succeeded at 241.
Hunk #4 succeeded at 249.
done

In this particular case, yes, there really is no difference. But svn merge has special abilities that surpass the patch
program. The file format used by patch is quite limited; it's only able to tweak file contents. There's no way to rep-
resent changes to trees, such as the addition, removal, or renaming of files and directories. If Sally's change had, say,
added a new directory, the output of svn diff wouldn't have mentioned it at all. svn diff only outputs the limited
patch-format, so there are some ideas it simply can't express. 4 The svn merge command, however, can express tree-
changes by directly applying them to your working copy.

A word of warning: while svn diff and svn merge are very similar in concept, they do have different syntax in many
cases. Be sure to read about them in Chapter 8 for details, or ask svn help. For example, svn merge requires a work-
ing-copy path as a target, i.e. a place where it should apply the tree-changes. If the target isn't specified, it assumes
you want the changes applied to the current working directory. If you want changes applied somewhere else, you'll
need to say so:

$ svn merge -r 343:344 http://svn.example.com/repos/trunk/calc my-calc-branch
U my-calc-branch/integer.c

The repeated merge problem
Merging changes sounds simple enough, but in practice it can become a headache. The problem is that if you repeat-
edly merge changes from one branch to another, you may accidentally merge the same change twice. When this hap-
pens, sometimes things will work fine. When patching a file, Subversion typically notices if the file already has the
change, and does nothing. But if the already-existing change has been modified in any way, you'll get a conflict. Ide-
ally, Subversion would automatically prevent applying changes more than once.

This is a problem that plagues many version control systems, including both CVS and Subversion. For now, the only
way to avoid this problem in Subversion is to carefully keep track of which changes have been merged, and which
haven't. When you create a branch directory, you need to track what revision it was created in — make a note some-

Branching and Merging

44

5The Subversion project has plans, however, to someday implement an svnadmin obliterate command that would accomplish the task of perma-
nently deleting information.

where to yourself. When you merge a revision (or range of revisions) into your working copy, you'll need to remem-
ber them as well. If you forget any of this information, you can rediscover it by examining the output of svn log -v
branch-dir. But the point is that each subsequent merge needs to be carefully constructed by hand, making sure that
previously-merged revisions aren't re-merged again.

Of course, Subversion has plans to solve this problem sometime after release 1.0. All of this merging information
can be tracked in property metadata (see Section , “Properties”), and thus Subversion will someday be able to auto-
matically avoid repeated merges.

Removing a change from the repository
A common use for svn merge is to roll back a change that has already been committed. Suppose you decide that the
change made way back in revision 303, which changed integer.c, is completely wrong. It never should have been
committed. You can use svn merge to "undo" the change in your working copy, and then commit the local modifi-
cation to the repository. All you need to do is do specify a reverse difference:

$ svn merge -r 303:302 http://svn.example.com/trunk/calc
U integer.c

$ svn status
M integer.c

$ svn commit -m "Undoing change committed in r303."
Sending integer.c
Transmitting file data .
Committed revision 350.

One way to think about a repository revision is as a specific group of changes (some version control systems call
these changesets). By using the -r switch, you can ask svn merge to apply a changeset, or whole range of change-
sets, to your working copy. In our case of undoing a change, we're asking svn merge to apply changeset #303 to our
working copy backwards.

Keep in mind that rolling back a change like this is just like any other svn merge operation, so you should use svn
status and svn diff to confirm that your work is in the state you want it to be in, and then use svn commit to send
the final version to the repository. After committing, this particular changeset is no longer reflected in the HEAD re-
vision.

Again, you may be thinking: well, that really didn't undo the commit, did it? The change still exists in revision 303.
If somebody checks out a version of the calc project between revisions 303 and 349, they'll still see the bad change,
right?

Yes, that's true. When we talk about "removing" a change, we're really talking about "removing it from HEAD". The
original change still exists in the repository's history. For most situations, this is good enough. Most people are only
interested in tracking the HEAD of a project anyway. There are special cases, however, where you really might want
to destroy all evidence of the commit. (Perhaps somebody accidentally committed a confidential document.) This
isn't so easy, it turns out, because Subversion was deliberately designed to never lose information. Revisions are im-
mutable trees which build upon one another. Removing a revision from history would cause a domino effect, creat-
ing chaos in all subsequent revisions and possibly invalidating all working copies. 5

Switching a working copy
The svn switch command transforms an existing working copy into a different branch. While this command isn't
strictly necessary for working with branches, it provides a nice shortcut to users. In our earlier example, after creat-
ing your private branch, you checked out a fresh working copy of the new repository directory. Instead, you can

Branching and Merging

45

simply ask Subversion to change your working copy of /trunk/calc to mirror the new branch location:

$ cd calc

$ svn info | grep Url
Url: http://svn.example.com/trunk/calc

$ svn switch http://svn.example.com/branches/calc/my-calc-branch
U integer.c
U button.c
U Makefile
Updated to revision 341.

$ svn info | grep Url
Url: http://svn.example.com/branches/calc/my-calc-branch

After "switching" to the branch, your working copy is no different than what you would get from doing a fresh
checkout of the directory. And it's usually more efficient to use this command, because often branches only differ by
a small degree. The server sends only the minimal set of changes necessary to make your working copy reflect the
branch.

Of course, svn switch also takes a --revision (-r) option, so you need not always move your working copy to
the “tip” of the branch.

Of course, most projects are more complicated than our calc example. Users often create a branch of a project's
subdirectory, and then use svn switch to move that specific subdirectory in their working copy to the new branch.
Or sometimes users will only switch a single working file to a branch. That way, they can continue to receive nor-
mal updates to most of their working copy, but the "switched" portions will remain immune (unless someone com-
mits a change to their branch). This feature adds a whole new dimension to the concept of a "mixed working copy"
— not only can working copies contain a mixture of working revisions, but a mixture of repository locations as well.

If your working copy contains a number of switched subtrees from different repository locations, it continues to
function as normal. When you update, you'll receive patches to each subtree as appropriate. When you commit, your
local changes will still be applied as a single, atomic change to the repository.

Note that while it's okay for your working copy to reflect a mixture of repository locations, these locations must all
be within the same repository. Subversion repositories aren't yet able to communicate with one another; that's a fea-
ture planned beyond Subversion 1.0.

Switches and updates

Have you noticed that the output of svn switch and svn update look the same? The switch command is actually a
superset of the update command.

When you run svn update, you're asking the repository to compare two trees. The repsository does so, and then
sends a description of the differences back to the client. The only difference between svn switch and svn update is
that the update command always compares two identical paths.

That is, if your working copy is a mirror of /trunk/calc, then svn update will automatically compare your work-
ing copy of /trunk/calc to /trunk/calc in the HEAD revision. If you're switching your working copy to a
branch, then svn switch will compare your working copy of /trunk/calc to some other branch-directory in the
HEAD revision.

In other words, an update moves your working copy through time. A switch moves your working copy through time
and space.

Because svn switch is essentially a variant of svn update, it shares the same behaviors; any local modifications in
your working copy are preserved when new data arrives from the repository. This allows you to perform all sorts of

Branching and Merging

46

clever tricks.

For example, suppose you have a working copy of /trunk and make a number of changes to it. Then you suddenly
realize that you meant to make the changes to a branch instead. No problem! When you svn switch your working
copy to the branch, the local changes will remain. You can then test and commit them to the branch.

Tags
Another common version control concept is a tag. A tag is just a "snapshot" of a project in time. In Subversion, this
idea already seems to be everywhere. Each repository revision is exactly that — a snapshot of the filesystem after
each commit.

However, people often want to give more human-friendly names to tags, like "release-1.0". And they want to make
snapshots of smaller subdirectories of the filesystem. After all, it's not so easy to remember that release-1.0 of a
piece of software is a particular subdirectory of revision 4822.

Creating a simple tag
Once again, svn copy comes to the rescue. If you want to create a snapshot of /trunk/calc exactly as it looks in
the HEAD revision, then make a copy of it:

$ svn copy http://svn.example.com/repos/trunk/calc \
http://svn.example.com/repos/tags/calc/release-1.0 \

-m "Tagging the 1.0 release of the 'calc' project."

Committed revision 351.

This example assumes that a /tags/calc directory already exists. After the copy completes, the new release-
1.0 directory is forever a snapshot of how the project looked in the HEAD revision at the time you made the copy.
Of course you might want to be more precise about exactly which revision you copy, in case somebody else may
have committed changes to the project when you weren't looking. So if you know that revision 350 of /
trunk/calc is exactly the snapshot you want, you can specify it by passing -r 350 to the svn copy command.

But wait a moment: isn't this tag-creation procedure the same procedure we used to create a branch? Yes, in fact, it
is. In Subversion, there's no difference between a tag and a branch. Both are just ordinary directories that are created
by copying. Just as with branches, the only reason a copied directory is a "tag" is because humans have decided to
treat it that way: as long as nobody ever commits to the directory, it forever remains a snapshot. If people start com-
mitting to it, it becomes a branch.

If you are administering a repository, there are two approaches you can take to managing tags. The first approach is
"hands off": as a matter of project policy, decide where your tags will live, and make sure all users know how to
treat the directories they copy in there. (That is, make sure they know not to commit to them.) The second approach
is more paranoid: you can use one of the access-control scripts provided with Subversion to prevent anyone from
doing anything but creating new copies in the tags-area (###cross-ref a section that demonstrates how to use these
scripts?). The paranoid approach, however, isn't usually necessary. If a user accidentally commits a change to a tag-
directory, you can simply undo the change as discussed in the previous section. This is version control, after all.

Creating a complex tag
Sometimes you may want your "snapshot" to be more complicated than a single directory at a single revision.

For example, pretend your project is much larger than our calc example: suppose it contains a number of subdirec-
tories and many more files. In the course of your work, you may decide that you need to create a working copy that
is designed to have specific features and bugfixes. You can accomplish this by selectively pinning files or directories
at particular revisions (using svn update -r liberally), or by switching files and directories to particular branches
(making use of svn switch). When you're done, your working copy is a hodgepodge of repository locations from dif-

Branching and Merging

47

ferent revisions. But after testing, you know it's the precise combination of data you need.

Time to make a snapshot. Copying one URL to another won't work here. In this case, you want to make a snapshot
of your exact working copy arrangement and store it in the repository. Luckily, the svn copy actually has four differ-
ent uses (which you can read about in Chapter 8), including the ability to copy a working-copy tree to the repository:

$ ls
./ ../ my-working-copy/

$ svn copy my-working-copy http://svn.example.com/repos/tags/calc/newtag

Committed revision 352.

Now there is a new directory in the repository, /tags/calc/mytag, which is an exact snapshot of your working
copy — mixed revisions, urls, and all.

Other users have found interesting uses for this feature. Sometimes there are situations where you have a bunch of
local changes made to your working copy, and you'd like a collaborator to see them. Instead of running svn diff and
sending a patchfile (which won't capture tree changes), you can instead use svn copy to "upload" your working copy
to a private area of the repository. Your collaborator can then either checkout a verbatim copy of your working copy,
or use svn merge to receive your exact changes.

Branch maintenance
You may have noticed by now that Subversion is extremely flexible. Because it implements branches and tags with
the same underlying mechanism (directory copies), and because branches and tags appear in normal filesystem
space, many people find Subversion intimidating. It's almost too flexible. In this section, we'll offer some
suggestions for arranging and managing your data over time.

Repository layout
There are some standard, recommended ways to organize a repository. Most people create a trunk directory to hold
the "main line" of development, a branches directory to contain branch copies, and a tags directory to contain tag
copies. If a repository holds only one project, then often people create these top-level directories:

/trunk
/branches
/tags

If a repository contains multiple projects, people often index their layout by branch:

/trunk/paint
/trunk/calc
/branches/paint
/branches/calc
/tags/paint
/tags/calc

...or by project:

/paint/trunk
/paint/branches
/paint/tags
/calc/trunk
/calc/branches
/calc/tags

Branching and Merging

48

Of course, you're free to ignore these common layouts. You can create any sort of variation, whatever works best for
you or your team. Remember that whatever you choose, it's not a permanent commitment. You can reorganize your
repository at any time. Because branches and tags are ordinary directories, the svn mv command can move or re-
name them however you wish. Switching from one layout to another is just a matter of issuing a series of server-side
moves; if you don't like the way things are organized in the repository, just juggle the directories around.

Data lifetimes
Another nice feature of Subversion's model is that branches and tags can have finite lifetimes, just like any other
versioned item. For example, suppose you eventually finish all your work on your personal branch of the calc
project. After merging all of your changes back into /trunk/calc, there's no need for your private branch direc-
tory to stick around anymore:

$ svn remove http://svn.example.com/repos/branches/calc/my-calc-branch \
-m "Removing obsolete branch of calc project."

Committed revision 375.

And now your branch is gone. Of course it's not really gone: the directory is simply missing from the HEAD revi-
sion, no longer distracting anyone. If you look at an earlier revision (by means of svn checkout -r, svn switch -r, or
svn list -r), you'll still be able to see your old branch.

If browsing your deleted directory isn't enough, you can always bring it back. Resurrecting data is very easy in Sub-
version. If there's a deleted directory (or file) that you'd like to bring back into HEAD, simply use svn copy -r to
copy it from the old revision:

$ svn copy -r 374 http://svn.example.com/repos/branches/calc/my-calc-branch \
http://svn.example.com/repos/branches/calc/my-calc-branch

Committed revision 376.

In our example, your personal branch had a relatively short lifetime: you may have created it to fix a bug or imple-
ment a new feature. When your task is done, so is the branch. In software development, though, it's also common to
have two "main" branches running side-by-side for very long periods. For example, suppose it's time to release a sta-
ble calc project to the public, and you know it's going to take a couple of months to shake bugs out of the software.
You don't want people to add new features to the project, but you don't want to tell all developers to stop program-
ming either. So instead, you create a "stable" branch of the software that won't change much:

$ svn cp http://svn.example.com/repos/trunk/calc \
http://svn.example.com/branches/calc/stable-1.0
-m "Creating stable branch of calc project."

Committed revision 377.

And now developers are free to continue adding cutting-edge (or experimental) features to /trunk/calc, and you
can declare a project policy that only bugfixes are to be committed to /branches/calc/stable-1.0. That is, as
people continue to work on the trunk, a human selectively ports bugfixes over to the stable branch. Even after the
stable branch has shipped, you'll probably continue to maintain the branch for a long time — that is, as long as you
continue to support that release for customers.

Summary
We've covered a lot of ground in this chapter. We've discussed the concepts of tags and branches, and demonstrated
how Subversion implements these concepts by copying directories with the svn copy command. We've shown how

Branching and Merging

49

to use svn merge to copy changes from one branch to another, or roll back bad changes. We've gone over the use of
svn switch to create mixed-location working copies. And we've talked about how one might manage the organiza-
tion and lifetimes of branches in a repository.

Remember the Subversion mantra: branches are cheap. So use them liberally!

Branching and Merging

50

6This may sound really prestigious and lofty, but we're just talking about anyone who is interested in that mysterious realm beyond the working
copy where everyone's data hangs out.

Chapter 5. Repository Administration
The Subversion repository is the central storehouse of versioned data for any number of projects. As such, it be-
comes an obvious candidate for all the love and attention an administrator can offer. While the repository is gener-
ally a low-maintenance item, it is important to understand how to properly configure and care for it so that potential
problems are avoided, and actual problems safely resolved.

In this chapter, we'll discuss how to create and configure a Subversion repository, and how to expose that repository
for network accessibility. We'll also talk about repository maintenance, including the use of the svnlook and svnad-
min tools (which are provided with Subversion). We'll address some common questions and mistakes, and give
some suggestions on how to arrange the data in the repository.

If you plan to access a Subversion repository only in the role of a user whose data is under version control (that is,
via a Subversion client), you can skip this chapter altogether. However, if you are, or wish to become, a Subversion
repository administrator, 6 you should definitely pay attention to this chapter.

Of course, one cannot administer a repository unless one has a repository to administer.

Repository Basics
Understanding Transactions and Revisions

Conceptually speaking, a Subversion repository is a sequence of directory trees. Each tree is a snapshot of how the
files and directories versioned in your repository looked at various points in time. These snapshots are created as a
result of client operations, and are called revisions.

Every revision begins life as a transaction tree. When doing a commit, a client builds a Subversion transaction that
mirrors their local changes (plus any additional changes that might have been made to the repository since the begin-
ning of the client's commit process), and then instructs the repository to store that tree as the next snapshot in the se-
quence. If the commit succeeds, the transaction is effectively promoted into a new revision tree, and is assigned a
new revision number. If the commit fails for some reason, the transaction is destroyed and the client is informed of
the failure.

At the moment, updates work in a similar way. The client builds a temporary transaction tree that mirrors the state of
the working copy. The repository then compares that transaction tree with the revision tree at the request revision
(usually the most recent, or “youngest” tree), and sends back information that informs the client about what changes
are needed to transform their working copy into a replica of that revision tree. After the update completes, the tem-
porary transaction is deleted.

The use of transaction trees is the only way to make permanent changes to repository's versioned filesystem. How-
ever, it's important to understand that the lifetime of a transaction is completely flexible. In the case of updates,
transactions are temporary trees that are immediately destroyed. In the case of commits, transactions are transformed
into permanent revisions (or removed if the commit fails). In the case of an error or bug, it's possible that a transac-
tion can be accidentally left lying around in the repository (not really affecting anything, but still taking up space).

In theory, someday whole workflow applications might revolve around more fine-grained control of transaction life-
time. It is feasible to imagine a system whereby each transaction slated to become a revision is left in stasis well af-
ter the client finishes describing its changes to repository. This would enable each new commit to be reviewed by
someone else, perhaps a manager or engineering QA team, who can choose to promote the transaction into a revi-
sion, or abort it.

What does all of this have to do with repository administration? The answer is simple: if you're administering a Sub-

51

version repository, you're going to have to examine revisions and transactions as part of monitoring the health of
your repository.

Unversioned Properties
Transactions and revisions in the Subversion repository can have properties attached to them. These properties are
generic key-to-value mappings, and are used to store information about the tree to which they are attached. The
names and values of these properties are stored in the repository's filesystem, along with the rest of your tree data.

Revision and transaction properties are useful for associating information with a tree that is not strictly related to the
files and directories in that tree—the kind of information that isn't managed by client working copies. For example,
when a new commit transaction is created in the repository, Subversion adds a property to that transaction named
svn:date—a datestamp representing the time that the transaction was created. By the time the commit process is
finished, and the transaction is promoted to a permanent revision, the tree has also been given a property to store the
username of the revision's author (svn:author) and a property to store the log message attached to that revision
(svn:log).

Revision and transaction properties are unversioned properties—as they are modified, their previous values are per-
manently discarded. Also, while revision trees themselves are immutable, the properties attached to those trees are
not. You can add, remove, and modify revision properties at any time in the future. If you commit a new revision
and later realize that you had some misinformation or spelling error in your log message, you can simply replace the
value of the svn:log property with a new, corrected log message.

Repository Creation and Configuration
Creating a Subversion repository is an incredibly simple task. The svnadmin utility, provided with Subversion, has
a subcommand for doing just that. To create a new repository, just run:

$ svnadmin create path/to/repos

This creates a new repository in the directory path/to/repos. This new repository begins life at revision 0, which
is defined to consist of nothing but the top-level root (/) filesystem directory. Initially, revision 0 also has a single
revision property, svn:date, set to the time at which the repository was created.

You may have noticed that the path argument to svnadmin was just a regular filesystem path and not a URL like the
svn client program uses when referring to repositories. Both svnadmin and svnlook are considered server-side utili-
ties—they are used on the machine where the repository resides to examine or modify aspects of the repository, and
are in fact unable to perform tasks across a network. A common mistake made by Subversion newcomers is trying to
pass URLs (even "local" file: ones) to these two programs.

So, after you've run the svnadmin create command, you have a shiny new Subversion repository in its own direc-
tory. Let's take a peek at what is actually created inside that subdirectory.

$ ls repos
dav/ db/ format hooks/ locks/ README

With the exception of the README file, the repository directory is a collection of subdirectories. As in other areas of
the Subversion design, modularity is given high regard, and hierarchical organization is preferred to cluttered chaos.
Here is a brief description of all of the items you see in your new repository directory:

dav A directory provided to Apache and mod_dav_svn for their private housekeeping data.

db The main Berkeley DB environment, full of DB tables that comprise the data store for Subversion's
filesystem (where all of your versioned data resides).

Repository Administration

52

format A file whose contents are a single integer value that dictates the version number of the repository lay-
out.

hooks A directory full of hook script templates (and hook scripts themselves, once you've installed some).

locks A directory for Subversion's repository locking data, used for tracking accessors to the repository.

README A file which merely informs its readers that they are looking at a Subversion repository.

In general, you shouldn't tamper with your repository “by hand”. The svnadmin tool should be sufficient for any
changes necessary to your repository, or you can look to third-party tools (such as Berkeley DB's tool suite) for
tweaking relevant subsections of the repository. Some exceptions exist, though, and we'll cover those here.

Hook scripts
A hook is a program triggered by some repository event, such as the creation of a new revision or the modification
of an unversioned property. Each hook is handed enough information to tell what that event is, what target(s) it's op-
erating on, and the username of the person who triggered the event. Depending on the hook's output or return status,
the hook program may continue the action, stop it, or suspend it in some way.

The hooks subdirectory is, by default, filled with templates for various repository hooks.

$ ls repos/hooks/
post-commit.tmpl pre-revprop-change.tmpl
post-revprop-change.tmpl start-commit.tmpl
pre-commit.tmpl

There is one template for each hook that the Subversion repository implements, and by examining the contents of
those template scripts, you can see what triggers each such script to run and what data is passed to that script. Also
present in many of these templates are examples of how one might use that script, in conjunction with other Subver-
sion-supplied programs, to perform common useful tasks. To actually install a working hook, you need only place
some executable program or script into the repos/hooks directory which can be executed as the name (like start-
commit or post-commit) of the hook.

On Unix platforms, this means supplying a script or program (which could be a shell script, a Python program, a
compiled C binary, or any number of other things) named exactly like the name of the hook. Of course, the template
files are present for more than just informational purposes—the easiest way to install a hook on Unix platforms is to
simply copy the appropriate template file to a new file that lacks the .tmpl extension, customize the hook's con-
tents, and ensure that the script is executable. Windows, however, uses file extensions to determine whether or not a
program is executable, so you would need to supply a program whose basename is the name of the hook, and whose
extension is one of the special extensions recognized by Windows for executable programs, such as .exe or .com
for programs, and .bat for batch files.

Currently there are five true hooks implemented by the Subversion repository.

start-commit This is run before the commit transaction is even created. It is typically used to decide
if the user has commit privileges at all. The repository passes two arguments to this
program: the path to the repository, and username which is attempting the commit. If
the program returns a non-zero exit value, the commit is stopped before the transaction
is even created.

pre-commit This is run when the transaction is complete, but before it is committed. Typically, this
hook is used to protect against commits that are disallowed due to content or location
(for example, your site might require that all commits to a certain branch include a
ticket number from the bug tracker, or that the incoming log message is non-empty).

Repository Administration

53

The repository passes two arguments to this program: the path to the repository, and
the name of the transaction being committed. If the program returns a non-zero exit
value, the commit is aborted and transaction is removed.

The Subversion distribution includes some access control scripts (located in the
tools/hook-scripts directory of the Subversion source tree) that can be called
from pre-commit to implement fine-grained access control. At this time, this is the
only method by which administrators can implement finer-grained access control be-
yond what httpd.conf offers. In a future version of Subversion, we plan to imple-
ment ACLs directly in the filesystem.

post-commit This is run after the transaction is committed, and a new revision is created. Most peo-
ple use this hook to send out descriptive emails about the commit or to make a backup
of the repository. The repository passes two arguments to this program: the path to the
repository, and the new revision number that was created. The exit code of the pro-
gram is ignored.

The Subversion distribution includes a commit-email.pl script (located in the tools/
hook-scripts/ directory of the Subversion source tree) that can be used to send
email with (and/or append to a log file) a description of a given commit. This mail
contains a list of the paths that were changed, the log message attached to the commit,
the author and date of the commit, as well as a GNU diff-style display of the changes
made to the various versioned files as part of the commit.

Another useful tool provided by Subversion is the hot-backup.py script (located in
the tools/backup/ directory of the Subversion source tree). This script performs hot
backups of your Subversion repository (a feature supported by the Berkeley DB
database back-end), and can be used to make a per-commit snapshot of your reposi-
tory for archival or emergency recovery purposes.

pre-revprop-change Because Subversion's revision properties are not versioned, making modifications to
such a property (for example, the svn:log commit message property) will overwrite
the previous value of that property forever. Since data can be potentially lost here,
Subversion supplies this hook (and its counterpart, post-revprop-change) so that
repository administrators can keep records of changes to these items using some exter-
nal means if they so desire.

This hook runs just before such a modification is made to the repository. The reposi-
tory passes four arguments to this hook: the path to the repository, the revision on
which the to-be-modified property exists, the authenticated username of the person
making the change, and name of the property itself.

post-revprop-change As mentioned earlier, this hook is the counterpart of pre-revprop-change hook. In
fact, for the sake of paranoia this script will not run unless the pre-revprop-change
hook exists. When both of these hooks are present, the post-revprop-change hook
runs just after a revision property has been changed, and is typically used to send an
email containing the new value of the changed property. The repository passes four ar-
guments to this hook: the path to the repository, the revision on which the property ex-
ists, the authenticated username of the person making the change, and name of the
property itself.

The Subversion distribution includes a propchange-email.pl script (located in the
tools/hook-scripts/ directory of the Subversion source tree) that can be used to
send email with (and/or append to a log file) the details of a revision property change.
This mail contains the revision and name of the changed property, the user who made
the change, and the new property value.

Repository Administration

54

Subversion will attempt to execute hooks as the same user who owns the process which is accessing the Subversion
repository. In most cases, the repository is being accessed via Apache HTTP server and mod_dav_svn, so this user is
the same user that Apache runs as. The hooks themselves will need to be configured with OS-level permissions that
allow that user to execute them. Also, this means that any file or programs (including the Subversion repository it-
self) accessed directly or indirectly by the hook will be accessed as the same user. In other words, be alert to poten-
tial permission-related problems that could prevent the hook from performing the tasks you've written it to perform.

Berkeley DB configuration
The Berkeley DB environment has it own set of default configuration values for things like the number of locks al-
lowed to be taken out at any given time, or the size cutoff for Berkeley's journaling log file, etc. Subversion's filesys-
tem code additionally chooses default values for some of the Berkeley DB configuration options. However, some-
times your particular repository, with its unique collection of data and access patterns, might require a different set
of configuration option values.

The folks at Sleepycat (the producers of Berkeley DB) understand that different databases have different require-
ments, and so they have provided a mechanism for runtime overriding of many of the configuration values for the
Berkeley DB environment. Berkeley checks for the presence of a file named DB_CONFIG in each environment direc-
tory, and parses the options found in that file for use with that particular Berkeley environment.

The Berkeley configuration file for your repository is located in the db environment directory, at repos/
db/DB_CONFIG. Subversion itself creates this file when it creates the rest of the repository. The file initially con-
tains some default options, as well as pointers to the Berkeley DB online documentation so you can read about what
those options do. Of course, you are free to add any of the supported Berkeley DB options to your DB_CONFIG file.
Just be aware that while Subversion never attempts to read or interpret the contents of the file, and makes no use of
the option settings in it, you'll want to avoid any configuration changes that may cause Berkeley DB to behave in a
fashion that is unexpected by the rest of the Subversion code.

Repository Maintenance
An Administrator's Toolkit

svnlook

svnlook is a tool provided by Subversion for examining the various revisions and transactions in a repository. No
part of this program attempts to change the repository—it's a “read-only” tool. svnlook is typically used by the
repository hooks for reporting the changes that are about to be committed (in the case of the pre-commit hook) or
that were just committed (in the case of the post-commit hook) to the repository. A repository administrator may
use this tool for diagnostic purposes.

svnlook has a straightforward syntax:

$ svnlook help
general usage: svnlook SUBCOMMAND REPOS_PATH [ARGS & OPTIONS ...]
Note: any subcommand which takes the '--revision' and '--transaction'

options will, if invoked without one of those options, act on
the repository's youngest revision.

Type "svnlook help <subcommand>" for help on a specific subcommand.
…

Nearly every one of svnlook's subcommands can operate on either a revision or a transaction tree, printing informa-
tion about the tree itself, or how it differs from the previous revision of the repository. You use the --revision and
--transaction options to specify which revision or transaction, respectively, to examine. Note that while revision
numbers appear as natural numbers, transaction names are alphanumeric strings. Keep in mind that the filesystem
only allows browsing of uncommitted transactions (transactions that have not resulted in a new revision). Most

Repository Administration

55

repositories will have no such transactions, because transactions are usually either committed (which disqualifies
them from viewing) or aborted and removed.

In the absence of both the --revision and --transaction options, svnlook will examine the youngest (or
“HEAD”) revision in the repository. So the following two commands do exactly the same thing when 19 is the
youngest revision in the repository located at /path/to/repos:

$ svnlook info /path/to/repos
$ svnlook info /path/to/repos --revision 19

The only exception to these rules about subcommands is the svnlook youngest subcommand, which takes no op-
tions, and simply prints out the HEAD revision number.

$ svnlook youngest /path/to/repos
19

Output from svnlook is designed to be both human- and machine-parsable. Take as an example the output of the
info subcommand:

$ svnlook info path/to/repos
sally
2002-11-04 09:29:13 -0600 (Mon, 04 Nov 2002)
27
Added the usual
Greek tree.

The output of the info subcommand is defined as:

1. The author, followed by a newline.

2. The date, followed by a newline.

3. The number of characters in the log message, followed by a newline.

4. The log message itself, followed by a newline.

This output is human-readable, meaning items like the datestamp are displayed using a textual representation instead
of something more obscure (such as the number of nanoseconds since the Tasty Freeze guy drove by). But this out-
put is also machine-parsable—because the log message can contain multiple lines and be unbounded in length, svn-
look provides the length of that message before the message itself. This allows scripts and other wrappers around
this command to make intelligent decisions about the log message, such as how much memory to allocate for the
message, or at least how many bytes to skip in the event that this output is not the last bit of data in the stream.

Another common use of svnlook is to actually view the contents of a revision or transaction tree. Examining the out-
put of svnlook tree command, which displays the directories and files in the requested tree (optionally showing the
filesystem node revision IDs for each of those paths) can be extremely helpful to administrators deciding on whether
or not it is safe to remove a seemingly dead transaction. It is also quite useful for Subversion developers who are di-
agnosing filesystem-related problems when they arise.

$ svnlook tree path/to/repos --show-ids
/ <0.0.1>
A/ <2.0.1>
B/ <4.0.1>
lambda <5.0.1>
E/ <6.0.1>
alpha <7.0.1>

Repository Administration

56

beta <8.0.1>
F/ <9.0.1>
mu <3.0.1>
C/ <a.0.1>
D/ <b.0.1>
gamma <c.0.1>
G/ <d.0.1>
pi <e.0.1>
rho <f.0.1>
tau <g.0.1>

H/ <h.0.1>
chi <i.0.1>
omega <k.0.1>
psi <j.0.1>

iota <1.0.1>

svnlook can perform a variety of other queries, displaying subsets of bits of information we've mentioned previ-
ously, reporting which paths were modified in a given revision or transaction, showing textual and property differ-
ences made to files and directories, and so on. The following is a brief description of the current list of subcom-
mands accepted by svnlook, and the output of those subcommands:

author Print the tree's author.

date Print the tree's datestamp.

changed List all files and directories that changed in the tree.

diff Print unified diffs of changed files.

dirs-changed List the directories in the tree that were themselves changed, or whose file children
were changed.

info Print the tree's author, datestamp, log message character count, and log message.

log Print the tree's log message.

tree Print the tree listing, optionally revealing the filesystem node revision IDs associated
with each path.

youngest Print the youngest revision number.

svnadmin

The svnadmin program is the repository administrator's best friend. Besides providing the ability to create Subver-
sion repositories, this program allows you perform several maintenance operations on those repositories. The syntax
of svnadmin is similar to that of svnlook:

$ svnadmin help
general usage: svnadmin SUBCOMMAND REPOS_PATH [ARGS & OPTIONS ...]
Type "svnadmin help <subcommand>" for help on a specific subcommand.

Available subcommands:
create
createtxn
dump

…

We've already mentioned svnadmin's create subcommand (see Section , “Repository Creation and
Configuration”). Most of the others we will cover in more detail later in this chapter. For now, let's just take a quick
glance at what each of the available subcommands offers.

Repository Administration

57

create Creates a new Subversion repository.

createtxn Creates a transaction in the repository based on a given existing revision.

dump Dumps the contents of the repository, bounded by a given set of revisions, using a portable
dump format.

load Loads a set of revisions into a repository from a stream of data that uses the same portable
dump format generated by the dump subcommand.

lscr List the revisions in which a given path in the repository was modified.

lstxns List the names of uncommitted Subversion transactions which currently exist in the reposi-
tory.

recover Perform recovery steps on a repository that is in need of such, generally after a fatal error has
occurred which prevented a process from cleanly shutting down its communication with the
repository.

rmtxns Cleanly remove Subversion transactions from the repository (conveniently fed by output from
the lstxns subcommand).

setlog Replace the current value of the svn:log (commit log message) property on a given revision
in the repository with a new value.

svnshell.py

The Subversion source tree also comes with a shell-like interface to the repository. The svnshell.py Python script
(located in tools/examples/ in the source tree) uses Subversion's language bindings (so you have to have those
properly compiled and installed in order for this script to work) to connect to the repository and filesystem libraries.

Once started, the program behaves similarly to a shell program, allowing you to browse the various directories in
your repository. Initially, you are “positioned” in the root directory of the HEAD revision of the repository, and pre-
sented with a command prompt. You can use the help command at any time to display a list of available commands
and what they do.

$ svnshell.py /path/to/repos
<rev: 2 />$ help
Available commands:

cat FILE : dump the contents of FILE
cd DIR : change the current working directory to DIR
exit : exit the shell
ls [PATH] : list the contents of the current directory
lstxns : list the transactions available for browsing
setrev REV : set the current revision to browse
settxn TXN : set the current transaction to browse
youngest : list the youngest browsable revision number

<rev: 2 />$

Navigating the directory structure of your repository is done in the same way you would navigate a regular Unix or
Windows shell—using the cd command. At all times, the command prompt will show you what revision (prefixed
by rev:) or transaction (prefixed by txn:) you are currently examining, and at what path location in that revision
or transaction. You can change your current revision or transaction with the setrev and settxn commands, re-
spectively. As in a Unix shell, you can use the ls command to display the contents of the current directory, and you
can use the cat command to display the contents of a file.

Example 5.1. Using svnshell to navigate the repository

Repository Administration

58

<rev: 2 />$ ls
REV AUTHOR NODE-REV-ID SIZE DATE NAME

--
1 sally < 2.0.1> Nov 15 11:50 A/
2 harry < 1.0.2> 56 Nov 19 08:19 iota

<rev: 2 />$ cd A
<rev: 2 /A>$ ls

REV AUTHOR NODE-REV-ID SIZE DATE NAME
--

1 sally < 4.0.1> Nov 15 11:50 B/
1 sally < a.0.1> Nov 15 11:50 C/
1 sally < b.0.1> Nov 15 11:50 D/
1 sally < 3.0.1> 23 Nov 15 11:50 mu

<rev: 2 /A>$ cd D/G
<rev: 2 /A/D/G>$ ls

REV AUTHOR NODE-REV-ID SIZE DATE NAME
--

1 sally < e.0.1> 23 Nov 15 11:50 pi
1 sally < f.0.1> 24 Nov 15 11:50 rho
1 sally < g.0.1> 24 Nov 15 11:50 tau

<rev: 2 /A>$ cd ../..
<rev: 2 />$ cat iota
This is the file 'iota'.
Added this text in revision 2.

<rev: 2 />$ setrev 1; cat iota
This is the file 'iota'.

<rev: 1 />$ exit
$

As you can see in the previous example, multiple commands may be specified at a single command prompt, sepa-
rated by a semicolon. Also, the shell understands the notions of relative and absolute paths, and will properly handle
the "." and ".." special path components.

The youngest command displays the youngest revision. This is useful for determining the range of valid revisions
you can use as arguments to the setrev command—you are allowed to browse all the revisions (recalling that they
are named with integers) between 0 and the youngest, inclusively. Determining the valid browsable transactions isn't
quite as pretty. Use the lstxns command to list the transactions that you are able to browse. The list of browsable
transactions is the same list that svnadmin lstxns returns, and the same list that is valid for use with svnlook's -
-transaction option.

Once you've finished using the shell, you can exit cleanly by using the exit command. Alternatively, you can supply
an end-of-file character—Control-D (though some Win32 Python distributions use the Windows Control-Z conven-
tion instead).

Berkeley DB Utilities

Currently, the Subversion repository has only one database back-end—Berkeley DB. All of your filesystem's struc-
ture and data live in a set of tables within the db subdirectory of your repository. This subdirectory is a regular
Berkeley DB environment directory, and can therefore be used in conjunction with any of Berkeley's database tools
(you can see the documentation for these tools at SleepyCat's website, http://www.sleepycat.com/). For day-
to-day Subversion use, these tools are unnecessary, however, they do provide some important functionality that is
currently not provided by Subversion itself.

For example, because Subversion uses Berkeley DB's logging facilities, the database first writes out a description of
any modifications it is about to make, and then makes the modification itself. This is to ensure that if something
goes wrong, the database system can back up to a previous checkpoint—a location in the log files known not to be
corrupt—and replay transactions until the data is restored to a usable state. This functionality is one of the main rea-
sons why Berkeley DB was chosen as Subversion's initial database back-end.

Repository Administration

59

Over time, these log files can accumulate. That is actually a feature of the database system—you should be able to
recreate your entire database using nothing but the log files, so these files are important for catastrophic database re-
covery. But typically, you'll want to archive the log files that are no longer in use by Berkeley DB, and then remove
them from disk to conserve space. Berkeley DB provides a db_archive utility for, among other things, listing the
log files that are associated with a given database and which are no longer in use. That way, you know which files to
archive and remove.

Subversion's own repository uses a post-commit hook script, which, after performing a “hot backup” of the reposi-
tory, removes these excess logfiles. In the Subversion source tree, the script tools/backup/hot-backup.py il-
lustrates the safe way to perform a backup of a Berkeley DB database environment while it's being actively ac-
cessed: recursively copy the entire repository directory, then re-copy the logfiles listed by db_archive -l.

Generally speaking, only the truly paranoid would need to backup their entire repository every time a commit oc-
curred. Subversion's repository is truly paranoid for what should be obvious reasons! However, assuming that a
given repository has some other redundancy mechanism in place with relatively fine granularity (per-commit, for
example), a hot backup of the database might be something that a repository administrator would want to include as
part of a system-wide nightly backup. For more repositories, archived commit emails alone are sufficient restoration
sources, at least for the last few commits. But it's your data; protect it as much as you'd like.

Berkeley DB also comes with a pair of utilities for converting the database tables to and from flat ASCII text files.
The db_dump and db_load programs write and read, respectively, a custom file format which describes the keys
and values in a Berkeley DB database. Since Berkeley databases are not portable across machine architectures, this
format is a useful way to transfer those databases from machine to machine, irrespective of architecture or operating
system.

Repository Cleanup
Your Subversion repository will generally require very little attention once it is configured to your liking. However,
there are times when some manual assistance from an administrator might be in order. The svnadmin utility pro-
vides some helpful functionality to assist you in performing such tasks as

• modifying commit log messages,

• removing dead transactions,

• recovering “wedged” repositories, and

• migrating repository contents to a different repository.

Perhaps the most commonly used of svnadmin's subcommands is setlog. When a transaction is committed to the
repository and promoted to a revision, the descriptive log message associated with that new revision (and provided
by the user) is stored as an unversioned property attached to the revision itself. In other words, the repository re-
members only the latest value of the property, and discards previous ones.

Sometimes a user will have an error in her log message (a misspelling or some misinformation, perhaps). If the
repository is configured (using the pre-revprop-change and post-revprop-change hooks; see Section ,
“Hook scripts”) to accept changes to this log message after the commit is finished, then the user can “fix” her log
message remotely using the svn program's propset command (see Chapter 8, Subversion Complete Reference).
However, because of the potential to lose information forever, Subversion repositories are not, by default, config-
ured to allow changes to unversioned properties— except by an administrator.

If a log message needs to be changed by an administrator, this can be done using svnadmin setlog. This command
changes the log message (the svn:log property) on a given revision of a repository, reading the new value from a
provided file.

Repository Administration

60

$ echo "Here is the new, correct log message" > newlog.txt
$ svnadmin setlog myrepos newlog.txt -r 388

Don't Lose That Log Message!

Administrators should be aware that using svnadmin setlog bypasses any revision property hook scripts that might
be active for the repository. Be extremely careful with this subcommand, ensuring that you are providing the correct
revision number for the change.

Another common use of svnadmin is to query the repository for outstanding—possibly dead—Subversion transac-
tions. In the event that commit should fail, the transaction is usually cleaned up. That is, the transaction itself is re-
moved from the repository, and any data associated with (and only with) that transaction is removed as well. Occa-
sionally, though, a failure occurs in such a way that the cleanup of the transaction never happens. This could happen
for several reasons: perhaps the client operation was inelegantly terminated by the user, or a network failure might
have occurred in the middle of an operation, etc. Regardless of the reason, these dead transactions serve only to clut-
ter the repository and consume resources.

You can use svnadmin's lstxns command to list the names of the currently outstanding transactions.

$ svnadmin lstxns myrepos
19
3a1
a45
$

Each item in the resultant output can then be used with svnlook (and its --transaction option) to determine who
created the transaction, when it was created, what types of changes were made in the transaction—in other words,
whether or not the transaction is a safe candidate for removal! If so, the transaction's name can be passed to svnad-
min rmtxns, which will perform the cleanup of the transaction. In fact, the rmtxns subcommand can take its input
directly from the output of lstxns!

$ svnadmin rmtxns myrepos `svnadmin lstxns myrepos`
$

If you use these two subcommands like this, you should consider making your repository temporarily inaccessible to
clients. That way, no one can begin a legitimate transaction before you start your cleanup. The following is a little
bit of shell-scripting that can quickly generate information about each outstanding transaction in your repository:

Example 5.2. txn-info.sh (reporting outstanding transactions)

#!/bin/sh

Generate informational output for all outstanding transactions in
a Subversion repository

SVNADMIN=/usr/local/bin/svnadmin
SVNLOOK=/usr/local/bin/svnlook

REPOS=${1}
if [x$REPOS = x] ; then

echo "usage: $0 REPOS_PATH"
exit

fi

Repository Administration

61

7e.g.: hard drive + huge electromagnet = disaster

for TXN in `${SVNADMIN} lstxns ${REPOS}`; do
echo "---[Transaction ${TXN}]---"
${SVNLOOK} info ${REPOS} --transaction ${TXN}

done

You can run the previous script using /path/to/txn-info.sh /path/to/repos. The output is basically a concatenation
of several chunks of svnlook info output (see Section , “svnlook”), and will look something like:

$ txn-info.sh myrepos
---[Transaction 19]---
sally
2001-09-04 11:57:19 -0500 (Tue, 04 Sep 2001)
0
---[Transaction 3a1]---
harry
2001-09-10 16:50:30 -0500 (Mon, 10 Sep 2001)
39
Trying to commit over a faulty network.
---[Transaction a45]---
sally
2001-09-12 11:09:28 -0500 (Wed, 12 Sep 2001)
0
$

Usually, if you see a dead transaction that has no log message attached to it, this is the result of a failed update (or
update-like) operation. These operations use Subversion transactions under the hood to mimic working copy state.
Since they are never intended to be committed, Subversion doesn't require a log message for those transactions.
Transactions that do have log messages attached are almost certainly failed commits of some sort. Also, a transac-
tion's datestamp can provide interesting information—for example, how likely is it that an operation begun nine
months ago is still active?

In short, transaction cleanup decisions need not be made unwisely. Various sources of information—including
Apache's error and access logs, the logs of successful Subversion commits, and so on—can be employed in the deci-
sion-making process. Finally, an administrator can often simply communicate with a seemingly dead transaction's
owner (via email, for example) to verify that the transaction is, in fact, in a zombie state.

Repository recovery
In order to protect the data in your repository, the database back-end uses a locking mechanism. This mechanism en-
sures that portions of the database are not simultaneously modified by multiple database accessors, and that each
process sees the data in the correct state when that data is being read from the database. When a process needs to
change something in the database, it first checks for the existence of a lock on the target data. If the data is not
locked, the process locks the data, makes the change it wants to make, and then unlocks the data. Other processes
are forced to wait until that lock is removed before they are permitted to continue accessing that section of the
database.

In the course of using your Subversion repository, fatal errors (such as running out of disk space or available mem-
ory) or interruptions can prevent a process from having the chance to remove the locks it has placed in the database.
The result is that the back-end database system gets “wedged”. When this happens, any attempts to access the repos-
itory hang indefinitely (since each new accessor is waiting for a lock to go away—which isn't going to happen).

First, if this happens to your repository, don't panic. Subversion's filesystem takes advantage of database transactions
and checkpoints and pre-write journaling to ensure that only the most catastrophic of events 7 can permanently de-
stroy a database environment. A sufficiently paranoid repository administrator will be making off-site backups of
the repository data in some fashion, but don't call your system administrator to restore a backup tape just yet.

Secondly, use the following recipe to attempt to “unwedge” your repository:

Repository Administration

62

1. Make sure that there are no processes accessing (or attempting to access) the repository. For networked reposi-
tories, this means shutting down the Apache HTTP Server, too.

2. Become the user who owns and manages the repository.

3. Run the command svnadmin recover /path/to/repos. You should see output like this:

Acquiring exclusive lock on repository db, and running recovery procedures.
Please stand by...
Recovery completed.
The latest repos revision is 19.

4. Restart the Subversion server.

This procedure fixes almost every case of repository lock-up. Make sure that you run this command as the user that
owns and manages the database, not just as root. Part of the recovery process might involve recreating from scratch
various database files (shared memory regions, for example). Recovering as root will create those files such that
they are owned by root, which means that even after you restore connectivity to your repository, regular users will
be unable to access it.

If the previous procedure, for some reason, does not successfully unwedge your repository, you should do two
things. First, move your broken repository out of the way and restore your latest backup of it. Then, send an email to
the Subversion developer list (at <dev@subversion.tigris.org>) describing your problem in detail. Data in-
tegrity is an extremely high priority to the Subversion developers.

Migrating a repository
A Subversion filesystem has its data spread throughout various database tables in a fashion generally understood by
(and of interest to) only the Subversion developers themselves. However, circumstances may arise that call for all,
or some subset, of that data to be collected into a single, portable, flat file format. Subversion provides such a mech-
anism, implemented in a pair of svnadmin subcommands: dump and load.

The most common reason to dump and load a Subversion repository is due to changes in Subversion itself. As Sub-
version matures, there are times when certain changes made to the back-end database schema cause Subversion to
be incompatible with previous versions of the repository. The recommended course of action when you are upgrad-
ing across one of those compatibility boundaries is a relatively simple process:

1. Using your current version of svnadmin, dump your repositories to dump files.

2. Upgrade to the new version of Subversion.

3. Move your old repositories out of the way, and create new empty ones in their place using your new svnadmin.

4. Again using your new svnadmin, load your dump files into their respective, just-created repositories.

5. Finally, be sure to copy any customizations from your old repositories to the new ones, including DB_CONFIG
files and hook scripts. You'll want to pay attention to the release notes for the new release of Subversion to see
if any changes since your last upgrade affect those hooks or configuration options.

svnadmin dump will output a range of repository revisions that are formatted using Subversion's custom filesystem
dump format. The dump format is printed to the standard output stream, while informative messages are printed to
the standard error stream. This allows you to redirect the output stream to a file while watching the status output in
your terminal window. For example:

Repository Administration

63

$ svnadmin youngest myrepos
26
$ svnadmin dump myrepos > dumpfile
* Dumped revision 0.
* Dumped revision 1.
* Dumped revision 2.
…
* Dumped revision 25.
* Dumped revision 26.

At the end of the process, you will have a single file (dumpfile in the previous example) that contains all the data
stored in your repository in the requested range of revisions.

The other subcommand in the pair, svnadmin load, parses the standard input stream as a Subversion repository
dump file, and effectively replays those dumped revisions into the target repository for that operation. It also gives
informative feedback, this time using the standard output stream:

$ svnadmin load newrepos < dumpfile
<<< Started new txn, based on original revision 1

* adding path : A ... done.
* adding path : A/B ... done.
…

------- Committed new rev 1 (loaded from original rev 1) >>>

<<< Started new txn, based on original revision 2
* editing path : A/mu ... done.
* editing path : A/D/G/rho ... done.

------- Committed new rev 2 (loaded from original rev 2) >>>

…

<<< Started new txn, based on original revision 25
* editing path : A/D/gamma ... done.

------- Committed new rev 25 (loaded from original rev 25) >>>

<<< Started new txn, based on original revision 26
* adding path : A/Z/zeta ... done.
* editing path : A/mu ... done.

------- Committed new rev 26 (loaded from original rev 26) >>>

Note that because svnadmin uses standard input and output streams for the repository dump and load process, peo-
ple who are feeling especially saucy can try things like this (perhaps even using different versions of svnadmin on
each side of the pipe):

$ svnadmin create newrepos
$ svnadmin dump myrepos | svnadmin load newrepos

We mentioned previously that svnadmin dump outputs a range of revisions. Use the --revision option to specify
a single revision to dump, or a range of revisions. If you omit this option, all the existing repository revisions will be
dumped.

$ svnadmin dump myrepos --revision 23 > rev-23.dumpfile
$ svnadmin dump myrepos --revision 100:200 > revs-100-200.dumpfile

As Subversion dumps each new revision, it outputs only enough information to allow a future loader to re-create that
revision based on the previous one. In other words, for any given revision in the dump file, only the items that were

Repository Administration

64

changed in that revision will appear in the dump. The only exception to this rule is the first revision that is dumped
with the current svnadmin dump command.

By default, Subversion will not express the first dumped revision as merely differences to be applied to the previous
revision. For one thing, there is no previous revision in the dump file! And secondly, Subversion cannot know the
state of the repository into which the dump data will be loaded (if it ever, in fact, occurs). To ensure that the output
of each execution of svnadmin dump is self-sufficient, the first dumped revision is by default a full representation
of every directory, file, and property in that revision of the repository.

However, you can change this default behavior. If you add the --incremental option when you dump your repos-
itory, svnadmin will compare the first dumped revision against the previous revision in the repository, the same
way it treats every other revision that gets dumped. It will then output the first revision exactly as it does the rest of
the revisions in the dump range—mentioning only the changes that occurred in that revision. The benefit of this is
that you can create several small dump files that can be loaded in succession, instead of one large one, like so:

$ svnadmin dump myrepos 0 1000 > dumpfile1
$ svnadmin dump myrepos 1001 2000 --incremental > dumpfile2
$ svnadmin dump myrepos 2001 3000 --incremental > dumpfile3

These dump files could be loaded into a new repository with the following command sequence:

$ svnadmin load newrepos < dumpfile1
$ svnadmin load newrepos < dumpfile2
$ svnadmin load newrepos < dumpfile3

Another neat trick you can perform with this --incremental option involves appending to an existing dump file a
new range of dumped revisions. For example, you might have a post-commit hook that simply appends the reposi-
tory dump of the single revision that triggered the hook. Or you might have a script like the following that runs
nightly to append dump file data for all the revisions that were added to the repository since the last time the script
ran.

Example 5.3. Using incremental repository dumps

#!/usr/bin/perl

$repos_path = '/path/to/repos';
$dumpfile = '/usr/backup/svn-dumpfile';
$last_dumped = '/var/log/svn-last-dumped';

Figure out the starting revision (0 if we cannot read the last-dumped file,
else use the revision in that file incremented by 1).
if (open LASTDUMPED, "$last_dumped")
{

$new_start = <LASTDUMPED>;
chomp $new_start;
$new_start++;
close LASTDUMPED;

}
else
{

$new_start = 0;
}

Query the youngest revision in the repos.
$youngest = `svnlook youngest $repos_path`;
chomp $youngest;

Do the backup.
`svnadmin dump $repos_path $new_start $youngest --incremental >> $dumpfile`;

Repository Administration

65

8The Subversion repository dump file format resembles an RFC-822 format, the same type of format used for most email.
9They really hate doing that.

Store a new last-dumped revision
open LASTDUMPED, "> $last_dumped" or die;
print LASTDUMPED "$youngest\n";
close LASTDUMPED;

All done!

Used like this, svnadmin's dump and load commands can be a valuable means by which to backup changes to your
repository over time in case of a system crash or some other catastrophic event.

Finally, another possible use of the Subversion repository dump file format is conversion from a different storage
mechanism or version control system altogether. Because the dump file format is, for the most part, human-readable,
8 it should be relatively easy to describe generic sets of changes—each of which should be treated as a new
revision—using this file format.

Repository Backup
###TODO: Write this. Talk about hot-backup.py, and use of svnadmin dump --incremental + post-
revprop-change hooks (since the versioned props might differ from what was incrementally dumped). Also, dis-
cuss pros and cons of keeping full repo backups vs. per-commit ones.

Networking a Repository
A Subversion repository can be accessed simultaneously by clients running on the same machine on which the
repository resides. But the typical Subversion setup involves a single server machine being accessed from clients on
computers all over the office—or, perhaps, all over the world.

This section describes how to get your Subversion repository exposed outside its host machine for use by remote
clients. We will cover each of Subversion's currently available server mechanisms, discussing the configuration and
use of each one. After reading this section, you should be able to decide which networking setup is right for your
needs, and understand how to enable such a setup on your host computer.

httpd, the Apache HTTP Server
Subversion's primary network server is the Apache HTTP Server (httpd), speaking the WebDAV/deltaV protocol.
This protocol (an extension to HTTP 1.1; see http://www.webdav.org/) takes the ubiquitous HTTP protocol
that is core of the World Wide Web, and adds writing—specifically, versioned writing—capabilities. The result is a
standardized, robust system that is conveniently packaged as part of the Apache 2.0 software, is supported by nu-
merous pieces of core operating system and third-party products, and which doesn't require network administrators
to open up yet another custom port. 9

Much of the following discussion includes references to Apache configuration directives. While some examples are
given of the use of these directives, describing them in full is outside the scope of this chapter. The Apache team
maintains excellent documentation, publicly available on their website at http://httpd.apache.org. For exam-
ple, a general reference for the configuration directives is located at
http://httpd.apache.org/docs-2.0/mod/directives.html.)

Also, as you make changes to your Apache setup, it is likely that somewhere along the way a mistake will be made.
If you are not already familiar with Apache's logging subsystem, you should become aware of it. In your
httpd.conf file are directives which specify the on-disk locations of the access and error logs generated by
Apache (the CustomLog and ErrorLog directives, respectively). Subversion's mod_dav_svn uses Apache's error
logging interface as well. You can always browse the contents of those files for information that might reveal the
source of a problem which is not clearly noticeable otherwise.

Repository Administration

66

What You Need for HTTP-based Repository Access

To network your repository over HTTP, you basically need four components, available in two packages. You'll need
Apache httpd 2.0, the mod_dav DAV module that comes with it, Subversion, and the mod_dav_svn filesystem
provider module distributed with Subversion. Once you have all of those components, the process of networking
your repository is as simple as:

• getting httpd 2.0 up and running with the mod_dav module,

• installing the mod_dav_svn plugin to mod_dav, which uses Subversion's libraries to access the repository, and

• configuring your httpd.conf file to export (or expose) the repository.

You can accomplish the first two items either by compiling httpd and Subversion from source code, or by installing
pre-built binary packages of them on your system. For the most up-to-date information on how to compile Subver-
sion for use with Apache HTTP Server, as well as how to compile and configure Apache itself for this purpose, see
the INSTALL file in the top level of the Subversion source code tree.

Basic Apache Configuration

Once you have all the necessary components installed on your system, all that remains is the configuration of
Apache via its httpd.conf file. Instruct Apache to load the mod_dav_svn module using the LoadModule direc-
tive. This directive must precede any other Subversion-related configuration items. If your Apache was installed us-
ing the default layout, your mod_dav_svn module should have been installed in the modules subdirectory of the
Apache install location (often /usr/local/apache2). The LoadModule directive has a simple syntax, mapping a
named module to the location of a shared library on disk:

LoadModule dav_svn_module modules/mod_dav_svn.so

Note that if mod_dav was compiled as a shared object (instead of statically linked, directly to the httpd binary),
you'll need a similar LoadModule statement for it, too.

At a later location in your configuration file, you now need to tell Apache where you keep your Subversion reposi-
tory (or repositories). The Location directive has an XML-like notation, starting with an opening tag, and ending
with a closing tag, with various other configuration directives in the middle. The purpose of the Location directive
is to instruct Apache to do something special when handling requests that are directed at a given URL or one of its
children. In the case of Subversion, you want Apache to simply hand off support for URLs that point at versioned
resources to the DAV layer. You can instruct Apache to delegate the handling of all URLs whose path portions (the
part of the URL that follows the server's name and the optional port number) begin with /repos/ to a DAV
provider whose repository is located at /absolute/path/to/repository using the following httpd.conf syn-
tax:

<Location /repos>
DAV svn
SVNPath /absolute/path/to/repository

</Location>

If you plan to support multiple Subversion repositories that will reside in the same parent directory on your local
disk, you can use an alternative directive, the SVNParentPath directive, to indicate that common parent directory.
For example, if you know you will be creating multiple Subversion repositories in a directory /usr/local/svn
that would be accessed via URLs like http://my.server.com/svn/repos1,
http://my.server.com/svn/repos2, and so on, you could use the httpd.conf configuration syntax in the
following example:

Repository Administration

67

<Location /svn>
DAV svn
SVNParentPath /usr/local/svn

</Location>

Using the previous syntax, Apache will delegate the handling of all URLs whose path portions begin with /svn/ to
the Subversion DAV provider, which will then assume that any items in the directory specified by the SVNParent-
Path directive are actually Subversion repositories. This is a particularly convenient syntax in that, unlike the use of
the SVNPath directive, you don't have to restart Apache in order to create and network new repositories.

Permissions, Authentication, and Authorization

At this stage, you should strongly consider the question of permissions. If you've been running Apache for some
time now as your regular web server, you probably already have a collection of content—web pages, scripts and
such. These items have already been configured with a set of permissions that allows them to work with Apache, or
more appropriately, that allows Apache to work with those files. Apache, when used a Subversion server, will also
need the correct permissions to read and write to your Subversion repository.

You will need to determine a permission system setup that satisfies Subversion's requirements without messing up
any previously existing web page or script installations. This might mean changing the permissions on your Subver-
sion repository to match those in use by other things the Apache serves for you, or it could mean using the User and
Group directives in httpd.conf to specify that Apache should run as the user and group that owns your Subver-
sion repository. There is no single correct way to set up your permissions, and each administrator will have different
reasons for doing things a certain way. Just be aware that permission-related problems are perhaps the most common
oversight when configuring a Subversion repository for use with Apache.

And while we are speaking about permissions, we should address how the authorization and authentication mecha-
nisms provided by Apache fit into the scheme of things. Unless you have some system-wide configuration of these
things, the Subversion repositories you make available via the Location directives will be generally accessible to
everyone. In other words,

• anyone can use their Subversion client to checkout a working copy of a repository URL (or any of its subdirecto-
ries),

• anyone can interactively browse the repository's latest revision simply by pointing their web browser to the
repository URL, and

• anyone can commit to the repository.

If you want to restrict either read or write access to a repository as a whole, you can use Apache's built-in access
control features. The easiest such feature is the Basic authentication mechanism, which simply uses a username and
password to verify that a user is who she says she is. Apache provides an htpasswd utility for managing the list of
acceptable usernames and passwords, those to whom you wish to grant special access to your Subversion repository.
Let's grant commit access to Sally and Harry. First, we need to add them to the password file.

$ ### First time: use -c to create the file
$ htpasswd -c /etc/svn-auth-file harry
New password: *****
Re-type new password: *****
Adding password for user harry
$ htpasswd /etc/svn-auth-file sally
New password: *******
Re-type new password: *******
Adding password for user sally
$

Next, you need to add some more httpd.conf directives inside your Location block to tell Apache what to do

Repository Administration

68

with your new password file. The AuthType directive specifies the type of authentication system to use. In this
case, we want to specify the Basic authentication system. AuthName is an arbitrary name that you give for the au-
thentication domain. Most browsers will display this name in the pop-up dialog box when the browser is querying
the user for his name and password. Finally, use the AuthUserFile directive to specify the location of the pass-
word file you created using htpasswd.

After adding these three directives, your <Location> block should look something like this:

<Location /svn>
DAV svn
SVNParentPath /usr/local/svn
AuthType Basic
AuthName "Subversion repository"
AuthUserFile /path/to/users/file

</Location>

Now, at this stage, if you were to restart Apache, any Subversion operations which required authentication would
harvest a username and password from the Subversion client, which would either provide previously cached values
for these things, or prompt the user for the information. All that remains is to tell Apache which operations actually
require that authentication.

You can restrict access on all repository operations by adding the Require valid-user directive to your Loca-
<tion> block. Using our previous example, this would mean that only clients that claimed to be either harry or
sally, and which provided the correct password for their respective username, would be allowed to do anything
with the Subversion repository.

Sometimes you don't need to run such a tight ship. The repository at http://svn.collab.net/repos/svn
which holds the Subversion source code, for example, allows anyone in the world to perform read-only repository
tasks (like checking out working copies and browsing the repository with a web browser), but restricts all write op-
erations to authenticated users. To do this type of selective restriction, you can use the Limit and LimitExcept
configuration directives. Like the Location directive, these blocks have starting and ending tags, and you would
nest them inside your <Location> block.

The parameters present on the Limit and LimitExcept directives are HTTP request types that are affected by that
block. For example, if you wanted to disallow all access to your repository except the currently supported read-only
operations, you would use the LimitExcept directive, passing the GET, PROPFIND, OPTIONS, and REPORT request
type parameters. Then the previously mentioned Require valid-user directive would be placed inside the
<LimitExcept> block instead of just inside the <Location> block.

<Location /svn>
DAV svn
SVNParentPath /usr/local/svn
AuthType Basic
AuthName "Subversion repository"
AuthUserFile /path/to/users/file
<LimitExcept GET PROPFIND OPTIONS REPORT>
Require valid-user

</LimitExcept>
</Location>

These are only a few simple examples. For more in-depth information about Apache access control, take a look at
the Security section of the Apache documentation's tutorials collection at
http://httpd.apache.org/docs-2.0/misc/tutorials.html.

Server Names and the COPY Request

Subversion makes use of the COPY request type to perform server-side copies of files and directories. As part of the
sanity checking done by the Apache modules, the source of the copy is expected to be located on the same machine
as the destination of the copy. To satisfy this requirement, you might need to tell mod_dav the name you use as the

Repository Administration

69

hostname of your server. Generally, you can use the ServerName directive in httpd.conf to accomplish this.

ServerName svn.red-bean.com

If you are using Apache's virtual hosting support via the NameVirtualHost directive, you may need to use the
ServerAlias directive to specify additional names that your server is known by. Again, refer to the Apache docu-
mentation for full details.

Miscellaneous Apache Features

Several of the features already provided by Apache in its role as a robust Web server can be leveraged for increased
functionality or security in Subversion as well. Subversion communicates with Apache using Neon, which is a
generic HTTP/WebDAV library with support for such mechanisms as SSL (the secure socket layer) and Deflate
compression (the same algorithm used by the gzip and PKZIP programs to “shrink” files into smaller chunks of
data). You need only to compile support for the features you desire into Subversion and Apache, and properly con-
figure the programs to use those features.

This means that SSL-enabled Subversion clients can access SSL-enabled Apache servers and perform all communi-
cation using an encrypted protocol, all by using https: URLs with their Subversion clients instead of http: ones.
Businesses that need to expose their repositories for access outside the company firewall should be conscious of the
possibility that unauthorized parties could be “sniffing” their network traffic. SSL makes that kind of unwanted at-
tention less likely to result in sensitive data leaks. Apache can be configured such that only SSL-enabled Subversion
clients can communicate with the repository.

Deflate compression places a small burden on the client and server to compress and decompress network transmis-
sions as a way to minimize the size of the actual transmission. In cases where network bandwidth is in short supply,
this kind of compression can greatly increase the speed at which communications between server and client can be
sent. In extreme cases, this minimized network transmission could be the difference between an operation timing out
or completing successfully.

Less interesting, but equally useful, are other features of the Apache and Subversion relationship, such as the ability
to specify a custom port (instead of the default HTTP port 80) or a virtual domain name by which the Subversion
repository should be accessed, or the ability to access the repository through a proxy. These things are all supported
by Neon, so Subversion gets that support for free.

svnserve, a Custom Subversion Server
As an alternative to Apache, Subversion also provides a stand-alone server program, svnserve. This program is con-
siderably more lightweight than Apache, and easier to configure. However, these benefits come at the cost of flexi-
bility. You can setup svnserve to run in one of a couple of different ways. You can run svnserve as a daemon—a
process that executes indefinitely, listening for input and then handling that input when it arrives. Or, it can run as a
sort of “one-off” server process—initiated by the inetd daemon on Unix systems.

Adding projects
Once your repository is created and configured, all that remains is to begin using it. If you have a collection of exist-
ing data that is ready to be placed under version control, you will more than likely want to use the svn client pro-
gram's import subcommand to accomplish that. Before doing this, though, you should carefully consider your
long-term plans for the repository. In this section, we will offer some advice on how to plan the layout of your
repository, and how to get your data arranged in that layout.

Choosing a Repository Layout
While Subversion allows you to move around versioned files and directories without any loss of information, doing
so can still disrupt the workflow of those who access the repository often and come to expect things to be at certain

Repository Administration

70

locations. Try to peer into the future a bit; plan ahead before placing your data under version control. By “laying
out” the contents of your repositories in an effective manner the first time, you can prevent a load of future
headaches.

There are a few things to consider when setting up Subversion repositories. Let's assume that as repository adminis-
trator, you will be responsible for supporting the version control system for several projects. The first decision is
whether to use a single repository for multiple projects, or to give each project its own repository, or some compro-
mise of these two.

There are benefits to using a single repository for multiple projects, most obviously the lack of duplicated mainte-
nance. A single repository means that there is one set of hook scripts, one thing to routinely backup, one thing to
dump and load if Subversion releases an incompatible new version, and so on. Also, you can easily move data be-
tween projects easily, and without losing any historical versioning information.

The downside of using a single repository is that different projects may have different commit mailing lists or differ-
ent authentication and authorization requirements. Also, remember that Subversion uses repository-global revision
numbers. Some folks don't like the fact that even though no changes have been made to their project lately, the
youngest revision number for the repository keeps climbing because other projects are actively adding new revi-
sions.

A middle-ground approach can be taken, too. For example, projects can be grouped by how well they relate to each
other. You might have a few repositories with a handful of projects in each repository. That way, projects that are
likely to want to share data can do so easily, and as new revisions are added to the repository, at least the developers
know that those new revisions are at least remotely related to everyone who uses that repository.

After deciding how to organize your projects with respect to repositories, you'll probably want to think about direc-
tory hierarchies in the repositories themselves. Because Subversion uses regular directory copies for branching and
tagging (see Chapter 4, Branching and Merging), the Subversion community recommends using one of two different
approaches here. Both approaches employ the use of directories named trunk, meaning the directory under which
the main project development occurs, and branches, which is a directory in which to create various named
branches of the main development line.

The first is to place each project in a subdirectory of the root filesystem directory, with trunk and branches direc-
tories immediately under each project directory, as demonstrated in Figure 5-1.

Figure 5.1. One suggested repository layout.

The second is do the reverse—to have the trunk and branches directories immediately in the top level of the
filesystem, each with subdirectories for all the projects in the repository, as demonstrated in Figure 5-2.

Repository Administration

71

Figure 5.2. Another suggested repository layout.

Lay out your repository in whatever way you see fit. Subversion does not expect or enforce a layout schema—in its
eyes, a directory is a directory is a directory. Ultimately, you should choose the repository arrangement that meets
your needs and those of the projects that live there.

Creating the Layout, and Importing Initial Data
After deciding how to arrange the projects in your repository, you'll probably want to actually populate the reposi-
tory with that layout and with initial project data. There are a couple of ways to do this in Subversion. You could use
the svn mkdir command (see Chapter 8, Subversion Complete Reference) to create each directory in your skeletal
repository layout, one-by-one. A quicker way to accomplish the same task is to use the svn import command (see
Section , “svn import”. By first creating the layout in a temporary location on your drive, you can import the whole
layout tree into the repository in a single commit:

$ mkdir tmpdir
$ cd tmpdir
$ mkdir projectA
$ mkdir projectA/trunk
$ mkdir projectA/branches
$ mkdir projectB
$ mkdir projectB/trunk
$ mkdir projectB/branches
…
$ svn import file:///path/to/repos . --message 'Initial repository layout'
Adding projectA
Adding projectA/trunk
Adding projectA/branches
Adding projectB
Adding projectB/trunk
Adding projectB/branches

Committed revision 1.
$ cd ..
$ rm -rf tmpdir
$

Once you have your skeletal layout in place, you can begin importing actual project data into your repository, if any

Repository Administration

72

such data exists yet. Once again, there are several ways to do this. You could use the svn import command. You
could checkout a working copy from your new repository, move and arrange project data inside the working copy,
and use the svn add and svn commit commands. But once we start talking about such things, we're no longer dis-
cussing repository administration. If you aren't already familiar with the svn client program, see Chapter 3, Guided
Tour.

Summary
By now you should have a basic understanding of how to create, configure, and maintain Subversion repositories.
We've introduced you to the various tools that will assist you with this task. We've covered some of the basic
Apache configuration steps necessary for making your repository accessible over a network. And throughout the
chapter, we've noted common administration pitfalls, and suggestions for avoiding them.

All that remains is for you to decide what exciting data to store in your repository.

Repository Administration

73

10This offer applies only to those who, like most folks, pay nothing for Subversion.

Chapter 6. Advanced Topics
If you've been reading this book chapter by chapter, from start to finish, you should by now have acquired enough
knowledge to use the Subversion client to perform the most common version control operations. You understand
how to checkout a working copy from a Subversion repository. You are comfortable with submitting and receiving
changes using the svn commit and svn update functions. You've probably even developed a reflex which causes
you to run the svn status command almost unconsciously. For all intents and purposes, you are ready to use Subver-
sion in a typical environment.

But the Subversion feature set doesn't stop at "common version control operations".

This chapter highlights some of Subversion's features which aren't quite so regularly used. In it, we will discuss Sub-
version's property (or “metadata”) support, and how to modify Subversion's default behaviors by tweaking its run-
time configuration area. We will describe how you can use externals definitions to instruct Subversion to pull data
from multiple repositories. We'll cover in detail some of the additional client- and server-side tools that are part of
the Subversion distribution.

Before reading this chapter, you should be familiar with the basic file and directory versioning capabilities of Sub-
version. If you haven't already read about those, or if you need a refresher, we recommend that you check out Chap-
ter 2, Basic Concepts and Chapter 3, Guided Tour. Once you've mastered the basics and consumed this chapter,
you'll be a Subversion power-user—or we'll refund your money! 10

Run-time Configuration Area
Subversion provides many optional behaviors that can be controlled by the user. Many of these options are of the
kind that a user would wish to apply to all Subversion operations. So, rather than forcing users to remember com-
mand-line arguments for specifying these options, and to use them for each and every operation they perform, Sub-
version uses configuration files, segregated into a Subversion configuration area.

The Subversion configuration area is a two-tiered hierarchy of option names and their values. Usually, this boils
down to a special directory which contains configuration files (the first tier), which are just text files in standard INI
format (with “sections” providing the second tier). These files can be easily edited using your favorite text editor
(such as emacs or vi), and contain directives read by the client to determine which of several optional behaviors the
user prefers.

Configuration Area Layout
The first time that the svn command-line client is executed, it creates a per-user configuration area. On Unix-like
systems, this area appears as a directory named .subversion in the user's home directory. On Win32 systems,
Subversion creates a folder named Subversion, typically inside the Application Data area of the user's profile
directory. However, on this platform the exact location differs from system to system, and is dictated by the Win-
dows registry. We will refer to the per-user configuration area using its Unix name, .subversion.

In addition to the per-user configuration area, Subversion also recognizes the existence of a system-wide configura-
tion area. The gives system administrators the ability to establish defaults for all users on a given machine. Note that
the system-wide configuration area does not alone dictate mandatory policy—the settings in the per-user configura-
tion area override those in the system-wide one, and command-line arguments supplied to svn program have the fi-
nal word on behavior. On Unix-like platforms, the sytem-wide configuration area is expected to be the /
etc/subversion directory; on Windows machines, it again looks for a Subversion directory inside the common
Application Data location (again, as specified by the Windows Registry). Unlike the per-user case, the svn program
does not attempt to create the system-wide configuration area.

The .subversion directory currently contains three files—two configuration files (config and servers), and a

74

README file which describes the INI format. At the time of their creation, the files contain default values for each of
the supported Subversion options, mostly commented out and grouped with textual descriptions about how the val-
ues for the key affect Subversion's behavior. To change a certain behavior, you need only to load the appropriate
configuration file into a text editor, and modify the desired option value. If at any time you wish to have the default
settings restore to one or more of the configuration files, you can simply delete the file, and run some innocuous svn
command, such as svn --version, and the missing file will be recreated in its default state.

Configuration and the Windows Registry
In addition to the usual INI-based configuration area, Subversion clients running on Windows platforms may also
use the Windows registry to hold the configuration data. The option names and their values are the same as in the
INI files. The “file/section” hierarchy is preserved as well, though addressed in a slightly different fashion—in this
schema, files and sections are just levels in the registry key tree.

Subversion looks for system-wide configuration values under the
HKEY_LOCAL_MACHINE\Software\Tigris.org\Subversion key. For example, the global-ignores option,
which is in the miscellany section of the config file, would be found at
HKEY_LOCAL_MACHINE\Software\Tigris.org\Subversion\Config\Miscellany\global-ignores. Per-
user configuration values should be stored under HKEY_CURRENT_USER\Software\Tigris.org\Subversion.

Registry-based configuration options are parsed before their file-based counterparts, so are overridden by values
found in the configuration files. In other words, configuration priority is granted in the following order on a Win-
dows system:

1. Command-line options

2. The per-user INI files

3. The pre-user Registry values

4. The system-wide INI files

5. The system-wide Registry values

Also, the Windows Registry doesn't really support the notion of something being “commented out”. However, Sub-
version will ignore any option key whose name begins with a hash (#) character. This allows you to effectively com-
ment out a Subversion option without deleting the entire key from the Registry, obviously simplifying the process of
restoring that option.

The svn command-line client never attempts to write to the Windows Registry, and will not attempt to create a de-
fault configuration area there. You can create the keys you need using the REGEDIT program. Alternatively, you
can create a .REG file, and then double-click on that file from the Explorer shell, which will cause the data to be
merged into your registry.

Example 6.1. Sample registration entries (.REG) file.

REGEDIT4

[HKEY_LOCAL_MACHINE\Software\Tigris.org\Subversion\Servers\DEFAULT]
"#http-proxy-host"=""
"#http-proxy-port"=""
"#http-proxy-username"=""
"#http-proxy-password"=""
"#http-proxy-timeout"="0"
"#http-compression"="yes"

Advanced Topics

75

[HKEY_CURRENT_USER\Software\Tigris.org\Subversion\Config\auth]
"#store-password"="no"

[HKEY_CURRENT_USER\Software\Tigris.org\Subversion\Config\helpers]
"#editor-cmd"="notepad"

[HKEY_CURRENT_USER\Software\Tigris.org\Subversion\Config\miscellany]
"#global-ignores"="*.o *.lo *.la #*# .*.rej *.rej .*~ *~ .#*"

The previous example shows the contents of a .REG file which contains some of most commonly used configuration
options and their default values. Note the presence of both system-wide (for network proxy-related options) and per-
user settings (editor programs and passoword storage, among others). Also note that all the options are effectively
commented out. You need only to remove the hash (#) character from the beginning of the option names, and set the
values as you desire.

Configuration Options
In this section, we will discuss the specific run-time configuration options which are currently supported by Subver-
sion.

Servers

The servers file contains Subversion configuration options related to the network layers. There are two special
section names in this file—groups and default. The groups section is essentially a cross-reference table. The
keys in this section are the names of other sections in the file; their values are globs—textual tokens which possibly
contain wildcard characters—which are compared against the hostnames of the machine to which Subversion re-
quests are sent.

[groups]
beanie-babies = *.red-bean.com
collabnet = svn.collab.net

[beanie-babies]
…

[collabnet]
…

When Subversion is used over a network, it attempts to match the name of the server it is trying to reach with a
group name under the groups section. If a match is made, Subversion then looks for a section in the servers file
whose name is the matched group's name. From that section it reads the actual network configuration settions.

The default section contains the settings which are meant for all of the servers not matched by one of the globs
under the groups section. The options available in this section are exactly the same as those valid for the other
server sections in the file (except, of course, the special groups section), and are as follows:

http-proxy-host This specifies the hostname of the proxy computer through which your HTTP-based
Subversion requests must pass. It defaults to an empty value, which means that Sub-
version will not attempt to route HTTP requests through a proxy computer, and will
instead attempt to contact the destination machine directly.

http-proxy-port This specifies the port number on the proxy host to use. It defaults to an empty value.

http-proxy-username This specifies the username to supply to the proxy machine. It defaults to an empty
value.

http-proxy-password This specifies the password to supply to the proxy machine. It defaults to an empty

Advanced Topics

76

value.

http-timeout This specifies the amount of time, in seconds, to wait for a server response. If you ex-
perience problems with a slow network connection causing Subversion operations to
timeout, you should increase the value of this option. The default value is 0, which in-
structs the underlying HTTP library, Neon, to use its default timeout setting.

http-compression This specifies whether or not Subversion should attempt to compress network requests
made to DAV-ready servers. The default value is yes (though compression will only
occur if that capability is compiled into the network layer). Set this to no to disable
compression, such as when debugging network transmissions.

neon-debug-mask This is an integer mask which the underlying HTTP library, Neon, uses for choosing
what type of debugging output to yield. The default value is 0, which will silence all
debugging output. For more information about how Subversion makes use of Neon,
see Chapter 7, Developer Information.

Config

The config file contains the rest of the currently available Subversion run-time options, those not related to net-
working. There are only a few options in use at this time, but they are again grouped into sections in expectation of
future additions.

The auth section contains settings related to Subversion's authentication and authorization against the repository. It
contains:

store-password This instructs Subversion to cache, or not to cache, passwords that are supplied by the
user in response to server authentication challenges. The default value is yes. Set this
to no to disable this on-disk password caching. You can override this option for a sin-
gle instance of the svn command using the --no-auth-cache command-line param-
eter (for those subcommands that support it).

The helpers section controls which external applications Subversion uses to accomplish its tasks. Valid options in
this section are:

editor-cmd This specifies the program Subversion will use to query the user for a log message
during a commit operation, such as when using svn commit without either the -
-message (-m) or --file (-F) options. This program is also used with the svn
propedit command—a temporary file is populated with the current value of the prop-
erty the user wishes to edit, and the edits take places right in the editor program (see
Section , “Properties”). This option's default value is empty. If the option is not set,
Subversion will fall back to checking the environment variables SVN_EDITOR, VI-
SUAL, and EDITOR (in that order) for an editor command.

diff-cmd This specifies the absolute path of a differencing program, used when Subversion gen-
erates “diff” output (such as when using the svn diff command). The default value is
the path of the GNU diff utility, as determined by the Subversion source code build
system.

diff3-cmd This specifies the absolute path of a three-way differencing program. Subversion uses
this program merge changes made by the user with those received from the repository.
The default value is the path of the GNU diff3 utility, as determined by the Subversion
source code build system.

Advanced Topics

77

11Anyone for potluck dinner?

diff3-has-program-arg This flag should be set to true if the program specified by the diff3-cmd option ac-
cepts a --diff-program command-line parameter. Since the diff3-cmd option's
default value is determined at compilation time, the default value for the
diff3-has-program-arg is, too.

The miscellany section is where everything that doesn't belong elsewhere winds up. 11 In this section, you can
find:

global-ignores When running the svn status command, Subversion lists unversioned files and direc-
tories along with the versioned ones, annotating them with a ? character (see Section ,
“svn status”). Sometimes, it can be annoying to see uninteresting, unversioned
items—for example, object files that result from a program's compilation—in this dis-
play. The global-ignores option is a list of whitespace-delimited globs which de-
scribe the names of files and directories that Subversion should not display unless they
are versioned. The default value is *.o *.lo *.la #*# .*.rej *.rej .*~ *~
.#*.

You can override this option for a single instance of the svn status command by using
the --no-ignore command-line flag. For information on more fine-grained control
of ignored items, see Section , “svn:ignore”.

Properties
We've already covered in detail how Subversion stores and retrieves various versions of files and directories in its
repository. Whole chapters have been devoted to this most fundamental piece of functionality provided by the tool.
And if the versioning support stopped there, Subversion would still be complete from a version control perspective.
But it doesn't stop there.

In addition to versioning your directories and files, Subversion provides interfaces for adding, modifying, and re-
moving versioned metadata on each of your versioned directories and files. We refer to this metadata as properties,
and they can be thought of as two-column tables that map property names to arbitrary values attached to each item
in your working copy. Generally speaking, the names and values of the properties can be whatever you want them to
be, with the constraint that the names must be human-readable text. And the best part about these properties is that
they, too, are versioned, just like the textual contents of your files. You can modify, commit, and revert property
changes as easily as committing textual changes. And you receive other people's property changes as you update
your working copy.

Other Properties in Subversion

Properties show up elsewhere in Subversion, too. Just as files and directories may have arbitrary property names and
values attached to them, each revision as a whole may have arbitrary properties attached to it. The same constraints
apply—human-readable, text names and anything-you-want, binary values—except that revision properties are not
versioned. See Section , “Unversioned Properties” for more information on these unversioned properties.

In this section, we will examine the utility—both to users of Subversion, and to Subversion itself—of property sup-
port. You'll learn about the property-related svn subcommands, and how property modifications affect your normal
Subversion workflow. Hopefully, you'll be convinced that Subversion properties can enhance your version control
experience.

Why Properties?

Advanced Topics

78

Properties can be very useful additions to your working copy. In fact, Subversion itself uses properties to house spe-
cial information, and as a way to denote that certain special processing might be needed. Likewise, you can use
properties for your own purposes. Of course, anything you can do with properties you could also do using regular
versioned files, but consider the following example of Subversion property use.

Say you wish to design a website that houses many digital photos, and displays them with captions and a datestamp.
Now, your set of photos is constantly changing, so you'd like to have as much of this site automated as possible.
These photos can be quite large, so as is common with sites of this nature, you want to provide smaller thumbnail
images to your site visitors. You can do this with traditional files. That is, you can have your image123.jpg and an
image123-thumbnail.jpg side-by-side in a directory. Or if you want to keep the filenames the same, you might
have your thumbnails in a different directory, like thumbnails/image123.jpg. You can also store your captions
and datestamps in a similar fashion, again separated from the original image file. Soon, your tree of files is a mess,
and grows in multiples with each new photo added to the site.

Now consider the same setup using Subversion's file properties. Imagine having a single image file,
image123.jpg, and then properties set on that file named caption, datestamp, and even thumbnail. Now your
working copy directory looks much more manageable—in fact, it looks like there are nothing but image files in it.
But your automation scripts know better. They know that they can use svn (or better yet, they can use the Subver-
sion language bindings—see Section , “Using Languages Other than C and C++”) to dig out the extra information
that your site needs to display without having to read an index file or play path manipulation games.

How (and if) you use Subversion properties is up to you. As we mentioned, Subversion has it own uses for proper-
ties, which we'll discuss a little later in this chapter. But first, let's discuss how to manipulate options using the svn
program.

Manipulating Properties
The svn command affords a few ways to add or modify file and directory properties. For properties with short, hu-
man-readable values, perhaps the simplest way to add a new property is to specify the property name and value on
the command-line of propset subcommand.

$ svn propset copyright '(c) 2003 Red-Bean Software' calc/button.c
property `copyright' set on 'calc/button.c'
$

But we've been touting the flexibility that Subversion offers for your property values. And if you are planning to
have a multi-line textual, or even binary, property value, you probably do not want to supply that value on the com-
mand-line. So the propset subcommand takes a --file (-F) option for specifying the name of a file which con-
tains the new property value.

$ svn propset license -F /path/to/LICENSE calc/button.c
property `license' set on 'calc/button.c'
$

In addition to the propset command, the svn program supplies the propedit command. This command uses the con-
figured editor program (see Section , “Config”) to add or modify properties. When you run the command, svn in-
vokes your editor program on a temporary file that contains the current value of the property (or which is empty, if
you are adding a new property). Then, you just modify that value in your editor program until it represents the new
value you wish to store for the property, save the temporary file, and then exit the editor program. If Subversion de-
tects that you've actually changed the existing value of the property, it will accept that as the new property value. If
you exit your editor without making any changes, no property modification will occur.

$ svn propedit copyright calc/button.c ### exit the editor without changes
No changes to property `copyright' on `calc/button.c'
$

Advanced Topics

79

We should note that, as with other svn subcommands, those related to properties can act on multiple paths at once.
This enables you to modify properties on whole sets of files with a single command. For example, we could have
done:

$ svn propset copyright '(c) 2002 Red-Bean Software' calc/*
property `copyright' set on 'calc/Makefile'
property `copyright' set on 'calc/button.c'
property `copyright' set on 'calc/integer.c'
…
$

All of this property adding and editing isn't really very useful if you can't easily get the stored property value. So the
svn program supplies two subcommands for displaying the names and values of properties stored on files and direc-
tories. The svn proplist command will list the names of properties which exist on a path. Once you know the names
of the properties on the node, you can request their values individually using svn propget. This command will,
given a path (or set of paths) and a property name, print the value of the property to the standard output stream.

$ svn proplist calc/button.c
Properties on 'calc/button.c':

copyright
license

$ svn propget copyright calc/button.c
(c) 2003 Red-Bean Software

There's even a variation of the proplist command which will list both the name and value of all of the properties.
Simply supply the --verbose (-v) option.

$ svn proplist --verbose calc/button.c
Properties on 'calc/button.c':

copyright : (c) 2003 Red-Bean Software
license : ==

Copyright (c) 2003 Red-Bean Software. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions, and the recipe for Fitz's famous
red-beans-and-rice.
…

The last property-related subcommand is propdel. Since Subversion allows you to store properties with empty val-
ues, you can't remove a property altogether using propedit or propset. For example, this command will not work:

$ svn propset license '' calc/button.c
property `license' set on 'calc/button.c'
$ svn proplist --verbose calc/button.c
Properties on 'calc/button.c':

copyright : (c) 2003 Red-Bean Software
license :

$

You need to use the propdel command to delete properties altogether. The syntax is similar to the other property
commands:

$ svn propdel license calc/button.c
property `foo' deleted from ''.

Advanced Topics

80

12Fixing spelling errors, grammatical gotchas, and “just-plain-wrongness” in commit log messages is perhaps the most common use-case for the
--revprop option.

$ svn proplist --verbose calc/button.c
Properties on 'calc/button.c':

copyright : (c) 2003 Red-Bean Software
$

Now that you are now familiar with all of the property-related svn subcommands, let's see how property modifica-
tions affect the usual Subversion workflow. As we mentioned earlier, file and directory properties are versioned, just
like your file contents. As a result, Subversion provides the same opportunies for merging—in cleanly or conflicting
fashions—someone else's modifications into your own.

Modifying Revision Properties

Remember those unversioned revision properties? You can modify those, too, with the svn program. Simply add the
--revprop command-line parameter, and specify the revision whose property you wish to modify. Since revisions
are global, you don't need to specify a path in this case as long as you are positioned in the working copy of the
repository whose revision property you wish to modify. For example, you might want to replace the commit log
message of an existing revision. 12

$ svn pset svn:log '* button.c: Fix a compiler warning.' -r11 --revprop
property `status' set on repository revision '11'
$

Note that the ability to modify these unversioned properties must be explicitly added by the repository administrator
(see Section , “Hook scripts”). Since the properties aren't versioned, you run the risk of losing information if you
aren't careful with your edits. The repository administrator can setup methods to protect against this lossage, but by
default, modification of unversioned properties is disabled.

And as with file contents, your property changes are local modifications, only made permanent when you commit
them to the repository with svn commit. Your property changes can be easily unmade, too—the svn revert com-
mand will restore your files and directories to their un-edited states, contents, properties, and all. Also, you can re-
ceive interesting information about the state of your file and directory properties by using the svn status and svn
diff commands.

$ svn status calc/button.c
M calc/button.c

$ svn diff calc/button.c
Property changes on: calc/button.c

Name: copyright

+ (c) 2003 Red-Bean Software

$

Notice how the status subcommand displays M in the second column instead of the first. That is because we have
modified the properties on calc/button.c, but not modified its textual contents. Had we changed both, we would
have seen M in the first column, too (see Section , “svn status”).

Property Conflicts

As with file contents, local property modifications can conflict with changes committed by someone else. If you up-
date your working copy directory and receive property changes on a versioned resource that clash with your own,
Subversion will report that the resource is in a conflicted state.

Advanced Topics

81

% svn up calc
M calc/Makefile.in
C calc/button.c

Updated to revision 143.
$

Subversion will also create, in the same directory as the conflicted resource, a file with a .prej extension which
contains the details of the conflict. You should examine the contents of this file so you can decide how to resolve the
conflict. Until the conflict is resolved, you will see a C in the second column of svn status output for that resource,
and attempts to commit your local modifications will fail.

$ svn st calc
C calc/button.c

? calc/button.c.prej
$ cat calc/button.c.prej
prop `linecount': user set to '1256', but update set to '1301'.
$

To resolve property conflicts, simply ensure that the conflicting properties contain the values that they should, and
then use the svn resolve command to alert Subversion that you have manually resolved the problem.

You might also have noticed the non-standard way that Subversion currently displays property differences. You can
still run svn diff and redirect the output to create a usable patch file. The patch program will ignore property
patches—as a rule, it ignores any noise it can't understand. This does unfortunately mean that to fully apply a patch
generated by svn diff, any property modifications will need to be applied by hand.

As you can see, the presence of property modifications has no outstanding effect on the typical Subversion work-
flow. Your general patterns of updating your working copy, checking the status of your files and directories, report-
ing on the modifications you have made, and committing those modifications to the repository are completely im-
mune to the presence or absence of properties. The svn program has some additional subcommands for actually
making property changes, but that is the only noticeable assymmetry.

Special properties
Subversion has no particular policy regarding properties—you can use them for any purpose. Subversion asks only
that you not use property names that begin with the prefix svn:. That's the namespace that its sets aside for its own
use. In fact, Subversion defines certain properties that have magical effects on the files and directories to which they
are attached. In this section, we'll untangle the mystery, and describe how these special properties make your life
just a little easier.

svn:executable

The svn:executable property is used to control a versioned file's filesystem-level execute permission bit in a
semi-automated way. This property has no defined values—its mere presence indicates a desire the execute permis-
sion bit to be kept enabled by Subversion. Removing this property will restore full control of the execute bit back to
the operating system.

On many operating systems, the ability to execute a file as a command is governed by the presence of an execute
permission bit. This bit usually defaults to being disabled, and must be explicitly enabled by the user for each file
that needs it. In a working copy, new files are being created all the time as new versions of existing files are received
during an update. This means that you might enable the execute bit on a file, then update your working copy, and if
that file was changed as part of the update, its execute bit might get disabled. So, Subversion provides the
svn:executable property as a way to keep the execute bit enabled.

This property has no effect on filesystems that have no concept of an executable permission bit, such as FAT32 and

Advanced Topics

82

13The Windows filesystems use file extensions (such as .EXE, .BAT, and .COM) to denote executable files.

NTFS. 13 Also, while it has no defined values, some people choose as a convention a value (such as on) to use when
setting this property. Subversion doesn't care—it won't even read the property value. But be careful when choosing
such conventions—inexperienced users might mistakenly believe that the way to disable this functionality is to
change the property value to its idiomatic opposite (in this case, off). Finally, this property is valid only on files,
not on directories.

svn:mime-type

The svn:mime-type property serves many purposes in Subversion. Besides being a general-purpose storage loca-
tion for a file's Multipurpose Internet Mail Extensions (MIME) classification, the value of this property determines
several behavioral characteristics of Subversion itself.

For example, if a file's svn:mime-type property is set to a non-text MIME type (generally, something that doesn't
begin with text/, though there are exceptions), Subversion will assume that the file contains binary—that is, not
human-readable—data. One of the benefits that Subversion typically provides is contextual, line-based merging of
changes received from the server during an update into your working file. But for files believed to contain binary
data, there is no concept of a “line”. So, for those files, Subversion does not attempt to perform contextual merges
during updates. Instead, any time you have locally modified a binary working copy file that is also being updated,
your file is renamed with a .orig extension, and then Subversion stores a new working copy file that contains the
changes received during the update, but not your own local modifications, at the original filename. This behavior is
really for the protection of the user against failed attempts at performing contextual merges on files that simply can-
not be contextually merged.

Subversion assists users by running a binary-detection algorithm in the svn import and svn add subcommands.
These subcommands use a heuristic to guess at a file's “binary-ness”, and then set the svn:mime-type property to
application/octet-stream (the generic “this is a collection of bytes” MIME type) on any files that are deemed
binary. If Subversion guesses wrong, or if you wish to set the svn:mime-type property to something more
accurate—perhaps image/png or application/x-shockwave-flash—you can always remove or hand-edit the
property.

Finally, if the svn:mime-type property is set, then the Subversion Apache module will use its value to populate the
Content-type: HTTP header when responding to GET request. This gives a crucial clue to about how to display a
file when perusing your repository with a web browser.

svn:ignore

The svn:ignore property contains a list of file patterns which certain Subversion operations will ignore. Perhaps
the most commonly used special property, it works in conjunction with the global-ignores run-time configura-
tion option (see Section , “Config”) to filter unversioned files and directories out of commands like svn status.

The rationale behind the svn:ignore property is easily explained. Subversion does not assume that every file or
subdirectory in a working copy directory is intended for version control. Resources must be explicitly placed under
Subversion's management using the svn add command. As a result, there are often many resources in a working
copy that are not versioned.

Now, the svn status command displays as part of its output every unversioned file or subdirectory in a working
copy that is not already filtered out by the global-ignores option (or its built-in default value). This is done so
that users can see if perhaps they've forgotten to add a resource to version control.

But Subversion cannot possibly guess the names of every resource that should be ignored. Also, quite often there are
things that should be ignored in every working copy of a particular repository. To force every user of that repository
to add patterns for those resources to their run-time configuration areas would be not just a burden, but has the po-
tential to clash with the configuration needs of other working copies that the user has checked out.

The solution is to store ignore patterns that are unique to the resources likely to appear in a given directory with the
directory itself. Common examples of unversioned resources that are basically unique to a directory, yet likely to ap-
pear there, include output from program compilations. Or—to use an example more appropriate to this book—the
HTML, PDF, or PostScript files generated as the result of a conversion of some source DocBook XML files to a

Advanced Topics

83

14The patterns are strictly for that directory—they do not carry recursively into subdirectories.
15Isn't that the whole point of a build system?

more legible output format.

Ignore Patterns for CVS Users

The Subversion svn:ignore property is very similar in syntax and function to the CVS .cvsignore file. In fact,
if you are migrating a CVS working copy to Subversion, you can directly migrate the ignore patterns by the
.cvsignore file as input file to the svn propset command:

$ svn pset svn:ignore -F .cvsignore .
property `svn:ignore' set on '.'
$

There are, however, some differences in the ways that CVS and Subversion handle ignore patters. The two systems
use the ignore patterns at some different times, and there are slight discrepencies in what the ignore patterns apply
to. Also, Subversion does not recognize the use of the ! pattern as a reset back to having no ignore patterns at all. Fi-
nally, while the .cvsignore patterns apply recursively from the directory in which they reside, Subversion's
svn:ignore property applies only to the directory on which it is set.

For this purpose, the svn:ignore property is the solution. Its value is a multi-line collection of file patterns, one
pattern per line. The property is set on the directory in which your wish the patterns to be applied. 14 For example,
say you have the following output from svn status:

$ svn status calc
M calc/button.c

? calc/calculator
? calc/data.c
? calc/debug_log
? calc/debug_log.1
? calc/debug_log.2.gz
? calc/debug_log.3.gz

In this example, you have made some property modifications to button.c, but in your working copy you also have
some unversioned files, in this case, the latest calculator program that you've compiled from your source code, a
source file named data.c, and a set of debugging output logfiles. Now, you know that your build system always re-
sults in the calculator program being generated. 15 And you know that your test suite always leaves those debug-
ging log files lying around. These facts are true for all working copies, not just your own. And you know that you
aren't interested in seeing those things every time you run svn status. So you use svn propedit svn:ignore calc to
add some ignore patterns to the calc directory. For example, you might add this as the new value of the
svn:ignore property:

calculator
debug_log*

After you've added this property, you will now have a local property modification on the calc directory. But notice
what else is different about your svn status output:

$ svn status
M calc
M calc/button.c

? calc/data.c

Now, all the cruft is missing from the output! Of course, those files are still in your working copy. Subversion is
simply not reminding you that they are present and unversioned. And now with all the trivial noise removed from

Advanced Topics

84

16… or maybe even a section of a book …

the display, you are left with more interesting items— such as that source code file that you probably forgot to add
to version control.

svn:keywords

Subversion has the ability to substitute keywords—pieces of useful, dynamic information about a versioned
file—into the contents of the file itself. Keywords generally describe information about the last time the file was
known to be modified. Because this information changes each time the file changes, and more importantly, just after
the file changes, it is a hassle for any process except the version control system to keep the data completely up-
to-date. Left to human authors, the information would inevitably grow stale.

For example, say you have a document in which you would like to display the last date on which it was modified.
You could burden every author of that document to, just before committing their changes, also tweak the part of the
document that describes when it was last changed. But sooner or later, someone would forget to do that. Instead sim-
ply ask Subversion to perform keyword substitution on the LastChangedDate keyword. You control where the
keyword is inserted into your document by placing a keyword anchor at the desired location in the file. This anchor
is just a string of text formatted as $KeywordName$

Subversion defines the list of keywords available for substitution. That list contains the following five keywords,
some of which have shorter aliases that you can also use:

LastChangedDate This keyword describes the last time the file was known to have been changed in the
repository, and looks something like $LastChangedDate: 2002-07-22
21:42:37 -0700 (Mon, 22 Jul 2002) $. It may be abbreviated as Date.

LastChangedRevision This keyword describes the last known revision in which this file changed in the
repository, and looks something like $LastChangedRevision: 144 $. It may be
abbreviated as Rev.

LastChangedBy This keyword describes the last known user to change this file in the repository, and
looks something like $LastChangedBy: joe $. It may be abbreviated as Author

HeadURL This keyword describes the full URL to the latest version of the file in the repository,
and looks something like $HeadURL:
http://svn.collab.net/repos/trunk/README $. It may be abbreviated as
URL.

Id This keyword is compressed combination of the other keywords. Its substitution looks
something like $Id: calc.c 148 2002-07-28 21:30:43 sally $, and is inter-
preted to mean that the file calc.c was last changed in revision 148 on the evening of
July 28, 2002 by the user sally.

Simply adding keyword anchor text to your file does nothing special. Subversion will never attempt to perform tex-
tual substitutions on your file contents unless explicitly asked to do so. After all, you might be writing a document
16 about how to use keywords, and you don't want Subversion to substitute your beautiful examples of un-substited
keyword anchors!

To tell Subversion whether or not to substitute keywords on a particular file, we again turn to the property-related
subcommands. The svn:keywords property, when set on a versioned file, controls which keywords will be substi-
tuted on that file. The value is a space-delimited list of the keyword names or aliases found in the previous table.

For example, say you have a versioned file named weather.txt that looks like this:

Here is the latest report from the front lines.
$LastChangedDate$
Rev

Advanced Topics

85

Cumulus clouds are appearing more frequently as summer approaches.

With no svn:keywords property set on that file, Subversion will do nothing special. Now, let's enable substitution
of the LastChangedDate keyword.

$ svn propset svn:keywords "LastChangedDate Author" weather.txt
property `svn:keywords' set on 'weather.txt'
$

Now you have made a local property modification on the weather.txt file. You will see no changes to the file's
contents (unless you made some of your own prior to setting the property). Notice that the file contained a keyword
anchor for the Rev keyword, yet we did not include that keyword in the property value we set. Subversion will hap-
pily ignore requests to substitute keywords that are not present in the file, and will not substitute keywords that are
not present in the svn:keywords property value.

Keywords and Spurious Differences

The user-visible result of keyword substitution might lead you to think that every version of a file with that feature
in use differs from the previous version in at least the area where the keyword anchor was placed. However, this is
actually not the case. While checking for local modifications during svn diff, and before transmitting those local
modifications during svn commit, Subversion “un-substitutes” any keywords that it previously substituted. The re-
sult is that the versions of the file that are stored in the repository contain only the real modifications that users make
to the file.

Immediately after you commit this property change, Subversion will update your working file with the new substi-
tute text. Instead of seeing your keyword anchor $LastChangedDate$, you'll see its substituted result. That result
also contains the name of the keyword, and continues to be bounded by the dollar sign ($) characters. And as we
predicted, the Rev keyword was not substituted because we didn't ask for it to be.

Here is the latest report from the front lines.
$LastChangedDate: 2002-07-22 21:42:37 -0700 (Mon, 22 Jul 2002) $
Rev
Cumulus clouds are appearing more frequently as summer approaches.

If someone else now commits a change to weather.txt, your copy of that file will continue to display the same
substituted keyword value as before—until you update your working copy. At that time the keywords in your
weather.txt file will be re-substituted again with information that reflects the most recent known commit to that
file.

svn:eol-style

Unless otherwise noted using a versioned file's svn:mime-type property, Subversion assumes that file contains hu-
man-readable data. Generally speaking, Subversion only uses this knowledge to determine if contextual differences
reports for that file are possible. Otherwise, to Subversion, bytes are bytes.

This means that by default, Subversion doesn't pay any attention to the type of end-of-line (EOL) markers used in
your files. Unfortunately, different operating system use different tokens to represent the end of a line of text in a
file. For example, the usual line ending token used by software on the Windows platform is a pair of ASCII control
characters—carriage return (CR) and line feed (LF). Unix software, however, just uses the LF character to denote the
end of a line.

Not all of the various tools on these operating systems are prepared to understand files that contain line endings in a
format that differs from the native line ending style of the operating system on which they are running. Common re-
sults are that Unix programs treat the CR character present in Windows files as a regular character (usually rendered

Advanced Topics

86

as ^M), and that Windows programs combine all of the lines of a Unix file into one giant line because no carriage re-
turn-linefeed (or CRLF) character combination was found to denote the end of line.

This sensitivity to foreign EOL markers can become frustraing for folks who share a file across different operating
systems. For example, consider a source code file, and developers that edit this file on both Windows and Unix sys-
tems. If all the developers always use tools which preserve the line ending style of the file, no problems occur.

But in practice, many common tools either fail to properly read a file with foreign EOL markers, or they convert the
file's line endings to the native style when the file is saved. If the former is true for a developer, he has to use an ex-
ternal conversion utility (such as dos2unix or its companion, unix2dos) to prepare the file for editing. The latter
case requires no extra preparation. But both cases result in a file that differs from the original quite literally on every
line! Prior to committing his changes, the user has two choices. Either he can use a conversion utility to restore the
modified file to the same line ending style that it was in before his edits were made. Or, he can simply commit the
file—new EOL markers and all.

The result of scenarios like there include wasted time and unnecessary modifications to committed files. Wasted
time is painful enough. But when commits change every line in a file, this complicates the job of determining which
of those lines were changed in a non-trivial way. Where was that bug really fixed? On what line was a syntax error
introduced?

The solution this problem is the svn:eol-style property. When this property is set to a valid value, Subversion
uses it to determine what special processing to perform on the file so that the file's line ending style isn't flip-
flopping with every commit that comes from a different operating system. The valid values are:

native This causes the file to contain the EOL markers that are native to the operating system on which Sub-
version was run. In other words, if a user on a Windows machine checks out a working copy that con-
tains a file with a svn:eol-style property set to native, that file will contain CRLF EOL markers.
A unix user checking out a working copy which contains the same file will see LF EOL markers in
his copy of the file.

Note that Subversion will actually store the file in the repository using normalized LF EOL markers
regardless of the operating system. This is basically transparent to the user, though.

CRLF This causes the file to contain CRLF sequences for EOL markers, regardless of the operating system
in use.

LF This causes the file to contain LF characters for EOL markers. regardless of the operating system in
use.

CR This causes the file to contain CR characters for EOL markers, regardless of the operating system in
use. This line ending style is not very common. It was used on older Macintosh platforms (on which
Subversion doesn't even run).

svn:externals

The svn:externals property contains instructions for Subversion to populate a versioned directory with one or
more other checked-out Subversion working copies. For more information on this keyword and its use, see Section ,
“Externals Definitions”.

Externals Definitions
Sometimes it is useful to construct a working copy that is made out of a number of different checkouts. For example,
you may want different subdirectories to come from different locations in a repository, or perhaps from different
repositories altogether. You could certainly setup such a scenario by hand—using svn checkout to create the sort of
nested working copy structure you are trying to achieve. But if this layout is important for everyone who uses your
repository, every other user will need to perform the same checkout operations that you did.

Advanced Topics

87

Fortunately, Subversion provides support for externals definitions. An externals definition is a mapping of a local di-
rectory to the URL of a versioned resource. In Subversion, you declare externals definitions in groups using the
svn:externals property. This property is set on a versioned directory, and its value is a multi-line table of subdi-
rectories (relative to the versioned directory on which the property is set) and Subversion repository URLs.

$ svn propget svn:externals calc
third-party/sounds http://sounds.red-bean.com/repos
third-party/skins http://skins.red-bean.com/repositories/skinproj
third-party/skins/toolkit http://svn.red-bean.com/repos/skin-maker

The convenience of the svn:externals property is that once it is set on a versioned directory, everyone who
checks out a working copy with that directory also gets the benefit of the externals definition. In other words, once
one person has made the effort to define those nested working copy checkouts, no one else has to Subver-
bother—sion will, upon checkout of the original working copy, also checkout the external working copies.

Note the previous externals definition example. When someone checks out a working copy of the calc directory,
Subversion also continues to checkout the items found in its externals definition.

$ svn checkout http://svn.example.com/repos/calc
A calc
A calc/Makefile
A calc/integer.c
A calc/button.c
Checked out revision 148.

Fetching external item into calc/third-party/sounds
A calc/third-party/sounds/ding.ogg
A calc/third-party/sounds/dong.ogg
A calc/third-party/sounds/clang.ogg
…
A calc/third-party/sounds/bang.ogg
A calc/third-party/sounds/twang.ogg
Checked out revision 14.

Fetching external item into calc/third-party/skins
…

If you need to change the externals definition, you can do so using the regular property modification subcommands.
When you commit a change to the svn:externals property, Subversion will syncronize the checked-out items
against the changed externals definition when you next run svn update. The same thing will happen when others up-
date their working copies and receive your changes to the externals definition.

Vendor branches
As is especially the case when developing software, the data that you maintain under version control is often closely
related to, or perhaps dependent upon, someone else's data. Generally, the needs of your project will dictate that you
stay as up-to-date as possible with the data provided by that external entity without sacrificing the stability of your
own project. This scenario plays itself out all the time—anywhere that the information generated by one group of
people has a direct effect on that which is generated by another group.

For example, software developers might be working on an application which makes use of a third-party library. Sub-
version has just such a relationship with the Apache Portable Runtime library (see Section , “The Apache Portable
Runtime Library”). The Subversion source code depends on the APR library for all its portability needs. In earlier
stages of Subversion's development, the project closely tracked APR's changing API, always sticking to the bleed-
“ing edge” of the library's code churn. Now that both APR and Subversion have matured, Subversion attempts to
syncronize with APR's library API only at well-tested, stable release points.

Now, if your project depends on someone else's information, there are several ways that you could attempt to syn-

Advanced Topics

88

17Is the concept of modifying someone else's source code foreign—perhaps even shocking—to you? Visit the Free Software Foundation online
(at http://www.fsf.org/).

cronize that information with your own. Most painfully, you could issue oral or written instructions to all the con-
tributors of your project, telling them to make sure that they have the specific versions of that third-party informa-
tion that your project needs. If the third-party information is maintained in a Subversion repository, you could also
use Subversion's externals definitions to effectively “pin down” specific versions of that information to some loca-
tion in your own working copy directory.

But sometimes you want to maintain custom modifications to third-party data in your own version control system.
Returning to the software development example, programmers might need to make modifications to that third-party
library for their own purposes. 17 These modifications might include new functionality or bug fixes, maintained in-
ternally only until they become part of an official release of the third-party library. Or the changes might never be
relayed back to the library maintainers, existing solely as custom tweaks to make the library further suit the needs of
the software developers.

Now you face an interesting situation. Your project could house its custom modifications to the third-party data in
some disjointed fashion, such as using patch files or full-fledged alternate versions of files and directories. But these
quickly become maintainance headaches, requiring some mechanism by which to apply your custom changes to the
third-party data, and requiring you to regenerate your customizations with each incremental version of the third-
party data that you track.

The solution to this problem is to use vendor branches. A vendor branch is a directory tree in your own version con-
trol system which contains information provided by a third-party entity, or vendor. Each version of the vendor's data
that you decide to absorb into your project is called a vendor drop.

Vendor branches provide two key benefits. First, by storing the currently supported vendor drop in your own version
control system, the members of your project never need to question whether they have the right version of the ven-
dor's data. They simply receive that correct version as part of their regular working copy updates. Secondly, because
the data lives in your own Subversion repository, you can store your custom changes to it in-place—you have no
more need of an automated (or worse, manual) method for swapping in your customizations.

To use a vendor branch, create a new directory in your repository, but outside your normal development area, which
will house the latest pristine vendor drop. This is your vendor branch. Import the first vendor drop into your vendor
branch, then copy the vendor branch into the appropriate location of your normal development area. Make your cus-
tom changes to the vendor data in the copy of the vendor branch that is now in your normal development area.

Then, for each new vendor drop, do the following:

1. Import the latest vendor drop into the vendor branch.

2. Merge the differences between the latest and the previous vendor branch into the development copy.

3. Finally, resolve any conflicts that might have occured in your development area as part of the merge operation.

Let's try and make this a bit clearer with an example.

First, the initial import.

$ svn mkdir http://svnhost/repos/vendor/foobar
$ svn import http://svnhost/repos/vendor/foobar ~/foobar-1.0 current

Now we've got the current version of the foobar project in /vendor/foobar/current. We make another copy of
it so we can always refer to that version, and then copy it into the trunk so you can work on it.

$ svn copy http://svnhost/repos/vendor/foobar/current \
http://svnhost/repos/vendor/foobar/foobar-1.0 \

Advanced Topics

89

-m `tagging foobar-1.0'
$ svn copy http://svnhost/repos/vendor/foobar/foobar-1.0 \

http://svnhost/repos/trunk/foobar \
-m `bringing foobar-1.0 into trunk'

Now you just check out a copy of /trunk/foobar and get to work!

Later on, the developers at FooBar Widgets, Inc release a new version of their code, so you want to update the ver-
sion of the code you're using. First, you check out the /vendor/foobar/current directory, then copy the new re-
lease over that working copy, handle any renames, additions or removals manually, and then commit.

$ svn checkout http://svnhost/repos/vendor/foobar/current ~/current
$ cd ~/foobar-1.1
$ tar -cf - . | (cd ~/current ; tar -xf -)
$ cd ~/current
$ mv foobar.c main.c
$ svn move main.c foobar.c
$ svn delete dead.c
$ svn add doc
$ svn add doc/*
$ svn commit -m `importing foobar 1.1 on vendor branch'

Whoa, that was complicated. Don't worry, most cases are far simpler.

What happened? foobar 1.0 had a file called main.c. This file was renamed to foobar.c in 1.1. So your working-
copy had the old main.c which Subversion knew about, and the new foobar.c which Subversion did not know
about. You rename foobar.c to main.c and svn mv it back to the new name. This way, Subversion will know that
foobar.c is a descendant of main.c. dead.c has been removed in 1.1, and they have finally written some docu-
mentation, so you add that.

Next you copy /vendor/foobar/current to /vendor/foobar/foobar-1.1 so you can always refer back to
version 1.1, like this.

$ svn copy http://svnhost/repos/vendor/foobar/current \
http://svnhost/repos/vendor/foobar/foobar-1.1 \
-m `tagging foobar-1.1'

Now that you have a pristine copy of foobar 1.1 in /vendor, you just have to merge their changes into /trunk and
you're done. That looks like this.

$ svn checkout http://svnhost/repos/trunk/foobar ~/foobar
$ cd ~/foobar
$ svn merge http://svnhost/repos/vendor/foobar/foobar-1.0 \

http://svnhost/repos/vendor/foobar/foobar-1.1
$
… # resolve all the conflicts between their changes and your changes
$ svn commit -m `merging foobar 1.1 into trunk'

There, you're done. You now have a copy of foobar 1.1 with all your local changes merged into it in your tree.

Vendor branches that have more than several deletes, additions and moves can use the svn_load_dirs.pl script that
comes with the Subversion distribution. This script automates the above importing steps to make sure that mistakes
are minimized. You still need to use the merge commands to merge the new versions of foobar into your own local
copy containing your local modifications.

Advanced Topics

90

This script has the following enhancements over svn import:

• Can be run at any point in time to bring an existing directory in the repository to exactly match an external direc-
tory. This script runs all the svn add, svn rm and optionally any svn mv commands as necessary.

• Optionally tag the newly imported directory.

• Optionally add arbitrary properties to files and directories that match a regular expression.

This script takes care of complications where Subversion requires a commit before renaming a file or directory
twice, such as if you had a vendor branch that renamed foobar-1.1/docs/doc.ps to foobar-
1.2/documents/doc-1.2.ps. Here, you would rename docs to documents, perform a commit, then rename
doc.ps to doc-1.2.ps. You could not do the two renames without the commit, because doc.ps was already
moved once from docs/doc.ps to documents/doc.ps.

This script always compares the directory being imported to what currently exists in the Subversion repository and
takes the necessary steps to add, delete and rename files and directories to make the subversion repository match the
imported directory. As such, it can be used on an empty subversion directory for the first import or for any following
imports to upgrade a vendor branch.

For the first foobar-1.0 release located in ~/foobar-1.0:

$ svn_load_dirs.pl -t foobar-1.0 \
http://svnhost/repos/vendor/foobar \
current \
~/foobar-1.0

svn_load_dirs.pl takes three mandatory arguments. The first argument,
http://svnhost/repos/vendor/foobar, is the URL to the base Subversion directory to work in. In this case,
we're working in the vendor/foobar part of the Subversion repository. The next argument, current, is relative to
the first and is the directory where the current import will take place, in this case
http://svnhost/repos/vendor/foobar/current. The last argument, ~/foobar-1.0, is the directory to im-
port. Finally, the optional -t command line option is also relative to http://svnhost/repos/vendor/foobar
and tells svn_load_dirs.pl to create a tag of the imported directory in
http://svnhost/repos/vendor/foobar/foobar-1.0.

The import of foobar-1.1 would be taken care of in the same way:

$ svn_load_dirs.pl -t foobar-1.1 \
http://svnhost/repos/vendor/foobar \
current \
~/foobar-1.1

The script looks in your current http://svnhost/repos/vendor/foobar/current directory and sees what
changes need to take place for it to match ~/foobar-1.1. The script is kind enough to notice that there are files
and directories that exist in 1.0 and not in 1.1 and asks if you want to perform any renames. At this point, you can
indicate that main.c was renamed to foobar.c and then indicate that no further renames have taken place.

The script will then delete dead.c and add doc and doc/* to the Subversion repository and finally create a tag foo-
bar-1.1 in http://svnhost/repos/vendor/foobar/foobar-1.1.

The script also accepts a separate configuration file for applying properties to specific files and directories matching
a regular expression that are added to the repository. This script will not modify properties of already existing files
or directories in the repository. This configuration file is specified to svn_load_dirs.pl using the -p command line

Advanced Topics

91

option. The format of the file is either two or four columns.

regular_expression control property_name property_value

The regular_expression is a Perl style regular expression. The control column must either be set to break or
cont. It is used to tell svn_load_dirs.pl if the following lines in the configuration file should be examined for a
match or if all matching should stop. If control is set to break, then no more lines from the configuration file will
be matched. If control is set to cont, which is short for continue, then more comparisons will be made. Multiple
properties can be set for one file or directory this way. The last two columns, property_name and prop-
erty_value are optional and are applied to matching files and directories.

If you have whitespace in any of the regular_expression, property_name or property_value columns, you
must surround the value with either a single or double quote. You can protect single or double quotes with a \ char-
acter. The \ character is removed by this script only for whitespace or quote characters, so you do not need to protect
any other characters, beyond what you would normally protect for the regular expression.

This sample configuration file was used to load on a Unix box a number of Zip files containing Windows files with
CRLF end of lines.

\.doc$ break svn:mime-type application/msword
\.ds(p|w)$ break svn:eol-style CRLF
\.ilk$ break svn:eol-style CRLF
\.ncb$ break svn:eol-style CRLF
\.opt$ break svn:eol-style CRLF
\.exe$ break svn:mime-type application/octet-stream
dos2unix-eol\.sh$ break
.* break svn:eol-style native

In this example, all the files should be converted to the native end of line style, which the last line of the configura-
tion handles. The exception is dos2unix-eol.sh, which contains embedded CR's used to find and replace Windows
CRLF end of line characters with Unix's LF characters. Since svn and svn_load_dirs.pl convert all CR, CRLF and LF
svn:eol-style is set to native, this file should be left untouched. Hence, the break with no property settings.

The Windows Visual C++ and Visual Studio files (*.dsp, *.dsw, etc.) should retain their CRLF line endings on any
operating system and any *.doc files are always treated as binary files, hence the svn:mime-type setting of ap-
plication/msword.

Advanced Topics

92

Chapter 7. Developer Information
Subversion is an open-source software project developed under an Apache-style software license. The project is fi-
nancially backed by CollabNet, Inc., a California-based software development company. The community that has
formed around the development of Subversion always welcomes new members who can donate their time and atten-
tion to the project. Volunteers are encouraged to assist in any way they can, whether that means finding and diagnos-
ing bugs, refining existing source code, or fleshing out whole new features.

This chapter is for those who wish to assist in the continued evolution of Subversion by actually getting their hands
dirty with the source code. We will cover some of the software's more intimate details, the kind of technical nitty-
gritty that those developing Subversion itself—or writing entirely new tools based on the Subversion
libraries—should be aware of. If you don't foresee yourself participating with the software at such a level, feel free
to skip this chapter with confidence that your experience as a Subversion user will not be affected.

Layered Library Design
Subversion has a modular design, implemented as a collection of C libraries. Each library has a well-defined pur-
pose and interface, and most modules are said to exist in one of three main layers—the Repository Layer, the Repos-
itory Access (RA) Layer, or the Client Layer. We will examine these layers shortly, but first, see our brief inventory
of Subversion's libraries in Table 7-1. For the sake of consistency, we will refer to the libraries by their extensionless
Unix library names (e.g.: libsvn_fs, libsvn_wc, mod_dav_svn).

Table 7.1. A brief inventory of the Subversion libraries

Library Description

libsvn_auth Authentication and authorization functionality

libsvn_client Primary interface for client programs

libsvn_delta Tree and text differencing routines

libsvn_fs The Subversion filesystem library

libsvn_ra Repository Access commons and module loader

libsvn_ra_dav The WebDAV Repository Access module

libsvn_ra_local The local Repository Access module

libsvn_ra_svn A proprietary protocal Repository Access module

libsvn_repos Repository interface

libsvn_subr Miscellaneous helpful subroutines

libsvn_wc The working copy management library

mod_dav_svn Apache module for mapping WebDAV operations to
Subversion ones

The fact that the word "miscellaneous" only appears once in Table 7-1 is a good sign. The Subversion development
team is serious about making sure that functionality lives in the right layer and libraries. Perhaps the greatest advan-
tage of the modular design is its lack of complexity from a developer's point of view. As a developer, you can
quickly formulate that kind of "big picture" that allows you to pinpoint the location of certain pieces of functionality
with relative ease.

And what could better help a developer gain a "big picture" perspective than a big picture? To help you understand
how the Subversion libraries fit together, see Figure 7-1, a diagram of Subversion's layers. Program flow begins at
the top of the diagram (initiated by the user) and flows "downward".

93

Figure 7.1. Subversion's "Big Picture"

Another benefit of modularity is the ability to replace a given module with a whole new library that implements the
same API without affecting the rest of the code base. In some sense, this happens within Subversion already. The
libsvn_ra_dav, libsvn_ra_local, and libsvn_ra_svn all implement the same interface. And all three communicate
with the Repository Layer— libsvn_ra_dav and libsvn_ra_svn do so across a network, and libsvn_ra_local connects
to it directly.

The client itself also highlights modularity in the Subversion design. While Subversion currently comes with only a
command-line client program, there are already a few other programs being developed by third parties to act as
GUIs for Subversion. Again, these GUIs use the same APIs that the stock command-line client does. Subversion's
libsvn_client library is the one-stop shop for most of the functionality necessary for designing a working Subversion
client (see Section , “Client Layer”).

Developer Information

94

18The choice of Berkeley DB brought several automatic features that Subversion needed, such as data integrity, atomic writes, recoverability, and
hot backups.

Repository Layer
When referring to Subversion's Repository Layer, we're generally talking about two libraries—the repository library,
and the filesystem library. These libraries provide the storage and reporting mechanisms for the various revisions of
your version-controlled data. This layer is connected to the Client Layer via the Repository Access Layer, and is,
from the perspective of the Subversion user, the stuff at the "other end of the line."

The Subversion Filesystem is accessed via the libsvn_fs API, and is not a kernel-level filesystem that one would in-
stall in an operating system (like the Linux ext2 or NTFS), but a virtual filesystem. Rather than storing "files" and
"directories" as real files and directories (as in, the kind you can navigate through using your favorite shell pro-
gram), it uses a database system for its back-end storage mechanism. Currently, the database system in use is Berke-
ley DB. 18 However, there has been considerable interest by the development community in giving future releases
of Subversion the ability to use other back-end database systems, perhaps through a mechanism such as Open
Database Connectivity (ODBC).

The filesystem API exported by libsvn_fs contains the kinds of functionality you would expect from any other
filesystem API: you can create and remove files and directories, copy and move them around, modify file contents,
and so on. It also has features that are not quite as common, such as the ability to add, modify, and remove metadata
("properties") on each file or directory. Furthermore, the Subversion Filesystem is a versioning filesystem, which
means that as you make changes to your directory tree, Subversion remembers what your tree looked like before
those changes. And before the previous changes. And the previous ones. And so on, all the way back through ver-
sioning time to (and just beyond) the moment you first started adding things to the filesystem.

All the modifications you make to your tree are done within the context of a Subversion transaction. The following
is a simplified general routine for modifying your filesystem:

1. Begin a Subversion transaction.

2. Make your changes (adds, deletes, property modifications, etc.).

3. Commit your transaction.

Once you have committed your transaction, your filesystem modifications are permanently stored as historical arti-
facts. Each of these cycles generates a single new revision of your tree, and each revision is forever accessible as an
immutable snapshot of "the way things were."

The Transaction Distraction

The notion of a Subversion transaction, especially given its close proximity the database code in libsvn_fs, can be-
come easily confused with the transaction support provided by the underlying database itself. Both types of transac-
tion exist to provide atomicity and isolation. In other words, transactions give you the ability to perform a set of ac-
tions in an "all or nothing" fashion—either all the actions in the set complete with success, or they all get treated as
if none of them ever happened—and in a way that does not interfere with other processes acting on the data.

Database transactions generally encompass small operations related specifically to the modification of data in the
database itself (such as changing the contents of a table row). Subversion transactions are larger in scope, encom-
passing higher-level operations like making modifications to a set of files and directories which are intended to be
stored as the next revision of the filesystem tree. If that isn't confusing enough, consider this: Subversion uses a
database transaction during the creation of a Subversion transaction (so that if the creation of Subversion transaction
fails, the database will look as if we had never attempted that creation in the first place)!

Fortunately for users of the filesystem API, the transaction support provided by the database system itself is hidden
almost entirely from view (as should be expected from a properly modularized library scheme). It is only when you
start digging into the implementation of the filesystem itself that such things become visible (or interesting).

Developer Information

95

19We understand that this may come as a shock to sci-fi fans who have long been under the impression that Time was actually the fourth dimen-
sion, and we apologize for any emotional trauma induced by our assertion of a different theory.

Most of the functionality provided by the filesystem interface comes as an action that occurs on a filesystem path.
That is, from outside of the filesystem, the primary mechanism for describing and accessing the individual revisions
of files and directories comes through the use of path strings like /foo/bar, just as if you were addressing files and
directories through your favorite shell program. You add new files and directories by passing their paths-to-be to the
right API functions. You query for information about them by the same mechanism.

Unlike most filesystems, though, a path alone is not enough information to identify a file or directory in Subversion.
Think of a directory tree as a two-dimensional system, where a node's siblings represent a sort of left-and-right mo-
tion, and descending into subdirectories a downward motion. Figure 7-2 shows a typical representation of a tree as
exactly that.

Figure 7.2. Files and directories in two dimensions

Of course, the Subversion filesystem has a nifty third dimension that most filesystems do not have—Time! 19 In the
filesystem interface, nearly every function that has a path argument also expects a root argument. This
svn_fs_root_t argument describes either a revision or a Subversion transaction (which is usually just a revision-
to-be), and provides that third-dimensional context needed to understand the difference between /foo/bar in revi-
sion 32, and the same path as it exists in revision 98. Figure 7-3 shows revision history as an added dimension to the
Subversion filesystem universe.

Figure 7.3. Revisioning Time—the third dimension!

Developer Information

96

As we mentioned earlier, the libsvn_fs API looks and feels like any other filesystem, except that it has this wonder-
ful versioning capability. It was designed to be usable by any program interested in a versioning filesystem. Not co-
incidentally, Subversion itself is interested in that functionality. But while the filesystem API should be sufficient
for basic file and directory versioning support, Subversion wants more—and that is where libsvn_repos comes in.

The Subversion repository library (libsvn_repos) is basically a wrapper library around the filesystem functionality.
This library is responsible for creating the repository layout, making sure that the underlying filesystem is initial-
ized, and so on. Libsvn_repos also implements a set of hooks—scripts that are executed by the repository code when
certain actions take place. These scripts are useful for notification, authorization, or whatever purposes the reposi-
tory administrator desires. This type of functionality, and other utility provided by the repository library, is not
strictly related to implementing a versioning filesystem, which is why it was placed into its own library.

Developers who wish to use the libsvn_repos API will find that it is not a complete wrapper around the filesystem
interface. That is, only certain major events in the general cycle of filesystem activity are wrapped by the repository
interface. Some of these include the creation and commit of Subversion transactions, and the modification of revi-
sion properties. These particular events are wrapped by the repository layer because they have hooks associated with
them. In the future, other events may be wrapped by the repository API. All of the remaining filesystem interaction
will continue to occur directly with libsvn_fs API, though.

For example, here is a code segment that illustrates the use of both the repository and filesystem interfaces to create
a new revision of the filesystem in which a directory is added. Note that in this example (and all others throughout
this book), the SVN_ERR macro simply checks for a non-successful error return from the function it wraps, and re-
turns that error if it exists.

Example 7.1. Using the Repository Layer

/* Create a new directory at the path NEW_DIRECTORY in the Subversion
repository located at REPOS_PATH. Perform all memory allocation in

Developer Information

97

POOL. This function will create a new revision for the addition of
NEW_DIRECTORY. */

static svn_error_t *
make_new_directory (const char *repos_path,

const char *new_directory,
apr_pool_t *pool)

{
svn_error_t *err;
svn_repos_t *repos;
svn_fs_t *fs;
svn_revnum_t youngest_rev;
svn_fs_txn_t *txn;
svn_fs_root_t *txn_root;
const char *conflict_str;

/* Open the repository located at REPOS_PATH. */
SVN_ERR (svn_repos_open (&repos, repos_path, pool));

/* Get a pointer to the filesystem object that is stored in
REPOS. */

fs = svn_repos_fs (repos);

/* Ask the filesystem to tell us the youngest revision that
currently exists. */

SVN_ERR (svn_fs_youngest_rev (&youngest_rev, fs, pool));

/* Begin a new transaction that is based on YOUNGEST_REV. We are
less likely to have our later commit rejected as conflicting if we
always try to make our changes against a copy of the latest snapshot
of the filesystem tree. */

SVN_ERR (svn_fs_begin_txn (&txn, fs, youngest_rev, pool));

/* Now that we have started a new Subversion transaction, get a root
object that represents that transaction. */

SVN_ERR (svn_fs_txn_root (&txn_root, txn, pool));

/* Create our new directory under the transaction root, at the path
NEW_DIRECTORY. */

SVN_ERR (svn_fs_make_dir (txn_root, new_directory, pool));

/* Commit the transaction, creating a new revision of the filesystem
which includes our added directory path. */

err = svn_repos_fs_commit_txn (&conflict_str, repos,
&youngest_rev, txn);

if (err == SVN_NO_ERROR)
{

/* No error? Excellent! Print a brief report of our success. */
printf ("Directory '%s' was successfully added as new revision "

"'%" SVN_REVNUM_T_FMT "'.\n", new_directory, youngest_rev);
}

else if (err->apr_err == SVN_ERR_FS_CONFLICT))
{

/* Uh-oh. Our commit failed as the result of a conflict
(someone else seems to have made changes to the same area
of the filesystem that we tried to modify). Print an error
message. */

printf ("A conflict occured at path '%s' while attempting "
"to add directory '%s' to the repository at '%s'.\n",
conflict_str, new_directory, repos_path);

}
else
{

/* Some other error has occurred. Print an error message. */
printf ("An error occured while attempting to add directory '%s' "

"to the repository at '%s'.\n",
new_directory, repos_path);

}

/* "Disconnect" from the repository. */
(void) svn_repos_close (repos);

/* Return the result of the attempted commit to our caller. */

Developer Information

98

return err;
}

In the previous code segment, calls were made to both the repository and filesystem interfaces. We could just as eas-
ily have committed the transaction using svn_fs_commit_txn. But the filesystem API knows nothing about the
repository library's hook mechanism. If you want your Subversion repository to automatically perform some set of
non-Subversion tasks every time you commit a transaction (like, for example, sending an email that describes all the
changes made in that transaction to your developer mailing list), you need to use the libsvn_repos-wrapped version
of that function—svn_repos_fs_commit_txn. This function will actually first run the "pre-commit" hook script
if one exists, then commit the transaction, and finally will run a "post-commit" hook script. The hooks provide a
special kind of reporting mechanism that does not really belong in the core filesystem library itself. (For more infor-
mation regarding Subversion's repository hooks, see Section , “Hook scripts”.)

The hook mechanism requirement is but one of the reasons for the abstraction of a separate repository library from
the rest of the filesystem code. The libsvn_repos API provides several other important utilities to Subversion. These
include the abilities to:

1. create, open, destroy, and perform recovery steps on a Subversion repository and the filesystem included in that
repository.

2. describe the differences between two filesystem trees.

3. query for the commit log messages associated with all (or some) of the revisions in which a set of files was
modified in the filesystem.

4. generate a human-readable "dump" of the filesystem, a complete representation of the revisions in the filesys-
tem.

5. parse that dump format, loading the dumped revisions into a different Subversion repository.

As Subversion continues to evolve, the repository library will grow with the filesystem library to offer increased
functionality and configurable option support.

Repository Access Layer
If the Subversion Repository Layer is at "the other end of the line", the Repository Access Layer is the line itself.
Charged with marshalling data between the client libraries and the repository, this layer includes the libsvn_ra mod-
ule loader library, the RA modules themselves (which currently includes libsvn_ra_dav, libsvn_ra_local, and lib-
svn_ra_svn), and any additional libraries needed by one or more of those RA modules, such as the mod_dav_svn
Apache module with which libsvn_ra_dav communicates or libsvn_ra_svn's server, svnserve.

Since Subversion uses URLs to identify its repository resources, the protocol portion of the URL schema (usually
file:, http:, https:, or svn:) is used to determine which RA module will handle the communications. Each
module registers a list of the protocols it knows how to "speak" so that the RA loader can, at runtime, determine
which module to use for the task at hand. You can determine which RA modules are available to the Subversion
command-line client, and what protocols they claim to support, by running svn --version:

$ svn --version
svn, version 0.17.1 (dev build)

compiled Feb 13 2003, 21:30:46

Copyright (C) 2000-2003 CollabNet.
Subversion is open source software, see http://subversion.tigris.org/

The following repository access (RA) modules are available:

* ra_dav : Module for accessing a repository via WebDAV (DeltaV) protocol.

Developer Information

99

- handles 'http' schema
* ra_local : Module for accessing a repository on local disk.

- handles 'file' schema
* ra_svn : Module for accessing a repository using the svn network protocol.

- handles 'svn' schema

RA-DAV (Repository Access Using HTTP/DAV)

The libsvn_ra_dav library is designed for use by clients that are being run on different machines than the servers
with which they communicating, specifically machines reached using URLs that contain the http: or https: pro-
tocol portions. To understand how this module works, we should first mention a couple of other key components in
this particular configuration of the Repository Access Layer—the powerful Apache HTTP Server, and the Neon
HTTP/WebDAV client library.

Subversion's primary network server is the Apache HTTP Server. Apache is a time-tested, extensible open-source
server process that is ready for serious use. It can sustain a high network load and runs on many platforms. The
Apache server supports a number of different standard authentication protocols, and can be extended through the use
of modules to support many others. It also supports optimizations like network pipelining and caching. By using
Apache as a server, Subversion gets all of these features for free. And since most firewalls already allow HTTP traf-
fic to pass through, sysadmins typically don't even have to change their firewall configurations to allow Subversion
to work.

Subversion uses HTTP and WebDAV (with DeltaV) to communicate with an Apache server. You can read more
about this in the WebDAV section of this chapter, but in short, WebDAV and DeltaV are extensions to the standard
HTTP 1.1 protocol that enable sharing and versioning of files over the web. Apache 2.0 comes with mod_dav, an
Apache module that understands the DAV extensions to HTTP. Subversion itself supplies mod_dav_svn, though,
which is another Apache module that works in conjunction with (really, as a back-end to) mod_dav to provide Sub-
version's specific implementations of WebDAV and DeltaV.

When communicating with a repository over HTTP, the RA loader library chooses libsvn_ra_dav as the proper ac-
cess module. The Subversion client makes calls into the generic RA interface, and libsvn_ra_dav maps those calls
(which embody rather large-scale Subversion actions) to a set of HTTP/WebDAV requests. Using the Neon library,
libsvn_ra_dav transmits those requests to the Apache server. Apache receives these requests (exactly as it does
generic HTTP requests that your web browser might make), notices that the requests are directed at a URL that is
configured as a DAV location (using the Location directive in httpd.conf), and hands the request off to its own
mod_dav module. When properly configured, mod_dav knows to use Subversion's mod_dav_svn for any filesystem-re-
lated needs, as opposed to the generic mod_dav_fs that comes with Apache. So ultimately, the client is communicat-
ing with mod_dav_svn, which binds directly to the Subversion Repository Layer.

That was a simplified description of the actual exchanges taking place, though. For example, the Subversion reposi-
tory might be protected by Apache's authorization directives. This could result in initial attempts to communicate
with the repository being rejected by Apache on authorization grounds. At this point, libsvn_ra_dav gets back the
notice from Apache that insufficient identification was supplied, and calls back into the Client Layer to get some up-
dated authentication data. If the data is supplied correctly, and the user has the permissions that Apache seeks, lib-
svn_ra_dav's next automatic attempt at performing the original operation will be granted, and all will be well. If suf-
ficient authentication information cannot be supplied, the request will ultimately fail, and the client will report the
failure to the user.

By using Neon and Apache, Subversion gets free functionality in several other complex areas, too. For example, if
Neon finds the OpenSSL libraries, it allows the Subversion client to attempt to use SSL-encrypted communications
with the Apache server (whose own mod_ssl can "speak the language"). Also, both Neon itself and Apache's
mod_deflate can understand the "deflate" algorithm (the same used by the PKZIP and gzip programs), so requests
can be sent in smaller, compressed chunks across the wire. Other complex features that Subversion hopes to support
in the future include the ability to automatically handle server-specified redirects (for example, when a repository
has been moved to a new canonical URL) and taking advantage of HTTP pipelining.

RA-SVN (Proprietary Protocol Repository Access)

Developer Information

100

In addition to the standard HTTP/WebDAV protocol, Subversion also provides an RA implementation that uses a
proprietary protocol. The libsvn_ra_svn module implements its own network socket connectivity, and communicates
with a stand-alone server—the svnserve program—on the machine that hosts the repository.

RA-Local (Direct Repository Access)

Not all communications with a Subversion repository require a powerhouse server process and a network layer. For
users who simply wish to access the repositories on their local disk, they may do so using file: URLs and the
functionality provided by libsvn_ra_local. This RA module binds directly with the repository and filesystem li-
braries, so no network communication is required at all.

Subversion requires the server name included as part of the file: URL be either localhost or empty, and that
there be no port specification. In other words, your URLs should look like either
file://localhost/path/to/repos or file:///path/to/repos.

Also, be aware that Subversion's file: URLs can not be used in a regular web browser the way typical file:
URLs can. When you attempt to view a file: URL in a regular web browser, it reads and displays the contents of
the file at that location by examining the filesystem directly. However, Subversion's resources exist in a virtual
filesystem (see Section , “Repository Layer”), and your browser wil not understand how to read that filesystem.

Your RA Library Here

For those who wish to access a Subversion repository using still another protocol, that is precisely why the Reposi-
tory Access Layer is modularized! Developers can simply write a new library that implements the RA interface on
one side and communicates with the repository on the other. Your new library can use existing network protocols, or
you can invent your own. You could use inter-process communication (IPC) calls, or—let's get crazy, shall
we?—you could even implement an email-based protocol. Subversion supplies the APIs; you supply the creativity.

Client Layer
On the client side, the Subversion working copy is where all the action takes place. The bulk of functionality imple-
mented by the client-side libraries exists for the sole purpose of managing working copies—directories full of files
and other subdirectories which serve as a sort of local, editable "reflection" of one or more repository
locations—and propogating changes to and from the Repository Access layer.

Subversion's working copy library, libsvn_wc, is directly responsible for managing the data in the working copies.
To accomplish this, the library stores administrative information about each working copy directory within a special
subdirectory. This subdirectory, named .svn is present in each working copy directory and contains various other
files and directories which record state and provide a private workspace for administrative action. For those familiar
with CVS, this .svn subdirectory is similar in purpose to the CVS administrative directories found in CVS working
copies. For more information about the .svn administrative area, see Section , “Inside the Working Copy Adminis-
tration Area”in this chapter.

The Subversion client library, libsvn_client, has the broadest responsibility; its job is to mingle the functionality of
the working copy library with that of the Repository Access Layer, and then to provide the highest-level API to any
application that wishes to perform general revision control actions. For example, the function
svn_client_checkout takes a URL as an argument. It passes this URL to the RA layer and opens an authenti-
cated session with a particular repository. It then asks the repository for a certain tree, and sends this tree into the
working copy library, which then writes a full working copy to disk (.svn directories and all).

The client library is designed to be used by any application. While the Subversion source code includes a standard
command-line client, it should be very easy to write any number of GUI clients on top of the client library. New
GUIs (or any new client, really) for Subversion need not be clunky wrappers around the included command-line
client—they have full access via the libsvn_client API to same functionality, data, and callback mechanisms that the
command-line client uses.

Developer Information

101

20Subversion uses ANSI system calls and datatypes as much as possible.

Binding Directly—A Word About Correctness

Why should your GUI program bind directly with a libsvn_client instead of acting as a wrapper around a command-
line program? Besides simply being more efficient, this can address potential correctness issues as well. A com-
mand-line program (like the one supplied with Subversion) that binds to the client library needs to effectively trans-
late feedback and requested data bits from C types to some form of human-readable output. This type of translation
can be lossy. That is, the program may not display all of the information harvested from the API, or may combine
bits of information for compact representation.

If you wrap such a command-line program with yet another program, the second program has access only to al-
ready-interpreted (and as we mentioned, likely incomplete) information, which it must again translate into its repre-
sentation format. With each layer of wrapping, the integrity of the original data is potentially tainted more and more,
much like the result of making a copy of a copy (of a copy ...) of a favorite audio or video cassette.

Using the APIs
Developing applications against the Subversion library APIs is fairly straightforward. All of the public header files
live in the subversion/include directory of the source tree. These headers are copied into your system locations
when you build and install Subversion itself from source. These headers represent the entirety of the functions and
types meant to be accessible by users of the Subversion libraries.

The first thing you might notice is that Subversion's datatypes and functions are namespace protected. Every public
Subversion symbol name begins with "svn_", followed by a short code for the library in which the symbol is de-
fined (such as "wc", "client", "fs", etc.), followed by a single underscore ("_") and then the rest of the symbol
name. Semi-public functions (used among source files of a given library but not by code outside that library, and
found inside the library directories themselves) differ from this naming scheme in that instead of a single underscore
after the library code, they use a double underscore ("__"). Functions private a given source file have no special
prefixing, and are declared static. Of course, a compiler isn't interested in these naming conventions, but they def-
initely help to clarify the scopy of a given function or datatype.

The Apache Portable Runtime Library
Along with Subversion's own datatype, you will see many references to datatypes that begin with "apr_"—symbols
from the Apache Portable Runtime (APR) library. APR is Apache's portability library, originally carved out of its
server code as an attempt to separate the OS-specific bits from the OS-independent portions of the code. The result
was a library that provides a generic API for performing operations that differ mildly—or wildly—from OS to OS.
While Apache HTTP Server was obviously the first user of the APR library, the Subversion developers immediately
recognized the value of using APR as well. This means that there are practically no OS-specific code portions in
Subversion itself. Also, it means that the Subversion client compiles and runs anywhere that the server does. Cur-
rently this list includes all flavors of Unix, Win32, BeOS, OS/2, and Mac OS X.

In addition to providing consistent implementations of system calls that differ across operating systems, 20 APR
gives Subversion immediate access to many custom datatypes, such as dynamic arrays and hash tables. Subversion
uses these types extensively throughout the codebase. But perhaps the most pervasive APR datatype, found in nearly
every Subversion API prototype, is the apr_pool_t—the APR memory pool. Subversion uses pools internally for all
its memory allocation needs, and while a person coding against the Subversion APIs is not required to do the same,
they are required to provide pools to the API functions that need them. This means that users of the Subversion API
must also link against APR, must call apr_initialize() to initialize the APR subsystem, and then must acquire a
pool for use with Subversion API calls. See Section , “Programming with Memory Pools” for more information.

URL and Path Requirements
With remote version control operation as the whole point of Subversion's existence, it makes sense that some atten-

Developer Information

102

tion has been paid to internationalization (i18n) support. After all, while "remote" might mean "across the office", it
could just as well mean "across the globe." To facilitate this, all of Subversion's public interfaces that accept path ar-
guments expect those paths to be canonicalized, and encoded in UTF-8. This means, for example, that any new
client binary that drives the libsvn_client interface needs to first convert paths from the locale-specific encoding to
UTF-8 before passing those paths to the Subversion libraries, and then re-convert any resultant output paths from
Subversion back into the locale's encoding before using those paths for non-Subversion purposes. Fortunately, Sub-
version provides a suite of functions (see subversion/include/svn_utf.h) that can be used by any program to
do these conversions.

Also, Subversion APIs require all URL parameters to be properly URI-encoded. So, instead of passing
file:///home/username/My File.txt as the URL of a file named My File.txt, you need to pass
file:///home/username/My%20File.txt. Again, Subversion supplies helper functions that your application
can use—svn_path_uri_encode and svn_path_uri_decode, for URI encoding and decoding, respectively.

Using Languages Other than C and C++
If you are interested in using the Subversion libraries in conjunction with something other than a C program—say a
Python script or Java application—Subversion has some initial support for this via the Simplified Wrapper and In-
terface Generator (SWIG). The SWIG bindings for Subversion are located in subversion/bindings/swig and
are slowly maturing into a usable state. These bindings allow you to call Subversion API functions indirectly, using
wrappers that translate the datatypes native to your scripting language into the datatypes needed by Subversion's C
libraries.

There is an obvious benefit to accessing the Subversion APIs via a language binding—simplicity. Generally speak-
ing, languages such as Python and Perl are much more flexible and easy to use than C or C++. The sort of high-level
datatypes and context-driven typechecking provided by these languages are often better at handling information that
comes from users. As you know, only a human can botch up the input to a program as well as they do, and the
scripting-type language simply handle that misinformation more gracefully. Of course, often that flexibility comes at
the cost of performance. That is why using a tightly-optimized, C-based interface and library suite, combined with a
powerful, flexible binding language is so appealing.

Let's look at an example that uses Subversion's Python SWIG bindings. Our example will do the same thing as our
last example. Note the difference in size and complexity of the function this time!

Example 7.2. Using the Repository Layer with Python

from svn import fs
import os.path

def crawl_filesystem_dir (root, directory, pool):
"""Recursively crawl DIRECTORY under ROOT in the filesystem, and return
a list of all the paths at or below DIRECTORY. Use POOL for all
allocations."""

Get the directory entries for DIRECTORY.
entries = fs.dir_entries(root, directory, pool)

Initialize our returned list with the directory path itself.
paths = [directory]

Loop over the entries
names = entries.keys()
for name in names:
Calculate the entry's full path.
full_path = os.path.join(basepath, name)

If the entry is a directory, recurse. The recursion will return
a list with the entry and all its children, which we will add to
our running list of paths.
if fs.is_dir(fsroot, full_path, pool):

Developer Information

103

subpaths = crawl_filesystem_dir(root, full_path, pool)
paths.extend(subpaths)

Else, it is a file, so add the entry's full path to the FILES list.
else:

paths.append(full_path)

return paths

An implementation in C of the previous example would stretch on quite a bit longer. The same routine in C would
need to pay close attention to memory usage, and need to use custom datatypes for representing the hash of entries
and the list of paths. Python has hashes and lists (called "dictionaries" and "sequences", respectively) as built-in
datatypes, and provides a wonderful selection of methods for operating on those types. And since Python uses refer-
ence counting and garbage collection, users of the language don't have to bother themselves with allocating and free-
ing memory.

In the previous section of this chapter, we mentioned the libsvn_client interface, and how it exists for the sole
purpose of simplifying the process of writing a Subversion client. The following is a brief example of how that li-
brary can be accessed via the SWIG bindings. In just a few lines of Python, you can check out a fully functional
Subversion working copy!

Example 7.3. A simple script to check out a working copy.

#!/usr/bin/env python
import sys
from svn import util, _util, _client

def usage():
print "Usage: " + sys.argv[0] + " URL PATH\n"
sys.exit(0)

def run(url, path):
Initialize APR and get a POOL.
_util.apr_initialize()
pool = util.svn_pool_create(None)

Checkout the HEAD of URL into PATH (silently)
_client.svn_client_checkout(None, None, url, path, -1, 1, None, pool)

Cleanup our POOL, and shut down APR.
util.svn_pool_destroy(pool)
_util.apr_terminate()

if __name__ == '__main__':
if len(sys.argv) != 3:
usage()

run(sys.argv[1], sys.argv[2])

Currently, it is Subversion's Python bindings that are the most complete. Some attention is also being given to the
Java bindings. Once you have the SWIG interface files properly configured, generation of the specific wrappers for
all the supported SWIG languages (which currently includes versions of Tcl, Python, Perl, Java, Ruby, Mzscheme,
Guile, and PHP) should theoretically be trivial. Still, some extra programming is required to compensate for com-
plex APIs that SWIG needs some help generalizing. For more information on SWIG itself, see the project's website
at http://www.swig.org.

Inside the Working Copy Administration Area
As we mentioned earlier, each directory of a Subversion working copy contains a special subdirectory called .svn

Developer Information

104

which houses administrative data about that working copy directory. Subversion uses the information in .svn to
keep track of things like:

• Which repository location(s) are represented by the files and subdirectories in the working copy directory.

• What revision of each of those files and directories are currently present in the working copy.

• Any user-defined properties that might be attached to those files and directories.

• Pristine (un-edited) copies of the working copy files.

While there are several other bits of data stored in the .svn directory, we will examine only a couple of the most
important items.

The Entries File
Perhaps the single most important file in the .svn directory is the entries file. The entries file is an XML docu-
ment which contains the bulk of the administrative information about a versioned resource in a working copy direc-
tory. It is this one file which tracks the repository URLs, pristine revision, file checksums, pristine text and property
timestamps, scheduling and conflict state information, last-known commit information (author, revision, timestamp),
local copy history—practically everything that a Subversion client is interested in knowing about a versioned (or to-
be-versioned) resource!

Comparing the Administrative Areas of Subversion and CVS

A glance inside the typical .svn directory turns up a bit more than what CVS maintains in its CVS administrative di-
rectories. The entries file contains XML which describes the current state of the working copy directory, and basi-
cally serves the purposes of CVS's Entries, Root, and Repository files combined. Authentication data is also
stored within .svn, rather than in a single .cvspass-like file.

The following is an example of an actual entries file:

Example 7.4. Contents of a typical .svn/entries file

<?xml version="1.0" encoding="utf-8"?>
<wc-entries

xmlns="svn:">
<entry

committed-rev="1"
name="svn:this_dir"
committed-date="2002-09-24T17:12:44.064475Z"
url="http://svn.red-bean.com/tests/.greek-repo/A/D"
kind="dir"
revision="1"/>

<entry
committed-rev="1"
name="gamma"
text-time="2002-09-26T21:09:02.000000Z"
committed-date="2002-09-24T17:12:44.064475Z"
checksum="QSE4vWd9ZM0cMvr7/+YkXQ=="
kind="file"
prop-time="2002-09-26T21:09:02.000000Z"/>

<entry
name="zeta"
kind="file"
schedule="add"

Developer Information

105

21That is, the URL for the entry is the same as the concatenation of the parent directory's URL and the entry's name.

revision="0"/>
<entry

url="http://svn.red-bean.com/tests/.greek-repo/A/B/delta"
name="delta"
kind="file"
schedule="add"
revision="0"/>

<entry
name="G"
kind="dir"/>

<entry
name="H"
kind="dir"
schedule="delete"/>

</wc-entries>

As you can see, the entries file is essentially a list of entries. Each entry tag represents one of three things: the
working copy directory itself (noted by having its name attribute set to "svn:this-dir"), a file in that working
copy directory (noted by having its kind attribute set to "file"), or a subdirectory in that working copy (kind here
is set to "dir"). The files and subdirectories whose entries are stored in this file are either already under version
control, or (as in the case of the file named zeta above) are scheduled to be added to version control when the user
next commits this working copy directory's changes. Each entry has a unique name, and each entry has a node kind.

Developers should be aware of some special rules that Subversion uses when reading and writing its entries files.
While each entry has a revision and URL associated with it, note that not every entry tag in the sample file has ex-
plicit revision or url attributes attached to it. Subversion allows entries to not explicitly store those two attributes
when their values are the same as (in the revision case) or trivially calculable from 21 (in the url case) the data
stored in the "svn:this-dir" entry. Note also that for subdirectory entries, Subversion stores only the crucial at-
tributes—name, kind, url, revision, and schedule. In an effort to reduce duplicated information, Subversion dictates
that the method for determining the full set of information about a subdirectory is to traverse down into that
subdirectory, and read the "svn:this-dir" entry from its own .svn/entries file. However, a reference to the
subdirectory is kept in its parent's entries file, with enough information to permit basic versioning operations in
the event that the subdirectory itself is actually missing from disk.

Pristine Copies and Property Files
As mentioned before, the .svn directory also holds the pristine "text-base" versions of files. Those can be found in
.svn/text-base. The benefits of these pristine copies are multiple—network-free checks for local modifications
and "diff" reporting, network-free reversion of modified or missing files, smaller transmission of changes to the
server—but comes at the cost of having each versioned file stored at least twice on disk. These days, this seems to
be a negligible penalty for most files. However, the situation gets uglier as the size of your versioned files grows.
Some attention is being given to making the presence of the "text-base" an option. Ironically though, it is as your
versioned files' sizes get larger that the existence of the "text-base" becomes more crucial—who wants to transmit a
huge file across a network just because they want to commit a tiny change to it?

Similar in purpose to the "text-base" files are the property files and their pristine "prop-base" copies, located in
.svn/props and .svn/prop-base respectively. Since directories can have properties, too, there are also
.svn/dir-props and .svn/dir-prop-base files. Each of these property files ("working" and "base" versions)
uses a simple "hash-on-disk" file format for storing the property names and values.

The Authentication Area
We will wrap up our peek at the working copy internals by noting the .svn/auth directory. Here is where Subver-
sion stores a cache of various data used when authenticating against a server that requires such. Subversion uses OS-
level permissioning to secure the contents of these files, but also gives users the option of disabling this cache alto-
gether (via a per-use command-line argument, or more conveniently via the user's configuration files).

Developer Information

106

22As it turns out, Subversion has more recently evolved a propriety protocol anyway, implemented by the libsvn_ra_svn module.

WebDAV
WebDAV ("Web-based Distributed Authoring and Versioning") is an extension of the standard HTTP protocol de-
signed to make the web into a read/write medium, instead of the basically read-only medium that exists today. The
theory is that directories and files can be shared—as both readable and writable objects—over the web. RFC 2518
describes the WebDAV extensions to HTTP, and is available (along with a lot of other useful information) at
http://www.webdav.org/.

A number of operating system file browsers are already able to mount networked directories using WebDAV. On
Win32, the Windows Explorer can browse what it calls "WebFolders" (which are just WebDAV-ready network lo-
cations) as if they were regular folders on the local machine. Mac OS X also has this capability, as do the Nautilus
and Konqueror browsers (under GNOME and KDE, respectively).

Browsing WebDAV locations using a standard file browser

WebDAV-enabled servers publish their resources as collections and the files (and other collections) within them.
Today's operation systems are becoming extremely Web-aware, and this concept maps so easily to the notion of di-
rectories and files that many operation systems have built-in support for viewing those locations as regular folders.
And these folders can be browsed just like system folders—you can open and copy files from the WebDAV folders
as if they were sitting on your local drive.

For example, on recent versions of Windows, one of the items that appears when you open My Computer is Web
Folders. Opening that icon will show you list of registered WebDAV locations that you can browse further into, as
well as an icon for adding a new Web Folder. In fact, if you'd like to see how this works, open the Add Web
Folder icon, and register the URL http://svn.collab.net/repos/svn/trunk. When you've finished, you'll
have an icon in your Web Folders window that, if opened, will connect you directly to the head of Subversion's own
development tree. Imagine that—bleeding edge Subversion code that you can copy and paste right off the server and
onto your local drive!

However, RFC 2518 doesn't fully implement the "versioning" aspect of WebDAV. A separate committee has cre-
ated RFC 3253, known as the DeltaV extensions to WebDAV, available at http://www.webdav.org/deltav/.
These extensions add version-control concepts to WebDAV, and ultimately to HTTP.

So how does all of this apply to Subversion? Subversion uses HTTP, extended by WebDAV and DeltaV, as its pri-
mary network protocol. Rather than implementing a new proprietary protocol, the original Subversion designers de-
cided to simply map the versioning concepts and actions used by Subversion onto the concepts exposed by RFCs
2518 and 3253. 22

It is important to understand that while libsvn_ra_dav uses DeltaV for communication, the Subversion client is not a
general-purpose DeltaV client. In fact, it expects some custom features from the server. Further, mod_dav_svn is not
a general-purpose DeltaV filesystem backend. It only implements a strict subset of the DeltaV specification. A Web-
DAV or DeltaV client may very well be able to interoperate with it, but only if that client operates within the narrow
confines of those features that the server has implemented. The Subversion development team plans to address
generic WebDAV interoperability in a future release of Subversion.

Programming with Memory Pools
Almost every developer who has used the C programming language has at some point sighed at the daunting task of
managing memory usage. Allocating enough memory to use, keeping track of those allocations, freeing the memory
when you no longer need it—these tasks can be quite complex. And of course, failure to do those things properly
can result in a program that crashes itself, or worse, crashes the computer. Fortunately, the APR library that Subver-
sion depends on for portability provides the apr_pool_t type, which represents a "pool" of memory.

Developer Information

107

A memory pool is an abstract representation of a chunk of memory allocated for use by a program. Rather than re-
questing memory directly from the OS using the standard alloc() and friends, programs that link against APR can
simply request that a pool of memory be created (using the apr_pool_create() function). APR will allocate a
moderately sized chunk of memory from the OS, and that memory will be instantly available for use by the program.
Any time the program needs some of the pool memory, it uses one of the APR pool API functions, like
apr_palloc(), which returns a generic memory location from the pool. The program can keep requesting bits and
pieces of memory from the pool, and APR will keep granting the requests. Pools will automatically grow in size to
accommodate programs that request more memory than the original pool contained, until of course there is no more
memory available on the system.

Now, if this were the end of the pool story, it would hardly have merited special attention. Fortunately, that's not the
case. Pools can not only be created; they can also be cleared and destroyed, using apr_pool_clear() and
apr_pool_destroy() respectively. This gives developers the flexibility to allocate several—or several
thousand— things from the pool, and then clean up all of that memory with a single function call! Further, pools
have hierarchy. You can make "subpools" of any previously created pool. When you clear a pool, all of its subpools
are destroyed; if you destroy a pool, it and its subpools are destroyed.

Before we go further, developers should be aware that they probably will not find many calls to the APR pool func-
tions we just mentioned in the Subversion source code. APR pools offer some extensibility mechanisms, like the
ability to have custom "user data" attached to the pool, and mechanisms for registering cleanup functions that get
called when the pool is destroyed. Subversion makes use of these extensions in a somewhat non-trivial way. So,
Subversion supplies (and most of its code uses) the wrapper functions svn_pool_create(), svn_pool_clear(),
and svn_pool_destroy().

While pools are helpful for basic memory management, the pool construct really shines in looping and recursive
scenarios. Since loops are often unbounded in their iterations, and recursions in their depth, memory consumption in
these areas of the code can become unpredictable. Fortunately, using nested memory pools can be a great way to
easily manage these potentially hairy situations. The following example demonstrates the basic use of nested pools
in a situation that is fairly common—recursively crawling a directory tree, doing some task to each thing in the tree.

Example 7.5. Effective pool usage

/* Recursively crawl over DIRECTORY, adding the paths of all its file
children to the FILES array, and doing some task to each path
encountered. Use POOL for the all temporary allocations, and store
the hash paths in the same pool as the hash itself is allocated in. */

static apr_status_t
crawl_dir (apr_array_header_t *files,

const char *directory,
apr_pool_t *pool)

{
apr_pool_t *hash_pool = files->pool; /* array pool */
apr_pool_t *subpool = svn_pool_create (pool); /* iteration pool */
apr_dir_t *dir;
apr_finfo_t finfo;
apr_status_t apr_err;
apr_int32_t flags = APR_FINFO_TYPE | APR_FINFO_NAME;

apr_err = apr_dir_open (&dir, directory, pool);
if (apr_err)
return apr_err;

/* Loop over the directory entries, clearing the subpool at the top of
each iteration. */

for (apr_err = apr_dir_read (&finfo, flags, dir);
apr_err == APR_SUCCESS;
apr_err = apr_dir_read (&finfo, flags, dir))

{
const char *child_path;

/* Skip entries for "this dir" ('.') and its parent ('..'). */

Developer Information

108

if (finfo.filetype == APR_DIR)
{

if (finfo.name[0] == '.'
&& (finfo.name[1] == '\0'

|| (finfo.name[1] == '.' && finfo.name[2] == '\0')))
continue;

}

/* Build CHILD_PATH from DIRECTORY and FINFO.name. */
child_path = svn_path_join (directory, finfo.name, subpool);

/* Do some task to this encountered path. */
do_some_task (child_path, subpool);

/* Handle subdirectories by recursing into them, passing SUBPOOL
as the pool for temporary allocations. */

if (finfo.filetype == APR_DIR)
{

apr_err = crawl_dir (files, child_path, subpool);
if (apr_err)

return apr_err;
}

/* Handle files by adding their paths to the FILES array. */
else if (finfo.filetype == APR_REG)
{

/* Copy the file's path into the FILES array's pool. */
child_path = apr_pstrdup (hash_pool, child_path);

/* Add the path to the array. */
(*((const char **) apr_array_push (files))) = child_path;

}

/* Clear the per-iteration SUBPOOL. */
svn_pool_clear (subpool);

}

/* Check that the loop exited cleanly. */
if (apr_err)
return apr_err;

/* Yes, it exited cleanly, so close the dir. */
apr_err = apr_dir_close (dir);
if (apr_err)
return apr_err;

/* Destroy SUBPOOL. */
svn_pool_destroy (subpool);

return APR_SUCCESS;
}

The previous example demonstrates effective pool usage in both looping and recursive situations. Each recursion be-
gins by making a subpool of the pool passed to the function. This subpool is used for the looping region, and cleared
with each iteration. The result is memory usage is roughly proportional to the depth of the recursion, not to total
number of file and directories present as children of the top-level directory. When the first call to this recursive func-
tion finally finishes, there is actually very little data stored in the pool that was passed to it. Now imagine the extra
complexity that would be present if this function had to alloc() and free() every single piece of data used!

Pools might not be ideal for every application, but they are extremely useful in Subversion. As a Subversion devel-
oper, you'll need to grow comfortable with pools and how to weild them correctly. Memory usage bugs and bloating
can be difficult to diagnose and fix regardless of the API, but the pool construct provided by APR has proven a
tremendously convenient, time-saving bit of functionality.

Contributing to Subversion

Developer Information

109

23Note that the URL checked out in the example above ends not with svn, but with a subdirectory thereof called trunk. See our discussion of
Subversion's branching and tagging model for the reasoning behind this.

The official source of information about the Subversion project is, of course, the project's website at
http://subversion.tigris.org. There you can find information about getting access to the source code and
participating on the discussion lists. The Subversion community always welcomes new members. If you are inter-
ested in participating in this community by contributing changes to the source code, here are some hints on how to
get started.

Join the Community
The first step in community participation is to find a way to stay on top of the latest happenings. To do this most ef-
fectively, you will want to subscribe to the main developer discussion list (<dev@subversion.tigris.org>) and
commit mail list (<svn@subversion.tigris.org>). By following these lists even loosely, you will have access
to important design discussions, be able to see actual changes to Subversion source code as they occur, and be able
to witness peer reviews of those changes and proposed changes. These e-mail based discussion lists are the primary
communication media for Subversion development. See the Mailing Lists section of the website for other Subver-
sion-related lists you might be interested in.

But how do you know what needs to be done? It is quite common for a programmer to have the greatest intentions
of helping out with the development, yet be unable to find a good starting point. After all, not many folks come to
the community having already decided on a particular itch they would like to scratch. But by watching the developer
discussion lists, you might see mentions of existing bugs or feature requests fly by that particularly interest you.
Also, a great place to look for outstanding, unclaimed tasks is the Issue Tracking database on the Subversion web-
site. There you will find the current list of known bugs and feature requests. If you want to start with something
small, look for issues marked as "bite-sized".

Get the Source Code
To edit the code, you need to have the code. This means you need to check out a working copy from the public Sub-
version source repository. As straightforward as that might sound, the task can be slightly tricky. Because Subver-
sion's source code is versioned using Subversion itself, you actually need to "bootstrap" by getting a working Sub-
version client via some other method. The most common methods inclue downloading the latest binary distribution
(if such is available for your platform), or downloading the latest source tarball and building your own Subversion
client. If you build from source, make sure read the INSTALL file in the top level of the source tree for instructions.

After you have a working Subversion client, you are now poised to checkout a working copy of the Subversion
source repository from http://svn.collab.net/repos/svn/trunk: 23

$ svn checkout http://svn.collab.net/repos/svn/trunk subversion
A HACKING
A INSTALL
A README
A autogen.sh
A build.conf
...

The above command will checkout the bleeding-edge, latest version of the Subversion source code into a subdirec-
tory named subversion in your current working directory. Obviously, you can adjust that last argument as you see
fit. Regardless of what you call the new working copy directory, though, after this operation completes, you will
now have the Subversion source code. Of course, you will still need to fetch a few helper libraries (apr, apr-util,
etc.)—see the INSTALL file in the top level of the working copy for details.

Become Familiar with Community Policies
Now that you have a working copy containing the latest Subversion source code, you will most certainly want to
take a cruise through the HACKING file in that working copy's top-level directory. The HACKING file contains

Developer Information

110

24While this may superficially appear as some sort of elitism, this "earn your commit priveleges" notion is about efficiency—whether it costs
more in time and effort to review and apply someone else's changes that are likely to be safe and useful, versus the potential costs of undoing
changes that are dangerous.
25You might want to grab some popcorn. "Thorough", in this instance, translates to somewhere around thirty minutes of non-interactive machine
churn.

general instructions for contributing to Subversion, including how to properly format your source code for consis-
tency with the rest of the codebase, how to describe your proposed changes with an effective change log message,
how to test your changes, and so on. Commit priveleges on the Subversion source repository are earned—a govern-
ment by meritocracy. 24 The HACKING file is an invaluable resource when it comes to making sure that your pro-
posed changes earn the praises they deserve without being rejected on technicalities.

Make and Test Your Changes
With the code and community policy understanding in hand, you are ready to make your changes. It is best to try to
make smaller but related sets of changes, even tackling larger tasks in stages, instead of making huge, sweeping
modifications. Your proposed changes will be easier to understand (and therefore easier to review) if you disturb the
fewest lines of code possible to accomplish your task properly. After making each set of proposed changes, your
Subversion tree should be in a state in which the software compiles with no warnings.

Subversion has a fairly thorough 25 regression test suite, and your proposed changes are expected to not cause any
of those tests to fail. By running make check (in Unix) from the top of the source tree, you can sanity-check your
changes. The fastest way to get your code contributions rejected (other than failing to supply a good log message) is
to submit changes that cause failure in the test suite.

In the best-case scenario, you will have actually added appropriate tests to that test suite which verify that your pro-
posed changes actually work as expected. In fact, sometimes the best contribution a person can make is solely the
addition of new tests. You can write regression tests for functionality that currently works in Subversion as a way to
protect against future changes that might trigger failure in those areas. Also, you can write new tests that demon-
strate known failures. For this purpose, the Subversion test suite allows you to specify that a given test is expected to
fail (called an XFAIL), and so long as Subversion fails in the way that was expected, a test result of XFAIL itself is
considered a success. Ultimately, the better the test suite, the less time wasted on diagnosing potentially obscure re-
gression bugs.

Donate Your Changes
After making your modifications to the source code, compose a clear and concise log message to describe those
changes and the reasons for them. Then, send an email to the developers list containing your log message and the
output of svn diff (from the top of your Subversion working copy). If the community members consider your
changes acceptable, someone who has commit priveleges (permission to make new revisions in the Subversion
source repository) will add your changes to the public source code tree. Recall that permission to directly commit
changes to the repository is granted on merit—if you demonstrate comprehension of Subversion, programming com-
petency, and a "team spirit", you will likely be awarded that permission.

Developer Information

111

26Yes, yes, you don't need a subcommand to use the --version switch, but we'll get to that in just a minute.

Chapter 8. Subversion Complete Reference
This chapter is intended to be a complete reference to using Subversion. This includes the command line client (svn)
and all its commands, as well as the repository administration programs (svnadmin and svnlook) and their respec-
tive commands.

The Subversion Command Line Client: svn
To use the command line client, you type svn, the subcommand you wish to use, 26 and any switches or targets that
you wish to operate on. You should note that there is no specific order that the subcommand and the switches must
appear in. For example, all of the following are valid ways to use svn status:

$ svn -v status
$ svn status -v
$ svn status -v myfile

You can find many more examples of how to use most client commands in Chapter 3, Guided Tour, commands for
managing properties in Section , “Properties”

Switches
While Subversion has different switches for its subcommands, all switches are global—that is, each switch is guar-
anteed to mean the same thing regardless of the subcommand you use it with. For example, --verbose (-v) always
means “verbose output”, regardless of the subcommand you use it with.

--dry-run Go through all the motions of running a command, but make no actual ei-
changes—ther on disk or in the repository.

--file FILENAME (-F) Use the contents of the file passed as an argument to this switch for the subcommand
that you're running.

--encoding ENC Tells Subversion that your commit message is encoded in the charset provided. The
default is your operating system's native locale, and you should specify the encoding if
your commit message is in any other encoding.

--extensions"ARGS" Specifies an argument or arguments that Subversion should pass to GNU diff when
providing diffs. Note that if you wish to pass multiple arguments, you must enclose all
of them in quotes. For example, svn diff -x "-b -E". Note also that Subversion will
display unified diffs by default, so if you want default diff output, you can pass the -
-normal switch to diff (e.g. svn diff -x "--normal".

--force Forces a particular command or operation to run. There are some operations that Sub-
version will prevent you from doing in normal usage, but you can pass the force
switch to tell Subversion “I know what I'm doing as well as the possible repercussions
of doing it, so let me at 'em.”. This switch is the programmatic equivalent of doing
your own electrical work with the power on—if you don't know what you're doing,
you're likely to get a shock.

--help (-h or -?) If used with one or more subcommands, shows the built-in help text for each subcom-
mand. If used alone, it displays the general client help text.

--incremental Prints output in a format suitable for concatenation. For example, svn log normally

112

prints out a dashed line at the beginning of a log message, after each subsequent log
message, and following the final log message. If you ran svn log on a range of two re-
visions, you would get this:

$ svn log -r 14:15
--
rev 14: ...

--
rev 15: ...

--

However, if you wanted to gather 2 non-sequential log messages into a file, you might
do something like this:

$ svn log -r 14 > mylog
$ svn log -r 19 >> mylog
$ svn log -r 27 >> mylog
$ cat mylog
--
rev 14: ...

--
--
rev 19: ...

--
--
rev 27: ...

--

Note the double dashed lines that you get in your output. You can avoid this clutter by
using the incremental switch:

$ svn log --incremental -r 14 > mylog
$ svn log --incremental -r 19 >> mylog
$ svn log --incremental -r 27 >> mylog
$ cat mylog
--
rev 14: ...

--
rev 19: ...

--
rev 27: ...

Note that the incremental switch does provides similar output control when using the -
-xml switch.

--message MESSAGE (-m) Indicates that you will specify a commit message on the command line, following this
switch. For example:

$ svn commit -m "Initial import."

--no-auth-cache Prevents caching of authentication information (e.g. username and password) in the

Subversion Complete Reference

113

Subversion administrative directories.

--no-diff-deleted Prevents Subversion from printing differences for deleted files. The default behavior
when you remove a file is for svn diff to print the same differences that you would see
if you had left the file but removed all the content.

--no-ignore Shows files in the status listing that would normally be omitted since they match a pat-
tern in the svn:ignore property. See Section , “Config” for more information.

--non-interactive In the case of an authentication failure, or insufficient credentials, prevents prompting
for credentials (e.g. username or password). This is useful if you're running Subver-
sion inside of an automated script and it's more appropriate to have Subversion fail
then to prompt for more information.

--non-recursive (-N) Stops a subcommand from recursing into subdirectories. Note that some subcom-
mands do not recurse by default, while others do.

--passwordPASS Indicates that you are providing your password for authentication on the command
line—otherwise, if it is needed, Subversion will prompt you for it.

--quiet (-q) Requests that the client print only essential information while performing an opera-
tion.

--recursive (-R) Makes a subcommand recurse into subdirectories. Most subcommands recurse by de-
fault.

--revision REV (-r) The revision flag indicates that you're going to supply a revision (or range of revi-
sions) for a particular operation. You can provide revision numbers, revision keywords
or dates (in curly braces), as arguments to the revision switch. If you wish to provide a
range of revisions, you can provide two revisions separated by a colon. For example:

$ svn log -r 1729
$ svn log -r 1729:HEAD
$ svn log -r 1729:1744
$ svn log -r {12/04/01}:{2/17/02}
$ svn log -r 1729:{2/17/02}

See Section , “Revision Keywords” for more information.

--revprop Operates on a revision property instead of a Subversion property specific to a file or
directory. This switch requires that you also pass a revision with the --revision
(-r) switch. See Section , “Unversioned Properties” for more details on unversioned
properties.

--show-updates (-u) Causes the client to display information about which files in your working copy are
out-of-date. This doesn't actually update any of your files—it just shows you which
files will be updated if you run svn update .

--strict Causes Subversion to use strict semantics. See Chapter 8, Subversion Complete Refer-
ence for more details

--targets FILENAME Tells Subversion to get the list of files that you wish to operate on from the filename
you provide instead of listing all the files on the command line.

--usernameNAME Indicates that you are providing your username for authentication on the command
line—otherwise, if it is needed, Subversion will prompt you for it.

Subversion Complete Reference

114

--verbose Requests that the client print out as much information as it can while running any sub-
command. This may result in Subversion printing out additional fields, detailed infor-
mation about every file, or additional information regarding its actions.

--version Prints the client version info. This information not only includes the version number of
the client, but als a listing of all repository access modules that the client can use to ac-
cess a Subversion repository.

--xml Prints output in xml format.

svn subcommands

Subversion Complete Reference

115

Name
svn add -- Adds files and directories

svn add

Synopsis
svn add PATH [PATH [PATH ...]]

Description
Adds files and directories to your working copy and schedules them for addition to the repository. They will be up-
loaded and added to the repository on your next commit. If you add something and change your mind before com-
mitting, you can unschedule the addition using svn revert.

Alternate names
None

Changes
Working Copy

Switches
--targets FILENAME
--non-recursive (-N)
--quiet (-q)

Examples
To add a file to your working copy:

$ svn add foo.c
A foo.c

When adding a directory, the default behavior of svn add is to recurse:

$ svn add testdir
A testdir
A testdir/a
A testdir/b
A testdir/c
A testdir/d

You can add a directory without adding its contents:

Subversion Complete Reference

116

$ svn add --non-recursive otherdir
A otherdir

Subversion Complete Reference

117

Name
svn cat -- Outputs the contents of the specified files or URLs.

svn cat

Synopsis
svn cat TARGET [TARGET [TARGET ...]]

Description
Outputs the contents of the specified files or URLs. For listing the contents of directories, see svn ls.

Alternate names
None

Changes
Nothing

Accesses Repository
Yes

Switches
--revision (-r) REV
--username USER
--password PASS

Examples
If you want to view readme.txt in your repository without checking it out:

$ svn cat http://svn.red-bean.com/repos/test/readme.txt
This is a README file.
You should read this.

Tip

If your working copy is out of date (or you have local modifications) and you want to see the HEAD revi-
sion of a file in your working copy, svn cat will automatically fetch the HEAD revision when you give it a
path:

$ cat foo.c

Subversion Complete Reference

118

This file is in my local working copy
and has changes that I've made.

$ svn cat foo.c
Latest revision fresh from the repository!

Subversion Complete Reference

119

Name
svn checkout -- Checks out a working copy from a repository.

svn checkout

Synopsis
svn checkout URL [URL [URL ...]] [PATH]

Description
Checks out a working copy from a repository. If PATH is omitted, the basename of the URL will be used as the desti-
nation. If multiple URLs are given each will be checked out into a sub-directory of PATH, with the name of the sub-
directory being the basename of the URL.

Alternate names
co

Changes
Creates a working copy.

Accesses Repository
Yes

Switches
--revision (-r) REV
--quiet (-q)
--non-recursive (-N)
--username USER
--password PASS
--no-auth-cache
--non-interactive

Examples
Check out a working copy into a directory called 'mine':

$ svn checkout file:///tmp/repos/test mine
A mine/a
A mine/b
Checked out revision 2.
$ ls
mine

Subversion Complete Reference

120

Check out 2 different directories into two separate working copies:

$ svn checkout file:///tmp/repos/test file:///tmp/repos/quiz
A test/a
A test/b
Checked out revision 2.
A quiz/l
A quiz/m
Checked out revision 2.
$ ls
quiz test

Check out 2 different directories into two separate working copies, but place both into a directory called 'working
copies':

$ svn checkout file:///tmp/repos/test file:///tmp/repos/quiz working-copies
A working-copies/test/a
A working-copies/test/b
Checked out revision 2.
A working-copies/quiz/l
A working-copies/quiz/m
Checked out revision 2.
$ ls
working-copies

Subversion Complete Reference

121

Name
svn cleanup -- Recursively clean up the working copy.

svn cleanup

Synopsis
svn cleanup [PATH [PATH ...]]

Description
Recursively clean up the working copy, removing locks resuming unfinished operations. If you ever get a “working
copy locked” error, run this command to remove stale locks and get your working copy into a useable state again.

Alternate names
None

Changes
Working copy

Accesses Repository
No

Switches:
None

Examples
Well, there's not much to the examples here as svn cleanup generates no output. If you pass no PATH, '.' is used.

$ svn cleanup

$ svn cleanup /path/to/working-copy

Subversion Complete Reference

122

Name
svn commit -- Send changes from your working copy to the repository.

svn commit

Synopsis
svn commit [PATH [PATH ...]]

Description
Send changes from your working copy to the repository. If you do not supply a log message with your commit by
using either the --file or --message switch, svn will launch your editor for you to compose acommit message.
See the editor-cmd section in Section , “Config”.

Alternate names
ci

Changes
Working copy, repository

Accesses Repository
Yes

Switches
--message (-m) TEXT
--file (-F) FILE
--quiet (-q)
--non-recursive (-N)
--targets FILENAME
--force
--username USER
--password PASS
--no-auth-cache
--non-interactive
--encoding ENC

Examples
Commit a simple modification to a file with the commit message on the command line and an implicit target of your
current directory (“.”):

$ svn commit -m "added howto section."
Sending a
Transmitting file data .

Subversion Complete Reference

123

Committed revision 3.

Commit a modification to the file foo.c (explicitly specified on the command line) with the commit message in a
file named msg:

$ svn commit -F msg foo.c
Sending foo.c
Transmitting file data .
Committed revision 5.

Note that if you want to use a file that's under version control for your commit message with --file, you need to
pass the --force switch:

$ svn commit --file file_under_vc.txt foo.c
subversion/clients/cmdline/main.c:862: (apr_err=205004)
svn: The log message file is under version control
svn: Log message file is a versioned file; use `--force' to override.

$ svn commit --force --file file_under_vc.txt foo.c
Sending foo.c
Transmitting file data .
Committed revision 6.

To commit a file scheduled for deletion:

svn commit -m "removed file 'c'."
Deleting c

Committed revision 7.

Subversion Complete Reference

124

Name
svn copy -- Copy a file or directory in a working copy or in the repository.

svn copy

Synopsis
svn copy SRC DST

Description
Copy a file in a working copy or in the repository. SRC and DST can each be either a working copy (WC) path or
URL:

WC -> WC Copy and schedule an item for addition (with history).

WC -> URL Immediately commit a copy of WC to URL.

URL -> WC Check out URL into WC, and schedule it for addition.

URL -> URL Complete server-side copy. This is usually used to branch and tag.

Alternate names
cp

Changes
Repository, and working copy if operating on files

Accesses Repository
Yes

Switches
--message (-m) TEXT
--file (-F) FILE
--revision (-r) REV
--quiet (-q)
--username USER
--password PASS
--no-auth-cache
--non-interactive
--encoding ENC

Examples

Subversion Complete Reference

125

Copy an item within your working copy (just schedules the copy--nothing goes into the repository until you com-
mit):

$ svn copy foo.txt bar.txt
$ svn status
A + bar.txt

Copy an item in your working copy to a URL in the repository (an immediate commit, so you must supply a commit
message):

$ svn copy near.txt file:///tmp/repos/test/far-away.txt -m "Remote copy."

Committed revision 8.

Copy an item from the repository to your working copy (Just schedules the copy--nothing goes into the repository
until you commit):

Tip

This is the recommended way to resurrect a dead file in your repository!

$ svn copy file:///tmp/repos/test/far-away near-here
A near-here

And finally, copying between two URLs:

$ svn copy file:///tmp/repos/test/far-away file:///tmp/repos/test/over-there -m "remote copy."

Committed revision 9.

(Note: This is the easiest way to 'tag' a revision in your repository—just svn copy that revision (usually HEAD) into
your tags directory).

$ svn copy file:///tmp/repos/test/trunk file:///tmp/repos/test/tags/0.6.32-prerelease -m "tag tree"

Committed revision 12.

And don't worry if you forgot to tag—you can always specify an older revision and tag anytime:

$ svn copy -r 11 file:///tmp/repos/test/trunk file:///tmp/repos/test/tags/0.6.32-prerelease -m "Forgot to tag at rev 11"

Committed revision 13.

Subversion Complete Reference

126

Name
svn delete -- Delete an item from a working copy or the repository.

svn delete

Synopsis
svn delete [TARGET [TARGET ...]]

Description
Items specified on the command line are scheduled for deletion upon the next commit. Files (and directories that
have not been committed) are immediately removed from the working copy. The command will not remove any un-
versioned or modified items; use the --force switch to override this behavior.

If run on an URL, the item is deleted from the repository via an immediate commit.

Alternate names
del, remove, rm

Changes
Working copy if operating on files, Repository if operating on URLs

Accesses Repository
Only if operating on URLs

Switches
--force
--message (-m) TEXT
--file (-F) FILE
--quiet (-q)
--targets FILENAME
--username USER
--password PASS
--no-auth-cache
--non-interactive
--encoding ENC

Examples
Using svn to delete a file from your working copy merely schedules it to be deleted. When you commit, the file is
deleted in the repository.

$ svn delete myfile
D myfile

Subversion Complete Reference

127

$ svn ci -m "Deleted file 'myfile'."
Deleting myfile
Transmitting file data .
Committed revision 14.

Deleting a URL, however, is immediate, so you have to supply a log message:

$ svn delete -m "Deleting file 'yourfile'" file:///tmp/repos/test/yourfile

Committed revision 15.

Here's an example of how to force deletion of a file that has local mods:

$ svn delete over-there
subversion/clients/cmdline/delete-cmd.c:47: (apr_err=195006)
svn: Attempting restricted operation for modified resource
svn: Use --force to override this restriction
subversion/libsvn_client/delete.c:90: (apr_err=195006)
svn: 'over-there' has local modifications

$ svn delete --force over-there
D over-there

Subversion Complete Reference

128

Name
svn diff -- Display the differences between two paths.

svn diff

Synopsis
svn diff [-r N[:M]] [TARGET [TARGET ...]]

svn diff URL1[@N] URL2[@M]

Description
Display the differences between two paths. Each TARGET can be either a working copy path or URL. If no TAR-
GET is specified, a value of '.' is assumed.

If TARGET is a URL, then revs N and M must be given via the --revision.

If TARGET is a working copy path, then the --revision switch means:

--revision N:M The server compares TARGET@N and TARGET@M.

--revision N The client compares TARGET@N against working copy.

(no --revision) The client compares base and working copies of TARGET.

If the alternate syntax is used, the server compares URL1 and URL2 at revisions N and M respectively. If either N
or M are ommitted, a value of HEAD is assumed.

Alternate names
di

Changes
Nothing

Accesses Repository
For diffs against anything but BASE revision in your working copy

Switches
--revision (-r) REV
--extensions (-x) "ARGS"
--non-recursive (-N)
--username USER
--password PASS
--no-auth-cache

Subversion Complete Reference

129

--non-interactive
--no-diff-deleted

Examples
Compare BASE and your working copy (One of the most popular uses of svn diff):

$ svn diff COMMITTERS
Index: COMMITTERS
===
--- COMMITTERS (revision 4404)
+++ COMMITTERS (working copy)

See how your working copy's modifications compare against an older revision:

$ svn diff -r 3900 COMMITTERS
Index: COMMITTERS
===
--- COMMITTERS (revision 3900)
+++ COMMITTERS (working copy)

Compare revision 3000 to revision 3500 using '@' syntax:

$ svn diff http://svn.collab.net/repos/svn/trunk/COMMITTERS@3000 http://svn.collab.net/repos/svn/trunk/COMMITTERS@3500
Index: COMMITTERS
===
--- COMMITTERS (revision 3000)
+++ COMMITTERS (revision 3500)
...

Compare revision 3000 to revision 3500 using range notation (note that you only pass the one URL in this case):

$ svn diff -r 3000:3500 http://svn.collab.net/repos/svn/trunk/COMMITTERS
Index: COMMITTERS
===
--- COMMITTERS (revision 3000)
+++ COMMITTERS (revision 3500)

If you have a working copy, you can do the diffs without typing in the long URLs:

$ svn diff -r 3000:3500 COMMITTERS
Index: COMMITTERS
===
--- COMMITTERS (revision 3000)
+++ COMMITTERS (revision 3500)

Use -x to pass arguments directly to the external diff program

svn diff -x "-i -b" COMMITTERS
Index: COMMITTERS

Subversion Complete Reference

130

===
0a1,2
> This is a test
>

Subversion Complete Reference

131

Name
svn export -- Exports a clean directory tree.

svn export

Synopsis
svn export [-r REV] URL [PATH]

svn export PATH1 PATH2

Description
The first form exports a clean directory tree from the repository specified by URL, at revision REV if it is given,
otherwise at HEAD, into PATH. If PATH is omitted, the last component of the URL is used for the local directory
name.

The second form exports a clean directory tree from the working copy specified by PATH1 into PATH2. all local
changes will be preserved, but files not under revision control will not be copied.

Alternate names
None

Changes
local disk

Accesses Repository
Only if exporting from a URL

Switches
--revision (-r) REV
--quiet (-q)
--username USER
--password PASS
--no-auth-cache
--non-interactive

Examples
Export from your working copy (doesn't print every file/dir):

$ svn export a-wc my-export
pantheon: /tmp>

Subversion Complete Reference

132

Export directly from the repository (prints every file/dir):

$ svn export file:///tmp/repos my-export
A my-export/test
A my-export/quiz
...
Exported revision 15.

Subversion Complete Reference

133

Name
svn help -- Help!

svn help

Synopsis
svn help [SUBCOMMAND [SUBCOMMAND ...]]

Description
This is your best friend when you're using Subversion and this book isn't within reach!

Alternate names
?, h

Changes
Nothing

Accesses Repository
No

Switches
--version
--quiet (-q)

Subversion Complete Reference

134

Name
svn import -- Recursively commit a copy of PATH to URL.

svn import

Synopsis
svn import URL [PATH [NEW_ENTRY_IN_REPOS]]

Description
Recursively commit a copy of PATH to URL. If there is no third argument, copy the top-level contents of PATH into
URL directly. Otherwise, create NEW_ENTRY underneath URL and begin copy there.

Alternate names
None

Changes
Repository

Accesses Repository
Yes

Switches
--message (-m) TEXT
--file (-F) FILE
--quiet (-q)
--non-recursive (-N)
--username USER
--password PASS
--no-auth-cache
--non-interactive
--encoding ENC

Examples
This imports the local directory 'myproj' into the root of your repository:

$ svn import -m "New import" http://svn.red-bean.com/repos/test myproj
Adding myproj/sample.txt
...
Transmitting file data
Committed revision 16.

Subversion Complete Reference

135

This imports the local directory 'myproj' into 'trunk/vendors' in your repository. The directory 'trunk/vendors' must
exist before you import into it—svn import will not recursively create directories for you:

$ svn import -m "New import" http://svn.red-bean.com/repos/test myproj trunk/vendors/myproj
Adding myproj/sample.txt
...
Transmitting file data
Committed revision 19.

Subversion Complete Reference

136

Name
svn info -- Print information about PATHs.

svn info

Synopsis
svn info [PATH [PATH ...]]

Description
Print information about paths in your working copy, including:

• Path

• Name

• Url

• Revision

• Node Kind

• Last Changed Author

• Last Changed Revision

• Last Changed Date

• Text Last Updated

• Properties Last Updated

• Checksum

Alternate names
None

Changes
Nothing

Accesses Repository
No

Switches

Subversion Complete Reference

137

--targets FILENAME
--recursive (-R)

Examples
svn info will show you all the useful information that it has for items in your working copy. It will show informtion
for files:

$ svn info foo.c
Path: foo.c
Name: foo.c
Url: http://svn.red-bean.com/repos/test/foo.c
Revision: 4417
Node Kind: file
Schedule: normal
Last Changed Author: sally
Last Changed Rev: 20
Last Changed Date: 2003-01-13 16:43:13 -0600 (Mon, 13 Jan 2003)
Text Last Updated: 2003-01-16 21:18:16 -0600 (Thu, 16 Jan 2003)
Properties Last Updated: 2003-01-13 21:50:19 -0600 (Mon, 13 Jan 2003)
Checksum: /3L38YwzhT93BWvgpdF6Zw==

It will also show information for directories:

$ svn info vendors
Path: trunk
Url: http://svn.red-bean.com/repos/test/vendors
bRevision: 19
Node Kind: directory
Schedule: normal
Last Changed Author: harry
Last Changed Rev: 19
Last Changed Date: 2003-01-16 23:21:19 -0600 (Thu, 16 Jan 2003)

Subversion Complete Reference

138

Name
svn list -- List directory entries of a URL.

svn list

Synopsis
svn list URL [URL ...]

Description
List directory entries of a URL. If URL is a file, just file entry will be displayed. svn list does not work on paths in
your working copy.

Alternate names
ls

Changes
Nothing

Accesses Repository
Yes

Switches
--revision (-r) REV
--verbose (-v)
--recursive (-R)
--username USER
--password PASS
--no-auth-cache
--non-interactive

Examples
svn list is most useful if you want to see what files a repository has without downloading a working copy:

$ svn list http://svn.red-bean.com/repos/test/support
README.txt
INSTALL
examples/
…

Like UNIX ls, you can also pass the --verbose switch for additional information:

Subversion Complete Reference

139

svn list --verbose file:///tmp/repos
P 16 sally 28361 Jan 16 23:18 README.txt
_ 27 sally 0 Jan 18 15:27 INSTALL
_ 24 harry 0 Jan 18 11:27 examples/

For further details, see Section , “svn list”.

Subversion Complete Reference

140

Name
svn log -- Displays commit log messages.

svn log

Synopsis
svn log [URL] [PATH [PATH ...]]

Description
When using the log command, you can operate on either URLs or PATHs.

The default target is the path of your current directory. If no arguments are supplied, svn log shows the log messages
for all files and directories inside of (and including) the current working directory of your working copy. You can
refine the results by specifying one or more paths, one or more revisions, or any combination of the two.

If you specify a URL alone, then it prints log messages for everything that the URL contains. If you add paths past
the URL, only messages for those paths under that URL will be printed.

With --verbose, also print all affected paths with each log message. With --quiet, svn log don't print the log
message body itself (this is compatible with --verbose).

Each log message is printed just once, even if more than one of the affected paths for that revision were explicitly
requested. Logs cross copy history by default; use --strict to disable this.

Alternate names
None

Changes
Nothing

Accesses Repository
Yes

Switches
--revision (-r) REV
--quiet (-q)
--verbose (-v)
--targets FILENAME
--username USER
--password PASS
--no-auth-cache
--non-interactive
--strict
--incremental
--xml

Subversion Complete Reference

141

Examples
You can see the log messages for all the paths that changed in your working copy by running svn log from the top:

$ svn log
--
rev 20: harry | 2003-01-17 22:56:19 -0600 (Fri, 17 Jan 2003) | 1 line

Tweak.
--
rev 17: sally | 2003-01-16 23:21:19 -0600 (Thu, 16 Jan 2003) | 2 lines
...

Examine all log messages for a particular file in your working copy:

$ svn log foo.c
--
rev 32: sally | 2003-01-13 16:43:13 -0600 (Mon, 13 Jan 2003) | 1 line

Added defines.
--
rev 28: sally | 2003-01-07 21:48:33 -0600 (Tue, 07 Jan 2003) | 3 lines
...

If you don't have a working copy handy, you can log a URL:

$ svn log http://svn.red-bean.com/repos/test/foo.c
--
rev 32: sally | 2003-01-13 16:43:13 -0600 (Mon, 13 Jan 2003) | 1 line

Added defines.
--
rev 28: sally | 2003-01-07 21:48:33 -0600 (Tue, 07 Jan 2003) | 3 lines
...

If you want several distinct paths underneath the same URL, you can use the [URL PATH ...]] syntax.

$ svn log http://svn.red-bean.com/repos/test/ foo.c bar.c
--
rev 32: sally | 2003-01-13 16:43:13 -0600 (Mon, 13 Jan 2003) | 1 line

Added defines.
--
rev 31: harry | 2003-01-10 12:25:08 -0600 (Fri, 10 Jan 2003) | 1 line

Added new file bar.c
--
rev 28: sally | 2003-01-07 21:48:33 -0600 (Tue, 07 Jan 2003) | 3 lines
...

That is the same as explicitly placing both URLs on the command line:

$ svn log http://svn.red-bean.com/repos/test/foo.c \
http://svn.red-bean.com/repos/test/foo.c

...

Subversion Complete Reference

142

Warning

If you run svn log on a specific path and provide a specific revision and get no output at all

$ svn log -r 20 http://svn.red-bean.com/untouched.txt
--

That just means that the path was not modified in that revision. If you log from the top of the repository, or
know the file that changed in that revision, you can specify it explicitly:

$ svn log -r 20 touched.txt
--
rev 20: sally | 2003-01-17 22:56:19 -0600 (Fri, 17 Jan 2003) | 1 line

Made a change.
--

Subversion Complete Reference

143

Name
svn merge -- Apply the differences between two URLs to a working copy path.

svn merge

Synopsis
svn merge URL1[@N] URL2[@M] [PATH]

merge -r N:M TARGET [PATH]

Description
In the first form, URL1 and URL2 are URLs specified at revisions N and M. These are the two sources to be com-
pared. The revisions default to HEAD if omitted.

In the second form TARGET can be a URL, or it can be a working copy path, in which case the corresponding URL
is used. This URL, at revisions N and M, defines the two sources to be compared.

PATH is the working copy path that will receive the changes. If omitted, a default value of '.' is assumed.

Alternate names
None

Changes
Working copy

Accesses Repository
Only if working with URLs

Switches
--revision (-r) REV
--non-recursive (-N)
--quiet (-q)
--force
--dry-run
--username USER
--password PASS
--no-auth-cache
--non-interactive

Examples
Merge a branch back into the trunk (assuming that you have a working copy of the trunk):

Subversion Complete Reference

144

$ svn merge http://svn.red-bean.com/repos/trunk/vendors http://svn.red-bean.com/repos/branches/vendors-with-fix
U myproj/tiny.txt
U myproj/thhgttg.txt
U myproj/win.txt
U myproj/flo.txt

If you branched at revision 23, and you want to merge changes on trunk into your branch, you could do this from in-
side the working copy of your branch:

$ svn merge -r 23:30 file:///tmp/repos/trunk/vendors
U myproj/thhgttg.txt
...

Subversion Complete Reference

145

Name
svn mkdir -- Create a new directory under revision control.

svn mkdir

Synopsis
svn mkdir TARGET [TARGET [TARGET ...]]

Description
Create a directory with a name given by the final component of TARGET. If TARGET is a working copy path the
directory is scheduled for addition in the working copy. If TARGET is an URL the directory is created in the reposi-
tory via an immediate commit. In both cases all the intermediate directories must already exist.

Alternate names
None

Changes
Working copy, repository if operating on a URL

Accesses Repository
Only if operating on a URL

Switches
--message (-m) TEXT
--file (-F) FILE
--quiet (-q)
--username USER
--password PASS
--no-auth-cache
--non-interactive
--encoding ENC

Examples
Create a directory in your working copy:

$ svn mkdir newdir
A newdir

Create on in the repository (instant commit, so a log message is required):

Subversion Complete Reference

146

$ svn mkdir -m "Making a new dir." http://svn.red-bean.com/repos/newdir

Committed revision 26.

Subversion Complete Reference

147

Name
svn move -- Move a file or directory.

svn move

Synopsis
svn move SRC DST

Description
This command moves a file or directory in your working copy or in the repository.

Tip

This command is equivalent to a svn copy followed by svn delete.

Warning

Subversion does not support moving between working copies and URLs.

WC -> WC Move and schedule a file or directory for addition (with history).

URL -> URL Complete server-side rename.

Alternate names
mv, rename, ren

Changes
Working copy, repository if operating on a URL

Accesses Repository
Only if operating on a URL

Switches
--message (-m) TEXT
--file (-F) FILE
--revision (-r) REV
--quiet (-q)
--username USER
--password PASS
--no-auth-cache
--non-interactive
--force
--encoding ENC

Subversion Complete Reference

148

Examples
Move a file in your working copy:

$ svn mv foo.c bar.c
A bar.c
D foo.c

Move a file in the repository (an immediate commit, so it requires a commit message):

$ svn mv -m "Move a file" http://svn.red-bean.com/repos/foo.c http://svn.red-bean.com/repos/bar.c

Committed revision 27.

Subversion Complete Reference

149

Name
svn propset -- Set PROPNAME to PROPVAL on files, dirs, or revisions.

svn propset

Synopsis
svn propset PROPNAME [PROPVAL | -F VALFILE] PATH [PATH [PATH ...]]

propset PROPNAME --revprop -r REV [PROPVAL | -F VALFILE] [URL]

Description
Set PROPNAME to PROPVAL on files, dirs, or revisions. The first example creates a versioned, local propchange
in working copy, and the second creates an unversioned, remote propchange on a repository revision.

Note: Subversion has a number of “special” properties that affect its behavior. See Section , “Special properties” for
more on these properties.

Alternate names
pset, ps

Changes
working copy, repository only if operating on a URL

Accesses Repository
Only if operating on a URL

Switches
--file (-F) FILE
--quiet (-q)
--revision (-r) REV
--targets FILENAME
--recursive (-R)
--revprop
--encoding ENC

Examples
Set the mimetype on a file:

$ svn propset svn:mime-type image/jpeg foo.jpg
property `svn:mime-type' set on 'foo.jpg'

Subversion Complete Reference

150

On a UNIX system, if you want a file to have the executable permission set:

$ svn ps svn:executable ON somescript
property `svn:executable' set on 'somescript'

Perhaps you have an internal policy to set certain properties for the benefit of your coworkers:

$ svn propset owner sally foo.c
property `owner' set on 'foo.c'

If you made a mistake in a log message for a particular revision and want to change it, use --revprop and set
svn:log to the new log message:

$ svn propset --revprop -r 25 svn:log "Journaled about trip to New York."
property `svn:log' set on repository revision '25'

Or, if you don't have a working copy, you can provide a URL.

$ svn propset --revprop -r 26 svn:log "Document nap." http://svn.red-bean.com/repos
property `svn:log' set on repository revision '25'

Lastly, you can tell propset to take its input from a file. You could even use this to set the contents of a property to
something binary:

$ svn propset owner-pic -F sally.jpg moo.c
property `owner-pic' set on 'moo.c'

Warning

By default, you cannot modify revprops in a Subversion repository. Your repository administrator must ex-
plicitly enable revprop modifications by creating a hook named 'pre-revprop-change'. See Section , “Hook
scripts” for more information on hook scripts.

Subversion Complete Reference

151

Name
svn propdel -- Remove a property from an item.

svn propdel

Synopsis
svn propdel PROPNAME [PATH [PATH ...]]

svn propdel PROPNAME --revprop -r REV [URL]

Description
This removes properties from files, directories, or revisions. The first form removes versioned properties in working
copy, while the second removes unversioned remote properties on a repository revision.

Alternate names
pdel

Changes
working copy, repository only if operating on a URL

Accesses Repository
Only if operating on a URL

Switches
--quiet (-q)
--recursive (-R)
--revision (-r) REV
--revprop

Examples
Delete a property from a file in your working copy

$ svn propdel svn:mime-type some-script
property `svn:mime-type' deleted from 'some-script'.

Delete a revision property:

$ svn propdel --revprop -r 26 release-date
property `release-date' deleted from repository revision '26'

Subversion Complete Reference

152

Subversion Complete Reference

153

Name
svn propedit -- Edit the property of one or more items under version control.

svn propedit

Synopsis
svn propedit PROPNAME PATH [PATH [PATH ...]]

svn propedit PROPNAME --revprop -r REV [URL]

Description
Edits one or more properties using your favorite editor. The first form edits versioned properties in your working
copy, while the second edits unversioned remote properties on a repository revision.

Alternate names
pedit, pe

Changes
working copy, repository only if operating on a URL

Accesses Repository
Only if operating on a URL

Switches
--revision (-r) REV
--revprop
--encoding ENC

Examples
svn propedit makes it easy to modify properties that have multiple values:

$ svn propedit svn:keywords foo.c
<svn will launch your favorite editor here, with a buffer open
containing the current contents of the svn:keywords property. You
can add multiple values to a property easily here by entering one
value per line.>

Set new value for property `svn:keywords' on `foo.c'

Subversion Complete Reference

154

Name
svn propget -- Prints the value of a property.

svn propget

Synopsis
svn propget PROPNAME [PATH [PATH ...]]

svn propget PROPNAME --revprop -r REV [URL]

Description
Prints the value of a property on files, directories, or revisions. The first form prints the versioned property of an
item or items in your working copy, while the second prints unversioned remote property on a repository revision.
See Section , “Properties” for more information on properties.

Alternate names
pget, pg

Changes
Working copy, repository only if operating on a URL

Accesses Repository
Only if operating on a URL

Switches
--recursive (-R)
--revision (-r) REV
--revprop

Examples
Examine a property of a file in your working copy:

$ svn propget svn:keywords foo.c
Author
Date
Rev

The same goes for a revision property:

Subversion Complete Reference

155

$ svn propget svn:log --revprop -r 20
Began journal.

Subversion Complete Reference

156

Name
svn proplist -- Lists all properties.

svn proplist

Synopsis
svn proplist [PATH [PATH ...]]

svn proplist --revprop -r REV [URL]

Description
Lists all properties on files, directories, or revisions. The first form lists versioned properties in working copy, while
the second lists unversioned remote properties on a repository revision.

Alternate names
plist, pl

Changes
Working copy, repository only if operating on a URL

Accesses Repository
Only if operating on a URL

Switches
--verbose (-v)
--recursive (-R)
--revision (-r) REV
--revprop

Examples
You can use proplist to see the properties on an item in your working copy:

$ svn proplist foo.c
Properties on 'foo.c':

svn:mime-type
svn:keywords
owner

But with the --verbose flag, svn proplist is extremely handy as it also shows you the values for the properties:

Subversion Complete Reference

157

$ svn proplist --verbose foo.c
Properties on 'foo.c':

svn:mime-type : text/plain
svn:keywords : Author Date Rev
owner : sally

Subversion Complete Reference

158

Name
svn revert -- Undo all local edits.

svn revert

Synopsis
svn revert PATH [PATH [PATH ...]]

Description
Reverts any local changes to a file or directory and resolves any conflicted states. svn revert will not only revert the
contents of an item in your working copy, but also any property changes. Finally, you can use it to undo any
scheduling operations that you may have done (e.g. files scheduled for addition or deletion can be “unscheduled”).

Alternate names
None

Changes
working copy

Accesses Repository
No

Switches
--targets FILENAME
--recursive (-R)
--quiet (-q)

Examples
Discard changes to a file:

$ svn revert foo.c
Reverted foo.c

If you want to revert a whole directory of files, use the --recursive flag:

$svn revert --recursive .
Reverted newdir/afile
Reverted foo.c
Reverted bar.txt

Subversion Complete Reference

159

Lastly, you can undo any scheduling operations:

$ svn add mistake.txt whoops
A mistake.txt
A whoops
A whoops/oopsie.c

$ svn revert mistake.txt whoops
Reverted mistake.txt
Reverted whoops

$ svn status
? mistake.txt
? whoops

Warning

If you provide no targets to svn revert, it will do nothing—to protect you from accidentally losing changes
in your working copy, svn revert requires you to provide at least one target.

Subversion Complete Reference

160

Name
svn resolve -- Remove “conflicted” state on working copy files or directories.

svn resolve

Synopsis
svn resolve PATH [PATH [PATH ...]]

Description
Remove “conflicted” state on working copy files or directories. Note: this routine does not semantically resolve con-
flict markers; it merely removes conflict-related artifact files and allows PATH to be committed again. See Section ,
“Resolving conflicts (Merging others' changes)” for an in-depth look at resolving conflicts.

Alternate names
None

Changes
Working copy

Accesses Repository
No

Switches
--targets FILENAME
--recursive (-R)
--quiet (-q)

Examples
If you get a conflict on an update, your working copy will sprout three new files:

$ svn up
C foo.c
Updated to revision 31.
$ ls
foo.c
foo.c.mine
foo.c.r30
foo.c.r31

Once you've resolved the conflict and foo.c is ready to be committed, run svn resolve to let your working copy

Subversion Complete Reference

161

know you've taken care of everything.

Warning

You can just remove the conflict files and commit, but svn resolve fixes up some bookkeeping data in the
working copy administrative area in addition to removing the conflict files, so we recommend that you use
this command.

Subversion Complete Reference

162

Name
svn status -- Print the status of working copy files and directories.

svn status

Synopsis
svn status [PATH [PATH ...]]

Description
Print the status of working copy files and directories. With no args, it prints only locally modified items (no reposi-
tory access). With --show-updates, add working revision and server out-of-date information. With --verbose,
print full revision information on every item.

The first five columns in the output are each one character wide, and each column gives you information about dif-
ferent aspects of each working copy item.

The first column indicates that an item was added, deleted, or otherwise changed.

' ' No modifications.

'A' Item is scheduled for Addition.

'D' Item is scheduled for Addition.

'M' Item has been modified.

'C' Item is in conflict with updates received from the repository.

'?' Item is not under version control.

'!' Item is missing (e.g. you moved or deleted it without using svn).

'~' Item is versioned as a directory, but has been replaced by a file, or vice versa

The second column tells the status of a file's or directory's properties.

' ' No modifications.

'M' Properties for this item have been modified.

'C' Properties for this item are in conflict with property updates received from the repository.

The third column is populated only if the working copy directory is locked.

' ' Item is not locked.

'L' Item is locked.

The fourth column is populated only if the item is scheduled for addition-with-history.

Subversion Complete Reference

163

' ' No history scheduled with commit.

'+' History scheduled with commit.

The fifth column is populated only if the item is switched relative to its parent (See Section , “Switching a working
copy”).

' ' Item is child of its parent directory.

'S' Item is switched.

The out-of-date information appears in the eighth column (only if you pass the --show-updates switch).

' ' The item in your working copy is up-to-date.

'*' A newer revision of the item exists on the server.

The remaining fields are variable width and delimited by spaces. The working revision is the next field if the -
-show-updates or --verboseswitches are passed.

If the --verbose switch is passed, the last committed revision and last committed author are displayed next.

The working copy path is always the final field, so it can include spaces.

Alternate names
stat, st

Changes
Nothing

Accesses Repository
Only if using --show-updates

Switches
--show-updates (-u)
--verbose (-v)
--non-recursive (-N)
--quiet (-q)
--username USER
--password PASS
--no-auth-cache
--non-interactive
--no-ignore

Subversion Complete Reference

164

Examples
This is the easiest way to find out what changes you have made to your working copy:

$ svn status wc
M wc/bar.c

A + wc/qax.c

If you want to find out what files in your working copy are out-of-date, pass the --show-updates switch (This will
not make any changes to your working copy). Here you can see that wc/foo.c has changed in the repository since
we last updated our working copy:

$ svn status --show-updates wc
M 965 wc/bar.c

* 965 wc/foo.c
A + 965 wc/qax.c
Head revision: 981

And finally, the most information you can get out of the status subcommand:

$ svn status --show-updates --verbose wc
M 965 938 sally wc/bar.c

* 965 922 harry wc/foo.c
A + 965 687 harry wc/qax.c

965 687 harry wc/zig.c
Head revision: 981

For many more examples of svn status, see Section , “svn status”.

Subversion Complete Reference

165

Name
svn switch -- Update working copy to a different URL.

svn switch

Synopsis
svn switch URL [PATH]

Description
This subcommand updates your working copy to mirror a new URL—usually a URL which shares a common ances-
tor with your working copy, although not necessarily. This is the Subversion way to move a working copy to a new
branch. (See Section , “Switching a working copy”) for an in-depth look at switching.

Alternate names
sw

Changes
working copy

Accesses Repository
Yes

Switches
--revision (-r) REV
--non-recursive (-N)
--quiet (-q)
--username USER
--password PASS
--no-auth-cache
--non-interactive

Examples
If you're currently inside the directory 'vendors' which was branched to 'vendors-with-fix' and you'd like to switch
your working copy to that branch:

$ svn switch http://svn.red-bean.com/repos/branches/vendors-with-fix .
U myproj/foo.txt
U myproj/bar.txt
U myproj/baz.c
U myproj/qux.c
Updated to revision 31.

Subversion Complete Reference

166

And to switch back, just provide the URL to the location in the repository from which you originally checked out
your working copy:

$ svn switch http://svn.red-bean.com/repos/trunk/vendors .
U myproj/foo.txt
U myproj/bar.txt
U myproj/baz.c
U myproj/qux.c
Updated to revision 31.

Tip

You can just switch part of your working copy to a branch if you don't want to switch your entire working
copy.

Subversion Complete Reference

167

Name
svn update -- Updates your working copy.

svn update

Synopsis
svn update [PATH [PATH ...]]

Description
svn update brings changes from the repository into your working copy. If no revision given, it brings your working
copy up-to-date with the HEAD revision. Otherwise, it synchronizes the working copy to the revision given by the -
-revision switch.

For each updated item a line will start with a character reporting the action taken. These characters have the follow-
ing meaning:

###TODO Reformat all of this
A Added
D Deleted
U Updated
C Conflict
G Merged

A character in the first column signifies an update to the actual file, while updates to the file's props are shown in the
second column.

Alternate names
up

Changes
Working copy

Accesses Repository
Yes

Switches
--revision (-r) REV
--non-recursive (-N)
--quiet (-q)
--username USER
--password PASS
--no-auth-cache
--non-interactive

Subversion Complete Reference

168

Examples
Pick up repository changes that have happened since your last update:

$ svn up
A newdir/toggle.c
A newdir/disclose.c
A newdir/launch.c
D newdir/README
Updated to revision 32.

You can also update your working copy to an older revision (Subversion doesn't have the concept of “sticky” files
like CVS does. See Appendix A, Subversion for CVS Users):

svn up -r30
A newdir/README
D newdir/toggle.c
D newdir/disclose.c
D newdir/launch.c
U foo.c
Updated to revision 30.

Tip

If you want to examine an older revision of a single file, you may want to use 'svn cat' (###TODO xref)

svnadmin
svnadmin is the administrative tool for monitoring and repairing your Subversion repository. For detailed informa-
tion, see Section , “svnadmin”

###TODO Mark this up.

Switches

--copies

Follow copy history when examining a path.

--in-repos-template ARG

Specify a template for the repository structure when creating a new
repository.

The "in-repository" templates specify the layout of the repository
itself (which lives in Berkeley DB files inside the db/ directory)
like /trunk, /branches, etc. These templates can be used by an
administrator or application to do an initial load of the repository
(without invoking hooks). There is no default; the repository is built
"empty" unless you tell it otherwise.

--incremental

Dump a revision only as a diff against the previous revision, instead
of the usual fulltext.

--on-disk-template ARG

Specify a templete to use for the on-disk structure (i.e. conf/,

Subversion Complete Reference

169

hooks/, etc.) of the repository you want to create.

The "on-disk" templates describe the repository directory itself. Each
of the templates have a name, and the "default" on-disk template
contains:

default/
README
dav/
format
hooks/

post-commit.tmpl
post-revprop-change.tmpl
pre-commit.tmpl
pre-revprop-change.tmpl
start-commit.tmpl

locks/
db.lock

The typical usage for the on-disk structures is to predefine the hook
scripts that will be created. For example, you could prepopulate the
'post-commit' script with a commit mailer and backup script. Then, each time
the administrator creates a new repository, she can refer to this new
template which automagically includes all of the hooks.

--revision (-r) ARG

Specify a particular revision to operate on.

Subversion Complete Reference

170

Name
svn create -- Create a new, empty repository at REPOS_PATH.

svn create

Synopsis
svnadmin create REPOS_PATH

Description
Create a new, empty repository at REPOS_PATH.

Switches
--on-disk-template arg
--in-repos-template arg

Examples
###TODO need description here?

$ svnadmin create /usr/local/svn/repos

###TODO more examples with templates?

Subversion Complete Reference

171

Name
svnadmin createtxn -- Create a new transaction.

svnadmin createtxn

Synopsis
svnadmin createtxn REPOS_PATH -r REVISION

Description
Create a new transaction in the repository based on REVISION.

Switches
--revision (-r)

Examples
###TODO need description here?

$ svnadmin createtxn /usr/local/svn/repos -r 21

###TODO more examples with templates?

Subversion Complete Reference

172

Name
svnadmin dump -- Dump the contents of filesystem to stdout.

svnadmin dump

Synopsis
svnadmin dump REPOS_PATH [-r LOWER[:UPPER]] [--incremental]

Description
Dump the contents of filesystem to stdout in a 'dumpfile' portable format, sending feedback to stderr. Dump revi-
sions LOWER rev through UPPER rev. If no revisions are given, dump all revision trees. If only LOWER is given,
dump that one revision tree.

Switches
--revision (-r)
--incremental

Examples
Dump your whole repository:

$ svnadmin dump /usr/local/svn/repos
SVN-fs-dump-format-version: 1
Revision-number: 0
* Dumped revision 0.
Prop-content-length: 56
Content-length: 56
...

Incrementally dump a single transaction from your repository:

$ svnadmin dump /usr/local/svn/repos -r 21 --incremental
* Dumped revision 21.
SVN-fs-dump-format-version: 1
Revision-number: 21
Prop-content-length: 101
Content-length: 101
...

Subversion Complete Reference

173

Name
svnadmin help

svnadmin help

Synopsis
svn help [SUBCOMMAND1 [SUBCOMMAND2] ...]

Description
This is another good friend when you're using Subversion and this book isn't within reach!

Subversion Complete Reference

174

Name
svnadmin load -- Read a 'dumpfile'-formatted stream from STDIN.

svnadmin load

Synopsis
svnadmin load REPOS_PATH

Description
Read a “dumpfile”-formatted stream from stdin, committing new revisions into the repository's filesystem. Send
progress feedback to stdout.

Example
###TODO need description here?

$ svnadmin load /usr/local/svn/restored < repos-backup
<<< Started new txn, based on original revision 1

* adding path : test ... done.
* adding path : test/a ... done.

...

Subversion Complete Reference

175

Name
svnadmin lscr -- Print, one-per-line and youngest-to-eldest, the revisions in which PATH was modified.

svnadmin lscr

Synopsis
svnadmin lscr REPOS_PATH PATH [--copies]

Description
Print, one-per-line and youngest-to-eldest, the revisions in which PATH was modified. Use the COPIES flag to al-
low this operation to cross copy history while searching for revisions. PATH must exist in the HEAD of the reposi-
tory). It's not immediately obvious, but lscr stands for LiSt Changed Revisions.

Switches
--copies

Examples
List the revisions in which a path was modified:

$ svnadmin lscr /usr/local/svn/repos/ test-moved-file
34
33

List the revisions in which a path was modified including changes that occured before it was moved/copied:

$ svnadmin lscr /usr/local/svn/repos/ test-moved-file --copies
34
33
15
14
...

Subversion Complete Reference

176

Name
svnadmin lstxns -- Print the names of all uncommitted transactions.

svnadmin lstxns

Synopsis
svnadmin lstxns REPOS_PATH

Description
Print the names of all uncommitted transactions. ###TODO Tell more here.

Examples
###TODO need description here?

$ svnadmin lstxns /usr/local/svn/repos/
1w
1x

Subversion Complete Reference

177

Name
svnadmin recover -- Run the Berkeley DB recovery procedure on a repository.

svnadmin recover

Synopsis
svnadmin recover REPOS_PATH

Description
Run the Berkeley DB recovery procedure on a repository. Do this if you've been getting errors indicating that recov-
ery ought to be run.

Warning

Only run this when you are SURE you're the only process accessing the repository. Requires exclusive ac-
cess.

Examples
###TODO need description here?

$ svnadmin recover /usr/local/svn/repos/
Acquiring exclusive lock on repository db.
Recovery is running, please stand by...
Recovery completed.
The latest repos revision is 34.

Subversion Complete Reference

178

Name
svnadmin rmtxns -- Delete the named transaction(s).

svnadmin rmtxns

Synopsis
svnadmin rmtxns REPOS_PATH TXN_NAME [TXN_NAME2 ...]TODO

Description
Delete the named transaction(s). ###TODO Tell more here.

Examples
Remove named transactions:

$ svnadmin rmtxns /usr/local/svn/repos/ 1w 1x

Fortunately, the output of svn lstxns works great as the input for rmtxns:

$ svnadmin rmtxns /usr/local/svn/repos/ `svnadmin lstxns /usr/local/svn/repos/`

Which will remove all uncommitted transactions from your repository.

Subversion Complete Reference

179

Name
svnadmin setlog -- Set the log-message on a revision.

svnadmin setlog

Synopsis
svnadmin setlog REPOS_PATH -r REVISION FILE

Description
Set the log-message on revision REVISION to the contents of FILE. (Note that revision properties are not under
version control, so this command will permanently overwrite the previous log message.)

Switches
--revision (-r) ARG

Examples
Set the log message for revision 19 to the contents of the file 'msg':

$ svnadmin setlog /usr/local/svn/repos/ -r 19 msg

svnlook
svnlook is a command line utility for examining different aspects of a Subversion repository.

svnlook is typically used by the repository hooks, but a repository administrator might find it useful for diagnostic
purposes. Since svnlook can only be used on the machine that holds the repository, it takes paths as targets and not
URLs.

If no revision or transaction is specified, svnlook defaults to the youngest (most recent) revision of the repository.

Switches

###TODO Mark this up.
--no-diff-deleted

Prevents svnlook from printing differences for deleted files. The
default behavior when a file is deleted in a transaction/revision is
to print the same differences that you would see if you had left the
file but removed all the content.

--revision (-r)

Specify a particular revision number that you wish to examine.

--transaction (-t)

Subversion Complete Reference

180

Specify a particular transaction id that you wish to examine.

--show-ids

Show the filesystem node revision IDs for each path in the filesystem
tree.

Subversion Complete Reference

181

Name
svnlook author -- Print the author.

svnlook author

Synopsis
svnlook author REPOS_PATH

Description
Print the author of a path in the repository. ###TODO Tell more here.

Switches
--revision (-r)
--transaction (-t)

Examples
###TODO need examples

Subversion Complete Reference

182

Name
svnlook changed -- Print the paths that were changed.

svnlook changed

Synopsis
svnlook changed REPOS_PATH

Description
Print the paths that were changed. ###TODO Tell more here.

Switches
--revision (-r)
--transaction (-t)

Examples
###TODO need examples

Subversion Complete Reference

183

Name
svnlook date -- Print the datestamp.

svnlook date

Synopsis
svnlook date REPOS_PATH

Description
Print the datestamp. ###TODO tell more here.

Switches
--revision (-r)
--transaction (-t)

Examples
###TODO need examples

Subversion Complete Reference

184

Name
svnlook diff -- Print diffs of changed files and properties.

svnlook diff

Synopsis
svnlook diff REPOS_PATH

Description
Print GNU-style diffs of changed files and properties. ###TODO Tell more here.

Switches
--revision (-r)
--transaction (-t)
--no-diff-deleted

Examples
###TODO need examples

Subversion Complete Reference

185

Name
svnlook dirs-changed -- Print the directories that were themselves changed.

svnlook dirs-changed

Synopsis
svnlook dirs-changed REPOS_PATH

Description
Print the directories that were themselves changed (property edits) or whose file children were changed.

Switches
--revision (-r)
--transaction (-t)

Examples
###TODO need examples

Subversion Complete Reference

186

Name
svnlook help

svnlook help

Synopsis
Also svnlook -h and svnlook -?.

Description
Display the help message for svnlook. This command is still your friend, even though you never call it anymore.

Subversion Complete Reference

187

Name
svnlook info -- Print the author, datestamp, log message size, and log message.

svnlook info

Synopsis
svnlook info REPOS_PATH

Description
Print the author, datestamp, log message size, and log message. ###TODO Tell more here.

Switches
--revision (-r)
--transaction (-t)

Examples
###TODO need examples

Subversion Complete Reference

188

Name
svnlook log -- Print the log message.

svnlook log

Synopsis
svnlook log REPOS_PATH

Description
Print the log message. ###TODO Tell more here.

Switches
--revision (-r)
--transaction (-t)

Examples
###TODO need examples

Subversion Complete Reference

189

Name
svnlook tree -- Print the tree

svnlook tree

Synopsis
svnlook tree REPOS_PATH

Description
Print the tree, optionally showing node revision ids. ###TODO Tell more here.

Switches
--revision (-r)
--transaction (-t)
--show-ids

Examples
###TODO need examples

Subversion Complete Reference

190

Name
svnlook youngest -- Print the youngest revision number.

svnlook youngest

Synopsis
svnlook youngest REPOS_PATH

Description
Print the youngest revision number. ###TODO Tell more here.

Examples
###TODO need examples

Subversion Complete Reference

191

Appendix A. Subversion for CVS Users
This appendix is a guide for CVS users new to Subversion. It's essentially a list of differences between the two sys-
tems as “viewed from 10,000 feet.” For each section, we provide backreferences to relevant chapters when possible.

Although the goal of Subversion is to take over the current and future CVS user base, some new features and design
changes were required to fix certain “broken” behaviors that CVS had. This means that, as a CVS user, you may
need to break habits—ones that you forgot were odd to begin with.

Revision Numbers Are Different Now
In CVS, revision numbers are per-file. This is because CVS uses RCS as a backend; each file has a corresponding
RCS file in the repository, and the repository is roughly laid out according to the structure of your project tree.

In Subversion, the repository looks like a single filesystem. Each commit results in an entirely new filesystem tree;
in essence, the repository is an array of trees. Each of these trees is labeled with a single revision number. When
someone talks about “revision 54,” they're talking about a particular tree (and indirectly, the way the filesystem
looked after the 54th commit).

Technically, it's not valid to talk about “revision 5 of foo.c”. Instead, one would say “foo.c as it appears in revi-
sion 5.” Also, be careful when making assumptions about the evolution of a file. In CVS, revisions 5 and 6 of foo.c
are always different. In Subversion, it's most likely that foo.c did not change between revisions 5 and 6.

For more details on this topic, see Section , “Revisions”.

Directory versions
Subversion tracks tree structures, not just file contents. It's one of the biggest reasons Subversion was written to re-
place CVS.

Here's what this means to you, as a former CVS user:

• The svn add and svn rm commands work on directories now, just as they work on files. So do svn cp and svn
mv. However, these commands do not cause any kind of immediate change in the repository. Instead, the work-
ing items are simply “scheduled” for addition or deletion. No repository changes happen until you run svn com-
mit.

• Directories aren't dumb containers anymore; they have revision numbers like files. (Or more properly, it's correct
to talk about “directory foo/ in revision 5”.)

Let's talk more about that last point. Directory versioning is a hard problem; because we want to allow mixed-revi-
sion working copies, there are some limitations on how far we can abuse this model.

From a theoretical point of view, we define “revision 5 of directory foo” to mean a specific collection of directory-en-
tries and properties. Now suppose we start adding and removing files from foo, and then commit. It would be a lie
to say that we still have revision 5 of foo. However, if we bumped foo's revision number after the commit, that
would be a lie too; there may be other changes to foo we haven't yet received, because we haven't updated yet.

Subversion deals with this problem by quietly tracking committed adds and deletes in the .svn area. When you
eventually run svn update, all accounts are settled with the repository, and the directory's new revision number is
set correctly. Therefore, only after an update is it truly safe to say that you have a “perfect” revision of a directory.
Most of the time, your working copy will contain “imperfect” directory revisions.

192

Similarly, a problem arises if you attempt to commit property changes on a directory. Normally, the commit would
bump the working directory's local revision number. But again, that would be a lie, because there may be adds or
deletes that the directory doesn't yet have, because no update has happened. Therefore, you are not allowed to com-
mit property-changes on a directory unless the directory is up-to-date.

For more discussion about the limitations of directory versioning, see Section , “The limitations of mixed revisions”.

More Disconnected Operations
In recent years, disk space has become outrageously cheap and abundant, but network bandwidth has not. Therefore,
the Subversion working copy has been optimized around the scarcer resource.

The .svn administrative directory serves the same purpose as the CVS directory, except that it also stores read-only,
“pristine” copies of your files. This allows you to do many things off-line:

svn status Shows you any local changes you've made. (see Section , “svn status”)

svn diff Shows you the details of your changes. (see Section , “svn diff”)

svn revert Removes your local changes. (see Section , “svn revert”)

Also, the cached pristine files allow the Subversion client to send differences when committing, which CVS cannot
do.

The last subcommand in the list is new; it will not only remove local mods, but it will un-schedule operations such
as adds and deletes. It's the preferred way to revert a file; running rm file; svn up will still work, but it blurs the pur-
pose of updating. And, while we're on this subject…

Distinction Between Status and Update
In Subversion, we've tried to erase a lot of the confusion between the cvs status and cvs update commands.

The cvs status command has two purposes: first, to show the user any local modifications in the working copy, and
second, to show the user which files are out-of-date. Unfortunately, because of CVS's hard-to-read status output,
many CVS users don't take advantage of this command at all. Instead, they've developed a habit of running cvs up to
quickly see their mods. Of course, this has the side effect of merging repository changes that you may not be ready
to deal with!

With Subversion, we've tried to remove this muddle by making the output of svn status easy to read for both hu-
mans and parsers. Also, svn update only prints information about files that are updated, not local modifications.

Here's a quick guide to svn status. We encourage all new Subversion users to use it early and often:

svn status prints all files that have local modifications; the network is not accessed by
default.

-u switch Add out-of-dateness information from repository.

-v switch Show all entries under version control.

-n switch Nonrecursive.

Subversion for CVS Users

193

The status command has two output formats. In the default “short” format, local modifications look like this:

% svn status
M ./foo.c
M ./bar/baz.c

If you specify the --update (-u) switch, a longer output format is used:

% svn status -u
M 1047 ./foo.c
_ * 1045 ./faces.html
_ * - ./bloo.png
M 1050 ./bar/baz.c
Head revision: 1066

In this case, two new columns appear. The second column contains an asterisk if the file or directory is out-of-date.
The third column shows the working-copy's revision number of the item. In the example above, the asterisk indi-
cates that faces.html would be patched if we updated, and that bloo.png is a newly added file in the repository.
(The - next to bloo.png means that it doesn't yet exist in the working copy.)

Lastly, here's a quick summary of status codes that you may see:

A Add
D Delete
R Replace (delete, then re-add)
M local Modification
U Updated
G merGed
C Conflict

Subversion has combined the CVS P and U codes into just U. When a merge or conflict occurs, Subversion simply
prints G or C, rather than a whole sentence about it.

For a more detailed discussion of svn status, see Section , “svn status”.

Branches and Tags
Subversion doesn't distinguish between filesystem space and “branch” space; branches and tags are ordinary directo-
ries within the filesystem. This is probably the single biggest mental hurdle a CVS user will need to climb. Read all
about it in Chapter 4, Branching and Merging

Meta-data Properties
A new feature of Subversion is that you can attach arbitrary metadata to files and directories. We refer to this data as
properties, and they can be thought of as collections of arbitrary name/value pairs attached to each item in your
working copy.

To set or get a property name, use the svn propset and svn propget subcommands. To list all properties on an ob-
ject, use svn proplist.

For more information, see Section , “Properties”.

Subversion for CVS Users

194

Conflict resolution
CVS marks conflicts with in-line “conflict markers”, and prints a C during an update. Historically, this has caused
problems, because CVS isn't doing enough. Many users forget about (or don't see) the C after it whizzes by on their
terminal. They often forget that the conflict-markers are even present, and then accidentally commit files containing
conflict-markers.

Subversion solves this problem by making conflicts more tangible. It remembers that a file is in a state of conflict,
and won't allow you to commit your changes until you run svn resolve. See Section , “Resolving conflicts (Merging
others' changes)” for more details.

Binary files and translation
CVS users have to mark binary files with -kb flags, to prevent data from being garbled (due to keyword expansion
and line-ending translations). They sometimes forget to do this.

Subversion takes the more paranoid route: first, it never performs any kind of keyword or line-ending translation un-
less you explicitly ask it do so (see Section , “svn:keywords” and Section , “svn:eol-style” for more details.) By de-
fault, Subversion treats all file data as literal bytestrings, and files are always stored in the repository in an untrans-
lated state.

Second, Subversion maintains an internal notion of whether a file is “text” or “binary” data, but this notion is only
extant in the working copy. During a svn update, Subversion will perform contextual merges on locally modified
text files, but will not attempt to do so for binary files.

To determine whether a contextual merge is possible, Subversion examines the svn:mime-type property. If the file
has no svn:mime-type property, or has a mime-type that is textual (e.g. text/*), Subversion assumes it is text. Oth-
erwise, Subversion it assumes the file is binary. Subversion also helps users by running a binary-detection algorithm
in the svn import and svn add commands. These commands will make a good guess and then (possibly) set a bi-
nary svn:mime-type property on the file being added. (If Subversion guesses wrong, the user can always remove
or hand-edit the property.)

Versioned Modules
Unlike CVS, a Subversion working copy is aware that it has checked out a module. That means that if somebody
changes the definition of a module, then a call to svn up will update the working copy appropriately.

Subversion defines modules as a list of directories within a directory property: see Section , “Externals Definitions”.

Subversion for CVS Users

195

Appendix B. CVS Repository Migration
TODO Write this

196

Appendix C. Troubleshooting
TODO Write this

197

Appendix D. FAQ?
TODO Write this?

198

Appendix E. Other Subversion Clients
TODO Write this

199

Appendix F. Third Party Tools
TODO Write this

200

Glossary
Add A svn command that is used to add a file or directory to a repository.

201

Colophon
Etc.

202

	Subversion: The Definitive Guide
	Table of Contents
	Preface
	Audience
	How This Book is Organized
	Conventions used in this book
	This Book is Free
	Acknowledgements

	Chapter 1. Introduction
	What is Subversion?
	Subversion's History
	Subversion's Features
	Installing Subversion
	Subversion's components

	Chapter 2. Basic Concepts
	The Repository
	Versioning Models
	The Problem of File-Sharing
	The Lock-Modify-Unlock Solution
	The Copy-Modify-Merge Solution

	Subversion in action
	Working copies
	Revisions
	How working copies track the repository
	The limitations of mixed revisions

	Summary

	Chapter 3. Guided Tour
	Help!
	Import
	Revisions: Numbers, Keywords, and Dates, Oh My!
	Revision Numbers
	Revision Keywords
	Revision Dates

	Initial Checkout
	Basic Workcycle
	Update Your Working Copy
	Make Changes to Your Working Copy
	Examine Your Changes
	svn status
	svn diff
	svn revert

	Resolving conflicts (Merging others' changes)
	Merging conflicts by hand
	Copying a file onto your working file
	Punting: Using svn revert

	Commit your changes

	Examining History
	svn log
	svn diff
	Examining local changes
	Comparing working copy to repository
	Comparing repository to repository

	svn cat
	svn list
	A Final Word on History

	Other Frequently Used Commands
	svn cleanup
	svn import
	Summary

	Chapter 4. Branching and Merging
	What's a branch?
	Using branches
	Creating a branch
	Working with your branch
	The moral of the story

	Copying changes between branches
	The repeated merge problem

	Removing a change from the repository
	Switching a working copy
	Tags
	Creating a simple tag
	Creating a complex tag

	Branch maintenance
	Repository layout
	Data lifetimes

	Summary

	Chapter 5. Repository Administration
	Repository Basics
	Understanding Transactions and Revisions
	Unversioned Properties

	Repository Creation and Configuration
	Hook scripts
	Berkeley DB configuration

	Repository Maintenance
	An Administrator's Toolkit
	svnlook
	svnadmin
	svnshell.py
	Berkeley DB Utilities

	Repository Cleanup
	Repository recovery
	Migrating a repository
	Repository Backup

	Networking a Repository
	httpd, the Apache HTTP Server
	What You Need for HTTP-based Repository Access
	Basic Apache Configuration
	Permissions, Authentication, and Authorization
	Server Names and the COPY Request
	Miscellaneous Apache Features

	svnserve, a Custom Subversion Server

	Adding projects
	Choosing a Repository Layout
	Creating the Layout, and Importing Initial Data

	Summary

	Chapter 6. Advanced Topics
	Run-time Configuration Area
	Configuration Area Layout
	Configuration and the Windows Registry
	Configuration Options
	Servers
	Config

	Properties
	Why Properties?
	Manipulating Properties
	Special properties
	svn:executable
	svn:mime-type
	svn:ignore
	svn:keywords
	svn:eol-style
	svn:externals

	Externals Definitions
	Vendor branches

	Chapter 7. Developer Information
	Layered Library Design
	Repository Layer
	Repository Access Layer
	RA-DAV (Repository Access Using HTTP/DAV)
	RA-SVN (Proprietary Protocol Repository Access)
	RA-Local (Direct Repository Access)
	Your RA Library Here

	Client Layer

	Using the APIs
	The Apache Portable Runtime Library
	URL and Path Requirements
	Using Languages Other than C and C++

	Inside the Working Copy Administration Area
	The Entries File
	Pristine Copies and Property Files
	The Authentication Area

	WebDAV
	Programming with Memory Pools
	Contributing to Subversion
	Join the Community
	Get the Source Code
	Become Familiar with Community Policies
	Make and Test Your Changes
	Donate Your Changes

	Chapter 8. Subversion Complete Reference
	The Subversion Command Line Client: svn
	Switches
	svn subcommands
	svn add
	svn cat
	svn checkout
	svn cleanup
	svn commit
	svn copy
	svn delete
	svn diff
	svn export
	svn help
	svn import
	svn info
	svn list
	svn log
	svn merge
	svn mkdir
	svn move
	svn propset
	svn propdel
	svn propedit
	svn propget
	svn proplist
	svn revert
	svn resolve
	svn status
	svn switch
	svn update

	svnadmin
	svn create
	svnadmin createtxn
	svnadmin dump
	svnadmin help
	svnadmin load
	svnadmin lscr
	svnadmin lstxns
	svnadmin recover
	svnadmin rmtxns
	svnadmin setlog

	svnlook
	Switches
	svnlook author
	svnlook changed
	svnlook date
	svnlook diff
	svnlook dirs-changed
	svnlook help
	svnlook info
	svnlook log
	svnlook tree
	svnlook youngest

	Appendix A. Subversion for CVS Users
	Revision Numbers Are Different Now
	Directory versions
	More Disconnected Operations
	Distinction Between Status and Update
	Branches and Tags
	Meta-data Properties
	Conflict resolution
	Binary files and translation
	Versioned Modules

	Appendix B. CVS Repository Migration
	Appendix C. Troubleshooting
	Appendix D. FAQ?
	Appendix E. Other Subversion Clients
	Appendix F. Third Party Tools
	Glossary

