
X and music-titleIntegrating LaTEX and music X and music-pg143 X and
music-sntSection 6.2

GNU LilyPond
The music typesetter

Copyright c© 1999–2002 by the authors

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.1 or any later version published by the
Free Software Foundation; with no Invariant Sections. A copy of the license is included in
the section entitled “GNU Free Documentation License”.

i

Table of Contents

Preface . 1

1 Introduction . 2
1.1 Batch processing . 2
1.2 Music engraving . 2
1.3 Music representation . 4
1.4 About this manual . 4

2 Tutorial . 6
2.1 First steps . 6
2.2 Running LilyPond . 8

Windows users . 9
2.3 More basics . 10
2.4 Printing lyrics . 16
2.5 A melody with chords . 18
2.6 More stanzas . 21
2.7 More movements . 22
2.8 A piano excerpt . 25
2.9 Fine tuning a piece . 29
2.10 An orchestral score . 34

2.10.1 The full score . 36
2.10.2 Extracting an individual part 40

2.11 Integrating text and music . 41
2.12 End of tutorial . 43

3 Reference Manual . 45
3.1 Note entry . 45

3.1.1 Notes . 45
3.1.2 Pitches . 45
3.1.3 Chromatic alterations . 46
3.1.4 Rests . 46
3.1.5 Skips . 47
3.1.6 Durations . 47
3.1.7 Ties . 48
3.1.8 Automatic note splitting . 49
3.1.9 Tuplets . 50
3.1.10 Easy Notation note heads . 50

3.2 Easier music entry. 51
3.2.1 Graphical interfaces . 51
3.2.2 Relative octaves . 51
3.2.3 Bar check . 52
3.2.4 Point and click . 53

ii

3.2.5 Skipping corrected music . 54
3.3 Staff notation . 54

3.3.1 Staff symbol . 54
3.3.2 Key signature . 55
3.3.3 Clef . 55
3.3.4 Time signature . 56
3.3.5 Partial . 57
3.3.6 Unmetered music . 57
3.3.7 Bar lines . 57

3.4 Polyphony . 59
3.5 Beaming . 60

3.5.1 Manual beams . 61
3.5.2 Setting automatic beam behavior 62

3.6 Accidentals . 63
3.6.1 Using the predefined accidental macros 63
3.6.2 Defining your own accidental typesettings 65

3.7 Expressive marks . 66
3.7.1 Slurs . 66
3.7.2 Phrasing slurs . 67
3.7.3 Breath marks . 68
3.7.4 Tempo . 68
3.7.5 Text spanners . 68
3.7.6 Analysis brackets . 69

3.8 Ornaments . 69
3.8.1 Articulations . 69
3.8.2 Text scripts . 70
3.8.3 Grace notes . 71
3.8.4 Glissando . 73
3.8.5 Dynamics . 73

3.9 Repeats . 75
3.9.1 Repeat syntax . 75
3.9.2 Repeats and MIDI . 76
3.9.3 Manual repeat commands . 76
3.9.4 Tremolo repeats . 77
3.9.5 Tremolo subdivisions . 77
3.9.6 Measure repeats . 78

3.10 Rhythmic music . 78
3.10.1 Percussion staves . 78

3.10.1.1 Percussion staves with normal staves . . 80
3.10.1.2 Percussion midi output 81

3.11 Piano music . 82
3.11.1 Automatic staff changes . 82
3.11.2 Manual staff switches . 82
3.11.3 Pedals . 83
3.11.4 Arpeggio . 84
3.11.5 Voice follower lines . 85

3.12 Vocal music . 85
3.12.1 Ambitus . 86

iii

3.13 Tablatures . 87
3.13.1 Tablatures basic . 88
3.13.2 Non-guitar tablatures . 88
3.13.3 Tablature in addition to normal staff 89

3.14 Chords . 90
3.14.1 Chords mode . 90
3.14.2 Printing named chords . 92

3.15 Writing parts . 95
3.15.1 Rehearsal marks . 95
3.15.2 Bar numbers . 96
3.15.3 Instrument names . 97
3.15.4 Transpose . 97
3.15.5 Multi measure rests . 98
3.15.6 Automatic part combining . 99
3.15.7 Hara kiri staves . 100
3.15.8 Sound output for transposing instruments 101

3.16 Ancient notation . 101
3.16.1 Ancient note heads . 101
3.16.2 Ancient clefs . 101
3.16.3 Custodes. 105
3.16.4 Ligatures . 106

3.16.4.1 White mensural ligatures 107
3.16.5 Figured bass . 108

3.17 Contemporary notation . 109
3.17.1 Clusters . 109

3.18 Tuning output . 111
3.18.1 Tuning groups of objects . 111
3.18.2 Tuning per object . 113
3.18.3 Font selection . 114
3.18.4 Text markup . 115

3.19 Global layout . 118
3.19.1 Vertical spacing . 118
3.19.2 Horizontal Spacing . 119
3.19.3 Font size . 120
3.19.4 Line breaking . 120
3.19.5 Page layout . 121

3.20 Sound . 121
3.20.1 MIDI block . 122
3.20.2 MIDI instrument names . 122

iv

4 Advanced Topics . 123
4.1 Interpretation context . 124

4.1.1 Creating contexts . 124
4.1.2 Default contexts . 125
4.1.3 Context evaluation . 125
4.1.4 Context properties . 126
4.1.5 Engravers and performers . 126
4.1.6 Changing context definitions 126
4.1.7 Defining new contexts . 127

4.2 Syntactic details . 129
4.2.1 Identifiers . 129
4.2.2 Music expressions. 129
4.2.3 Manipulating music expressions 130
4.2.4 Assignments . 131
4.2.5 Lexical modes . 132
4.2.6 Ambiguities . 132

4.3 Lexical details . 133
4.3.1 Direct Scheme . 133
4.3.2 Reals . 133
4.3.3 Strings. 133

4.4 Output details . 133

5 Invoking LilyPond . 136
5.1 Command line options . 136
5.2 Environment variables . 137
5.3 Reporting bugs . 137
5.4 Website . 138
5.5 Invoking ly2dvi . 138

5.5.1 Titling layout . 139
5.5.2 Additional parameters . 140
5.5.3 Environment variables . 141

6 Integrating text and music with lilypond-book
. 142
6.1 Integrating Texinfo and music . 142
6.2 Integrating LaTEX and music . 143
6.3 Integrating HTML and music . 143
6.4 Music fragment options . 144
6.5 Invoking lilypond-book . 146
6.6 Bugs . 147

v

7 Converting from other formats 149
7.1 Invoking convert-ly . 149
7.2 Invoking midi2ly . 149
7.3 Invoking etf2ly . 150
7.4 Invoking abc2ly . 151
7.5 Invoking pmx2ly . 152
7.6 Invoking musedata2ly . 152
7.7 Invoking mup2ly . 153

8 Literature . 154

Index . 156

Appendix A Refman appendix 157
A.1 Lyrics mode definition . 157
A.2 American Chords . 157
A.3 Jazz chords . 157
A.4 MIDI instruments . 158
A.5 The Feta font . 159

Appendix B GNU Free Documentation License
. 162

B.0.1 ADDENDUM: How to use this License for your
documents . 168

Preface 1

Preface

It must have been during a rehearsal of the EJE (Eindhoven Youth Orchestra), some-
where in 1995 that Jan, one of the cranked violists told Han-Wen, one of the distorted
French horn players, about the grand new project he was working on. It was an automated
system for printing music (to be precise, it was MPP, a preprocessor for MusiXTeX). As it
happened, Han-Wen accidentally wanted to print out some parts from a score, so he started
looking at the software, and he quickly got hooked. It was decided that MPP was a dead
end. After lots of philosophizing and heated e-mail exchanges Han-Wen started LilyPond
in 1996. This time, Jan got sucked into Han-Wen’s new project.

In some ways, developing a computer program is like learning to play an instrument. In
the beginning, discovering how it works is fun, and the things you can’t do are challenging.
After the initial excitement, you have to practice and practice. Scales and studies can be
dull, and if you aren’t motivated by others—teachers, conductors or audience—it is very
tempting to give up. You continue, and gradually playing becomes a part of your life. Some
days it comes naturally, and it’s wonderful, and on some days it just doesn’t work, but you
keep playing, day after day.

Like making music, working on LilyPond is can be dull work, and on some days it feels
like plodding through a morass of bugs. Nevertheless, it has become a part of our life, and
we keep doing it. Probably the most important motivation is that our program actually
does something useful for people. When we browse around the net we find many people
that use LilyPond, and use it to produce impressive pieces of sheet music. Seeing that still
feels unreal, but in a very pleasant way.

Our users not only give us good vibes by using our program, many of them also help
us by giving suggestions and sending bugreports. So first and foremost, we would like to
thank all users that sent us bugreports, gave suggestions or contributed in any other way
to LilyPond.

We would also like to thank the following people: Mats Bengtsson for the incountable
number of questions he answered on the mailing list, and Rune Zedeler for his energy
in finding and fixing bugs. Nicola Bernardini for inviting us to his workshop on music
publishing, which was truly a masterclass, and Heinz Stolba and James Ingram for teaching
us there.

Playing and printing music is more than nice analogy: programming together is a lot of
fun, and helping people is deeply satisfying, but ultimately, working on LilyPond is a way
to express our deep love for music. May it help you create lots of beautiful music!

Han-Wen and Jan

Utrecht/Eindhoven, The Netherlands, July 2002.

Chapter 1: Introduction 2

1 Introduction

LilyPond is a program to print sheet music. If you have used notation programs before,
then the way to use this program might be surprising at first sight. To print music with
lilypond, you have to enter musical codes in a file. Then you run LilyPond on the file, and
the music is produced without any further intervention. For example, something like this:

\key c \minor r8 c16 b c8 g as c16 b c8 d | g,4

produces this �� � �� ��������� ���� � � � �
Encoding music using letters and digits may appear strange, intimidating or even clumsy

at first. Nevertheless, when you take the effort to learn the codes and the program you will
find that it is easier than it seems. Entering music can be done quickly, and you never
have to remember how you made the program do something complicated: it’s all in the
input code, and you only have to read the file to see how it works. Moreover, when you use
LilyPond, you are rewarded with very nicely looking output.

In this chapter, we will explain the reasoning behind this unusual design, and how this
approach affects you as a user.

1.1 Batch processing

When we started developing LilyPond, we were still studying at the university. We were
interested in music notation, not as publishers or musicians, but as students and scientists.
We wanted to figure to what extent formatting sheet music could be automated. Back
then GUIs were not as ubiquitous as they are today, and we were immersed in the UNIX
operating system, where it is very common to use compilers to achieve computing tasks, so
our computerized music engraving experiment took on the form of a compiler.

You can freely use, modify and redistribute LilyPond. This choice was also motivated
by our academic background. In the scientific community it has always been a tradition to
share knowledge, also if that knowledge was packaged as software. One of the most visible
groups that stimulated this philosophy, was the Free Software Foundation, whose popular
GNU project aimed to replace closed and proprietary computing solutions with free (as in
“Libre”) variants. We jumped on that bandwagon, and released LilyPond as free software.
That is the reason that you can get LilyPond at no cost and without any strings attached.

1.2 Music engraving

Making sheet music may seem trivial at first (“you print 5 lines, and then put in the
notes at different heights”), music engraving, i.e. professional music typography, is in
another ballpark. The term ‘music engraving’ derives from the traditional process of music
printing. Only a few decades ago, sheet music was made by cutting and stamping the music
into zinc or pewter plates, mirrored. The plate would be inked, and the depressions caused
by the cutting and stamping would hold ink. A positive image was formed by pressing paper

Chapter 1: Introduction 3

to the plate. Stamping and cutting was completely done by hand. Making corrections was
cumbersome, so engraving had to be done correctly in one go. As you can imagine this was
a highly specialized skill, much more so than the traditional process of printing books.

The following fact illustrates that. In the traditional German craftsmanship six years
of full-time training, more than any other craft, were required before a student could call
himself a master of the art. After that many more years of practical experience were needed
to become an established music engraver. Even today, with the use of high-speed computers
and advanced software, music requires lots of manual fine tuning before it acceptable to be
published.

When we wanted to write a computer program to do create music typography, we en-
countered the first problem: there were no sets of musical symbols available: either they
were not available freely, or they didn’t look well to our taste. Not let down, we decided to
try font design ourselves. We created a font of musical symbols, relying on nice printouts of
hand-engraved music. It was a good decision to design our own font. The experience helped
develop a typographical taste, and it made us appreciate subtle design details. Without
that experience, we would not have realized how ugly the fonts were that we admired at
first. � �

The figure above shows a few notable glyphs. For example, the half-notehead is not
elliptic but slightly diamond shaped. The vertical stem of a flat symbol should be slightly
brushed, i.e. becoming wider at the top. Fine endings, such as the one on the bottom of the
quarter rest, should not end in sharp points, but rather in rounded shapes. Taken together,
the blackness of the font must be carefully tuned together with the thickness of lines, beams
and slurs to give a strong yet balanced overall impression.

Producing a strong and balanced look is the real challenge of music engraving. It is
a recurring theme with many variations. In spacing, the balance is in a distribution that
reflects the character of the music. The spacing should not lead to unnatural clusters
of black and big gaps with white space. The distances between notes should reflect the
durations between notes, but adhering with mathematical precision to the duration will
lead to a poor result. Shown here is an example of a motive, printed twice. It is printed
using both exact, mathematical spacing, and with some corrections. Can you spot which is
which? �� ����������������� �

The fragment that was printed uses only quarter notes: notes that are played in a con-
stant rhythm. The spacing should reflect that. Unfortunately, the eye deceives us a little:
the eye not only notices the distance between note heads, but also between consecutive
stems. The notes of a up-stem/down-stem combination should be put farther apart, and
the notes of a down-up combination should be put closer together, all depending on the com-
bined vertical positions of the notes. The first two measures are printed with this correction,
the last two measures without. The notes in the last two measures form downstem/upstems
clumps of notes.

Chapter 1: Introduction 4

We hope that these examples show that music typography is a subtle business, and that
it requires skill and knowledge to produce good engraving. It was our challenge to see if we
could put such knowledge into a computer program.

1.3 Music representation

One of the big questions when making programs, is what kind of input the program
should expect. Many music notation programs offer a graphical interface that shows no-
tation, and allow you to enter the music by placing notes on a staff. Although this is a
obvious way to design a program, from our point of view, it is cheating. After all, the core
message of a piece of music notation simply is the music itself. If you start by offering
notation to the user, you have already skipped one conversion, even if it is implicit. If we
want to generate music notation from something else, then the obvious candidate for the
source is the music itself.

On paper this theory sounds very good. In practice, it opens a can of worms. What
really is music? Many philosophical treatises must have been written on the subject. Even
if you are more practically inclined, you will notice that there exist an enormous number
of ways to represent music in a computer, and they are much more incompatible than the
formats for word processors and spreadsheets. Anyone who has tried to exchange data files
from between different notation programs can attest to this.

This problem is caused by the two-dimensional nature of music: in polyphonic music,
notes have time and pitch as their two coordinates, and they often are related in both
directions. Computer files on the other hand are essentially one-dimensional: they are a
long stream of characters. When you represent music in a file, then you have to flatten
this two-dimensional information breaking either timing or pitch relations, and there is no
universal agreement on how to do this.

Fortunately, we have a concrete application, so we don’t run the risk of loosing ourselves
in philosophical arguments over the essence of music. We want to produce a printed score
from a music representation, so this gives us a nice guide for designing a format: we need
a format containing mainly musical elements, such as pitch and duration, but also enough
information to print a score. Our users have to key in the music into the file directly, so
the input format should have a friendly syntax. Finally, we as programmers and scientists
want a clean formal definition. After all, producing music notation is a difficult problem,
and in the scientific world, problems can only be solved if they are well-specified. Moreover,
formally defined formats are easier to write programs for.

These ideas shaped our music representation: it is a compact format that can easily be
typed by hand. It complex musical constructs from simple entities like notes and rests,
in much the same way that one builds complex formulas from simple expressions such as
numbers and mathematical operators. The strict separation between musical information
and typesetting also gives a blueprint of the program: first it reads the music represen-
tation, then it interprets the music—reading it ‘left-to-right’, and translating the musical
information to a layout specification. When the layout is computed, the resulting symbols
are written to an output file.

Chapter 1: Introduction 5

1.4 About this manual

As you will notice in the coming pages the program makes good decisions in a lot of cases:
what comes out of LilyPond generally looks good. The default layout of lilypond even is
suitable for publication for some specific files. However, some aspects of the formatting are
not yet very good. For us programmers, this gives inspiration for improving the program.
However, most users are more interested in improving their printouts, and then they have
to make manual adjustments to the output. Another aspect of our system of encoding
through ASCII then shows: it can be complicated to fine tune the layout of a piece. There
is no graphical user interface, where you can simply click and drag a symbol. On the other
hand, if you have written the code for tuning one specific aspect of the layout, then you
can simply store the file on disk, retrieve it when you need it: there is no need to remember
how you did it, since it is all in the input file.

Lilypond also comes with a huge collection of snippets that show all kinds of tricks.
This collection is much needed, because of the way LilyPond is structured. It is a large
program, but almost all of the internal functionality is exported: that is, the variables that
are internally used for formatting the sheet music are available directly to the user. These
are variables to control thicknesses, distances, and other formatting options. There are a
huge number of them, and it would be impossible to describe them all in a hand-written
manual. There is no need to despair, there is an ‘automatic’ manual, that lists all of the
variables that are available. It is directly generated from the definitions that LilyPond itself
uses, so it is always up to date. If you are reading this from a screen: it is available from
the web, and is included with most binary distributions. If you’re reading this from paper,
then we advise you to use the digital version anyway: the hyperlinks make finding topics in
the lilypond-internals manual much easier.

For those who really want to get their hands dirty: it is even possible to add your own
functionality, by extending LilyPond in the built-in scripting language, a dialect of the
powerful programming language Scheme. There is no real distinction between what a user
can do and what a programmer is allowed to do.

In summary, this manual does not pretend to be exhaustive, but it is merely a guide
that tries to explain the most important principles, and shows popular input idioms. The
rest of the manual is structured as follows: it starts with a tutorial that explains how to
use lilypond. In the tutorial, a number of fragments of increasing complexity are shown
and explained. Then comes the reference manual, which gives more detailed information
on all features. If you’re new to lilypond, then you should start reading the tutorial, and
experiment for yourself. If you already have some experience, then you can simply use the
manual as reference: there is an extensive index1, but the document is also available in One
Big Page, which is is available for text search using your browser’s search facility.

1 If you are looking for something, and you can’t find it by using the index, that is considered a bug. In

that case, please file a bug report

Chapter 2: Tutorial 6

2 Tutorial

Operating lilypond is done through text files: To print a piece of music, you enter the
music in a file. When you run lilypond (normally using the program ly2dvi) on that file,
the program produces another file which contains sheet music that you can print or view.

This tutorial starts with a small introduction to the LilyPond music language. After
this first contact, we will show you how to run LilyPond to produce printed output; you
should then be able to create your first sheets of music. The tutorial continues with more
and more complex examples.

2.1 First steps

We start off by showing how very simple music is entered in LilyPond: you get a note
simply by typing its note name, from ‘a’ through ‘g’. So if you enter

c d e f g a b

then the result looks like this:� ��������
We will continue with this format: First we show a snippet of input, then the resulting

output.

The length of a note is specified by adding a number, ‘1’ for a whole note, ‘2’ for a half
note, and so on:

a1 a2 a4 a16 a32� ��	��
��
If you don’t specify a duration, the previous one is used:

a4 a a2 a�

���
A sharp (]) is made by adding ‘is’, a flat ([) by adding ‘es’. As you would expect, a

double sharp or double flat is made by adding ‘isis’ or ‘eses’:

cis1 ees fisis aeses� � �
��� �� ��
Add a dot ‘.’ after the duration to get a dotted note:

Chapter 2: Tutorial 7

a2. a4 a8. a16� �����
 ��
The meter (or time signature) can be set with the \time command:

\time 3/4

\time 6/8

\time 4/4� � �� �� �
The clef can be set using the \clef command:

\clef treble

\clef bass

\clef alto

\clef tenor� ����
When you enter these commands in a file, you must to enclose them in \notes {...}.

This lets LilyPond know that music (and not lyrics, for example) follows:

\notes {

\time 3/4

\clef bass

c2 e4 g2.

f4 e d c2.

}

Now the piece of music is almost ready to be printed. The final step is to combine the
music with a printing command.

The printing command is the so-called \paper block. Later on you will see that the
\paper block is used to customize printing specifics. The music and the \paper block are
combined by enclosing them in \score { ... }. This is what a full LilyPond source file
looks like:

\score {

\notes {

\time 3/4

\clef bass

c2 e4 g2.

f4 e d c2.

}

\paper { }

}

Chapter 2: Tutorial 8

� ��
 ����
 ��
� � �
2.2 Running LilyPond

In the last section we explained what kind of things you could enter in a lilypond file. In
this section we explain how to run LilyPond and how to view or print the output. If you have
not used LilyPond before, want to test your setup of LilyPond, or want to run an example
file yourself, read this section. The instructions that follow are for running LilyPond on
Unix-like systems. Some additional instructions for running LilyPond on Windows are given
at the end of this section.

Begin by opening a terminal window and starting a text editor. For example, you could
open an xterm and execute joe. In your text editor, enter the following input and save the
file as ‘test.ly’:

\score {

\notes { c’4 e’ g’ }

}

LilyPond is the program that computes the sheet music. All other things, such as adding
titles, page breaking and other page layout, are done by a small wrapper program called
ly2dvi. ly2dvi calls lilypond to render the music, and then adds the titling and page
layout instructions. To process ‘test.ly’ with ly2dvi, proceed as follows:

ly2dvi -P test.ly

You will see the following on your screen:

GNU LilyPond 1.6.0

Now processing: ‘/home/fred/ly/test.ly’

Parsing...

Interpreting music...[1]

... more interesting stuff ...

PS output to ‘test.ps’...

DVI output to ‘test.dvi’...

The results of the ly2dvi run are two files, ‘test.dvi’ and ‘test.ps’. The PS file
(‘test.ps’) is the one you can print. You can view the PS file using the program ghostview.
If a version of ghostview is installed on your system, one of these commands will produce a
window with some music notation on your screen:

gv test.ps

ghostview test.ps

ggv test.ps

kghostview test.ps

If the music on your screen looks good, you can print it by clicking File/Print inside
ghostview.

The DVI file (‘test.dvi’) contains the same sheet music in a different format. DVI files
are more easily processed by the computer, so viewing them usually is quicker. You can
run xdvi test.dvi or kdvi test.dvi to view the DVI file. In Xdvi, the mouse burtons

Chapter 2: Tutorial 9

activate magnifying glasses. Unfortunately, variable symbols (such as beams and slurs) are
not displayed in the magnifying glasses.

If your DVI viewer does not have a "Print" button, you can print the file by executing
lpr test.ps.

If your system does not support printing PostScript files, then you can
install Ghostscript, a PostScript emulator. Refer to Ghostscript’s website at
http://www.ghostscript.com.

A final option is to use the popular PDF format. You can get a PDF file by running
ly2dvi --pdf test.ly. With --pdf you will get DVI, PS and PDF files. Viewers for PS
files also accept PDF files, but there are also many other applications for viewing PDF files.

If you are familiar with TEX, be warned: do not use other DVI drivers like dvilj. The
TEX coming out of LilyPond uses embedded PostScript code and will not render correctly
if you use anything other than dvips.

Windows users

Windows users can start the terminal by clicking on the LilyPond or Cygwin icon. You
can use any text editor (such as NotePad, Emacs or Vim) to edit the LilyPond file. If you in-
stall the Cygwin’s XFree86 X11 window system, tetex-x11 and ghostscript-x11 packages
too, you can view the dvi output doing xdvi test.dvi as described above. If you have in-
stalled a PostScript/PDF viewer, such as GSView from http://www.cs.wisc.edu/~ghost,
viewing the PS file can be done with:

gsview32 test.ps

You can also print from the command line by executing:

gsview32 /s test.ps

SUMMARY

To run LilyPond, input a text file, then run the command ly2dvi on that file. The re-
sulting files are either DVI or PostScript, and can be viewed with xdvi (Unix) and ghostview
(Unix and Windows) respectively. The following table summarizes the constructs that were
discussed in the previous two sections.

Syntax Description Example

1 2 8 16 durations ����
�
. .. augmentation dots

�������

Chapter 2: Tutorial 10

c d e f g a b scale

�������
\clef treble \clef bass clefs

� ��
\time 3/4 \time 4/4 time signature � � �� �
2.3 More basics

We continue with the introduction of the remaining musical constructs. Normal rests
are entered just like notes with the name “r”:

r2 r4 r8 r16����
To raise a note by an octave, add a high quote ’ (apostrophe) to the note name, to lower

a note one octave, add a “low quote” , (a comma). Middle C is c’:

c’4 c’’ c’’’ \clef bass c c,� �������
A tie is created by adding a tilde “~” to the first note being tied.

g’4-~ g’ a’2-~ a’4�� �
��� �
A tie is different from a slur. A tie simply makes the first note sound longer, and can

only be used on pairs of notes with the same pitch. Slurs indicate the articulations of notes,
and can be used on larger groups of notes. Slurs and ties are also nested in practice:��

�� ��
� �

The key signature is set with the command “\key”. One caution word of caution: you
need to specify whether the key is \major or \minor.

Chapter 2: Tutorial 11

\key d \major

g’1

\key c \minor

g’ � �� �� � � � ��� � �
This example shows notes, ties, octave marks, and rests in action.

\score {

\notes {

\time 4/4

\key d \minor

\clef violin

r4 r8 d’’8 cis’’4 e’’

d’’8 a’4.-~ a’ b’8

cis’’4 cis’’8 cis’’ bis’4 d’’8 cis’’-~

cis’’2 r2

}

\paper { }

} ��� � ������������ ������ � �
� �33 �� �
���� ���� �

There are some interesting points to note in this example. Accidentals (sharps and flats)
don’t have to be marked explicitly: you just enter the note name, and LilyPond determines
whether or not to print an accidental. Bar lines and beams are drawn automatically.
LilyPond calculates line breaks for you; it doesn’t matter where you make new lines in the
source file. Finally, the order of time, key and clef changes is not relevant: lilypond will use
standard notation conventions for ordering these items.

The example also indicates that a piece of music written in a high register needs lots of
quotes. This makes the input less readable, and is also a potential source of errors.

The solution is to use “relative octave” mode. In practice, this is the most convenient
way to copy existing music. To use relative mode, add \relative before the piece of music.
You must also give a note from which relative starts, in this case c’’. If you don’t use
octavation quotes (ie don’t add ’ or , after a note), relative mode chooses the note that is
closest to the previous one. Since most music has small intervals, you can write quite a
lot in relative mode without using octavation quotes. For example: c f goes up; c g goes
down:

\relative c’’ {

Chapter 2: Tutorial 12

c f c g c

}� ������
You can make larger intervals by adding octavation quotes. Note that quotes or commas

do not determine the absolute height of a note; the height of a note is relative to the previous
one. For example: c f, goes down; f, f are both the same; c’ c are the same; and c g’

goes up:

\relative c’’ {

c f, f c’ c g’ c,

}� ��������
Here’s an example of the difference between relative mode and “normal” (non-relative)

mode:

\relative a {

\clef bass

a d a e d c’ d’

}� ��������
\clef bass

a d a e d c’ d’� ��������
SUMMARY

The following table summarizes the syntax learned so far in this section.

Syntax Description Example

r4 r8 rest ��
~ tie

��

Chapter 2: Tutorial 13

\key es \major key signature
� � ��� � � �

note’ raise octave

��
note, lower octave

��
A slur is drawn across many notes, and indicates bound articulation (legato). The

starting note and ending note are marked with a “(” and a “)” respectively:

d4-(c16-)-(cis d e c cis d e-)-(d4-)�� ���� �� ���� ���� �
If you need two slurs at the same time (one for articulation, one for phrasing), you can

also make a phrasing slur with \(and \).

a8-(-\(ais b c-) cis2 b’2 a4 cis, c-\)�� �� ��
�
��� ��� �
Beams are drawn automatically, but if you don’t like the choices, you can enter beams

by hand. Mark the first note to be beamed with [and the last one with]:

a8-[ais-] d-[es r d-]�� ��� ��� ��� �
To print more than one staff, each piece of music that makes up a staff is marked by

adding \context Staff before it. These Staff’s are then grouped inside < and >, as is
demonstrated here:

<

\context Staff = staffA { \clef violin c’’ }

\context Staff = staffB { \clef bass c }

> ��
�� �� �

�� �

Chapter 2: Tutorial 14

In this example, staffA and staffB are names that are given to the staves. It doesn’t
matter what names you give, as long as each staff has a different name. If you give them
the same name, LilyPond will assume that you only want one staff, and will but both pieces
of music on the same staff.

We can now typeset a melody with two staves:

\score {

\notes

< \context Staff = staffA {

\time 3/4

\clef violin

\relative c’’ { e2-(d4 c2 b4 a8-[a-] b-[b-] g-[g-] a2.-) }

}

\context Staff = staffB {

\clef bass

c2 e4 g2.

f4 e d c2.

}

>

\paper {}

} � ��
� ��
 �

�����������

 �
�

�

� � �

� � �

Notice that the time signature is specified in one melody staff only (the top staff), but is
printed on both. LilyPond knows that the time signature should be the same for all staves.

Common accents can be added to a note using -., --, ->:

c-. c-- c->�� � � !� "� �
Dynamic signs are made by adding the markings to the note:

c-\ff c-\mf�� �#%$�$&$� �
Crescendi and decrescendi are started with the commands \< and \>. The command \!

finishes a crescendo on the note it is attached to.

c2-\< c2-\!-\ff c2-\> c2-\!

Chapter 2: Tutorial 15��

$'$
� �
Chords can be made by surrounding notes with << and >>:

r4 <<c e g>>4 <<c f a>>8�� (�������� �
You can combine beams and ties with chords. Beam and tie markings must be placed

outside the chord markers:

r4 <<c e g>>8-[<<c f a>>-]-~ <<c f a>>�� (����������� �
r4 <<c e g>>8-\>-(<<c e g>> <<c e g>> <<c f a>>8-\!-\)�� (���(����������� �

SUMMARY

Syntax Description Example

() slur

���
\(\) phrasing slur

����
[] beam

��
< \context Staff ... > more staffs

��
�� �� � �� �

Chapter 2: Tutorial 16

-> -. articulations

� "�
-\mf -\sfz dynamics

�) $+*�#,$
\< \! crescendo

���
\> \! decrescendo

���
<< >> chord �� ��� �

Now you know the basic ingredients of a music file, so this is the right moment to try
your at hand at doing it yourself: try typing some simple examples, and experiment a little.

When you’re comfortable with the basics, you might want to read the rest of this chapter.
It continues in tutorial-style, but it is much more in-depth, dealing with more advanced
topics such as lyrics, chords, orchestral scores and parts, fine tuning of output, polyphonic
music, and integrating text and music.

2.4 Printing lyrics

In this section we shall explain how to typeset the following fragment of The Free Soft-
ware Song:� -� ware;
���soft�the�share
and
�������now�us�Join
� � -

To print lyrics, you must enter them and then instruct lilypond to print the lyrics. You
can enter lyrics in a special input mode of LilyPond. This mode is called Lyrics mode, and
it is introduced by the keyword \lyrics. The purpose of this mode is that you can enter
lyrics as plain text, punctuation, and accents without any hassle.

Syllables are entered like notes, but with pitches replaced by text. For example, Twin-
kle twin- kle enters four syllables. Note that the hyphen has no special meaning for lyrics,
and does not introduce special symbols.

Spaces can be introduced into a lyric either by using quotes: "He could" not or by using
an underscore without quotes: He_could not. All unquoted underscores are converted to
spaces.

Chapter 2: Tutorial 17

These are the lyrics for the free software song:

\lyrics {

Join us now __ and

share the soft -- ware; }

As you can see, extender lines are entered as __. This will create an extender, which is
a line that extends over the entire duration of the lyric. This line will run all the way to
the start of the next lyric, so you may want to shorten it by using a blank lyric (using _).

You can use ordinary hyphens at the end of a syllable, i.e.

soft- ware

but then the hyphen will be attached to the end of the first syllable.

If you want them centered between syllables you can use the special ‘--’ lyric as a
separate word between syllables. The hyphen will have variable length depending on the
space between the syllables and it will be centered between the syllables.

Normally the notes that you enter are transformed into note heads. Note heads alone
make no sense, so they need surrounding information: a key signature, a clef, staff lines, etc.
They need context. In LilyPond, these symbols are created by objects called ‘interpretation
contexts’. Interpretation contexts exist for generating notation (‘notation context’) and
for generating sound (‘performance context’). These objects only exist while LilyPond is
executing.

When LilyPond interprets music, it will create a Staff context. We don’t want that
default here, because we want lyric. The command

\context Lyrics

explicitly creates an interpretation context of Lyrics type to interpret the song text
that we entered.

The melody of the song doesn’t offer anything new:

\notes \relative c’ {

\time 7/4

d’2 c4 b16-(a g a b a b c-) a2

b2 c4 b8-(a16 g a4-) g2 }

Both can be combined with the \addlyrics:

\addlyrics

\notes \relative c’ ...

\context Lyrics \lyrics ...

The lyrics are also music expressions, similar to notes. Each syllable of the lyrics is put
under a note of the melody. The complete file is listed here:

\score { \notes { \addlyrics

\notes \relative c’ {

\time 7/4

d’2 c4 b16 (a g a b a b) c a2

b2 c4 b8 (a16 g) a4 g2 }

\context Lyrics \lyrics {

Join us now __ and

share the soft -- ware; }

Chapter 2: Tutorial 18

}

\paper { linewidth = -1. }

}

2.5 A melody with chords

In this section we show how to typeset a melody with chord accompaniment. This file
is included as ‘input/tutorial/flowing.ly’.

\include "paper16.ly"

melody = \notes \relative c’ {

\partial 8

\key c \minor

g8 |

c4 c8 d es-[-(d-]-) c4 | f4 f8 g es-[-(d-)-] c g |

c4 c8 d es-[-(d-]-) c4 | d4 es8 d c4.

\bar "|."

}

accompaniment =\chords {

r8

c2:3- f:3-.7 d:min es4 c8:min r8

c2:min f:min7 g:7^3.5 c:min }

\score {

\simultaneous {

%\accompaniment

\context ChordNames \accompaniment

\context Staff = mel {

\melody

}

}

\midi { \tempo 4=72 }

\paper { linewidth = 10.0\cm }

}

The result would look this.�� � �� � �mC(�(�� 7
G��� 7

mF(�(�� mC(�(� mC��/.E(�(�� mD��� 7
mF(�(�� 3

0
mC(�� � � � �

We will dissect this file line by line.

\include "paper16.ly"

Smaller size (suitable for inclusion in a book).

Chapter 2: Tutorial 19

melody = \notes \relative c’ {

The structure of the file will be the same as the previous one: a \score block with music
in it. To keep things readable, we will give different names to the different parts of music,
and use the names to construct the music within the score block.

\partial 8

The piece starts with an anacrusis (or “pickup”) of one eighth.

c4 c8 d [es () d] c4 | f4 f8 g [es() d] c g |

c4 c8 d [es () d] c4 | d4 es8 d c4.

\bar "|."

We use explicit beaming. Since this is a song, we turn automatic beams off and use
explicit beaming where needed.

}

This ends the definition of melody.

text = \lyrics {

This defines the lyrics, similar to what we have seen before.

accompaniment =\chords {

We’ll put chords over the music. To enter them, we use a special mode analogous to
\lyrics and \notes mode, where you can give the names of the chords you want instead
of listing the notes comprising the chord.

r8

There is no accompaniment during the anacrusis.

c2:3-

This is a c minor chord, lasting for a half note. Chords are entered using the tonic. Notes
can be changed to create different chords. In this case, a lowered third is used (making a C
major chord into a C minor chord). The code for this is 3-.

f:3-.7

Similarly, 7 modifies (adds) a seventh, which is small by default to create the f a c es

chord. Multiple modifiers must be separated by dots.

Chapter 2: Tutorial 20

d:min es4 c8:min r8

Some modifiers have predefined names, e.g. min is the same as 3-, so d-min is a minor
d chord.

c2:min f:min7 g:7^3.5 c:min }

A named modifier min and a normal modifier 7 do not have to be separated by a dot.
Tones from a chord are removed with chord subtractions. Subtractions are started with
a caret, and they are also separated by dots. In this example, g:7^3.5 produces a minor
seventh (a G7 chord without the third or the fifth). The brace ends the sequential music.

\score {

\simultaneous {

We assemble the music in the \score block. Melody, lyrics and accompaniment have to
sound at the same time, so they should be \simultaneous.

%\accompaniment

Chord mode generates notes grouped in \simultaneous music. If you remove the com-
ment sign, you can see the chords in normal notation: they will be printed as note heads
on a separate staff. To print them as chords names, they have to be interpreted as being
chords, not notes. This is done with the following command:

\context ChordNames \accompaniment

Normally the notes that you enter are transformed into note heads. Note heads alone
make no sense, so they need surrounding information: a key signature, a clef, staff lines, etc.
They need context. In LilyPond, these symbols are created by objects called ‘interpretation
contexts’. Interpretation contexts exist for generating notation (‘notation context’) and
for generating sound (‘performance context’). These objects only exist while LilyPond is
executing.

When LilyPond interprets music, it will create a Staff context. If the % sign in the
previous line were removed, you could see that mechanism in action.

We don’t want that default here, because we want chord names. The command above
explicitly creates an interpretation context of ChordNames type to interpret the music
\accompaniment.

\context Staff = mel {

We place the melody on a staff called mel. We give it a name to differentiate it from the
one that would contain note heads for the chords, if you would remove the comment before

Chapter 2: Tutorial 21

the “note heads” version of the accompaniment. By giving this staff a name, it is forced to
be different.

\property Staff.autoBeaming = ##f

An interpretation context has variables, called properties, that tune its behavior. One
of the variables is autoBeaming. Setting this Staff’s property to ##f, which is the boolean
value false, turns the automatic beaming mechanism off for the current staff.

\melody

}

Finally, we put the melody on the current staff. Note that the \property directives
and \melody are grouped in sequential music, so the property settings are done before the
melody is processed.

\midi { \tempo 4=72}

MIDI (Musical Instrument Digital Interface) is a standard for connecting and recording
digital instruments. So a MIDI file is like a tape recording of an instrument. The \midi

block makes the music go to a MIDI file, so you can listen to the music you entered. It
is great for checking the music. Whenever you hear something weird, you probably hear a
typing error.

Syntactically, \midi is similar to \paper { }, since it also specifies an output method.
You can specify the tempo using the \tempo command, in this case the tempo of quarter
notes is set to 72 beats per minute.

\paper { linewidth = 10.0\cm }

We also want notation output. The linewidth is short so that the piece will be set in
two lines.

2.6 More stanzas

If you have multiple stanzas printed underneath each other, the vertical groups of sylla-
bles should be aligned around punctuation. LilyPond can do this if you tell it which lyric
lines belong to which melody. We show how you can do this by showing how you could
print a frivolous fragment of a fictional Sesame Street duet.

\score {

\addlyrics

\notes \relative c’’ \context Voice = duet { \time 3/4

g2 e4 a2 f4 g2. }

\lyrics \context Lyrics <

\context LyricsVoice = "duet-1" {

Chapter 2: Tutorial 22

\property LyricsVoice . stanza = "Bert"

Hi, my name is bert. }

\context LyricsVoice = "duet-2" {

\property LyricsVoice . stanza = "Ernie"

Ooooo, ch\’e -- ri, je t’aime. }

>

} � ��
Bert

Ernie t’aime.

bert.

 �
je

is

�
ri,

name

ché

my

�
Ooooo,

Hi,

Ernie

Bert

� � �
To this end, give the Voice context an identity, and set the LyricsVoice to a name starting

with that identity followed by a dash. In the following example, the Voice identity is duet,

\context Voice = duet {

\time 3/4

g2 e4 a2 f4 g2. }

and the identities of the LyricsVoices are duet-1 and duet-2.

\context LyricsVoice = "duet-1" {

Hi, my name is bert. }

\context LyricsVoice = "duet-2" {

Ooooo, ch\’e -- ri, je t’aime. }

We add the names of the singers. This can be done by setting LyricsVoice.Stanza

(for the first system) and LyricsVoice.stz for the following systems. Note that you must
surround dots with spaces in \lyrics mode.

\property LyricsVoice . stanza = "Bert"

...

\property LyricsVoice . stanza = "Ernie"

The convention for naming LyricsVoice and Voice must also be used to get melismata
on rests correct.

2.7 More movements

The program lilypond only produces sheet music and does not create titles, subtitles,
or print the composer’s name. To do that, you need to use ly2dvi, which comes with
LilyPond. ly2dvi creates the title, then calls lilypond to format the sheet music. In this
section, we show you how to create titles like this:

Two miniatures

Opus 1.

Up �� ��� �

Chapter 2: Tutorial 23

Opus 2.

Down �� ��� �
For example, consider the following file (‘miniatures.ly’)

\version "1.5.72"

\header {

title = "Two miniatures"

composer = "F. Bar Baz"

tagline = "small is beautiful" }

\paper { linewidth = -1.0 }

%{

Mental note: discuss Schenkerian analysis of these key pieces.

%}

\score {

\notes { c’4 d’4 }

\header {

opus = "Opus 1."

piece = "Up" }

}

\score {

\notes { d’4 c’4 }

\header {

opus = "Opus 2."

piece = "Down" }

}

The information for the global titling is in a so-called header block. The information in
this block is not used by LilyPond, but it is passed into ly2dvi, which uses this information
to print titles above the music. the \header block contains assignments. In each assignment,
a variable is set to a value. The header block for this file looks like this

\header {

title = "Two miniatures"

composer = "F. Bar Baz"

tagline = "small is beautiful"

}

When you process a file with ly2dvi, a signature line is printed at the bottom of the last
page. This signature is produced from the tagline field of \header. The default "Lily
was here, version number" is convenient for programmers: archiving the layouts of different
versions allows programmers to compare the versions using old print-outs.

Chapter 2: Tutorial 24

Many people find the default tagline (“Lily was here”) too droll. If that is the case, you
can change tagline to something else, as shown above.

\paper {

linewidth = -1.0 }

A paper block at top level (i.e. not in a \score block) sets the default page layout. The
following \score blocks don’t have \paper sections, so the settings of this block are used.

The variable linewidth normally sets the length of the systems on the page. However,
a negative value has a special meaning. If linewidth is less than 0, no line breaks are
inserted into the score, and the spacing is set to natural length: a short phrase takes up
little space, a longer phrase takes more space, all on the same line.

%{

Mental note: discuss Schenkerian analysis of these key pieces.

%}

Mental notes to yourself can be put into comments. There are two types of comments.
Line comments are introduced by %, and block comments are delimited by %{ and %}.

\score {

\notes { c’4 d’4 }

In previous examples, most notes were specified in relative octaves (i.e. each note was
put in the octave that is closest to its predecessor). Besides relative, there is also absolute
octave specification, which you get when you don’t include \relative in your input file. In
this input mode, the middle C is denoted by c’. Going down, you get c c, c,, etc. Going
up, you get c’’ c’’’ etc.

When you’re copying music from existing sheet music, relative octaves are probably the
easiest to use: you have to do less typing, and errors are easily spotted. However, if you
write LilyPond input directly, either by hand (i.e. composing) or by computer, absolute
octaves may be easier to use.

\header {

The \header is normally at the top of the file, where it sets values for the rest of the
file. If you want to typeset different pieces from one file (for example, if there are multiple
movements, or if you’re making an exercise book), you can put different \score blocks into
the input file. ly2dvi will assemble all LilyPond output files into a big document. The
contents of \header blocks specified within each score is used for the title of that movement.

opus = "Opus 1."

piece = "Up" }

For example, the Opus number is put at the right, and the "piece" string will be at the
left.

\version "1.5.72"

\header {

title = "Two miniatures"

composer = "F. Bar Baz"

tagline = "small is beautiful" }

Chapter 2: Tutorial 25

\paper { linewidth = -1.0 }

\score {

\notes { c’4 d’4 }

\header {

opus = "Opus 1."

piece = "Up" }

}

\score {

\notes { d’4 c’4 }

\header {

opus = "Opus 2."

piece = "Down" }

}

TODO:

scoreA = \score { \deelA }

scoreB = \score { \deelA }

% \score { \scoreA }

\score { \scoreB }

\version "1.5.72"

Lilypond and its language are still under development, and occasionally details of the
syntax are changed. The version fragment indicates which version of lilypond the input
file was written for. When you compile this file, the version number will be checked and
you will get a warning when the file is too old. This version number is also used by the
convert-ly program (See Section 7.1 [Invoking convert-ly], page 149), which can used to
update the file to the latest lily version.

2.8 A piano excerpt

Our eighth subject is a piece of piano music. The fragment in the input file is a piano
reduction of the G major Sinfonia by Giovanni Battista Sammartini, composed around
1740. It’s in the source package under the name ‘input/tutorial/sammartini.ly’.

\version "1.7.6"

\include "paper16.ly"

viola = \notes \relative c’ \context Voice = viola {

<<c g’ c>>4-\arpeggio

\voiceTwo

g’8. b,16

s1 s2. r4

g

}

oboes = \notes \relative c’’ \context Voice = oboes {

Chapter 2: Tutorial 26

\voiceOne

s4 g8. b,16 c8 r <<e’ g>>8. <<f a>>16

\grace <<e g>>8-(<<d f>>4-) <<c e>>2

\times 2/3 { <<d f>>8 <<e g>> <<f a>> }

<

{ \times 2/3 { a8 g c } c2 }

\\

{ f,8 e e2 }

>

\grace <<c, e>>8-(<<b d>>8.-)-\trill <<c e>>16 |

[<<d f>>-(<<f a>>8.-)] <<b, d>>8 r [<<d f>>16-(<<f a>>8.-)] <<b, d>>8 r |

[<<c e>>16-(<<e g>>8.-)] <<c e,>>8

}

hoomPah = \repeat unfold 8 \notes

\transpose c c {

\translator Staff = down

\stemUp

c8

\translator Staff = up

\stemDown

c’8 }

bassvoices = \notes \relative c’ {

c4 g8. b,16

\context Voice \hoomPah

\translator Staff = down

\stemBoth

[c8 c’8] r4

<<g d’>> r4

< { r2 <<e c’>>4 <<c g’>>8 } \\

{ g2-~ | g4 c8 } >

}

\score {

\context PianoStaff \notes <

\context Staff = up <

\oboes

\viola

>

\context Staff = down < \time 2/2 \clef bass

\bassvoices

>

>

\midi { }

\paper {

indent = 0.0

linewidth = 15.0 \cm }

}

%% new-chords-done %%

Chapter 2: Tutorial 271�
1� � (

(
����
�������

���
���(��� �� �

�
���(�

��� �� ���
����

�
� �� �23 455�����

�

�����
��������

������

��
��3 455����

��������(��������� �� ��� 1
���6666� 1 3

3

As you can see, this example features multiple voices on one staff. To make room for
those voices, their notes should be stemmed in opposite directions.

LilyPond includes the identifiers \stemUp, \stemDown along with some other commonly
used formatting instructions, but to explain how it works, we wrote our own here. Of
course, you should use predefined identifiers like these if possible: you will be less affected
by changes between different versions of LilyPond.

viola = \notes \relative c’ \context Voice = viola {

In this example you can see multiple parts on a staff. Each part is associated with one
notation context. This notation context handles stems and dynamics (among other things).
The type name of this context is Voice. For each part we have to make sure that there is
precisely one Voice context, so we give it a unique name (‘viola’).

<<c g’ c>>4-\arpeggio

The delimiters << and >> enclose the pitches of a chord. \arpeggio typesets an arpeggio
sign (a wavy vertical line) before the chord.

\voiceTwo

We want the viola to have stems down, and have all the other characteristics of a second
voice. This is enforced using the \voiceTwo command: it inserts instructions that makes
stem, ties, slurs, etc. go down.

g’8. b,16

Relative octaves work a little differently with chords. The starting point for the note
following a chord is the first note of the chord. So the g gets an octave up quote: it is a
fifth above the starting note of the previous chord (the central C).

s1 s2. r4

s is a spacer rest. It does not print anything, but it does have the duration of a rest.
It is useful for filling up voices that temporarily don’t play. In this case, the viola doesn’t
come until one and a half measure later.

oboes = \notes \relative c’’ \context Voice = oboe {

Now comes a part for two oboes. They play homophonically, so we print the notes as
one voice that makes chords. Again, we insure that these notes are indeed processed by
precisely one context with \context.

\voiceOne s4 g8. b,16 c8 r <<e’ g>>8. <<f a>>16

The oboes should have stems up to keep them from interfering with the staff-jumping
bass figure. To do that, we use \voiceOne.

\grace <<e g>>-(<<d f>>4-) <<c e>>2

\grace introduces grace notes. It takes one argument, in this case a chord. A slur is
introduced starting from the \grace ending on the following chord.

Chapter 2: Tutorial 28

\times 2/3

Tuplets are made with the \times keyword. It takes two arguments: a fraction and a
piece of music. The duration of the piece of music is multiplied by the fraction. Triplets
make notes occupy 2/3 of their notated duration, so in this case the fraction is 2/3.

{ <<d f>>8 <<e g>> <<f a>> }

The piece of music to be ‘tripletted’ is sequential music containing three chords.

<

At this point, the homophonic music splits into two rhythmically different parts. We
can’t use a sequence of chords to enter this, so we make a "chord of sequences" to do it.
We start with the upper voice, which continues with upward stems:

{ \times 2/3 { a8 g c } c2 }

\\

The easiest way to enter multiple voices is demonstrated here. Separate the components
of the voice (single notes or entire sequences) with \\ in a simultaneous music expression.
The \\ separators split first voice, second voice, third voice, and so on.

As far as relative mode is concerned, the previous note is the c’’’2 of the upper voice,
so we have to go an octave down for the f.

f,8 e e2

} >

This ends the two-part section.

\stemBoth

\grace <<c, e>>8-(<<b d>>8.-\trill <<c e>>16 |

\stemBoth ends the forced stem directions. From here, stems are positioned as if it were
single part music.

The bass has a little hoom-pah melody to demonstrate parts switching between staves.
Since it is repetitive, we use repeats:

hoomPah = \repeat unfold 8

The unfolded repeat prints the notes in its argument as if they were written out in full
eight times.

\notes \transpose c’ {

Transposing can be done with \transpose, which takes two arguments. The first speci-
fies what central C should be transposed to. The second is the to-be-transposed music. As
you can see, in this case, the transposition has no effect, as central C stays at central C.

The purpose of this no-op is to protect it from being interpreted as relative notes.
Relative mode can not be used together with transposition, so \relative will leave the
contents of \hoomPah alone. We can use it without having to worry about getting the
motive in a wrong octave. Conversely, if you want to transpose a fragment of music entered
with \relative, then you should make sure that \transpose comes before \relative.

\translator Staff = down

\stemUp

c8

Chapter 2: Tutorial 29

\translator Staff = up

\stemDown

c’8 }

Voices can switch between staves. Here you see two staff switching commands. The first
one moves to the lower staff, the second one to the lower one. If you set the stem directions
explicitly (using the identifiers \stemUp and \stemDown, the notes can be beamed together
(despite jumping between staffs).

bassvoices = \notes \relative c’ {

c4 g8. b,16

\autochange Staff \hoomPah \context Voice

\translator Staff = down

We want the remaining part of this melody on the lower staff, so we do a manual staff
switch here.

\context Voice = reallyLow {\stemDown g2-~ | g4 c8 } >

After skipping some lines, we see ~. This mark makes ties. Note that ties and slurs are
different things. A tie can only connect two note heads of the same pitch, whereas a slur
can connect many notes with one curve.

\context PianoStaff

A special context is needed to get cross staff beaming right. This context is called
PianoStaff.

\context Staff = bottom < \time 2/2 \clef bass

The bottom staff must have a different clef.

indent = 0.0

To make some more room on the line, the first (in this case the only) line is not indented.
The line still looks very cramped, but that is due to the page layout of this document.

2.9 Fine tuning a piece

In this section we show some ways to fine tune the final output of a piece. We do so using
a single measure of a moderately complex piano piece: a Brahms intermezzo (opus 119, no.
1). Both fragments (the tuned and the untuned versions) are in ‘input/tutorial/’.

The code for the untuned example shows us some new things.

\version "1.7.6"

\score {

\notes\context PianoStaff <

\context Staff = up

\relative c’’ <

{ \key d\major

fis4-3_\p-(-~

fis16 a-)-5 } \\

{

fis16-(-\> d b-\! \translator Staff = down

\clef treble g-~ <<g e>>8-) } \\

Chapter 2: Tutorial 30

{ s16

d’

~ <<d b>>4 }

>

\context Staff = down {

\key d \major

\time 3/8 \clef bass s4. }

>

\paper { linewidth = -1. }

}

%% new-chords-done %%

� �� ��
� �� ��

� 7
��
�

�8
���	��

� � � � �
��9;:� � � � �

Hairpin dynamics can be easily added to Lilypond scores. Beginning a crescendo is
indicated with \< and ending a crescendo is indicated with \!. A decrescendo can be
indicated with \> and \!. Absolute dynamics (sometimes called “Letter dynamics”) can be
entered using \p, \mf, etc. All these dynamics will apply to the whole chord where they are
entered, but for syntactical reasons they must be attached to one of the notes of the chord.

Fingering indications are entered with -N , where N is a digit.

Now that we have the basic piece of music entered, we want to fine tune it so that we
get something that resembles the original printed edition by Schott/Universal Edition:� �� ��

� �� ��
7�

��
�

�8
�����

� � � � �
��9 :� � � � �

Fine tuning involves overriding the defaults of the printing system. We do this by setting
variables which control how Lilypond prints symbols. Printed symbols are called graphical
objects (often abbreviated to grob). Each object is described by a bunch of settings. Every
setting is a variable: it has a name and a value which you can change. These values
determine the fonts, offsets, sub-routines to be called on the object, etc. The initial values
of these settings are set in the Scheme file ‘scm/grob-description.scm’.

We start with the slur in the upper part, running from F sharp to A. In the printed
edition, this slur runs from stem to stem; in our version, the slur begins at the note head of

Chapter 2: Tutorial 31

the F sharp. The following property setting forces all slurs to run from stem to stem (not
from or to note heads!).

\property Voice.Slur \set #’attachment = #’(stem . stem)

More precisely, this command modifies the definition of the Slur object in the current
Voice. The variable attachment is set to the pair of symbols ’(stem . stem).

Although this fixes the slur, it isn’t very helpful for fine tuning in general: the lilypond
back-end supports approximately 240 variables like attachment, each with their own mean-
ing and own type (eg. number, symbol, list, etc). Besides slur, LilyPond has 80 different
types of graphical objects, that may be created in 14 different context types besides Voice.

The interesting information is how you can figure out which properties to tune for your
own scores. To discover this, you must have a copy of the internals document. This is a
set of HTML pages which should be included if you installed a binary distribution1. These
HTML pages are also available on the web: go to the lilypond website, click “Documen-
tation: Index” on the side bar, look in the “Information for uses” section, and click on
“Documentation of internals”.

You might want to bookmark either the HTML files on your disk, or the one on the web
(the HTML on your hard drive will load much faster than the ones on the web!). One word
of caution: the internals documentation is generated from the definitions that lily uses. For
that reason, it is strongly tied to the version of LilyPond that you use. Before you proceed,
please make sure that you are using the documentation that corresponds to the version of
LilyPond that you are using.

Suppose that you wanted to tune the behavior of the slur. The first step is to get some
general information on slurs in lilypond. Turn to the index, and look up “slur”. The section
on slurs says

The grob for this object is Slur, generally in Voice context.

So the graphical object for this object is called Slur, and slurs are created in the Voice

context. If you are reading this tutorial in the HTML version, then you can simply click
Slur, otherwise, you should look it up the internal documentation: click “grob overview”
and select “slur” (the list is alphabetical).

Now you get a list of all the properties that the slur object supports, along with their
default values. Among the properties we find the attachment property with its default
setting. The property documentation explains that the following setting will produce the
desired effect:

\property Voice.Slur \set #’attachment = #’(stem . stem)

If you ran the previous example, you have unknowingly already used this kind of com-
mand. The ‘ly/property-init.ly’ contains the definition of \stemUp:

stemUp = \property Voice.Stem \set #’direction = #1

Next we want to move the fingering ‘3’. In the printed edition it is not above the
stem, but a little lower and slightly left of the stem. From the user manual we find that the
associated graphical object is called Fingering, but how do we know if we should use Voice
or Staff? In many cases, Voice is a safe bet, but you can also deduce this information

1 You can also compile them by executing make -C Documentation/user/ out/lilypond-internals.html

in the source package.

Chapter 2: Tutorial 32

from the internals documentation: if you visit the documentation of Fingering, you will
notice

Fingering grobs are created by: Fingering_engraver

Clicking Fingering_engraver will show you the documentation of the module responsi-
ble for interpreting the fingering instructions and translating them to a Fingering object.
Such a module is called an engraver. The documentation of the Fingering_engraver says

Fingering_engraver is part of contexts: Voice and TabVoice

so tuning the settings for Fingering should be done using either

\property Voice.Fingering \set ...

or

\property TabVoice.Fingering \set ...

Since the TabVoice is only used for tab notation, we see that the first guess Voice was
indeed correct.

For shifting the fingering, we use the property extra-offset. The following command
manually adds an offset to the object. We move it a little to the left, and 1.8 staff space
downwards.

\property Voice.Fingering \set #’extra-offset = #’(-0.3 . -1.8)

The extra-offset is a low-level feature: it moves around objects in the printout; the
formatting engine is completely oblivious to these offsets. The unit of these offsets are
staff-spaces. The first number controls left-right movement; a positive number will move
the object to the right. The second number controls up-down movement; a positive number
will move it higher.

We only want to offset a single object, so after the F-sharp we must undo the setting.
The technical term is to revert the property.

\property Voice.Fingering \revert #’extra-offset

There are three different types of variables in LilyPond, something which can be confus-
ing at first (and for some people it stays confusing :). Variables such as extra-offset and
attachment are called grob properties. They are not the same as translator properties, like
autoBeaming. Finally, music expressions are internally stored using properties (so-called
music properties). You will encounter music properties if you run Scheme functions on
music using \apply.

The second fingering instruction should be moved up a little to avoid a collision with
the slur. This could be achieved with extra-offset, but in this case, a simpler mechanism
also works. We insert an empty text between the 5 and the note. The empty text pushes
the fingering instruction away:

a-)^" "^\markup { \finger "5" }

A fingering instruction, which would be entered as ^5, is put as close to the notes as
possible, closer than the space entered to push away the 5. Hence, the 5 is entered as a
normal text, formatting of fingering instructions.

Normally one would specify all dynamics in the same voice, so that dynamics (such as f

and p) will be aligned with hairpins. But in this case, we don’t want the decrescendo to be
aligned with the piano sign. We achieve this by putting the dynamic markings in different
voices. The crescendo should be above the upper staff. This can be forced by using the
precooked command

Chapter 2: Tutorial 33

\dynamicsUp

However, if you do that the decrescendo will be too close to the upper voice and collide
with the stems. Looking at the manual for dynamics, we notice that “Vertical positioning of
these symbols is handled by the DynamicLineSpanner grob.”. If we turn to the documenta-
tion of DynamicLineSpanner, we find that DynamicLineSpanner supports several so-called
‘interfaces’. This object not only puts dynamic objects next to the staff (side-position-
interface), but it also groups dynamic objects (axis-group-interface), is considered
a dynamic sign itself (dynamic-interface), and is an object. It has the standard grob-

interface with all the variables that come with it.

For the moment we are interested in side positioning:

side-position-interface

Position a victim object (this one) next to other objects (the support). In
this case, the direction signifies where to put the victim object relative to the
support (left or right, up or down?)

Between the object and its support (in this case the notes in the voice going down),
there should be more space. This space is controlled by padding, so we increase it.

\property Voice.DynamicLineSpanner \override #’padding = #5.0

This command is almost like the command for setting slur attachments, but subtly
different in its details. Grob properties can be manipulated with two commands: \override
extends the variables with a setting, and \revert releases this setting. This has a certain
theoretical appeal: the operations are simple and symmetric. But for practical use, it can
be cumbersome. The commands act like parentheses: you should carefully balance the use
of \override and \revert. The \set command is more friendly: it first does a \revert

followed by \override.

Brahms uses music notation is a slightly unorthodox way. Ties usually happen only
within one voice. In this piece, the composer gladly produces ties that jump voices. We
deal with this by faking these ties: whenever we need such a tie, we insert a notehead in a
different voice, and blank the stem. This is done in the following snippet of code.

\property Voice.Stem \set #’transparent = ##t

d’

Blanking the stem should be done for only one object. One of the ways to achieve that,
is by setting the property before a note. Reverting it afterwards is tedious, so for setting
a property only once, we have the syntax \once: it reverts the property directly before
proceeding to the next step in time.

The \once keyword is added to \property.

Finally, the last tie is forced up using \tieUp.

Here’s the complete “fine tuned” version, which includes all the modifications we dis-
cussed in this section:

\version "1.7.6"

\score {

\notes\context PianoStaff <

\context Staff = up

\relative c’’ <

{ \key d\major

Chapter 2: Tutorial 34

\property Voice.Slur \set #’attachment = #’(stem . stem)

\property Voice.Fingering \set #’extra-offset = #’(-0.3 . -1.8)

fis4-3_\p-(-~

\property Voice.Fingering \revert #’extra-offset

fis16 a-)^" "^\markup { \finger "5" } } \\

{

\dynamicUp

\property Voice.DynamicLineSpanner \override #’padding = #5.0

\tieUp

fis16-(-\> d b-\! \translator Staff = down

\stemUp

\clef treble g-~ <<g e>>8-) } \\

{ s16

\property Voice.Stem \set #’transparent = ##t

d’

\property Voice.Stem \revert #’transparent

~ <<d b>>4 }

>

\context Staff = down {

\key d \major

\time 3/8 \clef bass s4. }

>

\paper { linewidth = -1. }

}

%% new-chords-done %%

� �� ��
� �� ��

7�
��
�

�8
�����

� � � � �
��9 :� � � � �

2.10 An orchestral score

Our next two examples demonstrate one way to create an orchestral score in LilyPond.
When typesetting a piece for several instruments, you’ll want to create a full score (for the
conductor) along with several individual parts (for the players).

Chapter 2: Tutorial 35

LilyPond is well suited for this task. We will declare the music for each instrument
individually, giving the music of each instrument its own name. These pieces of music are
then combined in different \score blocks to produce different combinations of instruments
(for example, one \score block may only include the cello part; another \score block may
be for all the strings, and yet another \score block may be for all parts together).

This orchestral score example consists of three input files. In the first file, ‘os-music.ly’,
we define the music for all instruments. This file will be used for producing the score and
the separate parts, but the file doesn’t produce any sheet music itself. Other files reference
this file by doing \include "os-music.ly".

% os-music.ly

\header {

title = "Zo, goed lieverd?"

subtitle = "How’s, this babe?"

composer = "JCN"

opus = "1"

piece = "Laid back"

}

global = {

\time 2/4

\skip 2*4 \bar "|."

}

Key = \notes \key as \major

flautoI = \notes\relative c’’ {

f8 g f g f g f g

bes as bes as bes as bes as

}

flautoII = \notes\relative c’’ {

as8 bes as bes R1 d4 ~ d

}

tromboI = \notes\relative c’’ {

c4. c8 c8 c4. es4 r as, r

}

tromboII = \notes\relative c’’ {

as4. as8 as8 as4. R1*1/2 as4 es’

}

timpani = \notes\relative c, {

\times 2/3 { f4 f f }

\times 4/5 { as8 as as as as }

R1

}

corno = \notes\relative c’ {

bes4 d f, bes d f, bes d

}

We will not examine this example line by line, since you already know most of it. We’ll
examine a few lines which contain new elements.

global = {

Chapter 2: Tutorial 36

\time 2/4

\skip 2*4 \bar "|."

}

Declare setting to be used globally. The \skip command produces no output, but moves
forward in time: in this case, the duration of a half note (2), and that four times (*4). This
brings us to the end of the piece, and we can set the end bar. You can use s as a shortcut
for \skip (the last line of this section would be s2*4 \bar"|.").

Key = \notes \key as \major

Declare the key signature of the piece and assign it to the identifier Key. Later on we’ll
use \Key for all staves except those for transposing instruments.

2.10.1 The full score

The second file, ‘input/tutorial/os-score.ly’, reads the definitions of the first
(‘input/tutorial/os-music.ly’), and defines the \score block for the full conductor’s
score.

\version "1.7.6"

\include "os-music.ly"

\include "paper13.ly"

#(ly:set-point-and-click ’line-column)

textFlat = \markup {\smaller \musicglyph #"accidentals--1"}

\score {

<

\global

\property Score.BarNumber \override #’padding = #3

\context StaffGroup = woodwind <

\context Staff = flauti <

\property Staff.midiInstrument = #"flute"

\property Staff.instrument = "2 Flauti"

\property Staff.instr = "Fl."

\Key

\context Voice=one { \voiceOne \flautoI }

\context Voice=two { \voiceTwo \flautoII }

>

>

\context StaffGroup = timpani <

\context Staff = timpani <

\property Staff.midiInstrument = #"timpani"

\property Staff.instrument = \markup { \column << "Timpani" "(C-G)" >> }

\property Staff.instr = #"Timp."

\clef bass

\Key

\timpani

>

Chapter 2: Tutorial 37

>

\context StaffGroup = brass <

\context Staff = trombe <

\property Staff.midiInstrument = #"trumpet"

\property Staff.instrument = \markup { \column << "2 Trombe" "(C)" >> }

\property Staff.instr = \markup{ \column << "Tbe." "(C)">> }

\Key

\context Voice=one \partcombine Voice

\context Thread=one \tromboI

\context Thread=two \tromboII

>

\context Staff = corni <

\property Staff.midiInstrument = #"french horn"

\property Staff.instrument

= \markup { \column << "Corno" { "(E" \textFlat ")" } >> }

\property Staff.instr =

\markup { \column << "Cor." { "(E" \textFlat ")" } >> }

\property Staff.transposing = #3

\notes \key bes \major

\context Voice=one \corno

>

>

>

\paper {

indent = 15 * \staffspace

linewidth = 60 * \staffspace

textheight = 90 * \staffspace

\translator{

\VoiceContext

\consists "Multi_measure_rest_engraver"

}

\translator{

\HaraKiriStaffContext

\remove "Multi_measure_rest_engraver"

}

}

\midi {

\tempo 4 = 75

}

}

Zo, goed lieverd?

How’s, this babe?

Opus 1.

Laid back

Chapter 2: Tutorial 38

2 Flauti2 Flauti < =. . . .>
(C-G)
Timpani
(C-G)
Timpani < =. . . .?
(C)
2 Trombe
(C)
2 Trombe < =. . . .>

)
0

(E
Corno

)
0

(E
Corno < =. .>

@
Solo II@
@
@@@

a2

A

@@
@@@

@
B
@@

Solo

@
@
@

@
@
@
@

@
@@DC@DC
@
@E
@
@@@
@

E@@
@@@

@

@@@@
@

@> . . < =)
0

(E
Corno

)
0

(E
Corno

@DC@DC> < =(C)
2 Trombe
(C)
2 Trombe

@? < =(C-G)
Timpani
(C-G)
Timpani

@@> < =2 Flauti2 Flauti

3 F 5 FF F
\include "os-music.ly"

First we need to include the music definitions we made in ‘os-music.ly’.

#(ly:set-point-and-click ’line-column)

This piece of Scheme code executes the function ly:set-point-and-click with the
argument line-column. Editing input files can be complicated if you’re working with large
files: if you’re digitizing existing music, you have to synchronize the .ly file, the sheet music
on your lap and the sheet music on the screen. The point-and-click mechanism makes it
easy to find the origin of an error in the LY file: when you view the file with Xdvi and
click on a note, your editor will jump to the spot where that note was entered. For more
information, see Section 3.2.4 [Point and click], page 53.

#(define text-flat ’((font-relative-size . -2)

(music "accidentals--1")))

To name the transposition of the french horn, we will need a piece of text with a flat
sign. LilyPond has a mechanism for font selection and kerning called Scheme markup text
(See Section 3.18.4 [Text markup], page 115). The flat sign is taken from the music font,
and its name is accidentals--1 (The natural sign is called accidentals-0). The default
font is too big for text, so we select a relative size of -2.

<

\global

All staves are simultaneous and use the same global settings.

\property Score.BarNumber \override #’padding = #3

LilyPond prints bar numbers at the start of each line, but unfortunately they end up a
bit too close to the staff in this example. In LilyPond, a bar number is called BarNumber.
BarNumber objects can be manipulated through their side-position-interface. One of the
properties of a side-position-interface that can be tweaked is padding : the amount of extra
space that is put between this and other objects. We set the padding to three staff spaces.

You can find information on all these kind of properties in LilyPond’s automatically
generated documentation in the online documentation or in the previous section of the
tutorial.

\context StaffGroup = woodwind <

\context Staff = flauti <

A new notation context: the StaffGroup. StaffGroup can hold one or more Staff’s,
and will print a big bracket at the left of the score. This starts a new staff group for the
woodwind section (just the flutes in this case). Immediately after that, we start the staff
for the two flutes, who also play simultaneously.

Chapter 2: Tutorial 39

\property Staff.midiInstrument = #"flute"

Specify the instrument for MIDI output (see Section 3.20.2 [MIDI instrument names],
page 122).

\property Staff.instrument = "2 Flauti"

\property Staff.instr = "Fl."

This defines the instrument names to be printed in the margin. instrument specifies
the name for the first line of the score, instr is used for the rest of the score.

\Key

The flutes play in the default key.

\context Voice=one { \voiceOne \flautoI }

\context Voice=two { \voiceTwo \flautoII }

Last come the actual flute parts. Remember that we’re still in simultaneous mode. We
name both voices differently, so that LilyPond will create two Voice contexts. The flute parts
are simple, so we specify manually which voice is which: \voiceOne forces the direction of
stems, beams, slurs and ties up, \voiceTwo sets directions down.

>

>

Close the flutes staff and woodwind staff group.

\property Staff.instrument = #’(lines "Timpani" "(C-G)")

The timpani staff demonstrates a new piece of scheme markup, it sets two lines of text.

\context Voice=one \partcombine Voice

\context Thread=one \tromboI

\context Thread=two \tromboII

You have seen the notation contexts Staff and Voice, but here’s a new one: Thread. One
or more Threads can be part of a Voice. Thread takes care of note heads and rests; Voice
combine note heads onto a stem.

For the trumpets we use the automatic part combiner (see Section 3.15.6 [Automatic
part combining], page 99) to combine the two simultaneous trumpet parts onto the trumpet
staff. Each trumpet gets its own Thread context, which must be named one and two). The
part combiner makes these two threads share a Voice when they’re similar, and splits the
threads up when they’re different.

\property Staff.instrument = #‘(lines "Corno"

(columns "(E" ,text-flat ")"))

The french horn (“Corno”) has the most complex scheme markup name, made up of two
lines of text. The second line has three elements (columns) – the (E, the flat sign text-

flat that we defined previously, and a final ")". Note that we use a backquote instead
of an ordinary quote at the beginning of the Scheme expression to be able to access the
text-flat identifier, ‘unquoting’ it with a “,”.

\property Staff.transposing = #3

The french horn is to be tuned in E-flat, so we tell the MIDI back-end to transpose this
staff by three steps.

Note how we can choose different tunings for the text input, sheet music output and,
and MIDI output, using \transpose and the MIDI Staff property transposing.

Chapter 2: Tutorial 40

\notes \key bes \major

Since the horn is transposing, it’s in a different key.

indent = 15 * \staffspace

linewidth = 55 * \staffspace

We specify a big indent for the first line and a small linewidth for this tutorial.

Usually LilyPond’s default setup of notation contexts (Thread, Voice, Staff, Staffgroup,
Score) is just fine. But in this case we want a different type of Staff context.

\translator{

\HaraKiriStaffContext

}

In orchestral scores it often happens that one instrument only has rests during one line
of the score. HaraKiriStaffContext can be used as a regular StaffContext drop-in and
will take care of the automatic removing of empty staves – so if the strings are the only
instruments playing for a line, LilyPond will only print the string parts for that line of the
score. This reduces the number of page turns (and the number of dead trees!) required in
a score.

2.10.2 Extracting an individual part

The third file, ‘os-flute-2.ly’ also reads the definitions of the first (‘os-music.ly’),
and defines the \score block for the second flute part.

\include "os-music.ly"

\include "paper16.ly"

\score {

\context Staff <

\property Score.skipBars = ##t

\property Staff.midiInstrument = #"flute"

\global

\Key

\flautoII

>

\header {

instrument = "Flauto II"

}

\paper {

linewidth = 80 * \staffspace

textheight = 200 * \staffspace

}

\midi {

\tempo 4 = 75

}

}

Zo, goed lieverd?

Chapter 2: Tutorial 41

How’s, this babe?
Flauto II

Opus 1.

Laid back � G� � � �� �� �G H����� � � � � � G
Because we separated the music definitions from the \score instantiations, we can easily

define a second score with the music of the second flute. This is the part for the second
flute player. Of course, we would make separate parts for all individual instruments if we
were preparing the score for an orchestra.

\flautoII

In this individual part the second flute has a whole staff for itself, so we don’t want to
force stem or tie directions.

\header {

instrument = "Flauto II"

}

The \header definitions were also read from ‘os-music.ly’, but we need to set the
instrument for this particular score.

\property Score.skipBars = ##t

In the conductor’s full score, all bars with rests are printed, but for the individual parts,
we want to print one multimeasure rest instead of many consecutive empty bars. LilyPond
will do this if Score.skipBars is set to true (##t).

2.11 Integrating text and music

Sometimes you might want to use music examples in a text that you are writing (for
example a musicological treatise, a songbook, or (like us) the LilyPond manual). You can
make such texts by hand, simply by importing a PostScript figure into your word processor.
However, there is an automated procedure to reduce the amount of work.

If you use HTML, LaTEX, or texinfo, you can mix text and LilyPond code. A script
called lilypond-book will extract the music fragments, run LilyPond on them, and put
back the resulting notation. This program is fully described in the chapter Chapter 6
[Integrating text and music with lilypond-book], page 142. Here we show a small example.
Since the example also contains explanatory text, we won’t comment on the contents.

\documentclass[a4paper]{article}

\begin{document}

In a lilypond-book document, you can freely mix music and text. For

example:

\begin{lilypond}

\score { \notes \relative c’ {

c2 g’2 \times 2/3 { f8 e d } c’2 g4

Chapter 2: Tutorial 42

} }

\end{lilypond}

Notice that the music line length matches the margin settings of the

document.

If you have no \verb+\score+ block in the fragment,

\texttt{lilypond-book} will supply one:

\begin{lilypond}

c’4

\end{lilypond}

In the example you see here, two things happened: a

\verb+\score+ block was added, and the line width was set to natural

length. You can specify many more options using \LaTeX style options

in brackets:

\begin[verbatim,11pt,singleline,

fragment,relative,intertext="hi there!"]{lilypond}

c’4 f bes es

\end{lilypond}

\texttt{verbatim} prints the LilyPond code in addition to the

graphical score,

\texttt{11pt} selects the default music size,

\texttt{fragment} adds a score block,

\texttt{relative} uses relative mode for the fragment, and

\texttt{intertext} specifies what to print between the

\texttt{verbatim} code and the music.

If you want to include large examples into the text, it may be more

convenient to put the example in a separate file:

\lilypondfile[printfilename]{sammartini.ly}

The \texttt{printfilename} option adds the file name to the output.

\end{document}

Under Unix, you can view the results as follows.

$ cd input/tutorial

$ mkdir -p out/

$ lilypond-book --outdir=out/ lilbook.tex

lilypond-book (GNU LilyPond) 1.6.1

Reading ‘input/tutorial/lilbook.tex’

Reading ‘input/tutorial/sammartini.ly’

lots of stuff deleted

Chapter 2: Tutorial 43

Writing ‘out/lilbook.latex’

$ cd out

$ latex lilbook.latex

lots of stuff deleted

$ xdvi lilbook

Notice the outdir option to lilypond-book. Running lilypond-book and running latex
creates a lot of temporary files, and you wouldn’t want those to clutter up your working
directory. Hence, we have them created in a separate subdirectory.

The result looks more or less like this:

In a lilypond-book document, you can freely mix music and text. For example:�� �
��
3

�

� �
Notice that the music line length matches the margin settings of the document.

If you have no \score block in the fragment, lilypond-book will supply one:�� �� �
In the example you see here, a number of things happened: a \score block was added,

and the line width was set to natural length. You can specify many more options using
LaTEX style options in brackets:

c’4 f bes es

hi there! IJ 0 50 555J I
verbatim also shows the LilyPond code, 11pt selects the default music size, fragment

adds a score block, relative uses relative mode for the fragment, and intertext specifies
what to print between the verbatim code and the music.

If you include large examples into the text, it may be more convenient to put the example
in a separate file:

‘../../input/tutorial/sammartini.ly’:1�
1� � (

(
����
�������

���
���(��� �� �

�
���(�

��� �� ���
����

�
� �� �23 455�����

�

�����
��������

������

��
��3 455����

��������(��������� �� ��� 1
���6666� 1 3

3

The printfilename option adds the file name to the output.

Chapter 2: Tutorial 44

2.12 End of tutorial

This is the end of the tutorial. If you read everything until this point (and understood
everything!) then you’re now an accomplished lilypond hacker. From here you should try
fiddling with input files or making your own input files. Come back to the reference manual
for more information if you get stuck!

Don’t forget to check out the templates, examples and feature tests. If you want to
see real action LilyPond, head over to http://www.mutopiaproject.org, which has many
examples of classical music typeset with LilyPond.

Chapter 3: Reference Manual 45

3 Reference Manual

This document describes GNU LilyPond and its input format. The last revision of this
document was made for LilyPond 1.7.10. It assumes that you already know a little bit about
LilyPond input (how to make an input file, how to create sheet music from that input file,
etc). New users are encouraged to study the tutorial before reading this manual.

3.1 Note entry

Notes constitute the most basic elements of LilyPond input, but they do not form valid
input on their own without a \score block. However, for the sake of brevity and simplicity
we will generally omit \score blocks and \paper declarations in this manual.

3.1.1 Notes

A note is printed by specifying its pitch and then its duration.

cis’4 d’8 e’16 c’16�� � ���� �� �
3.1.2 Pitches

The verbose syntax for pitch specification is

\pitch scmpitch

where scmpitch is a pitch scheme object.

In Note and Chord mode, pitches may be designated by names. The default names are
the Dutch note names. The notes are specified by the letters a through g, while the octave
is formed with notes ranging from c to b. The pitch c is an octave below middle C and the
letters span the octave above that C. Here’s an example which should make things more
clear:

\clef bass

a,4 b, c d e f g a b c’ d’ e’ \clef treble f’ g’ a’ b’ c’’�� �����8������������� �
In Dutch, a sharp is formed by adding -is to the end of a pitch name and a flat is

formed by adding -es. Double sharps and double flats are obtained by adding -isis or
-eses. aes and ees are contracted to as and es in Dutch, but both forms are accepted.

LilyPond has predefined sets of note names for various other languages. To use them,
simply include the language specific init file. For example: \include "english.ly". The
available language files and the note names they define are:

Chapter 3: Reference Manual 46

Note Names sharp flat

nederlands.ly c d e f g a bes b -is -es

english.ly c d e f g a bf b -s/-sharp -f/-flat

deutsch.ly c d e f g a b h -is -es

norsk.ly c d e f g a b h -iss/-is -ess/-es

svenska.ly c d e f g a b h -iss -ess

italiano.ly do re mi fa sol la sib si -d -b

catalan.ly do re mi fa sol la sib si -d/-s -b

espanol.ly do re mi fa sol la sib si -s -b

The optional octave specification takes the form of a series of single quote (‘’’) characters
or a series of comma (‘,’) characters. Each ’ raises the pitch by one octave; each , lowers
the pitch by an octave.

c’ c’’ es’ g’ as’ gisis’ ais’�� �� �
 �� ��� ���� �
3.1.3 Chromatic alterations

Normally accidentals are printed automatically, but you may also print them manually.
A reminder accidental can be forced by adding an exclamation mark ! after the pitch. A
cautionary accidental (an accidental within parentheses) can be obtained by adding the
question mark ‘?’ after the pitch.

cis’ cis’ cis’! cis’?�� KL � �� ��� �� �
The automatic production of accidentals can be tuned in many ways. For more infor-

mation, refer to Section 3.6 [Accidentals], page 63.

3.1.4 Rests

Rests are entered like notes, with a “note name” of ‘r’:

r1 r2 r4 r8�� ���M� �
Whole bar rests, centered in middle of the bar, are specified using R (capital R); see

Section 3.15.5 [Multi measure rests], page 98. See also internals document, Rest.

For some music, you may wish to explicitly specify the rest’s vertical position. This can
be achieved by entering a note with the \rest keyword appended. Rest collision testing
will leave these rests alone.

Chapter 3: Reference Manual 47

a’4\rest d’4\rest�� ��� �
3.1.5 Skips

An invisible rest (also called a ‘skip’) can be entered like a note with note name ‘s’ or
with \skip duration :

a2 s4 a4 \skip 1 a4�� ��
� �
In Lyrics mode, you can make invisible syllables by entering ‘" "’ or ‘_’:

<

\context Lyrics \lyrics { lah2 di4 " " dah2 _4 di }

\notes\relative c’’ { a2 a4 a a2 a4 a }

> �� di��dah
�di�lah
� �
In this case, syllables containing a space will be printed. In the case that you really need

an invisible space (i.e. something taking up time, but not space), you should use \skip.

Note that the s syntax is only available in Note mode and Chord mode. In other
situations, you should use the \skip command, which will work outside of those two modes:

\score {

\context Staff <

{ \time 4/8 \skip 2 \time 4/4 }

\notes\relative c’’ { a2 a1 }

>

} ��� ��
� ��
The skip command is merely an empty musical placeholder. It doesn’t produce any

output, not even transparent output.

3.1.6 Durations

In Note, Chord, and Lyrics mode, durations are designated by numbers and dots: dura-
tions are entered as their reciprocal values. For example, a quarter note is entered using a

Chapter 3: Reference Manual 48

4 (since it’s a 1/4 note), while a half note is entered using a 2 (since it’s a 1/2 note). For
notes longer than a whole you must use identifiers.

c’\breve

c’1 c’2 c’4 c’8 c’16 c’32 c’64 c’64

r\longa r\breve

r1 r2 r4 r8 r16 r32 r64 r64 NNO���PQHRS�S�T������
�U
If the duration is omitted then it is set to the previously entered duration. At the start

of parsing, a quarter note is assumed. The duration can be followed by dots (‘.’) in order
to obtain dotted note lengths:

a’ b’ c’’8 b’ a’4 a’4. b’4.. c’8.�� (� �� ����������� �
You can alter the length of duration by a fraction N/M appending ‘*N/M ’ (or ‘*N ’ if

M=1). This won’t affect the appearance of the notes or rests produced.

a’2*2 b’4*2 a’8*4 a’4*3/2 gis’4*3/2 a’4*3/2 a’4�� ��� ��(��
� �
Durations can also be produced through GUILE extension mechanism.

c’\duration #(ly:make-duration 2 1)�� � �� �
BUGS

Dot placement for chords is not perfect. In some cases, dots overlap:�� � ����� ��V��V�� �
3.1.7 Ties

A tie connects two adjacent note heads of the same pitch. The tie in effect extends the
length of a note. Ties should not be confused with slurs, which indicate articulation, or
phrasing slurs, which indicate musical phrasing. A tie is entered using the tilde symbol ‘~’.

e’ ~ e’ <<c’ e’ g’>> ~ <<c’ e’ g’>>

Chapter 3: Reference Manual 49�� ��������� �
When a tie is applied to a chord, all note heads (whose pitches match) are connected. If

you try to tie together chords that have no common pitches, no ties will be created.

If you want less ties created for a chord, you can set Voice.sparseTies to true. In this
case, a single tie is used for every tied chord.

\property Voice.sparseTies = ##t

<<c’ e’ g’>> ~ <<c’ e’ g’>>�� ������� �
In its meaning a tie is just a way of extending a note duration, similar to the augmentation

dot: the following example are two ways of notating exactly the same concept.� �� �

 �� � �
If you need to tie notes over bars, it may be easier to use Section 3.1.8 [Automatic note

splitting], page 49.

See also internals document, Tie.

BUGS

At present, the tie is represented as a separate event, temporally located in between the
notes. Tying only a subset of the note heads of a chord is not supported in a simple way.
It can be achieved by moving the tie-engraver into the Thread context and turning on and
off ties per Thread.

Switching staves when a tie is active will not work.

3.1.8 Automatic note splitting

LilyPond can automatically converting long notes to tied notes. This is done by replacing
the Note_heads_engraver by the Completion_heads_engraver.

\score{

\notes\relative c’{ \time 2/4

c2. c8 d4 e f g a b c8 c2 b4 a g16 f4 e d c8. c2

}

\paper{ \translator{

\ThreadContext

\remove "Note_heads_engraver"

\consists "Completion_heads_engraver"

} } }� G�
(� ��	�(� ��	���
���(�(��(�(��(����
� � G

Chapter 3: Reference Manual 50

This engraver splits all running notes at the bar line, and inserts ties. One of its uses is
to debug complex scores: if the measures are not entirely filled, then the ties exactly show
how much each measure is off.

BUGS

Not all durations (especially those containing tuplets) can be represented exactly; the
engraver will not insert tuplets.

3.1.9 Tuplets

Tuplets are made out of a music expression by multiplying all durations with a fraction.

\times fraction musicexpr

The duration of musicexpr will be multiplied by the fraction. In the sheet music, the
fraction’s denominator will be printed over the notes, optionally with a bracket. The most
common tuplet is the triplet in which 3 notes have the length of 2, so the notes are 2/3 of
their written length:

g’4 \times 2/3 {c’4 c’ c’} d’4 d’4�� ����
3

��� �
The property tupletSpannerDuration specifies how long each bracket should last. With

this, you can make lots of tuplets while typing \times only once, saving you lots of typing.

\property Voice.tupletSpannerDuration = #(ly:make-moment 1 4)

\times 2/3 { c’8 c c c c c }�� ��
3

���
3

�� �
The format of the number is determined by the property tupletNumberFormatFunction.

The default prints only the denominator, but if you set it to the Scheme function fraction-

tuplet-formatter, Lilypond will print num:den instead.

See also internals document, TupletBracket.

BUGS

Nested tuplets are not formatted automatically. In this case, outer tuplet brackets should
be moved automatically.

3.1.10 Easy Notation note heads

A entirely different type of note head is the "easyplay" note head: a note head that
includes a note name. It is used in some publications by Hal-Leonard Inc. music publishers.

\score {

\notes { c’2 e’4 f’ | g’1 }

\paper { \translator { \EasyNotation } }

}

Chapter 3: Reference Manual 51W
G

F
E

C

W
Note that EasyNotation overrides a Score context. You probably will want to print it

with magnification or a large font size to make it more readable. To print with magnification,
you must create a dvi (with ‘ly2dvi’) and then enlarge it with something like ‘dvips -x

2000 file.dvi’. See ‘man dvips’ for details. To print with a larger font, see Section 3.19.3
[Font Size], page 120.

If you view the result with Xdvi, then staff lines will show through the letters. Printing
the PostScript file obtained with ly2dvi does produce the correct result.

3.2 Easier music entry

When entering music with LilyPond, it is easy to introduce errors. This section deals
with tricks and features that help you enter music, and find and correct mistakes.

3.2.1 Graphical interfaces

One way to avoid entering notes using the keyboard is to use a graphical user interface.
The following programs are known to have a lilypond export option:

• Denemo was once intended as a LilyPond graphical user interface. It run on
Gnome/GTK.

http://denemo.sourceforge.net/

• Noteedit, a graphical score editor that runs under KDE/Qt.

http://rnvs.informatik.tu-chemnitz.de/~jan/noteedit/noteedit.html

• RoseGarden was once the inspiration for naming LilyPond. Nowadays it has been
rewritten from scratch and supports LilyPond export as of version 0.1.6.

http://rosegarden.sf.net/

Another option is to enter the music using your favorite sequencer/notation editor,
and then export it as MIDI or MusicXML. You can then import it in lilypond by
using either midi2ly or xml2ly. midi2ly is described in Section 7.2 [Invoking midi2ly],
page 149. xml2ly is a tool to convert from the MusicXML music representation
format (http://www.musicxml.org) to LilyPond format. xml2ly is described at
http://www.nongnu.org/xml2ly/.

3.2.2 Relative octaves

Octaves are specified by adding ’ and , to pitch names. When you copy existing music,
it is easy to accidentally put a pitch in the wrong octave and hard to find such an error. To
prevent these errors, LilyPond features octave entry.

\relative startpitch musicexpr

The octave of notes that appear in musicexpr are calculated as follows: If no octave
changing marks are used, the basic interval between this and the last note is always taken

Chapter 3: Reference Manual 52

to be a fourth or less (This distance is determined without regarding alterations; a fisis

following a ceses will be put above the ceses)

The octave changing marks ’ and , can be added to raise or lower the pitch by an extra
octave. Upon entering relative mode, an absolute starting pitch must be specified that will
act as the predecessor of the first note of musicexpr.

Entering music that changes octave frequently is easy in relative mode.

\relative c’’ {

b c d c b c bes a

} �� �� �������� �
And octave changing marks are used for intervals greater than a fourth.

\relative c’’ {

c g c f, c’ a, e’’ }�� �������� �
If the preceding item is a chord, the first note of the chord is used to determine the first

note of the next chord. However, other notes within the second chord are determined by
looking at the immediately preceding note.

\relative c’ {

c <<c e g>>

<<c’ e g>>

<<c, e’ g>>

} �� ����������� �
The pitch after the \relative contains a note name. To parse the pitch as a note name,

you have to be in note mode, so there must be a surrounding \notes keyword (which is not
shown here).

The relative conversion will not affect \transpose, \chords or \relative sections in its
argument. If you want to use relative within transposed music, you must place an additional
\relative inside the \transpose.

3.2.3 Bar check

Whenever a bar check is encountered during interpretation, a warning message is issued if
it doesn’t fall at a measure boundary. This can help you find errors in the input. Depending
on the value of barCheckSynchronize, the beginning of the measure will be relocated, so
this can also be used to shorten measures.

A bar check is entered using the bar symbol, |:

Chapter 3: Reference Manual 53

\time 3/4 c2 e4 | g2.

Failed bar checks are most often caused by entering incorrect durations. Incorrect dura-
tions often completely garble up the score, especially if it is polyphonic, so you should start
correcting the score by scanning for failed bar checks and incorrect durations. To speed up
this process, you can use skipTypesetting (See Section 3.2.5 [Skipping corrected music],
page 54)).

3.2.4 Point and click

Point and click lets you find notes in the input by clicking on them in the Xdvi window.
This makes it very easy to find input that causes some error in the sheet music.

To use it, you need the following software

• A dvi viewer that supports src specials.

• Xdvi, version 22.36 or newer. Available from ftp.math.berkeley.edu
(ftp://ftp.math.berkeley.edu/pub/Software/TeX/xdvi.tar.gz).

Note that most TEX distributions ship with xdvik, which is always a few versions
behind the official Xdvi. To find out which xdvi you are running, try xdvi -

version or xdvi.bin -version.

• KDVI. A dvi viewer for KDE. You need KDVI from KDE 3.0 or newer. Enable
option Inverse search in the menu Settings.

• An editor with a client/server interface (or a lightweight GUI editor).

• Emacs. Emacs is an extensible text-editor. It is available from
http://www.gnu.org/software/emacs/. You need version 21 to use
column location.

LilyPond also comes with support files for emacs: lilypond-mode for emacs pro-
vides indentation, autocompletion, syntax coloring, handy compile short-cuts and
reading Info documents of lilypond inside emacs. If lilypond-mode is not installed
on your platform, then refer to the installation instructions for more information.

• XEmacs. Xemacs is very similar to emacs.

• NEdit. NEdit runs under Windows, and Unix. It is available from
http://www.nedit.org.

• GVim. GVim is a GUI variant of VIM, the popular VI clone. It is available from
http://www.vim.org.

Xdvi must be configured to find the TEX fonts and music fonts. Refer to the Xdvi
documentation for more information.

To use point-and-click, add one of these lines to the top of your .ly file.

#(ly:set-point-and-click ’line)

When viewing, Control-Mousebutton 1 will take you to the originating spot in the ‘.ly’
file. Control-Mousebutton 2 will show all clickable boxes.

If you correct large files with point-and-click, be sure to start correcting at the end of
the file. When you start at the top, and insert one line, all following locations will be off
by a line.

Chapter 3: Reference Manual 54

For using point-and-click with emacs, add the following In your emacs startup file (usu-
ally ‘~/.emacs’),

(server-start)

Make sure that the environment variable XEDITOR is set to

emacsclient --no-wait +%l %f

If you use xemacs instead of emacs, you use (gnuserve-start) in your ‘.emacs’, and
set XEDITOR to gnuclient -q +%l %f

For using Vim, set XEDITOR to gvim --remote +%l %f, or use this argument with xdvi’s
-editor option.

For using NEdit, set XEDITOR to nc -noask +%l %f, or use this argument with xdvi’s
-editor option.

If can also make your editor jump to the exact location of the note you clicked. This
is only supported on Emacs and VIM. Users of Emacs version 20 must apply the patch
‘emacsclient.patch’. Users of version 21 must apply ‘server.el.patch’ (version 21.2
and earlier). At the top of the ly file, replace the set-point-and-click line with the
following line,

#(ly:set-point-and-click ’line-column)

and set XEDITOR to emacsclient --no-wait +%l:%c %f. Vim users can set XEDITOR
to gvim --remote +:%l:norm%c| %f.

BUGS

When you convert the TEX file to PostScript using dvips, it will complain about not
finding src:X:Y files. These complaints are harmless, and can be ignored.

3.2.5 Skipping corrected music

The property Score.skipTypesetting can be used to switch on and off typesetting
completely during the interpretation phase. When typesetting is switched off, the music is
processed much more quickly. You can use this to skip over the parts of a score that you
have already checked for errors.

\relative c’’ { c8 d

\property Score.skipTypesetting = ##t

e f g a g c, f e d

\property Score.skipTypesetting = ##f

c d b bes a g c2 }��
(��� ���������� �
3.3 Staff notation

This section deals with music notation that occurs on staff level, such as keys, clefs and
time signatures.

Chapter 3: Reference Manual 55

3.3.1 Staff symbol

The lines of the staff symbol are formed by the StaffSymbol object. This object is
created at the moment that their context is created. You can not change the appearance
of the staff symbol by using \override or \set. At the moment that \property Staff is
interpreted, a Staff context is made, and the StaffSymbol is created before any \override

is effective. You can deal with this either overriding properties in a \translator definition,
or by using \outputproperty.

BUGS

If you end a staff half way a piece, the staff symbol may not end exactly on the barline.

3.3.2 Key signature

Setting or changing the key signature is done with the \key command.

\key pitch type

Here, type should be \major or \minor to get pitch-major or pitch-minor, respec-
tively. The standard mode names \ionian, \locrian, \aeolian, \mixolydian, \lydian,
\phrygian, and \dorian are also defined.

This command sets the context property Staff.keySignature. Non-standard key sig-
natures can be specified by setting this property directly.

The printed signature is a KeySignature object, typically created in Staff context.

3.3.3 Clef

The clef can be set or changed with the \clef command:

\key f\major c’’2 \clef alto g’2���
�
� � �
Supported clef-names include

treble, violin, G, G2

G clef on 2nd line

alto, C C clef on 3rd line

tenor C clef on 4th line

bass, F F clef on 4th line

french G clef on 1st line, so-called French violin clef

soprano C clef on 1st line

mezzosoprano

C clef on 2nd line

baritone C clef on 5th line

Chapter 3: Reference Manual 56

varbaritone

F clef on 3rd line

subbass F clef on 5th line

percussion

percussion clef

By adding _8 or ^8 to the clef name, the clef is transposed one octave down or up,
respectively. Note that you have to enclose clefname in quotes if you use underscores or
digits in the name. For example,

\clef "G_8"

The object for this symbol is Clef.

This command is equivalent to setting clefGlyph, clefPosition (which controls the Y
position of the clef), centralCPosition and clefOctavation. A clef is created when any
of these properties are changed.

3.3.4 Time signature

The time signature is set or changed by the \time command.

\time 2/4 c’2 \time 3/4 c’2.� G�
 �� �
� � G
The actual symbol that’s printed can be customized with the style property. Setting it

to #’() uses fraction style for 4/4 and 2/2 time.

The object for this symbol is TimeSignature. There are many more options for its
layout. They are selected through the style object property. See ‘input/test/time.ly’
for more examples.

This command sets the property timeSignatureFraction, beatLength and
measureLength in the Timing context, which is normally aliased to Score. The property
timeSignatureFraction determine where bar lines should be inserted, and how automatic
beams should be generated. Changing the value of timeSignatureFraction also causes a
time signature symbol to be printed.

More options are available through the Scheme function set-time-signature. In combi-
nation with the Measure_grouping_engraver, it will create MeasureGrouping signs. Such
signs ease reading rhythmically complex modern music. In the following example, the 9/8
measure is subdivided in 2, 2, 2 and 3. This is passed to set-time-signature as the third
argument (2 2 2 3).

\score { \notes \relative c’’ {

#(set-time-signature 9 8 ’(2 2 2 3))

g8 g d d g g a8-[-(bes g-]-) |

#(set-time-signature 5 8 ’(3 2))

a4. g4

}

\paper {

Chapter 3: Reference Manual 57

linewidth = -1.0

\translator { \StaffContext

\consists "Measure_grouping_engraver"

}}} � X� ����� Y�� ��������� � X
3.3.5 Partial

Partial measures, for example in upbeats, are entered using the \partial command:

\partial 4* 5/16 c’16 c4 f16 a’2. ~ a’8. a’16 | g’1�� �����
 �	��	�� �
The syntax for this command is

\partial duration

This is internally translated into

\property Timing.measurePosition = -length of duration

The property measurePosition contains a rational number indicating how much of the
measure has passed at this point.

3.3.6 Unmetered music

Bar lines and bar numbers are calculated automatically. For unmetered music (e.g.
cadenzas), this is not desirable. The commands \cadenzaOn and \cadenzaOff can be used
to switch off the timing information:

c’2.

\cadenzaOn

c2

\cadenzaOff

c4 c4 c4�� ���

 �� �
The property Score.timing can be used to switch off this automatic timing

3.3.7 Bar lines

Bar lines are inserted automatically, but if you need a special type of barline, you can
force one using the \bar command:

Chapter 3: Reference Manual 58

c4 \bar "|:" c4�� �� ��� �
The following bar types are available

c4

\bar "|" c

\bar "" c

\bar "|:" c

\bar "||" c

\bar ":|" c

\bar ".|" c

\bar ".|." c

\bar "|."�� ���� ���� ����� �
You are encouraged to use \repeat for repetitions. See Section 3.9 [Repeats], page 75.

In scores with many staves, the barlines are automatically placed at top level, and they
are connected between different staves of a StaffGroup:

< \context StaffGroup <

\context Staff = up { e’4 d’

\bar "||"

f’ e’ }

\context Staff = down { \clef bass c4 g e g } >

\context Staff = pedal { \clef bass c2 c2 } >��
��
��

��

����

� �
�� �
�� �

The objects that are created at Staff level. The name is BarLine.

The command \bar bartype is a short cut for doing \property Score.whichBar =

bartype Whenever whichBar is set to a string, a bar line of that type is created. whichBar
is usually set automatically: at the start of a measure it is set to defaultBarType. The
contents of repeatCommands is used to override default measure bars.

whichBar can also be set directly, using \property or \bar . These settings take prece-
dence over the automatic whichBar settings.

Chapter 3: Reference Manual 59

3.4 Polyphony

The easiest way to enter such fragments with more than one voice on a staff is to split
chords using the separator \\. You can use it for small, short-lived voices (make a chord of
voices) or for single chords:

\context Voice = VA \relative c’’ {

c4 < { f d e } \\ { b c2 } > c4 < g’ \\ b, \\ f \\ d >

} �� � �����
����� �
The separator causes Voice contexts to be instantiated, bearing the names "1", "2",

etc.

Sometimes, it is necessary to instantiate these contexts by hand: For Instantiate a
separate Voice context for each part, and use \voiceOne, up to \voiceFour to assign a
stem directions and horizontal shift for each part.

\relative c’’

\context Staff < \context Voice = VA { \voiceOne cis2 b }

\context Voice = VB { \voiceThree b4 ais ~ ais4 gis4 }

\context Voice = VC { \voiceTwo fis4~ fis4 f ~ f } >�� � ��� � �
� ��� � � �
� �
The identifiers \voiceOne to \voiceFour set directions ties, slurs and stems, and set

shift directions.

If you want more than four voices, you can also manually set horizontal shifts and stem
directions, as is shown in the following example:

\context Staff \notes\relative c’’<

\context Voice=one {

\shiftOff \stemUp e4

}

\context Voice=two {

\shiftOn \stemUp cis

}

\context Voice=three {

\shiftOnn \stemUp ais

}

\context Voice=four {

\shiftOnnn \stemUp fis

}

> �� �� � ����� �

Chapter 3: Reference Manual 60

Normally, note heads with a different number of dots are not merged, but if you set the
object property merge-differently-dotted, they are:

\context Voice < {

g’8 g’8

\property Staff.NoteCollision \override

#’merge-differently-dotted = ##t

g’8 g’8

} \\ { [g’8. f16] [g’8. f’16] }

> �� ��� ����� ��� �
Similarly, you can merge half note heads with eighth notes, by setting merge-

differently-headed:

\context Voice < {

c8 c4.

\property Staff.NoteCollision

\override #’merge-differently-headed = ##t

c8 c4. } \\ { c2 c2 } >�� � �(
� �(
�� �
LilyPond also vertically shifts rests that are opposite of a stem.

\context Voice < c’’4 \\ r4 >�� � �� �
See also NoteCollision and RestCollision

BUGS

Resolving collisions is a very intricate subject, and LilyPond only handles a few situ-
ations. When it can not cope, you are advised to use force-hshift of the NoteColumn

object and pitched rests to override typesetting decisions.

3.5 Beaming

Beams are used to group short notes into chunks that are aligned with the metrum.
They are inserted automatically in most cases.

\time 2/4 c8 c c c \time 6/8 c c c c8. c16 c8� G� ��� ����� ������ � G

Chapter 3: Reference Manual 61

If you’re not satisfied with the automatic beaming, you can enter the beams explicitly.
If you have beaming patterns that differ from the defaults, you can also set the patterns for
automatic beamer.

See also Beam.

3.5.1 Manual beams

In some cases it may be necessary to override LilyPond’s automatic beaming algorithm.
For example, the auto beamer will not beam over rests or bar lines, If you want that, specify
the begin and end point manually using a [before the first beamed note and a] after the
last note:

\context Staff {

r4 r8-[g’ a r8-] r8 g-[| a-] r8

} �� ���������� �
Normally, beaming patterns within a beam are determined automatically.

When this mechanism fouls up, the properties Voice.stemLeftBeamCount and
Voice.stemRightBeamCount can be used to control the beam subdivision on a stem. If
you set either property, its value will be used only once, and then it is erased.

\context Staff {

f8-[r16 f g a-]

f8-[r16 \property Voice.stemLeftBeamCount = #1 f g a-]

} �� ����������� �
The property subdivideBeams can be set in order to subdivide all 16th or shorter beams

at beat positions. This accomplishes the same effect as twiddling with stemLeftBeamCount

and stemRightBeamCount, but it take less typing.

c16-[c c c c c c c-]

\property Voice.subdivideBeams = ##t

c16-[c c c c c c c-]

c32-[c c c c c c c c c c c c c c c-]

\property Score.beatLength = #(ly:make-moment 1 8)

c32-[c c c c c c c c c c c c c c c-]�� ��� �
Kneed beams are inserted automatically, when a large gap between two adjacent beamed

notes is detected. This behavior can be tuned through the object property auto-knee-gap.

BUGS

Chapter 3: Reference Manual 62

Auto knee beams can not be used together with hara kiri staves.

[TODO from bugs]

The Automatic beamer does not put unfinished beams on the last notes of a score.

Formatting of ties is a difficult subject. LilyPond often does not give optimal results.

3.5.2 Setting automatic beam behavior

In normal time signatures, automatic beams can start on any note but can only end in a
few positions within the measure: beams can end on a beat, or at durations specified by the
properties in Voice.autoBeamSettings. The defaults for autoBeamSettings are defined
in ‘scm/auto-beam.scm’.

The value of autoBeamSettings is changed using \override and unset using \revert:

\property Voice.autoBeamSettings \override #’(BE P Q N M) = dur

\property Voice.autoBeamSettings \revert #’(BE P Q N M)

Here, BE is the symbol begin or end. It determines whether the rule applies to begin or
end-points. The quantity P/Q refers to the length of the beamed notes (and ‘* *’ designates
notes of any length), N/M refers to a time signature (wildcards, ‘* *’ may be entered to
designate all time signatures).

For example, if you want automatic beams to end on every quarter note, you can use
the following:

\property Voice.autoBeamSettings \override

#’(end * * * *) = #(ly:make-moment 1 4)

Since the duration of a quarter note is 1/4 of a whole note, it is entered as (ly:make-

moment 1 4).

The same syntax can be used to specify beam starting points. In this example, automatic
beams can only end on a dotted quarter note.

\property Voice.autoBeamSettings \override

#’(end * * * *) = #(ly:make-moment 3 8)

In 4/4 time signature, this means that automatic beams could end only on 3/8 and
on the fourth beat of the measure (after 3/4, that is 2 times 3/8 has passed within the
measure).

You can also restrict rules to specific time signatures. A rule that should only be applied
in N/M time signature is formed by replacing the second asterisks by N and M. For example,
a rule for 6/8 time exclusively looks like

\property Voice.autoBeamSettings \override

#’(begin * * 6 8) = ...

If you want a rule to apply to certain types of beams, you can use the first pair of
asterisks. Beams are classified according to the shortest note they contain. For a beam
ending rule that only applies to beams with 32nd notes (and no shorter notes), you would
use (end 1 32 * *).

If a score ends while an automatic beam has not been ended and is still accepting notes,
this last beam will not be typeset at all.

Chapter 3: Reference Manual 63

For melodies that have lyrics, you may want to switch off automatic beaming. This is
done by setting Voice.autoBeaming to #f.

BUGS

It is not possible to specify beaming parameters for beams with mixed durations, that
differ from the beaming parameters of all separate durations, i.e., you’ll have to specify
manual beams to get:�Z G� ������������������� �Z G

It is not possible to specify beaming parameters that act differently in different parts of
a measure. This means that it is not possible to use automatic beaming in irregular meters
such as 5/8.

3.6 Accidentals

This section describes how to change the way that LilyPond automatically inserts acci-
dentals before the running notes.

3.6.1 Using the predefined accidental macros

The constructs for describing the accidental typesetting rules are quite hairy, so non-
experts should stick to the macros defined in ‘ly/property-init.ly’.

The macros operate on the “Current” context (see Section 4.1.4 [Context properties],
page 126). This means that the macros shuold normally be invoked right after the creation
of the context in which the accidental typesetting described by the macro is to take effect.
I.e. if you want to use piano-accidentals in a pianostaff then you issue \pianoAccidentals

first thing after the creation of the piano staff:

\score {

\notes \relative c’’ <

\context Staff = sa { cis4 d e2 }

\context GrandStaff <

\pianoAccidentals

\context Staff = sb { cis4 d e2 }

\context Staff = sc { es2 c }

>

\context Staff = sd { es2 c }

>

}

Chapter 3: Reference Manual 64�� �� �� �� ��

��

��
��

� �
� �
�� �
�� �[

The macros are:

\defaultAccidentals

This is the default typesetting behaviour. It should correspond to 18th century
common practice: Accidentals are remembered to the end of the measure in
which they occur and only on their own octave.

\voiceAccidentals

The normal behaviour is to remember the accidentals on Staff-level. This macro,
however, typesets accidentals individually for each voice. Apart from that the
rule is similar to \defaultAccidentals.

Warning: This leads to some weird and often unwanted results because acci-
dentals from one voice DO NOT get cancelled in other voices:

\context Staff <

\voiceAccidentals

\context Voice=va { \voiceOne es g }

\context Voice=vb { \voiceTwo c, e }

>�� ��� ��� �
Hence you should only use \voiceAccidentals if the voices are to be read
solely by individual musicians. if the staff should be readable also by one
musician/conductor then you should use \modernVoiceAccidentals or
\modernVoiceCautionaries instead.

\modernAccidentals

This rule should correspond to the common practice in the 20th century. The
rule is a bit more complex than \defaultAccidentals: You get all the same
accidentals, but temporary accidentals also get cancelled in other octaves. Fur-
ther more, in the same octave, they also get cancelled in the following measure:

\modernAccidentals

cis’ c’’ cis’2 | c’’ c’�� �

�
� �� �� �

Chapter 3: Reference Manual 65

\modernCautionaries

This rule is similar to \modernAccidentals, but the “extra” accidentals (the
ones not typeset by \defaultAccidentals) are typeset as cautionary acciden-
tals (i.e. in reduced size):

\modernCautionaries

cis’ c’’ cis’2 | c’’ c’�� KL �

KL �
KL � �� �� �
\modernVoiceAccidentals

Multivoice accidentals to be read both by musicians playing one voice and
musicians playing all voices.

Accidentals are typeset for each voice, but they ARE cancelled across voices in
the same Staff.

\modernVoiceCautionaries

The same as \modernVoiceAccidentals, but with the extra accidentals (the
ones not typeset by \voiceAccidentals) typeset as cautionaries. Notice that
even though all accidentals typeset by \defaultAccidentals ARE typeset by
this macro then some of them are typeset as cautionaries.

\pianoAccidentals

20th century practice for piano notation. Very similar to \modernAccidentals

but accidentals also get cancelled across the staves in the same GrandStaff or
PianoStaff.

\pianoCautionaries

As \pianoAccidentals but with the extra accidentals typeset as cautionaries.

\noResetKey

Same as \defaultAccidentals but with accidentals lasting “forever” and not
only until the next measure:

\noResetKey

c1 cis cis c�� � ��� ��� �
\forgetAccidentals

This is sort of the opposite of \noResetKey: Accidentals are not remembered at
all - and hence all accidentals are typeset relative to the key signature, regardless
of what was before in the music:

\forgetAccidentals

\key d\major c4 c cis cis d d dis dis�� �� � �� ������ �� �� � � �

Chapter 3: Reference Manual 66

3.6.2 Defining your own accidental typesettings

This section must be considered gurus-only, and hence it must be sufficient with a short
description of the system and a reference to the internal documentation.

The idea of the algorithm is to try several different rules and then use the rule that gives
the highest number of accidentals. Each rule cosists of

Context: In which context is the rule applied. I.e. if context is Score then all staves
share accidentals, and if context is Staff then all voices in the same staff share
accidentals, but staves don’t - like normally.

Octavation:
Whether the accidental changes all octaves or only the current octave.

Lazyness: Over how many barlines the accidental lasts. If lazyness is -1 then the ac-
cidental is forget immidiately, and if lazyness is #t then the accidental lasts
forever.

As described in the internal documentation of Accidental engraver, the properties
autoAccidentals and autoCautionaries contain lists of rule descriptions. Notice that
the contexts must be listed from in to out - that is Thread before Voice, Voice before
Staff, etc. see the macros in ‘ly/property-init.ly’ for examples of how the properties
are set.

BUGS

Currently the simultaneous notes are considered to be entered in sequential mode. This
means that in a chord the accidentals are typeset as if the notes in the chord happened one
at a time - in the order in which they appear in the input file.

Of course this is only a problem when you have simultainous notes which accidentals
should depend on each other. Notice that the problem only occurs when using non-default
accidentals - as the default accidentals only depend on other accidentals on the same staff
and same pitch and hence cannot depend on other simultainous notes.

This example shows two examples of the same music giving different accidentals depend-
ing on the order in which the notes occur in the input file:

\property Staff.autoAccidentals = #’(Staff (any-octave . 0))

cis’4 <<c’’ c’>> r2 | cis’4 <<c’ c’’>> r2 | <<cis’ c’’>> r | <<c’’ cis’>> r |�� ��

�� �

�� ��� ��� ��� �� �
The only solution is to manually insert the problematic accidentals using ! and ?.

3.7 Expressive marks

Chapter 3: Reference Manual 67

3.7.1 Slurs

A slur indicates that notes are to be played bound or legato. They are entered using
parentheses:

f’-(g’-)-(a’-) [a’8 b’-(-] a’4 g’2 f’4-)

<<c’ e’>>2-(<<b d’>>2-)��

�
������� �
See also internals document, Slur.

Slurs avoid crossing stems, and are generally attached to note heads. However, in some
situations with beams, slurs may be attached to stem ends. If you want to override this
layout you can do this through the object property attachment of Slur in Voice context
It’s value is a pair of symbols, specifying the attachment type of the left and right end
points.

\slurUp

\property Voice.Stem \set #’length = #5.5

g’8-(g g4-)

\property Voice.Slur \set #’attachment = #’(stem . stem)

g8-(g g4-)�� ������� �
If a slur would strike through a stem or beam, the slur will be moved away upward or

downward. If this happens, attaching the slur to the stems might look better:

\stemUp \slurUp

d32-(d’4 d8..-)

\property Voice.Slur \set #’attachment = #’(stem . stem)

d,32-(d’4 d8..-)�� (� �����(� ������ �
BUGS

Producing nice slurs is a difficult problem, and LilyPond currently uses a simple, empiric
method to produce slurs. In some cases, the results of this method are ugly.

3.7.2 Phrasing slurs

A phrasing slur (or phrasing mark) connects chords and is used to indicate a musical
sentence. It is started using \(and \) respectively.

\time 6/4 c’ \(d (e-) f (e-) d-\)

Chapter 3: Reference Manual 68

� �� ������� � �
Typographically, the phrasing slur behaves almost exactly like a normal slur. See also

internals document, PhrasingSlur. But although they behave similarily to normal slurs,
phrasing slurs count as different objects. A \slurUp will have no effect on a phrasing slur;
instead, you should use \phrasingSlurUp, \phrasingSlurDown, and \phrasingSlurBoth.

Note that the commands \slurUp, \slurDown, and \slurBoth will only affect normal
slurs and not phrasing slurs.

3.7.3 Breath marks

Breath marks are entered using \breathe. See also internals document, BreathingSign.�� \ ��� �
3.7.4 Tempo

Metronome settings can be entered as follows:

\tempo duration = perminute

For example, \tempo 4 = 76 requests output with 76 quarter notes per minute.

BUGS

The tempo setting is not printed, but is only used in the MIDI output. You can trick
lily into producing a metronome mark, though. Details are in Section 3.18.4 [Text markup],
page 115.

3.7.5 Text spanners

Some textual indications, e.g. rallentando or accelerando, often extend over many mea-
sures. This is indicated by following the text with a dotted line. You can create such texts
using text spanners. The syntax is as follows:

\startTextSpan

\stopTextSpan

LilyPond will respond by creating a TextSpanner object (typically in Voice context).
The string to be printed, as well as the style is set through object properties.

An application—or rather, a hack—is to fake octavation indications.

\relative c’ { a’’’ b c a

\property Voice.TextSpanner \set #’type = #’dotted-line

\property Voice.TextSpanner \set #’edge-height = #’(0 . 1.5)

\property Voice.TextSpanner \set #’edge-text = #’("8va " . "")

\property Staff.centralCPosition = #-13

a\startTextSpan b c a \stopTextSpan }

Chapter 3: Reference Manual 69

�� ����
8va

����� �
3.7.6 Analysis brackets

Brackets are used in musical analysis to indicate structure in musical pieces. LilyPond
supports a simple form of nested horizontal brackets. To use this, add the Horizontal_

bracket_engraver to Staff context. A bracket is started with \groupOpen and closed
with \groupClose. This produces HorizontalBracket objects.

\score { \notes \relative c’’ {

c4-\groupOpen-\groupOpen

c4-\groupClose

c4-\groupOpen

c4-\groupClose-\groupClose

}

\paper { \translator {

\StaffContext \consists "Horizontal_bracket_engraver"

}}} �� ����� �
3.8 Ornaments

3.8.1 Articulations

A variety of symbols can appear above and below notes to indicate different characteris-
tics of the performance. They are added to a note by adding a dash and the the character
signifying the articulation. They are demonstrated here.��

c-

�]
c-^

� ^
c->

�
c-|

� _
c-+

� `
c--

� !
c-.

� "� �
The script is automatically placed, but if you need to force directions, you can use _ to

force them down, or ^ to put them up:

c’’4^^ c’’4_^�� � a� ^� �
Other symbols can be added using the syntax note-\name. Again, they can be forced

up or down using ^ and _.

Chapter 3: Reference Manual 70��
portato

�]
tenuto

� !
staccato

� "
stopped

� `
fermata

�b
staccatissimo

� _
marcato

� ^
accent

� � �
�

33
�

open

� c
turn

�d
rtoe

� e
ltoe

� f
rheel

� g
lheel

� h
downbow

�i
upbow

�j
�

55
�

uprall

�k
prallmordent

�l
prallprall

�m
mordent

�n
prall

�o
trill

�2
reverseturn

�p
flageolet

� q
�

77
�

pralldown

�r
downmordent

�s
upmordent

�t
downprall

�u
�

88
�

coda

�v
segno

�w
thumb

� x
lineprall

�y
prallup

�z
Fingering instructions can also be entered in this shorthand. For finger changes, use

markup texts:

c’4-1 c’4-2 c’4-3 c’4-4

c^\markup { \fontsize #-3 \number "2-3" }�� {}| :�� ~� :� {� �� �
See also internals document, Script and internals document, Fingering.

BUGS

All of these note ornaments appear in the printed output but have no effect on the MIDI
rendering of the music.

Unfortunately, there is no support for adding fingering instructions or ornaments to in-
dividual note heads. Some hacks exist, though. See ‘input/test/script-horizontal.ly’.

3.8.2 Text scripts

In addition, it is possible to place arbitrary strings of text or markup text (see Sec-
tion 3.18.4 [Text markup], page 115) above or below notes by using a string: c^"text".

By default, these indications do not influence the note spacing, but by using the command
\fatText, the widths will be taken into account.

Chapter 3: Reference Manual 71

\relative c’ {

c4^"longtext" \fatText c4_"longlongtext" c4 }�� �
longlongtext

�longtext�� �
It is possible to use TEX commands in the strings, but this should be avoided because

it makes it impossible for LilyPond to compute the exact length of the string, which may
lead to collisions. Also, TEX commands won’t work with direct PostScript output.

Text scripts are created in form of TextScript objects, in Voice context.

Section 3.18.4 [Text markup], page 115 describes how to change the font or access special
symbols in text scripts.

3.8.3 Grace notes

Grace notes are ornaments that are written out

c4 \grace c16 c4 \grace {

[c16 d16] } c4�� �55�3 �5�� �
In normal notation, grace notes are supposed to take up no logical time in a measure.

Such an idea is practical for normal notation, but is not strict enough to put it into a
program. The model that LilyPond uses for grace notes internally is that all timing is done
in two steps:

Every point in musical time consists of two rational numbers: one denotes the logical
time, one denotes the grace timing. The above example is shown here with timing tuples.��

(2/4,0)

�
(2/4,-1/16)5

(2/4,-1/8)

5(1/4,0)
�3 �

(1/4,-1/16)

5(0,0)
�� �

The advantage of this approach is that you can use almost any lilypond construction
together with grace notes, for example slurs and clef changes may appear halfway in between
grace notes:

c4 \grace { [c16 c, \clef bass c, b(] })c4�� �55�55�� �
The placement of these grace notes is synchronized between different staves, using this

grace timing.

< \context Staff = SA { e4 \grace { c16 d e f } e4 }

Chapter 3: Reference Manual 72

\context Staff = SB { c4 \grace { g8 b } c4 } >��
�� �

�3 �5
3 4
3 �
5
53 �5

3 4
3 �
5
5�� �

�� �
Unbeamed eighth notes and shorter by default have a slash through the stem. This

can be controlled with object property stroke-style of Stem. The change in format-
ting is accomplished by inserting \startGraceMusic before handling the grace notes, and
\stopGraceMusic after finishing the grace notes. You can add to these definitions to glob-
ally change grace note formatting. The standard definitions are in ‘ly/grace-init.ly’.

[TODO discuss Scheme functionality.]

Notice how the \override is carefully matched with a \revert.

\relative c’’ \context Voice {

\grace c8 c4 \grace { [c16 c16] } c4

\grace {

\property Voice.Stem \override #’stroke-style = #’()

c16

\property Voice.Stem \revert #’stroke-style

} c4

} �� ��5�55�3 45� �
If you want to end a note with a grace note, then the standard trick is to put the grace

notes before a phantom “space note”, e.g.

\context Voice {

< { d1^\trill (}

{ s2 \grace { [c16 d] } } >

)c4

} �� �55�2� �
A \grace section has some default values, and LilyPond will use those default values

unless you specify otherwise inside the \grace section. For example, if you specify \slurUp
before your \grace section, a slur which starts inside the \grace won’t be forced up, even
if the slur ends outside of the \grace. Note the difference between the first and second bars
in this example:

\relative c’’ \context Voice {

\slurUp

Chapter 3: Reference Manual 73

\grace {

a4 (}

) a4 a4 () a2

\slurBoth

\grace {

\slurUp

a4 (}

) a4 a4 () a2

\slurBoth

} ��
��5
��5� �
BUGS

Grace notes can not be used in the smallest size (‘paper11.ly’).

Grace note synchronization can also lead to surprises. Staff notation, such as key signa-
tures, barlines, etc. are also synchronized. Take care when you mix staves with grace notes
and staves without.

< \context Staff = SA { e4 \bar "|:" \grace c16 d4 }

\context Staff = SB { c4 \bar "|:" d4 } >��
�� ���

�
�����

� 3 �5�� �
�� �

Grace sections should only be used within sequential music expressions. Nesting, juxta-
posing, or ending sequential music with a grace section is not supported, and might produce
crashes or other errors.

3.8.4 Glissando

A glissando line can be requested by attaching a \glissando to a note:

c’-\glissando c’�� ��� �
BUGS

Printing of an additional text (such as gliss.) must be done manually. See also internals
document, Glissando.

Chapter 3: Reference Manual 74

3.8.5 Dynamics

Absolute dynamic marks are specified using an identifier after a note: c4-\ff. The
available dynamic marks are: \ppp, \pp, \p, \mp, \mf, \f, \ff, \fff, \fff, \fp, \sf, \sff,
\sp, \spp, \sfz, and \rfz.

c’\ppp c\pp c \p c\mp c\mf c\f c\ff c\fff

c2\sf c\rfz��
� $�*
) $�$&$&$�$&$�$�#,$�# 9�9�9�9�9�9�9� �
A crescendo mark is started with \cr and terminated with \rc (the textual reverse of

cr). A decrescendo mark is started with \decr and terminated with \rced. There are also
shorthands for these marks. A crescendo can be started with \< and a decrescendo can
be started with \>. Either one can be terminated with \!. Note that \! must go before
the last note of the dynamic mark whereas \rc and \rced go after the last note. Because
these marks are bound to notes, if you want several marks during one note, you have to use
spacer notes.

c’’ \< \! c’’ d’’ \decr e’’ \rced

< f’’1 { s4 s4 \< \! s4 \> \! s4 } >�� ������ �
This may give rise to very short hairpins. Use minimum-length in Voice.HairPin to

lengthen these, e.g.

\property Staff.Hairpin \override #’minimum-length = #5

You can also use a text saying cresc. instead of hairpins. Here is an example how to do
it:

c4 \cresc c4 \endcresc c4�� ��
cresc.

�� �
You can also supply your own texts:

\context Voice {

\property Voice.crescendoText = "cresc. poco"

\property Voice.crescendoSpanner = #’dashed-line

a’2\mf\< a a \!a

} ��

cresc. poco#%$� �

Dynamics are objects of DynamicText and Hairpin. Vertical positioning of these symbols
is handled by the DynamicLineSpanner object. If you want to adjust padding or vertical

Chapter 3: Reference Manual 75

direction of the dynamics, you must set properties for the DynamicLineSpanner object.
Predefined identifiers to set the vertical direction are \dynamicUp and \dynamicDown.

3.9 Repeats

To specify repeats, use the \repeat keyword. Since repeats should work differently when
played or printed, there are a few different variants of repeats.

unfold Repeated music is fully written (played) out. Useful for MIDI output, and
entering repetitive music.

volta This is the normal notation: Repeats are not written out, but alternative end-
ings (voltas) are printed, left to right.

fold Alternative endings are written stacked. This has limited use but
may be used to typeset two lines of lyrics in songs with repeats, see
‘input/star-spangled-banner.ly’.

tremolo Make tremolo beams.

percent Make beat or measure repeats. These look like percent signs.

3.9.1 Repeat syntax

The syntax for repeats is

\repeat variant repeatcount repeatbody

If you have alternative endings, you may add

\alternative { alternative1

alternative2

alternative3 ... }

where each alternative is a music expression.

Normal notation repeats are used like this:

c’1

\repeat volta 2 { c’4 d’ e’ f’ }

\repeat volta 2 { f’ e’ d’ c’ }�� ����������� ������ ��� �
With alternative endings:

c’1

\repeat volta 2 {c’4 d’ e’ f’}

\alternative { {d’2 d’} {f’ f} }��
�� ���

� �
����� ��� �
Folded repeats look like this:

Chapter 3: Reference Manual 76

c’1

\repeat fold 2 {c’4 d’ e’ f’}

\alternative { {d’2 d’} {f’ f} }��

������ �
If you don’t give enough alternatives for all of the repeats, then the first alternative is

assumed to be repeated often enough to equal the specified number of repeats.

\context Staff {

\relative c’ {

\partial 4

\repeat volta 4 { e | c2 d2 | e2 f2 | }

\alternative { { g4 g g } { a | a a a a | b2. } }

}

} ��
 ������� ����

�� � � � � � ��� ���
3.9.2 Repeats and MIDI

For instructions on how to unfoldi repeats for MIDI output, see the example file
‘input/test/unfold-all-repeats.ly’.

BUGS

Notice that timing information is not remembered at the start of an alternative, so you
have to reset timing information after a repeat, e.g. using a bar-check (See Section 3.2.3
[Bar check], page 52), setting Score.measurePosition or entering \partial. Slurs or ties
are also not repeated.

It is possible to nest \repeats, although this probably is only meaningful for unfolded
repeats.

Folded repeats offer little more over simultaneous music.

3.9.3 Manual repeat commands

The property repeatCommands can be used to control the layout of repeats. Its value is
a Scheme list of repeat commands, where each repeat command can be

’start-repeat

Print a |: bar line

’end-repeat

Print a :| bar line

Chapter 3: Reference Manual 77

(volta . text)

Print a volta bracket saying text. The text can be specified as a text string or
as a markup text, see Section 3.18.4 [Text markup], page 115. Do not forget
to change the font, as the default number font does not contain alphabetic
characters.

(volta . #f)

Stop a running volta bracket

c’’4

\property Score.repeatCommands = #’((volta "93") end-repeat)

c’’4 c’’4

\property Score.repeatCommands = #’((volta #f))

c’’4 c’’4�� ����� �;���� �
Repeats brackets are VoltaBracket objects.

3.9.4 Tremolo repeats

To place tremolo marks between notes, use \repeat with tremolo style.

\score {

\context Voice \notes\relative c’ {

\repeat "tremolo" 8 { c16 d16 }

\repeat "tremolo" 4 { c16 d16 }

\repeat "tremolo" 2 { c16 d16 }

\repeat "tremolo" 4 c16

}

} �� �����

� �
Tremolo beams are Beam objects. Single stem tremolos are StemTremolo. The single

stem tremolo must be entered without { and }.

BUGS

Only powers of two and undotted notes are supported repeat counts.

3.9.5 Tremolo subdivisions

Tremolo marks can be printed on a single note by adding ‘:[length]’ after the note. The
length must be at least 8. A length value of 8 gives one line across the note stem. If the
length is omitted, then then the last value (stored in Voice.tremoloFlags) is used.

c’2:8 c’:32 | c’: c’: |

Chapter 3: Reference Manual 78��

� �
BUGS

Tremolos in this style do not carry over into the MIDI output.

3.9.6 Measure repeats

In the percent style, a note pattern can be repeated. It is printed once, and then the
pattern is replaced with a special sign. Patterns of a one and two measures are replaced by
percent-like signs, patterns that divide the measure length are replaced by slashes.

\context Voice { \repeat "percent" 4 { c’4 }

\repeat "percent" 2 { c’2 es’2 f’4 fis’4 g’4 c’’4 }

} �� ����� ���

�� �
The signs are represented by these objects: RepeatSlash and PercentRepeat and

DoublePercentRepeat.

BUGS

You can not nest percent repeats, e.g. by filling in the first measure with slashes, and
repeating that measure with percents.

3.10 Rhythmic music

Sometimes you might want to show only the rhythm of a melody. This can be done with
the rhythmic staff. All pitches of notes on such a staff are squashed, and the staff itself
looks has a single staff line:

\context RhythmicStaff {

\time 4/4

c4 e8 f g2 | r4 g r2 | g1:32 | r1 |

}� M����
����
3.10.1 Percussion staves

To typeset more than one piece of percussion to be played by the same musician one
typically uses a multiline staff where each staff position refers to a specific piece of percus-
sion.

LilyPond is shipped with a bunch of scheme functions which allows you to do this fairly
easily.

The system is based on the general midi drum-pitches. In order to use the drum pitches
you include ‘ly/drumpitch-init.ly’. This file defines the pitches from the scheme variable

Chapter 3: Reference Manual 79

drum-pitch-names - which definition can be read in ‘scm/drums.scm’. You see that each
piece of percussion has a full name and an abbreviated name - and you may freely select
whether to refer to the full name or the abbreviation in your music definition.

To typeset the music on a staff you apply the scheme function drums->paper to the
percussion music. This function takes a list of percussion instrument names, notehead
scripts and staff positions (that is: pitches relative to the C-clef) and uses this to transform
the input music by moving the pitch, changing the notehead and (optionally) adding a
script:

\include "drumpitch-init.ly"

up = \notes { crashcymbal4 hihat8 halfopenhihat hh hh hh openhihat }

down = \notes { bassdrum4 snare8 bd r bd sn4 }

\score {

\apply #(drums->paper ’drums) \context Staff <

\clef percussion

\context Voice = up { \voiceOne \up }

\context Voice = down { \voiceTwo \down }

>

} �� � c�������������� �
In the above example the music was transformed using the list ’drums. Currently the

following lists are defined in ‘scm/drums.scm’:

’drums To typeset a typical drum kit on a five-line staff.�
hc�cb

�
hhp
�

hhho

�
hho

� c
hhc

� `
hh

�
cymr

�
cyms�cymc

��
tomfl

�
tomfh

�
toml

�
tomml

�
tommh

�
tomh

�
ss

�
sn

�
bd

�
Notice that the scheme supports six different toms. If you are using fewer toms
then you simply select the toms that produce the desired result - i.e. to get
toms on the three middle lines you use tommh, tomml and tomfh.

Because the general midi contain no rimshots we use the sidestick for this
purpose instead.

’timbales

To typeset timbales on a two line staff.�
cb�ssl

�
timl

�
ssh

�
timh

��

Chapter 3: Reference Manual 80

’congas To typeset congas on a two line staff.�
ssl

�
cglm

� `
cglo

� c
cgl

�
ssh

�
cghm

� `
cgho

� c
cgh

��
’bongos To typeset bongos on a two line staff.�

ssl

�
bolm

� `
bolo

� c
bol

�
ssh

�
bohm

� `
boho

� c
boh

��
’percussion

To typeset all kinds of simple percussion on one line staves.�
hc

�
mar

�
cab

�
tamb

�
cl

�
cb�guil

� !
guis

� "
gui

�
trim

� `
trio

� c
tri

��
If you don’t like any of the predefined lists you can define your own list at the top of

your file:

#(define mydrums ‘(

(bassdrum default #f ,(ly:make-pitch -1 2 0))

(snare default #f ,(ly:make-pitch 0 1 0))

(hihat cross #f ,(ly:make-pitch 0 5 0))

(pedalhihat xcircle "stopped" ,(ly:make-pitch 0 5 0))

(lowtom diamond #f ,(ly:make-pitch -1 6 0))

))

\include "drumpitch-init.ly"

up = \notes { hh8 hh hh hh hhp4 hhp }

down = \notes { bd4 sn bd toml8 toml }

\score {

\apply #(drums->paper ’mydrums) \context Staff <

\clef percussion

\context Voice = up { \voiceOne \up }

\context Voice = down { \voiceTwo \down }

>

} �� ��
� `�� `������� �

To use a modified existing list instead of building your own from scratch you can append
your modifications to the start of the existing list:

#(define mydrums (append ‘(

(bassdrum default #f ,(ly:make-pitch -1 2 0))

(lowtom diamond #f ,(ly:make-pitch -1 6 0))

) drums))

Chapter 3: Reference Manual 81

3.10.1.1 Percussion staves with normal staves

When you include ‘drumpitch-init.ly’ then the default pitches are overridden so that
you after the inclusion cannot use the common dutch pitch names anymore. Hence you
might wan’t to reinclude ‘nederlands.ly’ after the drum-pattern-definitions:

\include "drumpitch-init.ly"

up = \notes { crashcymbal4 hihat8 halfopenhihat hh hh hh openhihat }

down = \notes { bassdrum4 snare8 bd r bd sn4 }

\include "nederlands.ly"

bass = \notes \transpose c c,, { a4. e8 r e g e }

\score {

<

\apply #(drums->paper ’drums) \context Staff = drums <

\clef percussion

\context Voice = up { \voiceOne \up }

\context Voice = down { \voiceTwo \down }

>

\context Staff = bass { \clef "F_8" \bass }

>

} �� ��
8

��
c

�
����

�����(�
�������

8

� �
��� �

3.10.1.2 Percussion midi output

In order to produce correct midi output you need to produce two score blocks - one
for the paper and one for the midi. To use the percussion channel you set the property
instrument to ’drums. Because the drum-pitches themself are similar to the general midi
pitches all you have to do is to insert the voices with none of the scheme functions to get
the correct midi output:

\score {

\apply #(drums->paper ’mydrums) \context Staff <

\clef percussion

\context Voice = up { \voiceOne \up }

\context Voice = down { \voiceTwo \down }

>

\paper{}

}

\score {

\context Staff <

\property Staff.instrument = #’drums

Chapter 3: Reference Manual 82

\up \down

>

\midi{}

}

BUGS

This scheme is to be considered a temporary implementation. Even though the scheme
will probably keep on working then the future might bring some other way of typesetting
drums, and probably there will be made no great efforts in keeping things downwards
compatible.

3.11 Piano music

Piano music is an odd type of notation. Piano staves are two normal staves coupled
with a brace. The staves are largely independent, but sometimes voices can cross between
the two staves. The PianoStaff is especially built to handle this cross-staffing behavior.
In this section we discuss the PianoStaff and some other pianistic peculiarities.

BUGS

There is no support for putting chords across staves. You can get this result
by increasing the length of the stem in the lower stave so it reaches the stem in
the upper stave, or vice versa. An example is included with the distribution as
‘input/test/stem-cross-staff.ly’.

3.11.1 Automatic staff changes

Voices can switch automatically between the top and the bottom staff. The syntax for
this is

\autochange Staff \context Voice { ...music... }

The autochanger switches on basis of pitch (central C is the turning point), and it looks
ahead skipping over rests to switch rests in advance. Here is a practical example:

\score { \notes \context PianoStaff <

\context Staff = "up" {

\autochange Staff \context Voice = VA < \relative c’ {

g4 a b c d r4 a g } > }

\context Staff = "down" {

\clef bass

s1*2

} > }��
�� ���

������ �
� �

Spacer rests are used to prevent the bottom staff from terminating too soon.

Chapter 3: Reference Manual 83

3.11.2 Manual staff switches

Voices can be switched between staves manually, using the following command:

\translator Staff = staffname music

The string staffname is the name of the staff. It switches the current voice from its
current staff to the Staff called staffname. Typically staffname is "up" or "down".

3.11.3 Pedals

Piano pedal instruction can be expressed using \sustainDown, \sustainUp, \unaCorda,
\treCorde, \sostenutoDown and \sostenutoUp.

The symbols that are printed can be modified by setting pedalXStrings, where X is one
of the pedal types: Sustain, Sostenuto or UnaCorda. Refer to the generated documentation
of SustainPedal, for example, for more information.

Pedals can also be indicated by a sequence of brackets, by setting the pedal-type

property of SustainPedal objects:

\property Staff.SustainPedal \override #’pedal-type = #’bracket

c’’4 \sustainDown d’’4 e’’4 a’4

\sustainUp \sustainDown

f’4 g’4 a’4 \sustainUp�� �������� �
A third style of pedal notation is a mixture of text and brackets, obtained by setting

pedal-type to mixed:

\property Staff.SustainPedal \override #’pedal-type = #’mixed

c’’4 \sustainDown d’’4 e’’4 c’4

\sustainUp \sustainDown

f’4 g’4 a’4 \sustainUp�� ������
�� �� �

The default ’*Ped’ style for sustain and damper pedals corresponds to \pedal-type =

#’text. However, mixed is the default style for a sostenuto pedal:

c’’4 \sostenutoDown d’’4 e’’4 c’4 f’4 g’4 a’4 \sostenutoUp�� ������
Sost. Ped.

�� �
For fine-tuning of the appearance of a pedal bracket, the properties edge-width, edge-

height, and shorten-pair of PianoPedalBracket objects (see the detailed documentation
of PianoPedalBracket) can be modified. For example, the bracket may be extended to the
end of the note head.

Chapter 3: Reference Manual 84

\property Staff.PianoPedalBracket \override

#’shorten-pair = #’(0 . -1.0)

c’’4 \sostenutoDown d’’4 e’’4 c’4

f’4 g’4 a’4 \sostenutoUp�� ������
Sost. Ped.

�� �
3.11.4 Arpeggio

You can specify an arpeggio sign on a chord by attaching an \arpeggio to a chord.

<<c e g c>>-\arpeggio�� ����6666� �
When an arpeggio crosses staves in piano music, you attach an arpeggio to the chords

in both staves, and set PianoStaff.connectArpeggios.

\context PianoStaff <

\property PianoStaff.connectArpeggios = ##t

\context Voice = one { <<c’ e g c>>-\arpeggio }

\context Voice = other { \clef bass <<c,, e g>>-\arpeggio}

> ��
��
66666666666666666 ���� �
����� �

This command creates Arpeggio objects. Cross staff arpeggios are
PianoStaff.Arpeggio.

To add an arrow head to explicitly specify the direction of the arpeggio, you should set
the arpeggio object property arpeggio-direction.

\context Voice {

\property Voice.Arpeggio \set #’arpeggio-direction = #1

<<c e g c>>-\arpeggio

\property Voice.Arpeggio \set #’arpeggio-direction = #-1

<<c e g c>>-\arpeggio

} �� ����� 666����� 666� �

Chapter 3: Reference Manual 85

A square bracket on the left indicates that the player should not arpeggiate the
chord. To draw these brackets, set the molecule-callback property of Arpeggio or
PianoStaff.Arpeggio objects to \arpeggioBracket, and use \arpeggio statements
within the chords as before.

\context PianoStaff <

\property PianoStaff.connectArpeggios = ##t

\property PianoStaff.Arpeggio \override

#’molecule-callback = \arpeggioBracket

\context Voice = one { <<c’ e g c>>-\arpeggio }

\context Voice = other { \clef bass <<c,, e g>>-\arpeggio }

> ��
�� ���� �

����� �
BUGS

It is not possible to mix connected arpeggios and unconnected arpeggios in one PianoStaff
at the same time.

3.11.5 Voice follower lines

Whenever a voice switches to another staff a line connecting the notes can be printed
automatically. This is enabled if the property PianoStaff.followVoice is set to true:

\context PianoStaff <

\property PianoStaff.followVoice = ##t

\context Staff \context Voice {

c1

\translator Staff=two

b2 a

}

\context Staff=two {\clef bass \skip 1*2 }

> ��
��

� � �� �

The associated object is VoiceFollower.

Chapter 3: Reference Manual 86

3.12 Vocal music

For a discussion of how to put lyrics into a score, see section Printing lyrics in the
tutorial.

[TODO: Move lyrics section from tutorial to here?]

See also the sections on Section 3.7.1 [Slurs], page 67 and Section 3.7.3 [Breath marks],
page 68.

[TODO: Move slurs / breath marks section to here?]

[TODO: Write subsection upon usage of ChoirStaff.]

For entering quotes in Lyrics mode, use the following

"\"God\"" is "‘King’"

3.12.1 Ambitus

The term ambitus denotes a range of pitches for a given voice in a part of music. It also
may denote the pitch range that a musical instrument is capable of playing. Most musical
instruments have their ambitus standardized (or at least there is agreement upon the mini-
mal ambitus of a particular type of instrument), such that a composer or arranger of a piece
of music can easily meet the ambitus constraints of the targeted instrument. However, the
ambitus of the human voice depends on individual physiological state, including education
and training of the voice. Therefore, a singer potentially has to check for each piece of music
if the ambitus of that piece meets his individual capabilities. This is why the ambitus of a
piece may be of particular value to vocal performers.

The ambitus is typically notated on a per-voice basis at the very beginning of a piece,
e.g. nearby the initial clef or time signature of each staff. The range is graphically specified
by two noteheads, that represent the minimum and maximum pitch. Some publishers use a
textual notation: they put the range in words in front of the corresponding staff. Lilypond
currently only supports the graphical ambitus notation.

To apply, simply add the Ambitus_engraver to the Voice context, as shown in the
below example:

upper = \notes \relative c {

\clef "treble"

\key c \minor

as’’ c e2 bes f cis d4 e f2 g

}

lower = \notes \relative c {

\clef "treble"

\key e \major

e’4 b g a c es fis a cis b a g f e d2

}

\score {

\context ChoirStaff {

<

\context Staff = one { \upper }

Chapter 3: Reference Manual 87

\context Staff = three { \lower }

>

}

\paper {

\translator {

\VoiceContext

\consists Ambitus_engraver

}

}

} �� � ���� � �� � � ��� �� �

�� �
� � �

����� �
��
� �� �

��

�
�

�
�

�� �� � � � � � �
��� � � � � � �

The shape of the note heads to use can be changed via the note-head-style property,
which holds the glyph name of the note head (see also Section 3.16.1 [Ancient note heads],
page 101). The vertical line between the upper and lower head can be switched on or off
via the join-heads property. Example:

\translator {

\VoiceContext

\consists Ambitus_engraver

Ambitus \set #’note-head-style = #’noteheads-2mensural

Ambitus \set #’join-heads = ##f

}

By default, the ambitus grob is put before the clef. You can control this behaviour
through the breakAlignOrder property of the score context by redefining the order, e.g.
with the following addition to the paper block:

\translator {

\ScoreContext

breakAlignOrder = #’(

instrument-name

left-edge

span-bar

breathing-sign

clef

ambitus

key-signature

staff-bar

time-signature

custos

)

}

Chapter 3: Reference Manual 88

3.13 Tablatures

Tablature notation is used for notating music for plucked string instruments. It notates
pitches not by using note heads, but by indicating on which string and fret a note must be
played. LilyPond offers limited support for tablature.

3.13.1 Tablatures basic

Tablature can be typeset with Lilypond by using the TabStaff and TabVoice contexts.
As tablature is a recent feature in Lilypond, most of the guitar special effects such as bend
are not yet supported.

With the TabStaff, the string number associated to a note is given as a backslash
followed by the string number, e.g. c4\3 for a C quarter on the third string. By default,
string 1 is the highest one, and the tuning defaults to the standard guitar tuning (with 6
strings).

\context TabStaff <

\notes {

a,4\5 c’\2 a\3 e’\1

e\4 c’\2 a\3 e’\1

}

> �� 0

2
1

2

0

2
1

0

� �
If you do not specify a string number then lilypond automatically selects one. The

selection is controlled by the translator property minimumFret. – LilyPond simply selects
the first string that does not give a fret number less than minimumFret. Default is 0.

Notice that LilyPond does not handle chords in any special way, and hence the automatic
string selector may easily select the same string to two notes in a chord.

e8 fis gis a b cis’ dis’ e’

\property TabStaff.minimumFret = #8

e8 fis gis a b cis’ dis’ e’�� � � ��
8 ��

9

�
8

�
11

�
9

�
12

�
11

�
9

�
12

�
0

�
4

�
2

�
0

�
2

�
1

�
4

�
2

� �
�

8

� � � � � �
3.13.2 Non-guitar tablatures

There are many ways to customize Lilypond tablatures.

Chapter 3: Reference Manual 89

First you can change the number of strings, by setting the number of lines in
the TabStaff (the line-count property of TabStaff can only be changed using
\outputproperty, for more information, see Section 3.18.2 [Tuning per object], page 113.
You can change the strings tuning. A string tuning is given as a Scheme list with one
integer number for each string, the number being the pitch of an open string.

(The numbers specified for stringTuning are the numbers of semitons to subtract — or
add — starting the specified pitch by default middle C, in string order: thus the notes are
e, a, d & g)

\context TabStaff <

\outputproperty #(make-type-checker ’staff-symbol-interface)

#’line-count = #4

\property TabStaff.stringTunings = #’(-5 -10 -15 -20)

\notes {

a,4 c’ a e’ e c’ a e’

}

> ��
925

2
925

0

� �
Finally, it is possible to change the Scheme function to format the tablature note text.

The default is fret-number-tablature-format, which uses the fret number, but for some
instruments that may not use this notation, just create your own tablature-format function.
This function takes three argument: the string number, the string tuning and the note pitch.

3.13.3 Tablature in addition to normal staff

It is possible to typeset both tablature and a "normal" staff, as commonly done in many
parts.

A common trick for that is to put the notes in a variables, and to hide the fingering
information (which correspond to the string number) for the standard staff.

part = \notes {

a,4-2 c’-5 a-4 e’-6

e-3 c’-5 a-4 e’-6

}

\score {

\context StaffGroup <

\context Staff <

% Hide fingering number

\property Staff.Fingering \override #’transparent = ##t

\part

>

\context TabStaff <

Chapter 3: Reference Manual 90

\property Staff.Stem \override #’direction = #1

\part

>

>

}

3.14 Chords

LilyPond has support for both entering and printing chords.

twoWays = \notes \transpose c c’ {

\chords {

c1 f:sus4 bes/f

}

<<c e g>>

<<f bes c’>>

<<f bes d’>>

}

\score {

< \context ChordNames \twoWays

\context Voice \twoWays > }�� � ��� 4sus/6
F� ��� 4sus

F���C� ��� F/
4sus/6

F� �� � 4sus
F���� � C

This example also shows that the chord printing routines do not try to be intelligent. If
you enter f bes d, it does not interpret this as an inversion.

As you can see chords really are a set of pitches. They are internally stored as simultane-
ous music expressions. This means you can enter chords by name and print them as notes,
enter them as notes and print them as chord names, or (the most common case) enter them
by name, and print them as name.

3.14.1 Chords mode

Chord mode is a mode where you can input sets of pitches using common names. It is
introduced by the keyword \chords. In chords mode, a chord is entered by the root, which
is entered like a common pitch, for example,

es4. d8 c2��
(�� ���� �
is the notation for an E-flat major chord.

Chapter 3: Reference Manual 91

Other chords may be entered by suffixing a colon, and introducing a modifier, and
optionally, a number, for example

\chords { e1:m e1:7 e1:m7 }�� ����� �������� �
The first number following the root is taken to be the ‘type’ of the chord, thirds are

added to the root until it reaches the specified number, for example.

\chords { c:3 c:5 c:6 c:7 c:8 c:9 c:10 c:11 }�� ������������������ ������ �������������� �
More complex chords may also be constructed adding separate steps to a chord. Ad-

ditions are added after the number following the colon, and are separated by dots. For
example

\chords { c:5.6 c:3.7.8 c:3.6.13 }�� ����� ��������� �
Chord steps can be altered by suffixing a - or + sign to the number, for example:

\chords { c:7+ c:5+.3- c:3-.5-.7- }�� ��� ������ �������� �
Removals are specified similarly, and are introduced by a caret. They must come after

the additions.

\chords { c^3 c:7^5 c:9^3.5 }�� ���� ������ �
Modifiers can be used to change pitches. The following modifiers are supported

m Minor chord. Lowers the 3rd and (if present) the 7th step.

dim Diminished chord. Lowers the 3rd, 5th and (if present) the 7th step

aug Augmented chord. Raises the 5th step.

maj Major 7th chord. Raises the 7th step, if present.

sus Suspended 4th or 2nd. This modifier removes the 3rd step. Append either 2 or
4 to add the 2nd or 4th step to the chord.

Modifiers can be mixed with additions.

Chapter 3: Reference Manual 92

\chords { c:sus4 c:7sus4 c:dim7 c:m6 }�� � ������ � ����� � ������� �
Since the unaltered 11 does sound well when combined with the unaltered 3, the 11 is

removed in this case, unless it is added explicitly). For example,

\chords { c:13 c:13.11 c:m13 }�� � �������������� ������� �
An inversion (putting one pitch of the chord on the bottom), as well as bass notes, can

be specified by appending /pitch to the chord.

\chords { c1 c/g c/f }�� ����������� �
If you do not want to remove the bass note from the chord, but rather add the note,

then you can use /+pitch.

\chords { c1 c/+g c/+f }�� ������������ �
BUGS

Each step can only be present in a chord once. The following simply produces the
augmented chord, since 5+ is interpreted last.

\chords { c:5.5-.5+ }�� � ���� �
In chord mode, dashes and carets are used to indicate chord additions and subtractions,

so articulation scripts can not be entered.

3.14.2 Printing named chords

For displaying printed chord names, use the ChordNames context. The chords may be
entered either using the notation described above, or directly using simultaneous music.

scheme = \notes {

\chords {a1 b c} <<d f g>> <<e g b>>

}

\score {

Chapter 3: Reference Manual 93

\notes<

\context ChordNames \scheme

\context Staff \transpose c c’ \scheme

>

} �� ��� mE��� 3
0

add/4sus/4
D���C�� ���B� ���� � A

You can make the chord changes stand out by setting ChordNames.chordChanges to
true. This will only display chord names when there’s a change in the chords scheme and
at the start of a new line.

scheme = \chords {

c1:m c:m \break c:m c:m d

}

\score {

\notes <

\context ChordNames {

\property ChordNames.chordChanges = ##t

\scheme }

\context Staff \transpose c c’ \scheme

>

\paper{linewidth= 9.\cm}

} �� � ���� ���� � mC

3
� � ���D� ����� ��� mC

3

LilyPond examines chords specified as lists of notes to determine a name to give the
chord. LilyPond will not try to identify chord inversions or an added bass note, which may
result in strange chord names when chords are entered as a list of pitches:

scheme = \notes {

<<c’ e’ g’>>1

<<e’ g’ c’’>>

<<e e’ g’ c’’>>

}

\score {

<

Chapter 3: Reference Manual 94

\context ChordNames \scheme

\context Staff \scheme

>

} �� ����
13
0

add/10
0

E��� 6
0

mE���� � C

The default chord name layout is a system for Jazz music, proposed by Klaus Ignatzek
(See Chapter 8 [Literature], page 154).

[TODO: add description for banter other jazz.]

The Ignatzek chord name formatting can be tuned in a number of ways through the
following properties:

chordNameExceptions

This is a list that contains the chords that have special formatting. For example.

chExceptionMusic = \notes { <<c f g bes>>1-\markup { \super "7" "wahh" }}

chExceptions = #(append

(sequential-music-to-chord-exceptions chExceptionMusic)

ignatzekExceptions)

\score { \context ChordNames

\chords {

c:7sus4 c:dim7

\property ChordNames.chordNameExceptions = #chExceptions

c:7sus4 c:dim7 } }

o7
Cwahh

7
C

o7
C

4sus/7
C

Putting the exceptions list encoded as

\notes { <<c f g bes>>1-\markup { \super "7" "wahh" } }

into the property takes a little manoeuvring. The following code transforms
chExceptionMusic (which is a sequential music) into a list of exceptions.

(sequential-music-to-chord-exceptions chExceptionMusic)

Then,

#(append

... ignatzekExceptions)

adds the new exceptions to the default ones, which are defined in
‘ly/chord-modifier-init.ly’.

majorSevenSymbol

This property contains the markup object used for the 7th step, when it is
major. Predefined options are whiteTriangleMarkup, blackTriangleMarkup.
The following uses another popular shorthand.

\context ChordNames \chords {

c:7

Chapter 3: Reference Manual 95

\property ChordNames.majorSevenSymbol = \markup { "j7" }

c:7 }

7
C

7
C

chordNameSeparator

Different parts of a chord name are normally separated by a slash. By setting
chordNameSeparator, you can specify other separators, e.g.

\context ChordNames \chords {

c:7sus4

\property ChordNames.chordNameSeparator = \markup { "|" }

c:7sus4 }

4sus—7
C

4sus/7
C

3.15 Writing parts

Orchestral music involves some special notation, both in the full score, as in the individ-
ual parts. This section explains how to tackle common problems in orchestral music.

3.15.1 Rehearsal marks

To print a rehearsal mark, use the \mark command.

\relative c’’ {

c1 \mark "A"

c1 \mark \default

c1 \mark \default

c1 \mark "12"

c1 \mark \default

c1

} �� ���� ��C�B�A�� �
As you can see, the mark is incremented automatically if you use \mark \default. The

value to use is stored in the property rehearsalMark is used and automatically incremented.
The object is RehearsalMark in Score context. See input/test/boxed-molecule.ly if
you need boxes around the marks.

The \mark command can also be used to put signs like coda, segno and fermatas on a
barline. The trick is to use the text markup mechanism to access the fermata symbol.

c1 \mark \markup { \musicglyph #"scripts-ufermata" }

c1�� �b�� �

Chapter 3: Reference Manual 96

The problem is that marks that occur at a line break are typeset only at the beginning
of the next line, opposite to what you want for the fermata. This can be corrected by the
following property setting

\property Score.RehearsalMark \override

#’break-visibility = #begin-of-line-invisible

3.15.2 Bar numbers

Bar numbers are printed by default at the start of the line. The number itself is a
property that can be set by modifying the currentBarNumber property, although that is
usually not necessary, i.e.

\property Score.currentBarNumber = #217

To typeset Bar Numbers at regular intervals instead of at the beginning of each line,
you need to change the grob property break-visibility as well as the translator property
barNumberVisibility, as illustrated in the following example which also adds a box around
the bar numbers:

\property Score.BarNumber \override #’break-visibility =

#end-of-line-invisible

\property Score.barNumberVisibility = #(every-nth-bar-number-visible 5)

\property Score.BarNumber \override #’molecule-callback =

#(make-molecule-boxer 0.1 0.25 0.25 Text_item::brew_molecule)

\property Score.BarNumber \override #’font-relative-size = #0�� ��15�����10�����5����� �
If you would like the bar numbers to appear at regular intervals, but not starting from

measure zero, you can use the context function, set-bar-number-visibility, to auto-
matically set barNumberVisibility so that the bar numbers appear at regular intervals,
starting from the \applycontext:

resetBarnum = \context Score \applycontext

#(set-bar-number-visibility 4)

...

\property Score.BarNumber \override #’break-visibility =

#end-of-line-invisible

\mark "A" \resetBarnum

\repeat unfold 10 c1

\mark \default \resetBarnum

\repeat unfold 8 c
A �� ����15����B

11��9����5����� �A

See also internals document, BarNumber.

BUGS

Chapter 3: Reference Manual 97

Barnumbers can collide with the StaffGroup, if there is one at the top. To solve this,
You have to twiddle with the padding property of BarNumber if your score starts with a
StaffGroup.

3.15.3 Instrument names

In scores, the instrument name is printed before the staff. This can be done by setting
Staff.instrument and Staff.instr. This will print a string before the start of the staff.
For the first start, instrument is used, for the next ones instr is used.

\property Staff.instrument = "ploink " { c’’4 }

ploink
�� �� �

ploink

You can also use markup texts to construct more complicated instrument names:

\score {

\notes \context Staff = treble {

\property Staff.instrument

= \markup { \column << "Clarinetti" { "in B" \smaller \musicglyph #"accidentals--1" } >> }

{ c’’1 }

}

\paper { linewidth= 8.0\cm }

}

.in B
Clarinetti �� �� �.in B
Clarinetti

BUGS

When you put a name on a grand staff or piano staff the width of the brace is not taken
into account. You must add extra spaces to the end of the name to avoid a collision.

3.15.4 Transpose

A music expression can be transposed with \transpose. The syntax is

\transpose from to musicexpr

This means that musicexpr is transposed to by the interval between from is to.

\transpose distinguishes between enharmonic pitches: both \transpose c cis or
\transpose c des will transpose up half a tone. The first version will print sharps and
the second version will print flats.

mus =\notes { \key d \major cis d fis g }

\score { \notes \context Staff {

\clef "F" \mus

\clef "G"

\transpose c g’ \mus

\transpose c f’ \mus

Chapter 3: Reference Manual 98

}} �� �� ����� � �����8 � � ������ � � �
If you want to use both \transpose and \relative, then you must use \transpose

first. \relative will have no effect music that appears inside a \transpose.

3.15.5 Multi measure rests

Multi measure rests are entered using ‘R’. It is specifically meant for full bar rests and
for entering parts: the rest can expand to fill a score with rests, or it can be printed as a
single multimeasure rest This expansion is controlled by the property Score.skipBars. If
this is set to true, Lily will not expand empty measures, and the appropriate number is
added automatically.

\time 4/4 r1 | R1 | R1*2

\property Score.skipBars = ##t R1*17 R1*4�� � RZ -MMMM� �
The 1 in R1 is similar to the duration notation used for notes. Hence, for time signatures

other than 4/4, you must enter other durations. This can be done with augmentation dots,
or with fractions:

\property Score.skipBars = ##t

\time 3/4

R2. | R2.*2

\time 13/8

R1*13/8

R1*13/8*12� �� Z GM�Z �G HM� � �
Notice that a R spanning a single measure is printed as a whole rest centered in the

measure, regardless of the time signature.

[add note about breves.]

Texts can be added to multi-measure rests by using the note-markup syntax. An identifier
is provided for a fermata.

\time 3/4

R2._\markup { \roman "Ad lib" }

R2.^\fermataMarkup� �� b M
Ad lib

M� � �

Chapter 3: Reference Manual 99

By default, the multi-measure rest uses the number font, which does not contain any
letters. This is the reason for the explicit \roman in the above example.

The object for this object is MultiMeasureRest, and MultiMeasureRestNumber.

BUGS

Only one text can be put on a multi-measure rest with note-text syntax, since this is
internally converted to setting #’text in MultiMeasureRestNumber. It is not possible to
use fingerings (e.g. R1-4) to put numbers over multi-measure rests.

Currently, there is no way to automatically condense multiple rests into a single multi-
measure rest. Multi measure rests do not take part in rest collisions.

3.15.6 Automatic part combining

Automatic part combining is used to merge two parts of music onto a staff in an intelligent
way. It is aimed primarily at typesetting orchestral scores. When the two parts are identical
for a period of time, only one is shown. In places where the two parts differ, they are typeset
as separate voices, and stem directions are set automatically. Also, solo and a due parts
can be identified and marked.

The syntax for part combining is

\partcombine context musicexpr1 musicexpr2

where the pieces of music musicexpr1 and musicexpr2 will be combined into one context
of type context. The music expressions must be interpreted by contexts whose names should
start with one and two.

The most useful function of the part combiner is to combine parts into one voice, as
common for wind parts in orchestral scores:

\context Staff <

\context Voice=one \partcombine Voice

\context Thread=one \relative c’’ {

g a () b r

}

\context Thread=two \relative c’’ {

g r4 r f

}

> ��
Solo II

��
Solo�

a2�� �
Notice that the first g appears only once, although it was specified twice (once in each

part). Stem, slur and tie directions are set automatically, depending whether there is a solo
or unisono. The first part (with context called one) always gets up stems, and ‘solo’, while
the second (called two) always gets down stems and ‘Solo II’.

If you just want the merging parts, and not the textual markings, you may set the
property soloADue to false.

Chapter 3: Reference Manual 100

\context Staff <

\property Staff.soloADue = ##f

\context Voice=one \partcombine Voice

\context Thread=one \relative c’’ {

b4 a c g

}

\context Thread=two \relative c’’ {

d,2 a4 g’

}

> �� �����
�� �
There are a number of other properties that you can use to tweak the behavior of part

combining, refer to the automatically generated documentation of Thread devnull engraver
and Voice devnull engraver. Look at the documentation of the responsible engravers,
Thread_devnull_engraver, Voice_devnull_engraver and A2_engraver.

BUGS

In soloADue mode, when the two voices play the same notes on and off, the part combiner
may typeset a2 more than once in a measure.�� a2

���a2
���a2

���
a2
���� �

3.15.7 Hara kiri staves

In orchestral scores, staff lines that only have rests are usually removed. This saves some
space. LilyPond also supports this through the hara kiri1 staff. This staff commits suicide
when it finds itself to be empty after the line-breaking process. It will not disappear when
it contains normal rests, you must use multi measure rests.

The hara kiri staff is specialized version of the Staff context. It is available as the
context identifier \HaraKiriStaffContext. Observe how the second staff in this example
disappears in the second line.

\score {

\notes \relative c’ <

\context Staff = SA { e4 f g a \break c1 }

\context Staff = SB { c4 d e f \break R1 }

>

\paper {

linewidth = 6.\cm

\translator { \HaraKiriStaffContext }

}

1 Hara kiri, also called Seppuku, is the ritual suicide of the Japanese Samourai warriors.

Chapter 3: Reference Manual 101

} ��
�� �������� �

�� �
2
�� �2

3.15.8 Sound output for transposing instruments

When you want to make a MIDI file from a score containing transposed and untransposed
instruments, you have to instruct LilyPond the pitch offset (in semitones) for the transposed
instruments. This is done using the transposing property. It does not affect printed
output.

\property Staff.instrument = #"Cl. in B-flat"

\property Staff.transposing = #-2

3.16 Ancient notation

3.16.1 Ancient note heads

To get a longa note head, you have to use mensural note heads. This is accomplished by
setting the style property of the NoteHead object to mensural. There is also a note head
style baroque which gives mensural note heads for \longa and \breve but standard note
heads for shorter notes.

\property Voice.NoteHead \set #’style = #’mensural

a’\longa�� �� �
3.16.2 Ancient clefs

LilyPond supports a variety of clefs, many of them ancient.

For modern clefs, see section Section 3.3.3 [Clef], page 55. For the percussion clef, see
section Section 3.10.1 [Percussion staves], page 78. For the TAB clef, see section Section 3.13
[Tablatures], page 88.

Chapter 3: Reference Manual 102

The following table shows all ancient clefs that are supported via the \clef command.
Some of the clefs use the same glyph, but differ only with respect to the line they are printed
on. In such cases, a trailing number in the name is used to enumerate these clefs. Still, you
can manually force a clef glyph to be typeset on an arbitrary line, as described in section
Section 3.3.3 [Clef], page 55. The note printed to the right side of each clef denotes the c’

with respect to the clef.

modern style mensural C clef (glyph: clefs-neo_mensural_c’)

Supported clefs: neo_mensural_c1, neo_mensural_c2, neo_mensural_c3,
neo_mensural_c4 �

petrucci style mensural C clef (glyph: clefs-petrucci_c1)

Supported clefs: petrucci_c1 for 1st staffline� ��
petrucci style mensural C clef (glyph: clefs-petrucci_c2)

Supported clefs: petrucci_c2 for 2nd staffline� ��
petrucci style mensural C clef (glyph: clefs-petrucci_c3)

Supported clefs: petrucci_c3 for 3rd staffline�
petrucci style mensural C clef (glyph: clefs-petrucci_c4)

Supported clefs: petrucci_c4 for 4th staffline

Chapter 3: Reference Manual 103� ��
petrucci style mensural C clef (glyph: clefs-petrucci_c5)

Supported clefs: petrucci_c5 for 5th staffline� ��
petrucci style mensural F clef (glyph: clefs-petrucci_f)

Supported clefs: petrucci_f

�

petrucci style mensural G clef (glyph: clefs-petrucci_g)

Supported clefs: petrucci_g �
historic style mensural C clef (glyph: clefs-mensural_c’)

Supported clefs: mensural_c1, mensural_c2, mensural_c3, mensural_c4�
historic style mensural F clef (glyph: clefs-mensural_f)

Supported clefs: mensural_f¡
�

¡

Chapter 3: Reference Manual 104

historic style mensural G clef (glyph: clefs-mensural_g)

Supported clefs: mensural_g¢ �¢
Editio Vaticana style do clef (glyph: clefs-vaticana_do)

Supported clefs: vaticana_do1, vaticana_do2, vaticana_do3£ �£
Editio Vaticana style fa clef (glyph: clefs-vaticana_fa)

Supported clefs: vaticana_fa1, vaticana_fa2¤
�

¤
Editio Medicaea style do clef (glyph: clefs-medicaea_do)

Supported clefs: medicaea_do1, medicaea_do2, medicaea_do3¥ �¥
Editio Medicaea style fa clef (glyph: clefs-medicaea_fa)

Supported clefs: medicaea_fa1, medicaea_fa2¦
�

¦
historic style hufnagel do clef (glyph: clefs-hufnagel_do)

Supported clefs: hufnagel_do1, hufnagel_do2, hufnagel_do3

Chapter 3: Reference Manual 105§ �§
historic style hufnagel fa clef (glyph: clefs-hufnagel_fa)

Supported clefs: hufnagel_fa1, hufnagel_fa2¨
�

¨
historic style hufnagel combined do/fa clef (glyph: clefs-hufnagel_do_fa)

Supported clefs: hufnagel_do_fa© �©
Modern style means “as is typeset in current editions of transcribed mensural music”.

Petrucci style means “inspired by printings published by the famous engraver Petrucci
(1466-1539)”.

Historic style means “as was typeset or written in contemporary historic editions (other
than those of Petrucci)”.

Editio XXX style means “as is/was printed in Editio XXX”.

Petrucci used C clefs with differently balanced left-side vertical beams, depending on
which staffline it was printed.

3.16.3 Custodes

A custos (plural: custodes; latin word for ‘guard’) is a staff context symbol that appears
at the end of a staff line. It anticipates the pitch of the first note(s) of the following line and
thus helps the player or singer to manage line breaks during performance, thus enhancing
readability of a score.

\score {

\notes { c’1 \break

\property Staff.Custos \set #’style = #’mensural

d’ }

\paper {

\translator {

\StaffContext

\consists Custos_engraver

}

Chapter 3: Reference Manual 106

}

} �� ªª�� �
2
�� �2

Custodes were frequently used in music notation until the 17th century. There were
different appearances for different notation styles. Nowadays, they have survived only in
special forms of musical notation such as via the editio vaticana dating back to the beginning
of the 20th century.

For typesetting custodes, just put a Custos_engraver into the Staff context when
declaring the \paper block. In this block, you can also globally control the appearance of
the custos symbol by setting the custos style property. Currently supported styles are
vaticana, medicaea, hufnagel and mensural.

\paper {

\translator {

\StaffContext

\consists Custos_engraver

Custos \override #’style = #’mensural

}

}

The property can also be set locally, for example in a \notes block:

\notes {

\property Staff.Custos \override #’style = #’vaticana

c’1 d’ e’ d’ \break c’ d’ e’ d’

}

3.16.4 Ligatures

In musical terminology, a ligature is a coherent graphical symbol that represents at least
two different notes. Ligatures originally appeared in the manuscripts of Gregorian chant
notation roughly since the 9th century as an allusion to the accent symbols of greek lyric
poetry to denote ascending or descending sequences of notes. Both, the shape and the exact
meaning of ligatures changed tremendously during the following centuries: In early notation,
ligatures where used for monophonic tunes (Gregorian chant) and very soon denoted also
the way of performance in the sense of articulation. With upcoming multiphony, the need
for a metric system arised, since multiple voices of a piece have to be synchronized some
way. New notation systems were invented, that used the manifold shapes of ligatures to
now denote rhythmical patterns (e.g. black mensural notation, mannered notation, ars
nova). With the invention of the metric system of the white mensural notation, the need
for ligatures to denote such patterns disappeared. Nevertheless, ligatures were still in use

Chapter 3: Reference Manual 107

in the mensural system for a couple of decades until they finally disappeared during the
late 16th / early 17th century. Still, ligatures have survived in contemporary editions of
Gregorian chant such as the Editio Vaticana from 1905/08.

Syntactically, ligatures are simply enclosed by \[and \]. Some ligature styles (such
as Editio Vaticana) may need additional input syntax specific for this particular type of
ligature. By default, the LigatureBracket engraver just marks the start and end of a
ligature by small square angles:

\score {

\notes \transpose c c’ {

\[g c a f d’ \]

a g f

\[e f a g \]

}

} �� ������������� �
To select a specific style of ligatures, a proper ligature engraver has to be added to the

Voice context, as explained in the following subsections. Currently, Lilypond only supports
white mensural ligatures with certain limitations. Support for Editio Vaticana will be added
in the future.

3.16.4.1 White mensural ligatures

Lilypond has limited support for white mensural ligatures. The implementation is still
experimental; it currently may output strange warnings or even crash in some cases or
produce weird results on more complex ligatures. To engrave white mensural ligatures, in
the paper block the MensuralLigature engraver has to be put into the Voice context (and
you probably want to remove the LigatureBracket engraver). There is no additional input
language to describe the shape of a white mensural ligature. The shape is rather determined
solely from the pitch and duration of the enclosed notes. While this approach may take a
new user quite a while to get accustomed, it has a great advantage: this way, lily has full
musical information about the ligature. This is not only required for correct MIDI output,
but also allows for automatic transcription of the ligatures.

Example:

\score {

\notes \transpose c c’ {

\property Score.timing = ##f

\property Score.defaultBarType = "empty"

\property Voice.NoteHead \set #’style = #’neo_mensural

\property Staff.TimeSignature \set #’style = #’neo_mensural

\clef "petrucci_g"

\[g\longa c\breve a\breve f\breve d’\longa \]

s4

\[e1 f1 a\breve g\longa \]

Chapter 3: Reference Manual 108

}

\paper {

\translator {

\VoiceContext

\remove Ligature_bracket_engraver

\consists Mensural_ligature_engraver

}

}

} «¬ ­®�¬ «
Without replacing Ligature_bracket_engraver with Mensural_ligature_engraver,

the same music transcribes to the following:

\score {

\notes \transpose c c’ {

\property Score.timing = ##f

\property Score.defaultBarType = "empty"

\property Voice.NoteHead \set #’style = #’neo_mensural

\property Staff.TimeSignature \set #’style = #’neo_mensural

\clef "petrucci_g"

\[g\longa c\breve a\breve f\breve d’\longa \]

s4

\[e1 f1 a\breve g\longa \]

}

} «¬ ¯U��¯UUU¯¬ «
3.16.5 Figured bass

LilyPond has limited support for figured bass:

<

\context FiguredBass

\figures {

<_! 3+ 5- >4

< [4 6] 8 >

}

\context Voice { c4 g8 }

>

Chapter 3: Reference Manual 109

�� (�° ±<�� � .²´³µ A
The support for figured bass consists of two parts: there is an input mode, introduced

by \figures, where you can enter bass figures as numbers, and there is a context called
FiguredBass that takes care of making BassFigure objects.

In figures input mode, a group of bass figures is delimited by < and >. The duration is
entered after the >.

<4 6>±<
Accidentals are added to the numbers if you alterate them by appending -, ! and +.

<4- 6+ 7!>A¶ ³± .<Spaces or dashes may be inserted by using _. Brackets are introduced with [and].

< [4 6] 8 [_ 12]>· =° ±<
Although the support for figured bass may superficially resemble chord support, it works

much simpler: in figured bass simply stores the numbers, and then prints the numbers you
entered. There is no conversion to pitches, and no realizations of the bass are played in the
MIDI file.

3.17 Contemporary notation

3.17.1 Clusters

In musical terminology, a cluster denotes a range of simultaneously sounding pitches
that may change over time. The set of available pitches to apply usually depends on the
accoustic source. Thus, in piano music, a cluster typically consists of a continous range of
the semitones as provided by the piano’s fixed set of a chromatic scale. In choral music,
each singer of the choir typically may sing an arbitrary pitch within the cluster’s range
that is not bound to any diatonic, chromatic or other scale. In electronic music, a cluster
(theoretically) may even cover a continuous range of pitches, thus resulting in coloured
noise, such as pink noise.

Clusters can be notated in the context of ordinary staff notation by engraving simple
geometrical shapes that replace ordinary notation of notes. Ordinary notes as musical
events specify starting time and duration of pitches; however, the duration of a note is
expressed by the shape of the note head rather than by the horizontal graphical extent of
the note symbol. In contrast, the shape of a cluster geometrically describes the development
of a range of pitches (vertical extent) over time (horizontal extent). Still, the geometrical

Chapter 3: Reference Manual 110

shape of a cluster covers the area in wich any single pitch contained in the cluster would be
notated as an ordinary note. From this point of view, it is reasonable to specify a cluster
as the envelope of a set of notes. This is exactly how to construct a cluster with lilypond.

\score {

\context PianoStaff <

\context Voice = voiceI { % same as voiceII, but with ordinary notes

\notes \relative c’ {

c4 f4

a4 <e4 d’4> | \break

< g8 a8 > < e8 a8 > a4 c1 < d4 b4 > e4 |

c4 a4 f4 g4 a4

}

}

\context Voice = voiceII { % same as voiceI, but with cluster notation

\notes \relative c’ {

% hide notes, accidentals, etc.

\property Thread.NoteHead \set #’transparent = ##t

\property Voice.Stem \set #’transparent = ##t

\property Voice.Beam \set #’transparent = ##t

\property Staff.Accidental \set #’transparent = ##t

\property Voice.Cluster \set #’padding = #0.01

\property Voice.Cluster \set #’shape = #’ramp

c4 f4

\startCluster

a4 <e4 d’4> | \break

< g8 a8 > < e8 a8 > a4 c1 < d4 b4 > e4 |

c4 \stopCluster a4 f4 g4 a4

}

}

>

} ��
��

������������������� �
�� �

Note that the second voice differs from the first one only by the additional keywords
\startCluster and \stopCluster and the fact that notes, accidentals, etc. are hidden. A
future version of lilypond may automatically hide notes, accidentals, etc. within the scope
of clusters.

Chapter 3: Reference Manual 111

Also note that a music expression like < { g8 e8 } a4 > is illegal; in such a case, you can
instead use the expression < g8 a8 > < e8 a8 >.

By default, cluster engraver is in the voice context. This allows putting ordinary notes
and clusters together in the same staff, even simultaneously. However, in such a case no
attempt is made to automatically avoid collisions between ordinary notes and clusters.

The geometrical shape can be further controlled with grob properties padding and shape.
padding adds to the vertical extent of the shape (top and bottom) and is expressed in units
of staffspace. Since the pitch range of a single pitch is infinitely small, if padding is set to
0.0, this possibly results in an invisible shape, if you,for example, say \startCluster c d

e \endCluster. The default value for padding therefore is 0.25, such that a single pitch
roughly shows the same height as a note head. Property shape controls how the overall
shape of the cluster is constructed from the set of notes. Currently supported values are
leftsided-stairs, rightsided-stairs, centered-stairs, and ramp.

3.18 Tuning output

LilyPond tries to take as much formatting as possible out of your hands. Nevertheless,
there are situations where it needs some help, or where you want to override its decisions.
In this section we discuss ways to do just that.

Formatting is internally done by manipulating so called objects (graphic objects). Each
object carries with it a set of properties (object properties) specific to that object. For
example, a stem object has properties that specify its direction, length and thickness.

The most direct way of tuning the output is by altering the values of these properties.
There are two ways of doing that: first, you can temporarily change the definition of a
certain type of object, thus affecting a whole set of objects. Second, you can select one
specific object, and set a object property in that object.

3.18.1 Tuning groups of objects

A object definition is a Scheme association list, that is stored in a context property. By
assigning to that property (using plain \property), you can change the resulting objects.

c’4 \property Voice.NoteHead = #’() c’4�� �� �
This mechanism is fairly crude, since you can only set, but not modify, the definition of

an object. Also, it will thoroughly confuse LilyPond.

The definition of an object is actually a list of default object properties. For example,
the definition of the Stem object (available in ‘scm/grob-description.scm’), includes the
following definitions for Stem

(thickness . 0.8)

(beamed-lengths . (0.0 2.5 2.0 1.5))

(Y-extent-callback . ,Stem::height)

Chapter 3: Reference Manual 112

...

You can add a property on top of the existing definition, or remove a property, thus
overriding the system defaults:

c’4 \property Voice.Stem \override #’thickness = #4.0

c’4 \property Voice.Stem \revert #’thickness

c’4 �� ���� �
You should balance \override and \revert. If that’s too much work, you can use the

\set shorthand. It performs a revert followed by an override. The following example gives
exactly the same result as the previous one.

c’4 \property Voice.Stem \set #’thickness = #4.0

c’4 \property Voice.Stem \set #’thickness = #0.8

c’4 �� ���� �
If you use \set, you must explicitly restore the default.

Formally the syntax for these constructions is

\property context.grobname \override symbol = value

\property context.grobname \set symbol = value

\property context.grobname \revert symbol

Here symbol is a Scheme expression of symbol type, context and grobname are strings
and value is a Scheme expression.

If you revert a setting which was not set in the first place, then it has no effect. However,
if the setting was set as a system default, it may remove the default value, and this may
give surprising results, including crashes. In other words, \override and \revert, must
be carefully balanced.

These are examples of correct nesting of \override, \set, \revert.

A clumsy but correct form:

\override \revert \override \revert \override \revert

Shorter version of the same:

\override \set \set \revert

A short form, using only \set. This requires you to know the default value:

\set \set \set \set to default value

If there is no default (i.e. by default, the object property is unset), then you can use

\set \set \set \revert

For the digirati, the object description is an Scheme association list. Since a Scheme
list is a singly linked list, we can treat it as a stack, and \override and \revert are just
push and pop operations. This pushing and popping is also used for overriding automatic
beaming settings.

Chapter 3: Reference Manual 113

BUGS

LilyPond will hang or crash if value contains cyclic references. The backend is not very
strict in type-checking object properties. If you \revert properties that are expected to be
set by default, LilyPond may crash.

3.18.2 Tuning per object

Tuning a single object is most often done with \property. The form,

\once \property ...

applies a setting only during one moment in the score: notice how the original setting
for stem thickness is restored automatically in the following example

c4

\once \property Voice.Stem \set #’thickness = #4

c4

c4�� ���� �
A second way of tuning objects is the more arcane \outputproperty feature. The syntax

is as follows:

\outputproperty predicate symbol = value

Here predicate is a Scheme function taking a object argument, and returning a boolean.
This statement is processed by the Output_property_engraver. It instructs the engraver
to feed all objects that it sees to predicate. Whenever the predicate returns true, the object
property symbol will be set to value.

This command is only single shot, in contrast to \override and \set.

You will need to combine this statement with \context to select the appropriate context
to apply this to.

In the following example, all note heads occurring at current staff level, are shifted up
and right by setting their extra-offset property.

\relative c’’ { c4

\context Staff \outputproperty

#(make-type-checker ’note-head-interface)

#’extra-offset = #’(0.5 . 0.75)

<<c e g>>8 }�� � ����� �
In this example, the predicate checks the text object property, to shift only the ‘m.d.’

text, but not the fingering instruction "2".

#(define (make-text-checker text)

(lambda (grob) (equal? text (ly:get-grob-property grob ’text))))

Chapter 3: Reference Manual 114

\score {

\notes\relative c’’’ {

\property Voice.Stem \set #’direction = #1

\outputproperty #(make-text-checker "m.d.")

#’extra-offset = #’(-3.5 . -4.5)

a^2^"m.d."

}

} �� m.d.� {� �
BUGS

If possible, avoid this feature: the semantics are not very clean, and the syntax and
semantics are up for rewrite.

3.18.3 Font selection

The most common thing to change about the appearance of fonts is their size. The font
size of a Voice, Staff or Thread context, can be easily changed by setting the fontSize

property for that context:�� @@��� �
This command will not change the size of variable symbols, such as beams or slurs. You

can use this command to get smaller symbol for cue notes, but that involves some more
subtleties. An elaborate example of those is in ‘input/test/cue-notes.ly’.

The font used for printing a object can be selected by setting font-name, e.g.

\property Staff.TimeSignature

\set #’font-name = #"cmr17"

You may use any font which is available to TEX, such as foreign fonts or fonts that do
not belong to the Computer Modern font family. Font selection for the standard fonts,
TEX’s Computer Modern fonts, can also be adjusted with a more fine-grained mechanism.
By setting the object properties described below, you can select a different font. All three
mechanisms work for every object that supports font-interface.

font-family

A symbol indicating the general class of the typeface. Supported are roman

(Computer Modern), braces (for piano staff braces), music (the standard music
font), ancient (the ancient notation font) dynamic (font for dynamic signs) and
typewriter.

font-shape

A symbol indicating the shape of the font, there are typically several font shapes
available for each font family. Choices are italic, caps and upright

Chapter 3: Reference Manual 115

font-series

A symbol indicating the series of the font. There are typically several font series
for each font family and shape. Choices are medium and bold.

font-relative-size

A number indicating the size relative the standard size. For example, with 20pt
staff height, relative size -1 corresponds to 16pt staff height, and relative size
+1 corresponds to 23 pt staff height.

font-design-size

A number indicating the design size of the font.

This is a feature of the Computer Modern Font: each point size has a slightly
different design. Smaller design sizes are relatively wider, which enhances read-
ability.

For any of these properties, the value * (i.e. the symbol, *, entered as #’*), acts as
a wildcard. This can be used to override default setting, which are always present. For
example:

\property Lyrics.LyricText \override #’font-series = #’bold

\property Lyrics.LyricText \override #’font-family = #’typewriter

\property Lyrics.LyricText \override #’font-shape = #’*

There are also pre-cooked font selection qualifiers. These are selected through the ob-
ject property font-style. For example, the style finger selects family number and rel-
ative size -3. Styles available include volta, finger, tuplet, timesig, mmrest, script,
large, Large and dynamic. The style sheets and tables for selecting fonts are located in
‘scm/font.scm’. Refer to this file for more information.

The size of the font may be scaled with the object property font-magnification. For
example, 2.0 blows up all letters by a factor 2 in both directions.

BUGS

Relative size is not linked to any real size.

There is no style sheet provided for other fonts besides the TEX family, and the style
sheet can not be modified easily.

3.18.4 Text markup

LilyPond has an internal mechanism to typeset texts. You can access it with the keyword
\markup. Within markup mode, you can enter texts similar to lyrics: simply enter them,
surrounded by spaces.

c1^\markup { hello }

c1_\markup { hi there }

c1^\markup { hi \bold there, is \italic anyone home? }�� home?anyoneisthere,hi�
therehi

�hello�� �
The line of the example demonstrates font switching commands. Notice that the com-

mand only apply to the first following word; enclose a set of texts with braces to apply a
command to more words.

Chapter 3: Reference Manual 116

\markup { \bold { hi there } }

For clarity, you can also do this for single arguments, e.g.

\markup { is \italic { anyone } home }

The following size commands set abolute sizes

\teeny

\tiny

\small

\large

\huge

You can also make letter larger or smaller relative to their neighbors, with the commands
\larger and \smaller.

The following font change commands are defined:

\dynamic This changes to the font used for dynamic signs. Note that this font doesn’t
contain all characters of the alphabet.

\number This changes to the font used for time signatures. It only contains numbers
and a few punctuation marks.

\italic

\bold

Raising and lowering texts can be done with \super and \sub.

c1^\markup { E "=" mc \super "2" }�� 2
mc=E�� �

If you want to give an explicit amount for lowering or raising, use \raise. This command
takes a Scheme valued argument,

c1^\markup { C \small \raise #1.0 { "9/7+" }}�� 9/7+C�� �
The argument to \raise is the vertical displacement amount, measured in (global) staff

spaces.

Other commands taking single arguments include

\musicglyph

This is converted to a musical symbol, e.g. \musicglyph #"accidentals-0"

will select the natural sign from the music font. See Section A.5 [The Feta font],
page 159 for a complete listing of the possible glyphs.

\char This produces a single character, e.g. \char #65 produces the letter ’A’.

Chapter 3: Reference Manual 117

\hspace #amount

This produces a invisible object taking horizontal space.

\markup { A \hspace #2.0 B }

will put extra space between A and B. Note that lilypond inserts space before
and after \hspace.

\fontsize #size

This sets the relative font size, eg.

A \fontsize #2 { B C } D

This will enlarge the B and the C by two steps.

\translate #(cons x y)

This translates an object. It’s first argument is a cons of numbers

A \translate #(cons 2 -3) { B C } D

This moves ‘B C’ 2 spaces to the right, and 3 down.

\magnify #mag

This sets the font magnification for the its argument. In the following example,
the middle A will be 10% larger.

A \magnify #1.1 { A } A

\override #(key . value)

This overrides a formatting property for its argument. The argument should
be a key/value pair, e.g.

m \override #’(font-family . math) m m

In markup mode you can compose expressions, similar to mathematical expressions,
XML documents and music expressions. The braces group notes into horizontal lines.
Other types of lists also exist: you can stack expressions grouped with <<, and >> vertically
with the command \column. Similarly, \center aligns texts by their center lines.

c1^\markup { \column << a bbbb c >> }

c1^\markup { \center << a bbbb c >> }

c1^\markup { \line << a b c >> }��
cba�c

bbbb
a�c

bbbb
a�� �

The markup mechanism is very flexible and extensible. Refer to ‘scm/new-markup.scm’
for more information on extending the markup mode.

One practical application of complicated markup is to fake a metronome marking:

eighthStem = \markup \combine

\musicglyph #"flags-stem"

\translate #’(0.0 . 3.5) \musicglyph #"flags-u3"

eighthNote = \markup

\override #’(word-space . 0.0)

{ \musicglyph #"noteheads-2"

\translate #’(-0.05 . 0.1) \eighthStem }

Chapter 3: Reference Manual 118

\score {

\notes\relative c’’ {

a1^\markup { \magnify #0.9 \eighthNote " = 64" }

}

} �� = 64

¸¹º�� �
BUGS

LilyPond does not account for kerning in its text formatting, so it spaces texts slightly
too wide.

Syntax errors for markup mode are confusing.

3.19 Global layout

The global layout determined by three factors: the page layout, the line breaks and the
spacing. These all influence each other: The choice of spacing determines how densely each
system of music is set, where line breaks breaks are chosen, and thus ultimately how many
pages a piece of music takes. In this section we will explain how the lilypond spacing engine
works, and how you can tune its results.

Globally spoken, this procedure happens in three steps: first, flexible distances
(“springs”) are chosen, based on durations. All possible line breaking combination are
tried, and the one with the best results—a layout that has uniform density and requires as
little stretching or cramping as possible—is chosen. When the score is processed by TEX,
page are filled with systems, and page breaks are chosen whenever the page gets full.

3.19.1 Vertical spacing

The height of each system is determined automatically by lilypond, to keep systems from
bumping into each other, some minimum distances are set. By changing these, you can put
staves closer together, and thus put more systems onto one page.

Normally staves are stacked vertically. To make staves maintain a distance, their vertical
size is padded. This is done with the property minimumVerticalExtent. It takes a pair of
numbers, so if you want to make it smaller from its, then you could set

\property Staff.minimumVerticalExtent = #’(-4 . 4)

This sets the vertical size of the current staff to 4 staff-space on either side of the center
staff line. The argument of minimumVerticalExtent is interpreted as an interval, where
the center line is the 0, so the first number is generally negative. you could also make the
staff larger at the bottom by setting it to (-6 . 4). The default value is (-6 . 6).

Vertical aligment of staves is handled by the VerticalAlignment object, which lives at
Score level.

The piano staves are handled a little differently: to make cross-staff beaming work
correctly, it necessary that the distance between staves is fixed. This is also done with

Chapter 3: Reference Manual 119

a VerticalAlignment object, created in PianoStaff, but a forced distance is set. This
is done with the object property #’forced-distance. If you want to override this, use a
\translator block as follows:

\translator {

\PianoStaffContext

VerticalAlignment \override #’forced-distance = #9

}

This would bring the staves together at a distance of 9 staff spaces, and again this is
measured from the center line of each staff.

3.19.2 Horizontal Spacing

The spacing engine translates differences in durations into stretchable distances
(“springs”) of differing lengths. Longer durations get more space, shorter durations get
less. The basis for assigning spaces to durations, is that the shortest durations get a fixed
amount of space, and the longer durations get more: doubling a duration adds a fixed
amount of space to the note.

For example, the following piece contains lots of half, quarter and 8th notes, the eighth
note is followed by 1 note head width. The The quarter note is followed by 2 NHW, the
half by 3 NHW, etc.

c2 c4. c8 c4. c8 c4. c8 c8 c8 c4 c4 c4�� �����(�� �(�� �(�� �
� �
These two amounts of space are shortest-duration-space spacing-increment, object

properties of SpacingSpanner. Normally spacing-increment is set to 1.2, which is the
width of a note head, and shortest-duration-space is set to 2.0, meaning that the shortest
note gets 2 noteheads of space. For normal notes, this space is always counted from the
left edge of the symbol, so the short notes in a score is generally followed by one note head
width of space.

If one would follow the above procedure exactly, then adding a single 32th note to a
score that uses 8th and 16th notes, would widen up the entire score a lot. The shortest note
is no longer a 16th, but a 64th, thus adding 2 noteheads of space to every note. To prevent
this, the shortest duration for spacing is not the shortest note in the score, but the most
commonly found shortest note. Notes that are even shorter this are followed by a space
that is proportonial to their duration relative to the common shortest note. So if we were
to add only a few 16th notes to the example above, they would be followed by half a NHW:

c2 c4. c8 c4. [c16 c] c4. c8 c8 c8 c4 c4 c4�� �����(�� ���� �(�� �
� �
The most common shortest duration is determined as follows: in every measure, the

shortest duration is determined. The most common short duration, is taken as the basis

Chapter 3: Reference Manual 120

for the spacing, with the stipulation that this shortest duration should always be equal to
or shorter than 1/8th note. The shortest duration is printed when you run lilypond with
--verbose. These durations may also be customized. If you set the common-shortest-

duration in SpacingSpanner, then this sets the base duration for spacing. The maximum
duration for this base (normally 1/8th), is set through base-shortest-duration.

In the introduction it was explained that stem directions influence spacing. This is con-
trolled with stem-spacing-correction in NoteSpacing. The StaffSpacing object con-
tains the same property for controlling the stem/barline spacing. In the following example
shows these corrections, once with default settings, and once with exaggerated corrections.�� ����������������� �

BUGS

Spacing is determined on a score wide basis. If you have a score that changes its character
(measured in durations) half way during the score, the part containing the longer durations
will be spaced too widely.

Generating optically pleasing spacing is black magic. LilyPond tries to deal with a
number of frequent cases. Here is an example that is not handled correctly, due to the
combination of chord collisions and kneed stems.��

�� ����
����� �

� �
3.19.3 Font size

The Feta font provides musical symbols at seven different sizes. These fonts are 11 point,
13 point, 16 point, 19 pt, 20 point, 23 point, and 26 point. The point size of a font is the
height of the five lines in a staff when displayed in the font.

Definitions for these sizes are the files ‘paperSZ.ly’, where SZ is one of 11, 13, 16, 19, 20,
23 and 26. If you include any of these files, the identifiers paperEleven, paperThirteen,
paperSixteen, paperNineteen, paperTwenty, paperTwentythree, and paperTwentysix

are defined respectively. The default \paper block is also set. These files should be imported
at toplevel, i.e.

\include "paper26.ly"

\score { ... }

The font definitions are generated using a Scheme function. For more details, see the
file ‘scm/font.scm’.

Chapter 3: Reference Manual 121

3.19.4 Line breaking

Line breaks are normally computed automatically. They are chosen such that it looks
neither cramped nor loose, and that consecutive lines have similar density.

Occasionally you might want to override the automatic breaks; you can do this by
specifying \break. This will force a line break at this point. Line breaks can only occur at
places where there are bar lines. If you want to have a line break where there is no bar line,
you can force an invisible bar line by entering \bar "". Similarly, \noBreak forbids a line
break at a certain point.

If you want linebreaks at regular intervals, you can use the following:

< \repeat 7 unfold { s1 * 4 \break }

real music

>

This makes the following 28 measures (assuming 4/4 time) be broken every 4 measures.

3.19.5 Page layout

The most basic settings influencing the spacing are indent and linewidth. They are set
in the \paper block. They control the indentation of the first line of music, and the lengths of
the lines. If linewidth set to a negative value, a single unjustified line is produced. A similar
effect for scores that are longer than one line, can be produced by setting raggedright to
true in the \paper block.

The page layout process happens outside lilypond. Ly2dvi sets page layout instructions.
Ly2dvi responds to the following variables in the \paper block. The variable textheight

sets the total height of the music on each page. The spacing between systems is controlled
with interscoreline, its default is 16pt. The distance between the score lines will stretch
in order to fill the full page interscorelinefill is set to a positive number. In that case
interscoreline specifies the minimum spacing.

If the variable lastpagefill is defined (that is, it gets any value assigned in the \paper
block), systems are evenly distributed vertically on the last page. This might produce ugly
results in case there are not enough systems on the last page. Note that lilypond-book

ignores lastpagefill. See Chapter 6 [Integrating text and music with lilypond-book],
page 142 for more information.

Page breaks are normally computed by TEX, so they are not under direct control of
LilyPond. However, you can insert a commands into the ‘.tex’ output to instruct TEX
where to break pages. You can insert a \newpage from within lilypond. This is done by
setting the between-systems-strings on the NonMusicalPaperColumn where the system
is broken.

To change the paper size, you must first set the papersize paper variable variable. Set
it to the strings a4, letter, or legal. After this specification, you must set the font as
described above. If you want the default font, then use the 20 point font.

\paper{ papersize = "a4" }

\include "paper16.ly"

The file paper16.ly will now include a file named ‘a4.ly’, which will set the paper
variables hsize and vsize (used by Lilypond and ly2dvi)

Chapter 3: Reference Manual 122

3.20 Sound

LilyPond can produce MIDI output. The performance lacks lots of interesting effects,
such as swing, articulation, slurring, etc., but it is good enough for proof-hearing the music
you have entered. Ties, dynamics and tempo changes are interpreted.

Dynamic marks, crescendi and decrescendi translate into MIDI volume levels. Dynamic
marks translate to a fixed fraction of the available MIDI volume range, crescendi and de-
crescendi make the the volume vary linearly between their two extremities. The fractions
be adjusted by overriding the absolute-volume-alist defined in ‘scm/midi.scm’.

For each type of musical instrument (that MIDI supports), a volume range can be
defined. This gives you basic equalizer control, which can enhance the quality of the MIDI
output remarkably. You can add instruments and ranges or change the default settings by
overriding the instrument-equalizer-alist defined in ‘scm/midi.scm’.

Both loudness controls are combined to produce the final MIDI volume.

3.20.1 MIDI block

The MIDI block is analogous to the paper block, but it is somewhat simpler. The \midi
block can contain:

• a \tempo definition

• context definitions

Assignments in the \midi block are not allowed.

Context definitions follow precisely the same syntax as within the \paper block. Trans-
lation modules for sound are called performers. The contexts for MIDI output are defined
in ‘ly/performer-init.ly’.

3.20.2 MIDI instrument names

The MIDI instrument name is set by the Staff.midiInstrument property or, if that
property is not set, the Staff.instrument property. The instrument name should be
chosen from the list in Section A.4 [MIDI instruments], page 158.

BUGS

If the selected string does not exactly match, then LilyPond uses the default (Grand
Piano). It is not possible to select an instrument by number.

Chapter 4: Advanced Topics 123

4 Advanced Topics

When translating the input to notation, there are number of distinct phases. We list
them here:

The purpose of LilyPond is explained informally by the term ‘music typesetter’. This is
not a fully correct name: Not only does the program print musical symbols, it also makes
aesthetic decisions. Symbols and their placements are generated from a high-level musical
description. In other words, LilyPond would be best described to be a ‘music compiler’ or
‘music to notation compiler’.

LilyPond is linked to GUILE, GNU’s Scheme library for extension programming. The
Scheme library provides the glue that holds together the low-level routines and separate
modules which are written in C++.

When lilypond is run to typeset sheet music, the following happens:

• GUILE initialization: Various scheme files are read.

• Parsing: First standard ly initialization files are read, then the user ‘ly’ file is read.

• Interpretation: The music in the file is processed ‘in playing order’, i.e., the order that
you use to read sheet music, or the order in which notes are played. The result of this
step is a typesetting specification.

• Typesetting: The typesetting specification is solved: positions and formatting is cal-
culated.

• The visible results ("virtual ink") are written to the output file.

During these stages different types of data play the the main role: During parsing, Music

objects are created. During the interpretation, contexts are constructed, and with these
contexts a network of graphical objects (‘grobs’) is created. These grobs contain unknown
variables, and the network forms a set of equations. After solving the equations and filling
in these variables, the printed output is written to an output file.

These threemanship of tasks (parsing, translating, typesetting) and data-structures (mu-
sic, context, graphical objects) permeates the entire design of the program.

Parsing

The ly file is read and converted to a list of Scores, which each contain Music

and paper/midi-definitions. Here Music, Pitch, and Duration objects are cre-
ated.

Interpreting music

All music events are ‘read’ in the same order as they would be played (or read
from paper). At every step of the interpretation, musical events are delivered
to interpretation contexts, which use them to build Grobs (or MIDI objects for
MIDI output).

In this stage Music_iterators do a traversal of the Music structure. The
music events thus encountered are reported to Translators, a set of objects
that collectively form interpretation contexts.

Prebreaking

At places where line breaks may occur, clefs and bars are prepared for a possible
line break.

Chapter 4: Advanced Topics 124

Preprocessing

In this stage, all information that is needed to determine line breaking is com-
puted.

Break calculation

The lines and horizontal positions of the columns are determined.

Breaking

Relations between all grobs are modified to reflect line breaks: When a spanner,
e.g. a slur, crosses a line break, then the spanner is ‘broken into pieces’; for
every line that the spanner is in, a copy of the grob is made. A substitution
process redirects all grob references so that each spanner grob will only reference
other grobs in the same line.

Outputting

All vertical dimensions and spanning objects are computed, and all grobs are
output, line by line. The output is encoded in the form of Molecules

The data types that are mentioned here are all discussed in this section.

4.1 Interpretation context

Interpretation contexts are objects that only exist during a run of LilyPond. During the
interpretation phase of LilyPond (when it prints interpreting music to standard output),
the music expression in a \score block is interpreted in time order. This is the same order
that humans hear and play the music.

During this interpretation, the interpretation context holds the state for the current
point within the music. It contains information like

• What notes are playing at this point?

• What symbols will be printed at this point?

• What is the current key signature, time signature, point within the measure, etc.?

Contexts are grouped hierarchically: A Voice context is contained in a Staff context
(because a staff can contain multiple voices at any point), a Staff context is contained in
Score, StaffGroup, or ChoirStaff context.

Contexts associated with sheet music output are called notation contexts, those for
sound output are called performance contexts. The default definitions of the standard
notation and performance contexts can be found in ‘ly/engraver-init.ly’ and
‘ly/performer-init.ly’, respectively.

4.1.1 Creating contexts

Contexts for a music expression can be selected manually, using the following music
expression.

\context contexttype [= contextname] musicexpr

This instructs lilypond to interpret musicexpr within the context of type contexttype and
with name contextname. If this context does not exist, it will be created.

Chapter 4: Advanced Topics 125

\score {

\notes \relative c’’ {

c4 <d4 \context Staff = "another" e4> f

}

} �� �
�8 �
��� �

In this example, the c and d are printed on the default staff. For the e, a context Staff called
another is specified; since that does not exist, a new context is created. Within another,
a (default) Voice context is created for the e4. When all music referring to a context is
finished, the context is ended as well. So after the third quarter, another is removed.

4.1.2 Default contexts

Most music expressions don’t need an explicit \context declaration: they inherit the
notation context from their parent. Each note is a music expression, and as you can see in
the following example, only the sequential music enclosing the three notes has an explicit
context.

\score { \notes \context Voice = goUp { c’4 d’ e’ } }�� ���� �
There are some quirks that you must keep in mind when dealing with defaults:

First, every top level music is interpreted by the Score context; in other words, you may
think of \score working like

\score {

\context Score music

}

Second, contexts are created automatically to be able to interpret the music expressions.
Consider the following example.

\score { \context Score \notes { c’4-(d’ e’-) } }�� ���� �
The sequential music is interpreted by the Score context initially (notice that the \context
specification is redundant), but when a note is encountered, contexts are setup to accept
that note. In this case, a Thread, Voice, and Staff context are created. The rest of the
sequential music is also interpreted with the same Thread, Voice, and Staff context, putting
the notes on the same staff, in the same voice.

Chapter 4: Advanced Topics 126

4.1.3 Context evaluation

Scheme code can be used to modify contexts. The syntax for this is

\applycontext function

function should be a Scheme function taking a single argument, being the context to
apply it with. The following code will print the current bar number on the standard output
during the compile.

\applycontext

#(lambda (tr)

(format #t "\nWe were called in barnumber ~a.\n"

(ly:get-context-property tr ’currentBarNumber)))

4.1.4 Context properties

Notation contexts have properties. These properties are from the ‘.ly’ file using the
following expression:

\property contextname.propname = value

Sets the propname property of the context contextname to the specified Scheme expression
value. All propname and contextname are strings, which are typically unquoted.

Properties that are set in one context are inherited by all of the contained contexts.
This means that a property valid for the Voice context can be set in the Score context (for
example) and thus take effect in all Voice contexts.

If you don’t wish to specify the name of the context in the \property-expression itself,
you can refer to the abstract context name, Current. The Current context is the latest used
context. This will typically mean the Thread context, but you can force another context
with the \property-command. Hence the expressions

\property contextname.propname = value

and

\context contextname

\property Current.propname = value

do the same thing. The main use for this is in macros – allowing the specification of a
property-setting without restriction to a specific context.

Properties can be unset using the following expression:

\property contextname.propname \unset

This removes the definition of propname in contextname. If propname was not defined in
contextname (but was inherited from a higher context), then this has no effect.

BUGS

The syntax of \unset is asymmetric: \property \unset is not the inverse of \property
\set.

4.1.5 Engravers and performers

[TODO]

Basic building blocks of translation are called engravers; they are special C++ classes.

Chapter 4: Advanced Topics 127

4.1.6 Changing context definitions

The most common way to define a context is by extending an existing context. You can
change an existing context from the paper block by first initializing a translator with an
existing context identifier:

\paper {

\translator {

context-identifier

}

}

Then you can add and remove engravers using the following syntax:

\remove engravername

\consists engravername

Here engravername is a string, the name of an engraver in the system.

\score {

\notes {

c’4 c’4

}

\paper {

\translator {

\StaffContext

\remove Clef_engraver

}

}

}� ���
You can also set properties in a translator definition. The syntax is as follows:

propname = value

propname \set grob-propname = pvalue

propname \override grob-propname = pvalue

propname \revert grob-propname

propname is a string, grob-propname a symbol, value and pvalue are Scheme expressions.
These types of property assignments happen before interpretation starts, so a \property

command will override any predefined settings.

To simplify editing translators, all standard contexts have standard identifiers called
nameContext, e.g. StaffContext, VoiceContext; see ‘ly/engraver-init.ly’.

4.1.7 Defining new contexts

If you want to build a context from scratch, you must also supply the following extra
information:

• A name, specified by \name contextname .

Chapter 4: Advanced Topics 128

• A cooperation module. This is specified by \type typename .

This is an example:

\translator

\type "Engraver_group_engraver"

\name "SimpleStaff"

\alias "Staff"

\consists "Staff_symbol_engraver"

\consists "Note_head_engraver"

\consistsend "Axis_group_engraver"

The argument of \type is the name for a special engraver that handles cooperation between
simple engravers such as Note_head_engraver and Staff_symbol_engraver. Alternatives
for this engraver are the following:

Engraver_group_engraver

The standard cooperation engraver.

Score_engraver

This is a cooperation module that should be in the top level context.

Other modifiers are

• \alias alternate-name: This specifies a different name. In the above example,
\property Staff.X = Y will also work on SimpleStaffs

• \consistsend engravername: Analogous to \consists, but makes sure that engrav-
ername is always added to the end of the list of engravers.

Some engraver types need to be at the end of the list; this insures they stay there even
if a user adds or removes engravers. End-users generally don’t need this command.

• \accepts contextname: Add contextname to the list of contexts this context can
contain in the context hierarchy. The first listed context is the context to create by
default.

• \denies: The opposite of \accepts. Added for completeness, but is never used in
practice.

• \name contextname: This sets the type name of the context, e.g. Staff, Voice. If the
name is not specified, the translator won’t do anything.

In the \paper block, it is also possible to define translator identifiers. Like other block
identifiers, the identifier can only be used as the very first item of a translator. In order to
define such an identifier outside of \score, you must do

\paper {

foo = \translator { ... }

}

\score {

\notes {

...

}

Chapter 4: Advanced Topics 129

\paper {

\translator { \foo ... }

}

}

4.2 Syntactic details

This section describes details that were too boring to be put elsewhere.

4.2.1 Identifiers

All of the information in a LilyPond input file is internally represented as a Scheme value.
In addition to normal Scheme data types (such as pair, number, boolean, etc.), LilyPond
has a number of specialized data types,

• Input

• c++-function

• Music

• Identifier

• Translator def

• Duration

• Pitch

• Score

• Music output def

• Moment (rational number)

LilyPond also includes some transient object types. Objects of these types are built
during a LilyPond run, and do not ‘exist’ per se within your input file. These objects
are created as a result of your input file, so you can include commands in the input to
manipulate them, during a LilyPond run.

• Grob: short for ‘Graphical object’.

• Molecule: Device-independent page output object, including dimensions. Produced by
some Grob functions.

• Translator: An object that produces audio objects or Grobs. This is not yet user-
accessible.

• Font metric: An object representing a font.

4.2.2 Music expressions

Music in LilyPond is entered as a music expression. Notes, rests, lyric syllables are
music expressions, and you can combine music expressions to form new ones, for example
by enclosing a list of expressions in \sequential { } or < >. In the following example, a
compound expression is formed out of the quarter note c and a quarter note d:

Chapter 4: Advanced Topics 130

\sequential { c4 d4 }

The two basic compound music expressions are simultaneous and sequential music.

\sequential { musicexprlist }

\simultaneous { musicexprlist }

For both, there is a shorthand:

{ musicexprlist }

for sequential and

< musicexprlist >

for simultaneous music. In principle, the way in which you nest sequential and simultaneous
to produce music is not relevant. In the following example, three chords are expressed in
two different ways:

\notes \context Voice {

<a c’> <b d’> <c’ e’>

< { a b c’ } { c’ d’ e’ } >

} �� ������������� �
However, using < and > for chords turns up various syntactical peculiarities. For this

reason, a special syntax for chords was introduced in version 1.7: << >>.

Other compound music expressions include

\repeat expr

\transpose from to expr

\apply func expr

\context type = id expr

\times fraction expr

4.2.3 Manipulating music expressions

The \apply mechanism gives you access to the internal representation of music. You
can write Scheme-functions that operate directly on it. The syntax is

\apply #func music

This means that func is applied to music. The function func should return a music expres-
sion.

This example replaces the text string of a script. It also shows a dump of the music it
processes, which is useful if you want to know more about how music is stored.

#(define (testfunc x)

(if (equal? (ly:get-mus-property x ’text) "foo")

(ly:set-mus-property! x ’text "bar"))

;; recurse

(ly:set-mus-property! x ’elements

(map testfunc (ly:get-mus-property x ’elements)))

(display x)

Chapter 4: Advanced Topics 131

x)

\score {

\notes

\apply #testfunc { c’4_"foo" }

} ��
foo

�� �
For more information on what is possible, see the automatically generated documenta-

tion.

Directly accessing internal representations is dangerous: The implementation is subject
to changes, so you should avoid this feature if possible.

A final example is a function that reverses a piece of music in time:

#(define (reverse-music music)

(let* ((elements (ly:get-mus-property music ’elements))

(reversed (reverse elements))

(span-dir (ly:get-mus-property music ’span-direction)))

(ly:set-mus-property! music ’elements reversed)

(if (ly:dir? span-dir)

(ly:set-mus-property! music ’span-direction (- span-dir)))

(map reverse-music reversed)

music))

music = \notes { c’4 d’4(e’4 f’4 }

\score {

\context Voice {

\music

\apply #reverse-music \music

}

} �� ��������� �
More examples are given in the distributed example files in input/test/.

4.2.4 Assignments

Identifiers allow objects to be assigned to names during the parse stage. To assign an
identifier, use name=value. To refer to an identifier, precede its name with a backslash:
‘\name’. value is any valid Scheme value or any of the input-types listed above. Identifier
assignments can appear at top level in the LilyPond file, but also in \paper blocks.

Chapter 4: Advanced Topics 132

An identifier can be created with any string for its name, but you will only be able
to refer to identifiers whose names begin with a letter, being entirely alphabetical. It is
impossible to refer to an identifier whose name is the same as the name of a keyword.

The right hand side of an identifier assignment is parsed completely before the assignment
is done, so it is allowed to redefine an identifier in terms of its old value, e.g.

foo = \foo * 2.0

When an identifier is referenced, the information it points to is copied. For this reason,
an identifier reference must always be the first item in a block.

\paper {

foo = 1.0

\paperIdent % wrong and invalid

}

\paper {

\paperIdent % correct

foo = 1.0

}

4.2.5 Lexical modes

To simplify entering notes, lyrics, and chords, LilyPond has three special input modes
in addition to the default mode: note, lyrics, and chords mode. These input modes change
the way that normal, unquoted words are interpreted: For example, the word cis may be
interpreted as a C-sharp, as a lyric syllable ‘cis’ or as a C-sharp major triad respectively.

A mode switch is entered as a compound music expression

\notes musicexpr

\chords musicexpr

\lyrics musicexpr

In each of these cases, these expressions do not add anything to the meaning of their
arguments. They just instruct the parser in what mode to parse their arguments.

Different input modes may be nested.

4.2.6 Ambiguities

The grammar contains a number of ambiguities. We hope to resolve them at some time.

• The assignment

foo = bar

is interpreted as the string identifier assignment. However, it can also be interpreted as
making a string identifier \foo containing "bar", or a music identifier \foo containing
the syllable ‘bar’. The former interpretation is chosen.

• If you do a nested repeat like

\repeat ...

\repeat ...

\alternative

Chapter 4: Advanced Topics 133

then it is ambiguous to which \repeat the \alternative belongs. This is the classic
if-then-else dilemma. It may be solved by using braces.

4.3 Lexical details

Even more boring details, now on the lexical side of the input parser.

4.3.1 Direct Scheme

LilyPond internally uses GUILE, a Scheme-interpreter. Scheme is a language from the
LISP family. You can learn more about Scheme at http://www.scheme.org. It is used to
represent data throughout the whole program. The hash-sign (#) accesses GUILE directly:
The code following the hash-sign is evaluated as Scheme. The boolean value true is #t in
Scheme, so for LilyPond true looks like ##t.

LilyPond contains a Scheme interpreter (the GUILE library) for internal use. In some
places, Scheme expressions also form valid syntax: Wherever it is allowed,

#scheme

evaluates the specified Scheme code. Example:

\property Staff.TestObject \override #’foobar = #(+ 1 2)

\override expects two Scheme expressions. The first one is a symbol (foobar), the
second one an integer (namely, 3).

In-line Scheme may be used at the top level. In this case the result is discarded.

Scheme is a full-blown programming language, and a full discussion is outside the scope of
this document. Interested readers are referred to the website http://www.schemers.org/

for more information on Scheme.

4.3.2 Reals

Formed from an optional minus sign and a sequence of digits followed by a required

decimal point and an optional exponent such as -1.2e3. Reals can be built up using the
usual operations: ‘+’, ‘-’, ‘*’, and ‘/’, with parentheses for grouping.

A real constant can be followed by one of the dimension keywords: \mm \pt, \in, or \cm,
for millimeters, points, inches and centimeters, respectively. This converts the number that
is the internal representation of that dimension.

4.3.3 Strings

Begins and ends with the " character. To include a " character in a string write \".
Various other backslash sequences have special interpretations as in the C language. A string
that contains no spaces can be written without the quotes. Strings can be concatenated
with the + operator.

Chapter 4: Advanced Topics 134

4.4 Output details

LilyPond’s default output format is TEX. Using the option ‘-f’ (or ‘--format’) other
output formats can be selected also, but currently none of them reliably work.

At the beginning of the output file, various global parameters are defined. It also contains
a large \special call to define PostScript routines to draw items not representable with
TEX, mainly slurs and ties. A DVI driver must be able to understand such embedded
PostScript, or the output will be rendered incompletely.

Then the file ‘lilyponddefs.tex’ is loaded to define the macros used in the code which
follows. ‘lilyponddefs.tex’ includes various other files, partially depending on the global
parameters.

Now the music is output system by system (a ‘system’ consists of all staves belonging
together). From TEX’s point of view, a system is an \hbox which contains a lowered \vbox so
that it is centered vertically on the baseline of the text. Between systems, \interscoreline
is inserted vertically to have stretchable space. The horizontal dimension of the \hbox is
given by the linewidth parameter from LilyPond’s \paper block (using the natural line
width if its value is −1).

After the last system LilyPond emits a stronger variant of \interscoreline only if the
macro \lilypondpaperlastpagefill is not defined (flushing the systems to the top of the
page). You can avoid that manually by saying

\def\lilypondpaperlastpagefill{1}

or by setting the variable lastpagefill in LilyPond’s \paper block.

It is possible to fine-tune the vertical offset further by defining the macro
\lilypondscoreshift. Example:

\def\lilypondscoreshift{0.25\baselineskip}

\baselineskip is the distance from one text line to the next.

The code produced by LilyPond can be used by both TEX and LaTEX.

Here an example how to embed a small LilyPond file foo.ly into running LaTEX text
without using the lilypond-book script (see Chapter 6 [Integrating text and music with
lilypond-book], page 142).

\documentclass{article}

\def\lilypondpaperlastpagefill{}

\lineskip 5pt

\def\lilypondscoreshift{0.25\baselineskip}

\begin{document}

This is running text which includes an example music file

\input{foo.tex}

right here.

\end{document}

The file ‘foo.tex’ has been simply produced with

lilypond foo.ly

Chapter 4: Advanced Topics 135

It is important to set the indent parameter to zero in the \paper block of ‘foo.ly’.

The call to \lineskip assures that there is enough vertical space between the LilyPond
box and the surrounding text lines.

Chapter 5: Invoking LilyPond 136

5 Invoking LilyPond

Usage:

lilypond [option]... file...

When invoked with a filename that has no extension, LilyPond will try to add ‘.ly’ as
an extension first. To have LilyPond read from stdin, use a dash - for file.

When LilyPond processes ‘filename.ly’ it will produce ‘filename.tex’ as output (or
‘filename.ps’ for PostScript output). If ‘filename.ly’ contains more than one \score

block, then LilyPond will output the rest in numbered files, starting with ‘filename-1.tex’.
Several files can be specified; they will each be processed independently.1

5.1 Command line options

The following options are supported:

-e,--evaluate=expr

Evaluate the Scheme expr before parsing any ‘.ly’ files. Multiple -e options
may be given, they will be evaluated sequentially. The function ly:set-option

allows for access to some internal variables. Use -e ’(ly:option-usage’) for
more information.

-f,--format=format

Output format for sheet music. Choices are tex (for TEX output, to be pro-
cessed with plain TEX, or through ly2dvi), pdftex for PDFTEX input, ps (for
PostScript), scm (for a Scheme dump), sk (for Sketch) and as (for ASCII-art).

This option is only for developers. Only the TEX output of
these is usable for real work. More information can be found at
http://lilypond.org/wiki?OutputFormats.

-h,--help

Show a summary of usage.

--include, -I=directory

Add directory to the search path for input files.

-i,--init=file

Set init file to file (default: ‘init.ly’).

-m,--no-paper

Disable TEX output. If you have a \midi definition midi output will be gener-
ated.

-M,--dependencies

Output rules to be included in Makefile.

-o,--output=FILE

Set the default output file to FILE.

1 The status of GUILE is not reset across invocations, so be careful not to change any default settings

from within Scheme .

Chapter 5: Invoking LilyPond 137

-v,--version

Show version information

-V,--verbose

Be verbose: show full paths of all files read, and give timing information.

-w,--warranty

Show the warranty with which GNU LilyPond comes. (It comes with NO

WARRANTY!)

5.2 Environment variables

For processing both the TEX and the PostScript output, you must have appropriate
environment variables set. The following scripts do this:

• ‘buildscripts/out/lilypond-profile’ (for sh shells)

• ‘buildscripts/out/lilypond-login’ (for C-shells)

They should normally be sourced as part of your login process. If these scripts are not
run from the system wide login process, then you must run it yourself.

If you use sh, bash, or a similar shell, then add the following to your ‘.profile’

. lilypond-profile

If you use csh, tcsh or a similar shell, then add the following to your ‘~/.login’

source lilypond-login

These scripts set the following variables

TEXMF To make sure that TEX and lilypond find data files (among others ‘.tex’, ‘.mf’
and ‘.tfm’), you have to set TEXMF to point to the lilypond data file tree. A
typical setting would be

{/usr/share/lilypond/1.6.0,{!!/usr/share/texmf}}

GS_LIB For processing PostScript output (obtained with -f ps) with Ghostscript you
have to set GS_LIB to point to the directory containing LilyPond PS files.

GS_FONTPATH

For processing PostScript output (obtained with -f ps) with Ghostscript you
have to set GS_FONTPATH to point to the directory containing LilyPond PFA
files.

When you print direct PS output, remember to send the PFA files to the printer
as well.

The LilyPond binary itself recognizes the following environment variables

LILYPONDPREFIX

This specifies a directory where locale messages and data files will be looked
up by default. The directory should contain subdirectories called ‘ly/’, ‘ps/’,
‘tex/’, etc.

LANG This selects the language for the warning messages of LilyPond.

Chapter 5: Invoking LilyPond 138

5.3 Reporting bugs

Since there is no finder’s fee which doubles every year, there is no need to wait for the
prize money to grow. So send a bug report today!

LilyPond development moves quickly, so if you have a problem, it is wise to check if it
has been fixed in a newer release. If you think you found a bug, please send in a bugreport.
When you send us a bugreport, we have to diagnose the problem and if possible, duplicate
it. To make this possible, it is important that you include the following information in your
report:

• A sample input which causes the error. Please have mercy on the developers, send a
small sample file.

• The version number of lilypond.

• A description of the platform you use (i.e., operating system, system libraries, whether
you downloaded a binary release)

• If necessary, send a description of the bug itself. If you include output a ly2dvi run,
please use --debug option of ly2dvi.

You can send the report to bug-lilypond@gnu.org. This is a mailinglist, but you don’t
have to be subscribed to it to post.

5.4 Website

If you are reading this manual in print, it is possible that the website contains updates
to the manual. You can find the lilypond website at http://www.lilypond.org/.

5.5 Invoking ly2dvi

Nicely titled output is created through a separate program: ‘ly2dvi’ is a script that
uses LilyPond and LaTEX to create a nicely titled piece of sheet music, in DVI format or
PostScript.

ly2dvi [option]... file...

To have ly2dvi read from stdin, use a dash - for file.

Ly2dvi supports the following options:

-k,--keep

Keep the temporary directory including LilyPond and ly2dvi output files. The
temporary directory is created in the current directory as ly2dvi.dir.

-d,--dependencies

Write makefile dependencies for every input file.

-h,--help

Print usage help.

-I,--include=dir

Add dir to LilyPond’s include path.

Chapter 5: Invoking LilyPond 139

-m,--no-paper

Produce MIDI output only.

--no-lily

Do not run LilyPond; useful for debugging ly2dvi.

-o,--output=file

Generate output to file. The extension of file is ignored.

-P,--postscript

Also generate PostScript output, using dvips. The postscript uses the standard
TEX bitmap fonts for your printer.

-p,--pdf Also generate Portable Document Format (PDF). This option will generate a
PS file using scalable fonts, and will run the PS file through ps2pdf producing
a PDF file.

If you use lilypond-book or your own wrapper files, don’t use
\usepackage[[T1]{fontenc} in the file header but don’t forget
\usepackage[latin1]{inputenc} if you use any other non-anglosaxian
characters.

--preview

Also generate a picture of the first system of the score.

-s,--set=key=val

Add key= val to the settings, overriding those specified in the files. Possible
keys: language, latexheaders, latexpackages, latexoptions, papersize,
pagenumber, linewidth, orientation, textheight.

-v,--version

Show version information .

-V,--verbose

Be verbose.

--debug Print even more information. This is useful when generating bugreports.

-w,--warranty

Show the warranty with which GNU LilyPond comes. (It comes with NO

WARRANTY!)

5.5.1 Titling layout

Ly2dvi extracts the following header fields from the LY files to generate titling. An
example demonstrating all these fields is in ‘input/test/ly2dvi-testpage.ly’.

title The title of the music. Centered on top of the first page.

subtitle Subtitle, centered below the title.

poet Name of the poet, left flushed below the subtitle.

composer Name of the composer, right flushed below the subtitle.

meter Meter string, left flushed below the poet.

Chapter 5: Invoking LilyPond 140

opus Name of the opus, right flushed below the composer.

arranger Name of the arranger, right flushed below the opus.

instrument

Name of the instrument, centered below the arranger

dedication

[docme]

piece Name of the piece, left flushed below the instrument

head A text to print in the header of all pages. It is not called header, because
\header is a reserved word in LilyPond.

copyright

A text to print in the footer of the first page. Default is to print the standard
footer also on the first page.

footer A text to print in the footer of all but the last page.

tagline Line to print at the bottom of last page. The default text is “Lily was here,
version-number”.

5.5.2 Additional parameters

Ly2dvi responds to several parameters specified in a \paper section of the LilyPond file.
They can be overridden by supplying a --set command line option.

language Specify LaTEX language: the babel package will be included. Default: unset.

Read from the \header block.

latexheaders

Specify additional LaTEX headers file.

Normally read from the \header block. Default value: empty

latexpackages

Specify additional LaTEX packages file. This works cumulative, so you can add
multiple packages using multiple -s=latexpackages options. Normally read
from the \header block. Default value: geometry.

latexoptions

Specify additional options for the LaTEX \documentclass. You can put any
valid value here. This was designed to allow ly2dvi to produce output for
double-sided paper, with balanced margins and pagenumbers on alternating
sides. To achieve this specify twoside

orientation

Set orientation. Choices are portrait or landscape. Is read from the \paper

block, if set.

textheight

The vertical extension of the music on the page. It is normally calculated
automatically, based on the paper size.

Chapter 5: Invoking LilyPond 141

linewidth

The music line width. It is normally read from the \paper block.

papersize

The paper size (as a name, e.g. a4). It is normally read from the \paper block.

pagenumber

If set to no, no page numbers will be printed. If set to a positive integer, start
with this value as the first page number.

fontenc The font encoding, should be set identical to the font-encoding property in
the score.

5.5.3 Environment variables

LANG selects the language for the warning messages of Ly2dvi and LilyPond.

GUILE_MAX_SEGMENT_SIZE

is an option for GUILE, the scheme interpreter; it sets the size of the chunks of
memory allocated by GUILE. By increasing this from its default 8388608, the
performance of LilyPond on large scores is slightly improved.

Chapter 6: Integrating text and music with lilypond-book 142

6 Integrating text and music with lilypond-book

If you want to add pictures of music to a document, you can simply do it the way you
would do with other types of pictures. You write LilyPond code, process it separately to
embedded PostScript or png, and include it as a picture into your LaTEX or html source.

lilypond-book provides you with a way to automate this process: This program extracts
snippets of music from your document, runs LilyPond on them, and outputs your document
with the resulting pictures substituted for the music you entered. The line width and font
size definitions for the music are adjusted to match the layout of your document.

It can work on LaTEX, html or texinfo documents. A tutorial on using
lilypond-book is in Section 2.11 [Integrating text and music], page 41. In case
that you do not know LaTEX, then The not so Short Introduction to LaTeX
(http://www.ctan.org/tex-archive/info/lshort/english/) provides a introction to
using LaTEX.

TODO: explain how to use lilypond fonts in text.

6.1 Integrating Texinfo and music

You specify the LilyPond code like this:

@lilypond[options, go, here]

YOUR LILYPOND CODE

@end lilypond

@lilypond[options, go, here]{ YOUR LILYPOND CODE }

@lilypondfile[options, go, here]{filename}

Then you run lilypond-book on it, and the result is a file you can process with texinfo.
We show two simple examples here. First a complete block:

@lilypond[26pt]

c’ d’ e’ f’ g’2 g’

@end lilypond

produces this music:��

����� �
Then the short version:

@lilypond[11pt]{<<c’ e’ g’>>}

and its music:IJ 555J I
lilypond-book knows the default margins and a few paper sizes. One of these commands

should be in the beginning of the document:

• @afourpaper

• @afourlatex

Chapter 6: Integrating text and music with lilypond-book 143

• @afourwide

• @smallbook

@pagesizes are not yet supported.

When producing texinfo, lilypond-book also generates bitmaps of the music, so you can
make a HTML document with embedded music.

6.2 Integrating LaTEX and music

You specify LilyPond code like this:

\begin[options, go, here]{lilypond}

YOUR LILYPOND CODE

\end{lilypond}

\lilypondfile[options, go,here]{filename}

or

\lilypond{ YOUR LILYPOND CODE }

Then you run lilypond-book on it, and the result is a file you can process with LaTEX.
We show some examples here.

\begin[26pt]{lilypond}

c’ d’ e’ f’ g’2 g’2

\end{lilypond}

produces this music:W »»����W
Then the short version:

\lilypond[11pt]{<<c’ e’ g’>>}

and its music:IJ 555J I
You can use whatever commands you like in the document preamble, the part of the

document before \begin{document}. lilypond-book will send it to LaTEX to find out
how wide the text is and adjust the linewidth variable in the paper definition of your music
according to that.

After \begin{document} you must be a little more careful when you use commands
that change the width of the text and how many columns there are. lilypond-book knows
about the \onecolumn and \twocolumn commands and the multicols environment from
the multicol package.

The music will be surrounded by \preLilypondExample and \postLilypondExample.
The variables are defined to nothing by default, and the user can redefine them to whatever
he wants.

Chapter 6: Integrating text and music with lilypond-book 144

6.3 Integrating HTML and music

You specify LilyPond code like this:

<lilypond relative1 verbatim>

\key c \minor r8 c16 b c8 g as c16 b c8 d | g,4

</lilypond>

Then you run lilypond-book on it, and the result is a file you can process with LaTEX. The
final result look like

<lilypond relative1 verbatim>

\key c \minor r8 c16 b c8 g as c16 b c8 d | g,4

</lilypond>�� � �� ��������� ���� � � � �
For inline pictures, use <lilypond ... /> syntax, eg.

Some music in <lilypond a b c/> a line of text.

A special feature not (yet) available in other output formats, is the <ly2dvifile> tag,
for example

<ly2dvifile>trip.ly</ly2dvifile>

This runs ‘trip.ly’ through ly2dvi (See also Section 5.5 [Invoking ly2dvi], page 138),
and substitutes a preview image in the output. The image links to a separate HTML file,
so clicking it will take the viewer to a menu, with links to images, midi and printouts.

6.4 Music fragment options

The commands for lilypond-book have room to specify options. These are all of the
options:

eps This will create the music as eps graphics and include it into the document with
the \includegraphics command. It works in LaTEX only.

This enables you to place music examples in the running text (and not in a
separate paragraph). To avoid that LaTEX places the music on a line of its
own, there should be no empty lines between the normal text and the LilyPond
environment. For inline music, you probably also need a smaller music font size
(e.g. 11 pt or 13 pt)

verbatim CONTENTS is copied into the source enclosed in a verbatim block, followed by
any text given with the intertext option, then the actual music is displayed.
This option does not work with the short version of the LilyPond blocks:

@lilypond{ CONTENTS } and \lilypond{ CONTENTS }

smallverbatim

Like verbatim, but in a smaller font.

Chapter 6: Integrating text and music with lilypond-book 145

intertext="text"

Used in conjunction with verbatim option: This puts text between the code
and the music (without indentation).

filename="filename"

Save the LilyPond code to filename. By default, a hash value of the code is
used.

11pt IJ 55¼555555555555¼555555555½J I
13pt ¾> @@¿@@@@@@@@@@@@¿@@@@@@@@@À> ¾
16pt �� ��o����������� �
20pt Á ÂÂÃÂÂÂÂÂÂÂÂÂÄÁ
26pt W

��Å���������ÆW
singleline

Produce a single, naturally spaced, unjustified line (i.e., linewidth = −1).

multiline

The opposite of singleline: Justify and break lines.

linewidth=sizeunit

Set linewidth to size, where unit = cm, mm, in, or pt. This option affects
LilyPond output, not the text layout.

notime Don’t print time signature.

fragment

nofragment

Override lilypond-book auto detection of what type of code is in the LilyPond
block, voice contents or complete code.

Chapter 6: Integrating text and music with lilypond-book 146

indent=sizeunit

Set indentation of the first music system to size, where unit = cm, mm, in, or
pt. This option affects LilyPond, not the text layout. For single-line fragments
the default is to use no indentation.

noindent Set indentation of the first music system to zero. This option affects LilyPond,
not the text layout.

notexidoc

Do not include the .texidoc header. This is only for Texinfo output.

noquote By default, lilypond-book puts both LaTEX and texinfo output into a quota-
tion block. Using this option prevents this; no indentation will be used.

printfilename

Prints the file name before the music example. Useful in conjunction with
\lilypondfile.

relative, relative N

Use relative octave mode. By default, notes are specified relative central C. The
optional integer argument specifies how many octaves higher (positive number)
or lower (negative number) to place the starting note.

6.5 Invoking lilypond-book

When you run lilypond-book it will generate lots of small files that LilyPond will
process. To avoid all the garbage in your source directory, you should either change to a
temporary directory, or use the ‘--outdir’ command line options:

cd out && lilypond-book ../yourfile.tex

lilypond-book --outdir=out yourfile.tex

For LaTEX input, the file to give to LaTEX has extension ‘.latex’. Texinfo input will
be written to a file with extension ‘.texi’.

If you use ‘--outdir’, you should also cd to that directory before running LaTEX or
makeinfo. This may seem a little kludgy, but both LaTEX and makeinfo expect picture
files (the music) to be in the current working directory. Moreover, if you do this, LaTEX
will not clutter your normal working directory with output files.

If you want to add titling from the \header section of the files, you should add the
following to the top of your LaTEX file:

\input titledefs.tex

\def\preLilypondExample{\def\mustmakelilypondtitle{}}

lilypond-book accepts the following command line options:

‘-f format’, ‘--format=format’

Specify the document type to process: html, latex or texi (the default).
lilypond-book usually figures this out automatically.

Note that the texi document type produces a DVI file; to convert a texinfo
document to html, you should use the additional format texi-html instead of
texi to convert lilypond fragments to PNG images.

Chapter 6: Integrating text and music with lilypond-book 147

‘--default-music-fontsize=szpt’

Set the fontsize to use for LilyPond if no fontsize is given as option.

‘--force-music-fontsize=szpt’

Force all LilyPond code to use this fontsize, overriding options given to
\begin{lilypond}.

‘-I dir’, ‘--include=dir’

Add DIR to the include path.

‘-M’, ‘--dependencies’

Write dependencies to ‘filename.dep’.

‘--dep-prefix=pref’

Prepend pref before each ‘-M’ dependency.

‘-n’, ‘--no-lily’

Don’t run LilyPond, but do generate the .ly files.

‘--no-music’

Strip all LilyPond blocks from the file.

‘--no-pictures’

Don’t generate pictures when processing Texinfo.

‘--read-lys’

Don’t write ly files. This way you can do

lilypond-book file.tely

convert-ly

lilypond-book --read-lys

‘--outname=file’

The name of LaTEX file to output. If this option is not given, the output name
is derived from the input name.

‘--outdir=dir’

Place generated files in dir.

‘--version’

Print version information.

‘--help’ Print a short help message.

6.6 Bugs

The LaTEX \includeonly{...} command is ignored.

The Texinfo command pagesize is on the TODO list for LilyPond 1.8, but changing
the linewidth in other ways will not give you a straight right margin.

Almost all LaTEX commands that change margins and line widths are ignored.

There is no way to automatically apply convert-ly only to fragments inside a lilypond-
book file.

Chapter 6: Integrating text and music with lilypond-book 148

lilypond-book processes all music fragments in one big run. The state of the GUILE
interpreter is not reset between fragments; this means that global GUILE definitions, e.g.,
done with #(define ...) and #(set! ...) can leak from one fragment into the next frag-
ment.

Chapter 7: Converting from other formats 149

7 Converting from other formats

7.1 Invoking convert-ly

Convert-ly sequentially applies different conversions to upgrade a Lilypond input file.
It uses \version statements in the file to detect the old version number. For example, to
upgrade all lilypond files in the current directory and its subdirectories, use

convert-ly -e --to=1.3.150 ‘find . -name ’*.ly’ -print‘

The program is invoked as follows:

convert-ly [option]... file...

The following options can be given:

-a,--assume-old

If version number cannot be determined, apply all conversions.

-e,--edit

Do an inline edit of the input file. Overrides --output.

-f,--from=from-patchlevel

Set the level to convert from. If this is not set, convert-ly will guess this, on
the basis of \version strings in the file.

-o,--output=file

Set the output file to write.

-n,--no-version

Normally, convert-ly adds a \version indicator to the output. Specifying this
option suppresses this.

-s, --show-rules

Show all known conversions and exit.

--to=to-patchlevel

Set the goal version of the conversion. It defaults to the latest available version.

-h, --help

Print usage help

BUGS

Not all language changes are handled. Only one output options can be specified.

7.2 Invoking midi2ly

Midi2ly translates a MIDI input file to a LilyPond source file. MIDI (Music Instrument
Digital Interface) is a standard for digital instruments: it specifies cabling, a serial protocol
and a file format.

The MIDI file format is a de facto standard format for exporting music from other
programs, so this capability may come in useful when you want to import files from a
program that has no converter for its native format.

Chapter 7: Converting from other formats 150

It is possible to record a MIDI file using a digital keyboard, and then convert it to
‘.ly’. However, human players are not rhythmically exact enough to make a MIDI to LY
conversion trivial. midi2ly tries to compensate for these timing errors, but is not very good
at this. It is therefore not recommended to use midi2ly for human-generated midi files.

Hackers who know about signal processing are invited to write a more robust midi2ly.
midi2ly is written in Python, using a module written in C to parse the MIDI files.

It is invoked as follows:

midi2ly [option]... midi-file

The following options are supported by midi2ly:

-b, --no-quantify,

Write exact durations, e.g.: ‘a4*385/384’.

-D, --debug,

Print lots of debugging stuff.

-h, --help,

Show a summary of usage.

-I, --include=dir,

Add dir to search path.

-k, --key=acc[:minor],

Set default key. acc > 0 sets number of sharps; acc < 0 sets number of flats. A
minor key is indicated by ":1".

-n, --no-silly,

Assume no plets or double dots, assume smallest (reciprocal) duration 16.

-o, --output=file,

Set file as default output.

-p, --no-plets,

Assume no plets.

-q, --quiet,

Be quiet.

-s, --smallest=N,

Assume no shorter (reciprocal) durations than N.

-v, --verbose,

Be verbose.

-w, --warranty,

Show the warranty with which midi2ly comes. (It comes with NO WAR-

RANTY!)

-x, --no-double-dots,

Assume no double dotted notes.

Chapter 7: Converting from other formats 151

7.3 Invoking etf2ly

ETF (Enigma Transport Format) is a format used by Coda Music Technology’s Finale
product. etf2ly will convert part of an ETF file to a ready-to-use LilyPond file.

It is invoked as follows:

etf2ly [option]... etf-file

The following options are supported by etf2ly.

-h,--help

this help

-o,--output=FILE

set output filename to FILE

-v,--version

version information

BUGS

The list of articulation scripts is incomplete. Empty measures confuse etf2ly.

7.4 Invoking abc2ly

ABC is a fairly simple ASCII based format. It is described at the abc site:

http://www.gre.ac.uk/~c.walshaw/abc2mtex/abc.txt

abc2ly translates from ABC to LilyPond. It is invoked as follows:

abc2ly [option]... abc-file

The following options are supported by abc2ly:

-h,--help

this help

-o,--output=file

set output filename to file.

-v,--version

print version information.

There is a rudimentary facility for adding lilypond code to the ABC source file. If you
say:

%%LY voices \property Voice.autoBeaming=##f

This will cause the text following the keyword “voices” to be inserted into the current
voice of the lilypond output file.

Similarly:

%%LY slyrics more words

will cause the text following the “slyrics” keyword to be inserted into the current line of
lyrics.

BUGS

Chapter 7: Converting from other formats 152

The ABC standard is not very “standard”. For extended features (eg. polyphonic music)
different conventions exist.

Multiple tunes in one file cannot be converted.

ABC synchronizes words and notes at the beginning of a line; abc2ly does not.

abc2ly ignores the ABC beaming.

7.5 Invoking pmx2ly

PMX is a MusiXTeX preprocessor written by Don Simons. More information on PMX
is available from the following site:

http://icking-music-archive.sunsite.dk/Misc/Music/musixtex/software/pmx/.

pmx2ly converts from PMX to LilyPond input. The program is invoked as follows:

pmx2ly [option]... pmx-file

The following options are supported by pmx2ly:

-h,--help

this help

-o,--output=FILE

set output filename to FILE

-v,--version

version information

BUGS

This script was updated last in September 2000, and then successfully converted the
‘barsant.pmx’ example from the PMX distribution. Apparently no-one has ever bothered
to use pmx2ly, since pmx2ly can not parse recent PMX files.

7.6 Invoking musedata2ly

Musedata (http://www.musedata.org/) is an electronic library of classical music scores,
currently comprising about 800 composition dating from 1700 to 1825. The music is encoded
in so-called Musedata format. musedata2ly converts a set of musedata files to one .ly file,
and will include a \header field if a ‘.ref’ file is supplied. It is invoked as follows:

musedata2ly [option]... musedata-files

The following options are supported by musedata2ly:

-h,--help

print help

-o,--output=file

set output filename to file

-v,--version

version information

Chapter 7: Converting from other formats 153

-r,--ref=reffile

read background information from ref-file reffile

BUGS

musedata2ly converts only a small subset musedata.

7.7 Invoking mup2ly

MUP (Music Publisher) is a shareware music notation program by Arkkra Enterprises.
It is also the name of the input format. Mup2ly will convert part of a Mup file to a
ready-to-use LilyPond file. Mup2ly is invoked as follows:

mup2ly [option]... mup-file

The following options are supported by mup2ly:

-d,--debug

show what constructs are not converted, but skipped.

D, --define=name[=exp]

define macro name with opt expansion exp

-E,--pre-process

only run the pre-processor

-h,--help

print help

-o,--output=file

write output to file

-v,--version

version information

-w,--warranty

print warranty and copyright.

BUGS

Currently, only plain notes (pitches, durations), voices and staves are converted.

Chapter 8: Literature 154

8 Literature

If you need to know more about music notation, here are some interesting titles to read.
The source archive includes a more elaborate BibTeX bibliography of over 100 entries in
‘Documentation/bibliography/’. It is also available online from the lilypond website.

Banter 1987
Harald Banter, Akkord Lexikon. Schott’s Söhne 1987. Mainz, Germany ISBN
3-7957-2095-8

Comprehensive overview of commonly used chords. Suggests (and uses) a uni-
fication for all different kinds of chord names.

Ignatzek 1995
Klaus Ignatzek, Die Jazzmethode für Klavier. Schott’s Söhne 1995. Mainz,
Germany ISBN 3-7957-5140-3

A tutorial introduction to playing Jazz on the piano. One of the first chapters
contains an overview of chords in common use for Jazz music.

Gerou 1996
Tom Gerou and Linda Lusk, Essential Dictionary of Music Notation. Alfred
Publishing, Van Nuys CA ISBN 0-88284-768-6

A concise, alphabetically ordered list of typesetting and music (notation) issues
which covers most of the normal cases.

Hader 1948,
Karl Hader, Aus der Werkstatt eines Notenstechers. Waldheim–Eberle Verlag,
Vienna 1948.

Hader was the chief-engraver of the Waldheim-Eberle music publishers. This
beautiful booklet was intended as an introduction for laymen on the art of
engraving. It contains a step by step, in-depth explanation of how to cut and
stamp music into zinc plates. It also contains a few compactly formulated rules
on musical orthography. This book is out of print.

Read 1968
Gardner Read, Music Notation: a Manual of Modern Practice. Taplinger Pub-
lishing, New York (2nd edition).

A standard work on music notation.

Ross 1987,
Ted Ross, Teach yourself the art of music engraving and processing. Hansen
House, Miami, Florida 1987

This book is about music engraving, i.e. professional typesetting. It contains
directions on stamping, use of pens and notational conventions. The sections
on reproduction technicalities, and history are also interesting.

Stone 1980
Kurt Stone, Music Notation in the Twentieth Century Norton, New York 1980.

This book describes music notation for modern serious music, but starts out
with a thorough overview of existing traditional notation practices.

Chapter 8: Literature 155

Wanske 1988,
Helene Wanske, Musiknotation — Von der Syntax des Notenstichs zum EDV-
gesteuerten Notensatz. Schott-Verlag, Mainz 1988. ISBN 3-7957-2886-x

A book in two parts: 1. A very thorough overview of engraving practices of
various craftsmen. It includes detailed specs of characters, dimensions etc. 2.
a thorough overview of a anonymous (by now antiquated) automated system.
EDV means E(lektronischen) D(aten)v(erarbeitung), electronic data process-
ing.

Index 156

Index

’
’ . 46

(
(begin * * * *) . 62

(end * * * *) . 62

,
, . 46

.

. 48

/
/ . 92

/+ . 92

<

< . 130

>

> . 130

?
? . 46

[
[. 61

]
] . 61

\

\! . 30

\"! . 74

\< . 30, 74

\> . 74

\aeolian. 55

\alternative . 75

\arpeggio . 84

\bar . 57

\bold . 116

\chords . 132

\clef . 55

\cm . 133

\context . 124

\cr . 74

\decr . 74

\defaultAccidentals . 64

\dorian . 55

\duration . 47

\dynamic . 116

\dynamicDown . 75

\dynamicUp . 75

\f . 74

\ff . 74

\fff . 74

\ffff . 74

\fontsize . 117

\forgetAccidentals . 65

\fp . 74

\glissando . 73

\grace . 27, 71

\header . 23

\header in LaTEX documents 146

\hspace . 117

\huge . 116

\in . 133

\ionian . 55

\italic . 116

\key . 55

\large . 116

\locrian. 55

\lydian . 55

\lyrics . 16, 132

\magnify . 117

\major . 55

\mark . 95

\mf . 74

\minor . 55

\mixolydian . 55

\mm . 133

\modernAccidentals . 64

\modernCautionaries . 65

\modernVoiceAccidentals 65

\modernVoiceCautionaries 65

\mp . 74

\musicglyph . 116

\noResetKey . 65

\notes . 52, 132

\number . 116

\once . 113

\outputproperty . 113

\override . 117

\p . 74

\partial . 19, 57

\phrygian . 55

\pianoAccidentals . 65

\pianoCautionaries . 65

Index 157

\pitch . 45

\pp . 74

\ppp . 74

\property . 21

\property . 126

\pt . 133

\raise . 116

\rc . 74

\rced . 74

\relative . 51

\repeat . 75

\rfz . 74

\sequential . 130

\sf . 74

\sff . 74

\sfz . 74

\simultaneous . 20, 130

\small . 116

\sp . 74

\spp . 74

\sub . 116

\super . 116

\teeny . 116

\tempo . 68

\time . 56

\times . 50

\tiny . 116

\translate . 117

\translator . 28

\transpose . 97

\unset . 126

\voiceAccidentals . 64

|

| . 52, 57

~

~ . 29, 48

A
A2_engraver . 100

ABC. 151

accent . 69

accessing Scheme . 133

Accidentals . 63

additions, in chords . 91

adjusting output . 5

Adjusting slurs . 67

adjusting staff symbol . 55

ambiguities . 132

ambitus . 86

Ambitus engraver . 86

anacrusis . 19, 57

Arkkra . 153

arpeggio . 27

Arpeggio . 84

articulations . 69

Articulations . 69

ASCII-art output . 136

assignments . 23

Assignments . 131

aug . 92

auto-knee-gap . 62

autobeam . 63

autoBeamSettings . 62

automatic beam generation 63

automatic beaming, turning off 19

Automatic beams . 61

automatic beams, tuning . 62

automatic part combining . 99

Automatic staff changes . 82

B
balance . 3

bar check . 52

Bar check . 52

Bar lines . 57

bar numbers . 96

Bar line engraver . 59

barCheckSynchronize . 52

BarLine . 58

barlines, putting symbols on 96

BarNumber . 96

BarNumber . 97

base-shortest-duration 120

BassFigure . 109

Basso continuo . 108

Batch . 2

Beam . 61

Beam . 77

beams, kneed . 62

beams, manual . 61

beats per minute . 68

between staves, distance . 118

bitmap . 139

blackness . 3

brackets . 69

breaking lines . 121

breaking pages . 121

BreathingSign . 68

broken arpeggio . 84

bugreport . 5

bugs . 137

Index 158

C
cautionary accidental . 46

CCARH . 152

ChoirStaff . 124

chord entry. 90

chord mode . 90

chord modifier . 19

chord names . 92

ChordNames . 92

chords . 19, 92

Chords . 90

Chords mode . 90

Clef . 56

cluster . 109

clusters . 92

coda . 69, 96

Coda Technology . 151

command line options . 136

common-shortest-duration 120

concatenate . 133

condensing rests . 99

context . 20

context definition . 122, 127

context selection . 124

context variables . 21

craftsmanship . 3

crescendo . 30, 74

cross staff . 85

cross staff stem . 82

cross staff voice . 29

cross staff voice, manual . 28

cue notes. 114

Current . 126

currentBarNumber . 96

Custodes . 105

Custos . 105

D
decrescendo . 74

defaultBarType . 59

Denemo . 51

dim . 92

dimensions . 133

diminuendo . 74

direction, of dynamics . 75

distance between staves . 118

documents, adding music to 142

DoublePercentRepeat . 78

downbow . 69

drums . 78

duration . 47

DVI driver . 9

DVI file . 8

dvilj . 9

dvips . 9

DynamicLineSpanner 33, 74, 75

dynamics. 30

Dynamics . 74

DynamicText . 74

E
easy notation . 50

editor . 53

emacs . 53

Emacs . 53

emacs mode . 53

encoding music . 2

engraver . 123, 127

Engraver_group_engraver 128

engraving . 2

enigma . 151

entering notes . 45

ETF . 151

evaluating Scheme . 133

expanding repeats . 76

extending lilypond . 5

extra-offset . 32, 113

F
FDL, GNU Free Documentation License 162

fermata . 69

fermata on multi-measure rest 98

fermatas . 96

FiguredBass . 109

file searching . 136

Finale . 151

finding graphical objects . 31

finger change . 70

fingering . 70

Fingering . 70

fingering instructions . 30

flageolet . 69

follow voice . 85

followVoice . 85

font . 3

font magnification . 115

font selection . 115

font size . 114

font size, setting . 120

font size, texts . 116

font style, for texts . 116

font switching . 115

font-interface . 115

font-style . 115

foot marks . 69

footer . 140

forte . 30

four bar music. 121

free software . 2

Index 159

G
ghostscript . 51, 137

Ghostscript. 9

Glissando . 73

glyph size . 114

grace notes . 27, 71

grace slash . 72

grammar . 132

GrandStaff . 65

graphical interface . 51

graphical object descriptions 31

grob properties . 32

GS FONTPATH . 137

GS LIB . 137

GUI . 2, 51

GUILE . 133

GVim . 53

H
Hairpin . 74

Hal Leonard . 50

hara kiri . 62

header . 140

Horizontal bracket engraver 69

HorizontalBracket . 69

html . 142

HTML, music in . 41

hufnagel . 101

I
identifier assignment . 19, 23

Identifiers . 129

idiom . 5

indent . 121

index . 5

input format . 4

input mode . 132

installing LilyPond . 137

instrument names . 122

internal documentation . 5, 31

interpretation context . 20

interpreting music . 123

interscoreline . 121

interscorelinefill . 121

invisible objects . 33

Invisible rest . 47

Invoking LilyPond . 136

K
KDE . 53

KDVI . 53

kerning . 118

Key . 55

keySignature . 55

KeySignature . 55

kneed beams . 62

L
LANG . 137

larger . 116

lastpagefill . 121

latex . 142

LaTEX, music in . 41

Lexical modes . 132

LigatureBracket . 107

Ligatures. 106

Lily was here . 23

lilypond-book and titling . 146

lilypond-internals . 5

lilypond-mode for emacs . 53

LILYPONDPREFIX . 137

line breaks . 121

line-colomn-location . 54

line-location . 53

linewidth . 121

LISP . 133

loudness . 30

lowering text . 116

lpr . 9

ly2dvi . 8, 144

lyric mode . 16

lyrics . 16, 19, 63

M
m . 92

magnification . 115

maj . 92

manual beaming . 19

manual staff switches . 83

marcato . 69

mark . 95

markup . 115

markup text . 115

master . 3

measure lines . 57

measure numbers . 96

measure repeats . 78

measure, partial . 57

Measure grouping engraver 56

MeasureGrouping . 56

Medicaea, Editio. 101

mensural . 101

Mensural ligatures . 107

MensuralLigature . 107

meter . 56

metronome mark . 117

metronome marking . 68

MIDI . 51, 136, 149

MIDI block . 122

midi2ly . 51

mode, chords . 19

Index 160

mode, input . 132

modifier, chord . 19

modifiers, in chords. 92

mordent . 69

moving text . 116

Multi measure rests . 98

MultiMeasureRest . 99

MultiMeasureRestNumber . 99

MUP . 153

Musedata . 152

Music entry . 51

music expressions. 4, 129

music properties . 32

Music Publisher . 153

music representation . 4

musical symbols . 3

musicological analysis . 69

MusiXTeX . 152

N
named modifier . 20

NEdit . 53, 54

neutral-direction . 62

Non-guitar tablatures . 88

NonMusicalPaperColumn 121

notation context . 20

Note entry . 45

note grouping bracket . 69

note names, Dutch . 45

Note specification . 45

NoteCollision . 60

NoteColumn . 60

NoteEdit . 51

NoteSpacing . 120

O
object description . 111

open . 69

optical spacing . 3

options, command line . 136

organ pedal marks . 69

ornaments . 27, 69, 71

Ornaments . 69

output format, setting . 136

overview of manual . 5

P
padding . 97

page breaks . 121

page layout . 121, 140

page size . 121

paper file . 120

paper size . 121

paper types, engravers, and pre-defined translators

. 129

papersize . 121

parenthesized accidental . 46

part combiner . 99

Partial . 57

partial measure . 57

PDF . 9, 139

PDFTeX output . 136

Pedals . 83

percent repeats . 78

PercentRepeat . 78

percussion . 78

Petrucci. 101

phrasing . 21

phrasing brackets . 69

phrasing marks . 67

phrasing slurs . 67

PhrasingSlur . 68

PianoStaff . 65, 82, 119

picture . 139

Pitch names . 45

pitches . 45

pixmap . 139

PMX . 152

poind and click . 53

polyphony . 59

portato . 69

PostScript . 9, 137

PostScript output . 136

prall . 69

prall, down . 69

prall, up . 69

prallmordent . 69

prallprall . 69

prebreaking . 123

preprocessing . 124

preview . 139

preview image . 144

printing chord names . 92

Printing output . 9

printing postscript . 137

properties . 5

properties, unsetting . 126

property types . 32

‘property-init.ly’ . 63

R
r . 48

R . 98

raising text . 116

real numbers . 133

regular line breaks . 121

regular rhythms . 3

regular spacing . 3

Rehearsal marks . 95

RehearsalMark . 95

Relative . 51

relative mode and transposing 28

Index 161

relative octave specification 51

reminder accidental . 46

removals, in chords . 91

removing objects . 33

repeat bars . 57

repeatCommands . 59

repeatCommands . 76

repeats. 75

RepeatSlash . 78

reporting bugs . 137

Rest . 46

RestCollision . 60

Rests . 46

reverseturn . 69

reverting object properties . 32

root of chord . 91

RoseGarden . 51

S
s . 48

Scalable fonts . 139

Scheme . 5, 133

Scheme dump . 136

Scheme, in-line code . 133

Score 51, 56, 66, 95, 118, 124, 126

Score_engraver . 128

screenshot . 139

Script . 70

script on multi-measure rest 98

scripts . 69, 70

search path . 136

searchin manual . 5

segno . 69, 96

sequencer . 51

sequential music . 130

Sequential music . 130

setting context variables . 21

setting object properties . 32

sharing software . 2

shorten measures . 57

signature line . 23

Simons, Don . 152

Simultaneous music . 130

size . 114

Sketch output . 136

Skip . 47

skipTypesetting . 53

slash . 72

Slur . 31

Slur . 67

slur attachments . 30

Slurs . 67

smaller. 116

snippets . 5

Sound . 122

Space note . 47

spacing . 120

SpacingSpanner . 119, 120

staccatissimo . 69

staccato . 69

Staff 55, 58, 65, 66, 69, 100, 106, 114, 124, 128

staff distance . 118

staff lines, setting number of 55

Staff notation . 54

staff size, setting . 120

staff switch . 29

staff switch, manual . 28, 83

staff switching . 85

Staff.instrument . 122

Staff.midiInstrument. 122

StaffGroup . 58, 97, 124

staffs per page . 118

StaffSymbol . 55

StaffSymbol, using \property 55

Stem . 72, 111

stem, cross staff . 82

stem-spacing-correction 120

stemBoth . 28

stemLeftBeamCount . 61

stemRightBeamCount . 61

StemTremolo . 77

stopped . 69

string . 133

subdivideBeams . 62

subscript . 70

superscript . 70

sus . 92

SustainPedal . 83

switches. 136

syllables, entering . 19

symbol size . 114

Syntactic details . 129

syntax coloring . 53

T
Tablature in addition to normal staff 89

Tablatures basic . 88

TabStaff . 88, 89

TabVoice . 88

tag line . 23

Tempo . 68

tenuto . 69

texi . 142

texinfo . 142

Texinfo, music in . 41

TEXMF . 137

text markup . 115

text on multi-measure rest . 98

Text scripts . 70

Text spanners . 68

textheight . 121

TextScript . 71

TextSpanner . 68

Thread . 66, 114, 126

Index 162

Thread_devnull_engraver 100

thumb marking . 69

thumbnail . 139, 144

tie . 29

Tie . 48, 49

ties . 48

Time signature . 56

TimeSignature . 56

titles. 140

titling and lilypond-book . 146

titling in THML . 144

tonic . 19

translating text . 116

translator definition . 127

translator properties . 32

transparent objects . 33

Transpose . 97

transposing. 28

transposing . 101

transposition of pitches . 97

tremolo beams . 77

tremolo marks . 77

tremoloFlags . 77

trill . 28, 69

triplets . 28, 50

tuning automatic beaming . 62

tuning graphical objects . 30

tuplet . 28

tuplet formatting . 50

TupletBracket . 50

tupletNumberFormatFunction 50

tuplets . 50

turn . 69

tutorial . 5

typeset text . 115

typography . 2

U
undoing object properties . 32

unfolded \repeat . 28

UNIX . 2

upbeat . 57

upbow . 69

using the manual . 5

V
variables . 5

Vaticana, Editio . 101

vertical spacing . 118, 121

VerticalAlignment . 118, 119

Viewing music . 8

Vim . 53

Voice 31, 59, 66, 67, 68, 71, 86, 107, 114, 124,

126, 128

Voice.autoBeaming . 63

Voice_engraver . 100

VoiceFollower . 85

VoltaBracket . 77

W
whichBar . 59

White mensural ligatures . 107

whole rests for a full measure 99

X
xdvi . 8

Xdvi . 51, 53

XEDITOR . 54

XEmacs . 53

xml2ly . 51

Appendix A: Refman appendix 163

Appendix A Refman appendix

A.1 Lyrics mode definition

The definition of lyrics mode is ludicrous, and this will remain so until the authors of
LilyPond acquire a deeper understanding of character encoding, or someone else steps up
to fix this.

A word in Lyrics mode begins with: an alphabetic character, _, ?, !, :, ’, the control
characters ^A through ^F, ^Q through ^W, ^Y, ^^, any 8-bit character with ASCII code over
127, or a two-character combination of a backslash followed by one of ‘, ’, ", or ^.

Subsequent characters of a word can be any character that is not a digit and not white
space. One important consequence of this is that a word can end with ‘}’, which may be
confusing. However, LilyPond will issue a warning. Any _ character which appears in an
unquoted word is converted to a space. This provides a mechanism for introducing spaces
into words without using quotes. Quoted words can also be used in Lyrics mode to specify
words that cannot be written with the above rules.

A.2 American Chords

[TODO]

A.3 Jazz chords�� �� ��� o
C� ��� +C� ��� mC���� � C

�
55
� �� ���� 5

0
/M

mC�� � ���� o7
C���� M

C�� ���� 7
mC� ���� 7

C

�
1010
� �� � ���� /o

C� ���� 5
Ç

/M
C� ���� M

mC�� ���� 5
Ç

/7
C

�
1414
� �� ����� 9

mC� ����� 9
C� ���� 6

mC���� 6
C

Appendix A: Refman appendix 164�
1818
� �� ����� 9

0
/7

C�� � ����� 9/5
0

/7
mC�� ������ 11

mC�� ������� 13
mC

�
2222
� � ������� 13

C�� ������ 11
Ç

/7
C� ������ 11

C�� ����� 9
Ç

/7
C

�
2626
� �� ������� 13

0
/7

C�� � ������ 11
Ç

/9
Ç

/7
C�� � ����� 9

Ç
/5

Ç
/7

C�� � ������� 13
0

/11
Ç

/7
C

�
3030
� �� ������� 13

0
/7

C����� 9/M
C�� ������ 11

Ç
/7

C�� � ������� 13
0

/9
0

/7
C

�
3434
� ������� 13/M

C����� 9/M
C�� ������� 13/9

0
/7

C�� � ������� 13
0

/9
0

/7
C

�
3838
� � � ��� 4sus/7C��� 4susC�� ������� 13/9

0
/7C� ������ 11

Ç
/MC

�
4242
� � ���� 11addmC���� 9addC� �� ��� 4sus/9C

A.4 MIDI instruments

"acoustic grand" "contrabass" "lead 7 (fifths)"

"bright acoustic" "tremolo strings" "lead 8 (bass+lead)"

"electric grand" "pizzicato strings" "pad 1 (new age)"

"honky-tonk" "orchestral strings" "pad 2 (warm)"

"electric piano 1" "timpani" "pad 3 (polysynth)"

Appendix A: Refman appendix 165

"electric piano 2" "string ensemble 1" "pad 4 (choir)"

"harpsichord" "string ensemble 2" "pad 5 (bowed)"

"clav" "synthstrings 1" "pad 6 (metallic)"

"celesta" "synthstrings 2" "pad 7 (halo)"

"glockenspiel" "choir aahs" "pad 8 (sweep)"

"music box" "voice oohs" "fx 1 (rain)"

"vibraphone" "synth voice" "fx 2 (soundtrack)"

"marimba" "orchestra hit" "fx 3 (crystal)"

"xylophone" "trumpet" "fx 4 (atmosphere)"

"tubular bells" "trombone" "fx 5 (brightness)"

"dulcimer" "tuba" "fx 6 (goblins)"

"drawbar organ" "muted trumpet" "fx 7 (echoes)"

"percussive organ" "french horn" "fx 8 (sci-fi)"

"rock organ" "brass section" "sitar"

"church organ" "synthbrass 1" "banjo"

"reed organ" "synthbrass 2" "shamisen"

"accordion" "soprano sax" "koto"

"harmonica" "alto sax" "kalimba"

"concertina" "tenor sax" "bagpipe"

"acoustic guitar (nylon)" "baritone sax" "fiddle"

"acoustic guitar (steel)" "oboe" "shanai"

"electric guitar (jazz)" "english horn" "tinkle bell"

"electric guitar (clean)" "bassoon" "agogo"

"electric guitar (muted)" "clarinet" "steel drums"

"overdriven guitar" "piccolo" "woodblock"

"distorted guitar" "flute" "taiko drum"

"guitar harmonics" "recorder" "melodic tom"

"acoustic bass" "pan flute" "synth drum"

"electric bass (finger)" "blown bottle" "reverse cymbal"

"electric bass (pick)" "skakuhachi" "guitar fret noise"

"fretless bass" "whistle" "breath noise"

"slap bass 1" "ocarina" "seashore"

"slap bass 2" "lead 1 (square)" "bird tweet"

"synth bass 1" "lead 2 (sawtooth)" "telephone ring"

"synth bass 2" "lead 3 (calliope)" "helicopter"

"violin" "lead 4 (chiff)" "applause"

"viola" "lead 5 (charang)" "gunshot"

"cello" "lead 6 (voice)"

A.5 The Feta font

The following symbols are available in the Feta font and may be accessed directly using
text markup such as g^\markup { \musicglyph #"scripts-segno" }, see Section 3.18.4
[Text markup], page 115.

rests-2
�

rests–1

H
rests–2
R

rests–3
È

rests-1oPrests-0oQrests-1�rests-0M

Appendix A: Refman appendix 166

rests-5
O

rests-4

�
rests-3�rests-2classicalÉ

rests–2neo mensural
Ê

rests–3neo mensural
Ërests-7

Ì
rests-6

N
rests-2neo mensuralÍrests-1neo mensuralÎrests-0neo mensuralÏrests–1neo mensural

Ð
accidentals-0
�

accidentals-1
�

rests-4neo mensuralÑrests-3neo mensuralÒ
accidentals-rightparen

K
accidentals-2
accidentals–2

�
accidentals–1

�
noteheads-0�noteheads–1Udots-dot

�
accidentals-leftparen
L

noteheads-1diamondÓnoteheads-0diamondÔnoteheads-2

�
noteheads-1

noteheads-2triangle�noteheads-1triangleÕnoteheads-0triangleÖ
noteheads-2diamond� noteheads-0cross×noteheads-2slashØnoteheads-1slashÙnoteheads-0slashÚ

noteheads-ledgerendingÛnoteheads-2xcircle
�

noteheads-2cross�noteheads-1crossÜ
scripts-sforzato scripts-thumb

x
scripts-dfermataÝ

scripts-ufermata
b

scripts-tenuto

!
scripts-dstaccatissimoÞscripts-ustaccatissimo

_
scripts-staccato

"
scripts-dmarcato

a
scripts-umarcato

^
scripts-dportatoßscripts-uportato

]
scripts-downbow

i
scripts-upbow

j
scripts-stopped

`
scripts-open

c
scripts-upedalheel

h
scripts-trill

2
scripts-turndscripts-reverseturnp

scripts-flageolet

q
scripts-dpedaltoe

e
scripts-upedaltoe

f
scripts-dpedalheel

g
scripts-lcommaàscripts-rcomma

\
scripts-coda

v
scripts-segno

w
scripts-arpeggio-arrow-1

�
scripts-arpeggio-arrow–1

�
scripts-trill-elementáscripts-arpeggio

6
scripts-prallprallmscripts-mordentnscripts-pralloscripts-trilelementâ
scripts-upmordenttscripts-downpralluscripts-upprallkscripts-prallmordentl
scripts-prallupzscripts-pralldownrscripts-lineprall

y
scripts-downmordents

flags-dgrace
ãflags-ugraceäflags-d3

�flags-u6å
flags-u5�flags-u4	flags-u3(

scripts-caesura
æ

clefs-F
�

clefs-C change

�
clefs-C

çflags-dstemè
flags-stem

é
flags-d6

S
flags-d5

T
flags-d4

�
clefs-percussion�clefs-G change

8
clefs-G

�
clefs-F change�

timesig-C4/4
�clefs-tab change

ê
clefs-tab

�
clefs-percussion changeë

pedal-Ped
�

pedal-e
ì

pedal-d
í

pedal-P
î

pedal-.�pedal–ïpedal-*
ð

timesig-C2/2
1

accordion-accStdbase

ñ
accordion-accFreebase

ò
accordion-accDotóaccordion-accDiscant

ô
accordion-accOldEE

õ
accordion-accBB

ö
accordion-accSB

÷
accordion-accBayanbase

ø

Appendix A: Refman appendix 167

solfa-2doùsolfa-1doúsolfa-0doû
accordion-accOldEES

ü
solfa-1fauýsolfa-0faþsolfa-2meÿsolfa-1me�solfa-0me�solfa-2ro�solfa-1re�solfa-0re�

solfa-2te�solfa-1te�solfa-0te�solfa-2la�solfa-1la	solfa-0la
solfa-2fad�solfa-1fad�solfa-2fau

Appendix B: GNU Free Documentation License 168

Appendix B GNU Free Documentation License

Version 1.1, March 2000

Copyright c© 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document
free in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for
their work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License. The
“Document”, below, refers to any such manual or work. Any member of the public is
a licensee, and is addressed as “you”.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (For example, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License.

Appendix B: GNU Free Documentation License 169

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, whose contents can
be viewed and edited directly and straightforwardly with generic text editors or (for
images composed of pixels) generic paint programs or (for drawings) some widely avail-
able drawing editor, and that is suitable for input to text formatters or for automatic
translation to a variety of formats suitable for input to text formatters. A copy made
in an otherwise Transparent file format whose markup has been designed to thwart or
discourage subsequent modification by readers is not Transparent. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, sgml or xml using a
publicly available dtd, and standard-conforming simple html designed for human
modification. Opaque formats include PostScript, pdf, proprietary formats that can
be read and edited only by proprietary word processors, sgml or xml for which the
dtd and/or processing tools are not generally available, and the machine-generated
html produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the copies in covers
that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front
cover, and Back-Cover Texts on the back cover. Both covers must also clearly and
legibly identify you as the publisher of these copies. The front cover must present the
full title with all words of the title equally prominent and visible. You may add other
material on the covers in addition. Copying with changes limited to the covers, as long
as they preserve the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

Appendix B: GNU Free Documentation License 170

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a publicly-accessible computer-network
location containing a complete Transparent copy of the Document, free of added ma-
terial, which the general network-using public has access to download anonymously at
no charge using public-standard network protocols. If you use the latter option, you
must take reasonably prudent steps, when you begin distribution of Opaque copies
in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has less
than five).

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section entitled “History”, and its title, and add to it an item stating
at least the title, year, new authors, and publisher of the Modified Version as
given on the Title Page. If there is no section entitled “History” in the Document,
create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in
the previous sentence.

Appendix B: GNU Free Documentation License 171

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. In any section entitled “Acknowledgments” or “Dedications”, preserve the sec-
tion’s title, and preserve in the section all the substance and tone of each of the
contributor acknowledgments and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section as “Endorsements” or to conflict in title with
any Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant

Appendix B: GNU Free Documentation License 172

Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections entitled “History” in the various
original documents, forming one section entitled “History”; likewise combine any sec-
tions entitled “Acknowledgments”, and any sections entitled “Dedications”. You must
delete all sections entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, does not
as a whole count as a Modified Version of the Document, provided no compilation
copyright is claimed for the compilation. Such a compilation is called an “aggregate”,
and this License does not apply to the other self-contained works thus compiled with
the Document, on account of their being thus compiled, if they are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one quarter of the entire aggregate, the Document’s
Cover Texts may be placed on covers that surround only the Document within the
aggregate. Otherwise they must appear on covers around the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License provided that
you also include the original English version of this License. In case of a disagreement
between the translation and the original English version of this License, the original
English version will prevail.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this

Appendix B: GNU Free Documentation License 173

License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

Appendix B: GNU Free Documentation License 174

B.0.1 ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.1

or any later version published by the Free Software Foundation;

with the Invariant Sections being list their titles, with the

Front-Cover Texts being list, and with the Back-Cover Texts being list.

A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have no Invariant Sections, write “with no Invariant Sections” instead of saying
which ones are invariant. If you have no Front-Cover Texts, write “no Front-Cover Texts”
instead of “Front-Cover Texts being list”; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

