next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Binomials :: randomBinomialIdeal

randomBinomialIdeal -- Random Binomial Ideals

Synopsis

Description

The exponents are drawn at random from {-d,...,d}. All coefficients are set to 1.
i1 : R = QQ[a..x]

o1 = R

o1 : PolynomialRing
i2 : randomBinomialIdeal (R,6,2,4,true)

             2       2   2          2 2      2   2       2   2   2     
o2 = ideal (j l - k*r , h j - p*t, q x  - b*k , f j*s - c , a f*x  - n,
     ------------------------------------------------------------------------
      2   2       2   2    2
     j k*w  - i, f g*l  - i )

o2 : Ideal of R
i3 : randomBinomialIdeal (R,3,4,10,false)

             3 4 2   2 3    2 4 3 2     4 4 3   2    2 4 3 3   4 4 2 3 3 3  
o3 = ideal (c e f k*q x  - a h o r , c*f k q r*w  - a s t x , b k n p q v  -
     ------------------------------------------------------------------------
      3 2 2    3 3 4 3 4 3 3    2 3
     a g l o, a b j m n q r  - d w x)

o3 : Ideal of R
This function is mostly for internal testing purposes. Don't expect anything from it.

Caveat

Minimal generators are produced. These can be less than n and of higher degree. They also need not be homogeneous