
Scmbug manual

RELEASE_0-26-22

The Scmbug Team

Scmbug manual: RELEASE_0-26-22
by The Scmbug Team

Published 2011-04-18

This is the documentation of Scmbug, a system that integrates software configuration management with
bug-tracking.

Table of Contents
1. About..1

1.1. Copyright Information...1
1.2. Disclaimer..1
1.3. Acknowledgments..1
1.4. Document Conventions..1

2. Introduction ...3

2.1. What Is It?..3
2.2. Why Use An SCM System?...3
2.3. Why Use A Bug-tracking System?..3
2.4. Why Integrate SCM With Bug-tracking?...3

3. Design...4

3.1. Goals..4
3.2. System Architecture...4
3.3. Related Systems...4

3.3.1. Bugzilla Email Gateway..5
3.3.2. CVSZilla..5
3.3.3. Other Integration Systems...6

4. Features..7

4.1. Integration Actions...7
4.2. Integration Of SCM Log Messages..7
4.3. Integration Of SCM Labeling Operations..7
4.4. Verification Checks..8

4.4.1. Enabled Integration..8
4.4.2. Supported SCM version..8
4.4.3. Use Of A Log Message Template..9
4.4.4. Presence Of Distinct Bug Ids..10
4.4.5. Valid Log Message Size..10
4.4.6. Convention-based Labeling...10
4.4.7. Presence Of Bug Ids..11
4.4.8. Valid SCM To Bug-tracking Username Mapping...12
4.4.9. Valid Product Name...14
4.4.10. Valid Bug Owner...17
4.4.11. Anonymous SCM Username...17
4.4.12. Open Bug State..17

4.5. Additional Features..18
4.5.1. Mail Notification...18
4.5.2. Bug Resolution..19
4.5.3. Autolinkification..22

5. SCM Frontends...23

5.1. CVS..23
5.2. Git...24
5.3. Subversion..24
5.4. Other SCM Systems...25

iii

6. Bug-tracking Backends..27

6.1. Bugzilla..27
6.2. Mantis...28
6.3. Request Tracker..29
6.4. Test Director...30
6.5. Other Bug-tracking Systems..31

7. Integration Tools...33

7.1. Glue Installer..33
7.1.1. CVS...34
7.1.2. Subversion...36
7.1.3. Git..37

7.2. Version Description Document Generator...37
7.3. Merger..38
7.4. Web Reports...38

8. Resources...40

8.1. Availability...40
8.2. Installation..40

8.2.1. System...40
8.2.2. Documentation..42
8.2.3. Common libraries..42
8.2.4. Integration Tools..42
8.2.5. Integration Daemon...44

8.3. Upgrading...46
8.3.1. Issues...46
8.3.2. Steps..47

A. FAQ..49

B. GNU Free Documentation License...50

0. Preamble..50
1. Applicability and Definition..50
2. Verbatim Copying...51
3. Copying in Quantity..51
4. Modifications..52
5. Combining Documents...53
6. Collections of Documents...54
7. Aggregation with Independent Works...54
8. Translation...54
9. Termination...55
10. Future Revisions of this License...55
How to use this License for your documents..55

Glossary...57

iv

List of Figures
3-1. System architecture...4
4-1. Example of Integrated Log Message...7
4-2. Example applying a label in Subversion...8
4-3. Glue enabling variable...8
4-4. Paths to the SCM tool’s binaries...9
4-5. Regular expressions describing the bug id, the split ofbug ids and the log message body..........9
4-6. Example log message accepted...10
4-7. Minimum log message size policy..10
4-8. Label naming convention policy..10
4-9. Presence of bug ids policy...12
4-10. SCM to bug-tracking username mapping based onmapping_ldap ..12
4-11. SCM to bug-tracking username mapping based onmapping_regexes13
4-12. SCM to bug-tracking username mapping based onmapping_values13
4-13. Disabling SCM to bug-tracking username mappings..14
4-14. Disabling case sensitive SCM to bug-tracking username verification......................................14
4-15. Valid product name policy...14
4-16. Manually defined product name..15
4-17. Automatically defined product name..15
4-18. Repository structure with product names that can be automatically defined............................16
4-19. Automatically mapped product names from Figure 4-18...16
4-20. Valid bug owner policy..17
4-21. Anonymous SCM username policy...17
4-22. Open bug state policy..17
4-23. Mail notification policy..18
4-24. Regular expressions describing the bug id, the split of bug ids and the resolution status.........19
4-25. Regular expressions defining a resolution status character conversion.....................................21
4-26. Example log message that changes the resolution status of multiple bugs...............................21
4-27. Case sensitive resolution verification variable..22
4-28. Valid product name policy in reference to bug resolution...22
4-29. Valid bug owner policy in reference to bug resolution..22
5-1. A complex filename accepted by the CVS glue..23
6-1. Bug-tracker installation directory for Bugzilla...27
6-2. Bug-tracker installed locally variable..27
6-3. Database vendor variable..28
6-4. Bug-tracker installation directory for Request Tracker...29
6-5. Example daemon configuration settings for Test Director. ...30
7-1. Glue Installation in a Subversion repository under UNIX. ...33
7-2. Glue Installation in a CVSNT repository under Windows..33
7-3. Example invalidName/Root for CVSNT...35
7-4. Example validName/Root for CVSNT..35
7-5. CVSNT warning whenNameis set toRoot ..35
7-6. Configuration option that consolidates CVS messages...35
7-7. Defining the Subversion labeling directories..36
7-8. Defining the Subversion main trunk directories..36
7-9. Generating a Version Description Document..37
7-10. Merging bug changes in a codebase based on an existing tag...38
7-11. Merging bug changes directly in an existing branch...38
8-1. Developer access to project’s CVS repository...40
8-2. Forcing installation of RPM packages..40
8-3. Forcing installation of Debian packages...41

v

8-4. Installation of the system from source..41
8-5. Integration daemon start..41
8-6. XML::Simple installation..42
8-7. XML::Simple installation..43
8-8. Apache configuration for Web Reports...43
8-9. Template installation...43
8-10. Mail::Sendmail, XML::Simple installation...44
8-11. DBI installation...45
8-12. DBD::mysql installation..46

vi

Chapter 1. About

1.1. Copyright Information

This document is copyright (C) 2004 by the various Scmbug contributors who wrote it. It is licensed
under the GNU Free Documentation License.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.1 or any later version published by theFree Software Foundation; with
no Invariant Sections, no Front-Cover Texts, and with no Back-CoverTexts. A copy of the license is
included inAppendix B.

Scmbug is free software, licensed under the GNU General Public License.

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write
to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

1.2. Disclaimer

No liability for the contents of this document can be accepted. Follow the instructions herein at your
own risk.

1.3. Acknowledgments

The excellentBugzilla Guide(http://www.bugzilla.org/docs/tip/html) served as an example in
preparation of this document. Content and structural document elements were reused from this
guide. TheLDP Author Guide(http://www.tldp.org/LDP/LDP-Author-Guide/html/index.html) also
served as a good example.

Development of this system benefited from invaluable insight on SCM and bug-tracking issues,
along with feedback, from John C. Quillan, Mark S. Reibert, Dave Swegen, the Bugzilla developers,
and the Subversion developers.

1

Chapter 1. About

1.4. Document Conventions

This document uses the following conventions:

Descriptions Appearance

Warning

Caution
Don’t run with scissors!

Hint Tip: Would you like a breath mint?

Note Note: Dear John...

Information requiring special attention

Warning
Read this or the cat gets it.

File or directory name filename

Command to be typed command

Application name application

Normal user’s prompt under bash shell bash$

Root user’s prompt under bash shell bash#

Environment variables VARIABLE

Term found in the glossary cvs2cl

Code example <para>

Beginning and end of paragraph

</para>

This documentation is maintained in DocBook 4.2 SGML format.

2

Chapter 2. Introduction

2.1. What Is It?

Scmbug is a system that integrates software configuration management with bug-tracking. It is
implemented in Perl and has been successfully deployed on UNIX-like and Windows systems. It is
pronouncedSkamm-bag.

2.2. Why Use An SCM System?

Those who do not use a software configuration management (SCM) system do not maintain a history
of modifications performed to their software. When bugs creepin their software, they do not have
adequate information on how changes to source code came about.

SCM systems, or even simple source code version control systems, make sure that a record of all
changes and enhancements to the software is maintained. They provide a method of creating,
storing, and labeling software changes.

2.3. Why Use A Bug-tracking System?

Those who do not use a bug-tracking system tend to rely on shared lists, email, spreadsheets and/or
Post-It notes to monitor the status of defects. This procedure is usually error-prone and tends to
cause those bugs judged least significant by developers to bedropped or ignored.

Integrated defect-tracking systems make sure that nothinggets swept under the carpet; they provide
a method of creating, storing, arranging and processing defect reports and enhancement requests.

2.4. Why Integrate SCM With Bug-tracking?

SCM systems maintain software changes. Bug-tracking systems maintain lists of software
enhancements and defects. By examining a log of software changes, it is uncertainwhy the changes
occurred. By examining a log of defect reports, it is uncertain whatchanged in software in response
to the defects.

Integration of SCM with bug-tracking ties the reasonwhya feature/defect was developed/fixed with
whatsoftware changes occurred in the SCM system to accomplish this.

3

Chapter 3. Design

3.1. Goals

The goals of Scmbug are:

• To solve the integration problem once and for all.
• Provide synchronous verification checks of SCM actions against the bug-tracking system.
• Provide a flexible architecture that can be deployed across the public Internet with reasonable

security. Permit integrating repositories hosted by multiple SCM systems in separate networks,
against a single, publicly accessible bug-tracking system, for use with multiple mobile developers.

• Define an SCM to bug-tracking integration interface and mechanism that will permit integration
of any SCM system with any bug-tracking system.

• Integrate most popular free SCM systems, such as CVS, Subversion, and Git.
• Integrate most popular free bug-tracking systems, such as Bugzilla and Mantis.

3.2. System Architecture

Scmbug is developed as a client/server solution. As shown inFigure 3-1, it consists of a set of SCM
system hooks that capture standard SCM events, a generic mechanism of handling these events on
the machine hosting an SCM repository, a server daemon onto which integration requests
corresponding to these events are transported, a generic mechanism of handling these requests, and
functionality that can process these requests per bug-tracking system.

Figure 3-1. System architecture.

Integration
DaemonGlue

Tracker API
native Request

OLE package
Test Director

Mantis

Perl
Mantis API

Bugzilla

Bugzilla API:
globals.pl
CGI.pm

commit−msg
hook

CVS

loginfo,
verifymsg,
taginfo hooks

Subversion

pre−commit,
post−commit
hooks

Git

Test Director

Request Tracker
TCP
port 3872

activity.pl

Scmbug

When various SCM events occur, such as committing software changes or labeling a repository, they
are captured using hooks installed by Scmbug. Before the event’s activity is allowed to proceed,
various verification checks are performed as described inSection 4.4. These checks are synchronous;
when an error is detected, the event’s activity is stopped.

4

Chapter 3. Design

3.3. Related Systems

Scmbug is not original work. Most of the integration features separating it from related systems were
first conceived and implemented by John C. Quillan for CVS andBugzilla. The distinguishing
features of his work are the synchronous nature of the verification checks, and aVDD Generatortool
similar to the one described inSection 7.2. His work was never publicly released. Scmbug attempts
to continue a redesigned, clean-room implementation of that work, supporting a wider variety of
SCM and bug-tracking systems.

Other systems that integrate SCM with bug-tracking are described below. Along with Quillan’s
work, these solutions are unsuitable for certain development environments.

3.3.1. Bugzilla Email Gateway

SCM systems can integrate their actions with Bugzilla usingthe Bugzilla email gateway. Hook
scripts installed in an SCM system can email the results of the system’s actions to an email account
configured to parse the email and process it accordingly. An example of such a configuration is
available fromSteve McIntyre’s(http://www.einval.com/~steve/software/cvs-bugzilla/) web page.

This approach is not synchronous. For example, if a user accidentally commits against the wrong
bug number, or a bug against which he is not the owner, the SCM system will proceed with the
commit action regardless, without giving the user the option to correct his actions. Additionally, if
the email gateway is not active, the developer will not be immediately aware that integration failed.

3.3.2. CVSZilla

Tony Garnock-Jones’CVSZilla(http://homepages.kcbbs.gen.nz/~tonyg/) integrates SCM events
produced by CVS with Bugzilla. It also extends CVS to give rudimentary support to "change-sets",
or "transactions".

CVSZilla does not support integration of events produced byany SCM system in a generic way. It
modifies the Bugzilla schema and does not work with future versions of Bugzilla. Finally, it assumes
that the TCP port used by MySQL is accessible from the machinehosting the CVS repository.

The last assumption does not always hold true, especially when a bug-tracking system is used to
track development of mobile developers (laptop users), needing the flexibility to work both locally
and remotely, on multiple projects, across different organizational units. Experience has shown that
this is a common scenario in organizations with limited hardware, software, or labor resources, such
as an academic environment.

For example, imagine integrating CVS actions from a repository hosted on a personal laptop with a
Bugzilla instance that needs to be publicly accessible fromthe Internet. This same bug-tracking
system is used for collaboration with other mobile developers of a different organization on a joint
project hosted on a third machine. Integration over the public Internet is not possible without opening
the MySQL database port Bugzilla uses. Opening this port is unnecessarily insecure, exposing

5

Chapter 3. Design

access to other applications hosted on the same database system. The Scmbug daemon exposes the
minimum required integration interface between an SCM system and a bug-tracking system.

3.3.3. Other Integration Systems

Commercial products concentrate only on integrating a particular SCM system with a particular
bug-tracking system, in a proprietary way. They do not attempt to define a public SCM to
bug-tracking integration interface, and solve the integration problem once and for all.

Scmbug is an effort for defining an SCM to bug-tracking integration interface and mechanism that
will permit integration of any SCM system with any bug-tracking system.

6

Chapter 4. Features

4.1. Integration Actions

For every SCM event, multiple corresponding integration actions may be issued from the glue to the
daemon. The list of possible integration actions is:

• activity_verify : An activity_commit integration action will soon follow, and data
collected from the corresponding SCM event must be verified first.

• activity_commit : A software change has already been committed in the SCM system, and this
event must be integrated with bug-tracking. This action usually follows anactivity_verify

integration action.
• activity_tag : A software labeling operation is issued in the SCM system, and this event must

be integrated with bug-tracking.
• activity_get_vdd : A VDD will be produced by theVDD Generator.
• activity_get_bugs : The information of a list of bugs is returned for processingby theMerger.

4.2. Integration Of SCM Log Messages

When a software change occurs in the SCM system, a log message may be manually supplied by a
user to describe the change. Using anactivity_commit integration request, this log message is
automatically inserted in the bug-tracking system againstthe specified bug id. Additional changeset
information are automatically detected, such as the branchname that hosted the change and the list
of files affected by the changeset. This information complements the users original log message
when added in the bug-tracker, as shown inFigure 4-1.

Figure 4-1. Example of Integrated Log Message.

Added a glossary, and a document conventions section, just
like the Bugzilla Guide uses. Began linking names of systems /tools to
the glossary, and using a url to their webpage there. This wil l
unclutter the pdf version of the document from url links inli ned with
content.

Branch: HEAD
Affected files:

1.7 --> 1.8 Scmbug:system/doc/manual/about.sgml
1.7 --> 1.8 Scmbug:system/doc/manual/bugtracking-backe nds.sgml
NONE --> 1.1 Scmbug:system/doc/manual/conventions.sgml
NONE --> 1.1 Scmbug:system/doc/manual/glossary.sgml
1.12 --> 1.13 Scmbug:system/doc/manual/manual.sgml.in
1.8 --> 1.9 Scmbug:system/doc/manual/scm-frontends.sgm l
1.9 --> 1.10 Scmbug:system/doc/manual/tools.sgml

7

Chapter 4. Features

4.3. Integration Of SCM Labeling Operations

When a tag or branch operation is issued in the SCM system, a name is used to describe this
software labeling operation. Using anactivity_tag integration request, this label is inserted in the
list of possible versions of the product in the bug-trackingsystem.

Figure 4-2shows an example applying a label in Subversion. The label name is autodetected and
does not need to be specified in the log message.

Figure 4-2. Example applying a label in Subversion.

$ svn copy trunk tags/MYPROGRAM_RELEASE_4-6-1
$ svn commit -m "bug 30541: Tagged the version that fixes the \

backwards compatibility problems in the communication \
protocol." tags/MYPROGRAM_RELEASE_4-6-1

4.4. Verification Checks

When various SCM events occur, verification checks are performed before the SCM event is allowed
to proceed. Some checks are performed by the glue on the client side, the machine the SCM
repository resides. Other checks are performed on the server side, the machine hosting the Scmbug
daemon.

4.4.1. Enabled Integration

SCM events will be integrated with bug-tracking only if the integration glue is enabled. This can be
controlled in the glue configuration file using theenabled variable, as shown inFigure 4-3.

Figure 4-3. Glue enabling variable.

#
Flags whether the glue is active
#
enabled => 1,

4.4.2. Supported SCM version

SCM tools may work considerably different between separateversions. For example, CVS changed
during the 1.12.x series the format of command-line arguments supplied to integration hooks.
Appropriate support is needed to handle their idiosynchracies. The SCM tool’s version is detected at
runtime, and interaction with the tool is handled accordingly.

8

Chapter 4. Features

One of the problems with some SCM systems is that they may unset thePATHvariable (e.g.
Subversion in 1.2.x). The list of paths to the tool’s binaries must be supplied in the glue configuration
file using thebinary_paths variable, as shown inFigure 4-4. It is verified at runtime that each
binary needed by an SCM tool is present in only one path from the list supplied, to avoid accidentally
invoking the wrong version of the tool due to an incomplete installation of the SCM tool.

Figure 4-4. Paths to the SCM tool’s binaries.

Comma(,)-separated list of paths to any binaries the SCM
tool may need to use
binary_paths => ’/usr/local/bin,/usr/bin,/bin’,

4.4.3. Use Of A Log Message Template

The log message supplied to the SCM system when committing a software change is verified to
match a log template expected by Scmbug. Two regular expressions describe how the bug id and log
comment will be identified. These are defined as part of thelog_template policy variable as
shown inFigure 4-5, through the variableslog_bugid_regex andlog_body_regex .

A way to split a list of multiple bug ids into separate ids is also described with a regular expression
through the variablelog_bugid_split_regex . This is needed in order to permit special
characters to preceed a bug number. For example, instead of separating bug ids using a whitespace or
comma, one may want to also prefix a bug id with a ’#’. Bug-trackers may then autolinkify in their
comments a bug id that is prefixed by a ’#’ (e.g. Bugzilla). An example log message accepted by
these expressions is shown inFigure 4-6.

Figure 4-5. Regular expressions describing the bug id, the split of bug ids and the log message
body.

log_template => {
The log_bugid_regex is a regular expression that must
set the unnamed variable $1 to the bug number, or list
of bug numbers. It is checked for a match as: m/$regex/s
log_bugid_regex => ’^\s * bug\s * ([\d|\s|,|#] * ?):’,
The log_bugid_split_regex is a regular expression
describing how a list of bug ids will be split in
individual bug numbers. It is split as: /$regex/
log_bugid_split_regex => ’,\s?#|\s?#|,|\s+’,
The log_body_regex is a regular expression that must set
the unnamed variable $1 to the log comment. It is
checked for a match as: m/$regex/s
log_body_regex => ’^\s * bug. * ?:\s * (. *)’
},

This template can be customized when the Scmbug codebase is configured, prior to installation. The
arguments--with-log-template-bugid-regex= <regular_expression >,
--with-log-template-bugid-split-regex= <regular_expression >, and

9

Chapter 4. Features

--with-log-template-body-regex= <regular_expression > can be passed toconfigure ,
shown inFigure 8-4.

Figure 4-6. Example log message accepted.

bug 441:Improved the documentation of policy log_template by adding
an example log message.

4.4.4. Presence Of Distinct Bug Ids

The log message supplied to the SCM system when committing a software change is verified to
include only distinct bug ids.

4.4.5. Valid Log Message Size

It is verified that the log message supplied to the SCM system system meets a configurable minimum
log message size limit. This behavior is defined in the glue configuration file using the
minimum_log_message_size policy variable, as shown inFigure 4-7.

Figure 4-7. Minimum log message size policy.

Minimum number of characters log message.
minimum_log_message_size => {

enabled => 1,
size => 50

},

4.4.6. Convention-based Labeling

It is verified that the names used in labeling operations, such as creation of tags or branches, match a
configurable label naming convention. This behavior is defined in the glue configuration file using
the label_name policy variable, as shown inFigure 4-8.

Figure 4-8. Label naming convention policy.

Format of label names (tag or branch names) defined as
regular expressions.
label_name => {

enabled => 1,
names => [

Convention for official releases.
For example:
SCMBUG_RELEASE_0-2-7
’^.+?_RELEASE_[0-9]+-[0-9]+-[0-9]+$’,

Convention for development builds.

10

Chapter 4. Features

For example:
SCMBUG_BUILD_28_added_a_policies_mechanism
’^.+?_BUILD_[0-9]+_.+$’,

Convention for branches.
For example:
b_experimenting_with_policies_on_glue_side
’^b_.+$’,

Convention for private developer tags. Uses
the developer’s initials (either 2 or 3).
For example:
p_kpm_prior_to_bug353_stabilization_fixes
’^p_[a-zA-Z][a-zA-Z]?[a-zA-Z]_.+$’
]

}

Labels for official releases can correspond to versions of the software that will be made public to
users, and are applied by release managers.

Developments builds can be helpful in development environments that produce weekly builds, as a
checkpoint of a stable codebase. They are applied by releasemanagers. They can also correspond to
development milestones that will incorporate specific features, even though the codebase is not ready
for an official release.

Branches can be created when maintaining a previous, already released, version of a software. For
example, to correct critical bugs or apply security fixes. They are applied by release managers. They
can also be created when a feature may require a considerableamount of time to implement while
disrupting the main codebase drastically (e.g. a core API change). A branch is created, the feature is
implemented, and when it is deemed stable it is merged in the main codebase.

Private developer tags are very similar to development builds. They can be applied directly by
developers, instead of strictly release managers, and should be thought of as personal, developer
milestones applied at stable points. The developers may be working on features of increased
complexity, or features that will require a significant amount of time to complete. Incrementally
applying private developer tags that match distinct progress steps can help a developer debug a
regression in his implementation. As another example, assume a developer implements a feature
using a specific algorithm. Later, software requirements change, and the developer is tasked to
reimplement this feature using a different algorithm. The developer can first apply a private tag, and
then reimplement the feature using the new algorithm. If it is later determined that the feature should
revert back to using the original algorithm, the developer can retrieve the original implementation
using the private developer tag he had applied. In a sense, private developer tags can be applied at a
finer granularity than group development builds.

4.4.7. Presence Of Bug Ids

The log message supplied to the SCM system when committing a software change may be required
to include at least one bug id. This is determined using thepresence_of_bug_ids policy variable,

11

Chapter 4. Features

as shown inFigure 4-9.

Figure 4-9. Presence of bug ids policy.

#
Presence of bug ids. There are 3 options:
#
- ’required’. A bug id must be specified during each
activity. Activities without a bug id will not be permitted .
#
- ’optional’. If a bug id is supplied, the activity will be
integrated. If not the activity will be permitted to go
through in the SCM system, but without bug-tracking
integration.
#
- ’none’. Never integrate activities regardless. This is
different than flagging the glue inactive. The remaining
policies are still enforced were applicable.
(e.g. policy minimum_log_message_size).
#
This policy is ALWAYS enabled
presence_of_bug_ids => {

value => ’required’
},

4.4.8. Valid SCM To Bug-tracking Username Mapping

All integration requests must include the SCM username of the user issuing an integration request.
This username must be mapped to the username of the user in thebug-tracking system. Bug-tracking
systems that do not support SCM usernames are accomodated through a username mapping list
defined in the daemon configuration file using theuserlist variable. Three mapping mechanisms
are available:

• LDAP . An LDAP directory is accessed to map the SCM username, as oneLDAP attribute, into
the bug-tracking username defined by another LDAP attribute. This can be configured in the
daemon configuration file using themapping_ldap variable, as shown inFigure 4-10.

Figure 4-10. SCM to bug-tracking username mapping based onmapping_ldap.

This is a mapping based on LDAP. ldap_scm_username_attrib ute
defines the LDAP attribute that will be used to match the
SCM username. The SCM username will be mapped into the
bug-tracking username defined by
ldap_bugtracking_username_attribute.
mapping_ldap => {

enabled => 0,
ldap_server => ’127.0.0.1’,
ldap_port => ’389’,
A binddn (e.g. cn=default) that has access to read all
attributes
ldap_binddn => ’replace_with_binddn’,
The password of the binddn that has access to read all
attributes

12

Chapter 4. Features

ldap_binddn_password => ’replace_with_binddn_password ’,
The BaseDN in which to search for the
ldap_scm_username_attribute (e.g. "ou=People,o=Compa ny")
ldap_basedn => ’replace_with_basedn’,
The name of the attribute containing the user’s SCM
username
ldap_scm_username_attribute => ’uid’,
The name of the attribute containing the user’s
bug-tracking username
ldap_bugtracking_username_attribute => ’mail’,
LDAP filter to AND with the ldap_scm_username_attribute
for filtering the list of valid SCM users.
ldap_filter => ”

},

• List of regular expressions. A list of regular expressions describe how the SCM usernamewill be
matched and how it will be transformed into a bug-tracking username using the
mapping_regexes variable. This can be configured in the daemon configuration file as shown in
Figure 4-11.

Figure 4-11. SCM to bug-tracking username mapping based onmapping_regexes.

This is a mapping based on regular expressions. The first
expression defines how the SCM username will be matched. Th e
second defines how it will be transformed, and uses the
unnamed variable $1 that was described by the first
expression. The mapping is checked for a match as:
m/$first_regex/
and is applied as: s/$first_regex/$second_regex/
mapping_regexes => {

enabled => 0,
values => {
This is an example of mapping a Windows Domain user
from ’DOMAIN\user’ to ’user@EMAIL_DOMAIN.com’
’^DOMAIN\\\\(\w+)$’ => ’$1\@EMAIL_DOMAIN.com’,
This is an example of mapping a UNIX user from
’example_user’ to ’example_user@exampledomain.com’
’^(\w+)$’ => ’$1\@exampledomain.com’
}

},

• Direct. A direct one-to-one mapping of an SCM username to a bug-tracking username using the
mapping_values variable. This can be configured in the daemon configuration file as shown in
Figure 4-12.

Figure 4-12. SCM to bug-tracking username mapping based onmapping_values.

This is a one-to-one mapping of SCM usernames to bugtrackin g
usernames. Mappings in this list override mappings from
mapping_regexes.
mapping_values => {

enabled => 0,
values => {
’DOMAIN\\example_user’ => ’example_user@DOMAIN.com’,
’example_user2’ => ’example_user2@exampledomain.com’

13

Chapter 4. Features

}
},

If the SCM username already matches the bug-tracking username, these mappings can be disabled in
the daemon configuration file as shown inFigure 4-13. If any of these mappings are enabled, they
are executed in the order presented here. Mappings based onmapping_ldap are appiled first.
Mappings based onmapping_regexes are applied second and can override a mapping based on
mapping_ldap . Mappings based onmapping_values are applied last and can override all other
mappings.

Figure 4-13. Disabling SCM to bug-tracking username mappings.

mappings => {
Enable SCM username translation. This flag must be
turned on for any of the mappings that follow to apply.
enabled => 0,

The username verification is applied case sensitive. This can be configured in the daemon
configuration file as shown inFigure 4-14. For example, Microsoft Active Directory tends to
capitalize the first letter of each word in the email address.The email address returned does not
match the email address reported by the bug-tracker in lowercase, and needs
case_sensitive_username_verification to be disabled.

Figure 4-14. Disabling case sensitive SCM to bug-tracking username verification.

Apply a case sensitive username verification.
case_sensitive_username_verification => 0,

4.4.9. Valid Product Name

An activity_verify integration request must refer to bug ids filed against the SCM system’s
associated product name in the bug-tracking system. Similarly, anactivity_tag needs to know
the product name in which the tag will be inserted as a version. This behavior is optional and can be
configured in the glue configuration file using thevalid_product_name policy variable, as shown
in Figure 4-15.

Figure 4-15. Valid product name policy.

The bug against which an activity is issued must be filed
against a valid product name.
valid_product_name => {

enabled => 1
},

14

Chapter 4. Features

Regardless of the configuration of thevalid_product_name policy, the product name is required
by other parts of the integration. For example, it is needed to detect labeling operations in
Subversion, as shown inFigure 7-7, for Mail notificationand forAutolinkification. It can be specified
in the glue configuration file using theproduct_name_definition policy variable in two ways:

• Manually defined. All SCM activity in the repository will be integrated against a single product
name in the bug-tracker. This requires setting in theproduct_name_definition policy’s
values the entry of the special regular expression(. *) to the desired product name, as shown in
Figure 4-16.

Figure 4-16. Manually defined product name.

Product name definition.
#
NOTE: The regular expression ’(. *)’ is special and means
replace with exactly this value. It is meant to be used
with SCM systems that do not provide the list of
affected files during verification (e.g. CVS 1.11.x)
#
This policy is ALWAYS enabled
product_name_definition => {

type => ’manual’,
values => { ’(. *)’ => ’TestProduct’ }
},

• Automatically defined. Some organizations may follow a development model that permits
multiple products to be hosted under the same SCM repository. For example, multiple product
names in the bug-tracking system may correspond to multiplebranches in the SCM system.
Scmbug can autodetect the appropriate product name by consulting a list of regular expressions
that describe how to identify and map the product name from a path in a repository.

Figure 4-17shows a configuration example that can autodetect from the repository structure of
Figure 4-18the list of product names inFigure 4-19. When a file from one of the directories shown
in Figure 4-18is commited, the appropriate product name shown inFigure 4-19will be defined.

Figure 4-17. Automatically defined product name.

Product name definition.
#
The product name is autodefined based on regular
expressions. The first expression defines how each commit ed
filename will be matched. The second defines how it will be
transformed, and uses the unnamed variables (e.g. $1 $2)
that were described by the first expression. The mapping is
checked for a match as:
m/$match_regex/
and is applied as: s/$match_regex/$replace_regex/
#
This policy is ALWAYS enabled
product_name_definition => {

type => ’auto’,
values => { ’dir/prefix1/productMain_(.+?)/’ => ’$1’,

’dir2/(.+?)/’ => ’$1’,
’dir3/(?:trunk|tags|branches)/(.+?)/’ => ’$1’,

15

Chapter 4. Features

’dir4/productLine_(. *)/subproducts/(. *)/’ => ’$2_$1’
}

},

Figure 4-18. Repository structure with product names that can be automatically defined.

dir/prefix1/productMain_subproductA/trunk
dir/prefix1/productMain_subproductA/tags
dir/prefix1/productMain_subproductA/branches
dir/prefix1/productMain_subproductB/trunk
dir/prefix1/productMain_subproductB/tags
dir/prefix1/productMain_subproductB/branches
dir2/productA_3-1/trunk
dir2/productA_3-1/tags
dir2/productA_3-1/branches
dir2/productB
dir2/productB_multiuser
dir3/trunk/productC
dir3/tags/productC
dir3/branches/productC
dir4/productLine_2009/subproducts/subproductC

Figure 4-19. Automatically mapped product names fromFigure 4-18.

subproductA
subproductB
productA_3-1
productB
productB_multiuser
productC
subproductC_2009

Another example where multiple products may be required would be a contracting company
maintaining all their contracts in the same SCM repository but using separate product names in
the bug-tracking tool.

Note: We must note that, from an SCM perspective, hosting multiple products that share a
common codebase in the same SCM system may not be the ideal way to go. Organizations
that follow this development model may want to consider developing their common codebase
in it’s own SCM repository, as a separate product. They can then import the common code as
a vendor branch in multiple SCM repositories, each corresponding to a single product name
they wish to publicly release. More information on vendor branches can be found in the CVS
(https://www.cvshome.org/docs/manual/cvs-1.12.9/cvs_13.html#SEC104) and Subversion
(http://svnbook.red-bean.com/svnbook/ch07s04.html) manuals.

Note: Automatically defined product names are not supported for CVS 1.11.x
(http://bugzilla.mkgnu.net/show_bug.cgi?id=746) or for Git, yet
(http://bugzilla.mkgnu.net/show_bug.cgi?id=994).

16

Chapter 4. Features

4.4.10. Valid Bug Owner

It is verified that the SCM user issuing anactivity_verify integration request is the owner or
one of the owners of the bug against which subsequent integration requests will be issued. This
behavior is optional and can be configured in the glue configuration file using the
valid_bug_owner policy variable, as shown inFigure 4-20.

Figure 4-20. Valid bug owner policy.

The SCM user issuing an activity must be the user to which
the bug is assigned
valid_bug_owner => {

enabled => 1,
},

4.4.11. Anonymous SCM Username

It is always verified that the SCM system supplied a username when generating activity. However,
some SCM systems may not always supply an SCM username. One example is Subversion running
ansvnserve daemon granting anonymous access. The username of the SCM user under which
activity should be generated can be optionally configured inthe glue configuration file using the
anonymous_scm_username policy variable, as shown inFigure 4-21.

Figure 4-21. Anonymous SCM username policy.

All integration activity must originate from a specific SC M
user. If the SCM system does not provide the SCM user
information (e.g Subversion running an svnserve daemon wi th
anonymous access), assume the activity originated from a
specific SCM user
anonymous_scm_username => {

enabled => 0,
value => ’anonymous_scm_user’
},

4.4.12. Open Bug State

It is verified that the bug against which anactivity_verify integration request is issued must is
in an open, active state in the bug-tracking system. This behavior is optional and can be configured in
the glue configuration file using theopen_bug_state policy variable, as shown inFigure 4-22.

17

Chapter 4. Features

Figure 4-22. Open bug state policy.

The bug against which an activity is issued must be in an
open state
open_bug_state => {

enabled => 1
},

4.5. Additional Features

4.5.1. Mail Notification

An email can be sent when an integration activity, either commiting or labeling, is accepted. This is
defined in the glue configuration file using themail_on_success policy variable, as shown in
Figure 4-23. Emails can also be sent after a failed commit activity if theSCM system overshadows
and does not report the error message using themail_on_failure policy variable.

Warning

For example, Subversion does not report error messages of its post-commit

hook.

Figure 4-23. Mail notification policy.

#
Send email notifications after integration activity
#
mail_notification => {

Send an email after a successful activity (both
verifying and labeling)

mail_on_success => 0,
Send an email after a failed commit activity that the
SCM system may overshadow and not report
(e.g. Subversion does not report error messages of its
post-commit hook.) .
mail_on_failure => 1,
mail_settings => {

Must be a valid email address. Can remain empty if
other users should be notified.
To => ’replace_with_commit_mailing_list_email@example domain.com’,
Must be a valid email address. Can remain empty if
mail_also_appears_from_scm_user is enabled.
From => ’Scmbug <replace_with_mailing_list_owner_email@exampledomain .com >’,
Defaults to localhost if left empty
Smtp => ’replace_with_mail_server.exampledomain.com’

},
Sending email when a tag is moved or deleted in CVS can
be annoying, since multiple emails are sent per

18

Chapter 4. Features

directory (but not when a tag is added). mail_on_label
can disable that behavior.
mail_on_label => 1,
mail_recipients => {

Make the email also appear to have been sent by the
SCM user.
mail_also_appears_from_scm_user => 1,
List of users that will be notified
mail_scm_user => 1,
mail_bug_owner => 1,
mail_bug_reporter => 1,
mail_bug_monitors => 1,
mail_product_owners => 1

}
}

4.5.2. Bug Resolution

It is possible to automatically change the resolution status of a bug at the time a software change is
committed. It is verified that the requested resolution status is a valid resolution state in the
bug-tracker and that the requested change does not violate the workflow of the bug-tracker. For
example, changing a bug resolution in Bugzilla fromREOPENEDto UNCONFIRMEDis an invalid status
change.

Changing resolution status is accomplished if a resolutiontemplate expected by Scmbug is identified
in the log message. The resolution does not need to apply to the same bug the software change is
applied against. It could be applied to a different bug, multiple bugs, or multiple different resolutions
could be applied to multiple different bugs. The resolutiontemplate must be specified on a separate
line on its own and is completely removed before the log message is identified.

Four regular expressions describe how the bug id, the new status, the status resolution, and the status
resolution data will be identified. These are defined as part of the resolution_template policy
variable as shown inFigure 4-24, through the variablesresolution_bugid_regex ,
resolution_status_regex , resolution_status_resolution_regex , and
resolution_status_resolution_data_regex .

A way to split a list of multiple bug ids into separate ids is also described with a regular expression
through the variableresolution_bugid_split_regex . An example log message accepted by
these expressions is shown inFigure 4-26.

Figure 4-24. Regular expressions describing the bug id, thesplit of bug ids and the resolution
status.

Resolution template.
#
Regular expressions that describe how a resolution status
for a list of bug ids can be identified
resolution_template => {

19

Chapter 4. Features

enabled => 1,
The resolution_bugid_regex is a regular expression that
must set the unnamed variable $1 to the bug number, or
list of bug numbers. It is checked for a match as:
m/$regex/s
resolution_bugid_regex => ’^\s * status\s * ([\d|\s|,|#] * ?):’,
The resolution_bugid_split_regex is a regular expressio n
describing how a list of bug ids will be split in
individual bug numbers. It is split as: /$regex/
resolution_bugid_split_regex => ’,\s?#|\s?#|,|\s+’,
The resolution_status_regex is a regular expression that
must set the unnamed variable $1 to the requested
status. It is checked for a match as: m/$regex/s
#
For example, if one issued in the log message the
resolution command:
#
status 547: reopened
#
Then the resolution_status_regex is expected to match
"reopened"
resolution_status_regex => ’^\s * status. * ?:\s * (\S+)\s * . * ’,
The resolution_status_resolution_regex is a regular
expression that must set the unnamed variable $1 to the
requested resolution. It is checked for a match as:
m/$regex/s
#
For example, if one issued in the log message the
resolution command:
#
status 547: resolved fixed
#
Then the resolution_status_resolution_regex is expecte d
to match "fixed"
resolution_status_resolution_regex => ’^\s * status. * ?:\s * \S+\s+(\S+)’
The resolution_status_resolution_data_regex is a regul ar
expression that must set the unnamed variable $1 to the
additional data supplied by the resolution status. It is
checked for a match as:
m/$regex/s
#
For example, if one issued in the log message the
resolution command:
#
status 548: resolved duplicate 547
#
Then the resolution_status_resolution_data_regex is
expected to match "547"
resolution_status_resolution_data_regex => ’^\s * status. * ?:\s * \S+\s+\S+\s+(\S+)’,
},

Some bug-trackers may report resolution-related information with a token that contains spaces. For
example, Mantis 1.0.0 offers the resolution "unable to reproduce". This would make it difficult to
develop regular expressions that will correctly identify the new status and resolution. This resolution
could instead be written in a log message by the user as "unable_to_reproduce" and have Scmbug

20

Chapter 4. Features

configured to replace all underscores ("_") with spaces (" ")using the
resolution_status_convert policy, as shown inFigure 4-25.

Figure 4-25. Regular expressions defining a resolution status character conversion.

The resolution_status_ * information can have all of the
following characters converted according to a regular
expression. This is useful in addressing the limitation
of some bug-trackers that report a resolution-related
information with a token that contains spaces. For
example:
#
"unable to reproduce" in Mantis.

resolution_template => {
resolution_status_convert => {

enabled => 0,
Regular expressions that will be applied to convert
the characters of all resolution_status_ *
information. It is applied for substitution as:
#
s/$convert_from/$convert_to/g
resolution_status_convert_from => ’_’,
resolution_status_convert_to => ’ ’
},

}

This template can be customized when the Scmbug codebase is configured, prior to installation. The
arguments--with-resolution-template-bugid-regex= <regular_expression >,
--with-resolution-template-bugid-split-regex= <regular_expression >,
--with-resolution-template-status-regex= <regular_expression >,
--with-resolution-template-status-resolution-regex= <regular_expression >,
--with-resolution-template-status-resolution-data-r egex= <regular_expression >,
--with-resolution-template-status-convert-from-rege x=<regular_expression >,
and
--with-resolution-template-status-convert-to-regex= <regular_expression > can
be passed toconfigure , shown inFigure 8-4.

Figure 4-26. Example log message that changes the resolution status of multiple bugs.

status 548,622: reopened
status 755: resolved worksforme
bug 547:Implemented automatic status resolution as a new po licy. This seems
to work but will need improvements in the testsuite.
status 547: REsolved fIXED
status 548: RESOLVED duplicate 547
status 647: assigned unassigned@mkgnu.net

Note: Figure 4-26 does not show multiple examples. It shows one example of one log message.

21

Chapter 4. Features

The resolution status and resolution descriptions are verified case insensitive by default, as shown in
Figure 4-26. This can be controlled using the
resolution_status_case_sensitive_verification variable, as shown inFigure 4-27.

Figure 4-27. Case sensitive resolution verification variable.

Apply a case sensitive resolution and resolution status ve rification
resolution_status_case_sensitive_verification => 0,

A resolution description must refer to bug ids filed against the SCM system’s associated product
name in the bug-tracking system. This behavior is optional and can be configured in the glue
configuration file using theresolution_valid_product_name policy variable, as shown in
Figure 4-28.

Figure 4-28. Valid product name policy in reference to bug resolution.

resolution_template => {
The bugs whose resolution status will be changed must be
filed against a valid product name.
resolution_valid_product_name => 1,

},

The SCM user issuing a bug resolution must be the owner of the bug against which subsequent
integration requests will be issued. This behavior is optional and can be configured in the glue
configuration file using theresolution_valid_bug_owner policy variable, as shown in
Figure 4-29.

Figure 4-29. Valid bug owner policy in reference to bug resolution.

resolution_template => {
The SCM user must be the user to which the bugs whose
resolution status will be changed are assigned
resolution_valid_bug_owner => 1

},

4.5.3. Autolinkification

There are plans (http://bugzilla.mkgnu.net/show_bug.cgi?id=266) to support autolinkification.

22

Chapter 5. SCM Frontends

5.1. CVS

CVSis the Concurrent Versions System, the dominant open-source network-transparent version
control system.

Scmbug supports verification checks, integration of log messages with the bug-tracking system, and
integration of labeling operations for CVS. Various deficiencies of CVS introduce complications in
integration. It is recommended that users of CVS upgrade toSubversion.

CVS does not require users to enter a log comment when directories are added in a repository.
Scmbug does not overcome this limitation, even though it is possible
(http://bugzilla.mkgnu.net/show_bug.cgi?id=285) to doso.

Another limitation of CVS is that it does not provide an integration hook on ’cvs admin -o

(http://bugzilla.mkgnu.net/show_bug.cgi?id=176)’.

The verification hook of CVS 1.11.x does not provide the list of files that will be modified. As a
result, theValid product namepolicy cannot be set toauto for CVS 1.11.x. This policy will be
implemented (http://bugzilla.mkgnu.net/show_bug.cgi?id=746) in the future for CVS 1.12.x and, if
possible, for CVSNT.

The temporary log message file of CVS 1.11.x reports the directory in which a change is applied.
However it does not report separately the repository path. As a result, theMail notificationpolicy
reports the changeset directory only. This will be implemented
(http://bugzilla.mkgnu.net/show_bug.cgi?id=826) in the future for CVS 1.12.x and CVSNT.

A common limitation of other systems integrating CVS with bug-tracking resulted from the
inadequate mechanism CVS 1.11.x uses to provide the list of affected files in a commit trigger. For
each file, the old version, new version, and the filename, all separated by commas, can be passed as
command-line arguments to an integration trigger script. When the filenames, or the directory in
which the files reside, contain either commas or whitespaces, a processing script using a single
regular expression to parse these arguments will get confused. Some systems addressed this by
requiring source modifications (http://www.einval.com/~steve/software/cvs-bugzilla/#loginfo) to the
CVS binary, and distributed patches for it. Scmbug addresses this issue by employing a stateful
parser (http://bugzilla.mkgnu.net/show_bug.cgi?id=286#c2). Using this parser, the probability of
files and directories with whitespaces or commas contained in their names to confuse the integration
glue is marginal. For example, the filename shown inFigure 5-1is accepted.

Figure 5-1. A complex filename accepted by the CVS glue.

a file with spaces,NONEs, commas, digits,1.1,2.numbers cl ose to dots.1.2,NONe.txt

23

Chapter 5. SCM Frontends

The verification hook for CVS does not provide the list of filenames that will be commited, hence it
is impossible to dynamically detect the product name. Automatically detected product names are not
supported (http://bugzilla.mkgnu.net/show_bug.cgi?id=746) for CVS.

Scmbug has been verified to work against the following releases of CVS:

• 1.11.21

• 1.12.13

• CVSNT 2.5.03 Build 2260

Somewhere during the 1.12.x series of CVS (e.g. 1.12.9) the command line template format changed
(https://www.cvshome.org/docs/manual/cvs-1.12.10/cvs_18.html#SEC186). This newer format is
also (http://bugzilla.mkgnu.net/show_bug.cgi?id=464)supported by Scmbug.

5.2. Git

Git is a distributed source code management tool designed to handle massive projects such as the
Linux kernel with speed and efficiency.

Scmbug supports verification checks and integration of log messages with the bug-tracking system
for Git. Integration of labeling operations (http://bugzilla.mkgnu.net/show_bug.cgi?id=991) is not
supported yet.

The integration may conservatively and incorrectly
(http://bugzilla.mkgnu.net/show_bug.cgi?id=1253) detect multiple product names being defined if
Valid product nameis configured to be automatically detected as shown inFigure 4-17.

Scmbug has been verified to work against the following releases of Git:

• 1.5.6

5.3. Subversion

Subversionis a compelling replacement for CVS.

Scmbug supports verification checks, integration of log messages with the bug-tracking system, and
integration of labeling operations for Subversion.

Subversion is not yet (http://subversion.tigris.org/issues/show_bug.cgi?id=1973) capable of using a
predefined log template when the user’s editor is opened to enter a log comment. As a result, the log
template expected by Scmbug must be entered by the user.

Scmbug has been verified to work against the following releases of Subversion:

24

Chapter 5. SCM Frontends

• 1.0.6

• 1.1.3

• 1.2.3

• 1.3.0

• 1.4.0,1.4.5

• 1.5.1

• 1.6.1

5.4. Other SCM Systems

Additional SCM frontends can be supported by Scmbug. Developers and system integrators of the
following SCM systems arestrongly encouragedto contribute an SCM integration frontend:

• Aegis

• Arch

• Bazaar-NG

• Bitkeeper

• Clearcase

• Katie

• Mercurial

• Monotone

• OpenCM

• Perforce

Developing a frontend requires:

• Committing to support this frontend in future releases of Scmbug.

• Creating a new frontend module namedsrc/lib/product/Glue/FrontendName.pm.in . The
CVS frontendsrc/lib/product/Glue/CVS.pm.in serves as a good example.

• Updatingsrc/lib/product/Glue/Glue.pm.in:check_configuration accordingly.

• Updating the configuration management filesconfigure.in andMakefile.in to autogenerate,
and autocleanup the new frontend.

• Updating theinstall-tools rule of Makefile.in to install the new frontend from source.

• Creating a new directory namedsrc/glue/templates/frontendname that includes template
hook/trigger scripts. The CVS trigger scripts insrc/glue/templates/cvs serve as a good
example.

• Updatingsrc/glue/templates/cvs/ * /checkoutlist.in to always extract
lib/scmbug/Scmbug/Glue/FrontendName.pm so the CVS SCM frontend does not break.

25

Chapter 5. SCM Frontends

• Updating theGlue Installersrc/scripts/install_glue.pl.in and its manpage
doc/manpages/install_glue.sgml.1.in to support the new frontend.

• Updating theVDD Generatorsrc/scripts/vdd_generator.pl.in and its manpage
doc/manpages/vdd_generator.sgml.1.in to support the new frontend.

• Updating theMergersrc/scripts/merge.pl.in and its manpage
doc/manpages/merge.sgml.1.in to support the new frontend.

• Updating the documentation indoc/manual/content to reflect support for the new frontend.

26

Chapter 6. Bug-tracking Backends

6.1. Bugzilla

Bugzilla is an enterprise-class piece of software that tracks millions of bugs and issues for hundreds
of organizations around the world.

Bugzilla does not provide a public interface for SCM integration. Nevertheless, the Scmbug daemon
attempts to reuse functionality already available in the Perl-based Bugzilla libraries. As a result, the
source code used to host a Bugzilla instance must be locally accessible by the daemon. The
installation_directory variable is used to define the location of the Bugzilla source
installation as shown inFigure 6-1.

Figure 6-1. Bug-tracker installation directory for Bugzil la.

Used for Bugzilla and RequestTracker.
#
Path to the directory of the bugtracker sources providing a n
API that the daemon can use
installation_directory => ’/usr/share/bugzilla/lib’

Additionally, theinstalled_locally variable is used to flag whether Bugzilla is installed locally
on the same machine the daemon is running as shown inFigure 6-2. This is required to flush
Bugzilla’s version cache when SCM tags are added or deleted,and immediately reflect tag
manipulation to Bugzilla’s user interface.

Figure 6-2. Bug-tracker installed locally variable.

Used only for Bugzilla.
#
Flags whether the live bugtracker instance is installed
locally on the same machine the daemon is running
installed_locally => 1,

Note: For example, it is possible to install Bugzilla in machine A, and install a duplicate Bugzilla
source in machine B where Scmbug is installed. In this scenario installation_directory

would be set to Bugzilla’s source code path on machine B, but the variable installed_locally

would be set to 0.

The Bugzilla developers are planning (http://bugzilla.mozilla.org/show_bug.cgi?id=254400) to
provide a formal SCM integration interface in future releases.

27

Chapter 6. Bug-tracking Backends

As of version 2.22.0, Bugzilla does not yet support a mappingof the SCM username to a Bugzilla
username. An SCM to bug-tracking username mapping is accomodated by the integration daemon
using theuserlist variable, as described inSection 4.4.8.

Bugzilla currently lacks a per-bug comment id (http://bugzilla.mkgnu.net/show_bug.cgi?id=763).
This makes it very difficult to accurately report the commentids in a VDD for Bugzilla. Currently,
the VDD comment ids are prefixed with the string "inaccurate_ ".

Scmbug has been verified to work against the following releases of Bugzilla:

• 2.14.2

• 2.16.5

• 2.18rc2

• 2.19.2

• 2.20.1,2.20.7

• 2.22.0

• 3.0.0, 3.0.9

• 3.2.2

• 3.4.5

• 3.6.1

6.2. Mantis

Mantis is a web based PHP/MySQL-based bugtracking system.

Mantis does not provide a public interface for SCM integration. However, the Scmbug daemon
includes a native Perl-based bug-tracking backend for integration with Mantis. Configuration of the
variablesinstallation_directory (Figure 6-1) andinstalled_locally (Figure 6-2) is not
required.

Mantis supports installation with multiple database backends. The daemon configuration variable
database_vendor defines the selected database backend, as shown inFigure 6-3.

Figure 6-3. Database vendor variable.

Valid values are the ones accepted by the Perl DBI.
#
For Bugzilla, this value is ignored
#
For Mantis, * some* valid values (there are others) are:
- ’mysql’
- ’Pg’
database_vendor => ’mysql’,

28

Chapter 6. Bug-tracking Backends

The Mantis developers are planning (http://www.futureware.biz/mantis/view.php?id=151) to provide
a formal SCM integration interface (http://www.futureware.biz/mantisconnect/) in future releases.

As of version 0.19.0, Mantis does not yet support a mapping ofthe SCM username to a Mantis
username. An SCM to bug-tracking username mapping is accomodated by the integration daemon
using theuserlist variable, as described inSection 4.4.8.

Scmbug has been verified to work against the following releases of Mantis:

• 0.19.0

• 1.0.0rc3

• 1.1.0rc1

• 1.2.1

6.3. Request Tracker

Request Trackeris a web based request tracking system written in object-oriented Perl.

Request Tracker provides a public interface for SCM integration. The Scmbug daemon reuses
functionality already available in the Perl-based RequestTracker libraries. As a result, the library
code used to host a Request Tracker instance must be locally accessible by the daemon. The
installation_directory variable is used to define the location of the Request Tracker
installation as shown inFigure 6-4.

Figure 6-4. Bug-tracker installation directory for Request Tracker.

Used for Bugzilla and RequestTracker.
#
Path to the directory of the bugtracker sources providing a n
API that the daemon can use
installation_directory => ’/usr/share/request-tracker 3.4/lib’

This backend integration with Request Tracker assumes the product names inglue.conf match the
queue names set in the Request Tracker.

Theactivity_tag integration action is not yet supported.

The Request Tracker backend does not currently support theVDD GeneratorandMerger.

29

Chapter 6. Bug-tracking Backends

As of version 3.4.5, Request Tracker does not require a mapping of the SCM username to a Request
Tracker username. The username mappings can be disabled as shown inFigure 4-13.

Scmbug has been verified to work against the following releases of Request Tracker:

• 3.4.5

• 3.6.1

6.4. Test Director

Test Directoris a test and fault tracking system.

Test Director is based on MS Windows and hence the interfacesinto the system are available on MS
Windows only. Users have to run the Scmbug daemon on a Windowsmachine.

In order to use Test Director as your fault tracking system you will need to ensure that you install:

• The Perl OLE package.

• Test DirectorMercury Quality Center System Test Remote Agent Add-in(Available from the Test
DirectorHelp- > Add-ins menu).

For Test Director, some example configuration settings for the daemon configuration file
/etc/scmbug/daemon.conf are shown inFigure 6-5.

Figure 6-5. Example daemon configuration settings for Test Director.

The URL connection string to Test Director.
database_location => ’http://emea-testdir:8080/qcbin’ ,

The database vendor is the same as the Domain within Test Dir ector,
This must match the value that you would use on manual login.
database_vendor => ’Domain’,

The database name is the same as the Project within Test Dire ctor.
database_name => ’Project’,

The user name is the Test Director user login.
database_username => ’username’,

The password for the Test Director login.
database_password => ’password’,

30

Chapter 6. Bug-tracking Backends

Test Director and its fields can be further customized in the file
/etc/scmbug/TestDirector.conf . This file must be updated to match your system.

The Test Director backend does not currently support theVDD Generator.

As of version 9.0.0, Test Director does not yet support a mapping of the SCM username to a Test
Director username. An SCM to bug-tracking username mappingis accomodated by the integration
daemon using theuserlist variable, as described inSection 4.4.8.

Note: Due to a bug (http://bugs.activestate.com/show_bug.cgi?id=38968) in Windows
ActiveState Perl, the backend would crash if a Win32::OLE object was called from a forked
process (the forked daemon connection handler). For this reason the Test Director backend calls
are all executed from a seperate script and the results are read back in. This does not limit the
functionality, but it does mean that sub-processes are created.

Scmbug has been verified to work against the following releases of Test Director:

• 9.0.0 (Quality Center), 9.2

6.5. Other Bug-tracking Systems

Additional bug-tracking backends can be supported by Scmbug. Developers and system integrators
of the following bug-tracking systems arestrongly encouragedto contribute a bug-tracking
integration backend:

• AntHill

• Bosco

• debbugs

• Double Choco Latte

• Eventum

• GForge

• GNATS

• Helis

• ITracker

• phpBugTracker

• Roundup

• Scarab

• Trac

• TUTOS

31

Chapter 6. Bug-tracking Backends

• Workbench

Developing a backend requires:

• Committing to support this backend in future releases of Scmbug.

• Creating a new backend module namedsrc/lib/product/Daemon/BackendName.pm.in .
The Bugzilla backendsrc/lib/product/Daemon/Bugzilla.pm.in serves as a good
example.

• Updatingsrc/lib/product/Daemon/Daemon.pm.in:read_configurat ion accordingly.

• Updating the configuration management filesconfigure.in andMakefile.in to autogenerate,
and autocleanup the new backend.

• Updating theinstall-server rule of Makefile.in to install the new backend from source.

• Updating the documentation indoc/manual/content to reflect support for the new backend.

32

Chapter 7. Integration Tools

7.1. Glue Installer

The commandscmbug_install_glue.pl is used to install the integration glue in an SCM
repository. The integration glue should be installed only once per repository. This will automatically
establish integration between the SCM repository and all bugs in the bug-tracking system for that
SCM repository. Existing hooks used in the SCM system are notoverwritten.

The--binary-paths configuration option should be set to a list of paths that include all binaries
needed by the integration tools and the SCM system. This includes the toolsdiff , xsltproc ,
docbook2pdf , docbook2html and the SCM system’s binaries. The--bug configuration option
should be set to the id of a bug in the bug-tracker against which the integration glue installation will
be documented.

Tip: It is preferable to set in --binary-paths the path to the directory that contains a binary,
instead of the path to the binary itself. Using Subversion in Windows for example, the binaries
require additional libraries (e.g. .dll files) that are contained in the directory that holds the binary.

An example installing the glue in a Subversion repository under UNIX is shown inFigure 7-1.

Figure 7-1. Glue Installation in a Subversion repository under UNIX.

$ scmbug_install_glue.pl --scm=Subversion --product=TestProduct \
--repository=file:///tmp/testrepository --bug=770 --binary-paths=/bin,/usr/bin \
--daemon=127.0.0.1

This is the installation script of the Scmbug glue.
The glue will be installed in repository: file:///tmp/test repository.
This is a repository for the Subversion SCM tool.
The product name in the bug tracking system is TestProduct.
The integration glue will be committed against bug 770.
The IP address of the Scmbug integration daemon to contact is 127.0.0.1.
The binary paths used are: /bin,/usr/bin

Press Enter to continue or Ctrl-C to cancel

Glue processing has been prepared in /tmp/Scmbug.30670
Installing part1
Check everything there before I commit or hit Ctrl-C to exit

Glue processing has been prepared in /tmp/Scmbug.30670
Installing part2
Check everything there before I commit or hit Ctrl-C to exit

Note: Under Windows, the paths supplied to the installer should have directories separated with
a forward (/) slash . Figure 7-2 shows an example running the installer under Windows.

33

Chapter 7. Integration Tools

Figure 7-2. Glue Installation in a CVSNT repository under Windows.

C:\Program Files\Scmbug\bin> scmbug_install_glue.pl --scm=CVS --product=sdvel \
--repository=c:/cvsroot --bug=22 --daemon=192.168.136.140 \
--binary-paths="C:/Program Files/CVSNT"

7.1.1. CVS

Integration glue can be installed in both local and remote CVS repositories.

After installation, the file<CVS_REPOSITORY_PATH>/CVSROOT/etc/scmbug/glue.conf holds
the configuration of the glue.

Warning

CVSNT integration has only been verified to work with a :pserver:

configuration. A CVSROOTstarting with :local: does not work. This is
because of the presumptious way CVSNT handles the CVSROOTvariable.
Apparently for some configurations it expands it to include the configuration
type. The integration hooks use this expanded variable and as a result are
pointed to incorrect paths.

34

Chapter 7. Integration Tools

Warning

CVSNT uses the two variables Nameand Root when configuring a repository,
instead of only the CVSROOTvariable. When hooks execute, CVSNT sets
CVSROOTto be equal to Name. By default, CVSNT sets Nameomitting the drive
letter. The hooks will not execute if Nameis not set to the full path of the
repository since $CVSROOTwill be referring to a path that does not exist. An
example invalid Name/Root configuration is shown in Figure 7-3. An example
valid Name/Root configuration is shown in Figure 7-4.

Figure 7-3. Example invalid Name/Root for CVSNT.

Name: /Projects
Root: C:/cvsrepos/Projects

Figure 7-4. Example valid Name/Root for CVSNT.

Name: C:/cvsrepos/Projects
Root: C:/cvsrepos/Projects

Setting Nameto be equal to Root produces the warning shown in Figure 7-5.
The compatibility problems seem to refer to some clients simply not parsing a
CVSROOTwith a drive letter in it. If your development environment includes
UNIX clients, and problems do occur, one alternative is to let Namelack a drive
letter and manually edit the hook files to include the full repository path.

Figure 7-5. CVSNT warning when Name is set to Root.

Using drive letters in repository names can create compatibility problems with
Unix clients and is not recommended. Are you sure you want to continue ?

A major drawback of CVS is it’s lack of atomic transactions. As a side-effect, when the same log
message is used to commit files in two separate directories, two integration activities are issued using
the same log message. Duplicate log messages are then entered in the bug-tracking system. Scmbug
solves this problem by using thecommitinfo andloginfo hooks to detect commits in separate
directories and consolidate the log messages entered in thebug-tracking system as one log message
(one integration activity). This behavior is optional and can be configured in the glue configuration
file using theconsolidate_cvs_messages variable, as shown inFigure 7-6. However,
ActiveState ActivePerl does not yet implement thegetppid()

(http://bugzilla.mkgnu.net/show_bug.cgi?id=1074) function. Windows systems running Scmbug
need to disableconsolidate_cvs_messages .

Figure 7-6. Configuration option that consolidates CVS messages.

This applies only to CVS. When a commit affects more than
one directory, multiple duplicate log comments are insert ed,
one-per-directory. Enabling this option would consolida te

35

Chapter 7. Integration Tools

the commits to all use the first log message.
consolidate_cvs_messages => 1

7.1.2. Subversion

Subversion repositories do not support installation of theintegration glue remotely. Local repository
access is required.

After installation, the file<SVN_REPOSITORY_PATH>/hooks/etc/scmbug/glue.conf holds
the configuration of the glue.

Subversion does not distinguish between commit activitiesand creation of tags or branches. It
recommends(http://svnbook.red-bean.com/svnbook/ch04s07.html) that the user manually creates
top-level directories named/trunk , /tags and/branches . When it’s time to create a tag or
branch, Subversion proposes following the convention of creating a copy of the main trunk using
’svn copy’ in the /tags or /branches directories. As a result, the glue must manually detect if
anactivity_verify issued by Subversion also implies anactivity_tag . To do so, it checks for
addition of new subdirectories in the directories/tags or /branches . This behavior is defined in
the glue configuration file using thelabel_directories variable, as shown inFigure 7-7.

Figure 7-7. Defining the Subversion labeling directories.

This applies only to Subversion. It is recommended that tag s
are stored in the ’tags’ directory, and branches in the
’branches’ directory.
label_directories => [

’tags’,
’branches’
]

Similarly, Subversion does not distinguish between the main development line and other branches.
The glue must manually detect if a changeset is committed under /trunk . This behavior is defined
in the glue configuration file using themain_trunk_directories variable, as shown in
Figure 7-8.

Figure 7-8. Defining the Subversion main trunk directories.

This applies only to Subversion. It is recommended that the
main trunk work is stored in the ’trunk’ directory.
main_trunk_directories => [

’trunk’
]

Note: It is not mandatory that trunk , tags , and branches are created in the root of the
repository. A more flexible directory structure can be defined using the
product_name_definition variable as shown in Figure 4-17.

36

Chapter 7. Integration Tools

7.1.3. Git

Git repositories do not support installation of the integration glue remotely. Local repository access
is required.

After installation, the file<GIT_REPOSITORY_PATH>/.git/hooks/etc/scmbug/glue.conf

holds the configuration of the glue.

7.2. Version Description Document Generator

Since SCM changes are integrated with bug-tracking, it is possible to produce a list of changes that
occured for a particular version of a software at a level that’s higher than source changes.

ChangeLog information derived strictly from the SCM system, such as a report produced using the
cvs2cltool for CVS or using’svn log’ in Subversion, is overly detailed. It describes software
changesets at a lower level, which interests mostly developers. It is of little value to a user simply
interested in a summary of added features. Moreover, when multiple changesets are committed in
response to a defect, such a document becomes lengthy. It takes considerable time to follow the
history of changes and decipher if, or how, a defect was corrected.

Instead, a VDD reports at a higher level a summary of the features/defects worked on andwhy, using
information recorded in the bug-tracking system. It provides additional useful information such as
resolution status, bug owner, severity, and priority. It also reportswhatchanges occured at a lower
level in the SCM system per bug, effectively supersedingChangeLog documents produced strictly
from the SCM system. Without integration of SCM with bug-tracking, this level of detail in a release
document would not be possible.

Given two SCM label names (tag or branch names), this tool queries the SCM system for the dates
the labels were applied. It then queries the bug-tracking system to produce a report of the bugs
worked between that date range. A VDD can additionally reflect decisions of the development team
which are not documented in the SCM logs, such as choosing to not add a feature, resolving it as
WONTFIX. It may also display bugs that were added in the period between releases but not worked
yet, alerting users of newly discovered defects.

A VDD can be generated using the commandscmbug_vdd_generator.pl . An example
producing this document is shown inFigure 7-9.

Figure 7-9. Generating a Version Description Document.

$ scmbug_vdd_generator.pl --scm=Subversion --product=TestProduct \
--repository=file:///tmp/testrepository --from=tags/SCMBUG_RELEASE_0-8-1 \
--to=tags/SCMBUG_RELEASE_0-8-2

37

Chapter 7. Integration Tools

The output of this tool is a collection of files. An XML file is produced that contains the result of the
VDD query. This file is also transformed using XSLT into a Docbook 4.2 SGML file. Finally, this
SGML file is processed using Docbook tools to produce PDF and HTML output.

7.3. Merger

There are plans (http://bugzilla.mkgnu.net/show_bug.cgi?id=545) to provide a tool that will merge
the work done on a list of bugs into a given label.

Work done on bugs can be merged in a label using the commandscmbug_merge.pl . Two merging
capabilities are available:

• Merging bug changes in a codebase based on an existing tag, andapplying a new tag: The
user supplies a--base-label option which specifies the label (usually a tag) against which the
changes in the specified list of bug ids should be applied. A temporary branch is created based on
this label, and the bug changes are applied on this branch. The resulting codebase is label with the
name specified by--target-label , and the temporary branch is deleted.

An example merging bug changes in a codebase based on an existing tag is shown inFigure 7-10.

Figure 7-10. Merging bug changes in a codebase based on an existing tag.

$ scmbug_merge.pl --scm=Subversion --product=TestProduct \
--repository=file:///tmp/testrepository --base-label=tags/SOMEPRODUCT_RELEASE_1-3-0 \
--new-label=tags/SOMEPRODUCT_RELEASE_1-3-1 --merge-bugs=545,591 --commit-bugs=771

• Merging bug changes directly in an existing branch:The user supplies a--base-label option
which specifies the label (usually a branch or the main development line) against which the
changes in the specified list of bug ids should be applied. Thechanges are applied directly in this
label. No--target-label option is supplied.

An example merging bug changes directly in an existing branch is shown inFigure 7-11.

Figure 7-11. Merging bug changes directly in an existing branch.

$ scmbug_merge.pl --scm=Subversion --product=TestProduct \
--repository=file:///tmp/testrepository \
--base-label=branches/SOMEPRODUCT_RELEASE_1-x-0_series --merge-bugs=708 --commit-bugs=771

38

Chapter 7. Integration Tools

7.4. Web Reports

A collection of Web Reports provide easy to use graphical access to the integration tools.

39

Chapter 8. Resources

8.1. Availability

Scmbug is available for UNIX and Windows systems. It is expected to work with Perl version 5.6.1
or later and has been confirmed to work with Perl version 5.8.4. Dependencies on additional
programs are described inSection 8.2.

The project’s webpage (http://freshmeat.net/projects/scmbug) contains the most up to date
information on the project, including the latest release and manual. A users mailing list is available
for subscription (http://lists.mkgnu.net/mailman/listinfo/scmbug-users), or simply for sending email
(mailto:scmbug-users@lists.mkgnu.net). The project’s bug-tracking system
(http://bugzilla.mkgnu.net) contains the latest TODO list
(http://bugzilla.mkgnu.net/buglist.cgi?query_format=specific&bug_status=__open__&product=Scmbug&content=&order=b
Source code access to developers is available using anonymous CVS as shown inFigure 8-1or
through ViewCVS (http://www.mkgnu.net/cgi-bin/viewcvs.cgi/scmbug/).

Figure 8-1. Developer access to project’s CVS repository.

bash$ cvs -d:pserver:anonymous@cvs.mkgnu.net:/projects/scmbug/cvsroot login
Password:
bash$ cvs -d:pserver:anonymous@cvs.mkgnu.net:/projects/scmbug/cvsroot co .

8.2. Installation

8.2.1. System

Under UNIX, Scmbug is available in the form of Debian and RPM packages. The provided packages
are:

• scmbug-common : common libraries.

• scmbug-doc : documentation.

• scmbug-tools : tools that can install the integration glue in an SCM repository and enhance the
experience of integrating SCM with bug-tracking.

• scmbug-server : the integration daemon.

Tip: If you believe your system meets the package dependencies, but installing packages fails
due to missing dependencies, installation of the packages is still possible. Installation of RPM
packages can be forced as shown in Figure 8-2, and installation of Debian packages can be
forced as shown in Figure 8-3.

40

Chapter 8. Resources

Figure 8-2. Forcing installation of RPM packages.

bash$ rpm -ivh --force --nodeps <RPM_PACKAGE_NAME>

Figure 8-3. Forcing installation of Debian packages.

bash$ dpkg -i --force-depends <DEB_PACKAGE_NAME>

Under Windows, the entire Scmbug system is available in the form of a single .zip file. It must be
manually installed inC:/Program Files/Scmbug . It requires ActiveState ActivePerl
(http://www.activestate.com/Products/ActivePerl/) installed inC:/Perl/bin/perl , and a
temporary directory calledC:/Temp .

Source code distributions are also available.Figure 8-4shows how the system can be configured and
installed from source. It is possible to choose a different destination of the libraries and binaries of
Scmbug both in UNIX and Windows systems at configuration time. It is also possible to build the
system without documentation. If you are configuring from source code, running’./configure
--help’ can provide more information.

Figure 8-4. Installation of the system from source.

bash$./configure
bash$ make
bash$ su
bash# make install-common
bash# make install-doc
bash# make install-tools
bash# make install-server

Tip: Installing all these packages will NOT automatically integrate an SCM repository with a
bug-tracking system. It will only install the basic software needed to do so.

A user must configure the Integration Daemon and start it as shown in Figure 8-5. Then, a user
must run the Glue Installer to install the Scmbug integration in an SCM repository.

Figure 8-5. Integration daemon start.

Starting the Integration Daemon in UNIX systems:
bash# /etc/init.d/scmbug-server start

Starting the Integration Daemon in Windows systems:
C:\> cd C:/Program Files/Scmbug/etc/init.d
C:/Program Files/Scmbug/etc/init.d> scmbug-server.bat

41

Chapter 8. Resources

Tip: When specifying paths in Windows, either in the glue installer, the glue configuration file, or
the integration daemon, paths should have directories separated with a forward (/) slash .

Tip: There are various dependencies on the packages provided. Both dependencies on other
packages, and on Perl modules. If they are ignored, the Integration Daemon and the
Integration Tools will detect the missing dependency and refuse to execute.

8.2.2. Documentation

Installation of documentation, including this manual, requires installing the packagescmbug-doc .

8.2.3. Common libraries

The common libraries require instaling the Perl moduleLog::Log4perl for logging, as shown in
Figure 8-6.

Figure 8-6. XML::Simple installation.

Installation in UNIX systems:
bash$ su
bash# perl -MCPAN -e "install Log::Log4perl"

Installation in Windows systems:
C:\> ppm
PPM - Programmer’s Package Manager version 3.1.
Copyright (c) 2001 ActiveState Corp. All Rights Reserved.
ActiveState is a devision of Sophos.

Entering interactive shell. Using Term::ReadLine::Stub a s readline library.

Type ’help’ to get started.
ppm> install Log-Log4perl

8.2.4. Integration Tools

Installation of theIntegration Toolsrequires installing the packagesscmbug-common and
scmbug-tools . It also requires a diffing tool. For Windows, one such binary(diff.exe) is
available in GnuWin32 (http://gnuwin32.sourceforge.net//).

42

Chapter 8. Resources

Running theVDD Generatoradditionally requires installing thexsltproc , anddocbook-utils

packages. It is uncertain where one could get these packagesfor Windows. Anxsltproc

distribution for Windows seems to be available from Igor Zlatkovic’s website
(http://www.zlatkovic.com/libxml.en.html), but we haveyet to locate adocbook-utils package
for Windows. eDE (http://www.e-novative.info/software/ede.php) seems to be usable under
Windows, but he have yet to try it. However, bothxsltproc anddocbook-utils are provided by
Cygwin (http://www.cygwin.com/).

Running theMerger requires instaling the Perl moduleXML::Simple (for an
activity_get_bugs), as shown inFigure 8-7.

Figure 8-7. XML::Simple installation.

Installation in UNIX systems:
bash$ su
bash# perl -MCPAN -e "install XML::Simple"

Installation in Windows systems:
C:\> ppm
PPM - Programmer’s Package Manager version 3.1.
Copyright (c) 2001 ActiveState Corp. All Rights Reserved.
ActiveState is a devision of Sophos.

Entering interactive shell. Using Term::ReadLine::Stub a s readline library.

Type ’help’ to get started.
ppm> install XML-Simple

Installation of theWeb Reportsrequires configuring a webserver in a way similar to the Apache
configuration shown inFigure 8-8. It also requires installing the Perl moduleTemplate , as shown in
Figure 8-9.

Figure 8-8. Apache configuration for Web Reports.

Include /etc/scmbug/apache.conf

Figure 8-9. Template installation.

Installation in UNIX systems:
bash$ su
bash# perl -MCPAN -e "install Template"

Installation in Windows systems:
C:\> ppm
PPM - Programmer’s Package Manager version 3.1.
Copyright (c) 2001 ActiveState Corp. All Rights Reserved.
ActiveState is a devision of Sophos.

43

Chapter 8. Resources

Entering interactive shell. Using Term::ReadLine::Stub a s readline library.

Type ’help’ to get started.
ppm> install Template

8.2.5. Integration Daemon

Installation of the daemon requires installing the packages scmbug-common andscmbug-server .
Additionally, it requires installing the Perl modulesMail::Sendmail (for policy Mail notification)
andXML::Simple (for anactivity_get_vdd issued by theVDD Generator), as shown in
Figure 8-10. If an SCM to bug-tracking username mapping is configured based on variable
mapping_ldap , as described inSection 4.4.8, the Perl moduleNet::LDAP must also be installed.

Figure 8-10. Mail::Sendmail, XML::Simple installation.

Installation in UNIX systems:
bash$ su
bash# perl -MCPAN -e "install Mail::Sendmail"
bash# perl -MCPAN -e "install XML::Simple"

Installation in Windows systems:
C:\> ppm
PPM - Programmer’s Package Manager version 3.1.
Copyright (c) 2001 ActiveState Corp. All Rights Reserved.
ActiveState is a devision of Sophos.

Entering interactive shell. Using Term::ReadLine::Stub a s readline library.

Type ’help’ to get started.
ppm> install Mail-Sendmail
ppm> install XML-Simple

The file /etc/scmbug/daemon.conf holds the configuration of the daemon.

The daemon can be started in different execution modes. These are defined in the daemon
configuration file using thedaemon_mode variable and are:

• Threaded. Multiple threads are created to handle incoming connections. This was observed to
work well under Windows but cause a significant slowdown under UNIX. For more information
see bug 264 (http://bugzilla.mkgnu.net/show_bug.cgi?id=264#c7).

• Forked. Multiple processes are created to handle incoming connections. This was observed to
work well under UNIX and most Windows systems. The daemon unexpectedly dies during some
connections in Windows. For a while, it was believed that this was due to an outdated ActiveState

44

Chapter 8. Resources

Perl or running a version of the DBI< 1.50, but there seems to be more to the problem. For more
information see bug 597 (http://bugzilla.mkgnu.net/show_bug.cgi?id=597#c9), bug 264
(http://bugzilla.mkgnu.net/show_bug.cgi?id=264#c20), and bug 646
(http://bugzilla.mkgnu.net/show_bug.cgi?id=646#c7).

• Automatically detected. Automatically chooses between a threaded or forked mode.

Integration with multiple bug-tracking systems can be accomplished by starting multiple daemons
listening at different ports.

8.2.5.1. Bugzilla

For reasons explained inSection 6.1, the integration daemon requires local presence of the source
code used to run a Bugzilla instance. It also requires accessto the database used to store Bugzilla’s
data. It is recommended that the daemon is installed on the same machine Bugzilla runs, but this is
not required. If the daemonis installed on the same machine Bugzilla runs, Scmbug will force the
Bugzilla version cache (which is a local file) to be regenerated whenactivity_tag integration
requests are processed.

Warning

On Windows, DBI version 1.50 or greater is required, and can be installed as
shown in Figure 8-11. Earlier versions have threading issues.

8.2.5.2. Mantis

Integration with Mantis requires access to the database used to store Mantis’ data. At a minimum, it
requires installing theDBI Perl module, as shown inFigure 8-11.

Warning

On Windows, DBI version 1.50 or greater is required. Earlier versions have
threading issues.

Figure 8-11. DBI installation.

Installation in UNIX systems:
bash$ su
bash# perl -MCPAN -e "install DBI"

Installation in Windows systems:
C:\> ppm
PPM - Programmer’s Package Manager version 3.1.
Copyright (c) 2001 ActiveState Corp. All Rights Reserved.
ActiveState is a devision of Sophos.

Entering interactive shell. Using Term::ReadLine::Stub a s readline library.

45

Chapter 8. Resources

Type ’help’ to get started.
ppm> install DBI

As explained inSection 6.2, Mantis supports installation with multiple database backends, and
requires the corresponding DBD Perl module to be installed.For example, if Mantis is installed with
a MySQL database backend, theDBD::mysql Perl module must also be installed(Figure 8-12) and
thedatabase_vendor variable must be configured as shown inFigure 6-3.

Figure 8-12. DBD::mysql installation.

Installation in UNIX systems:
bash$ su
bash# perl -MCPAN -e "install DBD::mysql"

Installation in Windows systems:
C:\> ppm
PPM - Programmer’s Package Manager version 3.1.
Copyright (c) 2001 ActiveState Corp. All Rights Reserved.
ActiveState is a devision of Sophos.

Entering interactive shell. Using Term::ReadLine::Stub a s readline library.

Type ’help’ to get started.
ppm> install DBD-mysql

8.2.5.3. Request Tracker

For reasons explained inSection 6.3, the integration daemon requires local presence of the source
code used to run a RequestTracker instance. It has not yet been investigated if it also requires local
access to the database used to store RequestTracker’s data.

8.3. Upgrading

Upgrading to newer versions of Scmbug is possible. It first requires understanding the issues
involved in running non-matching versions of the Glue and Daemon.

8.3.1. Issues

The communication protocol between the Glue and the Daemon is upgraded and is
backwards-incompatible when the minor version number of Scmbug increases. For example,

46

Chapter 8. Resources

SCMBUG_RELEASE_0-1-x and SCMBUG_RELEASE_0-2-x are not compatible, but
SCMBUG_RELEASE_0-2-1 and SCMBUG_RELEASE_0-2-8 are.

Tip: During SCM events activity, if the Glue detects an incompatible version of the Daemon, it
will refuse to continue.

Warning

Running incompatible versions of the Glue and Daemon can result in
developers being locked out of an SCM repository.

For example, when using CVS it could result in the integration failing to commit
any changes, leading into a dead-end. This would prohibit disabling the Glue
in its entirety, and require manually editing the repository locally using RCS
commands. Certainly, an SCM repository can always be brought back to a
working state by a competent administrator.

Since version SCMBUG_RELEASE_0-3-3, the Glue Installer isable to safely upgrade the
integration to newer versions. It first completely disablesall SCM hooks installed by Scmbug,
upgrades the Glue code, and then enables the hooks. During the last step, the Daemon does not need
to be contacted, since the hooks are not yet active.

Note: If you understand the implementation internals of Scmbug you will be able to determine
whether a new feature is implemented in the Glue or the Daemon, and upgrade only the Glue or
only the Daemon.

One example where you might not want to upgrade both the Glue and Daemon is if you have a
lot of SCM repositories and you need a new feature that has been implemented only on the
Daemon. Upgrading only the daemon is a lot easier than first upgrading all repositories. Another
example would be upgrading only the Glue of a single SCM repository if you need a new
Scmbug feature only in that repository.

Tip: If in doubt, upgrade everything.

8.3.2. Steps

Upgrading to a newer version of Scmbug requires first upgrading the Glue and then the Daemon, by
carrying out in order the following steps.

47

Chapter 8. Resources

8.3.2.1. Glue Upgrading

• Upgrading Scmbug: Install newer versions of the packagesscmbug-common , scmbug-doc , and
scmbug-tools , as shown inSection 8.2.1.

Tip: If one of the SCM repositories that will be upgraded is hosted by Subversion, then these
packages must also be installed on the machine hosting the Subversion repository. As
explained in Section 7.1.2, local repository access will be required in the next step to upgrade
the integration glue.

• Upgrading all SCM repositories: Run theGlue Installeronce per SCM repository with respective
arguments to upgrade to a newer version of the Glue, as described inSection 7.1.

Warning

The Glue Installer will display changes between the existing and updated
glue configuration file in diff format. Manually merge-in any updates to the
glue configuration file as needed. Failure to do so could result in the Glue
failing to work.

8.3.2.2. Daemon Upgrading

• Upgrading the Integration Daemon: After all SCM repositories have been upgraded, upgrade the
Integration Daemon by installing a newer version of the packagesscmbug-common and
scmbug-server , as shown inSection 8.2.5.

Warning

Ommiting to upgrade an SCM repository before upgrading the Daemon
could result in developers being locked out of the repository.

Should that happen, it’s possible to downgrade to the previous version of
the Daemon, upgrade the repository as described in Section 8.3.2.1, and
upgrade the Daemon again. During this process, all other upgraded SCM
repositories will be unable to accept activity, since the Glue will detect an
incompatible Daemon and refuse to continue.

48

Appendix A. FAQ

This FAQ includes questions not covered elsewhere in this manual.

49

Appendix B. GNU Free Documentation
License

Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc. 59 Temple Place,Suite 330, Boston, MA 02111-1307
USA Everyone is permitted to copy and distribute verbatim copies of this license document, but changing
it is not allowed.

0. Preamble

The purpose of this License is to make a manual, textbook, or other written document "free" in the
sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or
without modifying it, either commercially or non-commercially. Secondarily, this License preserves
for the author and publisher a way to get credit for their work, while not being considered
responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which is a
copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms
that the software does. But this License is not limited to software manuals; it can be used for any
textual work, regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purposeis instruction or reference.

1. Applicability and Definition

This License applies to any manual or other work that contains a notice placed by the copyright
holder saying it can be distributed under the terms of this License. The "Document", below, refers to
any such manual or work. Any member of the public is a licensee, and is addressed as "you".

A "Modified Version" of the Document means any work containing the Document or a portion of it,
either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s
overall subject (or to related matters) and contains nothing that could fall directly within that overall
subject. (For example, if the Document is in part a textbook of mathematics, a Secondary Section
may not explain any mathematics.) The relationship could bea matter of historical connection with
the subject or with related matters, or of legal, commercial, philosophical, ethical or political
position regarding them.

50

Appendix B. GNU Free Documentation License

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those
of Invariant Sections, in the notice that says that the Document is released under this License.

The "Cover Texts" are certain short passages of text that arelisted, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format
whose specification is available to the general public, whose contents can be viewed and edited
directly and straightforwardly with generic text editors or (for images composed of pixels) generic
paint programs or (for drawings) some widely available drawing editor, and that is suitable for input
to text formatters or for automatic translation to a varietyof formats suitable for input to text
formatters. A copy made in an otherwise Transparent file format whose markup has been designed to
thwart or discourage subsequent modification by readers is not Transparent. A copy that is not
"Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo
input format, LaTeX input format, SGML or XML using a publicly available DTD, and
standard-conforming simple HTML designed for human modification. Opaque formats include
PostScript, PDF, proprietary formats that can be read and edited only by proprietary word
processors, SGML or XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are
needed to hold, legibly, the material this License requiresto appear in the title page. For works in
formats which do not have any title page as such, "Title Page"means the text near the most
prominent appearance of the work’s title, preceding the beginning of the body of the text.

2. Verbatim Copying

You may copy and distribute the Document in any medium, either commercially or
non-commercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all copies, and that you add no other
conditions whatsoever to those of this License. You may not use technical measures to obstruct or
control the reading or further copying of the copies you makeor distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough number of copies you
must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

3. Copying in Quantity

If you publish printed copies of the Document numbering morethan 100, and the Document’s
license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and
legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the

51

Appendix B. GNU Free Documentation License

back cover. Both covers must also clearly and legibly identify you as the publisher of these copies.
The front cover must present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copyingwith changes limited to the covers, as
long as they preserve the title of the Document and satisfy these conditions, can be treated as
verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones
listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in or with
each Opaque copy a publicly-accessible computer-network location containing a complete
Transparent copy of the Document, free of added material, which the general network-using public
has access to download anonymously at no charge using public-standard network protocols. If you
use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an Opaque copy (directly or through
your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

4. Modifications

You may copy and distribute a Modified Version of the Documentunder the conditions of sections 2
and 3 above, provided that you release the Modified Version under precisely this License, with the
Modified Version filling the role of the Document, thus licensing distribution and modification of the
Modified Version to whoever possesses a copy of it. In addition, you must do these things in the
Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and
from those of previous versions (which should, if there wereany, be listed in the History section
of the Document). You may use the same title as a previous version if the original publisher of
that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of
the modifications in the Modified Version, together with at least five of the principal authors of
the Document (all of its principal authors, if it has less than five).

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright
notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to
use the Modified Version under the terms of this License, in the form shown in the Addendum
below.

52

Appendix B. GNU Free Documentation License

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given
in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section entitled "History", and its title, and add to it an item stating at least the title,
year, new authors, and publisher of the Modified Version as given on the Title Page. If there is
no section entitled "History" in the Document, create one stating the title, year, authors, and
publisher of the Document as given on its Title Page, then addan item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent
copy of the Document, and likewise the network locations given in the Document for previous
versions it was based on. These may be placed in the "History"section. You may omit a network
location for a work that was published at least four years before the Document itself, or if the
original publisher of the version it refers to gives permission.

K. In any section entitled "Acknowledgments" or "Dedications", preserve the section’s title, and
preserve in the section all the substance and tone of each of the contributor acknowledgments
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part ofthe section titles.

M. Delete any section entitled "Endorsements". Such a section may not be included in the Modified
Version.

N. Do not retitle any existing section as "Endorsements" or to conflict in title with any Invariant
Section.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate some
or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version’s license notice. These titles must be distinct from any other section titles.

You may add a section entitled "Endorsements", provided it contains nothing but endorsements of
your Modified Version by various parties--for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as
a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by)
any one entity. If the Document already includes a cover textfor the same cover, previously added by
you or by arrangement made by the same entity you are acting onbehalf of, you may not add
another; but you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by thisLicense give permission to use their
names for publicity for or to assert or imply endorsement of any Modified Version.

53

Appendix B. GNU Free Documentation License

5. Combining Documents

You may combine the Document with other documents released under this License, under the terms
defined in section 4 above for modified versions, provided that you include in the combination all of
the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant
Sections of your combined work in its license notice.

The combined work need only contain one copy of this License,and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same
name but different contents, make the title of each such section unique by adding at the end of it, in
parentheses, the name of the original author or publisher ofthat section if known, or else a unique
number. Make the same adjustment to the section titles in thelist of Invariant Sections in the license
notice of the combined work.

In the combination, you must combine any sections entitled "History" in the various original
documents, forming one section entitled "History"; likewise combine any sections entitled
"Acknowledgments", and any sections entitled "Dedications". You must delete all sections entitled
"Endorsements."

6. Collections of Documents

You may make a collection consisting of the Document and other documents released under this
License, and replace the individual copies of this License in the various documents with a single
copy that is included in the collection, provided that you follow the rules of this License for verbatim
copying of each of the documents in all other respects.

You may extract a single document from such a collection, anddistribute it individually under this
License, provided you insert a copy of this License into the extracted document, and follow this
License in all other respects regarding verbatim copying ofthat document.

7. Aggregation with Independent Works

A compilation of the Document or its derivatives with other separate and independent documents or
works, in or on a volume of a storage or distribution medium, does not as a whole count as a
Modified Version of the Document, provided no compilation copyright is claimed for the
compilation. Such a compilation is called an "aggregate", and this License does not apply to the
other self-contained works thus compiled with the Document, on account of their being thus
compiled, if they are not themselves derivative works of theDocument.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one quarter of the entire aggregate, the Document’s Cover Texts may be
placed on covers that surround only the Document within the aggregate. Otherwise they must appear
on covers around the whole aggregate.

54

Appendix B. GNU Free Documentation License

8. Translation

Translation is considered a kind of modification, so you may distribute translations of the Document
under the terms of section 4. Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include translations of some or all Invariant
Sections in addition to the original versions of these Invariant Sections. You may include a
translation of this License provided that you also include the original English version of this License.
In case of a disagreement between the translation and the original English version of this License,
the original English version will prevail.

9. Termination

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for
under this License. Any other attempt to copy, modify, sublicense or distribute the Document is void,
and will automatically terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

10. Future Revisions of this License

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that
a particular numbered version of this License "or any later version" applies to it, you have the option
of following the terms and conditions either of that specified version or of any later version that has
been published (not as a draft) by the Free Software Foundation. If the Document does not specify a
version number of this License, you may choose any version ever published (not as a draft) by the
Free Software Foundation.

How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME. Permission is granted to copy, distributeand/or modify this
document under the terms of the GNU Free Documentation License, Version 1.1 or any later version
published by the Free Software Foundation; with the Invariant Sections being LIST THEIR TITLES, with
the Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST. A copy of the license is
included in the section entitled "GNU Free Documentation License".

If you have no Invariant Sections, write "with no Invariant Sections" instead of saying which ones
are invariant. If you have no Front-Cover Texts, write "no Front-Cover Texts" instead of

55

Appendix B. GNU Free Documentation License

"Front-Cover Texts being LIST"; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing these
examples in parallel under your choice of free software license, such as the GNU General Public
License, to permit their use in free software.

56

Glossary

A
Aegis

Aegis(http://freshmeat.net/projects/aegis/) is a transaction-based software configuration
management system. It provides a framework within which a team of developers may work on
many changes to a program independently, and Aegis coordinates integrating these changes
back into the master source of the program, with as little disruption as possible. Aegis supports
geographically distributed development.

AntHill

Anthill (http://freshmeat.net/projects/anthill/) is a bug tracking database system written in PHP.
It provides the standard bug tracking features such as: userlogins, summary reports, submitting
bugs, querying bugs, various severity and status levels. Italso provides some unique features,
such as a template system, and multi-lingual support.

Arch

Arch (http://regexps.srparish.net/www/#Gnu-arch) is a modern replacement for CVS,
specifically designed for the distributed development needs of open source projects. It has
uniquely good support for development on branches (especially good merging tools),
distributed repositories (every developer can have branches in their own repository),
changeset-oriented project management (arch commits changes to multiple files at once), and,
of course, file and directory renaming.

B
Bazaar-NG

Bazaar-NG(http://www.bazaar-ng.org/) is a powerful, friendly, andscalable open source
distributed version control system. It attempts to combinethe best features from all free version
control systems into a single coherent and simple system.

57

Bitkeeper

Bitkeeper(http://freshmeat.net/projects/bitkeeper/) is a fully distributed source management
system, supporting globally distributed development, disconnected operation, change sets, and
many active branches. It is used by some major projects such as the Linux kernel, MySQL,
Xaraya, and Xen.

Bosco

Bosco(http://freshmeat.net/projects/bosco/) is a rewrite of the popular Bugzilla defect tracking
software in PHP. It is database-independent, and aims to be easy to maintain and modify. It also
has an API to allow external applications to work with its data.

Bugzilla

Bugzilla(http://www.bugzilla.org) is an enterprise-class piece of software that tracks millions
of bugs and issues for hundreds of organizations around the world.

C
ClearCase

ClearCase(http://www-306.ibm.com/software/awdtools/clearcase/) is a version control system.

CVS

CVS(http://www.cvshome.org/) is the Concurrent Versions System, the dominant, open-source,
network-transparent version control system. It allows youto keep old versions of files (usually
source code), keep a log of who, when, and why changes occurred, etc., like RCS or SCCS.
Unlike the simpler systems, CVS does not just operate on one file at a time or one directory at a
time, but operates on hierarchical collections of directories consisting of version controlled
files. CVS helps to manage releases and to control the concurrent editing of source files among
multiple authors. CVS allows triggers to enable/log/control various operations and works well
over a wide area network.

cvs2cl

A tool (http://www.red-bean.com/cvs2cl/) that autogenerates aChangeLog document from
CVS.

58

D
debbugs

debbugs(http://www.benham.net/debbugs/) is the Debian bug-tracking system.

Double Choco Latte

Double Choco Latte(http://freshmeat.net/projects/doublechocolatte/) isa system for tracking
bugs, changes, enhancements, and requests for software. The system is suited for multiple
products and multiple accounts (clients). It is also known to handle call center activity, although
this will evolve into a separate module.

E
Eventum

Eventum(http://dev.mysql.com/downloads/other/eventum/) is a user-friendly and flexible issue
tracking system that can be used by a support department to track incoming technical support
requests, or by a software development team to quickly organize tasks and bugs. Eventum is
used by the MySQL AB Technical Support team.

G
GForge

GForge(http://www.gforge.org) is a Web-based collaborative development environment. It’s
based on a fork of the 2.61 SourceForge code, which used to be available via anonymous CVS
from VA Software, but has been extensively rewritten and enhanced.

GIT

GIT (http://freshmeat.net/projects/git) is a "directory content manager" that was designed to
handle massive projects such as the Linux kernel with speed and efficiency. It falls in the
category of distributed source code management tools and issimilar to GNU Arch, Monotone,
and BitKeeper. Every GIT working directory is a fully-fledged repository with full revision
tracking capabilities and is not dependent on network access to a central server.

59

GNATS

GNATS(http://freshmeat.net/projects/gnats/) is the GNU bug-tracking system, a portable
incident/bug report/help request-tracking system which runs on UNIX-like operating systems.
It easily handles thousands of problem reports, has been in wide use since the early 90s, and can
do most of its operations over e-mail. Several front end interfaces exist, including command
line, emacs, and Tcl/Tk interfaces. There are also a number of Web (CGI) interfaces written in
scripting languages like Perl and Python.

H
Helis

Helis (http://freshmeat.net/projects/helis/) includes the main features of most bug tracking
systems. It is helpful for managing required evolutions, lacks, proposals, and bugs.
Authenticated users can reach the database through a Web browser (Mozilla, Netscape, or IE).
Distinct features include the ability to manage releases (e.g. return resolved bugs between
release 1.04 and 1.00), precise access rights, and managingvalidation reports.

I
ITracker

ITracker (http://freshmeat.net/projects/itracker/) is a Java J2EE issue/bug tracking system
designed to support multiple projects with independent user bases. It supports features such as
full i18n support, multiple versions and project components, detailed histories, issue searching,
file attachments, dynamic reports with charts, configurablefield values, customizable project
level fields, pluggable authentication, a built-in scheduler, and email notifications.

K
Katie

Katie (http://freshmeat.net/projects/katie/) is a revision control system, somewhat like a cross
between CVS and NFS, that was inspired by Rational ClearCase. The three most interesting
features are that the repository is mounted as a filesystem (rather than being copied to a local
workspace), that all versions of all files (even deleted ones) are accessible through this
filesystem (so the "katie diff" command is a convenience rather than a necessity like "cvs diff"),
and that directories are versioned (just like files are). It is functional enough to be self-hosting,

60

but there is much work still to go before it will be a generallyuseful tool. Features that are
implemented already include VOBs, elements, branches, dynamic views, view-extended
pathnames, config specs (including auto-make-branch rules), labels, hard links, and symbolic
links.

M
Mantis

Mantis(http://freshmeat.net/projects/mantis/) is a PHP/MySQL-based bug-tracking system. It
is extremely easy to deploy and customize, and features one of the simplest and cleanest
interfaces of any tracking tool available. It supports multiple projects and email notification, and
is localized for over 18 languages.

Mercurial

Mercurial (http://freshmeat.net/projects/mercurial/) is a fast, lightweight Source Control
Management system designed for the efficient handling of very large distributed projects.

Monotone

Monotone(http://freshmeat.net/projects/monotone/) is a distributed version control system with
a flat peer model, cryptographic version naming, meta-data certificates, decentralized authority,
and overlapping branches. It works out of a transactional version database stored in a regular
file, and uses a custom network protocol for efficient database synchronization.

O
OpenCM

OpenCM(http://freshmeat.net/projects/opencm/) is designed asa secure, high-integrity
replacement for CVS. It includes features such as file renaming, branch and file level access
control, cryptographic authentication, and end-to-end integrity controls.

61

P
Perforce

Perforce(http://freshmeat.net/projects/perforce/) is a software configuration management
system that is fast, robust, runs on over 50 platforms, and scales to over 1000 users on a single
repository. It supports atomic submits and works well over wide area networks, including the
Internet.

phpBugTracker

phpBugTracker(http://freshmeat.net/projects/phpbt/) is an attempt tocopy the functionality of
Bugzilla while providing a codebase that is independent of the database and presentation layers.

R
Request Tracker

Request Tracker(http://www.bestpractical.com/rt/) is an enterprise-grade ticketing system
which enables a group of people to intelligently and efficiently manage tasks, issues, and
requests submitted by a community of users. Written in object-oriented Perl, RT is a high-level,
portable, platform independent system that eases collaboration within organizations and makes
it easy for them to take care of their customers.

Roundup

Roundup(http://roundup.sourceforge.net/) is a simple-to-use and -install issue-tracking system
with command-line, web and e-mail interfaces. It is based onthe winning design from Ka-Ping
Yee in the Software Carpentry "Track" design competition.

S
Scarab

Scarab(http://freshmeat.net/projects/scarab/) is an issue tracking system that features data
entry, queries, reports, notifications to interested parties, collaborative accumulation of
comments, dependency tracking, and collaborative prioritization (voting). It uses Java Servlet
technology to enhance speed, scalability, maintainability, and ease of installation. It contains
XML import/export support, allowing easy migration from other systems (like Bugzilla). The

62

modular code design eases the modification of features. It isfully customizable via a set of
administrative Web pages. The look and feel of the UI can easily be modified, and Scarab can
easily be integrated into larger systems. .

Subversion

Subversion(http://subversion.tigris.org/) is a compelling replacement for CVS.

T
Test Director

Test Director(http://www.mercury.com/us/products/quality-center/) is a test and fault tracking
system sold by Mercury.

Trac

Trac (http://freshmeat.net/projects/trac/) is a minimalistic but highly useful issue tracker and
software project environment based around an integrated Wiki engine. Features include an
interface to Subversion (source revision control), a bug/issue tracking database, and convenient
report facilities.

TUTOS

TUTOS(http://freshmeat.net/projects/tutos/) (The Ultimate Team Organization Software) is a
groupware, ERP (Enterprise Resource Planing), CRM (Customer Relationship Management),
and PLM (Project Lifecycle Management) suite that helps small to medium teams manage
various things in one place. Its features include personal and group calendars, an address book,
product and project management, bug tracking, installation management, a task list, notes, files,
mailboxes, and useful links between all of the above.

W
Workbench

Workbench(http://freshmeat.net/projects/workbench/) is a powerful PHP/MySQL bug-tracking
application. It supports multiple projects, full change history, custom reporting, and many other
useful tools.

63

	Scmbug manual
	Table of Contents
	List of Figures
	Chapter 1. About
	1.1. Copyright Information
	1.2. Disclaimer
	1.3. Acknowledgments
	1.4. Document Conventions

	Chapter 2. Introduction
	2.1. What Is It?
	2.2. Why Use An SCM System?
	2.3. Why Use A Bugtracking System?
	2.4. Why Integrate SCM With Bugtracking?

	Chapter 3. Design
	3.1. Goals
	3.2. System Architecture
	3.3. Related Systems
	3.3.1. Bugzilla Email Gateway
	3.3.2. CVSZilla
	3.3.3. Other Integration Systems

	Chapter 4. Features
	4.1. Integration Actions
	4.2. Integration Of SCM Log Messages
	4.3. Integration Of SCM Labeling Operations
	4.4. Verification Checks
	4.4.1. Enabled Integration
	4.4.2. Supported SCM version
	4.4.3. Use Of A Log Message Template
	4.4.4. Presence Of Distinct Bug Ids
	4.4.5. Valid Log Message Size
	4.4.6. Conventionbased Labeling
	4.4.7. Presence Of Bug Ids
	4.4.8. Valid SCM To Bugtracking Username Mapping
	4.4.9. Valid Product Name
	4.4.10. Valid Bug Owner
	4.4.11. Anonymous SCM Username
	4.4.12. Open Bug State

	4.5. Additional Features
	4.5.1. Mail Notification
	4.5.2. Bug Resolution
	4.5.3. Autolinkification

	Chapter 5. SCM Frontends
	5.1. CVS
	5.2. Git
	5.3. Subversion
	5.4. Other SCM Systems

	Chapter 6. Bugtracking Backends
	6.1. Bugzilla
	6.2. Mantis
	6.3. Request Tracker
	6.4. Test Director
	6.5. Other Bugtracking Systems

	Chapter 7. Integration Tools
	7.1. Glue Installer
	7.1.1. CVS
	7.1.2. Subversion
	7.1.3. Git

	7.2. Version Description Document Generator
	7.3. Merger
	7.4. Web Reports

	Chapter 8. Resources
	8.1. Availability
	8.2. Installation
	8.2.1. System
	8.2.2. Documentation
	8.2.3. Common libraries
	8.2.4. Integration Tools
	8.2.5. Integration Daemon
	8.2.5.1. Bugzilla
	8.2.5.2. Mantis
	8.2.5.3. Request Tracker

	8.3. Upgrading
	8.3.1. Issues
	8.3.2. Steps
	8.3.2.1. Glue Upgrading
	8.3.2.2. Daemon Upgrading

	Appendix A. FAQ
	Appendix B. GNU Free Documentation License
	0. Preamble
	1. Applicability and Definition
	2. Verbatim Copying
	3. Copying in Quantity
	4. Modifications
	5. Combining Documents
	6. Collections of Documents
	7. Aggregation with Independent Works
	8. Translation
	9. Termination
	10. Future Revisions of this License
	How to use this License for your documents

	Glossary
	A
	Aegis
	AntHill
	Arch

	B
	BazaarNG
	Bitkeeper
	Bosco
	Bugzilla

	C
	ClearCase
	CVS
	cvs2cl

	D
	debbugs
	Double Choco Latte

	E
	Eventum

	G
	GForge
	GIT
	GNATS

	H
	Helis

	I
	ITracker

	K
	Katie

	M
	Mantis
	Mercurial
	Monotone

	O
	OpenCM

	P
	Perforce
	phpBugTracker

	R
	Request Tracker
	Roundup

	S
	Scarab
	Subversion

	T
	Test Director
	Trac
	TUTOS

	W
	Workbench

