Home | Trees | Indices | Help |
|
---|
|
1 # Natural Language Toolkit - Decision Tree 2 # Creates a Decision Tree Classifier 3 # 4 # Author: Sumukh Ghodke <sumukh dot ghodke at gmail dot com> 5 # 6 # URL: <http://nltk.sf.net> 7 # This software is distributed under GPL, for license information see LICENSE.TXT 8 9 from nltk_lite.contrib.classifier import oner 104413 oner.OneR.__init__(self, training, attributes, klass) 14 self.root = self.build_tree(self.training, [])1517 decision_stump = self.best_decision_stump(instances, used_attributes, 'maximum_information_gain') 18 used_attributes.append(decision_stump.attribute) 19 for attr_value in decision_stump.attribute.values: 20 if decision_stump.entropy(attr_value) == 0: 21 continue 22 new_instances = instances.filter(decision_stump.attribute, attr_value) 23 new_child = self.build_tree(new_instances, used_attributes) 24 if new_child is not None: decision_stump.children[attr_value] = new_child 25 return decision_stump26 31 34 37
Home | Trees | Indices | Help |
|
---|
Generated by Epydoc 3.0beta1 on Wed May 16 22:47:36 2007 | http://epydoc.sourceforge.net |