next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Binomials :: randomBinomialIdeal

randomBinomialIdeal -- Random Binomial Ideals

Synopsis

Description

The exponents are drawn at random from {-d,...,d}. All coefficients are set to 1.
i1 : R = QQ[a..x]

o1 = R

o1 : PolynomialRing
i2 : randomBinomialIdeal (R,6,2,4,true)

               2                 2              2 2    2      2        2 2  
o2 = ideal (s*w  - c*n, c*e*n - x , c*d*i - f, p w  - o u, d*m s - g, b p  -
     ------------------------------------------------------------------------
        2   2 2 2
     r*x , h j k  - a)

o2 : Ideal of R
i3 : randomBinomialIdeal (R,3,4,10,false)

             3 3 2 3 3    3     3 3   3 2 3 4 3    4   3 2 4   3 2 4       4
o3 = ideal (d e h t u  - a m*r*v x , i j m r s  - g k*l n o , b g n q*r*w*x 
     ------------------------------------------------------------------------
        2 4 3   2 4 3 3 2 4     2 3 3
     - e u v , a e f n o u v - c h k )

o3 : Ideal of R
This function is mostly for internal testing purposes. Don't expect anything from it.

Caveat

Minimal generators are produced. These can be less than n and of higher degree. They also need not be homogeneous