
SIPp

Reference documentation

by Richard GAYRAUD [initial code], Olivier JACQUES [code/documentation]

1. Foreword

SIPp is a performance testing tool for the SIP protocol. It includes a few basic SipStone user
agent scenarios (UAC and UAS) and establishes and releases multiple calls with the INVITE
and BYE methods. It can also reads XML scenario files describing any performance testing
configuration. It features the dynamic display of statistics about running tests (call rate, round
trip delay, and message statistics), periodic CSV statistics dumps, TCP and UDP over
multiple sockets or multiplexed with retransmission management, regular expressions and
variables in scenario files, and dynamically adjustable call rates.

SIPp can be used to test many real SIP equipements like SIP proxies, B2BUAs, SIP media
servers, SIP/x gateways, SIP PBX, ... It is also very useful to emulate thousands of user
agents calling your SIP system.

Want to see it?

Here is a screenshot

Page 1

SIPp screenshot

And here is a video (Windows Media Player 9 codec or above required) of SIPp in action:

sipp-01.wmv

2. Installation

2.1. Getting SIPp

SIPp is released under the GNU GPL license. All the terms of the license apply. It is
provided to the SIP community by Hewlett-Packard engineers in hope it can be useful.

We receive some support from our company to work on this tool freely, but HP does not
provide any support nor warranty concerning SIPp.

2.2. Stable release

Like many other "open source" projects, there are two versions of SIPp: a stable and unstable
release. Stable release: before being labelled as "stable", a SIPp release is thoroughly tested.

SIPp

Page 2

images/sipp-01.wmv

So you can be confident that all mentionned features will work :)

Note:
Use the stable release for your everyday use and if you are not blocked by a specific feature present in the "unstable release"
(see below).

SIPp stable download page

2.3. Unstable release

Unstable release: every new features and bug fixes are checked in SIPp's CVS repository as
soon as they are available. Every night, an automatic extraction is done and the source code
of this release is made available.

Note:
Use the unstable release if you absolutely need a bug fix or a feature that is not in the stable release.

SIPp "unstable" download page

2.4. Available platforms

SIPp is available on almost all UNIX platforms: HPUX, Tru64, Linux (RedHat, Debian,
FreeBSD), Solaris/SunOS.

A Windows port has been contributed. You can now compile SIPp under Cygwin. A binary
package with a Windows installer is also available. Check the snapshot page to download it
and run SIPp under Windows.

2.5. Installing SIPp
• On Linux, SIPp is provided in the form of source code. You will need to compile SIPp to

actually use it. The good news is that there are no depencies to install. Building SIPp is
straight forward.

gunzip sipp-xxx.tar.gz
tar -xvf sipp-xxx.tar
cd sipp
make
• On Windows, SIPp is provided both with the source and the pre-compiled executable.

Just execute the installer to have SIPp installed.

2.6. Increasing File Descriptors Limit

SIPp

Page 3

If your system does not supports enough file descriptors, you may experience problems when
using the TCP mode with many simultaneous calls. Depending on the operating system you
use, different procedures allow to increase the maximum number of file descriptors:

• On Linux 2.4 kernels the default number of file descriptors can be increased by
modifying the /etc/security/limits.conf and the /etc/pam.d/login file.

Open the /etc/security/limits.conf file and add the following lines:
soft nofile 1024
hard nofile 65535

Open the /etc/pam.d/login and add the following line
session required /lib/security/pam_limits.so

The system file descriptor limit is set in the /proc/sys/fs/file-max file. The
following command will increase the file descriptor limit:
echo 65535> /proc/sys/fs/file-max

To increase the number of file descriptors to its maximum limit (65535) set in the
/etc/security/limits.conf file, type:
ulimit -n unlimited

Logout then login again to make the changes effective.

• On HP-UX systems the default number of file descriptors can be increased by modifying
the system configuration with the sam utility. In the Kernel Configuration menu, select
Configurable parameters, and change the following attributes:
maxfiles : 4096
maxfiles_lim : 4096
nfiles : 4096
ninode : 4096
max_thread_proc : 4096
nkthread : 4096

3. Using SIPp

3.1. Main features

SIPp allows to generate one or many SIP calls to one remote system. The tool is started from
the command line. In this example, two SIPp are started in front of each other to demonstrate
SIPp capabilities.

Run sipp with embedded server (uas) scenario:
./sipp -sn uas

On the same host, run sipp with embedded client (uac) scenario

SIPp

Page 4

./sipp -sn uac 127.0.0.1

3.2. Integrated scenarios

Integrated scenarios? Yes, there are scenarios that are embedded in SIPp executable. While
you can create your own custom SIP scenarios (see how to create your own XML scenarios),
a few basic (yet useful) scenarios are available in SIPp executable.

3.2.1. UAC

Scenario file: uac.xml (original XML file)
SIPp UAC Remote

|(1) INVITE |
|------------------>|
|(2) 100 (optional) |
|<------------------|
|(3) 180 (optional) |
|<------------------|
|(4) 200 |
|<------------------|
|(5) ACK |
|------------------>|
| |
|(6) PAUSE |
| |
|(7) BYE |
|------------------>|
|(8) 200 |
|<------------------|

3.2.2. UAS

Scenario file: uas.xml (original XML file)
Remote SIPp UAS

|(1) INVITE |
|------------------>|
|(2) 180 |
|<------------------|
|(3) 200 |
|<------------------|
|(4) ACK |
|------------------>|
| |
|(5) PAUSE |
| |
|(6) BYE |
|------------------>|
|(7) 200 |
|<------------------|

SIPp

Page 5

uac.xml.html
uac.xml
uas.xml.html
uas.xml

3.2.3. regexp

Scenario file: regexp.xml (original XML file)

This scenario, which behaves as an UAC is explained in greater details in this section.
SIPp regexp Remote

|(1) INVITE |
|------------------>|
|(2) 100 (optional) |
|<------------------|
|(3) 180 (optional) |
|<------------------|
|(4) 200 |
|<------------------|
|(5) ACK |
|------------------>|
| |
|(6) PAUSE |
| |
|(7) BYE |
|------------------>|
|(8) 200 |
|<------------------|

3.2.4. 3PCC

3PCC stands for 3rd Party Call Control. 3PCC is described in RFC 3725. While this feature
was first developped to allow 3PCC like scenarios, it can also be used for every case where
you would need one SIPp to talk to several remotes.

In order to keep SIPp simple (remember, it's a test tool!), one SIPp instance can only talk to
one remote. Which is an issue in 3PCC call flows, like call flow I (SIPp beeing a controller):

A Controller B
(1) INVITE no SDP	
<------------------	
(2) 200 offer1	
------------------>	
	(3) INVITE offer1
	------------------>
	(4) 200 OK answer1
	<------------------
	(5) ACK
	------------------>
(6) ACK answer1	
<------------------	
(7) RTP	
.......................................	

Scenario file: 3pcc-A.xml (original XML file)

SIPp

Page 6

regexp.xml.html
regexp.xml
http://www.ietf.org/rfc/rfc3725.txt
3pcc-A.xml.html
3pcc-A.xml

Scenario file: 3pcc-B.xml (original XML file)

Scenario file: 3pcc-C-A.xml (original XML file)

Scenario file: 3pcc-C-B.xml (original XML file)

The 3PCC feature in SIPp allows to have two SIPp instances launched and synchronised
together. If we take the example of call flow I, one SIPp instance will take care of the dialog
with remote A (this instance is called 3PCC-C-A for 3PCC-Controller-A-Side) and another
SIPp instance will take care of the dialog with remote B (this instance is called 3PCC-C-B
for 3PCC-Controller-B-Side).

The 3PCC call flow I will, in reality, look like this (Controller has been divided in two SIPp
instances):

A Controller A Controller B B
(1) INVITE no SDP		
<------------------		
(2) 200 offer1		
------------------>		
sendCmd (offer1)		
	----------------->	
	recvCmd	
		(3) INVITE offer1
		------------------>
		(4) 200 OK answer1
		<------------------
	sendCmd	
	(answer1)	
	<-----------------	
recvCmd	(5) ACK	
		------------------>
(6) ACK answer1		
<------------------		
(7) RTP		
..		

As you can see, we need to pass informations between both sides of the controller. SDP
"offer1" is provided by A in message (2) and needs to be sent to B side in message (3). This
mechanism is implemented in the scenarios through the <sendCmd> command. This:
<sendCmd>
<![CDATA[
Call-ID: [call_id]
[$1]

]]>
</sendCmd>

Will send a "command" to the twin SIPp instance. Note that including the Call-ID is
mandatory in order to correlate the commands to actual calls. In the same manner, this:

SIPp

Page 7

3pcc-B.xml.html
3pcc-B.xml
3pcc-C-A.xml.html
3pcc-C-A.xml
3pcc-C-B.xml.html
3pcc-C-B.xml

<recvCmd>
<action

<ereg regexp="Content-Type:.*"
search_in="msg"
assign_to="2"/>

</action>
</recvCmd>

Will receive a "command" from the twin SIPp instance. Using the regular expression
mechanism, the content is retrieved and stored in a call variable ($2 in this case), ready to be
reinjected
<send>
<![CDATA[

ACK sip:[service]@[remote_ip]:[remote_port] SIP/2.0
Via: SIP/2.0/[transport] [local_ip]:[local_port]
From: sipp <sip:sipp@[local_ip]:[local_port]>;tag=[call_number]
To: sut <sip:[service]@[remote_ip]:[remote_port]>[peer_tag_param]
Call-ID: [call_id]
CSeq: 1 ACK
Contact: sip:sipp@[local_ip]:[local_port]
Max-Forwards: 70
Subject: Performance Test
[$2]

]]>
</send>

In other words, sendCmd and recvCmd can be seen as synchronization points between two
SIPp instances, with the ability to pass parameters between each other.

Another scenario that has been reported to be do-able with the 3PCC feature is the following:

• A calls B. B answers. B and A converse
• B calls C. C answers. C and B converse
• B "REFER"s A to C and asks to replace A-B call with B-C call.
• A accepts. A and C talk. B drops out of the calls.

3.3. Traffic control

SIPp generates SIP traffic according to the scenario specified. You can control the number of
calls (scenario) that are started per second. This can be done either:

• Interactively, by pressing keys on the keyboard
• '+' key to increase call rate by 1
• '-' key to decrease call rate by 1
• '*' key to increase call rate by 10
• '/' key to increase call rate by 10

• At starting time, by specifying parameters on the command line:

SIPp

Page 8

• "-r" to specify the call rate in number of calls per seconds
• "-rp" to specify the "rate period" in milliseconds for the call rate (default is

1000ms/1sec). This allows you to have n calls every m milliseconds (by using -r n
-rp m).

Note:
Example: run SIPp at 7 calls every 2 seconds (3.5 calls per second)

./sipp -sn uac -r 7 -rp 2000 127.0.0.1

You can also pause the traffic by pressing the 'p' key. SIPp will stop placing new calls and
wait until all current calls go to their end. You can resume the traffic by pressing 'p' again.

To quit SIPp, press the 'q' key. SIPp will stop placing new calls and wait until all current
calls go to their end. SIPp will then exit.

Note:
TIP: you can place a defined number of calls and have SIPp exit when this is done. Use the -m option on the command line.

3.4. Running SIPp in background

SIPp can be launched in background mode (-bg command line option).

By doing so, SIPp will be detached from the current terminal and run in background. The
PID of the SIPp process is provided. If you didn't specified a number of calls to execute with
the -m option, SIPp will run forever.

There is a mechanism implemented to stop SIPp smoothly. The command kill
-SIGUSR1 [SIPp_PID] will instruct SIPp to stop placing any new calls and finish all
ongoing calls before exiting.

3.5. Create your own XML scenarios

Of course embedded scenarios will not be enough. So it's time to create your own scenarios.
A SIPp scenario is written in XML (although there are currently no DTD to help you write
SIPp scenarios). A scenario will always start with:
<?xml version="1.0" encoding="ISO-8859-1" ?>
<scenario name="Basic Sipstone UAC">

And end with:
</scenario>

Easy, huh? Ok, now let's see what can be put inside. You are not obliged to read the whole
table now! Just go in the next section for an example.

SIPp

Page 9

Command Attribute(s) Description Example

<send> retrans Used for UDP
transport only: it
specifies the interval,
in milliseconds,
between each
retransmission. There
is a total of 7
retransmissions before
aborting the call.

<send
retrans="500">: will
retransmit the
message every 500
milliseconds.

start_rtd Specifies the message
on which SIPp starts
the "Response Time
Duration" timer. It is
used to compute time
between message
exchanges. By default,
start_rtd is set on the
first message of the
scenario.

<send
start_rtd="true">:
the timer will start
when the enclosed
message is sent.

rtd Specifies the message
on which SIPp stops
the "Response Time
Duration" timer. By
default, rtd is set on
the last message of the
scenario.

<send
rtd="true">: the
timer will stop when
the enclosed message
is sent.

lost Emulate packet lost.
The value is specified
as a percentage.

<send lost="10">:
10% of the message
sent are actually not
sent :).

<recv> response Indicates what SIP
message code is
expected.

<recv
response="200">:
SIPp will expect a SIP
message with code
"200".

request Indicates what SIP
message request is
expected.

<recv
response="ACK">:
SIPp will expect an
"ACK" SIP message.

optional Indicates if the
message to receive is

<recv
response="100"

SIPp

Page 10

optional. In case of an
optional message and
if the message is
actually received, it is
not seen as a
unexpected message.

optional="true">:
The 100 SIP message
can be received
without being
considered as
"unexpected".

rrs Record Route Set. if
this attribute is set to
"true", then the
"Record-Route:"
header of the message
received is stored and
can be recalled using
the [routes] keyword.

<recv
response="100"
rrs="true">.

start_rtd Specifies the message
on which SIPp starts
the "Response Time
Duration" timer. It is
used to compute time
between message
exchanges. By default,
start_rtd is set on the
first message of the
scenario.

<recv
start_rtd="true">:
the timer will start
when the enclosed
message is sent.

rtd Specifies the message
on which SIPp stops
the "Response Time
Duration" timer. By
default, rtd is set on
the last message of the
scenario.

<recv
rtd="true">: the
timer will stop when
the enclosed message
is sent.

lost Emulate packet lost.
The value is specified
as a percentage.

<recv lost="10">:
10% of the message
received are thrown
away.

action Specify an action when
receiving the message.
See Actions section for
possible actions.

Example of a "regular
expression" action:
<recv response="200">
<action>
<ereg regexp="([0-9]{1,3}\.){3}[0-9]{1,3}:[0-9]*"
search_in="msg"
check_it="true"
assign_to="1,2"/>

</action>

SIPp

Page 11

</recv>

<sendCmd> <![CDATA[]]> Content to be sent to
the twin 3PCC SIPp
instance. The Call-ID
must be included in the
CDATA.

<sendCmd>
<![CDATA[
Call-ID: [call_id]
[$1]

]]>
</sendCmd>

<recvCmd> action Specify an action when
receiving the
command. See Actions
section for possible
actions.

Example of a "regular
expression" to retrieve
what has been send by
a sendCmd command:
<recvCmd>
<action

<ereg regexp="Content-Type:.*"
search_in="msg"
assign_to="2"/>

</action>
</recvCmd>

<pause> milliseconds Specify the pause
delay, in milliseconds.
When this delay is not
set, the value of the -d
command line
parameter is used.

<pause
milliseconds="5000">:
pause the scenario for
5 seconds.

<ResponseTimeRepartition>value Specify the intervals, in
milliseconds, used to
distribute the values of
response times.

<ResponseTimeRepartition
value="10, 20,
30"/>: response time
values are distributed
between 0 and 10ms,
10 and 20ms, 20 and
30ms, 30 and beyond.

<CallLengthRepartition>value Specify the intervals, in
milliseconds, used to
distribute the values of
the call length
measures.

<CallLengthRepartition
value="10, 20,
30"/>: call length
values are distributed
between 0 and 10ms,
10 and 20ms, 20 and
30ms, 30 and beyond.

Table 1: List of commands with their attributes
As you can see, there are not so many commands: send, recv, sendCmd, recvCmd, pause,
ResponseTimeRepartition and CallLengthRepartition. To make things even clearer, nothing
is better than an example...

SIPp

Page 12

3.5.1. Structure of client (UAC like) XML scenarios

A client scenario is a scenario that starts with a "send" command. So let's start:
<scenario name="Basic Sipstone UAC">
<send>
<![CDATA[

INVITE sip:[service]@[remote_ip]:[remote_port] SIP/2.0
Via: SIP/2.0/[transport] [local_ip]:[local_port]
From: sipp <sip:sipp@[local_ip]:[local_port]>;tag=[call_number]
To: sut <sip:[service]@[remote_ip]:[remote_port]>
Call-ID: [call_id]
Cseq: 1 INVITE
Contact: sip:sipp@[local_ip]:[local_port]
Max-Forwards: 70
Subject: Performance Test
Content-Type: application/sdp
Content-Length: 136

v=0
o=user1 53655765 2353687637 IN IP4 127.0.0.1
s=-
t=0 0
c=IN IP4 [media_ip]
m=audio [media_port] RTP/AVP 0
a=rtpmap:0 PCMU/8000

]]>
</send>

Inside the "send" command, you have to enclose your SIP message between the
"<![CDATA" and the "]]>" tags. Everything between those tags is going to be sent toward
the remote system. You may have noticed that there are strange keywords in the SIP
message, like [service], [remote_ip], Those keywords are used to indicate to SIPp that it
has to do something with it.

Here is the list:

Keyword Default Description

[service] service Service field, as passed in the
-s service_name

[remote_ip] - Remote IP address, as passed
on the command line.

[remote_port] 5060 Remote IP port, as passed on
the command line.

[transport] UDP Depending on the value of -t

SIPp

Page 13

parameter, this will take the
values "UDP" or "TCP".

[local_ip] Primary host IP address Will take the value of -i
parameter.

[local_port] Random Will take the value of -p
parameter.

[call_number] - Index. The call_number starts
from "1" and is incremented by
1 for each call.

[call_id] - A call_id identifies a call and is
generated by SIPp for each
new call. In client mode, it is
mandatory to use the value
generated by SIPp in the
"Call-ID" header. Otherwise,
SIPp will not recognise the
answer to the message sent as
being part of an existing call.

[media_ip] - Depending on the value of -mi
parameter, it is the local IP
address for RTP echo.

[media_port] - Depending on the value of -mp
parameter, it set the local RTP
echo port number. Default is
none. RTP/UDP packets
received on thatport are
echoed to their sender.

[last_*] - The '[last_*]' keyword is
replaced automatically by the
specified header if it was
present in the last message
received (except if it was a
retransmission). If the header
was not present or if no
message has been received,
the '[last_*]' keyword is
discarded, and all bytes until
the end of the line are also
discarded. If the specified
header was present several
times in the message, all
occurences are concatenated

SIPp

Page 14

(CRLF separated) to be used in
place of the '[last_*]' keyword.

[field0-n] - Used to inject values from an
external CSV file. See
"Injecting values from an
external CSV during calls"
section.

[$n] - Used to inject the value of call
variable number n. See
"Actions" section

Table 1: Keyword list
Now that the INVITE message is sent, SIPp can wait for an answer by using the "recv"
command.
<recv response="100"> optional="true"
</recv>

<recv response="180"> optional="true"
</recv>

<recv response="200">
</recv>

As you can see, 100 and 180 messages are optional, and 200 is mandatory. In a "recv"
sequence, there must be one mandatory message.

Now, let's send the ACK:
<send>
<![CDATA[

ACK sip:[service]@[remote_ip]:[remote_port] SIP/2.0
Via: SIP/2.0/[transport] [local_ip]:[local_port]
From: sipp <sip:sipp@[local_ip]:[local_port]>;tag=[call_number]
To: sut <sip:[service]@[remote_ip]:[remote_port]>[peer_tag_param]
Call-ID: [call_id]
Cseq: 1 ACK
Contact: sip:sipp@[local_ip]:[local_port]
Max-Forwards: 70
Subject: Performance Test
Content-Length: 0

]]>
</send>

We can also insert a pause. The scenario will wait for 5 seconds at this point.
<pause milliseconds="5000"/>

And finish the call by sending a BYE and expecting the 200 OK:

SIPp

Page 15

<send retrans="500">
<![CDATA[

BYE sip:[service]@[remote_ip]:[remote_port] SIP/2.0
Via: SIP/2.0/[transport] [local_ip]:[local_port]
From: sipp <sip:sipp@[local_ip]:[local_port]>;tag=[call_number]
To: sut <sip:[service]@[remote_ip]:[remote_port]>[peer_tag_param]
Call-ID: [call_id]
Cseq: 2 BYE
Contact: sip:sipp@[local_ip]:[local_port]
Max-Forwards: 70
Subject: Performance Test
Content-Length: 0

]]>
</send>

<recv response="200">
</recv>

And this is the end of the scenario:
</scenario>

As you can see, creating your own SIPp scenarios is not a big deal. If you want to see other
examples, use the -sd parameter on the command line to display embedded scenarios.

3.5.2. Structure of server (UAS like) XML scenarios

A server scenario is a scenario that starts with a "recv" command. The syntax and the list of
available commands is the same as for "client" scenarios.

But you are more likely to use [last_*] keywords in those server side scenarios. For example,
a UAS example will look like:
<recv request="INVITE">
</recv>

<send>
<![CDATA[

SIP/2.0 180 Ringing
[last_Via:]
[last_From:]
[last_To:];tag=[call_number]
[last_Call-ID:]
[last_CSeq:]
Contact: <sip:[local_ip]:[local_port];transport=[transport]>
Content-Length: 0

]]>
</send>

The answering message, 180 Ringing in this case, is built with the content of headers

SIPp

Page 16

received in the INVITE message.

3.5.3. Actions

In a "recv" or "recvCmd" command, you have the possibility to execute an action. The only
possible action at the moment is a "regular expression".

3.5.3.1. Regular expressions

Using regular expressions in SIPp allows to

• Extract content of a SIP message or a SIP header and store it for future usage (called
re-injection)

• Check that a part of a SIP message or of an header is matching an expected expression

Regular expressions used in SIPp are defined per Posix Extended standard (POSIX 1003.2).
If you want to learn how to write regular expressions, I will recommend this regexp tutorial.

Here is the syntax of the regexp action:

Keyword Default Description

regexp None Contains the regexp to use for
matching the received
message or header.
MANDATORY.

search_in msg can have 2 values: "msg" (try to
match against the entire
message) or "hdr" (try to match
against a specific SIP header).

header None Header to try to match against.
Only used when the search_in
tag is set to hdr. MANDATORY
IF search_in is equal to hdr.

check_it false if set to true, the call is marked
as failed if the regexp doesn't
match.

assign_to None contain the variable id (integer)
or a list of variable id which will
be used to store the result of
the matching process between
the regexp and the message.
This variable can be re-used at
a later time in the scenario

SIPp

Page 17

http://www.opengroup.org/onlinepubs/007908799/xbd/re.html
http://analyser.oli.tudelft.nl/regex/index.html.en

using '[$n]' syntax where n is
the variable id.

Table 1: regexp action syntax
Note that you can have several regular expressions in one action.

The following example is used to:

• First action:
• Extract the first IPv4 address of the received SIP message
• Check that we could actually extract this IP address (otherwise call will be marked as

failed)
• Assign the extracted IP address to call variables 1 and 2.

• Second action:
• Extract the Contact: header of the received SIP message
• Assign the extracted Contract: header to variable 6.

<recv response="200" start_rtd="true">
<action>
<ereg regexp="([0-9]{1,3}\.){3}[0-9]{1,3}:[0-9]*" search_in="msg" check_it="true" assign_to="1,2" />
<ereg regexp=".*" search_in="hdr" header="Contact:" check_it="true" assign_to="6" />

</action>
</recv>

3.5.4. Injecting values from an external CSV during calls

You can use "-inf file_name" as a command line parameter to input values into the
scenarios. The first line of the file should say whether the data is to be read in sequence
(SEQUENTIAL) or random (RANDOM) order. Each line corresponds to one call and has
one or more ';' delimited data fields and they can be referred as [field0], [field1], ... in the xml
scenario file. Example:
SEQUENTIAL
#This line will be ignored
Sarah;sipphone32
Bob;sipphone12
#This line too
Fred;sipphone94

Will be read in sequence (first call will use first line, second call second line). At any place
where the keyword "[field0]" appears in the scenario file, it will be replaced by either
"Sarah", "Bob" or "Fred" depending on the call. At any place where the keyword "[field1]"
appears in the scenario file, it will be replaced by either "sipphone32" or "sipphone12" or
"sipphone94" depending on the call. At the end of the file, SIPp will re-start from the
beginning. The file is not limited in size.

The CSV file can contain comment lines. A comment line is a line that starts with a "#".

SIPp

Page 18

As a picture says more than 1000 words, here is one:

Field injection

Think of the possibilities of this feature. They are huge.

3.6. Screens

Several screens are available to monitor SIP traffic. You can change of screen by pressing 1,
2, 3 or 4 keys on the keyboard.

• Key '1': Scenario screen. It displays a call flow of the scenario as well as some important
informations.

SIPp

Page 19

Scenario screen

• Key '2': Statistics screen. It displays the main statistics counters. The "Cumulative"
column gather all statistics, since SIPp has been launched. The "Periodic" column gives
the statistic value for the period considered (specified by -f frequency command
line parameter).

SIPp

Page 20

Statistics screen

• Key '3': Repartition screen. It displays the distribution of response time and call length, as
specified in the scenario.

SIPp

Page 21

Repartition screen

• Key '4': Variables screen. It displays informations on actions in scenario as well as
scenario variable informations.

SIPp

Page 22

Variables screen

3.7. Transport modes

SIPp has several transport modes. The default transport mode is "UDP mono socket".

3.7.1. UDP mono socket

In UDP mono socket mode (-u1 command line parameter), one IP/UDP socket is opened
between SIPp and the remote. All calls are placed using this socket.

Note:
This mode is generally used for emulating a relation between 2 SIP servers.

3.7.2. UDP multi socket

In UDP multi socket mode (-un command line parameter), one IP/UDP socket is opened for
each new call between SIPp and the remote.

SIPp

Page 23

Note:
This mode is generally used for emulating user agents calling a SIP server.

3.7.3. TCP mono socket

In TCP mono socket mode (-t1 command line parameter), one IP/TCP socket is opened
between SIPp and the remote. All calls are placed using this socket.

Note:
This mode is generally used for emulating a relation between 2 SIP servers.

3.7.4. TCP multi socket

In TCP multi socket mode (-tn command line parameter), one IP/TCP socket is opened for
each new call between SIPp and the remote.

Note:
This mode is generally used for emulating user agents calling a SIP server.

3.8. Handling media with SIPp - RTP echo

SIPp is originally a signalling plane traffic generator. There is a limited support of media
(RTP).

The "RTP echo" feature allows SIPp to listen to one local IP address and port (specified
using -mi and -mp command line parameters) for RTP media. Everything that is received
on this address/port is echoed back to the sender.

This allows you to have a media channel opened even if no media can be sent from SIPp.

3.9. Exit codes

To ease automation of testing, upon exit (on fatal error or when the number of asked calls
(-m command line option) is reached, sipp exits with one of the following exit codes:

• 0: All calls were successful
• 1: At least one call failed
• 99: Normal exit without calls processed
• -1: Fatal error

SIPp

Page 24

Depending on the system that SIPp is running on, you can echo this exit code by using
"echo ?" command.

3.10. Statistics

3.10.1. Available counters

The -trace_stat option dumps all statistics in the pid_scenario_name.csv file. The dump
starts with one header line with all counters. All following lines are 'snapshots' of statistics
counter given the statistics report frequency (-fd option). When SIPp exits, the last values of
the statistics are also dumped in this file.

This file can be easily imported in any spreadsheet application, like Excel.

In counter names, (P) means 'Periodic' - since last statistic row and (C) means 'Cumulated' -
since sipp was started.

Available statistics are:

• StartTime: Date and time when the test has started.
• LastResetTime: Date and time when periodic counters where last reseted.
• CurrentTime: Date and time of the statistic row.
• ElapsedTime: Elapsed time.
• CallRate: Call rate (calls per seconds).
• IncomingCall: Number of incoming calls.
• OutgoingCall: Number of outgoing calls.
• TotalCallCreated: Number of calls created.
• CurrentCall: Number of calls currently ongoing.
• SuccessfulCall: Number of successful calls.
• FailedCall: Number of failed calls (all reasons).
• FailedCannotSendMessage: Number of failed calls because Sipp cannot send the message

(transport issue).
• FailedMaxUDPRetrans: Number of failed calls because the maximum number of UDP

retransmission attempts has been reached.
• FailedUnexpectedMessage: Number of failed calls because the SIP message received is

not expected in the scenario.
• FailedCallRejected: Number of failed calls because of Sipp internal error. (a scenario

sync command is not recognized or a scenario action failed or a scenario variable
assignment failed).

• FailedCmdNotSent: Number of failed calls because of inter-Sipp communication error (a
scenario sync command failed to be sent).

• FailedRegexpDoesntMatch: Number of failed calls because of regexp that doesn't match

SIPp

Page 25

(there might be several regexp that don't match during the call but the counter is
increased only by one).

• FailedRegexpHdrNotFound: Number of failed calls because of regexp with hdr option
but no matching header found.

• OutOfCallMsgs: Number of SIP messages received that cannot be associated to an
existing call.

• AutoAnswered: Number of unexpected specific messages received for new Call-ID. The
message has been automatically answered by a 200 OK Currently, implemented for
'PING' message only.

3.10.2. Importing statistics in spreadsheet applications

3.10.2.1. Example: importation in Microsoft Excel

Here is a video (Windows Media Player 9 codec or above required) on how to import CSV
statistic files in Excel and create a graph of failed calls over time.

sipp-02.wmv

3.11. Error handling

SIPp has advanced feature to handle errors and unexpected events. They are detailed in the
following sections.

3.11.1. Unexpected messages

• When a SIP message that can be correlated to an existing call (with the Call-ID:
header) but is not expected in the scenario is received, SIPp will send a CANCEL
message if no 200 OK message has been received or a BYE message if a 200 OK
message has been received. The call will be marked as failed. If the unexpected message
is a 4XX or 5XX, SIPp will send an ACK to this message, close the call and mark the call
as failed.

• When a SIP message that can't be correlated to an existing call (with the Call-ID:
header) is received, SIPp will send a BYE message. The call will not be counted at all.

• When a SIP "PING" message is received, SIPp will send an ACK message in response.
This message is not counted as being an unexpected message. But it is counted in the
"AutoAnswered" statistic counter.

• An unexpected message that is not a SIP message will be simply dropped.

3.11.2. Retransmissions (UDP only)

A retransmission mechanism exists in UDP transport mode. To activate the retransmission

SIPp

Page 26

images/sipp-02.wmv

mechanism, the "send" command must include the "retrans" attribute.

When it is activated and a SIP message is sent and no ACK or response is received in answer
to this message, the message is re-sent.

<send retrans="500">: will retransmit the message every 500 milliseconds.

Even if retrans is specified in your scenarios, you can override this by using the -nr
command line option to globally disable the retransmission mechanism.

3.11.3. Log files (error + log + screen)

There are several ways to trace what is going on during your SIPp runs.

• You can log sent and received SIP messages in
<pid>_<name_of_the_scenario>_messages.log by using the command line parameter
-trace_msg. The messages are time-stamped so that you can track them back.

• You can trace all unexpected messages or events in
<pid>_<name_of_the_scenario>_errors.log by using the command line parameter
-trace_err.

• You can save in a file the statistics screens, as displayed in the interface. This is
especially useful when running SIPp in background mode.
This can be done in two ways:
• When SIPp exits to get a final status report (-trace_screen option)
• On demand by using USR2 signal (example: kill -SIGUSR2 738)

• You can log all call ids for calls that timeout (the maximum number of retransmissions
for UDP transport is reached) by using the command line parameter -trace_timeout

3.12. Online help (-h)

The online help, available through the -h option is duplicated here for your convenience

Usage:

sipp remote_host[:remote_port] [options]

Available options:

-v : Display version and copyright information.

-bg : Launch the tool in background mode.

-p local_port : Set the local port number. Default is a
random free port chosen by the system.

-i local_ip : Set the local IP address for 'Contact:',

SIPp

Page 27

'Via:', and 'From:' headers. Default is
primary host IP address.

-inf file_name : Inject values from an external CSV file during calls
into the scenarios.
First line of this file say whether the data is
to be read in sequence (SEQUENTIAL) or random
(RANDOM) order.
Each line corresponds to one call and has one or
more ';' delimited data fields. Those fields can be
referred as [field0], [field1], ... in the xml
scenario file.

-d duration : Controls the length (in milliseconds) of
calls. More precisely, this controls
the duration of 'pause' instructions in
the scenario, if they do not have a
'milliseconds' section. Default value is 0.

-r rate (cps) : Set the call rate (in calls per seconds).
This value can be changed during test by
pressing '+','_','*' or '/'. Default is 10.
pressing '+' key to increase call rate by 1,
pressing '-' key to decrease call rate by 1,
pressing '*' key to increase call rate by 10,
pressing '/' key to decrease call rate by 10.
If the -rp option is used, the call rate is
calculated with the period in ms given
by the user.

-rp period (ms) : Specify the rate period in milliseconds for the call
rate.
Default is 1 second.
This allows you to have n calls every m milliseconds
(by using -r n -rp m).
Example: -r 7 -rp 2000 ==> 7 calls every 2 seconds.

-sf filename : Loads an alternate xml scenario file.
To learn more about XML scenario syntax,
use the -sd option to dump embedded
scenarios. They contain all the necessary
help.

-sn name : Use a default scenario (embedded in
the sipp executable). If this option is omitted,
the Standard SipStone UAC scenario is loaded.
Available values in this version:

'uac' : Standard SipStone UAC (default).
'uas' : Simple UAS responder (UDP only).
'regexp' : Standard SipStone UAC - with

regexp and variables.

Default 3pcc scanerios (see -3pcc option):

SIPp

Page 28

'3pcc-C-A' : Controller A side (must be started
after all other 3pcc scenarios)

'3pcc-C-B' : Controller B side.
'3pcc-A' : A side.
'3pcc-B' : B side.

-sd name : Dumps a default scenario (embeded in
the sipp executable)

-t [u1|un|t1|tn] : Set the transport mode:

u1: UDP with one socket (default),
un: UDP with one socket per call,
t1: TCP with one socket,
tn: TCP with one socket per call.

-trace_msg : Displays sent and received SIP messages in
<ppid>_<scenario file name>_messages.log

-trace_screen : Dump statistic screens in the
<ppid>_<scenario_name>_screens.log file when
quitting SIPp. Useful to get a final status report
in background mode (-bg option).

-trace_timeout : Displays call ids for calls with timeouts in
<ppid>_<scenario file name>_timeout.log

-trace_stat : Dumps all statistics in <ppid>_<scenario_name>.csv>
file. Use the '-h stat' option for a detailed
description of the statistics file content.

-stf file_name : Set the file name to use to dump statistics

-trace_err : Trace all unexpected messages in
<ppid>_<scenario file name>_errors.log.

-s service_name : Set the username part of the resquest URI.
Default is 'service'.

-f frequency : Set the statistics report frequency on screen
(in seconds). Default is 1.

-fd frequency : Set the statistics dump log report frequency
(in seconds). Default is 60.

-l calls_limit : Set the maximum number of simultaneous
calls. Once this limit is reached, traffic
is decreased until the number of open calls
goes down. Default:

(3 * call_duration (s) * rate).

-m calls : Stop the test and exit when 'calls' calls are

SIPp

Page 29

processed.

-mp local_port : Set the local RTP echo port number. Default
is none. RTP/UDP packets received on that
port are echoed to their sender.

-mi local_rtp_ip : Set the local IP address for RTP echo.

-3pcc ip:port : Launch the tool in 3pcc mode ("Third Party
call control"). The passed ip address
is depending on the 3PCC role.
- When the first twin command is 'sendCmd' then
this is the address of the remote twin socket.
Example: 3PCC-C-A scenario.
- When the first twin command is 'recvCmd' then
this is the address of the local twin socket.
Example: 3PCC-C-B scenario.

-nr : Disable retransmission in UDP mode.

-rsa host:port : Set the remote sending address to host:port.
for sending the messages.

Signal handling:

SIPp can be controlled using posix signals. The following signals
are handled:
USR1: Similar to press 'q' keyboard key. It triggers a soft exit

of SIPp. No more new calls are placed and all ongoing calls
are finished before SIPp exits.
Example: kill -SIGUSR1 732

USR2: Triggers a dump of all statistics screens in
<ppid>_<scenario_name>_screens.log file. Especially useful
in background mode to know what the current status is.
Example: kill -SIGUSR2 732

Exit code:

Upon exit (on fatal error or when the number of asked calls (-m
option) is reached, sipp exits with one of the following exit
code:
0: All calls were successful
1: At least one call failed
99: Normal exit without calls processed
-1: Fatal error

Example:

Run sipp with embedded server (uas) scenario:
./sipp -sn uas

On the same host, run sipp with embedded client (uac) scenario
./sipp -sn uac 127.0.0.1

SIPp

Page 30

4. Useful tools aside SIPp

4.1. JEdit

JEdit (http://www.jedit.org/) is a GNU GPL text editor written in Java, and available in
almost all platforms. It's extremely powerful and can be used to edit SIPp scenarios with
syntax checking if you put the DTD (sipp.dtd) in the same directory as your XML scenario.

4.2. Ethereal/tethereal

Ethereal (http://www.ethereal.com/) is a GNU GPL protocol analyzer. It supports SIP.

4.3. SIP callflow

When tracing SIP calls, it is very useful to be able to get a call flow from an ethereal trace.
The "callflow" tool allows you to do that in a graphical way: http://callflow.sourceforge.net/

An equivalent exist if you want to generate HTML only call flows
http://www.iptel.org/~sipsc/

5. Getting support

You can likely get email-based support from the sipp users community. The mailing list
address is sipp-users@lists.sourceforge.net. To protect you from SPAM, this list is restricted
(only people that actually subscribed can post). Also, you can browse the SIPp mailing list
archive: http://lists.sourceforge.net/lists/listinfo/sipp-users

6. Contributing to SIPp

Of course, we welcome contributions! If you created a feature for SIPp, please send the "diff"
output (diff -bruN old_sipp_directory new_sipp_directory) so that it
can be integrated in SIPp.

SIPp

Page 31

mailto:sipp-users@lists.sourceforge.net
http://lists.sourceforge.net/lists/listinfo/sipp-users

	1 Foreword
	2 Installation
	2.1 Getting SIPp
	2.2 Stable release
	2.3 Unstable release
	2.4 Available platforms
	2.5 Installing SIPp
	2.6 Increasing File Descriptors Limit

	3 Using SIPp
	3.1 Main features
	3.2 Integrated scenarios
	3.2.1 UAC
	3.2.2 UAS
	3.2.3 regexp
	3.2.4 3PCC

	3.3 Traffic control
	3.4 Running SIPp in background
	3.5 Create your own XML scenarios
	3.5.1 Structure of client (UAC like) XML scenarios
	3.5.2 Structure of server (UAS like) XML scenarios
	3.5.3 Actions
	3.5.3.1 Regular expressions

	3.5.4 Injecting values from an external CSV during calls

	3.6 Screens
	3.7 Transport modes
	3.7.1 UDP mono socket
	3.7.2 UDP multi socket
	3.7.3 TCP mono socket
	3.7.4 TCP multi socket

	3.8 Handling media with SIPp - RTP echo
	3.9 Exit codes
	3.10 Statistics
	3.10.1 Available counters
	3.10.2 Importing statistics in spreadsheet applications
	3.10.2.1 Example: importation in Microsoft Excel

	3.11 Error handling
	3.11.1 Unexpected messages
	3.11.2 Retransmissions (UDP only)
	3.11.3 Log files (error + log + screen)

	3.12 Online help (-h)

	4 Useful tools aside SIPp
	4.1 JEdit
	4.2 Ethereal/tethereal
	4.3 SIP callflow

	5 Getting support
	6 Contributing to SIPp

