Home | Trees | Indices | Help |
|
---|
|
1 # Natural Language Toolkit - ZeroR 2 # Capable of classifying the test or gold data using the ZeroR algorithm 3 # 4 # Author: Sumukh Ghodke <sumukh dot ghodke at gmail dot com> 5 # 6 # URL: <http://nltk.sf.net> 7 # This software is distributed under GPL, for license information see LICENSE.TXT 8 9 from nltk_lite.contrib.classifier import instances as ins, Classifier 105613 Classifier.__init__(self, training, attributes, klass) 14 self.__majority_class = None 15 self.__klassCount = {}1618 self.test_instances = test_instances 19 self.classify(self.test_instances) 20 if printResults: self.test_instances.print_all()2123 if self.__majority_class == None: 24 self.__majority_class = self.majority_class() 25 for instance in instances: 26 instance.set_klass(self.__majority_class)2729 self.gold_instances = gold_instances 30 self.classify(self.gold_instances) 31 return self.gold_instances.confusion_matrix(self.klass)32 3739 klass_value = instance.klass_value 40 if self.__klassCount.has_key(klass_value): 41 self.__klassCount[klass_value] += 1 42 else: 43 self.__klassCount[klass_value] = 14446 max, klass_value = 0, None 47 for key in self.__klassCount.keys(): 48 value = self.__klassCount[key] 49 if value > max: 50 max = value 51 klass_value = key 52 return klass_value53
Home | Trees | Indices | Help |
|
---|
Generated by Epydoc 3.0beta1 on Wed May 16 22:47:57 2007 | http://epydoc.sourceforge.net |