00001
00002
00003
00004
00005 #ifndef __IRR_POINT_3D_H_INCLUDED__
00006 #define __IRR_POINT_3D_H_INCLUDED__
00007
00008 #include "irrMath.h"
00009
00010 namespace irr
00011 {
00012 namespace core
00013 {
00014
00016
00021 template <class T>
00022 class vector3d
00023 {
00024 public:
00026 vector3d() : X(0), Y(0), Z(0) {}
00028 vector3d(T nx, T ny, T nz) : X(nx), Y(ny), Z(nz) {}
00030 explicit vector3d(T n) : X(n), Y(n), Z(n) {}
00032 vector3d(const vector3d<T>& other) : X(other.X), Y(other.Y), Z(other.Z) {}
00033
00034
00035
00036 vector3d<T> operator-() const { return vector3d<T>(-X, -Y, -Z); }
00037
00038 vector3d<T>& operator=(const vector3d<T>& other) { X = other.X; Y = other.Y; Z = other.Z; return *this; }
00039
00040 vector3d<T> operator+(const vector3d<T>& other) const { return vector3d<T>(X + other.X, Y + other.Y, Z + other.Z); }
00041 vector3d<T>& operator+=(const vector3d<T>& other) { X+=other.X; Y+=other.Y; Z+=other.Z; return *this; }
00042 vector3d<T> operator+(const T val) const { return vector3d<T>(X + val, Y + val, Z + val); }
00043 vector3d<T>& operator+=(const T val) { X+=val; Y+=val; Z+=val; return *this; }
00044
00045 vector3d<T> operator-(const vector3d<T>& other) const { return vector3d<T>(X - other.X, Y - other.Y, Z - other.Z); }
00046 vector3d<T>& operator-=(const vector3d<T>& other) { X-=other.X; Y-=other.Y; Z-=other.Z; return *this; }
00047 vector3d<T> operator-(const T val) const { return vector3d<T>(X - val, Y - val, Z - val); }
00048 vector3d<T>& operator-=(const T val) { X-=val; Y-=val; Z-=val; return *this; }
00049
00050 vector3d<T> operator*(const vector3d<T>& other) const { return vector3d<T>(X * other.X, Y * other.Y, Z * other.Z); }
00051 vector3d<T>& operator*=(const vector3d<T>& other) { X*=other.X; Y*=other.Y; Z*=other.Z; return *this; }
00052 vector3d<T> operator*(const T v) const { return vector3d<T>(X * v, Y * v, Z * v); }
00053 vector3d<T>& operator*=(const T v) { X*=v; Y*=v; Z*=v; return *this; }
00054
00055 vector3d<T> operator/(const vector3d<T>& other) const { return vector3d<T>(X / other.X, Y / other.Y, Z / other.Z); }
00056 vector3d<T>& operator/=(const vector3d<T>& other) { X/=other.X; Y/=other.Y; Z/=other.Z; return *this; }
00057 vector3d<T> operator/(const T v) const { T i=(T)1.0/v; return vector3d<T>(X * i, Y * i, Z * i); }
00058 vector3d<T>& operator/=(const T v) { T i=(T)1.0/v; X*=i; Y*=i; Z*=i; return *this; }
00059
00060 bool operator<=(const vector3d<T>&other) const { return X<=other.X && Y<=other.Y && Z<=other.Z;}
00061 bool operator>=(const vector3d<T>&other) const { return X>=other.X && Y>=other.Y && Z>=other.Z;}
00062 bool operator<(const vector3d<T>&other) const { return X<other.X && Y<other.Y && Z<other.Z;}
00063 bool operator>(const vector3d<T>&other) const { return X>other.X && Y>other.Y && Z>other.Z;}
00064
00066 bool operator==(const vector3d<T>& other) const
00067 {
00068 return this->equals(other);
00069 }
00070
00071 bool operator!=(const vector3d<T>& other) const
00072 {
00073 return !this->equals(other);
00074 }
00075
00076
00077
00079 bool equals(const vector3d<T>& other, const T tolerance = (T)ROUNDING_ERROR_f32 ) const
00080 {
00081 return core::equals(X, other.X, tolerance) &&
00082 core::equals(Y, other.Y, tolerance) &&
00083 core::equals(Z, other.Z, tolerance);
00084 }
00085
00086 vector3d<T>& set(const T nx, const T ny, const T nz) {X=nx; Y=ny; Z=nz; return *this;}
00087 vector3d<T>& set(const vector3d<T>& p) {X=p.X; Y=p.Y; Z=p.Z;return *this;}
00088
00090 T getLength() const { return core::squareroot( X*X + Y*Y + Z*Z ); }
00091
00093
00095 T getLengthSQ() const { return X*X + Y*Y + Z*Z; }
00096
00098 T dotProduct(const vector3d<T>& other) const
00099 {
00100 return X*other.X + Y*other.Y + Z*other.Z;
00101 }
00102
00104
00105 T getDistanceFrom(const vector3d<T>& other) const
00106 {
00107 return vector3d<T>(X - other.X, Y - other.Y, Z - other.Z).getLength();
00108 }
00109
00111
00112 T getDistanceFromSQ(const vector3d<T>& other) const
00113 {
00114 return vector3d<T>(X - other.X, Y - other.Y, Z - other.Z).getLengthSQ();
00115 }
00116
00118
00120 vector3d<T> crossProduct(const vector3d<T>& p) const
00121 {
00122 return vector3d<T>(Y * p.Z - Z * p.Y, Z * p.X - X * p.Z, X * p.Y - Y * p.X);
00123 }
00124
00126
00130 bool isBetweenPoints(const vector3d<T>& begin, const vector3d<T>& end) const
00131 {
00132 const T f = (end - begin).getLengthSQ();
00133 return getDistanceFromSQ(begin) <= f &&
00134 getDistanceFromSQ(end) <= f;
00135 }
00136
00138
00141 vector3d<T>& normalize()
00142 {
00143 f64 length = X*X + Y*Y + Z*Z;
00144 if (core::equals(length, 0.0))
00145 return *this;
00146 length = core::reciprocal_squareroot(length);
00147
00148 X = (T)(X * length);
00149 Y = (T)(Y * length);
00150 Z = (T)(Z * length);
00151 return *this;
00152 }
00153
00155 vector3d<T>& setLength(T newlength)
00156 {
00157 normalize();
00158 return (*this *= newlength);
00159 }
00160
00162 vector3d<T>& invert()
00163 {
00164 X *= -1.0f;
00165 Y *= -1.0f;
00166 Z *= -1.0f;
00167 return *this;
00168 }
00169
00171
00173 void rotateXZBy(f64 degrees, const vector3d<T>& center=vector3d<T>())
00174 {
00175 degrees *= DEGTORAD64;
00176 f64 cs = cos(degrees);
00177 f64 sn = sin(degrees);
00178 X -= center.X;
00179 Z -= center.Z;
00180 set((T)(X*cs - Z*sn), Y, (T)(X*sn + Z*cs));
00181 X += center.X;
00182 Z += center.Z;
00183 }
00184
00186
00188 void rotateXYBy(f64 degrees, const vector3d<T>& center=vector3d<T>())
00189 {
00190 degrees *= DEGTORAD64;
00191 f64 cs = cos(degrees);
00192 f64 sn = sin(degrees);
00193 X -= center.X;
00194 Y -= center.Y;
00195 set((T)(X*cs - Y*sn), (T)(X*sn + Y*cs), Z);
00196 X += center.X;
00197 Y += center.Y;
00198 }
00199
00201
00203 void rotateYZBy(f64 degrees, const vector3d<T>& center=vector3d<T>())
00204 {
00205 degrees *= DEGTORAD64;
00206 f64 cs = cos(degrees);
00207 f64 sn = sin(degrees);
00208 Z -= center.Z;
00209 Y -= center.Y;
00210 set(X, (T)(Y*cs - Z*sn), (T)(Y*sn + Z*cs));
00211 Z += center.Z;
00212 Y += center.Y;
00213 }
00214
00216
00220 vector3d<T> getInterpolated(const vector3d<T>& other, f64 d) const
00221 {
00222 const f64 inv = 1.0 - d;
00223 return vector3d<T>((T)(other.X*inv + X*d), (T)(other.Y*inv + Y*d), (T)(other.Z*inv + Z*d));
00224 }
00225
00227
00232 vector3d<T> getInterpolated_quadratic(const vector3d<T>& v2, const vector3d<T>& v3, f64 d) const
00233 {
00234
00235 const f64 inv = (T) 1.0 - d;
00236 const f64 mul0 = inv * inv;
00237 const f64 mul1 = (T) 2.0 * d * inv;
00238 const f64 mul2 = d * d;
00239
00240 return vector3d<T> ((T)(X * mul0 + v2.X * mul1 + v3.X * mul2),
00241 (T)(Y * mul0 + v2.Y * mul1 + v3.Y * mul2),
00242 (T)(Z * mul0 + v2.Z * mul1 + v3.Z * mul2));
00243 }
00244
00246
00251 vector3d<T>& interpolate(const vector3d<T>& a, const vector3d<T>& b, f64 d)
00252 {
00253 X = (T)((f64)b.X + ( ( a.X - b.X ) * d ));
00254 Y = (T)((f64)b.Y + ( ( a.Y - b.Y ) * d ));
00255 Z = (T)((f64)b.Z + ( ( a.Z - b.Z ) * d ));
00256 return *this;
00257 }
00258
00259
00261
00274 vector3d<T> getHorizontalAngle() const
00275 {
00276 vector3d<T> angle;
00277
00278 angle.Y = (T)(atan2(X, Z) * (T) RADTODEG64);
00279
00280 if (angle.Y < 0.0f)
00281 angle.Y += 360.0f;
00282 if (angle.Y >= 360.0f)
00283 angle.Y -= 360.0f;
00284
00285 const T z1 = core::squareroot(X*X + Z*Z);
00286
00287 angle.X = (T)(atan2(z1, (T)Y) * (T) RADTODEG64 - (T) 90.0);
00288
00289 if (angle.X < (T) 0.0)
00290 angle.X += (T) 360.0;
00291 if (angle.X >= (T) 360.0)
00292 angle.X -= (T) 360.0;
00293
00294 return angle;
00295 }
00296
00298
00305 vector3d<T> rotationToDirection(const vector3d<T> & forwards = vector3d<T>(0, 0, 1)) const
00306 {
00307 const f64 cr = cos( core::DEGTORAD64 * X );
00308 const f64 sr = sin( core::DEGTORAD64 * X );
00309 const f64 cp = cos( core::DEGTORAD64 * Y );
00310 const f64 sp = sin( core::DEGTORAD64 * Y );
00311 const f64 cy = cos( core::DEGTORAD64 * Z );
00312 const f64 sy = sin( core::DEGTORAD64 * Z );
00313
00314 const f64 srsp = sr*sp;
00315 const f64 crsp = cr*sp;
00316
00317 const f64 pseudoMatrix[] = {
00318 ( cp*cy ), ( cp*sy ), ( -sp ),
00319 ( srsp*cy-cr*sy ), ( srsp*sy+cr*cy ), ( sr*cp ),
00320 ( crsp*cy+sr*sy ), ( crsp*sy-sr*cy ), ( cr*cp )};
00321
00322 return vector3d<T>(
00323 (T)(forwards.X * pseudoMatrix[0] +
00324 forwards.Y * pseudoMatrix[3] +
00325 forwards.Z * pseudoMatrix[6]),
00326 (T)(forwards.X * pseudoMatrix[1] +
00327 forwards.Y * pseudoMatrix[4] +
00328 forwards.Z * pseudoMatrix[7]),
00329 (T)(forwards.X * pseudoMatrix[2] +
00330 forwards.Y * pseudoMatrix[5] +
00331 forwards.Z * pseudoMatrix[8]));
00332 }
00333
00335
00337 void getAs4Values(T* array) const
00338 {
00339 array[0] = X;
00340 array[1] = Y;
00341 array[2] = Z;
00342 array[3] = 0;
00343 }
00344
00346 T X;
00347
00349 T Y;
00350
00352 T Z;
00353 };
00354
00355
00357 typedef vector3d<f32> vector3df;
00358
00360 typedef vector3d<s32> vector3di;
00361
00363 template<class S, class T>
00364 vector3d<T> operator*(const S scalar, const vector3d<T>& vector) { return vector*scalar; }
00365
00366 }
00367 }
00368
00369 #endif
00370