AUTHORS:
EXAMPLES: Recall the example from abelian monoids.
sage: F = FreeAbelianMonoid(5,names = list("abcde"))
sage: (a,b,c,d,e) = F.gens()
sage: a*b^2*e*d
a*b^2*d*e
sage: x = b^2*e*d*a^7
sage: x
a^7*b^2*d*e
sage: x.list()
[7, 2, 0, 1, 1]
It is important to note that lists are mutable and the returned list is not a copy. As a result, reassignment of an element of the list changes the object.
sage: x.list()[0] = 0
sage: x
b^2*d*e
Create the element x of the FreeAbelianMonoid F.
EXAMPLES:
sage: F = FreeAbelianMonoid(5, 'abcde')
sage: F
Free abelian monoid on 5 generators (a, b, c, d, e)
sage: F(1)
1
sage: a, b, c, d, e = F.gens()
sage: a^2 * b^3 * a^2 * b^4
a^4*b^7
sage: F = FreeAbelianMonoid(5, 'abcde')
sage: a, b, c, d, e = F.gens()
sage: a in F
True
sage: a*b in F
True
Raises self to the power of n.
AUTHORS:
EXAMPLES:
sage: F = FreeAbelianMonoid(5,names = list("abcde"))
sage: (a,b,c,d,e) = F.gens()
sage: x = a*b^2*e*d; x
a*b^2*d*e
sage: x^3
a^3*b^6*d^3*e^3
sage: x^0
1
Return (a reference to) the underlying list used to represent this
element. If this is a monoid in an abelian monoid on
generators, then this is a list of nonnegative integers of length
.
EXAMPLES:
sage: F = FreeAbelianMonoid(5, 'abcde')
sage: (a, b, c, d, e) = F.gens()
sage: a.list()
[1, 0, 0, 0, 0]