Set of homomorphisms between two schemes

sage.schemes.generic.homset.SchemeHomset(R, S, cat=None, check=True)
class sage.schemes.generic.homset.SchemeHomsetModule_abelian_variety_coordinates_field(X, S, cat=None, check=True)
__init__(X, S, cat=None, check=True)

EXAMPLES: The bug reported at trac #1785 is fixed:

sage: K.<a> = NumberField(x^2 + x - (3^3-3))
sage: E = EllipticCurve('37a')
sage: X = E(K)
sage: X
Abelian group of points on Elliptic Curve defined by y^2 + y = x^3 + (-1)*x over Number Field in a with defining polynomial x^2 + x - 24
sage: P = X([3,a])
sage: P
(3 : a : 1)
sage: P in E
False
sage: P in E.base_extend(K)
True
_repr_()
base_extend(R)
class sage.schemes.generic.homset.SchemeHomset_affine_coordinates(X, S)

Set of points on X defined over the base ring of X, and given by explicit tuples.

__call__(*v)
points(B=0)
class sage.schemes.generic.homset.SchemeHomset_coordinates(X, S)

Set of points on X defined over the base ring of X, and given by explicit tuples.

__init__(X, S)
_repr_()
value_ring()
Returns S for a homset X(T) where T = Spec(S).
class sage.schemes.generic.homset.SchemeHomset_generic(X, Y, cat=None, check=True, base=Integer Ring)
__call__(x, check=True)

EXAMPLES:

sage: f = ZZ.hom(QQ); f
Ring Coercion morphism:
  From: Integer Ring
  To:   Rational Field
sage: H = Hom(Spec(QQ,ZZ), Spec(ZZ)); H
Set of points of Spectrum of Integer Ring defined over Rational Field
sage: phi = H(f); phi
Affine Scheme morphism:
  From: Spectrum of Rational Field
  To:   Spectrum of Integer Ring
  Defn: Ring Coercion morphism:
          From: Integer Ring
          To:   Rational Field
__init__(X, Y, cat=None, check=True, base=Integer Ring)
_repr_()
has_coerce_map_from_impl(S)
natural_map()
class sage.schemes.generic.homset.SchemeHomset_projective_coordinates_field(X, S)

Set of points on X defined over the base ring of X, and given by explicit tuples.

__call__(*v)
points(B=0)
class sage.schemes.generic.homset.SchemeHomset_projective_coordinates_ring(X, S)

Set of points on X defined over the base ring of X, and given by explicit tuples.

__call__(*v)
points(B=0)
class sage.schemes.generic.homset.SchemeHomset_spec(X, Y, cat=None, check=True, base=Integer Ring)
sage.schemes.generic.homset.enum_affine_finite_field(X)
sage.schemes.generic.homset.enum_affine_rational_field(X, B)
sage.schemes.generic.homset.enum_projective_finite_field(X)
sage.schemes.generic.homset.enum_projective_rational_field(X, B)
sage.schemes.generic.homset.is_SchemeHomset(H)

Previous topic

Hypersurfaces in affine and projective space

Next topic

Scheme morphism

This Page