
GAP
Release 4.4.12

17 December 2008

Reference Manual

The GAP Group

http://www.gap-system.org

Acknowledgement

We would like to thank the many people who have made contributions of

various kinds to the development of GAP since 1986, in particular:

Isabel M. Araújo, Robert Arthur, Hans Ulrich Besche, Thomas Bischops,

Oliver Bonten, Thomas Breuer, Frank Celler, Gene Cooperman, Bettina Eick,

Volkmar Felsch, Franz Gähler, Greg Gamble, Willem de Graaf,

Burkhard Höfling, Jens Hollmann, Derek Holt, Erzsébet Horváth,

Alexander Hulpke, Ansgar Kaup, Susanne Keitemeier, Steve Linton,

Frank Lübeck, Bohdan Majewski, Johannes Meier, Thomas Merkwitz,

Wolfgang Merkwitz, James Mitchell, Jürgen Mnich, Robert F. Morse,

Scott Murray, Joachim Neubüser, Max Neunhöffer,

Werner Nickel, Alice Niemeyer, Dima Pasechnik, Götz Pfeiffer,

Udo Polis, Ferenc Rákóczi, Sarah Rees, Edmund Robertson,

Colva Roney-Dougal, Ute Schiffer, Jack Schmidt, Martin Schönert,

Ákos Seress, Andrew Solomon, Heiko Theißen, Rob Wainwright,

Alex Wegner, Chris Wensley and Charles Wright.

The following list gives the authors, indicated by A, who designed the code in the first place as well as the
current maintainers, indicated by M of the various modules of which GAP is composed.

Since the process of modularization was started only recently, there might be omissions both in scope and
in contributors. The compilers of the manual apologize for any such errors and promise to rectify them in
future editions.

Kernel
Frank Celler (A), Steve Linton (AM), Frank Lübeck (AM), Werner Nickel (AM), Martin Schönert (A)

Automorphism groups of finite pc groups
Bettina Eick (A), Werner Nickel (M)

Binary Relations
Robert Morse (AM), Andrew Solomon (A)

Characters and Character Degrees of certain solvable groups
Hans Ulrich Besche (A), Thomas Breuer (AM)

Classes in nonsolvable groups
Alexander Hulpke (AM)

4 Acknowledgement

Classical Groups
Thomas Breuer (AM), Frank Celler (A), Stefan Kohl (AM), Frank Lübeck (AM), Heiko Theißen (A)

Congruences of magmas, semigroups and monoids
Robert Morse (AM), Andrew Solomon (A)

Cosets and Double Cosets
Alexander Hulpke (AM)

Cyclotomics
Thomas Breuer (AM)

Dixon-Schneider Algorithm
Alexander Hulpke (AM)

Documentation Utilities
Frank Celler (A), Heiko Theißen (A), Alexander Hulpke (A), Willem de Graaf (A), Steve Linton (A),
Werner Nickel (A), Greg Gamble (AM)

Factor groups
Alexander Hulpke (AM)

Finitely presented groups
Volkmar Felsch (A), Alexander Hulpke (AM), Martin Schoenert (A)

Finitely presented monoids and semigroups
Isabel Araújo (A), Derek Holt (A), Alexander Hulpke (A), James Mitchell (M), Götz Pfeiffer (A),
Andrew Solomon (A)

GAP for MacOS
Burkhard Höfling (AM)

Group actions
Heiko Theißen (A) and Alexander Hulpke (AM)

Homomorphism search
Alexander Hulpke (AM)

Homomorphisms for finitely presented groups
Alexander Hulpke (AM)

Identification of Galois groups
Alexander Hulpke (AM)

Intersection of subgroups of finite pc groups
Frank Celler (A), Bettina Eick (A), Werner Nickel (M)

Irreducible Modules over finite fields for finite pc groups
Bettina Eick (AM)

Isomorphism testing with random methods
Hans Ulrich Besche (AM), Bettina Eick (AM)

Lie algebras
Thomas Breuer (A), Craig Struble (A), Juergen Wisliceny (A), Willem A. de Graaf (AM)

Monomiality Questions
Thomas Breuer (AM), Erzsébet Horváth (A)

Multiplier and Schur cover
Werner Nickel (AM), Alexander Hulpke (AM)

One-Cohomology and Complements
Frank Celler (A) and Alexander Hulpke (AM)

Acknowledgement 5

Partition Backtrack algorithm
Heiko Theißen (A), Alexander Hulpke (M)

Permutation group composition series
Ákos Seress (AM)

Permutation group homomorphisms
Ákos Seress (AM), Heiko Theißen (A), Alexander Hulpke (M)

Permutation Group Pcgs
Heiko Theißen (A), Alexander Hulpke (M)

Possible Permutation Characters
Thomas Breuer (AM), Götz Pfeiffer (A)

Possible Class Fusions, Possible Power Maps Thomas Breuer (AM)
Primitive groups library

Heiko Theißen (A), Colva Roney-Dougal (AM)
Properties and attributes of finite pc groups

Frank Celler (A), Bettina Eick (A), Werner Nickel (M)
Random Schreier-Sims

Ákos Seress (AM)
Rational Functions

Frank Celler (A) and Alexander Hulpke (AM)
Semigroup relations

Isabel Araujo (A), Robert F. Morse (AM), Andrew Solomon (A)
Special Pcgs for finite pc groups

Bettina Eick (AM)
Stabilizer Chains

Ákos Seress (AM), Heiko Theißen (A), Alexander Hulpke (M)
Strings and Characters

Martin Schönert (A), Frank Celler (A), Thomas Breuer (A), Frank Lübeck (AM)
Structure Descriptions for Finite Groups

Stefan Kohl (AM), Markus Püschel(A), Sebastian Egner(A)
Subgroup lattice

Martin Schönert (A), Alexander Hulpke (AM)
Subgroup lattice for solvable groups

Alexander Hulpke (AM)
Subgroup presentations

Volkmar Felsch (A), Werner Nickel (M)
The Help System

Frank Celler (A), Frank Lübeck (AM)
Tietze transformations

Volkmar Felsch (A), Werner Nickel (M)
Transformation semigroups

Isabel Araujo (A), Robert Arthur (A), Robert F. Morse (AM), Andrew Solomon (A)
Transitive groups library

Alexander Hulpke (AM)
Two-cohomology and extensions of finite pc groups

Bettina Eick (AM)

Contents

Copyright Notice 19

1 About the GAP Reference
Manual 20

1.1 Manual Conventions 20

1.2 Credit 21

2 The Help System 22

2.1 Invoking the Help 22

2.2 Browsing through the Sections . . 22

2.3 Changing the Help Viewer 23

2.4 The Pager Command 25

3 Running GAP 27

3.1 Command Line Options 27

3.2 Advanced Features of GAP . . . 30

3.3 Running GAP under MacOS . . . 31

3.4 The .gaprc file 33

3.5 Completion Files 34

3.6 Testing for the System Architecture 35

3.7 The Compiler 35

3.8 Suitability for Compilation . . . 36

3.9 Compiling Library Code 36

3.10 CRC Numbers 37

3.11 Saving and Loading a Workspace . 37

3.12 Coloring the Prompt and Input . . 38

4 The Programming Language 39

4.1 Language Overview 39

4.2 Lexical Structure 40

4.3 Symbols 40

4.4 Whitespaces 41

4.5 Keywords 41

4.6 Identifiers 42

4.7 Expressions 42

4.8 Variables 43

4.9 More About Global Variables . . 44

4.10 Function Calls 46

4.11 Comparisons 47

4.12 Arithmetic Operators 48

4.13 Statements 49

4.14 Assignments 50

4.15 Procedure Calls 50

4.16 If 51

4.17 While 52

4.18 Repeat 52

4.19 For 53

4.20 Break 55

4.21 Continue 55

4.22 Function 55

4.23 Return 58

4.24 The Syntax in BNF 59

5 Functions 61

5.1 Information about a function . . . 61

5.2 Calling a function with a list argument
that is interpreted as several arguments 62

Contents 7

5.3 Functions that do nothing 63

5.4 Function Types 63

6 Main Loop and Break Loop 64

6.1 Main Loop 64

6.2 Special Rules for Input Lines . . . 65

6.3 View and Print 66

6.4 Break Loops 67

6.5 Variable Access in a Break Loop . 71

6.6 Error 73

6.7 ErrorCount 73

6.8 Leaving GAP 73

6.9 Line Editing 74

6.10 Editing Files 75

6.11 Editor Support 75

6.12 SizeScreen 76

7 Debugging and Profiling Facilities 77

7.1 Recovery from NoMethodFound-Errors 77

7.2 ApplicableMethod 78

7.3 Tracing Methods 79

7.4 Info Functions 80

7.5 Assertions 81

7.6 Timing 81

7.7 Profiling 82

7.8 Information about the version used 84

7.9 Test Files 84

7.10 Debugging Recursion 85

7.11 Global Memory Information . . . 87

8 Options Stack 88

9 Files and Filenames 90

9.1 Portability 90

9.2 GAP Root Directory 90

9.3 Directories 91

9.4 Filename 92

9.5 Special Filenames 93

9.6 File Access 93

9.7 File Operations 94

10 Streams 97

10.1 Categories for Streams and the
StreamsFamily 97

10.2 Operations applicable to All Streams 98

10.3 Operations for Input Streams . . 98

10.4 Operations for Output Streams . . 101

10.5 File Streams 103

10.6 User Streams 103

10.7 String Streams 104

10.8 Input-Output Streams 104

10.9 Dummy Streams 106

10.10 Handling of Streams in the Background 106

11 Processes 107

11.1 Process 107

11.2 Exec 108

12 Objects and Elements 109

12.1 Objects 109

12.2 Elements as equivalence classes . . 109

12.3 Sets 110

12.4 Domains 110

12.5 Identical Objects 110

12.6 Mutability and Copyability . . . 111

12.7 Duplication of Objects 113

12.8 Other Operations Applicable to any
Object 114

13 Types of Objects 116

13.1 Families 116

13.2 Filters 117

13.3 Categories 118

8 Contents

13.4 Representation 120

13.5 Attributes 121

13.6 Setter and Tester for Attributes . . 122

13.7 Properties 124

13.8 Other Filters 125

13.9 Types 125

14 Integers 126

14.1 Elementary Operations for Integers 127

14.2 Quotients and Remainders . . . 129

14.3 Prime Integers and Factorization . 131

14.4 Residue Class Rings 134

14.5 Random Sources 136

15 Number Theory 138

15.1 Prime Residues 138

15.2 Primitive Roots and Discrete
Logarithms 139

15.3 Roots Modulo Integers 140

15.4 Multiplicative Arithmetic Functions 142

15.5 Continued Fractions 143

15.6 Miscellaneous 144

16 Rational Numbers 145

16.1 Elementary Operations for Rationals 145

17 Combinatorics 147

17.1 Combinatorial Numbers 147

17.2 Combinations, Arrangements and
Tuples 149

17.3 Fibonacci and Lucas Sequences . . 155

17.4 Permanent of a Matrix 156

18 Cyclotomic Numbers 157

18.1 Operations for Cyclotomics . . . 157

18.2 Infinity 160

18.3 Comparisons of Cyclotomics . . . 161

18.4 ATLAS Irrationalities 161

18.5 Galois Conjugacy of Cyclotomics . 164

18.6 Internally Represented Cyclotomics 166

19 Unknowns 168

20 Booleans 170

20.1 Fail 170

20.2 Comparisons of Booleans 170

20.3 Operations for Booleans 171

21 Lists 173

21.1 List Categories 173

21.2 Basic Operations for Lists 175

21.3 List Elements 175

21.4 List Assignment 177

21.5 IsBound and Unbind for Lists . . 179

21.6 Identical Lists 180

21.7 Duplication of Lists 181

21.8 Membership Test for Lists 183

21.9 Enlarging Internally Represented Lists 183

21.10 Comparisons of Lists 184

21.11 Arithmetic for Lists 185

21.12 Filters Controlling the Arithmetic
Behaviour of Lists 185

21.13 Additive Arithmetic for Lists . . . 187

21.14 Multiplicative Arithmetic for Lists . 188

21.15 Mutability Status and List Arithmetic 190

21.16 Finding Positions in Lists 191

21.17 Properties and Attributes for Lists . 194

21.18 Sorting Lists 196

21.19 Sorted Lists and Sets 197

21.20 Operations for Lists 199

21.21 Advanced List Manipulations . . 206

21.22 Ranges 207

21.23 Enumerators 209

22 Boolean Lists 211

Contents 9

22.1 Boolean Lists Representing Subsets 211

22.2 Set Operations via Boolean Lists . 212

22.3 Function that Modify Boolean Lists 213

22.4 More about Boolean Lists 214

23 Row Vectors 215

23.1 Operators for Row Vectors . . . 215

23.2 Row Vectors over Finite Fields . . 217

23.3 Coefficient List Arithmetic . . . 218

23.4 Shifting and Trimming Coefficient Lists 219

23.5 Functions for Coding Theory . . . 220

23.6 Vectors as coefficients of polynomials 220

24 Matrices 223

24.1 Categories of Matrices 223

24.2 Operators for Matrices 224

24.3 Properties and Attributes of Matrices 226

24.4 Matrix Constructions 228

24.5 Random Matrices 230

24.6 Matrices Representing Linear Equations
and the Gaussian Algorithm . . . 230

24.7 Eigenvectors and eigenvalues . . . 231

24.8 Elementary Divisors 232

24.9 Echelonized Matrices 232

24.10 Matrices as Basis of a Row Space . 234

24.11 Triangular Matrices 235

24.12 Matrices as Linear Mappings . . . 235

24.13 Matrices over Finite Fields . . . 237

24.14 Special Multiplication Algorithms for
Matrices over GF(2) 239

24.15 Block Matrices 240

25 Integral matrices and lattices 241

25.1 Linear equations over the integers and
Integral Matrices 241

25.2 Normal Forms over the Integers . . 242

25.3 Determinant of an integer matrix . 245

25.4 Decompositions 245

25.5 Lattice Reduction 246

25.6 Orthogonal Embeddings 248

26 Strings and Characters 250

26.1 Special Characters 252

26.2 Internally Represented Strings . . 253

26.3 Recognizing Characters 254

26.4 Comparisons of Strings 254

26.5 Operations to Produce or Manipulate
Strings 255

26.6 Character Conversion 258

26.7 Operations to Evaluate Strings . . 258

26.8 Calendar Arithmetic 259

27 Records 262

27.1 Accessing Record Elements . . . 263

27.2 Record Assignment 263

27.3 Identical Records 264

27.4 Comparisons of Records 265

27.5 IsBound and Unbind for Records . 266

27.6 Record Access Operations 267

28 Collections 268

28.1 Collection Families 268

28.2 Lists and Collections 269

28.3 Attributes and Properties for
Collections 273

28.4 Operations for Collections 275

28.5 Membership Test for Collections . 277

28.6 Random Elements 277

28.7 Iterators 278

29 Orderings 281

29.1 Building new orderings 281

29.2 Properties and basic functionality . 282

10 Contents

29.3 Orderings on families of associative
words 283

30 Domains and their Elements 287

30.1 Operational Structure of Domains . 287

30.2 Equality and Comparison of Domains 288

30.3 Constructing Domains 288

30.4 Changing the Structure 289

30.5 Changing the Representation . . . 290

30.6 Domain Categories 290

30.7 Parents 291

30.8 Constructing Subdomains 292

30.9 Operations for Domains 292

30.10 Attributes and Properties of Elements 293

30.11 Comparison Operations for Elements 296

30.12 Arithmetic Operations for Elements 297

30.13 Relations Between Domains . . . 298

30.14 Useful Categories of Elements . . 300

30.15 Useful Categories for all Elements of a
Family 302

31 Mappings 304

31.1 Creating Mappings 305

31.2 Properties and Attributes of (General)
Mappings 306

31.3 Images under Mappings 307

31.4 Preimages under Mappings . . . 308

31.5 Arithmetic Operations for General
Mappings 310

31.6 Mappings which are Compatible with
Algebraic Structures 310

31.7 Magma Homomorphisms 310

31.8 Mappings that Respect Multiplication 311

31.9 Mappings that Respect Addition . 312

31.10 Linear Mappings 312

31.11 Ring Homomorphisms 313

31.12 General Mappings 313

31.13 Technical Matters Concerning General
Mappings 313

32 Relations 315

32.1 General Binary Relations 315

32.2 Properties and Attributes of Binary
Relations 315

32.3 Binary Relations on Points . . . 317

32.4 Closure Operations and Other
Constructors 317

32.5 Equivalence Relations 318

32.6 Attributes of and Operations on
Equivalence Relations 318

32.7 Equivalence Classes 319

33 Magmas 320

33.1 Magma Categories 320

33.2 Magma Generation 321

33.3 Magmas Defined by Multiplication
Tables 322

33.4 Attributes and Properties for Magmas 323

34 Words 326

34.1 Categories of Words and Nonassociative
Words 326

34.2 Comparison of Words 328

34.3 Operations for Words 328

34.4 Free Magmas 329

34.5 External Representation for
Nonassociative Words 330

35 Associative Words 331

35.1 Categories of Associative Words . . 331

35.2 Free Groups, Monoids and Semigroups 332

35.3 Comparison of Associative Words . 334

35.4 Operations for Associative Words . 335

35.5 Operations for Associative Words by
their Syllables 336

Contents 11

35.6 Representations for Associative Words 337

35.7 The External Representation for
Associative Words 339

35.8 Straight Line Programs 339

35.9 Straight Line Program Elements . 343

36 Rewriting Systems 345

36.1 Operations on rewriting systems . 345

36.2 Operations on elements of the algebra 346

36.3 Properties of rewriting systems . . 347

36.4 Rewriting in Groups and Monoids . 347

36.5 Developing rewriting systems . . . 348

37 Groups 350

37.1 Group Elements 350

37.2 Creating Groups 350

37.3 Subgroups 352

37.4 Closures of (Sub)groups 354

37.5 Expressing Group Elements as Words in
Generators 354

37.6 Structure Descriptions 355

37.7 Cosets 357

37.8 Transversals 358

37.9 Double Cosets 359

37.10 Conjugacy Classes 360

37.11 Normal Structure 362

37.12 Specific and Parametrized Subgroups 363

37.13 Sylow Subgroups and Hall Subgroups 365

37.14 Subgroups characterized by prime
powers 366

37.15 Group Properties 367

37.16 Numerical Group Attributes . . . 369

37.17 Subgroup Series 370

37.18 Factor Groups 373

37.19 Sets of Subgroups 374

37.20 Subgroup Lattice 375

37.21 Specific Methods for Subgroup Lattice
Computations 377

37.22 Special Generating Sets 380

37.23 1-Cohomology 380

37.24 Schur Covers and Multipliers . . . 383

37.25 Tests for the Availability of Methods 384

38 Group Homomorphisms 385

38.1 Creating Group Homomorphisms . 385

38.2 Operations for Group Homomorphisms 387

38.3 Efficiency of Homomorphisms . . 388

38.4 Homomorphism for very large groups 389

38.5 Nice Monomorphisms 390

38.6 Group Automorphisms 390

38.7 Groups of Automorphisms 392

38.8 Calculating with Group
Automorphisms 393

38.9 Searching for Homomorphisms . . 394

38.10 Representations for Group
Homomorphisms 396

39 Group Actions 397

39.1 About Group Actions 397

39.2 Basic Actions 398

39.3 Orbits 400

39.4 Stabilizers 402

39.5 Elements with Prescribed Images . 403

39.6 The Permutation Image of an Action 403

39.7 Action of a group on itself 405

39.8 Permutations Induced by Elements and
Cycles 406

39.9 Tests for Actions 407

39.10 Block Systems 408

39.11 External Sets 409

40 Permutations 412

12 Contents

40.1 Comparison of Permutations . . . 413

40.2 Moved Points of Permutations . . 413

40.3 Sign and Cycle Structure 414

40.4 Creating Permutations 415

41 Permutation Groups 416

41.1 The Natural Action 416

41.2 Computing a Permutation
Representation 417

41.3 Symmetric and Alternating Groups 417

41.4 Primitive Groups 418

41.5 Stabilizer Chains 419

41.6 Randomized Methods for Permutation
Groups 420

41.7 Construction of Stabilizer Chains . 422

41.8 Stabilizer Chain Records 423

41.9 Operations for Stabilizer Chains . 424

41.10 Low Level Routines to Modify and
Create Stabilizer Chains 426

41.11 Backtrack 427

41.12 Working with large degree permutation
groups 428

42 Matrix Groups 430

42.1 Attributes and Properties for Matrix
Groups 430

42.2 Actions of Matrix Groups 431

42.3 GL and SL 431

42.4 Invariant Forms 432

42.5 Matrix Groups in Characteristic 0 . 433

42.6 Acting OnRight and OnLeft . . . 435

43 Polycyclic Groups 436

43.1 Polycyclic Generating Systems . . 436

43.2 Computing a Pcgs 437

43.3 Defining a Pcgs Yourself 437

43.4 Elementary Operations for a Pcgs . 438

43.5 Elementary Operations for a Pcgs and
an Element 439

43.6 Exponents of Special Products . . 440

43.7 Subgroups of Polycyclic Groups -
Induced Pcgs 441

43.8 Subgroups of Polycyclic Groups -
Canonical Pcgs 442

43.9 Factor Groups of Polycyclic Groups -
Modulo Pcgs 443

43.10 Factor Groups of Polycyclic Groups in
their Own Representation 444

43.11 Pcgs and Normal Series 445

43.12 Sum and Intersection of Pcgs . . . 447

43.13 Special Pcgs 448

43.14 Action on Subfactors Defined by a Pcgs 450

43.15 Orbit Stabilizer Methods for Polycyclic
Groups 451

43.16 Operations which have Special Methods
for Groups with Pcgs 451

43.17 Conjugacy Classes in Solvable Groups 451

44 Pc Groups 453

44.1 The family pcgs 454

44.2 Elements of pc groups 454

44.3 Pc groups versus fp groups . . . 455

44.4 Constructing Pc Groups 455

44.5 Computing Pc Groups 457

44.6 Saving a Pc Group 458

44.7 Operations for Pc Groups 458

44.8 2-Cohomology and Extensions . . 459

44.9 Coding a Pc Presentation 462

44.10 Random Isomorphism Testing . . 462

45 Finitely Presented Groups 463

45.1 Creating Finitely Presented Groups 464

45.2 Comparison of Elements of Finitely
Presented Groups 465

Contents 13

45.3 Preimages in the Free Group . . . 465

45.4 Operations for Finitely Presented
Groups 466

45.5 Coset Tables and Coset Enumeration 467

45.6 Standardization of coset tables . . 470

45.7 Coset tables for subgroups in the whole
group 471

45.8 Augmented Coset Tables and Rewriting 471

45.9 Low Index Subgroups 472

45.10 Converting Groups to Finitely
Presented Groups 473

45.11 New Presentations and Presentations
for Subgroups 475

45.12 Preimages under Homomorphisms from
an FpGroup 476

45.13 Quotient Methods 477

45.14 Abelian Invariants for Subgroups . 479

45.15 Testing Finiteness of Finitely Presented
Groups 480

46 Presentations and Tietze
Transformations 482

46.1 Creating Presentations 482

46.2 SimplifiedFpGroup 484

46.3 Subgroup Presentations 485

46.4 Relators in a Presentation 488

46.5 Printing Presentations 488

46.6 Changing Presentations 490

46.7 Tietze Transformations 490

46.8 Elementary Tietze Transformations 493

46.9 Tietze Transformations that introduce
new Generators 495

46.10 Tracing generator images through
Tietze transformations 498

46.11 DecodeTree 500

46.12 Tietze Options 503

47 Group Products 505

47.1 Direct Products 505

47.2 Semidirect Products 506

47.3 Subdirect Products 508

47.4 Wreath Products 508

47.5 Free Products 510

47.6 Embeddings and Projections for Group
Products 510

48 Group Libraries 511

48.1 Basic Groups 511

48.2 Classical Groups 513

48.3 Conjugacy Classes in Classical Groups 517

48.4 Constructors for Basic Groups . . 517

48.5 Selection Functions 518

48.6 Transitive Permutation Groups . . 519

48.7 Small Groups 520

48.8 Finite Perfect Groups 523

48.9 Primitive Permutation Groups . . 527

48.10 Index numbers of primitive groups . 529

48.11 Irreducible Solvable Matrix Groups 530

48.12 Irreducible Maximal Finite Integral
Matrix Groups 531

49 Semigroups 539

49.1 Making transformation semigroups 541

49.2 Ideals of semigroups 541

49.3 Congruences for semigroups . . . 542

49.4 Quotients 542

49.5 Green’s Relations 542

49.6 Rees Matrix Semigroups 544

50 Monoids 546

51 Finitely Presented Semigroups
and Monoids 548

51.1 Creating Finitely Presented Semigroups 550

14 Contents

51.2 Comparison of Elements of Finitely
Presented Semigroups 551

51.3 Preimages in the Free Semigroup . 551

51.4 Finitely presented monoids . . . 552

51.5 Rewriting Systems and the
Knuth-Bendix Procedure 553

51.6 Todd-Coxeter Procedure 554

52 Transformations 555

53 Additive Magmas (preliminary) 558

53.1 (Near-)Additive Magma Categories 558

53.2 (Near-)Additive Magma Generation 559

53.3 Attributes and Properties for
(Near-)Additive Magmas 560

53.4 Operations for (Near-)Additive
Magmas 561

54 Rings 562

54.1 Generating Rings 562

54.2 Ideals in Rings 564

54.3 Rings With One 566

54.4 Properties of Rings 567

54.5 Units and Factorizations 568

54.6 Euclidean Rings 570

54.7 Gcd and Lcm 571

55 Modules (preliminary) 574

55.1 Generating modules 574

55.2 Submodules 575

55.3 Free Modules 576

56 Fields and Division Rings 578

56.1 Generating Fields 578

56.2 Subfields of Fields 580

56.3 Galois Action 580

57 Finite Fields 584

57.1 Finite Field Elements 584

57.2 Operations for Finite Field Elements 586

57.3 Creating Finite Fields 587

57.4 FrobeniusAutomorphism 589

57.5 Conway Polynomials 589

57.6 Printing, Viewing and Displaying Finite
Field Elements 590

58 Abelian Number Fields 592

58.1 Construction of Abelian Number Fields 592

58.2 Operations for Abelian Number Fields 593

58.3 Integral Bases of Abelian Number
Fields 595

58.4 Galois Groups of Abelian Number
Fields 597

58.5 Gaussians 598

59 Vector Spaces 599

59.1 Constructing Vector Spaces . . . 599

59.2 Operations and Attributes for Vector
Spaces 600

59.3 Domains of Subspaces of Vector Spaces 601

59.4 Bases of Vector Spaces 601

59.5 Operations for Vector Space Bases . 603

59.6 Operations for Special Kinds of Bases 605

59.7 Mutable Bases 606

59.8 Row and Matrix Spaces 607

59.9 Vector Space Homomorphisms . . 610

59.10 Vector Spaces Handled By Nice Bases 612

59.11 How to Implement New Kinds of Vector
Spaces 613

60 Algebras 615

60.1 Constructing Algebras by Generators 615

60.2 Constructing Algebras as Free Algebras 616

60.3 Constructing Algebras by Structure
Constants 617

60.4 Some Special Algebras 619

60.5 Subalgebras 620

Contents 15

60.6 Ideals 621

60.7 Categories and Properties of Algebras 622

60.8 Attributes and Operations for Algebras 623

60.9 Homomorphisms of Algebras . . . 629

60.10 Representations of Algebras . . . 632

61 Lie Algebras 640

61.1 Lie objects 640

61.2 Constructing Lie algebras 641

61.3 Distinguished Subalgebras 643

61.4 Series of Ideals 644

61.5 Properties of a Lie Algebra . . . 645

61.6 Direct Sum Decompositions . . . 646

61.7 Semisimple Lie Algebras and Root
Systems 646

61.8 Restricted Lie algebras 650

61.9 The Adjoint Representation . . . 652

61.10 Universal Enveloping Algebras . . 653

61.11 Finitely Presented Lie Algebras . . 653

61.12 Modules over Lie Algebras and Their
Cohomology 655

61.13 Modules over Semisimple Lie Algebras 657

61.14 Tensor Products and Exterior and
Symmetric Powers 660

62 Finitely Presented Algebras 662

63 Magma Rings 663

63.1 Free Magma Rings 664

63.2 Elements of Free Magma Rings . . 665

63.3 Natural Embeddings related to Magma
Rings 665

63.4 Magma Rings modulo Relations . . 666

63.5 Magma Rings modulo the Span of a
Zero Element 667

63.6 Technical Details about the
Implementation of Magma Rings . 667

64 Polynomials and Rational
Functions 669

64.1 Indeterminates 669

64.2 Operations for Rational Functions . 671

64.3 Comparison of Rational Functions . 671

64.4 Properties and Attributes of Rational
Functions 672

64.5 Univariate Polynomials 674

64.6 Polynomials as Univariate Polynomials
in one Indeterminate 675

64.7 Multivariate Polynomials 677

64.8 Minimal Polynomials 677

64.9 Cyclotomic Polynomials 677

64.10 Polynomial Factorization 678

64.11 Polynomials over the Rationals . . 678

64.12 Laurent Polynomials 680

64.13 Univariate Rational Functions . . 680

64.14 Polynomial Rings 681

64.15 Univariate Polynomial Rings . . . 683

64.16 Monomial Orderings 683

64.17 Groebner Bases 686

64.18 Rational Function Families . . . 687

64.19 The Representations of Rational
Functions 688

64.20 The Defining Attributes of Rational
Functions 689

64.21 Creation of Rational Functions . . 690

64.22 Arithmetic for External Representations
of Polynomials 691

64.23 Cancellation Tests for Rational
Functions 691

65 Algebraic extensions of fields 692

65.1 Creation of Algebraic Extensions . 692

65.2 Elements in Algebraic Extensions . 692

16 Contents

66 p-adic Numbers (preliminary) 694

66.1 Pure p-adic Numbers 694

66.2 Extensions of the p-adic Numbers . 695

67 The MeatAxe 697

67.1 MeatAxe Modules 697

67.2 Module Constructions 697

67.3 Selecting a Different MeatAxe . . 698

67.4 Accessing a Module 698

67.5 Irreducibility Tests 698

67.6 Finding Submodules 698

67.7 Induced Actions 699

67.8 Module Homomorphisms 700

67.9 Invariant Forms 700

67.10 The Smash MeatAxe 701

67.11 Smash MeatAxe Flags 702

68 Tables of Marks 703

68.1 More about Tables of Marks . . . 703

68.2 Table of Marks Objects in GAP . . 704

68.3 Constructing Tables of Marks . . 704

68.4 Printing Tables of Marks 706

68.5 Sorting Tables of Marks 707

68.6 Technical Details about Tables of
Marks 708

68.7 Attributes of Tables of Marks . . 709

68.8 Properties of Tables of Marks . . 712

68.9 Other Operations for Tables of Marks 713

68.10 Standard Generators of Groups . . 716

68.11 Accessing Subgroups via Tables of
Marks 719

68.12 The Interface between Tables of Marks
and Character Tables 721

68.13 Generic Construction of Tables of
Marks 723

68.14 The Library of Tables of Marks . . 724

69 Character Tables 725

69.1 Some Remarks about Character Theory
in GAP 725

69.2 History of Character Theory Stuff in
GAP 726

69.3 Creating Character Tables 727

69.4 Character Table Categories . . . 730

69.5 Conventions for Character Tables . 731

69.6 The Interface between Character Tables
and Groups 731

69.7 Operators for Character Tables . . 734

69.8 Attributes and Properties of Character
Tables 734

69.9 Operations Concerning Blocks . . 742

69.10 Other Operations for Character Tables 745

69.11 Printing Character Tables 748

69.12 Computing the Irreducible Characters
of a Group 751

69.13 Representations given by modules . 754

69.14 The Dixon-Schneider Algorithm . . 754

69.15 Advanced Methods for Dixon-Schneider
Calculations 755

69.16 Components of a Dixon Record . . 756

69.17 An Example of Advanced
Dixon-Schneider Calculations . . 756

69.18 Constructing Character Tables from
Others 758

69.19 Sorted Character Tables 761

69.20 Automorphisms and Equivalence of
Character Tables 763

69.21 Storing Normal Subgroup Information 765

70 Class Functions 768

70.1 Why Class Functions? 768

70.2 Basic Operations for Class Functions 770

70.3 Comparison of Class Functions . . 771

Contents 17

70.4 Arithmetic Operations for Class
Functions 772

70.5 Printing Class Functions 774

70.6 Creating Class Functions from Values
Lists 775

70.7 Creating Class Functions using Groups 776

70.8 Operations for Class Functions . . 777

70.9 Restricted and Induced Class Functions 782

70.10 Reducing Virtual Characters . . . 784

70.11 Symmetrizations of Class Functions 790

70.12 Molien Series 792

70.13 Possible Permutation Characters . 793

70.14 Computing Possible Permutation
Characters 796

70.15 Operations for Brauer Characters . 800

70.16 Domains Generated by Class Functions 801

71 Maps Concerning Character
Tables 802

71.1 Power Maps 802

71.2 Class Fusions between Character Tables 806

71.3 Parametrized Maps 811

71.4 Subroutines for the Construction of
Power Maps 819

71.5 Subroutines for the Construction of
Class Fusions 821

72 Monomiality Questions 824

72.1 Character Degrees and Derived Length 825

72.2 Primitivity of Characters 825

72.3 Testing Monomiality 827

72.4 Minimal Nonmonomial Groups . . 830

73 Installing GAP 831

73.1 Installation Overview 831

73.2 Get the Archives 832

73.3 Unpacking 832

73.4 Compilation 833

73.5 Test of the installation 834

73.6 Packages 835

73.7 Finish Installation and Cleanup . . 835

73.8 The Documentation 836

73.9 If Things Go Wrong 837

73.10 Known Problems of the Configure
Process 838

73.11 Problems on Particular Systems . . 839

73.12 Optimization and Compiler Options 839

73.13 Porting GAP 840

73.14 GAP for Macintosh OS X 841

73.15 GAP for MacOS 842

73.16 Installation of GAP for MacOS . . 842

73.17 Expert Windows installation . . . 844

73.18 Copyrights 845

74 GAP Packages 846

74.1 Installing a GAP Package 846

74.2 Loading a GAP Package 846

74.3 Functions for GAP Packages . . . 847

75 Replaced and Removed Command
Names 850

75.1 Group Actions - Name Changes . . 850

75.2 Package Interface - Obsolete Functions
and Name Changes 850

75.3 Normal Forms of Integer Matrices -
Name Changes 851

75.4 Miscellaneous Name Changes or
Removed Names 851

Bibliography 853

Index 860

Copyright Notice

Copyright c© (1987–2004) by the GAP Group,
incorporating the Copyright c© 1999, 2000 by School of Mathematical and Computational Sciences, Univer-
sity of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, Scotland
being the Copyright c© 1992 by Lehrstuhl D für Mathematik, RWTH, 52056 Aachen, Germany, transferred
to St Andrews on July 21st, 1997.
except for files in the distribution, which have an explicit different copyright statement. In particular, the
copyright of packages distributed with GAP is usually with the package authors or their institutions.

GAP is free software; you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either version 2 of the License, or (at your option)
any later version. For details, see the file GPL in the etc directory of the GAP distribution or see

http://www.gnu.org/licenses/gpl.html

If you obtain GAP please send us a short notice to that effect, e.g., an e-mail message to the address
support@gap-system.org, containing your full name and address. This allows us to keep track of the
number of GAP users.
If you publish a mathematical result that was partly obtained using GAP, please cite GAP, just as you would
cite another paper that you used (see below for sample citation). Also we would appreciate if you could
inform us about such a paper.
Specifically, please refer to

[GAP] The GAP Group, GAP --- Groups, Algorithms, and Programming,
Version 4.4.12; 2008
(http://www.gap-system.org)

GAP is distributed by us without any warranty, to the extent permitted by applicable state law. We distribute
GAP as is without warranty of any kind, either expressed or implied, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose.
The entire risk as to the quality and performance of the program is with you. Should GAP prove defective,
you assume the cost of all necessary servicing, repair or correction.
In no case unless required by applicable law will we, and/or any other party who may modify and redistribute
GAP as permitted above, be liable to you for damages, including lost profits, lost monies or other special,
incidental or consequential damages arising out of the use or inability to use GAP.
You are permitted to modify and redistribute GAP, but you are not allowed to restrict further redistribution.
That is to say proprietary modifications will not be allowed. We want all versions of GAP to remain free.
If you modify any part of GAP and redistribute it, you must supply a README document. This should
specify what modifications you made in which files. We do not want to take credit or be blamed for your
modifications.
Of course we are interested in all of your modifications. In particular we would like to see bug-fixes, improve-
ments and new functions. So again we would appreciate it if you would inform us about all modifications
you make.

1
About the GAP

Reference Manual

This is one of four parts of the GAP documentation, the others being the GAP Tutorial, a beginner’s
introduction to GAP, Programming in GAP and Extending GAP, which provide information for those
who want to write their own GAP extensions.

This manual, the GAP reference manual contains the official definitions of GAP functions. It should give
all information to someone who wants to use GAP as it is. It is not intended to be read cover-to-cover.

This manual is divided into chapters. Each chapter is divided into sections and, within each section, impor-
tant definitions are numbered. References are therefore triples.

Chapter 2 describes the help system, which provides online access to the information of the manual.
Chapter 3 gives technical advice for running GAP. Chapter 4 introduces the GAP language, while the next
chapters deal with the environment provided by GAP for the user. These are followed by the main bulk of
chapters which is devoted to various mathematical structures that GAP can handle.

Pages are numbered consecutively in each of the four manuals.

1.1 Manual Conventions

The printed manual uses different text styles for several purposes. Note that the online help may use other
symbols to express the meanings listed below.

text

Text printed in boldface is used to emphasize single words or phrases.

text

Text printed in italics is used for arguments in the descriptions of functions and for other place holders. It
means that you should not actually enter this text into GAP but replace it by appropriate text depending
on what you want to do. For example when we write that you should enter ?section to see the section with
the name section, section serves as a place holder, indicating that you can enter the name of the section
that you want to see at this place.

text

Text printed in a monospaced (all characters have the same width) typewriter font is used for names of
variables and functions and other text that you may actually enter into your computer and see on your
screen. Such text may contain place holders printed in italics as described above. For example when the
information for IsPrime says that the form of the call is IsPrime(n) this means that you should actually
enter the strings “IsPrime(” and “)”, without the quotes, but replace the n with the number (or expression)
that you want to test.

Oper(arg1, arg2[, opt]) F

starts a subsection on the command Oper that takes two arguments arg1 and arg2 and an optional third
argument opt . As in the above example, the letter F at the end of a line that starts with a little black
triangle in the left margin indicates that the command is a simple function. Other possible letters at the

Section 2. Credit 21

end of such a line are A, P, O, C, R, and V; they indicate “Attribute”, “Property”, “Operation”, “Category”,
“Representation” (see Chapter 13), or “Variable”, respectively.

In the printed manual, mathematical formulas are typeset in italics (actually math italics), and subscripts
and superscripts are actually lowered and raised.

Longer examples are usually paragraphs of their own. Everything on the lines with the prompts gap> and
>, except the prompts themselves of course, is the input you have to type; everything else is GAP’s response.
In the printed manual, examples are printed in a monospaced typewriter font.

1.2 Credit

The manual tries to give credit to designers and implementors of major parts of GAP. For many parts of the
GAP code it is impossible to give detailed credit, because over the time of its development many persons have
contributed from first ideas, even in prerunners of GAP such as CAS or SOGOS, via first implementations,
improvements, and even total reimplementations. The documentation of the code gives further details, but
again, it suffers from the same problem. We have attempted to give attributions with the different chapters
of the manual where this seemed to be possible, but we apologise for all (unavoidable) shortcomings of this
attempt.

2 The Help System

This chapter describes the GAP help system. The help system lets you read the documentation interactively.

2.1 Invoking the Help

The basic command to read GAP’s documentation from within a GAP session is as follows.

1 I ?[book:][?]topic

For an explanation and some examples see 2.8.

Note that the first question mark must appear in the first position after the gap> prompt. The search
strings book and topic are normalized in a certain way (see the end of this section for details) before the
search starts. This makes the search case insensitive and there can be arbitrary white space after the first
question mark.

When there are several manual sections that match the query a numbered list of topics is displayed. These
matches can be accessed with ?number .

There are some further specially handled commands which start with a question mark. They are explained
in section 2.2.

As default GAP shows the help sections as text in the terminal (window), page by page if the shown text
does not fit on the screen. But there are several other choices to read (other formats of) the documents:
via a viewer for dvi-files (produced by TEX) or files in Acrobat’s pdf-format or via a Web-browser. This is
explained in section 2.3.

Details of the string normalization process

Here now is precisely how the search strings book and topic are normalized before a search starts: backslashes
and double or single quotes are removed, parentheses and braces are substituted by blanks, non-ASCII
characters are considered as ISO-latin1 characters and the accented letters are substituted by their non-
accented counterpart. Finally white space is normalized.

2.2 Browsing through the Sections

Help books for GAP are organized in chapters, sections and subsections. There are a few special commands
starting with a question mark (in the first position after the gap> prompt) which allow browsing a book
section or chapter wise.

1 I ?>
I ?<

The two help commands ?< and ?> allow to browse through a whole help book. ?< displays the section
preceding the previously shown section, and ?> takes you to the section following the previously shown one.

Section 3. Changing the Help Viewer 23

2 I ?>>
I ?<<

?<< takes you back to the first section of the current chapter, which gives an overview of the sections
described in this chapter. If you are already in this section ?<< takes you to the first section of the previous
chapter. ?>> takes you to the first section of the next chapter.

3 I ?-
I ?+

GAP remembers the last few sections that you have read. ?- takes you to the one that you have read before
the current one, and displays it again. Further applications of ?- take you further back in this history. ?+
reverses this process, i.e., it takes you back to the section that you have read after the current one. It is
important to note that ?- and ?+ do not alter the history like the other help commands.

4 I ?books

This command shows a list of books which are currently known to the help system. For each book there
is a short name which is used with the book part of the basic help query and there is a long name which
hopefully tells you what this book is about.

A short name which ends in (not loaded) refers to a GAP package whose documentation is loaded but
which needs a call of LoadPackage (see 74.2.1) before you can use the described functions.

5 I ?[book:]sections
I ?[book:][chapters]

These commands show tables of content for all available, respectively the matching books.

6 I ?
I ?&

These commands redisplay the last shown help section. In the form ?& the next preferred help viewer is used
for the display (provided one has chosen several viewers), see 2.3.1 below.

2.3 Changing the Help Viewer

Books of the GAP help system can be available in several formats. Currently the following formats occur
(not all of them may be available for all books):

text
This is used for display in the terminal window in which GAP is running. Complicated mathematical
expressions may not be well readable in this format.

dvi
The standard output format of TEX. Only useful if TEX is installed on your system. Can be used
for printing a help book and onscreen reading. Some books include hyperlink information in this
format which can be useful for onscreen reading.

ps
Postscript format. Can be printed on most systems and also be used with an onscreen viewer.

pdf
Adobe’s pdf-format. Can also be used for printing and onscreen reading on most current systems
(with freely available software). Some books have hyperlink information included in this format.

HTML
The format of Web-pages. Can be used with any Web-browser. There may be hyperlink information
available which allows a convenient browsing through the book via cross-references. This format
also has the problem that complicated formulae may be not well readable since there is no syntax

24 Chapter 2. The Help System

for formulae in HTML. Some books use special symbol fonts for formulae and need an appropriate
Web-browser for correct display.

Depending on your operating system and available additional software you can use several of these formats
with GAP’s online help. This is configured with the following command.

1 I SetHelpViewer(viewer1, viewer2, ...)

This command takes an arbitrary number of arguments which must be strings describing a viewer. The
recognized viewer are explained below. A call with no arguments shows the current setting.

The first given arguments are those with higher priority. So, if a help section is available in the format
needed by viewer1 , this viewer is used. If not, availability of the format for viewer2 is checked and so on.
Recall that the command ?& displays the last seen section again but with the next possible viewer in your
list, see 2.2.6.

The viewer "screen" (see below) is always silently appended since we assume that each help book is available
in text format.

If you want to change the default setting you will probably put a call of SetHelpViewer into your .gaprc
file (see 3.4).

"screen"
This is the default setting. The help is shown in text-format using the Pager command explained
in the next section 2.4.1. (Hint: Some formatting procedures assume that your terminal displays at
least 80 characters per line, if this is not the case some sections may look very bad. Furthermore
the terminal (window) should use a fixed width font and we suggest to take one with ISO-8859-1
(also called latin1) encoding.

"firefox", "mozilla", "netscape", "konqueror"
If a book is available in HTML-format this is shown using the corresponding web-browser. How
well this works, for example by using a running instance of this browser, depends on your particular
start script of this browser. Note, that for some books the browser must be configured to use symbol
fonts.

"w3m", "lynx"
If a book is available in HTML-format this is shown using the text based w3m or lynx web-browser
inside the terminal running GAP. Formulae which use symbol fonts may be unreadable.

"mac default browser", "safari"
(for Apple Macintosh) If a book is available in HTML-format this is shown in a web-browser. The
web browser used is the program set to handle the file protocol in the Internet control panel
(System 9 and System X). For some browsers (e.g., Internet Explorer), you may have to enter the
GAP command HELP MAC PROTOCOL := "file:/"; for this to work correctly. If you wish to use
the online html version of the manual, you may use HELP EXTERNAL URL := "http://www.gap-
system.org/";. Note that HELP EXTERNAL URL := ""; switches back to the local html files. It may
be a good idea to put the relevant line in the gap.rc file (see 3.4).

"xdvi"
(on X-windows systems) If a book is available in dvi-format it is shown with the onscreen viewer
program xdvi. (Of course, xdvi and TEX must be installed on your system.) This program doesn’t
allow remote commands, so usually for each shown topic a new xdvi is launched. You can try to
compile the program GAPPATH/etc/xrmtcmd.c and to put the executable xrmtcmd into your PATH.
Then this viewer tries to reuse one running xdvi for each help book.

"xpdf"
(on X-windows systems) If a book is available in pdf-format it is shown with the onscreen viewer
program xpdf (which must be installed on your system). This is a nice program, once it is running it
is reused by GAP for the next displays of help sections. (Hint: On many systems xpdf shows a very

Section 4. The Pager Command 25

bad display quality, this is due to a wrong or missing font configuration. One needs to set certain
X-resources; for more details follow the Problems link at

http://www.foolabs.com/xpdf/

"acroread"
If a book is available in pdf-format it is shown with the onscreen viewer program acroread (which
must be available on your system). This program doesn’t allow remote commands or startup with
a given page. Therefore the page numbers you have to visit are just printed on the screen. When
you are looking at several sections of the same book, this viewer assumes that the acroread window
still exists. When you go to another book a new acroread window is launched.

"less" or "more"
This is the same as "screen" but additionally the PAGER and PAGER OPTIONS variables are set, see
the next section 2.4 for more details.

Please, send ideas for further viewer commands to support@gap-system.org.

2.4 The Pager Command

GAP contains a builtin pager which shows a text string which doesn’t fit on the screen page by page.
Its functionality is very rudimentary and self-explaining. This is because (at least under UNIX) there are
powerful external standard programs which do this job.

1 I Pager(lines)

This function can be used to display a text on screen using a pager, i.e., the text is shown page by page.

There is a default builtin pager in GAP which has very limited capabilities but should work on any system.

At least on a UNIX system one should use an external pager program like less or more. GAP assumes that
this program has a command line option +nr which starts the display of the text with line number nr.

Which pager is used can be controlled by setting the variable PAGER. The default setting is PAGER :=
"builtin"; which means that the internal pager is used.

On UNIX systems you probably want to set PAGER := "less"; or PAGER := "more";, you can do this for
example in your .gaprc file. In that case you can also tell GAP a list of standard options for the external
pager. These are specified as list of strings in the variable PAGER OPTIONS.

Example:

PAGER := "less";
PAGER_OPTIONS := ["-f", "-r", "-a", "-i", "-M", "-j2"];

The argument lines can have one of the following forms:

(1) a string (i.e., lines are separated by newline characters)

(2) a list of strings (without newline characters) which are interpreted as lines of the text to be shown

(3) a record with component .lines as in (1) or (2) and optional further components

In case (3) currently the following additional components are used:

.formatted
can be false or true. If set to true the builtin pager tries to show the text exactly as it is given
(avoiding GAPs automatic line breaking)

.start
must be a positive integer. This is interpreted as the number of the first line shown by the pager
(one may see the beginning of the text via back scrolling).

26 Chapter 2. The Help System

The Pager command is used by GAP’s help system for displaying help sections in text-format. But, of course,
it may be used for other purposes as well.

gap> s6 := SymmetricGroup(6);;
gap> words := ["This", "is", "a", "very", "stupid", "example"];;
gap> l := List(s6, p-> Permuted(words, p));;
gap> Pager(List(l, a-> JoinStringsWithSeparator(a," ")));;

3 Running GAP

This chapter informs about command line options for GAP under UNIX and OS X (see 3.1, 3.2), and features
of GAP on the Macintosh (see 3.3), the .gaprc file (see 3.4), completion files (see 3.5), the GAP compiler
(see 3.7, 3.8, 3.9), and how to save and load a GAP workspace (see 3.11).

3.1 Command Line Options

When you start GAP under UNIX, you may specify a number of options on the command-line to change
the default behaviour of GAP. All these options start with a hyphen -, followed by a single letter. Options
must not be grouped, e.g., gap -gq is illegal, use gap -g -q instead. Some options require an argument,
this must follow the option and must be separated by a space, e.g., gap -m 256k, it is not correct to say
gap -m256k instead. Certain Boolean options (b, q, e, r, A, D, M, N, T, X, Y) toggle the current value so
that gap -b -b is equivalent to gap and to gap -b -q -b -q etc.

GAP for UNIX will distinguish between upper and lower case options.

As is described in Chapter 73 (see 73), usually you will not execute GAP directly. Instead you will call a
shell script, with the name gap, which in turn executes GAP. This shell script sets some options which are
necessary to make GAP work on your system. This means that the default settings mentioned below may
not be what you experience when you execute GAP on your system.

-h
tells GAP to print a summary of all available options (-h is mnemonic for “help”). GAP exits after
printing the summary, all other options are ignored.

-b
tells GAP to suppress the banner. That means that GAP immediately prints the prompt. This is
useful when, after a while, you get tired of the banner. This option can be repeated to enable the
banner; each -b toggles the state of banner display.

-q
tells GAP to be quiet. This means that GAP displays neither the banner nor the prompt gap>. This
is useful if you want to run GAP as a filter with input and output redirection and want to avoid the
banner and the prompts appearing in the output file. This option may be repeated to disable quiet
mode; each -q toggles quiet mode.

-e
tells GAP not to quit when receiving a ctr-D on an empty input line (see 6.4.1). This option should
not be used when the input is a file or pipe. This option may be repeated to toggle this behavior
on and off.

-f
tells GAP to enable the line editing and history (see 6.9).
In general line editing will be enabled if the input is connected to a terminal. There are rare
circumstances, for example when using a remote session with a corrupted telnet implementation,

28 Chapter 3. Running GAP

when this detection fails. Try using -f in this case to enable line editing. This option does not
toggle; you must use -n to disable line editing.

-n
tells GAP to disable the line editing and history (see 6.9).
You may want to do this if the command line editing is incompatible with another program that is
used to run GAP. For example if GAP is run from inside a GNU Emacs shell window, -n should be
used since otherwise every input line will be echoed twice, once by Emacs and once by GAP. This
option does not toggle; you must use -f to enable line editing.

-x length
With this option you can tell GAP how long lines are. GAP uses this value to decide when to split
long lines. After starting GAP you may use SizeScreen (see 6.12.1) to alter the line length.
The default value is 80, unless another value can be obtained from the Operating System, which is
the right value if you have a standard ASCII terminal. If you have a larger monitor, or use a smaller
font, or redirect the output to a printer, you may want to increase this value.

-y length
With this option you can tell GAP how many lines your screen has. GAP uses this value to decide
after how many lines of on-line help it should wait. After starting GAP you may use SizeScreen
(see 6.12.1) to alter the number of lines.
The default value is 24, unless another value can be obtained from the Operating System, which is
the right value if you have a standard ASCII terminal. If you have a larger monitor, or use a smaller
font, or redirect the output to a printer, you may want to increase this value.

-g
tells GAP to print a information message every time a full garbage collection is performed.

#G FULL 44580/2479kb live 57304/4392kb dead 734/4096kb free

For example, this tells you that there are 44580 live objects that survived a full garbage collection,
that 57304 unused objects were reclaimed by it, and that 734 KBytes from a total allocated memory
of 4096 KBytes are available afterwards.

-g -g
If you give the option -g twice, GAP prints a information message every time a partial or full garbage
collection is performed. The message,

#G PART 9405/961kb+live 7525/1324kb+dead 2541/4096kb free

for example, tells you that 9405 objects survived the partial garbage collection and 7525 objects
were reclaimed, and that 2541 KBytes from a total allocated memory of 4096 KBytes are available
afterwards.

-m memory
tells GAP to allocate memory bytes at startup time. If the last character of memory is k or K it is
taken as KBytes, if the last character is m or M memory is taken as MBytes and if it is ’g’ or ’G’ it
is taken as Gigabytes.
Under UNIX the default amount of memory allocated by GAP is 24 MBytes. The amount of memory
should be large enough so that computations do not require too many garbage collections. On the
other hand, if GAP allocates more virtual memory than is physically available, it will spend most of
the time paging.

-o memory
tells GAP to allocate at most memory bytes. If the last character of memory is k or K it is taken as
KBytes, if the last character is m or M memory is taken as MBytes and if it is ’g’ or ’G’ it is taken

Section 1. Command Line Options 29

as Gigabytes.
Under UNIX the default amount is 256 MBytes. If more than this amount is required during the
GAP session, GAP prints an error messages and enters a break loop.

-K memory
is like -o above. But while the latter actually allocates more memory if the system allows it and
then prints a warning inside a break loop the -K options tells GAP not even to try to allocate more
memory. Instead GAP just exits with an appropriate message. The default is that this feature is
switched off. You have to set it explicitly when you want to enable it.

-l path list
can be used to modify GAP’s list of root directories (see 9.2). Before the option -l is used for the
first time, the only root directory is ./, i.e., GAP has only one root directory which is the current
directory. Usually this option is used inside a startup script to specify where GAP is installed on the
system. The -l option can also be used by individual users to tell GAP about privately installed
modifications of the library, additional GAP packages and so on. Section 9.2 explains how several
root paths can be used to do this.
path list should be a list of directories separated by semicolons. No whitespace is permitted before
or after a semicolon. Each directory name should end with a pathname separator, i.e., /, but GAP
will silently add one if it is missing. If path list does not start or end with a semicolon, then path list
replaces the existing list of root directories. If path list starts with a semicolon, then path list is
appended to the existing list of root directories. If path list ends with a semicolon (and does not
start with one), then the new list of root directories is the concatenation of path list and the existing
list of root directories. After GAP has completed its startup procedure and displays the prompt, the
list of root directories can be viewed in the variable GAPInfo.RootPaths.
GAP will attempt to read the file root dir/lib/init.g during startup where root dir is one of the
directories in its list of root directories. If GAP cannot find init.g it will print the following warning

gap: hmm, I cannot find ’lib/init.g’ maybe use option ’-l <gaproot>’?

It is not possible to use GAP without the library files, so you must not ignore this warning. You
should leave GAP and start it again, specifying the correct root path using the -l option.

-r
The option -r tells GAP not to read the user supplied ~/.gaprc files. This option may be repeated
to enable reading again; each use of -r toggles whether to read the file.

-L filename
The option -L tells GAP to load a saved workspace. See section 3.11.

-R
The option -R tells GAP not to load a saved workspace previously specified via the -L option. This
option does not toggle.

filename ...
Further arguments are taken as filenames of files that are read by GAP during startup, after the
system and private init files are read, but before the first prompt is printed. The files are read in the
order in which they appear on the command line. GAP only accepts 14 filenames on the command
line. If a file cannot be opened GAP will print an error message and will abort.

30 Chapter 3. Running GAP

3.2 Advanced Features of GAP

The following options are in general not needed for the normal operation of GAP. They are mostly used for
debugging.

-a memory
GASMAN, the storage manager of GAP uses sbrk to get blocks of memory from (certain) operating
systems and it is required that subsequent calls to sbrk produce adjacent blocks of memory in this
case because GAP only wants to deal with one large block of memory. If the C function malloc is
called for whatever reason, it is likely that sbrk will no longer produce adjacent blocks, therefore
GAP does not use malloc itself.
However some operating systems insist on calling malloc to create a buffer when a file is opened,
or for some other reason. In order to catch these cases GAP preallocates a block of memory with
malloc which is immediately freed. The amount preallocated can be controlled with the -a option.
If the last character of memory is k or K it is taken as KBytes and if the last character is m or M
memory is taken as MBytes.

-A
By default, some GAP packages (see 74) are loaded, if present, into the GAP session when it starts.
This option disables (actually toggles) this behaviour, which can be useful for debugging or testing.

-B architecture
Executable binary files that form part of GAP or of a GAP package are kept in a subdirectory of
the bin directory with in the GAP or package root directory. The subdirectory name is determined
from the operating system, processor and compiler details when GAP (resp. the package) is installed.
Under rare circumstances, it may be necessary to override this name, and this can be done using
the -B option.

-D
The -D option tells GAP to print short messages when it is reading or completing files or loading
modules. This option may be repeated to toggle this behavior on and off. The message,

#I READ_GAP_ROOT: loading ’lib/kernel.g’ as GAP file

tells you that GAP has started to read the library file lib/kernel.g.

#I READ_GAP_ROOT: loading ’lib/kernel.g’ statically

tells you that GAP has used the compiled version of the library file lib/kernel.g. This compiled
module was statically linked to the GAP kernel at the time the kernel was created.

#I READ_GAP_ROOT: loading ’lib/kernel.g’ dynamically

tells you that GAP has loaded the compiled version of the library file lib/kernel.g. This compiled
module was dynamically loaded to the GAP kernel at runtime from a corresponding .so file.

#I completing ’lib/domain.gd’

tells you that GAP has completed the file lib/domain.gd. See 3.5 for more information about
completion of files.

-M
tells GAP not to check for, nor to use, compiled versions of library files. This option may be repeated
to toggle this behavior on and off.

-N
tells GAP not to check for, nor to use, completion files, see 3.5. This option may be repeated to
toggle this behavior on and off.

-O
enables a GAP 3 compatibility mode, in which (for instance) the values false and fail are identified.
Use of this mode is not recommended other than as a transitional step in porting GAP 3 code to

Section 3. Running GAP under MacOS 31

GAP 4, because the GAP 4 library may not work reliably in this mode. Without the -A option, some
packages may give errors on startup. The -O option may be repeated to toggle this behavior on and
off.

-T
suppresses the usual break loop behaviour of GAP. With this option GAP behaves as if the user quit
immediately from every break loop. This is intended for automated testing of GAP. This option may
be repeated to toggle this behavior on and off.

-X
tells GAP to do a consistency check of the library file and the corresponding completion file when
reading the completion file. This option may be repeated to toggle this behavior on and off.

-Y
tells GAP to do a consistency check of the library file and the corresponding completion file when
completing the library file. This option may be repeated to toggle this behavior on and off.

-i filename
changes the name of the init file from the default init.g to filename.

Additional options, -C, -U, -P, -W, -p and -z are used internally in the GAP compiler and/or on specific
operating systems.

3.3 Running GAP under MacOS

This sections describes the features of GAP for MacOS that differ from those described earlier in this chapter.

Since you cannot enter command line options directly when you launch the GAP application on a Macintosh,
another mechanism is being used: Hold down any of the command (apple), option, control or shift keys or
space bar when launching the GAP application, e.g., by double-clicking on its icon. Please note that some
keys have side effects (e.g., pressing the option key usually closes Findeer windows), and that System X
behaves slightly differently from other systems.

A dialog box will open, into which you can enter the desired GAP command line options. as described in
3.1. For example, if you want GAP to start with a workspace of 32 megabytes, the dialog box should contain
the following text:

-m 32m

Note that the dialog box may already contain settings which you have previously saved. The OK button
accepts the command line for the current GAP session, and the Save button can be used to save these options
for subsequent GAP sessions. The command line options will be saved in a text file called GAP options in
the Preferences folder in the system folder. You may also modify the file GAP options directly; note that
changes only take effect the next time you launch GAP.

There are three additional command line option on the Mac.

-z n
sets the time between checks for events (keystrokes, mouse clicks etc.) to n/60 second. Lower values
make GAP more responsive but computations are somewhat slower. A value greater than 60 is not
recommended, the default value for n is 6.

-P m
sets the amount of memory required for printing. The reason is that printer drivers may require
quite a bit of memory, and may even crash if not enough is found. To prevent this, GAP will not
print unless at least the specified amount of memory is available. The default value is 64 Kilobytes,

32 Chapter 3. Running GAP

which is enough for the Apple LaserWriter printer driver. Setting the printing memory to 0 disables
printing altogether.

-W m
sets the size of the log window to m bytes. This means that if the text in the log window exceeds
this amount, then lines at the beginning of the log are deleted. The default value is 32 Kilobytes.

The following command line options work differently on the Mac.

-a
On the Mac, the -a option has a different meaning from the one described in 3.2. On the Mac, it
must be used to reserve memory for loading dynamic libraries into GAP. See 3.7 for details about
dynamic libraries (and note that the PPC version of GAP for MacOS can use dynamic libraries).

-f, -n
The -f and -n command line options do not have any effect on the Mac.

-e
The -e command line option enables ctr-D.

-o
The -o command line option should not normally be used on the Mac. The value set by the -o
option is only used if it is lower than the size of the workspace that would normally be available for
GAP.

The file called .gaprc on UNIX systems (see 3.4) is called gap.rc on the Mac; it must be in the same folder
as the GAP application.

All interaction between GAP and you takes place via the GAP log window: this is where GAP prints its
messages and waits for your input. The amount of text in this window is limited (see the -W command line
option above), so don’t be surprised if old GAP messages are deleted from the beginning of the text when
this limit is reached. The reason for deleting old lines is that otherwise GAP may run out of memory just
because of the messages it has printed.

GAP for the Mac now remembers the font and text size (which can be set choosing Format... in the Edit
menu) as well as the window position of the GAP log window from one session to the next.

Almost all of the GAP editing keys described in Section 6.9 work on the Mac. In addition, GAP for MacOS
also supports the usual editing keys on the Mac, such as Copy and Paste, Undo, arrow keys (also with shift ,
option and command . Note that you can also move forward and backward in the command line history by
pressing ctrl-arrow down and ctrl-arrow up.

Note that Quit in GAP’s file menu works differently from the quit GAP command (see 6.4.1): Quit in the
file menu always quits the GAP application, it cannot be used to quit from a break loop.

GAP for MacOS also contains a simple built-in text editor, which is mainly intended to create GAP files.
New, Open..., Save and Close from the File menu work in the usual way.

The Read... and LogTo commands in the File menu work basically like the corresponding GAP commands
(see 9.7). The only difference is that GAP will prompt you for the file with a standard Mac file opening
dialog, so you do not have to enter the path name yourself. (You will see the file’s path name in the log
window afterwards). Note that if a file you want to read is open in GAP’s built-in editor, then GAP will read
the file from the edit window, not from the disk.

If you press the shift key while choosing Read... from the File menu, the menu item will change to
Reread... which will then use the GAP command Reread (see 9.7.13) to read the chosen file.

The Read... command in the File menu changes to Read if the front window belongs to a file in GAP’s
built-in editor – choosing Read then makes GAP read that file – and while the file is being read, the File

Section 4. The .gaprc file 33

menu item changes to Abort Read. You cannot close the file’s window while it is being read by GAP – choose
Abort Read first.

Garbage collection messages, which are switched on and off by the -g command line option (see 3.1) can also
be switched on and off by choosing Show garbage collections and Show partial collections from the
Window menu.

If Always scroll to printout is selected in the Window menu, GAP will always scroll the GAP log window
so that you can see what GAP is currently printing. Otherwise, the GAP log window is only scrolled to the
current print position when GAP prints its prompt and waits for you to enter a command. Note that you
may see text lines disappear even if Always scroll to printout is off – this happens if you are viewing
the text at the beginning of the log window and some lines are just being deleted from the log because it
has exceeded its 32000 character limit.

The contents of the Help menu should be quite self-explanatory. Note that, unlike in GAP 3 for the Mac, the
online help is not displayed in a separate window, nor is the online help available while GAP is computing.

Holding down the Command (Apple) key while selecting text does the same as selecting the text and choosing
Find selection in table of contents from the Help menu, holding down both Command and Option
keys while selecting tries to find the selection in the index.

When you want to refer to files or folders in GAP (for example in the Read, PrintTo, AppendTo, LogTo
commands), or have to specify files or folders for a command line option, these files must be identified by
UNIX style path names. (Presently, GAP for MacOS also supports Mac path names, but this may change
in the future.)

Users who are familiar with UNIX path names may skip the rest of this section, noting that the working
directory (i.e., folder) is the one in which the GAP application resides, and that file names on the Mac are
not case sensitive.

Paths are strings used to describe where a file is stored on a hard disk. There are two ways for specifying
UNIX path names: absolute and relative paths. An absolute path starts with a /, then the name of the
disk where the file is located, another /, then a list of folders, each containing the next one, separated by
/, and finally the name of the file, which resides in the last folder in the list. For instance, if your hard disk
is called My HD, and your file program.g resides (or should be created) in the folder programs in the folder
documents on My HD, the absolute path name to that file is

/My HD/documents/programs/program.g

Relative path names work similarly, except that the starting point is not a disk but the folder in which the
GAP application program resides. Relative path names are formed like absolute ones, except that they do
not start with a /. Thus, if you want to access the file temp.g in the folder tmp in the GAP folder, you may
use the following path name: tmp/temp.g. It is also possible to move upward to a parent folder: suppose that
the folder containing GAP is called applications, which contains a folder editor which in turn contains
the file ’program.g’, then you could access this file by the path ../editor/program.g. The path ./ refers
to the GAP folder itself, and ../ refers to “the folder above”.

Note also that GAP for the Mac follows (resolves) aliases to folders and files.

3.4 The .gaprc file

When you start GAP, it looks for the file with the name .gaprc in your home directory (on UNIX systems).
On a Macintosh or a Windows system the equivalent to the .gaprc file is gap.rc, and for it to be read it
must be in the same folder as the GAP application. (Note that the file must be called gap.rc. If you use a
Windows text editor, in particular if your default is not to show file suffixes, you might accidentaly create
a file gap.rc.txt or gap.rc.doc which GAP will not recognize.)

If such a file is found it is read after libname/init.g, but before any of the files mentioned on the command
line are read. You can use this file for your private customizations. For example, if you have a file containing

34 Chapter 3. Running GAP

functions or data that you always need, you could read this from .gaprc. Or if you find some of the names
in the library too long, you could define abbreviations for those names in .gaprc. The following sample
.gaprc file does both.

Read("/usr/you/dat/mygroups.grp");
Ac := Action;
AcHom := ActionHomomorphism;
RepAc := RepresentativeAction;

If you have already a .gaprc file for GAP 3, its settings might not be compatible with GAP 4. In this case it
has to be removed. On UNIX Systems the following .gaprc file can be used to load alternatively a .gap3rc
or a .gap4rc file from your home directory.

if IsBound(Permutations) then
GAP 3
Exec("echo \"READ(\\\"‘pwd ~‘/.gap3rc\\\");\" > /tmp/jJj");

else
GAP 4
Exec("echo \"READ(\\\"‘pwd ~‘/.gap4rc\\\");\" > /tmp/jJj");

fi;
Read("/tmp/jJj");

3.5 Completion Files

The standard distribution of GAP already contains completion files so in general you do not need to
create these files by yourself .
When starting, GAP reads in the whole library. As this takes some time, library files are normally condensed
into completion files. These completion files contain the basic skeleton of the library but not the function
bodies. When a function body is required, for example because you want to execute the corresponding
function, the library file containing the function body is completed.
Completion files reduce the startup time of GAP drastically. However, this technique also means that the
information stored in the completion files and the library must be consistent. If you change a library file
without recreating the completion files disaster is bound to happen.
Bugfixes distributed for GAP will also update the completion files. Therefore you only need to update them
if you have changed the library by yourself.
However, if you are modifying a library file a more convenient way is to use the -X option (see 3.1) that
allows you (in most cases) to use the completion files for the unchanged parts of library files and avoids
using the completion files for the changed parts. After you have finished modifying the library files you can
recreate the completion files using:

1 I CreateCompletionFiles() F
I CreateCompletionFiles(path) F

To create completion files you must have write permissions to path, which defaults to the first root directory.
Start GAP with the -N option (to suppress the reading of any existing completion files), then execute the
command CreateCompletionFiles(path);, where path is a string giving a path to the home directory
of GAP (the directory containing the lib directory).
This produces, in addition to lots of informational output, the completion files.

$ gap4 -N
gap> CreateCompletionFiles();
#I converting "gap4/lib/read2.g" to "gap4/lib/read2.co"
#I parsing "gap4/lib/process.gd"
#I parsing "gap4/lib/listcoef.gi"
...

Section 7. The Compiler 35

3.6 Testing for the System Architecture

1 I ARCH IS UNIX() F

tests whether GAP is running on a UNIX system.

2 I ARCH IS MAC() F

tests whether GAP is running on a Macintosh under MacOS

3 I ARCH IS WINDOWS() F

tests whether GAP is running on a Windows system.

3.7 The Compiler

The GAP compiler GAC creates C code from GAP code and then calls the system’s C compiler to produce
machine code from it. This can result in a speedup (see section 3.8 for more details).

To use the compiler to produce dynamically loadable modules, call it with the -d option:

M193 /home/ahulpke > gap4/bin/i386-ibm-linux-gcc2/gac -d test.g
gap4/bin/i386-ibm-linux-gcc2/gap -C /tmp/5827_test.c test.g Init_Dynamic
gcc -fpic -ansi -Wall -O2 -o /tmp/5827_test.o -I
gap4/bin/i386-ibm-linux-gcc2/../../src -c /tmp/5827_test.c
ld -Bshareable -x -o test.so /tmp/5827_test.o
rm -f /tmp/5827_test.o
rm -f /tmp/5827_test.c

This produces a file file.so.

1 I LoadDynamicModule(filename) F
I LoadDynamicModule(filename, crc) F

To load a compiled file, the command LoadDynamicModule is used. This command loads filename as module.
If given, the CRC checksum crc must match the value of the module (see 3.10).

gap> LoadDynamicModule("./test.so");
gap> CrcFile("test.g");
2906458206
gap> LoadDynamicModule("./test.so",1);
Error, <crc> mismatch (or no support for dynamic loading) called from
<function>(<arguments>) called from read-eval-loop
Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> quit;
gap> LoadDynamicModule("./test.so",2906458206);

If you want to see or modify the intermediate C code, you can also instruct the compiler to produce only
the C files by using the option -C instead of -d.

There are some known problems with C code produced with the GAP compiler on 32 bit architectures and
used on 64 bit architectures (and vice versa).

On some operating systems, once you have loaded a dynamic module with a certain filename, loading another
with the same filename will have no effect, even if the file on disk has changed.

36 Chapter 3. Running GAP

3.8 Suitability for Compilation

Typically algorithms spend large parts of their runtime only in small parts of the code. The design of GAP
reflects this situation with kernel methods for many time critical calculations such as matrix or permutation
arithmetic.

Compiling an algorithm whose time critical parts are already in the kernel of course will give disappointing
results: Compilation will only speed up the parts that are not already in the kernel and if they make us a
small part of the runtime, the overall gain is small.

Routines that benefit from compilation are those which do extensive operations with basic data types, such
as lists or small integers.

3.9 Compiling Library Code

The most tempting code to compile is probably the library. This section describes the mechanism used to
make GAP recognize compiled versions of library files. Note however that there is no point in compiling the
whole library as typically only few functions benefit from compilation as described in Section 3.8.

All files that come with GAP are read using the internal function READ GAP ROOT. This function then checks
whether a compiled version of the file exists and if its CRC number (see 3.10) matches the file. If it does,
the compiled version is loaded. Otherwise the file is read. You can start GAP with the -D -N option to see
information printed about this process.

To make GAP find the compiled versions, they must be put in the bin/systemname/compiled directory
(systemname is the name you gave for compilation, for example i386-ibm-linux-gcc2). They have to be
called according to the following scheme: Suppose the file is humpty/dumpty.gi in the GAP home directory.
Then the compiled version will be bin/systemname/compiled/humpty/gi/dumpty.so. That is, the directory
hierarchy is mirrored under the compiled directory. A further directory level is added for the suffix of the
file, and the suffix of the compiled version of the file is set to .so (as produced by the compiler).

For example we show how to compile the combinat.gi file on a Linux machine. Suppose we are in the home
directory of the gap distribution.

bin/i386-ibm-linux-gcc2/gac -d lib/combinat.gi

creates a file combinat.so. We now put it in the right place, creating also the necessary directories:

mkdir bin/i386-ibm-linux-gcc2/compiled
mkdir bin/i386-ibm-linux-gcc2/compiled/lib
mkdir bin/i386-ibm-linux-gcc2/compiled/lib/gi
mv combinat.so bin/i386-ibm-linux-gcc2/compiled/lib/gi

If you now start GAP and look, for example, at the function Binomial, defined in combinat.gi, you see it
is indeed compiled:

gap> Print(Binomial);
function (<<arg-1>>, <<arg-2>>)

<<compiled code>>
end

The command line option -M disables the loading of compiled modules and always reads code from the
library.

Section 11. Saving and Loading a Workspace 37

3.10 CRC Numbers

CRC (cyclic redundancy check) numbers provide a certain method of doing checksums. They are used by
GAP to check whether files have changed. Whenever files are “condensed” – for example for completion files
(see Section 3.5) or when compiling files (see Section 3.7) – such a checksum is computed implicitly and
stored within the condensed file.

When reading a condensed version of the file instead of the original one, the CRC checksum, which is
computed via CrcFile (see 9.7.11), can be used to check whether the original has been changed in the
meantime, e.g.

gap> CrcFile("lib/morpheus.gi");
2705743645

3.11 Saving and Loading a Workspace

1 I SaveWorkspace(filename) F

will save a “snapshot” image of the current GAP workspace in the file filename. This image then can be
loaded by another copy of GAP which then will behave as at the point when SaveWorkspace was called.

gap> a:=1;
gap> SaveWorkspace("savefile");
true
gap> quit;

SaveWorkspace can only be used at the main gap> prompt. It cannot be included in the body of a loop or
function, or called from a break loop.

2 I -L filename

A saved workspace can be loaded by starting GAP with the option -L (see 3.1). This will start GAP and
load the workspace.

you@unix> gap -L savefile
gap> a;
1

Please note that paths to workspaces have to be given in full, expansion of the tilde to denote a home
directory will not work.

Under UNIX, it is possible to compress savefiles using gzip. Compression typically reduces the size of a
workspace by a factor 3 or 4. If GAP is started with a compressed savefile (omit the .gz ending), it will try
to locate gzip on the system and uncompress the file automatically while reading it.

you@unix> gzip -9 savefile
you@unix> gap -L savefile
gap> a;
1

We cannot guarantee that saved workspaces are portable between different system architectures or over
different versions of GAP or its library.

If compiled modules had been loaded into GAP before the workspace was saved, they will be loaded into
the new GAP session during the workspace loading process. If they are not available then the load will fail.
Additional compiled modules will not be used, even if they are available, although they may be loaded later
using Reread (see 9.7.13). SaveWorkspace may sometimes produce warning messages, as in

38 Chapter 3. Running GAP

gap> SaveWorkspace("b5");
#W bad bag id 4 found, 0 saved
#W bad bag id 20 found, 0 saved
true

A small number of such messages can probably be ignored (they arise because the garbage collector may
not always collect all dead objects, and dead objects may contain data that SaveWorkspace does not know
how to process).

GAP packages which had been loaded before the workspace was saved are loaded also when the workspace
is loaded. Packages which had been available but not loaded before the workspace was saved are available
also when the workspace is loaded, provided these packages have not been upgraded. Packages which have
been newly installed after the workspace was saved are not available when the workspace is loaded.

3.12 Coloring the Prompt and Input

GAP provides hooks for functions which are called when the prompt is to be printed and when an input line
is finished.

An example of using this feature is the following function.

1 I ColorPrompt(bool) F

With ColorPrompt(true); GAP changes its user interface: The prompts and the user input are displayed
in different colors. It also sets the variable ANSI COLORS to true (which has the side effect that some help
pages are also displayed with color markup. Switch the colored prompts off with ColorPrompt(false);.

Note that this will only work if your terminal emulation in which you run GAP understands the so called ANSI
color escape sequences - almost all terminal emulations on current UNIX/Linux (xterm, rxvt, konsole, ...)
systems do so.

The colors shown depend on the terminal configuration and cannot be forced from an application. If your
terminal follows the ANSI conventions you see the standard prompt in bold blue and the break loop prompt
in bold red, as well as your input in red.

If it works for you and you like it, put the line ColorPrompt(true); in your .gaprc file (see 3.4).

4
The Programming

Language

This chapter describes the GAP programming language. It should allow you in principle to predict the result
of each and every input. In order to know what we are talking about, we first have to look more closely at
the process of interpretation and the various representations of data involved.

4.1 Language Overview

First we have the input to GAP, given as a string of characters. How those characters enter GAP is operating
system dependent, e.g., they might be entered at a terminal, pasted with a mouse into a window, or read
from a file. The mechanism does not matter. This representation of expressions by characters is called the
external representation of the expression. Every expression has at least one external representation that
can be entered to get exactly this expression.

The input, i.e., the external representation, is transformed in a process called reading to an internal repre-
sentation. At this point the input is analyzed and inputs that are not legal external representations, according
to the rules given below, are rejected as errors. Those rules are usually called the syntax of a programming
language.

The internal representation created by reading is called either an expression or a statement. Later we
will distinguish between those two terms. However for now we will use them interchangeably. The exact
form of the internal representation does not matter. It could be a string of characters equal to the external
representation, in which case the reading would only need to check for errors. It could be a series of machine
instructions for the processor on which GAP is running, in which case the reading would more appropriately
be called compilation. It is in fact a tree-like structure.

After the input has been read it is again transformed in a process called evaluation or execution. Later
we will distinguish between those two terms too, but for the moment we will use them interchangeably. The
name hints at the nature of this process, it replaces an expression with the value of the expression. This
works recursively, i.e., to evaluate an expression first the subexpressions are evaluated and then the value of
the expression is computed from those values according to rules given below. Those rules are usually called
the semantics of a programming language.

The result of the evaluation is, not surprisingly, called a value. Again the form in which such a value is
represented internally does not matter. It is in fact a tree-like structure again.

The last process is called printing. It takes the value produced by the evaluation and creates an external
representation, i.e., a string of characters again. What you do with this external representation is up to you.
You can look at it, paste it with the mouse into another window, or write it to a file.

Lets look at an example to make this more clear. Suppose you type in the following string of 8 characters

1 + 2 * 3;

GAP takes this external representation and creates a tree-like internal representation, which we can picture
as follows

40 Chapter 4. The Programming Language

+
/ \

1 *
/ \
2 3

This expression is then evaluated. To do this GAP first evaluates the right subexpression 2*3. Again, to
do this GAP first evaluates its subexpressions 2 and 3. However they are so simple that they are their own
value, we say that they are self-evaluating. After this has been done, the rule for * tells us that the value is
the product of the values of the two subexpressions, which in this case is clearly 6. Combining this with the
value of the left operand of the +, which is self-evaluating, too, gives us the value of the whole expression 7.
This is then printed, i.e., converted into the external representation consisting of the single character 7.

In this fashion we can predict the result of every input when we know the syntactic rules that govern the
process of reading and the semantic rules that tell us for every expression how its value is computed in
terms of the values of the subexpressions. The syntactic rules are given in sections 4.2, 4.3, 4.4, 4.5, 4.6, and
4.24, the semantic rules are given in sections 4.7, 4.8, 4.10, 4.11, 4.12, 4.13, 4.14, 4.15, 4.16, 4.17, 4.18, 4.19,
4.22.1, and the chapters describing the individual data types.

4.2 Lexical Structure

Most input of GAP consists of sequences of the following characters.

Digits, uppercase and lowercase letters, space, tab, newline, return and the special characters

" ‘ () * + , - #
. / : ; < = > ~
[\] ^ _ { } !

It is possible to use other characters in identifiers by escaping them with backslashes, but we do not rec-
ommend to use this feature. Inside strings (see section 4.3 and chapter 26) and comments (see 4.4) the full
character set supported by the computer is allowed.

4.3 Symbols

The process of reading, i.e., of assembling the input into expressions, has a subprocess, called scanning,
that assembles the characters into symbols. A symbol is a sequence of characters that form a lexical unit.
The set of symbols consists of keywords, identifiers, strings, integers, and operator and delimiter symbols.

A keyword is a reserved word (see 4.5). An identifier is a sequence of letters, digits and underscores (or
other characters escaped by backslashes) that contains at least one non-digit and is not a keyword (see 4.6).
An integer is a sequence of digits (see 14), possibly prepended by - and + sign characters. A string is a
sequence of arbitrary characters enclosed in double quotes (see 26).

Operator and delimiter symbols are

+ - * / ^ ~ !.
= <> < <= > >= ![
:= . .. -> , ; !{
[] { } () :

Note also that during the process of scanning all whitespace is removed (see 4.4).

Section 5. Keywords 41

4.4 Whitespaces

The characters space, tab, newline, and return are called whitespace characters. Whitespace is used as
necessary to separate lexical symbols, such as integers, identifiers, or keywords. For example Thorondor is a
single identifier, while Th or ondor is the keyword or between the two identifiers Th and ondor. Whitespace
may occur between any two symbols, but not within a symbol. Two or more adjacent whitespace characters
are equivalent to a single whitespace. Apart from the role as separator of symbols, whitespace characters
are otherwise insignificant. Whitespace characters may also occur inside a string, where they are significant.
Whitespace characters should also be used freely for improved readability.

A comment starts with the character #, which is sometimes called sharp or hatch, and continues to the
end of the line on which the comment character appears. The whole comment, including # and the newline
character is treated as a single whitespace. Inside a string, the comment character # loses its role and is just
an ordinary character.

For example, the following statement

if i<0 then a:=-i;else a:=i;fi;

is equivalent to

if i < 0 then # if i is negative
a := -i; # take its additive inverse

else # otherwise
a := i; # take itself

fi;

(which by the way shows that it is possible to write superfluous comments). However the first statement is
not equivalent to

ifi<0thena:=-i;elsea:=i;fi;

since the keyword if must be separated from the identifier i by a whitespace, and similarly then and a,
and else and a must be separated.

4.5 Keywords

Keywords are reserved words that are used to denote special operations or are part of statements. They
must not be used as identifiers. The keywords are

and do elif else end fi
for function if in local mod
not od or repeat return then
until while quit QUIT break rec
continue

Note that (almost) all keywords are written in lowercase and that they are case sensitive. For example
only else is a keyword; Else, eLsE, ELSE and so forth are ordinary identifiers. Keywords must not contain
whitespace, for example el if is not the same as elif.

Note: A number of tokens that appear to be normal identifiers representing functions or literals of various
kinds are actually implemented as keywords for technical reasons. The only consequence of this is that those
identifiers cannot be re-assigned, and do not actually have function objects bound to them, which could be
assigned to other variables or passed to functions. These keywords are:

false true IsBound Unbind TryNextMethod
Info Assert SaveWorkspace fail

42 Chapter 4. The Programming Language

4.6 Identifiers

An identifier is used to refer to a variable (see 4.8). An identifier usually consists of letters, digits, and
underscores , and must contain at least one non-digit. An identifier is terminated by the first character not
in this class. Examples of valid identifiers are

a foo aLongIdentifier
hello Hello HELLO
x100 100x _100
some_people_prefer_underscores_to_separate_words
WePreferMixedCaseToSeparateWords

Note that case is significant, so the three identifiers in the second line are distinguished.

The backslash \ can be used to include other characters in identifiers; a backslash followed by a character
is equivalent to the character, except that this escape sequence is considered to be an ordinary letter. For
example

G\(2\,5\)

is an identifier, not a call to a function G.

An identifier that starts with a backslash is never a keyword, so for example * and \mod are identifiers.

The length of identifiers is not limited, however only the first 1023 characters are significant. The escape
sequence \newline is ignored, making it possible to split long identifiers over multiple lines.

1 I IsValidIdentifier(str) F

returns true if the string str would form a valid identifier consisting of letters, digits and underscores;
otherwise it returns false. It does not check whether str contains characters escaped by a backslash \.

4.7 Expressions

An expression is a construct that evaluates to a value. Syntactic constructs that are executed to produce
a side effect and return no value are called statements (see 4.13). Expressions appear as right hand sides
of assignments (see 4.14), as actual arguments in function calls (see 4.10), and in statements.

Note that an expression is not the same as a value. For example 1 + 11 is an expression, whose value is
the integer 12. The external representation of this integer is the character sequence 12, i.e., this sequence
is output if the integer is printed. This sequence is another expression whose value is the integer 12. The
process of finding the value of an expression is done by the interpreter and is called the evaluation of the
expression.

Variables, function calls, and integer, permutation, string, function, list, and record literals (see 4.8, 4.10,
14, 40, 26, 4.22.1s, 21, 27), are the simplest cases of expressions.

Expressions, for example the simple expressions mentioned above, can be combined with the operators to
form more complex expressions. Of course those expressions can then be combined further with the operators
to form even more complex expressions. The operators fall into three classes. The comparisons are =,
<>, <, <=, >, >=, and in (see 4.11 and 28.5). The arithmetic operators are +, -, *, /, mod, and ^ (see 4.12).
The logical operators are not, and, and or (see 20.3).

The following example shows a very simple expression with value 4 and a more complex expression.

gap> 2 * 2;
4
gap> 2 * 2 + 9 = Fibonacci(7) and Fibonacci(13) in Primes;
true

For the precedence of operators, see 4.11.

Section 8. Variables 43

4.8 Variables

A variable is a location in a GAP program that points to a value. We say the variable is bound to this
value. If a variable is evaluated it evaluates to this value.

Initially an ordinary variable is not bound to any value. The variable can be bound to a value by assigning
this value to the variable (see 4.14). Because of this we sometimes say that a variable that is not bound to
any value has no assigned value. Assignment is in fact the only way by which a variable, which is not an
argument of a function, can be bound to a value. After a variable has been bound to a value an assignment
can also be used to bind the variable to another value.

A special class of variables is the class of arguments of functions. They behave similarly to other variables,
except they are bound to the value of the actual arguments upon a function call (see 4.10).

Each variable has a name that is also called its identifier. This is because in a given scope an identifier
identifies a unique variable (see 4.6). A scope is a lexical part of a program text. There is the global
scope that encloses the entire program text, and there are local scopes that range from the function
keyword, denoting the beginning of a function definition, to the corresponding end keyword. A local scope
introduces new variables, whose identifiers are given in the formal argument list and the local declaration
of the function (see 4.22.1). Usage of an identifier in a program text refers to the variable in the innermost
scope that has this identifier as its name. Because this mapping from identifiers to variables is done when
the program is read, not when it is executed, GAP is said to have lexical scoping. The following example
shows how one identifier refers to different variables at different points in the program text.

g := 0; # global variable g
x := function (a, b, c)
local y;
g := c; # c refers to argument c of function x
y := function (y)
local d, e, f;
d := y; # y refers to argument y of function y
e := b; # b refers to argument b of function x
f := g; # g refers to global variable g
return d + e + f;

end;
return y(a); # y refers to local y of function x

end;

It is important to note that the concept of a variable in GAP is quite different from the concept of a variable
in programming languages like PASCAL.

In those languages a variable denotes a block of memory. The value of the variable is stored in this block. So
in those languages two variables can have the same value, but they can never have identical values, because
they denote different blocks of memory. Note that PASCAL has the concept of a reference argument. It
seems as if such an argument and the variable used in the actual function call have the same value, since
changing the argument’s value also changes the value of the variable used in the actual function call. But
this is not so; the reference argument is actually a pointer to the variable used in the actual function call,
and it is the compiler that inserts enough magic to make the pointer invisible. In order for this to work
the compiler needs enough information to compute the amount of memory needed for each variable in a
program, which is readily available in the declarations PASCAL requires for every variable.

In GAP on the other hand each variable just points to a value, and different variables can share the same
value.

44 Chapter 4. The Programming Language

1 I Unbind(ident) F

deletes the identifier ident . If there is no other variable pointing to the same value as ident was, this value
will be removed by the next garbage collection. Therefore Unbind can be used to get rid of unwanted large
objects.

For records and lists Unbind can be used to delete components or entries, respectively (see Chapters 27 and
21).

4.9 More About Global Variables

The vast majority of variables in GAP are defined at the outer level (the global scope). They are used to
access functions and other objects created either in the GAP library or in the user’s code. Certain special
facilities are provided for manipulating these variables which are not available for other types of variable
(such as local variables or function arguments).

First, such variables may be marked read-only. In which case attempts to change them will fail. Most of
the global variables defined in the GAP library are so marked.

1 I IsReadOnlyGlobal(name) F

returns true if the global variable named by the string name is read-only and false otherwise (the default).

2 I MakeReadOnlyGlobal(name) F

marks the global variable named by the string name as read-only.

A warning is given if name has no value bound to it or if it is already read-only.

3 I MakeReadWriteGlobal(name) F

marks the global variable named by the string name as read-write.

A warning is given if name is already read-write.

gap> xx := 17;
17
gap> IsReadOnlyGlobal("xx");
false
gap> xx := 15;
15
gap> MakeReadOnlyGlobal("xx");
gap> xx := 16;
Variable: ’xx’ is read only
not in any function
Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ after making it writable to continue
brk> quit;
gap> IsReadOnlyGlobal("xx");
true
gap> MakeReadWriteGlobal("xx");
gap> xx := 16;
16
gap> IsReadOnlyGlobal("xx");
false

A group of functions are also supplied for accessing and altering the values assigned to global variables. Use
of these functions differs from the use of assignment, Unbind and IsBound statements, in two ways. First,

Section 9. More About Global Variables 45

these functions always affect global variables, even if local variables of the same names exist. Second, the
variable names are passed as strings, rather than being written directly into the statements.

4 I ValueGlobal(name) F

returns the value currently bound to the global variable named by the string name. An error is raised if no
value is currently bound.

5 I IsBoundGlobal(name) F

returns true if a value currently bound to the global variable named by the string name and false otherwise.

6 I UnbindGlobal(name) F

removes any value currently bound to the global variable named by the string name. Nothing is returned.

A warning is given if name was not bound. The global variable named by name must be writable, otherwise
an error is raised.

7 I BindGlobal(name, val) F

sets the global variable named by the string name to the value val , provided it is writable, and makes it
read-only. If name already has a value, a warning message is printed.

This is intended to be the normal way to create and set “official” global variables (such as Operations and
Categories).

Caution should be exercised in using these functions, especially BindGlobal and UnbindGlobal as unex-
pected changes in global variables can be very confusing for the user.

gap> xx := 16;
16
gap> IsReadOnlyGlobal("xx");
false
gap> ValueGlobal("xx");
16
gap> IsBoundGlobal("xx");
true
gap> BindGlobal("xx",17);
#W BIND_GLOBAL: variable ‘xx’ already has a value
gap> xx;
17
gap> IsReadOnlyGlobal("xx");
true

Finally, there are a group of functions dealing with the global namespace.

8 I NamesGVars() F

This function returns an immutable (see 12.6) sorted (see 21.19) list of all the global variable names known
to the system. This includes names of variables which were bound but have now been unbound and some
other names which have never been bound but have become known to the system by various routes.

9 I NamesSystemGVars() F

This function returns an immutable sorted list of all the global variable names created by the GAP library
when GAP was started.

10 I NamesUserGVars() F

This function returns an immutable sorted list of the global variable names created since the library was
read, to which a value is currently bound.

46 Chapter 4. The Programming Language

11 I TemporaryGlobalVarName([prefix]) F

returns a string that can be used as the name of a global variable that is not bound at the time when
TemporaryGlobalVarName() is called. The optional argument prefix can specify a string with which the
name of the global variable starts.

4.10 Function Calls

1 I function-var()
I function-var(arg-expr[, arg-expr, ...])

The function call has the effect of calling the function function-var . The precise semantics are as follows.

First GAP evaluates the function-var . Usually function-var is a variable, and GAP does nothing more than
taking the value of this variable. It is allowed though that function-var is a more complex expression, such
as a reference to an element of a list (see Chapter 21) list-var[int-expr], or to a component of a record
(see Chapter 27) record-var.ident . In any case GAP tests whether the value is a function. If it is not, GAP
signals an error.

Next GAP checks that the number of actual arguments arg-exprs agrees with the number of formal argu-
ments as given in the function definition. If they do not agree GAP signals an error. An exception is the
case when there is exactly one formal argument with the name arg, in which case any number of actual
arguments is allowed (see 4.22.1 for examples).

Now GAP allocates for each formal argument and for each formal local (that is, the identifiers in the local
declaration) a new variable. Remember that a variable is a location in a GAP program that points to a value.
Thus for each formal argument and for each formal local such a location is allocated.

Next the arguments arg-exprs are evaluated, and the values are assigned to the newly created variables
corresponding to the formal arguments. Of course the first value is assigned to the new variable corresponding
to the first formal argument, the second value is assigned to the new variable corresponding to the second
formal argument, and so on. However, GAP does not make any guarantee about the order in which the
arguments are evaluated. They might be evaluated left to right, right to left, or in any other order, but each
argument is evaluated once. An exception again occurs if the function has only one formal argument with
the name arg. In this case the values of all the actual arguments are stored in a list and this list is assigned
to the new variable corresponding to the formal argument arg.

The new variables corresponding to the formal locals are initially not bound to any value. So trying to
evaluate those variables before something has been assigned to them will signal an error.

Now the body of the function, which is a statement, is executed. If the identifier of one of the formal
arguments or formal locals appears in the body of the function it refers to the new variable that was
allocated for this formal argument or formal local, and evaluates to the value of this variable.

If during the execution of the body of the function a return statement with an expression (see 4.23) is
executed, execution of the body is terminated and the value of the function call is the value of the expression
of the return. If during the execution of the body a return statement without an expression is executed,
execution of the body is terminated and the function call does not produce a value, in which case we call
this call a procedure call (see 4.15). If the execution of the body completes without execution of a return
statement, the function call again produces no value, and again we talk about a procedure call.

gap> Fibonacci(11);
89

The above example shows a call to the function Fibonacci with actual argument 11, the following one shows
a call to the operation RightCosets where the second actual argument is another function call.

Section 11. Comparisons 47

gap> RightCosets(G, Intersection(U, V));;

2 I function-var(arg-expr[, arg-expr, ...][: [option-expr [,option-expr,]]])

As well as passing arguments to a function, providing the mathematical input to its calculation, it is some-
times useful to supply “hints” suggesting to GAP how the desired result may be computed more quickly, or
specifying a level of tolerance for random errors in a Monte Carlo algorithm.

Such hints may be supplied to a function-call and to all subsidiary functions called from that call
using the options mechanism. Options are separated from the actual arguments by a colon : and have much
the same syntax as the components of a record expression. The one exception to this is that a component
name may appear without a value, in which case the value true is silently inserted.

The following example shows a call to Size passing the options hard (with the value true) and tcselection
(with the string “external” as value).

gap> Size(fpgrp : hard, tcselection := "external");

Options supplied with function calls in this way are passed down using the global options stack described
in chapter 8, so that the call above is exactly equivalent to

gap> PushOptions(rec(hard := true, tcselection := "external"));
gap> Size(fpgrp);
gap> PopOptions();

Note that any option may be passed with any function, whether or not it has any actual meaning for that
function, or any function called by it. The system provides no safeguard against misspelled option names.

4.11 Comparisons

1 I left-expr = right-expr
I left-expr <> right-expr

The operator = tests for equality of its two operands and evaluates to true if they are equal and to false
otherwise. Likewise <> tests for inequality of its two operands. Note that any two objects can be compared,
i.e., = and <> will never signal an error. For each type of objects the definition of equality is given in the
respective chapter. Objects in different families (see 13.1) are never equal, i.e., = evaluates in this case to
false, and <> evaluates to true.

2 I left-expr < right-expr
I left-expr > right-expr
I left-expr <= right-expr
I left-expr >= right-expr

< denotes less than, <= less than or equal, > greater than, and >= greater than or equal of its two operands.
For each kind of objects the definition of the ordering is given in the respective chapter.

Only for the following kinds of objects, an ordering via < of objects in different families (see 13.1) is
supported. Rationals (see 16.1.1) are smallest, next are cyclotomics (see 18.1.3), followed by finite field
elements (see 57.1.1); finite field elements in different characteristics are compared via their characteristics,
next are permutations (see 40), followed by the boolean values true, false, and fail (see 20), characters
(such as ’a’, see 26), and lists (see 21.1.1) are largest; note that two lists can be compared with < if and
only if their elements are again objects that can be compared with <.

For other objects, GAP does not provide an ordering via <. The reason for this is that a total ordering of all
GAP objects would be hard to maintain when new kinds of objects are introduced, and such a total ordering
is hardly used in its full generality.

48 Chapter 4. The Programming Language

However, for objects in the filters listed above, the ordering via < has turned out to be useful. For example,
one can form sorted lists containing integers and nested lists of integers, and then search in them using
PositionSorted (see 21.16).

Of course it would in principle be possible to define an ordering via < also for certain other objects, by
installing appropriate methods for the operation \<. But this may lead to problems at least as soon as one
loads GAP code in which the same is done, under the assumption that one is completely free to define an
ordering via < for other objects than the ones for which the “official” GAP provides already an ordering via
<.

Comparison operators, including the operator in (see 21.8), are not associative, Hence it is not allowed
to write a = b <> c = d , you must use (a = b) <> (c = d) instead. The comparison operators have
higher precedence than the logical operators (see 20.3), but lower precedence than the arithmetic operators
(see 4.12). Thus, for instance, a * b = c and d is interpreted as ((a * b) = c) and d).

The following example shows a comparison where the left operand is an expression.

gap> 2 * 2 + 9 = Fibonacci(7);
true

For the underlying operations of the operators introduced above, see 30.11.

4.12 Arithmetic Operators

1 I + right-expr
I - right-expr
I left-expr + right-expr
I left-expr - right-expr
I left-expr * right-expr
I left-expr / right-expr
I left-expr mod right-expr
I left-expr ^ right-expr

The arithmetic operators are +, -, *, /, mod, and ^. The meanings (semantics) of those operators generally
depend on the types of the operands involved, and, except for mod, they are defined in the various chapters
describing the types. However basically the meanings are as follows.

a + b denotes the addition of additive elements a and b.

a - b denotes the addition of a and the additive inverse of b.

a * b denotes the multiplication of multiplicative elements a and b.

a / b denotes the multiplication of a with the multiplicative inverse of b.

a mod b, for integer or rational left operand a and for non-zero integer right operand b, is defined as follows.
If a and b are both integers, a mod b is the integer r in the integer range 0 .. |b| - 1 satisfying a =
r + bq , for some integer q (where the operations occurring have their usual meaning over the integers, of
course).

If a is a rational number and b is a non-zero integer, and a = m / n where m and n are coprime integers
with n positive, then a mod b is the integer r in the integer range 0 .. |b| - 1 such that m is congruent
to rn modulo b, and r is called the “modular remainder” of a modulo b. Also, 1 / n mod b is called the
“modular inverse” of n modulo b. (A pair of integers is said to be coprime (or relatively prime) if their
gcd is 1.)

With the above definition, 4 / 6 mod 32 equals 2 / 3 mod 32 and hence exists (and is equal to 22), despite
the fact that 6 has no inverse modulo 32.

Section 13. Statements 49

Note. For rational a, a mod b could have been defined to be the non-negative rational c less than |b| such
that a - c is a multiple of b. However this definition is seldom useful and not the one chosen for GAP.

+ and - can also be used as unary operations. The unary + is ignored. The unary - returns the additive
inverse of its operand; over the integers it is equivalent to multiplication by -1.

^ denotes powering of a multiplicative element if the right operand is an integer, and is also used to denote
the action of a group element on a point of a set if the right operand is a group element.

The precedence of those operators is as follows. The powering operator ^ has the highest precedence,
followed by the unary operators + and -, which are followed by the multiplicative operators *, /, and mod,
and the additive binary operators + and - have the lowest precedence. That means that the expression -2 ^
-2 * 3 + 1 is interpreted as (-(2 ^ (-2)) * 3) + 1. If in doubt use parentheses to clarify your intention.

The associativity of the arithmetic operators is as follows. ^ is not associative, i.e., it is illegal to write
2^3^4, use parentheses to clarify whether you mean (2^3)^4 or 2^(3^4). The unary operators + and -
are right associative, because they are written to the left of their operands. *, /, mod, +, and - are all left
associative, i.e., 1-2-3 is interpreted as (1-2)-3 not as 1-(2-3). Again, if in doubt use parentheses to clarify
your intentions.

The arithmetic operators have higher precedence than the comparison operators (see 4.11 and 28.5) and the
logical operators (see 20.3). Thus, for example, a * b = c and d is interpreted, ((a * b) = c) and d .

gap> 2 * 2 + 9; # a very simple arithmetic expression
13

For other arithmetic operations, and for the underlying operations of the operators introduced above,
see 30.12.

4.13 Statements

Assignments (see 4.14), Procedure calls (see 4.15), if statements (see 4.16), while (see 4.17), repeat (see
4.18) and for loops (see 4.19), and the return statement (see 4.23) are called statements. They can be
entered interactively or be part of a function definition. Every statement must be terminated by a semicolon.

Statements, unlike expressions, have no value. They are executed only to produce an effect. For example
an assignment has the effect of assigning a value to a variable, a for loop has the effect of executing a
statement sequence for all elements in a list and so on. We will talk about evaluation of expressions but
about execution of statements to emphasize this difference.

Using expressions as statements is treated as syntax error.

gap> i := 7;;
gap> if i <> 0 then k = 16/i; fi;
Syntax error: := expected
if i <> 0 then k = 16/i; fi;

^
gap>

As you can see from the example this warning does in particular address those users who are used to
languages where = instead of := denotes assignment.

Empty statements are permitted and have no effect.

A sequence of one or more statements is a statement sequence, and may occur everywhere instead of a
single statement. There is nothing like PASCAL’s BEGIN-END, instead each construct is terminated by a
keyword. The simplest statement sequence is a single semicolon, which can be used as an empty statement
sequence. In fact an empty statement sequence as in for i in [1..2] do od is also permitted and is
silently translated into the sequence containing just a semicolon.

50 Chapter 4. The Programming Language

4.14 Assignments

1 I var := expr;

The assignment has the effect of assigning the value of the expressions expr to the variable var .

The variable var may be an ordinary variable (see 4.8), a list element selection list-var[int-expr] (see 21.4)
or a record component selection record-var.ident (see 27.2). Since a list element or a record component may
itself be a list or a record the left hand side of an assignment may be arbitrarily complex.

Note that variables do not have a type. Thus any value may be assigned to any variable. For example a
variable with an integer value may be assigned a permutation or a list or anything else.

gap> data:= rec(numbers:= [1, 2, 3]);
rec(numbers := [1, 2, 3])
gap> data.string:= "string";; data;
rec(numbers := [1, 2, 3], string := "string")
gap> data.numbers[2]:= 4;; data;
rec(numbers := [1, 4, 3], string := "string")

If the expression expr is a function call then this function must return a value. If the function does not
return a value an error is signalled and you enter a break loop (see 6.4). As usual you can leave the break
loop with quit;. If you enter return return-expr; the value of the expression return-expr is assigned to
the variable, and execution continues after the assignment.

gap> f1:= function(x) Print("value: ", x, "\n"); end;;
gap> f2:= function(x) return f1(x); end;;
gap> f2(4);
value: 4
Function Calls: <func> must return a value at
return f1(x);
called from

<function>(<arguments>) called from read-eval-loop
Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can supply one by ’return <value>;’ to continue
brk> return "hello";
"hello"

In the above example, the function f2 calls f1 with argument 4, and since f1 does not return a value (but
only prints a line “value: x”), the return statement of f2 cannot be executed. The error message says
that it is possible to return an appropriate value, and the returned string "hello" is used by f2 instead of
the missing return value of f1.

4.15 Procedure Calls

1 I procedure-var();
I procedure-var(arg-expr [,arg-expr, ...]);

The procedure call has the effect of calling the procedure procedure-var . A procedure call is done exactly
like a function call (see 4.10). The distinction between functions and procedures is only for the sake of the
discussion, GAP does not distinguish between them. So we state the following conventions.

A function does return a value but does not produce a side effect. As a convention the name of a function
is a noun, denoting what the function returns, e.g., Length, Concatenation and Order.

Section 16. If 51

A procedure is a function that does not return a value but produces some effect. Procedures are called
only for this effect. As a convention the name of a procedure is a verb, denoting what the procedure does,
e.g., Print, Append and Sort.

gap> Read("myfile.g"); # a call to the procedure Read
gap> l := [1, 2];;
gap> Append(l, [3,4,5]); # a call to the procedure Append

There are a few exceptions of GAP functions that do both return a value and produce some effect. An
example is Sortex which sorts a list and returns the corresponding permutation of the entries (see 21.18.3).

4.16 If

1 I if bool-expr1 then statements1 { elif bool-expr2 then statements2 }[else statements3] fi;

The if statement allows one to execute statements depending on the value of some boolean expression. The
execution is done as follows.
First the expression bool-expr1 following the if is evaluated. If it evaluates to true the statement sequence
statements1 after the first then is executed, and the execution of the if statement is complete.
Otherwise the expressions bool-expr2 following the elif are evaluated in turn. There may be any number
of elif parts, possibly none at all. As soon as an expression evaluates to true the corresponding statement
sequence statements2 is executed and execution of the if statement is complete.
If the if expression and all, if any, elif expressions evaluate to false and there is an else part, which is
optional, its statement sequence statements3 is executed and the execution of the if statement is complete.
If there is no else part the if statement is complete without executing any statement sequence.
Since the if statement is terminated by the fi keyword there is no question where an else part belongs,
i.e., GAP has no “dangling else”. In

if expr1 then if expr2 then stats1 else stats2 fi; fi;

the else part belongs to the second if statement, whereas in

if expr1 then if expr2 then stats1 fi; else stats2 fi;

the else part belongs to the first if statement.
Since an if statement is not an expression it is not possible to write

abs := if x > 0 then x; else -x; fi;

which would, even if legal syntax, be meaningless, since the if statement does not produce a value that
could be assigned to abs.
If one of the expressions bool-expr1 , bool-expr2 is evaluated and its value is neither true nor false an error
is signalled and a break loop (see 6.4) is entered. As usual you can leave the break loop with quit;. If you
enter return true;, execution of the if statement continues as if the expression whose evaluation failed
had evaluated to true. Likewise, if you enter return false;, execution of the if statement continues as if
the expression whose evaluation failed had evaluated to false.

gap> i := 10;;
gap> if 0 < i then
> s := 1;
> elif i < 0 then
> s := -1;
> else
> s := 0;
> fi;
gap> s; # the sign of i
1

52 Chapter 4. The Programming Language

4.17 While

1 I while bool-expr do statements od;

The while loop executes the statement sequence statements while the condition bool-expr evaluates to true.

First bool-expr is evaluated. If it evaluates to false execution of the while loop terminates and the statement
immediately following the while loop is executed next. Otherwise if it evaluates to true the statements are
executed and the whole process begins again.

The difference between the while loop and the repeat until loop (see 4.18) is that the statements in the
repeat until loop are executed at least once, while the statements in the while loop are not executed at
all if bool-expr is false at the first iteration.

If bool-expr does not evaluate to true or false an error is signalled and a break loop (see 6.4) is entered.
As usual you can leave the break loop with quit;. If you enter return false;, execution continues with
the next statement immediately following the while loop. If you enter return true;, execution continues
at statements, after which the next evaluation of bool-expr may cause another error.

The following example shows a while loop that sums up the squares 12, 22, . . . until the sum exceeds 200.

gap> i := 0;; s := 0;;
gap> while s <= 200 do
> i := i + 1; s := s + i^2;
> od;
gap> s;
204

A while loop may be left prematurely using break, see 4.20.

4.18 Repeat

1 I repeat statements until bool-expr;

The repeat loop executes the statement sequence statements until the condition bool-expr evaluates to true.

First statements are executed. Then bool-expr is evaluated. If it evaluates to true the repeat loop terminates
and the statement immediately following the repeat loop is executed next. Otherwise if it evaluates to false
the whole process begins again with the execution of the statements.

The difference between the while loop (see 4.17) and the repeat until loop is that the statements in the
repeat until loop are executed at least once, while the statements in the while loop are not executed at
all if bool-expr is false at the first iteration.

If bool-expr does not evaluate to true or false an error is signalled and a break loop (see 6.4) is entered.
As usual you can leave the break loop with quit;. If you enter return true;, execution continues with the
next statement immediately following the repeat loop. If you enter return false;, execution continues at
statements, after which the next evaluation of bool-expr may cause another error.

The repeat loop in the following example has the same purpose as the while loop in the preceding example,
namely to sum up the squares 12, 22, . . . until the sum exceeds 200.

gap> i := 0;; s := 0;;
gap> repeat
> i := i + 1; s := s + i^2;
> until s > 200;
gap> s;
204

A repeat loop may be left prematurely using break, see 4.20.

Section 19. For 53

4.19 For

1 I for simple-var in list-expr do statements od;

The for loop executes the statement sequence statements for every element of the list list-expr .

The statement sequence statements is first executed with simple-var bound to the first element of the list
list-expr , then with simple-var bound to the second element of list-expr and so on. simple-var must be a
simple variable, it must not be a list element selection list-var[int-expr] or a record component selection
record-var.ident .

The execution of the for loop over a list is exactly equivalent to the following while loop.

loop-list := list;
loop-index := 1;
while loop-index <= Length(loop-list) do

variable := loop-list[loop-index];
statements
loop-index := loop-index + 1;
od;

with the exception that loop-list and loop-index are different variables for each for loop, i.e., these variables
of different for loops do not interfere with each other.

The list list-expr is very often a range (see 21.22).

2 I for variable in [from..to] do statements od;

corresponds to the more common

for variable from from to to do statements od;

in other programming languages.

gap> s := 0;;
gap> for i in [1..100] do
> s := s + i;
> od;
gap> s;
5050

Note in the following example how the modification of the list in the loop body causes the loop body also
to be executed for the new values.

gap> l := [1, 2, 3, 4, 5, 6];;
gap> for i in l do
> Print(i, " ");
> if i mod 2 = 0 then Add(l, 3 * i / 2); fi;
> od; Print("\n");
1 2 3 4 5 6 3 6 9 9
gap> l;
[1, 2, 3, 4, 5, 6, 3, 6, 9, 9]

Note in the following example that the modification of the variable that holds the list has no influence on
the loop.

54 Chapter 4. The Programming Language

gap> l := [1, 2, 3, 4, 5, 6];;
gap> for i in l do
> Print(i, " ");
> l := [];
> od; Print("\n");
1 2 3 4 5 6
gap> l;
[]

3 I for variable in iterator do statements od;

It is also possible to have a for-loop run over an iterator (see 28.7). In this case the for-loop is equivalent
to

while not IsDoneIterator(iterator) do
variable := NextIterator(iterator)
statements

od;

4 I for variable in object do statements od;

Finally, if an object object which is not a list or an iterator appears in a for-loop, then GAP will attempt
to evaluate the function call Iterator(object). If this is successful then the loop is taken to run over the
iterator returned.

gap> g := Group((1,2,3,4,5),(1,2)(3,4)(5,6));
Group([(1,2,3,4,5), (1,2)(3,4)(5,6)])
gap> count := 0;; sumord := 0;;
gap> for x in g do
> count := count + 1; sumord := sumord + Order(x); od;
gap> count;
120
gap> sumord;
471

The effect of

for variable in domain do

should thus normally be the same as

for variable in AsList(domain) do

but may use much less storage, as the iterator may be more compact than a list of all the elements.

See 28.7 for details about iterators.

A for loop may be left prematurely using break, see 4.20. This combines especially well with a loop over
an iterator, as a way of searching through a domain for an element with some useful property.

Section 22. Function 55

4.20 Break

1 I break;

The statement break; causes an immediate exit from the innermost loop enclosing it. It is an error to use
this statement other than inside a loop.

gap> g := Group((1,2,3,4,5),(1,2)(3,4)(5,6));
Group([(1,2,3,4,5), (1,2)(3,4)(5,6)])
gap> for x in g do
> if Order(x) = 3 then
> break;
> fi; od;
gap> x;
(1,4,3)(2,6,5)
gap> break;
A break statement can only appear inside a loop

4.21 Continue

1 I continue;

The statement continue; causes the rest of the current iteration of the innermost loop enclosing it to be
skipped. It is an error to use this statement other than inside a loop.

gap> g := Group((1,2,3),(1,2));
Group([(1,2,3), (1,2)])
gap> for x in g do
> if Order(x) = 3 then
> continue;
> fi; Print(x,"\n"); od;
()
(2,3)
(1,3)
(1,2)
gap> continue;
A continue statement can only appear inside a loop

4.22 Function

1 I function([arg-ident {, arg-ident}])
[local loc-ident {, loc-ident} ;]
statements
end

A function is in fact a literal and not a statement. Such a function literal can be assigned to a variable or
to a list element or a record component. Later this function can be called as described in 4.10.

The following is an example of a function definition. It is a function to compute values of the Fibonacci
sequence (see 17.3.1).

56 Chapter 4. The Programming Language

gap> fib := function (n)
> local f1, f2, f3, i;
> f1 := 1; f2 := 1;
> for i in [3..n] do
> f3 := f1 + f2;
> f1 := f2;
> f2 := f3;
> od;
> return f2;
> end;;
gap> List([1..10], fib);
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

Because for each of the formal arguments arg-ident and for each of the formal locals loc-ident a new variable
is allocated when the function is called (see 4.10), it is possible that a function calls itself. This is usually
called recursion. The following is a recursive function that computes values of the Fibonacci sequence

gap> fib := function (n)
> if n < 3 then
> return 1;
> else
> return fib(n-1) + fib(n-2);
> fi;
> end;;
gap> List([1..10], fib);
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

Note that the recursive version needs 2 * fib(n)-1 steps to compute fib(n), while the iterative version of
fib needs only n-2 steps. Both are not optimal however, the library function Fibonacci only needs about
Log(n) steps.

As noted in Section 4.10, the case where a function is defined with exactly one formal argument with the
name arg, is special. It provides a way of defining a function with a variable number of arguments; the values
of all the actual arguments are stored in a list and this list is assigned to the new variable corresponding
to the formal argument arg. There are two typical scenarios for wanting such a possibility: having optional
arguments and having any number of arguments.

The following example shows one way that the function Position (see 21.16.1) might be encoded and
demonstrates the “optional argument” scenario.

gap> position := function (arg)
> local list, obj, pos;
> list := arg[1];
> obj := arg[2];
> if 2 = Length(arg) then
> pos := 0;
> else
> pos := arg[3];
> fi;
> repeat
> pos := pos + 1;
> if pos > Length(list) then
> return fail;
> fi;

Section 22. Function 57

> until list[pos] = obj;
> return pos;
> end;
function(arg) ... end
gap> position([1, 4, 2], 4);
2
gap> position([1, 4, 2], 3);
fail
gap> position([1, 4, 2], 4, 2);
fail

The following example demonstrates the “any number of arguments” scenario.

gap> sum := function (arg)
> local total, x;
> total := 0;
> for x in arg do
> total := total + x;
> od;
> return total;
> end;
function(arg) ... end
gap> sum(1, 2, 3);
6
gap> sum(1, 2, 3, 4);
10
gap> sum();
0

The user should compare the above with the GAP function Sum (see 21.20.24) which, for example, may take
a list argument and optionally an initial element (which zero should the sum of an empty list return?).

Note that if a function f is defined as above with the single formal argument arg then NumberArguments-
Function(f) returns −1 (see 5.1.2).

The argument arg when used as the single argument name of some function f tells GAP that when it
encounters f that it should form a list out of the arguments of f . What if one wishes to do the “opposite”:
tell GAP that a list should be “unwrapped” and passed as several arguments to a function. The function
CallFuncList (see 5.2.1) is provided for this purpose.

Also see Chapter 5.

2 I arg-ident -> expr

This is a shorthand for

function (arg-ident) return expr; end.

arg-ident must be a single identifier, i.e., it is not possible to write functions of several arguments this way.
Also arg is not treated specially, so it is also impossible to write functions that take a variable number of
arguments this way.

The following is an example of a typical use of such a function

gap> Sum(List([1..100], x -> x^2));
338350

When the definition of a function fun1 is evaluated inside another function fun2 , GAP binds all the identifiers
inside the function fun1 that are identifiers of an argument or a local of fun2 to the corresponding variable.

58 Chapter 4. The Programming Language

This set of bindings is called the environment of the function fun1 . When fun1 is called, its body is executed
in this environment. The following implementation of a simple stack uses this. Values can be pushed onto
the stack and then later be popped off again. The interesting thing here is that the functions push and
pop in the record returned by Stack access the local variable stack of Stack. When Stack is called, a new
variable for the identifier stack is created. When the function definitions of push and pop are then evaluated
(as part of the return statement) each reference to stack is bound to this new variable. Note also that the
two stacks A and B do not interfere, because each call of Stack creates a new variable for stack.

gap> Stack := function ()
> local stack;
> stack := [];
> return rec(
> push := function (value)
> Add(stack, value);
> end,
> pop := function ()
> local value;
> value := stack[Length(stack)];
> Unbind(stack[Length(stack)]);
> return value;
> end
>);
> end;;
gap> A := Stack();;
gap> B := Stack();;
gap> A.push(1); A.push(2); A.push(3);
gap> B.push(4); B.push(5); B.push(6);
gap> A.pop(); A.pop(); A.pop();
3
2
1
gap> B.pop(); B.pop(); B.pop();
6
5
4

This feature should be used rarely, since its implementation in GAP is not very efficient.

4.23 Return
1 I return;

In this form return terminates the call of the innermost function that is currently executing, and control
returns to the calling function. An error is signalled if no function is currently executing. No value is returned
by the function.

2 I return expr;

In this form return terminates the call of the innermost function that is currently executing, and returns
the value of the expression expr . Control returns to the calling function. An error is signalled if no function
is currently executing.
Both statements can also be used in break loops (see 6.4). return; has the effect that the computation
continues where it was interrupted by an error or the user hitting ctr -C. return expr; can be used to
continue execution after an error. What happens with the value expr depends on the particular error.
For examples of return statements, see the functions fib and Stack in Chapter 5.

Section 24. The Syntax in BNF 59

4.24 The Syntax in BNF

This section contains the definition of the GAP syntax in Backus-Naur form. A few recent additions to the
syntax may be missing from this definition. Also, the actual rules for identifier names implemented by the
system, are somewhat more permissive than those given below (see section 4.6).

A BNF is a set of rules, whose left side is the name of a syntactical construct. Those names are enclosed in
angle brackets and written in italics. The right side of each rule contains a possible form for that syntactic
construct. Each right side may contain names of other syntactic constructs, again enclosed in angle brackets
and written in italics, or character sequences that must occur literally; they are written in typewriter
style.

Furthermore each righthand side can contain the following metasymbols written in boldface. If the right
hand side contains forms separated by a pipe symbol (|) this means that one of the possible forms can occur.
If a part of a form is enclosed in square brackets ([]) this means that this part is optional, i.e. might be
present or missing. If part of the form is enclosed in curly braces ({ }) this means that the part may occur
arbitrarily often, or possibly be missing.

60 Chapter 4. The Programming Language

Ident := a|...|z|A|...|Z| {a|...|z|A|...|Z|0|...|9| }
Var := Ident

| Var . Ident
| Var . (Expr)
| Var [Expr]
| Var { Expr }
| Var ([Expr { ,Expr }])
| Var !. Ident
| Var !. (Expr)
| Var ![Expr]

List := [[Expr] {, [Expr] }]
| [Expr [, Expr] .. Expr]
| List ’ List ‘

Record := rec([Ident := Expr {, Ident := Expr }])
Permutation := (Expr {, Expr }) { (Expr {, Expr }) }
Function := function ([Ident {, Ident }])

[local Ident {, Ident } ;]
Statements
end

| Ident -> Expr
Char := ’any character ’
String := " { any character } "
Int := 0|1|...|9 {0|1|...|9}
Atom := Int

| Var
| (Expr)
| Permutation
| Char
| String
| Function
| List
| Record
| { not } true
| { not } false

Factor := {+|-} Atom [^ {+|-} Atom]
Term := Factor { *|/|mod Factor }
Arith := Term { +|- Term }
Rel := { not } Arith [=|<>|<|>|<=|>=|in Arith]
And := Rel { and Rel }
Logical := And { or And }
Expr := Logical

| Var
Statement := Expr

| Var := Expr
| if Expr then Statements
{ elif Expr then Statements }
[else Statements] fi

| for Var in Expr do Statements od
| while Expr do Statements od
| repeat Statements until Expr
| return [Expr]
| break
| quit
| QUIT
|

Statements := { Statement ; }
| ;
|

5 Functions

The section 4.22.1 describes how to define a function. In this chapter we describe functions that give informa-
tion about functions, and various utility functions used either when defining functions or calling functions.

5.1 Information about a function

1 I NameFunction(func) F

returns the name of a function. For operations, this is the name used in their declaration. For functions,
this is the variable name they were first assigned to. (For some internal functions, this might be a name
different from the name that is documented.) If no such name exists, "unknown" is returned.

gap> NameFunction(SylowSubgroup);
"SylowSubgroup"
gap> Blubberflutsch:=x->x;;
gap> NameFunction(Blubberflutsch);
"Blubberflutsch"
gap> a:=Blubberflutsch;;
gap> NameFunction(a);
"Blubberflutsch"
gap> NameFunction(x->x);
"unknown"
gap> NameFunction(NameFunction);
"NAME_FUNC"

2 I NumberArgumentsFunction(func) F

returns the number of arguments the function func accepts. For functions that use arg to take a variable
number of arguments, as well as for operations, -1 is returned. For attributes, 1 is returned.

gap> NumberArgumentsFunction(function(a,b,c,d,e,f,g,h,i,j,k)return 1;end);
11
gap> NumberArgumentsFunction(Size);
1
gap> NumberArgumentsFunction(IsCollsCollsElms);
3
gap> NumberArgumentsFunction(Sum);
-1

3 I NamesLocalVariablesFunction(func) F

returns a mutable list of strings; the first entries are the names of the arguments of the function func, in
the same order as they were entered in the definition of func, and the remaining ones are the local variables
as given in the local statement in func. (The number of arguments can be computed with NumberArgu-
mentsFunction.)

62 Chapter 5. Functions

gap> NamesLocalVariablesFunction(function(a, b) local c; return 1; end);
["a", "b", "c"]
gap> NamesLocalVariablesFunction(function(arg) local a; return 1; end);
["arg", "a"]
gap> NamesLocalVariablesFunction(Size);
fail

5.2 Calling a function with a list argument that is interpreted as several arguments

1 I CallFuncList(func, args) F

returns the result, when calling function func with the arguments given in the list args, i.e. args is “un-
wrapped” so that args appears as several arguments to func.

gap> CallFuncList(\+, [6, 7]);
13
gap> #is equivalent to:
gap> \+(6, 7);
13

A more useful application of CallFuncList is for a function g that is called in the body of a function f with
(a sublist of) the arguments of f , where f has been defined with a single formal argument arg (see 4.22.1);
see the following code fragment.

f := function (arg)
CallFuncList(g, arg);
...

end;

In the body of f the several arguments passed to f become a list arg. If g were called instead via g(arg)
then g would see a single list argument, so that g would, in general, have to “unwrap” the passed list. The
following (not particularly useful) example demonstrates both described possibilities for the call to g .

gap> PrintNumberFromDigits := function (arg)
> CallFuncList(Print, arg);
> Print("\n");
> end;
function(arg) ... end
gap> PrintNumberFromDigits(1, 9, 7, 3, 2);
19732
gap> PrintDigits := function (arg)
> Print(arg);
> Print("\n");
> end;
function(arg) ... end
gap> PrintDigits(1, 9, 7, 3, 2);
[1, 9, 7, 3, 2]

Section 4. Function Types 63

5.3 Functions that do nothing

The following functions return fixed results (or just their own argument). They can be useful in places when
the syntax requires a function, but actually no functionality is required. So ReturnTrue is often used as
family predicate in InstallMethod (see 2.2.1 in “Programming in GAP”).

1 I ReturnTrue(...) F

This function takes any number of arguments, and always returns true.

2 I ReturnFalse(...) F

This function takes any number of arguments, and always returns false.

3 I ReturnFail(...) F

This function takes any number of arguments, and always returns fail.

4 I IdFunc(obj) F

returns obj .

5.4 Function Types

Functions are GAP objects and thus have categories and a family.

1 I IsFunction(obj) C

is the category of functions.

2 I IsOperation(obj) C

is the category of operations. Every operation is a function, but not vice versa.

3 I FunctionsFamily V

is the family of all functions.

6
Main Loop and

Break Loop

This chapter is a first of a series of chapters that describe the interactive environment in which you use GAP.

6.1 Main Loop

The normal interaction with GAP happens in the so-called read-eval-print loop. This means that you type
an input, GAP first reads it, evaluates it, and then shows the result. Note that the term print may be
confusing since there is a GAP function called Print (see 6.3) which is in fact not used in the read-eval-print
loop, but traditions are hard to break. In the following, whenever we want to express that GAP places some
characters on the standard output, we will say that GAP shows something.

The exact sequence in the read-eval-print loop is as follows.

To signal that it is ready to accept your input, GAP shows the prompt gap>. When you see this, you know
that GAP is waiting for your input.

Note that every statement must be terminated by a semicolon. You must also enter return (i.e., strike the
“return” key) before GAP starts to read and evaluate your input. (The “return” key may actually be marked
with the word Enter and a returning arrow on your terminal.) Because GAP does not do anything until you
enter return, you can edit your input to fix typos and only when everything is correct enter return and have
GAP take a look at it (see 6.9). It is also possible to enter several statements as input on a single line. Of
course each statement must be terminated by a semicolon.

It is absolutely acceptable to enter a single statement on several lines. When you have entered the beginning
of a statement, but the statement is not yet complete, and you enter return, GAP will show the partial
prompt >. When you see this, you know that GAP is waiting for the rest of the statement. This happens
also when you forget the semicolon ; that terminates every GAP statement. Note that when return has been
entered and the current statement is not yet complete, GAP will already evaluate those parts of the input
that are complete, for example function calls that appear as arguments in another function call which needs
several input lines. So it may happen that one has to wait some time for the partial prompt.

When you enter return, GAP first checks your input to see if it is syntactically correct (see Chapter 4 for
the definition of syntactically correct). If it is not, GAP prints an error message of the following form

gap> 1 * ;
Syntax error: expression expected
1 * ;

^

The first line tells you what is wrong about the input, in this case the * operator takes two expressions as
operands, so obviously the right one is missing. If the input came from a file (see 9.7.1), this line will also
contain the filename and the line number. The second line is a copy of the input. And the third line contains
a caret pointing to the place in the previous line where GAP realized that something is wrong. This need
not be the exact place where the error is, but it is usually quite close.

Sometimes, you will also see a partial prompt after you have entered an input that is syntactically incorrect.
This is because GAP is so confused by your input, that it thinks that there is still something to follow. In

Section 2. Special Rules for Input Lines 65

this case you should enter ;return repeatedly, ignoring further error messages, until you see the full prompt
again. When you see the full prompt, you know that GAP forgave you and is now ready to accept your next
– hopefully correct – input.

If your input is syntactically correct, GAP evaluates or executes it, i.e., performs the required computations
(see Chapter 4 for the definition of the evaluation).

If you do not see a prompt, you know that GAP is still working on your last input. Of course, you can type
ahead, i.e., already start entering new input, but it will not be accepted by GAP until GAP has completed
the ongoing computation.

When GAP is ready it will usually show the result of the computation, i.e., the value computed. Note that
not all statements produce a value, for example, if you enter a for loop, nothing will be printed, because
the for loop does not produce a value that could be shown.

Also sometimes you do not want to see the result. For example if you have computed a value and now
want to assign the result to a variable, you probably do not want to see the value again. You can terminate
statements by two semicolons to suppress showing the result.

If you have entered several statements on a single line GAP will first read, evaluate, and show the first one,
then read, evaluate, and show the second one, and so on. This means that the second statement will not
even be checked for syntactical correctness until GAP has completed the first computation.

After the result has been shown GAP will display another prompt, and wait for your next input. And the
whole process starts all over again. Note that if you have entered several statements on a single line, a new
prompt will only be printed after GAP has read, evaluated, and shown the last statement.

In each statement that you enter, the result of the previous statement that produced a value is available in
the variable last. The next to previous result is available in last2 and the result produced before that is
available in last3.

gap> 1; 2; 3;
1
2
3
gap> last3 + last2 * last;
7

Also in each statement the time spent by the last statement, whether it produced a value or not, is available
in the variable time. This is an integer that holds the number of milliseconds.

6.2 Special Rules for Input Lines

The input for some GAP objects may not fit on one line, in particular big integers, long strings or long
identifiers. In these cases you can still type or paste them in long single lines, but on screen you will only see
the last part (with a $ character in front). For nicer display you can also specify the input on several lines.
This is achieved by ending a line by a backslash or by a backslash and a carriage return character, then
continue the input on the beginning of the next line. When reading this GAP will ignore such continuation
backslashes, carriage return characters and newline characters. GAP also prints long strings and integers this
way.

66 Chapter 6. Main Loop and Break Loop

gap> n := 1234\
> 567890;
1234567890
gap> "This is a very long string that does not fit on a line \
gap> and is therefore continued on the next line.";
"This is a very long string that does not fit on a line and is therefore conti\
nued on the next line."
gap> bla\
gap> bla := 5;; blabla;
5

There is a special rule about GAP prompts in input lines: In line editing mode (usual user input and GAP
started without -n) in lines starting with gap> , > or brk> this beginning part is removed. This rule is
very convenient because it allows to cut and paste input from other GAP sessions or manual examples easily
into your current session.

6.3 View and Print

1 I View(obj1, obj2...) F

View shows the objects obj1 , obj2 ... etc. in a short form on the standard output. View is called in the
read–eval–print loop, thus the output looks exactly like the representation of the objects shown by the main
loop. Note that no space or newline is printed between the objects.

2 I Print(obj1, obj2...) F

Also Print shows the objects obj1 , obj2 ... etc. on the standard output. The difference compared to View is
in general that the shown form is not required to be short, and that in many cases the form shown by Print
is GAP readable.

gap> z:= Z(2);
Z(2)^0
gap> v:= [z, z, z, z, z, z, z];
[Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0]
gap> ConvertToVectorRep(v);; v;
<a GF2 vector of length 7>
gap> Print(v);
[Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0]gap>

Another difference is that Print shows strings without the enclosing quotes, so Print can be used to produce
formatted text on the standard output (see also chapter 26). Some characters preceded by a backslash, such
as \n, are processed specially (see chapter 26.1). PrintTo can be used to print to a file (see 9.7.3).

gap> for i in [1..5] do
> Print(i, " ", i^2, " ", i^3, "\n");
> od;
1 1 1
2 4 8
3 9 27
4 16 64
5 25 125

gap> g:= SmallGroup(12,5);
<pc group of size 12 with 3 generators>
gap> Print(g, "\n");

Section 4. Break Loops 67

Group([f1, f2, f3])
gap> View(g);
<pc group of size 12 with 3 generators>gap>

3 I ViewObj(obj) O
I PrintObj(obj) O

The functions View and Print actually call the operations ViewObj and PrintObj, respectively, for each
argument. By installing special methods for these operations, it is possible to achieve special printing be-
havior for certain objects (see chapter 2 in the Programmer’s Manual). The only exceptions are strings (see
Chapter 26), for which the default PrintObj and ViewObj methods as well as the function View print also
the enclosing doublequotes, whereas Print strips the doublequotes.

The default method for ViewObj is to call PrintObj. So it is sufficient to have a PrintObj method for an
object in order to View it. If one wants to supply a “short form” for View, one can install additionally a
method for ViewObj.

4 I Display(obj) O

Displays the object obj in a nice, formatted way which is easy to read (but might be difficult for machines
to understand). The actual format used for this depends on the type of obj . Each method should print a
newline character as last character.

gap> Display([[1, 2, 3], [4, 5, 6]] * Z(5));
2 4 1
3 . 2

One can assign a string to an object that Print will use instead of the default used by Print, via SetName
(see 12.8.1). Also, Name (see 12.8.2) returns the string previously assigned to the object for printing, via
SetName. The following is an example in the context of domains.

gap> g:= Group((1,2,3,4));
Group([(1,2,3,4)])
gap> SetName(g, "C4"); g;
C4
gap> Name(g);
"C4"

6.4 Break Loops

When an error has occurred or when you interrupt GAP (usually by hitting ctrl -C) GAP enters a break loop,
that is in most respects like the main read eval print loop (see 6.1). That is, you can enter statements,
GAP reads them, evaluates them, and shows the result if any. However those evaluations happen within the
context in which the error occurred. So you can look at the arguments and local variables of the functions
that were active when the error happened and even change them. The prompt is changed from gap> to brk>
to indicate that you are in a break loop.

gap> 1/0;
Rational operations: <divisor> must not be zero
not in any function
Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can replace <divisor> via ’return <divisor>;’ to continue

If errors occur within a break loop GAP enters another break loop at a deeper level. This is indicated by
a number appended to brk:

68 Chapter 6. Main Loop and Break Loop

brk> 1/0;
Rational operations: <divisor> must not be zero
not in any function
Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can replace <divisor> via ’return <divisor>;’ to continue
brk_02>

There are two ways to leave a break loop.

1 I quit

The first is to quit the break loop. To do this you enter quit; or type the eof (end of f ile) character, which
is usually ctrl -D except when using the -e option (see Section 3.1). Note that GAP code between quit; and
the end of the input line is ignored.

brk_02> quit;
brk>

In this case control returns to the break loop one level above or to the main loop, respectively. So iterated
break loops must be left iteratively. Note also that if you type quit; from a gap> prompt, GAP will exit
(see 6.8).

Note: If you leave a break loop with quit without completing a command it is possible (though not very
likely) that data structures will be corrupted or incomplete data have been stored in objects. Therefore
no guarantee can be given that calculations afterwards will return correct results! If you have been using
options quitting a break loop generally leaves the options stack with options you no longer want. The
function ResetOptionsStack (see 8) removes all options on the options stack, and this is the sole intended
purpose of this function.

2 I return [obj];

The other way is to return from a break loop. To do this you type return; or return expr;. If the break
loop was entered because you interrupted GAP, then you can continue by typing return;. If the break
loop was entered due to an error, you may have to modify the value of a variable before typing return;
(see the example for 21.1.2) or you may have to return a value (by typing: return value;) to continue
the computation; in any case, the message printed on entering the break loop will tell you which of these
alternatives is possible. For example, if the break loop was entered because a variable had no assigned value,
the value to be returned is often a value that this variable should have to continue the computation.

brk> return 9; # we had tried to enter the divisor 9 but typed 0 ...
1/9
gap>

3 I OnBreak V

By default, when a break loop is entered, GAP prints a trace of the innermost 5 commands currently being
executed. This behaviour can be configured by changing the value of the global variable OnBreak. When a
break loop is entered, the value of OnBreak is checked. If it is a function, then it is called with no arguments.
By default, the value of OnBreak is Where (see 6.4.5).

Section 4. Break Loops 69

gap> OnBreak := function() Print("Hello\n"); end;
function() ... end

gap> Error("!\n");
Error, !
Hello
Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> quit;

In cases where a break loop is entered during a function that was called with options (see Chapter 8), a quit;
will also cause the options stack to be reset and an Info-ed warning stating this is emitted at InfoWarning
level 1 (see Chapter 7.4).

Note that for break loops entered by a call to Error, the lines after “Entering break read-eval-print
loop ...” and before the brk> prompt can also be customised, namely by redefining OnBreakMessage
(see 6.4.4).

Also, note that one can achieve the effect of changing OnBreak locally. As mentioned above, the default
value of OnBreak is Where. Thus, a call to Error (see 6.6.1) generally gives a trace back up to five levels of
calling functions. Conceivably, we might like to have a function like Error that does not trace back without
globally changing OnBreak. Such a function we might call ErrorNoTraceBack and here is how we might
define it. (Note ErrorNoTraceBack is not a GAP function.)

gap> ErrorNoTraceBack := function(arg) # arg is a special variable that GAP
> # knows to treat as a list of arg’ts
> local SavedOnBreak, ENTBOnBreak;
> SavedOnBreak := OnBreak; # save the current value of OnBreak
>
> ENTBOnBreak := function() # our ‘local’ OnBreak
> local s;
> for s in arg do
> Print(s);
> od;
> OnBreak := SavedOnBreak; # restore OnBreak afterwards
> end;
>
> OnBreak := ENTBOnBreak;
> Error();
> end;
function(arg) ... end

Here is a somewhat trivial demonstration of the use of ErrorNoTraceBack.

gap> ErrorNoTraceBack("Gidday!", " How’s", " it", " going?\n");
Error, Gidday! How’s it going?
Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> quit;

Now we call Error with the same arguments to show the difference.

70 Chapter 6. Main Loop and Break Loop

gap> Error("Gidday!", " How’s", " it", " going?\n");
Error, Gidday! How’s it going?
Hello
Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> quit;

Observe that the value of OnBreak before the ErrorNoTraceBack call was restored. However, we had changed
OnBreak from its default value; to restore OnBreak to its default value, we should do the following.

gap> OnBreak := Where;;

4 I OnBreakMessage V

When a break loop is entered by a call to Error (see 6.6.1) the message after the “Entering break read-
eval-print loop ...” line is produced by the function OnBreakMessage, which just like OnBreak (see 6.4.3)
is a user-configurable global variable that is a function with no arguments.

gap> OnBreakMessage(); # By default, OnBreakMessage prints the following
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue

Perhaps you are familiar with what’s possible in a break loop, and so don’t need to be reminded. In this
case, you might wish to do the following (the first line just makes it easy to restore the default value later).

gap> NormalOnBreakMessage := OnBreakMessage;; # save the default value
gap> OnBreakMessage := function() end; # do-nothing function
function() ... end

With OnBreak still set away from its default value, calling Error as we did above, now produces:

gap> Error("!\n");
Error, !
Hello
Entering break read-eval-print loop ...
brk> quit; # to get back to outer loop

However, suppose you are writing a function which detects an error condition and OnBreakMessage needs
to be changed only locally, i.e., the instructions on how to recover from the break loop need to be specific
to that function. The same idea used to define ErrorNoTraceBack (see 6.4.3) can be adapted to achieve
this. The function CosetTableFromGensAndRels (see 45.5.5) is an example in the GAP code where the idea
is actually used.

5 I Where([nr]) F

shows the last nr commands on the execution stack during whose execution the error occurred. If not given,
nr defaults to 5. (Assume, for the following example, that after the last example OnBreak (see 6.4.3) has
been set back to its default value.)

Section 5. Variable Access in a Break Loop 71

gap> StabChain(SymmetricGroup(100)); # After this we typed ^C
user interrupt at
bpt := S.orbit[1];
called from

SiftedPermutation(S, (g * rep) ^ -1) called from
StabChainStrong(S.stabilizer, [sch], options); called from
StabChainStrong(S.stabilizer, [sch], options); called from
StabChainStrong(S, GeneratorsOfGroup(G), options); called from
StabChainOp(G, rec(

)) called from
...
Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> Where(2);
called from

SiftedPermutation(S, (g * rep) ^ -1) called from
StabChainStrong(S.stabilizer, [sch], options); called from
...

Note that the variables displayed even in the first line of the Where list (after the called from line) may
be already one environment level higher and DownEnv (see 6.5.1) may be necessary to access them.

At the moment this backtrace does not work from within compiled code (this includes the method selection
which by default is compiled into the kernel). If this creates problems for debugging, call GAP with the -M
option (see 3.2) to avoid loading compiled code.

(Function calls to Info and methods installed for binary operations are handled in a special way. In rare
circumstances it is possible therefore that they do not show up in a Where log but the log refers to the last
proper function call that happened before.)

The command line option -T to GAP disables the break loop. This is mainly intended for testing purposes
and for special applications. If this option is given then errors simply cause GAP to return to the main loop.

6.5 Variable Access in a Break Loop

In a break loop access to variables of the current break level and higher levels is possible, but if the same
variable name is used for different objects or if a function calls itself recursively, of course only the variable
at the lowest level can be accessed.

1 I DownEnv([nr]) F
I UpEnv([nr]) F

DownEnv moves up nr steps in the environment and allows one to inspect variables on this level; if nr is
negative it steps down in the environment again; nr defaults to 1 if not given. UpEnv acts similarly to
DownEnv but in the reverse direction. (The names of DownEnv and UpEnv are the wrong way ’round; I guess
it all depends on which direction defines is “up” – just use DownEnv and get used to that.)

gap> OnBreak := function() Where(0); end;; # eliminate back-tracing on
gap> # entry to break loop
gap> test:= function(n)
> if n > 3 then Error("!\n"); fi; test(n+1); end;;
gap> test(1);
Error, !
Entering break read-eval-print loop ...

72 Chapter 6. Main Loop and Break Loop

you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> Where();
called from

test(n + 1); called from
test(n + 1); called from
test(n + 1); called from
<function>(<arguments>) called from read-eval-loop
brk> n;
4
brk> DownEnv();
brk> n;
3
brk> Where();
called from

test(n + 1); called from
test(n + 1); called from
<function>(<arguments>) called from read-eval-loop
brk> DownEnv(2);
brk> n;
1
brk> Where();
called from

<function>(<arguments>) called from read-eval-loop
brk> DownEnv(-2);
brk> n;
3
brk> quit;
gap> OnBreak := Where;; # restore OnBreak to its default value

Note that the change of the environment caused by DownEnv only affects variable access in the break loop.
If you use return to continue a calculation GAP automatically jumps to the right environment level again.

Note also that search for variables looks first in the chain of outer functions which enclosed the definition
of a currently executing function, before it looks at the chain of calling functions which led to the current
invocation of the function.

gap> foo := function()
> local x; x := 1;
> return function() local y; y := x*x; Error("!!\n"); end;
> end;
function() ... end
gap> bar := foo();
function() ... end
gap> fun := function() local x; x := 3; bar(); end;
function() ... end
gap> fun();
Error, !!
called from

bar(); called from
<function>(<arguments>) called from read-eval-loop
Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or

Section 8. Leaving GAP 73

you can ’return;’ to continue
brk> x;
1
brk> DownEnv(1);
brk> x;
3

Here the x of foo which contained the definition of bar is found before that of fun which caused its execution.
Using DownEnv we can access the x from fun.

6.6 Error

1 I Error(messages...) F

Error signals an error from within a function. First the messages messages are printed, this is done exactly
as if Print (see 6.3) were called with these arguments. Then a break loop (see 6.4) is entered, unless the
standard error output is not connected to a terminal. You can leave this break loop with return; to continue
execution with the statement following the call to Error.

6.7 ErrorCount

1 I ErrorCount() F

ErrorCount returns a count of the number of errors (including user interruptions) which have occurred in
the GAP session so far. This count is reduced modulo 228 on 32 bit systems, 260 on 64 bit systems. The
count is incremented by each error, even if GAP was started with the -T option to disable the break loop.

6.8 Leaving GAP

The normal way to terminate a GAP session is to enter either quit; (note the semicolon) or an end-of-file
character (usually ctrl-D) at the gap> prompt in the main read eval print loop.

An emergency way to leave GAP is to enter

1 I QUIT

at any gap> or brk> or brk nn> prompt.

2 I InstallAtExit(func) F
I QUITTING V

Before actually terminating, GAP will call (with no arguments) all of the functions that have been installed
using InstallAtExit. These typically perform tasks such as cleaning up temporary files created during the
session, and closing open files. If an error occurs during the execution of one of these functions, that function
is simply abandoned, no break loop is entered.

gap> InstallAtExit(function() Print("bye\n"); end);
gap> quit;
bye

During execution of these functions, the global variable QUITTING will be set to true if GAP is exiting because
the user typed QUIT and false otherwise. Since QUIT is considered as an emergency measure, different action
may be appropriate.

3 I SaveOnExitFile V

If, when GAP is exiting due to a quit or end-of-file (ie not due to a QUIT) the variable SaveOnExitFile is
bound to a string value, then the system will try to save the workspace to that file.

74 Chapter 6. Main Loop and Break Loop

6.9 Line Editing

GAP allows one you to edit the current input line with a number of editing commands. Those commands
are accessible either as control keys or as escape keys. You enter a control key by pressing the ctrl key,
and, while still holding the ctrl key down, hitting another key key . You enter an escape key by hitting esc
and then hitting another key key . Below we denote control keys by ctrl -key and escape keys by esc-key . The
case of key does not matter, i.e., ctrl -A and ctrl -a are equivalent.

Normally, line editing will be enabled if the input is connected to a terminal. Line editing can be enabled
or disabled using the command line options -f and -n respectively (see 3.1), however this is a machine
dependent feature of GAP.

Typing ctrl -key or esc-key for characters not mentioned below always inserts ctrl -key resp. esc-key at the
current cursor position.

The first few commands allow you to move the cursor on the current line.

ctrl -A move the cursor to the beginning of the line.

esc-B move the cursor to the beginning of the previous word.

ctrl -B move the cursor backward one character.

ctrl -F move the cursor forward one character.

esc-F move the cursor to the end of the next word.

ctrl -E move the cursor to the end of the line.

The next commands delete or kill text. The last killed text can be reinserted, possibly at a different position,
with the “yank” command ctrl -Y.

ctrl -H or del delete the character left of the cursor.

ctrl -D delete the character under the cursor.

ctrl -K kill up to the end of the line.

esc-D kill forward to the end of the next word.

esc-del kill backward to the beginning of the last word.

ctrl -X kill entire input line, and discard all pending input.

ctrl -Y insert (yank) a just killed text.

The next commands allow you to change the input.

ctrl -T exchange (twiddle) current and previous character.

esc-U uppercase next word.

esc-L lowercase next word.

esc-C capitalize next word.

The tab character, which is in fact the control key ctrl -I, looks at the characters before the cursor, interprets
them as the beginning of an identifier and tries to complete this identifier. If there is more than one possible
completion, it completes to the longest common prefix of all those completions. If the characters to the left
of the cursor are already the longest common prefix of all completions hitting tab a second time will display
all possible completions.

tab complete the identifier before the cursor.

The next commands allow you to fetch previous lines, e.g., to correct typos, etc. This history is limited to
about 8000 characters.

ctrl -L insert last input line before current character.

Section 11. Editor Support 75

ctrl -P redisplay the last input line, another ctrl -P will redisplay the line before that, etc. If the cursor is not
in the first column only the lines starting with the string to the left of the cursor are taken.

ctrl -N Like ctrl -P but goes the other way round through the history.

esc-< goes to the beginning of the history.

esc-> goes to the end of the history.

ctrl -O accepts this line and perform a ctrl -N.

Finally there are a few miscellaneous commands.

ctrl -V enter next character literally, i.e., enter it even if it is one of the control keys.

ctrl -U execute the next line editing command 4 times.

esc-num execute the next line editing command num times.

esc-ctrl -L redisplay input line.

The four arrow keys (cursor keys) can be used instead of ctrl -B, ctrl -F, ctrl -P, and ctrl -N, respectively.

6.10 Editing Files

In most cases, it is preferable to create longer input (in particular GAP programs) separately in an editor,
and to read in the result via Read. Note that Read by default reads from the directory in which GAP was
started (respectively under Windows the directory containing the GAP binary), so you might hav eto give
an absolute path to the file.

If you cannot create several windows, the Edit command may be used to leave GAP, start an editor, and
read in the edited file automatically.

1 I Edit(filename) F

Edit starts an editor with the file whose filename is given by the string filename, and reads the file back
into GAP when you exit the editor again. You should set the GAP variable EDITOR to the name of the editor
that you usually use, e.g., /usr/ucb/vi. This can for example be done in your .gaprc file (see the sections
on operating system dependent features in Chapter 73).

6.11 Editor Support

In the etc subdirectory of the GAP installation we provide some setup files for the editors vim and
emacs/xemacs.

vim is a powerful editor that understands the basic vi commands but provides much more functionality.
You can find more information about it (and download it) from

http://www.vim.org .

To get support for GAP syntax in vim, create in your home directory a directory .vim and a subdirec-
tory .vim/indent (If you are not using Unix, refer to the vim documentation on where to place syntax
files). Then copy the file etc/gap.vim in this.vim directory and copy the file etc/gap indent.vim to
.vim/indent/gap.vim.

Then edit the .vimrc file in your home directory. Add lines as in the following example:

if has("syntax")
syntax on " Default to no syntax highlightning

endif

76 Chapter 6. Main Loop and Break Loop

" For GAP files
augroup gap
" Remove all gap autocommands
au!
autocmd BufRead,BufNewFile *.g,*.gi,*.gd source ~/.vim/gap.vim

autocmd BufRead,BufNewFile *.g,*.gi,*.gd set filetype=gap comments=s:##\ \ ,m:##\ \ ,e:##\ \ b:#

" I’m using the external program ‘par’ for formating comment lines starting
" with ‘## ’. Include these lines only when you have par installed.
autocmd BufRead,BufNewFile *.g,*.gi,*.gd set formatprg="par w76p4s0j"
autocmd BufWritePost,FileWritePost *.g,*.gi,*.gd set formatprg="par w76p0s0j"

augroup END

See the headers of the two mentioned files for additional comments. Adjust details according to your personal
taste.

Setup files for (x)emacs are contained in the etc/emacs subdirectory.

6.12 SizeScreen

1 I SizeScreen() F
I SizeScreen([x, y]) F

With no arguments, SizeScreen returns the size of the screen as a list with two entries. The first is the
length of each line, the second is the number of lines.

With one argument that is a list, SizeScreen sets the size of the screen; x is the length of each line, y is
the number of lines. Either value x or y may be missing (i.e. left unbound), to leave this value unaffected.
It returns the new values. Note that those parameters can also be set with the command line options -x x
and -y y (see Section 3.1).

To check/change whether line breaking occurs for files and streams see 10.4.9 and 10.4.8.

The screen width must be between 20 and 256 characters (inclusive) and the depth at least 10 lines. Values
outside this range will be adjusted to the nearest endpoint of the range.

7
Debugging and

Profiling Facilities

This chapter describes some functions that are useful mainly for debugging and profiling purposes.

The sections 7.2.1 and 7.3 show how to get information about the methods chosen by the method selection
mechanism (see chapter 2 in the programmer’s manual).

The final sections describe functions for collecting statistics about computations (see 7.6.2, 7.7).

7.1 Recovery from NoMethodFound-Errors

When the method selection fails because there is no applicable method, an error as in the following example
occurs and a break loop is entered:

gap> IsNormal(2,2);
Error, no method found! For debugging hints type ?Recovery from NoMethodFound
Error, no 1st choice method found for ‘IsNormal’ on 2 arguments called from
<function>(<arguments>) called from read-eval-loop
Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk>

This only says, that the method selection tried to find a method for IsNormal on two arguments and failed.
In this situation it is crucial to find out, why this happened. Therefore there are a few functions which can
display further information. Note that you can leave the break loop by the quit command (see 6.4.1) and
that the information about the incident is no longer accessible afterwards.

1 I ShowArguments() F

This function is only available within a break loop caused by a “No Method Found”-error. It prints as a list
the arguments of the operation call for which no method was found.

2 I ShowArgument(nr) F

This function is only available within a break loop caused by a “No Method Found”-error. It prints the nr -th
arguments of the operation call for which no method was found. ShowArgument needs exactly one argument
which is an integer between 0 and the number of arguments the operation was called with.

3 I ShowDetails() F

This function is only available within a break loop caused by a “No Method Found”-error. It prints the
details of this error: The operation, the number of arguments, a flag which indicates whether the operation
is being traced, a flag which indicates whether the operation is a constructor method, and the number of
methods that refused to apply by calling TryNextMethod. The last number is called Choice and is printed as
an ordinal. So if exactly k methods were found but called TryNextMethod and there were no more methods
it says Choice: kth.

78 Chapter 7. Debugging and Profiling Facilities

4 I ShowMethods() F
I ShowMethods(verbosity) F

This function is only available within a break loop caused by a “No Method Found”-error. It prints an
overview about the installed methods for those arguments the operation was called with (using Applica-
bleMethod, see 7.2.1). The verbosity can be controlled by the optional integer parameter verbosity . The
default is 2, which lists all applicable methods. With verbosity 1 ShowMethods only shows the number of
installed methods and the methods matching, which can only be those that were already called but refused
to work by calling TryNextMethod. With verbosity 3 not only all installed methods but also the reasons why
they do not match are displayed.

5 I ShowOtherMethods() F
I ShowOtherMethods(verbosity) F

This function is only available within a break loop caused by a “No Method Found”-error. It prints an
overview about the installed methods for a different number of arguments than the number of arguments
the operation was called with (using ApplicableMethod, see 7.2.1). The verbosity can be controlled by the
optional integer parameter verbosity . The default is 1 which lists only the number of applicable methods.
With verbosity 2 ShowOtherMethods lists all installed methods and with verbosity 3 also the reasons, why
they are not applicable. Calling ShowOtherMethods with verbosity 3 in this function will normally not make
any sense, because the different numbers of arguments are simulated by supplying the corresponding number
of ones, for which normally no reasonable methods will be installed.

7.2 ApplicableMethod

1 I ApplicableMethod(opr, args [, printlevel]) F
I ApplicableMethod(opr, args, printlevel, nr) F
I ApplicableMethod(opr, args, printlevel, "all") F
I ApplicableMethodTypes(opr, args [, printlevel]) F
I ApplicableMethodTypes(opr, args, printlevel, nr) F
I ApplicableMethodTypes(opr, args, printlevel, "all") F

In the first form, ApplicableMethod returns the method of highest rank that is applicable for the operation
opr with the arguments in the list args. The default printlevel is 0. If no method is applicable then fail is
returned.

In the second form, if nr is a positive integer then ApplicableMethod returns the nr -th applicable method
for the operation opr with the arguments in the list args, where the methods are ordered according to
descending rank. If less than nr methods are applicable then fail is returned.

If the fourth argument is the string "all" then ApplicableMethod returns a list of all applicable methods
for opr with arguments args, ordered according to descending rank.

Depending on the integer value printlevel , additional information is printed. Admissible values and their
meaning are as follows.

0 no information,

1 information about the applicable method,

2 also information about the not applicable methods of higher rank,

3 also for each not applicable method the first reason why it is not applicable,

4 also for each not applicable method all reasons why it is not applicable.

6 also the function body of the selected method(s)

Section 3. Tracing Methods 79

When a method returned by ApplicableMethod is called then it returns either the desired result or the
string TRY NEXT METHOD, which corresponds to a call to TryNextMethod in the method and means that the
method selection would call the next applicable method.
Note: The kernel provides special treatment for the infix operations \+, \-, *, \/, \^, \mod and \in. For
some kernel objects (notably cyclotomic numbers, finite field elements and vectors thereof) it calls kernel
methods circumventing the method selection mechanism. Therefore for these operations ApplicableMethod
may return a method which is not the kernel method actually used.
ApplicableMethod does not work for constructors (for example GeneralLinearGroupCons is a constructor).
The function ApplicableMethodTypes takes the types or filters of the arguments as argument (if only
filters are given of course family predicates cannot be tested).

7.3 Tracing Methods
1 I TraceMethods(oprs) F

After the call of TraceMethods with a list oprs of operations, whenever a method of one of the operations
in oprs is called the information string used in the installation of the method is printed.

2 I UntraceMethods(oprs) F

turns the tracing off for all operations in oprs.

gap> TraceMethods([Size]);
gap> g:= Group((1,2,3), (1,2));;
gap> Size(g);
#I Size: for a permutation group
#I Setter(Size): system setter
#I Size: system getter
#I Size: system getter
6
gap> UntraceMethods([Size]);

3 I TraceImmediateMethods(flag) F

If flag is true, tracing for all immediate methods is turned on. If flag is false it is turned off. (There is no
facility to trace specific immediate methods.)

gap> TraceImmediateMethods(true);
gap> g:= Group((1,2,3), (1,2));;
#I immediate: Size
#I immediate: IsCyclic
#I immediate: IsCommutative
#I immediate: IsTrivial
gap> Size(g);
#I immediate: IsNonTrivial
#I immediate: Size
#I immediate: IsNonTrivial
#I immediate: GeneralizedPcgs
#I immediate: IsPerfectGroup
#I immediate: IsEmpty
6
gap> TraceImmediateMethods(false);
gap> UntraceMethods([Size]);

This example gives an explanation for the two calls of the “system getter” for Size. Namely, there are
immediate methods that access the known size of the group. Note that the group g was known to be finitely

80 Chapter 7. Debugging and Profiling Facilities

generated already before the size was computed, the calls of the immediate method for IsFinitelyGener-
atedGroup after the call of Size have other arguments than g.

7.4 Info Functions

The Info mechanism permits operations to display intermediate results or information about the progress of
the algorithms. Information is always given according to one or more info classes. Each of the info classes
defined in the GAP library usually covers a certain range of algorithms, so for example InfoLattice covers
all the cyclic extension algorithms for the computation of a subgroup lattice.

The amount of information to be displayed can be specified by the user for each info class separately by a
level, the higher the level the more information will be displayed. Ab initio all info classes have level zero
except InfoWarning (see 7.4.6) which initially has level 1.

1 I NewInfoClass(name) O

creates a new info class with name name.

2 I DeclareInfoClass(name) F

creates a new info class with name name and binds it to the global variable name. The variable must
previously be writable, and is made readonly by this function.

3 I SetInfoLevel(infoclass, level) O

Sets the info level for infoclass to level .

4 I InfoLevel(infoclass) O

returns the info level of infoclass.

5 I Info(infoclass, level, info [,moreinfo . . .])

If the info level of infoclass is at least level the remaining arguments (info and possibly moreinfo and so on)
are evaluated and viewed, preceded by ’#I ’ and followed by a newline. Otherwise the third and subsequent
arguments are not evaluated. (The latter can save substantial time when displaying difficult results.)

gap> InfoExample:=NewInfoClass("InfoExample");;
gap> Info(InfoExample,1,"one");Info(InfoExample,2,"two");
gap> SetInfoLevel(InfoExample,1);
gap> Info(InfoExample,1,"one");Info(InfoExample,2,"two");
#I one
gap> SetInfoLevel(InfoExample,2);
gap> Info(InfoExample,1,"one");Info(InfoExample,2,"two");
#I one
#I two
gap> InfoLevel(InfoExample);
2
gap> Info(InfoExample,3,Length(Combinations([1..9999])));

Note that the last Info call is executed without problems, since the actual level 2 of InfoExample causes
Info to ignore the last argument, which prevents Length(Combinations([1..9999])) from being evaluated;
note that an evaluation would be impossible due to memory restrictions.

A set of info classes (called an info selector) may be passed to a single Info statement. As a shorthand,
info classes and selectors may be combined with + rather than Union. In this case, the message is triggered
if the level of any of the classes is high enough.

Section 6. Timing 81

gap> InfoExample:=NewInfoClass("InfoExample");;
gap> SetInfoLevel(InfoExample,0);
gap> Info(InfoExample + InfoWarning, 1, "hello");
#I hello
gap> Info(InfoExample + InfoWarning, 2, "hello");
gap> SetInfoLevel(InfoExample,2);
gap> Info(InfoExample + InfoWarning, 2, "hello");
#I hello
gap> InfoLevel(InfoWarning);
1

6 I InfoWarning V

is an info class to which general warnings are sent at level 1, which is its default level. More specialised
warnings are Info-ed at InfoWarning level 2, e.g. information about the autoloading of GAP packages and
the initial line matched when displaying an on-line help topic.

7.5 Assertions

Assertions are used to find errors in algorithms. They test whether intermediate results conform to required
conditions and issue an error if not.

1 I SetAssertionLevel(lev) F

assigns the global assertion level to lev . By default it is zero.

2 I AssertionLevel() F

returns the current assertion level.

3 I Assert(lev, cond) F
I Assert(lev, cond, message) F

With two arguments, if the global assertion level is at least lev , condition cond is tested and if it does not
return true an error is raised. Thus Assert(lev, cond) is equivalent to the code

if AssertionLevel() >= lev and not <cond> then
Error("Assertion failure");

fi;

With the message argument form of the Assert statement, if the global assertion level is at least lev ,
condition cond is tested and if it does not return true then message is evaluated and printed.

Assertions are used at various places in the library. Thus turning assertions on can slow code execution
significantly.

7.6 Timing

1 I Runtimes() F

Runtimes returns a record with components bound to integers or fail. Each integer is the cpu time (pro-
cessor time) in milliseconds spent by GAP in a certain status:

user time cpu time spent with GAP functions (without child processes).

system time cpu time spent in system calls, e.g., file access (fail if not available).

user time children cpu time spent in child processes (fail if not available).

system time children cpu time spent in system calls by child processes (fail if not available).

82 Chapter 7. Debugging and Profiling Facilities

Note that this function is not fully supported on all systems. Only the user time component is (and may
on some systems include the system time).

The following example demonstrates tasks which contribute to the different time components:

gap> Runtimes(); # after startup
rec(user_time := 3980, system_time := 60, user_time_children := 0,
system_time_children := 0)

gap> Exec("cat /usr/bin/*|wc"); # child process with a lot of file access
893799 7551659 200928302

gap> Runtimes();
rec(user_time := 3990, system_time := 60, user_time_children := 1590,
system_time_children := 600)

gap> a:=0;;for i in [1..100000000] do a:=a+1; od; # GAP user time
gap> Runtimes();
rec(user_time := 12980, system_time := 70, user_time_children := 1590,
system_time_children := 600)

gap> ?blabla # first call of help, a lot of file access
Help: no matching entry found
gap> Runtimes();
rec(user_time := 13500, system_time := 440, user_time_children := 1590,
system_time_children := 600)

2 I Runtime() F

Runtime returns the time spent by GAP in milliseconds as an integer. It is the same as the value of the
user time component given by Runtimes, as explained above.

See StringTime (26.8.9) for a translation from milliseconds into hour/minute format.

3 I time;

in the read-eval-print loop returns the time the last command took.

7.7 Profiling

Profiling of code can be used to determine in which parts of a program how much time has been spent
during runtime.

1 I ProfileOperations([true/false]) F

When called with argument true, this function starts profiling of all operations. Old profiling information
is cleared. When called with false it stops profiling of all operations. Recorded information is still kept, so
you can display it even after turning the profiling off.

When called without argument, profiling information for all profiled operations is displayed (see 7.7.8).

2 I ProfileOperationsAndMethods([true/false]) F

When called with argument true, this function starts profiling of all operations and their methods. Old
profiling information is cleared. When called with false it stops profiling of all operations and their methods.
Recorded information is still kept, so you can display it even after turning the profiling off.

When called without argument, profiling information for all profiled operations and their methods is dis-
played (see 7.7.8).

3 I ProfileMethods(ops) F

starts profiling of the methods for all operations in ops.

Section 7. Profiling 83

4 I UnprofileMethods(ops) F

stops profiling of the methods for all operations in ops. Recorded information is still kept, so you can display
it even after turning the profiling off.

5 I ProfileFunctions(funcs) F

turns profiling on for all function in funcs. You can use ProfileGlobalFunctions (see 7.7.7) to turn profiling
on for all globally declared functions simultaneously.

6 I UnprofileFunctions(funcs) F

turns profiling off for all function in funcs. Recorded information is still kept, so you can display it even
after turning the profiling off.

7 I ProfileGlobalFunctions(true) F
I ProfileGlobalFunctions(false) F

ProfileGlobalFunctions(true) turns on profiling for all functions that have been declared via Declare-
GlobalFunction. A function call with the argument false turns it off again.

8 I DisplayProfile() F
I DisplayProfile(funcs) F

In the first form, DisplayProfile displays the profiling information for profiled operations, methods and
functions. If an argument funcs is given, only profiling information for the functions in funcs is given. The
information for a profiled function is only displayed if the number of calls to the function or the total time
spent in the function exceeds a given threshold (see 7.7.9).

Profiling information is displayed in a list of lines for all functions (also operations and methods) which are
profiled. For each function, “count” gives the number of times the function has been called. “self” gives the
time spent in the function itself, “child” the time spent in profiled functions called from within this function.
The list is sorted according to the total time spent, that is the sum “self”+“child”.

9 I PROFILETHRESHOLD V

This variable is a list [cnt , time] of length two. DisplayProfile will only display lines for functions which
are called at least cnt times or whose total time (“self”+“child”) is at least time. The default value of
PROFILETHRESHOLD is [10000,30].

10 I ClearProfile() F

clears all stored profiling information.

gap> ProfileOperationsAndMethods(true);
gap> ConjugacyClasses(PrimitiveGroup(24,1));;
gap> ProfileOperationsAndMethods(false);
gap> DisplayProfile();
count self/ms chld/ms function

[the following is excerpted from a much longer list]
1620 170 90 CycleStructurePerm: default method
1620 20 260 CycleStructurePerm

114658 280 0 Size: for a list that is a collection
287 20 290 Meth(CyclesOp)
287 0 310 CyclesOp
26 0 330 Size: for a conjugacy class

2219 50 380 Size
2 0 670 IsSubset: for two collections (loop over the ele*
32 0 670 IsSubset

84 Chapter 7. Debugging and Profiling Facilities

48 10 670 IN: for a permutation, and a permutation group
2 20 730 Meth(ClosureGroup)
2 0 750 ClosureGroup
1 0 780 DerivedSubgroup
1 0 780 Meth(DerivedSubgroup)
4 0 810 Meth(StabChainMutable)
29 0 810 StabChainOp
3 700 110 Meth(StabChainOp)
1 0 820 Meth(IsSimpleGroup)
1 0 820 Meth(IsSimple)

552 10 830 Meth(StabChainImmutable)
26 490 480 CentralizerOp: perm group,elm
26 0 970 Meth(StabilizerOfExternalSet)
107 0 970 CentralizerOp
926 10 970 Meth(CentralizerOp)
819 2100 2340 Meth(IN)
1 10 4890 ConjugacyClasses: by random search
1 0 5720 ConjugacyClasses: perm group
2 0 5740 ConjugacyClasses

6920 TOTAL
gap> DisplayProfile(StabChainOp,DerivedSubgroup); # only two functions
count self/ms chld/ms function

1 0 780 DerivedSubgroup
29 0 810 StabChainOp

6920 OTHER
6920 TOTAL

Note that profiling (even the command ProfileOperationsAndMethods(true)) can take substantial time
and GAP will perform much more slowly when profiling than when not.

11 I DisplayCacheStats() F

displays statistics about the different caches used by the method selection.

12 I ClearCacheStats() F

clears all statistics about the different caches used by the method selection.

7.8 Information about the version used

1 I DisplayRevision() F

Displays the revision numbers of all loaded files from the library.

7.9 Test Files

Test files are used to check that GAP produces correct results in certain computations. A selection of test
files for the library can be found in the tst directory of the GAP distribution.

1 I ReadTest(name-file) O

reads a test file. A test file starts with a line

gap> START_TEST("arbitrary identifier string");

(Note that the gap> prompt is part of the line!) It continues by lines of GAP input and corresponding
output. The input lines again start with the gap> prompt (or the > prompt if commands exceed one line).

Section 10. Debugging Recursion 85

The output is exactly as would result from typing in the input interactively to a GAP session (on a screen
with 80 characters per line).

The test file stops with a line

gap> STOP_TEST("filename", 10000);

Here the string "filename" should give the name of the test file. The number is a proportionality factor
that is used to output a “GAPstone” speed ranking after the file has been completely processed. For the files
provided with the distribution this scaling is roughly equalized to yield the same numbers as produced by
combinat.tst.

7.10 Debugging Recursion

The GAP interpreter monitors the level of nesting of GAP functions during execution. By default, when-
ever this nesting reaches a multiple of 5000, GAP enters a break loop (6.4) allowing you to terminate the
calculation, or enter return; to continue it.

gap> dive:= function(depth) if depth>1 then dive(depth-1); fi; return; end;
function(depth) ... end
gap> dive(100);
gap> OnBreak:= function() Where(1); end; # shorter traceback
function() ... end
gap> dive(6000);
recursion depth trap (5000)
at

dive(depth - 1);
called from

dive(depth - 1); called from
...
Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you may ’return;’ to continue
brk> return;
gap> dive(11000);
recursion depth trap (5000)
at

dive(depth - 1);
called from

dive(depth - 1); called from
...
Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you may ’return;’ to continue
brk> return;
recursion depth trap (10000)
at

dive(depth - 1);
called from

dive(depth - 1); called from
...
Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you may ’return;’ to continue

86 Chapter 7. Debugging and Profiling Facilities

brk> return;
gap>

This behaviour can be controlled using the procedure

1 I SetRecursionTrapInterval(interval) F

interval must be a non-negative small integer (between 0 and 228). An interval of 0 suppresses the monitoring
of recursion altogether. In this case excessive recursion may cause GAP to crash.

gap> dive:= function(depth) if depth>1 then dive(depth-1); fi; return; end;
function(depth) ... end
gap> SetRecursionTrapInterval(1000);
gap> dive(2500);
recursion depth trap (1000)
at

dive(depth - 1);
called from

dive(depth - 1); called from
...
Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you may ’return;’ to continue
brk> return;
recursion depth trap (2000)
at

dive(depth - 1);
called from

dive(depth - 1); called from
...
Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you may ’return;’ to continue
brk> return;
gap> SetRecursionTrapInterval(-1);
SetRecursionTrapInterval(<interval>): <interval> must be a non-negative smal\
l integer
not in any function
Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can replace <interval> via ’return <interval>;’ to continue
brk> return ();
SetRecursionTrapInterval(<interval>): <interval> must be a non-negative smal\
l integer
not in any function
Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can replace <interval> via ’return <interval>;’ to continue
brk> return 0;
gap> dive(20000);
gap> dive(2000000);
Segmentation fault

Section 11. Global Memory Information 87

7.11 Global Memory Information

The GAP environment provides automatic memory management, so that the programmer does not need to
concern themselves with allocating space for objects, or recovering space when objects are no longer needed.
The component of the kernel which provides this is called GASMAN (GAP Storage MANager). Messages
reporting garbage collections performed by GASMAN can be switched on by the -g command line option
(see section 3.1). There are also some facilities to access information from GASMAN from GAP programs.

1 I GasmanStatistics() F

GasmanStatistics() returns a record containing some information from the garbage collection mechanism.
The record may contain up to two components: full and partial

The full component will be present if a full garbage collection has taken place since GAP started. It contains
information about the most recent full garbage collection. It is a record, with six components: livebags
contains the number of bags which survived the garbage collection; livekb contains the total number of
kilobytes occupied by those bags; deadbags contains the total number of bags which were reclaimed by
that garbage collection and all the partial garbage collections preceeding it, since the previous full garbage
collection; deadkb contains the total number of kilobytes occupied by those bags; freekb reports the total
number of kilobytes available in the GAP workspace for new objects and totalkb the actual size of the
workspace.

These figures shouold be viewed with some caution. They are stored internally in fixed length integer formats,
and deadkb and deadbags are liable to overflow if there are many partial collections before a full collection.
Also, note that livekb and freekb will not usually add up to totalkb. The difference is essentially the
space overhead of the memory management system.

The partial component will be present if there has been a partial garbage collection since the last full one.
It is also a record with the same six components as full. In this case deadbags and deadkb refer only to
the number and total size of the garbage bags reclaimed in this partial garbage collection and livebagsand
livekb only to the numbers and total size of the young bags that were considered for garbage collection,
and survived.

2 I GasmanMessageStatus() F
I SetGasmanMessageStatus(stat) F

GasmanMessageStatus() returns one of the string ”none”, ”full” or ”all”, depending on whether the garbage
collector is currently set to print messages on no collections, full collections only or all collections.

SetGasmanMessageStatus(stat) sets the garbage collector messaging level. stat should be one of the
strings ”none”, ”full” or ”all”.

3 I GasmanLimits() F

GasmanLimits() returns a record with three components: min is the minimum workspace size as set by the
-m command line option in kilobytes. The workspace size will never be reduced below this by the garbage
collector. max is the maximum workspace size, as set by the ’-o’ command line option, also in kilobytes. If
the workspace would need to grow past this point, GAP will enter a break loop to warn the user. A value
of 0 indicates no limit.kill is the absolute maximum, set by the -K command line option. The workspace
will never be allowed to grow past this limit.

8 Options Stack

GAP Supports a global Options system. This is intended as a way for the user to provide guidance to various
algorithms that might be used in a computation. Such guidance should not change mathematically the
specification of the computation to be performed, although it may change the algorithm used. A typical
example is the selection of a strategy for the Todd-Coxeter coset enumeration procedure. An example
of something not suited to the options mechanism is the imposition of exponent laws in the p-Quotient
algorithm.

The basis of this system is a global stack of records. All the entries of each record are thought of as options
settings, and the effective setting of an option is given by the topmost record in which the relevant field is
bound.

The reason for the choice of a stack is the intended pattern of use:

PushOptions(rec(<stuff>));
DoSomething(<args>);
PopOptions();

This can be abbreviated, to DoSomething(args : stuff); with a small additional abbreviation of stuff
permitted. See 4.10.2 for details. The full form can be used where the same options are to run across several
calls, or where the DoSomething procedure is actually a binary operation, or other function with special
syntax.

At some time, an options predicate or something of the kind may be added to method selection.

An alternative to this system is the use of additional optional arguments in procedure calls. This is not felt
to be adequate because many procedure calls might cause, for example, a coset enumeration and each would
need to make provision for the possibility of extra arguments. In this system the options are pushed when
the user-level procedure is called, and remain in effect (unless altered) for all procedures called by it.

1 I PushOptions(options record) F

This function pushes a record of options onto the global option stack. Note that PushOption(rec(opt :=
fail)) has the effect of resetting option opt , since an option that has never been set has the value fail
returned by ValueOptions.

Note that there is no check for misspelt or undefined options.

2 I PopOptions() F

This function removes the top-most options record from the options stack.

3 I ResetOptionsStack() F

unbinds (i.e. removes) all the options records from the options stack.

Note: ResetOptionsStack should not be used within a function. Its intended use is to clean up the options
stack in the event that the user has quit from a break loop, so leaving a stack of no-longer-needed options
(see 6.4.1).

89

4 I ValueOption(opt) F

This function is the main method of accessing the Options Stack; opt should be the name of an option, i.e. a
string. A function which makes decisions which might be affected by options should examine the result of
ValueOption(opt). If opt has never been set then fail is returned.

5 I DisplayOptionsStack() F

This function prints a human-readable display of the complete options stack.

6 I InfoOptions V

This info class can be used to enable messages about options being changed (level 1) or accessed (level 2).

The example below shows simple manipulation of the Options Stack, first using PushOptions and PopOp-
tions and then using the special function calling syntax.

gap> foo := function()
> Print("myopt1 = ", ValueOption("myopt1"),
> " myopt2 = ",ValueOption("myopt2"),"\n");
> end;
function() ... end
gap> foo();
myopt1 = fail myopt2 = fail
gap> PushOptions(rec(myopt1 := 17));
gap> foo();
myopt1 = 17 myopt2 = fail
gap> DisplayOptionsStack();
[rec(

myopt1 := 17)]
gap> PopOptions();
gap> foo();
myopt1 = fail myopt2 = fail
gap> foo(: myopt1, myopt2 := [Z(3),"aardvark"]);
myopt1 = true myopt2 = [Z(3), "aardvark"]
gap> DisplayOptionsStack();
[]
gap>

9 Files and Filenames

Files are identified by filenames, which are represented in GAP as strings. Filenames can be created directly
by the user or a program, but of course this is operating system dependent.

Filenames for some files can be constructed in a system independent way using the following functions. This
is done by first getting a directory object for the directory the file shall reside in, and then constructing the
filename. However, it is sometimes necessary to construct filenames of files in subdirectories relative to a
given directory object. In this case the directory separator is always ’/’ even under DOS or MacOS.

Section 9.3 describes how to construct directory objects for the common GAP and system directories. Using
the command Filename described in section 9.4.1 it is possible to construct a filename pointing to a file in
these directories. There are also functions to test for accessibility of files, see 9.6.

9.1 Portability

For portability filenames and directory names should be restricted to at most 8 alphanumerical characters
optionally followed by a dot ’.’ and between 1 and 3 alphanumerical characters. Upper case letters should
be avoided because some operating systems do not make any distinction between case, so that NaMe, Name
and name all refer to the same file whereas some operating systems are case sensitive. To avoid problems
only lower case characters should be used.

Another function which is system-dependent is:

1 I LastSystemError() F

LastSystemError returns a record describing the last system error that has occurred. This record contains at
least the component message which is a string. This message is, however, highly operating system dependent
and should only be used as an informational message for the user.

9.2 GAP Root Directory

When starting GAP it is possible to specify various directories as root directories. In GAP’s view of the world
these directories are merged into one meta-directory. This directory is called GAP root directory in the
following.

For example, if root1;root2;... is passed as argument to -l when GAP is started and GAP wants to locate
a file lib/group.gd in the GAP root directory it will first check if the file exists in root1 , if not, it checks
root2 , and so on.

This layout makes it possible to have one system-wide installation of GAP which is read-only but still allows
users to modify individual files. Therefore instead of constructing an absolute path name to a file you should
always use DirectoriesLibrary or DirectoriesPackageLibrary together with Filename to construct a
filename for a file in the GAP root directory.

Example

Suppose that the system-wide installation lives in /usr/local/lib/gap4 and you want to modify the file
lib/files.gd without disturbing the system installation.

Section 3. Directories 91

In this case create a new directory /home/myhome/gap containing a subdirectory lib which contains the
modified lib/files.gd.

The directory/file structure now looks like

/usr/local/lib/gap4/
/usr/local/lib/gap4/lib/
/usr/local/lib/gap4/lib/files.gd
/home/myhome/gap/
/home/myhome/gap/lib
/home/myhome/gap/lib/files.gd

If you start GAP using (under UNIX)

you@unix> gap -l ’/home/myhome/gap;/usr/local/lib/gap4’

then the file /home/myhome/gap/lib/files.gd will be used whenever GAP references the file with filename
lib/files.gd in the GAP root directory.

This setup also allows one to easily install new GAP packages or bugfixes even if no access to the system
GAP installation is possible. Simply unpack the files into “/home/myhome/gap”.

9.3 Directories

1 I Directory(string) O

returns a directory object for the string string . Directory understands . for “current directory”, that is,
the directory in which GAP was started. It also understands absolute paths.

If the variable GAPInfo.UserHome is defined (this may depend on the operating system) then Directory
understands a string with a leading ~ character for a path relative to the user’s home directory.

Paths are otherwise taken relative to the current directory.

2 I DirectoryTemporary(hint) F
I DirectoryTemporary() F

returns a directory object in the category IsDirectory for a new temporary directory. This is guaranteed to
be newly created and empty immediately after the call to DirectoryTemporary. GAP will make a reasonable
effort to remove this directory either when a garbage collection collects the directory object or upon
termination of the GAP job that created the directory. hint can be used by DirectoryTemporary to construct
the name of the directory but DirectoryTemporary is free to use only a part of hint or even ignore it
completely.

If DirectoryTemporary is unable to create a new directory, fail is returned. In this case LastSystemError
can be used to get information about the error.

3 I DirectoryCurrent() F

returns the directory object for the current directory.

4 I DirectoriesLibrary() F
I DirectoriesLibrary(name) F

returns the directory objects for the GAP library name as a list. name must be one of "lib" (the de-
fault), "grp", "prim", and so on. The string "" is also legal and with this argument DirectoriesLibrary
returns the list of GAP root directories; the return value of DirectoriesLibrary(""); differs from GAP-
Info.RootPaths in that the former is a list of directory objects and the latter a list of strings.

The directory name must exist in at least one of the root directories, otherwise fail is returned.

92 Chapter 9. Files and Filenames

As the files in the GAP root directory (see 9.2) can be distributed into different directories in the filespace
a list of directories is returned. In order to find an existing file in a GAP root directory you should pass
that list to Filename (see 9.4.1) as the first argument. In order to create a filename for a new file inside a
GAP root directory you should pass the first entry of that list. However, creating files inside the GAP root
directory is not recommended, you should use DirectoryTemporary instead.

5 I DirectoriesSystemPrograms() F

DirectoriesSystemPrograms returns the directory objects for the list of directories where the system
programs reside as a list. Under UNIX this would usually represent $PATH.

6 I DirectoryContents(name) F

This function returns a list of filenames/directory names that reside in the directory with name name (given
as a string). It is an error, if such a directory does not exist.

9.4 Filename

1 I Filename(dir, name) O
I Filename(list-of-dirs, name) O

If the first argument is a directory object dir , Filename returns the (system dependent) filename as a string
for the file with name name in the directory dir . Filename returns the filename regardless of whether the
directory contains a file with name name or not.

If the first argument is a list list-of-dirs (possibly of length 1) of directory objects, then Filename searches
the directories in order, and returns the filename for the file name in the first directory which contains a file
name or fail if no directory contains a file name.

Examples

In order to locate the system program date use DirectoriesSystemPrograms together with the second
form of Filename.

gap> path := DirectoriesSystemPrograms();;
gap> date := Filename(path, "date");
"/bin/date"

In order to locate the library file files.gd use DirectoriesLibrary together with the second form of
Filename.

gap> path := DirectoriesLibrary();;
gap> Filename(path, "files.gd");
"./lib/files.gd"

In order to construct filenames for new files in a temporary directory use DirectoryTemporary together
with the first form of Filename.

gap> tmpdir := DirectoryTemporary();;
gap> Filename([tmpdir], "file.new");
fail
gap> Filename(tmpdir, "file.new");
"/var/tmp/tmp.0.021738.0001/file.new"

Section 6. File Access 93

9.5 Special Filenames

The special filename "*stdin*" denotes the standard input, i.e., the stream through which the user enters
commands to GAP. The exact behaviour of reading from "*stdin*" is operating system dependent, but
usually the following happens. If GAP was started with no input redirection, statements are read from the
terminal stream until the user enters the end of file character, which is usually ctr -’D’. Note that terminal
streams are special, in that they may yield ordinary input after an end of file. Thus when control returns to
the main read-eval-print loop the user can continue with GAP. If GAP was started with an input redirection,
statements are read from the current position in the input file up to the end of the file. When control returns
to the main read eval view loop the input stream will still return end of file, and GAP will terminate.

The special filename "*errin*" denotes the stream connected to the UNIX stderr output. This stream
is usually connected to the terminal, even if the standard input was redirected, unless the standard error
stream was also redirected, in which case opening of "*errin*" fails.

The special filename "*stdout*" can be used to print to the standard output.

The special filename "*errout*" can be used to print to the standard error output file, which is usually
connected to the terminal, even if the standard output was redirected.

9.6 File Access

When the following functions return false one can use LastSystemError (see 9.1.1) to find out the reason
(as provided by the operating system).

1 I IsExistingFile(name-file) F

returns true if a file with the filename name-file exists and can be seen by the GAP process. Otherwise
false is returned.

2 I IsReadableFile(name-file) F

returns true if a file with the filename name-file exists and the GAP process has read permissions for the
file, or false if this is not the case.

3 I IsWritableFile(name-file) F

returns true if a file with the filename name-file exists and the GAP process has write permissions for the
file, or false if this is not the case.

4 I IsExecutableFile(name-file) F

returns true if a file with the filename name-file exists and the GAP process has execute permissions for
the file, or false if this is not the case. Note that execute permissions do not imply that it is possible to
execute the file, e.g., it may only be executable on a different machine.

5 I IsDirectoryPath(name-file) F

returns true if the file with the filename name-file exists and is a directory and false otherwise. Note that
this function does not check if the GAP process actually has write or execute permissions for the directory
(you can use IsWritableFile (see 9.6.3), resp. IsExecutableFile (see 9.6.4) to check such permissions).

Examples

Note, in particular, how one may use LastSystemError (see 9.1.1) to discover the reason a file access function
returns false.

94 Chapter 9. Files and Filenames

gap> IsExistingFile("/bin/date"); # the file ‘/bin/date’ exists
true
gap> IsExistingFile("/bin/date.new"); # the file ‘/bin/date.new’ does not exist
false
gap> IsExistingFile("/bin/date/new"); # ‘/bin/date’ is not a directory
false
gap> LastSystemError().message;
"Not a directory"
gap> IsReadableFile("/bin/date"); # the file ‘/bin/date’ is readable
true
gap> IsReadableFile("/bin/date.new"); # the file ‘/bin/date.new’ does not exist
false
gap> LastSystemError().message;
"No such file or directory"
gap> IsWritableFile("/bin/date"); # the file ‘/bin/date’ is not writable ...
false
gap> IsExecutableFile("/bin/date"); # ... but executable
true

9.7 File Operations

1 I Read(name-file) O

reads the input from the file with the filename name-file, which must be given as a string.

Read first opens the file name-file. If the file does not exist, or if GAP cannot open it, e.g., because of access
restrictions, an error is signalled.

Then the contents of the file are read and evaluated, but the results are not printed. The reading and
evaluations happens exactly as described for the main loop (see 6.1).

If a statement in the file causes an error a break loop is entered (see 6.4). The input for this break loop is not
taken from the file, but from the input connected to the stderr output of GAP. If stderr is not connected to
a terminal, no break loop is entered. If this break loop is left with quit (or ctr-D), GAP exits from the Read
command, and from all enclosing Read commands, so that control is normally returned to an interactive
prompt. The QUIT statement (see 6.8) can also be used in the break loop to exit GAP immediately.

Note that a statement must not begin in one file and end in another. I.e., eof (end-of-file) is not treated
as whitespace, but as a special symbol that must not appear inside any statement.

Note that one file may very well contain a read statement causing another file to be read, before input is
again taken from the first file. There is an operating system dependent maximum on the number of files
that may be open simultaneously. Usually it is 15.

2 I ReadAsFunction(name-file) O

reads the file with filename name-file as a function and returns this function.

Example

Suppose that the file /tmp/example.g contains the following

local a;

a := 10;
return a*10;

Reading the file as a function will not affect a global variable a.

Section 7. File Operations 95

gap> a := 1;
1
gap> ReadAsFunction("/tmp/example.g")();
100
gap> a;
1

3 I PrintTo(name-file[, obj1, ...]) F

works like Print (see 6.3.2), except that the arguments obj1 , . . . (if present) are printed to the file with the
name name-file instead of the standard output. This file must of course be writable by GAP. Otherwise an
error is signalled. Note that PrintTo will overwrite the previous contents of this file if it already existed;
in particular, PrintTo with just the name-file argument empties that file. AppendTo can be used to append
to a file (see 9.7.4). There is an operating system dependent maximum on the number of output files that
may be open simultaneously, usually this is 14.

4 I AppendTo(name-file[, obj1, ...]) F

works like PrintTo (see 9.7.3), except that the output does not overwrite the previous contents of the file,
but is appended to the file.

5 I LogTo(name-file) O

causes the subsequent interaction to be logged to the file with the name name-file, i.e., everything you see
on your terminal will also appear in this file. LogTo may also be used to log to a stream (see 10.4.5). This
file must of course be writable by GAP, otherwise an error is signalled. Note that LogTo will overwrite the
previous contents of this file if it already existed.

6 I LogTo() M

In this form LogTo stops logging to a file or stream.

7 I InputLogTo(name-file) O

causes the subsequent input to be logged to the file with the name name-file, i.e., everything you type on
your terminal will also appear in this file. Note that InputLogTo and LogTo cannot be used at the same
time while InputLogTo and OutputLogTo can. Note that InputLogTo will overwrite the previous contents
of this file if it already existed.

8 I InputLogTo() M

In this form InputLogTo stops logging to a file or stream.

9 I OutputLogTo(name-file) O

causes the subsequent output to be logged to the file with the name name-file, i.e., everything GAP prints
on your terminal will also appear in this file. Note that OutputLogTo and LogTo cannot be used at the same
time while InputLogTo and OutputLogTo can. Note that OutputLogTo will overwrite the previous contents
of this file if it already existed.

10 I OutputLogTo() M

In this form OutputLogTo stops logging to a file or stream.

Note that one should be careful not to write to a logfile with PrintTo or AppendTo.

11 I CrcFile(name-file) F

computes a checksum value for the file with filename name-file and returns this value as an integer. See
Section 3.10 for an example. The function returns fail if a system error occurred, say, for example, if name-
file does not exist. In this case the function LastSystemError (see 9.1.1) can be used to get information
about the error.

96 Chapter 9. Files and Filenames

12 I RemoveFile(name-file) F

will remove the file with filename name-file and returns true in case of success. The function returns fail
if a system error occurred, for example, if your permissions do not allow the removal of name-file. In this
case the function LastSystemError (see 9.1.1) can be used to get information about the error.

13 I Reread(name-file) F
I REREADING

In general, it is not possible to read the same GAP library file twice, or to read a compiled version after
reading a GAP version, because crucial global variables are made read-only (see 4.9) and filters and methods
are added to global tables.

A partial solution to this problem is provided by the function Reread (and related functions RereadLib
etc.). Reread(name-file) sets the global variable REREADING to true, reads the file named by name-file
and then resets REREADING. Various system functions behave differently when REREADING is set to true. In
particular, assignment to read-only global variables is permitted, calls to NewRepresentation (see 3.2.1 in
“Programming in GAP”) and NewInfoClass (see 7.4.1) with parameters identical to those of an existing
representation or info class will return the existing object, and methods installed with InstallMethod (see
2.2.1 in “Programming in GAP”) may sometimes displace existing methods.

This function may not entirely produce the intended results, especially if what has changed is the super-
representation of a representation or the requirements of a method. In these cases, it is necessary to restart
GAP to read the modified file.

An additional use of Reread is to load the compiled version of a file for which the GAP language version had
previously been read (or perhaps was included in a saved workspace). See 3.7 and 3.11 for more information.

10 Streams

Streams provide flexible access to GAP’s input and output processing. An input stream takes characters
from some source and delivers them to GAP which reads them from the stream. When an input stream has
delivered all characters it is at end-of-stream. An output stream receives characters from GAP which
writes them to the stream, and delivers them to some destination.

A major use of streams is to provide efficient and flexible access to files. Files can be read and written using
Read and AppendTo, however the former only allows a complete file to be read as GAP input and the latter
imposes a high time penalty if many small pieces of output are written to a large file. Streams allow input
files in other formats to be read and processed, and files to be built up efficiently from small pieces of output.
Streams may also be used for other purposes, for example to read from and print to GAP strings, or to read
input directly from the user.

Any stream is either a text stream, which translates the end-of-line character (’\n’) to or from the
system’s representation of end-of-line (e.g., new-line under UNIX, carriage-return under MacOS, carriage-
return-new-line under DOS), or a binary stream, which does not translate the end-of-line character.
The processing of other unprintable characters by text streams is undefined. Binary streams pass them
unchanged.

Whereas it is cheap to append to a stream, streams do consume system resources, and only a limited number
can be open at any time, therefore it is necessary to close a stream as soon as possible using CloseStream
described in Section 10.2.1. If creating a stream failed then LastSystemError (see 9.1.1) can be used to get
information about the failure.

10.1 Categories for Streams and the StreamsFamily

1 I IsStream(obj) C

Streams are GAP objects and all open streams, input, output, text and binary, lie in this category.

2 I IsClosedStream(obj) C

When a stream is closed, its type changes to lie in ’IsClosedStream’. This category is used to install methods
that trap accesses to closed streams.

3 I IsInputStream(obj) C

All input streams lie in this category, and support input operations such as ReadByte (see 10.3)

4 I IsInputTextStream(obj) C

All text input streams lie in this category. They translate new-line characters read.

5 I IsInputTextNone(obj) C

It is convenient to use a category to distinguish dummy streams (see 10.9) from others. Other distinctions
are usually made using representations

6 I IsOutputStream(obj) C

All output streams lie in this category and support basic operations such as WriteByte (see 10.4)

98 Chapter 10. Streams

7 I IsOutputTextStream(obj) C

All text output streams lie in this category and translate new-line characters on output.

8 I IsOutputTextNone(obj) C

It is convenient to use a category to distinguish dummy streams (see 10.9) from others. Other distinctions
are usually made using representations

9 I StreamsFamily V

All streams lie in the StreamsFamily

10.2 Operations applicable to All Streams

1 I CloseStream(stream) O

In order to preserve system resources and to flush output streams every stream should be closed as soon as
it is no longer used using CloseStream.

It is an error to try to read characters from or write characters to a closed stream. Closing a stream tells
the GAP kernel and/or the operating system kernel that the file is no longer needed. This may be necessary
because the GAP kernel and/or the operating system may impose a limit on how many streams may be open
simultaneously.

2 I FileDescriptorOfStream(stream) O

returns the UNIX file descriptor of the underlying file. This is mainly useful for the UNIXSelect function
call (see 10.2.3). This is as of now only available on UNIX-like operating systems and only for streams to
local processes and local files.

3 I UNIXSelect(inlist, outlist, exclist, timeoutsec, timeoutusec) F

makes the UNIX C-library function select accessible from GAP for streams. The functionality is as described
in the man page (see man select). The first three arguments must be lists containing UNIX file descriptors
(integers) for streams. They can be obtained via FileDescriptorOfStream (see 10.2.2) for streams to local
processes and to local files. The argument timeoutsec is a timeout in seconds as in the struct timeval on
the C level. The argument timeoutusec is analogously in microseconds. The total timeout is the sum of both.
If one of those timeout arguments is not a small integer then no timeout is applicable (fail is allowed for
the timeout arguments).

The return value is the number of streams that are ready, this may be 0 if a timeout was specified. All file
descriptors in the three lists that are not yet ready are replaced by fail in this function. So the lists are
changed!

This function is not available on the Macintosh architecture and is only available if your operating system
has select, which is detected during compilation of GAP.

10.3 Operations for Input Streams

Three operations normally used to read files: Read, ReadAsFunction and ReadTest can also be used to read
GAP input from a stream. The input is immediately parsed and executed. When reading from a stream str ,
the GAP kernel generates calls to ReadLine(str) to supply text to the parser.

Three further operations: ReadByte, ReadLine and ReadAll, support reading characters from an input
stream without parsing them. This can be used to read data in any format and process it in GAP.

Additional operations for input streams support detection of end of stream, and (for those streams for which
it is appropriate) random access to the data.

Section 3. Operations for Input Streams 99

1 I Read(input-text-stream) O

reads the input-text-stream as input until end-of-stream occurs. See 9.7 for details.

2 I ReadAsFunction(input-text-stream) O

reads the input-text-stream as function and returns this function. See 9.7 for details.

3 I ReadTest(input-text-stream) O

reads the input-text-stream as test input until end-of-stream occurs. See 9.7 for details.

Example

gap> # a function with local ‘a’ does not change the global one
gap> a := 1;;
gap> i := InputTextString("local a; a := 10; return a*10;");;
gap> ReadAsFunction(i)();
100
gap> a;
1

gap> # reading it via ‘Read’ does
gap> i := InputTextString("a := 10;");;
gap> Read(i);
gap> a;
10

4 I ReadByte(input-stream) O

ReadByte returns one character (returned as integer) from the input stream stream-in. ReadByte returns
fail if there is no character available, in particular if it is at the end of a file.

If stream-in is the input stream of a input/output process, ReadByte may also return fail if no byte is
currently available.

ReadByte is the basic operation for input streams. If a ReadByte method is installed for a user-defined type
of stream which does not block, then all the other input stream operations will work (although possibly not
at peak efficiency).

ReadByte will wait (block) until a byte is available. For instance if the stream is a connection to another
process, it will wait for the process to output a byte.

5 I ReadLine(input-stream) O

ReadLine returns one line (returned as string with the newline) from the input stream input-stream. Read-
Line reads in the input until a newline is read or the end-of-stream is encountered.

If input-stream is the input stream of a input/output process, ReadLine may also return fail or return an
incomplete line if the other process has not yet written any more. It will always wait (block) for at least one
byte to be available, but will then return as much input as is available, up to a limit of one line

A default method is supplied for ReadLine which simply calls ReadByte repeatedly. This is only safe for
streams that cannot block. The kernel uses calls to ReadLine to supply input to the parser when reading
from a stream.

6 I ReadAll(input-stream) O
I ReadAll(input-stream , limit) O

ReadAll returns all characters as string from the input stream stream-in. It waits (blocks) until at least one
character is available from the stream, or until there is evidence that no characters will ever be available

100 Chapter 10. Streams

again. This last indicates that the stream is at end-of-stream. Otherwise, it reads as much input as it can
from the stream without blocking further and returns it to the user. If the stream is already at end of file,
so that no bytes are available, fail is returned. In the case of a file stream connected to a normal file (not
a pseudo-tty or named pipe or similar), all the bytes should be immediately available and this function will
read the remainder of the file.

With a second argument, at most limit bytes will be returned. Depending on the stream a bounded number
of additional bytes may have been read into an internal buffer.

A default method is supplied for ReadAll which simply calls ReadLine repeatedly. This is only really safe
for streams which cannot block. Other streams should install a method for ReadAll

Example

gap> i := InputTextString("1Hallo\nYou\n1");;
gap> ReadByte(i);
49
gap> CHAR_INT(last);
’1’
gap> ReadLine(i);
"Hallo\n"
gap> ReadLine(i);
"You\n"
gap> ReadLine(i);
"1"
gap> ReadLine(i);
fail
gap> ReadAll(i);
""
gap> RewindStream(i);;
gap> ReadAll(i);
"1Hallo\nYou\n1"

7 I IsEndOfStream(input-stream) O

IsEndOfStream returns true if the input stream is at end-of-stream, and false otherwise. Note that IsEnd-
OfStream might return false even if the next ReadByte fails.

8 I PositionStream(input-stream) O

Some input streams, such as string streams and file streams attached to disk files, support a form of random
access by way of the operations PositionStream, SeekPositionStream and RewindStream. Position-
Stream returns a non-negative integer denoting the current position in the stream (usually the number of
characters before the next one to be read.

If this is not possible, for example for an input stream attached to standard input (normally the keyboard),
then fail is returned

9 I RewindStream(input-stream) O

RewindStream attempts to return an input stream to its starting condition, so that all the same characters
can be read again. It returns true if the rewind succeeds and fail otherwise

A default method implements RewindStream using SeekPositionStream.

10 I SeekPositionStream(input-stream, pos) O

SeekPositionStream attempts to rewind or wind forward an input stream to the specified position. This is
not possible for all streams. It returns true if the seek is successful and fail otherwise.

Section 4. Operations for Output Streams 101

10.4 Operations for Output Streams

1 I WriteByte(output-stream, byte) O

writes the next character (given as integer) to the output stream output-stream. The function returns true
if the write succeeds and fail otherwise.

WriteByte is the basic operation for output streams. If a WriteByte method is installed for a user-defined
type of stream, then all the other output stream operations will work (although possibly not at peak
efficiency).

2 I WriteLine(output-stream, string) O

appends string to output-stream. A final newline is written. The function returns true if the write succeeds
and fail otherwise.

A default method is installed which implements WriteLine by repeated calls to WriteByte.

3 I WriteAll(output-stream, string) O

appends string to output-stream. No final newline is written. The function returns true if the write succeeds
and fail otherwise. It will block as long as necessary for the write operation to complete (for example for
a child process to clear its input buffer)

A default method is installed which implements WriteAll by repeated calls to WriteByte.

When printing or appending to a stream (using PrintTo, or AppendTo or when logging to a stream), the
kernel generates a call to WriteAll for each line output.

Example

gap> str := "";; a := OutputTextString(str,true);;
gap> WriteByte(a,INT_CHAR(’H’));
true
gap> WriteLine(a,"allo");
true
gap> WriteAll(a,"You\n");
true
gap> CloseStream(a);
gap> Print(str);
Hallo
You

4 I PrintTo(output-stream, arg1, ...) F
I AppendTo(output-stream, arg1, ...) F

These functions work like Print, except that the output is appended to the output stream output-stream.

Example

gap> str := "";; a := OutputTextString(str,true);;
gap> AppendTo(a, (1,2,3), ":", Z(3));
gap> CloseStream(a);
gap> Print(str, "\n");
(1,2,3):Z(3)

5 I LogTo(stream) O

causes the subsequent interaction to be logged to the output stream stream. It works in precisely the same
way as it does for files (see 9.7.5).

102 Chapter 10. Streams

6 I InputLogTo(stream) O

causes the subsequent input to be logged to the output stream stream. It works just like it does for files
(see 9.7.7).

7 I OutputLogTo(stream) O

causes the subsequent output to be logged to the output stream stream. It works just like it does for files
(see 9.7.9).

When text is being sent to an output text stream via PrintTo, AppendTo, LogTo, etc., it is, by default
formatted just as it would be were it being printed to the screen. Thus, it is broken into lines of reasonable
length at (where possible) sensible places, lines containing elements of lists or records are indented, and so
forth. This is appropriate if the output is eventually to be viewed by a human, and harmless if it to passed
as input to GAP, but may be unhelpful if the output is to be passed as input to another program. It is
possible to turn off this behaviour for a stream using the SetPrintFormattingStatus operation, and to
test whether it is on or off using PrintFormattingStatus.

8 I SetPrintFormattingStatus(stream, newstatus) O

sets whether output sent to the output stream stream via PrintTo, AppendTo, etc. (but not WriteByte,
WriteLine or WriteAll) will be formatted with line breaks and indentation. If the second argument new-
status is true then output will be so formatted, and if false then it will not. If the stream is not a text
stream, only false is allowed.

9 I PrintFormattingStatus(stream) O

returns true if output sent to the output text stream stream via PrintTo, AppendTo, etc. (but not Write-
Byte, WriteLine or WriteAll) will be formatted with line breaks and indentation, and false otherwise
(see 10.4.8). For non-text streams, it returns false.

Example

gap> s := "";; str := OutputTextString(s,false);;
gap> PrintTo(str,Primes{[1..30]});
gap> s;
"[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71,\
\n 73, 79, 83, 89, 97, 101, 103, 107, 109, 113]"

gap> Print(s,"\n");
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71,
73, 79, 83, 89, 97, 101, 103, 107, 109, 113]

gap> SetPrintFormattingStatus(str, false);
gap> PrintTo(str,Primes{[1..30]});
gap> s;
"[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71,\
\n 73, 79, 83, 89, 97, 101, 103, 107, 109, 113][2, 3, 5, 7, 11, 13, 17, 19\

, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103\
, 107, 109, 113]"
gap> Print(s,"\n");
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71,
73, 79, 83, 89, 97, 101, 103, 107, 109, 113][2, 3, 5, 7, 11, 13, 17, 19, 2\

3, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 1\
07, 109, 113]

Section 6. User Streams 103

10.5 File Streams

File streams are streams associated with files. An input file stream reads the characters it delivers from a
file, an output file stream prints the characters it receives to a file. The following functions can be used to
create such streams. They return fail if an error occurred, in this case LastSystemError (see 9.1.1) can
be used to get information about the error.

1 I InputTextFile(name-file) O

InputTextFile(name-file) returns an input stream in the category IsInputTextStream that delivers the
characters from the file name-file.

2 I OutputTextFile(name-file, append) O

OutputTextFile(name-file, append) returns an output stream in the category IsOutputTextFile that
writes received characters to the file name-file. If append is false, then the file is emptied first, otherwise
received characters are added at the end of the list.

Example

gap> # use a temporary directory
gap> name := Filename(DirectoryTemporary(), "test");;
gap> # create an output stream, append output, and close again
gap> output := OutputTextFile(name, true);;
gap> AppendTo(output, "Hallo\n", "You\n");
gap> CloseStream(output);
gap> # create an input, print complete contents of file, and close
gap> input := InputTextFile(name);;
gap> Print(ReadAll(input));
Hallo
You
gap> CloseStream(input);
gap> # append a single line
gap> output := OutputTextFile(name, true);;
gap> AppendTo(output, "AppendLine\n");
gap> # close output stream to flush the output
gap> CloseStream(output);
gap> # create an input, print complete contents of file, and close
gap> input := InputTextFile(name);;
gap> Print(ReadAll(input));
Hallo
You
AppendLine
gap> CloseStream(input);

10.6 User Streams

The following two commands create streams which accept characters from, or deliver characters to, the user,
via the keyboard or the GAP session display.

1 I InputTextUser() F

returns an input text stream which delivers characters typed by the user (or from the standard input device
if it has been redirected). In normal circumstances, characters are delivered one by one as they are typed,
without waiting until the end of a line. No prompts are printed.

104 Chapter 10. Streams

2 I OutputTextUser() F

returns an output stream which delivers characters to the user’s display (or the standard output device if it
has been redirected). Each character is delivered immediately it is written, without waiting for a full line of
output. Text written in this way is not written to the session log (see 9.7.5).

10.7 String Streams

String streams are streams associated with strings. An input string stream reads the characters it delivers
from a string, an output string stream appends the characters it receives to a string. The following functions
can be used to create such streams.

1 I InputTextString(string) O

InputTextString(string)returns an input stream that delivers the characters from the string string . The
string is not changed when reading characters from it and changing the string after the call to Input-
TextString has no influence on the input stream.

2 I OutputTextString(list, append) O

returns an output stream that puts all received characters into the list list . If append is false, then the list
is emptied first, otherwise received characters are added at the end of the list.

Example

gap> # read input from a string
gap> input := InputTextString("Hallo\nYou\n");;
gap> ReadLine(input);
"Hallo\n"
gap> ReadLine(input);
"You\n"
gap> # print to a string
gap> str := "";;
gap> out := OutputTextString(str, true);;
gap> PrintTo(out, 1, "\n", (1,2,3,4)(5,6), "\n");
gap> CloseStream(out);
gap> Print(str);
1
(1,2,3,4)(5,6)

10.8 Input-Output Streams

Input-output streams capture bidirectional communications between GAP and another process, either locally
or (@as yet unimplemented@) remotely.

Such streams support the basic operations of both input and output streams. They should provide some
buffering, allowing output data to be written to the stream, even when input data is waiting to be read, but
the amount of this buffering is operating system dependent, and the user should take care not to get too far
ahead in writing, or behind in reading, or deadlock may occur.

1 I IsInputOutputStream(obj) C

IsInputOutputStream is the Category of Input-Output Streams; it returns true if the obj is an input-output
stream and false otherwise.

At present the only type of Input-Output streams that are implemented provide communication with a local
child process, using a pseudo-tty.

Section 8. Input-Output Streams 105

Like other streams, write operations are blocking, read operations will block to get the first character, but
not thereafter.
As far as possible, no translation is done on characters written to, or read from the stream, and no control
characters have special effects, but the details of particular pseudo-tty implementations may effect this.

2 I InputOutputLocalProcess(dir, executable, args) F

starts up a slave process, whose executable file is executable, with “command line” arguments args in the
directory dir . (Suitable choices for dir are DirectoryCurrent() or DirectoryTemporary() (see Section 9.3);
DirectoryTemporary() may be a good choice when executable generates output files that it doesn’t itself
remove afterwards.) InputOutputLocalProcess returns an InputOutputStream object. Bytes written to
this stream are received by the slave process as if typed at a terminal on standard input. Bytes written to
standard output by the slave process can be read from the stream.
When the stream is closed, the signal SIGTERM is delivered to the child process, which is expected to exit.

gap> d := DirectoryCurrent();
dir("./")
gap> f := Filename(DirectoriesSystemPrograms(), "rev");
"/usr/bin/rev"
gap> s := InputOutputLocalProcess(d,f,[]);
< input/output stream to rev >
gap> WriteLine(s,"The cat sat on the mat");
true
gap> Print(ReadLine(s));
tam eht no tas tac ehT
gap> x := ListWithIdenticalEntries(10000,’x’);;
gap> ConvertToStringRep(x);
gap> WriteLine(s,x);
true
gap> WriteByte(s,INT_CHAR(’\n’));
true
gap> y := ReadAll(s);;
gap> Length(y);
4096
gap> CloseStream(s);
gap> s;
< closed input/output stream to rev >

3 I ReadAllLine(iostream[, nofail][, IsAllLine]) O

For an input/output stream iostream ReadAllLine reads until a newline character if any input is found or
returns fail if no input is found, i.e. if any input is found ReadAllLine is non-blocking.
If the argument nofail (which must be false or true) is provided and it is set to true then ReadAllLine
will wait, if necessary, for input and never return fail.
If the argument IsAllLine (which must be a function that takes a string argument and returns either true
or false) then it is used to determine what constitutes a whole line. The default behaviour is equivalent to
passing the function

line -> 0 < Length(line) and line[Length(line)] = ’\n’

for the IsAllLine argument. The purpose of the IsAllLine argument is to cater for the case where the input
being read is from an external process that writes a “prompt” for data that does not terminate with a
newline.
If the first argument is an input stream but not an input/output stream then ReadAllLine behaves as if
ReadLine was called with just the first argument and any additional arguments are ignored.

106 Chapter 10. Streams

10.9 Dummy Streams

The following two commands create dummy streams which will consume all characters and never deliver
one.

1 I InputTextNone() F

returns a dummy input text stream, which delivers no characters, i.e., it is always at end of stream. Its main
use is for calls to Process (see 11.1.1) when the started program does not read anything.

2 I OutputTextNone() F

returns a dummy output stream, which discards all received characters. Its main use is for calls to Process
(see 11.1.1) when the started program does not write anything.

10.10 Handling of Streams in the Background

This section describes a feature of the GAP kernel that can be used to handle pending streams somehow
“in the background”. This is currently not available on the Macintosh architecture and only on operating
systems that have select.

Right before GAP reads a keypress from the keyboard it calls a little subroutine that can handle streams
that are ready to be read or ready to be written. This means that GAP can handle these streams during user
input on the command line. Note that this does not work when GAP is in the middle of some calculation.

This feature is used in the following way. One can install handler functions for reading or writing streams.
This is done via:

1 I InstallCharReadHookFunc(stream, mode, func) F

installs the function func as a handler function for the stream stream. The argument mode decides, for what
operations on the stream this function is installed. mode must be a string, in which a letter r means “read”,
w means “write” and x means “exception”, according to the select function call in the UNIX C-library (see
man select and 10.2.3). More than one letter is allowed in mode. As described above the function is called
in a situation when GAP is reading a character from the keyboard. Handler functions should not use much
time to complete.

This functionality does not work on the Macintosh architecture and only works if the operating system has
a select function.

Handlers can be removed via:

2 I UnInstallCharReadHookFunc(stream, func) F

uninstalls the function func as a handler function for the stream stream. All instances are deinstalled,
regardless of the mode of operation (read, write, exception).

This functionality does not work on the Macintosh architecture and only works if the operating system has
a select function.

Note that handler functions must not return anything and get one integer argument, which refers to an
index in one of the following arrays (according to whether the function was installed for input, output or
exceptions on the stream). Handler functions usually should not output anything on the standard output
because this ruins the command line during command line editing.

11 Processes

GAP can call other programs, such programs are called processes. There are two kinds of processes: First
there are processes that are started, run and return a result, while GAP is suspended until the process termi-
nates. Then there are processes that will run in parallel to GAP as subprocesses and GAP can communicate
and control the processes using streams (see 10.8.2).

11.1 Process

1 I Process(dir, prg, stream-in, stream-out, options) O

Process runs a new process and returns when the process terminates. It returns the return value of the
process if the operating system supports such a concept.

The first argument dir is a directory object (see 9.3) which will be the current directory (in the usual UNIX
or MSDOS sense) when the program is run. This will only matter if the program accesses files (including
running other programs) via relative path names. In particular, it has nothing to do with finding the binary
to run.

In general the directory will either be the current directory, which is returned by DirectoryCurrent
(see 9.3.3) –this was the behaviour of GAP 3– or a temporary directory returned by DirectoryTempo-
rary (see 9.3.2). If one expects that the process creates temporary or log files the latter should be used
because GAP will attempt to remove these directories together with all the files in them when quitting.

If a program of a GAP package which does not only consist of GAP code needs to be launched in a directory
relative to certain data libraries, then the first entry of DirectoriesPackageLibrary should be used. The
argument of DirectoriesPackageLibrary should be the path to the data library relative to the package
directory.

If a program calls other programs and needs to be launched in a directory containing the executables for
such a GAP package then the first entry of DirectoriesPackagePrograms should be used.

The latter two alternatives should only be used if absolutely necessary because otherwise one risks accumu-
lating log or core files in the package directory.

Examples

gap> path := DirectoriesSystemPrograms();;
gap> ls := Filename(path, "ls");;
gap> stdin := InputTextUser();;
gap> stdout := OutputTextUser();;
gap> Process(path[1], ls, stdin, stdout, ["-c"]);;
awk ls mkdir

gap> # current directory, here the root directory
gap> Process(DirectoryCurrent(), ls, stdin, stdout, ["-c"]);;
bin lib trans tst CVS grp prim thr two
src dev etc tbl doc pkg small tom

108 Chapter 11. Processes

gap> # create a temporary directory
gap> tmpdir := DirectoryTemporary();;
gap> Process(tmpdir, ls, stdin, stdout, ["-c"]);;
gap> PrintTo(Filename(tmpdir, "emil"));
gap> Process(tmpdir, ls, stdin, stdout, ["-c"]);;
emil

prg is the filename of the program to launch, for portability it should be the result of Filename (see 9.4.1)
and should pass IsExecutableFile. Note that Process does no searching through a list of directories, this
is done by Filename.
stream-in is the input stream that delivers the characters to the process. For portability it should either be
InputTextNone (if the process reads no characters), InputTextUser, the result of a call to InputTextFile
from which no characters have been read, or the result of a call to InputTextString.
Process is free to consume all the input even if the program itself does not require any input at all.
stream-out is the output stream which receives the characters from the process. For portability it should
either be OutputTextNone (if the process writes no characters), OutputTextUser, the result of a call to
OutputTextFile to which no characters have been written, or the result of a call to OutputTextString.
options is a list of strings which are passed to the process as command line argument. Note that no substitu-
tions are performed on the strings, i.e., they are passed immediately to the process and are not processed by
a command interpreter (shell). Further note that each string is passed as one argument, even if it contains
space characters. Note that input/output redirection commands are not allowed as options.
Examples
In order to find a system program use DirectoriesSystemPrograms together with Filename.

gap> path := DirectoriesSystemPrograms();;
gap> date := Filename(path, "date");
"/bin/date"

Now execute date with no argument and no input, collect the output into a string stream.

gap> str := "";; a := OutputTextString(str,true);;
gap> Process(DirectoryCurrent(), date, InputTextNone(), a, []);
0
gap> CloseStream(a);
gap> Print(str);
Fri Jul 11 09:04:23 MET DST 1997

11.2 Exec
1 I Exec(cmd, option1, ..., optionN) F

Exec runs a shell in the current directory to execute the command given by the string cmd with options
option1, ..., optionN .

gap> Exec("date");
Thu Jul 24 10:04:13 BST 1997

cmd is interpreted by the shell and therefore we can make use of the various features that a shell offers as
in following example.

gap> Exec("echo \"GAP is great!\" > foo");
gap> Exec("cat foo");
GAP is great!
gap> Exec("rm foo");

Exec calls the more general operation Process (see 11.1.1). Edit (see 6.10.1) should be used to call an editor
from within GAP.

12
Objects and

Elements

An object is anything in GAP that can be assigned to a variable, so nearly everything in GAP is an object.

Different objects can be regarded as equal with respect to the equivalence relation ‘=’, in this case we say
that the objects describe the same element.

12.1 Objects

Nearly all things one deals with in GAP are objects. For example, an integer is an object, as is a list of
integers, a matrix, a permutation, a function, a list of functions, a record, a group, a coset or a conjugacy
class in a group.

Examples of things that are not objects are comments which are only lexical constructs, while loops which
are only syntactical constructs, and expressions, such as 1 + 1; but note that the value of an expression, in
this case the integer 2, is an object.

Objects can be assigned to variables, and everything that can be assigned to a variable is an object. Analo-
gously, objects can be used as arguments of functions, and can be returned by functions.

1 I IsObject(obj) C

IsObject returns true if the object obj is an object. Obviously it can never return false.

It can be used as a filter in InstallMethod (see 2.2 in “Programming in GAP”) when one of the arguments
can be anything.

12.2 Elements as equivalence classes

The equality operation “=” defines an equivalence relation on all GAP objects. The equivalence classes are
called elements.

There are basically three reasons to regard different objects as equal. Firstly the same information may be
stored in different places. Secondly the same information may be stored in different ways; for example, a
polynomial can be stored sparsely or densely. Thirdly different information may be equal modulo a mathe-
matical equivalence relation. For example, in a finitely presented group with the relation a2 = 1 the different
objects a and a3 describe the same element.

As an example of all three reasons, consider the possibility of storing an integer in several places of the
memory, of representing it as a fraction with denominator 1, or of representing it as a fraction with any
denominator, and numerator a suitable multiple of the denominator.

110 Chapter 12. Objects and Elements

12.3 Sets

In GAP there is no category whose definition corresponds to the mathematical property of being a set,
however in the manual we will often refer to an object as a set in order to convey the fact that mathematically,
we are thinking of it as a set. In particular, two sets A and B are equal if and only if, x ∈ A ⇐⇒ x ∈ B .

There are two types of object in GAP which exhibit this kind of behaviour with respect to equality, namely
domains (see Section 12.4) and lists whose elements are strictly sorted see IsSSortedList (see 21.17.4). In
general, set in this manual will mean an object of one of these types.

More precisely: two domains can be compared with “=”, the answer being true if and only if the sets of
elements are equal (regardless of any additional structure) and; a domain and a list can be compared with
“=”, the answer being true if and only if the list is equal to the strictly sorted list of elements of the domain.

A discussion about sorted lists and sets can be found in the Reference Manual section “Sorted Lists and
Sets” 21.19.

12.4 Domains

An especially important class of objects in GAP are those whose underlying mathematical abstraction is
that of a structured set, for example a group, a conjugacy class, or a vector space. Such objects are called
domains. The equality relation between domains is always equality as sets, so that two domains are equal
if and only if they contain the same elements.

Domains play a central role in GAP. In a sense, the only reason that GAP supports objects such as integers
and permutations is the wish to form domains of them and compute the properties of those domains.

Domains are described in Chapter 30.

12.5 Identical Objects

Two objects that are equal as objects (that is they actually refer to the same area of computer memory)
and not only w.r.t. the equality relation ‘=’ are called identical. Identical objects do of course describe the
same element.

1 I IsIdenticalObj(obj1, obj2) F

IsIdenticalObj(obj1, obj2) tests whether the objects obj1 and obj2 are identical (that is they are
either equal immediate objects or are both stored at the same location in memory.

If two copies of a simple constant object (see section 12.6) are created, it is not defined whether GAP will
actually store two equal but non-identical objects, or just a single object. For mutable objects, however, it
is important to know whether two value refer to identical or non-identical objects, and the documentation
of operations that return mutable values should make clear whether the values returned are new, or may be
identical to values stored elsewhere.

gap> IsIdenticalObj(10^6, 10^6);
true
gap> IsIdenticalObj(10^12, 10^12);
false
gap> IsIdenticalObj(true, true);
true

Generally, one may compute with objects but think of the results in terms of the underlying elements because
one is not interested in locations in memory, data formats or information beyond underlying equivalence
relations. But there are cases where it is important to distinguish the relations identity and equality. This

Section 6. Mutability and Copyability 111

is best illustrated with an example. (The reader who is not familiar with lists in GAP, in particular element
access and assignment, is referred to Chapter 21.)

gap> l1:= [1, 2, 3];; l2:= [1, 2, 3];;
gap> l1 = l2;
true
gap> IsIdenticalObj(l1, l2);
false
gap> l1[3]:= 4;; l1; l2;
[1, 2, 4]
[1, 2, 3]
gap> l1 = l2;
false

The two lists l1 and l2 are equal but not identical. Thus a change in l1 does not affect l2.

gap> l1:= [1, 2, 3];; l2:= l1;;
gap> l1 = l2;
true
gap> IsIdenticalObj(l1, l2);
true
gap> l1[3]:= 4;; l1; l2;
[1, 2, 4]
[1, 2, 4]
gap> l1 = l2;
true

Here, l1 and l2 are identical objects, so changing l1 means a change to l2 as well.

The library also provides:

2 I IsNotIdenticalObj(obj1, obj2) F

tests whether the objects obj1 and objs2 are not identical.

12.6 Mutability and Copyability

An object in GAP is said to be immutable if its mathematical value (as defined by =) does not change
under any operation. More explicitly, suppose a is immutable and O is some operation on a, then if a = b
evaluates to true before executing O(a), a = b also evaluates to true afterwards. (Examples for operations
O that change mutable objects are Add and Unbind which are used to change list objects, see Chapter 21.)
An immutable object may change, for example to store new information, or to adopt a more efficient
representation, but this does not affect its behaviour under =.

There are two points here to note. Firstly, “operation” above refers to the functions and methods which can
legitimately be applied to the object, and not the !. operation whereby virtually any aspect of any GAP
level object may be changed. The second point which follows from this, is that when implementing new
types of objects, it is the programmer’s responsibility to ensure that the functions and methods they write
never change immutable objects mathematically.

In fact, most objects with which one deals in GAP are immutable. For instance, the permutation (1,2)
will never become a different permutation or a non-permutation (although a variable which previously had
(1,2) stored in it may subsequently have some other value).

For many purposes, however, mutable objects are useful. These objects may be changed to represent
different mathematical objects during their life. For example, mutable lists can be changed by assigning
values to positions or by unbinding values at certain positions. Similarly, one can assign values to components
of a mutable record, or unbind them.

112 Chapter 12. Objects and Elements

1 I IsCopyable(obj) C

If a mutable form of an object obj can be made in GAP, the object is called copyable. Examples of copyable
objects are of course lists and records. A new mutable version of the object can always be obtained by the
operation ShallowCopy (see 12.7).

Objects for which only an immutable form exists in GAP are called constants. Examples of constants are
integers, permutations, and domains. Called with a constant as argument, Immutable and ShallowCopy
return this argument.

2 I IsMutable(obj) C

tests whether obj is mutable.

If an object is mutable then it is also copyable (see 12.6.1), and a ShallowCopy (see 12.7.1) method should
be supplied for it. Note that IsMutable must not be implied by another filter, since otherwise Immutable
would be able to create paradoxical objects in the sense that IsMutable for such an object is false but the
filter that implies IsMutable is true.

In many situations, however, one wants to ensure that objects are immutable. For example, take the
identity of a matrix group. Since this matrix may be referred to as the identity of the group in several
places, it would be fatal to modify its entries, or add or unbind rows. We can obtain an immutable copy of
an object with:

3 I Immutable(obj) O

returns an immutable structural copy (see 12.7.2) of obj in which the subobjects are immutable copies of
the subobjects of obj . If obj is immutable then Immutable returns obj itself.

GAP will complain with an error if one tries to change an immutable object.

4 I MakeImmutable(obj) F

One can turn the (mutable or immutable) object obj into an immutable one with MakeImmutable; note
that this also makes all subobjects of obj immutable, so one should call MakeImmutable only if obj and its
mutable subobjects are newly created. If one is not sure about this, Immutable should be used.

Note that it is not possible to turn an immutable object into a mutable one; only mutable copies can be
made (see 12.7).

Using Immutable, it is possible to store an immutable identity matrix or an immutable list of generators,
and to pass around references to this immutable object safely. Only when a mutable copy is really needed
does the actual object have to be duplicated. Compared to the situation without immutable objects, much
unnecessary copying is avoided this way. Another advantage of immutability is that lists of immutable objects
may remember whether they are sorted (see 21.19), which is not possible for lists of mutable objects.

Since the operation Immutable must work for any object in GAP, it follows that an immutable form of every
object must be possible, even if it is not sensible, and user-defined objects must allow for the possibility of
becoming immutable without notice.

Another interesting example of mutable (and thus copyable) objects is provided by iterators, see 28.7. (Of
course an immutable form of an iterator is not very useful, but clearly Immutable will yield such an object.)
Every call of NextIterator changes a mutable iterator until it is exhausted, and this is the only way to
change an iterator. ShallowCopy for an iterator iter is defined so as to return a mutable iterator that has
no mutable data in common with iter , and that behaves equally to iter w.r.t. IsDoneIterator and (if iter
is mutable) NextIterator. Note that this meaning of the “shallow copy” of an iterator that is returned by
ShallowCopy is not as obvious as for lists and records, and must be explicitly defined.

Many operations return immutable results, among those in particular attributes (see 13.5). Examples of
attributes are Size, Zero, AdditiveInverse, One, and Inverse. Arithmetic operations, such as the binary
infix operations +, -, *, /, ^, mod, the unary -, and operations such as Comm and LeftQuotient, return

Section 7. Duplication of Objects 113

mutable results, except if all arguments are immutable. So the product of two matrices or of a vector and
a matrix is immutable if and only if the two matrices or both the vector and the matrix are immutable
(see also 21.11). There is one exception to this rule, which arises where the result is less deeply nested that
at least one of the argument, where mutable arguments may sometimes lead to an immutable result. For
instance, a mutable matrix with immutable rows, multiplied by an immutable vector gives an immutable
vector result. The exact rules are given in 21.11.

It should be noted that 0 * obj is equivalent to ZeroSM(obj), -obj is equivalent to AdditiveInverseSM(
obj), obj^0 is equivalent to OneSM(obj), and obj^-1 is equivalent to InverseSM(obj). The “SM” stands
for “same mutability”, and indicates that the result is mutable if and only if the argument is mutable.

The operations ZeroOp, AdditiveInverseOp, OneOp, and InverseOp return mutable results whenever a
mutable version of the result exists, contrary to the attributes Zero, AdditiveInverse, One, and Inverse.

If one introduces new arithmetic objects then one need not install methods for the attributes One, Zero,
etc. The methods for the associated operations OneOp and ZeroOp will be called, and then the results made
immutable.

All methods installed for the arithmetic operations must obey the rule about the mutability of the result.
This means that one may try to avoid the perhaps expensive creation of a new object if both operands are
immutable, and of course no problems of this kind arise at all in the (usual) case that the objects in question
do not admit a mutable form, i.e., that these objects are not copyable.

In a few, relatively low-level algorithms, one wishes to treat a matrix partly as a data structure, and
manipulate and change its entries. For this, the matrix needs to be mutable, and the rule that attribute
values are immutable is an obstacle. For these situations, a number of additional operations are provided, for
example TransposedMatMutable constructs a mutable matrix (contrary to the attribute TransposedMat),
while TriangulizeMat modifies a mutable matrix (in place) into upper triangular form.

Note that being immutable does not forbid an object to store knowledge. For example, if it is found out that
an immutable list is strictly sorted then the list may store this information. More precisely, an immutable
object may change in any way, provided that it continues to represent the same mathematical object.

12.7 Duplication of Objects

1 I ShallowCopy(obj) O

If GAP supports a mutable form of the object obj (see 12.6) then this is obtained by ShallowCopy. Otherwise
ShallowCopy returns obj itself.

The subobjects of ShallowCopy(obj) are identical to the subobjects of obj . Note that if the object
returned by ShallowCopy is mutable then it is always a new object. In particular, if the return value is
mutable, then it is not identical with the argument obj , no matter whether obj is mutable or immutable.
But of course the object returned by ShallowCopy is equal to obj w.r.t. the equality operator =.

Since ShallowCopy is an operation, the concrete meaning of “subobject” depends on the type of obj . But
for any copyable object obj , the definition should reflect the idea of “first level copying”.

The definition of ShallowCopy for lists (in particular for matrices) can be found in 21.7.

2 I StructuralCopy(obj) F

In a few situations, one wants to make a structural copy scp of an object obj . This is defined as follows. scp
and obj are identical if obj is immutable. Otherwise, scp is a mutable copy of obj such that each subobject
of scp is a structural copy of the corresponding subobject of obj . Furthermore, if two subobjects of obj are
identical then also the corresponding subobjects of scp are identical.

114 Chapter 12. Objects and Elements

gap> obj:= [[0, 1]];;
gap> obj[2]:= obj[1];;
gap> obj[3]:= Immutable(obj[1]);;
gap> scp:= StructuralCopy(obj);;
gap> scp = obj; IsIdenticalObj(scp, obj);
true
false
gap> IsIdenticalObj(scp[1], obj[1]);
false
gap> IsIdenticalObj(scp[3], obj[3]);
true
gap> IsIdenticalObj(scp[1], scp[2]);
true

That both ShallowCopy and StructuralCopy return the argument obj itself if it is not copyable is consistent
with this definition, since there is no way to change obj by modifying the result of any of the two functions,
because in fact there is no way to change this result at all.

12.8 Other Operations Applicable to any Object

There are a number of general operations which can be applied, in principle, to any object in GAP. Some of
these are documented elsewhere – see 26.5.1, 6.3.3 and 6.3.4. Others are mainly somewhat technical.

1 I SetName(obj, name) F

for a suitable object obj sets that object to have name name (a string).

2 I Name(obj) A

returns the name, a string, previously assigned to obj via a call to SetName (see 12.8.1). The name of an
object is used only for viewing the object via this name.

There are no methods installed for computing names of objects, but the name may be set for suitable objects,
using SetName.

gap> g := Group((1,2,3),(1,2));
Group([(1,2,3), (1,2)])
gap> SetName(g, "S3");
gap> g;
S3
gap> Name(g);
"S3"

3 I IsInternallyConsistent(obj) O

For debugging purposes, it may be useful to check the consistency of an object obj that is composed from
other (composed) objects.

There is a default method of IsInternallyConsistent, with rank zero, that returns true. So it is possible
(and recommended) to check the consistency of subobjects of obj recursively by IsInternallyConsistent.

(Note that IsInternallyConsistent is not an attribute.)

4 I MemoryUsage(obj) O

returns the amount of memory in bytes used by the object obj and its subobjects. Note that in general,
objects can reference each other in very difficult ways such that determining the memory usage is a recursive
procedure. In particular, computing the memory usage of a complicated structure itself uses some additional

Section 8. Other Operations Applicable to any Object 115

memory, which is however no longer used after completion of this operation. This procedure descents into
lists and records, positional and component objects, however it does not take into account the type and
family objects! For functions, it only takes the memory usage of the function body, not of the local context
the function was created in, although the function keeps a reference to that as well!

13 Types of Objects

Every GAP object has a type. The type of an object is the information which is used to decide whether an
operation is admissible or possible with that object as an argument, and if so, how it is to be performed
(see Chapter 2 in “Programming in GAP”).

For example, the types determine whether two objects can be multiplied and what function is called to
compute the product. Analogously, the type of an object determines whether and how the size of the object
can be computed. It is sometimes useful in discussing the type system, to identify types with the set of
objects that have this type. Partial types can then also be regarded as sets, such that any type is the
intersection of its parts.

The type of an object consists of two main parts, which describe different aspects of the object.

The family determines the relation of the object to other objects. For example, all permutations form a
family. Another family consists of all collections of permutations, this family contains the set of permutation
groups as a subset. A third family consists of all rational functions with coefficients in a certain family.

The other part of a type is a collection of filters (actually stored as a bit-list indicating, from the complete
set of possible filters, which are included in this particular type). These filters are all treated equally by
the method selection, but, from the viewpoint of their creation and use, they can be divided (with a small
number of unimportant exceptions) into categories, representations, attribute testers and properties. Each
of these is described in more detail below.

This chapter does not describe how types and their constituent parts can be created. Information about this
topic can be found in “Programming in GAP” in Section 3.)

Note: Detailed understanding of the type system is not required to use GAP. It can be helpful, however, to
understand how things work and why GAP behaves the way it does.

A discussion of the type system can be found in [BL98].

13.1 Families

The family of an object determines its relationship to other objects.

More precisely, the families form a partition of all GAP objects such that the following two conditions hold:
objects that are equal w.r.t. ‘=’ lie in the same family; and the family of the result of an operation depends
only on the families of its operands.

The first condition means that a family can be regarded as a set of elements instead of a set of objects.
Note that this does not hold for categories and representations (see below), two objects that are equal w.r.t.
‘=’ need not lie in the same categories and representations. For example, a sparsely represented matrix can
be equal to a densely represented matrix. Similarly, each domain is equal w.r.t. ‘=’ to the sorted list of its
elements, but a domain is not a list, and a list is not a domain.

1 I FamilyObj(obj) F

returns the family of the object obj .

The family of the object obj is itself an object, its family is the FamilyOfFamilies.

Section 2. Filters 117

It should be emphasized that families may be created when they are needed. For example, the family of
elements of a finitely presented group is created only after the presentation has been constructed. Thus
families are the dynamic part of the type system, that is, the part that is not fixed after the initialisation of
GAP.

Families can be parametrized. For example, the elements of each finitely presented group form a family of
their own. Here the family of elements and the finitely presented group coincide when viewed as sets. Note
that elements in different finitely presented groups lie in different families. This distinction allows GAP to
forbid multiplications of elements in different finitely presented groups.

As a special case, families can be parametrized by other families. An important example is the family of
collections that can be formed for each family. A collection consists of objects that lie in the same family,
it is either a nonempty dense list of objects from the same family or a domain.

Note that every domain is a collection, that is, it is not possible to construct domains whose elements lie
in different families. For example, a polynomial ring over the rationals cannot contain the integer 0 because
the family that contains the integers does not contain polynomials. So one has to distinguish the integer
zero from each zero polynomial.

Let us look at this example from a different viewpoint. A polynomial ring and its coefficients ring lie in
different families, hence the coefficients ring cannot be embedded “naturally” into the polynomial ring in the
sense that it is a subset. But it is possible to allow, e.g., the multiplication of an integer and a polynomial
over the integers. The relation between the arguments, namely that one is a coefficient and the other a
polynomial, can be detected from the relation of their families. Moreover, this analysis is easier than in a
situation where the rationals would lie in one family together with all polynomials over the rationals, because
then the relation of families would not distinguish the multiplication of two polynomials, the multiplication
of two coefficients, and the multiplication of a coefficient with a polynomial. So the wish to describe relations
between elements can be taken as a motivation for the introduction of families.

13.2 Filters

A filter is a special unary GAP function that returns either true or false, depending on whether or not
the argument lies in the set defined by the filter. Filters are used to express different aspects of information
about a GAP object, which are described below (see 13.3, 13.4, 13.5, 13.6, 13.7, 13.8).

Presently any filter in GAP is implemented as a function which corresponds to a set of positions in the bitlist
which forms part of the type of each GAP object, and returns true if and only if the bitlist of the type of
the argument has the value true at all of these positions.

The intersection (or meet) of two filters filt1 , filt2 is again a filter, it can be formed as

I filt1 and filt2

See 20.3.3 for more details.

For example, IsList and IsEmpty is a filter that returns true if its argument is an empty list, and false
otherwise. The filter IsGroup is defined as the intersection of the category IsMagmaWithInverses and the
property IsAssociative.

A filter that is not the meet of other filters is called a simple filter. For example, each attribute tester
(see 13.6) is a simple filter. Each simple filter corresponds to a position in the bitlist currently used as part
of the data structure representing a type.

Every filter filt has a rank, which is used to define a ranking of the methods installed for an operation, see
Section 2.2 in “Programming in GAP”. The rank of a filter can be accessed as

1 I RankFilter(filt) F

For simple filters, an incremental rank is defined when the filter is created, see the sections about the
creation of filters 3.1, 3.2, 3.3, 3.4; all in “Programming in GAP”. For an arbitrary filter, its rank is given by

118 Chapter 13. Types of Objects

the sum of the incremental ranks of the involved simple filters; in addition to the implied filters, these are
also the required filters of attributes (again see the sections about the creation of filters). In other words, for
the purpose of computing the rank and only for this purpose, attribute testers are treated as if they would
imply the requirements of their attributes.

2 I NamesFilter(filt) F

NamesFilter returns a list of names of the implied simple filters of the filter filt , these are all those simple
filters imp such that every object in filt also lies in imp. For implications between filters, see 13.2.3 as well
as sections 2.7, 3.1, 3.2, 3.3 in “Programming in GAP”

3 I ShowImpliedFilters(filter) F

Displays information about the filters that may be implied by filter . They are given by their names. Show-
ImpliedFilters first displays the names of all filters that are unconditionally implied by filter . It then
displays implications that require further filters to be present (indicating by + the required further filters).
The function displays only first-level implications, implications that follow in turn are not displayed (though
GAP will do these).

gap> ShowImpliedFilters(IsMatrix);
Implies:

IsGeneralizedRowVector
IsNearAdditiveElementWithInverse
IsAdditiveElement
IsMultiplicativeElement

May imply with:
+IsGF2MatrixRep

IsOrdinaryMatrix

+CategoryCollections(CategoryCollections(IsAdditivelyCommutativeElement))
IsAdditivelyCommutativeElement

+IsInternalRep
IsOrdinaryMatrix

13.3 Categories

The categories of an object are filters (see 13.2) determine what operations an object admits. For example,
all integers form a category, all rationals form a category, and all rational functions form a category. An
object which claims to lie in a certain category is accepting the requirement that it should have methods
for certain operations (and perhaps that their behaviour should satisfy certain axioms). For example, an
object lying in the category IsList must have methods for Length, IsBound\[\] and the list element access
operation \[\].

An object can lie in several categories. For example, a row vector lies in the categories IsList and IsVector;
each list lies in the category IsCopyable, and depending on whether or not it is mutable, it may lie in the
category IsMutable. Every domain lies in the category IsDomain.

Of course some categories of a mutable object may change when the object is changed. For example, af-
ter assigning values to positions of a mutable non-dense list, this list may become part of the category
IsDenseList.

However, if an object is immutable then the set of categories it lies in is fixed.

Section 3. Categories 119

All categories in the library are created during initialization, in particular they are not created dynamically
at runtime.
The following list gives an overview of important categories of arithmetic objects. Indented categories are
to be understood as subcategories of the non indented category listed above it.

IsObject
IsExtLElement
IsExtRElement

IsMultiplicativeElement
IsMultiplicativeElementWithOne

IsMultiplicativeElementWithInverse
IsExtAElement

IsAdditiveElement
IsAdditiveElementWithZero

IsAdditiveElementWithInverse

Every object lies in the category IsObject.
The categories IsExtLElement and IsExtRElement contain objects that can be multiplied with other objects
via * from the left and from the right, respectively. These categories are required for the operands of the
operation *.
The category IsMultiplicativeElement contains objects that can be multiplied from the left and from
the right with objects from the same family. IsMultiplicativeElementWithOne contains objects obj for
which a multiplicatively neutral element can be obtained by taking the zeroth power obj^0. IsMultiplica-
tiveElementWithInverse contains objects obj for which a multiplicative inverse can be obtained by forming
obj^-1.
Likewise, the categories IsExtAElement, IsAdditiveElement, IsAdditiveElementWithZero, and IsAddi-
tiveElementWithInverse contain objects that can be added via + to other objects, objects that can be
added to objects of the same family, objects for which an additively neutral element can be obtained by
multiplication with zero, and objects for which an additive inverse can be obtained by multiplication with
-1.
So a vector lies in IsExtLElement, IsExtRElement, and IsAdditiveElementWithInverse. A ring element
must additionally lie in IsMultiplicativeElement.
As stated above it is not guaranteed by the categories of objects whether the result of an operation with these
objects as arguments is defined. For example, the category IsMatrix is a subcategory of IsMultiplica-
tiveElementWithInverse. Clearly not every matrix has a multiplicative inverse. But the category IsMatrix
makes each matrix an admissible argument of the operation Inverse, which may sometimes return ’fail’.
Likewise, two matrices can be multiplied only if they are of appropriate shapes.
Analogous to the categories of arithmetic elements, there are categories of domains of these elements.

IsObject
IsDomain

IsMagma
IsMagmaWithOne

IsMagmaWithInversesIfNonzero
IsMagmaWithInverses

IsAdditiveMagma
IsAdditiveMagmaWithZero

IsAdditiveMagmaWithInverses
IsExtLSet
IsExtRSet

Of course IsDomain is a subcategory of IsObject. A domain that is closed under multiplication * is called
a magma and it lies in the category IsMagma. If a magma is closed under taking the identity, it lies in

120 Chapter 13. Types of Objects

IsMagmaWithOne, and if it is also closed under taking inverses, it lies in IsMagmaWithInverses. The category
IsMagmaWithInversesIfNonzero denotes closure under taking inverses only for nonzero elements, every
division ring lies in this category.

Note that every set of categories constitutes its own notion of generation, for example a group may be
generated as a magma with inverses by some elements, but to generate it as a magma with one it may be
necessary to take the union of these generators and their inverses.

1 I CategoriesOfObject(object) O

returns a list of the names of the categories in which object lies.

gap> g:=Group((1,2),(1,2,3));;
gap> CategoriesOfObject(g);
["IsListOrCollection", "IsCollection", "IsExtLElement",
"CategoryCollections(IsExtLElement)", "IsExtRElement",
"CategoryCollections(IsExtRElement)",
"CategoryCollections(IsMultiplicativeElement)",
"CategoryCollections(IsMultiplicativeElementWithOne)",
"CategoryCollections(IsMultiplicativeElementWithInverse)",
"CategoryCollections(IsAssociativeElement)",
"CategoryCollections(IsFiniteOrderElement)", "IsGeneralizedDomain",
"CategoryCollections(IS_PERM)", "IsMagma", "IsMagmaWithOne",
"IsMagmaWithInversesIfNonzero", "IsMagmaWithInverses"]

13.4 Representation

The representation of an object is a set of filters (see 13.2) that determines how an object is actually
represented. For example, a matrix or a polynomial can be stored sparsely or densely; all dense polynomials
form a representation. An object which claims to lie in a certain representation is accepting the requirement
that certain fields in the data structure be present and have specified meanings.

GAP distinguishes four essentially different ways to represent objects. First there are the representations
IsInternalRep for internal objects such as integers and permutations, and IsDataObjectRep for other ob-
jects that are created and whose data are accessible only by kernel functions. The data structures underlying
such objects cannot be manipulated at the GAP level.

All other objects are either in the representation IsComponentObjectRep or in the representation IsPosi-
tionalObjectRep, see 3.9 and 3.10 in “Programming in GAP”.

An object can belong to several representations in the sense that it lies in several subrepresentations of
IsComponentObjectRep or of IsPositionalObjectRep. The representations to which an object belongs
should form a chain and either two representations are disjoint or one is contained in the other. So the
subrepresentations of IsComponentObjectRep and IsPositionalObjectRep each form trees. In the language
of Object Oriented Programming, we support only single inheritance for representations.

These trees are typically rather shallow, since for one representation to be contained in another implies that
all the components of the data structure implied by the containing representation, are present in, and have
the same meaning in, the smaller representation (whose data structure presumably contains some additional
components).

Objects may change their representation, for example a mutable list of characters can be converted into a
string.

All representations in the library are created during initialization, in particular they are not created dynam-
ically at runtime.

Section 5. Attributes 121

Examples of subrepresentations of IsPositionalObjectRep are IsModulusRep, which is used for residue
classes in the ring of integers, and IsDenseCoeffVectorRep, which is used for elements of algebras that are
defined by structure constants.

An important subrepresentation of IsComponentObjectRep is IsAttributeStoringRep, which is used for
many domains and some other objects. It provides automatic storing of all attribute values (see below).

1 I RepresentationsOfObject(object) O

returns a list of the names of the representations object has.

gap> g:=Group((1,2),(1,2,3));;
gap> RepresentationsOfObject(g);
["IsComponentObjectRep", "IsAttributeStoringRep"]

13.5 Attributes

The attributes of an object are filters (see 13.2) that describe knowledge about it.

An attribute is a unary operation without side-effects.

An object may store values of its attributes once they have been computed, and claim that it knows these
values. Note that “store” and “know” have to be understood in the sense that it is very cheap to get such
a value when the attribute is called again.

The stored value of an attribute is in general immutable (see 12.6), except if the attribute had been specially
constructed as “mutable attribute”.

It depends on the representation of an object (see 13.4) which attribute values it stores. An object in
the representation IsAttributeStoringRep stores all attribute values once they are computed. Moreover,
for an object in this representation, subsequent calls to an attribute will return the same object; this
is achieved via a special method for each attribute setter that stores the attribute value in an object in
IsAttributeStoringRep, and a special method for the attribute itself that fetches the stored attribute
value. (These methods are called the “system setter” and the “system getter” of the attribute, respectively.)

Note also that it is impossible to get rid of a stored attribute value because the system may have drawn
conclusions from the old attribute value, and just removing the value might leave the data structures in an
inconsistent state. If necessary, a new object can be constructed.

Properties are a special form of attributes that have the value true or false, see section 13.7.

All attributes in the library are created during initialization, in particular they are not created dynamically
at runtime.

Examples of attributes for multiplicative elements are Inverse, One, and Order. Size is an attribute for
domains, Centre is an attribute for magmas, and DerivedSubgroup is an attribute for groups.

1 I KnownAttributesOfObject(object) O

returns a list of the names of the attributes whose values are known for object .

gap> g:=Group((1,2),(1,2,3));;Size(g);;
gap> KnownAttributesOfObject(g);
["Size", "OneImmutable", "NrMovedPoints", "MovedPoints",
"GeneratorsOfMagmaWithInverses", "MultiplicativeNeutralElement", "Pcgs",
"GeneralizedPcgs", "StabChainMutable", "StabChainOptions"]

Several attributes have methods for more than one argument. For example IsTransitive (see 39.9.1) is
an attribute for a G-set that can also be called for the two arguments, being a group G and its operation
domain. If attributes are called with more than one argument then the return value is not stored in any of
the arguments.

122 Chapter 13. Types of Objects

13.6 Setter and Tester for Attributes

For every attribute two further operations, the attribute setter and the attribute tester are defined.
To check whether an object belongs to an attribute attr , the tester

1 I Tester(attr) O

of the attribute is used; this is a filter (see 13.2) that returns true or false, depending on whether or not
the value of attr for the object is known. For example, Tester(Size)(obj) is true if the size of the
object obj is known.
To store a value for the attribute attr in an object, the setter

2 I Setter(attr) O

of the attribute is used. The setter is called automatically when the attribute value has been computed for
the first time. One can also call the setter explicitly, for example, Setter(Size)(obj, val) sets val as
size of the object obj if the size was not yet known.
For each attribute attr that is declared with DeclareAttribute resp. DeclareProperty (see 3.17 in “Pro-
gramming in GAP”), tester and setter are automatically made accessible by the names Hasattr and Setattr ,
respectively. For example, the tester for Size is called HasSize, and the setter is called SetSize.

gap> g:=Group((1,2,3,4),(1,2));;Size(g);
24
gap> HasSize(g);
true
gap> SetSize(g,99);
gap> Size(g);
24

For two properties prop1 and prop2 , the intersection prop1 and prop2 (see 13.2) is again a property for
which a setter and a tester exist. Setting the value of this intersection to true for a GAP object means to
set the values of prop1 and prop2 to true for this object.

gap> prop:= IsFinite and IsCommutative;
<Operation "<<and-filter>>">
gap> g:= Group((1,2,3), (4,5));;
gap> Tester(prop)(g);
false
gap> Setter(prop)(g, true);
gap> Tester(prop)(g); prop(g);
true
true

It is not allowed to set the value of such an intersection to false for an object.

gap> Setter(prop)(Rationals, false);
You cannot set an "and-filter" except to true
not in any function
Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can type ’return true;’ to set all components true
(but you might really want to reset just one component) to continue
brk>

3 I AttributeValueNotSet(attr, obj) F

If the value of the attribute attr is already stored for obj , AttributeValueNotSet simply returns this value.
Otherwise the value of attr(obj) is computed and returned without storing it in obj . This can be useful

Section 6. Setter and Tester for Attributes 123

when “large” attribute values (such as element lists) are needed only once and shall not be stored in the
object.

gap> HasAsSSortedList(g);
false
gap> AttributeValueNotSet(AsSSortedList,g);
[(), (4,5), (1,2,3), (1,2,3)(4,5), (1,3,2), (1,3,2)(4,5)]
gap> HasAsSSortedList(g);
false

The normal behaviour of attributes (when called with just one argument) is that once a method has been
selected and executed, and has returned a value the setter of the attribute is called, to (possibly) store the
computed value. In special circumstances, this behaviour can be altered dynamically on an attribute-by-
attribute basis, using the functions DisableAttributeValueStoring and EnableAttributeValueStoring.

In general, the code in the library assumes, for efficiency, but not for correctness, that attribute values will
be stored (in suitable objects), so disabling storing may cause substantial computations to be repeated.

4 I InfoAttributes V

This info class (together with InfoWarning; see 7.4.6) is used for messages about attribute storing being
disabled (at level 2) or enabled (level 3). It may be used in the future for other messages concerning changes
to attribute behaviour.

5 I DisableAttributeValueStoring(attr) F

disables the usual call of Setter(attr) when a method for attr returns a value. In consequence the values
will never be stored. Note that attr must be an attribute and not a property.

6 I EnableAttributeValueStoring(attr) F

enables the usual call of Setter(attr) when a method for attr returns a value. In consequence the values
may be stored. This will usually have no effect unless DisableAttributeValueStoring has previously been
used for attr . Note that attr must be an attribute and not a property.

gap> g := Group((1,2,3,4,5),(1,2,3));
Group([(1,2,3,4,5), (1,2,3)])
gap> KnownAttributesOfObject(g);
["LargestMovedPoint", "GeneratorsOfMagmaWithInverses",
"MultiplicativeNeutralElement"]

gap> SetInfoLevel(InfoAttributes,3);
gap> DisableAttributeValueStoring(Size);
#I Disabling value storing for Size
gap> Size(g);
60
gap> KnownAttributesOfObject(g);
["OneImmutable", "LargestMovedPoint", "NrMovedPoints", "MovedPoints",
"GeneratorsOfMagmaWithInverses", "MultiplicativeNeutralElement",
"StabChainMutable", "StabChainOptions"]

gap> Size(g);
60
gap> EnableAttributeValueStoring(Size);
#I Enabling value storing for Size
gap> Size(g);
60
gap> KnownAttributesOfObject(g);

124 Chapter 13. Types of Objects

["Size", "OneImmutable", "LargestMovedPoint", "NrMovedPoints",
"MovedPoints", "GeneratorsOfMagmaWithInverses",
"MultiplicativeNeutralElement", "StabChainMutable", "StabChainOptions"]

13.7 Properties

The properties of an object are those of its attributes (see 13.5) whose values can only be true or false.
The main difference between attributes and properties is that a property defines two sets of objects, namely
the usual set of all objects for which the value is known, and the set of all objects for which the value is
known to be true.
(Note that it makes no sense to consider a third set, namely the set of objects for which the value of a
property is true whether or not it is known, since there may be objects for which the containment in this
set cannot be decided.)
For a property prop, the containment of an object obj in the first set is checked again by applying Tester(
prop) to obj , and obj lies in the second set if and only if Tester(prop)(obj) and prop(obj) is
true.
If a property value is known for an immutable object then this value is also stored, as part of the type of
the object. To some extent, property values of mutable objects also can be stored, for example a mutable
list all of whose entries are immutable can store whether it is strictly sorted. When the object is mutated
(for example by list assignment) the type may need to be adjusted.
Important properties for domains are IsAssociative, IsCommutative, IsAnticommutative, IsLDistribu-
tive, and IsRDistributive, which mean that the multiplication of elements in the domain satisfies (a ∗
b) ∗ c = a ∗ (b ∗ c), a ∗ b = b ∗ a, a ∗ b = −(b ∗ a), a ∗ (b + c) = a ∗ b + a ∗ c, and (a + b) ∗ c = a ∗ c + b ∗ c,
respectively, for all a, b, c in the domain.

1 I KnownPropertiesOfObject(object) O

returns a list of the names of the properties whose values are known for object .

2 I KnownTruePropertiesOfObject(object) O

returns a list of the names of the properties known to be true for object .

gap> g:=Group((1,2),(1,2,3));;
gap> KnownPropertiesOfObject(g);
["IsFinite", "CanEasilyCompareElements", "CanEasilySortElements",
"IsDuplicateFree", "IsGeneratorsOfMagmaWithInverses", "IsAssociative",
"IsSimpleSemigroup", "IsFinitelyGeneratedGroup",
"IsSubsetLocallyFiniteGroup", "KnowsHowToDecompose"]

gap> Size(g);
6
gap> KnownPropertiesOfObject(g);
["IsEmpty", "IsTrivial", "IsNonTrivial", "IsFinite",
"CanEasilyCompareElements", "CanEasilySortElements", "IsDuplicateFree",
"IsGeneratorsOfMagmaWithInverses", "IsAssociative", "IsSimpleSemigroup",
"IsFinitelyGeneratedGroup", "IsSubsetLocallyFiniteGroup",
"KnowsHowToDecompose", "IsPerfectGroup", "IsSolvableGroup",
"IsPolycyclicGroup"]

gap> KnownTruePropertiesOfObject(g);
["IsNonTrivial", "IsFinite", "CanEasilyCompareElements",
"CanEasilySortElements", "IsDuplicateFree",
"IsGeneratorsOfMagmaWithInverses", "IsAssociative", "IsSimpleSemigroup",
"IsFinitelyGeneratedGroup", "IsSubsetLocallyFiniteGroup",
"KnowsHowToDecompose", "IsSolvableGroup", "IsPolycyclicGroup"]

Section 9. Types 125

13.8 Other Filters

There are situations where one wants to express a kind of knowledge that is based on some heuristic.

For example, the filters (see 13.2) CanEasilyTestMembership and CanEasilyComputePcgs are defined in
the GAP library. Note that such filters do not correspond to a mathematical concept, contrary to properties
(see 13.7). Also it need not be defined what “easily” means for an arbitrary GAP object, and in this case
one cannot compute the value for an arbitrary GAP object. In order to access this kind of knowledge as a
part of the type of an object, GAP provides filters for which the value is false by default, and it is changed
to true in certain situations, either explicitly (for the given object) or via a logical implication (see 2.7 in
“Programming in GAP”) from other filters.

For example, a true value of CanEasilyComputePcgs for a group means that certain methods are applicable
that use a pcgs (see 43.1) for the group. There are logical implications to set the filter value to true for
permutation groups that are known to be solvable, and for groups that have already a (sufficiently nice)
pcgs stored. In the case one has a solvable matrix group and wants to enable methods that use a pcgs, one
can set the CanEasilyComputePcgs value to true for this particular group.

A filter filt of the kind described here is different from the other filters introduced in the previous sections.
In particular, filt is not a category (see 13.3) or a property (see 13.7) because its value may change for a
given object, and filt is not a representation (see 13.4) because it has nothing to do with the way an object
is made up from some data. filt is similar to an attribute tester (see 13.6), the only difference is that filt does
not refer to an attribute value; note that filt is also used in the same way as an attribute tester; namely, the
true value may be required for certain methods to be applicable.

13.9 Types

We stated above (see 13) that, for an object obj , its type is formed from its family and its filters. There is
a also a third component, used in a few situations, namely defining data of the type.

1 I TypeObj(obj) F

returns the type of the object obj .

The type of an object is itself an object.

Two types are equal if and only if the two families are identical, the filters are equal, and, if present, also
the defining data of the types are equal.

The last part of the type, defining data, has not been mentioned before and seems to be of minor importance.
It can be used, e.g., for cosets Ug of a group U , where the type of each coset may contain the group U as
defining data. As a consequence, two such cosets mod U and V can have the same type only if U = V . The
defining data of the type type can be accessed as

2 I DataType(type) F

14 Integers

One of the most fundamental datatypes in every programming language is the integer type. GAP is no
exception.

GAP integers are entered as a sequence of decimal digits optionally preceded by a + sign for positive integers
or a - sign for negative integers. The size of integers in GAP is only limited by the amount of available
memory, so you can compute with integers having thousands of digits.

gap> -1234;
-1234
gap> 123456789012345678901234567890123456789012345678901234567890;
123456789012345678901234567890123456789012345678901234567890

Many more functions that are mainly related to the prime residue group of integers modulo an integer are
described in chapter 15, and functions dealing with combinatorics can be found in chapter 17.

1 I Integers V
I PositiveIntegers V
I NonnegativeIntegers V

These global variables represent the ring of integers and the semirings of positive and nonnegative integers,
respectively.

gap> Size(Integers); 2 in Integers;
infinity
true

2 I IsIntegers(obj) C
I IsPositiveIntegers(obj) C
I IsNonnegativeIntegers(obj) C

are the defining categories for the domains Integers, PositiveIntegers, and NonnegativeIntegers.

gap> IsIntegers(Integers); IsIntegers(Rationals); IsIntegers(7);
true
false
false

Integers is a subset of Rationals, which is a subset of Cyclotomics. See Chapter 18 for arithmetic
operations and comparison of integers.

Section 1. Elementary Operations for Integers 127

14.1 Elementary Operations for Integers

1 I IsInt(obj) C

Every rational integer lies in the category IsInt, which is a subcategory of IsRat (see 16).

2 I IsPosInt(obj) C

Every positive integer lies in the category IsPosInt.

3 I Int(elm) A

Int returns an integer int whose meaning depends on the type of elm.

If elm is a rational number (see 16) then int is the integer part of the quotient of numerator and denominator
of elm (see 14.2.1).

If elm is an element of a finite prime field (see Chapter 57) then int is the smallest nonnegative integer such
that elm = int * One(elm).

If elm is a string (see Chapter 26) consisting of digits ’0’, ’1’, . . ., ’9’ and ’-’ (at the first position) then
int is the integer described by this string. The operation String (see 26.5.1) can be used to compute a string
for rational integers, in fact for all cyclotomics.

gap> Int(4/3); Int(-2/3);
1
0
gap> int:= Int(Z(5)); int * One(Z(5));
2
Z(5)
gap> Int("12345"); Int("-27"); Int("-27/3");
12345
-27
fail

4 I IsEvenInt(n) F

tests if the integer n is divisible by 2.

5 I IsOddInt(n) F

tests if the integer n is not divisible by 2.

6 I AbsInt(n) F

AbsInt returns the absolute value of the integer n, i.e., n if n is positive, -n if n is negative and 0 if n is 0.

AbsInt is a special case of the general operation EuclideanDegree see 54.6.2).

See also 18.1.6.

gap> AbsInt(33);
33
gap> AbsInt(-214378);
214378
gap> AbsInt(0);
0

7 I SignInt(n) F

SignInt returns the sign of the integer n, i.e., 1 if n is positive, -1 if n is negative and 0 if n is 0.

gap> SignInt(33);

128 Chapter 14. Integers

1
gap> SignInt(-214378);
-1
gap> SignInt(0);
0

8 I LogInt(n, base) F

LogInt returns the integer part of the logarithm of the positive integer n with respect to the positive integer
base, i.e., the largest positive integer exp such that baseexp ≤ n. LogInt will signal an error if either n or
base is not positive.

For base 2 this is very efficient because the internal binary representation of the integer is used.

gap> LogInt(1030, 2);
10
gap> 2^10;
1024
gap> LogInt(1, 10);
0

9 I RootInt(n) F
I RootInt(n, k) F

RootInt returns the integer part of the kth root of the integer n. If the optional integer argument k is not
given it defaults to 2, i.e., RootInt returns the integer part of the square root in this case.

If n is positive, RootInt returns the largest positive integer r such that r k ≤ n. If n is negative and k is odd
RootInt returns -RootInt(-n, k). If n is negative and k is even RootInt will cause an error. RootInt
will also cause an error if k is 0 or negative.

gap> RootInt(361);
19
gap> RootInt(2 * 10^12);
1414213
gap> RootInt(17000, 5);
7
gap> 7^5;
16807

10 I SmallestRootInt(n) F

SmallestRootInt returns the smallest root of the integer n.

The smallest root of an integer n is the integer r of smallest absolute value for which a positive integer k
exists such that n = r k .

gap> SmallestRootInt(2^30);
2
gap> SmallestRootInt(-(2^30));
-4

Note that (−2)30 = +(230).

Section 2. Quotients and Remainders 129

gap> SmallestRootInt(279936);
6
gap> LogInt(279936, 6);
7
gap> SmallestRootInt(1001);
1001

11 I Random(Integers)

Random for integers returns pseudo random integers between -10 and 10 distributed according to a binomial
distribution. To generate uniformly distributed integers from a range, use the construct ’Random([low ..
high])’. (Also see 14.5.2.)

14.2 Quotients and Remainders
1 I QuoInt(n, m) F

QuoInt returns the integer part of the quotient of its integer operands.
If n and m are positive QuoInt(n, m) is the largest positive integer q such that q ∗m ≤ n. If n or m or
both are negative the absolute value of the integer part of the quotient is the quotient of the absolute values
of n and m, and the sign of it is the product of the signs of n and m.
QuoInt is used in a method for the general operation EuclideanQuotient (see 54.6.3).

gap> QuoInt(5,3); QuoInt(-5,3); QuoInt(5,-3); QuoInt(-5,-3);
1
-1
-1
1

2 I BestQuoInt(n, m) F

BestQuoInt returns the best quotient q of the integers n and m. This is the quotient such that n-q*m has
minimal absolute value. If there are two quotients whose remainders have the same absolute value, then the
quotient with the smaller absolute value is chosen.

gap> BestQuoInt(5, 3); BestQuoInt(-5, 3);
2
-2

3 I RemInt(n, m) F

RemInt returns the remainder of its two integer operands.
If m is not equal to zero RemInt(n, m) = n - m * QuoInt(n, m). Note that the rules given for
QuoInt imply that RemInt(n, m) has the same sign as n and its absolute value is strictly less than the
absolute value of m. Note also that RemInt(n, m) = n mod m when both n and m are nonnegative.
Dividing by 0 signals an error.
RemInt is used in a method for the general operation EuclideanRemainder (see 54.6.4).

gap> RemInt(5,3); RemInt(-5,3); RemInt(5,-3); RemInt(-5,-3);
2
-2
2
-2

4 I GcdInt(m, n) F

GcdInt returns the greatest common divisor of its two integer operands m and n, i.e., the greatest integer
that divides both m and n. The greatest common divisor is never negative, even if the arguments are. We
define GcdInt(m, 0) = GcdInt(0, m) = AbsInt(m) and GcdInt(0, 0) = 0.

130 Chapter 14. Integers

GcdInt is a method used by the general function Gcd (see 54.7.1).

gap> GcdInt(123, 66);
3

5 I Gcdex(m, n) F

returns a record g describing the extended greatest common divisor of m and n. The component gcd is
this gcd, the components coeff1 and coeff2 are integer cofactors such that g.gcd = g.coeff1 * m +
g.coeff2 * n, and the components coeff3 and coeff4 are integer cofactors such that 0 = g.coeff3 *
m + g.coeff4 * n.

If m and n both are nonzero, AbsInt(g.coeff1) is less than or equal to AbsInt(n) / (2 * g.gcd) and
AbsInt(g.coeff2) is less than or equal to AbsInt(m) / (2 * g.gcd).

If m or n or both are zero coeff3 is -n / g.gcd and coeff4 is m / g.gcd.

The coefficients always form a unimodular matrix, i.e., the determinant g.coeff1 * g.coeff4 - g.coeff3
* g.coeff2 is 1 or −1.

gap> Gcdex(123, 66);
rec(gcd := 3, coeff1 := 7, coeff2 := -13, coeff3 := -22, coeff4 := 41)

This means 3 = 7 ∗ 123− 13 ∗ 66, 0 = −22 ∗ 123 + 41 ∗ 66.

gap> Gcdex(0, -3);
rec(gcd := 3, coeff1 := 0, coeff2 := -1, coeff3 := 1, coeff4 := 0)
gap> Gcdex(0, 0);
rec(gcd := 0, coeff1 := 1, coeff2 := 0, coeff3 := 0, coeff4 := 1)

6 I LcmInt(m, n) F

returns the least common multiple of the integers m and n.

LcmInt is a method used by the general function Lcm.

gap> LcmInt(123, 66);
2706

7 I CoefficientsQadic(i, q) F

returns the q-adic representation of the integer i as a list l of coefficients where i =
∑

j=0 q j · l [j + 1].

8 I CoefficientsMultiadic(ints, int) F

returns the multiadic expansion of the integer int modulo the integers given in ints (in ascending order). It
returns a list of coefficients in the reverse order to that in ints.

9 I ChineseRem(moduli, residues) F

ChineseRem returns the combination of the residues modulo the moduli , i.e., the unique integer c from
[0..Lcm(moduli)-1] such that c = residues[i] modulo moduli[i] for all i , if it exists. If no such combi-
nation exists ChineseRem signals an error.

Section 3. Prime Integers and Factorization 131

Such a combination does exist if and only if residues[i]=residues[k] mod Gcd(moduli[i],moduli[k]) for
every pair i , k . Note that this implies that such a combination exists if the moduli are pairwise relatively
prime. This is called the Chinese remainder theorem.

gap> ChineseRem([2, 3, 5, 7], [1, 2, 3, 4]);
53
gap> ChineseRem([6, 10, 14], [1, 3, 5]);
103

gap> ChineseRem([6, 10, 14], [1, 2, 3]);
Error, the residues must be equal modulo 2 called from
<function>(<arguments>) called from read-eval-loop
Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> gap>

10 I PowerModInt(r, e, m) F

returns r e (mod m) for integers r ,e and m (e ≥ 0). Note that using r ^ e mod m will generally be slower,
because it can not reduce intermediate results the way PowerModInt does but would compute r^e first and
then reduce the result afterwards.

PowerModInt is a method for the general operation PowerMod.

14.3 Prime Integers and Factorization

1 I Primes V

Primes is a strictly sorted list of the 168 primes less than 1000.

This is used in IsPrimeInt and FactorsInt to cast out small primes quickly.

gap> Primes[1];
2
gap> Primes[100];
541

2 I IsPrimeInt(n) F
I IsProbablyPrimeInt(n) F

IsPrimeInt returns false if it can prove that n is composite and true otherwise. By convention Is-
PrimeInt(0) = IsPrimeInt(1) = false and we define IsPrimeInt(-n) = IsPrimeInt(n).

IsPrimeInt will return true for every prime n. IsPrimeInt will return false for all composite n < 1013 and
for all composite n that have a factor p < 1000. So for integers n < 1013, IsPrimeInt is a proper primality
test. It is conceivable that IsPrimeInt may return true for some composite n > 1013, but no such n is
currently known. So for integers n > 1013, IsPrimeInt is a probable-primality test. IsPrimeInt will issue a
warning when its argument is probably prime but not a proven prime. (The function IsProbablyPrimeInt
will do the same calculations but not issue a warning.) The warning can be switched off by SetInfoLevel(
InfoPrimeInt, 0);, the default level is 1.

If composites that fool IsPrimeInt do exist, they would be extremely rare, and finding one by pure chance
might be less likely than finding a bug in GAP. We would appreciate being informed about any example of
a composite number n for which IsPrimeInt returns true.

IsPrimeInt is a deterministic algorithm, i.e., the computations involve no random numbers, and repeated
calls will always return the same result. IsPrimeInt first does trial divisions by the primes less than 1000.

132 Chapter 14. Integers

Then it tests that n is a strong pseudoprime w.r.t. the base 2. Finally it tests whether n is a Lucas
pseudoprime w.r.t. the smallest quadratic nonresidue of n. A better description can be found in the comment
in the library file integer.gi.

The time taken by IsPrimeInt is approximately proportional to the third power of the number of digits of
n. Testing numbers with several hundreds digits is quite feasible.

IsPrimeInt is a method for the general operation IsPrime.

Remark: In future versions of GAP we hope to change the definition of IsPrimeInt to return true only
for proven primes (currently, we lack a sufficiently good primality proving function). In applications, use
explicitly IsPrimeInt or IsProbablePrimeInt with this change in mind.

gap> IsPrimeInt(2^31 - 1);
true
gap> IsPrimeInt(10^42 + 1);
false

3 I IsPrimePowerInt(n) F

IsPrimePowerInt returns true if the integer n is a prime power and false otherwise.

n is a prime power if there exists a prime p and a positive integer i such that pi = n. If n is negative the
condition is that there must exist a negative prime p and an odd positive integer i such that pi = n. 1 and
-1 are not prime powers.

Note that IsPrimePowerInt uses SmallestRootInt (see 14.1.10) and a probable-primality test (see 14.3.2).

gap> IsPrimePowerInt(31^5);
true
gap> IsPrimePowerInt(2^31-1); # 2^31-1 is actually a prime
true
gap> IsPrimePowerInt(2^63-1);
false
gap> Filtered([-10..10], IsPrimePowerInt);
[-8, -7, -5, -3, -2, 2, 3, 4, 5, 7, 8, 9]

4 I NextPrimeInt(n) F

NextPrimeInt returns the smallest prime which is strictly larger than the integer n.

Note that NextPrimeInt uses a probable-primality test (see 14.3.2).

gap> NextPrimeInt(541); NextPrimeInt(-1);
547
2

5 I PrevPrimeInt(n) F

PrevPrimeInt returns the largest prime which is strictly smaller than the integer n.

Note that PrevPrimeInt uses a probable-primality test (see 14.3.2).

gap> PrevPrimeInt(541); PrevPrimeInt(1);
523
-2

6 I FactorsInt(n) F
I FactorsInt(n : RhoTrials := trials) F

FactorsInt returns a list of prime factors of the integer n.

Section 3. Prime Integers and Factorization 133

If the ith power of a prime divides n this prime appears i times. The list is sorted, that is the smallest
prime factors come first. The first element has the same sign as n, the others are positive. For any integer
n it holds that Product(FactorsInt(n)) = n.

Note that FactorsInt uses a probable-primality test (see 14.3.2). Thus FactorsInt might return a list
which contains composite integers. In such a case you will get a warning about the use of a probable prime.
You can switch off these warnings by SetInfoLevel(InfoPrimeInt, 0);.

The time taken by FactorsInt is approximately proportional to the square root of the second largest prime
factor of n, which is the last one that FactorsInt has to find, since the largest factor is simply what remains
when all others have been removed. Thus the time is roughly bounded by the fourth root of n. FactorsInt
is guaranteed to find all factors less than 106 and will find most factors less than 1010. If n contains multiple
factors larger than that FactorsInt may not be able to factor n and will then signal an error.

FactorsInt is used in a method for the general operation Factors.

In the second form, FactorsInt calls FactorsRho with a limit of trials on the number of trials is performs.
The default is 8192.

gap> FactorsInt(-Factorial(6));
[-2, 2, 2, 2, 3, 3, 5]
gap> Set(FactorsInt(Factorial(13)/11));
[2, 3, 5, 7, 13]
gap> FactorsInt(2^63 - 1);
[7, 7, 73, 127, 337, 92737, 649657]
gap> FactorsInt(10^42 + 1);
#I IsPrimeInt: probably prime, but not proven: 4458192223320340849
[29, 101, 281, 9901, 226549, 121499449, 4458192223320340849]

7 I PartialFactorization(n) O
I PartialFactorization(n, effort) O

PartialFactorization returns a partial factorization of the integer n. No assertions are made about the
primality of the factors, except of those mentioned below.

The argument effort , if given, specifies how intensively the function should try to determine factors of n.
The default is effort = 5.

- If effort = 0, trial division by the primes below 100 is done. Returned factors below 104 are guaranteed
to be prime.

- If effort = 1, trial division by the primes below 1000 is done. Returned factors below 106 are guaranteed
to be prime.

- If effort = 2, additionally trial division by the numbers in the lists Primes2 and ProbablePrimes2 is
done, and perfect powers are detected. Returned factors below 106 are guaranteed to be prime.

- If effort = 3, additionally FactorsRho (Pollard’s Rho) with RhoTrials = 256 is used.

- If effort = 4, as above, but RhoTrials = 2048.

- If effort = 5, as above, but RhoTrials = 8192. Returned factors below 1012 are guaranteed to be prime,
and all prime factors below 106 are guaranteed to be found.

- If effort = 6 and FactInt is loaded, in addition to the above quite a number of special cases are handled.

- If effort = 7 and FactInt is loaded, the only thing which is not attempted to obtain a full factorization
into Baillie-Pomerance-Selfridge-Wagstaff pseudoprimes is the application of the MPQS to a remaining
composite with more than 50 decimal digits.

134 Chapter 14. Integers

Increasing the value of the argument effort by one usually results in an increase of the runtime requirements
by a factor of (very roughly!) 3 to 10.

gap> List([0..5],i->PartialFactorization(7^64-1,i));
[[2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 5, 5, 17,

1868505648951954197516197706132003401892793036353],
[2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 5, 5, 17, 353,

5293217135841230021292344776577913319809612001],
[2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 5, 5, 17, 353, 134818753, 47072139617,

531968664833, 1567903802863297],
[2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 5, 5, 17, 353, 1201, 169553, 7699649,

134818753, 47072139617, 531968664833],
[2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 5, 5, 17, 353, 1201, 169553, 7699649,

134818753, 47072139617, 531968664833],
[2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 5, 5, 17, 353, 1201, 169553, 7699649,

134818753, 47072139617, 531968664833]]

8 I PrintFactorsInt(n) F

prints the prime factorization of the integer n in human-readable form.

gap> PrintFactorsInt(Factorial(7)); Print("\n");
2^4*3^2*5*7

9 I PrimePowersInt(n) F

returns the prime factorization of the integer n as a list [p1, e1, . . . , pn , en] with n =
∏n

i=1 pei
i .

gap> PrimePowersInt(Factorial(7));
[2, 4, 3, 2, 5, 1, 7, 1]

10 I DivisorsInt(n) F

DivisorsInt returns a list of all divisors of the integer n. The list is sorted, so that it starts with 1 and
ends with n. We define that Divisors(-n) = Divisors(n).

Since the set of divisors of 0 is infinite calling DivisorsInt(0) causes an error.

DivisorsInt may call FactorsInt to obtain the prime factors. Sigma and Tau (see 15.4.1 and 15.4.2)
compute the sum and the number of positive divisors, respectively.

gap> DivisorsInt(1); DivisorsInt(20); DivisorsInt(541);
[1]
[1, 2, 4, 5, 10, 20]
[1, 541]

14.4 Residue Class Rings

1 I r / s mod n

If r , s and n are integers, r / s as a reduced fraction is p / q , and q and n are coprime, then r / s mod
n is defined to be the product of p and the inverse of q modulo n. See Section 4.12 for more details and
definitions.

With the above definition, 4 / 6 mod 32 equals 2 / 3 mod 32 and hence exists (and is equal to 22), despite
the fact that 6 has no inverse modulo 32.

Section 4. Residue Class Rings 135

2 I ZmodnZ(n) F
I ZmodpZ(p) F
I ZmodpZNC(p) F

ZmodnZ returns a ring R isomorphic to the residue class ring of the integers modulo the positive integer n.
The element corresponding to the residue class of the integer i in this ring can be obtained by i ∗ One(R),
and a representative of the residue class corresponding to the element x ∈ R can be computed by Int(x).
ZmodnZ(n) is equivalent to Integers mod n.
ZmodpZ does the same if the argument p is a prime integer, additionally the result is a field. ZmodpZNC omits
the check whether p is a prime.
Each ring returned by these functions contains the whole family of its elements if n is not a prime, and is
embedded into the family of finite field elements of characteristic n if n is a prime.

3 I ZmodnZObj(Fam, r) O
I ZmodnZObj(r, n) O

If the first argument is a residue class family Fam then ZmodnZObj returns the element in Fam whose coset is
represented by the integer r . If the two arguments are an integer r and a positive integer n then ZmodnZObj
returns the element in ZmodnZ(n) (see 14.4.2) whose coset is represented by the integer r .

gap> r:= ZmodnZ(15);
(Integers mod 15)
gap> fam:=ElementsFamily(FamilyObj(r));;
gap> a:= ZmodnZObj(fam,9);
ZmodnZObj(9, 15)
gap> a+a;
ZmodnZObj(3, 15)
gap> Int(a+a);
3

4 I IsZmodnZObj(obj) C
I IsZmodnZObjNonprime(obj) C
I IsZmodpZObj(obj) C
I IsZmodpZObjSmall(obj) C
I IsZmodpZObjLarge(obj) C

The elements in the rings Z/nZ are in the category IsZmodnZObj. If n is a prime then the elements are of
course also in the category IsFFE (see 57.1.1), otherwise they are in IsZmodnZObjNonprime. IsZmodpZObj is
an abbreviation of IsZmodnZObj and IsFFE. This category is the disjoint union of IsZmodpZObjSmall and
IsZmodpZObjLarge, the former containing all elements with n at most MAXSIZE GF INTERNAL.
The reasons to distinguish the prime case from the nonprime case are

– that objects in IsZmodnZObjNonprime have an external representation (namely the residue in the range
[0, 1, . . . ,n − 1]),

– that the comparison of elements can be defined as comparison of the residues, and
– that the elements lie in a family of type IsZmodnZObjNonprimeFamily (note that for prime n, the family

must be an IsFFEFamily).

The reasons to distinguish the small and the large case are that for small n the elements must be compat-
ible with the internal representation of finite field elements, whereas we are free to define comparison as
comparison of residues for large n.
Note that we cannot claim that every finite field element of degree 1 is in IsZmodnZObj, since finite field
elements in internal representation may not know that they lie in the prime field.
The residue class rings are rings, thus all operations for rings (see Chapter 54) apply. See also Chapters 57
and 15.

136 Chapter 14. Integers

14.5 Random Sources

GAP provides Random methods (see 14.5.2) for many collections of objects. On a lower level these methods
use random sources which provide random integers and random choices from lists.

1 I IsRandomSource(rs) C

This is the category of random source objects rs which are defined to have methods available for the
following operations which are explained in more detail below: Random(rs, list) giving a random element
of a list, Random(rs, low, high) giving a random integer between low and high (inclusive), Init, State
and Reset.

Use RandomSource (see 14.5.5) to construct new random sources.

One idea behind providing several independent (pseudo) random sources is to make algorithms which use
some sort of random choices deterministic. They can use their own new random source created with a fixed
seed and so do exactly the same in different calls.

Random source objects lie in the family RandomSourcesFamily.

2 I Random(rs, list) O
I Random(rs, low, high) O

This operation returns a random element from list list , or an integer in the range from the given (possibly
large) integers low to high, respectively. The choice should only depend on the random source rs and have
no effect on other random sources.

3 I State(rs) O
I Reset(rs) O
I Reset(rs, seed) O
I Init(rs) O
I Init(prers, seed) O

These are the basic operations for which random sources (see 14.5.1) must have methods.

State should return a data structure which allows to recover the state of the random source such that a
sequence of random calls using this random source can be reproduced. If a random source cannot be reset
(say, it uses truely random physical data) then State should return fail.

Reset(rs, seed) resets the random source rs to a state described by seed , if the random source can
be reset (otherwise it should do nothing). Here seed can be an output of State and then should reset to
that state. Also, the methods should always allow integers as seed . Without the seed argument the default
seed = 1 is used.

Init is the constructor of a random source, it gets an empty component object which has already the correct
type and should fill in the actual data which are needed. Optionally, it should allow one to specify a seed
for the initial state, as explained for Reset.

4 I IsGlobalRandomSource(rs) C
I IsGAPRandomSource(rs) C
I IsMersenneTwister(rs) C
I GlobalRandomSource V
I GlobalMersenneTwister V

Currently, the GAP library provides three types of random sources, distinguished by the three listed cate-
gories.

IsGlobalRandomSource gives access to the classical global random generator which was used by GAP in
previous releases. You do not need to construct new random sources of this kind which would all use the

Section 5. Random Sources 137

same global data structure. Just use the existing random source GlobalRandomSource. This uses the additive
random number generator described in [Knu98] (Algorithm A in 3.2.2 with lag 30).

IsGAPRandomSource uses the same number generator as IsGlobalRandomSource, but you can create several
of these random sources which generate their random numbers independently of all other random sources.

IsMersenneTwister are random sources which use a fast random generator of 32 bit numbers, called the
Mersenne twister. The pseudo random sequence has a period of 219937 − 1 and the numbers have a 623-
dimensional equidistribution. For more details and the origin of the code used in the GAP kernel, see:

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

Use the Mersenne twister if possible, in particular for generating many large random integers.

There is also a predefined global random source GlobalMersenneTwister.

5 I RandomSource(cat) O
I RandomSource(cat, seed) O

This operation is used to create new random sources. The first argument is the category describing the type
of the random generator, an optional seed which can be an integer or a type specific data structure can be
given to specify the initial state.

gap> rs1 := RandomSource(IsMersenneTwister);
<RandomSource in IsMersenneTwister>
gap> state1 := State(rs1);;
gap> l1 := List([1..10000], i-> Random(rs1, [1..6]));;
gap> rs2 := RandomSource(IsMersenneTwister);;
gap> l2 := List([1..10000], i-> Random(rs2, [1..6]));;
gap> l1 = l2;
true
gap> l1 = List([1..10000], i-> Random(rs1, [1..6]));
false
gap> n := Random(rs1, 1, 2^220);
1598617776705343302477918831699169150767442847525442557699717518961

15 Number Theory

GAP provides a couple of elementary number theoretic functions. Most of these deal with the group of
integers coprime to m, called the prime residue group. φ(m) (see 15.1.2) is the order of this group, λ(m)
(see 15.1.3) the exponent. If and only if m is 2, 4, an odd prime power pe , or twice an odd prime power
2pe , this group is cyclic. In this case the generators of the group, i.e., elements of order φ(m), are called
primitive roots (see 15.2.3, 15.2.4).

Note that neither the arguments nor the return values of the functions listed below are groups or group
elements in the sense of GAP. The arguments are simply integers.

1 I InfoNumtheor V

InfoNumtheor is the info class (see 7.4) for the functions in the number theory chapter.

15.1 Prime Residues

1 I PrimeResidues(m) F

PrimeResidues returns the set of integers from the range 0..Abs(m)-1 that are coprime to the integer m.

Abs(m) must be less than 228, otherwise the set would probably be too large anyhow.

gap> PrimeResidues(0); PrimeResidues(1); PrimeResidues(20);
[]
[0]
[1, 3, 7, 9, 11, 13, 17, 19]

2 I Phi(m) O

Phi returns the number φ(m) of positive integers less than the positive integer m that are coprime to m.

Suppose that m = pe1
1 pe2

2 · · · p
ek
k . Then φ(m) is pe1−1

1 (p1 − 1)pe2−1
2 (p2 − 1) · · · pek−1

k (pk − 1).

gap> Phi(12);
4
gap> Phi(2^13-1); # this proves that 2^(13)-1 is a prime
8190
gap> Phi(2^15-1);
27000

3 I Lambda(m) O

Lambda returns the exponent λ(m) of the group of prime residues modulo the integer m.

λ(m) is the smallest positive integer l such that for every a relatively prime to m we have a l ≡ 1 (mod m).
Fermat’s theorem asserts aφ(m) ≡ 1 (mod m); thus λ(m) divides φ(m) (see 15.1.2).

Carmichael’s theorem states that λ can be computed as follows: λ(2) = 1, λ(4) = 2 and λ(2e) = 2e−2 if
3 ≤ e, λ(pe) = (p − 1)pe−1 (i.e. φ(m)) if p is an odd prime and λ(n ∗ m) = Lcm(λ(n), λ(m)) if n,m are
coprime.

Section 2. Primitive Roots and Discrete Logarithms 139

Composites for which λ(m) divides m − 1 are called Carmichaels. If 6k + 1, 12k + 1 and 18k + 1 are primes
their product is such a number. There are only 1547 Carmichaels below 1010 but 455052511 primes.

gap> Lambda(10);
4
gap> Lambda(30);
4
gap> Lambda(561); # 561 is the smallest Carmichael number
80

4 I GeneratorsPrimeResidues(n) F

Let n be a positive integer. GeneratorsPrimeResidues returns a description of generators of the group of
prime residues modulo n. The return value is a record with components

primes:
a list of the prime factors of n,

exponents:
a list of the exponents of these primes in the factorization of n, and

generators:
a list describing generators of the group of prime residues; for the prime factor 2, either a primitive
root or a list of two generators is stored, for each other prime factor of n, a primitive root is stored.

gap> GeneratorsPrimeResidues(1);
rec(primes := [], exponents := [], generators := [])
gap> GeneratorsPrimeResidues(4*3);
rec(primes := [2, 3], exponents := [2, 1], generators := [7, 5])
gap> GeneratorsPrimeResidues(8*9*5);
rec(primes := [2, 3, 5], exponents := [3, 2, 1],
generators := [[271, 181], 281, 217])

15.2 Primitive Roots and Discrete Logarithms

1 I OrderMod(n, m) F

OrderMod returns the multiplicative order of the integer n modulo the positive integer m. If n and m are
not coprime the order of n is not defined and OrderMod will return 0.

If n and m are relatively prime the multiplicative order of n modulo m is the smallest positive integer i such
that n i ≡ 1 (mod m). If the group of prime residues modulo m is cyclic then each element of maximal
order is called a primitive root modulo m (see 15.2.4).

OrderMod usually spends most of its time factoring m and φ(m) (see 14.3.6).

gap> OrderMod(2, 7);
3
gap> OrderMod(3, 7); # 3 is a primitive root modulo 7
6

2 I LogMod(n, r, m) F
I LogModShanks(n, r, m) F

computes the discrete r -logarithm of the integer n modulo the integer m. It returns a number l such that
r l ≡ n (mod m) if such a number exists. Otherwise fail is returned.

140 Chapter 15. Number Theory

LogModShanks uses the Baby Step - Giant Step Method of Shanks (see for example section 5.4.1 in [Coh93]
and in general requires more memory than a call to LogMod.

gap> l:= LogMod(2, 5, 7); 5^l mod 7 = 2;
4
true
gap> LogMod(1, 3, 3); LogMod(2, 3, 3);
0
fail

3 I PrimitiveRootMod(m[, start]) F

PrimitiveRootMod returns the smallest primitive root modulo the positive integer m and fail if no such
primitive root exists. If the optional second integer argument start is given PrimitiveRootMod returns the
smallest primitive root that is strictly larger than start .

gap> PrimitiveRootMod(409); # largest primitive root for a prime less than 2000
21
gap> PrimitiveRootMod(541, 2);
10
gap> PrimitiveRootMod(337, 327); # 327 is the largest primitive root mod 337
fail
gap> PrimitiveRootMod(30); # there exists no primitive root modulo 30
fail

4 I IsPrimitiveRootMod(r, m) F

IsPrimitiveRootMod returns true if the integer r is a primitive root modulo the positive integer m and
false otherwise. If r is less than 0 or larger than m it is replaced by its remainder.

gap> IsPrimitiveRootMod(2, 541);
true
gap> IsPrimitiveRootMod(-539, 541); # same computation as above;
true
gap> IsPrimitiveRootMod(4, 541);
false
gap> ForAny([1..29], r -> IsPrimitiveRootMod(r, 30));
false
gap> # there is no a primitive root modulo 30

15.3 Roots Modulo Integers

1 I Jacobi(n, m) F

Jacobi returns the value of the Jacobi symbol of the integer n modulo the integer m.

Suppose that m = p1p2 · · · pk is a product of primes, not necessarily distinct. Then for n coprime to m the
Jacobi symbol is defined by J (n/m) = L(n/p1)L(n/p2) · · ·L(n/pk), where L(n/p) is the Legendre symbol
(see 15.3.2). By convention J (n/1) = 1. If the gcd of n and m is larger than 1 we define J (n/m) = 0.

If n is a quadratic residue modulo m, i.e., if there exists an r such that r2 ≡ n (mod m) then J (n/m) =
1. However, J (n/m) = 1 implies the existence of such an r only if m is a prime.

Section 3. Roots Modulo Integers 141

Jacobi is very efficient, even for large values of n and m, it is about as fast as the Euclidean algorithm
(see 54.7.1).

gap> Jacobi(11, 35); # 9^2 = 11 mod 35
1
gap> Jacobi(6, 35); # it is -1, thus there is no r such that r^2 = 6 mod 35
-1
gap> Jacobi(3, 35); # it is 1 even though there is no r with r^2 = 3 mod 35
1

2 I Legendre(n, m) F

Legendre returns the value of the Legendre symbol of the integer n modulo the positive integer m.

The value of the Legendre symbol L(n/m) is 1 if n is a quadratic residue modulo m, i.e., if there exists
an integer r such that r2 ≡ n (mod m) and −1 otherwise.

If a root of n exists it can be found by RootMod (see 15.3.3).

While the value of the Legendre symbol usually is only defined for m a prime, we have extended the definition
to include composite moduli too. The Jacobi symbol (see 15.3.1) is another generalization of the Legendre
symbol for composite moduli that is much cheaper to compute, because it does not need the factorization
of m (see 14.3.6).

A description of the Jacobi symbol, the Legendre symbol, and related topics can be found in [Bak84].

gap> Legendre(5, 11); # 4^2 = 5 mod 11
1
gap> Legendre(6, 11); # it is -1, thus there is no r such that r^2 = 6 mod 11
-1
gap> Legendre(3, 35); # it is -1, thus there is no r such that r^2 = 3 mod 35
-1

3 I RootMod(n[, k], m) F

RootMod computes a kth root of the integer n modulo the positive integer m, i.e., a r such that r k ≡ n
(mod m). If no such root exists RootMod returns fail. If only the arguments n and m are given, the default
value for k is 2.

In the current implementation k must be a prime.

A square root of n exists only if Legendre(n,m) = 1 (see 15.3.2). If m has r different prime factors then
there are 2r different roots of n mod m. It is unspecified which one RootMod returns. You can, however, use
RootsMod (see 15.3.4) to compute the full set of roots.

RootMod is efficient even for large values of m, in fact the most time is usually spent factoring m (see 14.3.6).

gap> RootMod(64, 1009); # note ’RootMod’ does not return 8 in this case but -8;
1001
gap> RootMod(64, 3, 1009);
518
gap> RootMod(64, 5, 1009);
656
gap> List(RootMod(64, 1009) * RootsUnityMod(1009),
> x -> x mod 1009); # set of all square roots of 64 mod 1009
[1001, 8]

4 I RootsMod(n[, k], m) F

RootsMod computes the set of kth roots of the integer n modulo the positive integer m, i.e., a r such that
r k ≡ n (mod m). If only the arguments n and m are given, the default value for k is 2.

142 Chapter 15. Number Theory

In the current implementation k must be a prime.

gap> RootsMod(1, 7*31); # the same as ‘RootsUnityMod(7*31)’
[1, 92, 125, 216]
gap> RootsMod(7, 7*31);
[21, 196]
gap> RootsMod(5, 7*31);
[]
gap> RootsMod(1, 5, 7*31);
[1, 8, 64, 78, 190]

5 I RootsUnityMod([k,] m) F

RootsUnityMod returns the set of k -th roots of unity modulo the positive integer m, i.e., the list of all
solutions r of r k ≡ n (mod m). If only the argument m is given, the default value for k is 2.

In general there are kn such roots if the modulus m has n different prime factors p such that p ≡ 1 (mod k).
If k2 divides m then there are kn+1 such roots; and especially if k = 2 and 8 divides m there are 2n+2 such
roots.

In the current implementation k must be a prime.

gap> RootsUnityMod(7*31); RootsUnityMod(3, 7*31);
[1, 92, 125, 216]
[1, 25, 32, 36, 67, 149, 156, 191, 211]
gap> RootsUnityMod(5, 7*31);
[1, 8, 64, 78, 190]
gap> List(RootMod(64, 1009) * RootsUnityMod(1009),
> x -> x mod 1009); # set of all square roots of 64 mod 1009
[1001, 8]

15.4 Multiplicative Arithmetic Functions

1 I Sigma(n) O

Sigma returns the sum of the positive divisors of the nonzero integer n.

Sigma is a multiplicative arithmetic function, i.e., if n and m are relatively prime we have σ(nm) = σ(n)σ(m).

Together with the formula σ(pe) = (pe+1 − 1)/(p − 1) this allows us to compute σ(n).

Integers n for which σ(n) = 2n are called perfect. Even perfect integers are exactly of the form 2n−1(2n − 1)
where 2n−1 is prime. Primes of the form 2n−1 are called Mersenne primes, the known ones are obtained
for n = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941,
11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, and 859433. It is not known
whether odd perfect integers exist, however [BC89] show that any such integer must have at least 300
decimal digits.

Sigma usually spends most of its time factoring n (see 14.3.6).

gap> Sigma(1);
1
gap> Sigma(1009); # 1009 is a prime
1010
gap> Sigma(8128) = 2*8128; # 8128 is a perfect number
true

2 I Tau(n) O

Tau returns the number of the positive divisors of the nonzero integer n.

Section 5. Continued Fractions 143

Tau is a multiplicative arithmetic function, i.e., if n and m are relative prime we have τ(nm) = τ(n)τ(m).
Together with the formula τ(pe) = e + 1 this allows us to compute τ(n).

Tau usually spends most of its time factoring n (see 14.3.6).

gap> Tau(1);
1
gap> Tau(1013); # thus 1013 is a prime
2
gap> Tau(8128);
14
gap> Tau(36); # the result is odd if and only if the argument is a perfect square
9

3 I MoebiusMu(n) F

MoebiusMu computes the value of Moebius inversion function for the nonzero integer n. This is 0 for integers
which are not squarefree, i.e., which are divided by a square r2. Otherwise it is 1 if n has a even number
and −1 if n has an odd number of prime factors.

The importance of µ stems from the so called inversion formula. Suppose f (n) is a multiplicative arithmetic
function defined on the positive integers and let g(n) =

∑
d |n f (d). Then f (n) =

∑
d |n µ(d)g(n/d). As a

special case we have φ(n) =
∑

d |n µ(d)n/d since n =
∑

d |n φ(d) (see 15.1.2).

MoebiusMu usually spends all of its time factoring n (see 14.3.6).

gap> MoebiusMu(60); MoebiusMu(61); MoebiusMu(62);
0
-1
1

15.5 Continued Fractions

1 I ContinuedFractionExpansionOfRoot(P, n) F

The first n terms of the continued fraction expansion of the only positive real root of the polynomial P with
integer coefficients. The leading coefficient of P must be positive and the value of P at 0 must be negative.
If the degree of P is 2 and n = 0, the function computes one period of the continued fraction expansion of
the root in question. Anything may happen if P has three or more positive real roots.

gap> x := Indeterminate(Integers);;
gap> ContinuedFractionExpansionOfRoot(x^2-7,20);
[2, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1]
gap> ContinuedFractionExpansionOfRoot(x^2-7,0);
[2, 1, 1, 1, 4]
gap> ContinuedFractionExpansionOfRoot(x^3-2,20);
[1, 3, 1, 5, 1, 1, 4, 1, 1, 8, 1, 14, 1, 10, 2, 1, 4, 12, 2, 3]
gap> ContinuedFractionExpansionOfRoot(x^5-x-1,50);
[1, 5, 1, 42, 1, 3, 24, 2, 2, 1, 16, 1, 11, 1, 1, 2, 31, 1, 12, 5, 1, 7, 11,
1, 4, 1, 4, 2, 2, 3, 4, 2, 1, 1, 11, 1, 41, 12, 1, 8, 1, 1, 1, 1, 1, 9, 2,
1, 5, 4]

2 I ContinuedFractionApproximationOfRoot(P, n) F

The nth continued fraction approximation of the only positive real root of the polynomial P with integer
coefficients. The leading coefficient of P must be positive and the value of P at 0 must be negative. Anything
may happen if P has three or more positive real roots.

144 Chapter 15. Number Theory

gap> ContinuedFractionApproximationOfRoot(x^2-2,10);
3363/2378
gap> 3363^2-2*2378^2;
1
gap> z := ContinuedFractionApproximationOfRoot(x^5-x-1,20);
499898783527/428250732317
gap> z^5-z-1;
486192462527432755459620441970617283/
14404247382319842421697357558805709031116987826242631261357

15.6 Miscellaneous

1 I TwoSquares(n) F

TwoSquares returns a list of two integers x ≤ y such that the sum of the squares of x and y is equal to
the nonnegative integer n, i.e., n = x 2 + y2. If no such representation exists TwoSquares will return fail.
TwoSquares will return a representation for which the gcd of x and y is as small as possible. It is not specified
which representation TwoSquares returns, if there is more than one.

Let a be the product of all maximal powers of primes of the form 4k + 3 dividing n. A representation of n
as a sum of two squares exists if and only if a is a perfect square. Let b be the maximal power of 2 dividing
n or its half, whichever is a perfect square. Then the minimal possible gcd of x and y is the square root c
of ab. The number of different minimal representation with x ≤ y is 2l−1, where l is the number of different
prime factors of the form 4k + 1 of n.

The algorithm first finds a square root r of −1 modulo n/(ab), which must exist, and applies the Euclidean
algorithm to r and n. The first residues in the sequence that are smaller than

√
n/(ab) times c are a possible

pair x and y .

Better descriptions of the algorithm and related topics can be found in [Wag90] and [Zag90].

gap> TwoSquares(5);
[1, 2]
gap> TwoSquares(11); # there is no representation
fail
gap> TwoSquares(16);
[0, 4]
gap> TwoSquares(45); # 3 is the minimal possible gcd because 9 divides 45
[3, 6]
gap> TwoSquares(125); # it is not [5,10] because their gcd is not minimal
[2, 11]
gap> TwoSquares(13*17); # [10,11] would be the other possible representation
[5, 14]
gap> TwoSquares(848654483879497562821); # 848654483879497562821 is prime
#I IsPrimeInt: probably prime, but not proven: 848654483879497562821
#I FactorsInt: used the following factor(s) which are probably primes:
#I 848654483879497562821
[6305894639, 28440994650]

16 Rational Numbers

The rationals form a very important field. On the one hand it is the quotient field of the integers (see
chapter 14). On the other hand it is the prime field of the fields of characteristic zero (see chapter 58).

The former comment suggests the representation actually used. A rational is represented as a pair of inte-
gers, called numerator and denominator. Numerator and denominator are reduced, i.e., their greatest
common divisor is 1. If the denominator is 1, the rational is in fact an integer and is represented as such.
The numerator holds the sign of the rational, thus the denominator is always positive.

Because the underlying integer arithmetic can compute with arbitrary size integers, the rational arithmetic
is always exact, even for rationals whose numerators and denominators have thousands of digits.

gap> 2/3;
2/3
gap> 66/123; # numerator and denominator are made relatively prime
22/41
gap> 17/-13; # the numerator carries the sign;
-17/13
gap> 121/11; # rationals with denominator 1 (after cancelling) are integers
11

1 I Rationals V
I IsRationals(obj) P

Rationals is the field Q of rational integers, as a set of cyclotomic numbers, see Chapter 18 for basic
operations, Functions for the field Rationals can be found in the chapters 56 and 58.

IsRationals returns true for a prime field that consists of cyclotomic numbers –for example the GAP object
Rationals– and false for all other GAP objects.

gap> Size(Rationals); 2/3 in Rationals;
infinity
true

16.1 Elementary Operations for Rationals

1 I IsRat(obj) C

Every rational number lies in the category IsRat, which is a subcategory of IsCyc (see 18).

gap> IsRat(2/3);
true
gap> IsRat(17/-13);
true
gap> IsRat(11);
true
gap> IsRat(IsRat); # ‘IsRat’ is a function, not a rational
false

146 Chapter 16. Rational Numbers

2 I IsPosRat(obj) C

Every positive rational number lies in the category IsPosRat.

3 I IsNegRat(obj) C

Every negative rational number lies in the category IsNegRat.

4 I NumeratorRat(rat) F

NumeratorRat returns the numerator of the rational rat . Because the numerator holds the sign of the rational
it may be any integer. Integers are rationals with denominator 1, thus NumeratorRat is the identity function
for integers.

gap> NumeratorRat(2/3);
2
gap> NumeratorRat(66/123); # numerator and denominator are made relatively prime
22
gap> NumeratorRat(17/-13); # the numerator holds the sign of the rational
-17
gap> NumeratorRat(11); # integers are rationals with denominator 1
11

5 I DenominatorRat(rat) F

DenominatorRat returns the denominator of the rational rat . Because the numerator holds the sign of the
rational the denominator is always a positive integer. Integers are rationals with the denominator 1, thus
DenominatorRat returns 1 for integers.

gap> DenominatorRat(2/3);
3
gap> DenominatorRat(66/123); # numerator and denominator are made relatively prime
41
gap> DenominatorRat(17/-13); # the denominator holds the sign of the rational
13
gap> DenominatorRat(11); # integers are rationals with denominator 1
1

6 I Rat(elm) A

Rat returns a rational number rat whose meaning depends on the type of elm.

If elm is a string consisting of digits ’0’, ’1’, . . ., ’9’ and ’-’ (at the first position), ’/’ and the decimal
dot ’.’ then rat is the rational described by this string. The operation String (see 26.5.1) can be used to
compute a string for rational numbers, in fact for all cyclotomics.

gap> Rat("1/2"); Rat("35/14"); Rat("35/-27"); Rat("3.14159");
1/2
5/2
-35/27
314159/100000

7 I Random(Rationals)

Random for rationals returns pseudo random rationals which are the quotient of two random integers. See
the description of Random for integers (14.1.11) for details. (Also see 14.5.2.)

17 Combinatorics

This chapter describes the functions that deal with combinatorics. We mainly concentrate on two areas. One
is about selections, that is the ways one can select elements from a set. The other is about partitions,
that is the ways one can partition a set into the union of pairwise disjoint subsets.

17.1 Combinatorial Numbers

1 I Factorial(n) F

returns the factorial n! of the positive integer n, which is defined as the product 1 · 2 · 3 · · ·n.

n! is the number of permutations of a set of n elements. 1/n! is the coefficient of x n in the formal series ex ,
which is the generating function for factorial.

gap> List([0..10], Factorial);
[1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800]
gap> Factorial(30);
265252859812191058636308480000000

PermutationsList (see 17.2.9) computes the set of all permutations of a list.

2 I Binomial(n, k) F

returns the binomial coefficient
(n

k

)
of integers n and k , which is defined as n!/(k !(n − k)!) (see 17.1.1).

We define
(
0
0

)
= 1,

(n
k

)
= 0 if k < 0 or n < k , and

(n
k

)
= (−1)k

(−n+k−1
k

)
if n < 0, which is consistent with

the equivalent definition
(n

k

)
=
(n−1

k

)
+
(n−1

k−1

)
·(n

k

)
is the number of combinations with k elements, i.e., the number of subsets with k elements, of a set with

n elements.
(n

k

)
is the coefficient of the term x k of the polynomial (x + 1)n , which is the generating function

for
(n
·
)
, hence the name.

gap> List([0..4], k->Binomial(4, k)); # Knuth calls this the trademark of Binomial
[1, 4, 6, 4, 1]
gap> List([0..6], n->List([0..6], k->Binomial(n, k)));;
gap> PrintArray(last); # the lower triangle is called Pascal’s triangle
[[1, 0, 0, 0, 0, 0, 0],
[1, 1, 0, 0, 0, 0, 0],
[1, 2, 1, 0, 0, 0, 0],
[1, 3, 3, 1, 0, 0, 0],
[1, 4, 6, 4, 1, 0, 0],
[1, 5, 10, 10, 5, 1, 0],
[1, 6, 15, 20, 15, 6, 1]]

gap> Binomial(50, 10);
10272278170

NrCombinations (see 17.2.1) is the generalization of Binomial for multisets. Combinations (see 17.2.1)
computes the set of all combinations of a multiset.

148 Chapter 17. Combinatorics

3 I Bell(n) F

returns the Bell number B(n). The Bell numbers are defined by B(0) = 1 and the recurrence B(n + 1) =∑n
k=0

(n
k

)
B(k).

B(n) is the number of ways to partition a set of n elements into pairwise disjoint nonempty subsets (see
17.2.13). This implies of course that B(n) =

∑n
k=0 S2(n, k) (see 17.1.6). B(n)/n! is the coefficient of x n in

the formal series eex−1, which is the generating function for B(n).

gap> List([0..6], n -> Bell(n));
[1, 1, 2, 5, 15, 52, 203]
gap> Bell(14);
190899322

4 I Bernoulli(n) F

returns the n-th Bernoulli number Bn , which is defined by B0 = 1 and Bn = −
∑n−1

k=0

(n+1
k

)
Bk/(n + 1).

Bn/n! is the coefficient of x n in the power series of x/ex − 1. Except for B1 = −1/2 the Bernoulli numbers
for odd indices are zero.

gap> Bernoulli(4);
-1/30
gap> Bernoulli(10);
5/66
gap> Bernoulli(12); # there is no simple pattern in Bernoulli numbers
-691/2730
gap> Bernoulli(50); # and they grow fairly fast
495057205241079648212477525/66

5 I Stirling1(n, k) F

returns the Stirling number of the first kind S1(n, k) of the integers n and k . Stirling numbers of the
first kind are defined by S1(0, 0) = 1, S1(n, 0) = S1(0, k) = 0 if n, k 6= 0 and the recurrence S1(n, k) =
(n − 1)S1(n − 1, k) + S1(n − 1, k − 1).

S1(n, k) is the number of permutations of n points with k cycles. Stirling numbers of the first kind appear
as coefficients in the series n!

(x
n

)
=
∑n

k=0 S1(n, k)x k which is the generating function for Stirling numbers of
the first kind. Note the similarity to x n =

∑n
k=0 S2(n, k)k !

(x
k

)
(see 17.1.6). Also the definition of S1 implies

S1(n, k) = S2(−k ,−n) if n, k < 0. There are many formulae relating Stirling numbers of the first kind to
Stirling numbers of the second kind, Bell numbers, and Binomial coefficients.

gap> List([0..4], k -> Stirling1(4, k)); # Knuth calls this the trademark of S_1
[0, 6, 11, 6, 1]
gap> List([0..6], n->List([0..6], k->Stirling1(n, k)));;
gap> # note the similarity with Pascal’s triangle for the Binomial numbers
gap> PrintArray(last);
[[1, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0],
[0, 1, 1, 0, 0, 0, 0],
[0, 2, 3, 1, 0, 0, 0],
[0, 6, 11, 6, 1, 0, 0],
[0, 24, 50, 35, 10, 1, 0],
[0, 120, 274, 225, 85, 15, 1]]

gap> Stirling1(50,10);
101623020926367490059043797119309944043405505380503665627365376

Section 2. Combinations, Arrangements and Tuples 149

6 I Stirling2(n, k) F

returns the Stirling number of the second kind S2(n, k) of the integers n and k . Stirling numbers
of the second kind are defined by S2(0, 0) = 1, S2(n, 0) = S2(0, k) = 0 if n, k 6= 0 and the recurrence
S2(n, k) = kS2(n − 1, k) + S2(n − 1, k − 1).

S2(n, k) is the number of ways to partition a set of n elements into k pairwise disjoint nonempty sub-
sets (see 17.2.13). Stirling numbers of the second kind appear as coefficients in the expansion of x n =∑n

k=0 S2(n, k)k !
(x

k

)
. Note the similarity to n!

(x
n

)
=
∑n

k=0 S1(n, k)x k (see 17.1.5). Also the definition of S2

implies S2(n, k) = S1(−k ,−n) if n, k < 0. There are many formulae relating Stirling numbers of the second
kind to Stirling numbers of the first kind, Bell numbers, and Binomial coefficients.

gap> List([0..4], k->Stirling2(4, k)); # Knuth calls this the trademark of S_2
[0, 1, 7, 6, 1]
gap> List([0..6], n->List([0..6], k->Stirling2(n, k)));;
gap> # note the similarity with Pascal’s triangle for the Binomial numbers
gap> PrintArray(last);
[[1, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0],
[0, 1, 1, 0, 0, 0, 0],
[0, 1, 3, 1, 0, 0, 0],
[0, 1, 7, 6, 1, 0, 0],
[0, 1, 15, 25, 10, 1, 0],
[0, 1, 31, 90, 65, 15, 1]]

gap> Stirling2(50, 10);
26154716515862881292012777396577993781727011

17.2 Combinations, Arrangements and Tuples

1 I Combinations(mset [, k]) F

returns the set of all combinations of the multiset mset (a list of objects which may contain the same object
several times) with k elements; if k is not given it returns all combinations of mset .

A combination of mset is an unordered selection without repetitions and is represented by a sorted sublist
of mset . If mset is a proper set, there are

(|mset|
k

)
(see 17.1.2) combinations with k elements, and the set

of all combinations is just the powerset of mset , which contains all subsets of mset and has cardinality
2|mset|.

2 I NrCombinations(mset [, k]) F

returns the number of Combinations(mset,k).

gap> Combinations([1,2,2,3]);
[[], [1], [1, 2], [1, 2, 2], [1, 2, 2, 3], [1, 2, 3], [1, 3],
[2], [2, 2], [2, 2, 3], [2, 3], [3]]

gap> NrCombinations([1..52], 5); # number of different hands in a game of poker
2598960

The function Arrangements (see 17.2.3) computes ordered selections without repetitions, UnorderedTu-
ples (see 17.2.5) computes unordered selections with repetitions and Tuples (see 17.2.7) computes ordered
selections with repetitions.

3 I Arrangements(mset [, k]) F

returns the set of arrangements of the multiset mset that contain k elements. If k is not given it returns all
arrangements of mset .

150 Chapter 17. Combinatorics

An arrangement of mset is an ordered selection without repetitions and is represented by a list that contains
only elements from mset , but maybe in a different order. If mset is a proper set there are |mset |!/(|mset |−k)!
(see 17.1.1) arrangements with k elements.

4 I NrArrangements(mset [, k]) F

returns the number of Arrangements(mset,k).

As an example of arrangements of a multiset, think of the game Scrabble. Suppose you have the six characters
of the word settle and you have to make a four letter word. Then the possibilities are given by

gap> Arrangements(["s","e","t","t","l","e"], 4);
[["e", "e", "l", "s"], ["e", "e", "l", "t"], ["e", "e", "s", "l"],
["e", "e", "s", "t"], ["e", "e", "t", "l"], ["e", "e", "t", "s"],
... 93 more possibilities ...
["t", "t", "l", "s"], ["t", "t", "s", "e"], ["t", "t", "s", "l"]]

Can you find the five proper English words, where lets does not count? Note that the fact that the list
returned by Arrangements is a proper set means in this example that the possibilities are listed in the same
order as they appear in the dictionary.

gap> NrArrangements(["s","e","t","t","l","e"]);
523

The function Combinations (see 17.2.1) computes unordered selections without repetitions, UnorderedTu-
ples (see 17.2.5) computes unordered selections with repetitions and Tuples (see 17.2.7) computes ordered
selections with repetitions.

5 I UnorderedTuples(set, k) F

returns the set of all unordered tuples of length k of the set set .

An unordered tuple of length k of set is a unordered selection with repetitions of set and is represented
by a sorted list of length k containing elements from set . There are

(|set|+k−1
k

)
(see 17.1.2) such unordered

tuples.

Note that the fact that UnorderedTuples returns a set implies that the last index runs fastest. That means
the first tuple contains the smallest element from set k times, the second tuple contains the smallest element
of set at all positions except at the last positions, where it contains the second smallest element from set
and so on.

6 I NrUnorderedTuples(set, k) F

returns the number of UnorderedTuples(set,k).

As an example for unordered tuples think of a poker-like game played with 5 dice. Then each possible hand
corresponds to an unordered five-tuple from the set [1..6]

gap> NrUnorderedTuples([1..6], 5);
252
gap> UnorderedTuples([1..6], 5);
[[1, 1, 1, 1, 1], [1, 1, 1, 1, 2], [1, 1, 1, 1, 3], [1, 1, 1, 1, 4],
[1, 1, 1, 1, 5], [1, 1, 1, 1, 6], [1, 1, 1, 2, 2], [1, 1, 1, 2, 3],
... 100 more tuples ...
[1, 3, 5, 5, 6], [1, 3, 5, 6, 6], [1, 3, 6, 6, 6], [1, 4, 4, 4, 4],
... 100 more tuples ...
[3, 3, 5, 5, 5], [3, 3, 5, 5, 6], [3, 3, 5, 6, 6], [3, 3, 6, 6, 6],
... 32 more tuples ...
[5, 5, 5, 6, 6], [5, 5, 6, 6, 6], [5, 6, 6, 6, 6], [6, 6, 6, 6, 6]]

Section 2. Combinations, Arrangements and Tuples 151

The function Combinations (see 17.2.1) computes unordered selections without repetitions, Arrangements
(see 17.2.3) computes ordered selections without repetitions and Tuples (see 17.2.7) computes ordered
selections with repetitions.

7 I Tuples(set, k) F

returns the set of all ordered tuples of length k of the set set .

An ordered tuple of length k of set is an ordered selection with repetition and is represented by a list of
length k containing elements of set . There are |set |k such ordered tuples.

Note that the fact that Tuples returns a set implies that the last index runs fastest. That means the first
tuple contains the smallest element from set k times, the second tuple contains the smallest element of set
at all positions except at the last positions, where it contains the second smallest element from set and so
on.

8 I NrTuples(set, k) F

returns the number of Tuples(set,k).

gap> Tuples([1,2,3], 2);
[[1, 1], [1, 2], [1, 3], [2, 1], [2, 2], [2, 3], [3, 1],
[3, 2], [3, 3]]

gap> NrTuples([1..10], 5);
100000

Tuples(set,k) can also be viewed as the k -fold cartesian product of set (see 21.20.15).

The function Combinations (see 17.2.1) computes unordered selections without repetitions, Arrangements
(see 17.2.3) computes ordered selections without repetitions, and finally the function UnorderedTuples (see
17.2.5) computes unordered selections with repetitions.

9 I PermutationsList(mset) F

PermutationsList returns the set of permutations of the multiset mset .

A permutation is represented by a list that contains exactly the same elements as mset , but possibly in
different order. If mset is a proper set there are |mset |! (see 17.1.1) such permutations. Otherwise if the first
elements appears k1 times, the second element appears k2 times and so on, the number of permutations is
|mset |!/(k1!k2! . . .), which is sometimes called multinomial coefficient.

10 I NrPermutationsList(mset) F

returns the number of PermutationsList(mset).

gap> PermutationsList([1,2,3]);
[[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2],
[3, 2, 1]]

gap> PermutationsList([1,1,2,2]);
[[1, 1, 2, 2], [1, 2, 1, 2], [1, 2, 2, 1], [2, 1, 1, 2],
[2, 1, 2, 1], [2, 2, 1, 1]]

gap> NrPermutationsList([1,2,2,3,3,3,4,4,4,4]);
12600

The function Arrangements (see 17.2.3) is the generalization of PermutationsList that allows you to specify
the size of the permutations. Derangements (see 17.2.11) computes permutations that have no fixpoints.

11 I Derangements(list) F

returns the set of all derangements of the list list .

152 Chapter 17. Combinatorics

A derangement is a fixpointfree permutation of list and is represented by a list that contains exactly the
same elements as list , but in such an order that the derangement has at no position the same element as
list . If the list list contains no element twice there are exactly |list |!(1/2! − 1/3! + 1/4! − · · · + (−1)n/n!)
derangements.

Note that the ratio NrPermutationsList([1..n])/NrDerangements([1..n]), which is n!/(n!(1/2!−1/3!+
1/4!−· · ·+(−1)n/n!)) is an approximation for the base of the natural logarithm e = 2.7182818285 . . ., which
is correct to about n digits.

12 I NrDerangements(list) F

returns the number of Derangements(list).

As an example of derangements suppose that you have to send four different letters to four different people.
Then a derangement corresponds to a way to send those letters such that no letter reaches the intended
person.

gap> Derangements([1,2,3,4]);
[[2, 1, 4, 3], [2, 3, 4, 1], [2, 4, 1, 3], [3, 1, 4, 2],
[3, 4, 1, 2], [3, 4, 2, 1], [4, 1, 2, 3], [4, 3, 1, 2],
[4, 3, 2, 1]]

gap> NrDerangements([1..10]);
1334961
gap> Int(10^7*NrPermutationsList([1..10])/last);
27182816
gap> Derangements([1,1,2,2,3,3]);
[[2, 2, 3, 3, 1, 1], [2, 3, 1, 3, 1, 2], [2, 3, 1, 3, 2, 1],
[2, 3, 3, 1, 1, 2], [2, 3, 3, 1, 2, 1], [3, 2, 1, 3, 1, 2],
[3, 2, 1, 3, 2, 1], [3, 2, 3, 1, 1, 2], [3, 2, 3, 1, 2, 1],
[3, 3, 1, 1, 2, 2]]

gap> NrDerangements([1,2,2,3,3,3,4,4,4,4]);
338

The function PermutationsList (see 17.2.9) computes all permutations of a list.

13 I PartitionsSet(set [, k]) F

returns the set of all unordered partitions of the set set into k pairwise disjoint nonempty sets. If k is not
given it returns all unordered partitions of set for all k .

An unordered partition of set is a set of pairwise disjoint nonempty sets with union set and is represented
by a sorted list of such sets. There are B(|set |) (see 17.1.3) partitions of the set set and S2(|set |, k) (see
17.1.6) partitions with k elements.

14 I NrPartitionsSet(set [, k]) F

returns the number of PartitionsSet(set,k).

gap> PartitionsSet([1,2,3]);
[[[1], [2], [3]], [[1], [2, 3]], [[1, 2], [3]],
[[1, 2, 3]], [[1, 3], [2]]]

gap> PartitionsSet([1,2,3,4], 2);
[[[1], [2, 3, 4]], [[1, 2], [3, 4]], [[1, 2, 3], [4]],
[[1, 2, 4], [3]], [[1, 3], [2, 4]], [[1, 3, 4], [2]],
[[1, 4], [2, 3]]]

gap> NrPartitionsSet([1..6]);
203
gap> NrPartitionsSet([1..10], 3);

Section 2. Combinations, Arrangements and Tuples 153

9330

Note that PartitionsSet does currently not support multisets and that there is currently no ordered
counterpart.

15 I Partitions(n [, k]) F

returns the set of all (unordered) partitions of the positive integer n into sums with k summands. If k is not
given it returns all unordered partitions of set for all k .

An unordered partition is an unordered sum n = p1 + p2 + · · ·+ pk of positive integers and is represented
by the list p = [p1, p2, . . . , pk], in nonincreasing order, i.e., p1 >= p2 >= . . . >= pk . We write p ` n. There
are approximately eπ

√
2/3n/4

√
3n such partitions.

It is possible to associate with every partition of the integer n a conjugacy class of permutations in the
symmetric group on n points and vice versa. Therefore p(n) := NrPartitions(n) is the number of conjugacy
classes of the symmetric group on n points.

Ramanujan found the identities p(5i + 4) = 0 mod 5, p(7i + 5) = 0 mod 7 and p(11i + 6) = 0 mod 11 and
many other fascinating things about the number of partitions.

Do not call Partitions with an n much larger than 40, in which case there are 37338 partitions, since the
list will simply become too large.

16 I NrPartitions(n [, k]) F

returns the number of Partitions(set,k).

gap> Partitions(7);
[[1, 1, 1, 1, 1, 1, 1], [2, 1, 1, 1, 1, 1], [2, 2, 1, 1, 1],
[2, 2, 2, 1], [3, 1, 1, 1, 1], [3, 2, 1, 1], [3, 2, 2],
[3, 3, 1], [4, 1, 1, 1], [4, 2, 1], [4, 3], [5, 1, 1], [5, 2],
[6, 1], [7]]

gap> Partitions(8, 3);
[[3, 3, 2], [4, 2, 2], [4, 3, 1], [5, 2, 1], [6, 1, 1]]
gap> NrPartitions(7);
15
gap> NrPartitions(100);
190569292

The function OrderedPartitions (see 17.2.17) is the ordered counterpart of Partitions.

17 I OrderedPartitions(n [, k]) F

returns the set of all ordered partitions of the positive integer n into sums with k summands. If k is not
given it returns all ordered partitions of set for all k .

An ordered partition is an ordered sum n = p1 + p2 + . . .+ pk of positive integers and is represented by
the list [p1, p2, . . . , pk]. There are totally 2n−1 ordered partitions and

(n−1
k−1

)
(see 17.1.2) ordered partitions

with k summands.

Do not call OrderedPartitions with an n much larger than 15, the list will simply become too large.

154 Chapter 17. Combinatorics

18 I NrOrderedPartitions(n [, k]) F

returns the number of OrderedPartitions(set,k).

gap> OrderedPartitions(5);
[[1, 1, 1, 1, 1], [1, 1, 1, 2], [1, 1, 2, 1], [1, 1, 3],
[1, 2, 1, 1], [1, 2, 2], [1, 3, 1], [1, 4], [2, 1, 1, 1],
[2, 1, 2], [2, 2, 1], [2, 3], [3, 1, 1], [3, 2], [4, 1], [5]]

gap> OrderedPartitions(6, 3);
[[1, 1, 4], [1, 2, 3], [1, 3, 2], [1, 4, 1], [2, 1, 3],
[2, 2, 2], [2, 3, 1], [3, 1, 2], [3, 2, 1], [4, 1, 1]]

gap> NrOrderedPartitions(20);
524288

The function Partitions (see 17.2.15) is the unordered counterpart of OrderedPartitions.

19 I PartitionsGreatestLE(n, m) F

returns the set of all (unordered) partitions of the integer n having parts less or equal to the integer m.

20 I PartitionsGreatestEQ(n, m) F

returns the set of all (unordered) partitions of the integer n having greatest part equal to the integer m.

21 I RestrictedPartitions(n, set [, k]) F

In the first form RestrictedPartitions returns the set of all restricted partitions of the positive integer n
into sums with k summands with the summands of the partition coming from the set set . If k is not given
all restricted partitions for all k are returned.
A restricted partition is like an ordinary partition (see 17.2.15) an unordered sum n = p1 + p2 + . . .+ pk
of positive integers and is represented by the list p = [p1, p2, . . . , pk], in nonincreasing order. The difference
is that here the pi must be elements from the set set , while for ordinary partitions they may be elements
from [1..n].

22 I NrRestrictedPartitions(n, set [, k]) F

returns the number of RestrictedPartitions(n,set,k).

gap> RestrictedPartitions(8, [1,3,5,7]);
[[1, 1, 1, 1, 1, 1, 1, 1], [3, 1, 1, 1, 1, 1], [3, 3, 1, 1],
[5, 1, 1, 1], [5, 3], [7, 1]]

gap> NrRestrictedPartitions(50,[1,2,5,10,20,50]);
451

The last example tells us that there are 451 ways to return 50 pence change using 1,2,5,10,20 and 50 pence
coins.

23 I SignPartition(pi) F

returns the sign of a permutation with cycle structure pi .

This function actually describes a homomorphism from the symmetric group Sn into the cyclic group of
order 2, whose kernel is exactly the alternating group An (see 40.3.1). Partitions of sign 1 are called even
partitions while partitions of sign −1 are called odd.

gap> SignPartition([6,5,4,3,2,1]);
-1

24 I AssociatedPartition(pi) F

AssociatedPartition returns the associated partition of the partition pi which is obtained by transposing
the corresponding Young diagram.

Section 3. Fibonacci and Lucas Sequences 155

gap> AssociatedPartition([4,2,1]);
[3, 2, 1, 1]
gap> AssociatedPartition([6]);
[1, 1, 1, 1, 1, 1]

25 I PowerPartition(pi, k) F

PowerPartition returns the partition corresponding to the k -th power of a permutation with cycle structure
pi .

Each part l of pi is replaced by d = gcd(l , k) parts l/d . So if pi is a partition of n then pi k also is a partition
of n. PowerPartition describes the powermap of symmetric groups.

gap> PowerPartition([6,5,4,3,2,1], 3);
[5, 4, 2, 2, 2, 2, 1, 1, 1, 1]

26 I PartitionTuples(n, r) F

PartitionTuples returns the list of all r -tuples of partitions which together form a partition of n.

r–tuples of partitions describe the classes and the characters of wreath products of groups with r conjugacy
classes with the symmetric group Sn .

27 I NrPartitionTuples(n, r) F

returns the number of PartitionTuples(n, r).

gap> PartitionTuples(3, 2);
[[[1, 1, 1], []], [[1, 1], [1]], [[1], [1, 1]],
[[], [1, 1, 1]], [[2, 1], []], [[1], [2]],
[[2], [1]], [[], [2, 1]], [[3], []], [[], [3]]]

17.3 Fibonacci and Lucas Sequences

1 I Fibonacci(n) F

returns the nth number of the Fibonacci sequence. The Fibonacci sequence Fn is defined by the initial
conditions F1 = F2 = 1 and the recurrence relation Fn+2 = Fn+1 + Fn . For negative n we define Fn =
(−1)n+1F−n , which is consistent with the recurrence relation.

Using generating functions one can prove that Fn = φn − 1/φn , where φ is (
√

5 + 1)/2, i.e., one root of
x 2 − x − 1 = 0. Fibonacci numbers have the property Gcd(Fm ,Fn) = FGcd(m,n). But a pair of Fibonacci
numbers requires more division steps in Euclid’s algorithm (see 54.7.1) than any other pair of integers of
the same size. Fibonacci(k) is the special case Lucas(1,-1,k)[1] (see 17.3.2).

gap> Fibonacci(10);
55
gap> Fibonacci(35);
9227465
gap> Fibonacci(-10);
-55

2 I Lucas(P, Q, k) F

returns the k -th values of the Lucas sequence with parameters P and Q , which must be integers, as a list
of three integers.

Let α, β be the two roots of x 2 − Px + Q then we define Lucas(P ,Q , k)[1] = Uk = (αk − βk)/(α − β) and
Lucas(P ,Q , k)[2] = Vk = (αk + βk) and as a convenience Lucas(P ,Q , k)[3] = Qk .

156 Chapter 17. Combinatorics

The following recurrence relations are easily derived from the definition U0 = 0,U1 = 1,Uk = PUk−1−QUk−2

and V0 = 2,V1 = P ,Vk = PVk−1 −QVk−2. Those relations are actually used to define Lucas if α = β.

Also the more complex relations used in Lucas can be easily derived U2k = Uk Vk ,U2k+1 = (PU2k + V2k)/2
and V2k = V 2

k − 2Qk ,V2k+1 = ((P2 − 4Q)U2k + PV2k)/2.

Fibonacci(k) (see 17.3.1) is simply Lucas(1,-1,k)[1]. In an abuse of notation, the sequence Lucas(1,-
1,k)[2] is sometimes called the Lucas sequence.

gap> List([0..10], i -> Lucas(1,-2,i)[1]); # 2^k - (-1)^k)/3
[0, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341]
gap> List([0..10], i -> Lucas(1,-2,i)[2]); # 2^k + (-1)^k
[2, 1, 5, 7, 17, 31, 65, 127, 257, 511, 1025]
gap> List([0..10], i -> Lucas(1,-1,i)[1]); # Fibonacci sequence
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
gap> List([0..10], i -> Lucas(2,1,i)[1]); # the roots are equal
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

17.4 Permanent of a Matrix

1 I Permanent(mat) F

returns the permanent of the matrix mat . The permanent is defined by
∑

p∈Symm(n)

∏n
i=1 mat [i][ip].

Note the similarity of the definition of the permanent to the definition of the determinant (see 24.3.4).
In fact the only difference is the missing sign of the permutation. However the permanent is quite unlike
the determinant, for example it is not multilinear or alternating. It has however important combinatorial
properties.

gap> Permanent([[0,1,1,1],
> [1,0,1,1],
> [1,1,0,1],
> [1,1,1,0]]); # inefficient way to compute ‘NrDerangements([1..4])’
9
gap> Permanent([[1,1,0,1,0,0,0],
> [0,1,1,0,1,0,0],
> [0,0,1,1,0,1,0],
> [0,0,0,1,1,0,1],
> [1,0,0,0,1,1,0],
> [0,1,0,0,0,1,1],
> [1,0,1,0,0,0,1]]); # 24 permutations fit the projective plane of order 2
24

18
Cyclotomic

Numbers

GAP admits computations in abelian extension fields of the rational number field Q, that is fields with
abelian Galois group over Q. These fields are subfields of cyclotomic fields Q(en) where en = e2πi/n is a
primitive complex n-th root of unity. The elements of these fields are called cyclotomics.

Information concerning operations for domains of cyclotomics, for example certain integral bases of fields
of cyclotomics, can be found in Chapter 58. For more general operations that take a field extension as a
—possibly optional— argument, e.g., Trace or Coefficients, see Chapter 56.

18.1 Operations for Cyclotomics

1 I E(n) F

E returns the primitive n-th root of unity en = e2πi/n . Cyclotomics are usually entered as sums of roots
of unity, with rational coefficients, and irrational cyclotomics are displayed in the same way. (For special
cyclotomics, see 18.4.)

gap> E(9); E(9)^3; E(6); E(12) / 3;
-E(9)^4-E(9)^7
E(3)
-E(3)^2
-1/3*E(12)^7

A particular basis is used to express cyclotomics, see 58.3; note that E(9) is not a basis element, as the
above example shows.

2 I Cyclotomics V

is the domain of all cyclotomics.

gap> E(9) in Cyclotomics; 37 in Cyclotomics; true in Cyclotomics;
true
true
false

As the cyclotomics are field elements the usual arithmetic operators +,-,* and / (and ^ to take powers
by integers) are applicable. Note that ^ does not denote the conjugation of group elements, so it is not
possible to explicitly construct groups of cyclotomics. (However, it is possible to compute the inverse and
the multiplicative order of a nonzero cyclotomic.) Also, taking the k -th power of a root of unity z defines a
Galois automorphism if and only if k is coprime to the conductor of z .

158 Chapter 18. Cyclotomic Numbers

gap> E(5) + E(3); (E(5) + E(5)^4) ^ 2; E(5) / E(3); E(5) * E(3);
-E(15)^2-2*E(15)^8-E(15)^11-E(15)^13-E(15)^14
-2*E(5)-E(5)^2-E(5)^3-2*E(5)^4
E(15)^13
E(15)^8
gap> Order(E(5)); Order(1+E(5));
5
infinity

3 I IsCyclotomic(obj) C
I IsCyc(obj) C

Every object in the family CyclotomicsFamily lies in the category IsCyclotomic. This covers integers,
rationals, proper cyclotomics, the object infinity (see 18.2.1), and unknowns (see Chapter 19). All these
objects except infinity and unknowns lie also in the category IsCyc, infinity lies in (and can be detected
from) the category IsInfinity, and unknowns lie in IsUnknown.

gap> IsCyclotomic(0); IsCyclotomic(1/2*E(3)); IsCyclotomic(infinity);
true
true
true
gap> IsCyc(0); IsCyc(1/2*E(3)); IsCyc(infinity);
true
true
false

4 I IsIntegralCyclotomic(obj) P

A cyclotomic is called integral or a cyclotomic integer if all coefficients of its minimal polynomial over the
rationals are integers. Since the underlying basis of the external representation of cyclotomics is an integral
basis (see 58.3), the subring of cyclotomic integers in a cyclotomic field is formed by those cyclotomics for
which the external representation is a list of integers. For example, square roots of integers are cyclotomic
integers (see 18.4), any root of unity is a cyclotomic integer, character values are always cyclotomic integers,
but all rationals which are not integers are not cyclotomic integers.

gap> r:= ER(5); # The square root of 5 is a cyclotomic integer.
E(5)-E(5)^2-E(5)^3+E(5)^4
gap> IsIntegralCyclotomic(r); # It has integral coefficients.
true
gap> r2:= 1/2 * r; # This is not a cyclotomic integer, ...
1/2*E(5)-1/2*E(5)^2-1/2*E(5)^3+1/2*E(5)^4
gap> IsIntegralCyclotomic(r2);
false
gap> r3:= 1/2 * r - 1/2; # ... but this is one.
E(5)+E(5)^4
gap> IsIntegralCyclotomic(r3);
true

The operation Int can be used to find a cyclotomic integer near to an arbitrary cyclotomic. For rationals,
Int returns the largest integer smaller or equal to the argument.

Section 1. Operations for Cyclotomics 159

gap> Int(E(5)+1/2*E(5)^2); Int(2/3*E(7)+3/2*E(4));
E(5)
E(4)

The operation String returns for a cyclotomic a string corresponding to the way the cyclotomic is printed
by ViewObj and PrintObj.

gap> String(E(5)+1/2*E(5)^2); String(17/3);
"E(5)+1/2*E(5)^2"
"17/3"

5 I Conductor(cyc) A
I Conductor(C) A

For an element cyc of a cyclotomic field, Conductor returns the smallest integer n such that cyc is contained
in the n-th cyclotomic field. For a collection C of cyclotomics (for example a dense list of cyclotomics or a
field of cyclotomics), Conductor returns the smallest integer n such that all elements of C are contained in
the n-th cyclotomic field.

gap> Conductor(0); Conductor(E(10)); Conductor(E(12));
1
5
12

6 I AbsoluteValue(cyc) A

returns the absolute value of a cyclotomic number cyc. At the moment only methods for rational numbers
exist.

gap> AbsoluteValue(-3);
3

7 I RoundCyc(cyc) O

is a cyclotomic integer z (see 18.1.4) near to the cyclotomic cyc in the sense that the i -th coefficient in
the external representation (see 18.1.8) of z is Int(c+1/2) where c is the i -th coefficient in the external
representation of cyc. Expressed in terms of the Zumbroich basis (see 58.3), the coefficients of cyc w.r.t. this
basis are rounded.

gap> RoundCyc(E(5)+1/2*E(5)^2); RoundCyc(2/3*E(7)+3/2*E(4));
E(5)+E(5)^2
-2*E(28)^3+E(28)^4-2*E(28)^11-2*E(28)^15-2*E(28)^19-2*E(28)^23-2*E(28)^27

8 I CoeffsCyc(cyc, N) F

Let cyc be a cyclotomic with conductor n. If N is not a multiple of n then CoeffsCyc returns fail because
cyc cannot be expressed in terms of N -th roots of unity. Otherwise CoeffsCyc returns a list of length N
with entry at position j equal to the coefficient of e2πi(j−1)/N if this root belongs to the N -th Zumbroich
basis (see 58.3), and equal to zero otherwise. So we have cyc = CoeffsCyc(cyc,N) * List([1..N], j
-> E(N)^(j-1)).

gap> cyc:= E(5)+E(5)^2;
E(5)+E(5)^2
gap> CoeffsCyc(cyc, 5); CoeffsCyc(cyc, 15); CoeffsCyc(cyc, 7);
[0, 1, 1, 0, 0]
[0, -1, 0, 0, 0, 0, 0, 0, -1, 0, 0, -1, 0, -1, 0]
fail

160 Chapter 18. Cyclotomic Numbers

9 I DenominatorCyc(cyc) F

For a cyclotomic number cyc (see 18.1.3), this function returns the smallest positive integer n such that
n * cyc is a cyclotomic integer (see 18.1.4). For rational numbers cyc, the result is the same as that of
DenominatorRat (see 16.1.5).

10 I ExtRepOfObj(cyc)

gap> ExtRepOfObj(E(5)); CoeffsCyc(E(5), 15);
[0, 1, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0]
gap> CoeffsCyc(1+E(3), 9); CoeffsCyc(E(5), 7);
[0, 0, 0, 0, 0, 0, -1, 0, 0]
fail

11 I DescriptionOfRootOfUnity(root) F

Given a cyclotomic root that is known to be a root of unity (this is not checked), DescriptionOfRootOfU-
nity returns a list [n, e] of coprime positive integers such that root = E(n)e holds.

gap> E(9); DescriptionOfRootOfUnity(E(9));
-E(9)^4-E(9)^7
[9, 1]
gap> DescriptionOfRootOfUnity(-E(3));
[6, 5]

12 I IsGaussInt(x) F

IsGaussInt returns true if the object x is a Gaussian integer (see 58.5.1) and false otherwise. Gaussian
integers are of the form a + b*E(4), where a and b are integers.

13 I IsGaussRat(x) F

IsGaussRat returns true if the object x is a Gaussian rational (see 58.1.3) and false otherwise. Gaussian
rationals are of the form a + b*E(4), where a and b are rationals.

DefaultField (see 56.1.4) for cyclotomics is defined to return the smallest cyclotomic field containing the
given elements.

gap> Field(E(5)+E(5)^4); DefaultField(E(5)+E(5)^4);
NF(5,[1, 4])
CF(5)

18.2 Infinity

1 I IsInfinity(obj) C
I infinity V

infinity is a special GAP object that lies in CyclotomicsFamily. It is larger than all other objects in this
family. infinity is mainly used as return value of operations such as Size and Dimension for infinite and
infinite dimensional domains, respectively.

Note that no arithmetic operations are provided for infinity, in particular there is no problem to define
what 0 * infinity or infinity - infinity means.

Often it is useful to distinguish infinity from “proper” cyclotomics. For that, infinity lies in the category
IsInfinity but not in IsCyc, and the other cyclotomics lie in the category IsCyc but not in IsInfinity.

Section 4. ATLAS Irrationalities 161

gap> s:= Size(Rationals);
infinity
gap> s = infinity; IsCyclotomic(s); IsCyc(s); IsInfinity(s);
true
true
false
true
gap> s in Rationals; s > 17;
false
true
gap> Set([s, 2, s, E(17), s, 19]);
[2, 19, E(17), infinity]

18.3 Comparisons of Cyclotomics

To compare cyclotomics, the operators <, <=, =, >=, > and <> can be used, the result will be true if the
first operand is smaller, smaller or equal, equal, larger or equal, larger, or unequal, respectively, and false
otherwise.

Cyclotomics are ordered as follows: The relation between rationals is the natural one, rationals are smaller
than irrational cyclotomics, and infinity is the largest cyclotomic. For two irrational cyclotomics with
different conductors, the one with smaller conductor is regarded as smaller. Two irrational cyclotomics with
same conductor are compared via their external representation.

For comparisons of cyclotomics and other GAP objects, see Section 4.11.

gap> E(5) < E(6); # the latter value has conductor 3
false
gap> E(3) < E(3)^2; # both have conductor 3, compare the ext. repr.
false
gap> 3 < E(3); E(5) < E(7);
true
true

18.4 ATLAS Irrationalities

1 I EB(n) F
I EC(n) F
I ED(n) F
I EE(n) F
I EF(n) F
I EG(n) F
I EH(n) F

For N a positive integer, let z = E(N) = exp(2πi/N). The following so-called atomic irrationalities (see
Chapter 7, Section 10 of [CCN+85]) can be entered using functions. (Note that the values are not necessary
irrational.)

162 Chapter 18. Cyclotomic Numbers

EB(N) = bN = 1
2

∑N−1
j=1 z j2 , N ≡ 1 (mod 2)

EC(N) = cN = 1
3

∑N−1
j=1 z j3 , N ≡ 1 (mod 3)

ED(N) = dN = 1
4

∑N−1
j=1 z j4 , N ≡ 1 (mod 4)

EE(N) = eN = 1
5

∑N−1
j=1 z j5 , N ≡ 1 (mod 5)

EF(N) = fN = 1
6

∑N−1
j=1 z j6 , N ≡ 1 (mod 6)

EG(N) = gN = 1
7

∑N−1
j=1 z j7 , N ≡ 1 (mod 7)

EH(N) = hN = 1
8

∑N−1
j=1 z j8 , N ≡ 1 (mod 8)

(Note that in cN , . . . , hN , N must be a prime.)

2 I EI(n) F
I ER(n) F

For a rational number N , ER returns the square root
√

N of N , and EI returns
√
−N . By the chosen

embedding of cyclotomic fields into the complex numbers, ER returns the positive square root if N is positive,
and if N is negative then ER(N) = EI(-N). In any case, EI(N) = E(4) * ER(N).

ER is installed as method for the operation Sqrt (see 30.12.5) for rational argument.

From a theorem of Gauss we know that

bN =
{ 1

2 (−1 +
√

N) if N ≡ 1 (mod 4)
1
2 (−1 + i

√
N) if N ≡ −1 (mod 4)

So
√

N can be computed from bN (see 18.4.1).

3 I EY(n[, d]) F
I EX(n[, d]) F
I EW(n[, d]) F
I EV(n[, d]) F
I EU(n[, d]) F
I ET(n[, d]) F
I ES(n[, d]) F

For given N , let nk = nk (N) be the first integer with multiplicative order exactly k modulo N , chosen in
the order of preference

1,−1, 2,−2, 3,−3, 4,−4,

We define
EY(N) = yn = z + z n (n = n2)
EX(N) = xn = z + z n + z n2

(n = n3)
EW(N) = wn = z + z n + z n2

+ z n3
(n = n4)

EV(N) = vn = z + z n + z n2
+ z n3

+ z n4
(n = n5)

EU(N) = un = z + z n + z n2
+ . . .+ z n5

(n = n6)
ET(N) = tn = z + z n + z n2

+ . . .+ z n6
(n = n7)

ES(N) = sn = z + z n + z n2
+ . . .+ z n7

(n = n8)

4 I EM(n[, d]) F
I EL(n[, d]) F
I EK(n[, d]) F
I EJ(n[, d]) F

EM(N) = mn = z − z n (n = n2)
EL(N) = ln = z − z n + z n2 − z n3

(n = n4)
EK(N) = kn = z − z n + . . .− z n5

(n = n6)
EJ(N) = jn = z − z n + . . .− z n7

(n = n8)

Section 4. ATLAS Irrationalities 163

5 I NK(n, k, d) F

Let n(d)
k = n(d)

k (N) be the d + 1-th integer with multiplicative order exactly k modulo N , chosen in the
order of preference defined above; we write nk = n(0)

k ,n ′k = n(1)
k ,n ′′k = n(2)

k and so on. These values can be
computed as NK(N ,k,d)= n(d)

k (N); if there is no integer with the required multiplicative order, NK returns
fail.
The algebraic numbers

y ′N = y(1)
N , y ′′N = y(2)

N , . . . , x ′N , x
′′
N , . . . , j

′
N , j
′′
N , . . .

are obtained on replacing nk in the above definitions by n ′k ,n
′′
k , . . .; they can be entered as

EY(N , d) = y(d)
N

EX(N , d) = x (d)
N

...
EJ(N , d) = j (d)

n

6 I AtlasIrrationality(irratname) F

Let irratname be a string that describes an irrational value as described in Chapter 6, Section 10 of [CCN+85],
that is, a linear combination of the atomic irrationalities introduced above. (The following definition is mainly
copied from [CCN+85].) If qN is such a value (e.g. y ′′24) then linear combinations of algebraic conjugates of
qN are abbreviated as in the following examples:

2qN + 3&5− 4&7 + &9 means 2qN + 3q∗5N − 4q∗7N + q∗9N
4qN&3&5&7− 3&4 means 4(qN + q∗3N + q∗5N + q∗7N)− 3q∗11N
4qN ∗ 3&5 + &7 means 4(q∗3N + q∗5N) + q∗7N

To explain the “ampersand” syntax in general we remark that “&k” is interpreted as q∗kN , where qN is the
most recently named atomic irrationality, and that the scope of any premultiplying coefficient is broken by
a + or − sign, but not by & or ∗k . The algebraic conjugations indicated by the ampersands apply directly
to the atomic irrationality qN , even when, as in the last example, qN first appears with another conjugacy
∗k .

gap> EW(16,3); EW(17,2); ER(3); EI(3); EY(5); EB(9);
0
E(17)+E(17)^4+E(17)^13+E(17)^16
-E(12)^7+E(12)^11
E(3)-E(3)^2
E(5)+E(5)^4
1
gap> AtlasIrrationality("b7*3");
E(7)^3+E(7)^5+E(7)^6
gap> AtlasIrrationality("y’’’24");
E(24)-E(24)^19
gap> AtlasIrrationality("-3y’’’24*13&5");
3*E(8)-3*E(8)^3
gap> AtlasIrrationality("3y’’’24*13-2&5");
-3*E(24)-2*E(24)^11+2*E(24)^17+3*E(24)^19
gap> AtlasIrrationality("3y’’’24*13-&5");
-3*E(24)-E(24)^11+E(24)^17+3*E(24)^19
gap> AtlasIrrationality("3y’’’24*13-4&5&7");
-7*E(24)-4*E(24)^11+4*E(24)^17+7*E(24)^19
gap> AtlasIrrationality("3y’’’24&7");
6*E(24)-6*E(24)^19

164 Chapter 18. Cyclotomic Numbers

18.5 Galois Conjugacy of Cyclotomics

1 I GaloisCyc(cyc, k) O
I GaloisCyc(list, k) O

For a cyclotomic cyc and an integer k , GaloisCyc returns the cyclotomic obtained by raising the roots
of unity in the Zumbroich basis representation of cyc to the k -th power. If k is coprime to the integer n,
GaloisCyc(., k) acts as a Galois automorphism of the n-th cyclotomic field (see 58.4); to get the Galois
automorphisms themselves, use GaloisGroup (see 56.3.1).

The complex conjugate of cyc is GaloisCyc(cyc, -1), which can also be computed using Complex-
Conjugate (see 18.5.2).

For a list or matrix list of cyclotomics, GaloisCyc returns the list obtained by applying GaloisCyc to the
entries of list .

2 I ComplexConjugate(z) A
I RealPart(z) A
I ImaginaryPart(z) A

For a cyclotomic number z , ComplexConjugate returns GaloisCyc(z, -1), see 18.5.1. For a quaternion
z = c1e + c2i + c3j + c4k , ComplexConjugate returns c1e − c2i − c3j − c4k , see 60.7.8.

When ComplexConjugate is called with a list then the result is the list of return values of ComplexConjugate
for the list entries in the corresponding positions.

When ComplexConjugate is defined for an object z then RealPart and ImaginaryPart return (z+ComplexConjugate(z))/2
and (z − ComplexConjugate(z))/2i , respectively, where i denotes the corresponding imaginary unit.

gap> GaloisCyc(E(5) + E(5)^4, 2);
E(5)^2+E(5)^3
gap> GaloisCyc(E(5), -1); # the complex conjugate
E(5)^4
gap> GaloisCyc(E(5) + E(5)^4, -1); # this value is real
E(5)+E(5)^4
gap> GaloisCyc(E(15) + E(15)^4, 3);
E(5)+E(5)^4
gap> ComplexConjugate(E(7));
E(7)^6

3 I StarCyc(cyc) F

If the cyclotomic cyc is an irrational element of a quadratic extension of the rationals then StarCyc returns
the unique Galois conjugate of cyc that is different from cyc, otherwise fail is returned. In the first case,
the return value is often called cyc∗ (see 69.11).

gap> StarCyc(EB(5)); StarCyc(E(5));
E(5)^2+E(5)^3
fail

4 I Quadratic(cyc) F

Let cyc be a cyclotomic integer that lies in a quadratic extension field of the rationals. Then we have
cyc = (a + b

√
n)/d for integers a, b, n, d , such that d is either 1 or 2. In this case, Quadratic returns a

record with the components a, b, root, d, ATLAS, and display; the values of the first four are a, b, n, and
d , the ATLAS value is a (not necessarily shortest) representation of cyc in terms of the ATLAS irrationalities
b|n|, i|n|, r|n|, and the display value is a string that expresses cyc in GAP notation, corresponding to the
value of the ATLAS component.

Section 5. Galois Conjugacy of Cyclotomics 165

If cyc is not a cyclotomic integer or does not lie in a quadratic extension field of the rationals then fail is
returned.

If the denominator d is 2 then necessarily n is congruent to 1 modulo 4, and rn , in are not possible; we have
cyc = x + y * EB(root) with y = b, x = (a + b) / 2.

If d = 1, we have the possibilities i|n| for n < −1, a + b ∗ i for n = −1, a + b ∗ rn for n > 0. Furthermore if
n is congruent to 1 modulo 4, also cyc = (a + b) + 2 ∗ b ∗ b|n| is possible; the shortest string of these is taken
as the value for the component ATLAS.

gap> Quadratic(EB(5)); Quadratic(EB(27));
rec(a := -1, b := 1, root := 5, d := 2, ATLAS := "b5",
display := "(-1+ER(5))/2")

rec(a := -1, b := 3, root := -3, d := 2, ATLAS := "1+3b3",
display := "(-1+3*ER(-3))/2")

gap> Quadratic(0); Quadratic(E(5));
rec(a := 0, b := 0, root := 1, d := 1, ATLAS := "0", display := "0")
fail

5 I GaloisMat(mat) A

Let mat be a matrix of cyclotomics. GaloisMat calculates the complete orbits under the operation of the
Galois group of the (irrational) entries of mat , and the permutations of rows corresponding to the generators
of the Galois group.

If some rows of mat are identical, only the first one is considered for the permutations, and a warning will
be printed.

GaloisMat returns a record with the components mat, galoisfams, and generators.

mat:
a list with initial segment being the rows of mat (not shallow copies of these rows); the list consists
of full orbits under the action of the Galois group of the entries of mat defined above. The last rows
in the list are those not contained in mat but must be added in order to complete the orbits; so if
the orbits were already complete, mat and mat have identical rows.

galoisfams:
a list that has the same length as the mat component, its entries are either 1, 0, -1, or lists. galo-
isfams[i] = 1 means that mat[i] consists of rationals, i.e. [mat[i]] forms an orbit; galois-
fams[i] = -1 means that mat[i] contains unknowns (see Chapter 19); in this case [mat[i]] is
regarded as an orbit, too, even if mat[i] contains irrational entries; if galoisfams[i] = [l1, l2] is a
list then mat[i] is the first element of its orbit in mat, l1 is the list of positions of rows that form
the orbit, and l2 is the list of corresponding Galois automorphisms (as exponents, not as functions),
so we have mat[l1[j]][k] = GaloisCyc(mat[i][k], l2[j]); galoisfams[i] = 0 means that mat[i] is an
element of a nontrivial orbit but not the first element of it.

generators:
a list of permutations generating the permutation group corresponding to the action of the Galois
group on the rows of mat.

In the following example we temporarily increase the line length limit from its default value 80 to 84 in
order to get a nicer output format.

166 Chapter 18. Cyclotomic Numbers

gap> SizeScreen([84,]);;
gap> GaloisMat([[E(3), E(4)]]);
rec(
mat := [[E(3), E(4)], [E(3), -E(4)], [E(3)^2, E(4)], [E(3)^2, -E(4)]],
galoisfams := [[[1, 2, 3, 4], [1, 7, 5, 11]], 0, 0, 0],
generators := [(1,2)(3,4), (1,3)(2,4)])

gap> SizeScreen([80,]);;
gap> GaloisMat([[1, 1, 1], [1, E(3), E(3)^2]]);
rec(mat := [[1, 1, 1], [1, E(3), E(3)^2], [1, E(3)^2, E(3)]],
galoisfams := [1, [[2, 3], [1, 2]], 0], generators := [(2,3)])

6 I RationalizedMat(mat) A

returns the list of rationalized rows of mat , which must be a matrix of cyclotomics. This is the set of sums
over orbits under the action of the Galois group of the entries of mat (see 18.5.5), so the operation may be
viewed as a kind of trace on the rows.

Note that no two rows of mat should be equal.

gap> mat:= [[1, 1, 1], [1, E(3), E(3)^2], [1, E(3)^2, E(3)]];;
gap> RationalizedMat(mat);
[[1, 1, 1], [2, -1, -1]]

18.6 Internally Represented Cyclotomics

The implementation of an internally represented cyclotomic is based on a list of length equal to its
conductor. This means that the internal representation of a cyclotomic does not refer to the smallest number
field but the smallest cyclotomic field containing it. The reason for this is the wish to reflect the natural
embedding of two cyclotomic fields into a larger one that contains both. With such embeddings, it is easy
to construct the sum or the product of two arbitrary cyclotomics (in possibly different fields) as an element
of a cyclotomic field.

The disadvantage of this approach is that the arithmetical operations are quite expensive, so the use of
internally represented cyclotomics is not recommended for doing arithmetics over number fields, such as
calculations with matrices of cyclotomics. But internally represented cyclotomics are good enough for dealing
with irrationalities in character tables (see chapter 69).

For the representation of cyclotomics one has to recall that the n-th cyclotomic field Q(en) is a vector space
of dimension ϕ(n) over the rationals where ϕ denotes Euler’s phi-function (see 15.1.2).

A special integral basis of cyclotomic fields is chosen that allows one to easily convert arbitrary sums of
roots of unity into the basis, as well as to convert a cyclotomic represented w.r.t. the basis into the smallest
possible cyclotomic field. This basis is accessible in GAP, see 58.3 for more information and references.

Note that the set of all n-th roots of unity is linearly dependent for n > 1, so multiplication is not the
multiplication of the group ring Q〈en〉; given a Q-basis of Q(en) the result of the multiplication (computed
as multiplication of polynomials in en , using (en)n = 1) will be converted to the basis.

gap> E(5) * E(5)^2; (E(5) + E(5)^4) * E(5)^2;
E(5)^3
E(5)+E(5)^3
gap> (E(5) + E(5)^4) * E(5);
-E(5)-E(5)^3-E(5)^4

An internally represented cyclotomic is always represented in the smallest cyclotomic field it is contained
in. The internal coefficients list coincides with the external representation returned by ExtRepOfObj.

Section 6. Internally Represented Cyclotomics 167

Since the conductor of internally represented cyclotomics must be in the filter IsSmallIntRep, the biggest
possible (though not very useful) conductor is 228−1. So the maximal cyclotomic field implemented in GAP
is not really the field Qab .

gap> IsSmallIntRep(2^28-1);
true
gap> IsSmallIntRep(2^28);
false

It should be emphasized that one disadvantage of representing a cyclotomic in the smallest cyclotomic field
(and not in the smallest field) is that arithmetic operations in a fixed small extension field of the rational
number field are comparatively expensive. For example, take a prime integer p and suppose that we want to
work with a matrix group over the field Q(

√
p). Then each matrix entry could be described by two rational

coefficients, whereas the representation in the smallest cyclotomic field requires p−1 rational coefficients for
each entry. So it is worth thinking about using elements in a field constructed with AlgebraicExtension
(see 65.1.1) when natural embeddings of cyclotomic fields are not needed.

19 Unknowns

Sometimes the result of an operation does not allow further computations with it. In many cases, then an
error is signalled, and the computation is stopped.

This is not appropriate for some applications in character theory. For example, if one wants to induce a
character of a group to a supergroup (see 70.9.3) but the class fusion is only a parametrized map (see
Chapter 71), there may be values of the induced character which are determined by the fusion map, whereas
other values are not known.

For this and other situations, GAP provides the data type unknown. An object of this type, further on
called an unknown, may stand for any cyclotomic (see Chapter 18), in particular its family (see 13.1) is
CyclotomicsFamily.

Unknowns are parametrized by positive integers. When a GAP session is started, no unknowns exist.

The only ways to create unknowns are to call the function Unknown or a function that calls it, or to do
arithmetical operations with unknowns.

GAP objects containing unknowns will contain fixed unknowns when they are printed to files, i.e., function
calls Unknown(n) instead of Unknown(). So be careful to read files printed in different GAP sessions, since
there may be the same unknown at different places.

The rest of this chapter contains information about the unknown constructor, the category, and comparison
of and arithmetical operations for unknowns; more is not known about unknowns in GAP.

1 I Unknown() O
I Unknown(n) O

In the first form Unknown returns a new unknown value, i.e., the first one that is larger than all unknowns
which exist in the current GAP session.

In the second form Unknown returns the n-th unknown; if it did not exist yet, it is created.

2 I LargestUnknown V

LargestUnknown is the largest n that is used in any Unknown(n) in the current GAP session. This is used
in Unknown which increments this value when asked to make a new unknown.

3 I IsUnknown(obj) C

is the category of unknowns in GAP.

gap> Unknown(); List([1 .. 20], i -> Unknown());;
Unknown(1)
gap> Unknown(); # note that we have already created 21 unknowns.
Unknown(22)
gap> Unknown(2000); Unknown();
Unknown(2000)
Unknown(2001)
gap> LargestUnknown;
2001

169

gap> IsUnknown(Unknown); IsUnknown(Unknown());
false
true

Unknowns can be compared via = and < with all cyclotomics and with certain other GAP objects (see 4.11).
We have Unknown(n) >= Unknown(m) if and only if n >= m holds; unknowns are larger than all
cyclotomics that are not unknowns.

gap> Unknown() >= Unknown(); Unknown(2) < Unknown(3);
false
true
gap> Unknown() > 3; Unknown() > E(3);
true
true
gap> Unknown() > Z(8); Unknown() > [];
false
false

The usual arithmetic operations +, -, * and / are defined for addition, subtraction, multiplication and
division of unknowns and cyclotomics. The result will be a new unknown except in one of the following
cases.

Multiplication with zero yields zero, and multiplication with one or addition of zero yields the old unknown.
Note that division by an unknown causes an error, since an unknown might stand for zero.

As unknowns are cyclotomics, dense lists of unknowns and other cyclotomics are row vectors and they can be
added and multiplied in the usual way. Consequently, lists of such row vectors of equal length are (ordinary)
matrices (see 24.1.2).

20 Booleans

The two main boolean values are true and false. They stand for the logical values of the same name.
They appear as values of the conditions in if-statements and while-loops. Booleans are also important as
return values of filters (see 13.2) such as IsFinite and IsBool. Note that it is a convention that the name
of a function that returns true or false according to the outcome, starts with Is.

For technical reasons, also the value fail (see 20.1.1) is regarded as a boolean.

1 I IsBool(obj) C

tests whether obj is true, false or fail.

gap> IsBool(true); IsBool(false); IsBool(17);
true
true
false

20.1 Fail

1 I fail V

The value fail is used to indicate situations when an operation could not be performed for the given
arguments, either because of shortcomings of the arguments or because of restrictions in the implementation
or computability. So for example Position (see 21.16.1) will return fail if the point searched for is not in
the list.

fail is simply an object that is different from every other object than itself.

For technical reasons, fail is a boolean value. But note that fail cannot be used to form boolean expressions
with and, or, and not (see 20.3 below), and fail cannot appear in boolean lists (see Chapter 22).

20.2 Comparisons of Booleans

1 I bool1 = bool2
I bool1 <> bool2

The equality operator = evaluates to true if the two boolean values bool1 and bool2 are equal, i.e., both are
true or both are false or both fail, and false otherwise. The inequality operator <> evaluates to true if
the two boolean values bool1 and bool2 are different and false otherwise. This operation is also called the
exclusive or, because its value is true if exactly one of bool1 or bool2 is true.

You can compare boolean values with objects of other types. Of course they are never equal.

Section 3. Operations for Booleans 171

gap> true = false;
false
gap> false = (true = fail);
true
gap> true <> 17;
true

2 I bool1 < bool2

The ordering of boolean values is defined by true < false < fail. For the comparison of booleans with
other GAP objects, see Section 4.11.

gap> true < false; fail >= false;
true
true

20.3 Operations for Booleans

The following boolean operations are only applicable to true and false.

1 I bool1 or bool2

The logical operator or evaluates to true if at least one of the two boolean operands bool1 and bool2 is
true and to false otherwise.

or first evaluates bool1 . If the value is neither true nor false an error is signalled. If the value is true,
then or returns true without evaluating bool2 . If the value is false, then or evaluates bool2 . Again, if
the value is neither true nor false an error is signalled. Otherwise or returns the value of bool2 . This
short-circuited evaluation is important if the value of bool1 is true and evaluation of bool2 would take
much time or cause an error.

or is associative, i.e., it is allowed to write b1 or b2 or b3 , which is interpreted as (b1 or b2) or b3 .
or has the lowest precedence of the logical operators. All logical operators have lower precedence than the
comparison operators =, <, in, etc.

gap> true or false;
true
gap> false or false;
false
gap> i := -1;; l := [1,2,3];;
gap> if i <= 0 or l[i] = false then # this does not cause an error,
> Print("aha\n"); fi; # because ‘l[i]’ is not evaluated
aha

2 I bool1 and bool2

The logical operator and evaluates to true if both boolean operands bool1 and bool2 are true and to false
otherwise.

and first evaluates bool1 . If the value is neither true nor false an error is signalled. If the value is false,
then and returns false without evaluating bool2 . If the value is true, then and evaluates bool2 . Again,
if the value is neither true nor false an error is signalled. Otherwise and returns the value of bool2 . This
short-circuited evaluation is important if the value of bool1 is false and evaluation of bool2 would take
much time or cause an error.

and is associative, i.e., it is allowed to write b1 and b2 and b3 , which is interpreted as (b1 and b2) and
b3 . and has higher precedence than the logical or operator, but lower than the unary logical not operator.
All logical operators have lower precedence than the comparison operators =, <, in, etc.

172 Chapter 20. Booleans

gap> true and false;
false
gap> true and true;
true
gap> false and 17; # this does not cause an error, because ‘17’ is never looked at
false

3 I fil1 and fil2

and can also be applied to filters. It returns a filter that when applied to some argument x , tests fil1(x)
and fil2(x).

gap> andfilt:= IsPosRat and IsInt;;
gap> andfilt(17); andfilt(1/2);
true
false

4 I not bool

The logical operator not returns true if the boolean value bool is false and true otherwise. An error is
signalled if bool does not evaluate to true or false.

not has higher precedence than the other logical operators, or and and. All logical operators have lower
precedence than the comparison operators =, <, in, etc.

gap> true and false;
false
gap> not true;
false
gap> not false;
true

21 Lists

Lists are the most important way to treat objects together. A list arranges objects in a definite order. So
each list implies a partial mapping from the integers to the elements of the list. I.e., there is a first element
of a list, a second, a third, and so on. Lists can occur in mutable or immutable form, see 12.6 for the concept
of mutability, and 21.7 for the case of lists.

This chapter deals mainly with the aspect of lists in GAP as data structures. Chapter 28 tells more about
the collection aspect of certain lists, and more about lists as arithmetic objects can be found in the
chapters 23 and 24.

Lists are used to implement ranges (see 21.22), sets (see 21.19), strings (see 26), row vectors (see 23), and
matrices (see 24); Boolean lists (see 22) are a further special kind of lists.

Several operations for lists, such as Intersection and Random, will be described in Chapter 28, in particular
see 28.2.

21.1 List Categories

A list can be written by writing down the elements in order between square brackets [,], and separating
them with commas ,. An empty list, i.e., a list with no elements, is written as [].

gap> [1, 2, 3]; # a list with three elements
[1, 2, 3]
gap> [[], [1], [1, 2]]; # a list may contain other lists
[[], [1], [1, 2]]

Each list constructed this way is mutable (see 12.6).

1 I IsList(obj) C

tests whether obj is a list.

gap> IsList([1, 3, 5, 7]); IsList(1);
true
false

2 I IsDenseList(obj) C

A list is dense if it has no holes, i.e., contains an element at every position up to the length. It is absolutely
legal to have lists with holes. They are created by leaving the entry between the commas empty. Holes at
the end of a list are ignored. Lists with holes are sometimes convenient when the list represents a mapping
from a finite, but not consecutive, subset of the positive integers.

174 Chapter 21. Lists

gap> IsDenseList([1, 2, 3]);
true
gap> l := [, 4, 9,, 25,, 49,,,, 121];; IsDenseList(l);
false
gap> l[3];
9
gap> l[4];
List Element: <list>[4] must have an assigned value
not in any function
Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ after assigning a value to continue
brk> l[4] := 16;; # assigning a value
brk> return; # to escape the break-loop
16
gap>

Observe that requesting the value of l[4], which was not assigned, caused the entry of a break-loop (see
Section 6.4). After assigning a value and typing return;, GAP is finally able to comply with our request
(by responding with 16).

3 I IsHomogeneousList(obj) C

returns true if obj is a list and it is homogeneous, or false otherwise.

A homogeneous list is a dense list whose elements lie in the same family (see 13.1). The empty list is
homogeneous but not a collection (see 28), a nonempty homogeneous list is also a collection.

gap> IsHomogeneousList([1, 2, 3]); IsHomogeneousList([]);
true
true
gap> IsHomogeneousList([1, false, ()]);
false

4 I IsTable(obj) C

A table is a nonempty list of homogeneous lists which lie in the same family. Typical examples of tables
are matrices (see 24).

gap> IsTable([[1, 2], [3, 4]]); # in fact a matrix
true
gap> IsTable([[1], [2, 3]]); # not rectangular but a table
true
gap> IsTable([[1, 2], [() , (1,2)]]); # not homogeneous
false

5 I IsConstantTimeAccessList(list) C

This category indicates whether the access to each element of the list list will take roughly the same time. This
is implied for example by IsList and IsInternalRep, so all strings, Boolean lists, ranges, and internally
represented plain lists are in this category.

But also other enumerators (see 21.23) can lie in this category if they guarantee constant time access to
their elements.

Section 3. List Elements 175

21.2 Basic Operations for Lists

The basic operations for lists are element access (see 21.3), assignment of elements to a list (see 21.4),
fetching the length of a list (see 21.17.5), the test for a hole at a given position, and unbinding an element
at a given position (see 21.5).

The term basic operation means that each other list operation can be formulated in terms of the basic
operations. (But note that usually a more efficient method than this one is implemented.)

Any GAP object list in the category IsList (see 21.1.1) is regarded as a list, and if methods for the basic
list operations are installed for list then list can be used also for the other list operations.

For internally represented lists, kernel methods are provided for the basic list operations. For other lists, it
is possible to install appropriate methods for these operations. This permits the implementation of lists that
do not need to store all list elements (see also 21.23); for example, the elements might be described by an
algorithm, such as the elements list of a group. For this reduction of space requirements, however, a price
in access time may have to be paid (see 21.17.6).

1 I \[\](list, pos) O
I IsBound\[\](list, pos) O
I \[\]\:\=(list, pos, val) O
I Unbind\[\](list, pos) O

These operations implement element access, test for element boundedness, list element assignment, and
removal of the element at position pos. In all cases, the index pos must be a positive integer.

Note that the special characters [,], :, and = must be escaped with a backslash \ (see 4.3); so \[\] denotes
the operation for element access in a list, whereas [] denotes an empty list. (Maybe the variable names
involving special characters look strange, but nevertheless they are quite suggestive.)

\[\](list, pos) is equivalent to list[pos], which clearly will usually be preferred; the former is useful
mainly if one wants to access the operation itself, for example if one wants to install a method for element
access in a special kind of lists.

Similarly, IsBound\[\] is used explicitly mainly in method installations. In other situations, one can simply
call IsBound, which then delegates to IsBound\[\] if the first argument is a list, and to IsBound\. if the
first argument is a record.

Analogous statements hold for \[\]\:\= and Unbind\[\].

21.3 List Elements

1 I list[pos]

The above construct evaluates to the pos-th element of the list list . pos must be a positive integer. List
indexing is done with origin 1, i.e., the first element of the list is the element at position 1.

gap> l := [2, 3, 5, 7, 11, 13];; l[1]; l[2]; l[6];
2
3
13

If list is not a list, or pos does not evaluate to a positive integer, or list[pos] is unbound an error is signalled.

2 I list{ poss }

The above construct evaluates to a new list new whose first element is list[poss[1]], whose second element
is list[poss[2]], and so on. poss must be a dense list of positive integers. However, it does not need to be
sorted and may contain duplicate elements. If for any i , list[poss[i]] is unbound, an error is signalled.

176 Chapter 21. Lists

gap> l := [2, 3, 5, 7, 11, 13, 17, 19];;
gap> l{[4..6]}; l{[1,7,1,8]};
[7, 11, 13]
[2, 17, 2, 19]

The result is a new list, that is not identical to any other list. The elements of that list, however, are
identical to the corresponding elements of the left operand (see 21.6).

It is possible to nest such sublist extractions, as can be seen in the following example.

gap> m := [[1,2,3], [4,5,6], [7,8,9], [10,11,12]];; m{[1,2,3]}{[3,2]};
[[3, 2], [6, 5], [9, 8]]
gap> l := m{[1,2,3]};; l{[3,2]};
[[7, 8, 9], [4, 5, 6]]

Note the difference between the two examples. The latter extracts elements 1, 2, and 3 from m and then
extracts the elements 3 and 2 from this list. The former extracts elements 1, 2, and 3 from m and then
extracts the elements 3 and 2 from each of those element lists.

To be precise: With each selector [pos] or {poss} we associate a level that is defined as the number of
selectors of the form {poss} to its left in the same expression. For example

l[pos1]{poss2}{poss3}[pos4]{poss5}[pos6]
level 0 0 1 2 2 3

Then a selector list[pos] of level level is computed as ListElement(list,pos,level), where ListElement is
defined as follows. (Note that ListElement is not a GAP function.)

ListElement := function (list, pos, level)
if level = 0 then
return list[pos];
else
return List(list, elm -> ListElement(elm,pos,level-1));
fi;

end;

and a selector list{poss} of level level is computed as ListElements(list,poss,level), where ListElements
is defined as follows. (Note that ListElements is not a GAP function.)

ListElements := function (list, poss, level)
if level = 0 then
return list{poss};
else
return List(list, elm -> ListElements(elm,poss,level-1));
fi;

end;

3 I \{\}(list, poss) O

This operation implements sublist access. For any list, the default method is to loop over the entries in
the list poss, and to delegate to the element access operation. (For the somewhat strange variable name,
cf. 21.2.)

Section 4. List Assignment 177

21.4 List Assignment

1 I list[pos] := object;

The list element assignment assigns the object object , which can be of any type, to the list entry at the
position pos, which must be a positive integer, in the mutable (see 12.6) list list . That means that accessing
the pos-th element of the list list will return object after this assignment.

gap> l := [1, 2, 3];;
gap> l[1] := 3;; l; # assign a new object
[3, 2, 3]
gap> l[2] := [4, 5, 6];; l; # <object> may be of any type
[3, [4, 5, 6], 3]
gap> l[l[1]] := 10;; l; # <index> may be an expression
[3, [4, 5, 6], 10]

If the index pos is larger than the length of the list list (see 21.17.5), the list is automatically enlarged to
make room for the new element. Note that it is possible to generate lists with holes that way.

gap> l[4] := "another entry";; l; # <list> is enlarged
[3, [4, 5, 6], 10, "another entry"]
gap> l[10] := 1;; l; # now <list> has a hole
[3, [4, 5, 6], 10, "another entry",,,,,, 1]

The function Add (see 21.4.4) should be used if you want to add an element to the end of the list.

Note that assigning to a list changes the list, thus this list must be mutable (see 12.6). See 21.6 for subtleties
of changing lists.

If list does not evaluate to a list, pos does not evaluate to a positive integer or object is a call to a function
which does not return a value (for example Print) an error is signalled.

2 I list{ poss } := objects;

The sublist assignment assigns the object objects[1], which can be of any type, to the list list at the position
poss[1], the object objects[2] to list[poss[2]], and so on. poss must be a dense list of positive integers,
it need, however, not be sorted and may contain duplicate elements. objects must be a dense list and must
have the same length as poss.

gap> l := [2, 3, 5, 7, 11, 13, 17, 19];;
gap> l{[1..4]} := [10..13];; l;
[10, 11, 12, 13, 11, 13, 17, 19]
gap> l{[1,7,1,10]} := [1, 2, 3, 4];; l;
[3, 11, 12, 13, 11, 13, 2, 19,, 4]

It is possible to nest such sublist assignments, as can be seen in the following example.

gap> m := [[1,2,3], [4,5,6], [7,8,9], [10,11,12]];;
gap> m{[1,2,3]}{[3,2]} := [[11,12], [13,14], [15,16]];; m;
[[1, 12, 11], [4, 14, 13], [7, 16, 15], [10, 11, 12]]

The exact behaviour is defined in the same way as for list extractions (see 21.3). Namely with each selector
[pos] or {poss} we associate a level that is defined as the number of selectors of the form {poss} to its left
in the same expression. For example

178 Chapter 21. Lists

l[pos1]{poss2}{poss3}[pos4]{poss5}[pos6]
level 0 0 1 1 1 2

Then a list assignment list[pos] := vals; of level level is computed as ListAssignment(list, pos, vals,
level), where ListAssignment is defined as follows. (Note that ListAssignment is not a GAP function.)

ListAssignment := function (list, pos, vals, level)
local i;
if level = 0 then
list[pos] := vals;

else
for i in [1..Length(list)] do
ListAssignment(list[i], pos, vals[i], level-1);
od;

fi;
end;

and a list assignment list{poss} := vals of level level is computed as ListAssignments(list, poss, vals,
level), where ListAssignments is defined as follows. (Note that ListAssignments is not a GAP function.)

ListAssignments := function (list, poss, vals, level)
local i;
if level = 0 then
list{poss} := vals;

else
for i in [1..Length(list)] do
ListAssignments(list[i], poss, vals[i], level-1);
od;

fi;
end;

3 I \{\}\:\=(list, poss, val) O

This operation implements sublist assignment. For any list, the default method is to loop over the entries
in the list poss, and to delegate to the element assignment operation. (For the somewhat strange variable
name, cf. 21.2.)

4 I Add(list, obj) O
I Add(list, obj, pos) O

adds the element obj to the mutable list list . The two argument version adds obj at the end of list , i.e., it
is equivalent to the assignment list[Length(list) + 1] := obj , see 21.4.1.

The three argument version adds obj in position pos, moving all later elements of the list (if any) up by one
position. Any holes at or after position pos are also moved up by one position, and new holes are created
before pos if they are needed.

Nothing is returned by Add, the function is only called for its side effect.

5 I Remove(list) O
I Remove(list, pos) O

removes an element from list . The one argument form removes the last element. The two argument form
removes the element in position pos, moving all subsequent elements down one position. Any holes after
position pos are also moved down by one position.

Remove(list) always returns the removed element. In this case list must be non-empty. Remove(list , pos)
returns the old value of list [pos] if it was bound, and nothing if it was not. Note that accessing or assigning

Section 5. IsBound and Unbind for Lists 179

the return value of this form of the Remove operation is only safe when you know that there will be a value,
otherwise it will cause an error.

gap> l := [2, 3, 5];; Add(l, 7); l;
[2, 3, 5, 7]
gap> Add(l,4,2); l;
[2, 4, 3, 5, 7]
gap> Remove(l,2); l;
4
[2, 3, 5, 7]
gap> Remove(l); l;
7
[2, 3, 5]
gap> Remove(l,5); l;
[2, 3, 5]

These two operations are implemented with the aid of a more general kernel function

6 I COPY LIST ENTRIES(from-list, from-index, from-step, to-list, to-index, to-step, number) F

This function copies number elements from from-list , starting at position from-index and incrementing the
position by from-step each time, into to-list starting at position to-index and incrementing the position
by to-step each time. from-list and to-list must be plain lists. from-step and/or to-step can be negative.
Unbound positions of from-list are simply copied to to-list .

7 I Append(list1, list2) O

adds the elements of the list list2 to the end of the mutable list list1 , see 21.4.2. list2 may contain holes, in
which case the corresponding entries in list1 will be left unbound. Append returns nothing, it is only called
for its side effect.

Note that Append changes its first argument, while Concatenation (see 21.20.1) creates a new list and leaves
its arguments unchanged.

gap> l := [2, 3, 5];; Append(l, [7, 11, 13]); l;
[2, 3, 5, 7, 11, 13]
gap> Append(l, [17,, 23]); l;
[2, 3, 5, 7, 11, 13, 17,, 23]

21.5 IsBound and Unbind for Lists

1 I IsBound(list[n]) M

IsBound returns true if the list list has a element at the position n, and false otherwise. list must evaluate
to a list, otherwise an error is signalled.

gap> l := [, 2, 3, , 5, , 7, , , , 11];;
gap> IsBound(l[7]);
true
gap> IsBound(l[4]);
false
gap> IsBound(l[101]);
false

2 I Unbind(list[n]) M

Unbind deletes the element at the position n in the mutable list list . That is, after execution of Unbind, list
no longer has an assigned value at the position n. Thus Unbind can be used to produce holes in a list. Note

180 Chapter 21. Lists

that it is not an error to unbind a nonexisting list element. list must evaluate to a list, otherwise an error
is signalled.

gap> l := [, 2, 3, 5, , 7, , , , 11];;
gap> Unbind(l[3]); l;
[, 2,, 5,, 7,,,, 11]
gap> Unbind(l[4]); l;
[, 2,,,, 7,,,, 11]

Note that IsBound and Unbind are special in that they do not evaluate their argument, otherwise IsBound
would always signal an error when it is supposed to return false and there would be no way to tell Unbind
which component to remove.

21.6 Identical Lists

With the list assignment (see 21.4) it is possible to change a mutable list. This section describes the semantic
consequences of this fact. (See also 12.5.)

First we define what it means when we say that “an object is changed”. You may think that in the following
example the second assignment changes the integer.

i := 3;
i := i + 1;

But in this example it is not the integer 3 which is changed, by adding one to it. Instead the variable
i is changed by assigning the value of i+1, which happens to be 4, to i. The same thing happens in the
following example

l := [1, 2];
l := [1, 2, 3];

The second assignment does not change the first list, instead it assigns a new list to the variable l. On the
other hand, in the following example the list is changed by the second assignment.

l := [1, 2];
l[3] := 3;

To understand the difference, think of a variable as a name for an object. The important point is that a list
can have several names at the same time. An assignment var:=list; means in this interpretation that var
is a name for the object list . At the end of the following example l2 still has the value [1, 2] as this list
has not been changed and nothing else has been assigned to it.

l1 := [1, 2];
l2 := l1;
l1 := [1, 2, 3];

But after the following example the list for which l2 is a name has been changed and thus the value of l2
is now [1, 2, 3].

l1 := [1, 2];
l2 := l1;
l1[3] := 3;

We say that two lists are identical if changing one of them by a list assignment also changes the other one.
This is slightly incorrect, because if two lists are identical, there are actually only two names for one list.
However, the correct usage would be very awkward and would only add to the confusion. Note that two

Section 7. Duplication of Lists 181

identical lists must be equal, because there is only one list with two different names. Thus identity is an equiv-
alence relation that is a refinement of equality. Identity of objects can be detected using IsIdenticalObj,
see 12.5.

Let us now consider under which circumstances two lists are identical.

If you enter a list literal then the list denoted by this literal is a new list that is not identical to any other
list. Thus in the following example l1 and l2 are not identical, though they are equal of course.

l1 := [1, 2];
l2 := [1, 2];

Also in the following example, no lists in the list l are identical.

l := [];
for i in [1..10] do l[i] := [1, 2]; od;

If you assign a list to a variable no new list is created. Thus the list value of the variable on the left hand
side and the list on the right hand side of the assignment are identical. So in the following example l1 and
l2 are identical lists.

l1 := [1, 2];
l2 := l1;

If you pass a list as an argument, the old list and the argument of the function are identical. Also if you
return a list from a function, the old list and the value of the function call are identical. So in the following
example l1 and l2 are identical lists:

l1 := [1, 2];
f := function (l) return l; end;
l2 := f(l1);

If you change a list it keeps its identity. Thus if two lists are identical and you change one of them, you also
change the other, and they are still identical afterwards. On the other hand, two lists that are not identical
will never become identical if you change one of them. So in the following example both l1 and l2 are
changed, and are still identical.

l1 := [1, 2];
l2 := l1;
l1[1] := 2;

21.7 Duplication of Lists

Here we describe the meaning of ShallowCopy and StructuralCopy for lists. For the general definition of
these functions, see 12.7.

The subobjects (see 12.7.1) of a list are exactly its elements.

This means that for any list list , ShallowCopy returns a mutable new list new that is not identical to any
other list (see 21.6), and whose elements are identical to the elements of list .

Analogously, for a mutable list list , StructuralCopy returns a mutable new list scp that is not identical
to any other list, and whose elements are structural copies (defined recursively) of the elements of list ; an
element of scp is mutable (and then a new list) if and only if the corresponding element of list is mutable.

In both cases, modifying the copy new resp. scp by assignments (see 21.4) does not modify the original
object list .

ShallowCopy basically executes the following code for lists.

182 Chapter 21. Lists

new := [];
for i in [1 .. Length(list)] do
if IsBound(list[i]) then
new[i] := list[i];

fi;
od;

gap> list1 := [[1, 2], [3, 4]];; list2 := ShallowCopy(list1);;
gap> IsIdenticalObj(list1, list2);
false
gap> IsIdenticalObj(list1[1], list2[1]);
true
gap> list2[1] := 0;; list1; list2;
[[1, 2], [3, 4]]
[0, [3, 4]]

StructuralCopy basically executes the following code for lists.

new := [];
for i in [1 .. Length(list)] do
if IsBound(list[i]) then
new[i] := StructuralCopy(list[i]);

fi;
od;

gap> list1 := [[1, 2], [3, 4]];; list2 := StructuralCopy(list1);;
gap> IsIdenticalObj(list1, list2);
false
gap> IsIdenticalObj(list1[1], list2[1]);
false
gap> list2[1][1] := 0;; list1; list2;
[[1, 2], [3, 4]]
[[0, 2], [3, 4]]

The above code is not entirely correct. If the object list contains a mutable object twice this object is not
copied twice, as would happen with the above definition, but only once. This means that the copy new and
the object list have exactly the same structure when viewed as a general graph.

gap> sub := [1, 2];; list1 := [sub, sub];;
gap> list2 := StructuralCopy(list1);
[[1, 2], [1, 2]]
gap> list2[1][1] := 0;; list2;
[[0, 2], [0, 2]]
gap> list1;
[[1, 2], [1, 2]]

Section 9. Enlarging Internally Represented Lists 183

21.8 Membership Test for Lists

1 I obj in list

tests whether there is a positive integer index such that list[index] = obj .

If the list list knows that it is strictly sorted (see 21.17.4), the membership test is much quicker, because a
binary search can be used instead of the linear search used for arbitrary lists.

gap> 1 in [2, 2, 1, 3]; 1 in [4, -1, 0, 3];
true
false
gap> s := SSortedList([2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32]);;
gap> 17 in s; # uses binary search and only 4 comparisons
false

For finding the position of an element in a list, see 21.16.

21.9 Enlarging Internally Represented Lists

Section 21.4 told you (among other things) that it is possible to assign beyond the logical end of a mutable
list, automatically enlarging the list. This section tells you how this is done for internally represented lists.

It would be extremely wasteful to make all lists large enough so that there is room for all assignments,
because some lists may have more than 100000 elements, while most lists have less than 10 elements.

On the other hand suppose every assignment beyond the end of a list would be done by allocating new
space for the list and copying all entries to the new space. Then creating a list of 1000 elements by assigning
them in order, would take half a million copy operations and also create a lot of garbage that the garbage
collector would have to reclaim.

So the following strategy is used. If a list is created it is created with exactly the correct size. If a list is
enlarged, because of an assignment beyond the end of the list, it is enlarged by at least length/8 + 4 entries.
Therefore the next assignments beyond the end of the list do not need to enlarge the list. For example
creating a list of 1000 elements by assigning them in order, would now take only 32 enlargements.

The result of this is of course that the physical length of a list may be larger than the logical length,
which is usually called simply the length of the list. Aside from the implications for the performance you
need not be aware of the physical length. In fact all you can ever observe, for example by calling Length
(see 21.17.5), is the logical length.

Suppose that Length would have to take the physical length and then test how many entries at the end of
a list are unassigned, to compute the logical length of the list. That would take too much time. In order to
make Length, and other functions that need to know the logical length, more efficient, the length of a list
is stored along with the list.

For fine tuning code dealing with plain lists we provide the following two functions.

1 I EmptyPlist(len) F

2 I ShrinkAllocationPlist(l) F

The function EmptyPlist returns an empty plain list which has enough memory allocated for len entries.
This can be useful for creating and filling a plain list with a known number of entries.

The function ShrinkAllocationPlist gives back to GAPs memory manager the physical memory which is
allocated for the plain list l but not needed by the current number of entries.

Note that there are similar functions EmptyString and ShrinkAllocationString for strings instead of
plain lists.

184 Chapter 21. Lists

gap> l:=[]; for i in [1..160] do Add(l, i^2); od;
[]
gap> m:=EmptyPlist(160); for i in [1..160] do Add(m, i^2); od;
[]
gap> # now l uses about 25% more memory than the equal list m
gap> ShrinkAllocationPlist(l);
gap> # now l and m use the same amount of memory

21.10 Comparisons of Lists

1 I list1 = list2
I list1 <> list2

Two lists list1 and list2 are equal if and only if for every index i , either both entries list1[i] and list2[i]
are unbound, or both are bound and are equal, i.e., list1[i] = list2[i] is true.

gap> [1, 2, 3] = [1, 2, 3];
true
gap> [, 2, 3] = [1, 2,];
false
gap> [1, 2, 3] = [3, 2, 1];
false

This definition will cause problems with lists which are their own entries. Comparing two such lists for
equality may lead to an infinite recursion in the kernel if the list comparison has to compare the list entries
which are in fact the lists themselves, and then GAP crashes.

2 I list1 < list2
I list1 <= list2

Lists are ordered lexicographically. Unbound entries are smaller than any bound entry. That implies the
following behaviour. Let i be the smallest positive integer i such that list1 and list2 at position i differ, i.e.,
either exactly one of list1[i], list2[i] is bound or both entries are bound and differ. Then list1 is less than
list2 if either list1[i] is unbound (and list2[i] is not) or both are bound and list1[i] < list2[i] is true.

gap> [1, 2, 3, 4] < [1, 2, 4, 8]; # <list1>[3] < <list2>[3]
true
gap> [1, 2, 3] < [1, 2, 3, 4]; # <list1>[4] is unbound and therefore very small
true
gap> [1, , 3, 4] < [1, 2, 3]; # <list1>[2] is unbound and therefore very small
true

Note that for comparing two lists with < or <=, the (relevant) list elements must be comparable with <,
which is usually not the case for objects in different families, see 13.1. Also for the possibility to compare
lists with other objects, see 13.1.

Section 12. Filters Controlling the Arithmetic Behaviour of Lists 185

21.11 Arithmetic for Lists

It is convenient to have arithmetic operations for lists, in particular because in GAP row vectors and matrices
are special kinds of lists. However, it is the wide variety of list objects because of which we prescribe arithmetic
operations not for all of them. (Keep in mind that “list” means just an object in the category IsList,
see 21.1.1.)

(Due to the intended generality and flexibility, the definitions given in the following sections are quite
technical. But for not too complicated cases such as matrices (see 24.2) and row vectors (see 23.1) whose
entries aren’t lists, the resulting behaviour should be intuitive.)

For example, we want to deal with matrices which can be added and multiplied in the usual way, via the
infix operators + and *; and we want also Lie matrices, with the same additive behaviour but with the
multiplication defined by the Lie bracket. Both kinds of matrices shall be lists, with the usual access to their
rows, with Length (see 21.17.5) returning the number of rows etc.

For the categories and attributes that control the arithmetic behaviour of lists, see 21.12.

For the definition of return values of additive and multiplicative operations whose arguments are lists in
these filters, see 21.13 and 21.14, respectively. It should be emphasized that these sections describe only
what the return values are, and not how they are computed.

For the mutability status of the return values, see 21.15. (Note that this is not dealt with in the sections
about the result values.)

Further details about the special cases of row vectors and matrices can be found in 23.1 and in 24.2, the
compression status is dealt with in 23.2 and 24.13.

21.12 Filters Controlling the Arithmetic Behaviour of Lists

The arithmetic behaviour of lists is controlled by their types. The following categories and attributes are
used for that.

Note that we distinguish additive and multiplicative behaviour. For example, Lie matrices have the usual
additive behaviour but not the usual multiplicative behaviour.

1 I IsGeneralizedRowVector(list) C

For a list list , the value true for IsGeneralizedRowVector indicates that the additive arithmetic behaviour
of list is as defined in 21.13, and that the attribute NestingDepthA (see 21.12.4) will return a nonzero value
when called with list .

2 I IsMultiplicativeGeneralizedRowVector(list) C

For a list list , the value true for IsMultiplicativeGeneralizedRowVector indicates that the multiplicative
arithmetic behaviour of list is as defined in 21.14, and that the attribute NestingDepthM (see 21.12.5) will
return a nonzero value when called with list .

Note that these filters do not enable default methods for addition or multiplication (cf. 21.12.3).

gap> IsList("abc"); IsGeneralizedRowVector("abc");
true
false
gap> liemat:= LieObject([[1, 2], [3, 4]]);
LieObject([[1, 2], [3, 4]])
gap> IsGeneralizedRowVector(liemat);
true
gap> IsMultiplicativeGeneralizedRowVector(liemat);
false

186 Chapter 21. Lists

gap> bas:= CanonicalBasis(FullRowSpace(Rationals, 3));
CanonicalBasis((Rationals^3))
gap> IsMultiplicativeGeneralizedRowVector(bas);
true

3 I IsListDefault(list) C

For a list list , IsListDefault indicates that the default methods for arithmetic operations of lists, such as
pointwise addition and multiplication as inner product or matrix product, shall be applicable to list .

IsListDefault implies IsGeneralizedRowVector and IsMultiplicativeGeneralizedRowVector.

All internally represented lists are in this category, and also all lists in the representations IsGF2VectorRep,
Is8BitVectorRep, IsGF2MatrixRep, and Is8BitMatrixRep (see 23.2 and 24.13). Note that the result of an
arithmetic operation with lists in IsListDefault will in general be an internally represented list, so most
“wrapped list objects” will not lie in IsListDefault.

gap> v:= [1, 2];; m:= [v, 2*v];;
gap> IsListDefault(v); IsListDefault(m);
true
true
gap> IsListDefault(bas); IsListDefault(liemat);
true
false

4 I NestingDepthA(obj) A

For a GAP object obj , NestingDepthA returns the additive nesting depth of obj . This is defined recursively
as the integer 0 if obj is not in IsGeneralizedRowVector, as the integer 1 if obj is an empty list in
IsGeneralizedRowVector, and as 1 plus the additive nesting depth of the first bound entry in obj otherwise.

5 I NestingDepthM(obj) A

For a GAP object obj , NestingDepthM returns the multiplicative nesting depth of obj . This is defined
recursively as the integer 0 if obj is not in IsMultiplicativeGeneralizedRowVector, as the integer 1 if
obj is an empty list in IsMultiplicativeGeneralizedRowVector, and as 1 plus the multiplicative nesting
depth of the first bound entry in obj otherwise.

gap> NestingDepthA(v); NestingDepthM(v);
1
1
gap> NestingDepthA(m); NestingDepthM(m);
2
2
gap> NestingDepthA(liemat); NestingDepthM(liemat);
2
0
gap> l1:= [[1, 2], 3];; l2:= [1, [2, 3]];;
gap> NestingDepthA(l1); NestingDepthM(l1);
2
2
gap> NestingDepthA(l2); NestingDepthM(l2);
1
1

Section 13. Additive Arithmetic for Lists 187

21.13 Additive Arithmetic for Lists

In this general context, we define the results of additive operations only in the following situations. For unary
operations (zero and additive inverse), the unique argument must be in IsGeneralizedRowVector; for binary
operations (addition and subtraction), at least one argument must be in IsGeneralizedRowVector, and the
other either is not a list or also in IsGeneralizedRowVector.

(For non-list GAP objects, defining the results of unary operations is not an issue here, and if at least one
argument is a list not in IsGeneralizedRowVector, it shall be left to this argument whether the result in
question is defined and what it is.)

Zero

The zero (see 30.10.3) of a list x in IsGeneralizedRowVector is defined as the list whose entry at position
i is the zero of x [i] if this entry is bound, and is unbound otherwise.

gap> Zero([1, 2, 3]); Zero([[1, 2], 3]); Zero(liemat);
[0, 0, 0]
[[0, 0], 0]
LieObject([[0, 0], [0, 0]])

AdditiveInverse

The additive inverse (see 30.10.9) of a list x in IsGeneralizedRowVector is defined as the list whose entry
at position i is the additive inverse of x [i] if this entry is bound, and is unbound otherwise.

gap> AdditiveInverse([1, 2, 3]); AdditiveInverse([[1, 2], 3]);
[-1, -2, -3]
[[-1, -2], -3]

Addition

If x and y are in IsGeneralizedRowVector and have the same additive nesting depth (see 21.12.4), the sum
x + y is defined pointwise, in the sense that the result is a list whose entry at position i is x [i] + y [i] if
these entries are bound, is a shallow copy (see 12.7.1) of x [i] or y [i] if the other argument is not bound at
position i , and is unbound if both x and y are unbound at position i .

If x is in IsGeneralizedRowVector and y is in IsGeneralizedRowVector and has lower additive nesting
depth, or is neither a list nor a domain, the sum x + y is defined as a list whose entry at position i is x [i]+ y
if x is bound at position i , and is unbound if not. The equivalent holds in the reversed case, where the order
of the summands is kept, as addition is not always commutative.

gap> 1 + [1, 2, 3]; [1, 2, 3] + [0, 2, 4]; [1, 2] + [Z(2)];
[2, 3, 4]
[1, 4, 7]
[0*Z(2), 2]
gap> l1:= [1, , 3, 4];; l2:= [, 2, 3, 4, 5];;
gap> l3:= [[1, 2], , [5, 6]];; l4:= [, [3, 4], [5, 6]];;
gap> NestingDepthA(l1); NestingDepthA(l2);
1
1
gap> NestingDepthA(l3); NestingDepthA(l4);
2
2
gap> l1 + l2;
[1, 2, 6, 8, 5]
gap> l1 + l3;
[[2, 2, 3, 4],, [6, 6, 3, 4]]

188 Chapter 21. Lists

gap> l2 + l4;
[, [3, 6, 3, 4, 5], [5, 8, 3, 4, 5]]
gap> l3 + l4;
[[1, 2], [3, 4], [10, 12]]
gap> l1 + [];
[1,, 3, 4]

Subtraction

For two GAP objects x and y of which one is in IsGeneralizedRowVector and the other is also in IsGen-
eralizedRowVector or is neither a list nor a domain, x − y is defined as x + (−y).

gap> l1 - l2;
[1, -2, 0, 0, -5]
gap> l1 - l3;
[[0, -2, 3, 4],, [-4, -6, 3, 4]]
gap> l2 - l4;
[, [-3, -2, 3, 4, 5], [-5, -4, 3, 4, 5]]
gap> l3 - l4;
[[1, 2], [-3, -4], [0, 0]]
gap> l1 - [];
[1,, 3, 4]

21.14 Multiplicative Arithmetic for Lists

In this general context, we define the results of multiplicative operations only in the following situations.
For unary operations (one and inverse), the unique argument must be in IsMultiplicativeGeneral-
izedRowVector; for binary operations (multiplication and division), at least one argument must be in
IsMultiplicativeGeneralizedRowVector, and the other either not a list or also in IsMultiplicative-
GeneralizedRowVector.

(For non-list GAP objects, defining the results of unary operations is not an issue here, and if at least
one argument is a list not in IsMultiplicativeGeneralizedRowVector, it shall be left to this argument
whether the result in question is defined and what it is.)

One

The one (see 30.10.2) of a dense list x in IsMultiplicativeGeneralizedRowVector such that x has even
multiplicative nesting depth and has the same length as each of its rows is defined as the usual identity
matrix on the outer two levels, that is, an identity matrix of the same dimensions, with diagonal entries
One(x [1][1]) and off-diagonal entries Zero(x [1][1]).

gap> One([[1, 2], [3, 4]]);
[[1, 0], [0, 1]]
gap> One([[[[1]], [[2]]], [[[3]], [[4]]]]);
[[[[1]], [[0]]], [[[0]], [[1]]]]

Inverse

The inverse (see 30.10.8) of an invertible square table x in IsMultiplicativeGeneralizedRowVector whose
entries lie in a common field is defined as the usual inverse y , i.e., a square matrix over the same field such
that xy and yx is equal to One(x).

Section 14. Multiplicative Arithmetic for Lists 189

gap> Inverse([[1, 2], [3, 4]]);
[[-2, 1], [3/2, -1/2]]

Multiplication

There are three possible computations that might be triggered by a multiplication involving a list in Is-
MultiplicativeGeneralizedRowVector. Namely, x ∗ y might be

(I) the inner product x [1] ∗ y [1] + x [2] ∗ y [2] + · · ·+ x [n] ∗ y [n], where summands are omitted for which the
entry in x or y is unbound (if this leaves no summand then the multiplication is an error), or

(L) the left scalar multiple, i.e., a list whose entry at position i is x ∗ y [i] if y is bound at position i , and is
unbound if not, or

(R) the right scalar multiple, i.e., a list whose entry at position i is x [i] ∗ y if x is bound at position i , and
is unbound if not.

Our aim is to generalize the basic arithmetic of simple row vectors and matrices, so we first summarize the
situations that shall be covered.

scl vec mat

scl (L) (L)
vec (R) (I) (I)
mat (R) (R) (R)

This means for example that the product of a scalar (scl) with a vector (vec) or a matrix (mat) is computed
according to (L). Note that this is asymmetric.

Now we can state the general multiplication rules.

If exactly one argument is in IsMultiplicativeGeneralizedRowVector then we regard the other argument
(which is then neither a list nor a domain) as a scalar, and specify result (L) or (R), depending on ordering.

In the remaining cases, both x and y are in IsMultiplicativeGeneralizedRowVector, and we distinguish
the possibilities by their multiplicative nesting depths. An argument with odd multiplicative nesting depth
is regarded as a vector, and an argument with even multiplicative nesting depth is regarded as a scalar or
a matrix.

So if both arguments have odd multiplicative nesting depth, we specify result (I).

If exactly one argument has odd nesting depth, the other is treated as a scalar if it has lower multiplicative
nesting depth, and as a matrix otherwise. In the former case, we specify result (L) or (R), depending on
ordering; in the latter case, we specify result (L) or (I), depending on ordering.

We are left with the case that each argument has even multiplicative nesting depth. If the two depths are
equal, we treat the computation as a matrix product, and specify result (R). Otherwise, we treat the less
deeply nested argument as a scalar and the other as a matrix, and specify result (L) or (R), depending on
ordering.

gap> [(), (2,3), (1,2), (1,2,3), (1,3,2), (1,3)] * (1,4);
[(1,4), (1,4)(2,3), (1,2,4), (1,2,3,4), (1,3,2,4), (1,3,4)]
gap> [1, 2, , 4] * 2;
[2, 4,, 8]
gap> [1, 2, 3] * [1, 3, 5, 7];
22
gap> m:= [[1, 2], 3];; m * m;
[[7, 8], [[3, 6], 9]]
gap> m * m = [m[1] * m, m[2] * m];
true

190 Chapter 21. Lists

gap> n:= [1, [2, 3]];; n * n;
14
gap> n * n = n[1] * n[1] + n[2] * n[2];
true

Division

For two GAP objects x and y of which one is in IsMultiplicativeGeneralizedRowVector and the other
is also in IsMultiplicativeGeneralizedRowVector or is neither a list nor a domain, x/y is defined as
x ∗ y−1.

gap> [1, 2, 3] / 2; [1, 2] / [[1, 2], [3, 4]];
[1/2, 1, 3/2]
[1, 0]

mod

If x and y are in IsMultiplicativeGeneralizedRowVector and have the same multiplicative nesting depth
(see 21.12.5), xmody is defined pointwise, in the sense that the result is a list whose entry at position i is
x [i]mody [i] if these entries are bound, is a shallow copy (see 12.7.1) of x [i] or y [i] if the other argument is
not bound at position i , and is unbound if both x and y are unbound at position i .

If x is in IsMultiplicativeGeneralizedRowVector and y is in IsMultiplicativeGeneralizedRowVector
and has lower multiplicative nesting depth or is neither a list nor a domain, xmody is defined as a list whose
entry at position i is x [i]mody if x is bound at position i , and is unbound if not. The equivalent holds in the
reversed case, where the order of the arguments is kept.

gap> 4711 mod [2, 3,, 5, 7];
[1, 1,, 1, 0]
gap> [2, 3, 4, 5, 6] mod 3;
[2, 0, 1, 2, 0]
gap> [10, 12, 14, 16] mod [3, 5, 7];
[1, 2, 0, 16]

Left Quotient

For two GAP objects x and y of which one is in IsMultiplicativeGeneralizedRowVector and the other
is also in IsMultiplicativeGeneralizedRowVector or is neither a list nor a domain, LeftQuotient(x , y)
is defined as x−1 ∗ y .

gap> LeftQuotient([[1, 2], [3, 4]], [1, 2]);
[0, 1/2]

21.15 Mutability Status and List Arithmetic

Many results of arithmetic operations, when applied to lists, are again lists, and it is of interest whether
their entries are mutable or not (if applicable). Note that the mutability status of the result itself is already
defined by the general rule for any result of an arithmetic operation, not only for lists (see 12.6).

However, we do not define exactly the mutability status for each element on each level of a nested list
returned by an arithmetic operation. (Of course it would be possible to define this recursively, but since the
methods used are in general not recursive, in particular for efficient multiplication of compressed matrices,
such a general definition would be a burden in these cases.) Instead we consider, for a list x in IsGeneral-
izedRowVector, the sequence x = x1, x2, . . . xn where xi+1 is the first bound entry in xi if exists (that is, if xi
is a nonempty list), and n is the largest i such that xi lies in IsGeneralizedRowVector. The immutability
level of x is defined as infinity if x is immutable, and otherwise the number of xi which are immutable. (So
the immutability level of a mutable empty list is 0.)

Section 16. Finding Positions in Lists 191

Thus a fully mutable matrix has immutability level 0, and a mutable matrix with immutable first row has
immutability level 1 (independent of the mutability of other rows).

The immutability level of the result of any of the binary operations discussed here is the minimum of the
immutability levels of the arguments, provided that objects of the required mutability status exist in GAP.

Moreover, the results have a “homogeneous” mutability status, that is, if the first bound entry at nesting
depth i is immutable (mutable) then all entries at nesting depth i are immutable (mutable, provided that
a mutable version of this entry exists in GAP).

Thus the sum of two mutable matrices whose first rows are mutable is a matrix all of whose rows are
mutable, and the product of two matrices whose first rows are immutable is a matrix all of whose rows are
immutable, independent of the mutability status of the other rows of the arguments.

For example, the sum of a matrix (mutable or immutable, i.e., of immutability level one of 0, 1, or 2) and a
mutable row vector (i.e., immutability level 0) is a fully mutable matrix. The product of two mutable row
vectors of integers is an integer, and since GAP does not support mutable integers, the result is immutable.

For unary arithmetic operations, there are three operations available, an attribute that returns an immutable
result (Zero, AdditiveInverse, One, Inverse), an operation that returns a result that is mutable (ZeroOp,
AdditiveInverseOp, OneOp, InverseOp), and an operation whose result has the same immutability level as
the argument (ZeroSM, AdditiveInverseSM, OneSM, InverseSM). The last kind of operations is equivalent
to the corresponding infix operations 0 * list , - list , list^0, and list^-1. (This holds not only for lists,
see 12.6.)

gap> IsMutable(l1); IsMutable(2 * Immutable([1, 2, 3]));
true
false
gap> IsMutable(l2); IsMutable(l3);
true
true

An example motivating the mutability rule is the use of syntactic constructs such as obj * list and - list
as an elegant and efficient way to create mutable lists needed for further manipulations from mutable lists.
In particular one can construct a mutable zero vector of length n by 0 * [1 .. n]. The latter can be
done also using ListWithIdenticalEntries.

1 I ListWithIdenticalEntries(n, obj) F

is a list list of length n that has the object obj stored at each of the positions from 1 to n. Note that all
elements of lists are identical, see 21.6.

gap> ListWithIdenticalEntries(10, 0);
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

21.16 Finding Positions in Lists

1 I Position(list, obj[, from]) O

returns the position of the first occurrence obj in list , or fail if obj is not contained in list . If a starting
index from is given, it returns the position of the first occurrence starting the search after position from.

Each call to the two argument version is translated into a call of the three argument version, with third
argument the integer zero 0. (Methods for the two argument version must be installed as methods for the
version with three arguments, the third being described by IsZeroCyc.)

192 Chapter 21. Lists

gap> Position([2, 2, 1, 3], 1);
3
gap> Position([2, 1, 1, 3], 1);
2
gap> Position([2, 1, 1, 3], 1, 2);
3
gap> Position([2, 1, 1, 3], 1, 3);
fail

2 I Positions(list, obj) F
I PositionsOp(list, obj) O

returns the positions of all occurrences of obj in list .

gap> Positions([1,2,1,2,3,2,2],2);
[2, 4, 6, 7]
gap> Positions([1,2,1,2,3,2,2],4);
[]

3 I PositionCanonical(list, obj) O

returns the position of the canonical associate of obj in list . The definition of this associate depends on list .
For internally represented lists it is defined as the element itself (and PositionCanonical thus defaults to
Position, see 21.16.1), but for example for certain enumerators (see 21.23) other canonical associates can
be defined.

For example RightTransversal defines the canonical associate to be the element in the transversal defining
the same coset of a subgroup in a group.

gap> g:=Group((1,2,3,4),(1,2));;u:=Subgroup(g,[(1,2)(3,4),(1,3)(2,4)]);;
gap> rt:=RightTransversal(g,u);;AsList(rt);
[(), (3,4), (2,3), (2,3,4), (2,4,3), (2,4)]
gap> Position(rt,(1,2));
fail
gap> PositionCanonical(rt,(1,2));
2

4 I PositionNthOccurrence(list, obj, n) O

returns the position of the n-th occurrence of obj in list and returns fail if obj does not occur n times.

gap> PositionNthOccurrence([1,2,3,2,4,2,1],1,1);
1
gap> PositionNthOccurrence([1,2,3,2,4,2,1],1,2);
7
gap> PositionNthOccurrence([1,2,3,2,4,2,1],2,3);
6
gap> PositionNthOccurrence([1,2,3,2,4,2,1],2,4);
fail

5 I PositionSorted(list, elm) F
I PositionSorted(list, elm, func) F

In the first form PositionSorted returns the position of the element elm in the sorted list list .

In the second form PositionSorted returns the position of the element elm in the list list , which must be
sorted with respect to func. func must be a function of two arguments that returns true if the first argument
is less than the second argument and false otherwise.

Section 16. Finding Positions in Lists 193

PositionSorted returns pos such that list [pos − 1] < elm and elm ≤ list [pos]. That means, if elm appears
once in list , its position is returned. If elm appears several times in list , the position of the first occurrence
is returned. If elm is not an element of list , the index where elm must be inserted to keep the list sorted is
returned.

PositionSorted uses binary search, whereas Position can in general use only linear search, see the remark
at the beginning of 21.19. For sorting lists, see 21.18, for testing whether a list is sorted, see 21.17.3 and
21.17.4.

Specialized functions for certain kinds of lists must be installed as methods for the operation Position-
SortedOp.

we catch plain lists by a function to avoid method selection

gap> PositionSorted([1,4,5,5,6,7], 0);
1
gap> PositionSorted([1,4,5,5,6,7], 2);
2
gap> PositionSorted([1,4,5,5,6,7], 4);
2
gap> PositionSorted([1,4,5,5,6,7], 5);
3
gap> PositionSorted([1,4,5,5,6,7], 8);
7

6 I PositionSet(list, obj) F
I PositionSet(list, obj, func) F

PositionSet is a slight variation of PositionSorted. The only difference to PositionSorted is that Po-
sitionSet returns fail if obj is not in list .

gap> PositionSet([1,4,5,5,6,7], 0);
fail
gap> PositionSet([1,4,5,5,6,7], 2);
fail
gap> PositionSet([1,4,5,5,6,7], 4);
2
gap> PositionSet([1,4,5,5,6,7], 5);
3
gap> PositionSet([1,4,5,5,6,7], 8);
fail

7 I PositionProperty(list, func) O

returns the first position of an element in the list list for which the property tester function func returns
true.

gap> PositionProperty([10^7..10^8], IsPrime);
20
gap> PositionProperty([10^5..10^6],
> n -> not IsPrime(n) and IsPrimePowerInt(n));
490

First (see 21.20.20) allows you to extract the first element of a list that satisfies a certain property.

8 I PositionBound(list) O

returns the first index for which an element is bound in the list list . For the empty list it returns fail.

194 Chapter 21. Lists

gap> PositionBound([1,2,3]);
1
gap> PositionBound([,1,2,3]);
2

9 I PositionNot(list, val[, from-minus-one]) O

For a list list and an object val , PositionNot returns the smallest nonnegative integer n such that list [n] is
either unbound or not equal to val . If a nonnegative integer is given as optional argument from-minus-one
then the first position larger than from-minus-one with this property is returned.

10 I PositionNonZero(vec) O

For a row vector vec, PositionNonZero returns the position of the first non-zero element of vec, or
Length(vec)+1 if all entries of vec are zero.

PositionNonZero implements a special case of PositionNot (see 21.16.9). Namely, the element to be avoided
is the zero element, and the list must be (at least) homogeneous because otherwise the zero element cannot
be specified implicitly.

gap> l:= [1, 1, 2, 3, 2];; PositionNot(l, 1);
3
gap> PositionNot(l, 1, 4); PositionNot(l, 2, 5);
5
6
gap> PositionNonZero(l); PositionNonZero([2, 3, 4, 5] * Z(2));
1
2

11 I PositionSublist(list, sub) O
I PositionSublist(list, sub, from) O

returns the smallest index in the list list at which a sublist equal to sub starts. If sub does not occur the
operation returns fail. The second version starts searching after position from.

To determine whether sub matches list at a particular position, use IsMatchingSublist instead (see 21.17.1).

12 I PositionFirstComponent(list, obj) O

returns the index i in list such that list [i][1] = obj or the place where such an entry should be added (cf
PositionSorted).

21.17 Properties and Attributes for Lists

1 I IsMatchingSublist(list, sub) O
I IsMatchingSublist(list, sub, at) O

returns true if sub matches a sublist of list from position 1 (or position at , in the case of the second version),
or false, otherwise. If sub is empty true is returned. If list is empty but sub is non-empty false is returned.

If you actually want to know whether there is an at for which IsMatchingSublist(list, sub, at) is true,
use a construction like PositionSublist(list, sub) fail instead (see 21.16.11); it’s more efficient.

Note: A list that contains mutable objects (like lists or records) cannot store attribute values that depend
on the values of its entries, such as whether it is homogeneous, sorted, or strictly sorted, as changes in any
of its entries could change such property values, like the following example shows.

Section 17. Properties and Attributes for Lists 195

gap> l:=[[1],[2]];
[[1], [2]]
gap> IsSSortedList(l);
true
gap> l[1][1]:=3;
3
gap> IsSSortedList(l);
false

For such lists these property values must be computed anew each time the property is asked for. For example,
if list is a list of mutable row vectors then the call of Position (see 21.16.1) with list as first argument
cannot take advantage of the fact that list is in fact sorted. One solution is to call explicitly PositionSorted
(see 21.16.5) in such a situation, another solution is to replace list by an immutable copy using Immutable
(see 12.6).

2 I IsDuplicateFree(obj) P
I IsDuplicateFreeList(obj) P

IsDuplicateFree(obj); returns true if obj is both a list or collection, and it is duplicate free; otherwise it
returns false. IsDuplicateFreeList is a synonym for IsDuplicateFree and IsList.

A list is duplicate free if it is dense and does not contain equal entries in different positions. Every domain
(see 12.4) is duplicate free.

3 I IsSortedList(obj) P

returns true if obj is a list and it is sorted, or false otherwise.

A list list is sorted if it is dense (see 21.1.2) and satisfies the relation list [i] ≤ list [j] whenever i < j . Note
that a sorted list is not necessarily duplicate free (see 21.17.2 and 21.17.4).

Many sorted lists are in fact homogeneous (see 21.1.3), but also non-homogeneous lists may be sorted
(see 30.11).

4 I IsSSortedList(obj) P
I IsSet(obj) P

returns true if obj is a list and it is strictly sorted, or false otherwise. IsSSortedList is short for “is
strictly sorted list”; IsSet is just a synonym for IsSSortedList.

A list list is strictly sorted if it is sorted (see 21.17.3) and satisfies the relation list [i] � list [j] whenever
i < j . In particular, such lists are duplicate free (see 21.17.2).

In sorted lists, membership test and computing of positions can be done by binary search, see 21.19.

(Currently there is little special treatment of lists that are sorted but not strictly sorted. In particular,
internally represented lists will not store that they are sorted but not strictly sorted.)

5 I Length(list) A

returns the length of the list list , which is defined to be the index of the last bound entry in list .

6 I ConstantTimeAccessList(list) A

ConstantTimeAccessList returns an immutable list containing the same elements as the list list (which
may have holes) in the same order. If list is already a constant time access list, ConstantTimeAccessList
returns an immutable copy of list directly. Otherwise it puts all elements and holes of list into a new list
and makes that list immutable.

196 Chapter 21. Lists

21.18 Sorting Lists

1 I Sort(list) O
I Sort(list, func) O

sorts the list list in increasing order. In the first form Sort uses the operator < to compare the elements.
(If the list is not homogeneous it is the users responsibility to ensure that < is defined for all element pairs,
see 30.11) In the second form Sort uses the function func to compare elements. func must be a function
taking two arguments that returns true if the first is regarded as strictly smaller than the second, and false
otherwise.

Sort does not return anything, it just changes the argument list . Use ShallowCopy (see 12.7.1) if you want
to keep list . Use Reversed (see 21.20.7) if you want to get a new list sorted in decreasing order.

It is possible to sort lists that contain multiple elements which compare equal. It is not guaranteed that
those elements keep their relative order, i.e., Sort is not stable.

gap> list := [5, 4, 6, 1, 7, 5];; Sort(list); list;
[1, 4, 5, 5, 6, 7]
gap> list := [[0,6], [1,2], [1,3], [1,5], [0,4], [3,4]];;
gap> Sort(list, function(v,w) return v*v < w*w; end);
gap> list; # sorted according to the Euclidian distance from [0,0]
[[1, 2], [1, 3], [0, 4], [3, 4], [1, 5], [0, 6]]
gap> list := [[0,6], [1,3], [3,4], [1,5], [1,2], [0,4],];;
gap> Sort(list, function(v,w) return v[1] < w[1]; end);
gap> list; # note the random order of the elements with equal first component
[[0, 6], [0, 4], [1, 3], [1, 5], [1, 2], [3, 4]]

2 I SortParallel(list, list2) O
I SortParallel(list, list2, func) O

sorts the list list1 in increasing order just as Sort (see 21.18.1) does. In parallel it applies the same exchanges
that are necessary to sort list1 to the list list2 , which must of course have at least as many elements as list1
does.

gap> list1 := [5, 4, 6, 1, 7, 5];;
gap> list2 := [2, 3, 5, 7, 8, 9];;
gap> SortParallel(list1, list2);
gap> list1;
[1, 4, 5, 5, 6, 7]
gap> list2; # note: [7, 3, 2, 9, 5, 8] or [7, 3, 9, 2, 5, 8] are possible results
[7, 3, 2, 9, 5, 8]

3 I Sortex(list) O

sorts the list list via the operator< and returns a permutation that can be applied to list to obtain the sorted
list. (If the list is not homogeneous it is the user’s responsibility to ensure that < is defined for all element
pairs, see 30.11)

Permuted (see 21.20.16) allows you to rearrange a list according to a given permutation.

gap> list1 := [5, 4, 6, 1, 7, 5];;
gap> list2 := ShallowCopy(list1);;
gap> perm := Sortex(list1);
(1,3,5,6,4)
gap> list1;
[1, 4, 5, 5, 6, 7]
gap> Permuted(list2, perm);

Section 19. Sorted Lists and Sets 197

[1, 4, 5, 5, 6, 7]

4 I SortingPerm(list) A

SortingPerm returns the same as Sortex(list) (see 21.18.3) but does not change the argument.

gap> list1 := [5, 4, 6, 1, 7, 5];;
gap> list2 := ShallowCopy(list1);;
gap> perm := SortingPerm(list1);
(1,3,5,6,4)
gap> list1;
[5, 4, 6, 1, 7, 5]
gap> Permuted(list2, perm);
[1, 4, 5, 5, 6, 7]

Currently GAP uses shellsort.

21.19 Sorted Lists and Sets

Searching objects in a list works much quicker if the list is known to be sorted. Currently GAP exploits
the sortedness of a list automatically only if the list is strictly sorted, which is indicated by the property
IsSSortedList, see 21.17.4.

Remember that a list of mutable objects cannot store that it is strictly sorted but has to test it anew
whenever it is asked whether it is sorted, see the remark in 21.17. Therefore GAP cannot take advantage of
the sortedness of a list if this list has mutable entries. Moreover, if a sorted list list with mutable elements
is used as an argument of a function that expects this argument to be sorted, for example UniteSet or
RemoveSet (see 21.19.6, 21.19.5), then it is checked whether list is in fact sorted; this check can have the
effect actually to slow down the computations, compared to computations with sorted lists of immutable
elements or computations that do not involve functions that do automatically check sortedness.

Strictly sorted lists are used to represent sets in GAP. More precisely, a strictly sorted list is called a proper
set in the following, in order to avoid confusion with domains (see 12.4) which also represent sets.

In short proper sets are represented by sorted lists without holes and duplicates in GAP. Note that we
guarantee this representation, so you may make use of the fact that a set is represented by a sorted list in
your functions.

In some contexts (for example see 17), we also want to talk about multisets. A multiset is like a set,
except that an element may appear several times in a multiset. Such multisets are represented by sorted
lists without holes that may have duplicates.

This section lists only those functions that are defined exclusively for proper sets. Set theoretic functions
for general collections, such as Intersection and Union, are described in Chapter 28. In particular, for the
construction of proper sets, see 28.2.6 and 28.2.9. For finding positions in sorted lists, see 21.16.5.

1 I obj in list

The element test for strictly sorted lists uses binary search.

The following functions, if not explicitly stated differently, take two arguments, set and obj , where set must
be a proper set, otherwise an error is signalled; If the second argument obj is a list that is not a proper set
then Set (see 28.2.6) is silently applied to it first (see 28.2.6).

2 I IsEqualSet(list1, list2) O

tests whether list1 and list2 are equal when viewed as sets, that is if every element of list1 is an element
of list2 and vice versa. Either argument of IsEqualSet may also be a list that is not a proper set, in which
case Set (see 28.2.6) is applied to it first.

198 Chapter 21. Lists

If both lists are proper sets then they are of course equal if and only if they are also equal as lists. Thus
IsEqualSet(list1, list2) is equivalent to Set(list1) = Set(list2) (see 28.2.6), but the former is
more efficient.

gap> IsEqualSet([2,3,5,7,11], [11,7,5,3,2]);
true
gap> IsEqualSet([2,3,5,7,11], [2,3,5,7,11,13]);
false

3 I IsSubsetSet(list1, list2) O

tests whether every element of list2 is contained in list1 . Either argument of IsSubsetSet may also be a
list that is not a proper set, in which case Set (see 28.2.6) is applied to it first.

4 I AddSet(set, obj) O

adds the element obj to the proper set set . If obj is already contained in set then set is not changed.
Otherwise obj is inserted at the correct position such that set is again a proper set afterwards.

Note that obj must be in the same family as each element of set .

gap> s := [2,3,7,11];;
gap> AddSet(s, 5); s;
[2, 3, 5, 7, 11]
gap> AddSet(s, 13); s;
[2, 3, 5, 7, 11, 13]
gap> AddSet(s, 3); s;
[2, 3, 5, 7, 11, 13]

5 I RemoveSet(set, obj) O

removes the element obj from the proper set set . If obj is not contained in set then set is not changed. If obj
is an element of set it is removed and all the following elements in the list are moved one position forward.

gap> s := [2, 3, 4, 5, 6, 7];;
gap> RemoveSet(s, 6); s;
[2, 3, 4, 5, 7]
gap> RemoveSet(s, 10); s;
[2, 3, 4, 5, 7]

6 I UniteSet(set, list) O

unites the proper set set with list . This is equivalent to adding all elements of list to set (see 21.19.4).

gap> set := [2, 3, 5, 7, 11];;
gap> UniteSet(set, [4, 8, 9]); set;
[2, 3, 4, 5, 7, 8, 9, 11]
gap> UniteSet(set, [16, 9, 25, 13, 16]); set;
[2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 25]

7 I IntersectSet(set, list) O

intersects the proper set set with list . This is equivalent to removing from set all elements of set that are
not contained in list .

gap> set := [2, 3, 4, 5, 7, 8, 9, 11, 13, 16];;
gap> IntersectSet(set, [3, 5, 7, 9, 11, 13, 15, 17]); set;
[3, 5, 7, 9, 11, 13]
gap> IntersectSet(set, [9, 4, 6, 8]); set;

Section 20. Operations for Lists 199

[9]

8 I SubtractSet(set, list) O

subtracts list from the proper set set . This is equivalent to removing from set all elements of list .

gap> set := [2, 3, 4, 5, 6, 7, 8, 9, 10, 11];;
gap> SubtractSet(set, [6, 10]); set;
[2, 3, 4, 5, 7, 8, 9, 11]
gap> SubtractSet(set, [9, 4, 6, 8]); set;
[2, 3, 5, 7, 11]

There are nondestructive counterparts of the functions UniteSet, IntersectSet, and SubtractSet available
for proper sets. These are UnionSet, IntersectionSet, and Difference. The former two are methods for
the more general operations Union and Intersection (see 28.4.3, 28.4.2), the latter is itself an operation
(see 28.4.4).

The result of IntersectionSet and UnionSet is always a new list, that is not identical to any other list.
The elements of that list however are identical to the corresponding elements of the first argument set . If
set is not a proper set it is not specified to which of a number of equal elements in set the element in the
result is identical (see 21.6).

21.20 Operations for Lists

Several of the following functions expect the first argument to be either a list or a collection (see 28),
with possibly slightly different meaning for lists and non-list collections. For these functions, the list case is
indicated by an argument named list , and the collection case by one named C .

1 I Concatenation(list1, list2, ...) F
I Concatenation(list) F

In the first form Concatenation returns the concatenation of the lists list1 , list2 , etc. The concatenation
is the list that begins with the elements of list1 , followed by the elements of list2 , and so on. Each list may
also contain holes, in which case the concatenation also contains holes at the corresponding positions.

In the second form list must be a dense list of lists list1 , list2 , etc., and Concatenation returns the
concatenation of those lists.

The result is a new mutable list, that is not identical to any other list. The elements of that list however
are identical to the corresponding elements of list1 , list2 , etc. (see 21.6).

Note that Concatenation creates a new list and leaves its arguments unchanged, while Append (see 21.4.7)
changes its first argument. For computing the union of proper sets, Union can be used, see 28.4.3 and 21.19.

gap> Concatenation([1, 2, 3], [4, 5]);
[1, 2, 3, 4, 5]
gap> Concatenation([2,3,,5,,7], [11,,13,,,,17,,19]);
[2, 3,, 5,, 7, 11,, 13,,,, 17,, 19]
gap> Concatenation([[1,2,3], [2,3,4], [3,4,5]]);
[1, 2, 3, 2, 3, 4, 3, 4, 5]

2 I Compacted(list) O

returns a new mutable list that contains the elements of list in the same order but omitting the holes.

200 Chapter 21. Lists

gap> l:=[,1,,,3,,,4,[5,,,6],7];; Compacted(l);
[1, 3, 4, [5,,, 6], 7]

3 I Collected(list) O

returns a new list new that contains for each element elm of the list list a list of length two, the first element
of this is elm itself and the second element is the number of times elm appears in list . The order of those
pairs in new corresponds to the ordering of the elements elm, so that the result is sorted.

For all pairs of elements in list the comparison via < must be defined.

gap> Factors(Factorial(10));
[2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 5, 5, 7]
gap> Collected(last);
[[2, 8], [3, 4], [5, 2], [7, 1]]
gap> Collected(last);
[[[2, 8], 1], [[3, 4], 1], [[5, 2], 1], [[7, 1], 1]]

4 I DuplicateFreeList(list) O
I Unique(list) O

returns a new mutable list whose entries are the elements of the list list with duplicates removed. Dupli-
cateFreeList only uses the = comparison and will not sort the result. Therefore DuplicateFreeList can
be used even if the elements of list do not lie in the same family. Unique is an alias for DuplicateFreeList.

gap> l:=[1,Z(3),1,"abc",Group((1,2,3),(1,2)),Z(3),Group((1,2),(2,3))];;
gap> DuplicateFreeList(l);
[1, Z(3), "abc", Group([(1,2,3), (1,2)])]

5 I AsDuplicateFreeList(list) A

returns the same result as DuplicateFreeList (see 21.20.4), except that the result is immutable.

6 I Flat(list) O

returns the list of all elements that are contained in the list list or its sublists. That is, Flat first makes
a new empty list new . Then it loops over the elements elm of list . If elm is not a list it is added to new ,
otherwise Flat appends Flat(elm) to new .

gap> Flat([1, [2, 3], [[1, 2], 3]]);
[1, 2, 3, 1, 2, 3]
gap> Flat([]);
[]

(To reconstruct a matrix from a Flattened list, the sublist operator can be used:

gap> l:=[9..14];;w:=2;; # w is the length of each row
gap> sub:=[1..w];;List([1..Length(l)/w],i->l{(i-1)*w+sub});
[[9, 10], [11, 12], [13, 14]]

)

7 I Reversed(list) F

returns a new mutable list, containing the elements of the dense list list in reversed order.

The argument list is unchanged. The result list is a new list, that is not identical to any other list. The
elements of that list however are identical to the corresponding elements of the argument list (see 21.6).

Reversed implements a special case of list assignment, which can also be formulated in terms of the operator
(see 21.4).

Section 20. Operations for Lists 201

gap> Reversed([1, 4, 9, 5, 6, 7]);
[7, 6, 5, 9, 4, 1]

8 I IsLexicographicallyLess(list1, list2) F

Let list1 and list2 be two dense lists, but not necessarily homogeneous (see 21.1.2, 21.1.3), such that for
each i , the entries in both lists at position i can be compared via <. IsLexicographicallyLess returns
true if list1 is smaller than list2 w.r.t. lexicographical ordering, and false otherwise.

9 I Apply(list, func) F

Apply applies the function func to every element of the dense and mutable list list , and replaces each element
entry by the corresponding return value.

Apply changes its argument. The nondestructive counterpart of Apply is List (see 21.20.17).

gap> l:= [1, 2, 3];; Apply(l, i -> i^2); l;
[1, 4, 9]

10 I Perform(list, func) O

Perform(list, func) applies func to every element of list , discarding any return values. It does not return
a value.

gap> l := [1, 2, 3];; Perform(l,
> function(x) if IsPrimeInt(x) then Print(x,"\n"); fi; end);
2
3

11 I PermListList(list1, list2) F

returns a permutation p of [1 .. Length(list1)] such that list1[i^p] = list2[i]. It returns fail if
there is no such permutation.

gap> list1 := [5, 4, 6, 1, 7, 5];;
gap> list2 := [4, 1, 7, 5, 5, 6];;
gap> perm := PermListList(list1, list2);
(1,2,4)(3,5,6)
gap> Permuted(list2, perm);
[5, 4, 6, 1, 7, 5]

12 I Maximum(obj1, obj2 ...) F
I Maximum(list) F

In the first form Maximum returns the maximum of its arguments, i.e., one argument obj for which obj ≥
obj1 , obj ≥ obj2 etc. In the second form Maximum takes a homogeneous list list and returns the maximum
of the elements in this list.

gap> Maximum(-123, 700, 123, 0, -1000);
700
gap> Maximum([-123, 700, 123, 0, -1000]);
700
gap> Maximum([1,2], [0,15], [1,5], [2,-11]); # lists are compared elementwise
[2, -11]

13 I Minimum(obj1, obj2 ...) F
I Minimum(list) F

In the first form Minimum returns the minimum of its arguments, i.e., one argument obj for which obj ≤ obj1 ,
obj ≤ obj2 etc. In the second form Minimum takes a homogeneous list list and returns the minimum of the
elements in this list.

202 Chapter 21. Lists

Note that for both Maximum and Minimum the comparison of the objects obj1 , obj2 etc. must be defined; for
that, usually they must lie in the same family (see 13.1).

gap> Minimum(-123, 700, 123, 0, -1000);
-1000
gap> Minimum([-123, 700, 123, 0, -1000]);
-1000
gap> Minimum([1, 2], [0, 15], [1, 5], [2, -11]);
[0, 15]

14 I MaximumList(list) O
I MinimumList(list) O

return the maximum resp. the minimum of the elements in the list list . They are the operations called by
Maximum resp. Minimum. Methods can be installed for special kinds of lists. For example, there are special
methods to compute the maximum resp. the minimum of a range (see 21.22).

15 I Cartesian(list1, list2 ...) F
I Cartesian(list) F

In the first form Cartesian returns the cartesian product of the lists list1 , list2 , etc.

In the second form list must be a list of lists list1 , list2 , etc., and Cartesian returns the cartesian product
of those lists.

The cartesian product is a list cart of lists tup, such that the first element of tup is an element of list1 ,
the second element of tup is an element of list2 , and so on. The total number of elements in cart is the
product of the lengths of the argument lists. In particular cart is empty if and only if at least one of the
argument lists is empty. Also cart contains duplicates if and only if no argument list is empty and at least
one contains duplicates.

The last index runs fastest. That means that the first element tup1 of cart contains the first element from
list1 , from list2 and so on. The second element tup2 of cart contains the first element from list1 , the first
from list2 , an so on, but the last element of tup2 is the second element of the last argument list. This implies
that cart is a proper set if and only if all argument lists are proper sets (see 21.19).

The function Tuples (see 17.2.7) computes the k -fold cartesian product of a list.

gap> Cartesian([1,2], [3,4], [5,6]);
[[1, 3, 5], [1, 3, 6], [1, 4, 5], [1, 4, 6], [2, 3, 5],
[2, 3, 6], [2, 4, 5], [2, 4, 6]]

gap> Cartesian([1,2,2], [1,1,2]);
[[1, 1], [1, 1], [1, 2], [2, 1], [2, 1], [2, 2], [2, 1],
[2, 1], [2, 2]]

16 I Permuted(list, perm) O

returns a new list new that contains the elements of the list list permuted according to the permutation
perm. That is new[i ^ perm] = list[i].

Sortex (see 21.18.3) allows you to compute a permutation that must be applied to a list in order to get the
sorted list.

Section 20. Operations for Lists 203

gap> Permuted([5, 4, 6, 1, 7, 5], (1,3,5,6,4));
[1, 4, 5, 5, 6, 7]

17 I List(list) F
I List(C) F
I List(list, func) F

In the first form, where list is a list (not necessarily dense or homogeneous), List returns a new mutable
list new that contains the elements (and the holes) of list in the same order; thus List does the same as
ShallowCopy (see 12.7.1) in this case.

In the second form, where C is a collection (see 28) that is not a list, List returns a new mutable list
new such that Length(new) is the number of different elements of C , and new contains the different
elements of C in an unspecified order which may change for repeated calls. new[pos] executes in constant
time (see 21.1.5), and the size of new is proportional to its length. The generic method for this case is
ShallowCopy(Enumerator(C)).

In the third form, for a dense list list and a function func, which must take exactly one argument, List
returns a new mutable list new given by new [i] = func(list [i]).

gap> List([1,2,3], i -> i^2);
[1, 4, 9]
gap> List([1..10], IsPrime);
[false, true, true, false, true, false, true, false, false, false]

18 I Filtered(list, func) F
I Filtered(C, func) F

returns a new list that contains those elements of the list list or collection C (see 28), respectively, for which
the unary function func returns true.

If the first argument is a list, the order of the elements in the result is the same as the order of the
corresponding elements of list . If an element for which func returns true appears several times in list it will
also appear the same number of times in the result. list may contain holes, they are ignored by Filtered.

For each element of list resp. C , func must return either true or false, otherwise an error is signalled.

The result is a new list that is not identical to any other list. The elements of that list however are identical
to the corresponding elements of the argument list (see 21.6).

List assignment using the operator (see 21.4) can be used to extract elements of a list according to indices
given in another list.

gap> Filtered([1..20], IsPrime);
[2, 3, 5, 7, 11, 13, 17, 19]
gap> Filtered([1, 3, 4, -4, 4, 7, 10, 6], IsPrimePowerInt);
[3, 4, 4, 7]
gap> Filtered([1, 3, 4, -4, 4, 7, 10, 6],
> n -> IsPrimePowerInt(n) and n mod 2 <> 0);
[3, 7]
gap> Filtered(Group((1,2), (1,2,3)), x -> Order(x) = 2);
[(2,3), (1,2), (1,3)]

19 I Number(list) F
I Number(list, func) F
I Number(C, func) F

In the first form, Number returns the number of bound entries in the list list . For dense lists Number, Length
(see 21.17.5), and Size (see 28.3.6) return the same value; for lists with holes Number returns the number
of bound entries, Length returns the largest index of a bound entry, and Size signals an error.

204 Chapter 21. Lists

In the last two forms, Number returns the number of elements of the list list resp. the collection C for which
the unary function func returns true. If an element for which func returns true appears several times in
list it will also be counted the same number of times.
For each element of list resp. C , func must return either true or false, otherwise an error is signalled.
Filtered (see 21.20.18) allows you to extract the elements of a list that have a certain property.

gap> Number([2, 3, 5, 7]);
4
gap> Number([, 2, 3,, 5,, 7,,,, 11]);
5
gap> Number([1..20], IsPrime);
8
gap> Number([1, 3, 4, -4, 4, 7, 10, 6], IsPrimePowerInt);
4
gap> Number([1, 3, 4, -4, 4, 7, 10, 6],
> n -> IsPrimePowerInt(n) and n mod 2 <> 0);
2
gap> Number(Group((1,2), (1,2,3)), x -> Order(x) = 2);
3

20 I First(list, func) F

First returns the first element of the list list for which the unary function func returns true. list may
contain holes. func must return either true or false for each element of list , otherwise an error is signalled.
If func returns false for all elements of list then First returns fail.
PositionProperty (see 21.16.7) allows you to find the position of the first element in a list that satisfies a
certain property.

gap> First([10^7..10^8], IsPrime);
10000019
gap> First([10^5..10^6],
> n -> not IsPrime(n) and IsPrimePowerInt(n));
100489
gap> First([1 .. 20], x -> x < 0);
fail
gap> First([fail], x -> x = fail);
fail

21 I ForAll(list, func) F
I ForAll(C, func) F

tests whether the unary function func returns true for all elements in the list list resp. the collection C .

gap> ForAll([1..20], IsPrime);
false
gap> ForAll([2,3,4,5,8,9], IsPrimePowerInt);
true
gap> ForAll([2..14], n -> IsPrimePowerInt(n) or n mod 2 = 0);
true
gap> ForAll(Group((1,2), (1,2,3)), i -> SignPerm(i) = 1);
false

22 I ForAny(list, func) F
I ForAny(C, func) F

tests whether the unary function func returns true for at least one element in the list list resp. the collection
C .

Section 20. Operations for Lists 205

gap> ForAny([1..20], IsPrime);
true
gap> ForAny([2,3,4,5,8,9], IsPrimePowerInt);
true
gap> ForAny([2..14],
> n -> IsPrimePowerInt(n) and n mod 5 = 0 and not IsPrime(n));
false
gap> ForAny(Integers, i -> i > 0
> and ForAll([0,2..4], j -> IsPrime(i+j)));
true

23 I Product(list[, init]) F
I Product(C[, init]) F
I Product(list, func[, init]) F
I Product(C, func[, init]) F

In the first two forms Product returns the product of the elements of the dense list list resp. the collection
C (see 28). In the last two forms Product applies the function func, which must be a function taking one
argument, to the elements of the dense list list resp. the collection C , and returns the product of the results.
In either case Product returns 1 if the first argument is empty.

The general rules for arithmetic operations apply (see 21.15), so the result is immutable if and only if all
summands are immutable.

If list or C contains exactly one element then this element (or its image under func if applicable) itself is
returned, not a shallow copy of this element.

If an additional initial value init is given, Product returns the product of init and the elements of the first
argument resp. of their images under the function func. This is useful for example if the first argument is
empty and a different identity than 1 is desired, in which case init is returned.

gap> Product([2, 3, 5, 7, 11, 13, 17, 19]);
9699690
gap> Product([1..10], x->x^2);
13168189440000
gap> Product([(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)]);
(1,4)(2,3)
gap> Product(GF(8));
0*Z(2)

24 I Sum(list[, init]) F
I Sum(C[, init]) F
I Sum(list, func[, init]) F
I Sum(C, func[, init]) F

In the first two forms Sum returns the sum of the elements of the dense list list resp. the collection C (see 28).
In the last two forms Sum applies the function func, which must be a function taking one argument, to the
elements of the dense list list resp. the collection C , and returns the sum of the results. In either case Sum
returns 0 if the first argument is empty.

The general rules for arithmetic operations apply (see 21.15), so the result is immutable if and only if all
summands are immutable.

If list or C contains exactly one element then this element (or its image under func if applicable) itself is
returned, not a shallow copy of this element.

206 Chapter 21. Lists

If an additional initial value init is given, Sum returns the sum of init and the elements of the first argument
resp. of their images under the function func. This is useful for example if the first argument is empty and
a different zero than 0 is desired, in which case init is returned.

gap> Sum([2, 3, 5, 7, 11, 13, 17, 19]);
77
gap> Sum([1..10], x->x^2);
385
gap> Sum([[1,2], [3,4], [5,6]]);
[9, 12]
gap> Sum(GF(8));
0*Z(2)

25 I Iterated(list, func) O

returns the result of the iterated application of the function func, which must take two arguments, to
the elements of the list list . More precisely Iterated returns the result of the following application,
f (· · · f (f (list [1], list [2]), list [3]), . . . , list [n]).

gap> Iterated([126, 66, 105], Gcd);
3

26 I ListN(list1, list2, ..., listn, f) F

Applies the n-argument function func to the lists. That is, ListN returns the list whose ith entry is
f (list1 [i], list2 [i], . . . , listn[i]).

gap> ListN([1,2], [3,4], \+);
[4, 6]

21.21 Advanced List Manipulations

The following functions are generalizations of List (see 21.20.17), Set (see 28.2.6), Sum (see 21.20.24), and
Product (see 21.20.23).

1 I ListX(arg1, arg2, ... argn, func) O

ListX returns a new list constructed from the arguments.

Each of the arguments arg1, arg2, ... argn must be one of the following:

a list or collection
this introduces a new for-loop in the sequence of nested for-loops and if-statements;

a function returning a list or collection
this introduces a new for-loop in the sequence of nested for-loops and if-statements, where the
loop-range depends on the values of the outer loop-variables; or

a function returning true or false
this introduces a new if-statement in the sequence of nested for-loops and if-statements.

The last argument func must be a function, it is applied to the values of the loop-variables and the results
are collected.

Thus ListX(list, func) is the same as List(list, func), and ListX(list, func, x -> x) is the
same as Filtered(list, func).

As a more elaborate example, assume arg1 is a list or collection, arg2 is a function returning true or false,
arg3 is a function returning a list or collection, and arg4 is another function returning true or false, then

Section 22. Ranges 207

result := ListX(arg1, arg2, arg3, arg4, func);

is equivalent to

result := [];
for v1 in arg1 do
if arg2(v1) then
for v2 in arg3(v1) do
if arg4(v1, v2) then

Add(result, func(v1, v2));
fi;

od;
fi;

od;

The following example shows how ListX can be used to compute all pairs and all strictly sorted pairs of
elements in a list.

gap> l:= [1, 2, 3, 4];;
gap> pair:= function(x, y) return [x, y]; end;;
gap> ListX(l, l, pair);
[[1, 1], [1, 2], [1, 3], [1, 4], [2, 1], [2, 2], [2, 3],
[2, 4], [3, 1], [3, 2], [3, 3], [3, 4], [4, 1], [4, 2],
[4, 3], [4, 4]]

In the following example, < is the comparison operation:

gap> ListX(l, l, \<, pair);
[[1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]]

2 I SetX(arg1, arg2, ... func) O

The only difference between SetX and ListX is that the result list of SetX is strictly sorted.

3 I SumX(arg1, arg2, ... func) O

SumX returns the sum of the elements in the list obtained by ListX when this is called with the same
arguments.

4 I ProductX(arg1, arg2, ... func) O

ProductX returns the product of the elements in the list obtained by ListX when this is called with the
same arguments.

21.22 Ranges

A range is a dense list of integers in arithmetic progression (or degression). This is a list of integers such
that the difference between consecutive elements is a nonzero constant. Ranges can be abbreviated with the
syntactic construct [first, second .. last] or, if the difference between consecutive elements is 1, as [
first .. last].

If first > last , [first..last] is the empty list, which by definition is also a range; also, if second > first > last
or second < first < last , then [first,second..last] is the empty list. If first = last , [first,second..last] is
a singleton list, which is a range, too. Note that last - first must be divisible by the increment second -
first , otherwise an error is signalled.

Currently, the integers first , second and last and the length of a range must be small integers, that is at
least −2d and at most 2d − 1 with d = 28 on 32-bit architectures and d = 60 on 64-bit architectures.

208 Chapter 21. Lists

Note also that a range is just a special case of a list. Thus you can access elements in a range (see 21.3),
test for membership etc. You can even assign to such a range if it is mutable (see 21.4). Of course, unless
you assign last + second-first to the entry range[Length(range)+1], the resulting list will no longer be a
range.

gap> r := [10..20];
[10 .. 20]
gap> Length(r);
11
gap> r[3];
12
gap> 17 in r;
true
gap> r[12] := 25;; r; # r is no longer a range
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25]
gap> r := [1,3..17];
[1, 3 .. 17]
gap> Length(r);
9
gap> r[4];
7
gap> r := [0,-1..-9];
[0, -1 .. -9]
gap> r[5];
-4
gap> r := [1, 4 .. 32];
Range: <last>-<first> (31) must be divisible by <inc> (3)

Most often ranges are used in connection with the for-loop (see 4.19). Here the construct

for var in [first..last] do statements od

replaces the

for var from first to last do statements od

which is more usual in other programming languages.

gap> s := [];; for i in [10..20] do Add(s, i^2); od; s;
[100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400]

Note that a range with last >= first is at the same time also a proper set (see 21.19), because it contains
no holes or duplicates and is sorted, and also a row vector (see 23), because it contains no holes and all
elements are integers.

1 I IsRange(obj) C

tests if the object obj is a range, i.e. is a dense list of integers that is also a range (see 21.22 for a definition
of “range”).

gap> IsRange([1,2,3]); IsRange([7,5,3,1]);
true
true
gap> IsRange([1,2,4,5]); IsRange([1,,3,,5,,7]);
false
false
gap> IsRange([]); IsRange([1]);

Section 23. Enumerators 209

true
true

2 I ConvertToRangeRep(list) F

For some lists the GAP kernel knows that they are in fact ranges. Those lists are represented internally in a
compact way instead of the ordinary way.

If list is a range then ConvertToRangeRep changes the representation of list to this compact representation.

This is important since this representation needs only 12 bytes for the entire range while the ordinary
representation needs 4length bytes.

Note that a list that is represented in the ordinary way might still be a range. It is just that GAP does not
know this. The following rules tell you under which circumstances a range is represented in the compact
way, so you can write your program in such a way that you make best use of this compact representation
for ranges.

Lists created by the syntactic construct [first, second .. last] are of course known to be ranges and
are represented in the compact way.

If you call ConvertToRangeRep for a list represented the ordinary way that is indeed a range, the represen-
tation is changed from the ordinary to the compact representation. A call of ConvertToRangeRep for a list
that is not a range is ignored.

If you change a mutable range that is represented in the compact way, by assignment, Add or Append, the
range will be converted to the ordinary representation, even if the change is such that the resulting list is
still a proper range.

Suppose you have built a proper range in such a way that it is represented in the ordinary way and that you
now want to convert it to the compact representation to save space. Then you should call ConvertToRangeRep
with that list as an argument. You can think of the call to ConvertToRangeRep as a hint to GAP that this
list is a proper range.

gap> r:= [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
gap> ConvertToRangeRep(r); r;
[1 .. 10]
gap> l:= [1, 2, 4, 5];; ConvertToRangeRep(l); l;
[1, 2, 4, 5]

21.23 Enumerators

An enumerator is an immutable list that need not store its elements explicitly but knows, from a set of
basic data, how to determine the i -th element and the position of a given object. A typical example of this
is a vector space over a finite field with q elements, say, for which it is very easy to enumerate all elements
using q-adic expansions of integers.

Using this enumeration can be even quicker than a binary search in a sorted list of vectors:

1 I IsQuickPositionList(list) F

This filter indicates that a position test in list is quicker than about 5 or 6 element comparisons for “smaller”.
If this is the case it can be beneficial to use Position in list and a bit list than ordered lists to represent
subsets of list .

On the one hand, element access to an enumerator may take more time than element access to an internally
represented list containing the same elements. On the other hand, an enumerator may save a vast amount of
memory. Take for example a permutation group of size a few millions. Even for moderate degree it is unlikely

210 Chapter 21. Lists

that a list of all its elements will fit into memory whereas it is no problem to construct an enumerator from
a stabilizer chain (see 41.5).

There are situations where one only wants to loop over the elements of a domain, without using the special
facilities of an enumerator, namely the particular order of elements and the possibility to find the position
of elements. For such cases, GAP provides iterators (see 28.7).

The functions Enumerator and EnumeratorSorted (see 28.2.2 and 28.2.3) return enumerators of domains.
Most of the special implementations of enumerators in the GAP library are based on the general interface that
is provided by EnumeratorByFunctions (see 28.2.4); one generic example is EnumeratorByBasis (see 59.5.5),
which can be used to get an enumerator of a finite dimensional free module.

Also enumerators for non-domains can be implemented via EnumeratorByFunctions; for a discussion,
see 3.12 in “Programming in GAP”.

22 Boolean Lists

This chapter describes boolean lists. A boolean list is a list that has no holes and contains only the boolean
values true and false (see Chapter 20). In function names we call boolean lists blist for brevity.

1 I IsBlist(obj) C

A boolean list (“blist”) is a list that has no holes and contains only true and false. If a list is known to
be a boolean list by a test with IsBlist it is stored in a compact form. See 22.4.

gap> IsBlist([true, true, false, false]);
true
gap> IsBlist([]);
true
gap> IsBlist([false,,true]); # has holes
false
gap> IsBlist([1,1,0,0]); # contains not only boolean values
false
gap> IsBlist(17); # is not even a list
false

Boolean lists are lists and all operations for lists are therefore applicable to boolean lists.

Boolean lists can be used in various ways, but maybe the most important application is their use for the
description of subsets of finite sets. Suppose set is a finite set, represented as a list. Then a subset sub of
set is represented by a boolean list blist of the same length as set such that blist[i] is true if set[i] is in
sub and false otherwise.

22.1 Boolean Lists Representing Subsets

1 I BlistList(list, sub) F

returns a new boolean list that describes the list sub as a sublist of the dense list list . That is BlistList
returns a boolean list blist of the same length as list such that blist[i] is true if list[i] is in sub and false
otherwise.

list need not be a proper set (see 21.19), even though in this case BlistList is most efficient. In particular
list may contain duplicates. sub need not be a proper sublist of list , i.e., sub may contain elements that are
not in list . Those elements of course have no influence on the result of BlistList.

gap> BlistList([1..10], [2,3,5,7]);
[false, true, true, false, true, false, true, false, false, false]
gap> BlistList([1,2,3,4,5,2,8,6,4,10], [4,8,9,16]);
[false, false, false, true, false, false, true, false, true, false]

See also 22.3.2.

212 Chapter 22. Boolean Lists

2 I ListBlist(list, blist) O

returns the sublist sub of the list list , which must have no holes, represented by the boolean list blist , which
must have the same length as list . sub contains the element list[i] if blist[i] is true and does not contain
the element if blist[i] is false. The order of the elements in sub is the same as the order of the corresponding
elements in list .

gap> ListBlist([1..8],[false,true,true,true,true,false,true,true]);
[2, 3, 4, 5, 7, 8]
gap> ListBlist([1,2,3,4,5,2,8,6,4,10],
> [false,false,false,true,false,false,true,false,true,false]);
[4, 8, 4]

3 I SizeBlist(blist) F

returns the number of entries of the boolean list blist that are true. This is the size of the subset represented
by the boolean list blist .

gap> SizeBlist([false, true, false, true, false]);
2

4 I IsSubsetBlist(blist1, blist2) F

returns true if the boolean list blist2 is a subset of the boolean list list1 , which must have equal length,
and false otherwise. blist2 is a subset of blist1 if blist1[i] = blist1[i] or blist2[i] for all i .

gap> blist1 := [true, true, false, false];;
gap> blist2 := [true, false, true, false];;
gap> IsSubsetBlist(blist1, blist2);
false
gap> blist2 := [true, false, false, false];;
gap> IsSubsetBlist(blist1, blist2);
true

22.2 Set Operations via Boolean Lists

1 I UnionBlist(blist1, blist2[, ...]) F
I UnionBlist(list) F

In the first form UnionBlist returns the union of the boolean lists blist1 , blist2 , etc., which must have equal
length. The union is a new boolean list such that union[i] = blist1[i] or blist2[i] or

The second form takes the union of all blists (which as for the first form must have equal length) in the list
list .

2 I IntersectionBlist(blist1, blist2[, ...]) F
I IntersectionBlist(list) F

In the first form IntersectionBlist returns the intersection of the boolean lists blist1 , blist2 , etc., which
must have equal length. The intersection is a new blist such that inter[i] = blist1[i] and blist2[i] and
....

In the second form list must be a list of boolean lists blist1 , blist2 , etc., which must have equal length, and
IntersectionBlist returns the intersection of those boolean lists.

3 I DifferenceBlist(blist1, blist2) F

returns the asymmetric set difference (exclusive or) of the two boolean lists blist1 and blist2 , which must
have equal length. The asymmetric set difference is a new boolean list such that union[i] = blist1[i]
and not blist2[i].

Section 3. Function that Modify Boolean Lists 213

gap> blist1 := [true, true, false, false];;
gap> blist2 := [true, false, true, false];;
gap> UnionBlist(blist1, blist2);
[true, true, true, false]
gap> IntersectionBlist(blist1, blist2);
[true, false, false, false]
gap> DifferenceBlist(blist1, blist2);
[false, true, false, false]

22.3 Function that Modify Boolean Lists
1 I UniteBlist(blist1, blist2) F

UniteBlist unites the boolean list blist1 with the boolean list blist2 , which must have the same length.
This is equivalent to assigning blist1[i] := blist1[i] or blist2[i] for all i . UniteBlist returns nothing,
it is only called to change blist1 .

gap> blist1 := [true, true, false, false];;
gap> blist2 := [true, false, true, false];;
gap> UniteBlist(blist1, blist2);
gap> blist1;
[true, true, true, false]

2 I UniteBlistList(list, blist, sub) F

works like UniteBlist(blist,BlistList(list,sub)). As no intermediate blist is created, the performance is
better than the separate function calls.

The function UnionBlist (see 22.2.1) is the nondestructive counterpart to the procedure UniteBlist.

3 I IntersectBlist(blist1, blist2) F

intersects the boolean list blist1 with the boolean list blist2 , which must have the same length. This is
equivalent to assigning blist1[i]:= blist1[i] and blist2[i] for all i . IntersectBlist returns nothing, it is
only called to change blist1 .

gap> blist1 := [true, true, false, false];;
gap> blist2 := [true, false, true, false];;
gap> IntersectBlist(blist1, blist2);
gap> blist1;
[true, false, false, false]

The function IntersectionBlist (see 22.2.2) is the nondestructive counterpart to the procedure Inter-
sectBlist.

4 I SubtractBlist(blist1, blist2) F

subtracts the boolean list blist2 from the boolean list blist1 , which must have equal length. This is equivalent
to assigning blist1[i] := blist1[i] and not blist2[i] for all i . SubtractBlist returns nothing, it is only
called to change blist1 .

gap> blist1 := [true, true, false, false];;
gap> blist2 := [true, false, true, false];;
gap> SubtractBlist(blist1, blist2);
gap> blist1;
[false, true, false, false]

The function DifferenceBlist (see 22.2.3) is the nondestructive counterpart to the procedure Subtract-
Blist.

214 Chapter 22. Boolean Lists

22.4 More about Boolean Lists

We defined a boolean list as a list that has no holes and contains only true and false. There is a special
internal representation for boolean lists that needs only 1 bit for each entry. This bit is set if the entry is
true and reset if the entry is false. This representation is of course much more compact than the ordinary
representation of lists, which needs (at least) 32 bits per entry.

Not every boolean list is represented in this compact representation. It would be too much work to test
every time a list is changed, whether this list has become a boolean list. This section tells you under which
circumstances a boolean list is represented in the compact representation, so you can write your functions
in such a way that you make best use of the compact representation.

The results of BlistList, UnionBlist, IntersectionBlist and DifferenceBlist are known to be boolean
lists by construction, and thus are represented in the compact representation upon creation.

If an argument of IsBlist, IsSubsetBlist, ListBlist, UnionBlist, IntersectionBlist, DifferenceB-
list, UniteBlist, IntersectBlist and SubtractBlist is a list represented in the ordinary representation,
it is tested to see if it is in fact a boolean list. If it is not, IsBlist returns false and the other functions
signal an error. If it is, the representation of the list is changed to the compact representation.

If you change a boolean list that is represented in the compact representation by assignment (see 21.4) or
Add (see 21.4.4) in such a way that the list remains a boolean list it will remain represented in the compact
representation. Note that changing a list that is not represented in the compact representation, whether it
is a boolean list or not, in such a way that the resulting list becomes a boolean list, will never change the
representation of the list.

23 Row Vectors

Just as in mathematics, a vector in GAP is any object which supports appropriate addition and scalar
multiplication operations (see Chapter 59). As in mathematics, an especially important class of vectors are
those represented by a list of coefficients with respect to some basis. These correspond roughly to the GAP
concept of row vectors.

1 I IsRowVector(obj) C

A row vector is a vector (see 30.14.14) that is also a homogeneous list of odd additive nesting depth
(see 21.12). Typical examples are lists of integers and rationals, lists of finite field elements of the same
characteristic, and lists of polynomials from a common polynomial ring. Note that matrices are not regarded
as row vectors, because they have even additive nesting depth.

The additive operations of the vector must thus be compatible with that for lists, implying that the list
entries are the coefficients of the vector with respect to some basis.

Note that not all row vectors admit a multiplication via * (which is to be understood as a scalar product); for
example, class functions are row vectors but the product of two class functions is defined in a different way.
For the installation of a scalar product of row vectors, the entries of the vector must be ring elements; note
that the default method expects the row vectors to lie in IsRingElementList, and this category may not
be implied by IsRingElement for all entries of the row vector (see the comment for IsVector in 30.14.14).

Note that methods for special types of row vectors really must be installed with the requirement IsRowVec-
tor, since IsVector may lead to a rank of the method below that of the default method for row vectors
(see file lib/vecmat.gi).

gap> IsRowVector([1,2,3]);
true

Because row vectors are just a special case of lists, all operations and functions for lists are applicable to
row vectors as well (see Chapter 21). This especially includes accessing elements of a row vector (see 21.3),
changing elements of a mutable row vector (see 21.4), and comparing row vectors (see 21.10).

Note that, unless your algorithms specifically require you to be able to change entries of your vectors, it is
generally better and faster to work with immutable row vectors. See Section 12.6 for more details.

23.1 Operators for Row Vectors

The rules for arithmetic operations involving row vectors are in fact special cases of those for the arithmetic
of lists, as given in Section 21.11 and the following sections, here we reiterate that definition, in the language
of vectors.

Note that the additive behaviour sketched below is defined only for lists in the category IsGeneral-
izedRowVector, and the multiplicative behaviour is defined only for lists in the category IsMultiplica-
tiveGeneralizedRowVector (see 21.12).

216 Chapter 23. Row Vectors

1 I vec1 + vec2 O

returns the sum of the two row vectors vec1 and vec2 . Probably the most usual situation is that vec1 and
vec2 have the same length and are defined over a common field; in this case the sum is a new row vector
over the same field where each entry is the sum of the corresponding entries of the vectors.

In more general situations, the sum of two row vectors need not be a row vector, for example adding an
integer vector vec1 and a vector vec2 over a finite field yields the list of pointwise sums, which will be a
mixture of finite field elements and integers if vec1 is longer than vec2 .

2 I scalar + vec O
I vec + scalar O

returns the sum of the scalar scalar and the row vector vec. Probably the most usual situation is that the
elements of vec lie in a common field with scalar ; in this case the sum is a new row vector over the same
field where each entry is the sum of the scalar and the corresponding entry of the vector.

More general situations are for example the sum of an integer scalar and a vector over a finite field, or the
sum of a finite field element and an integer vector.

gap> [1, 2, 3] + [1/2, 1/3, 1/4];
[3/2, 7/3, 13/4]
gap> [1/2, 3/2, 1/2] + 1/2;
[1, 2, 1]

3 I vec1 - vec2 O
I scalar - vec O
I vec - scalar O

Subtracting a vector or scalar is defined as adding its additive inverse, so the statements for the addition
hold likewise.

gap> [1, 2, 3] - [1/2, 1/3, 1/4];
[1/2, 5/3, 11/4]
gap> [1/2, 3/2, 1/2] - 1/2;
[0, 1, 0]

4 I scalar * vec O
I vec * scalar O

returns the product of the scalar scalar and the row vector vec. Probably the most usual situation is that
the elements of vec lie in a common field with scalar ; in this case the product is a new row vector over the
same field where each entry is the product of the scalar and the corresponding entry of the vector.

More general situations are for example the product of an integer scalar and a vector over a finite field, or
the product of a finite field element and an integer vector.

gap> [1/2, 3/2, 1/2] * 2;
[1, 3, 1]

5 I vec1 * vec2 O

returns the standard scalar product of vec1 and vec2 , i.e., the sum of the products of the corresponding
entries of the vectors. Probably the most usual situation is that vec1 and vec2 have the same length and
are defined over a common field; in this case the sum is an element of this field.

More general situations are for example the inner product of an integer vector and a vector over a finite
field, or the inner product of two row vectors of different lengths.

Section 2. Row Vectors over Finite Fields 217

gap> [1, 2, 3] * [1/2, 1/3, 1/4];
23/12

For the mutability of results of arithmetic operations, see 12.6.

Further operations with vectors as operands are defined by the matrix operations (see 24.2).

6 I NormedRowVector(v) A

returns a scalar multiple w = c * v of the row vector v with the property that the first nonzero entry of w
is an identity element in the sense of IsOne.

gap> NormedRowVector([5,2,3]);
[1, 2/5, 3/5]

23.2 Row Vectors over Finite Fields

GAP can use compact formats to store row vectors over fields of order at most 256, based on those used by
the Meat-Axe [Rin93]. This format also permits extremely efficient vector arithmetic. On the other hand
element access and assignment is significantly slower than for plain lists.

The function ConvertToVectorRep is used to convert a list into a compressed vector, or to rewrite a com-
pressed vector over another field. Note that this function is much faster when it is given a field (or field
size) as an argument, rather than having to scan the vector and try to decide the field. Supplying the field
can also avoid errors and/or loss of performance, when one vector from some collection happens to have all
of its entries over a smaller field than the ”natural” field of the problem.

1 I ConvertToVectorRep(list) F
I ConvertToVectorRep(list , field) F
I ConvertToVectorRep(list , fieldsize) F
I ConvertToVectorRepNC(list) F
I ConvertToVectorRepNC(list , field) F
I ConvertToVectorRepNC(list , fieldsize) F

ConvertToVectorRep(list) converts list to an internal vector representation if possible.

ConvertToVectorRep(list , field) converts list to an internal vector representation appropriate for a
vector over field .

It is forbidden to call this function unless list is a plain list or a vector, field a field, and all elements of list
lie in field , violation of this condition can lead to unpredictable behaviour or a system crash. (Setting the
assertion level to at least 2 might catch some violations before a crash, see 7.5.1.)

Instead of a field also its size fieldsize may be given.

list may already be a compressed vector. In this case, if no field or fieldsize is given, then nothing happens.
If one is given then the vector is rewritten as a compressed vector over the given field unless it has the filter
IsLockedRepresentationVector, in which case it is not changed.

The return value is the size of the field over which the vector ends up written, if it is written in a compressed
representation.

In this example, we first create a row vector and then ask GAP to rewrite it, first over GF(2) and then over
GF(4).

218 Chapter 23. Row Vectors

gap> v := [Z(2)^0,Z(2),Z(2),0*Z(2)];
[Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2)]
gap> RepresentationsOfObject(v);
["IS_PLIST_REP", "IsInternalRep"]
gap> ConvertToVectorRep(v);
2
gap> v;
<a GF2 vector of length 4>
gap> ConvertToVectorRep(v,4);
4
gap> v;
[Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2)]
gap> RepresentationsOfObject(v);
["IsDataObjectRep", "Is8BitVectorRep"]

A vector in the special representation over GF (2) is always viewed as <a GF2 vector of length ...>.
Over fields of orders 3 to 256, a vector of length 10 or less is viewed as the list of its coefficients, but a longer
one is abbreviated.

Arithmetic operations (see 21.11 and the following sections) preserve the compression status of row vectors
in the sense that if all arguments are compressed row vectors written over the same field and the result is a
row vector then also the result is a compressed row vector written over this field.

2 I NumberFFVector(vec, sz) O

returns an integer that gives the position of the finite field row vector (vec) in the sorted list of all row
vectors over the field with sz elements in the same dimension as vec. NumberFFVector returns fail if the
vector cannot be represented over the field with sz elements.

23.3 Coefficient List Arithmetic

The following operations all perform arithmetic on row vectors. given as homogeneous lists of the same
length, containing elements of a commutative ring.

There are two reasons for using AddRowVector in preference to arithmetic operators. Firstly, the three
argument form has no single-step equivalent. Secondly AddRowVector changes its first argument in-place,
rather than allocating a new vector to hold the result, and may thus produce less garbage.

1 I AddRowVector(dst, src, [mul [, from, to]]) O

Adds the product of src and mul to dst , changing dst . If from and to are given then only the index range
[from..to] is guaranteed to be affected. Other indices MAY be affected, if it is more convenient to do so.
Even when from and to are given, dst and src must be row vectors of the same length.

If mul is not given either then this Operation simply adds src to dst .

2 I AddCoeffs(list1, poss1, list2, poss2, mul) O
I AddCoeffs(list1, list2, mul) O
I AddCoeffs(list1, list2) O

AddCoeffs adds the entries of list2{poss2}, multiplied by the scalar mul , to list1{poss1}. Non-existing
entries in list1 are assumed to be zero. The position of the right-most non-zero element is returned.

If the ranges poss1 and poss2 are not given, they are assumed to span the whole vectors. If the scalar mul
is omitted, one is used as a default.

Note that it is the responsibility of the caller to ensure that the list2 has elements at position poss2 and
that the result (in list1) will be a dense list.

Section 4. Shifting and Trimming Coefficient Lists 219

The function is free to remove trailing (right-most) zeros.

gap> l:=[1,2,3,4];;m:=[5,6,7];;AddCoeffs(l,m);
4
gap> l;
[6, 8, 10, 4]

3 I MultRowVector(list1, poss1, list2, poss2, mul) O
I MultRowVector(list, mul) O

The five-argument version of this Operation replaces list1[poss1[i]] by mul*list2[poss2[i]] for i between
1 and Length(poss1).

The two-argument version simply multiplies each element of list , in-place, by mul .

4 I CoeffsMod(list1, [len1,] mod) O

returns the coefficient list obtained by reducing the entries in list1 modulo mod . After reducing it shrinks
the list to remove trailing zeroes.

gap> l:=[1,2,3,4];;CoeffsMod(l,2);
[1, 0, 1]

23.4 Shifting and Trimming Coefficient Lists

The following functions change coefficient lists by shifting or trimming.

1 I LeftShiftRowVector(list, shift) O

changes list by assigning list[i]:=list[i+shift] and removing the last shift entries of the result.

2 I RightShiftRowVector(list, shift, fill) O

changes list by assigning list[i+shift]:=list[i] and filling each of the shift first entries with fill .

3 I ShrinkRowVector(list) O

removes trailing zeroes from the list list .

4 I RemoveOuterCoeffs(list, coef) O

removes coef at the beginning and at the end of list and returns the number of elements removed at the
beginning.

gap> l:=[1,1,2,1,2,1,1,2,1];;RemoveOuterCoeffs(l,1);
2
gap> l;
[2, 1, 2, 1, 1, 2]

220 Chapter 23. Row Vectors

23.5 Functions for Coding Theory

The following functions perform operations on Finite fields vectors considered as code words in a linear code.

1 I WeightVecFFE(vec) O

returns the weight of the finite field vector vec, i.e. the number of nonzero entries.

2 I DistanceVecFFE(vec1, vec2) O

returns the distance between the two vectors vec1 and vec2 , which must have the same length and whose
elements must lie in a common field. The distance is the number of places where vec1 and vec2 differ.

3 I DistancesDistributionVecFFEsVecFFE(vecs, vec) O

returns the distances distribution of the vector vec to the vectors in the list vecs. All vectors must have the
same length, and all elements must lie in a common field. The distances distribution is a list d of length
Length(vec)+1, such that the value d[i] is the number of vectors in vecs that have distance i+1 to vec.

4 I DistancesDistributionMatFFEVecFFE(mat, f , vec) O

returns the distances distribution of the vector vec to the vectors in the vector space generated by the rows
of the matrix mat over the finite field f . The length of the rows of mat and the length of vec must be equal,
and all elements must lie in f . The rows of mat must be linearly independent. The distances distribution
is a list d of length Length(vec)+1, such that the value d[i] is the number of vectors in the vector space
generated by the rows of mat that have distance i+1 to vec.

5 I AClosestVectorCombinationsMatFFEVecFFE(mat, f , vec, l, stop) O
I AClosestVectorCombinationsMatFFEVecFFECoords(mat, f , vec, l, stop) O

These functions run through the f -linear combinations of the vectors in the rows of the matrix mat that can
be written as linear combinations of exactly l rows (that is without using zero as a coefficient). The length
of the rows of mat and the length of vec must be equal, and all elements must lie in f . The rows of mat must
be linearly independent. AClosestVectorCombinationsMatFFEVecFFE returns a vector from these that is
closest to the vector vec. If it finds a vector of distance at most stop, which must be a nonnegative integer,
then it stops immediately and returns this vector.

AClosestVectorCombinationsMatFFEVecFFECoords returns a length 2 list containing the same closest vec-
tor and also a vector v with exactly l non-zero entries, such that v times mat is the closest vector.

6 I CosetLeadersMatFFE(mat, f) O

returns a list of representatives of minimal weight for the cosets of a code. mat must be a check matrix
for the code, the code is defined over the finite field f . All rows of mat must have the same length, and all
elements must lie in f . The rows of mat must be linearly independent.

23.6 Vectors as coefficients of polynomials

A list of ring elements can be interpreted as a row vector or the list of coefficients of a polynomial. There
are a couple of functions that implement arithmetic operations based on these interpretations. GAP contains
proper support for polynomials (see 64), the operations described in this section are on a lower level.

The following operations all perform arithmetic on univariate polynomials given by their coefficient lists.
These lists can have different lengths but must be dense homogeneous lists containing elements of a com-
mutative ring. Not all input lists may be empty.

In the following descriptions we will always assume that list1 is the coefficient list of the polynomial pol1
and so forth. If length parameter leni is not given, it is set to the length of listi by default.

Section 6. Vectors as coefficients of polynomials 221

1 I ValuePol(coeff , x) F

Let coeff be the coefficients list of a univariate polynomial f , and x a ring element. Then ValuePol returns
the value f (x).

The coefficient of x i is assumed to be stored at position i + 1 in the coefficients list.

gap> ValuePol([1,2,3],4);
57

2 I ProductCoeffs(list1, [len1,] list2 [, len2]) O

Let pol1 (and pol2) be polynomials given by the first len1 (len2) entries of the coefficient list list2 (list2).
If len1 and len2 are omitted, they default to the lengths of list1 and list2 . This operation returns the
coefficient list of the product of pol1 and pol2 .

gap> l:=[1,2,3,4];;m:=[5,6,7];;ProductCoeffs(l,m);
[5, 16, 34, 52, 45, 28]

3 I ReduceCoeffs(list1 [, len1], list2 [, len2]) O

changes list1 to the coefficient list of the remainder when dividing pol1 by pol2 . This operation changes
list1 which therefore must be a mutable list. The operations returns the position of the last non-zero entry
of the result but is not guaranteed to remove trailing zeroes.

gap> l:=[1,2,3,4];;m:=[5,6,7];;ReduceCoeffs(l,m);
2
gap> l;
[64/49, -24/49, 0, 0]

4 I ReduceCoeffsMod(list1, [len1,] list2, [len2,] mod) O

changes list1 to the coefficient list of the remainder when dividing pol1 by pol2 modulo mod . mod must
be a positive integer. This operation changes list1 which therefore must be a mutable list. The operations
returns the position of the last non-zero entry of the result but is not guaranteed to remove trailing zeroes.

gap> l:=[1,2,3,4];;m:=[5,6,7];;ReduceCoeffsMod(l,m,3);
1
gap> l;
[1, 0, 0, 0]

5 I PowerModCoeffs(list1[, len1], exp, list2[, len2]) O

Let p1 and p2 be polynomials whose coefficients are given by the first len1 resp. len2 entries of the lists list1
and list2 , respectively. If len1 and len2 are omitted, they default to the lengths of list1 and list2 . Let exp
be a positive integer. PowerModCoeffs returns the coefficient list of the remainder when dividing the exp-th
power of p1 by p2. The coefficients are reduced already while powers are computed, therefore avoiding an
explosion in list length.

gap> l:= [1,2,3,4];; m:= [5,6,7];; PowerModCoeffs(l,5,m);
[-839462813696/678223072849, -7807439437824/678223072849]
gap> EuclideanRemainder(UnivariatePolynomial(Rationals, l)^5,
> UnivariatePolynomial(Rationals, m));
-7807439437824/678223072849*x_1-839462813696/678223072849

6 I ShiftedCoeffs(list, shift) O

produces a new coefficient list new obtained by the rule new[i+shift]:=list[i] and filling initial holes by
the appropriate zero.

222 Chapter 23. Row Vectors

gap> l:=[1,2,3];;ShiftedCoeffs(l,2);ShiftedCoeffs(l,-2);
[0, 0, 1, 2, 3]
[3]

7 I ShrinkCoeffs(list) O

removes trailing zeroes from list . It returns the position of the last non-zero entry, that is the length of list
after the operation.

gap> l:=[1,0,0];;ShrinkCoeffs(l);l;
1
[1]

24 Matrices

Matrices are represented in GAP by lists of row vectors (see 23). The vectors must all have the same length,
and their elements must lie in a common ring. However, since checking rectangularness can be expensive
functions and methods of operations for matrices often will not give an error message for non-rectangular
lists of lists – in such cases the result is undefined.

Because matrices are just a special case of lists, all operations and functions for lists are applicable to
matrices also (see chapter 21). This especially includes accessing elements of a matrix (see 21.3), changing
elements of a matrix (see 21.4), and comparing matrices (see 21.10).

Note that, since a matrix is a list of lists, the behaviour of ShallowCopy for matrices is just a special case
of ShallowCopy for lists (see 21.7); called with an immutable matrix mat , ShallowCopy returns a mutable
matrix whose rows are identical to the rows of mat . In particular the rows are still immutable. To get a
matrix whose rows are mutable, one can use List(mat, ShallowCopy).

1 I InfoMatrix V

The info class for matrix operations is InfoMatrix.

24.1 Categories of Matrices

1 I IsMatrix(obj) C

A matrix is a list of lists of equal length whose entries lie in a common ring.

Note that matrices may have different multiplications, besides the usual matrix product there is for example
the Lie product. So there are categories such as IsOrdinaryMatrix and IsLieMatrix (see 24.1.2, 24.1.3)
that describe the matrix multiplication. One can form the product of two matrices only if they support the
same multiplication.

gap> mat:=[[1,2,3],[4,5,6],[7,8,9]];
[[1, 2, 3], [4, 5, 6], [7, 8, 9]]
gap> IsMatrix(mat);
true

Note also the filter IsTable (see section 21.1.4) which may be more appropriate than IsMatrix for some
purposes.

Note that the empty list ’[]’ and more complex “empty” structures such as [[]] are not matrices, although
special methods allow them be used in place of matrices in some situations. See 24.4.3 below.

gap> [[0]]*[[]];
[[]]
gap> IsMatrix([[]]);
false

2 I IsOrdinaryMatrix(obj) C

An ordinary matrix is a matrix whose multiplication is the ordinary matrix multiplication.

224 Chapter 24. Matrices

Each matrix in internal representation is in the category IsOrdinaryMatrix, and arithmetic operations with
objects in IsOrdinaryMatrix produce again matrices in IsOrdinaryMatrix.

Note that we want that Lie matrices shall be matrices that behave in the same way as ordinary matrices,
except that they have a different multiplication. So we must distinguish the different matrix multiplications,
in order to be able to describe the applicability of multiplication, and also in order to form a matrix of the
appropriate type as the sum, difference etc. of two matrices which have the same multiplication.

3 I IsLieMatrix(mat) C

A Lie matrix is a matrix whose multiplication is given by the Lie bracket. (Note that a matrix with ordinary
matrix multiplication is in the category IsOrdinaryMatrix, see 24.1.2.)

Each matrix created by LieObject is in the category IsLieMatrix, and arithmetic operations with objects
in IsLieMatrix produce again matrices in IsLieMatrix.

24.2 Operators for Matrices

The rules for arithmetic operations involving matrices are in fact special cases of those for the arithmetic of
lists, given in Section 21.11 and the following sections, here we reiterate that definition, in the language of
vectors and matrices.

Note that the additive behaviour sketched below is defined only for lists in the category IsGeneral-
izedRowVector, and the multiplicative behaviour is defined only for lists in the category IsMultiplica-
tiveGeneralizedRowVector (see 21.12).

1 I mat1 + mat2 O

returns the sum of the two matrices mat1 and mat2 , Probably the most usual situation is that mat1 and
mat2 have the same dimensions and are defined over a common field; in this case the sum is a new matrix
over the same field where each entry is the sum of the corresponding entries of the matrices.

In more general situations, the sum of two matrices need not be a matrix, for example adding an integer
matrix mat1 and a matrix mat2 over a finite field yields the table of pointwise sums, which will be a mixture
of finite field elements and integers if mat1 has bigger dimensions than mat2 .

2 I scalar + mat O
I mat + scalar O

returns the sum of the scalar scalar and the matrix mat . Probably the most usual situation is that the
entries of mat lie in a common field with scalar ; in this case the sum is a new matrix over the same field
where each entry is the sum of the scalar and the corresponding entry of the matrix.

More general situations are for example the sum of an integer scalar and a matrix over a finite field, or the
sum of a finite field element and an integer matrix.

3 I mat1 - mat2
I scalar - mat O
I mat - scalar O

Subtracting a matrix or scalar is defined as adding its additive inverse, so the statements for the addition
hold likewise.

4 I scalar * mat O
I mat * scalar O

returns the product of the scalar scalar and the matrix mat . Probably the most usual situation is that the
elements of mat lie in a common field with scalar ; in this case the product is a new matrix over the same
field where each entry is the product of the scalar and the corresponding entry of the matrix.

Section 2. Operators for Matrices 225

More general situations are for example the product of an integer scalar and a matrix over a finite field, or
the product of a finite field element and an integer matrix.

5 I vec * mat O

returns the product of the row vector vec and the matrix mat . Probably the most usual situation is that
vec and mat have the same lengths and are defined over a common field, and that all rows of mat have the
same length m, say; in this case the product is a new row vector of length m over the same field which is
the sum of the scalar multiples of the rows of mat with the corresponding entries of vec.

More general situations are for example the product of an integer vector and a matrix over a finite field, or
the product of a vector over a finite field and an integer matrix.

6 I mat * vec O

returns the product of the matrix mat and the row vector vec. (This is the standard product of a matrix
with a column vector.) Probably the most usual situation is that the length of vec and of all rows of mat
are equal, and that the elements of mat and vec lie in a common field; in this case the product is a new row
vector of the same length as mat and over the same field which is the sum of the scalar multiples of the
columns of mat with the corresponding entries of vec.

More general situations are for example the product of an integer matrix and a vector over a finite field, or
the product of a matrix over a finite field and an integer vector.

7 I mat1 * mat2 O

This form evaluates to the (Cauchy) product of the two matrices mat1 and mat2 . Probably the most usual
situation is that the number of columns of mat1 equals the number of rows of mat2 , and that the elements
of mat and vec lie in a common field; if mat1 is a matrix with m rows and n columns, say, and mat2 is a
matrix with n rows and o columns, the result is a new matrix with m rows and o columns. The element in
row i at position j of the product is the sum of mat1 [i][l] ∗mat2 [l][j], with l running from 1 to n.

8 I Inverse(mat) O

returns the inverse of the matrix mat , which must be an invertible square matrix. If mat is not invertible
then fail is returned.

9 I mat1 / mat2 O
I scalar / mat O
I mat / scalar O
I vec / mat O

In general, left / right is defined as left * right^-1. Thus in the above forms the right operand must always
be invertible.

10 I mat ^ int O
I mat1 ^ mat2 O
I vec ^ mat O

Powering a square matrix mat by an integer int yields the int-th power of mat ; if int is negative then mat
must be invertible, if int is 0 then the result is the identity matrix One(mat), even if mat is not invertible.

Powering a square matrix mat1 by an invertible square matrix mat2 of the same dimensions yields the
conjugate of mat1 by mat2 , i.e., the matrix mat2^-1 * mat1 * mat2 .

Powering a row vector vec by a matrix mat is in every respect equivalent to vec * mat . This operations
reflects the fact that matrices act naturally on row vectors by multiplication from the right, and that the
powering operator is GAP’s standard for group actions.

226 Chapter 24. Matrices

11 I Comm(mat1, mat2) O

returns the commutator of the square invertible matrices mat1 and mat2 of the same dimensions and over
a common field, which is the matrix mat1^-1 * mat2^-1 * mat1 * mat2 .

The following cases are still special cases of the general list arithmetic defined in 21.11.

12 I scalar + matlist O
I matlist + scalar O
I scalar - matlist O
I matlist - scalar O
I scalar * matlist O
I matlist * scalar O
I matlist / scalar O

A scalar scalar may also be added, subtracted, multiplied with, or divided into a list matlist of matrices.
The result is a new list of matrices where each matrix is the result of performing the operation with the
corresponding matrix in matlist .

13 I mat * matlist O
I matlist * mat O

A matrix mat may also be multiplied with a list matlist of matrices. The result is a new list of matrices,
where each entry is the product of mat and the corresponding entry in matlist .

14 I matlist / mat O

Dividing a list matlist of matrices by an invertible matrix mat evaluates to matlist * mat^-1.

15 I vec * matlist O

returns the product of the vector vec and the list of matrices mat . The lengths l of vec and matlist must
be equal. All matrices in matlist must have the same dimensions. The elements of vec and the elements of
the matrices in matlist must lie in a common ring. The product is the sum over vec[i] * matlist[i] with i
running from 1 to l .

For the mutability of results of arithmetic operations, see 12.6.

24.3 Properties and Attributes of Matrices

1 I DimensionsMat(mat) A

is a list of length 2, the first being the number of rows, the second being the number of columns of the
matrix mat .

gap> DimensionsMat([[1,2,3],[4,5,6]]);
[2, 3]

2 I DefaultFieldOfMatrix(mat) A

For a matrix mat , DefaultFieldOfMatrix returns either a field (not necessarily the smallest one) containing
all entries of mat , or fail.

If mat is a matrix of finite field elements or a matrix of cyclotomics, DefaultFieldOfMatrix returns the
default field generated by the matrix entries (see 57.3 and 18.1).

Section 3. Properties and Attributes of Matrices 227

gap> DefaultFieldOfMatrix([[Z(4),Z(8)]]);
GF(2^6)

3 I TraceMat(mat) F
I Trace(mat) F

The trace of a square matrix is the sum of its diagonal entries.

gap> TraceMat([[1,2,3],[4,5,6],[7,8,9]]);
15

4 I DeterminantMat(mat) A
I Determinant(mat) F

returns the determinant of the square matrix mat .

These methods assume implicitly that mat is defined over an integral domain whose quotient field is imple-
mented in GAP. For matrices defined over an arbitrary commutative ring with one see 24.3.6.

5 I DeterminantMatDestructive(mat) O

Does the same as DeterminantMat, with the difference that it may destroy its argument. The matrix mat
must be mutable.

gap> DeterminantMat([[1,2],[2,1]]);
-3
gap> mm:= [[1,2],[2,1]];;
gap> DeterminantMatDestructive(mm);
-3
gap> mm;
[[1, 2], [0, -3]]

6 I DeterminantMatDivFree(mat) O

returns the determinant of a square matrix mat over an arbitrary commutative ring with one using the
division free method of Mahajan and Vinay [MV97].

7 I IsMonomialMatrix(mat) P

A matrix is monomial if and only if it has exactly one nonzero entry in every row and every column.

gap> IsMonomialMatrix([[0,1],[1,0]]);
true

8 I IsDiagonalMat(mat) O

returns true if mat has only zero entries off the main diagonal, false otherwise.

9 I IsUpperTriangularMat(mat) O

returns true if mat has only zero entries below the main diagonal, false otherwise.

10 I IsLowerTriangularMat(mat) O

returns true if mat has only zero entries below the main diagonal, false otherwise.

228 Chapter 24. Matrices

24.4 Matrix Constructions

1 I IdentityMat(m [, F]) F

returns a (mutable) m×m identity matrix over the field given by F (i.e. the smallest field containing the
element F or F itself if it is a field).

2 I NullMat(m, n [, F]) F

returns a (mutable) m×n null matrix over the field given by F .

gap> IdentityMat(3,1);
[[1, 0, 0], [0, 1, 0], [0, 0, 1]]
gap> NullMat(3,2,Z(3));
[[0*Z(3), 0*Z(3)], [0*Z(3), 0*Z(3)], [0*Z(3), 0*Z(3)]]

3 I EmptyMatrix(char) F

is an empty (ordinary) matrix in characteristic char that can be added to or multiplied with empty lists
(representing zero-dimensional row vectors). It also acts (via ^) on empty lists.

gap> EmptyMatrix(5);
EmptyMatrix(5)
gap> AsList(last);
[]

4 I DiagonalMat(vector) F

returns a diagonal matrix mat with the diagonal entries given by vector .

gap> DiagonalMat([1,2,3]);
[[1, 0, 0], [0, 2, 0], [0, 0, 3]]

5 I PermutationMat(perm, dim [, F]) F

returns a matrix in dimension dim over the field given by F (i.e. the smallest field containing the element
F or F itself if it is a field) that represents the permutation perm acting by permuting the basis vectors as
it permutes points.

gap> PermutationMat((1,2,3),4,1);
[[0, 1, 0, 0], [0, 0, 1, 0], [1, 0, 0, 0], [0, 0, 0, 1]]

6 I TransposedMatImmutable(mat) A
I TransposedMatAttr(mat) AM
I TransposedMat(mat) AM
I TransposedMatMutable(mat) O
I TransposedMatOp(mat) O

These functions all return the transposed of the matrix mat , i.e., a matrix trans such that trans[i][k] =
mat[k][i] holds.

They differ only w.r.t. the mutability of the result.

TransposedMat is an attribute and hence returns an immutable result. TransposedMatMutable is guaranteed
to return a new mutable matrix.

TransposedMatImmutable and TransposedMatAttr are synonyms of TransposedMat, and Transposed-
MatOp is a synonym of TransposedMatMutable, in analogy to operations such as Zero (see 30.10.3).

Section 4. Matrix Constructions 229

7 I TransposedMatDestructive(mat) O

If mat is a mutable matrix, then the transposed is computed by swapping the entries in mat . In this way
mat gets changed. In all other cases the transposed is computed by TransposedMat.

gap> TransposedMat([[1,2,3],[4,5,6],[7,8,9]]);
[[1, 4, 7], [2, 5, 8], [3, 6, 9]]
gap> mm:= [[1,2,3],[4,5,6],[7,8,9]];;
gap> TransposedMatDestructive(mm);
[[1, 4, 7], [2, 5, 8], [3, 6, 9]]
gap> mm;
[[1, 4, 7], [2, 5, 8], [3, 6, 9]]

8 I KroneckerProduct(mat1, mat2) O

The Kronecker product of two matrices is the matrix obtained when replacing each entry a of mat1 by the
product a*mat2 in one matrix.

gap> KroneckerProduct([[1,2]],[[5,7],[9,2]]);
[[5, 7, 10, 14], [9, 2, 18, 4]]

9 I ReflectionMat(coeffs) F
I ReflectionMat(coeffs, root) F
I ReflectionMat(coeffs, conj) F
I ReflectionMat(coeffs, conj, root) F

Let coeffs be a row vector. ReflectionMat returns the matrix of the reflection in this vector.

More precisely, if coeffs is the coefficients of a vector v w.r.t. a basis B (see 59.4.2), say, then the returned
matrix describes the reflection in v w.r.t. B as a map on a row space, with action from the right.

The optional argument root is a root of unity that determines the order of the reflection. The default is a
reflection of order 2. For triflections one should choose a third root of unity etc. (see 18.1.1).

conj is a function of one argument that conjugates a ring element. The default is ComplexConjugate.

The matrix of the reflection in v is defined as

M = In + v tr · w − 1
vv tr

· v

where w = root, n is the length of the coefficient list, and denotes the conjugation.

10 I PrintArray(array) F

pretty-prints the array array .

11 I MutableIdentityMat(m [, F]) F

returns a (mutable) m×m identity matrix over the field given by F . This is identical to IdentityMat and is
present in GAP 4.1 only for the sake of compatibility with beta-releases. It should not be used in new code.

12 I MutableNullMat(m, n [, F]) F

returns a (mutable) m×n null matrix over the field given by F . This is identical to NullMat and is present
in GAP 4.1 only for the sake of compatibility with beta-releases. It should not be used in new code.

13 I MutableCopyMat(mat) O

MutableCopyMat returns a fully mutable copy of the matrix mat .

The default method does List(mat,ShallowCopy) and thus may also be called for the empty list, returning
a new empty list.

230 Chapter 24. Matrices

24.5 Random Matrices

1 I RandomMat(m, n [, R]) F

RandomMat returns a new mutable random matrix with m rows and n columns with elements taken from
the ring R, which defaults to Integers.

2 I RandomInvertibleMat(m [, R]) F

RandomInvertibleMat returns a new mutable invertible random matrix with m rows and columns with
elements taken from the ring R, which defaults to Integers.

3 I RandomUnimodularMat(m) F

returns a new random mutable m×m matrix with integer entries that is invertible over the integers.

gap> RandomMat(2,3,GF(3));
[[Z(3), Z(3), 0*Z(3)], [Z(3), Z(3)^0, Z(3)]]
gap> RandomInvertibleMat(4);
[[1, -2, -1, 0], [1, 0, 1, -1], [0, 2, 0, 4], [-1, -3, 1, -4]]

24.6 Matrices Representing Linear Equations and the Gaussian Algorithm

1 I RankMat(mat) A

If mat is a matrix whose rows span a free module over the ring generated by the matrix entries and their
inverses then RankMat returns the dimension of this free module. Otherwise fail is returned.

Note that RankMat may perform a Gaussian elimination. For large rational matrices this may take very long,
because the entries may become very large.

gap> mat:=[[1,2,3],[4,5,6],[7,8,9]];;
gap> RankMat(mat);
2

2 I TriangulizeMat(mat) O

applies the Gaussian Algorithm to the mutable matrix mat and changes mat such that it is in upper
triangular normal form (sometimes called “Hermite normal form”).

gap> m:=TransposedMatMutable(mat);
[[1, 4, 7], [2, 5, 8], [3, 6, 9]]
gap> TriangulizeMat(m);m;
[[1, 0, -1], [0, 1, 2], [0, 0, 0]]

3 I NullspaceMat(mat) A
I TriangulizedNullspaceMat(mat) A

returns a list of row vectors that form a basis of the vector space of solutions to the equation vec*mat=0.
The result is an immutable matrix. This basis is not guaranteed to be in any specific form.

The variant TriangulizedNullspaceMat returns a basis of the nullspace in triangulized form as is often
needed for algorithms.

4 I NullspaceMatDestructive(mat) O
I TriangulizedNullspaceMatDestructive(mat) O

This function does the same as NullspaceMat. However, the latter function makes a copy of mat to avoid
having to change it. This function does not do that; it returns the null space and may destroy mat ; this
saves a lot of memory in case mat is big. The matrix mat must be mutable.

Section 7. Eigenvectors and eigenvalues 231

The variant TriangulizedNullspaceMatDestructive returns a basis of the nullspace in triangulized form.
It may destroy the matrix mat .

gap> mat:=[[1,2,3],[4,5,6],[7,8,9]];;
gap> NullspaceMat(mat);
[[1, -2, 1]]
gap> mm:=[[1,2,3],[4,5,6],[7,8,9]];;
gap> NullspaceMatDestructive(mm);
[[1, -2, 1]]
gap> mm;
[[1, 2, 3], [0, -3, -6], [0, 0, 0]]

5 I SolutionMat(mat, vec) O

returns a row vector x that is a solution of the equation x * mat = vec. It returns fail if no such vector
exists.

6 I SolutionMatDestructive(mat, vec) O

Does the same as SolutionMat(mat, vec) except that it may destroy the matrix mat . The matrix mat
must be mutable.

gap> mat:=[[1,2,3],[4,5,6],[7,8,9]];;
gap> SolutionMat(mat,[3,5,7]);
[5/3, 1/3, 0]
gap> mm:=[[1,2,3],[4,5,6],[7,8,9]];;
gap> SolutionMatDestructive(mm, [3,5,7]);
[5/3, 1/3, 0]
gap> mm;
[[1, 2, 3], [0, -3, -6], [0, 0, 0]]

7 I BaseFixedSpace(mats) F

BaseFixedSpace returns a list of row vectors that form a base of the vector space V such that vM = v for
all v in V and all matrices M in the list mats. (This is the common eigenspace of all matrices in mats for
the eigenvalue 1.)

gap> BaseFixedSpace([[[1,2],[0,1]]]);
[[0, 1]]

24.7 Eigenvectors and eigenvalues
1 I GeneralisedEigenvalues(F, A) O

I GeneralizedEigenvalues(F, A) O

The generalised eigenvalues of the matrix A over the field F .

2 I GeneralisedEigenspaces(F, A) O
I GeneralizedEigenspaces(F, A) O

The generalised eigenspaces of the matrix A over the field F .

3 I Eigenvalues(F, A) O

The eigenvalues of the matrix A over the field F .

4 I Eigenspaces(F, A) O

The eigenspaces of the matrix A over the field F .

5 I Eigenvectors(F, A) O

The eigenspaces of the matrix A over the field F .

232 Chapter 24. Matrices

24.8 Elementary Divisors

See also chapter 25.

1 I ElementaryDivisorsMat([ring,] mat) O
I ElementaryDivisorsMatDestructive(ring, mat) F

ElementaryDivisors returns a list of the elementary divisors, i.e., the unique d with d[i] divides d[i+1]
and mat is equivalent to a diagonal matrix with the elements d[i] on the diagonal. The operations are
performed over the ring ring , which must contain all matrix entries. For compatibility reasons it can be
omitted and defaults to Integers.

The function ElementaryDivisorsMatDestructive produces the same result but in the process destroys
the contents of mat .

gap> mat:=[[1,2,3],[4,5,6],[7,8,9]];;
gap> ElementaryDivisorsMat(mat);
[1, 3, 0]
gap> x:=X(Rationals,"x");;
gap> mat:=mat*One(x)-x*mat^0;
[[-x+1, 2, 3], [4, -x+5, 6], [7, 8, -x+9]]
gap> ElementaryDivisorsMat(PolynomialRing(Rationals,1),mat);
[1, 1, x^3-15*x^2-18*x]
gap> mat:=KroneckerProduct(CompanionMat((x-1)^2),CompanionMat((x^3-1)*(x-1)));;
gap> mat:=mat*One(x)-x*mat^0;
[[-x, 0, 0, 0, 0, 0, 0, 1], [0, -x, 0, 0, -1, 0, 0, -1],
[0, 0, -x, 0, 0, -1, 0, 0], [0, 0, 0, -x, 0, 0, -1, -1],
[0, 0, 0, -1, -x, 0, 0, -2], [1, 0, 0, 1, 2, -x, 0, 2],
[0, 1, 0, 0, 0, 2, -x, 0], [0, 0, 1, 1, 0, 0, 2, -x+2]]

gap> ElementaryDivisorsMat(PolynomialRing(Rationals,1),mat);
[1, 1, 1, 1, 1, 1, x-1, x^7-x^6-2*x^4+2*x^3+x-1]

2 I DiagonalizeMat(ring, mat) O

brings the mutable matrix mat , considered as a matrix over ring , into diagonal form by elementary row and
column operations.

gap> m:=[[1,2],[2,1]];;
gap> DiagonalizeMat(Integers,m);m;
[[1, 0], [0, 3]]

24.9 Echelonized Matrices

1 I SemiEchelonMat(mat) A

A matrix over a field F is in semi-echelon form if the first nonzero element in each row is the identity of F ,
and all values exactly below these pivots are the zero of F .

SemiEchelonMat returns a record that contains information about a semi-echelonized form of the matrix
mat .

The components of this record are

vectors
list of row vectors, each with pivot element the identity of F ,

Section 9. Echelonized Matrices 233

heads
list that contains at position i , if nonzero, the number of the row for that the pivot element is in
column i .

2 I SemiEchelonMatDestructive(mat) O

This does the same as SemiEchelonMat(mat), except that it may (and probably will) destroy the matrix
mat .

gap> mm:=[[1,2,3],[4,5,6],[7,8,9]];;
gap> SemiEchelonMatDestructive(mm);
rec(heads := [1, 2, 0], vectors := [[1, 2, 3], [0, 1, 2]])
gap> mm;
[[1, 2, 3], [0, 1, 2], [0, 0, 0]]

3 I SemiEchelonMatTransformation(mat) A

does the same as SemiEchelonMat but additionally stores the linear transformation T performed on the
matrix. The additional components of the result are

coeffs
a list of coefficients vectors of the vectors component, with respect to the rows of mat , that is,
coeffs * mat is the vectors component.

relations
a list of basis vectors for the (left) null space of mat .

gap> SemiEchelonMatTransformation([[1,2,3],[0,0,1]]);
rec(heads := [1, 0, 2], vectors := [[1, 2, 3], [0, 0, 1]],
coeffs := [[1, 0], [0, 1]], relations := [])

4 I SemiEchelonMats(mats) O

A list of matrices over a field F is in semi-echelon form if the list of row vectors obtained on concatenating
the rows of each matrix is a semi-echelonized matrix (see 24.9.1).

SemiEchelonMats returns a record that contains information about a semi-echelonized form of the list mats
of matrices.

The components of this record are

vectors
list of matrices, each with pivot element the identity of F ,

heads
matrix that contains at position [i ,j], if nonzero, the number of the matrix that has the pivot element
in this position

5 I SemiEchelonMatsDestructive(mats) O

Does the same as SemiEchelonmats, except that it may destroy its argument. Therefore the argument must
be a list of matrices that re mutable.

234 Chapter 24. Matrices

24.10 Matrices as Basis of a Row Space
1 I BaseMat(mat) A

returns a basis for the row space generated by the rows of mat in the form of an immutable matrix.

2 I BaseMatDestructive(mat) O

Does the same as BaseMat, with the difference that it may destroy the matrix mat . The matrix mat must
be mutable.

gap> mat:=[[1,2,3],[4,5,6],[7,8,9]];;
gap> BaseMat(mat);
[[1, 2, 3], [0, 1, 2]]
gap> mm:= [[1,2,3],[4,5,6],[5,7,9]];;
gap> BaseMatDestructive(mm);
[[1, 2, 3], [0, 1, 2]]
gap> mm;
[[1, 2, 3], [0, 1, 2], [0, 0, 0]]

3 I BaseOrthogonalSpaceMat(mat) A

Let V be the row space generated by the rows of mat (over any field that contains all entries of mat).
BaseOrthogonalSpaceMat(mat) computes a base of the orthogonal space of V .
The rows of mat need not be linearly independent.

4 I SumIntersectionMat(M1, M2) O

performs Zassenhaus’ algorithm to compute bases for the sum and the intersection of spaces generated by
the rows of the matrices M1 , M2 .
returns a list of length 2, at first position a base of the sum, at second position a base of the intersection.
Both bases are in semi-echelon form (see 24.9).

gap> SumIntersectionMat(mat,[[2,7,6],[5,9,4]]);
[[[1, 2, 3], [0, 1, 2], [0, 0, 1]], [[1, -3/4, -5/2]]]

5 I BaseSteinitzVectors(bas, mat) F

find vectors extending mat to a basis spanning the span of bas. Both bas and mat must be matrices of full
(row) rank. It returns a record with the following components:

subspace
is a basis of the space spanned by mat in upper triangular form with leading ones at all echelon
steps and zeroes above these ones.

factorspace
is a list of extending vectors in upper triangular form.

factorzero
is a zero vector.

heads
is a list of integers which can be used to decompose vectors in the basis vectors. The ith entry
indicating the vector that gives an echelon step at position i . A negative number indicates an
echelon step in the subspace, a positive number an echelon step in the complement, the absolute
value gives the position of the vector in the lists subspace and factorspace.

gap> BaseSteinitzVectors(IdentityMat(3,1),[[11,13,15]]);
rec(factorspace := [[0, 1, 15/13], [0, 0, 1]],
factorzero := [0, 0, 0], subspace := [[1, 13/11, 15/11]],
heads := [-1, 1, 2])

See also chapter 25

Section 12. Matrices as Linear Mappings 235

24.11 Triangular Matrices

1 I DiagonalOfMat(mat) O

returns the diagonal of mat as a list.

gap> DiagonalOfMat([[1,2],[3,4]]);
[1, 4]

2 I UpperSubdiagonal(mat, pos) O

returns a mutable list containing the entries of the posth upper subdiagonal of mat .

gap> UpperSubdiagonal(mat,1);
[2, 6]

3 I DepthOfUpperTriangularMatrix(mat) A

If mat is an upper triangular matrix this attribute returns the index of the first nonzero diagonal.

gap> DepthOfUpperTriangularMatrix([[0,1,2],[0,0,1],[0,0,0]]);
1
gap> DepthOfUpperTriangularMatrix([[0,0,2],[0,0,0],[0,0,0]]);
2

24.12 Matrices as Linear Mappings

1 I CharacteristicPolynomial(mat) A
I CharacteristicPolynomial([[F, E,] mat [, ind]) O

For a square matrix mat , CharacteristicPolynomial returns the characteristic polynomial of mat ,
that is, the StandardAssociate of the determinant of the matrix mat −X · I , where X is an indeterminate
and I is the appropriate identity matrix.

If fields F and E are given, then F must be a subfield of E , and mat must have entries in E . Then
CharacteristicPolynomial returns the characteristic polynomial of the F -linear mapping induced by mat
on the underlying E -vector space of mat . In this case, the characteristic polynomial is computed using
BlownUpMat (see 24.12.3) for the field extension of E/F generated by the default field. Thus, if F = E , the
result is the same as for the one argument version.

The returned polynomials are expressed in the indeterminate number ind . If ind is not given, it defaults to
1.

CharacteristicPolynomial(F, E, mat) is a multiple of the minimal polynomial MinimalPolynomial(F,
mat) (see 64.8.1).

Note that, up to GAP version 4.4.6, CharacteristicPolynomial only allowed to specify one field (cor-
responding to F) as an argument. That usage has been disabled because its definition turned out to be
ambiguous and may have lead to unexpected results. (To ensure backward compatibility, it is still possible
to use the old form if F contains the default field of the matrix, see 24.3.2, but this feature will disappear
in future versions of GAP.)

236 Chapter 24. Matrices

gap> CharacteristicPolynomial([[1, 1], [0, 1]]);
x^2-2*x+1
gap> mat := [[0,1],[E(4)-1,E(4)]];;
gap> CharacteristicPolynomial(mat);
x^2+(-E(4))*x+(1-E(4))
gap> CharacteristicPolynomial(Rationals, CF(4), mat);
x^4+3*x^2+2*x+2
gap> mat:= [[E(4), 1], [0, -E(4)]];;
gap> CharacteristicPolynomial(mat);
x^2+1
gap> CharacteristicPolynomial(Rationals, CF(4), mat);
x^4+2*x^2+1

2 I JordanDecomposition(mat) A

JordanDecomposition(mat) returns a list [S,N] such that S is a semisimple matrix and N is nilpotent.
Furthermore, S and N commute and mat=S+N.

gap> mat:=[[1,2,3],[4,5,6],[7,8,9]];;
gap> JordanDecomposition(mat);
[[[1, 2, 3], [4, 5, 6], [7, 8, 9]],
[[0, 0, 0], [0, 0, 0], [0, 0, 0]]]

3 I BlownUpMat(B, mat) F

Let B be a basis of a field extension F/K , and mat a matrix whose entries are all in F . (This is not
checked.) BlownUpMat returns a matrix over K that is obtained by replacing each entry of mat by its regular
representation w.r.t. B .

More precisely, regard mat as the matrix of a linear transformation on the row space F n w.r.t. the F -basis
with vectors (v1, ldots, vn), say, and suppose that the basis B consists of the vectors (b1, . . . , bm); then the
returned matrix is the matrix of the linear transformation on the row space K mn w.r.t. the K -basis whose
vectors are (b1v1, . . . bmv1, . . . , bmvn).

Note that the linear transformations act on row vectors, i.e., each row of the matrix is a concatenation of
vectors of B -coefficients.

4 I BlownUpVector(B, vector) F

Let B be a basis of a field extension F/K , and vector a row vector whose entries are all in F . BlownUpVector
returns a row vector over K that is obtained by replacing each entry of vector by its coefficients w.r.t. B .

So BlownUpVector and BlownUpMat (see 24.12.3) are compatible in the sense that for a matrix mat over F ,
BlownUpVector(B, mat * vector) is equal to BlownUpMat(B, mat) * BlownUpVector(B, vector
).

gap> B:= Basis(CF(4), [1, E(4)]);;
gap> mat:= [[1, E(4)], [0, 1]];; vec:= [1, E(4)];;
gap> bmat:= BlownUpMat(B, mat);; bvec:= BlownUpVector(B, vec);;
gap> Display(bmat); bvec;
[[1, 0, 0, 1],
[0, 1, -1, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]]

[1, 0, 0, 1]
gap> bvec * bmat = BlownUpVector(B, vec * mat);
true

Section 13. Matrices over Finite Fields 237

5 I CompanionMat(poly) F

computes a companion matrix of the polynomial poly . This matrix has poly as its minimal polynomial.

24.13 Matrices over Finite Fields

Just as for row vectors, (see section 23.2), GAP has a special representation for matrices over small finite
fields.
To be eligible to be represented in this way, each row of a matrix must be able to be represented as a compact
row vector of the same length over the same finite field.

gap> v := Z(2)*[1,0,0,1,1];
[Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0]
gap> ConvertToVectorRep(v,2);
2
gap> v;
<a GF2 vector of length 5>
gap> m := [v];; ConvertToMatrixRep(m,GF(2));; m;
<a 1x5 matrix over GF2>
gap> m := [v,v];; ConvertToMatrixRep(m,GF(2));; m;
<a 2x5 matrix over GF2>
gap> m := [v,v,v];; ConvertToMatrixRep(m,GF(2));; m;
<a 3x5 matrix over GF2>
gap> v := Z(3)*[1..8];
[Z(3), Z(3)^0, 0*Z(3), Z(3), Z(3)^0, 0*Z(3), Z(3), Z(3)^0]
gap> ConvertToVectorRep(v);
3
gap> m := [v];; ConvertToMatrixRep(m,GF(3));; m;
[[Z(3), Z(3)^0, 0*Z(3), Z(3), Z(3)^0, 0*Z(3), Z(3), Z(3)^0]]
gap> RepresentationsOfObject(m);
["IsPositionalObjectRep", "Is8BitMatrixRep"]
gap> m := [v,v,v,v];; ConvertToMatrixRep(m,GF(3));; m;
< mutable compressed matrix 4x8 over GF(3) >

All compressed matrices over GF(2) are viewed as <a nxm matrix over GF2>, while over fields GF(q) for
q between 3 and 256, matrices with 25 or more entries are viewed in this way, and smaller ones as lists of
lists.
Matrices can be converted to this special representation via the following functions.

1 I ImmutableMatrix(field, matrix, [change]) F

returns an immutable matrix equal to matrix which is in the most compact representation possible over field .
The input matrix matrix or its rows might change the representation, however the result of ImmutableMatrix
is not necessarily identical to matrix if a conversion is not possible. If change is true, the rows of matrix
(or matrix itself) may be changed to become immutable (otherwise they are copied first).

2 I ConvertToMatrixRep(list) F
I ConvertToMatrixRep(list, field) F
I ConvertToMatrixRep(list, fieldsize) F
I ConvertToMatrixRepNC(list) F
I ConvertToMatrixRepNC(list, field) F
I ConvertToMatrixRepNC(list, fieldsize) F

ConvertToMatrixRep(list) converts list to an internal matrix representation if possible. ConvertToMa-
trixRep(list , field) converts list to an internal matrix representation appropriate for a matrix over
field .

238 Chapter 24. Matrices

It is forbidden to call this function unless all elements of list are vectors with entries in field . Violation of
this condition can lead to unpredictable behaviour or a system crash. (Setting the assertion level to at least
2 might catch some violations before a crash, see 7.5.1.)

Instead of a field also its size fieldsize may be given.

list may already be a compressed matrix. In this case, if no field or fieldsize is given, then nothing happens.

list itself may be mutable, but its entries must be immutable.

The return value is the size of the field over which the matrix ends up written, if it is written in a compressed
representation.

In general, it is better to call ImmutableMatrix (see 24.13.1) instead since this function can also deal with
mutable rows or rows locked in a wrong representation.

Note that the main advantage of this special representation of matrices is in low dimensions, where various
overheads can be reduced. In higher dimensions, a list of compressed vectors will be almost as fast. Note
also that list access and assignment will be somewhat slower for compressed matrices than for plain lists.

In order to form a row of a compressed matrix a vector must accept certain restrictions. Specifically, it
cannot change its length or change the field over which it is compressed. The main consequences of this are:
that only elements of the appropriate field can be assigned to entries of the vector, and only to positions
between 1 and the original length; that the vector cannot be shared between two matrices compressed over
different fields.

This is enforced by the filter IsLockedRepresentationVector. When a vector becomes part of a compressed
matrix, this filter is set for it. Assignment, Unbind, ConvertToVectorRep and ConvertToMatrixRep are all
prevented from altering a vector with this filter.

gap> v := [Z(2),Z(2)];; ConvertToVectorRep(v,GF(2));; v;
<a GF2 vector of length 2>
gap> m := [v,v];
[<a GF2 vector of length 2>, <a GF2 vector of length 2>]
gap> ConvertToMatrixRep(m,GF(2));
2
gap> m2 := [m[1], [Z(4),Z(4)]]; # now try and mix in some GF(4)
[<a GF2 vector of length 2>, [Z(2^2), Z(2^2)]]
gap> ConvertToMatrixRep(m2); # but m2[1] is locked
#I ConvertToVectorRep: locked vector not converted to different field
fail
gap> m2 := [ShallowCopy(m[1]), [Z(4),Z(4)]]; # a fresh copy of row 1
[<a GF2 vector of length 2>, [Z(2^2), Z(2^2)]]
gap> ConvertToMatrixRep(m2); # now it works
4
gap> m2;
[[Z(2)^0, Z(2)^0], [Z(2^2), Z(2^2)]]
gap> RepresentationsOfObject(m2);
["IsPositionalObjectRep", "Is8BitMatrixRep"]

Arithmetic operations (see 21.11 and the following sections) preserve the compression status of matrices in
the sense that if all arguments are compressed matrices written over the same field and the result is a matrix
then also the result is a compressed matrix written over this field.

There are also two operations that are only available for matrices written over finite fields.

3 I ProjectiveOrder(mat) A

Returns an integer n and a finite field element e such that Aˆn = eI. mat must be a matrix defined over a
finite field.

Section 14. Special Multiplication Algorithms for Matrices over GF(2) 239

gap> ProjectiveOrder([[1,4],[5,2]]*Z(11)^0);
[5, Z(11)^5]

4 I SimultaneousEigenvalues(matlist, expo) F

The matrices in matlist must be matrices over GF(q) for some prime q . Together, they must generate an
abelian p-group of exponent expo. Then the eigenvalues of mat in the splitting field GF(q^r) for some r are
powers of an element ξ in the splitting field, which is of order expo. SimultaneousEigenvalues returns a
matrix of integers mod expo, say (ai ,j), such that the power ξai,j is an eigenvalue of the i -th matrix in matlist
and the eigenspaces of the different matrices to the eigenvalues ξai,j for fixed j are equal.

Finally, there are two operations that deal with matrices over a ring, but only care about the residues of their
entries modulo some ring element. In the case of the integers and a prime number p, say, this is effectively
computation in a matrix over the prime field in characteristic p.

5 I InverseMatMod(mat, obj) O

For a square matrix mat , InverseMatMod returns a matrix inv such that inv * mat is congruent to the
identity matrix modulo obj , if such a matrix exists, and fail otherwise.

gap> mat:= [[1, 2], [3, 4]];; inv:= InverseMatMod(mat, 5);
[[3, 1], [4, 2]]
gap> mat * inv;
[[11, 5], [25, 11]]

6 I NullspaceModQ(E, q) F

E must be a matrix of integers and q a prime power. Then NullspaceModQ returns the set of all vectors of
integers modulo q , which solve the homogeneous equation system given by E modulo q .

gap> mat:= [[1, 3], [1, 2], [1, 1]];; NullspaceModQ(mat, 5);
[[0, 0, 0], [1, 3, 1], [2, 1, 2], [4, 2, 4], [3, 4, 3]]

24.14 Special Multiplication Algorithms for Matrices over GF(2)

When multiplying two compressed matrices M and N over GF(2) of dimensions a × b and b × c, say,
where a, b and c are all greater than or equal to 128, GAP by default uses a more sophisticated matrix
multiplication algorithm, in which linear combinations of groups of 8 rows of M are remembered and re-
used in constructing various rows of the product. This is called level 8 grease. To optimise memory access
patterns, these combinations are stored for (b + 255)/256 sets of 8 rows at once. This number is called the
blocking level.

These levels of grease and blocking are found experimentally to give good performance across a range of
processors and matrix sizes, but other levels may do even better in some cases. You can control the levels
exactly using the functions below:

1 I PROD GF2MAT GF2MAT SIMPLE(m1, m2) F

This function performs the standard unblocked and ungreased matrix multiplication for matrices of any size.

2 I PROD GF2MAT GF2MAT ADVANCED(m1, m2, g, b) F

This function computes the product of m1 and m2 , which must be compressed matrices over GF(2) of
compatible dimensions, using level g grease and level b blocking.

We plan to include greased blocked matrix multiplication for other finite fields, and greased blocked algo-
rithms for inversion and other matrix operations in a future release.

240 Chapter 24. Matrices

24.15 Block Matrices

Block matrices are a special representation of matrices which can save a lot of memory if large matrices have
a block structure with lots of zero blocks. GAP uses the representation IsBlockMatrixRep to store block
matrices.

1 I AsBlockMatrix(m, nrb, ncb) F

returns a block matrix with nrb row blocks and ncb column blocks which is equal to the ordinary matrix m.

2 I BlockMatrix(blocks, nrb, ncb) F
I BlockMatrix(blocks, nrb, ncb, rpb, cpb, zero) F

BlockMatrix returns an immutable matrix in the sparse representation IsBlockMatrixRep. The nonzero
blocks are described by the list blocks of triples, the matrix has nrb row blocks and ncb column blocks.

If blocks is empty (i.e., if the matrix is a zero matrix) then the dimensions of the blocks must be entered as
rpb and cpb, and the zero element as zero.

Note that all blocks must be ordinary matrices (see 24.1.2), and also the block matrix is an ordinary matrix.

gap> M := BlockMatrix([[1,1,[[1, 2],[3, 4]]],
> [1,2,[[9,10],[11,12]]],
> [2,2,[[5, 6],[7, 8]]]],2,2);
<block matrix of dimensions (2*2)x(2*2)>
gap> Display(M);
[[1, 2, 9, 10],
[3, 4, 11, 12],
[0, 0, 5, 6],
[0, 0, 7, 8]]

3 I MatrixByBlockMatrix(blockmat) A

returns a plain ordinary matrix that is equal to the block matrix blockmat .

25
Integral matrices

and lattices

25.1 Linear equations over the integers and Integral Matrices

1 I NullspaceIntMat(mat) A

If mat is a matrix with integral entries, this function returns a list of vectors that forms a basis of the
integral nullspace of mat , i.e. of those vectors in the nullspace of mat that have integral entries.

gap> mat:=[[1,2,7],[4,5,6],[7,8,9],[10,11,19],[5,7,12]];;
gap> NullspaceMat(mat);
[[-7/4, 9/2, -15/4, 1, 0], [-3/4, -3/2, 1/4, 0, 1]]
gap> NullspaceIntMat(mat);
[[1, 18, -9, 2, -6], [0, 24, -13, 3, -7]]

2 I SolutionIntMat(mat, vec) O

If mat is a matrix with integral entries and vec a vector with integral entries, this function returns a vector
x with integer entries that is a solution of the equation x * mat = vec. It returns fail if no such vector
exists.

gap> mat:=[[1,2,7],[4,5,6],[7,8,9],[10,11,19],[5,7,12]];;
gap> SolutionMat(mat,[95,115,182]);
[47/4, -17/2, 67/4, 0, 0]
gap> SolutionIntMat(mat,[95,115,182]);
[2285, -5854, 4888, -1299, 0]

3 I SolutionNullspaceIntMat(mat, vec) O

This function returns a list of length two, its first entry being the result of a call to SolutionIntMat with
same arguments, the second the result of NullspaceIntMat applied to the matrix mat . The calculation is
performed faster than if two separate calls would be used.

gap> mat:=[[1,2,7],[4,5,6],[7,8,9],[10,11,19],[5,7,12]];;
gap> SolutionNullspaceIntMat(mat,[95,115,182]);
[[2285, -5854, 4888, -1299, 0],
[[1, 18, -9, 2, -6], [0, 24, -13, 3, -7]]]

4 I BaseIntMat(mat) A

If mat is a matrix with integral entries, this function returns a list of vectors that forms a basis of the
integral row space of mat , i.e. of the set of integral linear combinations of the rows of mat .

gap> mat:=[[1,2,7],[4,5,6],[10,11,19]];;
gap> BaseIntMat(mat);
[[1, 2, 7], [0, 3, 7], [0, 0, 15]]

5 I BaseIntersectionIntMats(m, n) A

If m and n are matrices with integral entries, this function returns a list of vectors that forms a basis of the
intersection of the integral row spaces of m and n.

242 Chapter 25. Integral matrices and lattices

gap> nat:=[[5,7,2],[4,2,5],[7,1,4]];;
gap> BaseIntMat(nat);
[[1, 1, 15], [0, 2, 55], [0, 0, 64]]
gap> BaseIntersectionIntMats(mat,nat);
[[1, 5, 509], [0, 6, 869], [0, 0, 960]]

6 I ComplementIntMat(full, sub) A

Let full be a list of integer vectors generating an Integral module M and sub a list of vectors defining a
submodule S . This function computes a free basis for M that extends S . I.e., if the dimension of S is n it
determines a basis B = {b1, . . . , bm} for M , as well as n integers xi such that the n vectors s i := xi · bi}
form a basis for S .

It returns a record with the following components:

complement
the vectors bn+1 up to bm (they generate a complement to S).

sub
the vectors si (a basis for S).

moduli
the factors xi .

gap> m:=IdentityMat(3);;
gap> n:=[[1,2,3],[4,5,6]];;
gap> ComplementIntMat(m,n);
rec(complement := [[0, 0, 1]], sub := [[1, 2, 3], [0, 3, 6]],
moduli := [1, 3])

25.2 Normal Forms over the Integers

1 I TriangulizedIntegerMat(mat) O

Computes an upper triangular form of a matrix with integer entries. It returns a immutable matrix in upper
triangular form.

2 I TriangulizedIntegerMatTransform(mat) O

Computes an upper triangular form of a matrix with integer entries. It returns a record with a compo-
nent normal (an immutable matrix in upper triangular form) and a component rowtrans that gives the
transformations done to the original matrix to bring it into upper triangular form.

3 I TriangulizeIntegerMat(mat) O

Changes mat to be in upper triangular form. (The result is the same as that of TriangulizedIntegerMat,
but mat will be modified, thus using less memory.) If mat is immutable an error will be triggered.

gap> m:=[[1,15,28],[4,5,6],[7,8,9]];;
gap> TriangulizedIntegerMat(m);
[[1, 15, 28], [0, 1, 1], [0, 0, 3]]
gap> n:=TriangulizedIntegerMatTransform(m);
rec(normal := [[1, 15, 28], [0, 1, 1], [0, 0, 3]],
rowC := [[1, 0, 0], [0, 1, 0], [0, 0, 1]],
rowQ := [[1, 0, 0], [1, -30, 17], [-3, 97, -55]], rank := 3,
signdet := 1, rowtrans := [[1, 0, 0], [1, -30, 17], [-3, 97, -55]])

gap> n.rowtrans*m=n.normal;
true

Section 2. Normal Forms over the Integers 243

gap> TriangulizeIntegerMat(m); m;
[[1, 15, 28], [0, 1, 1], [0, 0, 3]]

The Hermite Normal Form (HNF), H of an integer matrix, A is a row equivalent upper triangular form such
that all off-diagonal entries are reduced modulo the diagonal entry of the column they are in. There exists
a unique unimodular matrix Q such that QA = H .

4 I HermiteNormalFormIntegerMat(mat) O

This operation computes the Hermite normal form of a matrix mat with integer entries. It returns a im-
mutable matrix in HNF.

5 I HermiteNormalFormIntegerMatTransform(mat) O

This operation computes the Hermite normal form of a matrix mat with integer entries. It returns a record
with components normal (a matrix H) and rowtrans (a matrix Q) such that QA = H

gap> m:=[[1,15,28],[4,5,6],[7,8,9]];;
gap> HermiteNormalFormIntegerMat(m);
[[1, 0, 1], [0, 1, 1], [0, 0, 3]]
gap> n:=HermiteNormalFormIntegerMatTransform(m);
rec(normal := [[1, 0, 1], [0, 1, 1], [0, 0, 3]],
rowC := [[1, 0, 0], [0, 1, 0], [0, 0, 1]],
rowQ := [[-2, 62, -35], [1, -30, 17], [-3, 97, -55]], rank := 3,
signdet := 1,
rowtrans := [[-2, 62, -35], [1, -30, 17], [-3, 97, -55]])

gap> n.rowtrans*m=n.normal;
true

The Smith Normal Form,S , of an integer matrix A is the unique equivalent diagonal form with Si dividing
Sj for i < j . There exist unimodular integer matrices P ,Q such that PAQ = S ·

6 I SmithNormalFormIntegerMat(mat) O

This operation computes the Smith normal form of a matrix mat with integer entries. It returns a new
immutable matrix in the Smith normal form.

7 I SmithNormalFormIntegerMatTransforms(mat) O

This operation computes the Smith normal form of a matrix mat with integer entries. It returns a record
with components normal (a matrix S), rowtrans (a matrix P), and coltrans (a matrix Q) such that
PAQ = S .

8 I DiagonalizeIntMat(mat) O

This function changes mat to its SNF. (The result is the same as that of SmithNormalFormIntegerMat, but
mat will be modified, thus using less memory.) If mat is immutable an error will be triggered.

gap> m:=[[1,15,28],[4,5,6],[7,8,9]];;
gap> SmithNormalFormIntegerMat(m);
[[1, 0, 0], [0, 1, 0], [0, 0, 3]]
gap> n:=SmithNormalFormIntegerMatTransforms(m);
rec(normal := [[1, 0, 0], [0, 1, 0], [0, 0, 3]],
rowC := [[1, 0, 0], [0, 1, 0], [0, 0, 1]],
rowQ := [[-2, 62, -35], [1, -30, 17], [-3, 97, -55]],
colC := [[1, 0, 0], [0, 1, 0], [0, 0, 1]],
colQ := [[1, 0, -1], [0, 1, -1], [0, 0, 1]], rank := 3,
signdet := 1,

244 Chapter 25. Integral matrices and lattices

rowtrans := [[-2, 62, -35], [1, -30, 17], [-3, 97, -55]],
coltrans := [[1, 0, -1], [0, 1, -1], [0, 0, 1]])

gap> n.rowtrans*m*n.coltrans=n.normal;
true
gap> DiagonalizeIntMat(m);m;
[[1, 0, 0], [0, 1, 0], [0, 0, 3]]

All these routines build on the following “workhorse” routine:

9 I NormalFormIntMat(mat, options) O

This general operation for computation of various Normal Forms is probably the most efficient.

Options bit values:

0/1 Triangular Form / Smith Normal Form.

2 Reduce off diagonal entries.

4 Row Transformations.

8 Col Transformations.

16 Destructive (the original matrix may be destroyed)

Compute a Triangular, Hermite or Smith form of the n × m integer input matrix A. Optionally, compute
n × n and m ×m unimodular transforming matrices Q ,P which satisfy QA = H or QAP = S .

Note option is a value ranging from 0 - 15 but not all options make sense (eg reducing off diagonal entries
with SNF option selected already). If an option makes no sense it is ignored.

Returns a record with component normal containing the computed normal form and optional components
rowtrans and/or coltrans which hold the respective transformation matrix. Also in the record are com-
ponents holding the sign of the determinant, signdet, and the Rank of the matrix, rank.

gap> m:=[[1,15,28],[4,5,6],[7,8,9]];;
gap> NormalFormIntMat(m,0); # Triangular, no transforms
rec(normal := [[1, 15, 28], [0, 1, 1], [0, 0, 3]], rank := 3,
signdet := 1)

gap> NormalFormIntMat(m,6); # Hermite Normal Form with row transforms
rec(normal := [[1, 0, 1], [0, 1, 1], [0, 0, 3]],
rowC := [[1, 0, 0], [0, 1, 0], [0, 0, 1]],
rowQ := [[-2, 62, -35], [1, -30, 17], [-3, 97, -55]], rank := 3,
signdet := 1,
rowtrans := [[-2, 62, -35], [1, -30, 17], [-3, 97, -55]])

gap> NormalFormIntMat(m,13); # Smith Normal Form with both transforms
rec(normal := [[1, 0, 0], [0, 1, 0], [0, 0, 3]],
rowC := [[1, 0, 0], [0, 1, 0], [0, 0, 1]],
rowQ := [[-2, 62, -35], [1, -30, 17], [-3, 97, -55]],
colC := [[1, 0, 0], [0, 1, 0], [0, 0, 1]],
colQ := [[1, 0, -1], [0, 1, -1], [0, 0, 1]], rank := 3,
signdet := 1,
rowtrans := [[-2, 62, -35], [1, -30, 17], [-3, 97, -55]],
coltrans := [[1, 0, -1], [0, 1, -1], [0, 0, 1]])

gap> last.rowtrans*m*last.coltrans;
[[1, 0, 0], [0, 1, 0], [0, 0, 3]]

10 I AbelianInvariantsOfList(list) A

Given a list of positive integers, this routine returns a list of prime powers, such that the prime power factors
of the entries in the list are returned in sorted form.

Section 4. Decompositions 245

gap> AbelianInvariantsOfList([4,6,2,12]);
[2, 2, 3, 3, 4, 4]

25.3 Determinant of an integer matrix

1 I DeterminantIntMat(mat) O

Computes the determinant of an integer matrix using the same strategy as NormalFormIntMat (see 25.2.9).
This method is faster in general for matrices greater than 20×20 but quite a lot slower for smaller matrices.
It therefore passes the work to the more general DeterminantMat (see 24.3.4) for these smaller matrices.

25.4 Decompositions

For computing the decomposition of a vector of integers into the rows of a matrix of integers, with integral
coefficients, one can use p-adic approximations, as follows.

Let A be a square integral matrix, and p an odd prime. The reduction of A modulo p is A, its entries are
chosen in the interval [− p−1

2 , p−1
2]. If A is regular over the field with p elements, we can form A′ = A

−1
.

Now we consider the integral linear equation system xA = b, i.e., we look for an integral solution x . Define
b0 = b, and then iteratively compute

xi = (bi A′) mod p, bi+1 =
1
p

(bi − xi A), i = 0, 1, 2,

By induction, we get

pi+1bi+1 +

(
i∑

j=0

pj xj

)
A = b.

If there is an integral solution x then it is unique, and there is an index l such that bl+1 is zero and
x =

∑l
j=0 pj xj .

There are two useful generalizations of this idea. First, A need not be square; it is only necessary that there
is a square regular matrix formed by a subset of columns of A. Second, A does not need to be integral; the
entries may be cyclotomic integers as well, in this case one can replace each column of A by the columns
formed by the coefficients w.r.t. an integral basis (which are integers). Note that this preprocessing must be
performed compatibly for A and b.

GAP provides the following functions for this purpose (see also 24.13.5).

1 I Decomposition(A, B, depth) F
I Decomposition(A, B, "nonnegative") F

For a m × n matrix A of cyclotomics that has rank m ≤ n, and a list B of cyclotomic vectors, each of
length n, Decomposition tries to find integral solutions of the linear equation systems x * A = B[i], by
computing the p-adic series of hypothetical solutions.

Decomposition(A, B, depth), where depth is a nonnegative integer, computes for each vector B[i]

the initial part
∑depth

k=0 xk pk , with all xk vectors of integers with entries bounded by ± p−1
2 . The prime p is 83

first; if the reduction of A modulo p is singular, the next prime is chosen automatically.

A list X is returned. If the computed initial part for x * A = B[i] is a solution, we have X [i] = x ,
otherwise X [i] = fail.

Decomposition(A, B, "nonnegative") assumes that the solutions have only nonnegative entries, and
that the first column of A consists of positive integers. This is satisfied, e.g., for the decomposition of ordinary
characters into Brauer characters. In this case the necessary number depth of iterations can be computed;

246 Chapter 25. Integral matrices and lattices

the i-th entry of the returned list is fail if there exists no nonnegative integral solution of the system x *
A = B[i], and it is the solution otherwise.

Note that the result is a list of fail if A has not full rank, even if there might be a unique integral solution
for some equation system.

2 I LinearIndependentColumns(mat) F

Called with a matrix mat , LinearIndependentColumns returns a maximal list of column positions such
that the restriction of mat to these columns has the same rank as mat .

3 I PadicCoefficients(A, Amodpinv, b, prime, depth) F

Let A be an integral matrix, prime a prime integer, Amodpinv an inverse of A modulo prime, b an integral
vector, and depth a nonnegative integer. PadicCoefficients returns the list [x0, x1, . . . , xl , bl+1] describing
the prime-adic approximation of b (see above), where l = depth or l is minimal with the property that
bl+1 = 0.

4 I IntegralizedMat(A) F
I IntegralizedMat(A, inforec) F

IntegralizedMat returns for a matrix A of cyclotomics a record intmat with components mat and inforec.
Each family of algebraic conjugate columns of A is encoded in a set of columns of the rational matrix
intmat.mat by replacing cyclotomics in A by their coefficients w.r.t. an integral basis. intmat.inforec is a
record containing the information how to encode the columns.

If the only argument is A, the value of the component inforec is computed that can be entered as second
argument inforec in a later call of IntegralizedMat with a matrix B that shall be encoded compatibly with
A.

5 I DecompositionInt(A, B, depth) F

DecompositionInt does the same as Decomposition (see 25.4.1), except that A and B must be integral
matrices, and depth must be a nonnegative integer.

25.5 Lattice Reduction

1 I LLLReducedBasis([L,]vectors[, y][, "linearcomb"][, lllout]) F

provides an implementation of the LLL algorithm by Lenstra, Lenstra and Lovász (see [LLL82], [Poh87]).
The implementation follows the description on pages 94f. in [Coh93].

LLLReducedBasis returns a record whose component basis is a list of LLL reduced linearly independent
vectors spanning the same lattice as the list vectors. L must be a lattice, with scalar product of the vectors
v and w given by ScalarProduct(L, v, w). If no lattice is specified then the scalar product of vectors
given by ScalarProduct(v, w) is used.

In the case of the option "linearcomb", the result record contains also the components relations and
transformation, with the following meaning. relations is a basis of the relation space of vectors, i.e., of
vectors x such that x * vectors is zero. transformation gives the expression of the new lattice basis in
terms of the old, i.e., transformation * vectors equals the basis component of the result.

Another optional argument is y , the “sensitivity” of the algorithm, a rational number between 1
4 and 1 (the

default value is 3
4).

The optional argument lllout is a record with the components mue and B, both lists of length k , with the
meaning that if lllout is present then the first k vectors in vectors form an LLL reduced basis of the lattice
they generate, and lllout.mue and lllout.B contain their scalar products and norms used internally in the
algorithm, which are also present in the output of LLLReducedBasis. So lllout can be used for “incremental”
calls of LLLReducedBasis.

Section 5. Lattice Reduction 247

The function LLLReducedGramMat (see 25.5.2) computes an LLL reduced Gram matrix.

gap> vectors:= [[9, 1, 0, -1, -1], [15, -1, 0, 0, 0],
> [16, 0, 1, 1, 1], [20, 0, -1, 0, 0],
> [25, 1, 1, 0, 0]];;
gap> LLLReducedBasis(vectors, "linearcomb");; Display(last);
rec(
basis := [[1, 1, 1, 1, 1], [1, 1, -2, 1, 1], [-1, 3, -1, -1, -1],

[-3, 1, 0, 2, 2]],
relations := [[-1, 0, -1, 0, 1]],
transformation :=
[[0, -1, 1, 0, 0], [-1, -2, 0, 2, 0], [1, -2, 0, 1, 0],

[-1, -2, 1, 1, 0]],
mue := [[], [2/5], [-1/5, 1/3], [2/5, 1/6, 1/6]],
B := [5, 36/5, 12, 50/3])

2 I LLLReducedGramMat(G) F
I LLLReducedGramMat(G, y) F

LLLReducedGramMat provides an implementation of the LLL algorithm by Lenstra, Lenstra and Lovász
(see [LLL82], [Poh87]). The implementation follows the description on pages 94f. in [Coh93].

Let G the Gram matrix of the vectors (b1, b2, . . . , bn); this means G is either a square symmetric matrix or
lower triangular matrix (only the entries in the lower triangular half are used by the program).

LLLReducedGramMat returns a record whose component remainder is the Gram matrix of the LLL reduced
basis corresponding to (b1, b2, . . . , bn). If G is a lower triangular matrix then also the remainder component
of the result record is a lower triangular matrix.

The result record contains also the components relations and transformation, which have the following
meaning.

relations is a basis of the space of vectors (x1, x2, . . . , xn) such that
∑n

i=1 xi bi is zero, and transformation
gives the expression of the new lattice basis in terms of the old, i.e., transformation is the matrix T such
that T ·G · T tr is the remainder component of the result.

The optional argument y denotes the “sensitivity” of the algorithm, it must be a rational number between
1
4 and 1; the default value is y = 3

4 .

The function LLLReducedBasis (see 25.5.1) computes an LLL reduced basis.

gap> g:= [[4, 6, 5, 2, 2], [6, 13, 7, 4, 4],
> [5, 7, 11, 2, 0], [2, 4, 2, 8, 4], [2, 4, 0, 4, 8]];;
gap> LLLReducedGramMat(g);; Display(last);
rec(
remainder := [[4, 2, 1, 2, -1], [2, 5, 0, 2, 0], [1, 0, 5, 0, 2],

[2, 2, 0, 8, 2], [-1, 0, 2, 2, 7]],
relations := [],
transformation :=
[[1, 0, 0, 0, 0], [-1, 1, 0, 0, 0], [-1, 0, 1, 0, 0],

[0, 0, 0, 1, 0], [-2, 0, 1, 0, 1]],
mue := [[], [1/2], [1/4, -1/8], [1/2, 1/4, -2/25],

[-1/4, 1/8, 37/75, 8/21]],
B := [4, 4, 75/16, 168/25, 32/7])

248 Chapter 25. Integral matrices and lattices

25.6 Orthogonal Embeddings

1 I OrthogonalEmbeddings(gram[, "positive"][, maxdim]) F

computes all possible orthogonal embeddings of a lattice given by its Gram matrix gram, which must be a
regular matrix. In other words, all solutions X of the problem

X tr ·X = gram

are calculated (see [Ple90]). Usually there are many solutions X but all their rows are chosen from a small
set of vectors, so OrthogonalEmbeddings returns the solutions in an encoded form, namely as a record with
components

vectors
the list L = [x1, x2, . . . , xn] of vectors that may be rows of a solution; these are exactly those vectors
that fulfill the condition xi · gram−1 · x tr

i ≤ 1 (see 25.6.2), and we have gram =
∑n

i=1 x tr
i · xi ,

norms
the list of values xi · gram−1 · x tr

i , and

solutions
a list S of lists; the i -th solution matrix is L S[i] , so the dimension of the i -th solution is the
length of S[i].

The optional argument "positive" will cause OrthogonalEmbeddings to compute only vectors xi with
nonnegative entries. In the context of characters this is allowed (and useful) if gram is the matrix of scalar
products of ordinary characters.

When OrthogonalEmbeddings is called with the optional argument maxdim (a positive integer), only solu-
tions up to dimension maxdim are computed; this will accelerate the algorithm in some cases.

gap> b:= [[3, -1, -1], [-1, 3, -1], [-1, -1, 3]];;
gap> c:=OrthogonalEmbeddings(b);; Display(c);
rec(
vectors := [[-1, 1, 1], [1, -1, 1], [-1, -1, 1], [-1, 1, 0],

[-1, 0, 1], [1, 0, 0], [0, -1, 1], [0, 1, 0], [0, 0, 1]],
norms := [1, 1, 1, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2],
solutions := [[1, 2, 3], [1, 6, 6, 7, 7], [2, 5, 5, 8, 8],

[3, 4, 4, 9, 9], [4, 5, 6, 7, 8, 9]])
gap> c.vectors{ c.solutions[1] };
[[-1, 1, 1], [1, -1, 1], [-1, -1, 1]]

gram may be the matrix of scalar products of some virtual characters. From the characters and the embedding
given by the matrix X , Decreased (see 70.10.7) may be able to compute irreducibles, see 70.10.

2 I ShortestVectors(G, m[, "positive"]) F

Let G be a regular matrix of a symmetric bilinear form, and m a nonnegative integer. ShortestVectors
computes the vectors x that satisfy x ·G · x tr ≤ m, and returns a record describing these vectors. The result
record has the components

vectors
list of the nonzero vectors x , but only one of each pair (x ,−x),

norms
list of norms of the vectors according to the Gram matrix G .

If the optional argument "positive" is entered, only those vectors x with nonnegative entries are computed.

Section 6. Orthogonal Embeddings 249

gap> g:= [[2, 1, 1], [1, 2, 1], [1, 1, 2]];;
gap> ShortestVectors(g,4);; Display(last);
rec(
vectors := [[-1, 1, 1], [0, 0, 1], [-1, 0, 1], [1, -1, 1],

[0, -1, 1], [-1, -1, 1], [0, 1, 0], [-1, 1, 0], [1, 0, 0]],
norms := [4, 2, 2, 4, 2, 4, 2, 2, 2])

26
Strings and
Characters

1 I IsChar(obj) C
I IsCharCollection(obj) C

A character is simply an object in GAP that represents an arbitrary character from the character set of
the operating system. Character literals can be entered in GAP by enclosing the character in singlequotes
’.

gap> x:= ’a’; IsChar(x);
’a’
true
gap> ’*’;
’*’

2 I IsString(obj) C

A string is a dense list (see 21.1.1, 21.1.2) of characters (see 26); thus strings are always homogeneous
(see 21.1.3).

A string literal can either be entered as the list of characters or by writing the characters between dou-
blequotes ". GAP will always output strings in the latter format. However, the input via the double quote
syntax enables GAP to store the string in an efficient compact internal representation. See 26.2.1 below for
more details.

Each character, in particular those which cannot be typed directly from the keyboard, can also be typed
in three digit octal notation. And for some special characters (like the newline character) there is a further
possibility to type them, see section 26.1.

gap> s1 := [’H’,’e’,’l’,’l’,’o’,’ ’,’w’,’o’,’r’,’l’,’d’,’.’];
"Hello world."
gap> IsString(s1);
true
gap> s2 := "Hello world.";
"Hello world."
gap> s1 = s2;
true
gap> s3 := ""; # the empty string
""
gap> s3 = [];
true
gap> IsString([]);
true
gap> IsString("123"); IsString(123);
true
false
gap> IsString([’1’, ’2’, ’3’]);

251

true
gap> IsString([’1’, ’2’, , ’4’]); # strings must be dense
false
gap> IsString([’1’, ’2’, 3]); # strings must only contain characters
false

gap> s := "\007";
"\007"
gap> Print(s); # rings bell in many terminals

Note that a string is just a special case of a list. So everything that is possible for lists (see 21) is also possible
for strings. Thus you can access the characters in such a string (see 21.3), test for membership (see 28.5),
ask for the length, concatenate strings (see 21.20.1), form substrings etc. You can even assign to a mutable
string (see 21.4). Of course unless you assign a character in such a way that the list stays dense, the resulting
list will no longer be a string.

gap> Length(s2);
12
gap> s2[2];
’e’
gap> ’a’ in s2;
false
gap> s2[2] := ’a’;; s2;
"Hallo world."
gap> s1{ [1..4] };
"Hell"
gap> Concatenation(s1{ [1 .. 6] }, s1{ [1 .. 4] });
"Hello Hell"

If a string is displayed by View, for example as result of an evaluation (see 6.1), or by ViewObj and PrintObj,
it is displayed with enclosing doublequotes. (But note that there is an ambiguity for the empty string which
is also an empty list of arbitrary GAP objects; it is only printed like a string if it was input as empty string
or converted to a string with 26.2.2.) The difference between ViewObj and PrintObj is that the latter prints
all non-printable and non-ASCII characters in three digit octal notation, while ViewObj sends all printable
characters to the output stream. The output of PrintObj can be read back into GAP.

Strings behave differently from other GAP objects with respect to Print, PrintTo, or AppendTo. These
commands interpret a string in the sense that they essentially send the characters of the string directly to
the output stream/file. (But depending on the type of the stream and the presence of some special characters
used as hints for line breaks there may be sent some additional newline (or backslash and newline) characters.

gap> s4:= "abc\"def\nghi";;
gap> View(s4); Print("\n");
"abc\"def\nghi"
gap> ViewObj(s4); Print("\n");
"abc\"def\nghi"
gap> PrintObj(s4); Print("\n");
"abc\"def\nghi"
gap> Print(s4); Print("\n");
abc"def
ghi
gap> s := "German uses strange characters: \344\366\374\337\n";
"German uses strange characters: \n"
gap> Print(s);

252 Chapter 26. Strings and Characters

German uses strange characters:
gap> PrintObj(s);
"German uses strange characters: \344\366\374\337\n"gap>

Note that only those line breaks are printed by Print that are contained in the string (\n characters,
see 26.1), as is shown in the example below.

gap> s1;
"Hello world."
gap> Print(s1);
Hello world.gap> Print(s1, "\n");
Hello world.
gap> Print(s1, "\nnext line\n");
Hello world.
next line

26.1 Special Characters

There are a number of special character sequences that can be used between the singlequotes of a
character literal or between the doublequotes of a string literal to specify characters. They consist of two
characters. The first is a backslash \. The second may be any character. If it is an octal digit (from 0 to 7)
there must be two more such digits. The meaning is given in the following list

\n newline character. This is the character that, at least on UNIX systems, separates lines in a text file.
Printing of this character in a string has the effect of moving the cursor down one line and back to the
beginning of the line.

\" doublequote character. Inside a string a doublequote must be escaped by the backslash, because it
is otherwise interpreted as end of the string.

\’ singlequote character. Inside a character a singlequote must escaped by the backslash, because it is
otherwise interpreted as end of the character.

\\ backslash character. Inside a string a backslash must be escaped by another backslash, because it is
otherwise interpreted as first character of an escape sequence.

\b backspace character. Printing this character should have the effect of moving the cursor back one
character. Whether it works or not is system dependent and should not be relied upon.

\r carriage return character. Printing this character should have the effect of moving the cursor back
to the beginning of the same line. Whether this works or not is again system dependent.

\c flush character. This character is not printed. Its purpose is to flush the output queue. Usually GAP
waits until it sees a newline before it prints a string. If you want to display a string that does not
include this character use \c.

\XYZ with X, Y, Z three octal digits. This is translated to the character correponding to the number
X64+Y8+Z modulo 256. This can be used to specify and store arbitrary binary data as a string
in GAP.

other For any other character the backslash is simply ignored.

Again, if the line is displayed as result of an evaluation, those escape sequences are displayed in the same
way that they are input.

Only Print, PrintTo, or AppendTo send the characters directly to the output stream.

Section 2. Internally Represented Strings 253

gap> "This is one line.\nThis is another line.\n";
"This is one line.\nThis is another line.\n"
gap> Print(last);
This is one line.
This is another line.

Note in particular that it is not allowed to enclose a newline inside the string. You can use the special
character sequence \n to write strings that include newline characters. If, however, an input string is too
long to fit on a single line it is possible to continue it over several lines. In this case the last character of
each input line, except the last line must be a backslash. Both backslash and newline are thrown away by
GAP while reading the string. Note that the same continuation mechanism is available for identifiers and
integers, see 6.2.

26.2 Internally Represented Strings

1 I IsStringRep(obj) R

IsStringRep is a special (internal) representation of dense lists of characters. Dense lists of characters can be
converted into this representation using ConvertToStringRep. Note that calling IsString does not change
the representation.

2 I ConvertToStringRep(obj) F

If obj is a dense internally represented list of characters then ConvertToStringRep changes the represen-
tation to IsStringRep. This is useful in particular for converting the empty list [], which usually is in
IsPlistRep, to IsStringRep. If obj is not a string then ConvertToStringRep signals an error.

3 I IsEmptyString(str) F

IsEmptyString returns true if str is the empty string in the representation IsStringRep, and false
otherwise. Note that the empty list [] and the empty string "" have the same type, the recommended way
to distinguish them is via IsEmptyString. For formatted printing, this distinction is sometimes necessary.

gap> l:= [];; IsString(l); IsEmptyString(l); IsEmpty(l);
true
false
true
gap> l; ConvertToStringRep(l); l;
[]
""
gap> IsEmptyString(l); IsEmptyString(""); IsEmptyString("abc");
true
true
false
gap> ll:= [’a’, ’b’]; IsStringRep(ll); ConvertToStringRep(ll);
"ab"
false
gap> ll; IsStringRep(ll);
"ab"
true

4 I EmptyString(len) F

5 I ShrinkAllocationString(str)

The function EmptyString returns an empty string in internal representation which has enough memory
allocated for len characters. This can be useful for creating and filling a string with a known number of
entries.

254 Chapter 26. Strings and Characters

The function ShrinkAllocationString gives back to GAPs memory manager the physical memory which
is allocated for the string str in internal representation but not needed by its current number of characters.

These functions are intended for saving some of GAPs memory in certain situations, see the explanations
and the example for the analogeous functions EmptyPlist and ShrinkAllocationPlist for plain lists.

6 I CharsFamily V

Each character lies in the family CharFamily, each nonempty string lies in the collections family of this
family. Note the subtle differences between the empty list [] and the empty string "" when both are
printed.

26.3 Recognizing Characters

1 I IsDigitChar(c) F

checks whether the character c is a digit, i.e., occurs in the string "0123456789".

2 I IsLowerAlphaChar(c) F

checks whether the character c is a lowercase alphabet letter, i.e., occurs in the string "abcdefghi-
jklmnopqrstuvwxyz".

3 I IsUpperAlphaChar(c) F

checks whether the character c is an uppercase alphabet letter, i.e., occurs in the string "ABCDEFGHI-
JKLMNOPQRSTUVWXYZ".

4 I IsAlphaChar(c) F

checks whether the character c is either a lowercase or an uppercase alphabet letter.

26.4 Comparisons of Strings

1 I string1 = string2
I string1 <> string2

The equality operator = returns to true if the two strings string1 and string2 are equal and false otherwise.
The inequality operator <> returns true if the two strings string1 and string2 are not equal and false
otherwise.

gap> "Hello world.\n" = "Hello world.\n";
true
gap> "Hello World.\n" = "Hello world.\n"; # string comparison is case sensitive
false
gap> "Hello world." = "Hello world.\n"; # the first string has no <newline>
false
gap> "Goodbye world.\n" = "Hello world.\n";
false
gap> [’a’, ’b’] = "ab";
true

2 I string1 < string2

The ordering of strings is lexicographically according to the order implied by the underlying, system depen-
dent, character set.

Section 5. Operations to Produce or Manipulate Strings 255

gap> "Hello world.\n" < "Hello world.\n"; # the strings are equal
false
gap> "Hello World." < "Hello world."; # in ASCII capitals range before small letters
true
gap> "Hello world." < "Hello world.\n"; # prefixes are always smaller
true
gap> "Goodbye world.\n" < "Hello world.\n"; # ‘G’ comes before ‘H’, in ASCII at least
true

Strings can be compared via < with certain GAP objects that are not strings, see 4.11 for the details.

26.5 Operations to Produce or Manipulate Strings
1 I String(obj) A

I String(obj, length) O

String returns a representation of obj , which may be an object of arbitrary type, as a string. This string
should approximate as closely as possible the character sequence you see if you print obj .

If length is given it must be an integer. The absolute value gives the minimal length of the result. If the
string representation of obj takes less than that many characters it is filled with blanks. If length is positive
it is filled on the left, if length is negative it is filled on the right.

In the two argument case, the string returned is a new mutable string (in particular not a part of any other
object); it can be modified safely, and MakeImmutable may be safely applied to it.

gap> String(123);String([1,2,3]);
"123"
"[1, 2, 3]"

2 I HexStringInt(int) F

returns a string which represents the integer int with hexa-decimal digits (using A-F as digits 10-15). The
inverse translation can be achieved with 26.7.1.

3 I StringPP(int) F

returns a string representing the prime factor decomposition of the integer int .

gap> StringPP(40320);
"2^7*3^2*5*7"

4 I WordAlp(alpha, nr) F

returns a string that is the nr -th word over the alphabet list alpha, w.r.t. word length and lexicographical
order. The empty word is WordAlp(alpha, 0).

gap> List([0..5],i->WordAlp("abc",i));
["", "a", "b", "c", "aa", "ab"]

5 I LowercaseString(string) F

returns a lowercase version of the string string , that is, a string in which each uppercase alphabet character
is replaced by the corresponding lowercase character.

gap> LowercaseString("This Is UpperCase");
"this is uppercase"

6 I SplitString(string, seps[, wspace]) O

This function accepts a string string and lists seps and, optionally, wspace of characters. Now string is split
into substrings at each occurrence of a character in seps or wspace. The characters in wspace are interpreted

256 Chapter 26. Strings and Characters

as white space characters. Substrings of characters in wspace are treated as one white space character and
they are ignored at the beginning and end of a string.

Both arguments seps and wspace can be single characters.

Each string in the resulting list of substring does not contain any characters in seps or wspace.

A character that occurs both in seps and wspace is treated as a white space character.

A separator at the end of a string is interpreted as a terminator; in this case, the separator does not produce
a trailing empty string. Also see 26.5.12.

gap> SplitString("substr1:substr2::substr4", ":");
["substr1", "substr2", "", "substr4"]
gap> SplitString("a;b;c;d;", ";");
["a", "b", "c", "d"]
gap> SplitString("/home//user//dir/", "", "/");
["home", "user", "dir"]

7 I ReplacedString(string, old, new) F

replaces occurrences of the string old in string by new , starting from the left and always replacing the
first occurrence. To avoid infinite recursion, characters which have been replaced already, are not subject to
renewed replacement.

gap> ReplacedString("abacab","a","zl");
"zlbzlczlb"
gap> ReplacedString("ababa", "aba","c");
"cba"
gap> ReplacedString("abacab","a","ba");
"babbacbab"

8 I NormalizeWhitespace(string) F

This function changes the string string in place. The characters (space), \n, \r and \t are considered as
white space. Leading and trailing white space characters in string are removed. Sequences of white space
characters between other characters are replaced by a single space character.

See 26.5.9 for a non-destructive version.

gap> s := " x y \n\n\t\r z\n \n";
" x y \n\n\t\r z\n \n"
gap> NormalizeWhitespace(s);
gap> s;
"x y z"

9 I NormalizedWhitespace(str) F

This function returns a copy of string str to which 26.5.8 was applied.

10 I RemoveCharacters(string, chars)

Both arguments must be strings. This function efficiently removes all characters given in chars from string .

gap> s := "ab c\ndef\n\ng h i .\n";
"ab c\ndef\n\ng h i .\n"
gap> RemoveCharacters(s, " \n\t\r"); # remove all whitespace characters
gap> s;
"abcdefghi."

For the possibility to print GAP objects to strings, see 10.7.

Section 5. Operations to Produce or Manipulate Strings 257

11 I JoinStringsWithSeparator(list[, sep]) F

joins list (a list of strings) after interpolating sep (or "," if the second argument is omitted) between each
adjacent pair of strings; sep should be a string.

Examples

gap> list := List([1..10], String);
["1", "2", "3", "4", "5", "6", "7", "8", "9", "10"]
gap> JoinStringsWithSeparator(list);
"1,2,3,4,5,6,7,8,9,10"
gap> JoinStringsWithSeparator(["The", "quick", "brown", "fox"], " ");
"The quick brown fox"
gap> JoinStringsWithSeparator(["a", "b", "c", "d"], ",\n ");
"a,\n b,\n c,\n d"
gap> Print(" ", last, "\n");

a,
b,
c,
d

Recall, last is the last expression output by GAP.

12 I Chomp(str) F

Like the similarly named Perl function, Chomp removes a trailing newline character (or carriage-return line-
feed couplet) from a string argument str if present and returns the result. If str is not a string or does not
have such trailing character(s) it is returned unchanged. This latter property means that Chomp is safe to
use in cases where one is manipulating the result of another function which might sometimes return fail,
for example.

gap> Chomp("The quick brown fox jumps over the lazy dog.\n");
"The quick brown fox jumps over the lazy dog."
gap> Chomp("The quick brown fox jumps over the lazy dog.\r\n");
"The quick brown fox jumps over the lazy dog."
gap> Chomp("The quick brown fox jumps over the lazy dog.");
"The quick brown fox jumps over the lazy dog."
gap> Chomp(fail);
fail
gap> Chomp(32);
32

Note: Chomp only removes a trailing newline character from str . If your string contains several newline
characters and you really want to split str into lines at the newline characters (and remove those newline
characters) then you should use SplitString (see 26.5.6), e.g.

gap> str := "The quick brown fox\njumps over the lazy dog.\n";
"The quick brown fox\njumps over the lazy dog.\n"
gap> SplitString(str, "", "\n");
["The quick brown fox", "jumps over the lazy dog."]
gap> Chomp(str);
"The quick brown fox\njumps over the lazy dog."

258 Chapter 26. Strings and Characters

26.6 Character Conversion

The following functions convert characters in their internal integer values and vice versa. Note that the
number corresponding to a particular character might depend on the system used. While most systems
use an extension of ASCII, in particular character values outside the range 32-126 might differ between
architectures.

All functions in this section are internal and behaviour is undefined if invarid arguments are given.

1 I INT CHAR(char) F

returns an integer value in the range 0-255 that corresponds to char .

2 I CHAR INT(int) F

returns a character which corresponds to the integer value int , which must be in the range 0-255.

gap> c:=CHAR_INT(65);
’A’
gap> INT_CHAR(c);
65

3 I SINT CHAR(char) F

returns a signed integer value in the range −128–127 that corresponds to char .

4 I CHAR SINT(int) F

returns a character which corresponds to the signed integer value int , which must be in the range −128–127.

The signed and unsigned integer functions behave the same for values in the range from 0 to 127.

gap> SINT_CHAR(c);
65
gap> c:=CHAR_SINT(-20);;
gap> SINT_CHAR(c);
-20
gap> INT_CHAR(c);
236
gap> SINT_CHAR(CHAR_INT(255));
-1

26.7 Operations to Evaluate Strings

1 I Int(str) A
I Rat(str) A
I IntHexString(str) F

return either an integer (Int and IntHexString), or a rational (Rat) as represented by the string str . Int
returns fail if non-digit characters occur in str . For Rat, the argument string may start with the sign
character ’-’, followed by either a sequence of digits or by two sequences of digits that are separated by
one of the characters ’/’ or ’.’, where the latter stands for a decimal dot. (The methods only evaluate
numbers but do not perform arithmetic!)

IntHexString evaluates an integer written with hexa-decimal digits. Here the letters a-f or A-F are used
as digits 10-15 . An error occurs when a wrong character is found in the string. This function can be used
(together with 26.5.2) for efficiently storing and reading large integers from respectively into GAP. Note
that the translation between integers and their hexa-decimal representation costs linear computation time

Section 8. Calendar Arithmetic 259

in terms of the number of digits, while translation from and into decimal representation needs substantial
computations. If str is not in compact string representation then 26.2.2 is applied to it as side effect.

gap> Int("12345")+1;
12346
gap> Int("123/45");
fail
gap> Int("1+2");
fail
gap> Int("-12");
-12
gap> Rat("123/45");
41/15
gap> Rat("123.45");
2469/20
gap> IntHexString("-abcdef0123456789");
-12379813738877118345
gap> HexStringInt(last);
"-ABCDEF0123456789"

2 I Ordinal(n) F

returns the ordinal of the integer n as a string.

gap> Ordinal(2); Ordinal(21); Ordinal(33); Ordinal(-33);
"2nd"
"21st"
"33rd"
"-33rd"

3 I EvalString(expr) F

passes expr (a string) through an input text stream so that GAP interprets it, and returns the result. The
following trivial example demonstrates its use.

gap> a:=10;
10
gap> EvalString("a^2");
100

EvalString is intended for single expressions. A sequence of commands may be interpreted by using the
functions InputTextString (see 10.7.1) and ReadAsFunction (see 10.3.2) together; see 10.3 for an example.

26.8 Calendar Arithmetic

All calendar functions use the Gregorian calendar.

1 I DaysInYear(year) F

returns the number of days in a year.

2 I DaysInMonth(month, year) F

returns the number of days in month number month of year (and fail if month is integer not in valid range.

260 Chapter 26. Strings and Characters

gap> DaysInYear(1998);
365
gap> DaysInMonth(3,1998);
31

3 I DMYDay(day) F

converts a number of days, starting 1-Jan-1970 to a list [day,month,year] in Gregorian calendar counting.

4 I DayDMY(dmy) F

returns the number of days from 01-Jan-1970 to the day given by dmy . dmy must be a list of the form
[day,month,year] in Gregorian calendar counting. The result is fail on input outside valid ranges.

Note that this makes not much sense for early dates like: before 1582 (no Gregorian calendar at all), or
before 1753 in many English countries or before 1917 in Russia.

5 I WeekDay(date) F

returns the weekday of a day given by date. date can be a number of days since 1-Jan-1970 or a list
[day,month,year].

6 I StringDate(date) F

converts date to a readable string. date can be a number of days since 1-Jan-1970 or a list [day,month,year].

gap> DayDMY([1,1,1970]);DayDMY([2,1,1970]);
0
1
gap> DMYDay(12345);
[20, 10, 2003]
gap> WeekDay([11,3,1998]);
"Wed"
gap> StringDate([11,3,1998]);
"11-Mar-1998"

7 I HMSMSec(msec) F

converts a number msec of milliseconds into a list [hour,min,sec,milli].

8 I SecHMSM(hmsm) F

is the reverse of HMSMSec.

9 I StringTime(time) F

converts time (given as a number of milliseconds or a list [hour, min, sec, milli]) to a readable string.

gap> HMSMSec(Factorial(10));
[1, 0, 28, 800]
gap> SecHMSM([1,10,5,13]);
4205013
gap> StringTime([1,10,5,13]);
" 1:10:05.013"

10 I SecondsDMYhms(DMYhms) F

returns the number of seconds from 01-Jan-1970, 00:00:00, to the time given by DMYhms. DMYhms must
be a list of the form [day,month,year,hour,minute,second]. The remarks on the Gregorian calendar in
the section on 26.8.4 apply here as well. The last three arguments must lie in the appropriate ranges.

Section 8. Calendar Arithmetic 261

11 I DMYhmsSeconds(secs) F

This is the inverse function to 26.8.10.

gap> SecondsDMYhms([9, 9, 2001, 1, 46, 40]);
1000000000
gap> DMYhmsSeconds(-1000000000);
[24, 4, 1938, 22, 13, 20]

27 Records

Records are next to lists the most important way to collect objects together. A record is a collection of
components. Each component has a unique name, which is an identifier that distinguishes this component,
and a value, which is an object of arbitrary type. We often abbreviate value of a component to element.
We also say that a record contains its elements. You can access and change the elements of a record using
its name.

Record literals are written by writing down the components in order between “rec(” and “)”, and separating
them by commas “,”. Each component consists of the name, the assignment operator :=, and the value.
The empty record, i.e., the record with no components, is written as rec().

gap> rec(a := 1, b := "2"); # a record with two components
rec(a := 1, b := "2")
gap> rec(a := 1, b := rec(c := 2)); # record may contain records
rec(a := 1, b := rec(c := 2))

We may use the Display function to illustrate the hierarchy of the record components.

gap> Display(last);
rec(
a := 1,
b := rec(

c := 2))

Records usually contain elements of various types, i.e., they are usually not homogeneous like lists.

1 I IsRecord(obj) C
I IsRecordCollection(obj) C
I IsRecordCollColl(obj) C

gap> IsRecord(rec(a := 1, b := 2));
true
gap> IsRecord(IsRecord);
false

2 I RecNames(rec) A

returns a list of strings corresponding to the names of the record components of the record rec.

gap> r := rec(a := 1, b := 2);;
gap> RecNames(r);
["a", "b"]

Note that you cannot use the string result in the ordinary way to access or change a record component. You
must use the rec.(name) construct (see 27.1 and 27.2).

Section 2. Record Assignment 263

27.1 Accessing Record Elements

1 I rec.name O

The above construct evaluates to the value of the record component with the name name in the record rec.
Note that the name is not evaluated, i.e. it is taken literal.

gap> r := rec(a := 1, b := 2);;
gap> r.a;
1
gap> r.b;
2

2 I rec.(name) O

This construct is similar to the above construct. The difference is that the second operand name is evaluated.
It must evaluate to a string or an integer otherwise an error is signalled. The construct then evaluates to
the element of the record rec whose name is, as a string, equal to name.

gap> old := rec(a := 1, b := 2);;
gap> new := rec();
rec()
gap> for i in RecNames(old) do
> new.(i) := old.(i);
> od;
gap> Display(new);
rec(
a := 1,
b := 2)

27.2 Record Assignment

1 I rec.name := obj O

The record assignment assigns the object obj , which may be an object of arbitrary type, to the record
component with the name name, which must be an identifier, of the record rec. That means that accessing
the element with name name of the record rec will return obj after this assignment. If the record rec has no
component with the name name, the record is automatically extended to make room for the new component.

gap> r := rec(a := 1, b := 2);;
gap> r.a := 10;;
gap> Display(r);
rec(
a := 10,
b := 2)

gap> r.c := 3;;
gap> Display(r);
rec(
a := 10,
b := 2,
c := 3)

Note that assigning to a record changes the record.

The function IsBound can be used to test if a record has a component with a certain name, the function
Unbind (see 4.8.1) can be used to remove a component with a certain name again.

264 Chapter 27. Records

gap> IsBound(r.a);
true
gap> IsBound(r.d);
false
gap> Unbind(r.b);
gap> Display(r);
rec(
a := 10,
c := 3)

2 I rec.(name) := obj O

This construct is similar to the above construct. The difference is that the second operand name is evaluated.
It must evaluate to a string or an integer otherwise an error is signalled. The construct then assigns obj to
the record component of the record rec whose name is, as a string, equal to name.

27.3 Identical Records

With the record assignment (see 27.2) it is possible to change a record. This section describes the semantic
consequences of this fact which are essentially the same as for lists (see 21.6).

r := rec(a := 1);
r := rec(a := 1, b := 2);

The second assignment does not change the first record, instead it assigns a new record to the variable r.
On the other hand, in the following example the record is changed by the second assignment.

r := rec(a := 1);
r.b := 2;

To understand the difference first think of a variable as a name for an object. The important point is that a
record can have several names at the same time. An assignment var := record means in this interpretation
that var is a name for the object record . At the end of the following example r2 still has the value rec(a
:= 1) as this record has not been changed and nothing else has been assigned to r2.

r1 := rec(a := 1);
r2 := r1;
r1 := rec(a := 1, b := 2);

But after the following example the record for which r2 is a name has been changed and thus the value of
r2 is now rec(a := 1, b := 2).

r1 := rec(a := 1);
r2 := r1;
r1.b := 2;

We shall say that two records are identical if changing one of them by a record assignment also changes the
other one. This is slightly incorrect, because if two records are identical, there are actually only two names
for one record. However, the correct usage would be very awkward and would only add to the confusion.
Note that two identical records must be equal, because there is only one records with two different names.
Thus identity is an equivalence relation that is a refinement of equality.

Let us now consider under which circumstances two records are identical.

If you enter a record literal then the record denoted by this literal is a new record that is not identical to any
other record. Thus in the following example r1 and r2 are not identical, though they are equal of course.

Section 4. Comparisons of Records 265

r1 := rec(a := 1);
r2 := rec(a := 1);

Also in the following example, no records in the list l are identical.

l := [];
for i in [1..10] do
l[i] := rec(a := 1);

od;

If you assign a record to a variable no new record is created. Thus the record value of the variable on the left
hand side and the record on the right hand side of the assignment are identical. So in the following example
r1 and r2 are identical records.

r1 := rec(a := 1);
r2 := r1;

If you pass a record as argument, the old record and the argument of the function are identical. Also if you
return a record from a function, the old record and the value of the function call are identical. So in the
following example r1 and r2 are identical record

r1 := rec(a := 1);
f := function (r) return r; end;
r2 := f(r1);

The functions StructuralCopy and ShallowCopy (see 12.7.2 and 12.7.1) accept a record and return a new
record that is equal to the old record but that is not identical to the old record. The difference between
StructuralCopy and ShallowCopy is that in the case of ShallowCopy the corresponding components of the
new and the old records will be identical, whereas in the case of StructuralCopy they will only be equal.
So in the following example r1 and r2 are not identical records.

r1 := rec(a := 1);
r2 := Copy(r1);

If you change a record it keeps its identity. Thus if two records are identical and you change one of them,
you also change the other, and they are still identical afterwards. On the other hand, two records that are
not identical will never become identical if you change one of them. So in the following example both r1
and r2 are changed, and are still identical.

r1 := rec(a := 1);
r2 := r1;
r1.b := 2;

27.4 Comparisons of Records

1 I rec1 = rec2 O
I rec1 <> rec2 O

Two records are considered equal, if for each component of one record the other record has a component of
the same name with an equal value and vice versa.

266 Chapter 27. Records

gap> rec(a := 1, b := 2) = rec(b := 2, a := 1);
true
gap> rec(a := 1, b := 2) = rec(a := 2, b := 1);
false
gap> rec(a := 1) = rec(a := 1, b := 2);
false
gap> rec(a := 1) = 1;
false

2 I rec1 < rec2 O
I rec1 <= rec2 O

To compare records we imagine that the components of both records are sorted according to their names.
Then the records are compared lexicographically with unbound elements considered smaller than anything
else. Precisely one record rec1 is considered less than another record rec2 if rec2 has a component with
name name2 and either rec1 has no component with this name or rec1.name2 < rec2.name2 and for each
component of rec1 with name name1 < name2 rec2 has a component with this name and rec1.name1 =
rec2.name1 .

gap> rec(a := 1, b := 2) < rec(b := 2, a := 1); # they are equal
false
gap> rec(a := 1) < rec(a := 1, b := 2); # unbound is less than 2
true
gap> # note in the following examples that the ‘a’ elements are compared first
gap> rec(a := 1, b := 2) < rec(a := 2, b := 0); # 1 is less than 2
true
gap> rec(a := 1) < rec(a := 0, b := 2); # 0 is less than 1
false
gap> rec(b := 1) < rec(b := 0, a := 2); # unbound is less than 2
true

27.5 IsBound and Unbind for Records
I ‘IsBound(rec.name)’ O

IsBound returns true if the record rec has a component with the name name (which must be an identifier)
and false otherwise. rec must evaluate to a record, otherwise an error is signalled.

gap> r := rec(a := 1, b := 2);;
gap> IsBound(r.a);
true
gap> IsBound(r.c);
false

I ‘Unbind(rec.name)’ O

Unbind deletes the component with the name name in the record rec. That is, after execution of Unbind,
rec no longer has a record component with this name. Note that it is not an error to unbind a nonexisting
record component. rec must evaluate to a record, otherwise an error is signalled.

Section 6. Record Access Operations 267

gap> r := rec(a := 1, b := 2);;
gap> Unbind(r.a); r;
rec(b := 2)
gap> Unbind(r.c); r;
rec(b := 2)

Note that IsBound and Unbind are special in that they do not evaluate their argument, otherwise IsBound
would always signal an error when it is supposed to return false and there would be no way to tell Unbind
which component to remove.

27.6 Record Access Operations

Internally, record accesses are done using the operations listed in this section. For the records implemented
in the kernel, kernel methods are provided for all these operations but otherwise it is possible to install
methods for these operations for any object. This permits objects to simulate record behavior.

To save memory, records do not store a list of all component names, but only numbers identifying the
components. There numbers are called RNams. GAP keeps a list of all RNams that are used and provides
functions to translate RNams to strings that give the component names and vice versa.

1 I NameRNam(nr) F

returns a string representing the component name corresponding to the RNam nr .

2 I RNamObj(str) F
I RNamObj(int) F

returns a number (the RNam) corresponding to the string str . It is also possible to pass a positive integer
int in which case the decimal expansion of int is used as a string.

gap> NameRNam(798);
"BravaisSupergroups"
gap> RNamObj("blubberflutsch");
2075
gap> NameRNam(last);
"blubberflutsch"

The correspondence between Strings and RNams is not predetermined ab initio, but RNams are assigned to
component names dynamically on a “first come, first serve” basis. Therefore, depending on the version of the
library you are using and on the assignments done so far, the same component name may be represented
by different RNams in different runs of GAP.

The following operations are called for record accesses to arbitrary objects. If applicable methods are in-
stalled, they are called when the object is accessed as a record.

3 I \.(obj,rnam) O
I IsBound\.(obj,rnam) O
I \.\:\=(obj,rnam) O
I Unbind\.(obj,rnam) O

These operations implement component access, test for element boundness, component assignment and
removal of the component represented by the RNam rnam.

The component identifier rnam is always declared as IsPosInt.

28 Collections

A collection in GAP consists of elements in the same family (see 13.1). The most important kinds of
collections are homogeneous lists (see 21) and domains (see 12.4). Note that a list is never a domain,
and a domain is never a list. A list is a collection if and only if it is nonempty and homogeneous.

Basic operations for collections are Size (see 28.3.6) and Enumerator (see 28.2.2); for finite collections,
Enumerator admits to delegate the other operations for collections (see 28.3 and 28.4) to functions for lists
(see 21). Obviously, special methods depending on the arguments are needed for the computation of e.g. the
intersection of two infinite domains.

1 I IsCollection(obj) C

tests whether an object is a collection.

Some of the functions for lists and collections have been described in the chapter about lists, mainly in
Section 21.20. In this chapter, we describe those functions for which the “collection aspect” seems to be
more important than the “list aspect”. As in Chapter 21, an argument that is a list will be denoted by list ,
and an argument that is a collection will be denoted by C .

28.1 Collection Families

1 I CollectionsFamily(Fam) A

For a family Fam, CollectionsFamily returns the family of all collections that consist of elements in Fam.

Note that families (see 13.1) are used to describe relations between objects. Important such relations are
that between an element elm and each collection of elements that lie in the same family as elm, and that
between two collections whose elements lie in the same family. Therefore, all collections of elements in the
family Fam form the new family CollectionsFamily(Fam).

2 I IsCollectionFamily(Fam) C

is true if Fam is a family of collections, and false otherwise.

3 I ElementsFamily(Fam) A

returns the family from which the collections family Fam was created by CollectionsFamily. The way
a collections family is created, it always has its elements family stored. If Fam is not a collections family
(see 28.1.2) then an error is signalled.

gap> fam:= FamilyObj((1,2));;
gap> collfam:= CollectionsFamily(fam);;
gap> fam = collfam; fam = ElementsFamily(collfam);
false
true
gap> collfam = FamilyObj([(1,2,3)]); collfam = FamilyObj(Group(()));
true
true
gap> collfam = CollectionsFamily(collfam);

Section 2. Lists and Collections 269

false

4 I CategoryCollections(filter) F

Let filter be a filter that is true for all elements of a family Fam, by construction of Fam. Then Catego-
ryCollections returns a category that is true for all elements in CollectionsFamily(Fam).

For example, the construction of PermutationsFamily guarantees that each of its elements lies in the filter
IsPerm, and each collection of permutations lies in the category CategoryCollections(IsPerm).

Note that this works only if the collections category is created before the collections family. So it is necessary
to construct interesting collections categories immediately after the underlying category has been created.

28.2 Lists and Collections

1 I IsListOrCollection(obj) C

Several functions are defined for both lists and collections, for example Intersection (see 28.4.2), Iterator
(see 28.7.1), and Random (see 14.5.2). IsListOrCollection is a supercategory of IsList and IsCollection
(that is, all lists and collections lie in this category), which is used to describe the arguments of functions
such as the ones listed above.

The following functions take a list or collection as argument, and return a corresponding list. They differ
in whether or not the result is mutable or immutable (see 12.6), guaranteed to be sorted, or guaranteed to
admit list access in constant time (see 21.1.5).

2 I Enumerator(C) A
I Enumerator(list) A

Enumerator returns an immutable list enum. If the argument is a list list (which may contain holes), then
Length(enum) is Length(list), and enum contains the elements (and holes) of list in the same order.
If the argument is a collection C that is not a list, then Length(enum) is the number of different elements
of C , and enum contains the different elements of C in an unspecified order, which may change for repeated
calls of Enumerator. enum[pos] may not execute in constant time (see 21.1.5), and the size of enum in
memory is as small as is feasible.

For lists list , the default method is Immutable. For collections C that are not lists, there is no default
method.

3 I EnumeratorSorted(C) A
I EnumeratorSorted(list) A

EnumeratorSorted returns an immutable list enum. The argument must be a collection C or a list list which
may contain holes but whose elements lie in the same family (see 13.1). Length(enum) is the number
of different elements of C resp. list , and enum contains the different elements in sorted order, w.r.t. <.
enum[pos] may not execute in constant time (see 21.1.5), and the size of enum in memory is as small as is
feasible.

gap> Enumerator([1, 3,, 2]);
[1, 3,, 2]
gap> enum:= Enumerator(Rationals);; elm:= enum[10^6];
-69/907
gap> Position(enum, elm);
1000000
gap> IsMutable(enum); IsSortedList(enum);
false
false
gap> IsConstantTimeAccessList(enum);

270 Chapter 28. Collections

false
gap> EnumeratorSorted([1, 3,, 2]);
[1, 2, 3]

4 I EnumeratorByFunctions(D, record) F
I EnumeratorByFunctions(Fam, record) F

EnumeratorByFunctions returns an immutable, dense, and duplicate-free list enum for which IsBound,
element access, Length, and Position are computed via prescribed functions.

Let record be a record with at least the following components.

ElementNumber
a function taking two arguments enum and pos, which returns enum[pos] (see 21.2); it can be
assumed that the argument pos is a positive integer, but pos may be larger than the length of enum
(in which case an error must be signalled); note that the result must be immutable since enum itself
is immutable,

NumberElement
a function taking two arguments enum and elm, which returns Position(enum, elm) (see 21.16.1);
it cannot be assumed that elm is really contained in enum (and fail must be returned if not); note
that for the three argument version of Position, the method that is available for duplicate-free lists
suffices.

Further (data) components may be contained in record which can be used by these function.

If the first argument is a domain D then enum lists the elements of D (in general enum is not sorted), and
methods for Length, IsBound, and PrintObj may use D .

If one wants to describe the result without creating a domain then the elements are given implicitly by the
functions in record , and the first argument must be a family Fam which will become the family of enum; if
enum is not homogeneous then Fam must be ListsFamily, otherwise it must be the collections family of
any element in enum. In this case, additionally the following component in record is needed.

Length
a function taking the argument enum, which returns the length of enum (see 21.17.5).

The following components are optional; they are used if they are present but default methods are installed
for the case that they are missing.

IsBound\[\]
a function taking two arguments enum and k , which returns IsBound(enum[k]) (see 21.2); if
this component is missing then Length is used for computing the result,

Membership
a function taking two arguments elm and enum, which returns true is elm is an element of enum, and
false otherwise (see 21.2); if this component is missing then NumberElement is used for computing
the result,

AsList
a function taking one argument enum, which returns a list with the property that the access to
each of its elements will take roughly the same time (see 21.1.5); if this component is missing then
ConstantTimeAccessList is used for computing the result,

ViewObj and PrintObj
two functions that print what one wants to be printed when View(enum) or Print(enum) is
called (see 6.3), if the ViewObj component is missing then the PrintObj method is used as a default.

Section 2. Lists and Collections 271

If the result is known to have additional properties such as being strictly sorted (see 21.17.4) then it can be
useful to set these properties after the construction of the enumerator, before it is used for the first time.
And in the case that a new sorted enumerator of a domain is implemented via EnumeratorByFunctions,
and this construction is installed as a method for the operation Enumerator (see 28.2.2), then it should be
installed also as a method for EnumeratorSorted (see 28.2.3).

Note that it is not checked that EnumeratorByFunctions really returns a dense and duplicate-free list.
EnumeratorByFunctions does not make a shallow copy of record , this record is changed in place (see 3.8
in “Programming in GAP”).

It would be easy to implement a slightly generalized setup for enumerators that need not be duplicate-free
(where the three argument version of Position is supported), but the resulting overhead for the methods
seems not to be justified.

I List(C)
I List(list)

This function is described in 21.20.17, together with the probably more frequently used version which takes
a function as second argument and returns the list of function values of the list elements.

gap> l:= List(Group((1,2,3)));
[(), (1,3,2), (1,2,3)]
gap> IsMutable(l); IsSortedList(l); IsConstantTimeAccessList(l);
true
false
true

5 I SortedList(C) O
I SortedList(list) O

SortedList returns a new mutable and dense list new . The argument must be a collection C or a list list
which may contain holes but whose elements lie in the same family (see 13.1). Length(new) is the number
of elements of C resp. list , and new contains the elements in sorted order, w.r.t. <=. new[pos] executes in
constant time (see 21.1.5), and the size of new in memory is proportional to its length.

gap> l:= SortedList(Group((1,2,3)));
[(), (1,2,3), (1,3,2)]
gap> IsMutable(l); IsSortedList(l); IsConstantTimeAccessList(l);
true
true
true
gap> SortedList([1, 2, 1,, 3, 2]);
[1, 1, 2, 2, 3]

6 I SSortedList(C) O
I SSortedList(list) O
I Set(C) O

SSortedList (“strictly sorted list”) returns a new dense, mutable, and duplicate free list new . The argument
must be a collection C or a list list which may contain holes but whose elements lie in the same family
(see 13.1). Length(new) is the number of different elements of C resp. list , and new contains the different
elements in strictly sorted order, w.r.t. <. new[pos] executes in constant time (see 21.1.5), and the size of
new in memory is proportional to its length.

Set is simply a synonym for SSortedList.

272 Chapter 28. Collections

gap> l:= SSortedList(Group((1,2,3)));
[(), (1,2,3), (1,3,2)]
gap> IsMutable(l); IsSSortedList(l); IsConstantTimeAccessList(l);
true
true
true
gap> SSortedList([1, 2, 1,, 3, 2]);
[1, 2, 3]

7 I AsList(C) A
I AsList(list) A

AsList returns a immutable list imm. If the argument is a list list (which may contain holes), then Length(
imm) is Length(list), and imm contains the elements (and holes) of list in the same order. If the
argument is a collection C that is not a list, then Length(imm) is the number of different elements of C ,
and imm contains the different elements of C in an unspecified order, which may change for repeated calls
of AsList. imm[pos] executes in constant time (see 21.1.5), and the size of imm in memory is proportional
to its length.

If you expect to do many element tests in the resulting list, it might be worth to use a sorted list instead,
using AsSSortedList.

gap> l:= AsList([1, 3, 3,, 2]);
[1, 3, 3,, 2]
gap> IsMutable(l); IsSortedList(l); IsConstantTimeAccessList(l);
false
false
true
gap> AsList(Group((1,2,3), (1,2)));
[(), (2,3), (1,2), (1,2,3), (1,3,2), (1,3)]

8 I AsSortedList(C) A
I AsSortedList(list) A

AsSortedList returns a dense and immutable list imm. The argument must be a collection C or a list
list which may contain holes but whose elements lie in the same family (see 13.1). Length(imm) is the
number of elements of C resp. list , and imm contains the elements in sorted order, w.r.t. <=. new[pos]
executes in constant time (see 21.1.5), and the size of imm in memory is proportional to its length.

The only difference to the operation SortedList (see 28.2.5) is that AsSortedList returns an immutable
list.

gap> l:= AsSortedList([1, 3, 3,, 2]);
[1, 2, 3, 3]
gap> IsMutable(l); IsSortedList(l); IsConstantTimeAccessList(l);
false
true
true
gap> IsSSortedList(l);
false

9 I AsSSortedList(C) A
I AsSSortedList(list) A
I AsSet(C) A

AsSSortedList (“as strictly sorted list”) returns a dense, immutable, and duplicate free list imm. The
argument must be a collection C or a list list which may contain holes but whose elements lie in the same

Section 3. Attributes and Properties for Collections 273

family (see 13.1). Length(imm) is the number of different elements of C resp. list , and imm contains the
different elements in strictly sorted order, w.r.t. <. imm[pos] executes in constant time (see 21.1.5), and
the size of imm in memory is proportional to its length.

Because the comparisons required for sorting can be very expensive for some kinds of objects, you should
use AsList instead if you do not require the result to be sorted.

The only difference to the operation SSortedList (see 28.2.6) is that AsSSortedList returns an immutable
list.

AsSet is simply a synonym for AsSSortedList.

In general a function that returns a set of elements is free, in fact encouraged, to return a domain instead of
the proper set of its elements. This allows one to keep a given structure, and moreover the representation by
a domain object is usually more space efficient. AsSSortedList must of course not do this, its only purpose
is to create the proper set of elements.

gap> l:= AsSSortedList(l);
[1, 2, 3]
gap> IsMutable(l); IsSSortedList(l); IsConstantTimeAccessList(l);
false
true
true
gap> AsSSortedList(Group((1,2,3), (1,2)));
[(), (2,3), (1,2), (1,2,3), (1,3,2), (1,3)]

10 I Elements(C) F

Elements does the same as AsSSortedList (see 28.2.9), that is, the return value is a strictly sorted list of
the elements in the list or collection C .

Elements is only supported for backwards compatibility. In many situations, the sortedness of the “element
list” for a collection is in fact not needed, and one can save a lot of time by asking for a list that is not
necessarily sorted, using AsList (see 28.2.7). If one is really interested in the strictly sorted list of elements
in C then one should use AsSet or AsSSortedList instead.

28.3 Attributes and Properties for Collections

1 I IsEmpty(C) P
I IsEmpty(list) P

IsEmpty returns true if the collection C resp. the list list is empty (that is it contains no elements), and
false otherwise.

2 I IsFinite(C) P

IsFinite returns true if the collection C is finite, and false otherwise.

The default method for IsFinite checks the size (see 28.3.6) of C .

Methods for IsFinite may call Size, but methods for Size must not call IsFinite.

3 I IsTrivial(C) P

IsTrivial returns true if the collection C consists of exactly one element.

4 I IsNonTrivial(C) P

IsNonTrivial returns true if the collection C is empty or consists of at least two elements (see 28.3.3).

274 Chapter 28. Collections

gap> IsEmpty([]); IsEmpty([1 .. 100]); IsEmpty(Group((1,2,3)));
true
false
false
gap> IsFinite([1 .. 100]); IsFinite(Integers);
true
false
gap> IsTrivial(Integers); IsTrivial(Group(()));
false
true
gap> IsNonTrivial(Integers); IsNonTrivial(Group(()));
true
false

5 I IsWholeFamily(C) P

IsWholeFamily returns true if the collection C contains the whole family (see 13.1) of its elements.

gap> IsWholeFamily(Integers)
> ; # all rationals and cyclotomics lie in the family
false
gap> IsWholeFamily(Integers mod 3)
> ; # all finite field elements in char. 3 lie in this family
false
gap> IsWholeFamily(Integers mod 4);
true
gap> IsWholeFamily(FreeGroup(2));
true

6 I Size(C) A
I Size(list) A

Size returns the size of the collection C , which is either an integer or infinity. The argument may also
be a list list , in which case the result is the length of list (see 21.17.5).

The default method for Size checks the length of an enumerator of C .

Methods for IsFinite may call Size, but methods for Size must not call IsFinite.

gap> Size([1,2,3]); Size(Group(())); Size(Integers);
3
1
infinity

7 I Representative(C) A

Representative returns a representative of the collection C .

Note that Representative is free in choosing a representative if there are several elements in C . It is not
even guaranteed that Representative returns the same representative if it is called several times for one
collection. The main difference between Representative and Random (see 14.5.2) is that Representative
is free to choose a value that is cheap to compute, while Random must make an effort to randomly distribute
its answers.

Section 4. Operations for Collections 275

If C is a domain then there are methods for Representative that try to fetch an element from any known
generator list of C , see 30. Note that Representative does not try to compute generators of C , thus
Representative may give up and signal an error if C has no generators stored at all.

8 I RepresentativeSmallest(C) A

returns the smallest element in the collection C , w.r.t. the ordering <. While the operation defaults to
comparing all elements, better methods are installed for some collections.

gap> Representative(Rationals);
1
gap> Representative([-1, -2 .. -100]);
-1
gap> RepresentativeSmallest([-1, -2 .. -100]);
-100

28.4 Operations for Collections

1 I IsSubset(C1, C2) O

IsSubset returns true if C2 , which must be a collection, is a subset of C1 , which also must be a collection,
and false otherwise.

C2 is considered a subset of C1 if and only if each element of C2 is also an element of C1 . That is IsSubset
behaves as if implemented as IsSubsetSet(AsSSortedList(C1), AsSSortedList(C2)), except
that it will also sometimes, but not always, work for infinite collections, and that it will usually work much
faster than the above definition. Either argument may also be a proper set (see 21.19).

gap> IsSubset(Rationals, Integers);
true
gap> IsSubset(Integers, [1, 2, 3]);
true
gap> IsSubset(Group((1,2,3,4)), [(1,2,3)]);
false

2 I Intersection(C1, C2 ...) F
I Intersection(list) F
I Intersection2(C1, C2) O

In the first form Intersection returns the intersection of the collections C1 , C2 , etc. In the second form
list must be a nonempty list of collections and Intersection returns the intersection of those collections.
Each argument or element of list respectively may also be a homogeneous list that is not a proper set, in
which case Intersection silently applies Set (see 28.2.6) to it first.

The result of Intersection is the set of elements that lie in every of the collections C1 , C2 , etc. If the
result is a list then it is mutable and new, i.e., not identical to any of C1 , C2 , etc.

Methods can be installed for the operation Intersection2 that takes only two arguments. Intersection
calls Intersection2.

Methods for Intersection2 should try to maintain as much structure as possible, for example the intersec-
tion of two permutation groups is again a permutation group.

gap> Intersection(CyclotomicField(9), CyclotomicField(12))
> # this is one of the rare cases where the intersection of two infinite
> ; # domains works (‘CF’ is a shorthand for ‘CyclotomicField’)
CF(3)
gap> D12 := Group((2,6)(3,5), (1,2)(3,6)(4,5));;

276 Chapter 28. Collections

gap> Intersection(D12, Group((1,2), (1,2,3,4,5)));
Group([(1,5)(2,4)])
gap> Intersection(D12, [(1,3)(4,6), (1,2)(3,4)])
> ; # note that the second argument is not a proper set
[(1,3)(4,6)]
gap> Intersection(D12, [(), (1,2)(3,4), (1,3)(4,6), (1,4)(5,6)])
> # although the result is mathematically a group it is returned as a
> ; # proper set because the second argument is not regarded as a group
[(), (1,3)(4,6)]
gap> Intersection(Group(()), [1,2,3]);
[]
gap> Intersection([2,4,6,8,10], [3,6,9,12,15], [5,10,15,20,25])
> ; # two or more lists or collections as arguments are legal
[]
gap> Intersection([[1,2,4], [2,3,4], [1,3,4]])
> ; # or one list of lists or collections
[4]

3 I Union(C1, C2 ...) F
I Union(list) F
I Union2(C1, C2) O

In the first form Union returns the union of the collections C1 , C2 , etc. In the second form list must be a list
of collections and Union returns the union of those collections. Each argument or element of list respectively
may also be a homogeneous list that is not a proper set, in which case Union silently applies Set (see 28.2.6)
to it first.

The result of Union is the set of elements that lie in any of the collections C1 , C2 , etc. If the result is a list
then it is mutable and new, i.e., not identical to any of C1 , C2 , etc.

Methods can be installed for the operation Union2 that takes only two arguments. Union calls Union2.

gap> Union([(1,2,3), (1,2,3,4)], Group((1,2,3), (1,2)));
[(), (2,3), (1,2), (1,2,3), (1,2,3,4), (1,3,2), (1,3)]
gap> Union([2,4,6,8,10], [3,6,9,12,15], [5,10,15,20,25])
> ; # two or more lists or collections as arguments are legal
[2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 20, 25]
gap> Union([[1,2,4], [2,3,4], [1,3,4]])
> ; # or one list of lists or collections
[1, 2, 3, 4]
gap> Union([]);
[]

4 I Difference(C1, C2) O

Difference returns the set difference of the collections C1 and C2 . Either argument may also be a ho-
mogeneous list that is not a proper set, in which case Difference silently applies Set (see 28.2.6) to it
first.

The result of Difference is the set of elements that lie in C1 but not in C2 . Note that C2 need not be a
subset of C1 . The elements of C2 , however, that are not elements of C1 play no role for the result. If the
result is a list then it is mutable and new, i.e., not identical to C1 or C2 .

gap> Difference([(1,2,3), (1,2,3,4)], Group((1,2,3), (1,2)));
[(1,2,3,4)]

Section 6. Random Elements 277

28.5 Membership Test for Collections

1 I obj in C
I \in(obj, C) O

returns true if the object obj lies in the collection C , and false otherwise.

The infix version of the command calls the operation \in, for which methods can be installed.

gap> 13 in Integers; [1, 2] in Integers;
true
false
gap> g:= Group((1,2));; (1,2) in g; (1,2,3) in g;
true
false

28.6 Random Elements

1 I Random(C) O
I Random(list) O

Random returns a (pseudo-)random element of the collection C respectively the list list .

The distribution of elements returned by Random depends on the argument. For a list list , all elements are
equally likely. The same holds usually for finite collections C that are not lists. For infinite collections C
some reasonable distribution is used.

See the chapters of the various collections to find out which distribution is being used.

For some collections ensuring a reasonable distribution can be difficult and require substantial runtime. If
speed at the cost of equal distribution is desired, the operation PseudoRandom should be used instead.

Note that Random is of course not an attribute.

gap> Random(Rationals);
4
gap> g:= Group((1,2,3));; Random(g); Random(g);
(1,3,2)
()

2 I StateRandom() F
I RestoreStateRandom(obj) F

[This interface to the global random generator is kept for compatibility with older versions of GAP. Use now
State(GlobalRandomSource) and Reset(GlobalRandomSource, obj) instead.]

For debugging purposes, it can be desirable to reset the random number generator to a state it had before.
StateRandom returns a GAP object that represents the current state of the random number generator used
by RandomList.

By calling RestoreStateRandom with this object as argument, the random number is reset to this same
state.

(The same result can be obtained by accessing the two global variables R N and R X.)

(The format of the object used to represent the random generator seed is not guaranteed to be stable between
different machines or versions of GAP.

278 Chapter 28. Collections

gap> seed:=StateRandom();;
gap> List([1..10],i->Random(Integers));
[-2, 1, -2, -1, 0, 1, 0, 1, -1, 0]
gap> List([1..10],i->Random(Integers));
[2, 0, 4, -1, -3, 1, -4, -1, 5, -2]
gap> RestoreStateRandom(seed);
gap> List([1..10],i->Random(Integers));
[-5, -2, 0, 1, -2, -1, -3, -2, 0, 0]

3 I PseudoRandom(C) O
I PseudoRandom(list) O

PseudoRandom returns a pseudo random element of the collection C respectively the list list , which can be
roughly described as follows. For a list list , PseudoRandom returns the same as Random. For collections C that
are not lists, the elements returned by PseudoRandom are not necessarily equally distributed, even for finite
collections C ; the idea is that Random (see 14.5.2) returns elements according to a reasonable distribution,
PseudoRandom returns elements that are cheap to compute but need not satisfy this strong condition, and
Representative (see 28.3.7) returns arbitrary elements, probably the same element for each call.

The method used by GAP to obtain random elements may depend on the type object.

Many random methods in the library are eventually based on the function RandomList. As RandomList is
restricted to lists of up to 228 elements, this may create problems for very large collections. Also note that
the method used by RandomList is intended to provide a fast algorithm rather than to produce high quality
randomness for statistical purposes.

If you implement your own Random methods we recommend that they initialize their seed to a defined value
when they are loaded to permit to reproduce calculations even if they involved random elements.

4 I RandomList(list) F

For a dense list list of up to 228 elements, RandomList returns a (pseudo-)random element with equal
distribution.

The algorithm used is an additive number generator (Algorithm A in section 3.2.2 of [Knu98] with lag 30)

This random number generator is (deliberately) initialized to the same values when GAP is started, so
different runs of GAP with the same input will always produce the same result, even if random calculations
are involved.

See StateRandom for a description on how to reset the random number generator to a previous state.

28.7 Iterators

1 I Iterator(C) O
I Iterator(list) O

Iterators provide a possibility to loop over the elements of a (countable) collection C or a list list , without
repetition. For many collections C , an iterator of C need not store all elements of C , for example it is
possible to construct an iterator of some infinite domains, such as the field of rational numbers.

Iterator returns a mutable iterator iter for its argument. If this is a list list (which may contain holes),
then iter iterates over the elements (but not the holes) of list in the same order (see 28.7.6 for details). If
this is a collection C but not a list then iter iterates over the elements of C in an unspecified order, which
may change for repeated calls of Iterator. Because iterators returned by Iterator are mutable (see 12.6),
each call of Iterator for the same argument returns a new iterator. Therefore Iterator is not an attribute
(see 13.5).

Section 7. Iterators 279

The only operations for iterators are IsDoneIterator, NextIterator, and ShallowCopy. In particular, it
is only possible to access the next element of the iterator with NextIterator if there is one, and this can be
checked with IsDoneIterator (see 28.7.5). For an iterator iter , ShallowCopy(iter) is a mutable iterator
new that iterates over the remaining elements independent of iter ; the results of IsDoneIterator for iter
and new are equal, and if iter is mutable then also the results of NextIterator for iter and new are equal;
note that = is not defined for iterators, so the equality of two iterators cannot be checked with =.

When Iterator is called for a mutable collection C then it is not defined whether iter respects changes
to C occurring after the construction of iter , except if the documentation explicitly promises a certain
behaviour. The latter is the case if the argument is a mutable list list (see 28.7.6 for subtleties in this case).

It is possible to have for-loops run over mutable iterators instead of lists.

In some situations, one can construct iterators with a special succession of elements, see 59.5.6 for the
possibility to loop over the elements of a vector space w.r.t. a given basis.

For lists, Iterator is implemented by IteratorList(list). For collections that are not lists, the default
method is IteratorList(Enumerator(C)). Better methods depending on C should be provided if
possible.

For random access to the elements of a (possibly infinite) collection, enumerators are used. See 21.23 for
the facility to compute a list from C , which provides a (partial) mapping from C to the positive integers.

gap> iter:= Iterator(GF(5));
<iterator>
gap> l:= [];;
gap> for i in iter do Add(l, i); od; l;
[0*Z(5), Z(5)^0, Z(5), Z(5)^2, Z(5)^3]
gap> iter:= Iterator([1, 2, 3, 4]);; l:= [];;
gap> for i in iter do
> new:= ShallowCopy(iter);
> for j in new do Add(l, j); od;
> od; l;
[2, 3, 4, 3, 4, 4]

2 I IteratorSorted(C) O
I IteratorSorted(list) O

IteratorSorted returns a mutable iterator. The argument must be a collection C or a list list that is not
necessarily dense but whose elements lie in the same family (see 13.1). It loops over the different elements
in sorted order.

For collections C that are not lists, the generic method is IteratorList(EnumeratorSorted(C)).

3 I IsIterator(obj) C

Every iterator lies in the category IsIterator.

4 I IsDoneIterator(iter) O

If iter is an iterator for the list or collection C then IsDoneIterator(iter) is true if all elements of C
have been returned already by NextIterator(iter), and false otherwise.

5 I NextIterator(iter) O

Let iter be a mutable iterator for the list or collection C . If IsDoneIterator(iter) is false then Nex-
tIterator is applicable to iter , and the result is the next element of C , according to the succession defined
by iter .

280 Chapter 28. Collections

If IsDoneIterator(iter) is true then it is not defined what happens if NextIterator is called for iter ;
that is, it may happen that an error is signalled or that something meaningless is returned, or even that
GAP crashes.

6 I IteratorList(list) F

IteratorList returns a new iterator that allows iteration over the elements of the list list (which may have
holes) in the same order.
If list is mutable then it is in principle possible to change list after the call of IteratorList. In this case
all changes concerning positions that have not yet been reached in the iteration will also affect the iterator.
For example, if list is enlarged then the iterator will iterate also over the new elements at the end of the
changed list.
Note that changes of list will also affect all shallow copies of list .

7 I TrivialIterator(elm) F

is a mutable iterator for the collection [elm] that consists of exactly one element elm (see 28.3.3).

gap> iter:= Iterator([1, 2, 3, 4]);
<iterator>
gap> sum:= 0;;
gap> while not IsDoneIterator(iter) do
> sum:= sum + NextIterator(iter);
> od;
gap> IsDoneIterator(iter); sum;
true
10
gap> ir:= Iterator(Rationals);;
gap> l:= [];; for i in [1..20] do Add(l, NextIterator(ir)); od; l;
[0, 1, -1, 1/2, 2, -1/2, -2, 1/3, 2/3, 3/2, 3, -1/3, -2/3, -3/2, -3, 1/4,
3/4, 4/3, 4, -1/4]

gap> for i in ir do
> if DenominatorRat(i) > 10 then break; fi;
> od;
gap> i;
1/11

8 I IteratorByFunctions(record) F

IteratorByFunctions returns a (mutable) iterator iter for which NextIterator, IsDoneIterator, and
ShallowCopy are computed via prescribed functions.
Let record be a record with at least the following components.

NextIterator
a function taking one argument iter , which returns the next element of iter (see 28.7.5); for that,
the components of iter are changed,

IsDoneIterator
a function taking one argument iter , which returns IsDoneIterator(iter) (see 28.7.4);

ShallowCopy
a function taking one argument iter , which returns a record for which IteratorByFunctions can
be called in order to create a new iterator that is independent of iter but behaves like iter w.r.t.
the operations NextIterator and IsDoneIterator.

Further (data) components may be contained in record which can be used by these function.
IteratorByFunctions does not make a shallow copy of record , this record is changed in place (see 3.8 in
“Programming in GAP”).

29 Orderings

In GAP an ordering is a relation defined on a family, which is reflexive, anti-symmetric and transitive.

1 I IsOrdering(ord) C

returns true if and only if the object ord is an ordering.

2 I OrderingsFamily(fam) A

for a family fam, returns the family of all orderings on elements of fam.

29.1 Building new orderings

1 I OrderingByLessThanFunctionNC(fam, lt) O
I OrderingByLessThanFunctionNC(fam, lt, l) O

In the first form, OrderingByLessThanFunctionNC returns the ordering on the elements of the elements
of the family fam according to the LessThanFunction given by lt , where lt is a function that takes two
arguments in fam and returns true or false.

In the second form, for a family fam, a function lt that takes two arguments in fam and returns true or
false, and a list l of properties of orderings, OrderingByLessThanFunctionNC returns the ordering on the
elements of fam with LessThanFunction given by lt and with the properties from l set to true.

2 I OrderingByLessThanOrEqualFunctionNC(fam, lteq) O
I OrderingByLessThanOrEqualFunctionNC(fam, lteq, l) O

In the first form, OrderingByLessThanOrEqualFunctionNC returns the ordering on the elements of the
elements of the family fam according to the LessThanOrEqualFunction given by lteq , where lteq is a
function that takes two arguments in fam and returns true or false.

In the second form, for a family fam, a function lteq that takes two arguments in fam and returns true or
false, and a list l of properties of orderings, OrderingByLessThanOrEqualFunctionNC returns the ordering
on the elements of fam with LessThanOrEqualFunction given by lteq and with the properties from l set to
true.

Notice that these functions do not check whether fam and lt or lteq are compatible, and whether the
properties listed in l are indeed true.

gap> f := FreeSemigroup("a","b");;
gap> a := GeneratorsOfSemigroup(f)[1];;
gap> b := GeneratorsOfSemigroup(f)[2];;
gap> lt := function(x,y) return Length(x)<Length(y); end;
function(x, y) ... end
gap> fam := FamilyObj(a);;
gap> ord := OrderingByLessThanFunctionNC(fam,lt);
Ordering

282 Chapter 29. Orderings

29.2 Properties and basic functionality

1 I IsWellFoundedOrdering(ord) P

for an ordering ord , returns true if and only if the ordering is well founded. An ordering ord is well founded
if it admits no infinite descending chains. Normally this property is set at the time of creation of the ordering
and there is no general method to check whether a certain ordering is well founded.

2 I IsTotalOrdering(ord) P

for an ordering ord , returns true if and only if the ordering is total. An ordering ord is total if any two
elements of the family are comparable under ord . Normally this property is set at the time of creation of
the ordering and there is no general method to check whether a certain ordering is total.

3 I IsIncomparableUnder(ord, el1, el2) O

for an ordering ord on the elements of the family of el1 and el2 , returns true if el1 6= el2 and IsLessTha-
nUnder(ord ,el1 ,el2), IsLessThanUnder(ord ,el2 ,el1) are both false; and returns false otherwise.

4 I FamilyForOrdering(ord) A

for an ordering ord , returns the family of elements that the ordering ord compares.

5 I LessThanFunction(ord) A

for an ordering ord , returns a function f which takes two elements el1 , el2 in the FamilyForOrdering(ord)
and returns true if el1 is strictly less than el2 (with respect to ord) and returns false otherwise.

6 I LessThanOrEqualFunction(ord) A

for an ordering ord , returns a function that takes two elements el1 , el2 in the FamilyForOrdering(ord) and
returns true if el1 is less than or equal to el2 (with respect to ord) and returns false otherwise.

7 I IsLessThanUnder(ord, el1, el2) O

for an ordering ord on the elements of the family of el1 and el2 , returns true if el1 is (strictly) less than
el2 with respect to ord , and false otherwise.

8 I IsLessThanOrEqualUnder(ord, el1, el2) O

for an ordering ord on the elements of the family of el1 and el2 , returns true if el1 is less than or equal to
el2 with respect to ord , and false otherwise.

gap> IsLessThanUnder(ord,a,a*b);
true
gap> IsLessThanOrEqualUnder(ord,a*b,a*b);
true
gap> IsIncomparableUnder(ord,a,b);
true
gap> FamilyForOrdering(ord) = FamilyObj(a);
true

Section 3. Orderings on families of associative words 283

29.3 Orderings on families of associative words

We now consider orderings on families of associative words.

1 I IsOrderingOnFamilyOfAssocWords(ord) P

for an ordering ord , returns true if ord is an ordering over a family of associative words.

Examples of families of associative words are the families of elements of a free semigroup or a free monoid;
these are the two cases that we consider mostly. Associated with those families is an alphabet, which is
the semigroup (resp. monoid) generating set of the correspondent free semigroup (resp. free monoid). For
definitions of the orderings considered see Sims [Sim94].

2 I IsTranslationInvariantOrdering(ord) P

for an ordering ord on a family of associative words, returns true if and only if the ordering is translation
invariant. This is a property of orderings on families of associative words. An ordering ord over a family fam,
with alphabet X is translation invariant if IsLessThanUnder(ord, u, v) implies that for any a, b ∈ X ∗

IsLessThanUnder(ord, a ∗ u ∗ b, a ∗ v ∗ b).

3 I IsReductionOrdering(ord) P

for an ordering ord on a family of associative words, returns true if and only if the ordering is a reduction
ordering. An ordering ord is a reduction ordering if it is founded and translation invariant.

4 I OrderingOnGenerators(ord) A

for an ordering ord on a family of associative words, returns a list alphabet in which the generators are
considered. This could be indeed the ordering of the generators in the ordering, but, for example, if a weight
is associated to each generator then this is not true anymore. See the example for WeightLexOrdering
(29.3.8).

5 I LexicographicOrdering(fam) O
I LexicographicOrdering(fam, gensord) O
I LexicographicOrdering(fam, alphabet) O
I LexicographicOrdering(f) O
I LexicographicOrdering(f , alphabet) O
I LexicographicOrdering(f , gensord) O

In the first form, for a family fam of associative words, LexicographicOrdering returns the lexicographic
ordering on the elements of fam.

In the second form, for a family fam of associate words and a list alphabet which is the actual list of
generators in the desired order, LexicographicOrdering returns the lexicographic ordering on the elements
of fam with the ordering on the alphabet as given.

In the third form, for a family fam of associative words and a list gensorder of the length of the alphabet,
LexicographicOrdering returns the lexicographic ordering on the elements of fam with the order on the
alphabet given by gensord .

In the fourth form, for a free semigroup of a free monoid f , LexicographicOrdering returns the lexicographic
ordering on the family of the elements of f with the order in the alphabet being the default one.

In the fifth form, for a free semigroup or a free monoid f and a list alphabet which is the actual list of
generators in the desired order, LexicographicOrdering returns the lexicographic ordering on the elements
of f with the ordering on the alphabet as given.

In the sixth form, for a free semigroup of a free monoid f , and a list gensorder , LexicographicOrdering
returns the lexicographic ordering on the elements of f with the order on the alphabet given by gensord .

284 Chapter 29. Orderings

gap> f := FreeSemigroup(3);
<free semigroup on the generators [s1, s2, s3]>
gap> lex := LexicographicOrdering(f,[2,3,1]);
Ordering
gap> IsLessThanUnder(lex,f.2*f.3,f.3);
true
gap> IsLessThanUnder(lex,f.3,f.2);
false

6 I ShortLexOrdering(fam) O
I ShortLexOrdering(fam, alphabet) O
I ShortLexOrdering(fam, gensord) O
I ShortLexOrdering(f) O
I ShortLexOrdering(f , alphabet) O
I ShortLexOrdering(f , gensord) O

In the first form, for a family fam of associative words, ShortLexOrdering returns the ShortLex ordering
on the elements of fam with the order in the alphabet being the default one.
In the second form, for a family fam of associate words and a list alphabet which is the actual list of
generators in the desired order, ShortLexOrdering returns the ShortLex ordering on the elements of fam
with the ordering on the alphabet as given.
In the third form, for a family fam of associative words and a list gensorder of the length of the alphabet,
ShortLexOrdering returns the ShortLex ordering on the elements of fam with the order on the alphabet
given by gensord .
In the fourth form, for a free semigroup of a free monoid f , ShortLexOrdering returns the ShortLex ordering
on the family of the elements of f with the order in the alphabet being the default one.
In the fifth form, for a free semigroup or a free monoid f and a list alphabet which is the actual list of
generators in the desired order, ShortLexOrdering returns the ShortLex ordering on the elements of f with
the ordering on the alphabet as given.
In the sixth form, for a free semigroup of a free monoid f , and a list gensorder , ShortLexOrdering returns
the ShortLex ordering on the elements of f with the order on the alphabet given by gensord .

7 I IsShortLexOrdering(ord) P

for an ordering ord of a family of associative words, returns true if and only if ord is a ShortLex ordering.

gap> f := FreeSemigroup(3);
<free semigroup on the generators [s1, s2, s3]>
gap> sl := ShortLexOrdering(f,[2,3,1]);
Ordering
gap> IsLessThanUnder(sl,f.1,f.2);
false
gap> IsLessThanUnder(sl,f.3,f.2);
false
gap> IsLessThanUnder(sl,f.3,f.1);
true

8 I WeightLexOrdering(fam, alphabet, wt) O
I WeightLexOrdering(fam, gensord, wt) O
I WeightLexOrdering(f , alphabet, wt) O
I WeightLexOrdering(f , gensord, wt) O

In the first form, for a family fam of associative words and a list wt , WeightLexOrdering returns the
WeightLex ordering on the elements of fam with the order in the alphabet being the default one and the
weights of the letters in the alphabet being given by wt .

Section 3. Orderings on families of associative words 285

In the second form, for a family fam of associative words, a list wt and a list gensorder of the length of the
alphabet, WeightLexOrdering returns the WeightLex ordering on the elements of fam with the order on
the alphabet given by gensord and the weights of the letters in the alphabet being given by wt .

In the third form, for a free semigroup of a free monoid f and a list wt , WeightLexOrdering returns the
WeightLex ordering on the family of the elements of f with the order in the alphabet being the default one
and the weights of the letters in the alphabet being given by wt .

In the fourth form, for a free semigroup of a free monoid f , a list wt and a list gensorder of the length of
the alphabet, WeightLexOrdering returns the WeightLex ordering on the elements of f with the order on
the alphabet given by gensord and the weights of the letters in the alphabet being given by wt .

9 I IsWeightLexOrdering(ord) P

for an ordering ord on a family of associative words, returns true if and only if ord is a WeightLex ordering.

10 I WeightOfGenerators(ord) A

for a WeightLex ordering ord , returns a list l with length the size of the alphabet of the family. This list
gives the weight of each of the letters of the alphabet which are used for WeightLex orderings with respect
to the ordering given by OrderingOnGenerators (see 29.3.4).

gap> f := FreeSemigroup(3);
<free semigroup on the generators [s1, s2, s3]>
gap> wtlex := WeightLexOrdering(f,[f.2,f.3,f.1],[3,2,1]);
Ordering
gap> IsLessThanUnder(wtlex,f.1,f.2);
true
gap> IsLessThanUnder(wtlex,f.3,f.2);
true
gap> IsLessThanUnder(wtlex,f.3,f.1);
false
gap> OrderingOnGenerators(wtlex);
[s2, s3, s1]
gap> WeightOfGenerators(wtlex);
[3, 2, 1]

11 I BasicWreathProductOrdering(fam) O
I BasicWreathProductOrdering(fam, alphabet) O
I BasicWreathProductOrdering(fam, gensord) O
I BasicWreathProductOrdering(f) O
I BasicWreathProductOrdering(f , alphabet) O
I BasicWreathProductOrdering(f , gensord) O

In the first form, for a family of associative words, BasicWreathProductOrdering returns the basic wreath
product ordering on the elements of fam with the order in the alphabet being the default one.

In the second form, for a family of associative words and a list alphabet , BasicWreathProductOrdering
returns the basic wreath product ordering on the elements of fam with the order on the alphabet given by
alphabet .

In the third form, for a family of associative words and a list gensorder of the length of the alphabet,
BasicWreathProductOrdering returns the basic wreath product ordering on the elements of fam with the
order on the alphabet given by gensord .

In the fourth form, for a free semigroup of a free monoid f , BasicWreathProductOrdering returns the basic
wreath product ordering on the family of the elements of f with the order in the alphabet being the default
one.

286 Chapter 29. Orderings

In the fifth form, for a free semigroup or a free monoid f , and a list alphabet of generators, BasicWreath-
ProductOrdering returns the basic wreath product ordering on the family of the elements of f with the
order on the alphabet given by alphabet .

In the sixth form, for a free semigroup or a free monoid f , and a list gensorder , BasicWreathProduc-
tOrdering returns the basic wreath product ordering on the family of the elements of f with the order on
the alphabet given by gensord .

12 I IsBasicWreathProductOrdering(ord) P

gap> f := FreeSemigroup(3);
<free semigroup on the generators [s1, s2, s3]>
gap> basic := BasicWreathProductOrdering(f,[2,3,1]);
Ordering
gap> IsLessThanUnder(basic,f.3,f.1);
true
gap> IsLessThanUnder(basic,f.3*f.2,f.1);
true
gap> IsLessThanUnder(basic,f.3*f.2*f.1,f.1*f.3);
false

13 I WreathProductOrdering(fam, levels) O
I WreathProductOrdering(fam, alphabet, levels) O
I WreathProductOrdering(fam, gensord, levels) O
I WreathProductOrdering(f , levels) O
I WreathProductOrdering(f , alphabet, levels) O
I WreathProductOrdering(f , gensord, levels) O

returns the wreath product ordering of the family fam of associative words or a free semigroup/monoid f .
The ordering on the generators may be omitted (in which case the default one is considered), or may be
given either by a list alphabet consisting of the alphabet of the family in the appropriate ordering, or by
a list gensord giving the permutation of the alphabet. It also needs a list levels giving the levels of each
generator. Notice that this list gives the levels of the generators in the new ordering (not necessarily the
default one), i.e. levels[i] is the level of the generator that comes i -th in the ordering of generators given
by alphabet or gensord .

14 I IsWreathProductOrdering(ord) P

15 I LevelsOfGenerators(ord) A

for a wreath product ordering ord , returns the levels of the generators as given at creation (with respect to
OrderingOnGenerators; see 29.3.4).

gap> f := FreeSemigroup(3);
<free semigroup on the generators [s1, s2, s3]>
gap> wrp := WreathProductOrdering(f,[1,2,3],[1,1,2,]);
Ordering
gap> IsLessThanUnder(wrp,f.3,f.1);
false
gap> IsLessThanUnder(wrp,f.3,f.2);
false
gap> IsLessThanUnder(wrp,f.1,f.2);
true
gap> LevelsOfGenerators(wrp);
[1, 1, 2]

30
Domains and

their Elements

Domain is GAP’s name for structured sets. The ring of Gaussian integers Z [i] is an example of a domain,
the group D12 of symmetries of a regular hexahedron is another.

The GAP library predefines some domains. For example the ring of Gaussian integers is predefined as
GaussianIntegers (see 58.5) and the field of rationals is predefined as Rationals (see 16). Most domains
are constructed by functions, which are called domain constructors (see 30.3). For example the group
D12 is constructed by the construction Group((1,2,3,4,5,6), (2,6)(3,5)) (see 37.2.1) and the finite
field with 16 elements is constructed by GaloisField(16) (see 57.3.1).

The first place where you need domains in GAP is the obvious one. Sometimes you simply want to deal with
a domain. For example if you want to compute the size of the group D12, you had better be able to represent
this group in a way that the Size function can understand.

The second place where you need domains in GAP is when you want to be able to specify that an operation
or computation takes place in a certain domain. For example suppose you want to factor 10 in the ring of
Gaussian integers. Saying Factors(10) will not do, because this will return the factorization [2, 5] in
the ring of integers. To allow operations and computations to happen in a specific domain, Factors, and many
other functions as well, accept this domain as optional first argument. Thus Factors(GaussianIntegers,
10) yields the desired result [1+E(4), 1-E(4), 2+E(4), 2-E(4)]. (The imaginary unit exp(2πi/4) is
written as E(4) in GAP.)

The most important facts about domains are stated in Chapter 7 of the GAP Tutorial.

There are only few operations especially for domains (see 30.9), operations such as Intersection and
Random are defined for the more general situation of collections (see Chapter 28).

30.1 Operational Structure of Domains

Domains have an operational structure, that is, a collection of operations under which the domain is
closed. For example, a group is closed under multiplication, taking the zeroth power of elements, and taking
inverses of elements. The operational structure may be empty, examples of domains without additional
structure are the underlying relations of general mappings (see 31.2).

The operations under which a domain is closed are a subset of the operations that the elements of a domain
admit. It is possible that the elements admit more operations. For example, matrices can be multiplied and
added. But addition plays no role in a group of matrices, and multiplication plays no role in a vector space
of matrices. In particular, a matrix group is not closed under addition.

Note that the elements of a domain exist independently of this domain, usually they existed already before
the domain was created. So it makes sense to say that a domain is generated by some elements with respect
to certain operations.

Of course, different sets of operations yield different notions of generation. For example, the group generated
by some matrices is different from the ring generated by these matrices, and these two will in general be
different from the vector space generated by the same matrices, over a suitable field.

The other way round, the same set of elements may be obtained by generation w.r.t. different notions
of generation. For example, one can get the group generated by two elements g and h also as the monoid

288 Chapter 30. Domains and their Elements

generated by the elements g , g−1, h, h−1; if both g and h have finite order then of course the group generated
by g and h coincides with the monoid generated by g and h.

Additionally to the operational structure, a domain can have properties. For example, the multiplication of
a group is associative, and the multiplication in a field is commutative.

Note that associativity and commutativity depend on the set of elements for which one considers the mul-
tiplication, i.e., it depends on the domain. For example, the multiplication in a full matrix ring over a field
is not commutative, whereas its restriction to the set of diagonal matrices is commutative.

One important difference between the operational structure and the properties of a domain is that the
operational structure is fixed when the domain is constructed, whereas properties can be discovered later.
For example, take a domain whose operational structure is given by closure under multiplication. If it is
discovered that the inverses of all its elements also do (by chance) lie in this domain, being closed under taking
inverses is not added to the operational structure. But a domain with operational structure of multiplication,
taking the identity, and taking inverses will be treated as a group as soon as the multiplication is found out
to be associative for this domain.

The operational structures available in GAP form a hierarchy, which is explicitly formulated in terms of
domain categories, see 30.6.

30.2 Equality and Comparison of Domains

Equality and comparison of domains are defined as follows.

Two domains are considered equal if and only if the sets of their elements as computed by AsSSortedList
(see 28.2.9) are equal. Thus, in general = behaves as if each domain operand were replaced by its set
of elements. Except that = will also sometimes, but not always, work for infinite domains, for which of
course GAP cannot compute the set of elements. Note that this implies that domains with different algebraic
structure may well be equal. As a special case of this, either operand of = may also be a proper set (see 21.19),
i.e., a sorted list without holes or duplicates (see 28.2.9), and = will return true if and only if this proper
set is equal to the set of elements of the argument that is a domain.

No general ordering of arbitrary domains via < is defined in GAP 4. This is because a well-defined < for
domains or, more general, for collections, would have to be compatible with = and would need to be transitive
and antisymmetric in order to be used to form ordered sets. In particular, < would have to be independent of
the algebraic structure of its arguments because this holds for =, and thus there would be hardly a situation
where one could implement an efficient comparison method. (Note that in the case that two domains are
comparable with <, the result is in general not compatible with the set theoretical subset relation, which
can be decided with IsSubset.)

30.3 Constructing Domains

For several operational structures (see 30.1), GAP provides functions to construct domains with this struc-
ture. For example, Group returns groups, VectorSpace returns vector spaces etc.

1 I Struct(arg1, arg2, ...) F

The syntax of these functions may vary, dependent on the structure in question. Usually a domain is
constructed as the closure of some elements under the given operations, that is, the domain is given by its
generators. For example, a group can be constructed from a list of generating permutations or matrices or
whatever is admissible as group elements, and a vector space over a given field F can be constructed from
F and a list of appropriate vectors.

The idea of generation and generators in GAP is that the domain returned by a function such as Group,
Algebra, or FreeLeftModule contains the given generators. This implies that the generators of a group
must know how they are multiplied and inverted, the generators of a module must know how they are added

Section 4. Changing the Structure 289

and how scalar multiplication works, and so on. Thus one cannot use for example permutations as generators
of a vector space.

The function Struct first checks whether the arguments admit the construction of a domain with the desired
structure. This is done by calling the operation

2 I IsGeneratorsOfStruct([info,]gens) O

where arglist is the list of given generators and info an argument of Struct , for example the field of scalars
in the case that a vector space shall be constructed. If the check failed then Struct returns fail, otherwise
it returns the result of StructByGenerators (see below). (So if one wants to omit the check then one should
call StructByGenerators directly.)

3 I GeneratorsOfStruct(D) A

For a domain D with operational structure corresponding to Struct , the attribute GeneratorsOfStruct
returns a list of corresponding generators of D . If these generators were not yet stored in D then D must
know some generators if GeneratorsOfStruct shall have a chance to compute the desired result; for example,
monoid generators of a group can be computed from known group generators (and vice versa). Note that
several notions of generation may be meaningful for a given domain, so it makes no sense to ask for “the
generators of a domain”. Further note that the generators may depend on other information about D .
For example the generators of a vector space depend on the underlying field of scalars; the vector space
generators of a vector space over the field with four elements need not generate the same vector space when
this is viewed as a space over the field with two elements.

4 I StructByGenerators([info,]gens) O

Domain construction from generators gens is implemented by operations StructByGenerators, which are
called by the simple functions Struct ; methods can be installed only for the operations. Note that additional
information info may be necessary to construct the domain; for example, a vector space needs the underlying
field of scalars in addition to the list of vector space generators. The GeneratorsOfStruct value of the
returned domain need not be equal to gens. But if a domain D is printed as Struct([a, b, ...]) and
if there is an attribute GeneratorsOfStruct then the list GeneratorsOfStruct(D) is guaranteed to be
equal to [a, b, ...].

5 I StructWithGenerators([info,]gens) O

The only difference between StructByGenerators and StructWithGenerators is that the latter guarantees
that the GeneratorsOfStruct value of the result is equal to the given generators gens.

6 I ClosureStruct(D, obj) O

For constructing a domain as the closure of a given domain with an element or another domain, one can
use the operation ClosureStruct . It returns the smallest domain with operational structure corresponding
to Struct that contains D as a subset and obj as an element.

30.4 Changing the Structure

The same set of elements can have different operational structures. For example, it may happen that a
monoid M does in fact contain the inverses of all of its elements; if M has not been constructed as a group
(see 30.6) then it is reasonable to ask for the group that is equal to M .

1 I AsStruct([info,]D) O

If D is a domain that is closed under the operational structure given by Struct then AsStruct returns a
domain E that consists of the same elements (that is, D = E) and that has this operational structure (that
is, IsStruct(E) is true); if D is not closed under the structure given by Struct then AsStruct returns
fail.

290 Chapter 30. Domains and their Elements

If additional information besides generators are necessary to define D then the argument info describes the
value of this information for the desired domain. For example, if we want to view D as a vector space over
the field with two elements then we may call AsVectorSpace(GF(2), D); this allows us to change the
underlying field of scalars, for example if D is a vector space over the field with four elements. Again, if D
is not equal to a domain with the desired structure and additional information then fail is returned.

In the case that no additional information info is related to the structure given by Struct , the operation
AsStruct is in fact an attribute (see 13.5).

See the index of the GAP Reference Manual for an overview of the available AsStruct functions.

30.5 Changing the Representation

Often it is useful to answer questions about a domain via computations in a different but isomorphic domain.
In the sense that this approach keeps the structure and changes the underlying set of elements, it can be
viewed as a counterpart of keeping the set of elements and changing its structure (see 30.4).

One reason for doing so can be that computations with the elements in the given domain are not very efficient.
For example, if one is given a solvable matrix group (see Chapter 42) then one can compute an isomorphism
to a polycyclicly presented group G , say (see Chapter 43); the multiplication of two matrices –which is
essentially determined by the dimension of the matrices– is much more expensive than the multiplication of
two elements in G –which is essentially determined by the composition length of G .

1 I IsomorphismRepStruct(D) A

If D is a domain that is closed under the operational structure given by Struct then IsomorphismRepStruct
returns a mapping hom from D to a domain E having structure given by Struct , such that hom respects
the structure Struct and Rep describes the representation of the elements in E . If no domain E with the
required properties exists then fail is returned.

For example, IsomorphismPermGroup (see 41.2.1) takes a group as its argument and returns a group homo-
morphism (see 38) onto an isomorphic permutation group (see Chapter 41) provided the original group is
finite; for infinite groups, IsomorphismPermGroup returns fail. Similarly, IsomorphismPcGroup (see 44.5.2)
returns a group homomorphism from its argument to a polycyclicly presented group (see 44) if the argument
is polycyclic, and fail otherwise.

See the index of the GAP Reference Manual for an overview of the available IsomorphismRepStruct functions.

30.6 Domain Categories

As mentioned in 30.1, the operational structure of a domain is fixed when the domain is constructed. For
example, if D was constructed by Monoid then D is in general not regarded as a group in GAP, even if D is
in fact closed under taking inverses. In this case, IsGroup returns false for D . The operational structure
determines which operations are applicable for a domain, so for example SylowSubgroup is not defined for
D and therefore will signal an error.

1 I IsStruct(D)

The functions IsStruct implement the tests whether a domain D has the respective operational structure
(upon construction). IsStruct is a filter (see 13) that involves certain categories (see 13.3) and usually also
certain properties (see 13.7). For example, IsGroup is equivalent to IsMagmaWithInverses and IsAsso-
ciative, the first being a category and the second being a property.

Implications between domain categories describe the hierarchy of operational structures available in GAP.
Here are some typical examples.

– IsDomain is implied by each domain category,

– IsMagma is implied by each category that describes the closure under multiplication *,

Section 7. Parents 291

– IsAdditiveMagma is implied by each category that describes the closure under addition +,

– IsMagmaWithOne implies IsMagma; a magma-with-one is a magma such that each element (and thus
also the magma itself) can be asked for its zeroth power,

– IsMagmaWithInverses implies IsMagmaWithOne; a magma-with-inverses is a magma such that each
element can be asked for its inverse; important special cases are groups, which in addition are associa-
tive,

– a ring is a magma that is also an additive group,

– a ring-with-one is a ring that is also a magma-with-one,

– a division ring is a ring-with-one that is also closed under taking inverses of nonzero elements,

– a field is a commutative division ring.

Each operational structure Struct has associated with it a domain category IsStruct , and operations
StructByGenerators for constructing a domain from generators, GeneratorsOfStruct for storing and ac-
cessing generators w.r.t. this structure, ClosureStruct for forming the closure, and AsStruct for getting a
domain with the desired structure from one with weaker operational structure and for testing whether a
given domain can be regarded as a domain with Struct .

The functions applicable to domains with the various structures are described in the corresponding chapters
of the Reference Manual. For example, functions for rings, fields, groups, and vector spaces are described in
Chapters 54, 56, 37, and 59, respectively. More general functions for arbitrary collections can be found in
Chapter 28.

30.7 Parents

1 I Parent(D) F
I SetParent(D, P) O
I HasParent(D) F

It is possible to assign to a domain D one other domain P containing D as a subset, in order to exploit
this subset relation between D and P . Note that P need not have the same operational structure as D , for
example P may be a magma and D a field.

The assignment is done by calling SetParent, and P is called the parent of D . If D has already a parent,
calls to SetParent will be ignored.

If D has a parent P –this can be checked with HasParent– then P can be used to gain information about
D . First, the call of SetParent causes UseSubsetRelation (see 30.13.1) to be called. Second, for a domain
D with parent, information relative to the parent can be stored in D ; for example, there is an attribute
NormalizerInParent for storing Normalizer(P, D) in the case that D is a group. (More about such
parent dependent attributes can be found in 6.2 in “Extending GAP”.) Note that because of this relative
information, one cannot change the parent; that is, one can set the parent only once, subsequent calls to Set-
Parent for the same domain D are ignored. Further note that contrary to UseSubsetRelation (see 30.13.1),
also knowledge about the parent P might be used that is discovered after the SetParent call.

A stored parent can be accessed using Parent. If D has no parent then Parent returns D itself, and
HasParent will return false also after a call to Parent. So Parent is not an attribute, the underlying
attribute to store the parent is ParentAttr.

Certain functions that return domains with parent already set, for example Subgroup, are described in
Section 30.8. Whenever a function has this property, the Reference Manual states this explicitly. Note that
these functions do not guarantee a certain parent, for example DerivedSubgroup (see 37.12.3) for a perfect
group G may return G itself, and if G had already a parent then this is not replaced by G . As a rule of
thumb, GAP avoids to set a domain as its own parent, which is consistent with the behaviour of Parent, at
least until a parent is set explicitly with SetParent.

292 Chapter 30. Domains and their Elements

gap> g:= Group((1,2,3), (1,2));; h:= Group((1,2));;
gap> HasParent(g); HasParent(h);
false
false
gap> SetParent(h, g);
gap> Parent(g); Parent(h);
Group([(1,2,3), (1,2)])
Group([(1,2,3), (1,2)])
gap> HasParent(g); HasParent(h);
false
true

30.8 Constructing Subdomains

For many domains D , there are functions that construct certain subsets S of D as domains with parent
(see 30.7) already set to D . For example, if G is a group that contains the elements in the list gens then
Subgroup(G, gens) returns a group S that is generated by the elements in gens and with Parent(S)
= G .

1 I Substruct(D, gens) F

More general, if D is a domain whose algebraic structure is given by the function Struct (for example
Group, Algebra, Field) then the function Substruct (for example Subgroup, Subalgebra, Subfield) returns
domains with structure Struct and parent set to the first argument.

2 I SubstructNC(D, gens) F

Each function Substruct checks that the Struct generated by gens is in fact a subset of D . If one wants to
omit this check then one can call SubstructNC instead; the suffix NC stands for “no check”.

3 I AsSubstruct(D, S) F

first constructs Asstruct([info,]S), where info depends on D and S , and then sets the parent (see 30.7)
of this new domain to D .

4 I IsSubstruct(D, S) F

There is no real need for functions that check whether a domain S is a Substruct of a domain D , since this
is equivalent to the checks whether S is a Struct and S is a subset of D . Note that in many cases, only the
subset relation is what one really wants to check, and that appropriate methods for the operation IsSubset
(see 28.4.1) are available for many special situations, such as the test whether a group is contained in another
group, where only generators need to be checked.

If a function IsSubstruct is available in GAP then it is implemented as first a call to IsStruct for the second
argument and then a call to IsSubset for the two arguments.

30.9 Operations for Domains

For the meaning of the attributes Characteristic, One, Zero in the case of a domain argument, see 30.10.

1 I IsGeneralizedDomain(D) C
I IsDomain(D) C

For some purposes, it is useful to deal with objects that are similar to domains but that are not collections
in the sense of GAP because their elements may lie in different families; such objects are called general-
ized domains. An instance of generalized domains are “operation domains”, for example any G-set for a

Section 10. Attributes and Properties of Elements 293

permutation group G consisting of some union of points, sets of points, sets of sets of points etc., under a
suitable action.

IsDomain is a synonym for IsGeneralizedDomain and IsCollection.

2 I GeneratorsOfDomain(D) A

For a domain D , GeneratorsOfDomain returns a list containing all elements of D , perhaps with repetitions.
Note that if the domain D shall be generated by a list of some elements w.r.t. the empty operational structure
(see 30.1), the only possible choice of elements is to take all elements of D . See 30.3 and 30.4 for the concepts
of other notions of generation.

3 I Domain([Fam,]generators) F
I DomainByGenerators(Fam, generators) O

Domain returns the domain consisting of the elements in the homogeneous list generators. If generators is
empty then a family Fam must be entered as first argument, and the returned (empty) domain lies in the
collections family of Fam.

DomainByGenerators is the operation called by Domain.

30.10 Attributes and Properties of Elements

The following attributes and properties for elements and domains correspond to the operational structure.

1 I Characteristic(obj) A

Characteristic returns the characteristic of obj , where obj must either be an additive element, a domain
or a family.

For a domain D , the characteristic is defined if D is closed under addition and has a zero element z = Zero(
D) (see 30.10.3); in this case, Characteristic(D) is the smallest positive integer p such that p * x =
z for all elements x in D , if such an integer exists, and the integer zero 0 otherwise.

If a family has a characteristic then this means that all domains of elements in this family have this charac-
teristic. In this case, also each element in the family has this characteristic. (Note that also the zero element
z of a finite field in characteristic p has characteristic p, although n ∗ z = z for any integer n.)

2 I OneImmutable(obj) A
I OneAttr(obj) AM
I One(obj) AM
I Identity(obj) AM
I OneMutable(obj) O
I OneOp(obj) O
I OneSameMutability(obj) O
I OneSM(obj) O

OneImmutable, OneMutable, and OneSameMutability return the multiplicative neutral element of the mul-
tiplicative element obj .

They differ only w.r.t. the mutability of the result. OneImmutable is an attribute and hence returns an
immutable result. OneMutable is guaranteed to return a new mutable object whenever a mutable version
of the required element exists in GAP (see 12.6.1). OneSameMutability returns a result that is mutable if
obj is mutable and if a mutable version of the required element exists in GAP; for lists, it returns a result
of the same immutability level as the argument. For instance, if the argument is a mutable matrix with
immutable rows, it returns a similar object.

If obj is a multiplicative element then OneSameMutability(obj) is equivalent to obj^0.

294 Chapter 30. Domains and their Elements

OneAttr, One and Identity are synonyms of OneImmutable. OneSM is a synonym of OneSameMutability.
OneOp is a synonym of OneMutable.

If obj is a domain or a family then One is defined as the identity element of all elements in obj , provided
that all these elements have the same identity. For example, the family of all cyclotomics has the identity
element 1, but a collections family (see 28.1.1) may contain matrices of all dimensions and then it cannot
have a unique identity element. Note that One is applicable to a domain only if it is a magma-with-one
(see 33.1.2); use MultiplicativeNeutralElement (see 33.4.10) otherwise.

The identity of an object need not be distinct from its zero, so for example a ring consisting of a single
element can be regarded as a ring-with-one (see 54). This is particularly useful in the case of finitely presented
algebras, where any factor of a free algebra-with-one is again an algebra-with-one, no matter whether or not
it is a zero algebra.

The default method of One for multiplicative elements calls OneMutable (note that methods for OneMutable
must not delegate to One); so other methods to compute identity elements need to be installed only for
OneOp and (in the case of copyable objects) OneSameMutability.

For domains, One may call Representative (see 28.3.7), but Representative is allowed to fetch the identity
of a domain D only if HasOne(D) is true.

3 I ZeroImmutable(obj) A
I ZeroAttr(obj) AM
I Zero(obj) AM
I ZeroMutable(obj) O
I ZeroOp(obj) O
I ZeroSameMutability(obj) O
I ZeroSM(obj) O

ZeroImmutable, ZeroMutable, and ZeroSameMutability all return the additive neutral element of the
additive element obj .

They differ only w.r.t. the mutability of the result. ZeroImmutable is an attribute and hence returns an
immutable result. ZeroMutable is guaranteed to return a new mutable object whenever a mutable version
of the required element exists in GAP (see 12.6.1). ZeroSameMutability returns a result that is mutable if
obj is mutable and if a mutable version of the required element exists in GAP; for lists, it returns a result
of the same immutability level as the argument. For instance, if the argument is a mutable matrix with
immutable rows, it returns a similar object.

ZeroSameMutability(obj) is equivalent to 0 * obj .

ZeroAttr and Zero are synonyms of ZeroImmutable. ZeroSM is a synonym of ZeroSameMutability. ZeroOp
is a synonym of ZeroMutable.

If obj is a domain or a family then Zero is defined as the zero element of all elements in obj , provided that
all these elements have the same zero. For example, the family of all cyclotomics has the zero element 0, but
a collections family (see 28.1.1) may contain matrices of all dimensions and then it cannot have a unique
zero element. Note that Zero is applicable to a domain only if it is an additive magma-with-zero (see 53.1.5);
use AdditiveNeutralElement (see 53.3.5) otherwise.

The default method of Zero for additive elements calls ZeroMutable (note that methods for ZeroMutable
must not delegate to Zero); so other methods to compute zero elements need to be installed only for
ZeroMutable and (in the case of copyable objects) ZeroSameMutability.

For domains, Zero may call Representative (see 28.3.7), but Representative is allowed to fetch the zero
of a domain D only if HasZero(D) is true.

4 I MultiplicativeZeroOp(elt) O

returns the element z in the family F of elt with the property that z ∗m = z = m ∗ z holds for all m ∈ F ,
if such an element is known.

Section 10. Attributes and Properties of Elements 295

Families of elements in the category IsMultiplicativeElementWithZero often arise from adjoining a new zero
to an existing magma. See 33.2.12 for details.

5 I IsOne(elm) P

is true if elm = One(elm), and false otherwise.

6 I IsZero(elm) P

is true if elm = Zero(elm), and false otherwise.

7 I IsIdempotent(elt) P

true iff elt is its own square. (Even if IsZero(elt) is also true.)

8 I InverseImmutable(elm) A
I InverseAttr(elm) AM
I Inverse(elm) AM
I InverseMutable(elm) O
I InverseOp(elm) O
I InverseSameMutability(elm) O
I InverseSM(elm) O

InverseImmutable, InverseMutable, and InverseSameMutability all return the multiplicative inverse of
an element elm, that is, an element inv such that elm * inv = inv * elm = One(elm) holds; if elm is
not invertible then fail (see 20.1.1) is returned.

Note that the above definition implies that a (general) mapping is invertible in the sense of Inverse only if
its source equals its range (see 31.13). For a bijective mapping f whose source and range differ, InverseGen-
eralMapping (see 31.1.3) can be used to construct a mapping g with the property that f ∗g is the identity
mapping on the source of f and g∗f is the identity mapping on the range of f .

The operations differ only w.r.t. the mutability of the result. InverseImmutable is an attribute and hence
returns an immutable result. InverseMutable is guaranteed to return a new mutable object whenever a
mutable version of the required element exists in GAP. InverseSameMutability returns a result that is
mutable if elm is mutable and if a mutable version of the required element exists in GAP; for lists, it returns
a result of the same immutability level as the argument. For instance, if the argument is a mutable matrix
with immutable rows, it returns a similar object.

InverseSameMutability(elm) is equivalent to elm^-1.

InverseAttr and Inverse are synonyms of InverseImmutable. InverseSM is a synonym of Invers-
eSameMutability. InverseOp is a synonym of InverseMutable.

The default method of InverseImmutable calls InverseMutable (note that methods for InverseMutable
must not delegate to InverseImmutable); other methods to compute inverses need to be installed only for
InverseMutable and (in the case of copyable objects) InverseSameMutability.

9 I AdditiveInverseImmutable(elm) A
I AdditiveInverseAttr(elm) AM
I AdditiveInverse(elm) AM
I AdditiveInverseMutable(elm) O
I AdditiveInverseOp(elm) O
I AdditiveInverseSameMutability(elm) O
I AdditiveInverseSM(elm) O

AdditiveInverseImmutable, AdditiveInverseMutable, and AdditiveInverseSameMutability all return
the additive inverse of elm.

296 Chapter 30. Domains and their Elements

They differ only w.r.t. the mutability of the result. AdditiveInverseImmutable is an attribute and hence
returns an immutable result. AdditiveInverseMutable is guaranteed to return a new mutable object when-
ever a mutable version of the required element exists in GAP (see 12.6.1). AdditiveInverseSameMutability
returns a result that is mutable if elm is mutable and if a mutable version of the required element exists
in GAP; for lists, it returns a result of the same immutability level as the argument. For instance, if the
argument is a mutable matrix with immutable rows, it returns a similar object.

AdditiveInverseSameMutability(elm) is equivalent to -elm.

AdditiveInverseAttr and AdditiveInverse are synonyms of AdditiveInverseImmutable. AdditiveIn-
verseSM is a synonym of AdditiveInverseSameMutability. AdditiveInverseOp is a synonym of Addi-
tiveInverseMutable.

The default method of AdditiveInverse calls AdditiveInverseMutable (note that methods for Addi-
tiveInverseMutable must not delegate to AdditiveInverse); so other methods to compute additive in-
verses need to be installed only for AdditiveInverseMutable and (in the case of copyable objects) Addi-
tiveInverseSameMutability.

10 I Order(elm) A

is the multiplicative order of elm. This is the smallest positive integer n such that elm^n = One(elm) if
such an integer exists. If the order is infinite, Order may return the value infinity, but it also might run
into an infinite loop trying to test the order.

30.11 Comparison Operations for Elements

Binary comparison operations have been introduced already in 4.11. The underlying operations for which
methods can be installed are the following.

1 I \=(left-expr, right-expr) O
I \<(left-expr, right-expr) O

Note that the comparisons via <>, <=, >, and >= are delegated to the operations \= and \<.

In general, objects in different families cannot be compared with <. For the reason and for exceptions from
this rule, see 4.11.

For some objects a “normal form” is hard to compute and thus equality of elements of a domain might be
expensive to test. Therefore GAP provides a (slightly technical) property with which an algorithm can test
whether an efficient equality test is available for elements of a certain kind.

2 I CanEasilyCompareElements(obj) P
I CanEasilyCompareElementsFamily(fam) F
I CanEasilySortElements(obj) P
I CanEasilySortElementsFamily(fam) F

CanEasilyCompareElements indicates whether the elements in the family fam of obj can be easily compared
with =. (In some cases element comparisons are very hard, for example in cases where no normal forms for
the elements exist.)

The default method for this property is to ask the family of obj , the default method for the family is to
return false.

The ability to compare elements may depend on the successful computation of certain information. (For
example for finitely presented groups it might depend on the knowledge of a faithful permutation repre-
sentation.) This information might change over time and thus it might not be a good idea to store a value
false too early in a family. Instead the function CanEasilyCompareElementsFamily should be called for
the family of obj which returns false if the value of CanEasilyCompareElements is not known for the
family without computing it. (This is in fact what the above mentioned family dispatch does.)

Section 12. Arithmetic Operations for Elements 297

If a family knows ab initio that it can compare elements this property should be set as implied filter and
filter for the family (the 3rd and 4th argument of NewFamily respectively). This guarantees that code which
directly asks the family gets a right answer.

The property CanEasilySortElements and the function CanEasilySortElementsFamily behave exactly
in the same way, except that they indicate that objects can be compared via <. This property implies
CanEasilyCompareElements, as the ordering must be total.

30.12 Arithmetic Operations for Elements

Binary arithmetic operations have been introduced already in 4.12. The underlying operations for which
methods can be installed are the following.

1 I \+(left-expr, right-expr) O
I *(left-expr, right-expr) O
I \/(left-expr, right-expr) O
I \^(left-expr, right-expr) O
I \mod(left-expr, right-expr) O

For details about special methods for \mod, consult the index entries for “mod”.

2 I LeftQuotient(elm1, elm2) O

returns the product elm1^(-1) * elm2 . For some types of objects (for example permutations) this product
can be evaluated more efficiently than by first inverting elm1 and then forming the product with elm2 .

3 I Comm(elm1, elm2) O

returns the commutator of elm1 and elm2 . The commutator is defined as the product elm1−1 ∗ elm2−1 ∗
elm1 ∗ elm2 .

gap> a:= (1,3)(4,6);; b:= (1,6,5,4,3,2);;
gap> Comm(a, b);
(1,5,3)(2,6,4)
gap> LeftQuotient(a, b);
(1,2)(3,6)(4,5)

4 I LieBracket(elm1, elm2) O

returns the element elm1 * elm2 - elm2 * elm1 .

The addition \+ is assumed to be associative but not assumed to be commutative (see 53.3.1). The multi-
plication * is not assumed to be commutative or associative (see 33.4.9, 33.4.7).

5 I Sqrt(obj) O

Sqrt returns a square root of obj , that is, an object x with the property that x · x = obj holds. If such an
x is not unique then the choice of x depends on the type of obj . For example, ER (see 18.4.2) is the Sqrt
method for rationals (see 16.1.1).

298 Chapter 30. Domains and their Elements

30.13 Relations Between Domains

Domains are often constructed relative to other domains. The probably most usual case is to form a subset
of a domain, for example the intersection (see 28.4.2) of two domains, or a Sylow subgroup of a given group
(see 37.13.1).

In such a situation, the new domain can gain knowledge by exploiting that several attributes are maintained
under taking subsets. For example, the intersection of an arbitrary domain with a finite domain is clearly
finite, a Sylow subgroup of an abelian group is abelian, too, and so on.

Since usually the new domain has access to the knowledge of the old domain(s) only when it is created
(see 30.8 for the exception), this is the right moment to take advantage of the subset relation.

Analogous relations occur when a factor structure is created from a domain and a subset, and when a
domain isomorphic to a given one is created.

1 I UseSubsetRelation(super, sub) O

Methods for this operation transfer possibly useful information from the domain super to its subset sub,
and vice versa.

UseSubsetRelation is designed to be called automatically whenever substructures of domains are con-
structed. So the methods must be cheap, and the requirements should be as sharp as possible!

To achieve that all applicable methods are executed, all methods for this operation except the default
method must end with TryNextMethod(). This default method deals with the information that is available
by the calls of InstallSubsetMaintenance in the GAP library.

gap> g:= Group((1,2), (3,4), (5,6));; h:= Group((1,2), (3,4));;
gap> IsAbelian(g); HasIsAbelian(h);
true
false
gap> UseSubsetRelation(g, h);; HasIsAbelian(h); IsAbelian(h);
true
true

2 I UseIsomorphismRelation(old, new) O

Methods for this operation transfer possibly useful information from the domain old to the isomorphic
domain new .

UseIsomorphismRelation is designed to be called automatically whenever isomorphic structures of domains
are constructed. So the methods must be cheap, and the requirements should be as sharp as possible!

To achieve that all applicable methods are executed, all methods for this operation except the default
method must end with TryNextMethod(). This default method deals with the information that is available
by the calls of InstallIsomorphismMaintenance in the GAP library.

gap> g:= Group((1,2));; h:= Group([[-1]]);;
gap> Size(g); HasSize(h);
2
false
gap> UseIsomorphismRelation(g, h);; HasSize(h); Size(h);
true
2

3 I UseFactorRelation(numer, denom, factor) O

Methods for this operation transfer possibly useful information from the domain numer or its subset denom
to the domain factor that is isomorphic to the factor of numer by denom, and vice versa. denom may be

Section 13. Relations Between Domains 299

fail, for example if factor is just known to be a factor of numer but denom is not available as a GAP object;
in this case those factor relations are used that are installed without special requirements for denom.

UseFactorRelation is designed to be called automatically whenever factor structures of domains are con-
structed. So the methods must be cheap, and the requirements should be as sharp as possible!

To achieve that all applicable methods are executed, all methods for this operation except the default
method must end with TryNextMethod(). This default method deals with the information that is available
by the calls of InstallFactorMaintenance in the GAP library.

gap> g:= Group((1,2,3,4), (1,2));; h:= Group((1,2,3), (1,2));;
gap> IsSolvableGroup(g); HasIsSolvableGroup(h);
true
false
gap> UseFactorRelation(g, Subgroup(g, [(1,2)(3,4), (1,3)(2,4)]), h);;
gap> HasIsSolvableGroup(h); IsSolvableGroup(h);
true
true

The following functions are used to tell GAP under what conditions an attribute is maintained under taking
subsets, or forming factor structures or isomorphic domains. This is used only when a new attribute is
created, see 3.3 in “Programming in GAP”. For the attributes already available, such as IsFinite and
IsCommutative, the maintenances are already notified.

4 I InstallSubsetMaintenance(opr, super req, sub req) F

opr must be a property or an attribute. The call of InstallSubsetMaintenance has the effect that for
a domain D in the filter super req , and a domain S in the filter sub req , the call UseSubsetRelation(
D, S) (see 30.13.1) sets a known value of opr for D as value of opr also for S . A typical example for
which InstallSubsetMaintenance is applied is given by opr = IsFinite, super req = IsCollection and
IsFinite, and sub req = IsCollection.

If opr is a property and the filter super req lies in the filter opr then we can use also the following inverse
implication. If D is in the filter whose intersection with opr is super req and if S is in the filter sub req , S
is a subset of D , and the value of opr for S is false then the value of opr for D is also false.

5 I InstallIsomorphismMaintenance(opr, old req, new req) F

opr must be a property or an attribute. The call of InstallIsomorphismMaintenance has the effect that for
a domain D in the filter old req , and a domain E in the filter new req , the call UseIsomorphismRelation(
D, E) (see 30.13.2) sets a known value of opr for D as value of opr also for E . A typical example for
which InstallIsomorphismMaintenance is applied is given by opr = Size, old req = IsCollection, and
new req = IsCollection.

6 I InstallFactorMaintenance(opr, numer req, denom req, factor req) F

opr must be a property or an attribute. The call of InstallFactorMaintenance has the effect that for collec-
tions N , D , F in the filters numer req , denom req , and factor req , respectively, the call UseFactorRelation(
N , D, F) (see 30.13.3) sets a known value of opr for N as value of opr also for F . A typical example
for which InstallFactorMaintenance is applied is given by opr = IsFinite, numer req = IsCollection
and IsFinite, denom req = IsCollection, and factor req = IsCollection.

For the other direction, if numer req involves the filter opr then a known false value of opr for F implies
a false value for D provided that D lies in the filter obtained from numer req by removing opr .

Note that an implication of a factor relation holds in particular for the case of isomorphisms. So one need
not install an isomorphism maintained method when a factor maintained method is already installed.
For example, UseIsomorphismRelation (see 30.13.2) will transfer a known IsFinite value because of the
installed factor maintained method.

300 Chapter 30. Domains and their Elements

30.14 Useful Categories of Elements

This section and the following one are rather technical, and may be interesting only for those GAP users
who want to implement new kinds of elements.

It deals with certain categories of elements that are useful mainly for the design of elements, from the
viewpoint that one wants to form certain domains of these elements. For example, a domain closed under
multiplication * (a so-called magma, see Chapter 33) makes sense only if its elements can be multiplied, and
the latter is indicated by the category IsMultiplicativeElement for each element. Again note that the
underlying idea is that a domain is regarded as generated by given elements, and that these elements carry
information about the desired domain. For general information on categories and their hierarchies, see 13.3.

1 I IsExtAElement(obj) C

An external additive element is an object that can be added via + with other elements (not necessarily
in the same family, see 13.1).

2 I IsNearAdditiveElement(obj) C

A near-additive element is an object that can be added via + with elements in its family (see 13.1); this
addition is not necessarily commutative.

3 I IsAdditiveElement(obj) C

An additive element is an object that can be added via + with elements in its family (see 13.1); this
addition is commutative.

4 I IsNearAdditiveElementWithZero(obj) C

A near-additive element-with-zero is an object that can be added via + with elements in its family
(see 13.1), and that is an admissible argument for the operation Zero (see 30.10.3); this addition is not
necessarily commutative.

5 I IsAdditiveElementWithZero(obj) C

An additive element-with-zero is an object that can be added via + with elements in its family (see 13.1),
and that is an admissible argument for the operation Zero (see 30.10.3); this addition is commutative.

6 I IsNearAdditiveElementWithInverse(obj) C

A near-additive element-with-inverse is an object that can be added via + with elements in its family
(see 13.1), and that is an admissible argument for the operations Zero (see 30.10.3) and AdditiveInverse
(see 30.10.9); this addition is not necessarily commutative.

7 I IsAdditiveElementWithInverse(obj) C

An additive element-with-inverse is an object that can be added via + with elements in its family
(see 13.1), and that is an admissible argument for the operations Zero (see 30.10.3) and AdditiveInverse
(see 30.10.9); this addition is commutative.

8 I IsExtLElement(obj) C

An external left element is an object that can be multiplied from the left, via *, with other elements (not
necessarily in the same family, see 13.1).

9 I IsExtRElement(obj) C

An external right element is an object that can be multiplied from the right, via *, with other elements
(not necessarily in the same family, see 13.1).

10 I IsMultiplicativeElement(obj) C

A multiplicative element is an object that can be multiplied via * with elements in its family (see 13.1).

Section 14. Useful Categories of Elements 301

11 I IsMultiplicativeElementWithOne(obj) C

A multiplicative element-with-one is an object that can be multiplied via * with elements in its family
(see 13.1), and that is an admissible argument for the operation One (see 30.10.2).

12 I IsMultiplicativeElementWithZero(elt) C

Elements in a family which can be the operands of the * and the operation MultiplicativeZero.

13 I IsMultiplicativeElementWithInverse(obj) C

A multiplicative element-with-inverse is an object that can be multiplied via * with elements in its
family (see 13.1), and that is an admissible argument for the operations One (see 30.10.2) and Inverse
(see 30.10.8). (Note the word “admissible”: an object in this category does not necessarily have an inverse,
Inverse may return fail.)

14 I IsVector(obj) C

A vector is an additive-element-with-inverse that can be multiplied from the left and right with other
objects (not necessarily of the same type). Examples are cyclotomics, finite field elements, and of course row
vectors (see below).

Note that not all lists of ring elements are regarded as vectors, for example lists of matrices are not vectors.
This is because although the category IsAdditiveElementWithInverse is implied by the join of its collec-
tions category and IsList, the family of a list entry may not imply IsAdditiveElementWithInverse for
all its elements.

15 I IsNearRingElement(obj) C

IsNearRingElement is just a synonym for the join of IsNearAdditiveElementWithInverse and IsMulti-
plicativeElement.

16 I IsRingElement(obj) C

IsRingElement is just a synonym for the join of IsAdditiveElementWithInverse and IsMultiplica-
tiveElement.

17 I IsNearRingElementWithOne(obj) C

IsNearRingElementWithOne is just a synonym for the join of IsNearAdditiveElementWithInverse and
IsMultiplicativeElementWithOne.

18 I IsRingElementWithOne(obj) C

IsRingElementWithOne is just a synonym for the join of IsAdditiveElementWithInverse and IsMulti-
plicativeElementWithOne.

19 I IsNearRingElementWithInverse(obj) C

20 I IsRingElementWithInverse(obj) C
I IsScalar(obj) C

IsRingElementWithInverse and IsScalar are just synonyms for the join of IsAdditiveElementWithIn-
verse and IsMultiplicativeElementWithInverse.

More special categories of this kind are described in the contexts where they arise, they are IsRowVector
(see 23), IsMatrix (see 24.1.1), IsOrdinaryMatrix (see 24.1.2), and IsLieMatrix (see 24.1.3).

302 Chapter 30. Domains and their Elements

30.15 Useful Categories for all Elements of a Family

The following categories of elements are to be understood mainly as categories for all objects in a family,
they are usually used as third argument of NewFamily (see 3.6 in “Programming in GAP”). The purpose of
each of the following categories is then to guarantee that each collection of its elements automatically lies
in its collections category (see 28.1.4).

For example, the multiplication of permutations is associative, and it is stored in the family of permutations
that each permutation lies in IsAssociativeElement. As a consequence, each magma consisting of permu-
tations (more precisely: each collection that lies in the family CollectionsFamily(PermutationsFamily
), see 28.1.1) automatically lies in CategoryCollections(IsAssociativeElement). A magma in this
category is always known to be associative, via a logical implication (see 2.7 in “Programming in GAP”).

Similarly, if a family knows that all its elements are in the categories IsJacobianElement and IsZe-
roSquaredElement, then each algebra of these elements is automatically known to be a Lie algebra (see 60).

1 I IsAssociativeElement(obj) C
I IsAssociativeElementCollection(obj) C
I IsAssociativeElementCollColl(obj) C

An element obj in the category IsAssociativeElement knows that the multiplication of any elements in
the family of obj is associative. For example, all permutations lie in this category, as well as those ordinary
matrices (see 24.1.2) whose entries are also in IsAssociativeElement.

2 I IsAdditivelyCommutativeElement(obj) C
I IsAdditivelyCommutativeElementCollection(obj) C
I IsAdditivelyCommutativeElementCollColl(obj) C
I IsAdditivelyCommutativeElementFamily(obj) C

An element obj in the category IsAdditivelyCommutativeElement knows that the addition of any elements
in the family of obj is commutative. For example, each finite field element and each rational number lies in
this category.

3 I IsCommutativeElement(obj) C
I IsCommutativeElementCollection(obj) C
I IsCommutativeElementCollColl(obj) C

An element obj in the category IsCommutativeElement knows that the multiplication of any elements in
the family of obj is commutative. For example, each finite field element and each rational number lies in
this category.

4 I IsFiniteOrderElement(obj) C
I IsFiniteOrderElementCollection(obj) C
I IsFiniteOrderElementCollColl(obj) C

An element obj in the category IsFiniteOrderElement knows that it has finite multiplicative order. For
example, each finite field element and each permutation lies in this category. However the value may be
false even if obj has finite order, but if this was not known when obj was constructed.

Although it is legal to set this filter for any object with finite order, this is really useful only in the case that
all elements of a family are known to have finite order.

5 I IsJacobianElement(obj) C
I IsJacobianElementCollection(obj) C
I IsJacobianElementCollColl(obj) C

An element obj in the category IsJacobianElement knows that the multiplication of any elements in the
family F of obj satisfies the Jacobi identity, that is, x ∗ y ∗ z + z ∗ x ∗ y + y ∗ z ∗ x is zero for all x , y , z in F .

Section 15. Useful Categories for all Elements of a Family 303

For example, each Lie matrix (see 24.1.3) lies in this category.

6 I IsZeroSquaredElement(obj) C
I IsZeroSquaredElementCollection(obj) C
I IsZeroSquaredElementCollColl(obj) C

An element obj in the category IsZeroSquaredElement knows that obj^2 = Zero(obj). For example,
each Lie matrix (see 24.1.3) lies in this category.

Although it is legal to set this filter for any zero squared object, this is really useful only in the case that
all elements of a family are known to have square zero.

31 Mappings

A mapping in GAP is what is called a “function” in mathematics. GAP also implements generalized
mappings in which one element might have several images, these can be imagined as subsets of the cartesian
product and are often called “relations”.

Most operations are declared for general mappings and therefore this manual often refers to “(general)
mappings”, unless you deliberately need the generalization you can ignore the “general” bit and just read
it as “mappings”.

A general mapping F in GAP is described by its source S , its range R, and a subset Rel of the direct product
S×R, which is called the underlying relation of F . S , R, and Rel are generalized domains (see Chapter 12.4).
The corresponding attributes for general mappings are Source, Range, and UnderlyingRelation.

Note that general mappings themselves are not domains. One reason for this is that two general mappings
with same underlying relation are regarded as equal only if also the sources are equal and the ranges are
equal. Other, more technical, reasons are that general mappings and domains have different basic operations,
and that general mappings are arithmetic objects (see 31.5); both should not apply to domains.

Each element of an underlying relation of a general mapping lies in the category of tuples (see 31).

For each s ∈ S , the set {r ∈ R|(s, r) ∈ Rel} is called the set of images of s. Analogously, for r ∈ R, the set
{s ∈ S |(s, r) ∈ Rel} is called the set of preimages of r .

The ordering of general mappings via < is defined by the ordering of source, range, and underlying relation.
Specifically, if the Source and Range domains of map1 and map2 are the same, then one considers the union
of the preimages of map1 and map2 as a strictly ordered set. The smaller of map1 and map2 is the one
whose image is smaller on the first point of this sequence where they differ.

For mappings which preserve an algebraic structure a kernel is defined. Depending on the structure preserved
the operation to compute this kernel is called differently, see section 31.6.

Some technical details of general mappings are described in section 31.12.

1 I IsTuple(obj) C

IsTuple is a subcategory of the meet of IsDenseList (see 21.1.2), IsMultiplicativeElementWithIn-
verse (see 30.14.13), and IsAdditiveElementWithInverse (see 30.14.7), where the arithmetic operations
(addition, zero, additive inverse, multiplication, powering, one, inverse) are defined componentwise.

Note that each of these operations will cause an error message if its result for at least one component cannot
be formed.

The sum and the product of a tuple and a list in IsListDefault is the list of sums and products, respectively.
The sum and the product of a tuple and a non-list is the tuple of componentwise sums and products,
respectively.

Section 1. Creating Mappings 305

31.1 Creating Mappings

1 I GeneralMappingByElements(S, R, elms) F

is the general mapping with source S and range R, and with underlying relation consisting of the tuples
collection elms.

2 I MappingByFunction(S, R, fun) F
I MappingByFunction(S, R, fun, invfun) F
I MappingByFunction(S, R, fun, ‘false, prefun)’ F

MappingByFunction returns a mapping map with source S and range R, such that each element s of S is
mapped to the element fun(s), where fun is a GAP function.

If the argument invfun is bound then map is a bijection between S and R, and the preimage of each element
r of R is given by invfun(r), where invfun is a GAP function.

In the third variant, a function prefun is given that can be used to compute a single preimage. In this case,
the third entry must be false.

MappingByFunction creates a mapping which IsNonSPGeneralMapping

3 I InverseGeneralMapping(map) A

The inverse general mapping of a general mapping map is the general mapping whose underlying relation
(see 31.2.9) contains a pair (r , s) if and only if the underlying relation of map contains the pair (s, r).

See the introduction to Chapter 31 for the subtleties concerning the difference between InverseGeneralMap-
ping and Inverse.

Note that the inverse general mapping of a mapping map is in general only a general mapping. If map knows
to be bijective its inverse general mapping will know to be a mapping. In this case also Inverse(map)
works.

4 I CompositionMapping(map1, map2, ...) F

CompositionMapping allows one to compose arbitrarily many general mappings, and delegates each step to
CompositionMapping2.

Additionally, the properties IsInjective and IsSingleValued are maintained; if the source of the i + 1-th
general mapping is identical to the range of the i -th general mapping, also IsTotal and IsSurjective
are maintained. (So one should not call CompositionMapping2 directly if one wants to maintain these
properties.)

Depending on the types of map1 and map2 , the returned mapping might be constructed completely new (for
example by giving domain generators and their images, this is for example the case if both mappings preserve
the same alagebraic structures and GAP can decompose elements of the source of map2 into generators) or
as an (iterated) composition (see 31.1.6).

5 I CompositionMapping2(map2, map1) O

CompositionMapping2 returns the composition of map2 and map1 , this is the general mapping that maps
an element first under map1 , and then maps the images under map2 .

(Note the reverse ordering of arguments in the composition via *.

6 I IsCompositionMappingRep(map) R

Mappings in this representation are stored as composition of two mappings, (pre)images of elements are
computed in a two-step process. The constituent mappings of the composition can be obtained via Con-
stituentsCompositionMapping.

306 Chapter 31. Mappings

7 I ConstituentsCompositionMapping(map) F

If map is stored in the representation IsCompositionMappingRep as composition of two mappings map1
and map2 , this function returns the two constituent mappings in a list [map1 ,map2].

8 I ZeroMapping(S, R) O

A zero mapping is a total general mapping that maps each element of its source to the zero element of its
range.

(Each mapping with empty source is a zero mapping.)

9 I IdentityMapping(D) A

is the bijective mapping with source and range equal to the collection D , which maps each element of D to
itself.

10 I Embedding(S, T) O
I Embedding(S, i) O

returns the embedding of the domain S in the domain T , or in the second form, some domain indexed by
the positive integer i . The precise natures of the various methods are described elsewhere: for Lie algebras,
see LieFamily (61.1.3); for group products, see 47.6 for a general description, or for examples see 47.1 for
direct products, 47.2 for semidirect products, or 47.4 for wreath products; or for magma rings see 63.3.

11 I Projection(S, T) O
I Projection(S, i) O
I Projection(S) O

returns the projection of the domain S onto the domain T , or in the second form, some domain indexed
by the positive integer i , or in the third form some natural subdomain of S . Various methods are defined
for group products; see 47.6 for a general description, or for examples see 47.1 for direct products, 47.2 for
semidirect products, 47.3 for subdirect products, or 47.4 for wreath products.

12 I RestrictedMapping(map, subdom) O

If subdom is a subdomain of the source of the general mapping map, this operation returns the restriction
of map to subdom.

31.2 Properties and Attributes of (General) Mappings

1 I IsTotal(map) P

is true if each element in the source S of the general mapping map has images, i.e., smap 6= ∅ for all s ∈ S ,
and false otherwise.

2 I IsSingleValued(map) P

is true if each element in the source S of the general mapping map has at most one image, i.e., |smap | ≤ 1
for all s ∈ S , and false otherwise.

Equivalently, IsSingleValued(map) is true if and only if the preimages of different elements in R are
disjoint.

3 I IsMapping(map) P

A mapping map is a general mapping that assigns to each element elm of its source a unique element
Image(map, elm) of its range.

Equivalently, the general mapping map is a mapping if and only if it is total and single-valued (see 31.2.1,
31.2.2).

Section 3. Images under Mappings 307

4 I IsInjective(map) P

is true if the images of different elements in the source S of the general mapping map are disjoint, i.e.,
x map ∩ ymap = ∅ for x 6= y ∈ S , and false otherwise.

Equivalently, IsInjective(map) is true if and only if each element in the range of map has at most one
preimage in S .

5 I IsSurjective(map) P

is true if each element in the range R of the general mapping map has preimages in the source S of map,
i.e., {s ∈ S | x ∈ smap} 6= ∅ for all x ∈ R, and false otherwise.

6 I IsBijective(map) P

A general mapping map is bijective if and only if it is an injective and surjective mapping (see 31.2.3,
31.2.4, 31.2.5).

7 I Range(map) A

8 I Source(map) A

9 I UnderlyingRelation(map) A

The underlying relation of a general mapping map is the domain of pairs (s, r), with s in the source and
r in the range of map (see 31.2.8, 31.2.7), and r ∈ImagesElm(map, s).

Each element of the underlying relation is a tuple (see 31).

10 I UnderlyingGeneralMapping(map) A

attribute for underlying relations of general mappings

31.3 Images under Mappings

1 I ImagesSource(map) A

is the set of images of the source of the general mapping map.

ImagesSource delegates to ImagesSet, it is introduced only to store the image of map as attribute value.

2 I ImagesRepresentative(map, elm) O

If elm is an element of the source of the general mapping map then ImagesRepresentative returns either
a representative of the set of images of elm under map or fail, the latter if and only if elm has no images
under map.

Anything may happen if elm is not an element of the source of map.

3 I ImagesElm(map, elm) O

If elm is an element of the source of the general mapping map then ImagesElm returns the set of all images
of elm under map.

Anything may happen if elm is not an element of the source of map.

4 I ImagesSet(map, elms) O

If elms is a subset of the source of the general mapping map then ImagesSet returns the set of all images
of elms under map.

Anything may happen if elms is not a subset of the source of map.

308 Chapter 31. Mappings

5 I ImageElm(map, elm) O

If elm is an element of the source of the total and single-valued mapping map then ImageElm returns the
unique image of elm under map.

Anything may happen if elm is not an element of the source of map.

6 I Image(map) F
I Image(map, elm) F
I Image(map, coll) F

Image(map) is the image of the general mapping map, i.e., the subset of elements of the range of map
that are actually values of map. Note that in this case the argument may also be multi-valued.

Image(map, elm) is the image of the element elm of the source of the mapping map under map, i.e., the
unique element of the range to which map maps elm. This can also be expressed as elm ^ map. Note that
map must be total and single valued, a multi valued general mapping is not allowed (see 31.3.7).

Image(map, coll) is the image of the subset coll of the source of the mapping map under map, i.e., the
subset of the range to which map maps elements of coll . coll may be a proper set or a domain. The result
will be either a proper set or a domain. Note that in this case map may also be multi-valued. (If coll and
the result are lists then the positions of entries do in general not correspond.)

Image delegates to ImagesSource when called with one argument, and to ImageElm resp. ImagesSet when
called with two arguments.

If the second argument is not an element or a subset of the source of the first argument, an error is signalled.

7 I Images(map) F
I Images(map, elm) F
I Images(map, coll) F

Images(map) is the image of the general mapping map, i.e., the subset of elements of the range of map
that are actually values of map.

Images(map, elm) is the set of images of the element elm of the source of the general mapping map
under map, i.e., the set of elements of the range to which map maps elm.

Images(map, coll) is the set of images of the subset coll of the source of the general mapping map under
map, i.e., the subset of the range to which map maps elements of coll . coll may be a proper set or a domain.
The result will be either a proper set or a domain. (If coll and the result are lists then the positions of
entries do in general not correspond.)

Images delegates to ImagesSource when called with one argument, and to ImagesElm resp. ImagesSet when
called with two arguments.

If the second argument is not an element or a subset of the source of the first argument, an error is signalled.

31.4 Preimages under Mappings

1 I PreImagesRange(map) A

is the set of preimages of the range of the general mapping map.

PreImagesRange delegates to PreImagesSet, it is introduced only to store the preimage of map as attribute
value.

2 I PreImagesElm(map, elm) O

If elm is an element of the range of the general mapping map then PreImagesElm returns the set of all
preimages of elm under map.

Anything may happen if elm is not an element of the range of map.

Section 4. Preimages under Mappings 309

3 I PreImageElm(map, elm) O

If elm is an element of the range of the injective and surjective general mapping map then PreImageElm
returns the unique preimage of elm under map.

Anything may happen if elm is not an element of the range of map.

4 I PreImagesRepresentative(map, elm) O

If elm is an element of the range of the general mapping map then PreImagesRepresentative returns
either a representative of the set of preimages of elm under map or fail, the latter if and only if elm has
no preimages under map.

Anything may happen if elm is not an element of the range of map.

5 I PreImagesSet(map, elms) O

If elms is a subset of the range of the general mapping map then PreImagesSet returns the set of all
preimages of elms under map.

Anything may happen if elms is not a subset of the range of map.

6 I PreImage(map) F
I PreImage(map, elm) F
I PreImage(map, coll) F

PreImage(map) is the preimage of the general mapping map, i.e., the subset of elements of the source of
map that actually have values under map. Note that in this case the argument may also be non-injective or
non-surjective.

PreImage(map, elm) is the preimage of the element elm of the range of the injective and surjective
mapping map under map, i.e., the unique element of the source which is mapped under map to elm. Note
that map must be injective and surjective (see 31.4.7).

PreImage(map, coll) is the preimage of the subset coll of the range of the general mapping map under
map, i.e., the subset of the source which is mapped under map to elements of coll . coll may be a proper
set or a domain. The result will be either a proper set or a domain. Note that in this case map may also
be non-injective or non-surjective. (If coll and the result are lists then the positions of entries do in general
not correspond.)

PreImage delegates to PreImagesRange when called with one argument, and to PreImageElm resp. PreIm-
agesSet when called with two arguments.

If the second argument is not an element or a subset of the range of the first argument, an error is signalled.

7 I PreImages(map) F
I PreImages(map, elm) F
I PreImages(map, coll) F

PreImages(map) is the preimage of the general mapping map, i.e., the subset of elements of the source
of map that have actually values under map.

PreImages(map, elm) is the set of preimages of the element elm of the range of the general mapping
map under map, i.e., the set of elements of the source which map maps to elm.

PreImages(map, coll) is the set of images of the subset coll of the range of the general mapping map
under map, i.e., the subset of the source which map maps to elements of coll . coll may be a proper set or a
domain. The result will be either a proper set or a domain. (If coll and the result are lists then the positions
of entries do in general not correspond.)

PreImages delegates to PreImagesRange when called with one argument, and to PreImagesElm resp. PreIm-
agesSet when called with two arguments.

If the second argument is not an element or a subset of the range of the first argument, an error is signalled.

310 Chapter 31. Mappings

31.5 Arithmetic Operations for General Mappings

General mappings are arithmetic objects. One can form groups and vector spaces of general mappings
provided that they are invertible or can be added and admit scalar multiplication, respectively.
For two general mappings with same source, range, preimage, and image, the sum is defined pointwise, i.e.,
the images of a point under the sum is the set of all sums with first summand in the images of the first
general mapping and second summand in the images of the second general mapping.
Scalar multiplication of general mappings is defined likewise.
The product of two general mappings is defined as the composition. This multiplication is always asso-
ciative. In addition to the composition via *, general mappings can be composed –in reversed order– via
CompositionMapping.
General mappings are in the category of multiplicative elements with inverses. Similar to matrices, not
every general mapping has an inverse or an identity, and we define the behaviour of One and Inverse for
general mappings as follows. One returns fail when called for a general mapping whose source and range
differ, otherwise One returns the identity mapping of the source. (Note that the source may differ from the
preimage). Inverse returns fail when called for a non-bijective general mapping or for a general mapping
whose source and range differ; otherwise Inverse returns the inverse mapping.
Besides the usual inverse of multiplicative elements, which means that Inverse(g) * g = g * Inverse(
g) = One(g), for general mappings we have the attribute InverseGeneralMapping. If F is a general
mapping with source S , range R, and underlying relation Rel then InverseGeneralMapping(F) has
source R, range S , and underlying relation {(r , s) | (s, r) ∈ Rel}. For a general mapping that has an inverse
in the usual sense, i.e., for a bijection of the source, of course both concepts coincide.
Inverse may delegate to InverseGeneralMapping. InverseGeneralMapping must not delegate to Inverse,
but a known value of Inverse may be fetched. So methods to compute the inverse of a general mapping
should be installed for InverseGeneralMapping.
(Note that in many respects, general mappings behave similar to matrices, for example one can define left
and right identities and inverses, which do not fit into the current concepts of GAP.)

31.6 Mappings which are Compatible with Algebraic Structures

From an algebraical point of view, the most important mappings are those which are compatible with a
structure. For Magmas, Groups and Rings, GAP supports the following four types of such mappings:
1. General mappings that respect multiplication
2. General mappings that respect addition
3. General mappings that respect scalar mult.
4. General mappings that respect multiplicative and additive structure
(Very technical note: GAP defines categories IsSPGeneralMapping and IsNonSPGeneralMapping. The dis-
tinction between these is orthogonal to the Structure Compatibility described here and should not be con-
fused.)

31.7 Magma Homomorphisms
1 I IsMagmaHomomorphism(mapp) P

A MagmaHomomorphism is a total single valued mapping which respects multiplication.

2 I MagmaHomomorphismByFunctionNC(G, H , fn) F

Creates the homomorphism from G to H without checking that fn is a homomorphism.

3 I NaturalHomomorphismByGenerators(f , s) O

returns a mapping from the magma f with n generators to the magma s with n generators, which maps the
ith generator of f to the ith generator of s.

Section 8. Mappings that Respect Multiplication 311

31.8 Mappings that Respect Multiplication

1 I RespectsMultiplication(mapp) P

Let mapp be a general mapping with underlying relation F ⊆ S × R, where S and R are the source and
the range of mapp, respectively. Then RespectsMultiplication returns true if S and R are magmas such
that (s1, r1), (s2, r2) ∈ F implies (s1 ∗ s2, r1 ∗ r2) ∈ F , and false otherwise.

If mapp is single-valued then RespectsMultiplication returns true if and only if the equation s1^mapp
* s2^mapp = (s1*s2)^mapp holds for all s1 , s2 in S .

2 I RespectsOne(mapp) P

Let mapp be a general mapping with underlying relation F ⊆ S ×R, where S and R are the source and the
range of mapp, respectively. Then RespectsOne returns true if S and R are magmas-with-one such that
(One(S), One(R)) ∈ F , and false otherwise.

If mapp is single-valued then RespectsOne returns true if and only if the equation One(S)^mapp = One(
R) holds.

3 I RespectsInverses(mapp) P

Let mapp be a general mapping with underlying relation F ⊆ S ×R, where S and R are the source and the
range of mapp, respectively. Then RespectsInverses returns true if S and R are magmas-with-inverses
such that, for s ∈ S and r ∈ R, (s, r) ∈ F implies (s−1, r−1) ∈ F , and false otherwise.

If mapp is single-valued then RespectsInverses returns true if and only if the equation Inverse(s
)^mapp = Inverse(s^mapp) holds for all s in S .

Mappings that are defined on a group and respect multiplication and inverses are group homomorphisms.
Chapter 38 explains them in more detail.

4 I IsGroupGeneralMapping(mapp) P
I IsGroupHomomorphism(mapp) P

A GroupGeneralMapping is a mapping which respects multiplication and inverses. If it is total and single
valued it is called a group homomorphism.

5 I KernelOfMultiplicativeGeneralMapping(mapp) A

Let mapp be a general mapping. Then KernelOfMultiplicativeGeneralMapping returns the set of all
elements in the source of mapp that have the identity of the range in their set of images.

(This is a monoid if mapp respects multiplication and one, and if the source of mapp is associative.)

6 I CoKernelOfMultiplicativeGeneralMapping(mapp) A

Let mapp be a general mapping. Then CoKernelOfMultiplicativeGeneralMapping returns the set of all
elements in the range of mapp that have the identity of the source in their set of preimages.

(This is a monoid if mapp respects multiplication and one, and if the range of mapp is associative.)

312 Chapter 31. Mappings

31.9 Mappings that Respect Addition
1 I RespectsAddition(mapp) P

Let mapp be a general mapping with underlying relation F ⊆ S ×R, where S and R are the source and the
range of mapp, respectively. Then RespectsAddition returns true if S and R are additive magmas such
that (s1, r1), (s2, r2) ∈ F implies (s1 + s2, r1 + r2) ∈ F , and false otherwise.

If mapp is single-valued then RespectsAddition returns true if and only if the equation s1^mapp +
s2^mapp = (s1+s2)^mapp holds for all s1 , s2 in S .

2 I RespectsAdditiveInverses(mapp) P

Let mapp be a general mapping with underlying relation F ⊆ S × R, where S and R are the source and
the range of mapp, respectively. Then RespectsAdditiveInverses returns true if S and R are additive-
magmas-with-inverses such that (s, r) ∈ F implies (−s,−r) ∈ F , and false otherwise.

If mapp is single-valued then RespectsAdditiveInverses returns true if and only if the equation Addi-
tiveInverse(s)^mapp = AdditiveInverse(s^mapp) holds for all s in S .

3 I RespectsZero(mapp) P

Let mapp be a general mapping with underlying relation F ⊆ S ×R, where S and R are the source and the
range of mapp, respectively. Then RespectsZero returns true if S and R are additive-magmas-with-zero
such that (Zero(S), Zero(R)) ∈ F , and false otherwise.

If mapp is single-valued then RespectsZero returns true if and only if the equation Zero(S)^mapp =
Zero(R) holds.

4 I IsAdditiveGroupGeneralMapping(mapp) P
I IsAdditiveGroupHomomorphism(mapp) P

5 I KernelOfAdditiveGeneralMapping(mapp) A

Let mapp be a general mapping. Then KernelOfAdditiveGeneralMapping returns the set of all elements
in the source of mapp that have the zero of the range in their set of images.

6 I CoKernelOfAdditiveGeneralMapping(mapp) A

Let mapp be a general mapping. Then CoKernelOfAdditiveGeneralMapping returns the set of all elements
in the range of mapp that have the zero of the source in their set of preimages.

31.10 Linear Mappings

Also see Sections 31.8 and 31.9.

1 I RespectsScalarMultiplication(mapp) P

Let mapp be a general mapping, with underlying relation F ⊆ S × R, where S and R are the source and
the range of mapp, respectively. Then RespectsScalarMultiplication returns true if S and R are left
modules with the left acting domain D of S contained in the left acting domain of R and such that (s, r) ∈ F
implies (c ∗ s, c ∗ r) ∈ F for all c ∈ D , and false otherwise.

If mapp is single-valued then RespectsScalarMultiplication returns true if and only if the equation c *
s^mapp = (c * s)^mapp holds for all c in D and s in S .

2 I IsLeftModuleGeneralMapping(mapp) P
I IsLeftModuleHomomorphism(mapp) P

3 I IsLinearMapping(F, mapp) O

For a field F and a general mapping mapp, IsLinearMapping returns true if mapp is an F -linear mapping,
and false otherwise.

Section 13. Technical Matters Concerning General Mappings 313

A mapping f is a linear mapping (or vector space homomorphism) if the source and range are vector spaces
over the same division ring D , and if f (a + b) = f (a) + f (b) and f (s ∗ a) = s ∗ f (a) hold for all elements a,
b in the source of f and s ∈ D .

See also KernelOfMultiplicativeGeneralMapping (31.8.5) and CoKernelOfMultiplicativeGeneralMap-
ping (31.8.6).

31.11 Ring Homomorphisms

1 I IsRingGeneralMapping(mapp) P
I IsRingHomomorphism(mapp) P

2 I IsRingWithOneGeneralMapping(mapp) P
I IsRingWithOneHomomorphism(mapp) P

3 I IsAlgebraGeneralMapping(mapp) P
I IsAlgebraHomomorphism(mapp) P

4 I IsAlgebraWithOneGeneralMapping(mapp) P
I IsAlgebraWithOneHomomorphism(mapp) P

5 I IsFieldHomomorphism(mapp) P

A general mapping is a field homomorphism if and only if it is a ring homomorphism with source a field.

31.12 General Mappings

1 I IsGeneralMapping(map) C

Each general mapping lies in the category IsGeneralMapping. It implies the categories IsMultiplica-
tiveElementWithInverse (see 30.14.13) and IsAssociativeElement (see 30.15.1); for a discussion of these
implications, see 31.5.

2 I IsConstantTimeAccessGeneralMapping(map) P

is true if the underlying relation of the general mapping map knows its AsList value, and false otherwise.

In the former case, map is allowed to use this list for calls to ImagesElm etc.

3 I IsEndoGeneralMapping(obj) P

If a general mapping has this property then its source and range are equal.

31.13 Technical Matters Concerning General Mappings

Source and Range are basic operations for general mappings. UnderlyingRelation is secondary, its default
method sets up a domain that delegates tasks to the general mapping. (Note that this allows one to handle
also infinite relations by generic methods if source or range of the general mapping is finite.)

The distinction between basic operations and secondary operations for general mappings may be a little bit
complicated. Namely, each general mapping must be in one of the two categories IsNonSPGeneralMapping,
IsSPGeneralMapping. (The category IsGeneralMapping is defined as the disjoint union of these two.)

For general mappings of the first category, ImagesElm and PreImagesElm are basic operations. (Note that
in principle it is possible to delegate from PreImagesElm to ImagesElm.) Methods for the secondary opera-
tions (Pre)ImageElm, (Pre)ImagesSet, and (Pre)ImagesRepresentative may use (Pre)ImagesElm, and
methods for (Pre)ImagesElm must not call the secondary operations. In particular, there are no generic
methods for (Pre)ImagesElm.

314 Chapter 31. Mappings

Methods for (Pre)ImagesSet must not use PreImagesRange and ImagesSource, e.g., compute the inter-
section of the set in question with the preimage of the range resp. the image of the source.

For general mappings of the second category (which means structure preserving general mappings), the situ-
ation is different. The set of preimages under a group homomorphism, for example, is either empty or can be
described as a coset of the (multiplicative) kernel. So it is reasonable to have (Pre)ImagesRepresentative
and Multplicative(Co)Kernel as basic operations here, and to make (Pre)ImagesElm secondary opera-
tions that may delegate to these.

In order to avoid infinite recursions, we must distinguish between the two different types of mappings.

(Note that the basic domain operations such as AsList for the underlying relation of a general mapping
may use either ImagesElm or ImagesRepresentative and the appropriate cokernel. Conversely, if AsList
for the underlying relation is known then ImagesElm resp. ImagesRepresentative may delegate to it, the
general mapping gets the property IsConstantTimeAccessGeneralMapping for this; note that this is not
allowed if only an enumerator of the underlying relation is known.)

Secondary operations are IsInjective, IsSingleValued, IsSurjective, IsTotal; they may use the basic
operations, and must not be used by them.

1 I IsSPGeneralMapping(map) C
I IsNonSPGeneralMapping(map) C

2 I IsGeneralMappingFamily(obj) C

3 I FamilyRange(Fam) A

is the elements family of the family of the range of each general mapping in the family Fam.

4 I FamilySource(Fam) A

is the elements family of the family of the source of each general mapping in the family Fam.

5 I FamiliesOfGeneralMappingsAndRanges(Fam) AM

is a list that stores at the odd positions the families of general mappings with source in the family Fam, at
the even positions the families of ranges of the general mappings.

6 I GeneralMappingsFamily(sourcefam, rangefam) F

All general mappings with same source family FS and same range family FR lie in the family GeneralMap-
pingsFamily(FS, FR).

7 I TypeOfDefaultGeneralMapping(source, range, filter) F

is the type of mappings with IsDefaultGeneralMappingRep with source source and range range and addi-
tional categories filter .

Methods for the operations ImagesElm, ImagesRepresentative, ImagesSet, ImageElm, PreImagesElm,
PreImagesRepresentative, PreImagesSet, and PreImageElm take two arguments, a general mapping map
and an element or collection of elements elm. These methods must not check whether elm lies in the source
or the range of map. In the case that elm does not, fail may be returned as well as any other GAP object,
and even an error message is allowed. Checks of the arguments are done only by the functions Image, Images,
PreImage, and PreImages, which then delegate to the operations listed above.

32 Relations

A binary relation R on a set X is a subset of X ×X . A binary relation can also be thought of as a (general)
mapping from X to itself or as a directed graph where each edge represents a tuple of R.

In GAP, a relation is conceptually represented as a general mapping from X to itself. The category IsBina-
ryRelation is the same as the category IsEndoGeneralMapping (see 31.12.3). Attributes and properties of
relations in GAP are supported for relations, via considering relations as a subset of X ×X , or as a directed
graph; examples include finding the strongly connected components of a relation, via StronglyConnected-
Components (see 32.4.5), or enumerating the tuples of the relation.

32.1 General Binary Relations

1 I IsBinaryRelation(R) C

is exactly the same category as (i.e. a synonym for) IsEndoGeneralMapping (see 31.12.3).

We have the following general constructors.

2 I BinaryRelationByElements(domain, elms) F

is the binary relation on domain and with underlying relation consisting of the tuples collection elms. This
construction is similar to GeneralMappingByElements (see 31.1.1) where the source and range are the same
set.

3 I IdentityBinaryRelation(degree) F
I IdentityBinaryRelation(domain) F

is the binary relation which consists of diagonal tuples i.e. tuples of the form (x , x). In the first form if a
positive integer degree is given then the domain is the integers {1, . . . , degree}. In the second form, the tuples
are from the domain domain.

4 I EmptyBinaryRelation(degree) F
I EmptyBinaryRelation(domain) F

is the relation with R empty. In the first form of the command with degree an integer, the domain is the
points {1, . . . , degree}. In the second form, the domain is that given by the argument domain.

32.2 Properties and Attributes of Binary Relations

1 I IsReflexiveBinaryRelation(R) P

returns true if the binary relation R is reflexive, and false otherwise.

A binary relation R (as tuples) on a set X is reflexive if for all x ∈ X , (x , x) ∈ R. Alternatively, R as a
mapping is reflexive if for all x ∈ X , x is an element of the image set R(x).

A reflexive binary relation is necessarily a total endomorphic mapping (tested via IsTotal; see 31.2.1).

316 Chapter 32. Relations

2 I IsSymmetricBinaryRelation(R) P

returns true if the binary relation R is symmetric, and false otherwise.

A binary relation R (as tuples) on a set X is symmetric if (x , y) ∈ R then (y , x) ∈ R. Alternatively, R as
a mapping is symmetric if for all x ∈ X , the preimage set of x under R equals the image set R(x).

3 I IsTransitiveBinaryRelation(R) P

returns true if the binary relation R is transitive, and false otherwise.

A binary relation R (as tuples) on a set X is transitive if (x , y), (y , z) ∈ R then (x , z) ∈ R. Alternatively,
R as a mapping is transitive if for all x ∈ X , the image set R(R(x)) of the image set R(x) of x is a subset
of R(x).

4 I IsAntisymmetricBinaryRelation(rel) P

returns true if the binary relation rel is antisymmetric, and false otherwise.

A binary relation R (as tuples) on a set X is antisymmetric if (x , y), (y , x) ∈ R implies x = y . Alternatively,
R as a mapping is antisymmetric if for all x ∈ X , the intersection of the preimage set of x under R and the
image set R(x) is {x}.

5 I IsPreOrderBinaryRelation(rel) P

returns true if the binary relation rel is a preorder, and false otherwise.

A preorder is a binary relation that is both reflexive and transitive.

6 I IsPartialOrderBinaryRelation(rel) P

returns true if the binary relation rel is a partial order, and false otherwise.

A partial order is a preorder which is also antisymmetric.

7 I IsHasseDiagram(rel) P

returns true if the binary relation rel is a Hasse Diagram of a partial order, i.e. was computed via Hasse-
DiagramBinaryRelation (see 32.4.4).

8 I IsEquivalenceRelation(R) P

returns true if the binary relation R is an equivalence relation, and false otherwise.

Recall, that a relation R on the set X is an equivalence relation if it is symmetric, transitive, and reflexive.

9 I Successors(R) A

returns the list of images of a binary relation R. If the underlying domain of the relation is not [1..n] for
some positive integer n, then an error is signalled.

The returned value of Successors is a list of lists where the lists are ordered as the elements according to
the sorted order of the underlying set of R. Each list consists of the images of the element whose index is
the same as the list with the underlying set in sorted order.

The Successors of a relation is the adjacency list representation of the relation.

10 I DegreeOfBinaryRelation(R) A

returns the size of the underlying domain of the binary relation R. This is most natural when working with
a binary relation on points.

11 I PartialOrderOfHasseDiagram(HD) A

is the partial order associated with the Hasse Diagram HD i.e. the partial order generated by the reflexive
and transitive closure of HD .

Section 4. Closure Operations and Other Constructors 317

32.3 Binary Relations on Points

We have special construction methods when the underlying X of our relation is the set of integers {1, . . . ,n}.

1 I BinaryRelationOnPoints(list) F
I BinaryRelationOnPointsNC(list) F

Given a list of n lists, each containing elements from the set {1, . . . ,n}, this function constructs a binary
relation such that 1 is related to list[1], 2 to list[2] and so on. The first version checks whether the list
supplied is valid. The the NC version skips this check.

2 I RandomBinaryRelationOnPoints(degree) F

creates a relation on points with degree degree.

3 I AsBinaryRelationOnPoints(trans) F
I AsBinaryRelationOnPoints(perm) F
I AsBinaryRelationOnPoints(rel) F

return the relation on points represented by general relation rel , transformation trans or permutation perm.
If rel is already a binary relation on points then rel is returned.

Transformations and permutations are special general endomorphic mappings and have a natural represen-
tation as a binary relation on points.

In the last form, an isomorphic relation on points is constructed where the points are indices of the elements
of the underlying domain in sorted order.

32.4 Closure Operations and Other Constructors

1 I ReflexiveClosureBinaryRelation(R) O

is the smallest binary relation containing the binary relation R which is reflexive. This closure inherents the
properties symmetric and transitive from R. E.g. if R is symmetric then its reflexive closure is also.

2 I SymmetricClosureBinaryRelation(R) O

is the smallest binary relation containing the binary relation R which is symmetric. This closure inherents
the properties reflexive and transitive from R. E.g. if R is reflexive then its symmetric closure is also.

3 I TransitiveClosureBinaryRelation(rel) O

is the smallest binary relation containing the binary relation R which is transitive. This closure inerents the
properties reflexive and symmetric from R. E.g. if R is symmetric then its transitive closure is also.

TransitiveClosureBinaryRelation is a modified version of the Floyd-Warshall method of solving the all-
pairs shortest-paths problem on a directed graph. Its asymptotic runtime is O(n3) where n is the size of the
vertex set. It only assumes there is an arbitrary (but fixed) ordering of the vertex set.

4 I HasseDiagramBinaryRelation(partial-order) O

is the smallest relation contained in the partial order partial-order whose reflexive and transitive closure is
equal to partial-order .

5 I StronglyConnectedComponents(R) O

returns an equivalence relation on the vertices of the binary relation R.

6 I PartialOrderByOrderingFunction(dom, orderfunc) F

constructs a partial order whose elements are from the domain dom and are ordered using the ordering
function orderfunc. The ordering function must be a binary function returning a boolean value. If the
ordering function does not describe a partial order then fail is returned.

318 Chapter 32. Relations

32.5 Equivalence Relations

An equivalence relation E over the set X is a relation on X which is reflexive, symmetric, and transitive.
of the set X . A partition P is a set of subsets of X such that for all R,S ∈ P R ∩ S is the empty set
and ∪P = X . An equivalence relation induces a partition such that if (x , y) ∈ E then x , y are in the same
element of P .
Like all binary relations in GAP equivalence relations are regarded as general endomorphic mappings (and
the operations, properties and attributes of general mappings are available). However, partitions provide
an efficient way of representing equivalence relations. Moreover, only the non-singleton classes or blocks are
listed allowing for small equivalence relations to be represented on infinite sets. Hence the main attribute of
equivalence relations is EquivalenceRelationPartition which provides the partition induced by the given
equivalence.

1 I EquivalenceRelationByPartition(domain, list) F
I EquivalenceRelationByPartitionNC(domain, list) F

constructs the equivalence relation over the set domain which induces the partition represented by list . This
representation includes only the non-trivial blocks (or equivalent classes). list is a list of lists, each of these
lists contain elements of domain and are pairwise mutually exclusive.
The list of lists do not need to be in any order nor do the elements in the blocks (see EquivalenceRela-
tionPartition). a list of elements of domain The partition list is a list of lists, each of these is a list of
elements of domain that makes up a block (or equivalent class). The domain is the domain over which the
relation is defined, and list is a list of lists, each of these is a list of elements of domain which are related
to each other. list need only contain the nontrivial blocks and singletons will be ignored. The NC version
will not check to see if the lists are pairwise mutually exclusive or that they contain only elements of the
domain.

2 I EquivalenceRelationByRelation(rel) F

returns the smallest equivalence relation containing the binary relation rel .

3 I EquivalenceRelationByPairs(D, elms) F
I EquivalenceRelationByPairsNC(D, elms) F

return the smallest equivalence relation on the domain D such that every pair in elms is in the relation.
In the second form, it is not checked that elms are in the domain D .

4 I EquivalenceRelationByProperty(domain, property) F

creates an equivalence relation on domain whose only defining datum is that of having the property property .

32.6 Attributes of and Operations on Equivalence Relations
1 I EquivalenceRelationPartition(equiv) A

returns a list of lists of elements of the underlying set of the equivalence relation equiv . The lists are precisely
the nonsingleton equivalence classes of the equivalence. This allows us to describe “small” equivalences on
infinite sets.

2 I GeneratorsOfEquivalenceRelationPartition(equiv) A

is a set of generating pairs for the equivalence relation equiv . This set is not unique. The equivalence equiv
is the smallest equivalence relation over the underlying set X which contains the generating pairs.

3 I JoinEquivalenceRelations(equiv1, equiv2) O
I MeetEquivalenceRelations(equiv1, equiv2) O

JoinEquivalenceRelations(equiv1,equiv2) returns the smallest equivalence relation containing both the
equivalence relations equiv1 and equiv2 .
MeetEquivalenceRelations(equiv1,equiv2) returns the intersection of the two equivalence relations
equiv1 and equiv2 .

Section 7. Equivalence Classes 319

32.7 Equivalence Classes

1 I IsEquivalenceClass(O) C

returns true if the object O is an equivalence class, and false otherwise.

An equivalence class is a collection of elements which are mutually related to each other in the associated
equivalence relation. Note, this is a special category of object and not just a list of elements.

2 I EquivalenceClassRelation(C) A

returns the equivalence relation of which C is a class.

3 I EquivalenceClasses(rel) A

returns a list of all equivalence classes of the equivalence relation rel . Note that it is possible for different
methods to yield the list in different orders, so that for two equivalence relations c1 and c2 we may have
c1 = c2 without having EquivalenceClasses(c1) = EquivalenceClasses(c2).

4 I EquivalenceClassOfElement(rel, elt) O
I EquivalenceClassOfElementNC(rel, elt) O

return the equivalence class of elt in the binary relation rel , where elt is an element (i.e. a pair) of the
domain of rel . In the second form, it is not checked that elt is in the domain over which rel is defined.

33 Magmas

This chapter deals with domains (see 30) that are closed under multiplication *. Following [Bou70], we call
them magmas in GAP. Together with the domains closed under addition +, (see 53), they are the basic
algebraic structures; every semigroup (see 49), monoid (see 50), group (see 37), ring (see 54), or field (see 56)
is a magma. In the cases of a magma-with-one or magma-with-inverses, additional multiplicative
structure is present, see 33.1. For functions to create free magmas, see 34.4.

33.1 Magma Categories

1 I IsMagma(obj) C

A magma in GAP is a domain M with (not necessarily associative) multiplication *: M ×M → M .

2 I IsMagmaWithOne(obj) C

A magma-with-one in GAP is a magma M with an operation ^0 (or One) that yields the identity of M .

So a magma-with-one M does always contain a unique multiplicatively neutral element e, i.e., e * m =
m = m * e holds for all m ∈ M (see 33.4.10). This element e can be computed with the operation One
(see 30.10.2) as One(M), and e is also equal to One(elm) and to elm^0 for each element elm in M .

Note that a magma may contain a multiplicatively neutral element but not an identity (see 30.10.2), and
a magma containing an identity may not lie in the category IsMagmaWithOne (see 30.6).

3 I IsMagmaWithInversesIfNonzero(obj) C

An object in this GAP category is a magma-with-one M with an operation ^-1: M \ Z → M \ Z that maps
each element m of M \ Z to its inverse m^-1 (or Inverse(m), see 30.10.8), where Z is either empty or
consists exactly of one element of M .

This category was introduced mainly to describe division rings, since the nonzero elements in a division ring
form a group; So an object M in IsMagmaWithInversesIfNonzero will usually have both a multiplicative
and an additive structure (see 53), and the set Z , if it is nonempty, contains exactly the zero element
(see 30.10.3) of M .

4 I IsMagmaWithInverses(obj) C

A magma-with-inverses in GAP is a magma-with-one M with an operation ^-1: M → M that maps each
element m of M to its inverse m^-1 (or Inverse(m), see 30.10.8).

Note that not every trivial magma is a magma-with-one, but every trivial magma-with-one is a magma-
with-inverses. This holds also if the identity of the magma-with-one is a zero element. So a magma-with-
inverses-if-nonzero can be a magma-with-inverses if either it contains no zero element or consists of a zero
element that has itself as zero-th power.

Section 2. Magma Generation 321

33.2 Magma Generation

1 I Magma(gens) F
I Magma(Fam, gens) F

returns the magma M that is generated by the elements in the list gens, that is, the closure of gens under
multiplication *. The family Fam of M can be entered as first argument; this is obligatory if gens is empty
(and hence also M is empty).

2 I MagmaWithOne(gens) F
I MagmaWithOne(Fam, gens) F

returns the magma-with-one M that is generated by the elements in the list gens, that is, the closure of gens
under multiplication * and One. The family Fam of M can be entered as first argument; this is obligatory
if gens is empty (and hence M is trivial).

3 I MagmaWithInverses(gens) F
I MagmaWithInverses(Fam, gens) F

returns the magma-with-inverses M that is generated by the elements in the list gens, that is, the closure
of gens under multiplication *, One, and Inverse. The family Fam of M can be entered as first argument;
this is obligatory if gens is empty (and hence M is trivial).

The underlying operations for which methods can be installed are the following.

4 I MagmaByGenerators(gens) O
I MagmaByGenerators(Fam, gens) O

5 I MagmaWithOneByGenerators(gens) O
I MagmaWithOneByGenerators(Fam, generators) O

6 I MagmaWithInversesByGenerators(generators) O
I MagmaWithInversesByGenerators(Fam, generators) O

Substructures of a magma can be formed as follows.

7 I Submagma(D, gens) F
I SubmagmaNC(D, gens) F

Submagma returns the magma generated by the elements in the list gens, with parent the domain D . Sub-
magmaNC does the same, except that it is not checked whether the elements of gens lie in D .

8 I SubmagmaWithOne(D, gens) F
I SubmagmaWithOneNC(D, gens) F

SubmagmaWithOne returns the magma-with-one generated by the elements in the list gens, with parent the
domain D . SubmagmaWithOneNC does the same, except that it is not checked whether the elements of gens
lie in D .

9 I SubmagmaWithInverses(D, gens) F
I SubmagmaWithInversesNC(D, gens) F

SubmagmaWithInverses returns the magma-with-inverses generated by the elements in the list gens, with
parent the domain D . SubmagmaWithInversesNC does the same, except that it is not checked whether the
elements of gens lie in D .

The following functions can be used to regard a collection as a magma.

10 I AsMagma(C) A

For a collection C whose elements form a magma, AsMagma returns this magma. Otherwise fail is returned.

322 Chapter 33. Magmas

11 I AsSubmagma(D, C) O

Let D be a domain and C a collection. If C is a subset of D that forms a magma then AsSubmagma returns
this magma, with parent D . Otherwise fail is returned.

The following function creates a new magma which is the original magma with a zero adjoined.

12 I InjectionZeroMagma(M) A

The canonical homomorphism i from the magma M into the magma formed from M with a single new
element which is a multiplicative zero for the resulting magma.

The elements of the new magma form a family of elements in the category IsMultiplicativeElementWithZero,
and the new magma is obtained as Range(i).

33.3 Magmas Defined by Multiplication Tables

The most elementary (but of course usually not recommended) way to implement a magma with only few
elements is via a multiplication table.

1 I MagmaByMultiplicationTable(A) F

For a square matrix A with n rows such that all entries of A are in the range [1..n], MagmaByMultipli-
cationTable returns a magma M with multiplication * defined by A. That is, M consists of the elements
m1,m2, . . . ,mn , and mi ∗mj = mA[i][j].

The ordering of elements is defined by m1 < m2 < · · · < mn , so mi can be accessed as MagmaElement(M ,
i), see 33.3.4.

2 I MagmaWithOneByMultiplicationTable(A) F

The only differences between MagmaByMultiplicationTable and MagmaWithOneByMultiplicationTable
are that the latter returns a magma-with-one (see 33.2.2) if the magma described by the matrix A has an
identity, and returns fail if not.

3 I MagmaWithInversesByMultiplicationTable(A) F

MagmaByMultiplicationTable and MagmaWithInversesByMultiplicationTable differ only in that the
latter returns magma-with-inverses (see 33.2.3) if each element in the magma described by the matrix A has
an inverse, and returns fail if not.

4 I MagmaElement(M , i) F

For a magma M and a positive integer i , MagmaElement returns the i -th element of M , w.r.t. the ordering
<. If M has less than i elements then fail is returned.

5 I MultiplicationTable(elms) A
I MultiplicationTable(M) A

For a list elms of elements that form a magma M , MultiplicationTable returns a square matrix A of
positive integers such that A[i][j] = k holds if and only if elms[i] * elms[j] = elms[k]. This matrix can
be used to construct a magma isomorphic to M , using MagmaByMultiplicationTable.

For a magma M , MultiplicationTable returns the multiplication table w.r.t. the sorted list of elements
of M .

Section 4. Attributes and Properties for Magmas 323

gap> l:= [(), (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)];;
gap> a:= MultiplicationTable(l);
[[1, 2, 3, 4], [2, 1, 4, 3], [3, 4, 1, 2], [4, 3, 2, 1]]
gap> m:= MagmaByMultiplicationTable(a);
<magma with 4 generators>
gap> One(m);
m1
gap> elm:= MagmaElement(m, 2); One(elm); elm^2;
m2
m1
m1
gap> Inverse(elm);
m2
gap> AsGroup(m);
<group of size 4 with 2 generators>
gap> a:= [[1, 2], [2, 2]];
[[1, 2], [2, 2]]
gap> m:= MagmaByMultiplicationTable(a);
<magma with 2 generators>
gap> One(m); Inverse(MagmaElement(m, 2));
m1
fail

33.4 Attributes and Properties for Magmas

1 I GeneratorsOfMagma(M) A

is a list gens of elements of the magma M that generates M as a magma, that is, the closure of gens under
multiplication is M .

2 I GeneratorsOfMagmaWithOne(M) A

is a list gens of elements of the magma-with-one M that generates M as a magma-with-one, that is, the
closure of gens under multiplication and One (see 30.10.2) is M .

3 I GeneratorsOfMagmaWithInverses(M) A

is a list gens of elements of the magma-with-inverses M that generates M as a magma-with-inverses, that
is, the closure of gens under multiplication and taking inverses (see 30.10.8) is M .

4 I Centralizer(M , elm) O
I Centralizer(M , S) O
I Centralizer(class) O

For an element elm of the magma M this operation returns the centralizer of elm. This is the domain of
those elements m ∈ M that commute with elm.

For a submagma S it returns the domain of those elements that commute with all elements s of S .

If class is a class of objects of a magma (this magma then is stored as the ActingDomain of class) such
as given by ConjugacyClass (see 37.10.1), Centralizer returns the centralizer of Representative(class)
(which is a slight abuse of the notation).

324 Chapter 33. Magmas

gap> g:=Group((1,2,3,4),(1,2));;
gap> Centralizer(g,(1,2,3));
Group([(1,2,3)])
gap> Centralizer(g,Subgroup(g,[(1,2,3)]));
Group([(1,2,3)])
gap> Centralizer(g,Subgroup(g,[(1,2,3),(1,2)]));
Group(())

5 I Centre(M) A
I Center(M) A

Centre returns the centre of the magma M , i.e., the domain of those elements m ∈ M that commute and
associate with all elements of M . That is, the set {m ∈ M ;∀a, b ∈ M : ma = am, (ma)b = m(ab), (am)b =
a(mb), (ab)m = a(bm)}.
Center is just a synonym for Centre.

For associative magmas we have that Centre(M) = Centralizer(M , M), see 33.4.4.

The centre of a magma is always commutative (see 33.4.9). (When one installs a new method for Centre,
one should set the IsCommutative value of the result to true, in order to make this information available.)

6 I Idempotents(M) A

The set of elements of M which are their own squares.

7 I IsAssociative(M) P

A magma M is associative if for all elements a, b, c ∈ M the equality (a * b) * c = a * (b * c)
holds.

An associative magma is called a semigroup (see 49), an associative magma-with-one is called a monoid
(see 50), and an associative magma-with-inverses is called a group (see 37).

8 I IsCentral(M , obj) O

IsCentral returns true if the object obj , which must either be an element or a magma, commutes with all
elements in the magma M .

9 I IsCommutative(M) P
I IsAbelian(M) P

A magma M is commutative if for all elements a, b ∈ M the equality a * b = b * a holds. IsAbelian
is a synonym of IsCommutative.

Note that the commutativity of the addition + in an additive structure can be tested with IsAdditively-
Commutative, see 53.3.1.

10 I MultiplicativeNeutralElement(M) A

returns the element e in the magma M with the property that e * m = m = m * e holds for all m ∈
M , if such an element exists. Otherwise fail is returned.

A magma that is not a magma-with-one can have a multiplicative neutral element e; in this case, e cannot
be obtained as One(M), see 30.10.2.

11 I MultiplicativeZero(M) A

Returns the multiplicative zero of the magma which is the element z such that for all m in M , z * m = m
* z = z .

12 I IsMultiplicativeZero(M , z) O

returns true iff z * m = m * z = z for all m in M .

Section 4. Attributes and Properties for Magmas 325

13 I SquareRoots(M , elm) O

is the proper set of all elements r in the magma M such that r * r = elm holds.

14 I TrivialSubmagmaWithOne(M) A

is the magma-with-one that has the identity of the magma-with-one M as only element.

Note that IsAssociative and IsCommutative always refer to the multiplication of a domain. If a magma
M has also an additive structure, e.g., if M is a ring (see 54), then the addition + is always assumed to be
associative and commutative, see 30.12.

34 Words

This chapter describes categories of words and nonassociative words, and operations for them. For
information about associative words, which occur for example as elements in free groups, see Chapter 35.

34.1 Categories of Words and Nonassociative Words

1 I IsWord(obj) C
I IsWordWithOne(obj) C
I IsWordWithInverse(obj) C

Given a free multiplicative structure M that is freely generated by a subset X , any expression of an element
in M as an iterated product of elements in X is called a word over X .

Interesting cases of free multiplicative structures are those of free semigroups, free monoids, and free groups,
where the multiplication is associative (see 33.4.7), which are described in Chapter 35, and also the case of
free magmas, where the multiplication is nonassociative (see 34.1.3).

Elements in free magmas (see 34.4.1) lie in the category IsWord; similarly, elements in free magmas-with-one
(see 34.4.2) lie in the category IsWordWithOne, and so on.

IsWord is mainly a “common roof” for the two disjoint categories IsAssocWord (see 35.1.1) and IsNonas-
socWord (see 34.1.3) of associative and nonassociative words. This means that associative words are not
regarded as special cases of nonassociative words. The main reason for this setup is that we are interested
in different external representations for associative and nonassociative words (see 34.5 and 35.7).

Note that elements in finitely presented groups and also elements in polycyclic groups in GAP are not in
IsWord although they are usually called words, see Chapters 45 and 44.

Words are constants (see 12.6), that is, they are not copyable and not mutable.

The usual way to create words is to form them as products of known words, starting from generators of a
free structure such as a free magma or a free group (see 34.4.1, 35.2.1).

Words are also used to implement free algebras, in the same way as group elements are used to implement
group algebras (see 60.2 and Chapter 63).

gap> m:= FreeMagmaWithOne(2);; gens:= GeneratorsOfMagmaWithOne(m);
[x1, x2]
gap> w1:= gens[1] * gens[2] * gens[1];
((x1*x2)*x1)
gap> w2:= gens[1] * (gens[2] * gens[1]);
(x1*(x2*x1))
gap> w1 = w2; IsAssociative(m);
false
false
gap> IsWord(w1); IsAssocWord(w1); IsNonassocWord(w1);
true
false

Section 1. Categories of Words and Nonassociative Words 327

true
gap> s:= FreeMonoid(2);; gens:= GeneratorsOfMagmaWithOne(s);
[m1, m2]
gap> u1:= (gens[1] * gens[2]) * gens[1];
m1*m2*m1
gap> u2:= gens[1] * (gens[2] * gens[1]);
m1*m2*m1
gap> u1 = u2; IsAssociative(s);
true
true
gap> IsWord(u1); IsAssocWord(u1); IsNonassocWord(u1);
true
true
false
gap> a:= (1,2,3);; b:= (1,2);;
gap> w:= a*b*a;; IsWord(w);
false

2 I IsWordCollection(obj) C

IsWordCollection is the collections category (see 28.1.4) of IsWord.

gap> IsWordCollection(m); IsWordCollection(s);
true
true
gap> IsWordCollection(["a", "b"]);
false

3 I IsNonassocWord(obj) C
I IsNonassocWordWithOne(obj) C

A nonassociative word in GAP is an element in a free magma or a free magma-with-one (see 34.4).

The default methods for ViewObj and PrintObj (see 6.3) show nonassociative words as products of letters,
where the succession of multiplications is determined by round brackets.

In this sense each nonassociative word describes a “program” to form a product of generators. (Also asso-
ciative words can be interpreted as such programs, except that the exact succession of multiplications is not
prescribed due to the associativity.) The function MappedWord (see 34.3.1) implements a way to apply such
a program. A more general way is provided by straight line programs (see 35.8).

Note that associative words (see Chapter 35) are not regarded as special cases of nonassociative words
(see 34.1.1).

4 I IsNonassocWordCollection(obj) C
I IsNonassocWordWithOneCollection(obj) C

IsNonassocWordCollection is the collections category (see 28.1.4) of IsNonassocWord, and IsNonassoc-
WordWithOneCollection is the collections category of IsNonassocWordWithOne.

328 Chapter 34. Words

34.2 Comparison of Words

1 I w1 = w2

Two words are equal if and only if they are words over the same alphabet and with equal external represen-
tations (see 34.5 and 35.7). For nonassociative words, the latter means that the words arise from the letters
of the alphabet by the same sequence of multiplications.

2 I w1 < w2

Words are ordered according to their external representation. More precisely, two words can be compared
if they are words over the same alphabet, and the word with smaller external representation is smaller. For
nonassociative words, the ordering is defined in 34.5; associative words are ordered by the shortlex ordering
via < (see 35.7).

Note that the alphabet of a word is determined by its family (see 13.1), and that the result of each call
to FreeMagma, FreeGroup etc. consists of words over a new alphabet. In particular, there is no “universal”
empty word, every families of words in IsWordWithOne has its own empty word.

gap> m:= FreeMagma("a", "b");;
gap> x:= FreeMagma("a", "b");;
gap> mgens:= GeneratorsOfMagma(m);
[a, b]
gap> xgens:= GeneratorsOfMagma(x);
[a, b]
gap> a:= mgens[1];; b:= mgens[2];;
gap> a = xgens[1];
false
gap> a*(a*a) = (a*a)*a; a*b = b*a; a*a = a*a;
false
false
true
gap> a < b; b < a; a < a*b;
true
false
true

34.3 Operations for Words

Two words can be multiplied via * only if they are words over the same alphabet (see 34.2).

1 I MappedWord(w, gens, imgs) O

MappedWord returns the object that is obtained by replacing each occurrence in the word w of a generator
in the list gens by the corresponding object in the list imgs. The lists gens and imgs must of course have
the same length.

MappedWord needs to do some preprocessing to get internal generator numbers etc. When mapping many
(several thousand) words, an explicit loop over the words syllables might be faster.

(For example, If the elements in imgs are all associative words (see Chapter 35) in the same family as
the elements in gens, and some of them are equal to the corresponding generators in gens, then those may
be omitted from gens and imgs. In this situation, the special case that the lists gens and imgs have only
length 1 is handled more efficiently by EliminatedWord (see 35.4.6).)

Section 4. Free Magmas 329

gap> m:= FreeMagma("a", "b");; gens:= GeneratorsOfMagma(m);;
gap> a:= gens[1]; b:= gens[2];
a
b
gap> w:= (a*b)*((b*a)*a)*b;
(((a*b)*((b*a)*a))*b)
gap> MappedWord(w, gens, [(1,2), (1,2,3,4)]);
(2,4,3)
gap> a:= (1,2);; b:= (1,2,3,4);; (a*b)*((b*a)*a)*b;
(2,4,3)

gap> f:= FreeGroup("a", "b");;
gap> a:= GeneratorsOfGroup(f)[1];; b:= GeneratorsOfGroup(f)[2];;
gap> w:= a^5*b*a^2/b^4*a;
a^5*b*a^2*b^-4*a
gap> MappedWord(w, [a, b], [(1,2), (1,2,3,4)]);
(1,3,4,2)
gap> (1,2)^5*(1,2,3,4)*(1,2)^2/(1,2,3,4)^4*(1,2);
(1,3,4,2)
gap> MappedWord(w, [a], [a^2]);
a^10*b*a^4*b^-4*a^2

34.4 Free Magmas

The easiest way to create a family of words is to construct the free object generated by these words. Each
such free object defines a unique alphabet, and its generators are simply the words of length one over this
alphabet; These generators can be accessed via GeneratorsOfMagma in the case of a free magma, and via
GeneratorsOfMagmaWithOne in the case of a free magma-with-one.

1 I FreeMagma(rank) F
I FreeMagma(rank, name) F
I FreeMagma(name1, name2, ...) F
I FreeMagma(names) F
I FreeMagma(infinity, name, init) F

Called in the first form, FreeMagma returns a free magma on rank generators. Called in the second form,
FreeMagma returns a free magma on rank generators, printed as name1, name2 etc., that is, each name is
the concatenation of the string name and an integer from 1 to range. Called in the third form, FreeMagma
returns a free magma on as many generators as arguments, printed as name1 , name2 etc. Called in the
fourth form, FreeMagma returns a free magma on as many generators as the length of the list names, the
i -th generator being printed as names[i]. Called in the fifth form, FreeMagma returns a free magma on
infinitely many generators, where the first generators are printed by the names in the list init , and the other
generators by name and an appended number.

2 I FreeMagmaWithOne(rank) F
I FreeMagmaWithOne(rank, name) F
I FreeMagmaWithOne(name1, name2, ...) F
I FreeMagmaWithOne(names) F
I FreeMagmaWithOne(infinity, name, init) F

Called in the first form, FreeMagmaWithOne returns a free magma-with-one on rank generators. Called in
the second form, FreeMagmaWithOne returns a free magma-with-one on rank generators, printed as name1,
name2 etc. Called in the third form, FreeMagmaWithOne returns a free magma-with-one on as many gen-
erators as arguments, printed as name1 , name2 etc. Called in the fourth form, FreeMagmaWithOne returns

330 Chapter 34. Words

a free magma-with-one on as many generators as the length of the list names, the i -th generator being
printed as names[i]. Called in the fifth form, FreeMagmaWithOne returns a free magma on infinitely many
generators, where the first generators are printed by the names in the list init , and the other generators by
name and an appended number.

gap> FreeMagma(3);
<free magma on the generators [x1, x2, x3]>
gap> FreeMagma("a", "b");
<free magma on the generators [a, b]>
gap> FreeMagma(infinity);
<free magma with infinity generators>
gap> FreeMagmaWithOne(3);
<free magma-with-one on the generators [x1, x2, x3]>
gap> FreeMagmaWithOne("a", "b");
<free magma-with-one on the generators [a, b]>
gap> FreeMagmaWithOne(infinity);
<free magma-with-one with infinity generators>

Remember that the names of generators used for printing do not necessarily distinguish letters of the
alphabet; so it is possible to create arbitrarily weird situations by choosing strange letter names.

gap> m:= FreeMagma("x", "x"); gens:= GeneratorsOfMagma(m);;
<free magma on the generators [x, x]>
gap> gens[1] = gens[2];
false

34.5 External Representation for Nonassociative Words

The external representation of nonassociative words is defined as follows. The i -th generator of the family of
elements in question has external representation i , the identity (if exists) has external representation 0, the
inverse of the i -th generator (if exists) has external representation −i . If v and w are nonassociative words
with external representations ev and ew , respectively then the product v ∗ w has external representation
[ev , ew]. So the external representation of any nonassociative word is either an integer or a nested list of
integers and lists, where each list has length two.

One can create a nonassociative word from a family of words and the external representation of a nonasso-
ciative word using ObjByExtRep.

gap> m:= FreeMagma(2);; gens:= GeneratorsOfMagma(m);
[x1, x2]
gap> w:= (gens[1] * gens[2]) * gens[1];
((x1*x2)*x1)
gap> ExtRepOfObj(w); ExtRepOfObj(gens[1]);
[[1, 2], 1]
1
gap> ExtRepOfObj(w*w);
[[[1, 2], 1], [[1, 2], 1]]
gap> ObjByExtRep(FamilyObj(w), 2);
x2
gap> ObjByExtRep(FamilyObj(w), [1, [2, 1]]);
(x1*(x2*x1))

35 Associative Words

35.1 Categories of Associative Words

Associative words are used to represent elements in free groups, semigroups and monoids in GAP (see 35.2).
An associative word is just a sequence of letters, where each letter is an element of an alphabet (in the
following called a generator) or its inverse. Associative words can be multiplied; in free monoids also the
computation of an identity is permitted, in free groups also the computation of inverses (see 35.4).

1 I IsAssocWord(obj) C
I IsAssocWordWithOne(obj) C
I IsAssocWordWithInverse(obj) C

IsAssocWord is the category of associative words in free semigroups, IsAssocWordWithOne is the category
of associative words in free monoids (which admit the operation One to compute an identity), IsAssocWord-
WithInverse is the category of associative words in free groups (which have an inverse). See 34.1.1 for more
general categories of words.

Different alphabets correspond to different families of associative words. There is no relation whatsoever
between words in different families.

gap> f:= FreeGroup("a", "b", "c");
<free group on the generators [a, b, c]>
gap> gens:= GeneratorsOfGroup(f);
[a, b, c]
gap> w:= gens[1]*gens[2]/gens[3]*gens[2]*gens[1]/gens[1]*gens[3]/gens[2];
a*b*c^-1*b*c*b^-1
gap> w^-1;
b*c^-1*b^-1*c*b^-1*a^-1

Words are displayed as products of letters. The letters are usually printed like f1, f2, . . ., but it is possible
to give user defined names to them, which can be arbitrary strings. These names do not necessarily identify
a unique letter (generator), it is possible to have several letters –even in the same family– that are displayed
in the same way. Note also that there is no relation between the names of letters and variable
names. In the example above, we might have typed

gap> a:= f.1;; b:= f.2;; c:= f.3;;

(Interactively, the function AssignGeneratorVariables (see 35.2.5) provides a shorthand for this.) This
allows us to define w more conveniently:

gap> w := a*b/c*b*a/a*c/b;
a*b*c^-1*b*c*b^-1

Using homomorphisms it is possible to express elements of a group as words in terms of generators, see 37.5.

332 Chapter 35. Associative Words

35.2 Free Groups, Monoids and Semigroups

Usually a family of associative words will be generated by constructing the free object generated by them.

1 I FreeGroup([wfilt,]rank) F
I FreeGroup([wfilt,]rank, name) F
I FreeGroup([wfilt,]name1, name2, ...) F
I FreeGroup([wfilt,]names) F
I FreeGroup([wfilt,]infinity, name, init) F

Called in the first form, FreeGroup returns a free group on rank generators. Called in the second form,
FreeGroup returns a free group on rank generators, printed as name1, name2 etc. Called in the third form,
FreeGroup returns a free group on as many generators as arguments, printed as name1 , name2 etc. Called
in the fourth form, FreeGroup returns a free group on as many generators as the length of the list names,
the i -th generator being printed as names[i]. Called in the fifth form, FreeGroup returns a free group on
infinitely many generators, where the first generators are printed by the names in the list init , and the other
generators by name and an appended number.
If the extra argument wfilt is given, it must be either IsSyllableWordsFamily or IsLetterWordsFamily
or IsWLetterWordsFamily or IsBLetterWordsFamily. The filter then specifies the representation used for
the elements of the free group (see 35.6). If no such filter is given, a letter representation is used.
(For interfacing to old code that omits the representation flag, use of the syllable representation is also
triggered by setting the option FreeGroupFamilyType to the string “syllable”.)

2 I IsFreeGroup(obj) C

Any group consisting of elements in IsAssocWordWithInverse lies in the filter IsFreeGroup; this holds in
particular for any group created with FreeGroup (see 35.2.1), or any subgroup of such a group.
Also see Chapter 45.

3 I FreeMonoid([wfilt,]rank) F
I FreeMonoid([wfilt,]rank, name) F
I FreeMonoid([wfilt,]name1, name2, ...) F
I FreeMonoid([wfilt,]names) F
I FreeMonoid([wfilt,]infinity, name, init) F

Called in the first form, FreeMonoid returns a free monoid on rank generators. Called in the second form,
FreeMonoid returns a free monoid on rank generators, printed as name1, name2 etc., that is, each name is
the concatenation of the string name and an integer from 1 to range. Called in the third form, FreeMonoid
returns a free monoid on as many generators as arguments, printed as name1 , name2 etc. Called in the
fourth form, FreeMonoid returns a free monoid on as many generators as the length of the list names, the
i -th generator being printed as names[i]. Called in the fifth form, FreeMonoid returns a free monoid on
infinitely many generators, where the first generators are printed by the names in the list init , and the other
generators by name and an appended number.
If the extra argument wfilt is given, it must be either IsSyllableWordsFamily or IsLetterWordsFamily
or IsWLetterWordsFamily or IsBLetterWordsFamily. The filter then specifies the representation used for
the elements of the free group (see 35.6). If no such filter is given, a letter representation is used.
Also see Chapter 50.

4 I FreeSemigroup([wfilt,]rank) F
I FreeSemigroup([wfilt,]rank, name) F
I FreeSemigroup([wfilt,]name1, name2, ...) F
I FreeSemigroup([wfilt,]names) F
I FreeSemigroup([wfilt,]infinity, name, init) F

Called in the first form, FreeSemigroup returns a free semigroup on rank generators. Called in the second
form, FreeSemigroup returns a free semigroup on rank generators, printed as name1, name2 etc., that is,

Section 2. Free Groups, Monoids and Semigroups 333

each name is the concatenation of the string name and an integer from 1 to range. Called in the third form,
FreeSemigroup returns a free semigroup on as many generators as arguments, printed as name1 , name2
etc. Called in the fourth form, FreeSemigroup returns a free semigroup on as many generators as the length
of the list names, the i -th generator being printed as names[i]. Called in the fifth form, FreeSemigroup
returns a free semigroup on infinitely many generators, where the first generators are printed by the names
in the list init , and the other generators by name and an appended number.
If the extra argument wfilt is given, it must be either IsSyllableWordsFamily or IsLetterWordsFamily
or IsWLetterWordsFamily or IsBLetterWordsFamily. The filter then specifies the representation used for
the elements of the free group (see 35.6). If no such filter is given, a letter representation is used.
Also see Chapter 49 and 49.
Each free object defines a unique alphabet (and a unique family of words). Its generators are the letters of
this alphabet, thus words of length one.

gap> FreeGroup(5);
<free group on the generators [f1, f2, f3, f4, f5]>
gap> FreeGroup("a", "b");
<free group on the generators [a, b]>
gap> FreeGroup(infinity);
<free group with infinity generators>
gap> FreeSemigroup("x", "y");
<free semigroup on the generators [x, y]>
gap> FreeMonoid(7);
<free monoid on the generators [m1, m2, m3, m4, m5, m6, m7]>

Remember that names are just a help for printing and do not necessarily distinguish letters. It is possible
to create arbitrarily weird situations by choosing strange names for the letters.

gap> f:= FreeGroup("x", "x"); gens:= GeneratorsOfGroup(f);;
<free group on the generators [x, x]>
gap> gens[1] = gens[2];
false
gap> f:= FreeGroup("f1*f2", "f2^-1", "Group([f1, f2])");
<free group on the generators [f1*f2, f2^-1, Group([f1, f2])]>
gap> gens:= GeneratorsOfGroup(f);;
gap> gens[1]*gens[2];
f1*f2*f2^-1
gap> gens[1]/gens[3];
f1*f2*Group([f1, f2])^-1
gap> gens[3]/gens[1]/gens[2];
Group([f1, f2])*f1*f2^-1*f2^-1^-1

5 I AssignGeneratorVariables(G) O

If G is a group, whose generators are represented by symbols (for example a free group, a finitely presented
group or a pc group) this function assigns these generators to global variables with the same names.
The aim of this function is to make it easy in interactive use to work with (for example) a free group. It is
a shorthand for a sequence of assignments of the form

var1:=GeneratorsOfGroup(G)[1];
var2:=GeneratorsOfGroup(G)[2];
...
varn:=GeneratorsOfGroup(G)[n];

However, since overwriting global variables can be very dangerous, it is not permitted to use this
function within a function. (If – despite this warning – this is done, the result is undefined.)

334 Chapter 35. Associative Words

If the assignment overwrites existing variables a warning is given, if any of the variables if write protected,
or any of the generator names would not be a proper variable name, an error is raised.

35.3 Comparison of Associative Words

1 I w1 = w2

Two associative words are equal if they are words over the same alphabet and if they are sequences of the
same letters. This is equivalent to saying that the external representations of the words are equal, see 35.7
and 34.2.

There is no “universal” empty word, every alphabet (that is, every family of words) has its own empty word.

gap> f:= FreeGroup("a", "b", "b");;
gap> gens:= GeneratorsOfGroup(f);
[a, b, b]
gap> gens[2] = gens[3];
false
gap> x:= gens[1]*gens[2];
a*b
gap> y:= gens[2]/gens[2]*gens[1]*gens[2];
a*b
gap> x = y;
true
gap> z:= gens[2]/gens[2]*gens[1]*gens[3];
a*b
gap> x = z;
false

2 I w1 < w2

The ordering of associative words is defined by length and lexicography (this ordering is called short-lex
ordering), that is, shorter words are smaller than longer words, and words of the same length are compared
w.r.t. the lexicographical ordering induced by the ordering of generators. Generators are sorted according
to the order in which they were created. If the generators are invertible then each generator g is larger than
its inverse g^-1, and g^-1 is larger than every generator that is smaller than g .

gap> f:= FreeGroup(2);; gens:= GeneratorsOfGroup(f);;
gap> a:= gens[1];; b:= gens[2];;
gap> One(f) < a^-1; a^-1 < a; a < b^-1; b^-1 < b; b < a^2; a^2 < a*b;
true
true
true
true
true
true

3 I IsShortLexLessThanOrEqual(u, v) F

returns IsLessThanOrEqualUnder(ord, u, v) where ord is the short less ordering for the family of u and
v . (This is here for compatibility with GAP 4.2.)

4 I IsBasicWreathLessThanOrEqual(u, v) F

returns IsLessThanOrEqualUnder(ord, u, v) where ord is the basic wreath product ordering for the
family of u and v . (This is here for compatibility with GAP 4.2.)

Section 4. Operations for Associative Words 335

35.4 Operations for Associative Words

The product of two given associative words is defined as the freely reduced concatenation of the words;
so adjacent pairs of a generator and its inverse never occur in words. Besides the multiplication *, the
arithmetical operators One (if the word lies in a family with identity) and (if the generators are invertible)
Inverse, /,^, Comm, and LeftQuotient are applicable to associative words (see 30.12).

For the operation MappedWord, which is applicable to arbitrary words, see 34.3.1.

There are two internal representations of associative words: By letters and by syllables (see 35.6). Unless
something else is specified, words are stored in the letter representation. Note, however, that operations to
extract or act on parts of words (letter or syllables) can carry substantially different costs, depending on the
representation the words are in.

1 I Length(w) A

For an associative word w , Length returns the number of letters in w .

gap> f := FreeGroup("a","b");; gens := GeneratorsOfGroup(f);;
gap> a := gens[1];; b := gens[2];;w := a^5*b*a^2*b^-4*a;;
gap> w; Length(w); Length(a^17); Length(w^0);
a^5*b*a^2*b^-4*a
13
17
0

2 I ExponentSumWord(w, gen) O

For an associative word w and a generator gen, ExponentSumWord returns the number of times gen appears
in w minus the number of times its inverse appears in w . If both gen and its inverse do not occur in w then
0 is returned. gen may also be the inverse of a generator.

gap> w; ExponentSumWord(w, a); ExponentSumWord(w, b);
a^5*b*a^2*b^-4*a
8
-3
gap> ExponentSumWord((a*b*a^-1)^3, a); ExponentSumWord(w, b^-1);
0
3

3 I Subword(w, from, to) O

For an associative word w and two positive integers from and to, Subword returns the subword of w that
begins at position from and ends at position to. Indexing is done with origin 1.

gap> w; Subword(w, 3, 7);
a^5*b*a^2*b^-4*a
a^3*b*a

4 I PositionWord(w, sub, from) O

Let w and sub be associative words, and from a positive integer. PositionWord returns the position of the
first occurrence of sub as a subword of w , starting at position from. If there is no such occurrence, fail is
returned. Indexing is done with origin 1.

In other words, PositionWord(w, sub, from) is the smallest integer i larger than or equal to from such
that Subword(w, i, i+Length(sub)-1) = sub, see 35.4.3.

336 Chapter 35. Associative Words

gap> w; PositionWord(w, a/b, 1);
a^5*b*a^2*b^-4*a
8
gap> Subword(w, 8, 9);
a*b^-1
gap> PositionWord(w, a^2, 1);
1
gap> PositionWord(w, a^2, 2);
2
gap> PositionWord(w, a^2, 6);
7
gap> PositionWord(w, a^2, 8);
fail

5 I SubstitutedWord(w, from, to, by) O
I SubstitutedWord(w, sub, from, by) O

Let w be an associative word.

In the first form, SubstitutedWord returns the associative word obtained by replacing the subword of w
that begins at position from and ends at position to by the associative word by . from and to must be
positive integers, indexing is done with origin 1. In other words, SubstitutedWord(w, from, to, by)
is the product of the three words Subword(w, 1, from-1), by , and Subword(w, to+1, Length(w)
), see 35.4.3.

In the second form, SubstitutedWord returns the associative word obtained by replacing the first occurrence
of the associative word sub of w , starting at position from, by the associative word by ; if there is no such
occurrence, fail is returned.

gap> w; SubstitutedWord(w, 3, 7, a^19);
a^5*b*a^2*b^-4*a
a^22*b^-4*a
gap> SubstitutedWord(w, a, 6, b^7);
a^5*b^8*a*b^-4*a
gap> SubstitutedWord(w, a*b, 6, b^7);
fail

6 I EliminatedWord(w, gen, by) O

For an associative word w , a generator gen, and an associative word by , EliminatedWord returns the
associative word obtained by replacing each occurrence of gen in w by by .

gap> w; EliminatedWord(w, a, a^2); EliminatedWord(w, a, b^-1);
a^5*b*a^2*b^-4*a
a^10*b*a^4*b^-4*a^2
b^-11

35.5 Operations for Associative Words by their Syllables

For an associative word w = x n1
1 x n2

2 · · · x
nk
k over an alphabet containing x1, x2, . . . , xk , such that xi 6= x±1

i+1 for
1 ≤ i ≤ k −1, the subwords x ei

i are uniquely determined; these powers of generators are called the syllables
of w .

1 I NumberSyllables(w) A

NumberSyllables returns the number of syllables of the associative word w .

Section 6. Representations for Associative Words 337

2 I ExponentSyllable(w, i) O

ExponentSyllable returns the exponent of the i -th syllable of the associative word w .

3 I GeneratorSyllable(w, i) O

GeneratorSyllable returns the number of the generator that is involved in the i -th syllable of the associative
word w .

4 I SubSyllables(w, from, to) O

SubSyllables returns the subword of the associative word w that consists of the syllables from positions
from to to, where from and to must be positive integers, and indexing is done with origin 1.

gap> w; NumberSyllables(w);
a^5*b*a^2*b^-4*a
5
gap> ExponentSyllable(w, 3);
2
gap> GeneratorSyllable(w, 3);
1
gap> SubSyllables(w, 2, 3);
b*a^2

There are two internal representations of associative words: By letters and by syllables (see 35.6). Unless
something else is specified, words are stored in the letter representation. Note, however, that operations to
extract or act on parts of words (letter or syllables) can carry substantially different costs, depending on the
representation the words are in.

35.6 Representations for Associative Words

GAP provides two different internal kinds of representations of associative words. The first one are “syllable
representations” in which words are stored in syllable (i.e. generator,exponent) form. (Older versions of GAP
only used this representation.) The second kind are “letter representations” in which each letter in a word is
represented by its index number. Negative numbers are used for inverses. Unless the syllable representation
is specified explicitly when creating the free group/monoid or semigroup, a letter representation is used by
default.

Depending on the task in mind, either of these two representations will perform better in time or in memory
use and algorithms that are syllable or letter based (for example GeneratorSyllable and Subword) perform
substantially better in the corresponding representation. For example when creating pc groups (see 44), it
is advantageous to use a syllable representation while calculations in free groups usually benefit from using
a letter representation.

1 I IsLetterAssocWordRep(obj) R

A word in letter representation stores a list of generator/inverses numbers (as given by LetterRepAssoc-
Word). Letter access is fast, syllable access is slow for such words.

2 I IsLetterWordsFamily(obj) C

A letter word family stores words by default in letter form.

Internally, there are letter representations that use integers (4 Byte) to represent a generator and letter
representations that use single bytes to represent a character. The latter are more memory efficient, but can
only be used if there are less than 128 generators (in which case they are used by default).

338 Chapter 35. Associative Words

3 I IsBLetterAssocWordRep(obj) R
I IsWLetterAssocWordRep(obj) R

these two subrepresentations of IsLetterAssocWordRep indicate whether the word is stored as a list of bytes
(in a string) or as a list of integers)

4 I IsBLetterWordsFamily(obj) C
I IsWLetterWordsFamily(obj) C

These two subcategories of IsLetterWordsFamily specify the type of letter representation to be used.

5 I IsSyllableAssocWordRep(obj) R

A word in syllable representation stores generator/exponents pairs (as given by ExtRepOfObj. Syllable access
is fast, letter access is slow for such words.

6 I IsSyllableWordsFamily(obj) C

A syllable word family stores words by default in syllable form.

There are also different versions of syllable representations, which compress a generator exponent pair in
8,16 or 32 bits or use a pair of integers. Internal mechanisms try to make this as memory efficient as possible.

7 I Is8BitsFamily(obj) C
I Is16BitsFamily(obj) C
I Is32BitsFamily(obj) C
I IsInfBitsFamily(obj) C

Regardless of the internal representation used, it is possible to convert a word in a list of numbers in letter
or syllable representation and vice versa:

8 I LetterRepAssocWord(w) O
I LetterRepAssocWord(w, gens) O

The letter representation of an associated word is as a list of integers, each entry corresponding to a
group generator. Inverses of the generators are represented by negative numbers. The generator numbers
are as associated to the family.

This operation returns the letter representation of the associative word w .

In the second variant, the generator numbers correspond to the generator order given in the list gens.

(For words stored in syllable form the letter representation has to be comnputed.)

9 I AssocWordByLetterRep(Fam, lrep [, gens]) O

takes a letter representation lrep (see LetterRepAssocWord, section 35.6.8) and returns an associative word
in family fam. corresponding to this letter representation.

If gens is given, the numbers in the letter rerpresentation correspond to gens.

gap> w:=AssocWordByLetterRep(FamilyObj(a), [-1,2,1,-2,-2,-2,1,1,1,1]);
a^-1*b*a*b^-3*a^4
gap> LetterRepAssocWord(w^2);
[-1, 2, 1, -2, -2, -2, 1, 1, 1, 2, 1, -2, -2, -2, 1, 1, 1, 1]

The external representation (see section 35.7) can be used if a syllable representation is needed.

Section 8. Straight Line Programs 339

35.7 The External Representation for Associative Words

The external representation of the associative word w is defined as follows. If w = ge1
i1 ∗ ge2

i2 ∗ · · · ∗ gek
ik

is a
word over the alphabet g1, g2, . . ., i.e., gi denotes the i -th generator of the family of w , then w has external
representation [i1, e1, i2, e2, . . . , ik , ek]. The empty list describes the identity element (if exists) of the family.
Exponents may be negative if the family allows inverses. The external representation of an associative word
is guaranteed to be freely reduced; for example, g1 ∗ g2 ∗ g−1

2 ∗ g1 has the external representation [1, 2].
Regardless of the family preference for letter or syllable representations (see 35.6), ExtRepOfObj and Ob-
jByExtRep can be used and interface to this “syllable”-like representation.

gap> w:= ObjByExtRep(FamilyObj(a), [1,5,2,-7,1,3,2,4,1,-2]);
a^5*b^-7*a^3*b^4*a^-2
gap> ExtRepOfObj(w^2);
[1, 5, 2, -7, 1, 3, 2, 4, 1, 3, 2, -7, 1, 3, 2, 4, 1, -2]

35.8 Straight Line Programs

Straight line programs describe an efficient way for evaluating an abstract word at concrete generators,
in a more efficient way than with MappedWord (see 34.3.1). For example, the associative word ababbab of
length 7 can be computed from the generators a, b with only four multiplications, by first computing c = ab,
then d = cb, and then cdc; Alternatively, one can compute c = ab, e = bc, and aee. In each step of these
computations, one forms words in terms of the words computed in the previous steps.
A straight line program in GAP is represented by an object in the category IsStraightLineProgram
(see 35.8.1) that stores a list of “lines” each of which has one of the following three forms.

1. a nonempty dense list l of integers,
2. a pair [l , i] where l is a list of form 1. and i is a positive integer,
3. a list [l1, l2, . . . , lk] where each li is a list of form 1.; this may occur only for the last line of the program.

The lists of integers that occur are interpreted as external representations of associative words (see 35.7);
for example, the list [1, 3, 2,−1] represents the word g3

1 g−1
2 , with g1 and g2 the first and second abstract

generator, respectively.
Straight line programs can be constructed using StraightLineProgram (see 35.8.2).
Defining attributes for straight line programs are NrInputsOfStraightLineProgram (see 35.8.4) and Line-
sOfStraightLineProgram (see 35.8.3). Another operation for straight line programs is ResultOfStraight-
LineProgram (see 35.8.5).
Special methods applicable to straight line programs are installed for the operations Display, IsInternal-
lyConsistent, PrintObj, and ViewObj.
For a straight line program prog , the default Display method prints the interpretation of prog as a sequence
of assignments of associative words; a record with components gensnames (with value a list of strings) and
listname (a string) may be entered as second argument of Display, in this case these names are used, the
default for gensnames is [g1, g2, . . .], the default for listname is r .

1 I IsStraightLineProgram(obj) C

Each straight line program in GAP lies in the category IsStraightLineProgram.

2 I StraightLineProgram(lines[, nrgens]) F
I StraightLineProgram(string, gens) F
I StraightLineProgramNC(lines[, nrgens]) F
I StraightLineProgramNC(string, gens) F

In the first form, lines must be a list of lists that defines a unique straight line program (see 35.8.1); in this
case StraightLineProgram returns this program, otherwise an error is signalled. The optional argument

340 Chapter 35. Associative Words

nrgens specifies the number of input generators of the program; if a line of form 1. (that is, a list of integers)
occurs in lines except in the last position, this number is not determined by lines and therefore must be
specified by the argument nrgens; if not then StraightLineProgram returns fail.

In the second form, string must be a string describing an arithmetic expression in terms of the strings in the
list gens, where multiplication is denoted by concatenation, powering is denoted by ^, and round brackets
(,) may be used. Each entry in gens must consist only of (uppercase or lowercase) letters (i.e., letters
in IsAlphaChar, see 26.3.4) such that no entry is an initial part of another one. Called with this input,
StraightLineProgramNC returns a straight line program that evaluates to the word corresponding to string
when called with generators corresponding to gens.

StraightLineProgramNC does the same as StraightLineProgram, except that the internal consistency of
the program is not checked.

3 I LinesOfStraightLineProgram(prog) A

For a straight line program prog , LinesOfStraightLineProgram returns the list of program lines. There is
no default method to compute these lines if they are not stored.

4 I NrInputsOfStraightLineProgram(prog) A

For a straight line program prog , NrInputsOfStraightLineProgram returns the number of generators that
are needed as input.

If a line of form 1. (that is, a list of integers) occurs in the lines of prog except the last line then the number
of generators is not determined by the lines, and must be set in the construction of the straight line program
(see 35.8.2). So if prog contains a line of form 1. other than the last line and does not store the number of
generators then NrInputsOfStraightLineProgram signals an error.

5 I ResultOfStraightLineProgram(prog, gens) O

ResultOfStraightLineProgram evaluates the straight line program (see 35.8.1) prog at the group elements
in the list gens.

The result of a straight line program with lines p1, p2, . . . , pk when applied to gens is defined as follows.

(a) First a list r of intermediate results is initialized with a shallow copy of gens.

(b) For i < k , before the i -th step, let r be of length n. If pi is the external representation of an associative
word in the first n generators then the image of this word under the homomorphism that is given by
mapping r to these first n generators is added to r ; if pi is a pair [l , j], for a list l , then the same element
is computed, but instead of being added to r , it replaces the j -th entry of r .

(c) For i = k , if pk is the external representation of an associative word then the element described in (b)
is the result of the program, if pk is a pair [l , j], for a list l , then the result is the element described
by l , and if pk is a list [l1, l2, . . . , lk] of lists then the result is a list of group elements, where each li is
treated as in (b).

Here are some examples.

gap> f:= FreeGroup("x", "y");; gens:= GeneratorsOfGroup(f);;
gap> x:= gens[1];; y:= gens[2];;
gap> prg:= StraightLineProgram([[]]);
<straight line program>
gap> ResultOfStraightLineProgram(prg, []);
[]

The above straight line program prg returns –for any list of input generators– an empty list.

Section 8. Straight Line Programs 341

gap> StraightLineProgram([[1,2,2,3], [3,-1]]);
fail
gap> prg:= StraightLineProgram([[1,2,2,3], [3,-1]], 2);
<straight line program>
gap> LinesOfStraightLineProgram(prg);
[[1, 2, 2, 3], [3, -1]]
gap> prg:= StraightLineProgram("(a^2b^3)^-1", ["a", "b"]);
<straight line program>
gap> LinesOfStraightLineProgram(prg);
[[[1, 2, 2, 3], 3], [[3, -1], 4]]
gap> res:= ResultOfStraightLineProgram(prg, gens);
y^-3*x^-2
gap> res = (x^2 * y^3)^-1;
true
gap> NrInputsOfStraightLineProgram(prg);
2
gap> Print(prg, "\n");
StraightLineProgram([[[1, 2, 2, 3], 3], [[3, -1], 4]], 2)
gap> Display(prg);
input:
r:= [g1, g2];
program:
r[3]:= r[1]^2*r[2]^3;
r[4]:= r[3]^-1;
return value:
r[4]
gap> IsInternallyConsistent(StraightLineProgramNC([[1,2]]));
true
gap> IsInternallyConsistent(StraightLineProgramNC([[1,2,3]]));
false
gap> prg1:= StraightLineProgram([[1,1,2,2], [3,3,1,1]], 2);;
gap> prg2:= StraightLineProgram([[[1,1,2,2], 2], [2,3,1,1]]);;
gap> res1:= ResultOfStraightLineProgram(prg1, gens);
x*y^2*x*y^2*x*y^2*x
gap> res1 = (x*y^2)^3*x;
true
gap> res2:= ResultOfStraightLineProgram(prg2, gens);
x*y^2*x*y^2*x*y^2*x
gap> res2 = (x*y^2)^3*x;
true
gap> prg:= StraightLineProgram([[2,3], [[3,1,1,4], [1,2,3,1]]], 2);;
gap> res:= ResultOfStraightLineProgram(prg, gens);
[y^3*x^4, x^2*y^3]

6 I StringOfResultOfStraightLineProgram(prog, gensnames[, "LaTeX"]) F

StringOfResultOfStraightLineProgram returns a string that describes the result of the straight line pro-
gram (see 35.8.1) prog as word(s) in terms of the strings in the list gensnames. If the result of prog is a
single element then the return value of StringOfResultOfStraightLineProgram is a string consisting of
the entries of gensnames, opening and closing brackets (and), and powering by integers via ^. If the result
of prog is a list of elements then the return value of StringOfResultOfStraightLineProgram is a comma
separated concatenation of the strings of the single elements, enclosed in square brackets [,].

342 Chapter 35. Associative Words

gap> prg:= StraightLineProgram([[1, 2, 2, 3], [3, -1]], 2);;
gap> StringOfResultOfStraightLineProgram(prg, ["a", "b"]);
"(a^2b^3)^-1"
gap> StringOfResultOfStraightLineProgram(prg, ["a", "b"], "LaTeX");
"(a^{2}b^{3})^{-1}"

7 I CompositionOfStraightLinePrograms(prog2, prog1) F

For two straight line programs prog1 and prog2 , CompositionOfStraightLinePrograms returns a straight
line program prog with the properties that prog1 and prog have the same number of inputs, and the result
of prog when applied to given generators gens equals the result of prog2 when this is applied to the output
of prog1 applied to gens.

(Of course the number of outputs of prog1 must be the same as the number of inputs of prog2 .)

gap> prg1:= StraightLineProgram("a^2b", ["a","b"]);;
gap> prg2:= StraightLineProgram("c^5", ["c"]);;
gap> comp:= CompositionOfStraightLinePrograms(prg2, prg1);
<straight line program>
gap> StringOfResultOfStraightLineProgram(comp, ["a", "b"]);
"(a^2b)^5"
gap> prg:= StraightLineProgram([[2,3], [[3,1,1,4], [1,2,3,1]]], 2);;
gap> StringOfResultOfStraightLineProgram(prg, ["a", "b"]);
"[b^3a^4, a^2b^3]"
gap> comp:= CompositionOfStraightLinePrograms(prg, prg);
<straight line program>
gap> StringOfResultOfStraightLineProgram(comp, ["a", "b"]);
"[(a^2b^3)^3(b^3a^4)^4, (b^3a^4)^2(a^2b^3)^3]"

8 I IntegratedStraightLineProgram(listofprogs) F

For a nonempty dense list listofprogs of straight line programs that have the same number n, say, of inputs
(see 35.8.4) and for which the results (see 35.8.5) are single elements (i.e., not lists of elements), Integrat-
edStraightLineProgram returns a straight line program prog with n inputs such that for each n-tuple gens
of generators, ResultOfStraightLineProgram(prog, gens) is equal to the list List(listofprogs, p ->
ResultOfStraightLineProgram(p, gens).

gap> f:= FreeGroup("x", "y");; gens:= GeneratorsOfGroup(f);;
gap> prg1:= StraightLineProgram([[[1, 2], 1], [1, 2, 2, -1]], 2);;
gap> prg2:= StraightLineProgram([[[2, 2], 3], [1, 3, 3, 2]], 2);;
gap> prg3:= StraightLineProgram([[2, 2], [1, 3, 3, 2]], 2);;
gap> prg:= IntegratedStraightLineProgram([prg1, prg2, prg3]);;
gap> ResultOfStraightLineProgram(prg, gens);
[x^4*y^-1, x^3*y^4, x^3*y^4]
gap> prg:= IntegratedStraightLineProgram([prg2, prg3, prg1]);;
gap> ResultOfStraightLineProgram(prg, gens);
[x^3*y^4, x^3*y^4, x^4*y^-1]
gap> prg:= IntegratedStraightLineProgram([prg3, prg1, prg2]);;
gap> ResultOfStraightLineProgram(prg, gens);
[x^3*y^4, x^4*y^-1, x^3*y^4]

9 I RestrictOutputsOfSLP(slp, k) F

Returns a new slp that calculates only those outputs specified by k . k may be an integer or a list of integers.
If k is an integer, the resulting slp calculates only the result with that number. If k is a list of integers, the
resulting slp calculates those results with numbers in k . In both cases the resulting slp does only what is

Section 9. Straight Line Program Elements 343

necessary. The slp must have a line with at least k expressions (lists) as its last line (if k is an integer). slp
is either an slp or a pair where the first entry are the lines of the slp and the second is the number of inputs.

10 I IntermediateResultOfSLP(slp, k) F

Returns a new slp that calculates only the value of slot k at the end of slp doing only what is necessary.
slp is either an slp or a pair where the first entry are the lines of the slp and the second is the number of
inputs. Note that this assumes a general SLP with possible overwriting. If you know that your SLP does
not overwrite slots, please use 35.8.11, which is much faster in this case.

11 I IntermediateResultOfSLPWithoutOverwrite(slp, k) F

Returns a new slp that calculates only the value of slot k , which must be an integer. Note that slp must not
overwrite slots but only append!!! Use 35.8.10 in the other case! slp is either an slp or a pair where the first
entry is the lines of the slp and the second is the number of inputs.

12 I IntermediateResultsOfSLPWithoutOverwrite(slp, k) F

Returns a new slp that calculates only the value of slots contained in the list k. Note that slp must not
overwrite slots but only append!!! Use 35.8.10 in the other case! slp is either a slp or a pair where the first
entry is the lines of the slp and the second is the number of inputs.

13 I ProductOfStraightLinePrograms(s1, s2) F

s1 and s2 must be two slps that return a single element with the same number of inputs. This function
contructs an slp that returns the product of the two results the slps s1 and s2 would produce with the same
input.

35.9 Straight Line Program Elements

When computing with very large (in terms of memory) elements, for example permutations of degree a
few hundred thousands, it can be helpful (in terms of memory usage) to represent them via straight line
programs in terms of an original generator set. (So every element takes only small extra storage for the
straight line program.)

A straight line program element has a seed (a list of group elements) and a straight line program on the
same number of generators as the length of this seed, its value is the value of the evaluated straight line
program.

At the moment, the entries of the straight line program have to be simple lists (i.e. of the first form).

Straight line program elements are in the same categories and families as the elements of the seed, so they
should work together with existing algorithms.

Note however, that due to the different way of storage some normally very cheap operations (such as testing
for element equality) can become more expensive when dealing with straight line program elements. This is
essentially the tradeoff for using less memory.

1 I IsStraightLineProgElm(obj) R

A straight line program element is a group element given (for memory reasons) as a straight line program.
Straight line program elements are positional objects, the first component is a record with a component
seeds, the second component the straight line program. we need to rank higher than default methods

2 I StraightLineProgElm(seed, prog) F

Creates a straight line program element for seed seed and program prog .

344 Chapter 35. Associative Words

3 I StraightLineProgGens(gens[, base]) F

returns a set of straight line program elements corresponding to the generators in gens. If gens is a set of
permutations then base can be given which must be a base for the group generated by gens. (Such a base
will be used to speed up equality tests.)

4 I EvalStraightLineProgElm(slpel) F

evaluates a straight line program element slpel from its seeds.

5 I StretchImportantSLPElement(elm) O

If elm is a straight line program element whose straight line representation is very long, this operation
changes the representation of elm to a straight line program element, equal to elm, whose seed contains the
evaluation of elm and whose straight line program has length 1.

For other objects nothing happens.

This operation permits to designate “important” elements within an algorithm (elements that wil be referred
to often), which will be represented by guaranteed short straight line program elements.

gap> gens:=StraightLineProgGens([(1,2,3,4),(1,2)]);
[<[[2, 1]]|(1,2,3,4)>, <[[1, 1]]|(1,2)>]
gap> g:=Group(gens);;
gap> (gens[1]^3)^gens[2];
<[[1, -1, 2, 3, 1, 1]]|(1,2,4,3)>
gap> Size(g);
24
gap> Random(g);
<[[1, -1, 2, -1, 1, 1, 2, -1, 1, -1, 2, 1, 1, 1, 2, 1, 1, -1, 2, 2, 1, 1],
[3, -2, 2, -2, 1, -1, 2, -2, 1, 1, 2, -1, 1, -1, 2, -2, 1, 1, 2, -1, 1,

-1, 2, -1, 1, 1, 2, 1, 1, -1, 2, 1, 1, 1]]>

See also Section 41.12.

36 Rewriting Systems

Rewriting systems in GAP are a framework for dealing with the very general task of rewriting elements of a
free (or term) algebra in some normal form. Although most rewriting systems currently in use are string
rewriting systems (where the algebra has only one binary operation which is associative) the framework in
GAP is general enough to encompass the task of rewriting algebras of any signature from groups to semirings.

Rewriting systems are already implemented in GAP for finitely presented semigroups and for pc groups. The
use of these particular rewriting systems is described in the corresponding chapters. We describe here only
the general framework of rewriting systems with a particular emphasis on material which would be helpful
for a developer implementing a rewriting system.

We fix some definitions and terminology for the rest of this chapter. Let T be a term algebra in some
signature. A term rewriting system for T is a set of ordered pairs of elements of T of the form (l, r).
Viewed as a set of relations, the rewriting system determines a presentation for a quotient algebra A of T .

When we take into account the fact that the relations are expressed as ordered pairs, we have a way of
reducing the elements of T . Suppose an element u of T has a subword l and (l,r) is a rule of the rewriting
system, then we can replace the subterm l of u by the term r and obtain a new word v . We say that we
have rewritten u as v . Note that u and v represent the same element of A. If u can not be rewritten using
any rule of the rewriting system we sat that u is reduced.

36.1 Operations on rewriting systems

1 I IsRewritingSystem(obj) C

This is the category in which all rewriting systems lie.

2 I Rules(rws) A

The rules comprising the rewriting system. Note that these may change through the life of the rewriting
system, however they will always be a set of defining relations of the algebra described by the rewriting
system.

3 I OrderOfRewritingSystem(rws) A
I OrderingOfRewritingSystem(rws) A

return the ordering of the rewriting system rws.

4 I ReducedForm(rws, u) O

Given an element u in the free (or term) algebra over which rws is defined, rewrite u by successive applications
of the rules of rws until no further rewriting is possible, and return the resulting element of T .

5 I IsConfluent(rws) P
I IsConfluent(A) P

return true if and only if the rewriting system rws is confluent. A rewriting system is confluent if, for
every two words u and v in the free algebra T which represent the same element of the algebra A defined

346 Chapter 36. Rewriting Systems

by rws, ReducedForm(rws,u) = ReducedForm(rws,v) as words in the free algebra T . This element is the
unique normal form of the element represented by u.
In its second form, if A is an algebra with a canonical rewriting system associated with it, IsConfluent
checks whether that rewriting system is confluent.
Also see 44.4.7.

6 I ConfluentRws(rws) A

Return a new rewriting system defining the same algebra as rws which is confluent.

7 I IsReduced(rws) P

A rewriting system is reduced if for each rule (l , r), l and r are both reduced.

8 I ReduceRules(rws) O

Reduce rules and remove redundant rules to make rws reduced.

9 I AddRule(rws, rule) O

Add rule to a rewriting system rws.

10 I AddRuleReduced(rws, rule) O

Add rule to rewriting system rws. Performs a reduction operation on the resulting system, so that if rws is
reduced it will remain reduced.

11 I MakeConfluent(rws) O

Add rules (and perhaps reduce) in order to make rws confluent

12 I GeneratorsOfRws(rws) A

13 I AddGenerators(rws, gens) O

36.2 Operations on elements of the algebra

In this section let u denote an element of the term algebra T representing [u] in the quotient algebra A.

1 I ReducedProduct(rws, u, v) O

The result is w where [w] = [u] [v] in A and w is in reduced form.
The remaining operations are defined similarly when they are defined (as determined by the signature of
the term algebra).

2 I ReducedSum(rws, left, right) O

3 I ReducedOne(rws) O

4 I ReducedAdditiveInverse(rws, obj) O

5 I ReducedComm(rws, left, right) O

6 I ReducedConjugate(rws, left, right) O

7 I ReducedDifference(rws, left, right) O

8 I ReducedInverse(rws, obj) O

9 I ReducedLeftQuotient(rws, left, right) O

10 I ReducedPower(rws, obj, pow) O

11 I ReducedQuotient(rws, left, right) O

12 I ReducedScalarProduct(rws, left, right) O

13 I ReducedZero(rws) O

Section 4. Rewriting in Groups and Monoids 347

36.3 Properties of rewriting systems

The following properties may be used to identify the type of term algebra over which the rewriting system
is defined.

1 I IsBuiltFromAdditiveMagmaWithInverses(obj) P

2 I IsBuiltFromMagma(obj) P

3 I IsBuiltFromMagmaWithOne(obj) P

4 I IsBuiltFromMagmaWithInverses(obj) P

5 I IsBuiltFromSemigroup(obj) P

6 I IsBuiltFromGroup(obj) P

36.4 Rewriting in Groups and Monoids

One application of rewriting is to reduce words in finitely presented groups and monoids. The rewriting
system still has to be built for a finitely presented monoid (using IsomorphismFpMonoid for conversion).
Rewriting then can take place for words in the underlying free monoid. (These can be obtained from monoid
elements with the command UnderlyingElement.)

gap> f:=FreeGroup(3);;
gap> rels:=[f.1*f.2^2/f.3,f.2*f.3^2/f.1,f.3*f.1^2/f.2];;
gap> g:=f/rels;
<fp group on the generators [f1, f2, f3]>
gap> mhom:=IsomorphismFpMonoid(g);
MappingByFunction(<fp group on the generators
[f1, f2, f3]>, <fp monoid on the generators
[f1^-1, f1, f2^-1, f2, f3^-1, f3
]>, function(x) ... end, function(x) ... end)

gap> mon:=Image(mhom);
<fp monoid on the generators [f1^-1, f1, f2^-1, f2, f3^-1, f3]>
gap> k:=KnuthBendixRewritingSystem(mon);
Knuth Bendix Rewriting System for Monoid([f1^-1, f1, f2^-1, f2, f3^-1, f3
], ...) with rules

[[f1^-1*f1, <identity ...>], [f1*f1^-1, <identity ...>],
[f2^-1*f2, <identity ...>], [f2*f2^-1, <identity ...>],
[f3^-1*f3, <identity ...>], [f3*f3^-1, <identity ...>],
[f1*f2^2*f3^-1, <identity ...>], [f2*f3^2*f1^-1, <identity ...>],
[f3*f1^2*f2^-1, <identity ...>]]

gap> MakeConfluent(k);
gap> a:=Product(GeneratorsOfMonoid(mon));
f1^-1*f1*f2^-1*f2*f3^-1*f3
gap> ReducedForm(k,UnderlyingElement(a));
<identity ...>

To rewrite a word in the finitely presented group, one has to convert it to a word in the monoid first, rewrite
in the underlying free monoid and convert back (by forming first again an element of the fp monoid) to the
finitely presented group.

348 Chapter 36. Rewriting Systems

gap> r:=PseudoRandom(g);;
gap> Length(r);
3704
gap> red:=ReducedForm(k,UnderlyingElement(melm));
f1^-1^3*f2^-1*f1^2
gap> melm:=ElementOfFpMonoid(FamilyObj(One(mon)),red);
f1^-1^3*f2^-1*f1^2
gap> gpelm:=PreImagesRepresentative(mhom,melm);
f1^-3*f2^-1*f1^2
gap> r=gpelm;
true
gap> CategoriesOfObject(red);
["IsExtLElement", "IsExtRElement", "IsMultiplicativeElement",
"IsMultiplicativeElementWithOne", "IsAssociativeElement", "IsWord"]

gap> CategoriesOfObject(melm);
["IsExtLElement", "IsExtRElement", "IsMultiplicativeElement",
"IsMultiplicativeElementWithOne", "IsAssociativeElement",
"IsElementOfFpMonoid"]

gap> CategoriesOfObject(gpelm);
["IsExtLElement", "IsExtRElement", "IsMultiplicativeElement",
"IsMultiplicativeElementWithOne", "IsMultiplicativeElementWithInverse",
"IsAssociativeElement", "IsElementOfFpGroup"]

Note, that the elements red (free monoid) melm (fp monoid) and gpelm (group) differ, though they are
displayed identically.

Under Unix, it is possible to use the kbmag package to replace the built-in rewriting by this packages efficient
C implementation. You can do this (after loading the kbmag package) by assigning the variable KB REW to
KBMAG REW. Assignment to GAPKB REW reverts to the built-in implementation. (See section 51.5.2.)

gap> LoadPackage("kbmag");
true
gap> KB_REW:=KBMAG_REW;;

36.5 Developing rewriting systems

The key point to note about rewriting systems is that they have properties such as IsConfluent and
attributes such as Rules, however they are rarely stored, but rather computed afresh each time they are
asked for, from data stored in the private members of the rewriting system object. This is because a rewriting
system often evolves through a session, starting with some rules which define the algebra A as relations, and
then adding more rules to make the system confluent. For example, in the case of Knuth-Bendix rewriting
systems (see Chapter 51), the function CreateKnuthBendixRewritingSystem creating the rewriting system
(in kbsemi.gi) uses

kbrws := Objectify(NewType(rwsfam,
IsMutable and IsKnuthBendixRewritingSystem and
IsKnuthBendixRewritingSystemRep),
rec(family:= fam,
reduced:=false,
tzrules:=List(relwco,i->
[LetterRepAssocWord(i[1]),LetterRepAssocWord(i[2])]),
pairs2check:=CantorList(Length(r)),
ordering:=wordord,

Section 5. Developing rewriting systems 349

freefam:=freefam));

In particular, since we don’t use the filter IsAttributeStoringRep in the Objectify, whenever IsConflu-
ent is called, the appropriate method to determine confluence is called.

37 Groups

This chapter explains how to create groups and defines operations for groups, that is operations whose
definition does not depend on the representation used. However methods for these operations in most cases
will make use of the representation.

If not otherwise specified, in all examples in this chapter the group g will be the symmetric group S4 acting
on the letters {1, . . . , 4}.

37.1 Group Elements

Groups in GAP are written multiplicatively. The elements from which a group can be generated must permit
multiplication and multiplicative inversion (see 30.14).

gap> a:=(1,2,3);;b:=(2,3,4);;
gap> One(a);
()
gap> Inverse(b);
(2,4,3)
gap> a*b;
(1,3)(2,4)
gap> Order(a*b);
2
gap> Order([[1, 1], [0, 1]]);
infinity

The next example may run into an infinite loop because the given matrix in fact has infinite order.

gap> Order([[1, 1], [0, 1]] * Indeterminate(Rationals));
#I Order: warning, order of <mat> might be infinite

Since groups are domains, the recommended command to compute the order of a group is Size (see 28.3.6).
For convenience, group orders can also be computed with Order.

The operation Comm (see 30.12.3) can be used to compute the commutator of two elements, the operation
LeftQuotient (see 30.12.2) computes the product x−1y .

37.2 Creating Groups

When groups are created from generators, this means that the generators must be elements that can be
multiplied and inverted (see also 30.3). For creating a free group on a set of symbols, see 35.2.1.

1 I Group(gen, ...) F
I Group(gens) F
I Group(gens, id) F

Group(gen, ...) is the group generated by the arguments gen, ...

Section 2. Creating Groups 351

If the only argument gens is a list that is not a matrix then Group(gens) is the group generated by the
elements of that list.
If there are two arguments, a list gens and an element id , then Group(gens, id) is the group generated
by the elements of gens, with identity id .
Note that the value of the attribute GeneratorsOfGroup need not be equal to the list gens of generators
entered as argument. Use GroupWithGenerators (see 37.2.2) if you want to be sure that the argument gens
is stored as value of GeneratorsOfGroup.

gap> g:=Group((1,2,3,4),(1,2));
Group([(1,2,3,4), (1,2)])

2 I GroupWithGenerators(gens) O
I GroupWithGenerators(gens, id) O

GroupWithGenerators returns the group G generated by the list gens. If a second argument id is present
then this is stored as the identity element of the group. The value of the attribute GeneratorsOfGroup of
G is equal to gens.

3 I GeneratorsOfGroup(G) A

returns a list of generators of the group G . If G has been created by the command GroupWithGenerators
(see 37.2.2), with argument gens, then the list returned by GeneratorsOfGroup will be equal to gens.

gap> g:=GroupWithGenerators([(1,2,3,4),(1,2)]);
Group([(1,2,3,4), (1,2)])
gap> GeneratorsOfGroup(g);
[(1,2,3,4), (1,2)]

While in this example GAP displays the group via the generating set stored in the attribute GeneratorsOf-
Group, the methods installed for View (see 6.3.1) will in general display only some information about the
group which may even be just the fact that it is a group.

4 I AsGroup(D) A

if the elements of the collection D form a group the command returns this group, otherwise it returns fail.

gap> AsGroup([(1,2)]);
fail
gap> AsGroup([(),(1,2)]);
Group([(1,2)])

5 I ConjugateGroup(G, obj) O

returns the conjugate group of G , obtained by applying the conjugating element obj . To form a conjugate
(group) by any object acting via ^, one can use the infix operator ^.

gap> ConjugateGroup(g,(1,5));
Group([(2,3,4,5), (2,5)])

6 I IsGroup(obj) C

A group is a magma-with-inverses (see 33.1.4) and associative (see 33.4.7) multiplication.
IsGroup tests whether the object obj fulfills these conditions, it does not test whether obj is a set of
elements that forms a group under multiplication; use AsGroup (see 37.2.4) if you want to perform such a
test. (See 13.3 for details about categories.)

gap> IsGroup(g);
true

7 I InfoGroup V

is the info class for the generic group theoretic functions (see 7.4).

352 Chapter 37. Groups

37.3 Subgroups

For the general concept of parents and subdomains, see 30.7 and 30.8. More functions that construct certain
subgroups can be found in the sections 37.11, 37.12, 37.13, and 37.14.

1 I Subgroup(G, gens) F
I SubgroupNC(G, gens) F

creates the subgroup U of G generated by gens. The Parent of U will be G . The NC version does not check,
whether the elements in gens actually lie in G .

gap> u:=Subgroup(g,[(1,2,3),(1,2)]);
Group([(1,2,3), (1,2)])

2 I Index(G, U) O
I IndexNC(G, U) O

For a subgroup U of the group G , Index returns the index [G : U] = |G|
|U | of U in G . The NC version does

not test whether U is contained in G .

gap> Index(g,u);
4

3 I IndexInWholeGroup(G) A

If the family of elements of G itself forms a group P , this attribute returns the index of G in P .

4 I AsSubgroup(G, U) O

creates a subgroup of G which contains the same elements as U

gap> v:=AsSubgroup(g,Group((1,2,3),(1,4)));
Group([(1,2,3), (1,4)])
gap> Parent(v);
Group([(1,2,3,4), (1,2)])

5 I IsSubgroup(G, U) F

IsSubgroup returns true if U is a group that is a subset of the domain G . This is actually checked by
calling IsGroup(U) and IsSubset(G, U); note that special methods for IsSubset (see 28.4.1) are
available that test only generators of U if G is closed under the group operations. So in most cases, for
example whenever one knows already that U is a group, it is better to call only IsSubset.

gap> IsSubgroup(g,u);
true
gap> v:=Group((1,2,3),(1,2));
Group([(1,2,3), (1,2)])
gap> u=v;
true
gap> IsSubgroup(g,v);
true

6 I IsNormal(G, U) O

returns true if the group G normalizes the group U and false otherwise.

A group G normalizes a group U if and only if for every g ∈ G and u ∈ U the element ug is a member of
U . Note that U need not be a subgroup of G .

Section 3. Subgroups 353

gap> IsNormal(g,u);
false

7 I IsCharacteristicSubgroup(G, N) O

tests whether N is invariant under all automorphisms of G .

gap> IsCharacteristicSubgroup(g,u);
false

8 I ConjugateSubgroup(G, g) O

9 I ConjugateSubgroups(G, U) O

returns a list of all images of the group U under conjugation action by G .

10 I IsSubnormal(G, U) O

A subgroup U of the group G is subnormal if it is contained in a subnormal series of G .

gap> IsSubnormal(g,Group((1,2,3)));
false
gap> IsSubnormal(g,Group((1,2)(3,4)));
true

If a group U is created as a subgroup of another group G , G becomes the parent of U . There is no universal
parent group, parent-child chains can be arbitrary long. GAP stores the result of some operations (such as
Normalizer) with the parent as an attribute.

11 I SubgroupByProperty(G, prop) F

creates a subgroup of G consisting of those elements fulfilling prop (which is a tester function). No test is
done whether the property actually defines a subgroup.

Note that currently very little functionality beyond an element test exists for groups created this way.

12 I SubgroupShell(G) F

creates a subgroup of G which at this point is not yet specified further (but will be later, for example by
assigning a generating set).

gap> u:=SubgroupByProperty(g,i->3^i=3);
<subgrp of Group([(1,2,3,4), (1,2)]) by property>
gap> (1,3) in u; (1,4) in u; (1,5) in u;
false
true
false
gap> GeneratorsOfGroup(u);
[(1,2), (1,4,2)]
gap> u:=SubgroupShell(g);
<group>

354 Chapter 37. Groups

37.4 Closures of (Sub)groups

1 I ClosureGroup(G, obj) O

creates the group generated by the elements of G and obj . obj can be either an element or a collection of
elements, in particular another group.

gap> g:=SmallGroup(24,12);;u:=Subgroup(g,[g.3,g.4]);
Group([f3, f4])
gap> ClosureGroup(u,g.2);
Group([f2, f3, f4])
gap> ClosureGroup(u,[g.1,g.2]);
Group([f1, f2, f3, f4])
gap> ClosureGroup(u,Group(g.2*g.1));
Group([f1*f2^2, f3, f4])

2 I ClosureGroupAddElm(G, elm) F
I ClosureGroupCompare(G, elm) F
I ClosureGroupIntest(G, elm) F

These three functions together with ClosureGroupDefault implement the main methods for ClosureGroup
(see 37.4.1). In the ordering given, they just add elm to the generators, remove duplicates and identity
elements, and test whether elm is already contained in G .

3 I ClosureGroupDefault(G, elm) F

This functions returns the closure of the group G with the element elm. If G has the attribute AsSSortedList
then also the result has this attribute. This is used to implement the default method for Enumerator
(see 28.2.2) and EnumeratorSorted (see 28.2.3).

4 I ClosureSubgroup(G, obj) F
I ClosureSubgroupNC(G, obj) F

For a group G that stores a parent group (see 30.7), ClosureSubgroup calls ClosureGroup (see 37.4.1) with
the same arguments; if the result is a subgroup of the parent of G then the parent of G is set as parent
of the result, otherwise an error is raised. The check whether the result is contained in the parent of G is
omitted by the NC version. As a wrong parent might imply wrong properties this version should be used
with care.

37.5 Expressing Group Elements as Words in Generators

Using homomorphisms (see chapter 38) is is possible to express group elements as words in given generators:
Create a free group (see 35.2.1) on the correct number of generators and create a homomorphism from this
free group onto the group G in whose generators you want to factorize. Then the preimage of an element of
G is a word in the free generators, that will map on this element again.

1 I EpimorphismFromFreeGroup(G) A

For a group G with a known generating set, this attribute returns a homomorphism from a free group that
maps the free generators to the groups generators.

The option “names” can be used to prescribe a (print) name for the free generators.

The following example shows how to decompose elements of S4 in the generators (1,2,3,4) and (1,2):

Section 6. Structure Descriptions 355

gap> g:=Group((1,2,3,4),(1,2));
Group([(1,2,3,4), (1,2)])
gap> hom:=EpimorphismFromFreeGroup(g:names:=["x","y"]);
[x, y] -> [(1,2,3,4), (1,2)]
gap> PreImagesRepresentative(hom,(1,4));
y^-1*x^-2*y^-1*x^-1*y^-1*x

The following example stems from a real request to the GAP Forum. In September 2000 a GAP user working
with puzzles wanted to express the permutation (1,2) as a word as short as possible in particular generators
of the symmetric group S16.

gap> perms := [(1,2,3,7,11,10,9,5), (2,3,4,8,12,11,10,6),
> (5,6,7,11,15,14,13,9), (6,7,8,12,16,15,14,10)];;
gap> puzzle := Group(perms);;Size(puzzle);
20922789888000
gap> hom:=EpimorphismFromFreeGroup(puzzle:names:=["a", "b", "c", "d"]);;
gap> word := PreImagesRepresentative(hom, (1,2));
a^-1*c*b*c^-1*a*b^-1*a^-2*c^-1*a*b^-1*c*b
gap> Length(word);
13

2 I Factorization(G, elm) F

returns a factorization of elm as word in the generators of G given in the attribute GeneratorsOfGroup.
The component G!.factFreeMap will contain a map map from the group G to the free group in which
the word is expressed. The attribute MappingGeneratorsImages of this map gives a list of generators and
corresponding letters.

The algorithm used computes all elements of the group to ensure a short word is found. Therefore this
function should not be used when the group G has more than a few thousand elements. Because of this,
one should not call this function within algorithms, but use homomorphisms instead.

gap> G:=SymmetricGroup(6);;
gap> r:=(3,4);; s:=(1,2,3,4,5,6);;
gap> # create a subgroup to force the system to use the generators r and s.
gap> H:= Subgroup(G, [r, s]);
Group([(3,4), (1,2,3,4,5,6)])
gap> Factorization(H, (1,2,3));
x2*x1*x2*x1*x2^-2
gap> s*r*s*r*s^-2;
(1,2,3)
gap> MappingGeneratorsImages(EpimorphismFromFreeGroup(H));
[[x1, x2], [(3,4), (1,2,3,4,5,6)]]

37.6 Structure Descriptions

1 I StructureDescription(G) A

The method for StructureDescription exhibits the structure of the given group to some extend using
the strategy outlined below. The idea is to return a possibly short string which gives some insight in the
structure of the considered group and can be computed reasonably quickly.

Note that non-isomorphic groups can have the same StructureDescription, since the structure description
might not exhibit the structure of the considered group in all detail. However, isomorphic groups in different
representation will always obtain the same structure description.

356 Chapter 37. Groups

The StructureDescription is a string of the following form:

StructureDescription(<G>) ::=
1 ; trivial group

| C<size> ; cyclic group
| A<degree> ; alternating group
| S<degree> ; symmetric group
| D<size> ; dihedral group
| Q<size> ; quaternion group
| QD<size> ; quasidihedral group
| PSL(<n>,<q>) ; projective special linear group
| SL(<n>,<q>) ; special linear group
| GL(<n>,<q>) ; general linear group
| PSU(<n>,<q>) ; proj. special unitary group
| O(2<n>+1,<q>) ; orthogonal group, type B
| O+(2<n>,<q>) ; orthogonal group, type D
| O-(2<n>,<q>) ; orthogonal group, type 2D
| PSp(2<n>,<q>) ; proj. special symplectic group
| Sz(<q>) ; Suzuki group
| Ree(<q>) ; Ree group (type 2F or 2G)
| E(6,<q>) | E(7,<q>) | E(8,<q>) ; Lie group of exceptional type
| 2E(6,<q>) | F(4,<q>) | G(2,<q>)
| 3D(4,<q>) ; Steinberg triality group
| M11 | M12 | M22 | M23 | M24
| J1 | J2 | J3 | J4 | Co1 | Co2
| Co3 | Fi22 | Fi23 | Fi24’ | Suz
| HS | McL | He | HN | Th | B
| M | ON | Ly | Ru ; sporadic simple group
| 2F(4,2)’ ; Tits group
| PerfectGroup(<size>,<id>) ; the indicated group from the

; library of perfect groups
| A x B ; direct product
| N : H ; semidirect product
| C(G) . G/C(G) = G’ . G/G’ ; non-split extension

; (equal alternatives and
; trivial extensions omitted)

| Phi(G) . G/Phi(G) ; non-split extension:
; Frattini subgroup and
; Frattini factor group

Note that the method chooses one possible way of building up the given group from smaller pieces (others
are possible too).

The option “short” is recognized – if this option is set, an abbreviated output format is used (e.g. "6x3"
instead of "C6 x C3").

If the Name attribute is not bound, but StructureDescription is, View prints the value of the attribute
StructureDescription. The Printed representation of a group is not affected by computing a Structure-
Description.

The strategy is

1. Lookup in precomputed list, if the order of G is not larger than 100 and not equal to 64.

2. If G is abelian: decompose it into cyclic factors in “elementary divisors style”, e.g. "C2 x C3 x C3" is
"C6 x C3".

Section 7. Cosets 357

3. Recognize alternating groups, symmetric groups, dihedral groups, quasidihedral groups, quaternion
groups, PSL’s, SL’s, GL’s and simple groups not listed so far as basic building blocks.

4. Decompose into a direct product of irreducible factors.

5. Recognize semidirect products (N :H), where N is normal. Select a pair N , H with the following
preferences:

1. H is abelian

2. N is abelian

2a. N has many abelian invariants

3. N is a direct product

3a. N has many direct factors

4. φ : H → Aut(N), h 7→ (n 7→ nh) is injective.

6. Fall back to non-splitting extensions: If the centre or the commutator factor group is non-trivial,
write G as Z(G).G/Z(G) resp. G ’.G/G ’. Otherwise if the Frattini subgroup is non-trivial, write G
as Φ(G).G/Φ(G).

7. If no decomposition is found (maybe this is not the case for any finite group) try to identify G in the
perfect groups library. If also this fails return a string describing this situation.

gap> l := AllSmallGroups(12);;
gap> List(l,StructureDescription);; l;
[C3 : C4, C12, A4, D12, C6 x C2]
gap> List(AllSmallGroups(40),G->StructureDescription(G:short));
["5:8", "40", "5:8", "5:Q8", "4xD10", "D40", "2x(5:4)", "(10x2):2", "20x2",
"5xD8", "5xQ8", "2x(5:4)", "2^2xD10", "10x2^2"]

gap> List(AllTransitiveGroups(DegreeAction,6),G->StructureDescription(G:short));
["6", "S3", "D12", "A4", "3xS3", "2xA4", "S4", "S4", "S3xS3", "(3^2):4",
"2xS4", "A5", "(S3xS3):2", "S5", "A6", "S6"]

gap> StructureDescription(PSL(4,2));
"A8"

37.7 Cosets

1 I RightCoset(U , g) O

returns the right coset of U with representative g , which is the set of all elements of the form ug for all
u ∈ U . g must be an element of a larger group G which contains U . For element operations such as in a
right coset behaves like a set of group elements.

Right cosets are external orbits for the action of U which acts via OnLeftInverse. Of course the action of
a larger group G on right cosets is via OnRight.

gap> u:=Group((1,2,3), (1,2));;
gap> c:=RightCoset(u,(2,3,4));
RightCoset(Group([(1,2,3), (1,2)]),(2,3,4))
gap> ActingDomain(c);
Group([(1,2,3), (1,2)])
gap> Representative(c);
(2,3,4)
gap> Size(c);
6

358 Chapter 37. Groups

gap> AsList(c);
[(2,3,4), (1,4,2), (1,3)(2,4), (2,4), (1,4,2,3), (1,3,4,2)]

2 I RightCosets(G, U) F
I RightCosetsNC(G, U) O

computes a duplicate free list of right cosets Ug for g ∈ G . A set of representatives for the elements in this
list forms a right transversal of U in G . (By inverting the representatives one obtains a list of representatives
of the left cosets of U .) The NC version does not check whether U is a subgroup of G .

gap> RightCosets(g,u);
[RightCoset(Group([(1,2,3), (1,2)]),()),
RightCoset(Group([(1,2,3), (1,2)]),(1,3)(2,4)),
RightCoset(Group([(1,2,3), (1,2)]),(1,4)(2,3)),
RightCoset(Group([(1,2,3), (1,2)]),(1,2)(3,4))]

3 I CanonicalRightCosetElement(U, g) O

returns a “canonical” representative of the coset Ug which is independent of the given representative g . This
can be used to compare cosets by comparing their canonical representatives. The representative chosen to
be the “canonical” one is representation dependent and only guaranteed to remain the same within one GAP
session.

gap> CanonicalRightCosetElement(u,(2,4,3));
(3,4)

4 I IsRightCoset(obj) C

The category of right cosets.

GAP does not provide left cosets as a separate data type, but as the left coset gU consists of exactly the
inverses of the elements of the right coset Ug−1 calculations with left cosets can be emulated using right
cosets by inverting the representatives.

37.8 Transversals

1 I RightTransversal(G, U) O

A right transversal t is a list of representatives for the set U \G of right cosets (consisting of cosets Ug) of
U in G .

The object returned by RightTransversal is not a plain list, but an object that behaves like an immutable
list of length [G :U], except if U is the trivial subgroup of G in which case RightTransversal may return
the sorted plain list of coset representatives.

The operation PositionCanonical(t,g), called for a transversal t and an element g of G , will return the
position of the representative in t that lies in the same coset of U as the element g does. (In comparison,
Position will return fail if the element is not equal to the representative.) Functions that implement group
actions such as Action or Permutation (see Chapter 39) use PositionCanonical, therefore it is possible
to “act” on a right transversal to implement the action on the cosets. This is often much more efficient than
acting on cosets.

Section 9. Double Cosets 359

gap> g:=Group((1,2,3,4),(1,2));;
gap> u:=Subgroup(g,[(1,2,3),(1,2)]);;
gap> rt:=RightTransversal(g,u);
RightTransversal(Group([(1,2,3,4), (1,2)]),Group([(1,2,3), (1,2)]))
gap> Length(rt);
4
gap> Position(rt,(1,2,3));
fail

Note that the elements of a right transversal are not necessarily “canonical” in the sense of Canonical-
RightCosetElement (see 37.7.3), but we may compute a list of canonical coset representatives by calling
that function.

gap> List(RightTransversal(g,u),i->CanonicalRightCosetElement(u,i));
[(), (2,3,4), (1,2,3,4), (3,4)]

The operation PositionCanonical is described in section 21.16.3.

gap> PositionCanonical(rt,(1,2,3));
1
gap> rt[1];
()

37.9 Double Cosets
1 I DoubleCoset(U , g, V) O

The groups U and V must be subgroups of a common supergroup G of which g is an element. This command
constructs the double coset UgV which is the set of all elements of the form ugv for any u ∈ U , v ∈ V . For
element operations such as in, a double coset behaves like a set of group elements. The double coset stores
U in the attribute LeftActingGroup, g as Representative, and V as RightActingGroup.

2 I RepresentativesContainedRightCosets(D) A

A double coset UgV can be considered as an union of right cosets U hi . (it is the union of the orbit of Ug
under right multiplication by V .) For a double coset D=UgV this returns a set of representatives hi such
that D =

⋃
hi

U hi . The representatives returned are canonical for U (see 37.7.3) and form a set.

gap> u:=Subgroup(g,[(1,2,3),(1,2)]);;v:=Subgroup(g,[(3,4)]);;
gap> c:=DoubleCoset(u,(2,4),v);
DoubleCoset(Group([(1,2,3), (1,2)]),(2,4),Group([(3,4)]))
gap> (1,2,3) in c;
false
gap> (2,3,4) in c;
true
gap> LeftActingGroup(c);
Group([(1,2,3), (1,2)])
gap> RightActingGroup(c);
Group([(3,4)])
gap> RepresentativesContainedRightCosets(c);
[(2,3,4)]

3 I DoubleCosets(G, U , V) O
I DoubleCosetsNC(G, U , V) O

computes a duplicate free list of all double cosets UgV for g ∈ G . U and V must be subgroups of the group
G . The NC version does not check whether U and V are both subgroups of G .

360 Chapter 37. Groups

gap> dc:=DoubleCosets(g,u,v);
[DoubleCoset(Group([(1,2,3), (1,2)]),(),Group([(3,4)])),
DoubleCoset(Group([(1,2,3), (1,2)]),(1,3)(2,4),Group([(3,4)])),
DoubleCoset(Group([(1,2,3), (1,2)]),(1,4)(2,3),Group([(3,4)]))]

gap> List(dc,Representative);
[(), (1,3)(2,4), (1,4)(2,3)]

4 I IsDoubleCoset(obj) C

The category of double cosets.

5 I DoubleCosetRepsAndSizes(G, U , V) O

returns a list of double coset representatives and their sizes, the entries are lists of the form [rep, size]. This
operation is faster that DoubleCosetsNC because no double coset objects have to be created.

gap> dc:=DoubleCosetRepsAndSizes(g,u,v);
[[(), 12], [(1,3)(2,4), 6], [(1,4)(2,3), 6]]

6 I InfoCoset V

The information function for coset and double coset operations is InfoCoset.

37.10 Conjugacy Classes

1 I ConjugacyClass(G, g) O

creates the conjugacy class in G with representative g . This class is an external set, so functions such as
Representative (which returns g), ActingDomain (which returns G), StabilizerOfExternalSet (which
returns the centralizer of g) and AsList work for it.

A conjugacy class is an external orbit (39.11.9) of group elements with the group acting by conjugation on
it. Thus element tests or operation representatives can be computed. The attribute Centralizer gives the
centralizer of the representative (which is the same result as StabilizerOfExternalSet). (This is a slight
abuse of notation: This is not the centralizer of the class as a set which would be the standard behaviour
of Centralizer.)

2 I ConjugacyClasses(G) A

returns the conjugacy classes of elements of G as a list of ConjugacyClasses of G (see ConjugacyClass
(37.10.1) for details). It is guaranteed that the class of the identity is in the first position, the further
arrangement depends on the method chosen (and might be different for equal but not identical groups).

For very small groups (of size up to 500) the classes will be computed by the conjugation action of G on
itself (see 37.10.4). This can be deliberately switched off using the “noaction” option shown below.

For solvable groups, the default method to compute the classes is by homomorphic lift (see section 43.17).

For other groups the method of [Hul00] is employed.

ConjugacyClasses supports the following options that can be used to modify this strategy:

random
The classes are computed by random search. See ConjugacyClassesByRandomSearch (37.10.3) be-
low.

action
The classes are computed by action of G on itself See ConjugacyClassesByOrbits (37.10.4) below.

noaction
Even for small groups ConjugacyClassesByOrbits (37.10.4) is not used as a default. This can be
useful if the elements of the group use a lot of memory.

Section 10. Conjugacy Classes 361

gap> g:=SymmetricGroup(4);;
gap> cl:=ConjugacyClasses(g);
[()^G, (1,2)^G, (1,2)(3,4)^G, (1,2,3)^G, (1,2,3,4)^G]
gap> Representative(cl[3]);Centralizer(cl[3]);
(1,2)(3,4)
Group([(1,2), (1,3)(2,4), (3,4)])
gap> Size(Centralizer(cl[5]));
4
gap> Size(cl[2]);
6

In general, you will not need to have to influence the method, but simply call ConjugacyClasses – GAP will
try to select a suitable method on its own. The method specifications are provided here mainly for expert
use.

3 I ConjugacyClassesByRandomSearch(G) F

computes the classes of the group G by random search. This works very efficiently for almost simple groups.

This function is also accessible via the option random to ConjugacyClass.

4 I ConjugacyClassesByOrbits(G) F

computes the classes of the group G as orbits of G on its elements. This can be quick but unsurprisingly
may also take a lot of memory if G becomes larger. All the classes will store their element list and thus a
membership test will be quick as well.

This function is also accessible via the option action to ConjugacyClass.

Typically, for small groups (roughly of order up to 103) the computation of classes as orbits under the action
is fastest; memory restrictions (and the increasing cost of eliminating duplicates) make this less efficient for
larger groups.

Calculation by random search has the smallest memory requirement, but in generally performs worse, the
more classes are there.

The folowing example shows the effect of this for a small group with many classes:

gap> h:=Group((4,5)(6,7,8),(1,2,3)(5,6,9));;ConjugacyClasses(h:noaction);;time;
110
gap> h:=Group((4,5)(6,7,8),(1,2,3)(5,6,9));;ConjugacyClasses(h:random);;time;
300
gap> h:=Group((4,5)(6,7,8),(1,2,3)(5,6,9));;ConjugacyClasses(h:action);;time;
30

5 I NrConjugacyClasses(G) A

returns the number of conjugacy classes of G .

gap> g:=Group((1,2,3,4),(1,2));;
gap> NrConjugacyClasses(g);
5

6 I RationalClass(G, g) O

creates the rational class in G with representative g . A rational class consists of all elements that are
conjugate to g or to a power g i where i is coprime to the order of g . Thus a rational class can be interpreted
as a conjugacy class of cyclic subgroups. A rational class is an external set (39.11.1) of group elements with
the group acting by conjugation on it, but not an external orbit.

362 Chapter 37. Groups

7 I RationalClasses(G) A

returns a list of the rational classes of the group G . (See 37.10.6.)

gap> RationalClasses(DerivedSubgroup(g));
[RationalClass(AlternatingGroup([1 .. 4]), ()),
RationalClass(AlternatingGroup([1 .. 4]), (1,2)(3,4)),
RationalClass(AlternatingGroup([1 .. 4]), (1,2,3))]

8 I GaloisGroup(ratcl) A

Suppose that ratcl is a rational class of a group G with representative g . The exponents i for which g i lies
already in the ordinary conjugacy class of g , form a subgroup of the prime residue class group Pn (see
15.2.3), the so-called Galois group of the rational class. The prime residue class group Pn is obtained in
GAP as Units(Integers mod n), the unit group of a residue class ring. The Galois group of a rational
class rcl is stored in the attribute GaloisGroup(rcl) as a subgroup of this group.

9 I IsConjugate(G, x, y) O
I IsConjugate(G, U , V) O

tests whether the elements x and y or the subgroups U and V are conjugate under the action of G . (They
do not need to be contained in G .) This command is only a shortcut to RepresentativeAction.

gap> IsConjugate(g,Group((1,2,3,4),(1,3)),Group((1,3,2,4),(1,2)));
true

RepresentativeAction (see 39.5.1) can be used to obtain conjugating elements.

gap> RepresentativeAction(g,(1,2),(3,4));
(1,3)(2,4)

37.11 Normal Structure

For the operations Centralizer and Centre, see Chapter 33.

1 I Normalizer(G, U) O
I Normalizer(G, g) O

Computes the normalizer NG(U), that is the stabilizer of U under the conjugation action of G . The second
form computes NG(〈g〉).

gap> Normalizer(g,Subgroup(g,[(1,2,3)]));
Group([(1,2,3), (2,3)])

2 I Core(S, U) O

If S and U are groups of elements in the same family, this operation returns the core of U in S , that is the
intersection of all S -conjugates of U .

gap> g:=Group((1,2,3,4),(1,2));;
gap> Core(g,Subgroup(g,[(1,2,3,4)]));
Group(())

3 I PCore(G, p) F

The p-core of G is the largest normal p-subgroup of G . It is the core of a p-Sylow subgroup of G .

Section 12. Specific and Parametrized Subgroups 363

gap> PCore(g,2);
Group([(1,4)(2,3), (1,2)(3,4)])

4 I NormalClosure(G, U) O

The normal closure of U in G is the smallest normal subgroup of G which contains U .

gap> NormalClosure(g,Subgroup(g,[(1,2,3)]));
Group([(1,2,3), (1,3,4)])

5 I NormalIntersection(G, U) O

computes the intersection of G and U , assuming that G is normalized by U . This works faster than Inter-
section, but will not produce the intersection if G is not normalized by U .

gap> NormalIntersection(Group((1,2)(3,4),(1,3)(2,4)),Group((1,2,3,4)));
Group([(1,3)(2,4)])

6 I Complementclasses(G, N) O

Let N be a normal subgroup of G . This command returns a set of representatives for the conjugacy classes of
complements of N in G . Complements are subgroups U of G which intersect trivially with N and together
with N generate G .

At the moment only methods for a solvable N are available.

gap> Complementclasses(g,Group((1,2)(3,4),(1,3)(2,4)));
[Group([(3,4), (2,4,3)])]

7 I InfoComplement V

Info class for the complement routines.

37.12 Specific and Parametrized Subgroups

The Centre of a group (the subgroup of those elements that commute with all other elements of the group)
can be computed by the operation Centre (see 33.4.5).

1 I TrivialSubgroup(G) A

gap> TrivialSubgroup(g);
Group(())

2 I CommutatorSubgroup(G, H) O

If G and H are two groups of elements in the same family, this operation returns the group generated
by all commutators [g , h] = g−1h−1gh (see 30.12.3) of elements g ∈ G and h ∈ H , that is the group
〈[g , h] | g ∈ G , h ∈ H 〉.

gap> CommutatorSubgroup(Group((1,2,3),(1,2)),Group((2,3,4),(3,4)));
Group([(1,4)(2,3), (1,3,4)])
gap> Size(last);
12

3 I DerivedSubgroup(G) A

The derived subgroup G ′ of G is the subgroup generated by all commutators of pairs of elements of G . It
is normal in G and the factor group G/G ′ is the largest abelian factor group of G .

364 Chapter 37. Groups

gap> DerivedSubgroup(g);
Group([(1,3,2), (1,4,3)])

4 I CommutatorLength(G) A

returns the minimal number n such that each element in the derived subgroup (see 37.12.3) of the group G
can be written as a product of (at most) n commutators of elements in G .

gap> CommutatorLength(g);
1

5 I FittingSubgroup(G) A

The Fitting subgroup of a group G is its largest nilpotent normal subgroup.

gap> FittingSubgroup(g);
Group([(1,2)(3,4), (1,4)(2,3)])

6 I FrattiniSubgroup(G) A

The Frattini subgroup of a group G is the intersection of all maximal subgroups of G .

gap> FrattiniSubgroup(g);
Group(())

7 I PrefrattiniSubgroup(G) A

returns a Prefrattini subgroup of the finite solvable group G . A factor M /N of G is called a Frattini factor
if M /N ≤ φ(G/N) holds. The group P is a Prefrattini subgroup of G if P covers each Frattini chief factor
of G , and if for each maximal subgroup of G there exists a conjugate maximal subgroup, which contains
P . In a finite solvable group G the Prefrattini subgroups form a characteristic conjugacy class of subgroups
and the intersection of all these subgroups is the Frattini subgroup of G .

gap> G := SmallGroup(60, 7);
<pc group of size 60 with 4 generators>
gap> P := PrefrattiniSubgroup(G);
Group([f2])
gap> Size(P);
2
gap> IsNilpotent(P);
true
gap> Core(G,P);
Group([])
gap> FrattiniSubgroup(G);
Group([])

8 I PerfectResiduum(G) A

is the smallest normal subgroup of G that has a solvable factor group.

gap> PerfectResiduum(Group((1,2,3,4,5),(1,2)));
Group([(1,3,2), (1,4,3), (1,5,4)])

9 I RadicalGroup(G) A

is the radical of G , i.e., the largest solvable normal subgroup of G .

Section 13. Sylow Subgroups and Hall Subgroups 365

gap> RadicalGroup(SL(2,5));
<group of 2x2 matrices of size 2 in characteristic 5>
gap> Size(last);
2

10 I Socle(G) A

The socle of the group G is the subgroup generated by all minimal normal subgroups.

gap> Socle(g);
Group([(1,4)(2,3), (1,2)(3,4)])

11 I SupersolvableResiduum(G) A

is the supersolvable residuum of the group G , that is, its smallest normal subgroup N such that the factor
group G/N is supersolvable.

gap> SupersolvableResiduum(g);
Group([(1,2)(3,4), (1,4)(2,3)])

12 I PRump(G, p) F

The p-rump of a group G is the subgroup G ′Gp for a prime p.

@example missing!@

37.13 Sylow Subgroups and Hall Subgroups

1 I SylowSubgroup(G, p) F

returns a Sylow p subgroup of the finite group G . This is a p-subgroup of G whose index in G is coprime
to p. SylowSubgroup computes Sylow subgroups via the operation SylowSubgroupOp.

gap> g:=SymmetricGroup(4);;
gap> SylowSubgroup(g,2);
Group([(1,2), (3,4), (1,3)(2,4)])

With respect to the following GAP functions, please note that by theorems of P. Hall, a group G is solvable
if and only if one of the following conditions holds.

1. For each prime p dividing the order of G , there exists a p-complement (see 37.13.2).

2. For each set P of primes dividing the order of G , there exists a P -Hall subgroup (see 37.13.3).

3. G has a Sylow system (see 37.13.4).

4. G has a complement system (see 37.13.5).

2 I SylowComplement(G, p) F

returns a p-Sylow complement of the finite group G . This is a subgroup U of order coprime to p such that
the index [G : U] is a p-power. At the moment methods exist only if G is solvable and GAP will issue an
error if G is not solvable.

gap> SylowComplement(g,3);
Group([(3,4), (1,4)(2,3), (1,3)(2,4)])

3 I HallSubgroup(G, P) F

computes a P -Hall subgroup for a set P of primes. This is a subgroup the order of which is only divisible
by primes in P and whose index is coprime to all primes in P . The function computes Hall subgroups via

366 Chapter 37. Groups

the operation HallSubgroupOp. At the moment methods exist only if G is solvable and GAP will issue an
error if G is not solvable.

gap> h:=SmallGroup(60,10);;
gap> u:=HallSubgroup(h,[2,3]);
Group([f1, f2, f3])
gap> Size(u);
12

4 I SylowSystem(G) A

A Sylow system of a group G is a set of Sylow subgroups of G such that every pair of Sylow subgroups from
this set commutes as subgroups. Sylow systems exist only for solvable groups. The operation returns fail
if the group G is not solvable.

gap> h:=SmallGroup(60,10);;
gap> SylowSystem(h);
[Group([f1, f2]), Group([f3]), Group([f4])]
gap> List(last,Size);
[4, 3, 5]

5 I ComplementSystem(G) A

A complement system of a group G is a set of Hall-p′-subgroups of G , where p′ runs through the subsets
of prime factors of |G | that omit exactly one prime. Every pair of subgroups from this set commutes as
subgroups. Complement systems exist only for solvable groups, therefore ComplementSystem returns fail
if the group G is not solvable.

gap> ComplementSystem(h);
[Group([f3, f4]), Group([f1, f2, f4]), Group([f1, f2, f3])]
gap> List(last,Size);
[15, 20, 12]

6 I HallSystem(G) A

returns a list containing one Hall-P subgroup for each set P of primes which occur in the order of G . Hall
systems exist only for solvable groups. The operation returns fail if the group G is not solvable.

gap> HallSystem(h);
[Group([]), Group([f1, f2]), Group([f1, f2, f3]),
Group([f1, f2, f3, f4]), Group([f1, f2, f4]), Group([f3]),
Group([f3, f4]), Group([f4])]

gap> List(last,Size);
[1, 4, 12, 60, 20, 3, 15, 5]

37.14 Subgroups characterized by prime powers
1 I Omega(G, p[, n]) F

For a p-group G , one defines Ωn(G) = {g ∈ G | gpn
= 1}. The default value for n is 1.

@At the moment methods exist only for abelian G and n=1.@

gap> h:=SmallGroup(16,10);
<pc group of size 16 with 4 generators>
gap> Omega(h,2);
Group([f4, f2, f3])

2 I Agemo(G, p[, n]) F

For a p-group G , one defines fn(G) = 〈gpn | g ∈ G〉. The default value for n is 1.

Section 15. Group Properties 367

gap> Agemo(h,2);Agemo(h,2,2);
Group([f4])
Group([])

37.15 Group Properties

Some properties of groups can be defined not only for groups but also for other structures. For example,
nilpotency and solvability make sense also for algebras. Note that these names refer to different definitions
for groups and algebras, contrary to the situation with finiteness or commutativity. In such cases, the name
of the function for groups got a suffix Group to distinguish different meanings for different structures.

1 I IsCyclic(G) P

A group is cyclic if it can be generated by one element. For a cyclic group, one can compute a generating
set consisting of only one element using MinimalGeneratingSet (see 37.22.3).

2 I IsElementaryAbelian(G) P

A group G is elementary abelian if it is commutative and if there is a prime p such that the order of each
element in G divides p.

3 I IsNilpotentGroup(G) P

A group is nilpotent if the lower central series (see 37.17.11 for a definition) reaches the trivial subgroup
in a finite number of steps.

4 I NilpotencyClassOfGroup(G) A

The nilpotency class of a nilpotent group G is the number of steps in the lower central series of G (see
37.17.11);

If G is not nilpotent an error is issued.

5 I IsPerfectGroup(G) P

A group is perfect if it equals its derived subgroup (see 37.12.3).

6 I IsSolvableGroup(G) P

A group is solvable if the derived series (see 37.17.7 for a definition) reaches the trivial subgroup in a finite
number of steps.

For finite groups this is the same as being polycyclic (see 37.15.7), and each polycyclic group is solvable,
but there are infinite solvable groups that are not polycyclic.

7 I IsPolycyclicGroup(G) P

A group is polycyclic if it has a subnormal series with cyclic factors. For finite groups this is the same as if
the group is solvable (see 37.15.6).

8 I IsSupersolvableGroup(G) P

A finite group is supersolvable if it has a normal series with cyclic factors.

9 I IsMonomialGroup(G) P

A finite group is monomial if every irreducible complex character is induced from a linear character of a
subgroup.

10 I IsSimpleGroup(G) P

A group is simple if it is nontrivial and has no nontrivial normal subgroups.

368 Chapter 37. Groups

11 I IsomorphismTypeInfoFiniteSimpleGroup(G) F

For a finite simple group G , IsomorphismTypeInfoFiniteSimpleGroup returns a record with components
series, name and possibly parameter, describing the isomorphism type of G . The component name is a
string that gives name(s) for G , and series is a string that describes the following series.

(If different characterizations of G are possible only one is given by series and parameter, while name may
give several names.)

"A" Alternating groups, parameter gives the natural degree.

"L" Linear groups (Chevalley type A), parameter is a list [n,q] that indicates L(n, q).

"2A" Twisted Chevalley type 2A, parameter is a list [n,q] that indicates 2A(n, q).

"B" Chevalley type B , parameter is a list [n,q] that indicates B(n, q).

"2B" Twisted Chevalley type 2B , parameter is a value q that indicates 2B(2, q).

"C" Chevalley type C , parameter is a list [n,q] that indicates C (n, q).

"D" Chevalley type D , parameter is a list [n,q] that indicates D(n, q).

"2D" Twisted Chevalley type 2D , parameter is a list [n,q] that indicates 2D(n, q).

"3D" Twisted Chevalley type 3D , parameter is a value q that indicates 3D(4, q).

"E" Exceptional Chevalley type E , parameter is a list [n,q] that indicates En(q). The value of n is 6,7 or 8.

"2E" Twisted exceptional Chevalley type E6, parameter is a value q that indicates 2E6(q).

"F" Exceptional Chevalley type F , parameter is a value q that indicates F (4, q).

"2F" Twisted exceptional Chevalley type 2F (Ree groups), parameter is a value q that indicates 2F (4, q).

"G" Exceptional Chevalley type G , parameter is a value q that indicates G(2, q).

"2G" Twisted exceptional Chevalley type 2G (Ree groups), parameter is a value q that indicates 2G(2, q).

"Spor" Sporadic groups, name gives the name.

"Z" Cyclic groups of prime size, parameter gives the size.

An equal sign in the name denotes different naming schemes for the same group, a tilde sign abstract
isomorphisms between groups constructed in a different way.

gap> IsomorphismTypeInfoFiniteSimpleGroup(Group((4,5)(6,7),(1,2,4)(3,5,6)));
rec(series := "L", parameter := [2, 7],
name := "A(1,7) = L(2,7) ~ B(1,7) = O(3,7) ~ C(1,7) = S(2,7) ~ 2A(1,7) = U(2\

,7) ~ A(2,2) = L(3,2)")

12 I IsFinitelyGeneratedGroup(G) P

tests whether the group G can be generated by a finite number of generators. (This property is mainly used
to obtain finiteness conditions.)

Note that this is a pure existence statement. Even if a group is known to be generated by a finite number
of elements, it can be very hard or even impossible to obtain such a generating set if it is not known.

13 I IsSubsetLocallyFiniteGroup(U) P

A group is called locally finite if every finitely generated subgroup is finite. This property checks whether
the group U is a subset of a locally finite group. This is used to check whether finite generation will imply
finiteness, as it does for example for permutation groups.

14 I IsPGroup(G) P

A p-group is a finite group whose order (see 28.3.6) is of the form pn for a prime integer p and a nonnegative
integer n. IsPGroup returns true if G is a p-group, and false otherwise.

Section 16. Numerical Group Attributes 369

15 I PrimePGroup(G) A

If G is a nontrivial p-group (see 37.15.14), PrimePGroup returns the prime integer p; if G is trivial then
PrimePGroup returns fail. Otherwise an error is issued.

16 I PClassPGroup(G) A

The p-class of a p-group G (see 37.15.14) is the length of the lower p-central series (see 37.17.13) of G . If G
is not a p-group then an error is issued.

17 I RankPGroup(G) A

For a p-group G (see 37.15.14), RankPGroup returns the rank of G , which is defined as the minimal size of
a generating system of G . If G is not a p-group then an error is issued.

gap> h:=Group((1,2,3,4),(1,3));;
gap> PClassPGroup(h);
2
gap> RankPGroup(h);
2

Note that the following functions, although they are mathematical properties, are not properties in the sense
of GAP (see 13.5 and 13.7), as they depend on a parameter.

18 I IsPSolvable(G, p) F

A group is p-solvable if every chief factor is either not divisible by p or solvable.
@Currently no method is installed!@

19 I IsPNilpotent(G, p) F

A group is p-nilpotent if it possesses a normal p-complement.

37.16 Numerical Group Attributes
1 I AbelianInvariants(G) A

returns the abelian invariants (also sometimes called primary decomposition) of the commutator factor group
of the group G . These are given as a list of prime-powers or zeroes and describe the structure of G/G ′ as a
direct product of cyclic groups of prime power (or infinite) order.
(See 37.22.5 to obtain actual generators).

gap> g:=Group((1,2,3,4),(1,2),(5,6));;
gap> AbelianInvariants(g);
[2, 2]

2 I Exponent(G) A

The exponent e of a group G is the lcm of the orders of its elements, that is, e is the smallest integer such
that ge = 1 for all g ∈ G

gap> Exponent(g);
12

Again the following are mathematical attributes, but not GAP Attributes as they are depending on a
parameter:

3 I EulerianFunction(G, n) O

returns the number of n-tuples (g1, g2, . . . gn) of elements of the group G that generate the whole group G .
The elements of an n-tuple need not be different. If the Library of Tables of Marks (see Chapter 68) covers
the group G , you may also use EulerianFunctionByTom (see 68.9.9).

gap> EulerianFunction(g,2);
432

370 Chapter 37. Groups

37.17 Subgroup Series

In group theory many subgroup series are considered, and GAP provides commands to compute them. In
the following sections, there is always a series G = U1 > U2 > · · · > Um = 〈1〉 of subgroups considered. A
series also may stop without reaching G or 〈1〉.
A series is called subnormal if every Ui+1 is normal in Ui .

A series is called normal if every Ui is normal in G .

A series of normal subgroups is called central if Ui/Ui+1 is central in G/Ui+1.

We call a series refinable if intermediate subgroups can be added to the series without destroying the
properties of the series.

Unless explicitly declared otherwise, all subgroup series are descending. That is they are stored in decreasing
order.

1 I ChiefSeries(G) A

is a series of normal subgroups of G which cannot be refined further. That is there is no normal subgroup
N of G with Ui > N > Ui+1. This attribute returns one chief series (of potentially many possibilities).

gap> g:=Group((1,2,3,4),(1,2));;
gap> ChiefSeries(g);
[Group([(1,2,3,4), (1,2)]), Group([(2,4,3), (1,4)(2,3), (1,3)(2,4)]),
Group([(1,4)(2,3), (1,3)(2,4)]), Group(())]

2 I ChiefSeriesThrough(G, l) O

is a chief series of the group G going through the normal subgroups in the list l . l must be a list of normal
subgroups of G contained in each other, sorted by descending size. This attribute returns one chief series
(of potentially many possibilities).

3 I ChiefSeriesUnderAction(H , G) O

returns a series of normal subgroups of G which are invariant under H such that the series cannot be
refined any further. G must be a subgroup of H . This attribute returns one such series (of potentially many
possibilities).

4 I SubnormalSeries(G, U) O

If U is a subgroup of G this operation returns a subnormal series that descends from G to a subnormal
subgroup V≥U . If U is subnormal, V =U .

gap> s:=SubnormalSeries(g,Group((1,2)(3,4)));
[Group([(1,2,3,4), (1,2)]), Group([(1,2)(3,4), (1,4)(2,3)]),
Group([(1,2)(3,4)])]

5 I CompositionSeries(G) A

A composition series is a subnormal series which cannot be refined. This attribute returns one composition
series (of potentially many possibilities).

6 I DisplayCompositionSeries(G) F

Displays a composition series of G in a nice way, identifying the simple factors.

Section 17. Subgroup Series 371

gap> CompositionSeries(g);
[Group([(3,4), (2,4,3), (1,4)(2,3), (1,3)(2,4)]),
Group([(2,4,3), (1,4)(2,3), (1,3)(2,4)]),
Group([(1,4)(2,3), (1,3)(2,4)]), Group([(1,3)(2,4)]), Group(())]

gap> DisplayCompositionSeries(Group((1,2,3,4,5,6,7),(1,2)));
G (2 gens, size 5040)
| Z(2)

S (5 gens, size 2520)
| A(7)

1 (0 gens, size 1)

7 I DerivedSeriesOfGroup(G) A

The derived series of a group is obtained by Ui+1 = U ′i . It stops if Ui is perfect.

8 I DerivedLength(G) A

The derived length of a group is the number of steps in the derived series. (As there is always the group, it
is the series length minus 1.)

gap> List(DerivedSeriesOfGroup(g),Size);
[24, 12, 4, 1]
gap> DerivedLength(g);
3

9 I ElementaryAbelianSeries(G) A
I ElementaryAbelianSeriesLargeSteps(G) A
I ElementaryAbelianSeries([G, NT1, NT2, ...]) A

returns a series of normal subgroups of G such that all factors are elementary abelian. If the group is not
solvable (and thus no such series exists) it returns fail.
The variant ElementaryAbelianSeriesLargeSteps tries to make the steps in this series large (by eliminat-
ing intermediate subgroups if possible) at a small additional cost.
In the third variant, an elementary abelian series through the given series of normal subgroups is constructed.

gap> List(ElementaryAbelianSeries(g),Size);
[24, 12, 4, 1]

10 I InvariantElementaryAbelianSeries(G, morph[, N [, fine]]) O

For a (solvable) group G and a list of automorphisms morph of G , this command finds a normal series of G
with elementary abelian factors such that every group in this series is invariant under every automorphism
in morph.
If a normal subgroup N of G which is invariant under morph is given, this series is chosen to contain N . No
tests are performed to check the validity of the arguments.
The series obtained will be constructed to prefer large steps unless fine is given as true.

gap> g:=Group((1,2,3,4),(1,3));
Group([(1,2,3,4), (1,3)])
gap> hom:=GroupHomomorphismByImages(g,g,GeneratorsOfGroup(g),
> [(1,4,3,2),(1,4)(2,3)]);
[(1,2,3,4), (1,3)] -> [(1,4,3,2), (1,4)(2,3)]
gap> InvariantElementaryAbelianSeries(g,[hom]);
[Group([(1,2,3,4), (1,3)]), Group([(1,3)(2,4)]), Group(())]

11 I LowerCentralSeriesOfGroup(G) A

The lower central series of a group G is defined as Ui+1 := [G ,Ui]. It is a central series of normal subgroups.
The name derives from the fact that Ui is contained in the i -th step subgroup of any central series.

372 Chapter 37. Groups

12 I UpperCentralSeriesOfGroup(G) A

The upper central series of a group G is defined as an ending series Ui/Ui+1 := Z (G/Ui+1). It is a central
series of normal subgroups. The name derives from the fact that Ui contains every i -th step subgroup of a
central series.

13 I PCentralSeries(G, p) F

The p-central series of G is defined by U1 := G , Ui := [G ,Ui−1]U p
i−1.

14 I JenningsSeries(G) A

For a p-group G , this function returns its Jennings series. This series is defined by setting G1 = G and for
i ≥ 0, Gi+1 = [Gi ,G]Gp

j , where j is the smallest integer ≥ i/p.

15 I DimensionsLoewyFactors(G) A

This operation computes the dimensions of the factors of the Loewy series of G . (See [HB82], p. 157 for the
slightly complicated definition of the Loewy Series.)

The dimensions are computed via the JenningsSeries without computing the Loewy series itself.

gap> G:= SmallGroup(3^6, 100);
<pc group of size 729 with 6 generators>
gap> JenningsSeries(G);
[<pc group of size 729 with 6 generators>, Group([f3, f4, f5, f6]),
Group([f4, f5, f6]), Group([f5, f6]), Group([f5, f6]),
Group([f5, f6]), Group([f6]), Group([f6]), Group([f6]),
Group([<identity> of ...])]

gap> DimensionsLoewyFactors(G);
[1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20, 22, 23, 25, 26, 27, 27,
27, 27, 27, 27, 27, 27, 27, 26, 25, 23, 22, 20, 19, 17, 16, 14, 13, 11, 10,
8, 7, 5, 4, 2, 1]

16 I AscendingChain(G, U) F

This function computes an ascending chain of subgroups from U to G . This chain is given as a list whose
first entry is U and the last entry is G . The function tries to make the links in this chain small.

The option refineIndex can be used to give a bound for refinements of steps to avoid GAP trying to enforce
too small steps.

17 I IntermediateGroup(G, U) F

This routine tries to find a subgroup E of G , such that G > E > U . If U is maximal, it returns fail. This
is done by finding minimal blocks for the operation of G on the right cosets of U .

18 I IntermediateSubgroups(G, U) O

returns a list of all subgroups of G that properly contain U ; that is all subgroups between G and U . It
returns a record with components subgroups which is a list of these subgroups as well as a component
inclusions which lists all maximality inclusions among these subgroups. A maximality inclusion is given as
a list [i,j] indicating that subgroup number i is a maximal subgroup of subgroup number j , the numbers
0 and 1+length(subgroups) are used to denote U and G respectively.

Section 18. Factor Groups 373

37.18 Factor Groups

1 I NaturalHomomorphismByNormalSubgroup(G, N) F
I NaturalHomomorphismByNormalSubgroupNC(G, N) F

returns a homomorphism from G to another group whose kernel is N . GAP will try to select the image
group as to make computations in it as efficient as possible. As the factor group G/N can be identified with
the image of G this permits efficient computations in the factor group. The homomorphism returned is not
necessarily surjective, so ImagesSource should be used instead of Range to get a group isomorphic to the
factor group. The NC variant does not check whether N is normal in G .

2 I FactorGroup(G, N) F
I FactorGroupNC(G, N) O

returns the image of the NaturalHomomorphismByNormalSubgroup(G,N). The NC version does not test
whether N is normal in G .

gap> g:=Group((1,2,3,4),(1,2));;n:=Subgroup(g,[(1,2)(3,4),(1,3)(2,4)]);;
gap> hom:=NaturalHomomorphismByNormalSubgroup(g,n);
[(1,2,3,4), (1,2)] -> [f1*f2, f1]
gap> Size(ImagesSource(hom));
6
gap> FactorGroup(g,n);
Group([f1, f2])

3 I CommutatorFactorGroup(G) A

computes the commutator factor group G/G ′ of the group G .

gap> CommutatorFactorGroup(g);
Group([f1])

4 I MaximalAbelianQuotient(grp) A

returns an epimorphism from grp onto the maximal abelian quotient of grp. The kernel of this epimorphism
is the derived subgroup.

5 I HasAbelianFactorGroup(G, N) O

tests whether G/N is abelian (without explicitly constructing the factor group).

6 I HasElementaryAbelianFactorGroup(G, N) O

tests whether G/N is elementary abelian (without explicitly constructing the factor group).

gap> HasAbelianFactorGroup(g,n);
false
gap> HasAbelianFactorGroup(DerivedSubgroup(g),n);
true

7 I CentralizerModulo(G, N , elm) O

Computes the full preimage of the centralizer CG/N (elm · N) in G (without necessarily constructing the
factor group).

gap> CentralizerModulo(g,n,(1,2));
Group([(3,4), (1,3)(2,4), (1,4)(2,3)])

374 Chapter 37. Groups

37.19 Sets of Subgroups
1 I ConjugacyClassSubgroups(G, U) O

generates the conjugacy class of subgroups of G with representative U . This class is an external set, so
functions such as Representative, (which returns U), ActingDomain (which returns G), StabilizerO-
fExternalSet (which returns the normalizer of U), and AsList work for it.

(The use the [] list access to select elements of the class is considered obsolescent and will be removed in
future versions. Use ClassElementLattice instead.)

gap> g:=Group((1,2,3,4),(1,2));;IsNaturalSymmetricGroup(g);;
gap> cl:=ConjugacyClassSubgroups(g,Subgroup(g,[(1,2)]));
Group([(1,2)])^G
gap> Size(cl);
6
gap> ClassElementLattice(cl,4);
Group([(2,3)])

2 I IsConjugacyClassSubgroupsRep(obj) R
I IsConjugacyClassSubgroupsByStabilizerRep(obj) R

Is the representation GAP uses for conjugacy classes of subgroups. It can be used to check whether an
object is a class of subgroups. The second representation IsConjugacyClassSubgroupsByStabilizerRep
in addition is an external orbit by stabilizer and will compute its elements via a transversal of the stabilizer.

3 I ConjugacyClassesSubgroups(G) A

This attribute returns a list of all conjugacy classes of subgroups of the group G . It also is applicable for
lattices of subgroups (see 37.20.1). The order in which the classes are listed depends on the method chosen
by GAP. For each class of subgroups, a representative can be accessed using Representative (see 28.3.7).

gap> ConjugacyClassesSubgroups(g);
[Group(())^G, Group([(1,3)(2,4)])^G, Group([(3,4)])^G,
Group([(2,4,3)])^G, Group([(1,4)(2,3), (1,3)(2,4)])^G,
Group([(1,2)(3,4), (3,4)])^G, Group([(1,2)(3,4), (1,3,2,4)])^G,
Group([(3,4), (2,4,3)])^G, Group([(1,3)(2,4), (1,4)(2,3), (1,2)])^G,
Group([(1,3)(2,4), (1,4)(2,3), (2,4,3)])^G,
Group([(1,3)(2,4), (1,4)(2,3), (2,4,3), (1,2)])^G]

4 I ConjugacyClassesMaximalSubgroups(G) A

returns the conjugacy classes of maximal subgroups of G . Representatives of the classes can be computed
directly by MaximalSubgroupClassReps (see 37.19.5).

gap> ConjugacyClassesMaximalSubgroups(g);
[AlternatingGroup([1 .. 4])^G, Group([(1,2,3), (1,2)])^G,
Group([(1,2), (3,4), (1,3)(2,4)])^G]

5 I MaximalSubgroupClassReps(G) A

returns a list of conjugacy representatives of the maximal subgroups of G .

gap> MaximalSubgroupClassReps(g);
[Alt([1 .. 4]), Group([(1,2,3), (1,2)]),
Group([(1,2), (3,4), (1,3)(2,4)])]

6 I MaximalSubgroups(G) A

returns a list of all maximal subgroups of G . This may take up much space, therefore the command should
be avoided if possible. See 37.19.4.

Section 20. Subgroup Lattice 375

gap> MaximalSubgroups(Group((1,2,3),(1,2)));
[Group([(1,2,3)]), Group([(2,3)]), Group([(1,2)]), Group([(1,3)])]

7 I NormalSubgroups(G) A

returns a list of all normal subgroups of G .

gap> g:=SymmetricGroup(4);;NormalSubgroups(g);
[Group(()), Group([(1,4)(2,3), (1,3)(2,4)]),
Group([(2,4,3), (1,4)(2,3), (1,3)(2,4)]), Sym([1 .. 4])]

The algorithm used for the computation of normal subgroups of permutation groups and pc groups is
described in [Hul98].

8 I MaximalNormalSubgroups(G) A

is a list containing those proper normal subgroups of the group G that are maximal among the proper
normal subgroups.

gap> MaximalNormalSubgroups(g);
[Group([(2,4,3), (1,4)(2,3), (1,3)(2,4)])]

9 I MinimalNormalSubgroups(G) A

is a list containing those nontrivial normal subgroups of the group G that are minimal among the nontrivial
normal subgroups.

gap> MinimalNormalSubgroups(g);
[Group([(1,4)(2,3), (1,3)(2,4)])]

37.20 Subgroup Lattice

The GAP package XGAP permits a graphical display of the lattice of subgroups in a nice way.

1 I LatticeSubgroups(G) A

computes the lattice of subgroups of the group G . This lattice has the conjugacy classes of subgroups
as attribute ConjugacyClassesSubgroups (see 37.19.3) and permits one to test maximality/minimality
relations.

gap> g:=SymmetricGroup(4);;
gap> l:=LatticeSubgroups(g);
<subgroup lattice of Sym([1 .. 4]), 11 classes, 30 subgroups>
gap> ConjugacyClassesSubgroups(l);
[Group(())^G, Group([(1,3)(2,4)])^G, Group([(3,4)])^G,
Group([(2,4,3)])^G, Group([(1,4)(2,3), (1,3)(2,4)])^G,
Group([(1,2)(3,4), (3,4)])^G, Group([(1,2)(3,4), (1,3,2,4)])^G,
Group([(3,4), (2,4,3)])^G, Group([(1,3)(2,4), (1,4)(2,3), (1,2)])^G,
Group([(1,3)(2,4), (1,4)(2,3), (2,4,3)])^G,
Group([(1,3)(2,4), (1,4)(2,3), (2,4,3), (1,2)])^G]

2 I ClassElementLattice(C, n) O

For a class C of subgroups, obtained by a lattice computation, this operation returns the n-th conjugate
subgroup in the class.

Because of other methods installed, AsList(C) can give a different arrangement of the class
elements!

376 Chapter 37. Groups

3 I MaximalSubgroupsLattice(lat) A

For a lattice lat of subgroups this attribute contains the maximal subgroup relations among the subgroups
of the lattice. It is a list, corresponding to the ConjugacyClassesSubgroups of the lattice, each entry giving
a list of the maximal subgroups of the representative of this class. Every maximal subgroup is indicated by
a list of the form [cls,nr] which means that the nrst subgroup in class number cls is a maximal subgroup of
the representative.

The number nr corresponds to access via ClassElementLattice and not necessarily the AsList arrange-
ment! See also 37.20.4.

gap> MaximalSubgroupsLattice(l);
[[], [[1, 1]], [[1, 1]], [[1, 1]],
[[2, 1], [2, 2], [2, 3]], [[3, 1], [3, 6], [2, 3]],
[[2, 3]], [[4, 1], [3, 1], [3, 2], [3, 3]],
[[7, 1], [6, 1], [5, 1]],
[[5, 1], [4, 1], [4, 2], [4, 3], [4, 4]],
[[10, 1], [9, 1], [9, 2], [9, 3], [8, 1], [8, 2], [8, 3],

[8, 4]]]
gap> last[6];
[[3, 1], [3, 6], [2, 3]]
gap> u1:=Representative(ConjugacyClassesSubgroups(l)[6]);
Group([(1,2)(3,4), (3,4)])
gap> u2:=ClassElementLattice(ConjugacyClassesSubgroups(l)[3],1);;
gap> u3:=ClassElementLattice(ConjugacyClassesSubgroups(l)[3],6);;
gap> u4:=ClassElementLattice(ConjugacyClassesSubgroups(l)[2],3);;
gap> IsSubgroup(u1,u2);IsSubgroup(u1,u3);IsSubgroup(u1,u4);
true
true
true

4 I MinimalSupergroupsLattice(lat) A

For a lattice lat of subgroups this attribute contains the minimal supergroup relations among the subgroups
of the lattice. It is a list, corresponding to the ConjugacyClassesSubgroups of the lattice, each entry giving
a list of the minimal supergroups of the representative of this class. Every minimal supergroup is indicated
by a list of the form [cls,nr] which means that the nrst subgroup in class number cls is a minimal supergroup
of the representative.

The number nr corresponds to access via ClassElementLattice and not necessarily the AsList arrange-
ment! See also 37.20.3.

gap> MinimalSupergroupsLattice(l);
[[[2, 1], [2, 2], [2, 3], [3, 1], [3, 2], [3, 3], [3, 4],

[3, 5], [3, 6], [4, 1], [4, 2], [4, 3], [4, 4]],
[[5, 1], [6, 2], [7, 2]], [[6, 1], [8, 1], [8, 3]],
[[8, 1], [10, 1]], [[9, 1], [9, 2], [9, 3], [10, 1]],
[[9, 1]], [[9, 1]], [[11, 1]], [[11, 1]], [[11, 1]],
[]]

gap> last[3];
[[6, 1], [8, 1], [8, 3]]
gap> u5:=ClassElementLattice(ConjugacyClassesSubgroups(l)[8],1);
Group([(3,4), (2,4,3)])
gap> u6:=ClassElementLattice(ConjugacyClassesSubgroups(l)[8],3);
Group([(1,3), (1,3,4)])

Section 21. Specific Methods for Subgroup Lattice Computations 377

gap> IsSubgroup(u5,u2);
true
gap> IsSubgroup(u6,u2);
true

5 I RepresentativesPerfectSubgroups(G) A
I RepresentativesSimpleSubgroups(G) A

returns a list of conjugacy representatives of perfect (respectively simple) subgroups of G . This uses the
library of perfect groups (see 48.8.2), thus it will issue an error if the library is insufficient to determine all
perfect subgroups.

gap> m11:=TransitiveGroup(11,6);
M(11)
gap> r:=RepresentativesPerfectSubgroups(m11);
[Group([(3,5,8)(4,11,7)(6,9,10), (2,3)(4,10)(5,9)(8,11)]),
Group([(1,2,4)(5,11,8)(6,9,7), (2,3)(4,10)(5,9)(8,11)]),
Group([(3,4,10)(5,11,6)(7,9,8), (1,4,9)(3,6,10)(7,11,8)]),
Group([(1,2,5)(3,11,10)(6,7,8), (2,3)(4,10)(5,9)(8,11)]), M(11),
Group(())]

gap> List(r,Size);
[60, 60, 360, 660, 7920, 1]

6 I ConjugacyClassesPerfectSubgroups(G) A

returns a list of the conjugacy classes of perfect subgroups of G . (see 37.20.5.)

gap> ConjugacyClassesPerfectSubgroups(m11);
[Group([(3, 5, 8)(4,11, 7)(6, 9,10), (2, 3)(4,10)(5, 9)(8,11)])^G,
Group([(1, 2, 4)(5,11, 8)(6, 9, 7), (2, 3)(4,10)(5, 9)(8,11)])^G,
Group([(3, 4,10)(5,11, 6)(7, 9, 8), (1, 4, 9)(3, 6,10)(7,11, 8)

])^G,
Group([(1, 2, 5)(3,11,10)(6, 7, 8), (2, 3)(4,10)(5, 9)(8,11)])^G,
M(11)^G, Group(())^G]

7 I Zuppos(G) A

The Zuppos of a group are the cyclic subgroups of prime power order. (The name “Zuppo” derives from
the German abbreviation for “zyklische Untergruppen von Primzahlpotenzordnung”.) This attribute gives
generators of all such subgroups of a group G . That is all elements of G of prime power order up to the
equivalence that they generate the same cyclic subgroup.

8 I InfoLattice V

is the information class used by the cyclic extension methods for subgroup lattice calculations.

37.21 Specific Methods for Subgroup Lattice Computations

1 I LatticeByCyclicExtension(G[, func[, noperf]]) F

computes the lattice of G using the cyclic extension algorithm. If the function func is given, the algorithm will
discard all subgroups not fulfilling func (and will also not extend them), returning a partial lattice. This can
be useful to compute only subgroups with certain properties. Note however that this will not necessarily
yield all subgroups that fulfill func, but the subgroups whose subgroups are used for the construction
must also fulfill func as well. (In fact the filter func will simply discard subgroups in the cyclic extension
algorithm. Therefore the trivial subgroup will always be included.) Also note, that for such a partial lattice
maximality/minimality inclusion relations cannot be computed.

378 Chapter 37. Groups

The cyclic extension algorithm requires the perfect subgroups of G . However GAP cannot analyze the function
func for its implication but can only apply it. If it is known that func implies solvability, the computation
of the perfect subgroups can be avoided by giving a third parameter noperf set to true.

gap> g:=WreathProduct(Group((1,2,3),(1,2)),Group((1,2,3,4)));;
gap> l:=LatticeByCyclicExtension(g,function(G)
> return Size(G) in [1,2,3,6];end);
<subgroup lattice of <permutation group of size 5184 with 9 generators>,
47 classes, 2628 subgroups, restricted under further condition l!.func>

The total number of classes in this example is much bigger, as the following example shows:

gap> LatticeSubgroups(g);
<subgroup lattice of <permutation group of size 5184 with 9 generators>,
566 classes, 27134 subgroups>

2 I InvariantSubgroupsElementaryAbelianGroup(G, homs[, dims]) F

Let G be an elementary abelian group (that is a vector space) and homs a set of automorphisms of G . Then
this function computes all subspaces of G which are invariant under all automorphisms in homs. When
considering G as a module for the algebra generated by homs, these are all submodules. If homs is empty,
it computes all subspaces. If the optional parameter dims is given, only subspaces of this dimension are
computed.

gap> g:=Group((1,2,3),(4,5,6),(7,8,9));
Group([(1,2,3), (4,5,6), (7,8,9)])
gap> hom:=GroupHomomorphismByImages(g,g,[(1,2,3),(4,5,6),(7,8,9)],
> [(7,8,9),(1,2,3),(4,5,6)]);
[(1,2,3), (4,5,6), (7,8,9)] -> [(7,8,9), (1,2,3), (4,5,6)]
gap> u:=InvariantSubgroupsElementaryAbelianGroup(g,[hom]);
[Group(()), Group([(1,2,3)(4,5,6)(7,8,9)]),
Group([(1,3,2)(7,8,9), (1,3,2)(4,5,6)]),
Group([(7,8,9), (4,5,6), (1,2,3)])]

3 I SubgroupsSolvableGroup(G[, opt]) F

This function (implementing the algorithm published in [Hul99]) computes subgroups of a solvable group
G , using the homomorphism principle. It returns a list of representatives up to G-conjugacy.

The optional argument opt is a record, which may be used to put restrictions on the subgroups computed.
The following record components of opt are recognized and have the following effects:

actions
must be a list of automorphisms of G . If given, only groups which are invariant under all these
automorphisms are computed. The algorithm must know the normalizer in G of the group generated
by actions (defined formally by embedding in the semidirect product of G with actions). This can
be given in the component funcnorm and will be computed if this component is not given.

normal
if set to true only normal subgroups are guaranteed to be returned (though some of the returned
subgroups might still be not normal).

consider
a function to restrict the groups computed. This must be a function of five parameters, C ,A,N ,B ,M ,
that are interpreted as follows: The arguments are subgroups of a factor F of G in the relation
F ≥ C > A > N > B > M . N and M are normal subgroups. C is the full preimage of the
normalizer of A/N in F/N . When computing modulo M and looking for subgroups U such that
U ∩ N = B and 〈U ,N 〉 = A, this function is called. If it returns false all potential groups U

Section 21. Specific Methods for Subgroup Lattice Computations 379

(and therefore all groups later arising from them) are disregarded. This can be used for example to
compute only subgroups of certain sizes.

(This is just a restriction to speed up computations. The function may still return (invariant)
subgroups which don’t fulfill this condition!) This parameter is used to permit calculations of some
subgroups if the set of all subgroups would be too large to handle.

The actual groups C , A, N and B which are passed to this function are not necessarily subgroups of G but
might be subgroups of a proper factor group F=G/H . Therefore the consider function may not relate the
parameter groups to G .

retnorm
if set to true the function not only returns a list subs of subgroups but also a corresponding list
norms of normalizers in the form [subs,norms].

series
is an elementary abelian series of G which will be used for the computation.

groups
is a list of groups to seed the calculation. Only subgroups of these groups are constructed.

gap> g:=Group((1,2,3),(1,2),(4,5,6),(4,5),(7,8,9),(7,8));
Group([(1,2,3), (1,2), (4,5,6), (4,5), (7,8,9), (7,8)])
gap> hom:=GroupHomomorphismByImages(g,g,
> [(1,2,3),(1,2),(4,5,6),(4,5),(7,8,9),(7,8)],
> [(4,5,6),(4,5),(7,8,9),(7,8),(1,2,3),(1,2)]);
[(1,2,3), (1,2), (4,5,6), (4,5), (7,8,9), (7,8)] ->
[(4,5,6), (4,5), (7,8,9), (7,8), (1,2,3), (1,2)]
gap> l:=SubgroupsSolvableGroup(g,rec(actions:=[hom]));;
gap> List(l,Size);
[1, 3, 9, 27, 54, 2, 6, 18, 108, 4, 216, 8]
gap> Length(ConjugacyClassesSubgroups(g)); # to compare
162

4 I SizeConsiderFunction(size) F

This function returns a function consider of four arguments that can be used in SubgroupsSolvableGroup
(see 37.21.3) for the option consider to compute subgroups whose sizes are divisible by size.

gap> l:=SubgroupsSolvableGroup(g,rec(actions:=[hom],
> consider:=SizeConsiderFunction(6)));;
gap> List(l,Size);
[1, 3, 9, 27, 54, 6, 18, 108, 216]

This example shows that in general the consider function does not provide a perfect filter. It is guaranteed
that all subgroups fulfilling the condition are returned, but not all subgroups returned necessarily fulfill the
condition.

5 I ExactSizeConsiderFunction(size) F

This function returns a function consider of four arguments that can be used in SubgroupsSolvableGroup
(see 37.21.3) for the option consider to compute subgroups whose sizes are exactly size.

gap> l:=SubgroupsSolvableGroup(g,rec(actions:=[hom],
> consider:=ExactSizeConsiderFunction(6)));;
gap> List(l,Size);
[1, 3, 9, 27, 54, 6, 108, 216]

Again, the consider function does not provide a perfect filter. It is guaranteed that all subgroups fulfilling
the condition are returned, but not all subgroups returned necessarily fulfill the condition.

380 Chapter 37. Groups

6 I InfoPcSubgroup V

Information function for the subgroup lattice functions using pcgs.

37.22 Special Generating Sets

1 I GeneratorsSmallest(G) A

returns a “smallest” generating set for the group G . This is the lexicographically (using GAPs order of group
elements) smallest list l of elements of G such that G = 〈l〉 and li 6∈ 〈l1, . . . , li−1〉 (in particular l1 is not the
one of the group). The comparison of two groups via lexicographic comparison of their sorted element lists
yields the same relation as lexicographic comparison of their smallest generating sets.

gap> g:=SymmetricGroup(4);;
gap> GeneratorsSmallest(g);
[(3,4), (2,3), (1,2)]

2 I LargestElementGroup(G) A

returns the largest element of G with respect to the ordering < of the elements family.

3 I MinimalGeneratingSet(G) A

returns a generating set of G of minimal possible length.

gap> MinimalGeneratingSet(g);
[(2,4,3), (1,4,2,3)]

4 I SmallGeneratingSet(G) A

returns a generating set of G which has few elements. As neither irredundancy, nor minimal length is proven
it runs much faster than MinimalGeneratingSet. It can be used whenever a short generating set is desired
which not necessarily needs to be optimal.

gap> SmallGeneratingSet(g);
[(1,2), (1,2,3,4)]

5 I IndependentGeneratorsOfAbelianGroup(A) A

returns a set of generators g of prime-power order of the abelian group A such that A is the direct product
of the cyclic groups generated by the gi .

gap> g:=AbelianGroup(IsPermGroup,[15,14,22,78]);;
gap> List(IndependentGeneratorsOfAbelianGroup(g),Order);
[2, 2, 2, 3, 3, 5, 7, 11, 13]

37.23 1-Cohomology

Let G be a finite group and M an elementary abelian normal p-subgroup of G . Then the group of 1-cocycles
Z 1(G/M ,M) is defined as

Z 1(G/M ,M) = {γ : G/M → M | ∀g1, g2 ∈ G : γ(g1M · g2M) = γ(g1M)g2 · γ(g2M)}

and is a GF (p)-vector space.

The group of 1-coboundaries B1(G/M ,M) is defined as

B1(G/M ,M) = {γ : G/M → M | ∃m ∈ M∀g ∈ G : γ(gM) = (m−1)g ·m}

Section 23. 1-Cohomology 381

It also is a GF (p)-vector space.

Let α be the isomorphism of M into a row vector space W and (g1, . . . , gl) representatives for a generating
set of G/M . Then there exists a monomorphism β of Z 1(G/M ,M) in the l -fold direct sum of W, such that
β(γ) = (α(γ(g1M)), . . . , α(γ(gl M))) for every γ ∈ Z 1(G/M ,M).

1 I OneCocycles(G, M) O
I OneCocycles(gens, M) O
I OneCocycles(G, mpcgs) O
I OneCocycles(gens, mpcgs) O

Computes the group of 1-Cocycles Z 1(G/M ,M). The normal subgroup M may be given by a (Modulo)Pcgs
mpcgs. In this case the whole calculation is performed modulo the normal subgroup defined by the De-
nominatorOfModuloPcgs(mpcgs) (see 43.1). Similarly the group G may instead be specified by a set of
elements gens that are representatives for a generating system for the factor group G/M . If this is done
the 1-Cocycles are computed with respect to these generators (otherwise the routines try to select suitable
generators themselves).

2 I OneCoboundaries(G, M) O

computes the group of 1-coboundaries. Syntax of input and output otherwise is the same as with OneCocy-
cles except that entries that refer to cocycles are not computed.

The operations OneCocycles and OneCoboundaries return a record with (at least) the components:

generators
Is a list of representatives for a generating set of G/M . Cocycles are represented with respect to
these generators.

oneCocycles
A space of row vectors over GF(p), representing Z 1. The vectors are represented in dimension a · b
where a is the length of generators and pb the size of M .

oneCoboundaries
A space of row vectors that represents B1.

cocycleToList
is a function to convert a cocycle (a row vector in oneCocycles) to a corresponding list of elements
of M .

listToCocycle
is a function to convert a list of elements of M to a cocycle.

isSplitExtension
indicates whether G splits over M . The following components are only bound if the extension splits.
Note that if M is given by a modulo pcgs all subgroups are given as subgroups of G by generators
corresponding to generators and thus may not contain the denominator of the modulo pcgs. In
this case taking the closure with this denominator will give the full preimage of the complement in
the factor group.

complement
One complement to M in G .

cocycleToComplement(cyc)
is a function that takes a cocycle from oneCocycles and returns the corresponding complement to
M in G (with respect to the fixed complement complement).

complementToCocycle(U)
is a function that takes a complement and returns the corresponding cocycle.

382 Chapter 37. Groups

If the factor G/M is given by a (modulo) pcgs gens then special methods are used that compute a presen-
tation for the factor implicitly from the pcgs.

Note that the groups of 1-cocycles and 1-coboundaries are not Groups in the sense of GAP but vector spaces.

gap> g:=Group((1,2,3,4),(1,2));;
gap> n:=Group((1,2)(3,4),(1,3)(2,4));;
gap> oc:=OneCocycles(g,n);
rec(oneCoboundaries := <vector space over GF(2), with 2 generators>,
oneCocycles := <vector space over GF(2), with 2 generators>,
generators := [(3,4), (2,4,3)], isSplitExtension := true,
complement := Group([(3,4), (2,4,3)]),
cocycleToList := function(c) ... end,
listToCocycle := function(L) ... end,
cocycleToComplement := function(c) ... end,
factorGens := [(3,4), (2,4,3)],
complementToCocycle := function(K) ... end)

gap> oc.cocycleToList([0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0]);
[(1,2)(3,4), (1,2)(3,4)]
gap> oc.listToCocycle([(),(1,3)(2,4)]);
[0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2)]
gap> oc.cocycleToComplement([0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0]);
Group([(1,2), (1,2,3)])
gap> oc.cocycleToComplement([0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2)]);
Group([(3,4), (1,3,4)])
gap> oc.complementToCocycle(Group((1,2,4),(1,4)));
[0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0]

The factor group H 1(G/M ,M) = Z 1(G/M ,M)/B1(G/M ,M) is called the first cohomology group. Cur-
rently there is no function which explicitly computes this group. The easiest way to represent it is as a vector
space complement to B1 in Z 1.

If the only purpose of the calculation of H 1 is the determination of complements it might be desirable to stop
calculations once it is known that the extension cannot split. This can be achieved via the more technical
function OCOneCocycles.

3 I OCOneCocycles(ocr, onlySplit) O

is the more technical function to compute 1-cocycles. It takes an record ocr as first argument which must
contain at least the components group for G and modulePcgs for a (modulo) pcgs of M . This record will also
be returned with components as described under OneCocycles (with the exception of isSplitExtension
which is indicated by the existence of a complement) but components such as oneCoboundaries will only
be computed if not already present.

If onlySplit is true, OneCocyclesOC returns false as soon as possible if the extension does not split.

4 I ComplementclassesEA(G, N) O

computes Complementclasses to an elementary abelian normal subgroup N via 1-Cohomology. Normally,
a user program should call Complementclasses (see 37.11.6) instead, which also works for a solvable (not
necessarily elementary abelian) N .

5 I InfoCoh V

The info class for the cohomology calculations is InfoCoh.

Section 24. Schur Covers and Multipliers 383

37.24 Schur Covers and Multipliers

1 I EpimorphismSchurCover(G[, pl]) O

returns an epimorphism epi from a group D onto G . The group D is one (of possibly several) Schur covers
of G . The group D can be obtained as the Source of epi . the kernel of epi is the schur multiplier of G .
If pl is given as a list of primes, only the multiplier part for these primes is realized. At the moment, D is
represented as a finitely presented group.

2 I SchurCover(G) O

returns one (of possibly several) Schur covers of G .
At the moment this cover is represented as a finitely presented group and IsomorphismPermGroup would be
needed to convert it to a permutation group.
If also the relation to G is needed, EpimorphismSchurCover should be used.

gap> g:=Group((1,2,3,4),(1,2));;
gap> epi:=EpimorphismSchurCover(g);
[f1, f2, f3] -> [(3,4), (2,4,3), (1,4)(2,3)]
gap> Size(Source(epi));
48

If the group becomes bigger, Schur Cover calculations might become unfeasible.
There is another operation which only returns the structure of the Multiplier.

3 I AbelianInvariantsMultiplier(G) A

returns a list of the abelian invariants of the Schur multiplier of G .

gap> AbelianInvariantsMultiplier(g);
[2]

Note that the following example will take some time.

gap> AbelianInvariantsMultiplier(PSU(6,2));
[2, 2, 3]

At the moment, this operation will not give any information about how to extend the multiplier to a Schur
Cover.
Additional attributes and properties of a group can be derived from computing its Schur Cover. For example,
if G is a finitely presented group, the derived subgroup a Schur Cover of G is invariant and isomorphic to
the NonabelianExteriorSquare of G [BJR87].

4 I Epicentre(G) A
I ExteriorCentre(G) A

There are various ways of describing the epicentre of a group. It is the smallest normal subgroup N of G
such that G/N is a central quotient of a group. It is also equal to the Exterior Center of G [Ell98].

5 I NonabelianExteriorSquare(G) O

Computes the Nonabelian Exterior Square G ∧ G of a group G which for a finitely presented group is the
derived subgroup of any Schur Cover of G [BJR87].

6 I EpimorphismNonabelianExteriorSquare(G) O

Computes the mapping G ∧G → G . The kernel of this mapping is equal to the Schur Multiplicator of G .

7 I IsCentralFactor(G) P

This method determines if there exists a group H such that G is isomormorphic to the quotient H /Z (H). A
group with this property is called in literature capable. A group being capable is equivalent to the Epicentre
of G being trivial [BFS79].

384 Chapter 37. Groups

37.25 Tests for the Availability of Methods

The following filters and operations indicate capabilities of GAP. They can be used in the method selection
or algorithms to check whether it is feasible to compute certain operations for a given group. In general, they
return true if good algorithms for the given arguments are available in GAP. An answer false indicates
that no method for this group may exist, or that the existing methods might run into problems.

Typical examples when this might happen is with finitely presented groups, for which many of the methods
cannot be guaranteed to succeed in all situations.

The willingness of GAP to perform certain operations may change, depending on which further information
is known about the arguments. Therefore the filters used are not implemented as properties but as “other
filters” (see 13.7 and 13.8).

1 I CanEasilyTestMembership(grp) F

This filter indicates whether a group can test membership of elements in grp (via the operation in) in
reasonable time. It is used by the method selection to decide whether an algorithm that relies on membership
tests may be used.

2 I CanComputeSize(dom) F

This filter indicates whether the size of the domain dom (which might be infinity) can be computed.

3 I CanComputeSizeAnySubgroup(grp) F

This filter indicates whether grp can easily compute the size of any subgroup. (This is for example ad-
vantageous if one can test that a stabilizer index equals the length of the orbit computed so far to stop
early.)

4 I CanComputeIndex(G, H) F

This filter indicates whether the index [G : H] (which might be infinity) can be computed. It assumes
that H ≤ G . (see 37.25.5)

5 I CanComputeIsSubset(A, B) O

This filter indicates that GAP can test (via IsSubset) whether B is a subset of A.

6 I KnowsHowToDecompose(G) P
I KnowsHowToDecompose(G, gens) O

Tests whether the group G can decompose elements in the generators gens. If gens is not given it tests,
whether it can decompose in the generators given in GeneratorsOfGroup.

This property can be used for example to check whether a GroupHomomorphismByImages can be reasonably
defined from this group.

38
Group

Homomorphisms

A group homomorphism is a mapping from one group to another that respects multiplication and inverses.
They are implemented as a special class of mappings, so in particular all operations for mappings, such as
Image, PreImage, PreImagesRepresentative, KernelOfMultiplicativeGeneralMapping, Source, Range,
IsInjective and IsSurjective (see chapter 31, in particular section 31.8) are applicable to them.

Homomorphisms can be used to transfer calculations into isomorphic groups in another representation, for
which better algorithms are available. Section 38.5 explains a technique how to enforce this automatically.

Homomorphisms are also used to represent group automorphisms, and section 38.6 explains explains GAP’s
facilities to work with automorphism groups.

The penultimate section of this chapter, 38.9, explains how to make GAP to search for all homomorphisms
between two groups which fulfill certain specifications.

38.1 Creating Group Homomorphisms

The most important way of creating group homomorphisms is to give images for a set of group generators
and to extend it to the group generated by them by the homomorphism property.

1 I GroupHomomorphismByImages(G, H , gens, imgs) F

GroupHomomorphismByImages returns the group homomorphism with source G and range H that is defined
by mapping the list gens of generators of G to the list imgs of images in H .

If gens does not generate G or if the mapping of the generators does not extend to a homomorphism (i.e.,
if mapping the generators describes only a multi-valued mapping) then fail is returned.

This test can be quite expensive. If one is certain that the mapping of the generators extends to a homomor-
phism, one can avoid the checks by calling GroupHomomorphismByImagesNC. (There also is the possibility to
construct potentially multi-valued mappings with GroupGeneralMappingByImages and to test with IsMap-
ping that they are indeed homomorphisms.)

2 I GroupHomomorphismByImagesNC(G, H , gensG, gensH) O

GroupHomomorphismByImagesNC creates a homomorphism as GroupHomomorphismByImages does, however
it does not test whether gens generates G and that the mapping of gens to imgs indeed defines a group
homomorphism. Because these tests can be expensive it can be substantially faster than GroupHomomor-
phismByImages. Results are unpredictable if the conditions do not hold.

(For creating a possibly multi-valued mapping from G to H that respects multiplication and inverses,
GroupGeneralMappingByImages can be used.)

386 Chapter 38. Group Homomorphisms

gap> gens:=[(1,2,3,4),(1,2)];
[(1,2,3,4), (1,2)]
gap> g:=Group(gens);
Group([(1,2,3,4), (1,2)])
gap> h:=Group((1,2,3),(1,2));
Group([(1,2,3), (1,2)])
gap> hom:=GroupHomomorphismByImages(g,h,gens,[(1,2),(1,3)]);
[(1,2,3,4), (1,2)] -> [(1,2), (1,3)]
gap> Image(hom,(1,4));
(2,3)
gap> map:=GroupHomomorphismByImages(g,h,gens,[(1,2,3),(1,2)]);
fail

3 I GroupGeneralMappingByImages(G, H , gensG, gensH) O

returns a generalized mapping defined by extending the mapping from gensG to gensH homomorphically.
(GroupHomomorphismByImages creates a GroupGeneralMappingByImages and tests whether it IsMapping.)

gap> map:=GroupGeneralMappingByImages(g,h,gens,[(1,2,3),(1,2)]);
[(1,2,3,4), (1,2)] -> [(1,2,3), (1,2)]
gap> IsMapping(map);
false

A second way to create homomorphisms is to give functions that compute image and preimage. (A simi-
lar case are homomorphisms that are induced by conjugation. Special constructors for such mappings are
described in section 38.6).

4 I GroupHomomorphismByFunction(S, R, fun) F
I GroupHomomorphismByFunction(S, R, fun, invfun) F
I GroupHomomorphismByFunction(S, R, fun, ‘false, prefun)’ F

GroupHomomorphismByFunction returns a group homomorphism hom with source S and range R, such that
each element s of S is mapped to the element fun(s), where fun is a GAP function.

If the argument invfun is bound then hom is a bijection between S and R, and the preimage of each element
r of R is given by invfun(r), where invfun is a GAP function.

In the third variant, a function prefun is given that can be used to compute a single preimage. In this case,
the third entry must be false.

No test is performed on whether the functions actually give an homomorphism between both groups because
this would require testing the full multiplication table.

GroupHomomorphismByFunction creates a mapping which IsSPGeneralMapping.

gap> hom:=GroupHomomorphismByFunction(g,h,
> function(x) if SignPerm(x)=-1 then return (1,2); else return ();fi;end);
MappingByFunction(Group([(1,2,3,4), (1,2)]), Group([(1,2,3), (1,2)
]), function(x) ... end)

gap> ImagesSource(hom);
Group([(1,2), (1,2)])
gap> Image(hom,(1,2,3,4));
(1,2)

The third class are epimorphisms from a group onto its factor group. Such homomorphisms can be con-
structed by NaturalHomomorphismByNormalSubgroup (see 37.18.1).

Section 2. Operations for Group Homomorphisms 387

The fourth class is homomorphisms in a permutation group that are induced by an action on a set. Such
homomorphisms are described in the context of group actions, see chapter 39 and in particular section 39.6.1.

5 I AsGroupGeneralMappingByImages(map) A

If map is a mapping from one group to another this attribute returns a group general mapping that which
implements the same abstract mapping. (Some operations can be performed more effective in this represen-
tation, see also 38.10.2.)

gap> AsGroupGeneralMappingByImages(hom);
[(1,2,3,4), (1,2)] -> [(1,2), (1,2)]

38.2 Operations for Group Homomorphisms

Group homomorphisms are mappings, so all the operations and properties for mappings described in chap-
ter 31 are applicable to them. (However often much better methods, than for general mappings are available.)

Group homomorphisms will map groups to groups by just mapping the set of generators.

KernelOfMultiplicativeGeneralMapping can be used to compute the kernel of a group homomorphism.

gap> hom:=GroupHomomorphismByImages(g,h,gens,[(1,2),(1,3)]);;
gap> Kernel(hom);
Group([(1,4)(2,3), (1,2)(3,4)])

Homomorphisms can map between groups in different representations and are also used to get isomorphic
groups in a different representation.

gap> m1:=[[0,-1],[1,0]];;m2:=[[0,-1],[1,1]];;
gap> sl2z:=Group(m1,m2);; # SL(2,Integers) as matrix group
gap> F:=FreeGroup(2);;
gap> psl2z:=F/[F.1^2,F.2^3]; #PSL(2,Z) as FP group
<fp group on the generators [f1, f2]>
gap> phom:=GroupHomomorphismByImagesNC(sl2z,psl2z,[m1,m2],
> GeneratorsOfGroup(psl2z)); # the non NC-version would be expensive
[[[0, -1], [1, 0]], [[0, -1], [1, 1]]] -> [f1, f2]
gap> Kernel(phom); # the diagonal matrices
Group([[[-1, 0], [0, -1]], [[-1, 0], [0, -1]]])
gap> p1:=(1,2)(3,4);;p2:=(2,4,5);;a5:=Group(p1,p2);;
gap> ahom:=GroupHomomorphismByImages(psl2z,a5,
> GeneratorsOfGroup(psl2z),[p1,p2]); # here homomorphism test is cheap.
[f1, f2] -> [(1,2)(3,4), (2,4,5)]
gap> u:=PreImage(ahom,Group((1,2,3),(1,2)(4,5)));
Group(<fp, no generators known>)
gap> Index(psl2z,u);
10
gap> isofp:=IsomorphismFpGroup(u);; Image(isofp);
<fp group of size infinity on the generators [F1, F2, F3, F4]>
gap> RelatorsOfFpGroup(Image(isofp));
[F1^2, F4^2, F3^3]
gap> up:=PreImage(phom,u);;
gap> List(GeneratorsOfGroup(up),TraceMat);
[-2, -2, 0, -4, 1, 0]

For an automorphism aut , Inverse returns the inverse automorphism aut−1. However if hom is a bijective
homomorphism between different groups, or if hom is injective and considered to be a bijection to its image,

388 Chapter 38. Group Homomorphisms

the operation InverseGeneralMapping should be used instead. (See 30.10.8 for a further discussion of this
problem.)

gap> iso:=IsomorphismPcGroup(g);
Pcgs([(3,4), (2,4,3), (1,4)(2,3), (1,3)(2,4)]) -> [f1, f2, f3, f4]
gap> Inverse(iso);
#I The mapping must be bijective and have source=range
#I You might want to use ‘InverseGeneralMapping’
fail
gap> InverseGeneralMapping(iso);
[f1, f2, f3, f4] -> Pcgs([(3,4), (2,4,3), (1,4)(2,3), (1,3)(2,4)])

38.3 Efficiency of Homomorphisms

GAP permits to create homomorphisms between arbitrary groups. This section considers the efficiency of
the implementation and shows ways how to choose suitable representations. For permutation groups (see 41)
or Pc groups (see 44) this is normally nothing to worry about, unless the groups get extremely large. For
other groups however certain calculations might be expensive and some precaution might be needed to avoid
unnecessarily expensive calculations.

In short, it is always worth to tell a mapping that it is a homomorphism (this can be done by SetIsMapping)
(or to create it directly with GroupHomomorphismByImagesNC).

The basic operations required are to compute image and preimage of elements and to test whether a mapping
is a homomorphism. Their cost will differ depending on the type of the mapping.

Mappings given on generators (GroupHomomorphismByImages, GroupGeneralMappingByImages)

Computing images requires to express an element of the source as word in the generators. If it cannot be
done effectively (this is determined by KnowsHowToDecompose, see 37.25.6 which returns true for example
for arbitrary permutation groups, for Pc groups or for finitely presented groups with the images of the free
generators) the span of the generators has to be computed elementwise which can be very expensive and
memory consuming.

Computing preimages adheres to the same rules with swapped rôles of generators and their images.

The test whether a mapping is a homomorphism requires the computation of a presentation for the source
and evaluation of its relators in the images of its generators. For larger groups this can be expensive and
GroupHomomorphismByImagesNC should be used if the mapping is known to be a homomorphism.

Action homomorphisms (ActionHomomorphism)

The calculation of images is determined by the acting function used and – for large domains – is often
dominated by the search for the position of an image in a list of the domain elements. This can be improved
by sorting this list if an efficient method for < to compare elements of the domain is available.

Once the images of a generating set are computed, computing preimages (which is done via the AsGroupGen-
eralMappingByImages) and computing the kernel bahaves the same as for a GroupHomomorphismByImages
in a permutation group.

GAP will always assume that the acting function provided implements a proper group action and thus that
the mapping is indeed a homomorphism.

Mappings given by functions (GroupHomomorphismByFunction, GroupGeneralMappingByFunctions)

Computing images is wholly determined by the function that performs the image calculation. If no function
to compute preimages is given, computing preimages requires mapping every element of the source to find
an element that maps to the requested image. This is time and memory consuming.

Section 4. Homomorphism for very large groups 389

Testing whether a GroupGeneralMappingByFunctions is a homomorphism would require mapping all prod-
ucts of elements and thus should be avoided.

Other operations

To compute the kernel of a homomorphism (unless the mapping is known to be injective) requires the
capability to compute a presentation of the image and to evaluate the relators of this presentation in
preimages of the presentations generators.

The calculation of the Image (respectively ImagesSource) requires to map a generating set of the source,
testing surjectivity is a comparison for equality with the range.

Testing injectivity is a test for triviality of the kernel.

The comparison of mappings is based on a lexicographic comparison of a sorted element list of the source.
For groups this can be simplified:

1 I ImagesSmallestGenerators(map) A

returns the list of images of GeneratorsSmallest(Source(map)). This list can be used to compare group
homomorphisms. (The standard comparison is to compare the image lists on the set of elements of the
source. If however x and y have the same images under a and b, certainly all their products have. Therefore
it is sufficient to test this on the images of the smallest generators.)

38.4 Homomorphism for very large groups

Some homomorphisms (notably particular actions) transfer known information about the source group (such
as a stabilizer chain) to the image group if this is substantially cheaper than to compute the information in
the image group anew. In most cases this is no problem and in fact speeds up further calculations notably.

For a huge source group, however this can be time consuming or take a large amount of extra memory for
storage. In this case it can be helpful to avoid as much automatism as possible.

The following list of tricks might be useful in such a case. (However you will lose much automatic deduction.
So please restrict the use of these to cases where the standard approach does not work.)

-
Compute only images (or the PreImageRepresentative) of group elements. Do not compute the
images of (sub)groups or the full preimage of a subgroup.

-
Create action homomorphisms as “surjective” (see ActionHomomorphism) (otherwise the range is
set to be the full symmetric group) However do not compute Range or Image, but only the images
of a generator set.

-
If you suspect an action homomorphism to do too much internally, replace the action function with
a function that does the same; i.e. replace OnPoints by

function(p,g) return p^g;end;

The action will be the same, but as the action function is not OnPoints, the extra processing for special
cases is not triggered.

390 Chapter 38. Group Homomorphisms

38.5 Nice Monomorphisms

GAP contains very efficient algorithms for some special representations of groups (for example pc groups or
permutation groups) while for other representations only slow generic methods are available. In this case it
can be worthwhile to do all calculations rather in an isomorphic image of the group, which is in a “better”
representation. The way to achieve this in GAP is via nice monomorphisms.

For this mechanism to work, of course there must be effective methods to evaluate the NiceMonomorphism
on elements and to take preimages under it. As by definition no good algorithms exist for the source group,
normally this can only be achieved by using an ActionHomomorphism or a GroupHomomorphismByFunction
(see also section 38.3).

1 I IsHandledByNiceMonomorphism(obj) P

If this property is true, high-valued methods that translate all calculations in obj in the image under the
NiceMonomorphism become available for obj .

2 I NiceMonomorphism(obj) A

is a homomorphism that is defined (at least) on the whole of obj and whose restriction to obj is injective.
The concrete morphism (and also the image group) will depend on the representation of obj .

3 I NiceObject(obj) A

The NiceObject of obj is the image of obj under its NiceMonomorphism.

A typical example are finite matrix groups, which use a faithful action on vectors to translate all calculations
in a permutation group.

gap> gl:=GL(3,2);
SL(3,2)
gap> IsHandledByNiceMonomorphism(gl);
true
gap> NiceObject(gl);
Group([(5,7)(6,8), (2,3,5)(4,7,6)])
gap> Image(NiceMonomorphism(gl),Z(2)*[[1,0,0],[0,1,1],[1,0,1]]);
(2,6)(3,4,7,8)

4 I IsCanonicalNiceMonomorphism(nhom) P

A NiceMonomorphism nhom is canonical if the image set will only depend on the set of group elements but not
on the generating set and < comparison of group elements translates through the nice monomorphism. This
implies that equal objects will always have equal NiceObjects. In some situations however this condition
would be expensive to achieve, therefore it is not guaranteed for every nice monomorphism.

38.6 Group Automorphisms

Group automorphisms are bijective homomorphism from a group onto itself. An important subclass are
automorphisms which are induced by conjugation of the group itself or a supergroup.

1 I ConjugatorIsomorphism(G, g) O

Let G be a group, and g an element in the same family as the elements of G . ConjugatorIsomorphism
returns the isomorphism from G to G^g defined by h 7→ hg for all h ∈ G .

If g normalizes G then ConjugatorIsomorphism does the same as ConjugatorAutomorphismNC (see 38.6.2).

Section 6. Group Automorphisms 391

2 I ConjugatorAutomorphism(G, g) F
I ConjugatorAutomorphismNC(G, g) O

Let G be a group, and g an element in the same family as the elements of G such that g normalizes G .
ConjugatorAutomorphism returns the automorphism of G defined by h 7→ hg for all h ∈ G .

If conjugation by g does not leave G invariant, ConjugatorAutomorphism returns fail; in this case, the iso-
morphism from G to G^g induced by conjugation with g can be constructed with ConjugatorIsomorphism
(see 38.6.1).

ConjugatorAutomorphismNC does the same as ConjugatorAutomorphism, except that the check is omitted
whether g normalizes G and it is assumed that g is chosen to be in G if possible.

3 I InnerAutomorphism(G, g) F
I InnerAutomorphismNC(G, g) O

Let G be a group, and g ∈ G . InnerAutomorphism returns the automorphism of G defined by h 7→ hg for
all h ∈ G .

If g is not an element of G , InnerAutomorphism returns fail; in this case, the isomorphism from G to
G^g induced by conjugation with g can be constructed with ConjugatorIsomorphism (see 38.6.1) or with
ConjugatorAutomorphism (see 38.6.2).

InnerAutomorphismNC does the same as InnerAutomorphism, except that the check is omitted whether
g ∈ G .

4 I IsConjugatorIsomorphism(hom) P
I IsConjugatorAutomorphism(hom) P
I IsInnerAutomorphism(hom) P

Let hom be a group general mapping (see 31.8.4) with source G , say. IsConjugatorIsomorphism returns
true if hom is induced by conjugation of G by an element g that lies in G or in a group into which G is
naturally embedded in the sense described below, and false otherwise. Natural embeddings are dealt with
in the case that G is a permutation group (see Chapter 41), a matrix group (see Chapter 42), a finitely
presented group (see Chapter 45), or a group given w.r.t. a polycyclic presentation (see Chapter 44). In all
other cases, IsConjugatorIsomorphism may return false if hom is induced by conjugation but is not an
inner automorphism.

If IsConjugatorIsomorphism returns true for hom then an element g that induces hom can be accessed
as value of the attribute ConjugatorOfConjugatorIsomorphism (see 38.6.5).

IsConjugatorAutomorphism returns true if hom is an automorphism (see 31.12.3) that is regarded as a
conjugator isomorphism by IsConjugatorIsomorphism, and false otherwise.

IsInnerAutomorphism returns true if hom is a conjugator automorphism such that an element g inducing
hom can be chosen in G , and false otherwise.

5 I ConjugatorOfConjugatorIsomorphism(hom) A

For a conjugator isomorphism hom (see 38.6.1), ConjugatorOfConjugatorIsomorphism returns an element
g such that mapping under hom is induced by conjugation with g .

To avoid problems with IsInnerAutomorphism, it is guaranteed that the conjugator is taken from the source
of hom if possible.

392 Chapter 38. Group Homomorphisms

gap> hgens:=[(1,2,3),(1,2,4)];;h:=Group(hgens);;
gap> hom:=GroupHomomorphismByImages(h,h,hgens,[(1,2,3),(2,3,4)]);;
gap> IsInnerAutomorphism(hom);
true
gap> ConjugatorOfConjugatorIsomorphism(hom);
(1,2,3)
gap> hom:=GroupHomomorphismByImages(h,h,hgens,[(1,3,2),(1,4,2)]);
[(1,2,3), (1,2,4)] -> [(1,3,2), (1,4,2)]
gap> IsInnerAutomorphism(hom);
false
gap> IsConjugatorAutomorphism(hom);
true
gap> ConjugatorOfConjugatorIsomorphism(hom);
(1,2)

38.7 Groups of Automorphisms

Group automorphism can be multiplied and inverted and thus it is possible to form groups of automorphisms.

1 I IsGroupOfAutomorphisms(G) P

indicates whether G consists of automorphisms of another group H . The group H can be obtained from G
via the attribute AutomorphismDomain.

2 I AutomorphismDomain(G) A

If G consists of automorphisms of H , this attribute returns H .

3 I AutomorphismGroup(obj) A

returns the full automorphism group of the object obj . The automorphisms act on the domain by the caret
operator ^. The automorphism group often stores a “NiceMonomorphism” (see 38.5.2) to a permutation
group, obtained by the action on a subset of obj .

Note that current methods for the calculation of the automorphism group of a group G require G to be a
permutation group or a pc group to be efficient. For groups in other representations the calculation is likely
very slow.

4 I IsAutomorphismGroup(G) P

indicates whether G is the full automorphism group of another group H , this group is given as Automor-
phismDomain of G .

gap> g:=Group((1,2,3,4),(1,3));
Group([(1,2,3,4), (1,3)])
gap> au:=AutomorphismGroup(g);
<group of size 8 with 3 generators>
gap> GeneratorsOfGroup(au);
[^(1,2,3,4), ^(1,3), [(1,4,3,2), (1,2)(3,4)] -> [(1,2,3,4), (2,4)]]
gap> NiceObject(au);
Group([(1,4)(2,6), (2,6)(3,5), (1,2)(3,5)(4,6)])

5 I InnerAutomorphismsAutomorphismGroup(autgroup) A

For an automorphism group autgroup of a group this attribute stores the subgroup of inner automorphisms
(automorphisms induced by conjugation) of the original group.

Section 8. Calculating with Group Automorphisms 393

gap> InnerAutomorphismsAutomorphismGroup(au);
<group with 2 generators>

6 I InducedAutomorphism(epi, aut) O

Let aut be an automorphism of a group G and epi: G -> H an homomorphism such that ker epi is fixed
under aut . Let U be the image of epi . This command returns the automorphism of U induced by aut via
epi , that is the automorphism of U which maps g^epi to (g^aut)^epi , for g ∈ G .

gap> g:=Group((1,2,3,4),(1,2));
Group([(1,2,3,4), (1,2)])
gap> n:=Subgroup(g,[(1,2)(3,4),(1,3)(2,4)]);
Group([(1,2)(3,4), (1,3)(2,4)])
gap> epi:=NaturalHomomorphismByNormalSubgroup(g,n);
[(1,2,3,4), (1,2)] -> [f1*f2, f1]
gap> aut:=InnerAutomorphism(g,(1,2,3));
^(1,2,3)
gap> InducedAutomorphism(epi,aut);
^f2

38.8 Calculating with Group Automorphisms

Usually the best way to calculate in a group of automorphisms is to go translate all calculations to an
isomorphic group in a representation, for which better algorithms are available, say a permutation group.
This translation can be done automatically using a NiceMonomorphism (see 38.5.2.)
Once a group knows to be a group of automorphisms (this can be achieved by testing or setting the prop-
erty IsGroupOfAutomorphisms (see 38.7.1), GAP will try itself to find such a nice monomorphism once
calculations in the automorphism group are done.
Note that nice homomorphisms inherit down to subgroups, but cannot necessarily be extended from a
subgroup to the whole group. Thus when working with a group of automorphisms, it can be beneficial
to enforce calculation of the nice monomorphism for the whole group (for example by explicitly calling
Random(G) and ignoring the result – it will be stored internally) at the start of the calculation. Otherwise
GAP might first calculate a nice monomorphism for the subgroup, only to be forced to calculate a new nice
monomorphism for the whole group later on.

1 I AssignNiceMonomorphismAutomorphismGroup(autgrp, group) F

computes a nice monomorphism for autgroup acting on group and stores it as NiceMonomorphism in autgrp.
If the centre of AutomorphismDomain of autgrp is trivial, the operation will first try to represent all auto-
morphisms by conjugation (in group or a natural parent of group).
If this fails the operation tries to find a small subset of group on which the action will be faithful.
The operation sets the attribute NiceMonomorphism and does not return a value.
If a good domain for a faithful permutation action is known already, a homomorphism for the action on
it can be created using NiceMonomorphismAutomGroup. It might be stored by SetNiceMonomorphism (see
38.5.2).

2 I NiceMonomorphismAutomGroup(autgrp, elms, elmsgens) F

This function creates a monomorphism for an automorphism group autgrp of a group by permuting the
group elements in the list elms. This list must be chosen to yield a faithful representation. elmsgens is a list
of generators which are a subset of elms. (They can differ from the groups original generators.) It does not
yet assign it as NiceMonomorphism.
Another nice way of representing automorphisms as permutations has been described in [Sim97]. It it not
yet available in GAP, a description however can be found in section 8.3 of “Extending GAP”.

394 Chapter 38. Group Homomorphisms

38.9 Searching for Homomorphisms

1 I IsomorphismGroups(G, H) F

computes an isomorphism between the groups G and H if they are isomorphic and returns fail otherwise.
With the existing methods the amount of time needed grows with the size of a generating system of G .
(Thus in particular for p-groups calculations can be slow.) If you do only need to know whether groups
are isomorphic, you might want to consider IdSmallGroup (see 48.7.5) or the random isomorphism test
(see 44.10.1).

gap> g:=Group((1,2,3,4),(1,3));;
gap> h:=Group((1,4,6,7)(2,3,5,8), (1,5)(2,6)(3,4)(7,8));;
gap> IsomorphismGroups(g,h);
[(1,2,3,4), (1,3)] -> [(1,4,6,7)(2,3,5,8), (1,2)(3,7)(4,8)(5,6)]
gap> IsomorphismGroups(g,Group((1,2,3,4),(1,2)));
fail

2 I GQuotients(F, G) O

computes all epimorphisms from F onto G up to automorphisms of G . This classifies all factor groups of F
which are isomorphic to G .
With the existing methods the amount of time needed grows with the size of a generating system of G .
(Thus in particular for p-groups calculations can be slow.)
If the findall option is set to false, the algorithm will stop once one homomorphism has been found (this
can be faster and might be sufficient if not all homomorphisms are needed).

gap> g:=Group((1,2,3,4),(1,2));
Group([(1,2,3,4), (1,2)])
gap> h:=Group((1,2,3),(1,2));
Group([(1,2,3), (1,2)])
gap> quo:=GQuotients(g,h);
[[(1,3,2,4), (2,4,3)] -> [(2,3), (1,2,3)]]

3 I IsomorphicSubgroups(G, H) O

computes all monomorphisms from H into G up to G-conjugacy of the image groups. This classifies all
G-classes of subgroups of G which are isomorphic to H .
With the existing methods, the amount of time needed grows with the size of a generating system of G .
(Thus in particular for p-groups calculations can be slow.) A main use of IsomorphicSubgroups therefore
is to find nonsolvable subgroups (which often can be generated by 2 elements).
(To find p-subgroups it is often faster to compute the subgroup lattice of the sylow subgroup and to use
IdGroup to identify the type of the subgroups.)
If the findall option is set to false, the algorithm will stop once one homomorphism has been found (this
can be faster and might be sufficient if not all homomorphisms are needed).

gap> g:=Group((1,2,3,4),(1,2));
Group([(1,2,3,4), (1,2)])
gap> h:=Group((3,4),(1,2));;
gap> emb:=IsomorphicSubgroups(g,h);
[[(3,4), (1,2)] -> [(3,4), (1,2)],
[(3,4), (1,2)] -> [(1,3)(2,4), (1,2)(3,4)]]

4 I MorClassLoop(range, classes, params, action) F

This function loops over element tuples taken from classes and checks these for properties such as generating
a given group, or fulfilling relations. This can be used to find small generating sets or all types of Morphisms.

Section 9. Searching for Homomorphisms 395

The element tuples are used only up to up to inner automorphisms as all images can be obtained easily from
them by conjugation while running through all of them usually would take too long.

range is a group from which these elements are taken. The classes are given in a list classes which is a list
of records with components

classes
A list of conjugacy classes representative
One element in the union of these classes size
The sum of the sizes of these classes

params is a record containing optional components:

gens
generators that are to be mapped (for testing morphisms). The length of this list determines the
length of element tuples considered.

from
a preimage group (that contains gens)

to
image group (which might be smaller than range)

free
free generators, a list of the same length than the generators gens.

rels
some relations that hold among the generators gens. They are given as a list [word ,order] where
word is a word in the free generators free.

dom
a set of elements on which automorphisms act faithfully (used to do element tests in partial auto-
morphism groups).

aut
Subgroup of already known automorphisms.

action is a number whose bit-representation indicates the requirements which are enforced on the element
tuples found:

1 homomorphism

2 injective

4 surjective

8 find all (otherwise stops after the first find)

If the search is for homomorphisms, the function returns homomorphisms obtained by mapping the given
generators gens instead of element tuples.

The “Morpheus” algorithm used to find homomorphisms is described in section V.5 of [Hul96].

396 Chapter 38. Group Homomorphisms

38.10 Representations for Group Homomorphisms

The different representations of group homomorphisms are used to indicate from what type of group to what
type of group they map and thus determine which methods are used to compute images and preimages.

The information in this section is mainly relevant for implementing new methods and not for using homo-
morphisms.

1 I IsGroupGeneralMappingByImages(map) R

Representation for mappings from one group to another that are defined by extending a mapping of group
generators homomorphically. Instead of record components, the attribute MappingGeneratorImages is used
to store generators and their images.

2 I IsGroupGeneralMappingByAsGroupGeneralMappingByImages(map) R

Representation for mappings that delegate work on a GroupHomomorphismByImages.

3 I IsPreimagesByAsGroupGeneralMappingByImages(map) R

Representation for mappings that delegate work for preimages to a GroupHomomorphismByImages.

4 I IsPermGroupGeneralMappingByImages(map) R
I IsPermGroupHomomorphismByImages(map) R

is the representation for mappings that map from a perm group

5 I IsToPermGroupGeneralMappingByImages(map) R
I IsToPermGroupHomomorphismByImages(map) R

is the representation for mappings that map to a perm group

6 I IsGroupGeneralMappingByPcgs(map) R

is the representations for mappings that map a pcgs to images and thus may use exponents to decompose
generators.

7 I IsPcGroupGeneralMappingByImages(map) R
I IsPcGroupHomomorphismByImages(map) R

is the representation for mappings from a pc group

8 I IsToPcGroupGeneralMappingByImages(map) R
I IsToPcGroupHomomorphismByImages(map) R

is the representation for mappings to a pc group

9 I IsFromFpGroupGeneralMappingByImages(map) R
I IsFromFpGroupHomomorphismByImages(map) R

is the representation of mappings from an fp group.

10 I IsFromFpGroupStdGensGeneralMappingByImages(map) R
I IsFromFpGroupStdGensHomomorphismByImages(map) R

is the representation of mappings from an fp group that give images of the standard generators.

39 Group Actions

A group action is a triple (G ,Omega, µ), where G is a group, Omega a set and µ: Omega ×G → Omega a
function (whose action is compatible with the group arithmetic). We call Omega the domain of the action.

In GAP, Omega can be a duplicate-free collection (an object that permits access to its elements via the
Omega[n] operation, for example a list), it does not need to be sorted (see 21.17.4).

The acting function µ is a GAP function of the form

actfun(pnt,g)

that returns the image µ(pnt , g) for a point pnt ∈ Omega and a group element g ∈ G .

Groups always acts from the right, that is µ(µ(pnt , g), h) = µ(pnt , gh).

GAP does not test whether an acting function actfun satisfies the conditions for a group operation but
silently assumes that is does. (If it does not, results are unpredictable.)

The first section of this chapter, 39.1, describes the various ways how operations for group actions can be
called.

Functions for several commonly used action are already built into GAP. These are listed in section 39.2.

The sections 39.6 and 39.7 describe homomorphisms and mappings associated to group actions as well as
the permutation group image of an action.

The other sections then describe operations to compute orbits, stabilizers, as well as properties of actions.

Finally section 39.11 describes the concept of “external sets” which represent the concept of a G-set and
underly the actions mechanism.

39.1 About Group Actions

The syntax which is used by the operations for group actions is quite flexible. For example we can call the
operation OrbitsDomain for the orbits of the group G on the domain Omega in the following ways:

OrbitsDomain(G,Omega[,actfun])

The acting function actfun is optional. If it is not given, the built-in action OnPoints (which defines an
action via the caret operator ^) is used as a default.

OrbitsDomain(G,Omega,gens,acts[,actfun])

This second version (of OrbitsDomain) permits one to implement an action induced by a homomorphism:
If H acts on Omega via µ and ϕ: G → H is a homomorphism, G acts on Omega via µ′(ω, g) = µ(ω, gϕ):

Here gens must be a set of generators of G and acts the images of gens under a homomorphism ϕ: G → H .
actfun is the acting function for H , the call to ExampleActionFunction implements the induced action of
G . Again, the acting function actfun is optional and OnPoints is used as a default.

The advantage of this notation is that GAP does not need to construct this homomorphism ϕ and the range
group H as GAP objects. (If a small group G acts via complicated objects acts this otherwise could lead to
performance problems.)

398 Chapter 39. Group Actions

GAP does not test whether the mapping gens 7→ acts actually induces a homomorphism and the results are
unpredictable if this is not the case.

OrbitsDomain(extset) A

A third variant is to call the operation with an external set (which then provides G , Omega and actfun.
You will find more about external sets in section 39.11.

For operations like Stabilizer of course the domain must be replaced by an element of Omega which is to
be acted on.

39.2 Basic Actions

GAP already provides acting functions for the more common actions of a group. For built-in operations such
as Stabilizer special methods are available for many of these actions.

This section also shows how to implement different actions. (Note that every action must be from the right.)

1 I OnPoints(pnt, g) F

returns pnt ^ g . This is for example the action of a permutation group on points, or the action of a group
on its elements via conjugation. The action of a matrix group on vectors from the right is described by both
OnPoints and OnRight (see 39.2.2).

2 I OnRight(pnt, g) F

returns pnt * g . This is for example the action of a group on its elements via right multiplication, or the
action of a group on the cosets of a subgroup. The action of a matrix group on vectors from the right is
described by both OnPoints (see 39.2.1) and OnRight.

3 I OnLeftInverse(pnt, g) F

returns g−1 * pnt . Forming the inverse is necessary to make this a proper action, as in GAP groups always
act from the right.

(OnLeftInverse is used for example in the representation of a right coset as an external set (see 39.11),
that is a right coset Ug is an external set for the group U acting on it via OnLeftInverse.)

4 I OnSets(set, g) F

Let set be a proper set (see 21.19). OnSets returns the proper set formed by the images OnPoints(pnt,
g) of all points pnt of set .

OnSets is for example used to compute the action of a permutation group on blocks.

(OnTuples is an action on lists that preserves the ordering of entries, see 39.2.5.)

5 I OnTuples(tup, g) F

Let tup be a list. OnTuples returns the list formed by the images OnPoints(pnt, g) for all points pnt of
tup.

(OnSets is an action on lists that additionally sorts the entries of the result, see 39.2.4.)

6 I OnPairs(tup, g) F

is a special case of OnTuples (see 39.2.5) for lists tup of length 2.

7 I OnSetsSets(set, g) F

Action on sets of sets; for the special case that the sets are pairwise disjoint, it is possible to use OnSets-
DisjointSets (see 39.2.8).

Section 2. Basic Actions 399

8 I OnSetsDisjointSets(set, g) F

Action on sets of pairwise disjoint sets (see also 39.2.7).

9 I OnSetsTuples(set, g) F

Action on sets of tuples.

10 I OnTuplesSets(set, g) F

Action on tuples of sets.

11 I OnTuplesTuples(set, g) F

Action on tuples of tuples

gap> g:=Group((1,2,3),(2,3,4));;
gap> Orbit(g,1,OnPoints);
[1, 2, 3, 4]
gap> Orbit(g,(),OnRight);
[(), (1,2,3), (2,3,4), (1,3,2), (1,3)(2,4), (1,2)(3,4), (2,4,3), (1,4,2),
(1,4,3), (1,3,4), (1,2,4), (1,4)(2,3)]

gap> Orbit(g,[1,2],OnPairs);
[[1, 2], [2, 3], [1, 3], [3, 1], [3, 4], [2, 1], [1, 4],
[4, 1], [4, 2], [3, 2], [2, 4], [4, 3]]

gap> Orbit(g,[1,2],OnSets);
[[1, 2], [2, 3], [1, 3], [3, 4], [1, 4], [2, 4]]

gap> Orbit(g,[[1,2],[3,4]],OnSetsSets);
[[[1, 2], [3, 4]], [[1, 4], [2, 3]], [[1, 3], [2, 4]]]
gap> Orbit(g,[[1,2],[3,4]],OnTuplesSets);
[[[1, 2], [3, 4]], [[2, 3], [1, 4]], [[1, 3], [2, 4]],
[[3, 4], [1, 2]], [[1, 4], [2, 3]], [[2, 4], [1, 3]]]

gap> Orbit(g,[[1,2],[3,4]],OnSetsTuples);
[[[1, 2], [3, 4]], [[1, 4], [2, 3]], [[1, 3], [4, 2]],
[[2, 4], [3, 1]], [[2, 1], [4, 3]], [[3, 2], [4, 1]]]

gap> Orbit(g,[[1,2],[3,4]],OnTuplesTuples);
[[[1, 2], [3, 4]], [[2, 3], [1, 4]], [[1, 3], [4, 2]],
[[3, 1], [2, 4]], [[3, 4], [1, 2]], [[2, 1], [4, 3]],
[[1, 4], [2, 3]], [[4, 1], [3, 2]], [[4, 2], [1, 3]],
[[3, 2], [4, 1]], [[2, 4], [3, 1]], [[4, 3], [2, 1]]]

12 I OnLines(vec, g) F

Let vec be a normed row vector, that is, its first nonzero entry is normed to the identity of the relevant field,
OnLines returns the row vector obtained from normalizing OnRight(vec, g) by scalar multiplication from
the left. This action corresponds to the projective action of a matrix group on 1-dimensional subspaces.

gap> gl:=GL(2,5);;v:=[1,0]*Z(5)^0;
[Z(5)^0, 0*Z(5)]
gap> h:=Action(gl,Orbit(gl,v,OnLines),OnLines);
Group([(2,3,5,6), (1,2,4)(3,6,5)])

13 I OnIndeterminates(poly, perm) F

A permutation perm acts on the multivariate polynomial poly by permuting the indeterminates as it permutes
points.

400 Chapter 39. Group Actions

14 I Permuted(list, perm)

The following example demonstrates Permuted being used to implement a permutation action on a domain:

gap> g:=Group((1,2,3),(1,2));;
gap> dom:=["a", "b", "c"];;
gap> Orbit(g,dom,Permuted);
[["a", "b", "c"], ["c", "a", "b"], ["b", "a", "c"], ["b", "c", "a"],
["a", "c", "b"], ["c", "b", "a"]]

15 I OnSubspacesByCanonicalBasis(bas, mat) F

implements the operation of a matrix group on subspaces of a vector space. bas must be a list of (linearly
independent) vectors which forms a basis of the subspace in Hermite normal form. mat is an element of
the acting matrix group. The function returns a mutable matrix which gives the basis of the image of the
subspace in Hermite normal form. (In other words: it triangulizes the product of bas with mat .)

If one needs an action for which no acting function is provided by the library it can be implemented via a
GAP function that conforms to the syntax

actfun(omega,g)

For example one could define the following function that acts on pairs of polynomials via OnIndeterminates:

OnIndeterminatesPairs:=function(polypair,g)
return [OnIndeterminates(polypair[1],g),

OnIndeterminates(polypair[2],g)];
end;

Note that this function must implement an action from the right. This is not verified by GAP and results
are unpredicatble otherwise.

39.3 Orbits

If G acts on Omega the set of all images of ω ∈ Omega under elements of G is called the orbit of ω. The
set of orbits of G is a partition of Omega.

Note that currently GAP does not check whether a given point really belongs to Ω. For example, consider the
following example where the projective action of a matrix group on a finite vector space shall be computed.

gap> Orbit(GL(2,3), [-1, 0] * Z(3)^0, OnLines);
[[Z(3), 0*Z(3)], [Z(3)^0, 0*Z(3)], [Z(3)^0, Z(3)], [Z(3)^0, Z(3)^0],
[0*Z(3), Z(3)^0]]

gap> Size(GL(2,3)) / Length(last);
48/5

The error is that OnLines (see 39.2.12) acts on the set of normed row vectors (see 59.8.11) of the vector
space in question, but that the seed vector is itself not such a vector.

1 I Orbit(G[, Omega], pnt, [gens, acts,] act) O

The orbit of the point pnt is the list of all images of pnt under the action.

(Note that the arrangement of points in this list is not defined by the operation.)

The orbit of pnt will always contain one element that is equal to pnt , however for performance reasons this
element is not necessarily identical to pnt , in particular if pnt is mutable.

Section 3. Orbits 401

gap> g:=Group((1,3,2),(2,4,3));;
gap> Orbit(g,1);
[1, 3, 2, 4]
gap> Orbit(g,[1,2],OnSets);
[[1, 2], [1, 3], [1, 4], [2, 3], [3, 4], [2, 4]]

(See Section 39.2 for information about specific actions.)

2 I Orbits(G, seeds[, gens, acts][, act]) O
I Orbits(xset) A

returns a duplicate-free list of the orbits of the elements in seeds under the action act of G

(Note that the arrangement of orbits or of points within one orbit is not defined by the operation.)

3 I OrbitsDomain(G, Omega[, gens, acts][, act]) O
I OrbitsDomain(xset) A

returns a list of the orbits of G on the domain Omega (given as lists) under the action act .

This operation is often faster than Orbits. The domain Omega must be closed under the action of G ,
otherwise an error can occur.

(Note that the arrangement of orbits or of points within one orbit is not defined by the operation.)

gap> g:=Group((1,3,2),(2,4,3));;
gap> Orbits(g,[1..5]);
[[1, 3, 2, 4], [5]]
gap> OrbitsDomain(g,Arrangements([1..4],3),OnTuples);
[[[1, 2, 3], [3, 1, 2], [1, 4, 2], [2, 3, 1], [2, 1, 4],

[3, 4, 1], [1, 3, 4], [4, 2, 1], [4, 1, 3], [2, 4, 3],
[3, 2, 4], [4, 3, 2]],

[[1, 2, 4], [3, 1, 4], [1, 4, 3], [2, 3, 4], [2, 1, 3],
[3, 4, 2], [1, 3, 2], [4, 2, 3], [4, 1, 2], [2, 4, 1],
[3, 2, 1], [4, 3, 1]]]

gap> OrbitsDomain(g,GF(2)^2,[(1,2,3),(1,4)(2,3)],
> [[[Z(2)^0,Z(2)^0],[Z(2)^0,0*Z(2)]],[[Z(2)^0,0*Z(2)],[0*Z(2),Z(2)^0]]]);
[[<an immutable GF2 vector of length 2>],
[<an immutable GF2 vector of length 2>, <an immutable GF2 vector of length

2>, <an immutable GF2 vector of length 2>]]

(See Section 39.2 for information about specific actions.)

4 I OrbitLength(G, Omega, pnt, [gens, acts,] act) O

computes the length of the orbit of pnt .

5 I OrbitLengths(G, seeds[, gens, acts][, act]) O
I OrbitLengths(xset) A

computes the lengths of all the orbits of the elements in seegs under the action act of G .

6 I OrbitLengthsDomain(G, Omega[, gens, acts][, act]) O
I OrbitLengthsDomain(xset) A

computes the lengths of all the orbits of G on Omega.

This operation is often faster than OrbitLengths. The domain Omega must be closed under the action of
G , otherwise an error can occur.

402 Chapter 39. Group Actions

gap> g:=Group((1,3,2),(2,4,3));;
gap> OrbitLength(g,[1,2,3,4],OnTuples);
12
gap> OrbitLengths(g,Arrangements([1..4],4),OnTuples);
[12, 12]

39.4 Stabilizers

The Stabilizer of an element ω is the set of all those g ∈ G which fix ω.

1 I OrbitStabilizer(G, [Omega,] pnt, [gens, acts,] act) O

computes the orbit and the stabilizer of pnt simultaneously in a single Orbit-Stabilizer algorithm.

The stabilizer must have G as its parent.

2 I Stabilizer(G [, Omega], pnt [, gens, acts] [, act]) F

computes the stabilizer in G of the point pnt , that is the subgroup of those elements of G that fix pnt . The
stabilizer will have G as its parent.

gap> g:=Group((1,3,2),(2,4,3));;
gap> Stabilizer(g,4);
Group([(1,3,2)])

The stabilizer of a set or tuple of points can be computed by specifying an action of sets or tuples of points.

gap> Stabilizer(g,[1,2],OnSets);
Group([(1,2)(3,4)])
gap> Stabilizer(g,[1,2],OnTuples);
Group(())
gap> OrbitStabilizer(g,[1,2],OnSets);
rec(orbit := [[1, 2], [1, 3], [1, 4], [2, 3], [3, 4], [2, 4]],
stabilizer := Group([(1,2)(3,4)]))

(See Section 39.2 for information about specific actions.)

The standard methods for all these actions are an Orbit-Stabilizer algorithm. For permutation groups back-
track algorithms are used. For solvable groups an orbit-stabilizer algorithm for solvable groups, which uses
the fact that the orbits of a normal subgroup form a block system (see [LNS84]) is used.

3 I OrbitStabilizerAlgorithm(G, Omega, blist, gens, acts, pntact) F

This operation should not be called by a user. It is documented however for purposes to extend or maintain
the group actions package.

OrbitStabilizerAlgorithm performs an orbit stabilizer algorithm for the group G acting with the genera-
tors gens via the generator images gens and the group action act on the element pnt . (For technical reasons
pnt and act are put in one record with components pnt and act respectively.)

The pntact record may carry a component stabsub. If given, this must be a subgroup stabilizing all points
in the domain and can be used to abbreviate stabilizer calculations.

The argument Omega (which may be replaced by false to be ignored) is the set within which the orbit is
computed (once the orbit is the full domain, the orbit calculation may stop). If blist is given it must be a bit
list corresponding to Omega in which elements which have been found already will be “ticked off” with true.
(In particular, the entries for the orbit of pnt still must be all set to false). Again the remaining action
domain (the bits set initially to false) can be used to stop if the orbit cannot grow any longer. Another
use of the bit list is if Omega is an enumerator which can determine PositionCanonicals very quickly. In
this situation it can be worth to search images not in the orbit found so far, but via their position in Omega
and use a the bit list to keep track whether the element is in the orbit found so far.

Section 6. The Permutation Image of an Action 403

39.5 Elements with Prescribed Images

1 I RepresentativeAction(G [, Omega], d, e [, gens, acts] [, act]) O

computes an element of G that maps d to e under the given action and returns fail if no such element
exists.

gap> g:=Group((1,3,2),(2,4,3));;
gap> RepresentativeAction(g,1,3);
(1,3)(2,4)
gap> RepresentativeAction(g,1,3,OnPoints);
(1,3)(2,4)
gap> RepresentativeAction(g,(1,2,3),(2,4,3));
(1,2,4)
gap> RepresentativeAction(g,(1,2,3),(2,3,4));
fail
gap> RepresentativeAction(g,Group((1,2,3)),Group((2,3,4)));
(1,2,4)
gap> RepresentativeAction(g,[1,2,3],[1,2,4],OnSets);
(2,4,3)
gap> RepresentativeAction(g,[1,2,3],[1,2,4],OnTuples);
fail

(See Section 39.2 for information about specific actions.)

Again the standard method for RepresentativeAction is an orbit-stabilizer algorithm, for permutation
groups and standard actions a backtrack algorithm is used.

39.6 The Permutation Image of an Action

If G acts on a domain Omega, an enumeration of Omega yields a homomorphism of G into the symmetric
group on {1, . . . , |Omega|}. In GAP, the enumeration of the domain Omega is provided by the Enumerator
of Omega (see 28.2.2) which of course is Omega itself if it is a list.

1 I ActionHomomorphism(G, Omega [, gens, acts] [, act] [, "surjective"]) O
I ActionHomomorphism(xset [, "surjective"]) A
I ActionHomomorphism(action) A

computes a homomorphism from G into the symmetric group on |Omega| points that gives the permutation
action of G on Omega.

By default the homomorphism returned by ActionHomomorphism is not necessarily surjective (its Range is
the full symmetric group) to avoid unnecessary computation of the image. If the optional string argument
"surjective" is given, a surjective homomorphism is created.

The third version (which is supported only for GAP3 compatibility) returns the action homomorphism that
belongs to the image obtained via Action (see 39.6.2).

(See Section 39.2 for information about specific actions.)

404 Chapter 39. Group Actions

gap> g:=Group((1,2,3),(1,2));;
gap> hom:=ActionHomomorphism(g,Arrangements([1..4],3),OnTuples);
<action homomorphism>
gap> Image(hom);
Group([(1,9,13)(2,10,14)(3,7,15)(4,8,16)(5,12,17)(6,11,18)(19,22,23)(20,21,

24), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,15)(14,16)(17,18)(19,21)(20,
22)(23,24)])

gap> Size(Range(hom));Size(Image(hom));
620448401733239439360000
6
gap> hom:=ActionHomomorphism(g,Arrangements([1..4],3),OnTuples,
> "surjective");;
gap> Size(Range(hom));
6

When acting on a domain, the operation PositionCanonical is used to determine the position of elements
in the domain. This can be used to act on a domain given by a list of representatives for which Position-
Canonical is implemented, for example a RightTransversal (see 37.8.1).

2 I Action(G, Omega [gens, acts] [, act]) O
I Action(xset) A

returns the Image group of ActionHomomorphism called with the same parameters.

Note that (for compatibility reasons to be able to get the action homomorphism) this image group internally
stores the action homomorphism. If G or Omega are exteremly big, this can cause memory problems. In
this case compute only generator images and form the image group yourself.

(See Section 39.2 for information about specific actions.) The following code shows for example how to
create the regular action of a group:

gap> g:=Group((1,2,3),(1,2));;
gap> Action(g,AsList(g),OnRight);
Group([(1,4,5)(2,3,6), (1,3)(2,4)(5,6)])

3 I SparseActionHomomorphism(G, Omega, start [, gens, acts] [, act]) O
I SortedSparseActionHomomorphism(G, Omega, start[, gens, acts] [, act]) O

SparseActionHomomorphism computes the ActionHomomorphism(G,dom[,gens,acts][,act]), where dom
is the union of the orbits Orbit(G,pnt[,gens,acts][,act]) for all points pnt from start . If G acts on a
very large domain Omega not surjectively this may yield a permutation image of substantially smaller degree
than by action on Omega.

The operation SparseActionHomomorphism will only use = comparisons of points in the orbit. Therefore
it can be used even if no good < comparison method exists. However the image group will depend on the
generators gens of G .

The operation SortedSparseActionHomomorphism in contrast will sort the orbit and thus produce an image
group which is not dependent on these generators.

gap> h:=Group(Z(3)*[[[1,1],[0,1]]]);
Group([[[Z(3), Z(3)], [0*Z(3), Z(3)]]])
gap> hom:=ActionHomomorphism(h,GF(3)^2,OnRight);;
gap> Image(hom);
Group([(2,3)(4,9,6,7,5,8)])
gap> hom:=SparseActionHomomorphism(h,[Z(3)*[1,0]],OnRight);;
gap> Image(hom);

Section 7. Action of a group on itself 405

Group([(1,2,3,4,5,6)])

For an action homomorphism, the operation UnderlyingExternalSet (see 39.11.16) will return the external
set on Omega which affords the action.

39.7 Action of a group on itself

Of particular importance is the action of a group on its elements or cosets of a subgroup. These actions
can be obtained by using ActionHomomorphism for a suitable domain (for example a list of subgroups). For
the following (frequently used) types of actions however special (often particularly efficient) functions are
provided:

1 I FactorCosetAction(G, U , [N]) O

This command computes the action of G on the right cosets of the subgroup U . If the normal subgroup N
is given, it is stored as kernel of this action.

gap> g:=Group((1,2,3,4,5),(1,2));;u:=SylowSubgroup(g,2);;Index(g,u);
15
gap> FactorCosetAction(g,u);
<action epimorphism>
gap> Range(last);
Group([(1,9,13,10,4)(2,8,14,11,5)(3,7,15,12,6),
(1,7)(2,8)(3,9)(5,6)(10,11)(14,15)])

A special case is the regular action on all elements:

2 I RegularActionHomomorphism(G) A

returns an isomorphism from G onto the regular permutation representation of G .

3 I AbelianSubfactorAction(G, M , N) O

Let G be a group and M ≥ N be subgroups of a common parent that are normal under G , such that the sub-
factor M /N is elementary abelian. The operation AbelianSubfactorAction returns a list [phi,alpha,bas]
where bas is a list of elements of M which are representatives for a basis of M /N , alpha is a map from M
into a n-dimensional row space over GF (p) where [M : N] = pn that is the natural homomorphism of M by
N with the quotient represented as an additive group. Finally phi is a homomorphism from G into GLn(p)
that represents the action of G on the factor M /N .

Note: If only matrices for the action are needed, LinearActionLayer might be faster.

gap> g:=Group((1,8,10,7,3,5)(2,4,12,9,11,6),(1,9,5,6,3,10)(2,11,12,8,4,7));;
gap> c:=ChiefSeries(g);;List(c,Size);
[96, 48, 16, 4, 1]
gap> HasElementaryAbelianFactorGroup(c[3],c[4]);
true
gap> SetName(c[3],"my_group");;
gap> a:=AbelianSubfactorAction(g,c[3],c[4]);
[[(1,8,10,7,3,5)(2,4,12,9,11,6), (1,9,5,6,3,10)(2,11,12,8,4,7)] ->

[<an immutable 2x2 matrix over GF2>, <an immutable 2x2 matrix over GF2>]
, MappingByFunction(my_group, (GF(2)^
2), function(e) ... end, function(r) ... end),

Pcgs([(2,8,3,9)(4,10,5,11), (1,6,12,7)(4,10,5,11)])]
gap> mat:=Image(a[1],g);
Group([<an immutable 2x2 matrix over GF2>,
<an immutable 2x2 matrix over GF2>])

406 Chapter 39. Group Actions

gap> Size(mat);
3
gap> e:=PreImagesRepresentative(a[2],[Z(2),0*Z(2)]);
(2,8,3,9)(4,10,5,11)
gap> e in c[3];e in c[4];
true
false

39.8 Permutations Induced by Elements and Cycles

If only the permutation image of a single element is needed, it might not be worth to create the action
homomorphism, the following operations yield the permutation image and cycles of a single element.

1 I Permutation(g, Omega[, gens, acts][, act]) F
I Permutation(g, xset) F

computes the permutation that corresponds to the action of g on the permutation domain Omega (a list of
objects that are permuted). If an external set xset is given, the permutation domain is the HomeEnumerator
of this external set (see Section 39.11). Note that the points of the returned permutation refer to the positions
in Omega, even if Omega itself consists of integers.

If g does not leave the domain invariant, or does not map the domain injectively fail is returned.

2 I PermutationCycle(g, Omega, pnt [, act]) F
I PermutationCycleOp(g, Omega, pnt, act) O

computes the permutation that represents the cycle of pnt under the action of the element g .

gap> Permutation([[Z(3),-Z(3)],[Z(3),0*Z(3)]],AsList(GF(3)^2));
(2,7,6)(3,4,8)
gap> Permutation((1,2,3)(4,5)(6,7),[4..7]);
(1,2)(3,4)
gap> PermutationCycle((1,2,3)(4,5)(6,7),[4..7],4);
(1,2)

3 I Cycle(g, Omega, pnt [, act]) O

returns a list of the points in the cycle of pnt under the action of the element g .

4 I CycleLength(g, Omega, pnt [, act]) O

returns the length of the cycle of pnt under the action of the element g .

5 I Cycles(g, Omega [, act]) O

returns a list of the cycles (as lists of points) of the action of the element g .

6 I CycleLengths(g, Omega, [, act]) O

returns the lengths of all the cycles under the action of the element g on Omega.

gap> Cycle((1,2,3)(4,5)(6,7),[4..7],4);
[4, 5]
gap> CycleLength((1,2,3)(4,5)(6,7),[4..7],4);
2
gap> Cycles((1,2,3)(4,5)(6,7),[4..7]);
[[4, 5], [6, 7]]
gap> CycleLengths((1,2,3)(4,5)(6,7),[4..7]);
[2, 2]

Section 9. Tests for Actions 407

39.9 Tests for Actions

1 I IsTransitive(G, Omega[, gens, acts][, act]) O
I IsTransitive(xset) P

returns true if the action implied by the arguments is transitive, or false otherwise.

We say that a group G acts transitively on a domain D if and only if for every pair of points d and e there
is an element g of G such that d g = e.

2 I Transitivity(G, Omega[, gens, acts][, act]) O
I Transitivity(xset) A

returns the degree k (a non-negative integer) of transitivity of the action implied by the arguments, i.e. the
largest integer k such that the action is k -transitive. If the action is not transitive 0 is returned.

An action is k-transitive if every k -tuple of points can be mapped simultaneously to every other k -tuple.

gap> g:=Group((1,3,2),(2,4,3));;
gap> IsTransitive(g,[1..5]);
false
gap> Transitivity(g,[1..4]);
2

Note: For permutation groups, the syntax IsTransitive(g) is also permitted and tests whether the group
is transitive on the points moved by it, that is the group 〈(2, 3, 4), (2, 3)〉 is transitive (on 3 points).

3 I RankAction(G, Omega[, gens, acts][, act]) O
I RankAction(xset) A

returns the rank of a transitive action, i.e. the number of orbits of the point stabilizer.

gap> RankAction(g,Combinations([1..4],2),OnSets);
4

4 I IsSemiRegular(G, Omega[, gens, acts][, act]) O
I IsSemiRegular(xset) P

returns true if the action implied by the arguments is semiregular, or false otherwise.

An action is semiregular is the stabilizer of each point is the identity.

5 I IsRegular(G, Omega[, gens, acts][, act]) O
I IsRegular(xset) P

returns true if the action implied by the arguments is regular, or false otherwise.

An action is regular if it is both semiregular (see 39.9.4) and transitive (see 39.9.1). In this case every point
pnt of Omega defines a one-to-one correspondence between G and Omega.

gap> IsSemiRegular(g,Arrangements([1..4],3),OnTuples);
true
gap> IsRegular(g,Arrangements([1..4],3),OnTuples);
false

6 I Earns(G, Omega[, gens, acts][, act]) O
I Earns(xset) A

returns a list of the elementary abelian regular (when acting on Omega) normal subgroups of G .

At the moment only methods for a primitive group G are implemented.

408 Chapter 39. Group Actions

7 I IsPrimitive(G, Omega[, gens, acts][, act]) O
I IsPrimitive(xset) P

returns true if the action implied by the arguments is primitive, or false otherwise.

An action is primitive if it is transitive and the action admits no nontrivial block systems. See 39.10.

gap> IsPrimitive(g,Orbit(g,(1,2)(3,4)));
true

39.10 Block Systems

A block system (system of imprimitivity) for the action of G on Omega is a partition of Omega which –
as a partition – remains invariant under the action of G .

1 I Blocks(G, Omega[, seed][, gens, acts][, act]) O
I Blocks(xset[, seed]) A

computes a block system for the action. If seed is not given and the action is imprimitive, a minimal
nontrivial block system will be found. If seed is given, a block system in which seed is the subset of one
block is computed. The action must be transitive.

gap> g:=TransitiveGroup(8,3);
E(8)=2[x]2[x]2
gap> Blocks(g,[1..8]);
[[1, 8], [2, 3], [4, 5], [6, 7]]
gap> Blocks(g,[1..8],[1,4]);
[[1, 4], [2, 7], [3, 6], [5, 8]]

(See Section 39.2 for information about specific actions.)

2 I MaximalBlocks(G, Omega [, seed] [, gens, acts] [, act]) O
I MaximalBlocks(xset [, seed]) A

returns a block system that is maximal with respect to inclusion. maximal with respect to inclusion) for the
action of G on Omega. If seed is given, a block system in which seed is the subset of one block is computed.

gap> MaximalBlocks(g,[1..8]);
[[1, 2, 3, 8], [4, 5, 6, 7]]

3 I RepresentativesMinimalBlocks(G, Omega[, gens, acts][, act]) O
I RepresentativesMinimalBlocks(xset) A

computes a list of block representatives for all minimal (i.e blocks are minimal with respect to inclusion)
nontrivial block systems for the action.

gap> RepresentativesMinimalBlocks(g,[1..8]);
[[1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8]]

4 I AllBlocks(G) A

computes a list of representatives of all block systems for a permutation group G acting transitively on the
points moved by the group.

gap> AllBlocks(g);
[[1, 8], [1, 2, 3, 8], [1, 4, 5, 8], [1, 6, 7, 8], [1, 3],
[1, 3, 5, 7], [1, 3, 4, 6], [1, 5], [1, 2, 5, 6], [1, 2],
[1, 2, 4, 7], [1, 4], [1, 7], [1, 6]]

The stabilizer of a block can be computed via the action OnSets (see 39.2.4):

Section 11. External Sets 409

gap> Stabilizer(g,[1,8],OnSets);
Group([(1,8)(2,3)(4,5)(6,7)])

If bs is a partition of omega, given as a set of sets, the stabilizer under the action OnSetsDisjointSets
(see 39.2.8) returns the largest subgroup which preserves bs as a block system.

gap> g:=Group((1,2,3,4,5,6,7,8),(1,2));;
gap> bs:=[[1,2,3,4],[5,6,7,8]];;
gap> Stabilizer(g,bs,OnSetsDisjointSets);
Group([(6,7), (5,6), (5,8), (2,3), (3,4)(5,7), (1,4), (1,5,4,8)(2,6,3,7)])

39.11 External Sets

When considering group actions, sometimes the concept of a G-set is used. This is the set Omega endowed
with an action of G . The elements of the G-set are the same as those of Omega, however concepts like
equality and equivalence of G-sets do not only consider the underlying domain Omega but the group action
as well.

This concept is implemented in GAP via external sets.

1 I IsExternalSet(obj) C

An external set specifies an action act : Omega × G → Omega of a group G on a domain Omega. The
external set knows the group, the domain and the actual acting function. Mathematically, an external set
is the set Omega, which is endowed with the action of a group G via the group action act . For this reason
GAP treats external sets as a domain whose elements are the elements of Omega. An external set is always
a union of orbits. Currently the domain Omega must always be finite. If Omega is not a list, an enumerator
for Omega is automatically chosen.

2 I ExternalSet(G, Omega[, gens, acts][, act]) O

creates the external set for the action act of G on Omega. Omega can be either a proper set or a domain
which is represented as described in 12.4 and 28.

gap> g:=Group((1,2,3),(2,3,4));;
gap> e:=ExternalSet(g,[1..4]);
<xset:[1, 2, 3, 4]>
gap> e:=ExternalSet(g,g,OnRight);
<xset:<enumerator of perm group>>
gap> Orbits(e);
[[(), (1,2)(3,4), (1,3)(2,4), (1,4)(2,3), (2,4,3), (1,4,2), (1,2,3),

(1,3,4), (2,3,4), (1,3,2), (1,4,3), (1,2,4)]]

The following three attributes of an external set hold its constituents.

3 I ActingDomain(xset) A

This attribute returns the group with which the external set xset was defined.

4 I FunctionAction(xset) A

the acting function act of xset

5 I HomeEnumerator(xset) A

returns an enumerator of the domain Omega with which xset was defined. For external subsets, this is
different from Enumerator(xset), which enumerates only the subset.

410 Chapter 39. Group Actions

gap> ActingDomain(e);
Group([(1,2,3), (2,3,4)])
gap> FunctionAction(e)=OnRight;
true
gap> HomeEnumerator(e);
<enumerator of perm group>

Most operations for actions are applicable as an attribute for an external set.

6 I IsExternalSubset(obj) R

An external subset is the restriction of an external set to a subset of the domain (which must be invariant
under the action). It is again an external set.

The most prominent external subsets are orbits:

7 I ExternalSubset(G, xset, start, [gens, acts,]act) O

constructs the external subset of xset on the union of orbits of the points in start .

8 I IsExternalOrbit(obj) R

An external orbit is an external subset consisting of one orbit.

9 I ExternalOrbit(G, Omega, pnt, [gens, acts,] act) O

constructs the external subset on the orbit of pnt . The Representative of this external set is pnt .

gap> e:=ExternalOrbit(g,g,(1,2,3));
(1,2,3)^G

Many subsets of a group, such as conjugacy classes or cosets (see 37.10.1 and 37.7.1) are implemented as
external orbits.

10 I StabilizerOfExternalSet(xset) A

computes the stabilizer of Representative(xset) The stabilizer must have the acting group G of xset as
its parent.

gap> Representative(e);
(1,2,3)
gap> StabilizerOfExternalSet(e);
Group([(1,2,3)])

11 I ExternalOrbits(G, Omega[, gens, acts][, act]) O
I ExternalOrbits(xset) A

computes a list of ExternalOrbits that give the orbits of G .

gap> ExternalOrbits(g,AsList(g));
[()^G, (2,3,4)^G, (2,4,3)^G, (1,2)(3,4)^G]

12 I ExternalOrbitsStabilizers(G, Omega[, gens, acts][, act]) O
I ExternalOrbitsStabilizers(xset) A

In addition to ExternalOrbits, this operation also computes the stabilizers of the representatives of the
external orbits at the same time. (This can be quicker than computing the ExternalOrbits first and the
stabilizers afterwards.)

Section 11. External Sets 411

gap> e:=ExternalOrbitsStabilizers(g,AsList(g));
[()^G, (2,3,4)^G, (2,4,3)^G, (1,2)(3,4)^G]
gap> HasStabilizerOfExternalSet(e[3]);
true
gap> StabilizerOfExternalSet(e[3]);
Group([(2,4,3)])

13 I CanonicalRepresentativeOfExternalSet(xset) A

The canonical representative of an external set may only depend on G , Omega, act and (in the case of
external subsets) Enumerator(xset). It must not depend, e.g., on the representative of an external orbit.
GAP does not know methods for every external set to compute a canonical representative . See 39.11.14.

14 I CanonicalRepresentativeDeterminatorOfExternalSet(xset) A

returns a function that takes as arguments the acting group and the point. It returns a list of length 3:
[canonrep, stabilizercanonrep, conjugatingelm]. (List components 2 and 3 are optional and do not need to
be bound.) An external set is only guaranteed to be able to compute a canonical representative if it has a
CanonicalRepresentativeDeterminatorOfExternalSet.

15 I ActorOfExternalSet(xset) A

returns an element mapping Representative(xset) to CanonicalRepresentativeOfExternalSet(xset)
under the given action.

gap> u:=Subgroup(g,[(1,2,3)]);;
gap> e:=RightCoset(u,(1,2)(3,4));;
gap> CanonicalRepresentativeOfExternalSet(e);
(2,4,3)
gap> ActorOfExternalSet(e);
(1,3,2)
gap> FunctionAction(e)((1,2)(3,4),last);
(2,4,3)

External sets also are implicitly underlying action homomorphisms:

16 I UnderlyingExternalSet(ohom) A

The underlying set of an action homomorphism is the external set on which it was defined.

gap> g:=Group((1,2,3),(1,2));;
gap> hom:=ActionHomomorphism(g,Arrangements([1..4],3),OnTuples);;
gap> s:=UnderlyingExternalSet(hom);
<xset:[[1, 2, 3],[1, 2, 4],[1, 3, 2],[1, 3, 4],[1, 4, 2],
[1, 4, 3],[2, 1, 3],[2, 1, 4],[2, 3, 1],[2, 3, 4],[2, 4, 1],
[2, 4, 3],[3, 1, 2],[3, 1, 4],[3, 2, 1], ...]>
gap> Print(s,"\n");
[[1, 2, 3], [1, 2, 4], [1, 3, 2], [1, 3, 4], [1, 4, 2],
[1, 4, 3], [2, 1, 3], [2, 1, 4], [2, 3, 1], [2, 3, 4],
[2, 4, 1], [2, 4, 3], [3, 1, 2], [3, 1, 4], [3, 2, 1],
[3, 2, 4], [3, 4, 1], [3, 4, 2], [4, 1, 2], [4, 1, 3],
[4, 2, 1], [4, 2, 3], [4, 3, 1], [4, 3, 2]]

17 I SurjectiveActionHomomorphismAttr(xset) A

returns an action homomorphism for xset which is surjective. (As the Image of this homomorphism has to
be computed to obtain the range, this may take substantially longer than ActionHomomorphism.)

40 Permutations

GAP offers a data type permutation to describe the elements of permutation groups.

The points on which permutations in GAP act are the positive integers less than 228 − 1, and the image
of a point i under a permutation p is written ip , which is expressed as i^p in GAP. (This action is also
implemented by the function OnPoints, see 39.2.1.) If i^p 6= i , we say that i is moved by p, otherwise it is
fixed. Permutations in GAP are entered and displayed in cycle notation, such as (1,2,3)(4,5).

The preimage of the point i under the permutation p can be computed as i / p, without constructing the
inverse of p.

For arithmetic operations for permutations and their precedence, see 30.12.

In the names of the GAP functions that deal with permutations, the word Permutation is usually abbreviated
to Perm, to save typing. For example, the category test function for permutations is called IsPerm.

1 I IsPerm(obj) C

Each permutation in GAP lies in the category IsPerm. Basic operations for permutations are Largest-
MovedPoint (see 40.2.2), multiplication of two permutations via *, and exponentiation ^ with first argument
a positive integer i and second argument a permutation π, the result being the image of the point i under
π.

2 I IsPermCollection(obj) C
I IsPermCollColl(obj) C

are the categories for collections of permutations and collections of collections of permutations, respectively.

3 I PermutationsFamily V

is the family of all permutations.

Internally, GAP stores a permutation as a list of the d images of the integers 1, . . . , d , where the “internal
degree” d is the largest integer moved by the permutation or bigger. When a permutation is read in in cycle
notation, d is always set to the largest moved integer, but a bigger d can result from a multiplication of two
permutations, because the product is not shortened if it fixes d . The images are either all stored as 16-bit
integers or all as 32-bit integers (actually as GAP immediate integers less than 228), depending on whether
d ≤ 65536 or not. This means that the identity permutation () takes 4m bytes if it was calculated as (1,
. . . , m) * (1, . . . , m)^-1. It can take even more because the internal list has sometimes room for more
than d images. For example, the maximal degree of any permutation in GAP is m = 222− 1024 = 4,193,280,
because bigger permutations would have an internal list with room for more than 222 images, requiring more
than 224 bytes. 224, however, is the largest possible size of an object that the GAP storage manager can deal
with.

Permutations do not belong to a specific group. That means that one can work with permutations without
defining a permutation group that contains them.

Section 2. Moved Points of Permutations 413

gap> (1,2,3);
(1,2,3)
gap> (1,2,3) * (2,3,4);
(1,3)(2,4)
gap> 17^(2,5,17,9,8);
9
gap> OnPoints(17,(2,5,17,9,8));
9

The operation Permuted (see 21.20.16) can be used to permute the entries of a list according to a permutation.

40.1 Comparison of Permutations

1 I p 1 = p 2
I p 1 < p 2

Two permutations are equal if they move the same points and all these points have the same images under
both permutations.

The permutation p1 is smaller than p2 if p1 6= p2 and ip1 < ip2 where i is the smallest point with ip1 6= ip2 .
Therefore the identity permutation is the smallest permutation. (see also 30.11)

Permutations can be compared with certain other GAP objects, see 4.11 for the details.

gap> (1,2,3) = (2,3,1);
true
gap> (1,2,3) * (2,3,4) = (1,3)(2,4);
true
gap> (1,2,3) < (1,3,2); # 1^(1,2,3) = 2 < 3 = 1^(1,3,2)
true
gap> (1,3,2,4) < (1,3,4,2); # 2^(1,3,2,4) = 4 > 1 = 2^(1,3,4,2)
false

2 I SmallestGeneratorPerm(perm) F

is the smallest permutation that generates the same cyclic group as the permutation perm. This is very
efficient, even when perm has large order.

gap> SmallestGeneratorPerm((1,4,3,2));
(1,2,3,4)

40.2 Moved Points of Permutations

1 I SmallestMovedPoint(perm) A
I SmallestMovedPoint(C) A

is the smallest positive integer that is moved by perm if such an integer exists, and infinity if perm = ().
For C a collection or list of permutations, the smallest value of SmallestMovedPoint for the elements of C
is returned (and infinity if C is empty).

2 I LargestMovedPoint(perm) A
I LargestMovedPoint(C) A

For a permutation perm, this attribute contains the largest positive integer which is moved by perm if
such an integer exists, and 0 if perm = (). For C a collection or list of permutations, the largest value of
LargestMovedPoint for the elements of C is returned (and 0 if C is empty).

414 Chapter 40. Permutations

3 I MovedPoints(perm) A
I MovedPoints(C) A

is the proper set of the positive integers moved by at least one permutation in the collection C , respectively
by the permutation perm.

4 I NrMovedPoints(perm) A
I NrMovedPoints(C) A

is the number of positive integers that are moved by perm, respectively by at least one element in the
collection C . (The actual moved points are returned by MovedPoints, see 40.2.3)

gap> SmallestMovedPointPerm((4,5,6)(7,2,8));
2
gap> LargestMovedPointPerm((4,5,6)(7,2,8));
8
gap> NrMovedPointsPerm((4,5,6)(7,2,8));
6
gap> MovedPoints([(2,3,4),(7,6,3),(5,47)]);
[2, 3, 4, 5, 6, 7, 47]
gap> NrMovedPoints([(2,3,4),(7,6,3),(5,47)]);
7
gap> SmallestMovedPoint([(2,3,4),(7,6,3),(5,47)]);
2
gap> LargestMovedPoint([(2,3,4),(7,6,3),(5,47)]);
47
gap> LargestMovedPoint([()]);
0

40.3 Sign and Cycle Structure

1 I SignPerm(perm) A

The sign of a permutation perm is defined as (−1)k where k is the number of cycles of perm of even length.

The sign is a homomorphism from the symmetric group onto the multiplicative group {+1,−1}, the kernel
of which is the alternating group.

2 I CycleStructurePerm(perm) A

is the cycle structure (i.e. the numbers of cycles of different lengths) of perm. This is encoded in a list l in
the following form: The i -th entry of l contains the number of cycles of perm of length i+1 . If perm contains
no cycles of length i+1 it is not bound. Cycles of length 1 are ignored.

gap> SignPerm((1,2,3)(4,5));
-1
gap> CycleStructurePerm((1,2,3)(4,5,9,7,8));
[, 1,, 1]

Section 4. Creating Permutations 415

40.4 Creating Permutations

1 I ListPerm(perm) F

is a list list that contains the images of the positive integers under the permutation perm. That means that
list[i] = i^perm, where i lies between 1 and the largest point moved by perm (see 40.2.2).

2 I PermList(list) F

is the permutation perm that moves points as described by the list list . That means that i^perm = list[i]
if i lies between 1 and the length of list , and i^perm = i if i is larger than the length of the list list . It will
return fail if list does not define a permutation, i.e., if list is not dense, or if list contains a positive integer
twice, or if list contains an integer not in the range [1 .. Length(list)]. If list contains non-integer
entries an error is raised.

3 I MappingPermListList(src, dst) F

Let src and dst be lists of positive integers of the same length, such that neither may contain an element
twice. MappingPermListList returns a permutation perm such that src[i]^perm = dst[i]. perm fixes all
points larger than the maximum of the entries in src and dst . If there are several such permutations, it is
not specified which of them MappingPermListList returns.

4 I RestrictedPerm(perm, list) O
I RestrictedPermNC(perm, list) O

RestrictedPerm returns the new permutation new that acts on the points in the list list in the same way as
the permutation perm, and that fixes those points that are not in list . list must be a list of positive integers
such that for each i in list the image i^perm is also in list , i.e., list must be the union of cycles of perm.

RestrictedPermNC does not check whether list is a union of cycles.

gap> ListPerm((3,4,5));
[1, 2, 4, 5, 3]
gap> PermList([1,2,4,5,3]);
(3,4,5)
gap> MappingPermListList([2,5,1,6],[7,12,8,2]);
(1,8,5,12,11,10,9,6,2,7,4,3)
gap> RestrictedPerm((1,2)(3,4),[3..5]);
(3,4)

41 Permutation Groups
1 I IsPermGroup(obj) C

A permutation group is a group of permutations on a finite set Ω of positive integers. GAP does not require
the user to specify the operation domain Ω when a permutation group is defined.

gap> g:=Group((1,2,3,4),(1,2));
Group([(1,2,3,4), (1,2)])

Permutation groups are groups and therefore all operations for groups (see Chapter 37) can be applied to
them. In many cases special methods are installed for permutation groups that make computations more
effective.

41.1 The Natural Action

The functions MovedPoints, NrMovedPoints, LargestMovedPoint, and SmallestMovedPoint are defined
for arbitrary collections of permutations (see 40.2), in particular they can be applied to permutation groups.

gap> g:= Group((2,3,5,6), (2,3));;
gap> MovedPoints(g); NrMovedPoints(g);
[2, 3, 5, 6]
4
gap> LargestMovedPoint(g); SmallestMovedPoint(g);
6
2

The action of a permutation group on the positive integers is a group action (via the acting function On-
Points). Therefore all action functions can be applied (see the Chapter 39), for example Orbit, Stabilizer,
Blocks, IsTransitive, IsPrimitive.

If one has a list of group generators and is interested in the moved points (see above) or orbits, it may be
useful to avoid the explicit construction of the group for efficiency reasons. For the special case of the action
of permutations on positive integers via ^, the following functions are provided for this purpose.

1 I OrbitPerms(perms, pnt) F

returns the orbit of the positive integer pnt under the group generated by the permutations in the list perms.

2 I OrbitsPerms(perms, D) F

returns the list of orbits of the positive integers in the list D under the group generated by the permutations
in the list perms.

gap> OrbitPerms([(1,2,3)(4,5), (3,6)], 1);
[1, 2, 3, 6]
gap> OrbitsPerms([(1,2,3)(4,5), (3,6)], [1 .. 6]);
[[1, 2, 3, 6], [4, 5]]

Similarly, several functions concerning the natural action of permutation groups address stabilizer chains
(see 41.5) rather than permutation groups themselves, for example BaseStabChain (see 41.9.1).

Section 3. Symmetric and Alternating Groups 417

41.2 Computing a Permutation Representation

1 I IsomorphismPermGroup(G) A

returns an isomorphism ϕ from the group G onto a permutation group P which is isomorphic to G . The
method will select a suitable permutation representation.

gap> g:=SmallGroup(24,12);
<pc group of size 24 with 4 generators>
gap> iso:=IsomorphismPermGroup(g);
<action isomorphism>
gap> Image(iso,g.3*g.4);
(1,4)(2,3)(5,8)(6,7)(9,12)(10,11)(13,16)(14,15)(17,20)(18,19)(21,24)(22,23)

In many cases the permutation representation constructed by IsomorphismPermGroup is regular.

2 I SmallerDegreePermutationRepresentation(G) F

Let G be a permutation group that acts transitively on its moved points. SmallerDegreePermutation-
Representation tries to find a faithful permutation representation of smaller degree. The result is a group
homomorphism onto a permutation group, in the worst case this is the identity mapping on G .

Note that the result is not guaranteed to be a faithful permutation representation of smallest degree, or of
smallest degree among the transitive permutation representations of G . Using GAP interactively, one might
be able to choose subgroups of small index for which the cores intersect trivially; in this case, the actions
on the cosets of these subgroups give rise to an intransitive permutation representation the degree of which
may be smaller than the original degree.

The methods used might involve the use of random elements and the permutation representation (or even
the degree of the representation) is not guaranteed to be the same for different calls of SmallerDegreePer-
mutationRepresentation.

gap> image:= Image(iso);; NrMovedPoints(image);
24
gap> small:= SmallerDegreePermutationRepresentation(image);;
gap> Image(small);
Group([(2,3), (2,4,3), (1,3)(2,4), (1,2)(3,4)])

41.3 Symmetric and Alternating Groups

The commands SymmetricGroup and AlternatingGroup (see 48.1) construct symmetric and alternating
permutation groups. GAP can also detect whether a given permutation group is a symmetric or alternating
group on the set of its moved points; if so then the group is called a natural symmetric or alternating group,
respectively.

1 I IsNaturalSymmetricGroup(group) P

A group is a natural symmetric group if it is a permutation group acting as symmetric group on its moved
points.

2 I IsNaturalAlternatingGroup(group) P

A group is a natural alternating group if it is a permutation group acting as alternating group on its moved
points.

For groups that are known to be natural symmetric or natural alternating groups, very efficient methods
for computing membership, conjugacy classes, Sylow subgroups etc. are used.

418 Chapter 41. Permutation Groups

gap> g:=Group((1,5,7,8,99),(1,99,13,72));;
gap> IsNaturalSymmetricGroup(g);
true
gap> g;
Sym([1, 5, 7, 8, 13, 72, 99])
gap> IsNaturalSymmetricGroup(Group((1,2)(4,5), (1,2,3)(4,5,6)));
false

The following functions can be used to check whether a given group (not necessarily a permutation group)
is isomorphic to a symmetric or alternating group.

There are no methods yet for IsSymmetricGroup and IsAlternatingGroup!

3 I IsSymmetricGroup(group) P

is true if the group group is isomorphic to a natural symmetric group.

4 I IsAlternatingGroup(group) P

Such a group is a group isomorphic to a natural alternating group.

5 I SymmetricParentGroup(grp) A

For a permutation group grp this function returns the symmetric group that moves the same points as grp
does.

gap> SymmetricParentGroup(Group((1,2), (4,5), (7,8,9)));
Sym([1, 2, 4, 5, 7, 8, 9])

41.4 Primitive Groups

1 I ONanScottType(G) A

returns the type of G of a primitive permutation group G , according to the O’Nan-Scott classification. The
labelling of the different types is not consistent in the literature, we use the following:

1 Affine.

2 Almost simple.

3a Diagonal, Socle consists of two normal subgroups.

3b Diagonal, Socle is minimal normal.

4a Product action with the first factor primitive of type 3a.

4b Product action with the first factor primitive of type 3b.

4c Product action with the first factor primitive of type 2.

5 Twisted wreath product

As it can contain letters, the type is returned as a string.

If G is not a permutation group or does not act primitively on the points moved by it, the result is undefined.

2 I SocleTypePrimitiveGroup(G) A

returns the socle type of a primitive permutation group. The socle of a primitive group is the direct product
of isomorphic simple groups, therefore the type is indicated by a record with components series, parame-
ter (both as described under IsomorphismTypeInfoFiniteSimpleGroup, see 37.15.11) and width for the
number of direct factors.

If G does not have a faithful primitive action, the result is undefined.

Section 5. Stabilizer Chains 419

gap> g:=AlternatingGroup(5);;
gap> h:=DirectProduct(g,g);;
gap> p:=List([1,2],i->Projection(h,i));;
gap> ac:=Action(h,AsList(g),
> function(g,h) return Image(p[1],h)^-1*g*Image(p[2],h);end);;
gap> Size(ac);NrMovedPoints(ac);IsPrimitive(ac,[1..60]);
3600
60
true
gap> ONanScottType(ac);
"3a"
gap> SocleTypePrimitiveGroup(ac);
rec(series := "A", width := 2,
name := "A(5) ~ A(1,4) = L(2,4) ~ B(1,4) = O(3,4) ~ C(1,4) = S(2,4) ~ 2A(1,4\

) = U(2,4) ~ A(1,5) = L(2,5) ~ B(1,5) = O(3,5) ~ C(1,5) = S(2,5) ~ 2A(1,5) = U\
(2,5)", parameter := 5)

41.5 Stabilizer Chains

Many of the algorithms for permutation groups use a stabilizer chain of the group. The concepts of
stabilizer chains, bases, and strong generating sets were introduced by Charles Sims in [Sim70]. A
further discussion of base change is given in section 8.1 in “Extending GAP”.

Let B = [b1, . . . , bn] be a list of points, G(1) = G and G(i+1) = StabG(i)(bi), such that G(n+1) = {()}. Then
the list [b1, . . . , bn] is called a base of G , the points bi are called base points. A set S of generators for G
satisfying the condition < S ∩G(i) > = G(i) for each 1 ≤ i ≤ n, is called a strong generating set (SGS)
of G . (More precisely we ought to say that it is a SGS of G relative to B). The chain of subgroups G(i) of
G itself is called the stabilizer chain of G relative to B .

Since [b1, . . . , bn], where n is the degree of G and bi are the moved points of G , certainly is a base for G
there exists a base for each permutation group. The number of points in a base is called the length of the
base. A base B is called reduced if there exists no i such that G(i) = G(i+1). (This however does not imply
that no subset of B could also serve as a base.) Note that different reduced bases for one permutation group
G may have different lengths. For example, the irreducible degree 416 permutation representation of the
Chevalley Group G2(4) possesses reduced bases of length 5 and 7.

Let R(i) be a right transversal of G(i+1) in G(i), i.e. a set of right coset representatives of the cosets of G(i+1)

in G(i). Then each element g of G has a unique representation of the form g = rn . . . r1 with ri ∈ R(i). The
cosets of G(i+1) in G(i) are in bijective correspondence with the points in O (i) := bG(i)

i . So we could represent
a transversal as a list T such that T [p] is a representative of the coset corresponding to the point p ∈ O (i),
i.e., an element of G(i) that takes bi to p. (Note that such a list has holes in all positions corresponding to
points not contained in O (i).)

This approach however will store many different permutations as coset representatives which can be a
problem if the degree n gets bigger. Our goal therefore is to store as few different permutations as possible
such that we can still reconstruct each representative in R(i), and from them the elements in G . A factorized
inverse transversal T is a list where T [p] is a generator of G(i) such that pT [p] is a point that lies earlier
in O (i) than p (note that we consider O (i) as a list, not as a set). If we assume inductively that we know
an element r ∈ G(i) that takes bi to pT [p], then rT [p]−1 is an element in G(i) that takes bi to p. GAP uses
such factorized inverse transversals.

Another name for a factorized inverse transversal is a Schreier tree. The vertices of the tree are the points
in O (i), and the root of the tree is bi . The edges are defined as the ordered pairs (p, pT [p]), for p ∈ O (i) \{bi}.
The edge (p, pT [p]) is labelled with the generator T [p], and the product of edge labels along the unique path
from p to bi is the inverse of the transversal element carrying bi to p.

420 Chapter 41. Permutation Groups

Before we describe the construction of stablizer chains in 41.7, we explain in 41.6 the idea of using non-
deterministic algorithms; this is necessary for understanding the options available for the construction of
stabilizer chains. After that, in 41.8 it is explained how a stabilizer chain is stored in GAP, 41.9 lists operations
for stabilizer chains, and 41.10 lists low level routines for manipulating stabilizer chains.

41.6 Randomized Methods for Permutation Groups

For most computations with permutation groups, it is crucial to construct stabilizer chains efficiently. Sims’s
original construction [Sim70] is deterministic, and is called the Schreier-Sims algorithm, because it is based
on Schreier’s Lemma (p. 96 in [Hal59]): given K = 〈S 〉 and a transversal T for K mod L, one can obtain
|S ||T | generators for L. This lemma is applied recursively, with consecutive point stabilizers G(i) and G(i+1)

playing the role of K and L.

In permutation groups of large degree, the number of Schreier generators to be processed becomes too
large, and the deterministic Schreier-Sims algorithm becomes impractical. Therefore, GAP uses randomized
algorithms. The method selection process, which is quite different from Version 3, works the following way.

If a group acts on not more than a hundred points, Sims’s original deterministic algorithm is applied.
In groups of degree greater than hundred, a heuristic algorithm based on ideas in [BCFS91] constructs a
stabilizer chain. This construction is complemented by a verify-routine that either proves the correctness
of the stabilizer chain or causes the extension of the chain to a correct one. The user can influence the
verification process by setting the value of the record component random (cf. 41.7).

If random = 1000 then a slight extension of an unpublished method of Sims is used. The outcome of this
verification process is always correct. The user also can prescribe any integer 1 ≤ x ≤ 999 as the value
of random. In this case, a randomized verification process from [BCFS91] is applied, and the result of the
stabilizer chain construction is guaranteed to be correct with probability at least x/1000. The practical
performance of the algorithm is much better than the theoretical guarantee.

If the stabilizer chain is not correct then the elements in the product of transversals R(m)R(m−1) · · ·R(1)

constitute a proper subset of the group G in question. This means that a membership test with this stabilizer
chain returns false for all elements that are not in G , but it may also return false for some elements of
G ; in other words, the result true of a membership test is always correct, whereas the result false may be
incorrect.

The construction and verification phases are separated because there are situations where the verification step
can be omitted; if one happens to know the order of the group in advance then the randomized construction
of the stabilizer chain stops as soon as the product of the lengths of the basic orbits of the chain equals the
group order, and the chain will be correct (see the size option of the StabChain command in 41.7.1).

Although the worst case running time is roughly quadratic for Sims’s verification and roughly linear for the
randomized one, in most examples the running time of the stabilizer chain construction with random= 1000
(i.e., guaranteed correct output) is about the same as the running time of randomized verification with
guarantee of at least 90% correctness. Therefore, we suggest to use the default value random= 1000. Possible
uses of random< 1000 are when one has to run through a large collection of subgroups, and a low value of
random is used to choose quickly a candidate for more thorough examination; another use is when the user
suspects that the quadratic bottleneck of the guaranteed correct verification is hit.

We will illustrate these ideas in two examples.

gap> h:= SL(4,7);;
gap> o:= Orbit(h, [1,0,0,0]*Z(7)^0, OnLines);;
gap> op:= Action(h, o, OnLines);;
gap> NrMovedPoints(op);
400

We created a permutation group on 400 points. First we compute a guaranteed correct stabilizer chain. (The
StabChain command is described in 41.7.1.)

Section 6. Randomized Methods for Permutation Groups 421

gap> h:= Group(GeneratorsOfGroup(op));;
gap> StabChain(h);; time;
1120
gap> Size(h);
2317591180800

Now randomized verification will be used. We require that the result is guaranteed correct with probability
90%. This means that if we would do this calculation many times over, GAP would guarantee that in least
90% percent of all calculations the result is correct. In fact the results are much better than the guarantee,
but we cannot promise that this will really happen. (For the meaning of the random component in the second
argument of StabChain, see 41.7.1.)

First the group is created anew.

gap> h:= Group(GeneratorsOfGroup(op));;
gap> StabChain(h, rec(random:= 900));; time;
1410
gap> Size(h);
2317591180800

The result is still correct, and the running time is actually somewhat slower. If you give the algorithm
additional information so that it can check its results, things become faster and the result is guaranteed to
be correct.

gap> h:=Group(GeneratorsOfGroup(op));;
gap> SetSize(h, 2317591180800);
gap> StabChain(h);; time;
170

The second example gives a typical group when the verification with random = 1000 is slow. The problem
is that the group has a stabilizer subgroup G(i) such that the fundamental orbit O (i) is split into a lot of
orbits when we stabilize bi and one additional point of O (i).

gap> p1:=PermList(Concatenation([401],[1..400]));;
gap> p2:=PermList(List([1..400],i->(i*20 mod 401)));;
gap> d:=DirectProduct(Group(p1,p2),SymmetricGroup(5));;
gap> h:=Group(GeneratorsOfGroup(d));;
gap> StabChain(h);;time;Size(h);
1030
192480
gap> h:=Group(GeneratorsOfGroup(d));;
gap> StabChain(h,rec(random:=900));;time;Size(h);
570
192480

When stabilizer chains of a group G are created with random < 1000, this is noted in the group G , by
setting of the record component random in the value of the attribute StabChainOptions for G (see 41.7.2).
As errors induced by the random methods might propagate, any group or homomorphism created from G
inherits a random component in its StabChainOptions from the corresponding component for G .

A lot of algorithms dealing with permutation groups use randomized methods; however, if the initial stabilizer
chain construction for a group is correct, these further methods will provide guaranteed correct output.

422 Chapter 41. Permutation Groups

41.7 Construction of Stabilizer Chains

1 I StabChain(G[, options]) F
I StabChain(G, base) F
I StabChainOp(G, options) O
I StabChainMutable(G) AM
I StabChainMutable(permhomom) AM
I StabChainImmutable(G) A

These commands compute a stabilizer chain for the permutation group G ; additionally, StabChainMutable
is also an attribute for the group homomorphism permhomom whose source is a permutation group.

(The mathematical background of stabilizer chains is sketched in 41.5, more information about the objects
representing stabilizer chains in GAP can be found in 41.8.)

StabChainOp is an operation with two arguments G and options, the latter being a record which controls
some aspects of the computation of a stabilizer chain (see below); StabChainOp returns a mutable stabi-
lizer chain. StabChainMutable is a mutable attribute for groups or homomorphisms, its default method
for groups is to call StabChainOp with empty options record. StabChainImmutable is an attribute with
immutable values; its default method dispatches to StabChainMutable.

StabChain is a function with first argument a permutation group G , and optionally a record options as sec-
ond argument. If the value of StabChainImmutable for G is already known and if this stabilizer chain
matches the requirements of options, StabChain simply returns this stored stabilizer chain. Otherwise
StabChain calls StabChainOp and returns an immutable copy of the result; additionally, this chain is stored
as StabChainImmutable value for G . If no options argument is given, its components default to the global
variable DefaultStabChainOptions (see 41.7.3). If base is a list of positive integers, the version StabChain(
G, base) defaults to StabChain(G, rec(base:= base)).

If given, options is a record whose components specify properties of the desired stabilizer chain or which may
help the algorithm. Default values for all of them can be given in the global variable DefaultStabChain-
Options (see 41.7.3). The following options are supported.

base (default an empty list)
A list of points, through which the resulting stabilizer chain shall run. For the base B of the resulting
stabilizer chain S this means the following. If the reduced component of options is true then those
points of base with nontrivial basic orbits form the initial segment of B , if the reduced component
is false then base itself is the initial segment of B . Repeated occurrences of points in base are
ignored. If a stabilizer chain for G is already known then the stabilizer chain is computed via a base
change.

knownBase (no default value)
A list of points which is known to be a base for the group. Such a known base makes it easier to
test whether a permutation given as a word in terms of a set of generators is the identity, since it
suffices to map the known base with each factor consecutively, rather than multiplying the whole
permutations (which would mean to map every point). This speeds up the Schreier-Sims algorithm
which is used when a new stabilizer chain is constructed; it will not affect a base change, however.
The component knownBase bears no relation to the base component, you may specify a known base
knownBase and a desired base base independently.

reduced (default true)
If this is true the resulting stabilizer chain S is reduced, i.e., the case G(i) = G(i+1) does not occur.
Setting reduced to false makes sense only if the component base (see above) is also set; in this
case all points of base will occur in the base B of S , even if they have trivial basic orbits. Note
that if base is just an initial segment of B , the basic orbits of the points in B \ base are always
nontrivial.

Section 8. Stabilizer Chain Records 423

tryPcgs (default true)
If this is true and either the degree is at most 100 or the group is known to be solvable, GAP will
first try to construct a pcgs (see Chapter 43) for G which will succeed and implicitly construct a
stabilizer chain if G is solvable. If G turns out non-solvable, one of the other methods will be used.
This solvability check is comparatively fast, even if it fails, and it can save a lot of time if G is
solvable.

random (default 1000)
If the value is less than 1000, the resulting chain is correct with probability at least random/1000.
The random option is explained in more detail in 41.6.

size (default Size(G) if this is known, i.e., if HasSize(G) is true)
If this component is present, its value is assumed to be the order of the group G . This information
can be used to prove that a non-deterministically constructed stabilizer chain is correct. In this case,
GAP does a non-deterministic construction until the size is correct.

limit (default Size(Parent(G)) or StabChainOptions(Parent(G)).limit if this is present)
If this component is present, it must be greater than or equal to the order of G . The stabilizer chain
construction stops if size limit is reached.

2 I StabChainOptions(G) AM

is a record that stores the options with which the stabilizer chain stored in StabChainImmutable has been
computed (see 41.7.1 for the options that are supported).

3 I DefaultStabChainOptions V

are the options for StabChain which are set as default.

4 I StabChainBaseStrongGenerators(base, sgs, one) F

If a base base for a permutation group G and a strong generating set sgs for G with respect to base are
given. one must be the appropriate One (in most cases this will be ()). This function constructs a stabilizer
chain without the need to find Schreier generators; so this is much faster than the other algorithms.

5 I MinimalStabChain(G) A

returns the reduced stabilizer chain corresponding to the base [1, 2, 3, 4, . . .].

41.8 Stabilizer Chain Records

If a permutation group has a stabilizer chain, this is stored as a recursive structure. This structure is
itself a record S and it has (1) components that provide information about one level G(i) of the stabilizer
chain (which we call the “current stabilizer”) and (2) a component stabilizer that holds another such
record, namely the stabilizer chain of the next stabilizer G(i+1). This gives a recursive structure where the
“outermost” record representing the “topmost” stabilizer is bound to the group record component stabChain
and has the components explained below. Note: Since the structure is recursive, never print a stabilizer
chain! (Unless you want to exercise the scrolling capabilities of your terminal.)

identity
the identity element of the current stabilizer.

labels
a list of permutations which contains labels for the Schreier tree of the current stabilizer, i.e., it
contains elements for the factorized inverse transversal. The first entry is this list is always the
identity. Note that GAP tries to arrange things so that the labels components are identical
(i.e., the same GAP object) in every stabilizer of the chain; thus the labels of a stabilizer do not
necessarily all lie in the this stabilizer (but see genlabels below).

424 Chapter 41. Permutation Groups

genlabels
a list of integers indexing some of the permutations in the labels component. The labels addressed
in this way form a generating set for the current stabilizer. If the genlabels component is empty, the
rest of the stabilizer chain represents the trivial subgroup, and can be ignored, e.g., when calculating
the size.

generators
a list of generators for the current stabilizer. Usually, it is labels{ genlabels }.

orbit
the vertices of the Schreier tree, which form the basic orbit bG(i)

i , ordered in such a way that the
base point bi is

transversal
The factorized inverse transversal found during the orbit algorithm. The element g stored at
transversal[i] will map i to another point j that in the Schreier tree is closer to the base point.
By iterated application (transversal[j] and so on) eventually the base point is reached and an
element that maps i to the base point foiund as product.

translabels
An index list such that transversal[j] = labels[translabels[j]]. This list takes up com-
paratively little memory and is used to speed up base changes.

stabilizer
If the current stabilizer is not yet the trivial group, the stabilizer chain continues with the sta-
bilizer of the current base point, which is again represented as a record with components labels,
identity, genlabels, generators, orbit, translabels, transversal (and possibly stabilizer).
This record is bound to the stabilizer component of the current stabilizer. The last member of a
stabilizer chain is recognized by the fact that it has no stabilizer component bound.

It is possible that different stabilizer chains share the same record as one of their iterated stabilizer
components.

gap> g:=Group((1,2,3,4),(1,2));;
gap> StabChain(g);
<stabilizer chain record, Base [1, 2, 3], Orbit length 4, Size: 24>
gap> BaseOfGroup(g);
[1, 2, 3]
gap> StabChainOptions(g);
rec(random := 1000)
gap> DefaultStabChainOptions;
rec(reduced := true, random := 1000, tryPcgs := true)

41.9 Operations for Stabilizer Chains

1 I BaseStabChain(S) F

returns the base belonging to the stabilizer chain S .

2 I BaseOfGroup(G) A

returns a base of the permutation group G . There is no guarantee that a stabilizer chain stored in G
corresponds to this base!

3 I SizeStabChain(S) F

returns the product of the orbit lengths in the stabilizer chain S , that is, the order of the group described
by S .

Section 9. Operations for Stabilizer Chains 425

4 I StrongGeneratorsStabChain(S) F

returns a strong generating set corresponding to the stabilizer chain S .

5 I GroupStabChain([G,] S) F

constructs a permutation group with stabilizer chain S , i.e., a group with generators Generators(S) to
which S is assigned as component stabChain. If the optional argument G is given, the result will have the
parent G .

6 I OrbitStabChain(S, pnt) F

returns the orbit of pnt under the group described by the stabilizer chain S .

7 I IndicesStabChain(S) F

returns a list of the indices of the stabilizers in the stabilizer chain S .

8 I ListStabChain(S) F

returns a list that contains at position i the stabilizer of the first i − 1 base points in the stabilizer chain S .

9 I ElementsStabChain(S) F

returns a list of all elements of the group described by the stabilizer chain S .

10 I InverseRepresentative(S, pnt) F

calculates the transversal element which maps pnt back to the base point of S . It just runs back through
the Schreier tree from pnt to the root and multiplies the labels along the way.

11 I SiftedPermutation(S, g) F

sifts the permutation g through the stabilizer chain S and returns the result after the last step.

The element g is sifted as follows: g is replaced by g * InverseRepresentative(S, S.orbit[1]^g),
then S is replaced by S.stabilizer and this process is repeated until S is trivial or S.orbit[1]^g is not
in the basic orbit S.orbit. The remainder g is returned, it is the identity permutation if and only if the
original g is in the group G described by the original S .

12 I MinimalElementCosetStabChain(S, g) F

Let G be the group described by the stabilizer chain S . This function returns a permutation h such that
Gg = Gh (that is, g/h ∈ G) and with the additional property that the list of images under h of the base
belonging to S is minimal w.r.t. lexicographical ordering.

13 I LargestElementStabChain(S, id) F

Let G be the group described by the stabilizer chain S . This function returns the element h ∈ G with
the property that the list of images under h of the base belonging to S is maximal w.r.t. lexicographical
ordering. The second argument must be an identity element (used to start the recursion)

14 I ApproximateSuborbitsStabilizerPermGroup(G, pnt) F

returns an approximation of the orbits of Stabilizer(G, pnt) on all points of the orbit Orbit(G,
pnt), without computing the full point stabilizer; As not all Schreier generators are used, the result may
represent the orbits of only a subgroup of the point stabilizer.

426 Chapter 41. Permutation Groups

41.10 Low Level Routines to Modify and Create Stabilizer Chains

These operations modify a stabilizer chain or obtain new chains with specific properties. They are rather
technical and should only be used if such low-level routines are deliberately required. (For all functions in
this section the parameter S is a stabilizer chain.)

1 I CopyStabChain(S) F

This function returns a copy of the stabilizer chain S that has no mutable object (list or record) in common
with S . The labels components of the result are possibly shared by several levels, but superfluous labels
are removed. (An entry in labels is superfluous if it does not occur among the genlabels or translabels
on any of the levels which share that labels component.)

This is useful for stabiliser sub-chains that have been obtained as the (iterated) stabilizer component of
a bigger chain.

2 I CopyOptionsDefaults(G, options) F

sets components in a stabilizer chain options record options according to what is known about the group
G . This can be used to obtain a new stabilizer chain for G quickly.

3 I ChangeStabChain(S, base[, reduced]) F

changes or reduces a stabilizer chain S to be adapted to the base base. The optional argument reduced is
interpreted as follows.

reduced = false :
change the stabilizer chain, do not reduce it,

reduced = true :
change the stabilizer chain, reduce it.

4 I ExtendStabChain(S, base) F

extends the stabilizer chain S so that it corresponds to base base. The original base of S must be a subset
of base.

5 I ReduceStabChain(S) F

changes the stabilizer chain S to a reduced stabilizer chain by eliminating trivial steps.

6 I RemoveStabChain(S) F

S must be a stabilizer record in a stabilizer chain. This chain then is cut off at S by changing the entries in
S . This can be used to remove trailing trivial steps.

7 I EmptyStabChain(labels, id[, pnt]) F

constructs a stabilizer chain for the trivial group with identity=id and labels={id}∪ labels (but of course
with genlabels=[] and generators=[]). If the optional third argument pnt is present, the only stabilizer
of the chain is initialized with the one-point basic orbit [pnt] and with translabels and transversal
components.

8 I InsertTrivialStabilizer(S, pnt) F

InsertTrivialStabilizer initializes the current stabilizer with pnt as EmptyStabChain did, but assigns
the original S to the new S.stabilizer component, such that a new level with trivial basic orbit (but
identical labels and ShallowCopyed genlabels and generators) is inserted. This function should be used
only if pnt really is fixed by the generators of S , because then new generators can be added and the orbit
and transversal at the same time extended with AddGeneratorsExtendSchreierTree.

Section 11. Backtrack 427

9 I IsFixedStabilizer(S, pnt) F

returns true if pnt is fixed by all generators of S and false otherwise.

10 I AddGeneratorsExtendSchreierTree(S, new) F

adds the elements in new to the list of generators of S and at the same time extends the orbit and transversal.
This is the only legal way to extend a Schreier tree (because this involves careful handling of the tree
components).

41.11 Backtrack

A main use for stabilizer chains is in backtrack algorithms for permutation groups. GAP implements a
partition-backtrack algorithm as described in [Leo91] and refined in [The97].

1 I SubgroupProperty(G, Pr[, L]) F

Pr must be a one-argument function that returns true or false for elements of G and the subset of elements
of G that fulfill Pr must be a subgroup. (If the latter is not true the result of this operation is
unpredictable!) This command computes this subgroup. The optional argument L must be a subgroup of
the set of all elements fulfilling Pr and can be given if known in order to speed up the calculation.

2 I ElementProperty(G, Pr[, L[, R]]) F

ElementProperty returns an element π of the permutation group G such that the one-argument function
Pr returns true for π. It returns fail if no such element exists in G . The optional arguments L and R are
subgroups of G such that the property Pr has the same value for all elements in the cosets Lg and gR,
respectively.

A typical example of using the optional subgroups L and R is the conjugacy test for elements a and b for
which one can set L := CG(a) and R := CG(b).

gap> propfun:= el -> (1,2,3)^el in [(1,2,3), (1,3,2)];;
gap> SubgroupProperty(g, propfun, Subgroup(g, [(1,2,3)]));
Group([(1,2,3), (2,3)])
gap> ElementProperty(g, el -> Order(el) = 2);
(2,4)

Chapter 40 describes special operations to construct permutations in the symmetric group without using
backtrack constructions.

Backtrack routines are also called by the methods for permutation groups that compute centralizers, nor-
malizers, intersections, conjugating elements as well as stabilizers for the operations of a permutation group
OnPoints, OnSets, OnTuples and OnSetSets. Some of these methods use more specific refinements than
SubgroupProperty or ElementProperty. For the definition of refinements, and how one can define refine-
ments, see Section 8.2 in “Extending GAP”.

3 I TwoClosure(G) A

The 2-closure of a transitive permutation group G on n points is the largest subgroup of Sn which has the
same orbits on sets of ordered pairs of points as the group G has. It also can be interpreted as the stabilizer
of the orbital graphs of G .

gap> TwoClosure(Group((1,2,3),(2,3,4)));
Sym([1 .. 4])

4 I InfoBckt V

is the info class for the partition backtrack routines.

428 Chapter 41. Permutation Groups

41.12 Working with large degree permutation groups

Permutation groups of large degree (usually at least a few 10000) can pose a challenge to the heuristics
used in the algorithms for permutation groups. This section lists a few useful tricks that may speed up
calculations with such large groups enormously.

The first aspect concerns solvable groups: A lot of calculations (including an initial stabilizer chain compu-
tation thanks to the algorithm from [Sim90]) are faster if a permutation group is known to be solvable. On
the other hand, proving nonsolvability can be expensive for higher degrees. Therefore GAP will automati-
cally test a permutation group for solvability, only if the degree is not exceeding 100. (See also the tryPcgs
component of StabChainOptions.) It is therefore beneficial to tell a group of larger degree, which is known
to be solvable, that it is, using SetIsSolvableGroup(G,true).

The second aspect concerns memory usage. A permutation on more than 65536 points requires 4 byte per
point for storing. So permutations on 256000 points require roughly 1MB of storage per permutation. Just
storing the permutations required for a stabilizer chain might already go beyond the available memory, in
particular if the base is not very short. In such a situation it can be useful, to replace the permutations by
straight line program elements (see 35.9).

The following code gives an example of usage: We create a group of degree 231000. Using straight line
program elements, one can compute a stabilizer chain in about 200 MB of memory.

gap> Read("largeperms"); # read generators from file
gap> gens:=StraightLineProgGens(permutationlist);;
gap> g:=Group(gens);
<permutation group with 5 generators>
gap> # use random algorithm (faster, but result is monte carlo)
gap> StabChainOptions(g).random:=1;;
gap> Size(g); # enforce computation of a stabilizer chain
3529698298145066075557232833758234188056080273649172207877011796336000

Without straight line program elements, the same calculation runs into memory problems after a while even
with 512MB of workspace:

gap> h:=Group(permutationlist);
<permutation group with 5 generators>
gap> StabChainOptions(h).random:=1;;
gap> Size(h);
exceeded the permitted memory (‘-o’ command line option) at
mlimit := 1; called from
SCRMakeStabStrong(S.stabilizer, [g], param, orbits, where, basesize,
base, correct, missing, false); called from
SCRMakeStabStrong(S.stabilizer, [g], param, orbits, where, basesize,

...

The advantage in memory usage however is paid for in runtime: Comparisons of elements become much
more expensive. One can avoid some of the related problems by registering a known base with the straight
line program elements (see StraightLineProgGens). In this case element comparison will only compare the
images of the given base points. If we are planning to do extensive calculations with the group, it can even
be worth to recreate it with straight line program elements knowing a previously computed base:

Section 12. Working with large degree permutation groups 429

gap> # get the base we computed already
gap> bas:=BaseStabChain(StabChainMutable(g));
[1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55,
...
2530, 2533, 2554, 2563, 2569]

gap> gens:=StraightLineProgGens(permutationlist,bas);;
gap> g:=Group(gens);;
gap> SetSize(g,
> 3529698298145066075557232833758234188056080273649172207877011796336000);
gap> Random(g);; # enforce computation of a stabilizer chain

As we know already base and size, this second stabilizer chain calculation is much faster than the first one
and takes less memory.

42 Matrix Groups

Matrix groups are groups generated by invertible square matrices.

In the following example we temporarily increase the line length limit from its default value 80 to 83 in
order to get a nicer output format.

gap> m1 := [[Z(3)^0, Z(3)^0, Z(3)],
> [Z(3), 0*Z(3), Z(3)],
> [0*Z(3), Z(3), 0*Z(3)]];;
gap> m2 := [[Z(3), Z(3), Z(3)^0],
> [Z(3), 0*Z(3), Z(3)],
> [Z(3)^0, 0*Z(3), Z(3)]];;
gap> SizeScreen([83,]);;
gap> m := Group(m1, m2);
Group(
[[[Z(3)^0, Z(3)^0, Z(3)], [Z(3), 0*Z(3), Z(3)], [0*Z(3), Z(3), 0*Z(3)]],
[[Z(3), Z(3), Z(3)^0], [Z(3), 0*Z(3), Z(3)], [Z(3)^0, 0*Z(3), Z(3)]]])

gap> SizeScreen([80,]);;

1 I IsMatrixGroup(grp) C

For most operations, GAP only provides methods for finite matrix groups. Many calculations in finite matrix
groups are done via a NiceMonomorphism (see 38.5) that represents a faithful action on vectors.

42.1 Attributes and Properties for Matrix Groups

1 I DimensionOfMatrixGroup(mat-grp) A

The dimension of the matrix group.

2 I DefaultFieldOfMatrixGroup(mat-grp) A

Is a field containing all the matrix entries. It is not guaranteed to be the smallest field with this property.

3 I FieldOfMatrixGroup(matgrp) A

The smallest field containing all the matrix entries of all elements of the matrix group matgrp. As the
calculation of this can be hard, this should only be used if one really needs the smallest field, use Default-
FieldOfMatrixGroup to get (for example) the characteristic.

gap> DimensionOfMatrixGroup(m);
3
gap> DefaultFieldOfMatrixGroup(m);
GF(3)

4 I TransposedMatrixGroup(matgrp) A

returns the transpose of the matrix group matgrp. The transpose of the transpose of matgrp is identical to
matgrp.

Section 3. GL and SL 431

gap> G := Group([[0,-1],[1,0]]);
Group([[[0, -1], [1, 0]]])
gap> T := TransposedMatrixGroup(G);
Group([[[0, 1], [-1, 0]]])
gap> IsIdenticalObj(G, TransposedMatrixGroup(T));
true

42.2 Actions of Matrix Groups

The basic operations for groups are described in Chapter 39, special actions for matrix groups mentioned
there are OnLines, OnRight, and OnSubspacesByCanonicalBasis.

For subtleties concerning multiplication from the left or from the right, see 42.6.

1 I ProjectiveActionOnFullSpace(G, F, n) F

Let G be a group of n by n matrices over a field contained in the finite field F . ProjectiveActionOn-
FullSpace returns the image of the projective action of G on the full row space F n .

2 I ProjectiveActionHomomorphismMatrixGroup(G) F

returns an action homomorphism for a faithful projective action of G on the underlying vector space. (Note:
The action is not necessarily on the full space, if a smaller subset can be found on which the action is
faithful.)

3 I BlowUpIsomorphism(matgrp, B) F

For a matrix group matgrp and a basis B of a field extension L/K , say, such that the entries of all matrices
in matgrp lie in L, BlowUpIsomorphism returns the isomorphism with source matgrp that is defined by
mapping the matrix A to BlownUpMat(A,B), see 24.12.3.

gap> g:= GL(2,4);;
gap> B:= CanonicalBasis(GF(4));; BasisVectors(B);
[Z(2)^0, Z(2^2)]
gap> iso:= BlowUpIsomorphism(g, B);;
gap> Display(Image(iso, [[Z(4), Z(2)], [0*Z(2), Z(4)^2]]));
. 1 1 .
1 1 . 1
. . 1 1
. . 1 .

gap> img:= Image(iso, g);
<matrix group with 2 generators>
gap> Index(GL(4,2), img);
112

42.3 GL and SL

1 I IsGeneralLinearGroup(grp) P
I IsGL(grp) P

The General Linear group is the group of all invertible matrices over a ring. This property tests, whether a
group is isomorphic to a General Linear group. (Note that currently only a few trivial methods are available
for this operation. We hope to improve this in the future.)

432 Chapter 42. Matrix Groups

2 I IsNaturalGL(matgrp) P

This property tests, whether a matrix group is the General Linear group in the right dimension over the
(smallest) ring which contains all entries of its elements. (Currently, only a trivial test that computes the
order of the group is available.)

3 I IsSpecialLinearGroup(grp) P
I IsSL(grp) P

The Special Linear group is the group of all invertible matrices over a ring, whose determinant is equal to
1. This property tests, wether a group is isomorphic to a Special Linear group. (Note that currently only a
few trivial methods are available for this operation. We hope to improve this in the future.)

4 I IsNaturalSL(matgrp) P

This property tests, whether a matrix group is the Special Linear group in the right dimension over the
(smallest) ring which contains all entries of its elements. (Currently, only a trivial test that computes the
order of the group is available.)

gap> IsNaturalGL(m);
false

5 I IsSubgroupSL(matgrp) P

This property tests, whether a matrix group is a subgroup of the Special Linear group in the right dimension
over the (smallest) ring which contains all entries of its elements.

(See also section 48.2.)

42.4 Invariant Forms

1 I InvariantBilinearForm(matgrp) A

This attribute describes a bilinear form that is invariant under the matrix group matgrp. The form is given
by a record with the component matrix which is a matrix m such that for every generator g of matgrp the
equation g ·m · g tr = m holds.

2 I IsFullSubgroupGLorSLRespectingBilinearForm(matgrp) P

This property tests, whether a matrix group matgrp is the full subgroup of GL or SL (the property IsSub-
groupSL determines which it is) respecting the InvariantBilinearForm of matgrp.

3 I InvariantSesquilinearForm(matgrp) A

This attribute describes a sesquilinear form that is invariant under the matrix group matgrp over the field
F with q2 elements, say. The form is given by a record with the component matrix which is is a matrix m
such that for every generator g of matgrp the equation g ·m · (g tr)f holds, where f is the automorphism of
F that raises each element to the q-th power. (f can be obtained as a power of FrobeniusAutomorphism(
F), see 57.4.1.)

4 I IsFullSubgroupGLorSLRespectingSesquilinearForm(matgrp) P

This property tests, whether a matrix group matgrp is the full subgroup of GL or SL (the property IsSub-
groupSL determines which it is) respecting the InvariantSesquilinearForm of matgrp.

5 I InvariantQuadraticForm(matgrp) A

For a matrix group matgrp, InvariantQuadraticForm returns a record containing at least the component
matrix whose value is a matrix Q . The quadratic form q on the natural vector space V on which matgrp
acts is given by q(v) = vQv tr , and the invariance under matgrp is given by the equation q(v) = q(vM) for

Section 5. Matrix Groups in Characteristic 0 433

all v ∈ V and M in matgrp. (Note that the invariance of q does not imply that the matrix Q is invariant
under matgrp.)

q is defined relative to an invariant symmetric bilinear form f (see 42.4.1), via the equation q(λx + µy) =
λ2q(x) + λµf (x , y) + µ2q(y) (see Chapter 3.4 in [CCN+85]). If f is represented by the matrix F then this
implies F = Q + Q tr . In characteristic different from 2, we have q(x) = f (x , x)/2, so Q can be chosen as
the strictly upper triangular part of F plus half of the diagonal part of F . In characteristic 2, F does not
determine Q but still Q can be chosen as an upper (or lower) triangular matrix.

Whenever the InvariantQuadraticForm value is set in a matrix group then also the InvariantBilinear-
Form value can be accessed, and the two values are compatible in the above sense.

6 I IsFullSubgroupGLorSLRespectingQuadraticForm(matgrp) P

This property tests, whether the matrix group matgrp is the full subgroup of GL or SL (the property
IsSubgroupSL determines which it is) respecting the InvariantQuadraticForm value of matgrp.

gap> g:= Sp(2, 3);;
gap> m:= InvariantBilinearForm(g).matrix;
[[0*Z(3), Z(3)^0], [Z(3), 0*Z(3)]]
gap> [0, 1] * m * [1, -1]; # evaluate the bilinear form
Z(3)
gap> IsFullSubgroupGLorSLRespectingBilinearForm(g);
true
gap> g:= SU(2, 4);;
gap> m:= InvariantSesquilinearForm(g).matrix;
[[0*Z(2), Z(2)^0], [Z(2)^0, 0*Z(2)]]
gap> [0, 1] * m * [1, 1]; # evaluate the bilinear form
Z(2)^0
gap> IsFullSubgroupGLorSLRespectingSesquilinearForm(g);
true
gap> g:= GO(1, 2, 3);;
gap> m:= InvariantBilinearForm(g).matrix;
[[0*Z(3), Z(3)^0], [Z(3)^0, 0*Z(3)]]
gap> [0, 1] * m * [1, 1]; # evaluate the bilinear form
Z(3)^0
gap> q:= InvariantQuadraticForm(g).matrix;
[[0*Z(3), Z(3)^0], [0*Z(3), 0*Z(3)]]
gap> [0, 1] * q * [0, 1]; # evaluate the quadratic form
0*Z(3)
gap> IsFullSubgroupGLorSLRespectingQuadraticForm(g);
true

42.5 Matrix Groups in Characteristic 0

Most of the functions described in this and the following section have implementations which use functions
from the GAP package Carat. If Carat is not installed or not compiled, no suitable methods are available.

1 I IsCyclotomicMatrixGroup(G) P

tests whether all matrices in G have cyclotomic entries.

2 I IsRationalMatrixGroup(G) P

tests whether all matrices in G have rational entries.

434 Chapter 42. Matrix Groups

3 I IsIntegerMatrixGroup(G) P

tests whether all matrices in G have integer entries.

4 I IsNaturalGLnZ(G) P

tests whether G is GLn(Z) in its natural representation by n × n integer matrices. (The dimension n will
be read off the generating matrices.)

gap> IsNaturalGLnZ(GL(2, Integers));
true

5 I IsNaturalSLnZ(G) P

tests whether G is SLn(Z) in its natural representation by n × n integer matrices. (The dimension n will be
read off the generating matrices.)

gap> IsNaturalSLnZ(SL(2, Integers));
true

6 I InvariantLattice(G) A

returns a matrix B , whose rows form a basis of a Z-lattice that is invariant under the rational matrix group
G acting from the right. It returns fail if the group is not unimodular. The columns of the inverse of B
span a Z-lattice invariant under G acting from the left.

7 I NormalizerInGLnZ(G) A

is an attribute used to store the normalizer of G in GLn(Z), where G is an integer matrix group of dimension
n. This attribute is used by Normalizer(GL(n, Integers), G).

8 I CentralizerInGLnZ(G) A

is an attribute used to store the centralizer of G in GLn(Z), where G is an integer matrix group of dimension
n. This attribute is used by Centralizer(GL(n, Integers), G).

9 I ZClassRepsQClass(G) A

The conjugacy class in GLn(Q) of the finite integer matrix group G splits into finitely many conjugacy
classes in GLn(Z). ZClassRepsQClass(G) returns representative groups for these.

10 I IsBravaisGroup(G) P

test whether G coincides with its Bravais group (see 42.5.11).

11 I BravaisGroup(G) A

returns the Bravais group of a finite integer matrix group G . If C is the cone of positive definite quadratic
forms Q invariant under g → g ∗Q ∗ g tr for all g ∈ G , then the Bravais group of G is the maximal subgroup
of GLn(Z) leaving the forms in that same cone invariant. Alternatively, the Bravais group of G can also
be defined with respect to the action g → g tr ∗ Q ∗ g on positive definite quadratic forms Q . This latter
definition is appropriate for groups G acting from the right on row vectors, whereas the former definition
is appropriate for groups acting from the left on column vectors. Both definitions yield the same Bravais
group.

12 I BravaisSubgroups(G) A

returns the subgroups of the Bravais group of G , which are themselves Bravais groups.

13 I BravaisSupergroups(G) A

returns the subgroups of GLn(Z) that contain the Bravais group of G and are Bravais groups themselves.

14 I NormalizerInGLnZBravaisGroup(G) A

returns the normalizer of the Bravais group of G in the appropriate GLn(Z).

Section 6. Acting OnRight and OnLeft 435

42.6 Acting OnRight and OnLeft

In GAP, matrices by convention act on row vectors from the right, whereas in crystallography the convention
is to act on column vectors from the left. The definition of certain algebraic objects important in crystal-
lography implicitly depends on which action is assumed. This holds true in particular for quadratic forms
invariant under a matrix group. In a similar way, the representation of affine crystallographic groups, as
they are provided by the GAP package CrystGap, depends on which action is assumed. Crystallographers
are used to the action from the left, whereas the action from the right is the natural one for GAP. For this
reason, a number of functions which are important in crystallography, and whose result depends on which
action is assumed, are provided in two versions, one for the usual action from the right, and one for the
crystallographic action from the left.

For every such function, this fact is explicitly mentioned. The naming scheme is as follows: If SomeThing is
such a function, there will be functions SomeThingOnRight and SomeThingOnLeft, assuming action from the
right and from the left, respectively. In addition, there is a generic function SomeThing, which returns either
the result of SomeThingOnRight or SomeThingOnLeft, depending on the global variable CrystGroupDe-
faultAction.

1 I CrystGroupDefaultAction V

can have either of the two values RightAction and LeftAction. The initial value is RightAction. For func-
tions which have variants OnRight and OnLeft, this variable determines which variant is returned by the
generic form. The value of CrystGroupDefaultAction can be changed with with the function SetCryst-
GroupDefaultAction.

2 I SetCrystGroupDefaultAction(action) F

allows to set the value of the global variable CrystGroupDefaultAction. Only the arguments RightAction
and LeftAction are allowed. Initially, the value of CrystGroupDefaultAction is RightAction

43 Polycyclic Groups

A group G is polycyclic if there exists a subnormal series G = C1 > C2 > . . . > Cn > Cn+1 = {1} with
cyclic factors. Such a series is called pc series of G .

Every polycyclic group is solvable and every finite solvable group is polycyclic. However, there are infinite
solvable groups which are not polycyclic.

In GAP there exists a large number of methods for polycyclic groups which are based upon the polycyclic
structure of these groups. These methods are usually very efficient and hence GAP tries to use them whenever
possible.

In GAP 3 these methods have been available for AgGroups only; that is, for groups defined via a power-
commutator presentation, see Chapter 44 for the GAP 4 analogon. This has changed in GAP 4 where these
methods can be applied to many types of groups. For example, the methods can be applied to permutation
groups or matrix groups which are known to be polycyclic. The only exception is the representation as
finitely presented group for which the polycyclic methods cannot be used in general.

At the current state of implementations the methods for polycyclic groups can only be applied to finite
groups. However, a more general implementation is planned.

43.1 Polycyclic Generating Systems

Let G be a polycyclic group with a pc series as above. A polycyclic generating sequence (pcgs for
short) of G is a sequence P := (g1, . . . , gn) of elements of G such that Ci = 〈Ci+1, gi 〉 for 1 ≤ i ≤ n. Note
that each polycyclic group has a pcgs, but except for very small groups, a pcgs is not unique.

For each index i the subsequence of elements (gi , . . . , gn) forms a pcgs of the subgroup Ci . In particular,
these tails generate the subgroups of the pc series and hence we say that the pc series is determined by
P .

Let ri be the index of Ci+1 in Ci which is either a finite positive number or infinity. Then ri is the order of
gi Ci+1 and we call the resulting list of indices the relative orders of the pcgs P .

Moreover, with respect to a given pcgs (g1, . . . , gn) each element g of G can be represented in a unique way
as a product g = ge1

1 ·g
e2
2 · · · gen

n with exponents ei ∈ {0, . . . , ri−1}, if ri is finite, and ei ∈ Z otherwise. Words
of this form are called normal words or words in normal form. Then the integer vector [e1, . . . , en] is
called the exponent vector of the element g . Furthermore, the smallest index k such that ek 6= 0 is called
the depth of g and ek is the leading exponent of g .

For many applications we have to assume that each of the relative orders ri is either a prime or infinity.
This is equivalent to saying that there are no trivial factors in the pc series and the finite factors of the pc
series are maximal refined. Then we obtain that ri is the order of gCi+1 for all elements g in Ci \ Ci+1 and
we call ri the relative order of the element g .

Section 3. Defining a Pcgs Yourself 437

43.2 Computing a Pcgs

Suppose a group G is given; for example, let G be a permutation or matrix group. Then we can ask GAP
to compute a pcgs of this group. If G is not polycyclic, the result will be fail.

Note that these methods can only be applied if G is not given as finitely presented group. For finitely
presented groups one can try to compute a pcgs via the polycyclic quotient methods, see 45.13.

Note also that a pcgs behaves like a list.

1 I Pcgs(G) A

returns a pcgs for the group G . If grp is not polycyclic it returns fail and this result is not stored as
attribute value, in particular in this case the filter HasPcgs is not set for G !

2 I IsPcgs(obj) C

The category of pcgs.

gap> G := Group((1,2,3,4),(1,2));;
gap> p := Pcgs(G);
Pcgs([(3,4), (2,4,3), (1,4)(2,3), (1,3)(2,4)])
gap> IsPcgs(p);
true
gap> p[1];
(3,4)

gap> G := Group((1,2,3,4,5),(1,2));;
gap> Pcgs(G);
fail

3 I CanEasilyComputePcgs(grp) F

This filter indicates whether it is possible to compute a pcgs for grp cheaply. Clearly, grp must be polycyclic
in this case. However, not for every polycyclic group there is a method to compute a pcgs at low costs. This
filter is used in the method selection mainly. Note that this filter may change its value from false to true.

gap> G := Group((1,2,3,4),(1,2));
Group([(1,2,3,4), (1,2)])
gap> CanEasilyComputePcgs(G);
false
gap> Pcgs(G);
Pcgs([(3,4), (2,4,3), (1,4)(2,3), (1,3)(2,4)])
gap> CanEasilyComputePcgs(G);
true

43.3 Defining a Pcgs Yourself

In a number of situations it might be useful to supply a pgcs to a group.

1 I PcgsByPcSequence(fam, pcs) O
I PcgsByPcSequenceNC(fam, pcs) O

constructs a pcgs for the elements family fam from the elements in the list pcs. The elements must lie in the
family fam. PcgsByPcSequence(NC) will always create a new pcgs which is not induced by any other pcgs.

438 Chapter 43. Polycyclic Groups

gap> fam := FamilyObj((1,2));; # the family of permutations
gap> p := PcgsByPcSequence(fam, [(1,2),(1,2,3)]);
Pcgs([(1,2), (1,2,3)])
gap> RelativeOrders(p);
[2, 3]
gap> ExponentsOfPcElement(p, (1,3,2));
[0, 2]

Note that the elementary operations for such a pcgs might be rather inefficient, since GAP has to use generic
methods in this case. It might be helpful to supply the relative orders of the self-defined pcgs as well by
SetRelativeOrders(pcgs, orders). See also 43.4.3.

43.4 Elementary Operations for a Pcgs

1 I RelativeOrders(pcgs) A

returns the list of relative orders of the pcgs pcgs.

the list of relative orders of the pcgs pcgs.

2 I IsFiniteOrdersPcgs(pcgs) P

tests whether the relative orders of pcgs are all finite.

3 I IsPrimeOrdersPcgs(pcgs) P

tests whether the relative orders of pcgs are prime numbers. Many algorithms require a pcgs to have this
property. The operation IsomorphismRefinedPcGroup (see 44.4.8) can be of help here.

4 I PcSeries(pcgs) A

returns the subnormal series determined by pcgs.

5 I GroupOfPcgs(pcgs) A

The group generated by pcgs.

6 I OneOfPcgs(pcgs) A

The identity of the group generated by pcgs.

gap> G := Group((1,2,3,4),(1,2));; p := Pcgs(G);;
gap> RelativeOrders(p);
[2, 3, 2, 2]
gap> IsFiniteOrdersPcgs(p);
true
gap> IsPrimeOrdersPcgs(p);
true
gap> PcSeries(p);
[Group([(3,4), (2,4,3), (1,4)(2,3), (1,3)(2,4)]),
Group([(2,4,3), (1,4)(2,3), (1,3)(2,4)]),
Group([(1,4)(2,3), (1,3)(2,4)]), Group([(1,3)(2,4)]), Group(())]

Section 5. Elementary Operations for a Pcgs and an Element 439

43.5 Elementary Operations for a Pcgs and an Element

1 I RelativeOrderOfPcElement(pcgs, elm) O

The relative order of elm with respect to the prime order pcgs pcgs.

2 I ExponentOfPcElement(pcgs, elm, pos) O

returns the pos-th exponent of elm with respect to pcgs.

3 I ExponentsOfPcElement(pcgs, elm) O
I ExponentsOfPcElement(pcgs, elm, posran) O

returns the exponents of elm with respect to pcgs. The second form returns the exponents in the positions
given in posran.

4 I DepthOfPcElement(pcgs, elm) O

returns the depth of the element elm with respect to pcgs.

5 I LeadingExponentOfPcElement(pcgs, elm) O

returns the leading exponent of elm with respect to pcgs.

6 I PcElementByExponents(pcgs, list) O
I PcElementByExponentsNC(pcgs, list) O
I PcElementByExponentsNC(pcgs, basisind, list) O

returns the element corresponding to the exponent vector list with respect to pcgs. The exponents in list
must be in the range of permissible exponents for pcgs. It is not guaranteed that PcElementByExponents
will reduce the exponents modulo the relative orders. (You should use the operation LinearCombi-
nationPcgs for this purpose.) The NC version does not check that the lengths of the lists fit together and
does not check the exponent range.

The third version gives exponents only wrt. the generators in pcgs indexed by basisind .

7 I LinearCombinationPcgs(pcgs, list [, one]) O

returns the product
∏

i pcgs[i]list[i]. In contrast to PcElementByExponents this permits negative exponents.
pcgs might be an list of group elements, in this case, an appropriate one must be given. if list can be empty.

gap> G := Group((1,2,3,4),(1,2));; P := Pcgs(G);;
gap> g := PcElementByExponents(P, [0,1,1,1]);
(1,2,3)
gap> ExponentsOfPcElement(P, g);
[0, 1, 1, 1]

8 I SiftedPcElement(pcgs, elm) O

sifts elm through pcgs, reducing it if the depth is the same as the depth of one of the generators in pcgs.
Thus the identity is returned if elm lies in the group generated by pcgs. pcgs must be an induced pcgs and
elm must lie in the span of the parent of pcgs.

9 I CanonicalPcElement(ipcgs, elm) O

reduces elm at the induces pcgs ipcgs such that the exponents of the reduced result r are zero at the depths
for which there are generators in ipcgs. Elements, whose quotient lies in the group generated by ipcgs yield
the same canonical element.

10 I ReducedPcElement(pcgs, x, y) O

reduces the element x by dividing off (from the left) a power of y such that the leading coefficient of the
result with respect to pcgs becomes zero. The elements x and y therefore have to have the same depth.

440 Chapter 43. Polycyclic Groups

11 I CleanedTailPcElement(pcgs, elm, dep) O

returns an element in the span of pcgs whose exponents for indices 1 to dep − 1 with respect to pcgs are
the same as those of elm, the remaining exponents are undefined. This can be used to obtain more “simple”
elements if only representatives in a factor are required, see 43.9.

The difference to HeadPcElementByNumber (see 43.5.12) is that HeadPcElementByNumber is guaranteed to
zero out trailing coefficients while CleantedTailPcElement will only do this if it can be done cheaply.

12 I HeadPcElementByNumber(pcgs, elm, dep) O

returns an element in the span of pcgs whose exponents for indices 1 to dep − 1 with respect to pcgs are the
same as those of elm, the remaining exponents are zero. This can be used to obtain more “simple” elements
if only representatives in a factor are required.

43.6 Exponents of Special Products

There are certain products of elements whose exponents are used often within algorithms, and which might
be obtained more easily than by computing the product first and to obtain its exponents afterwards. The
operations in this section provide a way to obtain such exponent vectors directly.

(The circumstances under which these operations give a speedup depend very much on the pcgs and the
representation of elements that is used. So the following operations are not guaranteed to give a speedup
in every case, however the default methods are not slower than to compute the exponents of a product and
thus these operations should always be used if applicable.)

1 I ExponentsConjugateLayer(mpcgs, elm, e) O

Computes the exponents of elme with respect to mpcgs; elm must be in the span of mpcgs, e a pc element in
the span of the parent pcgs of mpcgs and mpcgs must be the modulo pcgs for an abelian layer. (This is the
usual case when acting on a chief factor). In this case if mpcgs is induced by the family pcgs, the exponents
can be computed directly by looking up exponents without having to compute in the group and having to
collect a potential tail.

The second class are exponents of products of the generators which make up the pcgs. If the pcgs used is a
FamilyPcgs these exponents can be looked up and do not need to be computed.

2 I ExponentsOfRelativePower(pcgs, i) O

For p = pcgs[i] this function returns the exponent vector with respect to pcgs of the element pe where e is
the relative order of p in pcgs. For the family pcgs or pcgs induced by it, this might be faster than computing
the element and computing its exponent vector.

3 I ExponentsOfConjugate(pcgs, i, j) O

returns the exponents of pcgs[i]pcgs [j] with respect to pcgs. For the family pcgs or pcgs induced by it, this
might be faster than computing the element and computing its exponent vector.

4 I ExponentsOfCommutator(pcgs, i, j) O

returns the exponents of the commutatior Comm(pcgs[i], pcgs[j]) with respect to pcgs. For the family pcgs
or pcgs induced by it, this might be faster than computing the element and computing its exponent vector.

Section 7. Subgroups of Polycyclic Groups - Induced Pcgs 441

43.7 Subgroups of Polycyclic Groups - Induced Pcgs

Let U be a subgroup of G and let P be a pcgs of G as above such that P determines the subnormal series
G = C1 > . . . > Cn+1 = {1}. Then the series of subgroups U ∩ Ci is a subnormal series of U with cyclic or
trivial factors. Hence, if we choose an element uij ∈ (U ∩Cij)\(U ∩Cij +1) whenever this factor is non-trivial,
then we obtain a pcgs Q = (ui1 , . . . , uim) of U . We say that Q is an induced pcgs with respect to P . The
pcgs P is the parent pcgs to the induced pcgs Q .

Note that the pcgs Q is induced with respect to P if and only if the matrix of exponent vectors of the
elements uij with respect to P is in upper triangular form. Thus Q is not unique in general.

In particular, the elements of an induced pcgs do not necessarily have leading coefficient 1 relative to the
inducing pcgs. The attribute LeadCoeffsIGS (see 43.7.7) holds the leading coefficients in case they have to
be renormed in an algorithm.

Each induced pcgs is a pcgs and hence allows all elementary operations for pcgs. On the other hand each
pcgs could be transformed into an induced pcgs for the group defined by the pcgs, but note that an arbitrary
pcgs is in general not an induced pcgs for technical reasons.

An induced pcgs is “compatible” with its parent.

1 I IsInducedPcgs(pcgs) C

The category of induced pcgs. This a subcategory of pcgs.

2 I InducedPcgsByPcSequence(pcgs, pcs) O
I InducedPcgsByPcSequenceNC(pcgs, pcs) O
I InducedPcgsByPcSequenceNC(pcgs, pcs, depths) O

If pcs is a list of elements that form an induced pcgs with respect to pcgs this operation returns an induced
pcgs with these elements.

In the third version, the depths of pcs with respect to pcgs can be given (they are computed anew otherwise).

3 I ParentPcgs(pcgs) A

returns the pcgs by which pcgs was induced. If pcgs was not induced, it simply returns pcgs.

gap> G := Group((1,2,3,4),(1,2));;
gap> P := Pcgs(G);;
gap> K := InducedPcgsByPcSequence(P, [(1,2,3,4),(1,3)(2,4)]);
Pcgs([(1,2,3,4), (1,3)(2,4)])
gap> ParentPcgs(K);
Pcgs([(3,4), (2,4,3), (1,4)(2,3), (1,3)(2,4)])
gap> IsInducedPcgs(K);
true

In [LNS84] a “non-commutative gauss” algorithm is described to compute an induced pcgs of a subgroup U
from a generating set of U . This can be called in GAP via one of the following commands.

4 I InducedPcgs(pcgs, grp) O

computes a pcgs for grp which is induced by pcgs. If pcgs has a parent pcgs, then the result is induced with
respect to this parent pcgs.

InducedPcgs is a wrapper function only. Therefore, methods for computing computing an induced pcgs
should be installed for the operation InducedPcgsOp.

5 I InducedPcgsByGenerators(pcgs, gens) O
I InducedPcgsByGeneratorsNC(pcgs, gens) O

returns an induced pcgs with respect to pcgs for the subgroup generated by gens.

442 Chapter 43. Polycyclic Groups

6 I InducedPcgsByPcSequenceAndGenerators(pcgs, ind, gens) O

returns an induced pcgs with respect to pcgs of the subgroup generated by ind and gens. Here ind must be
an induced pcgs with respect to pcgs (or a list of group elements that form such an igs) and it will be used
as initial sequence for the computation.

gap> G := Group((1,2,3,4),(1,2));; P := Pcgs(G);;
gap> I := InducedPcgsByGenerators(P, [(1,2,3,4)]);
Pcgs([(1,2,3,4), (1,3)(2,4)])
gap> J := InducedPcgsByPcSequenceAndGenerators(P, I, [(1,2)]);
Pcgs([(1,2,3,4), (2,4,3), (1,4)(2,3), (1,3)(2,4)])

7 I LeadCoeffsIGS(igs) A

This attribute is used to store leading coefficients with respect to the parent pcgs. the i -th entry - if bound
- is the leading exponent of the element of igs that has depth i in the parent. (It cannot be assigned to
a component in InducedPcgsByPcSequenceNC as the permutation group methods call it from within the
postprocessing, before this postprocessing however no coefficients may be computed.)

8 I ExtendedPcgs(N , gens) O

extends the pcgs N (induced wrt. home) to a new induced pcgs by prepending gens. No checks are performed
that this really yields an induced pcgs.

To create a subgroup generated by an induced pcgs such that the induced pcgs gets stored automatically
there is the following operation.

9 I SubgroupByPcgs(G, pcgs) O

43.8 Subgroups of Polycyclic Groups - Canonical Pcgs

The induced pcgs Q of U is called canonical if the matrix of exponent vectors contains normed vectors
only and above each leading entry in the matrix there are 0’s only. The canonical pcgs of U with respect to
P is unique and hence such pcgs can be used to compare subgroups.

1 I IsCanonicalPcgs(pcgs) P

An induced pcgs is canonical if the matrix of the exponent vectors of the elements of pcgs with respect to
ParentPcgs(pcgs) is in Hermite normal form (see [LNS84]). While a subgroup can have various induced
pcgs with respect to a parent pcgs a canonical pcgs is unique.

2 I CanonicalPcgs(pcgs) A

returns the canonical pcgs corresponding to the induced pcgs pcgs.

gap> G := Group((1,2,3,4),(5,6,7));
Group([(1,2,3,4), (5,6,7)])
gap> P := Pcgs(G);
Pcgs([(5,6,7), (1,2,3,4), (1,3)(2,4)])
gap> I := InducedPcgsByPcSequence(P, [(5,6,7)*(1,3)(2,4),(1,3)(2,4)]);
Pcgs([(1,3)(2,4)(5,6,7), (1,3)(2,4)])
gap> CanonicalPcgs(I);
Pcgs([(5,6,7), (1,3)(2,4)])

Section 9. Factor Groups of Polycyclic Groups - Modulo Pcgs 443

43.9 Factor Groups of Polycyclic Groups - Modulo Pcgs

Let N be a normal subgroup of G such that G/N is polycyclic with pcgs (h1N , . . . , hr N). Then we call the
sequence of preimages (h1, . . . hr) a modulo pcgs of G/N . G is called the numerator of the modulo pcgs
and N is the denominator of the modulo pcgs.

Modulo pcgs are often used to facilitate efficient computations with factor groups, since they allow compu-
tations with factor groups without formally defining the factor group at all.

All elementary operations of pcgs, see Sections 43.4 and 43.5, apply to modulo pcgs as well. However, it is
in general not possible to compute induced pcgs with respect to a modulo pcgs.

1 I ModuloPcgs(G, N) O

returns a modulo pcgs for the factor G/N which must be solvable, which N may be insolvable.

ModuloPcgs will return a pcgs for the factor, there is no guarantee that it will be “compatible” with any
other pcgs. If this is required, the mod operator must be used on induced pcgs, see below.

2 I IsModuloPcgs(obj) C

The category of modulo pcgs. Note that each pcgs is a modulo pcgs for the trivial subgroup.

Additionally there are two more elementary operations for modulo pcgs.

3 I NumeratorOfModuloPcgs(pcgs) A

returns a generating set for the numerator of the modulo pcgs pcgs.

4 I DenominatorOfModuloPcgs(pcgs) A

returns a generating set for the denominator of the modulo pcgs pcgs.

gap> G := Group((1,2,3,4,5),(1,2));
Group([(1,2,3,4,5), (1,2)])
gap> P := ModuloPcgs(G, DerivedSubgroup(G));
Pcgs([(4,5)])
gap> NumeratorOfModuloPcgs(P);
[(1,2,3,4,5), (1,2)]
gap> DenominatorOfModuloPcgs(P);
[(1,3,2), (2,4,3), (2,3)(4,5)]
gap> RelativeOrders(P);
[2]
gap> ExponentsOfPcElement(P, (1,2,3,4,5));
[0]
gap> ExponentsOfPcElement(P, (4,5));
[1]

Modulo Pcgs can also be built from compatible induced pcgs. Let G be a group with pcgs P and let I be
an induced pcgs of a normal subgroup N of G . (Respectively: P and I are both induced with respect to the
same Pcgs.) Then we can compute a modulo pcgs of G mod N by

5 I P mod I

Note that in this case we obtain the advantage that the NumeratorOfModuloPcgs and the DenominatorOf-
ModuloPcgs are just P and I , respectively, and hence are unique.

The resulting modulo pcgs will consist of a subset of P and will be “compatible” with P (or its parent).

444 Chapter 43. Polycyclic Groups

gap> G := Group((1,2,3,4));;
gap> P := Pcgs(G);
Pcgs([(1,2,3,4), (1,3)(2,4)])
gap> I := InducedPcgsByGenerators(P, [(1,3)(2,4)]);
Pcgs([(1,3)(2,4)])
gap> M := P mod I;
[(1,2,3,4)]
gap> NumeratorOfModuloPcgs(M);
Pcgs([(1,2,3,4), (1,3)(2,4)])
gap> DenominatorOfModuloPcgs(M);
Pcgs([(1,3)(2,4)])

6 I CorrespondingGeneratorsByModuloPcgs(mpcgs, imgs) O

let mpcgs be a modulo pcgs for a factor of a group G and let U be a subgroup of G generated by imgs such
that U covers the factor for the modulo pcgs. Then this function computes elements in U corresponding to
the generators of the modulo pcgs.

Note that the computation of induced generating sets is not possible for some modulo pcgs.

7 I CanonicalPcgsByGeneratorsWithImages(pcgs, gens, imgs) O

computes a canonical, pcgs-induced pcgs for the span of gens and simultaneously does the same transforma-
tions on imgs, preserving thus a correspondence between gens and imgs. This operation is used to represent
homomorphisms from a pc group.

43.10 Factor Groups of Polycyclic Groups in their Own Representation

If substantial calculations are done in a factor it might be worth still to construct the factor group in its
own representation (for example by calling PcGroupWithPcgs on a modulo pcgs, see 44.5.1).

The following functions are intended for working with factor groups obtained by factoring out the tail of
a pcgs. They provide a way to map elements or induced pcgs quickly in the factor (respectively to take
preimages) without the need to construct a homomorphism.

The setup is always a pcgs pcgs of G and a pcgs fpcgs of a factor group H = G/N which corresponds to a
head of pcgs.

No tests for validity of the input are performed.

1 I ProjectedPcElement(pcgs, fpcgs, elm) F

returns the image in H of an element elm of G .

2 I ProjectedInducedPcgs(pcgs, fpcgs, ipcgs) F

ipcgs must be an induced pcgs with respect to pcgs. This operation returns an induced pcgs with respect to
fpcgs consisting of the nontrivial images of ipcgs.

3 I LiftedPcElement(pcgs, fpcgs, elm) F

returns a preimage in G of an element elm of H .

4 I LiftedInducedPcgs(pcgs, fpcgs, ipcgs, ker) F

ipcgs must be an induced pcgs with respect to fpcgs. This operation returns an induced pcgs with respect
to pcgs consisting of the preimages of ipcgs, appended by the elements in ker (assuming there is a bijection
of pcgs mod ker to fpcgs). ker might be a simple element list.

Section 11. Pcgs and Normal Series 445

43.11 Pcgs and Normal Series

By definition, a pcgs determines a pc series of its underlying group. However, in many applications it will
be necessary that this pc series refines a normal series with certain properties; for example, a normal series
with abelian factors.

There are functions in GAP to compute a pcgs through a normal series with elementary abelian factors, a
central series or the lower p-central series. See also Section 43.13 for a more explicit possibility.

1 I IsPcgsElementaryAbelianSeries(pcgs) P

returns true if the pcgs pcgs refines an elementary abelian series. IndicesEANormalSteps then gives the
indices in the Pcgs, at which the subgroups of this series start.

2 I PcgsElementaryAbelianSeries(G) A
I PcgsElementaryAbelianSeries([G, N1, N2,]) A

computes a pcgs for G that refines an elementary abelian series. IndicesEANormalSteps gives the indices
in the Pcgs, at which the normal subgroups of this series start. The second variant returns a pcgs that runs
through the normal subgroups N1 , N2 , etc.

3 I IndicesEANormalSteps(pcgs) A

Let pcgs be a pcgs obtained as corresponding to a series of normal subgroups with elementary abelian factors
(for example from calling PcgsElementaryAbelianSeries) Then IndicesEANormalSteps returns a sorted
list of integers, indicating the tails of pcgs which generate these normal subgroup of G . If i is an element of
this list, (gi , . . . , gn) is a normal subgroup of G . The list always starts with 1 and ends with n+1. (These
indices form one series with elementary abelian subfactors, not necessarily the most refined one.)

The attribute EANormalSeriesByPcgs returns the actual series of subgroups.

For arbitrary pcgs not obtained as belonging to a special series such a set of indices not necessarily exists,
and IndicesEANormalSteps is not guaranteed to work in this situation.

Typically, IndicesEANormalSteps is set by PcgsElementaryAbelianSeries.

4 I EANormalSeriesByPcgs(pcgs) A

Let pcgs be a pcgs obtained as corresponding to a series of normal subgroups with elementary abelian
factors (for example from calling PcgsElementaryAbelianSeries). This attribute returns the actual series
of normal subgroups, corresponding to IndicesEANormalSteps.

5 I IsPcgsCentralSeries(pcgs) P

returns true if the pcgs pcgs refines an central elementary abelian series. IndicesCentralNormalSteps then
gives the indices in the Pcgs, at which the subgroups of this series start.

6 I PcgsCentralSeries(G) A

computes a pcgs for G that refines a central elementary abelian series. IndicesCentralNormalSteps gives
the indices in the Pcgs, at which the normal subgroups of this series start.

7 I IndicesCentralNormalSteps(pcgs) A

Let pcgs be a pcgs obtained as corresponding to a series of normal subgroups with central elementary abelian
factors (for example from calling PcgsCentralSeries) Then IndicesCentralNormalSteps returns a sorted
list of integers, indicating the tails of pcgs which generate these normal subgroup of G . If i is an element of
this list, (gi , . . . , gn) is a normal subgroup of G . The list always starts with 1 and ends with n+1. (These
indices form one series with central elementary abelian subfactors, not necessarily the most refined one.)

The attribute CentralNormalSeriesByPcgs returns the actual series of subgroups.

446 Chapter 43. Polycyclic Groups

For arbitrary pcgs not obtained as belonging to a special series such a set of indices not necessarily exists,
and IndicesCentralNormalSteps is not guaranteed to work in this situation.

Typically, IndicesCentralNormalSteps is set by PcgsCentralSeries.

8 I CentralNormalSeriesByPcgs(pcgs) A

Let pcgs be a pcgs obtained as corresponding to a series of normal subgroups with central elementary abelian
factors (for example from calling PcgsCentralSeries). This attribute returns the actual series of normal
subgroups, corresponding to IndicesCentralNormalSteps.

9 I IsPcgsPCentralSeriesPGroup(pcgs) P

returns true if the pcgs pcgs refines an p-central elementary abelian series for a p-group. IndicesPCen-
tralNormalStepsPGroup then gives the indices in the Pcgs, at which the subgroups of this series start.

10 I PcgsPCentralSeriesPGroup(G) A

computes a pcgs for the p-group G that refines a p-central elementary abelian series. IndicesPCentral-
NormalStepsPGroup gives the indices in the Pcgs, at which the normal subgroups of this series start.

11 I IndicesPCentralNormalStepsPGroup(pcgs) A

Let pcgs be a pcgs obtained as corresponding to a series of normal subgroups with p-central elementary
abelian factors (for example from calling PcgsPCentralSeriesPGroup). Then IndicesPCentralNormal-
StepsPGroup returns a sorted list of integers, indicating the tails of pcgs which generate these normal
subgroup of G . If i is an element of this list, (gi , . . . , gn) is a normal subgroup of G . The list always starts
with 1 and ends with n+1. (These indices form one series with central elementary abelian subfactors, not
necessarily the most refined one.)

The attribute PCentralNormalSeriesByPcgsPGroup returns the actual series of subgroups.

For arbitrary pcgs not obtained as belonging to a special series such a set of indices not necessarily exists,
and IndicesPCentralNormalStepsPGroup is not guaranteed to work in this situation.

Typically, IndicesPCentralNormalStepsPGroup is set by PcgsPCentralSeriesPGroup.

12 I PCentralNormalSeriesByPcgsPGroup(pcgs) A

Let pcgs be a pcgs obtained as corresponding to a series of normal subgroups with p-central elementary
abelian factors (for example from calling PcgsPCentralSeriesPGroup). This attribute returns the actual
series of normal subgroups, corresponding to IndicesPCentralNormalStepsPGroup.

13 I IsPcgsChiefSeries(pcgs) P

returns true if the pcgs pcgs refines a chief series. IndicesChiefNormalSteps then gives the indices in the
Pcgs, at which the subgroups of this series start.

14 I PcgsChiefSeries(G) A

computes a pcgs for G that refines a chief series. IndicesChiefNormalSteps gives the indices in the Pcgs,
at which the normal subgroups of this series start.

15 I IndicesChiefNormalSteps(pcgs) A

Let pcgs be a pcgs obtained as corresponding to a chief series for example from calling PcgsChiefSeries).
Then IndicesChiefNormalSteps returns a sorted list of integers, indicating the tails of pcgs which generate
these normal subgroup of G . If i is an element of this list, (gi , . . . , gn) is a normal subgroup of G . The list
always starts with 1 and ends with n+1. (These indices form one series with elementary abelian subfactors,
not necessarily the most refined one.)

The attribute ChiefNormalSeriesByPcgs returns the actual series of subgroups.

Section 12. Sum and Intersection of Pcgs 447

For arbitrary pcgs not obtained as belonging to a special series such a set of indices not necessarily exists,
and IndicesChiefNormalSteps is not guaranteed to work in this situation.
Typically, IndicesChiefNormalSteps is set by PcgsChiefSeries.

16 I ChiefNormalSeriesByPcgs(pcgs) A

Let pcgs be a pcgs obtained as corresponding to a chief series (for example from calling PcgsChiefSeries).
This attribute returns the actual series of normal subgroups, corresponding to IndicesChiefNormalSteps.

gap> g:=Group((1,2,3,4),(1,2));;
gap> p:=PcgsElementaryAbelianSeries(g);
Pcgs([(3,4), (2,4,3), (1,4)(2,3), (1,3)(2,4)])
gap> IndicesEANormalSteps(p);
[1, 2, 3, 5]
gap> g:=Group((1,2,3,4),(1,5)(2,6)(3,7)(4,8));;
gap> p:=PcgsCentralSeries(g);
Pcgs([(1,5)(2,6)(3,7)(4,8), (5,6,7,8), (5,7)(6,8), (1,4,3,2)(5,6,7,8),
(1,3)(2,4)(5,7)(6,8)])

gap> IndicesCentralNormalSteps(p);
[1, 2, 4, 5, 6]
gap> q:=PcgsPCentralSeriesPGroup(g);
Pcgs([(1,5)(2,6)(3,7)(4,8), (5,6,7,8), (5,7)(6,8), (1,4,3,2)(5,6,7,8),
(1,3)(2,4)(5,7)(6,8)])

gap> IndicesPCentralNormalStepsPGroup(q);
[1, 3, 5, 6]

17 I IndicesNormalSteps(pcgs) A

returns the indices of all steps in the pc series, which are normal in the group defined by the pcgs.
(In general, this function yields a slower performance than the more specialized index functions for elementary
abelian series etc.)

18 I NormalSeriesByPcgs(pcgs) A

returns the subgroups the pc series, which are normal in the group defined by the pcgs.
(In general, this function yields a slower performance than the more specialized index functions for elementary
abelian series etc.)

43.12 Sum and Intersection of Pcgs
1 I SumFactorizationFunctionPcgs(parentpcgs, n, u, kerpcgs) O

computes the sum and intersection of the lists n and u whose elements form modulo pcgs induced by
parentpcgs for two subgroups modulo a kernel given by kerpcgs. If kerpcgs is a tail if the parent-pcgs it is
sufficient to give the starting depth, this can be more efficient than to construct an explicit pcgs. The factor
group modulo kerpcgs generated by n must be elementary abelian and normal under u.
The function returns a record with components

sum
Elements that form a modulo pcgs for the span of both subgroups.

intersection
Elements that form a modulo pcgs for the intersection of both subgroups.

factorization
A function that returns for an element x in the span of sum a record with components u and n that
give its decomposition.

The record components sum and intersection are not pcgs but only lists of pc elements (to avoid unnec-
essary creation of InducedPcgs).

448 Chapter 43. Polycyclic Groups

43.13 Special Pcgs

In short, a special pcgs is a pcgs which has particularly nice properties, for example it always refines
an elementary abelian series, for p-groups it even refines a central series. These nice properties permit
particularly efficient algorithms.

Let G be a finite polycyclic group. A special pcgs of G is a pcgs which is closely related to a Hall system
and the maximal subgroups of G . These pcgs have been introduced by C. R. Leedham-Green who also gave
an algorithm to compute them. Improvements to this algorithm are due to Bettina Eick. For a more detailed
account of their definition the reader is referred to [Eic97]

To introduce the definition of special pcgs we first need to define the LG-series and head complements
of a finite polycyclic group G . Let G = G1 > G2 > . . .Gm > Gm+1 = {1} be the lower nilpotent series of
G ; that is, Gi is the smallest normal subgroup of Gi−1 with nilpotent factor. To obtain the LG-series of G
we need to refine this series. Thus consider a factor Fi := Gi/Gi+1. Since Fi is finite nilpotent, it is a direct
product of its Sylow subgroups, say Fi = Pi ,1 · · ·Pi ,ri . For each Sylow pj -subgroup Pi ,j we can consider its
lower pj -central series. To obtain a characteristic central series with elementary abelian factors of Fi we
loop over its Sylow subgroups. Each time we consider Pi ,j in this process we take the next step of its lower
pj -central series into the series of Fi . If there is no next step, then we just skip the consideration of Pi ,j .
Note that the second term of the lower p-central series of a p-group is in fact its Frattini subgroup. Thus the
Frattini subgroup of Fi is contained in the computed series of this group. We denote the Frattini subgroup
of Fi = Gi/Gi+1 by G∗i /Gi+1.

The factors Gi/G∗i are called the heads of G , while the (possibly trivial) factors G∗i /Gi+1 are the tails of
G . A head complement of G is a subgroup U of G such that U /G∗i is a complement to the head Gi/G∗i in
G/G∗i for some i .

Now we are able to define a special pcgs of G . It is a pcgs of G with three additional properties. First, the
pc series determined by the pcgs refines the LG-series of G . Second, a special pcgs exhibits a Hall system
of the group G ; that is, for each set of primes π the elements of the pcgs with relative order in π form a
pcgs of a Hall π-subgroup in a Hall system of G . Third, a special pcgs exhibits a head complement for each
head of G .

To record information about the LG-series with the special pcgs we define the LGWeights of the special
pcgs. These weights are a list which contains a weight w for each elements g of the special pcgs. Such a
weight w represents the smallest subgroup of the LG-series containing g .

Since the LG-series is defined in terms of the lower nilpotent series, Sylow subgroups of the factors and lower
p-central series of the Sylow subgroup, the weight w is a triple. More precisely, g is contained in the w [1]th
term U of the lower nilpotent series of G , but not in the next smaller one V . Then w [3] is a prime such
that gV is contained in the Sylow w [3]-subgroup P/V of U /V . Moreover, gV is contained in the w [2]th
term of the lower p-central series of P/V .

There are two more attributes of a special pcgs containing information about the LG-series: the list LGLay-
ers and the list LGFirst. The list of layers corresponds to the elements of the special pcgs and denotes the
layer of the LG-series in which an element lies. The list LGFirst corresponds to the LG-series and gives the
number of the first element in the special pcgs of the corresponding subgroup.

1 I IsSpecialPcgs(obj) P

tests whether obj is a special pcgs.

2 I SpecialPcgs(pcgs) A
I SpecialPcgs(G) A

computes a special pcgs for the group defined by pcgs or for G .

3 I LGWeights(pcgs) A

returns the LGWeights of the special pcgs pcgs.

Section 13. Special Pcgs 449

4 I LGLayers(pcgs) A

returns the layers of the special pcgs pcgs.

5 I LGFirst(pcgs) A

returns the first indices for each layer of the special pcgs pcgs.

6 I LGLength(G) A

returns the Length of the LG-series of the group G , if G is solvable and fail otherwise.

gap> G := SmallGroup(96, 220);
<pc group of size 96 with 6 generators>
gap> spec := SpecialPcgs(G);
Pcgs([f1, f2, f3, f4, f5, f6])
gap> LGWeights(spec);
[[1, 1, 2], [1, 1, 2], [1, 1, 2], [1, 1, 2], [1, 1, 3],
[1, 2, 2]]

gap> LGLayers(spec);
[1, 1, 1, 1, 2, 3]
gap> LGFirst(spec);
[1, 5, 6, 7]
gap> LGLength(G);
3

gap> p := SpecialPcgs(Pcgs(SmallGroup(96, 120)));
Pcgs([f1, f2, f3, f4, f5, f6])
gap> LGWeights(p);
[[1, 1, 2], [1, 1, 2], [1, 1, 2], [1, 2, 2], [1, 3, 2],
[2, 1, 3]]

Thus the first group, SmallGroup(96, 220), has a lower nilpotent series of length 1; that is, the group
is nilpotent. It is a direct product of its Sylow subgroups. Moreover the Sylow 2-subgroup is generated
by f 1, f 2, f 3, f 4, f 6 and the Sylow 3-subgroup is generated by f 5. The lower 2-central series of the Sylow
2-subgroup has length 2 and the second subgroup in this series is generated by f 6.

The second group, SmallGroup(96, 120), has a lower nilpotent series of length 2 and hence is not nilpotent.
The second subgroup in this series is just the Sylow 3-subgroup and it is generated by f 6. The subgroup
generated by f 1, . . . , f 5 is a Sylow 2-subgroup of the group and also a head complement to the second head
of the group. Its lower 2-central series has length 2.

In this example the FamilyPcgs of the groups used was a special pcgs, but this is not necessarily the case.
For performance reasons it can be worth to enforce this, see 44.5.3.

7 I IsInducedPcgsWrtSpecialPcgs(pcgs) P

tests whether pcgs is induced with respect to a special pcgs.

8 I InducedPcgsWrtSpecialPcgs(G) A

computes an induced pcgs with respect to the special pcgs of the parent of G .

InducedPcgsWrtSpecialPcgs will return a pcgs induced by a special pcgs (which might differ from the one
you had in mind). If you need an induced pcgs compatible with a given special pcgs use InducedPcgs for
this special pcgs.

450 Chapter 43. Polycyclic Groups

43.14 Action on Subfactors Defined by a Pcgs

When working with a polycyclic group, one often needs to compute matrix operations of the group on a
factor of the group. For this purpose there are the following functions.

1 I VectorSpaceByPcgsOfElementaryAbelianGroup(mpcgs, fld) F

returns the vector space over fld corresponding to the modulo pcgs mpcgs. Note that mpcgs has to define
an elementary abelian p-group where p is the characteristic of fld .

2 I LinearOperation(gens, basisvectors, linear) O
I LinearAction(gens, basisvectors, linear) O

returns a list of matrices, one for each element of gens, which corresponds to the matrix action of the
elements in gens on the basis basisvectors via linear .

3 I LinearOperationLayer(G, gens, pcgs) F
I LinearActionLayer(G, gens, pcgs) F

returns a list of matrices, one for each element of gens, which corresponds to the matrix action of G on the
vector space corresponding to the modulo pcgs pcgs.

In certain situations, for example within the computation of conjugacy classes of finite soluble groups as
described in [MN89], affine actions of groups are required. For this purpose we introduce the following
functions.

4 I AffineOperation(gens, basisvectors, linear, transl) O
I AffineAction(gens, basisvectors, linear, transl) O

return a list of matrices, one for each element of gens, which corresponds to the affine action of the elements
in gens on the basis basisvectors via linear with translation transl .

5 I AffineOperationLayer(G, gens, pcgs, transl) F
I AffineActionLayer(G, gens, pcgs, transl) F

returns a list of matrices, one for each element of gens, which corresponds to the affine action of G on the
vector space corresponding to the modulo pcgs pcgs with translation transl .

gap> G := SmallGroup(96, 51);
<pc group of size 96 with 6 generators>
gap> spec := SpecialPcgs(G);
Pcgs([f1, f2, f3, f4, f5, f6])
gap> LGWeights(spec);
[[1, 1, 2], [1, 1, 2], [1, 1, 3], [1, 2, 2], [1, 2, 2],
[1, 3, 2]]

gap> mpcgs := InducedPcgsByPcSequence(spec, spec{[4,5,6]});
Pcgs([f4, f5, f6])
gap> npcgs := InducedPcgsByPcSequence(spec, spec{[6]});
Pcgs([f6])
gap> modu := mpcgs mod npcgs;
[f4, f5]
gap> mat:=LinearActionLayer(G, spec{[1,2,3]}, modu);
[<an immutable 2x2 matrix over GF2>, <an immutable 2x2 matrix over GF2>,
<an immutable 2x2 matrix over GF2>]

gap> Print(mat, "\n");
[[[Z(2)^0, 0*Z(2)], [0*Z(2), Z(2)^0]],
[[Z(2)^0, 0*Z(2)], [0*Z(2), Z(2)^0]],
[[Z(2)^0, 0*Z(2)], [0*Z(2), Z(2)^0]]]

Section 17. Conjugacy Classes in Solvable Groups 451

43.15 Orbit Stabilizer Methods for Polycyclic Groups

If a pcgs pcgs is known for a group G , then orbits and stabilizers can be computed by a special method which
is particularly efficient. Note that within this function only the elements in pcgs and the relative orders of
pcgs are needed. Hence this function works effectively even if the elementary operations for pcgs are slow.

1 I StabilizerPcgs(pcgs, pt)

2 I Pcgs OrbitStabilizer(pcgs, domain, pnt, oprs, opr) F

runs a solvable group orbit-stabilizer algorithm on pnt with pcgs acting via the images oprs and the operation
function opr . The domain domain can be used to speed up search, if it is not known, false can be given
instead. The function returns a record with components orbit, stabpcgs and lengths, the latter indicating
the lengths of the orbit whenever it got extended. This can be used to recompute transversal elements. This
function should be used only inside algorithms when speed is essential.

43.16 Operations which have Special Methods for Groups with Pcgs

For the following methods there are special operations for groups with pcgs installed:

IsNilpotent, IsSupersolvable, Size, CompositionSeries, ConjugacyClasses, Centralizer, Frattin-
iSubgroup, PrefrattiniSubgroup, MaximalSubgroups and related operations, HallSystem and related
operations, MinimalGeneratingSet, Centre, Intersection, AutomorphismGroup, IrreducibleModules.

43.17 Conjugacy Classes in Solvable Groups

There are a variety of algorithms to compute conjugacy classes and centralizers in solvable groups via
epimorphic images ([FN79], [MN89], [The93]). Usually these are only invoked as methods, but it is possible
to access the algorithm directly.

@The syntax of this function may change in a future rewrite!@

1 I ClassesSolvableGroup(G, mode [, opt]) F

computes conjugacy classes and centralizers in solvable groups. G is the acting group. mode indicates the
type of the calculation:

0 Conjugacy classes

4 Conjugacy test for the two elements in opt.candidates

In mode 0 the function returns a list of records containing components representative and centralizer . In
mode 4 it returns a conjugating element.

The optional record opt may contain the following components that will affect the algorithms behaviour:

pcgs
is a pcgs that will be used for the calculation. The attribute EANormalSeriesByPcgs must return an
appropriate series of normal subgroups with elementary abelian factors among them. The algorithm
will step down this series. In the case of the calculation of rational classes, it must be a pcgs refining
a central series.

candidates
is a list of elements for which canonical representatives are to be computed or for which a conjugacy
test is performed. They must be given in mode 4. In mode 0 a list of classes corresponding to
candidates is returned (which may contain duplicates). The representatives chosen are canonical
with respect to pcgs. The records returned also contain components operator such that (candidate
^ operator) =representative.

452 Chapter 43. Polycyclic Groups

consider
is a function consider(fhome,rep,cenp,K ,L). Here fhome is a home pcgs for the factor group F in
which the calculation currently takes place, rep is an element of the factor and cenp is a pcgs for the
centralizer of rep modulo K . In mode 0, when lifting from F/K to F/L (note: for efficiency reasons,
F can be different from G or L might be not trivial) this function is called before performing the
actual lifting and only those representatives for which it returns true are passed to the next level.
This permits for example the calculation of only those classes with small centralizers or classes of
restricted orders.

2 I CentralizerSizeLimitConsiderFunction(sz) F

returns a function (of the form func(fhome,rep,cen,K ,L))that can be used in ClassesSolvableGroup as
the consider component of the options record. It will restrict the lifting to those classes, for which the size
of the centralizer (in the factor) is at most sz .

See also SubgroupsSolvableGroup (37.21.3).

44 Pc Groups

PcGroups are polycyclic groups that use the polycyclic presentation for element arithmetic. This presentation
gives them a “natural” pcgs, the FamilyPcgs (see 44.1.1) with respect to which pcgs operations as described
in chapter 43 are particularly efficient.

Let G be a polycyclic group with pcgs P = (g1, . . . , gn) and corresponding relative orders (r1, . . . , rn). Recall
that the ri are positive integers or infinity and let I be the set of indices i with ri a positive integer. Then
G has a finite presentation on the generators g1, . . . , gn with relations of the following form.

gri
i = ga(i ,i ,i+1)

i+1 · · · ga(i ,i ,n)
n

for 1 ≤ i ≤ n and i ∈ I
g−1

i gj gi = ga(i ,j ,i+1)
i+1 · · · ga(i ,j ,n)

n

for 1 ≤ i < j ≤ n

For infinite groups we need additionally

g−1
i g−1

j gi = gb(i ,j ,i+1)
i+1 · · · gb(i ,j ,n)

n

for 1 ≤ i < j ≤ n and j 6∈ I
gi gj g−1

i = gc(i ,j ,i+1)
i+1 · · · gc(i ,j ,n)

n

for 1 ≤ i < j ≤ n and i 6∈ I
gi g−1

j g−1
i = gd(i ,j ,i+1)

i+1 · · · gd(i ,j ,n)
n

for 1 ≤ i < j ≤ n and i , j , 6∈ I

Here the right hand sides are assumed to be words in normal form; that is, for k ∈ I we have for all exponents
0 ≤ a(i , j , k), b(i , j , k), c(i , j , k), d(i , j , k) < rk .

A finite presentation of this type is called a power-conjugate presentation and a pc group is a polycyclic
group defined by a power-conjugate presentation. Instead of conjugates we could just as well work with
commutators and then the presentation would be called a power-commutator presentation. Both types
of presentation are abbreviated as pc presentation. Note that a pc presentation is a rewriting system.

Clearly, whenever a group G with pcgs P is given, then we can write down the corresponding pc presentation.
On the other hand, one may just write down a presentation on n abstract generators g1, . . . , gn with relations
of the above form and define a group H by this. Then the subgroups Ci = 〈gi , . . . , gn〉 of H form a subnormal
series whose factors are cyclic or trivial. In the case that all factors are non-trivial, we say that the pc
presentation of H is confluent. Note that GAP 4 can only work correctly with pc groups defined by a
confluent pc presentation.

At the current level of implementation GAP can only deal with finite pc groups. This will be extended in
near future.

Algorithms for pc groups use the methods for polycyclic groups described in chapter 43.

454 Chapter 44. Pc Groups

44.1 The family pcgs

Clearly, the generators of a power-conjugate presentation of a pc group G form a pcgs of the pc group. This
pcgs is called the family pcgs.

1 I FamilyPcgs(grp) A

2 I IsFamilyPcgs(pcgs) P

3 I InducedPcgsWrtFamilyPcgs(grp) A

4 I IsParentPcgsFamilyPcgs(pcgs) P

This property indicates that the pcgs pcgs is induced with respect to a family pcgs.

In GAP 3 the family pcgs had been the only pcgs allowed for a pc group. Note that this has changed in
GAP 4 where a pc group may have several independent polycyclic generating sequences.

However, the elementary operations for a non-family pcgs may not be as efficient as the elementary operations
for the family pcgs.

This can have a significant influence on the performance of algorithms for polycyclic groups. Many algorithms
require a pcgs that corresponds to an elementary abelian series (see 43.11.2) or even a special pcgs (see 43.13).
If the family pcgs has the required properties, it will be used for these purposes, if not GAP has to work
with respect to a new pcgs which is not the family pcgs and thus takes longer for elementary calculations
like ExponentsOfPcElement.

Therefore, if the family pcgs chosen for arithmetic is not of importance it might be worth to change to
another, nicer, pcgs to speed up calculations. This can be achieved, for example, by using the Range of the
isomorphism obtained by IsomorphismSpecialPcGroup (see 44.5.3).

44.2 Elements of pc groups

The elements of a pc group G are always represented as words in normal form with respect to the family pcgs
of G . Thus it is straightforward to compare elements of pc group, since this boils down to a mere comparison
of exponent vectors with respect to the family pcgs. In particular, the word problem is efficiently solvable
in pc groups.

1 I pcword = pcword
I pcword < pcword

However, multiplication and inversion of elements in pc groups is not as straightforward as in arbitrary
finitely presented groups where a simple concatenation or reversion of the corresponding words is sufficient
(but one cannot solve the word problem).

To multiply to elements in a pc group, we first concatenate the corresponding words and then use an
algorithm called collection to transform the new word into a word in normal form.

gap> g := FamilyPcgs(SmallGroup(24, 12));
Pcgs([f1, f2, f3, f4])
gap> g[4] * g[1];
f1*f3
gap> (g[2] * g[3])^-1;
f2^2*f3*f4

Section 4. Constructing Pc Groups 455

44.3 Pc groups versus fp groups

In theory pc groups are finitely presented groups. In practice the arithmetic in pc groups is different from
the arithmetic in fp groups. Thus for technical reasons the pc groups in GAP do not form a subcategory of
the fp groups and hence the methods for fp groups cannot be applied to pc groups in general.

1 I IsPcGroup(G) C

tests whether G is a pc group.

gap> G := SmallGroup(24, 12);
<pc group of size 24 with 4 generators>
gap> IsPcGroup(G);
true
gap> IsFpGroup(G);
false

Note that it is possible to convert a pc group to a fp group in GAP. The following function computes the
power-commutator presentation defined by pcgs. The string str can be used to give a name to the generators
of the fp group.

2 I IsomorphismFpGroupByPcgs(pcgs, str)

gap> p := FamilyPcgs(SmallGroup(24, 12));
Pcgs([f1, f2, f3, f4])
gap> iso := IsomorphismFpGroupByPcgs(p, "g");
[f1, f2, f3, f4] -> [g1, g2, g3, g4]
gap> F := Image(iso);
<fp group of size 24 on the generators [g1, g2, g3, g4]>
gap> RelatorsOfFpGroup(F);
[g1^2, g2^-1*g1^-1*g2*g1*g2^-1, g3^-1*g1^-1*g3*g1*g4^-1*g3^-1,
g4^-1*g1^-1*g4*g1*g4^-1*g3^-1, g2^3, g3^-1*g2^-1*g3*g2*g4^-1*g3^-1,
g4^-1*g2^-1*g4*g2*g3^-1, g3^2, g4^-1*g3^-1*g4*g3, g4^2]

44.4 Constructing Pc Groups

If necessary, you can supply GAP with a pc presentation by hand. (Although this is the most tedious way
to input a pc group.) Note that the pc presentation has to be confluent in order to work with the pc group
in GAP.

(If you have already a suitable pcgs in another representation, use PcGroupWithPcgs, see below 44.5.1.)

One way is to define a finitely presented group with a pc presentation in GAP and then convert this pre-
sentation into a pc group. Note that this does not work for arbitrary presentations of polycyclic groups, see
Chapter 45.13 for further information.

For performance reasons it is beneficial to enforce a “syllable” representation in the free group (see 35.6).

1 I PcGroupFpGroup(G) F

creates a PcGroup P from an FpGroup (see Chapter 45) G whose presentation is polycyclic. The resulting
group P has generators corresponding to the generators of G . They are printed in the same way as generators
of G , but they lie in a different family. If the pc presentation of G is not confluent, an error message occurs.

456 Chapter 44. Pc Groups

gap> F := FreeGroup(IsSyllableWordsFamily,"a","b","c","d");;
gap> a := F.1;; b := F.2;; c := F.3;; d := F.4;;
gap> rels := [a^2, b^3, c^2, d^2, Comm(b,a)/b, Comm(c,a)/d, Comm(d,a),
> Comm(c,b)/(c*d), Comm(d,b)/c, Comm(d,c)];
[a^2, b^3, c^2, d^2, b^-1*a^-1*b*a*b^-1, c^-1*a^-1*c*a*d^-1, d^-1*a^-1*d*a,
c^-1*b^-1*c*b*d^-1*c^-1, d^-1*b^-1*d*b*c^-1, d^-1*c^-1*d*c]

gap> G := F / rels;
<fp group on the generators [a, b, c, d]>
gap> H := PcGroupFpGroup(G);
<pc group of size 24 with 4 generators>

Equivalently to the above method one can initiate a collector of a pc group by hand and use it to define a
pc group. In GAP there are different collectors for different collecting strategies; at the moment, there are
two collectors to choose from: the single collector for finite pc groups and the combinatorial collector for
finite p-groups. See [Sim94] for further information on collecting strategies.

A collector is initiated by underlying free group to the pc presented group and the relative orders of the pc
series. Then one adds the right hand sides of the power and the commutator or conjugate relations one by
one. Note that omitted relators are assumed to be trivial.

2 I SingleCollector(fgrp, relorders)
I CombinatorialCollector(fgrp, relorders)

Then the right hand sides of the pc presentation have to be declared. Let f1, . . . , fn be the generators of the
underlying free group fgrp.

A combinatorial collector can only be set up for a finite p-group. Here, the relative orders relorders must all
be equal and a prime.

3 I SetConjugate(coll, j, i, w)

set the conjugate f fi
j to equal w where w is a word in fi+1, . . . , fn and i < j .

4 I SetCommutator(coll, j, i, w)

set the commutator of fj and fi to equal w where w is a word in fi+1, . . . , fn and i < j .

5 I SetPower(coll, i, w)

set the power f ri
i to equal w where w is a word in fi+1, . . . , fn .

Finally, the collector has to be converted to a group.

6 I GroupByRws(coll)
I GroupByRwsNC(coll)

creates a group from a rewriting system. In the first version it is checked whether the rewriting system is
confluent, in the second version this is assumed to be true.

7 I IsConfluent(G)

checks whether the pc group G has been build from a collector with a confluent power-commutator presen-
tation.

Section 5. Computing Pc Groups 457

gap> F := FreeGroup(IsSyllableWordsFamily, 2);;
gap> coll1 := SingleCollector(F, [2,3]);
<<single collector, 8 Bits>>
gap> SetConjugate(coll1, 2, 1, F.2);
gap> SetPower(coll1, 1, F.2);
gap> G1 := GroupByRws(coll1);
<pc group of size 6 with 2 generators>
gap> IsConfluent(G1);
true
gap> IsAbelian(G1);
true

gap> coll2 := SingleCollector(F, [2,3]);
<<single collector, 8 Bits>>
gap> SetConjugate(coll2, 2, 1, F.2^2);
gap> G2 := GroupByRws(coll2);
<pc group of size 6 with 2 generators>
gap> IsAbelian(G2);
false

With the above methods a pc group with arbitrary defining pcgs can be constructed. However, for almost
all applications within GAP we need to have a pc group whose defining pcgs is a prime order pcgs. Hence
the following functions are useful.

8 I IsomorphismRefinedPcGroup(G) A

returns an isomorphism from G onto an isomorphic PC group whose family pcgs is a prime order pcgs.

9 I RefinedPcGroup(G) A

returns the range of IsomorphismRefinedPcGroup(G).

44.5 Computing Pc Groups

Another possibility to get a pc group in GAP is to convert a polycyclic group given by some other repre-
sentation to a pc group. For finitely presented groups there are various quotient methods available. For all
other types of groups one can use the following functions.

1 I PcGroupWithPcgs(mpcgs) A

creates a new Pc group G whose family pcgs is isomorphic to the (modulo) pcgs mpcgs.

gap> G := Group((1,2,3), (3,4,1));;
gap> PcGroupWithPcgs(Pcgs(G));
<pc group of size 12 with 3 generators>

If a pcgs is only given by a list of pc elements, PcgsByPcSequence (see 43.3.1) can be used:

gap> G:=Group((1,2,3,4),(1,2));;
gap> p:=PcgsByPcSequence(FamilyObj(One(G)),
> [(3,4), (2,4,3), (1,4)(2,3), (1,3)(2,4)]);
Pcgs([(3,4), (2,4,3), (1,4)(2,3), (1,3)(2,4)])
gap> PcGroupWithPcgs(p);
<pc group of size 24 with 4 generators>

gap> G := SymmetricGroup(5);

458 Chapter 44. Pc Groups

Sym([1 .. 5])
gap> H := Subgroup(G, [(1,2,3,4,5), (3,4,5)]);
Group([(1,2,3,4,5), (3,4,5)])
gap> modu := ModuloPcgs(G, H);
Pcgs([(4,5)])
gap> PcGroupWithPcgs(modu);
<pc group of size 2 with 1 generators>

2 I IsomorphismPcGroup(G) A

returns an isomorphism from G onto an isomorphic PC group. The series chosen for this PC representation
depends on the method chosen. G must be a polycyclic group of any kind, for example a solvable permutation
group.

gap> G := Group((1,2,3), (3,4,1));;
gap> iso := IsomorphismPcGroup(G);
Pcgs([(2,4,3), (1,2)(3,4), (1,3)(2,4)]) -> [f1, f2, f3]
gap> H := Image(iso);
Group([f1, f2, f3])

3 I IsomorphismSpecialPcGroup(G) A

returns an isomorphism from G onto an isomorphic PC group whose family pcgs is a special pcgs. (This
can be beneficial to the runtime of calculations.) G may be a polycyclic group of any kind, for example a
solvable permutation group.

44.6 Saving a Pc Group

As printing a polycyclic group does not display the presentation, one cannot simply print a pc group to a
file to save it. For this purpose we need the following function.

1 I GapInputPcGroup(grp, string) F

gap> G := SmallGroup(24, 12);
<pc group of size 24 with 4 generators>
gap> PrintTo("save", GapInputPcGroup(G, "H"));
gap> Read("save");
#I A group of order 24 has been defined.
#I It is called H
gap> H = G;
false
gap> IdSmallGroup(H) = IdSmallGroup(G);
true

44.7 Operations for Pc Groups

All the operations described in Chapters 37 and 43 apply to a pc group. Nearly all methods for pc groups
are methods for groups with pcgs as described in Chapter 43. The only method with is special for pc groups
is a method to compute intersections of subgroups, since here a pcgs of a parent group is needed and this
can only by guaranteed within pc groups.

Section 8. 2-Cohomology and Extensions 459

44.8 2-Cohomology and Extensions

One of the most interesting applications of pc groups is the possibility to compute with extensions of these
groups by elementary abelian groups; that is, H is an extension of G by M , if there exists a normal subgroup
N in H which is isomorphic to M such that H /N is isomorphic to G .

Pc groups are particularly suited for such applications, since the 2-cohomology can be computed efficiently
for such groups and, moreover, extensions of pc groups by elementary abelian groups can be represented as
pc groups again.

To define the elementary abelian group M together with an action of G on M we consider M as a meataxe
module for G over a finite field (section 69.13.1 describes functions that can be used to obtain certain
modules). For further information on meataxe modules see Chapter 67. Note that the matrices defining the
module must correspond to the pcgs of the group G .

1 I TwoCoboundaries(G, M) O

returns the group of 2-coboundaries of a pc group G by the G-module M . The generators of M must
correspond to Pcgs(G). The group of coboundaries is given as vector space over the field underlying M .

2 I TwoCocycles(G, M) O

returns the 2-cocycles of a pc group G by the G-module M . The generators of M must correspond to Pcgs(G).
The operation returns a list of vectors over the field underlying M and the additive group generated by these
vectors is the group of 2-cocyles.

3 I TwoCohomology(G, M) O

returns a record defining the second cohomology group as factor space of the space of cocycles by the space
of coboundaries. G must be a pc group and the generators of M must correspond to the pcgs of G .

gap> G := SmallGroup(4, 2);
<pc group of size 4 with 2 generators>
gap> mats := List(Pcgs(G), x -> IdentityMat(1, GF(2)));
[[<a GF2 vector of length 1>], [<a GF2 vector of length 1>]]
gap> M := GModuleByMats(mats, GF(2));
rec(field := GF(2), isMTXModule := true, dimension := 1,
generators := [<an immutable 1x1 matrix over GF2>,

<an immutable 1x1 matrix over GF2>])
gap> TwoCoboundaries(G, M);
[]
gap> TwoCocycles(G, M);
[[Z(2)^0, 0*Z(2), 0*Z(2)], [0*Z(2), Z(2)^0, 0*Z(2)],
[0*Z(2), 0*Z(2), Z(2)^0]]

gap> cc := TwoCohomology(G, M);;
gap> cc.cohom;
<linear mapping by matrix, <vector space of dimension 3 over GF(2)> -> (GF(
2)^3)>

4 I Extensions(G, M) O

returns all extensions of G by the G-module M up to equivalence as pc groups.

5 I Extension(G, M , c) O
I ExtensionNC(G, M , c) O

returns the extension of G by the G-module M via the cocycle c as pc groups. The NC version does not
check the resulting group for consistence.

460 Chapter 44. Pc Groups

6 I SplitExtension(G, M)

returns the split extension of G by the G-module M .

7 I ModuleOfExtension(E)

returns the module of an extension E of G by M . This is the normal subgroup of E which corresponds to
M .

gap> G := SmallGroup(4, 2);;
gap> mats := List(Pcgs(G), x -> IdentityMat(1, GF(2)));;
gap> M := GModuleByMats(mats, GF(2));;
gap> co := TwoCocycles(G, M);;
gap> Extension(G, M, co[2]);
<pc group of size 8 with 3 generators>
gap> SplitExtension(G, M);
<pc group of size 8 with 3 generators>
gap> Extensions(G, M);
[<pc group of size 8 with 3 generators>,
<pc group of size 8 with 3 generators>,
<pc group of size 8 with 3 generators>,
<pc group of size 8 with 3 generators>,
<pc group of size 8 with 3 generators>,
<pc group of size 8 with 3 generators>,
<pc group of size 8 with 3 generators>,
<pc group of size 8 with 3 generators>]

gap> List(last, IdSmallGroup);
[[8, 5], [8, 2], [8, 3], [8, 3], [8, 2], [8, 2], [8, 3],
[8, 4]]

Note that the extensions returned by Extensions are computed up to equivalence, but not up to isomor-
phism.

There exists an action of the subgroup of compatible pairs in Aut(G)×Aut(M) which acts on the second
cohomology group. 2-cocycles which lie in the same orbit under this action define isomorphic extensions of
G . However, there may be isomorphic extensions of G corresponding to cocycles in different orbits.

8 I CompatiblePairs(G, M [, D]) F

returns the group of compatible pairs of the group G with the G-module M as subgroup of the direct
product of Aut(G) x Aut(M). Here Aut(M) is considered as subgroup of a general linear group. The optional
argument D should be a subgroup of Aut(G) x Aut(M). If it is given, then only the compatible pairs in D
are computed.

9 I ExtensionRepresentatives(G, M , P) O

returns all extensions of G by the G-module M up to equivalence under action of P where P has to be a
subgroup of the group of compatible pairs of G with M .

gap> G := SmallGroup(4, 2);;
gap> mats := List(Pcgs(G), x -> IdentityMat(1, GF(2)));;
gap> M := GModuleByMats(mats, GF(2));;
gap> A := AutomorphismGroup(G);;
gap> B := GL(1, 2);;
gap> D := DirectProduct(A, B);
<group of size 6 with 4 generators>
gap> P := CompatiblePairs(G, M, D);

Section 8. 2-Cohomology and Extensions 461

<group of size 6 with 2 generators>
gap> ExtensionRepresentatives(G, M, P);
[<pc group of size 8 with 3 generators>,
<pc group of size 8 with 3 generators>,
<pc group of size 8 with 3 generators>,
<pc group of size 8 with 3 generators>]

gap> Extensions(G, M);
[<pc group of size 8 with 3 generators>,
<pc group of size 8 with 3 generators>,
<pc group of size 8 with 3 generators>,
<pc group of size 8 with 3 generators>,
<pc group of size 8 with 3 generators>,
<pc group of size 8 with 3 generators>,
<pc group of size 8 with 3 generators>,
<pc group of size 8 with 3 generators>]

See also the forthcoming GAP package on Group Construction Methods.

Finally we note that for the computation of split extensions it is not necessary that M must correspond to
an elementary abelian group. Here it is possible to construct split extensions of arbitrary pc groups.

10 I SplitExtensions(G, aut, N)

returns the split extensions of the pc group G by the pc group N . aut should be a homomorphism from G
into Aut(N).

In the following example we construct the holomorph of Q8 as split extension of Q8 by S4.

gap> N := SmallGroup(8, 4);
<pc group of size 8 with 3 generators>
gap> IsAbelian(N);
false
gap> A := AutomorphismGroup(N);
<group of size 24 with 4 generators>
gap> iso := IsomorphismPcGroup(A);
CompositionMapping(Pcgs([(2,6,5,3), (1,3,5)(2,4,6), (2,5)(3,6), (1,4)(3,6)
]) -> [f1, f2, f3, f4], <action isomorphism>)

gap> H := Image(iso);
Group([f1, f2, f3, f4])
gap> G := Subgroup(H, Pcgs(H){[1,2]});
Group([f1, f2])
gap> inv := InverseGeneralMapping(iso);
[f1*f2, f2^2*f3, f4, f3] -> [Pcgs([f1, f2, f3]) -> [f1*f2, f2, f3],
Pcgs([f1, f2, f3]) -> [f2, f1*f2, f3],
Pcgs([f1, f2, f3]) -> [f1*f3, f2, f3],
Pcgs([f1, f2, f3]) -> [f1, f2*f3, f3]]

gap> K := SplitExtension(G, inv, N);
<pc group of size 192 with 7 generators>

462 Chapter 44. Pc Groups

44.9 Coding a Pc Presentation

If one wants to store a large number of pc groups, then it can be useful to store them in a compressed
format, since pc presentations can be space consuming. Here we introduce a method to code and decode pc
presentations by integers. To decode a given code the size of the underlying pc group is needed as well. For
the full definition and the coding and decoding procedures see [BE99a]. This method is used with the small
groups library, see Section 48.7.

1 I CodePcgs(pcgs) F

returns the code corresponding to pcgs.

2 I CodePcGroup(G) F

returns the code for a pcgs of G .

3 I PcGroupCode(code, size) F

returns a pc group of size size corresponding to code. The argument code must be a valid code for a pcgs,
otherwise anything may happen. Valid codes are usually obtained by one of the functions CodePcgs or
CodePcGroup.

4 I PcGroupCodeRec(rec) F

Here rec needs to have entries .code and .order. Then PcGroupCode returns a pc group of size .order
corresponding to .code.

gap> G := SmallGroup(24, 12);;
gap> p := Pcgs(G);;
gap> code := CodePcgs(p);
5790338948
gap> H := PcGroupCode(code, 24);
<pc group of size 24 with 4 generators>
gap> map := GroupHomomorphismByImages(G, H, p, FamilyPcgs(H));
Pcgs([f1, f2, f3, f4]) -> Pcgs([f1, f2, f3, f4])
gap> IsBijective(map);
true

44.10 Random Isomorphism Testing

The generic isomorphism test for groups may be applied to pc groups as well. However, this test is often
quite time consuming. Here we describe another method to test isomorphism by a probabilistic approach.

This method takes a list of groups and a non-negative integer as input. The output is a sublist of the input
list where only isomorphic copies have been removed. The integer gives a certain amount of control over the
probability to detect all isomorphisms. If it is 0, then nothing will be done at all. The larger the integer is,
the larger is the probability of finding all isomorphisms. However, due to the underlying method we can not
guarantee that the algorithm finds all isomorphisms, no matter how large n is.

1 I RandomIsomorphismTest(list, n) F

list must be a list of code records of pc groups and n a non-negative integer. Returns a sublist of list where
isomorphic copies detected by the probabilistic test have been removed.

45
Finitely

Presented Groups

A finitely presented group (in short: FpGroup) is a group generated by a finite set of abstract genera-
tors subject to a finite set of relations that these generators satisfy. Every finite group can be represented
as a finitely presented group, though in almost all cases it is computationally much more efficient to work
in another representation (even the regular permutation representation).

Finitely presented groups are obtained by factoring a free group by a set of relators. Their elements know
about this presentation and compare accordingly.

So to create a finitely presented group you first have to generate a free group (see 35.2.1 for details). Then
a list of relators is constructed as words in the generators of the free group and is factored out to obtain the
finitely presented group. Its generators are the images of the free generators. So for example to create the
group

〈a, b | a2, b3, (a · b)5〉

you can use the following commands:

gap> f := FreeGroup("a", "b");;
gap> g := f / [f.1^2, f.2^3, (f.1*f.2)^5];
<fp group on the generators [a, b]>

Note that you cannot call the generators by their names. These names are not variables, but just display
figures. So, if you want to access the generators by their names, you first have to introduce the respective
variables and to assign the generators to them.

gap> GeneratorsOfGroup(g);
[a, b]
gap> a;
Variable: ’a’ must have a value

gap> a := g.1;; b := g.2;; # assign variables
gap> GeneratorsOfGroup(g);
[a, b]
gap> a in f;
false
gap> a in g;
true

To relieve you of the tedium of typing the above assignments, when working interactively, there is the
function AssignGeneratorVariables (see 35.2.5).

Note that the generators of the free group are different from the generators of the FpGroup (even though
they are displayed by the same names). That means that words in the generators of the free group are not
elements of the finitely presented group. Vice versa elements of the FpGroup are not words.

464 Chapter 45. Finitely Presented Groups

gap> a*b = b*a;
false
gap> (b^2*a*b)^2 = a^0;
true

Such calculations comparing elements of an FpGroup may run into problems: There exist finitely presented
groups for which no algorithm exists (it is known that no such algorithm can exist) that will tell for two
arbitrary words in the generators whether the corresponding elements in the FpGroup are equal.

Therefore the methods used by GAP to compute in finitely presented groups may run into warning errors,
run out of memory or run forever. If the FpGroup is (by theory) known to be finite the algorithms are
guaranteed to terminate (if there is sufficient memory available), but the time needed for the calculation
cannot be bounded a priori. See 45.5 and 45.15.

gap> (b^2*a*b)^2;
b^2*a*b^3*a*b
gap> a^0;
<identity ...>

A consequence of our convention is that elements of finitely presented groups are not printed in a unique
way. See also SetReducedMultiplication.

1 I IsSubgroupFpGroup(H) C

returns true if H is a finitely presented group or a subgroup of a finitely presented group.

2 I IsFpGroup(G) F

is a synonym for IsSubgroupFpGroup(G) and IsGroupOfFamily(G).

Free groups are a special case of finitely presented groups, namely finitely presented groups with no relators.

Another special case are groups given by polycyclic presentations. GAP uses a special representation for
these groups which is created in a different way. See chapter 44 for details.

3 I InfoFpGroup V

The info class for functions dealing with finitely presented groups is InfoFpGroup.

45.1 Creating Finitely Presented Groups

1 I F/rels

creates a finitely presented group given by the presentation 〈gens | rels〉 where gens are the generators of the
free group F . Note that relations are entered as relators, i.e., as words in the generators of the free group.
To enter an equation use the quotient operator, i.e., for the relation ab = ab one has to enter a^b/(a*b).

gap> f := FreeGroup(3);;
gap> f / [f.1^4, f.2^3, f.3^5, f.1*f.2*f.3];
<fp group on the generators [f1, f2, f3]>

2 I FactorGroupFpGroupByRels(G, elts) F

returns the factor group G/N of G by the normal closure N of elts where elts is expected to be a list of
elements of G .

Section 3. Preimages in the Free Group 465

45.2 Comparison of Elements of Finitely Presented Groups

1 I a = b

Two elements of a finitely presented group are equal if they are equal in this group. Nevertheless they may
be represented as different words in the generators. Because of the fundamental problems mentioned in the
introduction to this chapter such a test may take very long and cannot be guaranteed to finish.

The method employed by GAP for such an equality test use the underlying finitely presented group. First
(unless this group is known to be infinite) GAP tries to find a faithful permutation representation by a
bounded Todd-Coxeter. If this fails, a Knuth-Bendix (see 51.5) is attempted and the words are compared
via their normal form.

If only elements in a subgroup are to be tested for equality it thus can be useful to translate the problem in
a new finitely presented group by rewriting (see 45.10.1);

The equality test of elements underlies many “basic” calculations, such as the order of an element, and the
same type of problems can arise there. In some cases, working with rewriting systems can still help to solve
the problem. The “kbmag’ package provides such functionality, see the package manual for further details.

2 I a < b

Problems get even worse when trying to compute a total ordering on the elements of a finitely presented
group. As any ordering that is guaranteed to be reproducible in different runs of GAP or even with different
groups given by syntactically equal presentations would be prohibitively expensive to implement, the ordering
of elements is depending on a method chosen by GAP and not guaranteed to stay the same when repeating
the construction of an FpGroup. The only guarantee given for the < ordering for such elements is that it will
stay the same for one family during its lifetime. The attribute FpElmComparisonMethod is used to obtain a
comparison function for a family of FpGroup elements.

3 I FpElmComparisonMethod(fam) A

If fam is the elements family of a finitely presented group this attribute returns a function smaller(left,
right) that will be used to compare elements in fam.

4 I SetReducedMultiplication(f) F
I SetReducedMultiplication(e) F
I SetReducedMultiplication(fam) F

for an fp group f , an element e of it or the family fam of its elements this function will force immediate
reduction when multiplying, keeping words short at extra cost per multiplication.

45.3 Preimages in the Free Group

1 I FreeGroupOfFpGroup(G) A

returns the underlying free group for the finitely presented group G . This is the group generated by the free
generators provided by FreeGeneratorsOfFpGroup(G).

2 I FreeGeneratorsOfFpGroup(G) A
I FreeGeneratorsOfWholeGroup(U) O

FreeGeneratorsOfFpGroup returns the underlying free generators corresponding to the generators of the
finitely presented group G which must be a full fp group.

FreeGeneratorsOfWholeGroup also works for subgroups of an fp group and returns the free generators of
the full group that defines the family.

3 I RelatorsOfFpGroup(G) A

returns the relators of the finitely presented group G as words in the free generators provided by FreeGen-
eratorsOfFpGroup(G).

466 Chapter 45. Finitely Presented Groups

gap> f := FreeGroup("a", "b");;
gap> g := f / [f.1^5, f.2^2, f.1^f.2*f.1];
<fp group on the generators [a, b]>
gap> Size(g);
10
gap> FreeGroupOfFpGroup(g) = f;
true
gap> FreeGeneratorsOfFpGroup(g);
[a, b]
gap> RelatorsOfFpGroup(g);
[a^5, b^2, b^-1*a*b*a]

Elements of a finitely presented group are not words, but are represented using a word from the free group
as representative. The following two commands obtain this representative, respectively create an element in
the finitely presented group.

4 I UnderlyingElement(elm) O

Let elm be an element of a group whose elements are represented as words with further properties. Then
UnderlyingElement returns the word from the free group that is used as a representative for elm.

gap> w := g.1*g.2;
a*b
gap> IsWord(w);
false
gap> ue := UnderlyingElement(w);
a*b
gap> IsWord(ue);
true

5 I ElementOfFpGroup(fam, word) O

If fam is the elements family of a finitely presented group and word is a word in the free generators
underlying this finitely presented group, this operation creates the element with the representative word in
the free group.

gap> ge := ElementOfFpGroup(FamilyObj(g.1), f.1*f.2);
a*b
gap> ge in f;
false
gap> ge in g;
true

45.4 Operations for Finitely Presented Groups

Finitely presented groups are groups and so all operations for groups should be applicable to them (though
not necessarily efficient methods are available.) Most methods for finitely presented groups rely on coset
enumeration. See 45.5 for details.

The command IsomorphismPermGroup can be used to obtain a faithful permutation representation, if such
a representation of small degree exists. (Otherwise it might run very long or fail.)

Section 5. Coset Tables and Coset Enumeration 467

gap> f := FreeGroup("a", "b");
<free group on the generators [a, b]>
gap> g := f / [f.1^2, f.2^3, (f.1*f.2)^5];
<fp group on the generators [a, b]>
gap> h := IsomorphismPermGroup(g);
[a, b] -> [(1,2)(4,5), (2,3,4)]
gap> u:=Subgroup(g,[g.1*g.2]);;rt:=RightTransversal(g,u);
RightTransversal(<fp group of size 60 on the generators [a, b]>,Group(
[a*b]))
gap> Image(ActionHomomorphism(g,rt,OnRight));
Group([(1,2)(3,4)(5,7)(6,8)(9,10)(11,12), (1,3,2)(4,5,6)(7,8,9)(10,11,12)])

45.5 Coset Tables and Coset Enumeration

Coset enumeration (see [Neu82] for an explanation) is one of the fundamental tools for the examination of
finitely presented groups. This section describes GAP functions that can be used to invoke a coset enumer-
ation.

Note that in addition to the built-in coset enumerator there is the GAP package ACE. Moreover, GAP provides
an interactive Todd-Coxeter in the GAP package ITC which is based on the XGAP package.

1 I CosetTable(G, H) O

returns the coset table of the finitely presented group G on the cosets of the subgroup H .

Basically a coset table is the permutation representation of the finitely presented group on the cosets of a
subgroup (which need not be faithful if the subgroup has a nontrivial core). Most of the set theoretic and
group functions use the regular representation of G , i.e., the coset table of G over the trivial subgroup.

The coset table is returned as a list of lists. For each generator of G and its inverse the table contains a
generator list. A generator list is simply a list of integers. If l is the generator list for the generator g and
if l[i] = j then generator g takes the coset i to the coset j by multiplication from the right. Thus the
permutation representation of G on the cosets of H is obtained by applying PermList to each generator list
(see 40.4.2).

The coset table is standard (see below).

For finitely presented groups, a coset table is computed by a Todd-Coxeter coset enumeration. Note that you
may influence the performance of that enumeration by changing the values of the global variables Coset-
TableDefaultLimit and CosetTableDefaultMaxLimit described below and that the options described
under CosetTableFromGensAndRels are recognized.

gap> tab := CosetTable(g, Subgroup(g, [g.1, g.2*g.1*g.2*g.1*g.2^-1]));
[[1, 4, 5, 2, 3], [1, 4, 5, 2, 3], [2, 3, 1, 4, 5], [3, 1, 2, 4, 5]]
gap> List(last, PermList);
[(2,4)(3,5), (2,4)(3,5), (1,2,3), (1,3,2)]
gap> PrintArray(TransposedMat(tab));
[[1, 1, 2, 3],
[4, 4, 3, 1],
[5, 5, 1, 2],
[2, 2, 4, 4],
[3, 3, 5, 5]]

The last printout in the preceding example provides the coset table in the form in which it is usually used
in hand calculations: The rows correspond to the cosets, the columns correspond to the generators and
their inverses in the ordering g1, g−1

1 , g2, g−1
2 . (See section 45.6 for a description on the way the numbers are

assigned.)

468 Chapter 45. Finitely Presented Groups

2 I TracedCosetFpGroup(tab, word, pt) F

Traces the coset number pt under the word word through the coset table tab. (Note: word must be in the
free group, use UnderlyingElement if in doubt.)

gap> TracedCosetFpGroup(tab,UnderlyingElement(g.1),2);
4

3 I FactorCosetAction(G, H)
I FactorCosetOperation(G, H)

returns the action of G on the cosets of the subgroup H of G .

gap> u := Subgroup(g, [g.1, g.1^g.2]);
Group([a, b^-1*a*b])
gap> FactorCosetAction(g, u);
[a, b] -> [(2,4)(5,6), (1,2,3)(4,5,6)]

4 I CosetTableBySubgroup(G, H) O

returns a coset table for the action of G on the cosets of H . The columns of the table correspond to the
GeneratorsOfGroup(G).

5 I CosetTableFromGensAndRels(fgens, grels, fsgens) F

is an internal function which is called by the functions CosetTable, CosetTableInWholeGroup and others.
It is, in fact, the proper working horse that performs a Todd-Coxeter coset enumeration. fgens must be a set
of free generators and grels a set of relators in these generators. fsgens are subgroup generators expressed
as words in these generators. The function returns a coset table with respect to fgens.

CosetTableFromGensAndRels will call TCENUM.CosetTableFromGensAndRels. This makes it possible to
replace the built-in coset enumerator with another one by assigning TCENUM to another record.

The library version which is used by default performs a standard Felsch strategy coset enumeration. You can
call this function explicitly as GAPTCENUM.CosetTableFromGensAndRels even if other coset enumerators are
installed.

The expected parameters are

fgens
generators of the free group F

grels
relators as words in F

fsgens
subgroup generators as words in F .

CosetTableFromGensAndRels processes two options (see chapter 8):

max
The limit of the number of cosets to be defined. If the enumeration does not finish with this number
of cosets, an error is raised and the user is asked whether she wants to continue. The default value
is the value given in the variable CosetTableDefaultMaxLimit. (Due to the algorithm the actual
limit used can be a bit higher than the number given.)

silent
if set to true the algorithm will not raise the error mentioned under option max but silently return
fail. This can be useful if an enumeration is only wanted unless it becomes too big.

Section 5. Coset Tables and Coset Enumeration 469

6 I CosetTableDefaultMaxLimit V

is the default limit for the number of cosets allowed in a coset enumeration.

A coset enumeration will not finish if the subgroup does not have finite index, and even if it has it may
take many more intermediate cosets than the actual index of the subgroup is. To avoid a coset enumera-
tion “running away” therefore GAP has a “safety stop” built in. This is controlled by the global variable
CosetTableDefaultMaxLimit.

If this number of cosets is reached, GAP will issue an error message and prompt the user to either continue
the calculation or to stop it. The default value is 256000.

See also the description of the options to CosetTableFromGensAndRels.

gap> f := FreeGroup("a", "b");;
gap> u := Subgroup(f, [f.2]);
Group([b])
gap> Index(f, u);
Error, the coset enumeration has defined more than 256000 cosets
called from

TCENUM.CosetTableFromGensAndRels(fgens, grels, fsgens) called from
CosetTableFromGensAndRels(fgens, grels, fsgens) called from
TryCosetTableInWholeGroup(H) called from
CosetTableInWholeGroup(H) called from
IndexInWholeGroup(H) called from
...
Entering break read-eval-print loop ...
type ’return;’ if you want to continue with a new limit of 512000 cosets,
type ’quit;’ if you want to quit the coset enumeration,
type ’maxlimit := 0; return;’ in order to continue without a limit
brk> quit;

At this point, a break-loop (see Section 6.4) has been entered. The line beginning Error tells you why this
occurred. The next seven lines, occur if OnBreak has its default value of Where (see 6.4.3) and explains,
in this case, how GAP came to be doing a coset enumeration. Then you are give a number of options of
how to escape the break-loop: you can either continue the calculation with a larger number of permitted
cosets, stop the calculation if you don’t expect the enumeration to finish (like in the example above), or
continue without a limit on the number of cosets. (Choosing the first option will, of course, land you back
in a break-loop. Try it!)

Setting CosetTableDefaultMaxLimit (or the max option value, for any function that invokes a coset enu-
meration) to infinity (or to 0) will force all coset enumerations to continue until they either get a result
or exhaust the whole available space. For example, each of

gap> CosetTableDefaultMaxLimit := 0;;
gap> Index(f, u);

or

gap> Index(f, u : max := 0);

have essentially the same effect as choosing the third option (typing: maxlimit := 0; return;) at the brk>
prompt above (instead of quit;).

7 I CosetTableDefaultLimit V

is the default number of cosets with which any coset table is initialized before doing a coset enumeration.

470 Chapter 45. Finitely Presented Groups

The function performing this coset enumeration will automatically extend the table whenever necessary
(as long as the number of cosets does not exceed the value of CosetTableDefaultMaxLimit), but this is
an expensive operation. Thus, if you change the value of CosetTableDefaultLimit, you should set it to
a number of cosets that you expect to be sufficient for your subsequent coset enumerations. On the other
hand, if you make it too large, your job will unnecessarily waste a lot of space.

The default value of CosetTableDefaultLimit is 1000.

8 I MostFrequentGeneratorFpGroup(G) F

is an internal function which is used in some applications of coset table methods. It returns the first of those
generators of the given finitely presented group G which occur most frequently in the relators.

9 I IndicesInvolutaryGenerators(G) A

returns the indices of those generators of the finitely presented group G which are known to be involutions.
This knowledge is used by internal functions to improve the performance of coset enumerations.

45.6 Standardization of coset tables

For any two coset numbers i and j with i < j the first occurrence of i in a coset table precedes the first
occurrence of j with respect to the usual row-wise ordering of the table entries. Following the notation of
Charles Sims’ book on computation with finitely presented groups [Sim94] we call such a table a standard
coset table.

The table entries which contain the first occurrences of the coset numbers i > 1 recursively provide for
each i a representative of the corresponding coset in form of a unique word wi in the generators and inverse
generators of G . The first coset (which is H itself) can be represented by the empty word w1. A coset table
is standard if and only if the words w1, w2, ... are length-plus-lexicographic ordered (as defined in [Sim94]),
for short: lenlex.

We would like to warn you that this standardization of coset tables is different from the concept that we have
used in earlier GAP versions. That old concept ignored the columns that correspond to inverse generators
and hence only considered words in the generators of G . We will call the old standard the semilenlex
standard as it would also work in the case of semigroups where no inverses of the generators are known.

We have changed the convention from the semilenlex standard to the lenlex standard because the definiton
of a standard coset table in Sims’ book tends to become a kind of international standard. However, for
reasons of upward compatibility GAP still offers the possibility to switch back to the old convention by
just changing the value of the global variable CosetTableStandard from its default value "lenlex" to
"semilenlex". Then all implicit standardizations of coset tables will follow the old convention. Setting the
value of CosetTableStandard back to "lenlex" again means switching back to the new convention.

1 I CosetTableStandard V

specifies the definiton of a standard coset table. It is used whenever coset tables or augmented coset tables
are created. Its value may be "lenlex" or "semilenlex". If it is "lenlex" coset tables will be standardized
using all their columns as defined in Charles Sims’ book (this is the new default standard of GAP). If it
is "semilenlex" they will be standardized using only their generator columns (this was the original GAP
standard). The default value of CosetTableStandard is "lenlex".

Independent of the current value of CosetTableStandard there is the possibility to standardize (or re-
standardize) a coset table at any time using the following function.

2 I StandardizeTable(table, standard) F

standardizes the given coset table table. The second argument is optional. It defines the standard to be used,
its values may be "lenlex" or "semilenlex" specifying the new or the old convention, respectively. If no

Section 8. Augmented Coset Tables and Rewriting 471

value for the parameter standard is provided the function will use the global variable CosetTableStandard
instead. Note that the function alters the given table, it does not create a copy.

gap> StandardizeTable(tab, "semilenlex");
gap> PrintArray(TransposedMat(tab));
[[1, 1, 2, 4],
[3, 3, 4, 1],
[2, 2, 3, 3],
[5, 5, 1, 2],
[4, 4, 5, 5]]

45.7 Coset tables for subgroups in the whole group
1 I CosetTableInWholeGroup(H) A

I TryCosetTableInWholeGroup(H) O

is equivalent to CosetTable(G,H) where G is the (unique) finitely presented group such that H is a
subgroup of G . It overrides a silent option (see 45.5.5) with false.
The variant TryCosetTableInWholeGroup does not override the silent option with false in case a coset
table is only wanted if not too expensive. It will store a result that is not fail in the attribute Coset-
TableInWholeGroup.

2 I SubgroupOfWholeGroupByCosetTable(fpfam, tab) F

takes a family of an fp group and a coset table tab and returns the subgroup of fam!.wholeGroup defined by
this coset table.
See also CosetTableBySubgroup (45.5.4).

45.8 Augmented Coset Tables and Rewriting
1 I AugmentedCosetTableInWholeGroup(H [, gens]) O

For a subgroup H of a finitely presented group, this function returns an augmented coset table. If a generator
set gens is given, it is guaranteed that gens will be a subset of the primary and secondary subgroup generators
of this coset table.
It is mutable so we are permitted to add further entries. However existing entries may not be changed. Any
entries added however should correspond to the subgroup only and not to an homomorphism.

2 I AugmentedCosetTableMtc(G, H , type, string) F

is an internal function used by the subgroup presentation functions described in 46.3. It applies a Modified
Todd-Coxeter coset representative enumeration to construct an augmented coset table (see 46.3) for the
given subgroup H of G . The subgroup generators will be named string1, string2,
The function accepts the options max and silent as described for the function CosetTableFromGensAndRels
(see 45.5.5).

3 I AugmentedCosetTableRrs(G, table, type, string) F

is an internal function used by the subgroup presentation functions described in 46.3. It applies the Reduced
Reidemeister-Schreier method to construct an augmented coset table for the subgroup of G which is defined
by the given coset table table. The new subgroup generators will be named string1, string2,

4 I RewriteWord(aug, word) F

RewriteWord rewrites word (which must be a word in the underlying free group with respect to which the
augmented coset table aug is given) in the subgroup generators given by the augmented coset table aug . It
returns a Tietze-type word (i.e. a list of integers), referring to the primary and secondary generators of aug .
If word is not contained in the subgroup, fail is returned.

472 Chapter 45. Finitely Presented Groups

45.9 Low Index Subgroups

1 I LowIndexSubgroupsFpGroupIterator(G[, H], index[, excluded]) O
I LowIndexSubgroupsFpGroup(G[, H], index[, excluded]) O

These functions compute representatives of the conjugacy classes of subgroups of the finitely presented group
G that contain the subgroup H of G and that have index less than or equal to index .

LowIndexSubgroupsFpGroupIterator returns an iterator (see 28.7) that can be used to run over these
subgroups, and LowIndexSubgroupsFpGroup returns the list of these subgroups. If one is interested only in
one or a few subgroups up to a given index then preferably the iterator should be used.

If the optional argument excluded has been specified, then it is expected to be a list of words in the free
generators of the underlying free group of G , and LowIndexSubgroupsFpGroup returns only those subgroups
of index at most index that contain H , but do not contain any conjugate of any of the group elements defined
by these words.

If not given, H defaults to the trivial subgroup.

The algorithm used finds the requested subgroups by systematically running through a tree of all potential
coset tables of G of length at most index (where it skips all branches of that tree for which it knows in
advance that they cannot provide new classes of such subgroups). The time required to do this depends, of
course, on the presentation of G , but in general it will grow exponentially with the value of index . So you
should be careful with the choice of index .

gap> li:=LowIndexSubgroupsFpGroup(g, TrivialSubgroup(g), 10);
[Group(<fp, no generators known>), Group(<fp, no generators known>),
Group(<fp, no generators known>), Group(<fp, no generators known>)]

By default, the algorithm computes no generating sets for the subgroups. This can be enforcd with Gener-
atorsOfGroup:

gap> GeneratorsOfGroup(li[2]);
[a, b*a*b^-1]

If we are interested just in one (proper) subgroup of index at most 10, we can use the function that returns
an iterator. The first subgroup found is the group itself, except if a list of excluded elements is entered (see
below), so we look at the second subgroup.

gap> iter:= LowIndexSubgroupsFpGroupIterator(g, 10);;
gap> s1:= NextIterator(iter);; Index(g, s1);
1
gap> IsDoneIterator(iter);
false
gap> s2:= NextIterator(iter);; s2 = li[2];
true

As an example for an application of the optional parameter excluded , we compute all conjugacy classes of
torsion free subgroups of index at most 24 in the group G = 〈x , y , z | x 2, y4, z 3, (xy)3, (yz)2, (xz)3〉. It is
know from theory that each torsion element of this group is conjugate to a power of x , y , z , xy , xz , or yz .
(Note that this includes conjugates of y2.)

Section 10. Converting Groups to Finitely Presented Groups 473

gap> F := FreeGroup("x", "y", "z");;
gap> x := F.1;; y := F.2;; z := F.3;;
gap> G := F / [x^2, y^4, z^3, (x*y)^3, (y*z)^2, (x*z)^3];;
gap> torsion := [x, y, y^2, z, x*y, x*z, y*z];;
gap> SetInfoLevel(InfoFpGroup, 2);
gap> lis := LowIndexSubgroupsFpGroup(G, TrivialSubgroup(G), 24, torsion);;
#I LowIndexSubgroupsFpGroup called
#I class 1 of index 24 and length 8
#I class 2 of index 24 and length 24
#I class 3 of index 24 and length 24
#I class 4 of index 24 and length 24
#I class 5 of index 24 and length 24
#I LowIndexSubgroupsFpGroup done. Found 5 classes
gap> SetInfoLevel(InfoFpGroup, 0);

If a particular image group is desired, the operation GQuotients (see 45.13) can be useful as well.

45.10 Converting Groups to Finitely Presented Groups

1 I IsomorphismFpGroup(G) A

returns an isomorphism from the given finite group G to a finitely presented group isomorphic to G . The
function first chooses a set of generators of G and then computes a presentation in terms of these
generators.

gap> g := Group((2,3,4,5), (1,2,5));;
gap> iso := IsomorphismFpGroup(g);
[(2,5,4,3), (1,2,3,4,5), (1,3,2,4,5)] -> [F1, F2, F3]
gap> fp := Image(iso);
<fp group of size 120 on the generators [F1, F2, F3]>
gap> RelatorsOfFpGroup(fp);
[F1^2*F2^2*F3*F2^-1, F2^-1*F1^-1*F2*F1*F2^-2*F3, F3^-1*F1^-1*F3*F1*F3^-1,
F2^5*F3^-5, F2^5*F3^-1*F2^-1*F3^-1*F2^-1, F2^-2*F3^2*F2^-2*F3^2]

2 I IsomorphismFpGroupByGenerators(G, gens[, string]) A
I IsomorphismFpGroupByGeneratorsNC(G, gens, string) A

returns an isomorphism from a finite group G to a finitely presented group F isomorphic to G . The generators
of F correspond to the generators of G given in the list gens. If string is given it is used to name the
generators of the finitely presented group.

The NC version will avoid testing whether the elements in gens generate G .

gap> SetInfoLevel(InfoFpGroup, 1);
gap> iso := IsomorphismFpGroupByGenerators(g, [(1,2), (1,2,3,4,5)]);
#I the image group has 2 gens and 5 rels of total length 39
[(1,2), (1,2,3,4,5)] -> [F1, F2]
gap> fp := Image(iso);
<fp group of size 120 on the generators [F1, F2]>
gap> RelatorsOfFpGroup(fp);
[F1^2, F2^5, F2^-1*F1*F2^-1*F1*F2^-1*F1*F2^-1*F1,
F1*F2^-1*F1*F2*F1*F2^-1*F1*F2*F1*F2^-1*F1*F2,
F1*F2^2*F1*F2^-2*F1*F2^2*F1*F2^-2]

The main task of the function IsomorphismFpGroupByGenerators is to find a presentation of G in the
provided generators gens. In the case of a permutation group G it does this by first constructing a stabilizer

474 Chapter 45. Finitely Presented Groups

chain of G and then it works through that chain from the bottom to the top, recursively computing a
presentation for each of the involved stabilizers. The method used is essentially an implementation of John
Cannon’s multi-stage relations-finding algorithm as described in [Neu82] (see also [Can73] for a more graph
theoretical description). Moreover, it makes heavy use of Tietze transformations in each stage to avoid an
explosion of the total length of the relators.

Note that because of the random methods involved in the construction of the stabilizer chain the resulting
presentations of G will in general be different for repeated calls with the same arguments.

gap> M12 := MathieuGroup(12);
Group([(1,2,3,4,5,6,7,8,9,10,11), (3,7,11,8)(4,10,5,6),
(1,12)(2,11)(3,6)(4,8)(5,9)(7,10)])

gap> gens := GeneratorsOfGroup(M12);;
gap> iso := IsomorphismFpGroupByGenerators(M12, gens);;
#I the image group has 3 gens and 23 rels of total length 680
gap> iso := IsomorphismFpGroupByGenerators(M12, gens);;
#I the image group has 3 gens and 22 rels of total length 604

Also in the case of a permutation group G , the function IsomorphismFpGroupByGenerators supports the
option method that can be used to modify the strategy. The option method may take the following values.

method := "regular"
This may be specified for groups of small size, up to 105 say. It implies that the function first
constructs a regular representation R of G and then a presentation of R. In general, this presentation
will be much more concise than the default one, but the price is the time needed for the construction
of R.

method := ["regular", bound]
This is a refinement of the previous possibility. In this case, bound should be an integer, and if so
the method "regular" as described above is applied to the largest stabilizer in the stabilizer chain
of G whose size does not exceed the given bound and then the multi-stage algorithm is used to work
through the chain from that subgroup to the top.

method := "fast"
This chooses an alternative method which essentially is a kind of multi-stage algorithm for a stabilizer
chain of G but does not make any attempt do reduce the number of relators as it is done in Cannon’s
algorithm or to reduce their total length. Hence it is often much faster than the default method,
but the total length of the resulting presentation may be huge.

method := "default"
This simply means that the default method shall be used, which is the case if the option method is
not given a value.

gap> iso := IsomorphismFpGroupByGenerators(M12, gens : method := "regular");;
#I the image group has 3 gens and 11 rels of total length 92
gap> iso := IsomorphismFpGroupByGenerators(M12, gens : method := "fast");;
#I the image group has 3 gens and 137 rels of total length 3279

Though the option method := "regular" is only checked in the case of a permutation group it also affects
the performance and the results of the function IsomorphismFpGroupByGenerators for other groups, e.
g. for matrix groups. This happens because, for these groups, the function first calls the function Nice-
Monomorphism to get a bijective action homomorphism from G to a suitable permutation group, P say, and
then, recursively, calls itself for the group P so that now the option becomes relevant.

Section 11. New Presentations and Presentations for Subgroups 475

gap> G := ImfMatrixGroup(5, 1, 3);
ImfMatrixGroup(5,1,3)
gap> gens := GeneratorsOfGroup(G);
[[[-1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 0, 1, 0],

[-1, -1, -1, -1, 2], [-1, 0, 0, 0, 1]],
[[0, 1, 0, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, 1, 0],

[1, 0, 0, 0, 0], [0, 0, 0, 0, 1]]]
gap> iso := IsomorphismFpGroupByGenerators(G, gens);;
#I the image group has 2 gens and 9 rels of total length 94
gap> iso := IsomorphismFpGroupByGenerators(G, gens : method := "regular");;
#I the image group has 2 gens and 6 rels of total length 56
gap> SetInfoLevel(InfoFpGroup, 0);
gap> iso;
<composed isomorphism:[[[-1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 0, 1,\
0], [-1, -1, -1, -1, 2], [-1, 0, 0, 0, 1]], [[0, 1, 0, 0, 0], [0, 0\

, 1, 0, 0], [0, 0, 0, 1, 0], [1, 0, 0, 0, 0], [0, 0, 0, 0, 1]]]->[F1\
, F2]>
gap> ConstituentsCompositionMapping(iso);
[<action isomorphism>, [(1,7,6)(2,9)(4,5,10), (2,3,4,5)(6,9,8,7)] ->

[F1, F2]]

Since GAP cannot decompose elements of a matrix group into generators, the resulting isomorphism is stored
as a composition of a (faithful) permutation action on vectors and a homomorphism from the permutation
image to the finitely presented group. In such a situation the constituent mappings can be obtained via
ConstituentsCompositionMapping as separate GAP objects.

45.11 New Presentations and Presentations for Subgroups

IsomorphismFpGroup is also used to compute a new finitely presented group that is isomorphic to the
subgroup of a given finitely presented group. (This is typically the only method to compute with subgroups
of a finitely presented group.)

gap> f:=FreeGroup(2);;
gap> g:=f/[f.1^2,f.2^3,(f.1*f.2)^5];
<fp group on the generators [f1, f2]>
gap> u:=Subgroup(g,[g.1*g.2]);
Group([f1*f2])
gap> hom:=IsomorphismFpGroup(u);
[<[[1, 1]]|f2^-1*f1^-1>] -> [F1]
gap> new:=Range(hom);
<fp group on the generators [F1]>
gap> List(GeneratorsOfGroup(new),i->PreImagesRepresentative(hom,i));
[<[[1, 1]]|f2^-1*f1^-1>]

When working with such homomorphisms, some subgroup elements are expressed as extremely long words
in the group generators. Therefore the underlying words of subgroup generators stored in the isomorphism
(as obtained by MappingGeneratorImages and displayed when Viewing the homomorphism) as well as
preimages under the homomorphism are stored in the form of straight line program elements (see 35.9).
These will behave like ordinary words and no extra treatment should be necessary.

476 Chapter 45. Finitely Presented Groups

gap> r:=Range(hom).1^10;
F1^10
gap> p:=PreImagesRepresentative(hom,r);
<[[1, 10]]|f2^-1*f1^-1*f2^-1*f1^-1*f2^-1*f1^-1*f2^-1*f1^-1*f2^-1*f1^-1*f2^
-1*f1^-1*f2^-1*f1^-1*f2^-1*f1^-1*f2^-1*f1^-1*f2^-1*f1^-1>

If desired, it also is possible to convert these underlying words using EvalStraightLineProgElm:

gap> r:=EvalStraightLineProgElm(UnderlyingElement(p));
f2^-1*f1^-1*f2^-1*f1^-1*f2^-1*f1^-1*f2^-1*f1^-1*f2^-1*f1^-1*f2^-1*f1^-1*f2^
-1*f1^-1*f2^-1*f1^-1*f2^-1*f1^-1*f2^-1*f1^-1
gap> p:=ElementOfFpGroup(FamilyObj(p),r);
f2^-1*f1^-1*f2^-1*f1^-1*f2^-1*f1^-1*f2^-1*f1^-1*f2^-1*f1^-1*f2^-1*f1^-1*f2^
-1*f1^-1*f2^-1*f1^-1*f2^-1*f1^-1*f2^-1*f1^-1

(If you are only interested in a finitely presented group isomorphic to U , but not in the isomorphism, you
may also use the functions PresentationViaCosetTable and FpGroupPresentation (see 46.1).)

Homomorphisms can also be used to obtain an isomorphic finitely presented group with a (hopefully) simpler
presentation.

1 I IsomorphismSimplifiedFpGroup(G) A

applies Tietze transformations to a copy of the presentation of the given finitely presented group G in order
to reduce it with respect to the number of generators, the number of relators, and the relator lengths.

The operation returns an isomorphism with source G , range a group H isomorphic to G , so that the
presentation of H has been simplified using Tietze transformations.

gap> f:=FreeGroup(3);;
gap> g:=f/[f.1^2,f.2^3,(f.1*f.2)^5,f.1/f.3];
<fp group on the generators [f1, f2, f3]>
gap> hom:=IsomorphismSimplifiedFpGroup(g);
[f1, f2, f3] -> [f1, f2, f1]
gap> Range(hom);
<fp group on the generators [f1, f2]>
gap> RelatorsOfFpGroup(Range(hom));
[f1^2, f2^3, f1*f2*f1*f2*f1*f2*f1*f2*f1*f2]
gap> RelatorsOfFpGroup(g);
[f1^2, f2^3, f1*f2*f1*f2*f1*f2*f1*f2*f1*f2, f1*f3^-1]

(IsomorphismSimplifiedFpGroup uses Tietze transformations to simplify the presentation, see 46.2.1.)

45.12 Preimages under Homomorphisms from an FpGroup

For some subgroups of a finitely presented group the number of subgroup generators increases with the index
of the subgroup. However often these generators are not needed at all for further calculations, but what is
needed is the action of the cosets of the subgroup. This gives the image of the subgroup in a finite quotient
and this finite quotient can be used to calculate normalizers, closures, intersections and so forth [Hul01].

The same applies for subgroups that are obtained as preimages under homomorphisms.

1 I SubgroupOfWholeGroupByQuotientSubgroup(fpfam, Q, U) F

takes a fp group family fpfam, a finitely generated group Q such that the fp generators of fam can be mapped
by an epimorphism phi onto GeneratorsOfGroup(Q) and a subgroup U of Q . It returns the subgroup of
fam!.wholeGroup which is the full preimage of U under phi .

Section 13. Quotient Methods 477

2 I IsSubgroupOfWholeGroupByQuotientRep(G) R

is the representation for subgroups of an fp group, given by a quotient subgroup. The components G!.quot
and G!.sub hold quotient, respectively subgroup.

3 I AsSubgroupOfWholeGroupByQuotient(U) A

returns the same subgroup in the representation AsSubgroupOfWholeGroupByQuotient.

See also SubgroupOfWholeGroupByCosetTable (45.7.2) and CosetTableBySubgroup (45.5.4).

This technique is used by GAP for example to represent the derived subgroup, which is obtained from the
quotient G/G ′.

gap> f:=FreeGroup(2);;g:=f/[f.1^6,f.2^6,(f.1*f.2)^6];;
gap> d:=DerivedSubgroup(g);
Group(<fp, no generators known>)
gap> Index(g,d);
36

4 I DefiningQuotientHomomorphism(U) F

if U is a subgroup in quotient representation (IsSubgroupOfWholeGroupByQuotientRep), this function
returns the defining homomorphism from the whole group to U !.quot.

45.13 Quotient Methods

An important class of algorithms for finitely presented groups are the quotient algorithms which compute
quotient groups of a given finitely presented group.

I MaximalAbelianQuotient(fpgroup)

as defined for general groups, this attribute returns the largest abelian quotient of fpgroup.

gap> f:=FreeGroup(2);;fp:=f/[f.1^6,f.2^6,(f.1*f.2)^12];
<fp group on the generators [f1, f2]>
gap> hom:=MaximalAbelianQuotient(fp);
[f1, f2] -> [f1, f3]
gap> Size(Image(hom));
36

1 I PQuotient(F, p [, c] [, logord] [, ctype]) F

computes a factor p-group of a finitely presented group F in form of a quotient system. The quotient system
can be converted into an epimorphism from F onto the p-group computed by the function 45.13.2.

For a group G define the exponent-p central series of G inductively by P1(G) = G and Pi+1(G) =
[Pi (G),G]Pi+1(G)p · The factor groups modulo the terms of the lower exponent-p central series are p-groups.
The group G has p-class c if Pc(G) 6= Pc+1(G) = 1·
The algorithm computes successive quotients modulo the terms of the exponent-p central series of F . If the
parameter c is present, then the factor group modulo the (c + 1)-th term of the exponent-p central series of
F is returned. If c is not present, then the algorithm attempts to compute the largest factor p-group of F .
In case F does not have a largest factor p-group, the algorithm will not terminate.

By default the algorithm computes only with factor groups of order at most p256· If the parameter logord
is present, it will compute with factor groups of order atmost p logord · If this parameter is specified, then the
parameter c must also be given. The present implementation produces an error message if the order of a
p-quotient exceeds p256 or p logord , respectively. Note that the order of intermediate p-groups may be larger
than the final order of a p-quotient.

478 Chapter 45. Finitely Presented Groups

The parameter ctype determines the type of collector that is used for computations within the factor p-
group. ctype must either be single in which case a simple collector from the left is used or combinatorial
in which case a combinatorial collector from the left is used.

2 I EpimorphismQuotientSystem(quotsys) O

For a quotient system quotsys obtained from the function 45.13.1, this operation returns an epimorphism
F → P where F is the finitely presented group of which quotsys is a quotient system and P is a PcGroup
isomorphic to the quotient of F determined by quotsys.

Different calls to this operation will create different groups P , each with its own family.

gap> PQuotient(FreeGroup(2), 5, 10, 1024, "combinatorial");
<5-quotient system of 5-class 10 with 520 generators>
gap> phi := EpimorphismQuotientSystem(last);
[f1, f2] -> [a1, a2]
gap> Collected(Factors(Size(Image(phi))));
[[5, 520]]

3 I EpimorphismPGroup(fpgrp, p) O
I EpimorphismPGroup(fpgrp, p, cl) O

computes an epimorphism from the finitely presented group fpgrp to the largest p-group of p-class cl which is
a quotient of fpgrp. If cl is omitted, the largest finite p-group quotient (of p-class up to 1000) is determined.

gap> hom:=EpimorphismPGroup(fp,2);
[f1, f2] -> [a1, a2]
gap> Size(Image(hom));
8
gap> hom:=EpimorphismPGroup(fp,3,7);
[f1, f2] -> [a1, a2]
gap> Size(Image(hom));
6561

4 I EpimorphismNilpotentQuotient(fpgrp[, n]) F

returns an epimorphism on the class n finite nilpotent quotient of the finitely presented group fpgrp. If n is
omitted, the largest finite nilpotent quotient (of p-class up to 1000) is taken.

gap> hom:=EpimorphismNilpotentQuotient(fp,7);
[f1, f2] -> [f1*f4, f2*f5]
gap> Size(Image(hom));
52488

A related operation which is also applicable to finitely presented groups is GQuotients, which computes all
epimorphisms from a (finitely presented) group F onto a given (finite) group G , see 38.9.2.

gap> GQuotients(fp,Group((1,2,3),(1,2)));
[[f1, f2] -> [(2,3), (1,2)], [f1, f2] -> [(2,3), (1,2,3)],
[f1, f2] -> [(1,2,3), (1,2)]]

Section 14. Abelian Invariants for Subgroups 479

45.14 Abelian Invariants for Subgroups

Using variations of coset enumeration it is possible to compute the abelian invariants of a subgroup of a
finitely presented group without computing a complete presentation for the subgroup in the first place.
Typically, the operation AbelianInvariants when called for subgroups should automatically take care of
this, but in case you what to have further control about the methods used, the following operations might
be of use.

1 I AbelianInvariantsSubgroupFpGroup(G, H) F

is a synonym for AbelianInvariantsSubgroupFpGroupRrs(G,H).

2 I AbelianInvariantsSubgroupFpGroupMtc(G, H) F

uses the Modified Todd-Coxeter method to compute the abelian invariants of a subgroup H of a finitely
presented group G .

3 I AbelianInvariantsSubgroupFpGroupRrs(G, H) F
I AbelianInvariantsSubgroupFpGroupRrs(G, table) F

uses the Reduced Reidemeister-Schreier method to compute the abelian invariants of a subgroup H of a
finitely presented group G .

Alternatively to the subgroup H , its coset table table in G may be given as second argument.

4 I AbelianInvariantsNormalClosureFpGroup(G, H) F

is a synonym for AbelianInvariantsNormalClosureFpGroupRrs(G,H).

5 I AbelianInvariantsNormalClosureFpGroupRrs(G, H) F

uses the Reduced Reidemeister-Schreier method to compute the abelian invariants of the normal closure of
a subgroup H of a finitely presented group G .

See 46.3 for details on the different strategies.

The following example shows a calculation for the Coxeter group B1. This calculation and a similar one for
B0 have been used to prove that B ′1/B ′′1 ∼= Z 9

2 × Z 3 and B ′0/B ′′0 ∼= Z 91
2 × Z 27 as stated in Proposition 5 in

[FJNT95].

gap> # Define the Coxeter group E1.
gap> F := FreeGroup("x1", "x2", "x3", "x4", "x5");
<free group on the generators [x1, x2, x3, x4, x5]>
gap> x1 := F.1;; x2 := F.2;; x3 := F.3;; x4 := F.4;; x5 := F.5;;
gap> rels := [x1^2, x2^2, x3^2, x4^2, x5^2,
> (x1 * x3)^2, (x2 * x4)^2, (x1 * x2)^3, (x2 * x3)^3, (x3 * x4)^3,
> (x4 * x1)^3, (x1 * x5)^3, (x2 * x5)^2, (x3 * x5)^3, (x4 * x5)^2,
> (x1 * x2 * x3 * x4 * x3 * x2)^2];;
gap> E1 := F / rels;
<fp group on the generators [x1, x2, x3, x4, x5]>
gap> x1 := E1.1;; x2 := E1.2;; x3 := E1.3;; x4 := E1.4;; x5 := E1.5;;
gap> # Get normal subgroup generators for B1.
gap> H := Subgroup(E1, [x5 * x2^-1, x5 * x4^-1]);;
gap> # Compute the abelian invariants of B1/B1’.
gap> A := AbelianInvariantsNormalClosureFpGroup(E1, H);
[2, 2, 2, 2, 2, 2, 2, 2]
gap> # Compute a presentation for B1.
gap> P := PresentationNormalClosure(E1, H);
<presentation with 18 gens and 46 rels of total length 132>

480 Chapter 45. Finitely Presented Groups

gap> SimplifyPresentation(P);
#I there are 8 generators and 30 relators of total length 148
gap> B1 := FpGroupPresentation(P);
<fp group on the generators [_x1, _x2, _x3, _x4, _x6, _x7, _x8, _x11]>
gap> # Compute normal subgroup generators for B1’.
gap> gens := GeneratorsOfGroup(B1);;
gap> numgens := Length(gens);;
gap> comms := [];;
gap> for i in [1 .. numgens - 1] do
> for j in [i+1 .. numgens] do
> Add(comms, Comm(gens[i], gens[j]));
> od;
> od;
gap> # Compute the abelian invariants of B1’/B1".
gap> K := Subgroup(B1, comms);;
gap> A := AbelianInvariantsNormalClosureFpGroup(B1, K);
[0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2]

45.15 Testing Finiteness of Finitely Presented Groups

As a consequence of the algorithmic insolvabilities mentioned in the introduction to this chapter, there
cannot be a general method that will test whether a given finitely presented group is actually finite.

Therefore testing a finitely presented group for IsFinite can be problematic. What GAP actually does upon
a call of IsFinite (or if it is – probably implicitly – asked for a faithful permutation representation) is to
test whether it can find (via coset enumeration) a cyclic subgroup of finite index. If it can, it rewrites the
presentation to this subgroup. Since the subgroup is cyclic, its size can be checked easily from the resulting
presentation, the size of the whole group is the product of the index and the subgroup size. Since however
no bound for the index of such a subgroup (if any exist) is known, such a test might continue unsuccesfully
until memory is exhausted.

On the other hand, a couple of methods exist, that might prove that a group is infinite. Again, none is
guaranteed to work in every case:

The first method is to find (for example via the low index algorithm, see LowIndexSubgroupsFpGroup)
a subgroup U such that [U : U ′] is infinite. If U has finite index, this can be checked by the operation
AbelianInvariants (see section 45.14 for an example).

Another method is based on p-group quotients:

1 I NewmanInfinityCriterion(G, p) F

Let G be a finitely presented group and p a prime that divides the order of G/G ′. This function applies
an infinity criterion due to M.F. Newman [New90] to G . (See chapter 16 of [Joh97] for a more explicit
description.) It returns true if the criterion succeeds in proving that G is infinite and fail otherwise.

Note that the criterion uses the number of generators and relations in the presentation of G . Reduction of
the persentation via Tietze transformations (IsomorphismSimplifiedFpGroup) therefore might produce an
isomorphic group, for which the criterion will work better.

Section 15. Testing Finiteness of Finitely Presented Groups 481

gap> g:=FibonacciGroup(2,9);
<fp group on the generators [f1, f2, f3, f4, f5, f6, f7, f8, f9]>
gap> hom:=EpimorphismNilpotentQuotient(g,2);;
gap> k:=Kernel(hom);;
gap> Index(g,k);
152
gap> AbelianInvariants(k);
[5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5]
gap> NewmanInfinityCriterion(Kernel(hom),5);
true

This proves that the subgroup k (and thus the whole group g) is infinite. (This is the original example
from [New90].)

46
Presentations

and Tietze
Transformations

A finite presentation describes a group, but usually there is a multitude of presentations that describe
isomorphic groups. Therefore a presentation in GAP is different from a finitely presented group though there
are ways to translate between both.

An important feature of presentations is that they can be modified (see sections 46.6 to 46.9).

If you only want to get new presentations for subgroups of a finitely presented group (and do not want to
manipulate presentations yourself), chances are that the operation IsomorphismFpGroup already does what
you want (see 45.11).

46.1 Creating Presentations

1 I PresentationFpGroup(G [, printlevel]) F

creates a presentation, i.e. a Tietze object, for the given finitely presented group G . This presentation will
be exactly as the presentation of G and no initial Tietze transformations are applied to it.

The optional printlevel parameter can be used to restrict or to extend the amount of output provided by
Tietze transformation commands when being applied to the created presentation. The default value 1 is
designed for interactive use and implies explicit messages to be displayed by most of these commands. A
printlevel value of 0 will suppress these messages, whereas a printlevel value of 2 will enforce some additional
output.

gap> f := FreeGroup("a", "b");
<free group on the generators [a, b]>
gap> g := f / [f.1^3, f.2^2, (f.1*f.2)^3];
<fp group on the generators [a, b]>
gap> p := PresentationFpGroup(g);
<presentation with 2 gens and 3 rels of total length 11>

Most of the functions creating presentations and all functions performing Tietze transformations on them
sort the relators by increasing lengths. The function PresentationFpGroup is an exception because it is
intended to reflect the relators that were used to define the involved FpGroup. You may use the following
command to sort the presentation.

2 I TzSort(P) F

sorts the relators of the given presentation P by increasing lengths. There is no particular ordering defined
for the relators of equal length. Note that TzSort does not return a new object. It changes the given
presentation.

3 I GeneratorsOfPresentation(P) O

returns a list of free generators that is a ShallowCopy of the current generators of the presentation P .

Section 1. Creating Presentations 483

4 I FpGroupPresentation(P [, nam]) F

constructs an FpGroup group as defined by the given Tietze presentation P .

gap> h := FpGroupPresentation(p);
<fp group on the generators [a, b]>
gap> h = g;
false

5 I PresentationViaCosetTable(G) F
I PresentationViaCosetTable(G, F, words) F

constructs a presentation for a given concrete finite group. It applies the relations finding algorithm which has
been described in [Can73] and [Neu82]. It automatically applies Tietze transformations to the presentation
found.

If only a group G has been specified, the single stage algorithm is applied.

The operation IsomorphismFpGroup in contrast uses a multiple-stage algorithm using a composition series
and stabilizer chains. It usually should be used rather than PresentationViaCosetTable. (It does not apply
Tietze transformations automatically.)

If the two stage algorithm is to be used, PresentationViaCosetTable expects a subgroup H of G to be
provided in form of two additional arguments F and words, where F is a free group with the same number
of generators as G , and words is a list of words in the generators of F which supply a list of generators of
H if they are evaluated as words in the corresponding generators of G .

gap> G := GeneralLinearGroup(2, 7);
GL(2,7)
gap> GeneratorsOfGroup(G);
[[[Z(7), 0*Z(7)], [0*Z(7), Z(7)^0]],
[[Z(7)^3, Z(7)^0], [Z(7)^3, 0*Z(7)]]]

gap> Size(G);
2016
gap> P := PresentationViaCosetTable(G);
<presentation with 2 gens and 5 rels of total length 46>
gap> TzPrintRelators(P);
#I 1. f2^3
#I 2. f1^6
#I 3. f1^-1*f2^-1*f1^-1*f2^-1*f1^-1*f2^-1*f1^-1*f2^-1*f1^-1*f2^-1*f1^-1*f2^-1
#I 4. f1*f2*f1^-1*f2^-1*f1*f2^-1*f1^-1*f2*f1*f2^-1*f1^-1*f2^-1
#I 5. f1^-3*f2*f1*f2*f1^-1*f2^-1*f1^-1*f2^-1*f1^-2*f2

The two stage algorithm saves an essential amount of space by constructing two coset tables of lengths |H |
and |G |/|H | instead of just one coset table of length |G |. The next example shows an application of this
option in the case of a subgroup of size 7920 and index 12 in a permutation group of size 95040.

gap> M12 := Group([(1,2,3,4,5,6,7,8,9,10,11), (3,7,11,8)(4,10,5,6),
> (1,12)(2,11)(3,6)(4,8)(5,9)(7,10)], ());;
gap> F := FreeGroup("a", "b", "c");
<free group on the generators [a, b, c]>
gap> words := [F.1, F.2];
[a, b]
gap> P := PresentationViaCosetTable(M12, F, words);
<presentation with 3 gens and 10 rels of total length 97>
gap> G := FpGroupPresentation(P);
<fp group on the generators [a, b, c]>

484 Chapter 46. Presentations and Tietze Transformations

gap> RelatorsOfFpGroup(G);
[c^2, b^4, a*c*a*c*a*c, a*b^-2*a*b^-2*a*b^-2, a^11,
a^2*b*a^-2*b^-2*a*b^-1*a^2*b^-1, a*b*a^-1*b*a^-1*b^-1*a*b*a^-1*b*a^-1*b^-1,
a^2*b*a^2*b^-2*a^-1*b*a^-1*b^-1*a^-1*b^-1,
a*b*a*b*a^2*b^-1*a^-1*b^-1*a*c*b*c, a^4*b*a^2*b*a^-2*c*a*b*a^-1*c]

Before it is returned, the resulting presentation is being simplified by appropriate calls of the function
SimplifyPresentation (see 46.7), but without allowing any eliminations of generators. This restriction
guarantees that we get a bijection between the list of generators of G and the list of generators in the
presentation. Hence, if the generators of G are redundant and if you don’t care for the bijection, you may
get a shorter presentation by calling the function SimplifyPresentation, now without this restriction, once
more yourself.

gap> H := Group(
> [(2,5,3), (2,7,5), (1,8,4), (1,8,6), (4,8,6), (3,5,7)], ());;
gap> P := PresentationViaCosetTable(H);
<presentation with 6 gens and 12 rels of total length 42>
gap> SimplifyPresentation(P);
#I there are 4 generators and 10 relators of total length 36

If you apply the function FpGroupPresentation to the resulting presentation you will get a finitely presented
group isomorphic to G . Note, however, that the function IsomorphismFpGroup (see 45.10.1) is recommended
for this purpose.

46.2 SimplifiedFpGroup
1 I SimplifiedFpGroup(G) F

applies Tietze transformations to a copy of the presentation of the given finitely presented group G in order
to reduce it with respect to the number of generators, the number of relators, and the relator lengths.
SimplifiedFpGroup returns a group isomorphic to the given one with a presentation which has been tried
to simplify via Tietze transformations.
If the connection to the original group is important, then the operation IsomorphismSimplifiedFpGroup
(see 45.11.1) should be used instead.

gap> F6 := FreeGroup(6, "G");;
gap> G := F6 / [F6.1^2, F6.2^2, F6.4*F6.6^-1, F6.5^2, F6.6^2,
> F6.1*F6.2^-1*F6.3, F6.1*F6.5*F6.3^-1, F6.2*F6.4^-1*F6.3,
> F6.3*F6.4*F6.5^-1, F6.1*F6.6*F6.3^-2, F6.3^4];;
gap> H := SimplifiedFpGroup(G);
<fp group on the generators [G1, G3]>
gap> RelatorsOfFpGroup(H);
[G1^2, G1*G3^-1*G1*G3^-1, G3^4]

In fact, the command

H := SimplifiedFpGroup(G);

is an abbreviation of the command sequence

P := PresentationFpGroup(G, 0);;
SimplifyPresentation(P);
H := FpGroupPresentation(P);

which applies a rather simple-minded strategy of Tietze transformations to the intermediate presentation
P . If, for some concrete group, the resulting presentation is unsatisfying, then you should try a more
sophisticated, interactive use of the available Tietze transformation commands (see 46.7).

Section 3. Subgroup Presentations 485

46.3 Subgroup Presentations

1 I PresentationSubgroup(G, H [, string]) F

is a synonym for PresentationSubgroupRrs(G,H [,string]).

2 I PresentationSubgroupRrs(G, H [, string]) F
I PresentationSubgroupRrs(G, table [, string]) F

uses the Reduced Reidemeister-Schreier method to compute a presentation P , say, for a subgroup H of a
finitely presented group G . The generators in the resulting presentation will be named string1, string2, ... ,
the default string is " x". You may access the i -th of these generators by P !.i .

Alternatively to the subgroup H , its coset table table in G may be given as second argument.

gap> f := FreeGroup("a", "b");;
gap> g := f / [f.1^2, f.2^3, (f.1*f.2)^5];
<fp group on the generators [a, b]>
gap> g1 := Size(g);
60
gap> u := Subgroup(g, [g.1, g.1^g.2]);
Group([a, b^-1*a*b])
gap> p := PresentationSubgroup(g, u, "g");
<presentation with 3 gens and 4 rels of total length 12>
gap> gens := GeneratorsOfPresentation(p);
[g1, g2, g3]
gap> TzPrintRelators(p);
#I 1. g1^2
#I 2. g2^2
#I 3. g3*g2*g1
#I 4. g3^5

Note that you cannot call the generators by their names. These names are not variables, but just display
figures. So, if you want to access the generators by their names, you first will have to introduce the respective
variables and to assign the generators to them.

gap> gens[1] = g1;
false
gap> g1;
60
gap> g1 := gens[1];; g2 := gens[2];; g3 := gens[3];;
gap> g1;
g1

The Reduced Reidemeister-Schreier algorithm is a modification of the Reidemeister-Schreier algorithm of
George Havas [Hav74]. It was proposed by Joachim Neubüser and first implemented in 1986 by Andrea
Lucchini and Volkmar Felsch in the SPAS system [SPA89]. Like the Reidemeister-Schreier algorithm of
George Havas, it needs only the presentation of G and a coset table of H in G to construct a presentation
of H .

Whenever you call the command PresentationSubgroupRrs, it first obtains a coset table of H in G if not
given. Next, a set of generators of H is determined by reconstructing the coset table and introducing in
that process as many Schreier generators of H in G as are needed to do a Felsch strategy coset enumeration
without any coincidences. (In general, though containing redundant generators, this set will be much smaller
than the set of all Schreier generators. That is why we call the method the Reduced Reidemeister-Schreier.)

486 Chapter 46. Presentations and Tietze Transformations

After having constructed this set of primary subgroup generators, say, the coset table is extended to
an augmented coset table which describes the action of the group generators on coset representatives,
i.e., on elements instead of cosets. For this purpose, suitable words in the (primary) subgroup generators
have to be associated to the coset table entries. In order to keep the lengths of these words short, additional
secondary subgroup generators are introduced as abbreviations of subwords. Their number may be
large.

Finally, a Reidemeister rewriting process is used to get defining relators for H from the relators of G . As
the resulting presentation of H is a presentation on primary and secondary generators, in general you will
have to simplify it by appropriate Tietze transformations (see 46.7) or by the command DecodeTree (see
46.11.1) before you can use it. Therefore it is returned in the form of a presentation, P say.

Compared with the Modified Todd-Coxeter method described below, the Reduced Reidemeister-Schreier
method (as well as Havas’ original Reidemeister-Schreier program) has the advantage that it does not require
generators of H to be given if a coset table of H in G is known. This provides a possibility to compute a
presentation of the normal closure of a given subgroup (see the PresentationNormalClosureRrs command
below).

For certain applications you may be interested in getting not only just a presentation for H , but also a
relation between the involved generators of H and the generators of G . The subgroup generators in the
presentation are sorted such that the primary generators precede the secondary ones. Moreover, for each
secondary subgroup generator there is a relator in the presentation which expresses this generator as a word
in preceding ones. Hence, all we need in addition is a list of words in the generators of G which express the
primary subgroup generators. In fact, such a list is provided in the attribute PrimaryGeneratorWords of
the resulting presentation.

3 I PrimaryGeneratorWords(P) A

is an attribute of the presentation P which holds a list of words in the associated group generators (of the
underlying free group) which express the primary subgroup generators of P .

gap> PrimaryGeneratorWords(p);
[a, b^-1*a*b]

4 I PresentationSubgroupMtc(G, H [, string] [, print level]) F

uses the Modified Todd-Coxeter coset representative enumeration method to compute a presentation P , say,
for a subgroup H of a finitely presented group G . The presentation returned is in generators corresponding
to the generators of H . The generators in the resulting presentation will be named string1, string2, ... , the
default string is " x". You may access the i -th of these generators by P !.i .

The default print level is 1. If the print level is set to 0, then the printout of the implicitly called function
DecodeTree will be suppressed.

gap> p := PresentationSubgroupMtc(g, u);
#I there are 3 generators and 4 relators of total length 12
#I there are 2 generators and 3 relators of total length 14
<presentation with 2 gens and 3 rels of total length 14>

The so called Modified Todd-Coxeter method was proposed, in slightly different forms, by Nathan S. Mendel-
sohn and William O. J. Moser in 1966. Moser’s method was proved in [BC76]. It has been generalized to
cover a broad spectrum of different versions (see the survey [Neu82]).

The Modified Todd-Coxeter method performs an enumeration of coset representatives. It proceeds like an
ordinary coset enumeration (see 45.5), but as the product of a coset representative by a group generator
or its inverse need not be a coset representative itself, the Modified Todd-Coxeter has to store a kind of
correction element for each coset table entry. Hence it builds up a so called augmented coset table of

Section 3. Subgroup Presentations 487

H in G consisting of the ordinary coset table and a second table in parallel which contains the associated
subgroup elements.

Theoretically, these subgroup elements could be expressed as words in the given generators of H , but in
general these words tend to become unmanageable because of their enormous lengths. Therefore, a highly
redundant list of subgroup generators is built up starting from the given (“primary”) generators of H and
adding additional (“secondary”) generators which are defined as abbreviations of suitable words of length
two in the preceding generators such that each of the subgroup elements in the augmented coset table can
be expressed as a word of length at most one in the resulting (primary and secondary) subgroup generators.

Then a rewriting process (which is essentially a kind of Reidemeister rewriting process) is used to get relators
for H from the defining relators of G .

The resulting presentation involves all the primary, but not all the secondary generators of H . In fact, it
contains only those secondary generators which explicitly occur in the augmented coset table. If we extended
this presentation by those secondary generators which are not yet contained in it as additional generators,
and by the definitions of all secondary generators as additional relators, we would get a presentation of H ,
but, in general, we would end up with a large number of generators and relators.

On the other hand, if we avoid this extension, the current presentation will not necessarily define H although
we have used the same rewriting process which in the case of the PresentationSubgroupRrs command
computes a defining set of relators for H from an augmented coset table and defining relators of G . The
different behaviour here is caused by the fact that coincidences may have occurred in the Modified Todd-
Coxeter coset enumeration.

To overcome this problem without extending the presentation by all secondary generators, the Presenta-
tionSubgroupMtc command applies the so called decoding tree algorithm which provides a more econom-
ical approach. The reader is strongly recommended to carefully read section 46.11.1 where this algorithm is
described in more detail. Here we will only mention that this procedure may add a lot of intermediate gener-
ators and relators (and even change the isomorphism type) in a process which in fact eliminates all secondary
generators from the presentation and hence finally provides a presentation of H on the primary, i.e., the orig-
inally given, generators of H . This is a remarkable advantage of the command PresentationSubgroupMtc
compared to the command PresentationSubgroupRrs. But note that, for some particular subgroup H , the
Reduced Reidemeister-Schreier method might quite well produce a more concise presentation.

The resulting presentation is returned in the form of a presentation, P say.

As the function PresentationSubgroupRrs described above (see there for details), the function Presenta-
tionSubgroupMtc returns a list of the primary subgroup generators of H in the attribute PrimaryGenera-
torWords of P . In fact, this list is not very exciting here because it is just a shallow copy of the attribute
value GeneratorsOfPresentation(H), however it is needed to guarantee a certain consistency between the
results of the different functions for computing subgroup presentations.

Though the decoding tree routine already involves a lot of Tietze transformations, we recommend that you
try to further simplify the resulting presentation by appropriate Tietze transformations (see 46.7).

5 I PresentationNormalClosureRrs(G, H [, string]) F

uses the Reduced Reidemeister-Schreier method to compute a presentation P , say, for the normal closure of
a subgroup H of a finitely presented group G . The generators in the resulting presentation will be named
string1, string2, ... , the default string is " x". You may access the i -th of these generators by P !.i .

6 I PresentationNormalClosure(G, H [, string]) F

is a synonym for PresentationNormalClosureRrs(G,H [,string]).

488 Chapter 46. Presentations and Tietze Transformations

46.4 Relators in a Presentation

In order to speed up the Tietze transformation routines, each relator in a presentation P is internally
represented by a list of positive or negative generator numbers, i.e., each factor of the proper GAP word
is represented by the position number of the corresponding generator with respect to the current list of
generators, or by the respective negative number, if the factor is the inverse of a generator. Note that the
numbering of the generators in Tietze words is always relative to a generator list and bears no relation to
the internal numbering of generators in a family of associative words.

1 I TietzeWordAbstractWord(word, fgens) F

assumes fgens to be a list of free group generators and word to be an abstract word in these generators. It
converts word into a Tietze word, i. e., a list of positive or negative generator numbers.

This function simply calls LetterRepAssocWord.

2 I AbstractWordTietzeWord(word, fgens) F

assumes fgens to be a list of free group generators and word to be a Tietze word in these generators, i. e.,
a list of positive or negative generator numbers. It converts word to an abstract word.

This function simply calls AssocWordByLetterRep.

gap> F := FreeGroup("a", "b", "c" ,"d");
<free group on the generators [a, b, c, d]>
gap> tzword := TietzeWordAbstractWord(
> Comm(F.4,F.2) * (F.3^2 * F.2)^-1, GeneratorsOfGroup(F){[2,3,4]});
[-3, -1, 3, -2, -2]
gap> AbstractWordTietzeWord(tzword, GeneratorsOfGroup(F){[2,3,4]});
d^-1*b^-1*d*c^-2

46.5 Printing Presentations

Whenever you create a presentation P , say, or assign it to a variable, GAP will respond by printing P .
However, as P may contain a lot of generators and many relators of large length, it would be annoying if the
standard print facilities displayed all this information in detail. So they restrict the printout to just one line
of text containing the number of generators, the number of relators, and the total length of all relators of P .
As compensation, GAP offers some special print commands which display various details of a presentation.

1 I TzPrintGenerators(P [, list]) F

prints the generators of the given Tietze presentation P together with the number of their occurrences in the
relators. The optional second argument can be used to specify the numbers of the generators to be printed.
Default: all generators are printed.

gap> G := Group([(1,2,3,4,5), (2,3,5,4), (1,6)(3,4)], ());
Group([(1,2,3,4,5), (2,3,5,4), (1,6)(3,4)])
gap> P := PresentationViaCosetTable(G);
<presentation with 3 gens and 6 rels of total length 28>
gap> TzPrintGenerators(P);
#I 1. f1 11 occurrences
#I 2. f2 10 occurrences
#I 3. f3 7 occurrences involution

2 I TzPrintRelators(P[, list]) F

prints the relators of the given Tietze presentation P . The optional second argument list can be used to
specify the numbers of the relators to be printed. Default: all relators are printed.

Section 5. Printing Presentations 489

gap> TzPrintRelators(P);
#I 1. f3^2
#I 2. f2^4
#I 3. f2^-1*f3*f2^-1*f3
#I 4. f1^5
#I 5. f1^2*f2*f1*f2^-1
#I 6. f1^-1*f3*f1*f3*f1^-1*f2^2*f3

3 I TzPrintLengths(P) F

prints just a list of all relator lengths of the given presentation P .

gap> TzPrintLengths(P);
[2, 4, 4, 5, 5, 8]

4 I TzPrintStatus(P [, norepeat]) F

is an internal function which is used by the Tietze transformation routines to print the number of generators,
the number of relators, and the total length of all relators in the given Tietze presentation P . If norepeat is
specified as true, the printing is suppressed if none of the three values has changed since the last call.

gap> TzPrintStatus(P);
#I there are 3 generators and 6 relators of total length 28

5 I TzPrintPresentation(P) F

prints the generators and the relators of a Tietze presentation. In fact, it is an abbreviation for the successive
call of the three commands TzPrintGenerators(P), TzPrintRelators(P), and TzPrintStatus(P).

6 I TzPrint(P [, list]) F

prints the current generators of the given presentation P , and prints the relators of P as Tietze words (with-
out converting them back to abstract words as the functions TzPrintRelators and TzPrintPresentation
do). The optional second argument can be used to specify the numbers of the relators to be printed. Default:
all relators are printed.

gap> TzPrint(P);
#I generators: [f1, f2, f3]
#I relators:
#I 1. 2 [3, 3]
#I 2. 4 [2, 2, 2, 2]
#I 3. 4 [-2, 3, -2, 3]
#I 4. 5 [1, 1, 1, 1, 1]
#I 5. 5 [1, 1, 2, 1, -2]
#I 6. 8 [-1, 3, 1, 3, -1, 2, 2, 3]

7 I TzPrintPairs(P [, n]) F

prints the n most often occurring relator subwords of the form ab, where a and b are different generators or
inverses of generators, together with the number of their occurrences. The default value of n is 10. A value
n = 0 is interpreted as infinity.
The function TzPrintPairs is useful in the context of Tietze transformations which introduce new generators
by substituting words in the current generators (see 46.9). It gives some evidence for an appropriate choice
of a word of length 2 to be substituted.

gap> TzPrintPairs(P, 3);
#I 1. 3 occurrences of f2 * f3
#I 2. 2 occurrences of f2^-1 * f3
#I 3. 2 occurrences of f1 * f3

Finally, there is a function TzPrintOptions. It is described in section 46.12.

490 Chapter 46. Presentations and Tietze Transformations

46.6 Changing Presentations

The functions described in this section may be used to change a presentation. Note, however, that in general
they do not perform Tietze transformations because they change or may change the isomorphism type of
the group defined by the presentation.

1 I AddGenerator(P) F

extends the presentation P by a new generator.

Let i be the smallest positive integer which has not yet been used as a generator number in the given
presentation. AddGenerator defines a new abstract generator xi with the name " xi" and adds it to the list
of generators of P .

You may access the generator xi by typing P !.i . However, this is only practicable if you are running an
interactive job because you have to know the value of i . Hence the proper way to access the new generator
is to write GeneratorsOfPresentation(P)[Length(GeneratorsOfPresentation(P))].

gap> G := PerfectGroup(120);;
gap> H := Subgroup(G, [G.1^G.2, G.3]);;
gap> P := PresentationSubgroup(G, H);
<presentation with 4 gens and 7 rels of total length 21>
gap> AddGenerator(P);
#I now the presentation has 5 generators, the new generator is _x7
gap> gens := GeneratorsOfPresentation(P);
[_x1, _x2, _x4, _x5, _x7]
gap> gen := gens[Length(gens)];
_x7
gap> gen = P!.7;
true

2 I TzNewGenerator(P) F

is an internal function which defines a new abstract generator and adds it to the presentation P . It is called
by AddGenerator and by several Tietze transformation commands. As it does not know which global lists
have to be kept consistent, you should not call it. Instead, you should call the function AddGenerator, if
needed.

3 I AddRelator(P, word) F

adds the relator word to the presentation P , probably changing the group defined by P . word must be an
abstract word in the generators of P .

4 I RemoveRelator(P, n) F

removes the n-th relator from the presentation P , probably changing the group defined by P .

46.7 Tietze Transformations

The commands in this section can be used to modify a presentation by Tietze transformations.

In general, the aim of such modifications will be to simplify the given presentation, i.e., to reduce the
number of generators and the number of relators without increasing too much the sum of all relator lengths
which we will call the total length of the presentation. Depending on the concrete presentation under
investigation one may end up with a nice, short presentation or with a very huge one.

Unfortunately there is no algorithm which could be applied to find the shortest presentation which can be
obtained by Tietze transformations from a given one. Therefore, what GAP offers are some lower-level Tietze

Section 7. Tietze Transformations 491

transformation commands and, in addition, some higher-level commands which apply the lower-level ones
in a kind of default strategy which of course cannot be the optimal choice for all presentations.

The design of these commands follows closely the concept of the ANU Tietze transformation program [Hav69]
and its later revisions (see [HKRR84], [Rob88]).

1 I TzGo(P [, silent]) F

automatically performs suitable Tietze transformations of the given presentation P . It is perhaps the most
convenient one among the interactive Tietze transformation commands. It offers a kind of default strategy
which, in general, saves you from explicitly calling the lower-level commands it involves.

If silent is specified as true, the printing of the status line by TzGo is suppressed if the Tietze option
printLevel (see 46.12) has a value less than 2.

2 I SimplifyPresentation(P) F

is a synonym for TzGo(P).

gap> F2 := FreeGroup("a", "b");;
gap> G := F2 / [F2.1^9, F2.2^2, (F2.1*F2.2)^4, (F2.1^2*F2.2)^3];;
gap> a := G.1;; b := G.2;;
gap> H := Subgroup(G, [(a*b)^2, (a^-1*b)^2]);;
gap> Index(G, H);
408
gap> P := PresentationSubgroup(G, H);
<presentation with 8 gens and 36 rels of total length 111>
gap> PrimaryGeneratorWords(P);
[b, a*b*a]
gap> TzOptions(P).protected := 2;
2
gap> TzOptions(P).printLevel := 2;
2
gap> SimplifyPresentation(P);
#I eliminating _x7 = _x5^-1
#I eliminating _x5 = _x4
#I eliminating _x18 = _x3
#I eliminating _x8 = _x3
#I there are 4 generators and 8 relators of total length 21
#I there are 4 generators and 7 relators of total length 18
#I eliminating _x4 = _x3^-1*_x2^-1
#I eliminating _x3 = _x2*_x1^-1
#I there are 2 generators and 4 relators of total length 14
#I there are 2 generators and 4 relators of total length 13
#I there are 2 generators and 3 relators of total length 9
gap> TzPrintRelators(P);
#I 1. _x1^2
#I 2. _x2^3
#I 3. _x2*_x1*_x2*_x1

Roughly speaking, TzGo consists of a loop over a procedure which involves two phases: In the search phase
it calls TzSearch and TzSearchEqual described below which try to reduce the relator lengths by substituting
common subwords of relators, in the elimination phase it calls the command TzEliminate described below
(or, more precisely, a subroutine of TzEliminate in order to save some administrative overhead) which tries
to eliminate generators that can be expressed as words in the remaining generators.

492 Chapter 46. Presentations and Tietze Transformations

If TzGo succeeds in reducing the number of generators, the number of relators, or the total length of all
relators, it displays the new status before returning (provided that you did not set the print level to zero).
However, it does not provide any output if all these three values have remained unchanged, even if the
command TzSearchEqual involved has changed the presentation such that another call of TzGo might
provide further progress. Hence, in such a case it makes sense to repeat the call of the command for several
times (or to call the command TzGoGo instead).

3 I TzGoGo(P) F

calls the command TzGo again and again until it does not reduce the presentation any more.

The result of the Tietze transformations can be affected substantially by the options parameters (see 46.12).
To demonstrate the effect of the eliminationsLimit parameter, we will give an example in which we handle
a subgroup of index 240 in a group of order 40320 given by a presentation due to B. H. Neumann. First
we construct a presentation of the subgroup, and then we apply to it the command TzGoGo for different
values of the parameter eliminationsLimit (including the default value 100). In fact, we also alter the
printLevel parameter, but this is only done in order to suppress most of the output. In all cases the
resulting presentations cannot be improved any more by applying the command TzGoGo again, i.e., they are
the best results which we can get without substituting new generators.

gap> F3 := FreeGroup("a", "b", "c");;
gap> G := F3 / [F3.1^3, F3.2^3, F3.3^3, (F3.1*F3.2)^5,
> (F3.1^-1*F3.2)^5, (F3.1*F3.3)^4, (F3.1*F3.3^-1)^4,
> F3.1*F3.2^-1*F3.1*F3.2*F3.3^-1*F3.1*F3.3*F3.1*F3.3^-1,
> (F3.2*F3.3)^3, (F3.2^-1*F3.3)^4];;
gap> a := G.1;; b := G.2;; c := G.3;;
gap> H := Subgroup(G, [a, c]);;
gap> for i in [61, 62, 63, 90, 97] do
> Pi := PresentationSubgroup(G, H);
> TzOptions(Pi).eliminationsLimit := i;
> Print("#I eliminationsLimit set to ",i,"\n");
> TzOptions(Pi).printLevel := 0;
> TzGoGo(Pi);
> TzPrintStatus(Pi);
> od;
#I eliminationsLimit set to 61
#I there are 2 generators and 104 relators of total length 7012
#I eliminationsLimit set to 62
#I there are 2 generators and 7 relators of total length 56
#I eliminationsLimit set to 63
#I there are 3 generators and 97 relators of total length 5998
#I eliminationsLimit set to 90
#I there are 3 generators and 11 relators of total length 68
#I eliminationsLimit set to 97
#I there are 4 generators and 109 relators of total length 3813

Similarly, we demonstrate the influence of the saveLimit parameter by just continuing the preceding example
for some different values of the saveLimit parameter (including its default value 10), but without changing
the eliminationsLimit parameter which keeps its default value 100.

Section 8. Elementary Tietze Transformations 493

gap> for i in [7 .. 11] do
> Pi := PresentationSubgroup(G, H);
> TzOptions(Pi).saveLimit := i;
> Print("#I saveLimit set to ", i, "\n");
> TzOptions(Pi).printLevel := 0;
> TzGoGo(Pi);
> TzPrintStatus(Pi);
> od;
#I saveLimit set to 7
#I there are 3 generators and 99 relators of total length 2713
#I saveLimit set to 8
#I there are 2 generators and 103 relators of total length 11982
#I saveLimit set to 9
#I there are 2 generators and 6 relators of total length 41
#I saveLimit set to 10
#I there are 3 generators and 118 relators of total length 13713
#I saveLimit set to 11
#I there are 3 generators and 11 relators of total length 58

46.8 Elementary Tietze Transformations

1 I TzEliminate(P) F
I TzEliminate(P, gen) F
I TzEliminate(P, n) F

tries to eliminate a generator from a presentation P via Tietze transformations.

Any relator which contains some generator just once can be used to substitute that generator by a word in
the remaining generators. If such generators and relators exist, then TzEliminate chooses a generator for
which the product of its number of occurrences and the length of the substituting word is minimal, and then
it eliminates this generator from the presentation, provided that the resulting total length of the relators
does not exceed the associated Tietze option parameter spaceLimit (see 46.12). The default value of that
parameter is infinity, but you may alter it appropriately.

If a generator gen has been specified, TzEliminate eliminates it if possible, i. e. if there is a relator in
which gen occurs just once. If no second argument has been specified, TzEliminate eliminates some appro-
priate generator if possible and if the resulting total length of the relators will not exceed the parameter
lengthLimit.

If an integer n has been specified, TzEliminate tries to eliminate up to n generators. Note that the calls
TzEliminate(P) and TzEliminate(P,1) are equivalent.

2 I TzSearch(P) F

searches for relator subwords which, in some relator, have a complement of shorter length and which occur
in other relators, too, and uses them to reduce these other relators.

The idea is to find pairs of relators r1 and r2 of length l1 and l2, respectively, such that l1 ≤ l2 and r1 and
r2 coincide (possibly after inverting or conjugating one of them) in some maximal subword w , say, of length
greater than l1/2, and then to substitute each copy of w in r2 by the inverse complement of w in r1.

Two of the Tietze option parameters which are listed in section 46.12 may strongly influence the performance
and the results of the command TzSearch. These are the parameters saveLimit and searchSimultaneous.
The first of them has the following effect:

When TzSearch has finished its main loop over all relators, then, in general, there are relators which
have changed and hence should be handled again in another run through the whole procedure. However,

494 Chapter 46. Presentations and Tietze Transformations

experience shows that it really does not pay to continue this way until no more relators change. Therefore,
TzSearch starts a new loop only if the loop just finished has reduced the total length of the relators by at
least saveLimit per cent.

The default value of saveLimit is 10 per cent.

To understand the effect of the option searchSimultaneous, we have to look in more detail at how TzSearch
proceeds:

First, it sorts the list of relators by increasing lengths. Then it performs a loop over this list. In each step
of this loop, the current relator is treated as short relator r1, and a subroutine is called which loops over
the succeeding relators, treating them as long relators r2 and performing the respective comparisons and
substitutions.

As this subroutine performs a very expensive process, it has been implemented as a C routine in the GAP
kernel. For the given relator r1 of length l1, say, it first determines the minimal match length l which
is l1/2 + 1, if l1 is even, or (l1 + 1)/2, otherwise. Then it builds up a hash list for all subwords of length
l occurring in the conjugates of r1 or r−1

1 , and finally it loops over all long relators r2 and compares the
hash values of their subwords of length l against this list. A comparison of subwords which is much more
expensive is only done if a hash match has been found.

To improve the efficiency of this process we allow the subroutine to handle several short relators simultane-
ously provided that they have the same minimal match length. If, for example, it handles n short relators
simultaneously, then you save n − 1 loops over the long relators r2, but you pay for it by additional fruitless
subword comparisons. In general, you will not get the best performance by always choosing the maximal
possible number of short relators to be handled simultaneously. In fact, the optimal choice of the number will
depend on the concrete presentation under investigation. You can use the parameter searchSimultaneous
to prescribe an upper bound for the number of short relators to be handled simultaneously.

The default value of searchSimultaneous is 20.

3 I TzSearchEqual(P) F

searches for Tietze relator subwords which, in some relator, have a complement of equal length and which
occur in other relators, too, and uses them to modify these other relators.

The idea is to find pairs of relators r1 and r2 of length l1 and l2, respectively, such that l1 is even, l1 ≤ l2,
and r1 and r2 coincide (possibly after inverting or conjugating one of them) in some maximal subword w ,
say, of length at least l1/2. Let l be the length of w . Then, if l > l1/2, the pair is handled as in TzSearch.
Otherwise, if l = l1/2, then TzSearchEqual substitutes each copy of w in r2 by the inverse complement of
w in r1.

The Tietze option parameter searchSimultaneous is used by TzSearchEqual in the same way as described
for TzSearch. However, TzSearchEqual does not use the parameter saveLimit: The loop over the relators
is executed exactly once.

4 I TzFindCyclicJoins(P) F

searches for power and commutator relators in order to find pairs of generators which generate a common
cyclic subgroup. It uses these pairs to introduce new relators, but it does not introduce any new generators
as is done by TzSubstituteCyclicJoins (see 46.9.2).

More precisely: TzFindCyclicJoins searches for pairs of generators a and b such that (possibly after
inverting or conjugating some relators) the set of relators contains the commutator [a, b], a power an , and
a product of the form asbt with s prime to n. For each such pair, TzFindCyclicJoins uses the Euclidian
algorithm to express a as a power of b, and then it eliminates a.

Section 9. Tietze Transformations that introduce new Generators 495

46.9 Tietze Transformations that introduce new Generators

Some of the Tietze transformation commands listed so far may eliminate generators and hence change
the given presentation to a presentation on a subset of the given set of generators, but they all do not
introduce new generators. However, sometimes there will be the need to substitute certain words as new
generators in order to improve a presentation. Therefore GAP offers the two commands TzSubstitute and
TzSubstituteCyclicJoins which introduce new generators.

1 I TzSubstitute(P, word) F
I TzSubstitute(P [, n [, eliminate]]) F

In the first form TzSubstitute expects P to be a presentation and word to be either an abstract word or a
Tietze word in the generators of P . It substitutes the given word as a new generator of P . This is done as
follows: First, TzSubstitute creates a new abstract generator, g say, and adds it to the presentation, then
it adds a new relator g−1 · word .

In its second form, TzSubstitute substitutes a squarefree word of length 2 as a new generator and then
eliminates a generator from the extended generator list. We will describe this process in more detail below.

The parameters n and eliminate are optional. If you specify arguments for them, then n is expected to be a
positive integer, and eliminate is expected to be 0, 1, or 2. The default values are n = 1 and eliminate = 0.

TzSubstitute first determines the n most frequently occurring relator subwords of the form g1g2, where g1

and g2 are different generators or their inverses, and sorts them by decreasing numbers of occurrences.

Let ab be the last word in that list, and let i be the smallest positive integer which has not yet been used as
a generator number in the presentation P so far. TzSubstitute defines a new abstract generator xi named
" xi" and adds it to P (see AddGenerator). Then it adds the word x−1

i ab as a new relator to P and replaces
all occurrences of ab in the relators by xi . Finally, it eliminates some suitable generator from P .

The choice of the generator to be eliminated depends on the actual value of the parameter eliminate:

If eliminate is zero, TzSubstitute just calls the function TzEliminate. So it may happen that it is the
just introduced generator xi which now is deleted again so that you don’t get any remarkable progress in
simplifying your presentation. On the first glance this does not look reasonable, but it is a consequence of
the request that a call of TzSubstitute with eliminate = 0 must not increase the total length of the relators.

Otherwise, if eliminate is 1 or 2, TzSubstitute eliminates the respective factor of the substituted word ab,
i. e., it eliminates a if eliminate = 1 or b if eliminate = 2. In this case, it may happen that the total length
of the relators increases, but sometimes such an intermediate extension is the only way to finally reduce a
given presentation.

There is still another property of the command TzSubstitute which should be mentioned. If, for instance,
word is an abstract word, a call

TzSubstitute(P, word);

is more or less equivalent to

AddGenerator(P);
g := GeneratorsOfPresentation(P)[Length(GeneratorsOfPresentation(P))];
AddRelator(P, g^-1 * word);

However, there is a difference: If you are tracing generator images and preimages of P through the Tietze
transformations applied to P (see 46.10), then TzSubstitute, as a Tietze transformation of P , will update
and save the respective lists, whereas a call of the function AddGenerator (which does not perform a Tietze
transformation) will delete these lists and hence terminate the tracing.

496 Chapter 46. Presentations and Tietze Transformations

gap> G := PerfectGroup(IsSubgroupFpGroup, 960, 1);
A5 2^4
gap> P := PresentationFpGroup(G);
<presentation with 6 gens and 21 rels of total length 84>
gap> GeneratorsOfPresentation(P);
[a, b, s, t, u, v]
gap> TzGoGo(P);
#I there are 3 generators and 10 relators of total length 81
#I there are 3 generators and 10 relators of total length 80
gap> TzPrintGenerators(P);
#I 1. a 31 occurrences involution
#I 2. b 26 occurrences
#I 3. t 23 occurrences involution
gap> a := GeneratorsOfPresentation(P)[1];;
gap> b := GeneratorsOfPresentation(P)[2];;
gap> TzSubstitute(P, a*b);
#I now the presentation has 4 generators, the new generator is _x7
#I substituting new generator _x7 defined by a*b
#I there are 4 generators and 11 relators of total length 83
gap> TzGo(P);
#I there are 3 generators and 10 relators of total length 74
gap> TzPrintGenerators(P);
#I 1. a 23 occurrences involution
#I 2. t 23 occurrences involution
#I 3. _x7 28 occurrences

As an example of an application of the command TzSubstitute in its second form we handle a subgroup
of index 266 in the Janko group J1.

gap> F2 := FreeGroup("a", "b");;
gap> J1 := F2 / [F2.1^2, F2.2^3, (F2.1*F2.2)^7,
> Comm(F2.1,F2.2)^10, Comm(F2.1,F2.2^-1*(F2.1*F2.2)^2)^6];;
gap> a := J1.1;; b := J1.2;;
gap> H := Subgroup (J1, [a, b^(a*b*(a*b^-1)^2)]);;
gap> P := PresentationSubgroup(J1, H);
<presentation with 23 gens and 82 rels of total length 530>
gap> TzGoGo(P);
#I there are 3 generators and 47 relators of total length 1368
#I there are 2 generators and 46 relators of total length 3773
#I there are 2 generators and 46 relators of total length 2570
gap> TzGoGo(P);
#I there are 2 generators and 46 relators of total length 2568
gap> TzGoGo(P);

Here we do not get any more progress without substituting a new generator.

gap> TzSubstitute(P);
#I substituting new generator _x28 defined by _x6*_x23^-1
#I eliminating _x28 = _x6*_x23^-1

GAP cannot substitute a new generator without extending the total length, so we have to explicitly ask for
it by using the second form of the command TzSubstitute. Our problem is to chose appropriate values for

Section 9. Tietze Transformations that introduce new Generators 497

the arguments n and eliminate. For this purpose it may be helpful to print out a list of the most frequently
occurring squarefree relator subwords of length 2.

gap> TzPrintPairs(P);
#I 1. 504 occurrences of _x6 * _x23^-1
#I 2. 504 occurrences of _x6^-1 * _x23
#I 3. 448 occurrences of _x6 * _x23
#I 4. 448 occurrences of _x6^-1 * _x23^-1
gap> TzSubstitute(P, 2, 1);
#I substituting new generator _x29 defined by _x6^-1*_x23
#I eliminating _x6 = _x23*_x29^-1
#I there are 2 generators and 46 relators of total length 2867
gap> TzGoGo(P);
#I there are 2 generators and 45 relators of total length 2417
#I there are 2 generators and 45 relators of total length 2122
gap> TzSubstitute(P, 1, 2);
#I substituting new generator _x30 defined by _x23*_x29^-1
#I eliminating _x29 = _x30^-1*_x23
#I there are 2 generators and 45 relators of total length 2192
gap> TzGoGo(P);
#I there are 2 generators and 42 relators of total length 1637
#I there are 2 generators and 40 relators of total length 1286
#I there are 2 generators and 36 relators of total length 807
#I there are 2 generators and 32 relators of total length 625
#I there are 2 generators and 22 relators of total length 369
#I there are 2 generators and 18 relators of total length 213
#I there are 2 generators and 13 relators of total length 141
#I there are 2 generators and 12 relators of total length 121
#I there are 2 generators and 10 relators of total length 101
gap> TzPrintPairs(P);
#I 1. 19 occurrences of _x23 * _x30^-1
#I 2. 19 occurrences of _x23^-1 * _x30
#I 3. 14 occurrences of _x23 * _x30
#I 4. 14 occurrences of _x23^-1 * _x30^-1

If we save a copy of the current presentation, then later we will be able to restart the computation from the
current state.

gap> P1 := ShallowCopy(P);
<presentation with 2 gens and 10 rels of total length 101>

Just for demonstration we make an inconvenient choice:

gap> TzSubstitute(P, 3, 1);
#I substituting new generator _x31 defined by _x23*_x30
#I eliminating _x23 = _x31*_x30^-1
#I there are 2 generators and 10 relators of total length 122
gap> TzGoGo(P);
#I there are 2 generators and 9 relators of total length 105

This presentation is worse than the one we have saved, so we restart from that presentation again.

498 Chapter 46. Presentations and Tietze Transformations

gap> P := ShallowCopy(P1);
<presentation with 2 gens and 10 rels of total length 101>
gap> TzSubstitute(P, 2, 1);
#I substituting new generator _x31 defined by _x23^-1*_x30
#I eliminating _x23 = _x30*_x31^-1
#I there are 2 generators and 10 relators of total length 107
gap> TzGoGo(P);
#I there are 2 generators and 9 relators of total length 84
#I there are 2 generators and 8 relators of total length 75
gap> TzSubstitute(P, 2, 1);
#I substituting new generator _x32 defined by _x30^-1*_x31
#I eliminating _x30 = _x31*_x32^-1
#I there are 2 generators and 8 relators of total length 71
gap> TzGoGo(P);
#I there are 2 generators and 7 relators of total length 56
#I there are 2 generators and 5 relators of total length 36
gap> TzPrintRelators(P);
#I 1. _x32^5
#I 2. _x31^5
#I 3. _x31^-1*_x32^-1*_x31^-1*_x32^-1*_x31^-1*_x32^-1
#I 4. _x31*_x32*_x31^-1*_x32*_x31^-1*_x32*_x31*_x32^-2
#I 5. _x31^-1*_x32^2*_x31*_x32^-1*_x31^2*_x32^-1*_x31*_x32^2

2 I TzSubstituteCyclicJoins(P) F

tries to find pairs of commuting generators a and b, say, such that the exponent of a (i. e. the least currently
known positive integer n such that an is a relator in P) is prime to the exponent of b. For each such pair,
their product ab is substituted as a new generator, and a and b are eliminated.

46.10 Tracing generator images through Tietze transformations

Any sequence of Tietze transformations applied to a presentation, starting from some presentation P1 and
ending up with some presentation P2, defines an isomorphism, ϕ say, between the groups defined by P1 and
P2, respectively. Sometimes it is desirable to know the images of the (old) generators of P1 or the preimages
of the (new) generators of P2 under ϕ. The GAP Tietze transformation functions are able to trace these
images. This is not automatically done because the involved words may grow to tremendous length, but it
will be done if you explicitly request for it by calling the function TzInitGeneratorImages.

1 I TzInitGeneratorImages(P) F

expects P to be a presentation. It defines the current generators to be the “old generators” of P and initializes
the (pre)image tracing. See TzImagesOldGens and TzPreImagesNewGens for details.

You can reinitialize the tracing of the generator images at any later state by just calling the function
TzInitGeneratorImages again.

Note: A subsequent call of the function DecodeTree will imply that the images and preimages are deleted
and reinitialized after decoding the tree.

Moreover, if you introduce a new generator by calling the function AddGenerator described in section 46.6,
this new generator cannot be traced in the old generators. Therefore AddGenerator will terminate the
tracing of the generator images and preimages and delete the respective lists whenever it is called.

2 I OldGeneratorsOfPresentation(P) F

assumes that P is a presentation for which the generator images and preimages are being traced under
Tietze transformations. It returns the list of old generators of P .

Section 10. Tracing generator images through Tietze transformations 499

3 I TzImagesOldGens(P) F

assumes that P is a presentation for which the generator images and preimages are being traced under Tietze
transformations. It returns a list l of words in the (current) generators GeneratorsOfPresentation(P) of
P such that the i -th word l[i] represents the i -th old generator OldGeneratorsOfPresentation(P)[i] of
P .

4 I TzPreImagesNewGens(P) F

assumes that P is a presentation for which the generator images and preimages are being traced under Tietze
transformations. It returns a list l of words in the old generators OldGeneratorsOfPresentation(P) of P
such that the i -th word l[i] represents the i -th (current) generator GeneratorsOfPresentation(P)[i] of
P .

5 I TzPrintGeneratorImages(P) F

assumes that P is a presentation for which the generator images and preimages are being traced under Tietze
transformations. It displays the preimages of the current generators as Tietze words in the old generators,
and the images of the old generators as Tietze words in the current generators.

gap> G := PerfectGroup(IsSubgroupFpGroup, 960, 1);
A5 2^4
gap> P := PresentationFpGroup(G);
<presentation with 6 gens and 21 rels of total length 84>
gap> TzInitGeneratorImages(P);
gap> TzGo(P);
#I there are 3 generators and 11 relators of total length 96
#I there are 3 generators and 10 relators of total length 81
gap> TzPrintGeneratorImages(P);
#I preimages of current generators as Tietze words in the old ones:
#I 1. [1]
#I 2. [2]
#I 3. [4]
#I images of old generators as Tietze words in the current ones:
#I 1. [1]
#I 2. [2]
#I 3. [1, -2, 1, 3, 1, 2, 1]
#I 4. [3]
#I 5. [-2, 1, 3, 1, 2]
#I 6. [1, 3, 1]
gap> gens := GeneratorsOfPresentation(P);
[a, b, t]
gap> oldgens := OldGeneratorsOfPresentation(P);
[a, b, s, t, u, v]
gap> TzImagesOldGens(P);
[a, b, a*b^-1*a*t*a*b*a, t, b^-1*a*t*a*b, a*t*a]
gap> for i in [1 .. Length(oldgens)] do
> Print(oldgens[i], " = ", TzImagesOldGens(P)[i], "\n");
> od;
a = a
b = b
s = a*b^-1*a*t*a*b*a
t = t
u = b^-1*a*t*a*b
v = a*t*a

500 Chapter 46. Presentations and Tietze Transformations

46.11 DecodeTree

1 I DecodeTree(P) F

assumes that P is a subgroup presentation provided by the Reduced Reidemeister-Schreier or by the Modified
Todd-Coxeter method (see PresentationSubgroupRrs, PresentationNormalClosureRrs, Presentation-
SubgroupMtc in section 46.3). It eliminates the secondary generators of P (see 46.3) by applying the so
called “decoding tree” procedure.

DecodeTree is called automatically by the command PresentationSubgroupMtc (see 46.3.4) where it re-
duces P to a presentation on the given (primary) subgroup generators.

In order to explain the effect of this command we need to insert a few remarks on the subgroup presentation
commands described in section 46.3. All these commands have the common property that in the process
of constructing a presentation for a given subgroup H of a finitely presented group G they first build up a
highly redundant list of generators of H which consists of an (in general small) list of “primary” generators,
followed by an (in general large) list of “secondary” generators, and then construct a presentation P0, say,
on a sublist of these generators by rewriting the defining relators of G . This sublist contains all primary,
but, at least in general, by far not all secondary generators.

The role of the primary generators depends on the concrete choice of the subgroup presentation command.
If the Modified Todd-Coxeter method is used, they are just the given generators of H , whereas in the case
of the Reduced Reidemeister-Schreier algorithm they are constructed by the program.

Each of the secondary generators is defined by a word of length two in the preceding generators and their
inverses. By historical reasons, the list of these definitions is called the subgroup generators tree though
in fact it is not a tree but rather a kind of bush.

Now we have to distinguish two cases. If P0 has been constructed by the Reduced Reidemeister-Schreier
routines, it is a presentation of H . However, if the Modified Todd-Coxeter routines have been used instead,
then the relators in P0 are valid relators of H , but they do not necessarily define H . We handle these cases
in turn, starting with the latter one.

In fact, we could easily receive a presentation of H also in this case if we extended P0 by adding to it all the
secondary generators which are not yet contained in it and all the definitions from the generators tree as
additional generators and relators. Then we could recursively eliminate all secondary generators by Tietze
transformations using the new relators. However, this procedure turns out to be too inefficient to be of
interest.

Instead, we use the so called decoding tree procedure (see [AMW82], [AR84]). It proceeds as follows.

Starting from P = P0, it runs through a number of steps in each of which it eliminates the current “last”
generator (with respect to the list of all primary and secondary generators). If the last generator g , say,
is a primary generator, then the procedure terminates. Otherwise it checks whether there is a relator in
the current presentation which can be used to substitute g by a Tietze transformation. If so, this is done.
Otherwise, and only then, the tree definition of g is added to P as a new relator, and the generators involved
are added as new generators if they have not yet been contained in P . Subsequently, g is eliminated.

Note that the extension of P by one or two new generators is not a Tietze transformation. In general, it
will change the isomorphism type of the group defined by P . However, it is a remarkable property of this
procedure, that at the end, i.e., as soon as all secondary generators have been eliminated, it provides a
presentation P = P1, say, which defines a group isomorphic to H . In fact, it is this presentation which is
returned by the command DecodeTree and hence by the command PresentationSubgroupMtc.

If, in the other case, the presentation P0 has been constructed by the Reduced Reidemeister-Schreier al-
gorithm, then P0 itself is a presentation of H , and the corresponding subgroup presentation command
(PresentationSubgroupRrs or PresentationNormalClosureRrs) just returns P0.

As mentioned in section 46.3, we recommend to further simplify this presentation before you use it. The
standard way to do this is to start from P0 and to apply suitable Tietze transformations, e.g., by calling

Section 11. DecodeTree 501

the commands TzGo or TzGoGo. This is probably the most efficient approach, but you will end up with a
presentation on some unpredictable set of generators. As an alternative, GAP offers you the DecodeTree
command which you can use to eliminate all secondary generators (provided that there are no space or
time problems). For this purpose, the subgroup presentation commands do not only return the resulting
presentation, but also the tree (together with some associated lists) as a kind of side result in a component
P!.tree of the resulting presentation P .

Note, however, that the decoding tree routines will not work correctly any more on a presentation from which
generators have already been eliminated by Tietze transformations. Therefore, to prevent you from getting
wrong results by calling the DecodeTree command in such a situation, GAP will automatically remove the
subgroup generators tree from a presentation as soon as one of the generators is substituted by a Tietze
transformation.

Nevertheless, a certain misuse of the command is still possible, and we want to explicitly warn you from this.
The reason is that the Tietze option parameters described in section 46.7 apply to the DecodeTree command
as well. Hence, in case of inadequate values of these parameters, it may happen that the DecodeTree routine
stops before all the secondary generators have vanished. In this case GAP will display an appropriate warning.
Then you should change the respective parameters and continue the process by calling the DecodeTree
command again. Otherwise, if you would apply Tietze transformations, it might happen because of the
convention described above that the tree is removed and that you end up with a wrong presentation.

After a successful run of the DecodeTree command it is convenient to further simplify the resulting presen-
tation by suitable Tietze transformations.

As an example of an explicit call of the DecodeTree command we compute two presentations of a subgroup
of order 384 in a group of order 6912. In both cases we use the Reduced Reidemeister-Schreier algorithm,
but in the first run we just apply the Tietze transformations offered by the TzGoGo command with its default
parameters, whereas in the second run we call the DecodeTree command before.

gap> F2 := FreeGroup("a", "b");;
gap> G := F2 / [F2.1*F2.2^2*F2.1^-1*F2.2^-1*F2.1^3*F2.2^-1,
> F2.2*F2.1^2*F2.2^-1*F2.1^-1*F2.2^3*F2.1^-1];;
gap> a := G.1;; b := G.2;;
gap> H := Subgroup(G, [Comm(a^-1,b^-1), Comm(a^-1,b), Comm(a,b)]);;

We use the Reduced Reidemeister Schreier method and default Tietze transformations to get a presentation
for H .

gap> P := PresentationSubgroupRrs(G, H);
<presentation with 18 gens and 35 rels of total length 169>
gap> TzGoGo(P);
#I there are 3 generators and 20 relators of total length 488
#I there are 3 generators and 20 relators of total length 466

We end up with 20 relators of total length 466. Now we repeat the procedure, but we call the decoding tree
algorithm before doing the Tietze transformations.

gap> P := PresentationSubgroupRrs(G, H);
<presentation with 18 gens and 35 rels of total length 169>
gap> DecodeTree(P);
#I there are 9 generators and 26 relators of total length 185
#I there are 6 generators and 23 relators of total length 213
#I there are 3 generators and 20 relators of total length 252
#I there are 3 generators and 20 relators of total length 244
gap> TzGoGo(P);
#I there are 3 generators and 19 relators of total length 168

502 Chapter 46. Presentations and Tietze Transformations

#I there are 3 generators and 17 relators of total length 138
#I there are 3 generators and 15 relators of total length 114
#I there are 3 generators and 13 relators of total length 96
#I there are 3 generators and 12 relators of total length 84

This time we end up with a shorter presentation.

As an example of an implicit call of the function DecodeTree via the command PresentationSubgroupMtc
we handle a subgroup of index 240 in a group of order 40320 given by a presentation due to B. H. Neumann.
Note that we increase the FpGroup info level to get some additional output.

gap> F3 := FreeGroup("a", "b", "c");;
gap> a := F3.1;; b := F3.2;; c := F3.3;;
gap> G := F3 / [a^3, b^3, c^3, (a*b)^5, (a^-1*b)^5, (a*c)^4,
> (a*c^-1)^4, a*b^-1*a*b*c^-1*a*c*a*c^-1, (b*c)^3, (b^-1*c)^4];;
gap> a := G.1;; b := G.2;; c := G.3;;
gap> H := Subgroup(G, [a, c]);;
gap> SetInfoLevel(InfoFpGroup, 1);
gap> P := PresentationSubgroupMtc(G, H);;
#I index = 240 total = 4737 max = 4507
#I MTC defined 2 primary and 4444 secondary subgroup generators
#I there are 246 generators and 617 relators of total length 2893
#I calling DecodeTree
#I there are 114 generators and 385 relators of total length 1860
#I there are 69 generators and 294 relators of total length 1855
#I there are 43 generators and 235 relators of total length 2031
#I there are 35 generators and 207 relators of total length 2348
#I there are 25 generators and 181 relators of total length 3055
#I there are 19 generators and 165 relators of total length 3290
#I there are 20 generators and 160 relators of total length 5151
#I there are 23 generators and 159 relators of total length 8177
#I there are 25 generators and 159 relators of total length 12241
#I there are 29 generators and 159 relators of total length 18242
#I there are 34 generators and 159 relators of total length 27364
#I there are 38 generators and 159 relators of total length 41480
#I there are 41 generators and 159 relators of total length 62732
#I there are 45 generators and 159 relators of total length 88872
#I there are 46 generators and 159 relators of total length 111092
#I there are 44 generators and 155 relators of total length 158181
#I there are 32 generators and 155 relators of total length 180478
#I there are 7 generators and 133 relators of total length 29897
#I there are 4 generators and 119 relators of total length 28805
#I there are 3 generators and 116 relators of total length 35209
#I there are 2 generators and 111 relators of total length 25658
#I there are 2 generators and 111 relators of total length 22634
gap> TzGoGo(P);
#I there are 2 generators and 108 relators of total length 11760
#I there are 2 generators and 95 relators of total length 6482
#I there are 2 generators and 38 relators of total length 1464
#I there are 2 generators and 8 relators of total length 116
#I there are 2 generators and 7 relators of total length 76
#I there are 2 generators and 6 relators of total length 66
#I there are 2 generators and 6 relators of total length 52

Section 12. Tietze Options 503

gap> TzPrintGenerators(P);
#I 1. _x1 26 occurrences
#I 2. _x2 26 occurrences
gap> TzPrint(P);
#I generators: [_x1, _x2]
#I relators:
#I 1. 3 [1, 1, 1]
#I 2. 3 [2, 2, 2]
#I 3. 8 [2, -1, 2, -1, 2, -1, 2, -1]
#I 4. 8 [2, 1, 2, 1, 2, 1, 2, 1]
#I 5. 14 [-1, -2, 1, 2, 1, -2, -1, 2, 1, -2, -1, -2, 1, 2]
#I 6. 16 [1, 2, 1, -2, 1, 2, 1, -2, 1, 2, 1, -2, 1, 2, 1, -2]
gap> K := FpGroupPresentation(P);
<fp group on the generators [_x1, _x2]>
gap> SetInfoLevel(InfoFpGroup, 0);
gap> Size(K);
168

46.12 Tietze Options

Several of the Tietze transformation commands described above are controlled by certain parameters, the
Tietze options, which often have a tremendous influence on their performance and results. However, in
each application of the commands, an appropriate choice of these option parameters will depend on the
concrete presentation under investigation. Therefore we have implemented the Tietze options in such a way
that they are associated to the presentation: Each presentation keeps its own set of Tietze option parameters
as an attribute.

1 I TzOptions(P) AM

is a record whose components direct the heuristics applied by the Tietze transformation functions.

You may alter the value of any of these Tietze options by just assigning a new value to the respective record
component.

The following Tietze options are recognized by GAP:

protected:
The first protected generators in a presentation P are protected from being eliminated by the
Tietze transformations functions. There are only two exceptions: The option protected is ignored
by the functions TzEliminate(P,gen) and TzSubstitute(P,n,eliminate) because they explicitly
specify the generator to be eliminated. The default value of protected is 0.

eliminationsLimit:
Whenever the elimination phase of the TzGo command is entered for a presentation P , then it will
eliminate at most eliminationsLimit generators (except for further ones which have turned out
to be trivial). Hence you may use the eliminationsLimit parameter as a break criterion for the
TzGo command. Note, however, that it is ignored by the TzEliminate command. The default value
of eliminationsLimit is 100.

expandLimit:
Whenever the routine for eliminating more than 1 generators is called for a presentation P by the
TzEliminate command or the elimination phase of the TzGo command, then it saves the given
total length of the relators, and subsequently it checks the current total length against its value
before each elimination. If the total length has increased to more than expandLimit per cent of its
original value, then the routine returns instead of eliminating another generator. Hence you may

504 Chapter 46. Presentations and Tietze Transformations

use the expandLimit parameter as a break criterion for the TzGo command. The default value of
expandLimit is 150.

generatorsLimit:
Whenever the elimination phase of the TzGo command is entered for a presentation P with n
generators, then it will eliminate at most n−generatorsLimit generators (except for generators
which turn out to be trivial). Hence you may use the generatorsLimit parameter as a break
criterion for the TzGo command. The default value of generatorsLimit is 0.

lengthLimit:
The Tietze transformation commands will never eliminate a generator of a presentation P , if they
cannot exclude the possibility that the resulting total length of the relators exceeds the maximal
GAP list length of 231−1 or the value of the option lengthLimit. The default value of lengthLimit
is 231 − 1.

loopLimit:
Whenever the TzGo command is called for a presentation P , then it will loop over at most loopLimit
of its basic steps. Hence you may use the loopLimit parameter as a break criterion for the TzGo
command. The default value of loopLimit is infinity.

printLevel:
Whenever Tietze transformation commands are called for a presentation P with printLevel = 0,
they will not provide any output except for error messages. If printLevel = 1, they will display
some reasonable amount of output which allows you to watch the progress of the computation and to
decide about your next commands. In the case printLevel = 2, you will get a much more generous
amount of output. Finally, if printLevel = 3, various messages on internal details will be added.
The default value of printLevel is 1.

saveLimit:
Whenever the TzSearch command has finished its main loop over all relators of a presentation P ,
then it checks whether during this loop the total length of the relators has been reduced by at least
saveLimit per cent. If this is the case, then TzSearch repeats its procedure instead of returning.
Hence you may use the saveLimit parameter as a break criterion for the TzSearch command and,
in particular, for the search phase of the TzGo command. The default value of saveLimit is 10.

searchSimultaneous:
Whenever the TzSearch or the TzSearchEqual command is called for a presentation P , then it is
allowed to handle up to searchSimultaneous short relators simultaneously (see for the description
of the TzSearch command for more details). The choice of this parameter may heavily influence the
performance as well as the result of the TzSearch and the TzSearchEqual commands and hence
also of the search phase of the TzGo command. The default value of searchSimultaneous is 20.

2 I TzPrintOptions(P) F

prints the current values of the Tietze options of the presentation P .

gap> TzPrintOptions(P);
#I protected = 0
#I eliminationsLimit = 100
#I expandLimit = 150
#I generatorsLimit = 0
#I lengthLimit = 2147483647
#I loopLimit = infinity
#I printLevel = 1
#I saveLimit = 10
#I searchSimultaneous = 20

47 Group Products

This chapter describes the various group product constructions that are possible in GAP.

At the moment for some of the products methods are available only if both factors are given in the same
representation or only for certain types of groups such as permutation groups and pc groups when the
product can be naturally represented as a group of the same kind.

GAP does not guarantee that a product of two groups will be in a particular representation. (Exceptions are
WreathProductImprimitiveAction and WreathProductProductAction which are construction that makes
sense only for permutation groups, see 47.4.1).

GAP however will try to choose an efficient representation, so products of permutation groups or pc groups
often will be represented as a group of the same kind again.

Therefore the only guaranteed way to relate a product to its factors is via the embedding and projection
homomorphisms (see 47.6);

47.1 Direct Products

The direct product of groups is the cartesian product of the groups (considered as element sets) with
component-wise multiplication.

1 I DirectProduct(G, H) F
I DirectProductOp(list, expl) O

These functions construct the direct product of the groups given as arguments. DirectProduct takes an
arbitrary positive number of arguments and calls the operation DirectProductOp, which takes exactly two
arguments, namely a nonempty list of groups and one of these groups. (This somewhat strange syntax allows
the method selection to choose a reasonable method for special cases, e.g., if all groups are permutation
groups or pc groups.)

GAP will try to choose an efficient representation for the direct product. For example the direct product
of permutation groups will be a permutation group again and the direct product of pc groups will be a pc
group.

If the groups are in different representations a generic direct product will be formed which may not be
particularly efficient for many calculations. Instead it may be worth to convert all factors to a common
representation first, before forming the product.

For a product P the operation Embedding(P,nr) returns the homomorphism embedding the nr -th factor
into P . The operation Projection(P,nr) gives the projection of P onto the nr -th factor (see 47.6).

506 Chapter 47. Group Products

gap> g:=Group((1,2,3),(1,2));;
gap> d:=DirectProduct(g,g,g);
Group([(1,2,3), (1,2), (4,5,6), (4,5), (7,8,9), (7,8)])
gap> Size(d);
216
gap> e:=Embedding(d,2);
2nd embedding into Group([(1,2,3), (1,2), (4,5,6), (4,5), (7,8,9), (7,8)])
gap> Image(e,(1,2));
(4,5)
gap> Image(Projection(d,2),(1,2,3)(4,5)(8,9));
(1,2)

47.2 Semidirect Products

The semidirect product of a group N with a group G acting on N via a homomorphism α from G into
the automorphism group of N is the cartesian product G × N with the multiplication (g ,n) · (h,m) =
(gh,n(hα)m).

1 I SemidirectProduct(G, alpha, N) O
I SemidirectProduct(autgp, N) O

constructs the semidirect product of N with G acting via alpha. alpha must be a homomorphism from G
into a group of automorphisms of N .

If N is a group, alpha must be a homomorphism from G into a group of automorphisms of N .

If N is a full row space over a field F , alpha must be a homomorphism from G into a matrix group of the
right dimension over a subfield of F , or into a permutation group (in this case permutation matrices are
taken).

In the second variant, autgp must be a group of automorphism of N , it is a shorthand for SemidirectProd-
uct(autgp,IdentityMapping(autgp),N). Note that (unless autgrp has been obtained by the operation
AutomorphismGroup) you have to test IsGroupOfAutomorphisms(autgrp) to ensure that GAP knows that
autgrp consists of group automorphisms.

gap> n:=AbelianGroup(IsPcGroup,[5,5]);
<pc group of size 25 with 2 generators>
gap> au:=DerivedSubgroup(AutomorphismGroup(n));;
gap> Size(au);
120
gap> p:=SemidirectProduct(au,n);
<permutation group with 5 generators>
gap> Size(p);
3000

gap> n:=Group((1,2),(3,4));;
gap> au:=AutomorphismGroup(n);;
gap> au:=First(Elements(au),i->Order(i)=3);;
gap> au:=Group(au);
<group with 1 generators>
gap> SemidirectProduct(au,n);
Error, no method found! For debugging hints type ?Recovery from NoMethodFound
Error, no 2nd choice method found for ‘IsomorphismPcGroup’ on 1 arguments
gap> IsGroupOfAutomorphisms(au);
true

Section 2. Semidirect Products 507

gap> SemidirectProduct(au,n);
<pc group with 3 generators>

gap> n:=AbelianGroup(IsPcGroup,[2,2]);
<pc group of size 4 with 2 generators>
gap> au:=AutomorphismGroup(n);
<group of size 6 with 2 generators>
gap> apc:=IsomorphismPcGroup(au);
CompositionMapping(Pcgs([(2,3), (1,2,3)]) ->
[f1, f2], <action isomorphism>)
gap> g:=Image(apc);
Group([f1, f2])
gap> apci:=InverseGeneralMapping(apc);
[f1*f2^2, f1*f2] -> [Pcgs([f1, f2]) -> [f1*f2, f2],
Pcgs([f1, f2]) -> [f2, f1]]

gap> IsGroupHomomorphism(apci);
true
gap> p:=SemidirectProduct(g,apci,n);
<pc group of size 24 with 4 generators>
gap> IsomorphismGroups(p,Group((1,2,3,4),(1,2)));
[f1, f2, f3, f4] -> [(2,3), (2,3,4), (1,4)(2,3), (1,2)(3,4)]

gap> SemidirectProduct(SU(3,3),GF(9)^3);
<matrix group of size 4408992 with 3 generators>
gap> SemidirectProduct(Group((1,2,3),(2,3,4)),GF(5)^4);
<matrix group of size 7500 with 3 generators>

gap> g:=Group((3,4,5),(1,2,3));;
gap> mats:=[[[Z(2^2),0*Z(2)],[0*Z(2),Z(2^2)^2]],
> [[Z(2)^0,Z(2)^0], [Z(2)^0,0*Z(2)]]];;
gap> hom:=GroupHomomorphismByImages(g,Group(mats),[g.1,g.2],mats);;
gap> SemidirectProduct(g,hom,GF(4)^2);
<matrix group of size 960 with 3 generators>
gap> SemidirectProduct(g,hom,GF(16)^2);
<matrix group of size 15360 with 4 generators>

For the semidirect product P of G with N , Embedding(P,1) embeds G , Embedding(P,2) embeds N . The
operation Projection(P) returns the projection of P onto G (see 47.6).

gap> Size(Image(Embedding(p,1)));
6
gap> Embedding(p,2);
[f1, f2] -> [f3, f4]
gap> Projection(p);
[f1, f2, f3, f4] -> [f1, f2, <identity> of ..., <identity> of ...]

508 Chapter 47. Group Products

47.3 Subdirect Products

The subdirect product of the groups G and H with respect to the epimorphisms ϕ: G → A and ψ: H → A
(for a common group A) is the subgroup of the direct product G × H consisting of the elements (g , h) for
which gϕ = hψ. It is the pull-back of the diagram:

Gy ϕ

H
ψ−→ A

1 I SubdirectProduct(G , H , Ghom, Hhom) O

constructs the subdirect product of G and H with respect to the epimorphisms Ghom from G onto a group
A and Hhom from H onto the same group A.

For a subdirect product P , the operation Projection(P,nr returns the projections on the nr -th factor. (In
general the factors do not embed in a subdirect product.)

gap> g:=Group((1,2,3),(1,2));
Group([(1,2,3), (1,2)])
gap> hom:=GroupHomomorphismByImagesNC(g,g,[(1,2,3),(1,2)],[(),(1,2)]);
[(1,2,3), (1,2)] -> [(), (1,2)]
gap> s:=SubdirectProduct(g,g,hom,hom);
Group([(1,2,3), (1,2)(4,5), (4,5,6)])
gap> Size(s);
18
gap> p:=Projection(s,2);
2nd projection of Group([(1,2,3), (1,2)(4,5), (4,5,6)])
gap> Image(p,(1,3,2)(4,5,6));
(1,2,3)

2 I SubdirectProducts(G, H) F

this function computes all subdirect products of G and H up to conjugacy in Parent(G) x Parent(H). The
subdirect products are returned as subgroups of this direct product.

47.4 Wreath Products

The wreath product of a group G with a permutation group P acting on n points is the semidirect product
of the normal subgroup Gn with the group P which acts on Gn by permuting the components.

1 I WreathProduct(G, P) O
I WreathProduct(G, H [, hom]) O

constructs the wreath product of the group G with the permutation group P (acting on its MovedPoints).

The second usage constructs the wreath product of the group G with the image of the group H under hom
where hom must be a homomorphism from H into a permutation group. (If hom is not given, and P is
not a permutation group the result of IsomorphismPermGroup(P) – whose degree may be dependent on the
method and thus is not well-defined! – is taken for hom).

For a wreath product W of G with a permutation group P of degree n and 1 ≤ nr ≤ n the operation
Embedding(W ,nr) provides the embedding of G in the nr -th component of the direct product of the base
group Gn of W . Embedding(W ,n+1) is the embedding of P into W . The operation Projection(W)
provides the projection onto the acting group P (see 47.6).

Section 4. Wreath Products 509

gap> g:=Group((1,2,3),(1,2));
Group([(1,2,3), (1,2)])
gap> p:=Group((1,2,3));
Group([(1,2,3)])
gap> w:=WreathProduct(g,p);
Group([(1,2,3), (1,2), (4,5,6), (4,5), (7,8,9), (7,8), (1,4,7)(2,5,8)(3,6,9)
])

gap> Size(w);
648
gap> Embedding(w,1);
1st embedding into Group([(1,2,3), (1,2), (4,5,6), (4,5), (7,8,9), (7,8),
(1,4,7)(2,5,8)(3,6,9)])

gap> Image(Embedding(w,3));
Group([(7,8,9), (7,8)])
gap> Image(Embedding(w,4));
Group([(1,4,7)(2,5,8)(3,6,9)])
gap> Image(Projection(w),(1,4,8,2,6,7,3,5,9));
(1,2,3)

2 I WreathProductImprimitiveAction(G, H) F

for two permutation groups G and H this function constructs the wreath product of G and H in the
imprimitive action. If G acts on l points and H on m points this action will be on l · m points, it will be
imprimitive with m blocks of size l each.
The operations Embedding and Projection operate on this product as described for general wreath products.

gap> w:=WreathProductImprimitiveAction(g,p);;
gap> LargestMovedPoint(w);
9

3 I WreathProductProductAction(G, H) F

for two permutation groups G and H this function constructs the wreath product in product action. If G
acts on l points and H on m points this action will be on lm points.
The operations Embedding and Projection operate on this product as described for general wreath products.

gap> w:=WreathProductProductAction(g,p);
<permutation group of size 648 with 7 generators>
gap> LargestMovedPoint(w);
27

4 I KuKGenerators(G, beta, alpha) F

If beta is a homomorphism from G in a transitive permutation group, U the full preimage of the point
stabilizer and and alpha a homomorphism defined on (a superset) of U , this function returns images of the
generators of G when mapping to the wreath product (U alpha) o (Gbeta). (This is the Krasner-Kaloujnine
embedding theorem.)

gap> g:=Group((1,2,3,4),(1,2));;
gap> hom:=GroupHomomorphismByImages(g,Group((1,2)),
> GeneratorsOfGroup(g),[(1,2),(1,2)]);;
gap> u:=PreImage(hom,Stabilizer(Image(hom),1));
Group([(2,3,4), (1,2,4)])
gap> hom2:=GroupHomomorphismByImages(u,Group((1,2,3)),
> GeneratorsOfGroup(u),[(1,2,3), (1,2,3)]);;
gap> KuKGenerators(g,hom,hom2);
[(1,4)(2,5)(3,6), (1,6)(2,4)(3,5)]

510 Chapter 47. Group Products

47.5 Free Products

Let G and H be groups with presentations 〈X | R〉 and 〈Y | S 〉 respectively. Then the free product G ∗H is
the group with presentation 〈X ∪Y | R ∪ S 〉. This construction can be generalized to an arbitrary number
of groups.

1 I FreeProduct(G {, H }) F
I FreeProduct(list) F

constructs a finitely presented group which is the free product of the groups given as arguments. If the group
arguments are not finitely presented groups, then IsomorphismFpGroup must be defined for them.

The operation Embedding operates on this product.

gap> g := DihedralGroup(8);;
gap> h := CyclicGroup(5);;
gap> fp := FreeProduct(g,h,h);
<fp group on the generators [f1, f2, f3, f4, f5]>
gap> fp := FreeProduct([g,h,h]);
<fp group on the generators [f1, f2, f3, f4, f5]>
gap> Embedding(fp,2);
[f1] -> [f4]

47.6 Embeddings and Projections for Group Products

The relation between a group product and its factors is provided via homomorphisms, the embeddings in
the product and the projections from the product. Depending on the kind of product only some of these are
defined.

1 I Embedding(P,nr) O

returns the nr -th embedding in the group product P . The actual meaning of this embedding is described in
the section for the appropriate product.

2 I Projection(P[,nr]) O

returns the (nr -th) projection of the group product P . The actual meaning of the projection returned is
described in the section for the appropriate product.

48 Group Libraries

When you start GAP, it already knows several groups. Currently GAP initially knows the following groups:

• some basic groups, such as cyclic groups or symmetric groups (see 48.1),

• Classical matrix groups (see 48.2),

• the transitive permutation groups of degree at most 30 (see 48.6),

• a library of groups of small order (see 48.7),

• the finite perfect groups of size at most 106 (excluding 11 sizes) (see 48.8).

• the primitive permutation groups of degree < 2499 (see 48.9),

• the irreducible solvable subgroups of GL(n, p) for n > 1 and pn < 256 (see 48.11),

• the irreducible maximal finite integral matrix groups of dimension at most 31 (see 48.12),

There is usually no relation between the groups in the different libraries and a group may occur in different
libraries in different incarnations.

Note that a system administrator may choose to install all, or only a few, or even none of the libraries. So
some of the libraries mentioned below may not be available on your installation.

48.1 Basic Groups

There are several infinite families of groups which are parametrized by numbers. GAP provides various
functions to construct these groups. The functions always permit (but do not require) one to indicate a filter
(see 13.2), for example IsPermGroup, IsMatrixGroup or IsPcGroup, in which the group shall be constructed.
There always is a default filter corresponding to a “natural” way to describe the group in question. Note
that not every group can be constructed in every filter, there may be theoretical restrictions (IsPcGroup
only works for solvable groups) or methods may be available only for a few filters.

Certain filters may admit additional hints. For example, groups constructed in IsMatrixGroup may be
constructed over a specified field, which can be given as second argument of the function that constructs
the group; The default field is Rationals.

1 I TrivialGroup([filter]) F

constructs a trivial group in the category given by the filter filter . If filter is not given it defaults to
IsPcGroup.

gap> TrivialGroup();
<pc group of size 1 with 0 generators>
gap> TrivialGroup(IsPermGroup);
Group(())

2 I CyclicGroup([filt,]n) F

constructs the cyclic group of size n in the category given by the filter filt . If filt is not given it defaults to
IsPcGroup.

512 Chapter 48. Group Libraries

gap> CyclicGroup(12);
<pc group of size 12 with 3 generators>
gap> CyclicGroup(IsPermGroup,12);
Group([(1,2,3,4,5,6,7,8,9,10,11,12)])
gap> matgrp1:= CyclicGroup(IsMatrixGroup, 12);
<matrix group of size 12 with 1 generators>
gap> FieldOfMatrixGroup(matgrp1);
Rationals
gap> matgrp2:= CyclicGroup(IsMatrixGroup, GF(2), 12);
<matrix group of size 12 with 1 generators>
gap> FieldOfMatrixGroup(matgrp2);
GF(2)

3 I AbelianGroup([filt,]ints) F

constructs an abelian group in the category given by the filter filt which is of isomorphism type Cints[1] ∗
Cints[2] ∗ . . . ∗Cints[n]. ints must be a list of positive integers. If filt is not given it defaults to IsPcGroup. The
generators of the group returned are the elements corresponding to the integers in ints.

gap> AbelianGroup([1,2,3]);
<pc group of size 6 with 3 generators>

4 I ElementaryAbelianGroup([filt,]n) F

constructs the elementary abelian group of size n in the category given by the filter filt . If filt is not given
it defaults to IsPcGroup.

gap> ElementaryAbelianGroup(8192);
<pc group of size 8192 with 13 generators>

5 I DihedralGroup([filt,]n) F

constructs the dihedral group of size n in the category given by the filter filt . If filt is not given it defaults
to IsPcGroup.

gap> DihedralGroup(10);
<pc group of size 10 with 2 generators>

6 I ExtraspecialGroup([filt,]order, exp) F

Let order be of the form p2n+1, for a prime integer p and a positive integer n. ExtraspecialGroup returns
the extraspecial group of order order that is determined by exp, in the category given by the filter filt .
If p is odd then admissible values of exp are the exponent of the group (either p or p2) or one of ’+’, "+",
’-’, "-". For p = 2, only the above plus or minus signs are admissible.
If filt is not given it defaults to IsPcGroup.

gap> ExtraspecialGroup(27, 3);
<pc group of size 27 with 3 generators>
gap> ExtraspecialGroup(27, ’+’);
<pc group of size 27 with 3 generators>
gap> ExtraspecialGroup(8, "-");
<pc group of size 8 with 3 generators>

7 I AlternatingGroup([filt,]deg) F
I AlternatingGroup([filt,]dom) F

constructs the alternating group of degree deg in the category given by the filter filt . If filt is not given it
defaults to IsPermGroup. In the second version, the function constructs the alternating group on the points
given in the set dom which must be a set of positive integers.

Section 2. Classical Groups 513

gap> AlternatingGroup(5);
Alt([1 .. 5])

8 I SymmetricGroup([filt,]deg) F
I SymmetricGroup([filt,]dom) F

constructs the symmetric group of degree deg in the category given by the filter filt . If filt is not given it
defaults to IsPermGroup. In the second version, the function constructs the symmetric group on the points
given in the set dom which must be a set of positive integers.

gap> SymmetricGroup(10);
Sym([1 .. 10])

Note that permutation groups provide special treatment of symmetric and alternating groups, see 41.3.

9 I MathieuGroup([filt,]degree) F

constructs the Mathieu group of degree degree in the category given by the filter filt , where degree must be
in {9, 10, 11, 12, 21, 22, 23, 24}. If filt is not given it defaults to IsPermGroup.

gap> MathieuGroup(11);
Group([(1,2,3,4,5,6,7,8,9,10,11), (3,7,11,8)(4,10,5,6)])

10 I SuzukiGroup([filt,] q) F
I Sz([filt,] q) F

Constructs a group isomorphic to the Suzuki group Sz(q) over the field with q elements, where q is a
non-square power of 2.

If filt is not given it defaults to IsMatrixGroup, and the returned group is the Suzuki group itself.

gap> SuzukiGroup(32);
Sz(32)

11 I ReeGroup([filt,] q) F
I Ree([filt,] q) F

Constructs a group isomorphic to the Ree group 2G2(q) where q = 31+2m for m a non-negative integer.

If filt is not given it defaults to IsMatrixGroup and the generating matrices are based on [KLM01]. (No
particular choice of a generating set is guaranteed.)

gap> ReeGroup(27);
Ree(27)

48.2 Classical Groups

The following functions return classical groups. For the linear, symplectic, and unitary groups (the latter in
dimension at least 3), the generators are taken from [Tay87]; for the unitary groups in dimension 2, the iso-
morphism of SU (2, q) and SL(2, q) is used, see for example [Hup67]. The generators of the orthogonal groups
are taken from [IE94] and [KL90], except that the generators of the orthogonal groups in odd dimension in
even characteristic are constructed via the isomorphism to a symplectic group, see for example [Car72].

For symplectic and orthogonal matrix groups returned by the functions described below, the invariant bi-
linear form is stored as the value of the attribute InvariantBilinearForm (see 42.4.1). Analogously, the
invariant sesquilinear form defining the unitary groups is stored as the value of the attribute Invari-
antSesquilinearForm (see 42.4.3). The defining quadratic form of orthogonal groups is stored as the value
of the attribute InvariantQuadraticForm (see 42.4.5).

514 Chapter 48. Group Libraries

1 I GeneralLinearGroup([filt,]d, R) F
I GL([filt,]d, R) F
I GeneralLinearGroup([filt,]d, q) F
I GL([filt,]d, q) F

The first two forms construct a group isomorphic to the general linear group GL(d , R) of all d×d matrices
that are invertible over the ring R, in the category given by the filter filt .

The third and the fourth form construct the general linear group over the finite field with q elements.

If filt is not given it defaults to IsMatrixGroup, and the returned group is the general linear group as a
matrix group in its natural action (see also 42.3.2, 42.5.4).

Currently supported rings R are finite fields, the ring Integers, and residue class rings Integers mod m.

gap> GL(4,3);
GL(4,3)
gap> GL(2,Integers);
GL(2,Integers)
gap> GL(3,Integers mod 12);
GL(3,Z/12Z)

2 I SpecialLinearGroup([filt,]d, R) F
I SL([filt,]d, R) F
I SpecialLinearGroup([filt,]d, q) F
I SL([filt,]d, q) F

The first two forms construct a group isomorphic to the special linear group SL(d , R) of all those d × d
matrices over the ring R whose determinant is the identity of R, in the category given by the filter filt .

The third and the fourth form construct the special linear group over the finite field with q elements.

If filt is not given it defaults to IsMatrixGroup, and the returned group is the special linear group as a
matrix group in its natural action (see also 42.3.4, 42.5.5).

Currently supported rings R are finite fields, the ring Integers, and residue class rings Integers mod m.

gap> SpecialLinearGroup(2,2);
SL(2,2)
gap> SL(3,Integers);
SL(3,Integers)
gap> SL(4,Integers mod 4);
SL(4,Z/4Z)

Using the OnLines operation it is possible to obtain the corresponding projective groups in a permutation
action:

gap> g:=GL(4,3);;Size(g);
24261120
gap> pgl:=Action(g,Orbit(g,Z(3)^0*[1,0,0,0],OnLines),OnLines);;
gap> Size(pgl);
12130560

3 I GeneralUnitaryGroup([filt,]d, q) F
I GU([filt,]d, q) F

constructs a group isomorphic to the general unitary group GU(d , q) of those d ×d matrices over the field
with q2 elements that respect a fixed nondegenerate sesquilinear form, in the category given by the filter
filt .

Section 2. Classical Groups 515

If filt is not given it defaults to IsMatrixGroup, and the returned group is the general unitary group itself.

gap> GeneralUnitaryGroup(3, 5);
GU(3,5)

4 I SpecialUnitaryGroup([filt,]d, q) F
I SU([filt,]d, q) F

constructs a group isomorphic to the special unitary group GU(d, q) of those d × d matrices over the
field with q2 elements whose determinant is the identity of the field and that respect a fixed nondegenerate
sesquilinear form, in the category given by the filter filt .

If filt is not given it defaults to IsMatrixGroup, and the returned group is the special unitary group itself.

gap> SpecialUnitaryGroup(3, 5);
SU(3,5)

5 I SymplecticGroup([filt,]d, q) F
I Sp([filt,]d, q) F
I SP([filt,]d, q) F

constructs a group isomorphic to the symplectic group Sp(d , q) of those d × d matrices over the field with
q elements that respect a fixed nondegenerate symplectic form, in the category given by the filter filt .

If filt is not given it defaults to IsMatrixGroup, and the returned group is the symplectic group itself.

gap> SymplecticGroup(4, 2);
Sp(4,2)

6 I GeneralOrthogonalGroup([filt,][e,]d, q) F
I GO([filt,][e,]d, q) F

constructs a group isomorphic to the general orthogonal group GO(e, d , q) of those d×d matrices over the
field with q elements that respect a non-singular quadratic form (see 42.4.5) specified by e, in the category
given by the filter filt .

The value of e must be 0 for odd d (and can optionally be omitted in this case), respectively one of 1 or −1
for even d . If filt is not given it defaults to IsMatrixGroup, and the returned group is the general orthogonal
group itself.

Note that in [KL90], GO is defined as the stabilizer ∆(V ,F , κ) of the quadratic form, up to scalars, whereas
our GO is called I (V ,F , κ) there.

7 I SpecialOrthogonalGroup([filt,][e,]d, q) F
I SO([filt,][e,]d, q) F

SpecialOrthogonalGroup returns a group isomorphic to the special orthogonal group SO(e, d , q), which
is the subgroup of all those matrices in the general orthogonal group (see 48.2.6) that have determinant one,
in the category given by the filter filt . (The index of SO(e, d , q) in GO(e, d , q) is 2 if q is odd, and 1 if
q is even.)

If filt is not given it defaults to IsMatrixGroup, and the returned group is the special orthogonal group
itself.

516 Chapter 48. Group Libraries

gap> GeneralOrthogonalGroup(3, 7);
GO(0,3,7)
gap> GeneralOrthogonalGroup(-1, 4, 3);
GO(-1,4,3)
gap> SpecialOrthogonalGroup(1, 4, 4);
GO(+1,4,4)

8 I ProjectiveGeneralLinearGroup([filt,]d, q) F
I PGL([filt,]d, q) F

constructs a group isomorphic to the projective general linear group PGL(d , q) of those d × d matrices
over the field with q elements, modulo the centre, in the category given by the filter filt .

If filt is not given it defaults to IsPermGroup, and the returned group is the action on lines of the underlying
vector space.

9 I ProjectiveSpecialLinearGroup([filt,]d, q) F
I PSL([filt,]d, q) F

constructs a group isomorphic to the projective special linear group PSL(d , q) of those d ×d matrices over
the field with q elements whose determinant is the identity of the field, modulo the centre, in the category
given by the filter filt .

If filt is not given it defaults to IsPermGroup, and the returned group is the action on lines of the underlying
vector space.

10 I ProjectiveGeneralUnitaryGroup([filt,]d, q) F
I PGU([filt,]d, q) F

constructs a group isomorphic to the projective general unitary group PGU(d , q) of those d × d matrices
over the field with q2 elements that respect a fixed nondegenerate sesquilinear form, modulo the centre, in
the category given by the filter filt .

If filt is not given it defaults to IsPermGroup, and the returned group is the action on lines of the underlying
vector space.

11 I ProjectiveSpecialUnitaryGroup([filt,]d, q) F
I PSU([filt,]d, q) F

constructs a group isomorphic to the projective special unitary group PSU(d , q) of those d × d matrices
over the field with q2 elements that respect a fixed nondegenerate sesquilinear form and have determinant
1, modulo the centre, in the category given by the filter filt .

If filt is not given it defaults to IsPermGroup, and the returned group is the action on lines of the underlying
vector space.

12 I ProjectiveSymplecticGroup([filt,]d, q) F
I PSP([filt,]d, q) F
I PSp([filt,]d, q) F

constructs a group isomorphic to the projective symplectic group PSp(d ,q) of those d × d matrices over the
field with q elements that respect a fixed nondegenerate symplectic form, modulo the centre, in the category
given by the filter filt .

If filt is not given it defaults to IsPermGroup, and the returned group is the action on lines of the underlying
vector space.

Section 4. Constructors for Basic Groups 517

48.3 Conjugacy Classes in Classical Groups

For general and special linear groups (see 48.2.1 and 48.2.2) GAP has an efficient method to generate
representatives of the conjugacy classes. This uses results from linear algebra on normal forms of matrices.
If you know how to do this for other types of classical groups, please, tell us.

gap> g := SL(4,9);
SL(4,9)
gap> NrConjugacyClasses(g);
861
gap> cl := ConjugacyClasses(g);;
gap> Length(cl);
861

1 I NrConjugacyClassesGL(n, q) F
I NrConjugacyClassesGU(n, q) F
I NrConjugacyClassesSL(n, q) F
I NrConjugacyClassesSU(n, q) F
I NrConjugacyClassesPGL(n, q) F
I NrConjugacyClassesPGU(n, q) F
I NrConjugacyClassesPSL(n, q) F
I NrConjugacyClassesPSU(n, q) F
I NrConjugacyClassesSLIsogeneous(n, q, f) F
I NrConjugacyClassesSUIsogeneous(n, q, f) F

The first of these functions compute for given n ∈ N and prime power q the number of conjugacy classes in
the classical groups GL(n, q), GU (n, q), SL(n, q), SU (n, q), PGL(n, q), PGU (n, q), PSL(n, q), PSL(n, q),
respectively. (See also 37.10.2 and Section 48.2.)

For each divisor f of n there is a group of Lie type with the same order as SL(n, q), such that its derived
subgroup modulo its center is isomorphic to PSL(n, q). The various such groups with fixed n and q are
called isogeneous. (Depending on congruence conditions on q and n several of these groups may actually
be isomorphic.) The function NrConjugacyClassesSLIsogeneous computes the number of conjugacy classes
in this group. The extreme cases f = 1 and f = n lead to the groups SL(n, q) and PGL(n, q), respectively.

The function NrConjugacyClassesSUIsogeneous is the analogous one for the corresponding unitary groups.

The formulae for the number of conjugacy classes are taken from [Mac81].

gap> NrConjugacyClassesGL(24,27);
22528399544939174406067288580609952
gap> NrConjugacyClassesPSU(19,17);
15052300411163848367708
gap> NrConjugacyClasses(SL(16,16));
1229782938228219920

48.4 Constructors for Basic Groups

All functions described in the previous sections call constructor operations to do the work. The names of the
constructors are obtained from the names of the functions by appending Cons, so for example CyclicGroup
calls the constructor

I CyclicGroupCons(cat, n) O

The first argument cat for each method of this constructor must be the category for which the method
is installed. For example the method for constructing a cyclic permutation group is installed as follows
(see 2.2.1 in “Programming in GAP” for the meaning of the arguments of InstallMethod).

518 Chapter 48. Group Libraries

InstallMethod(CyclicGroupCons,
"regular perm group",
true,
[IsPermGroup and IsRegularProp and IsFinite, IsInt and IsPosRat], 0,
function(filter, n)

...

end);

48.5 Selection Functions

1 I AllLibraryGroups(fun1, val1, ...)

For a number of the group libraries two selection functions are provided. Each AllLibraryGroups selec-
tion function permits one to select all groups from the library Library that have a given set of properties.
Currently, the library selection functions provided, of this type, are AllSmallGroups, AllIrreducible-
SolvableGroups, AllTransitiveGroups, and AllPrimitiveGroups. Corresponding to each of these there
is a OneLibraryGroup function (see 48.5.2) which returns at most one group.
These functions take an arbitrary number of pairs (but at least one pair) of arguments. The first argument
in such a pair is a function that can be applied to the groups in the library, and the second argument is
either a single value that this function must return in order to have this group included in the selection, or
a list of such values. For the function AllSmallGroups the first such function must be Size, and, unlike the
other library selection functions, it supports an alternative syntax where Size is omitted (see 48.7.2). Also,
see 48.11.3, for details pertaining to AllIrreducibleSolvableGroups.
For an example, let us consider the selection function for the library of transitive groups (also see 48.6). The
command,

gap> AllTransitiveGroups(NrMovedPoints,[10..15],
> Size, [1..100],
> IsAbelian, false);

returns a list of all transitive groups with degree between 10 and 15 and size less than 100 that are not
abelian.
Thus the AllTransitiveGroups behaves as if it was implemented by a function similar to the one defined
below, where TransitiveGroupsList is a list of all transitive groups. (Note that in the definition below we
assume for simplicity that AllTransitiveGroups accepts exactly 4 arguments. It is of course obvious how
to change this definition so that the function would accept a variable number of arguments.)

AllTransitiveGroups := function(fun1, val1, fun2, val2)
local groups, g, i;
groups := [];
for i in [1 .. Length(TransitiveGroupsList)] do
g := TransitiveGroupsList[i];
if fun1(g) = val1 or IsList(val1) and fun1(g) in val1

and fun2(g) = val2 or IsList(val2) and fun2(g) in val2
then
Add(groups, g);

fi;
od;
return groups;

end;

Note that the real selection functions are considerably more difficult, to improve the efficiency. Most impor-
tant, each recognizes a certain set of properties which are precomputed for the library without having to

Section 6. Transitive Permutation Groups 519

compute them anew for each group. This will substantially speed up the selection process. In the description
of each library we will list the properties that are stored for this library.

2 I OneLibraryGroup(fun1, val1, ...)

For each AllLibraryGroups function (see 48.5.1) there is a corresponding function OneLibraryGroup on
exactly the same arguments, i.e. there are OneSmallGroup, OneIrreducibleSolvableGroup, OneTransi-
tiveGroup, and OnePrimitiveGroup. Each function simply returns the first group in the library (in the
stored order) that has the prescribed properties, instead of all such groups. It returns fail if no such group
exists in the library.

48.6 Transitive Permutation Groups

The transitive groups library currently contains representatives for all transitive permutation groups of
degree at most 30. Two permutations groups of the same degree are considered to be equivalent, if there is
a renumbering of points, which maps one group into the other one. In other words, if they lie in the same
conjugacy class under operation of the full symmetric group by conjugation.

1 I TransitiveGroup(deg, nr) F

returns the nr -th transitive group of degree deg . Both deg and nr must be positive integers. The transitive
groups of equal degree are sorted with respect to their size, so for example TransitiveGroup(deg, 1) is
a transitive group of degree and size deg , e.g, the cyclic group of size deg , if deg is a prime.

2 I NrTransitiveGroups(deg) F

returns the number of transitive groups of degree deg stored in the library of transitive groups. The function
returns fail if deg is beyond the range of the library.

The selection functions (see 48.5) for the transitive groups library are AllTransitiveGroups and OneTran-
sitiveGroup. They obtain the following properties from the database without having to compute them
anew:

NrMovedPoints, Size, Transitivity, and IsPrimitive.

This library was computed by Gregory Butler, John McKay, Gordon Royle and Alexander Hulpke. The list
of transitive groups up to degree 11 was published in [BM83], the list of degree 12 was published in [Roy87],
degree 14 and 15 were published in [But93] and degrees 16–30 were published in [Hul96] and [Hul05]. (Groups
of prime degree of course are primitive and were known long before.)

The arrangement and the names of the groups of degree up to 15 is the same as given in [CHM98]. With
the exception of the symmetric and alternating group (which are represented as SymmetricGroup and Al-
ternatingGroup) the generators for these groups also conform to this paper with the only difference that 0
(which is not permitted in GAP for permutations to act on) is always replaced by the degree.

gap> TransitiveGroup(10,22);
S(5)[x]2
gap> l:=AllTransitiveGroups(NrMovedPoints,12,Size,1440,IsSolvable,false);
[S(6)[x]2, M_10.2(12)=A_6.E_4(12)=[S_6[1/720]{M_10}S_6]2]
gap> List(l,IsSolvable);
[false, false]

3 I TransitiveIdentification(G) A

Let G be a permutation group, acting transitively on a set of up to 30 points. Then TransitiveIden-
tification will return the position of this group in the transitive groups library. This means, if G acts
on m points and TransitiveIdentification returns n, then G is permutation isomorphic to the group
TransitiveGroup(m,n).

520 Chapter 48. Group Libraries

Note: The points moved do not need to be [1..n], the group 〈(2, 3, 4), (2, 3)〉 is considered to be transitive on
3 points. If the group has several orbits on the points moved by it the result of TransitiveIdentification
is undefined.

gap> TransitiveIdentification(Group((1,2),(1,2,3)));
2

48.7 Small Groups

The Small Groups library gives access to all groups of certain “small” orders. The groups are sorted by
their orders and they are listed up to isomorphism; that is, for each of the available orders a complete and
irredundant list of isomorphism type representatives of groups is given. Currently, the library contains the
following groups:

• those of order at most 2000 except 1024 (423 164 062 groups);

• those of cubefree order at most 50 000 (395 703 groups);

• those of order pn for n ≤ 6 and all primes p

• those of order qn · p for qn dividing 28, 36, 55 or 74 and all primes p with p 6= q ;

• those of squarefree order;

• those whose order factorises into at most 3 primes.

The first two items in this list cover an explicit range of orders; the last four provide access to infinite families
of groups having orders of certain types.

The library also has an identification function: it returns the library number of a given group. This function
determines library numbers using invariants of groups. The function is available for all orders in the library
except 512, 1536, p6 for p > 3 and p5 for p > 5.

The library is organised in 10 layers. Each layer contains the groups of certain orders and their corresponding
group identification routines. It is possible to install the first n layers of the group library and the first m
layers of the group identification for each 1 ≤ m ≤ n ≤ 10. This might be useful to save disk space. There is
an extensive README file for the Small Groups library available in the small directory of the GAP distribution
containing detailed information on the layers. A brief description of the layers is given here:

(1) the groups whose order factorises into at most 3 primes.

(2) the remaining groups of order at most 1000 except 512 and 768.

(3) the remaining groups of order 2n ∗ p with n ≤ 8 and p an odd prime.

(4) the remaining groups of order 55, 74 and of order qn · p for qn dividing 36, 55 or 74 and p 6= q a prime.

(5) the remaining groups of order at most 2000 except 1024, 1152, 1536 and 1920.

(6) the groups of orders 1152 and 1920.

(7) the groups of order 512.

(8) the groups of order 1536.

(9) the remaining groups of order pn for 4 ≤ n ≤ 6.

(10) the remaining groups of cubefree order at most 50 000 and of squarefree order.

The data in this library has been carefully checked and cross-checked. It is believed to be reliable. However,
no absolute guarantees are given and users should, as always, make their own checks in critical cases.

The data occupies about 30 MB (storing over 400 million groups in about 200 megabits). The group identi-
fication occupies about 47 MB of which 18 MB is used for the groups in layer (6). More information on the
Small Groups library can be found on

Section 7. Small Groups 521

http://www.tu-bs.de/~hubesche/small.html

This library has been constructed by Hans Ulrich Besche, Bettina Eick and E. A. O’Brien. A survey on
this topic and an account of the history of group constructions can be found in [BEO02]. Further detailed
information on the construction of this library is available in [New77], [O’B90], [O’B91], [BE99a], [BE99b],
[BE01], [BEO01], [EO99], [EO98], [MNVL03], [Gir03], [DE05].

The Small Groups library incorporates the GAP 3 libraries TwoGroup and ThreeGroup. The data from these
libraries was directly included into the Small Groups library, and the ordering there was preserved. The
Small Groups library replaces the Gap 3 library of solvable groups of order at most 100. However, both the
organisation and data descriptions of these groups has changed in the Small Groups library.

1 I SmallGroup(order, i) F
I SmallGroup([order, i]) F

returns the i -th group of order order in the catalogue. If the group is solvable, it will be given as a PcGroup;
otherwise it will be given as a permutation group. If the groups of order order are not installed, the function
reports an error and enters a break loop.

2 I AllSmallGroups(arg) F

returns all groups with certain properties as specified by arg . If arg is a number n, then this function returns
all groups of order n. However, the function can also take several arguments which then must be organized
in pairs function and value. In this case the first function must be Size and the first value an order or a
range of orders. If value is a list then it is considered a list of possible function values to include. The function
returns those groups of the specified orders having those properties specified by the remaining functions and
their values.

Precomputed information is stored for the properties IsAbelian, IsNilpotentGroup, IsSupersolvable-
Group, IsSolvableGroup, RankPGroup, PClassPGroup, LGLength, FrattinifactorSize and Frattinifac-
torId for the groups of order at most 2000 which have more than three prime factors, except those of order
512, 768, 1024, 1152, 1536, 1920 and those of order pn · q > 1000 with n > 2.

3 I OneSmallGroup(arg) F

returns one group with certain properties as specified by arg . The permitted arguments are those supported
by AllSmallGroups.

4 I NumberSmallGroups(order) F

returns the number of groups of order order .

5 I IdSmallGroup(G) A
I IdGroup(G) A

returns the library number of G ; that is, the function returns a pair [order, i] where G is isomorphic to
SmallGroup(order, i).

6 I IdsOfAllSmallGroups(arg) F

similar to AllSmallGroups but returns ids instead of groups. This may prevent workspace overflows, if a
large number of groups are expected in the output.

7 I IdGap3SolvableGroup(G) A
I Gap3CatalogueIdGroup(G) A

returns the catalogue number of G in the GAP 3 catalogue of solvable groups; that is, the function returns
a pair [order, i] meaning that G is isomorphic to the group SolvableGroup(order, i) in GAP 3.

8 I SmallGroupsInformation(order) F

prints information on the groups of the specified order.

522 Chapter 48. Group Libraries

9 I UnloadSmallGroupsData() F

GAP loads all necessary data from the library automatically, but it does not delete the data from the
workspace again. Usually, this will be not necessary, since the data is stored in a compressed format. However,
if a large number of groups from the library have been loaded, then the user might wish to remove the data
from the workspace and this can be done by the above function call.

gap> G := SmallGroup(768, 1000000);
<pc group of size 768 with 9 generators>
gap> G := SmallGroup([768, 1000000]);
<pc group of size 768 with 9 generators>

gap> AllSmallGroups(6);
[<pc group of size 6 with 2 generators>,
<pc group of size 6 with 2 generators>]

gap> AllSmallGroups(Size, 120, IsSolvableGroup, false);
[Group([(1,2,4,8)(3,6,9,5)(7,12,13,17)(10,14,11,15)(16,20,21,24)(18,22,19,

23), (1,3,7)(2,5,10)(4,9,13)(6,11,8)(12,16,20)(14,18,22)(15,19,23)(17,
21,24)]), Group([(1,2,3,4,5), (1,2)]),

Group([(1,2,3,5,4), (1,3)(2,4)(6,7)])]

gap> G := OneSmallGroup(120, IsNilpotentGroup, false);
<pc group of size 120 with 5 generators>
gap> IdSmallGroup(G);
[120, 1]
gap> G := OneSmallGroup(Size, [1..1000], IsSolvableGroup, false);
Group([(1,2,3,4,5), (1,2,3)])
gap> IdSmallGroup(G);
[60, 5]
gap> UnloadSmallGroupsData();

gap> IdSmallGroup(GL(2,3));
[48, 29]
gap> IdSmallGroup(Group((1,2,3,4),(4,5)));
[120, 34]
gap> IdsOfAllSmallGroups(Size, 60, IsSupersolvableGroup, true);
[[60, 1], [60, 2], [60, 3], [60, 4], [60, 6], [60, 7],
[60, 8], [60, 10], [60, 11], [60, 12], [60, 13]]

gap> NumberSmallGroups(512);
10494213
gap> NumberSmallGroups(2^8 * 23);
1083472

gap> NumberSmallGroups(2^9 * 23);
Error, the library of groups of size 11776 is not available called from
<function>(<arguments>) called from read-eval-loop
Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> quit;
gap>

gap> SmallGroupsInformation(32);

Section 8. Finite Perfect Groups 523

There are 51 groups of order 32.
They are sorted by their ranks.

1 is cyclic.
2 - 20 have rank 2.
21 - 44 have rank 3.
45 - 50 have rank 4.
51 is elementary abelian.

For the selection functions the values of the following attributes
are precomputed and stored:

IsAbelian, PClassPGroup, RankPGroup, FrattinifactorSize and
FrattinifactorId.

This size belongs to layer 2 of the SmallGroups library.
IdSmallGroup is available for this size.

48.8 Finite Perfect Groups

The GAP library of finite perfect groups provides, up to isomorphism, a list of all perfect groups whose sizes
are less than 106 excluding the following sizes:

• For n = 61440, 122880, 172032, 245760, 344064, 491520, 688128, or 983040, the perfect groups of size
n have not completely been determined yet. The library neither provides the number of these groups
nor the groups themselves.

• For n = 86016, 368640, or 737280, the library does not yet contain the perfect groups of size n, it only
provides their numbers which are 52, 46, and 54, respectively.

Except for these eleven sizes, the list of altogether 1097 perfect groups in the library is complete. It relies on
results of Derek F. Holt and Wilhelm Plesken which are published in their book “Perfect Groups” [HP89].
Moreover, they have supplied us with files with presentations of 488 of the groups. In terms of these, the
remaining 607 nontrivial groups in the library can be described as 276 direct products, 107 central products,
and 224 subdirect products. They are computed automatically by suitable GAP functions whenever they are
needed. Two additional groups omitted from the book “Perfect Groups” have also been included.

We are grateful to Derek Holt and Wilhelm Plesken for making their groups available to the GAP community
by contributing their files. It should be noted that their book contains a lot of further information for many
of the library groups. So we would like to recommend it to any GAP user who is interested in the groups.

The library has been brought into GAP format by Volkmar Felsch.

1 I SizesPerfectGroups() F

2 I PerfectGroup([filt,]size[, n]) F
I PerfectGroup([filt,]sizenumberpair) F

returns a group which is isomorphic to the library group specified by the size number [size, n] or by the
two separate arguments size and n, assuming a default value of n = 1. The optional argument filt defines
the filter in which the group is returned. Possible filters so far are IsPermGroup and IsSubgroupFpGroup.
In the latter case, the generators and relators used coincide with those given in [HP89].

524 Chapter 48. Group Libraries

gap> G := PerfectGroup(IsPermGroup,6048,1);
U3(3)

As all groups are stored by presentations, a permutation representation is obtained by coset enumeration.
Note that some of the library groups do not have a faithful permutation representation of small degree.
Computations in these groups may be rather time consuming.

gap> G:=PerfectGroup(IsPermGroup,823080,2);
A5 2^1 19^2 C 19^1
gap> NrMovedPoints(G);
6859

3 I PerfectIdentification(G) A

This attribute is set for all groups obtained from the perfect groups library and has the value [size,nr] if
the group is obtained with these parameters from the library.

4 I NumberPerfectGroups(size) F

returns the number of non-isomorphic perfect groups of size size for each positive integer size up to 106

except for the eight sizes listed at the beginning of this section for which the number is not yet known. For
these values as well as for any argument out of range it returns fail.

5 I NumberPerfectLibraryGroups(size) F

returns the number of perfect groups of size size which are available in the library of finite perfect groups.
(The purpose of the function is to provide a simple way to formulate a loop over all library groups of a given
size.)

6 I SizeNumbersPerfectGroups(factor1, factor2, ...) F

SizeNumbersPerfectGroups returns a list of pairs, each entry consisting of a group order and the number
of those groups in the library of perfect groups that contain the specified factors factor1 , factor2 , ... among
their composition factors.

Each argument must either be the name of a simple group or an integer which stands for the product of the
sizes of one or more cyclic factors. (In fact, the function replaces all integers among the arguments by their
product.)

The following text strings are accepted as simple group names.

• An or A(n) for the alternating groups An , 5 ≤ n ≤ 9, for example A5 or A(6).

• Ln(q) or L(n,q) for PSL(n, q), where n ∈ {2, 3} and q a prime power, ranging

◦ for n = 2 from 4 to 125

◦ for n = 3 from 2 to 5

• Un(q) or U(n,q) for PSU (n, q), where n ∈ {3, 4} and q a prime power, ranging

◦ for n = 3 from 3 to 5

◦ for n = 4 from 2 to 2

• Sp4(4) or S(4,4) for the symplectic group S (4, 4),

• Sz(8) for the Suzuki group Sz (8),

• Mn or M(n) for the Mathieu groups M11, M12, and M22, and

• Jn or J(n) for the Janko groups J1 and J2.

Note that, for most of the groups, the preceding list offers two different names in order to be consistent with
the notation used in [HP89] as well as with the notation used in the DisplayCompositionSeries command

Section 8. Finite Perfect Groups 525

of GAP. However, as the names are compared as text strings, you are restricted to the above choice. Even
expressions like L2(2^5) are not accepted.

As the use of the term PSU (n, q) is not unique in the literature, we mention that in this library it denotes
the factor group of SU (n, q) by its centre, where SU (n, q) is the group of all n × n unitary matrices with
entries in GF (q2) and determinant 1.

The purpose of the function is to provide a simple way to formulate a loop over all library groups which
contain certain composition factors.

7 I DisplayInformationPerfectGroups(size) F
I DisplayInformationPerfectGroups(size, n) F
I DisplayInformationPerfectGroups([size, n]) F

DisplayInformationPerfectGroups displays some invariants of the n-th group of order size from the
perfect groups library.

If no value of n has been specified, the invariants will be displayed for all groups of size size available in the
library. The information provided for G includes the following items:

• a headline containing the size number [size, n] of G in the form size.n (the suffix .n will be
suppressed if, up to isomorphism, G is the only perfect group of order size),

• a message if G is simple or quasisimple, i.e., if the factor group of G by its centre is simple,

• the “description” of the structure of G as it is given by Holt and Plesken in [HP89] (see below),

• the size of the centre of G (suppressed, if G is simple),

• the prime decomposition of the size of G ,

• orbit sizes for a faithful permutation representation of G which is provided by the library (see below),

• a reference to each occurrence of G in the tables of section 5.3 of [HP89]. Each of these references
consists of a class number and an internal number (i , j) under which G is listed in that class. For some
groups, there is more than one reference because these groups belong to more than one of the classes
in the book.

gap> DisplayInformationPerfectGroups(30720, 3);
#I Perfect group 30720: A5 (2^4 E N 2^1 E 2^4) A
#I size = 2^11*3*5 orbit size = 240
#I Holt-Plesken class 1 (9,3)
gap> DisplayInformationPerfectGroups(30720, 6);
#I Perfect group 30720: A5 (2^4 x 2^4) C N 2^1
#I centre = 2 size = 2^11*3*5 orbit size = 384
#I Holt-Plesken class 1 (9,6)
gap> DisplayInformationPerfectGroups(Factorial(8) / 2);
#I Perfect group 20160.1: A5 x L3(2) 2^1
#I centre = 2 size = 2^6*3^2*5*7 orbit sizes = 5 + 16
#I Holt-Plesken class 31 (1,1) (occurs also in class 32)
#I Perfect group 20160.2: A5 2^1 x L3(2)
#I centre = 2 size = 2^6*3^2*5*7 orbit sizes = 7 + 24
#I Holt-Plesken class 31 (1,2) (occurs also in class 32)
#I Perfect group 20160.3: (A5 x L3(2)) 2^1
#I centre = 2 size = 2^6*3^2*5*7 orbit size = 192
#I Holt-Plesken class 31 (1,3)
#I Perfect group 20160.4: simple group A8
#I size = 2^6*3^2*5*7 orbit size = 8
#I Holt-Plesken class 26 (0,1)

526 Chapter 48. Group Libraries

#I Perfect group 20160.5: simple group L3(4)
#I size = 2^6*3^2*5*7 orbit size = 21
#I Holt-Plesken class 27 (0,1)

For any library group G , the library files do not only provide a presentation, but, in addition, a list of one
or more subgroups S1, . . . ,Sr of G such that there is a faithful permutation representation of G of degree∑r

i=1[G : Si] on the set {Si g | 1 ≤ i ≤ r , g ∈ G} of the cosets of the Si . This allows one to construct the
groups as permutation groups. The DisplayInformationPerfectGroups function displays only the available
degree. The message

orbit size = 8

in the above example means that the available permutation representation is transitive and of degree 8,
whereas the message

orbit sizes = 5 + 16

means that a nontransitive permutation representation is available which acts on two orbits of size 5 and 16
respectively.

The notation used in the “description” of a group is explained in section 5.1.2 of [HP89]. We quote the
respective page from there:

Within a class Q # p, an isomorphism type of groups will be denoted by an ordered pair
of integers (r ,n), where r ≥ 0 and n > 0. More precisely, the isomorphism types in Q#p
of order pr |Q | will be denoted by (r , 1), (r , 2), (r , 3), Thus Q will always get the size
number (0, 1).

In addition to the symbol (r ,n), the groups in Q # p will also be given a more descriptive
name. The purpose of this is to provide a very rough idea of the structure of the group.
The names are derived in the following manner. First of all, the isomorphism classes of
irreducible FpQ-modules M with |Q | · |M | ≤ 106, where Fp is the field of order p, are
assigned symbols. These will either be simply px , where x is the dimension of the module,
or, if there is more than one isomorphism class of irreducible modules having the same
dimension, they will be denoted by px , px ′ , etc. The one-dimensional module with trivial
Q-action will therefore be denoted by p1. These symbols will be listed under the description
of Q . The group name consists essentially of a list of the composition factors working from
the top of the group downwards; hence it always starts with the name of Q itself. (This
convention is the most convenient in our context, but it is different from that adopted in the
ATLAS [CCN+85], for example, where composition factors are listed in the reverse order.
For example, we denote a group isomorphic to SL(2, 5) by A521 rather than 2 ·A5.)

Some other symbols are used in the name, in order to give some idea of the relationship be-
tween these composition factors, and splitting properties. We shall now list these additional
symbols.

× between two factors denotes a direct product of FpQ-modules or groups.

C (for “commutator”) between two factors means that the second lies in the commutator
subgroup of the first. Similarly, a segment of the form (f1×f2)Cf3 would mean that the
factors f1 and f2 commute modulo f3 and f3 lies in [f1, f2].

A (for “abelian”) between two factors indicates that the second is in the pth power (but
not the commutator subgroup) of the first. “A” may also follow the factors, if bracketed.

E (for “elementary abelian”) between two factors indicates that together they generate
an elementary abelian group (modulo subsequent factors), but that the resulting FpQ-
module extension does not split.

Section 9. Primitive Permutation Groups 527

N (for “nonsplit”) before a factor indicates that Q (or possibly its covering group) splits
down as far at this factor but not over the factor itself. So “Qf1N f2” means that the
normal subgroup f1f2 of the group has no complement but, modulo f2, f1, does have a
complement.

Brackets have their obvious meaning. Summarizing, we have:

× = direct product;

C = commutator subgroup;

A = abelian;

E = elementary abelian; and

N = nonsplit.

Here are some examples.

(i) A5(24E21E24)A means that the pairs 24E21 and 21E24 are both elementary abelian
of exponent 4.

(ii) A5(24E21A)C21 means that O2(G) is of symplectic type 21+5, with Frattini factor
group of type 24E21. The “A” after the 21 indicates that G has a central cyclic subgroup
21A21 of order 4.

(iii) L3(2)((21E)× (N23E23′A)C)23′ means that the 23′ factor at the bottom lies in the
commutator subgroup of the pair 23E23′ in the middle, but the lower pair 23′A23′

is abelian of exponent 4. There is also a submodule 21E23′ , and the covering group
L3(2)21 of L3(2) does not split over the 23 factor. (Since G is perfect, it goes without
saying that the extension L3(2)21 cannot split itself.)

We must stress that this notation does not always succeed in being precise or even unam-
biguous, and the reader is free to ignore it if it does not seem helpful.

If such a group description has been given in the book for G (and, in fact, this is the case for most of
the library groups), it is displayed by the DisplayInformationPerfectGroups function. Otherwise the
function provides a less explicit description of the (in these cases unique) Holt-Plesken class to which G
belongs, together with a serial number if this is necessary to make it unique.

48.9 Primitive Permutation Groups

GAP contains a library of primitive permutation groups which includes the following permutation groups up
to permutation isomorphism (i.e., up to conjugacy in the corresponding symmetric group)

• all primitive permutation groups of degree < 2500, calculated in [RD05] in particular,

◦ the primitive permutation groups up to degree 50, calculated by C. Sims,

◦ the primitive groups with insoluble socles of degree < 1000 as calculated in [DM88],

◦ the solvable (hence affine) primitive permutation groups of degree < 256 as calculated by M. Short
[Sho92],

◦ some insolvable affine primitive permutation groups of degree < 256 as calculated in [The97].

◦ The solvable primitive groups of degree up to 999 as calculated in [EH02].

◦ The primitive groups of affine type of degree up to 999 as calculated in [RDU03].

Not all groups are named, those which do have names use ATLAS notation. Not all names are necessary
unique!

528 Chapter 48. Group Libraries

The list given in [RD05] is believed to be complete, correcting various omissions in [DM88], [Sho92] and
[The97].

In detail, we guarantee the following properties for this and further versions (but not versions which came
before GAP 4.2) of the library:

• All groups in the library are primitive permutation groups of the indicated degree.

• The positions of the groups in the library are stable. That is PrimitiveGroup(n,nr) will always give
you a permutation isomorphic group. Note however that we do not guarantee to keep the chosen Sn -
representative, the generating set or the name for eternity.

• Different groups in the library are not conjugate in Sn .

• If a group in the library has a primitive subgroup with the same socle, this group is in the library as
well.

(Note that the arrangement of groups is not guaranteed to be in increasing size, though it holds for many
degrees.)

1 I PrimitiveGroup(deg, nr) F

returns the primitive permutation group of degree deg with number nr from the list.

The arrangement of the groups differs from the arrangement of primitive groups in the list of C. Sims, which
was used in GAP 3. See SimsNo (48.10.2).

2 I NrPrimitiveGroups(deg) F

returns the number of primitive permutation groups of degree deg in the library.

gap> NrPrimitiveGroups(25);
28
gap> PrimitiveGroup(25,19);
5^2:((Q(8):3)’4)
gap> PrimitiveGroup(25,20);
ASL(2, 5)
gap> PrimitiveGroup(25,22);
AGL(2, 5)
gap> PrimitiveGroup(25,23);
(A(5) x A(5)):2

The selection functions (see 48.5) for the primitive groups library are AllPrimitiveGroups and OnePrimi-
tiveGroup. They obtain the following properties from the database without having to compute them anew:

NrMovedPoints, Size, Transitivity, ONanScottType, IsSimpleGroup, IsSolvableGroup, and Socle-
TypePrimitiveGroup.

(Note, that for groups of degree up to 2499, O’Nan-Scott types 4a, 4b and 5 cannot occur.)

3 I PrimitiveGroupsIterator(attr1, val1, attr2, val2, ...) F

returns an iterator through AllPrimitiveGroups(attr1,val1,attr2,val2,...) without creating all these
groups at the same time.

4 I COHORTS PRIMITIVE GROUPS V

In [DM88] the primitive groups are sorted in “cohorts” according to their socle. For each degree, the variable
COHORTS PRIMITIVE GROUPS contains a list of the cohorts for the primitive groups of this degree. Each cohort
is represented by a list of length 2, the first entry specifies the socle type (see SocleTypePrimitiveGroup,
section 41.4.2), the second entry listing the index numbers of the groups in this degree.

Section 10. Index numbers of primitive groups 529

For example in degree 49, we have four cohorts with socles F2
7, L2(7)2, A2

7 and A49 respectively. the group
PrimitiveGroup(49,36), which is isomorphic to (A7×A7) : 22, lies in the third cohort with socle (A7×A7).

gap> COHORTS_PRIMITIVE_GROUPS[49];
[[rec(series := "Z", parameter := 7, width := 2),

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33]],

[rec(series := "L", parameter := [2, 7], width := 2), [34]],
[rec(series := "A", parameter := 7, width := 2), [35, 36, 37, 38]],
[rec(series := "A", parameter := 49, width := 1), [39, 40]]]

48.10 Index numbers of primitive groups

1 I PrimitiveIdentification(G) A

For a primitive permutation group for which an Sn -conjugate exists in the library of primitive permuta-
tion groups (see 48.9), this attribute returns the index position. That is G is conjugate to Primitive-
Group(NrMovedPoints(G),PrimitiveIdentification(G)).

Methods only exist if the primitive groups library is installed.

Note: As this function uses the primitive groups library, the result is only guaranteed to the same extent
as this library. If it is incomplete, PrimitiveIdentification might return an existing index number for a
group not in the library.

gap> PrimitiveIdentification(Group((1,2),(1,2,3)));
2

2 I SimsNo(G) A

If G is a primitive group obtained by PrimitiveGroup (respectively one of the selection functions) this
attribute contains the number of the isomorphic group in the original list of C. Sims. (this is the arrangement
as it was used in GAP 3.

gap> g:=PrimitiveGroup(25,2);
5^2:S(3)
gap> SimsNo(g);
3

As mentioned in the previous section, the index numbers of primitive groups in GAP are guaranteed to
remain stable. (Thus, missing groups will be added to the library at the end of each degree.) In particular,
it is safe to refer to a primitive group of type deg ,nr in the GAP library.

The system Magma also provides a list of primitive groups (see [RDU03]). For historical reasons, its indexing
up to degree 999 differs from the one used by GAP. The variable

3 I PRIMITIVE INDICES MAGMA V

can be used to obtain this correspondence. The magma index number of the GAP group Primitive-
Group(deg,nr) is stored in the entry PRIMITIVE INDICES MAGMA[deg][nr], for degree at most 999.

Vice versa, the group of degree deg with Magma index number nr has the GAP index

Position(PRIMITIVE INDICES MAGMA[deg],nr), in particular it can be obtained by the GAP command

PrimitiveGroup(deg,Position(PRIMITIVE INDICES MAGMA[deg],nr));

530 Chapter 48. Group Libraries

48.11 Irreducible Solvable Matrix Groups

1 I IrreducibleSolvableGroupMS(n, p, i) F

This function returns a representative of the i -th conjugacy class of irreducible solvable subgroup of GL(n,p),
where n is an integer > 1, p is a prime, and pn < 256.

The numbering of the representatives should be considered arbitrary. However, it is guaranteed that the
i -th group on this list will lie in the same conjugacy class in all future versions of GAP, unless two (or more)
groups on the list are discovered to be duplicates, in which case IrreducibleSolvableMatrixGroup will
return fail for all but one of the duplicates.

For values of n, p, and i admissible to IrreducibleSolvableGroup, IrreducibleSolvableMatrixGroup
returns a representative of the same conjugacy class of subgroups of GL(n,p) as IrreducibleSolvableGroup.
Note that it currently adds two more groups (missing from the original list by Mark Short) for n = 2, p = 13.

2 I NumberIrreducibleSolvableGroups(n, p) F

This function returns the number of conjugacy classes of irreducible solvable subgroup of GL(n,p).

3 I AllIrreducibleSolvableGroups(func 1, val 1, func 2, val 2, ...) F

This function returns a list of conjugacy class representatives G of matrix groups over a prime field such
that func i(G) = val i or func i(G) ∈ val i . The following possibilities for func i are particularly efficient,
because the values can be read off the information in the data base: DegreeOfMatrixGroup (or Dimen-
sion or DimensionOfMatrixGroup) for the linear degree, Characteristic for the field characteristic, Size,
IsPrimitiveMatrixGroup (or IsLinearlyPrimitive), and MinimalBlockDimension.

4 I OneIrreducibleSolvableGroup(func1, val1, func2, val2, ...) F

This function returns one solvable subgroup G of a matrix group over a prime field such that func i(G) =
val i or func i(G) ∈ val i for all i . The following possibilities for func i are particularly efficient, be-
cause the values can be read off the information in the data base: DegreeOfMatrixGroup (or Dimension
or DimensionOfMatrixGroup) for the linear degree, Characteristic for the field characteristic, Size, Is-
PrimitiveMatrixGroup (or IsLinearlyPrimitive), and MinimalBlockDimension.

5 I PrimitiveIndexIrreducibleSolvableGroup V

This variable provides a way to get from irreducible solvable groups to primitive groups and vice versa.
For the group G=IrreducibleSolvableGroup(n, p, k) and d = pn , the entry PrimitiveIndexIrre-
ducibleSolvableGroup[d][i] gives the index number of the semidirect product pn : G in the library of
primitive groups.

Searching for an index Position in this list gives the translation in the other direction.

6 I IrreducibleSolvableGroup(n, p, i) F

This function is obsolete, because for n = 2, p = 13, two groups were missing from the underlying database.
It has been replaced by the function IrreducibleSolvableGroupMS (see 48.11.1). Please note that the latter
function does not guarantee any ordering of the groups in the database. However, for values of n, p, and i
admissible to IrreducibleSolvableGroup, IrreducibleSolvableGroupMS returns a representative of the
same conjugacy class of subgroups of GL(n,p) as IrreducibleSolvableGroup did before.

Section 12. Irreducible Maximal Finite Integral Matrix Groups 531

48.12 Irreducible Maximal Finite Integral Matrix Groups

A library of irreducible maximal finite integral matrix groups is provided with GAP. It contains Q-class
representatives for all of these groups of dimension at most 31, and Z-class representatives for those of
dimension at most 11 or of dimension 13, 17, 19, or 23.

The groups provided in this library have been determined by Wilhelm Plesken, partially as joint work with
Michael Pohst, or by members of his institute (Lehrstuhl B für Mathematik, RWTH Aachen). In particular,
the data for the groups of dimensions 2 to 9 have been taken from the output of computer calculations which
they performed in 1979 (see [PP77], [PP80]). The Z-class representatives of the groups of dimension 10 have
been determined and computed by Bernd Souvignier ([Sou94]), and those of dimensions 11, 13, and 17 have
been recomputed for this library from the circulant Gram matrices given in [Ple85], using the stand-alone
programs for the computation of short vectors and Bravais groups which have been developed in Plesken’s
institute. The Z-class representatives of the groups of dimensions 19 and 23 had already been determined
in [Ple85]. Gabriele Nebe has recomputed them for us. Her main contribution to this library, however, is
that she has determined and computed the Q-class representatives of the groups of non-prime dimensions
between 12 and 24 and the groups of dimensions 25 to 31 (see [PN95], [NP95b], [Neb95], [Neb96]).

The library has been brought into GAP format by Volkmar Felsch. He has applied several GAP routines
to check certain consistency of the data. However, the credit and responsibility for the lists remain with
the authors. We are grateful to Wilhelm Plesken, Gabriele Nebe, and Bernd Souvignier for supplying their
results to GAP.

In the preceding acknowledgement, we used some notations that will also be needed in the sequel. We first
define these.

Any integral matrix group G of dimension n is a subgroup of GLn(Z) as well as of GLn(Q) and hence lies in
some conjugacy class of integral matrix groups under GLn(Z) and also in some conjugacy class of rational
matrix groups under GLn(Q). As usual, we call these classes the Z-class and the Q-class of G , respectively.
Note that any conjugacy class of subgroups of GLn(Q) contains at least one Z-class of subgroups of GLn(Z)
and hence can be considered as the Q-class of some integral matrix group.

In the context of this library we are only concerned with Z-classes and Q-classes of subgroups of GLn(Z)
which are irreducible and maximal finite in GLn(Z) (we will call them i.m.f. subgroups of GLn(Z)). We can
distinguish two types of these groups:

First, there are those i.m.f. subgroups of GLn(Z) which are also maximal finite subgroups of GLn(Q). Let
us denote the set of their Q-classes by Q1(n). It is clear from the above remark that Q1(n) just consists of
the Q-classes of i.m.f. subgroups of GLn(Q).

Secondly, there is the set Q2(n) of the Q-classes of the remaining i.m.f. subgroups of GLn(Z), i.e., of those
which are not maximal finite subgroups of GLn(Q). For any such group G , say, there is at least one class
C ∈ Q1(n) such that G is conjugate under Q to a proper subgroup of some group H ∈ C . In fact, the class
C is uniquely determined for any group G occurring in the library (though there seems to be no reason to
assume that this property should hold in general). Hence we may call C the rational i.m.f. class of G .
Finally, we will denote the number of classes in Q1(n) and Q2(n) by q1(n) and q2(n), respectively.

As an example, let us consider the case n = 4. There are 6 Z-classes of i.m.f. subgroups of GL4(Z) with
representative subgroups G1, . . . ,G6 of isomorphism types G1

∼= W (F4), G2
∼= D12 oC2, G3

∼= G4
∼= C2×S5,

G5
∼= W (B4), and G6

∼= (D12YD12) :C2. The corresponding Q-classes, R1, . . . ,R6, say, are pairwise different
except that R3 coincides with R4. The groups G1, G2, and G3 are i.m.f. subgroups of GL4(Q), but G5 and
G6 are not because they are conjugate under GL4(Q) to proper subgroups of G1 and G2, respectively. So
we have Q1(4) = {R1,R2,R3}, Q2(4) = {R5,R6}, q1(4) = 3, and q2(4) = 2.

The q1(n) Q-classes of i.m.f. subgroups of GLn(Q) have been determined for each dimension n ≤ 31. The
current GAP library provides integral representative groups for all these classes. Moreover, all Z-classes of
i.m.f. subgroups of GLn(Z) are known for n ≤ 11 and for n ∈ {13, 17, 19, 23}. For these dimensions, the

532 Chapter 48. Group Libraries

library offers integral representative groups for all Q-classes in Q1(n) and Q2(n) as well as for all Z-classes
of i.m.f. subgroups of GLn(Z).

Any group G of dimension n given in the library is represented as the automorphism group G = Aut(F ,L) =
{g ∈ GLn(Z) | Lg = L and gFgtr = F} of a positive definite symmetric n × n matrix F ∈ Zn×n on an
n-dimensional lattice L ∼= Z1×n (for details see e.g. [PN95]). GAP provides for G a list of matrix generators
and the Gram matrix F .

The positive definite quadratic form defined by F defines a norm vFv tr for each vector v ∈ L, and there is
only a finite set of vectors of minimal norm. These vectors are often simply called the short vectors. Their
set splits into orbits under G , and G being irreducible acts faithfully on each of these orbits by multiplication
from the right. GAP provides for each of these orbits the orbit size and a representative vector.

Like most of the other GAP libraries, the library of i.m.f. integral matrix groups supplies an extraction
function, ImfMatrixGroup. However, as the library involves only 525 different groups, there is no need for
a selection or an example function. Instead, there are two functions, ImfInvariants and DisplayImfIn-
variants, which provide some Z-class invariants that can be extracted from the library without actually
constructing the representative groups themselves. The difference between these two functions is that the
latter one displays the resulting data in some easily readable format, whereas the first one returns them as
record components so that you can properly access them.

We shall give an individual description of each of the library functions, but first we would like to insert a short
remark concerning their names: Any self-explaining name of a function handling irreducible maximal
finite integral matrix groups would have to include this term in full length and hence would grow
extremely long. Therefore we have decided to use the abbreviation Imf instead in order to restrict the names
to some reasonable length.

The first three functions can be used to formulate loops over the classes.

1 I ImfNumberQQClasses(dim) F
I ImfNumberQClasses(dim) F
I ImfNumberZClasses(dim, q) F

ImfNumberQQClasses returns the number q1(dim) of Q-classes of i.m.f. rational matrix groups of dimension
dim. Valid values of dim are all positive integers up to 31.

Note: In order to enable you to loop just over the classes belonging to Q1(dim), we have arranged the list of
Q-classes of dimension dim for any dimension dim in the library such that, whenever the classes of Q2(dim)
are known, too, i.e., in the cases dim ≤ 11 or dim ∈ {13, 17, 19, 23}, the classes of Q1(dim) precede those of
Q2(dim) and hence are numbered from 1 to q1(dim).

ImfNumberQClasses returns the number of Q-classes of groups of dimension dim which are available in
the library. If dim ≤ 11 or dim ∈ {13, 17, 19, 23}, this is the number q1(dim) + q2(dim) of Q-classes of
i.m.f. subgroups of GLdim(Z). Otherwise, it is just the number q1(dim) of Q-classes of i.m.f. subgroups of
GLdim(Q). Valid values of dim are all positive integers up to 31.

ImfNumberZClasses returns the number of Z-classes in the qth Q-class of i.m.f. integral matrix groups of
dimension dim. Valid values of dim are all positive integers up to 11 and all primes up to 23.

2 I DisplayImfInvariants(dim, q) F
I DisplayImfInvariants(dim, q, z) F

DisplayImfInvariants displays the following Z-class invariants of the groups in the z th Z-class in the qth

Q-class of i.m.f. integral matrix groups of dimension dim:

– its Z-class number in the form dim.q .z , if dim is at most 11 or a prime at most 23, or its Q-class number
in the form dim.q , else,

– a message if the group is solvable,

– the size of the group,

Section 12. Irreducible Maximal Finite Integral Matrix Groups 533

– the isomorphism type of the group,

– the elementary divisors of the associated quadratic form,

– the sizes of the orbits of short vectors (these sizes are the degrees of the faithful permutation repre-
sentations which you may construct using the functions IsomorphismPermGroup or IsomorphismPer-
mGroupImfGroup below),

– the norm of the associated short vectors,

– only in case that the group is not an i.m.f. group in GLn(Q): an appropriate message, including the
Q-class number of the corresponding rational i.m.f. class.

If you specify the value 0 for any of the parameters dim, q , or z , the command will loop over all available
dimensions, Q-classes of given dimension, or Z-classes within the given Q-class, respectively. Otherwise, the
values of the arguments must be in range. A value z 6= 1 must not be specified if the Z-classes are not known
for the given dimension, i.e., if dim > 11 and dim 6∈ {13, 17, 19, 23}. The default value of z is 1. This value
of z will be accepted even if the Z-classes are not known. Then it specifies the only representative group
which is available for the qth Q-class. The greatest legal value of dim is 31.

gap> DisplayImfInvariants(3, 1, 0);
#I Z-class 3.1.1: Solvable, size = 2^4*3
#I isomorphism type = C2 wr S3 = C2 x S4 = W(B3)
#I elementary divisors = 1^3
#I orbit size = 6, minimal norm = 1
#I Z-class 3.1.2: Solvable, size = 2^4*3
#I isomorphism type = C2 wr S3 = C2 x S4 = C2 x W(A3)
#I elementary divisors = 1*4^2
#I orbit size = 8, minimal norm = 3
#I Z-class 3.1.3: Solvable, size = 2^4*3
#I isomorphism type = C2 wr S3 = C2 x S4 = C2 x W(A3)
#I elementary divisors = 1^2*4
#I orbit size = 12, minimal norm = 2
gap> DisplayImfInvariants(8, 15, 1);
#I Z-class 8.15.1: Solvable, size = 2^5*3^4
#I isomorphism type = C2 x (S3 wr S3)
#I elementary divisors = 1*3^3*9^3*27
#I orbit size = 54, minimal norm = 8
#I not maximal finite in GL(8,Q), rational imf class is 8.5
gap> DisplayImfInvariants(20, 23);
#I Q-class 20.23: Size = 2^5*3^2*5*11
#I isomorphism type = (PSL(2,11) x D12).C2
#I elementary divisors = 1^18*11^2
#I orbit size = 3*660 + 2*1980 + 2640 + 3960, minimal norm = 4

Note that the function DisplayImfInvariants uses a kind of shorthand to display the elementary di-
visors. E. g., the expression 1*3^3*9^3*27 in the preceding example stands for the elementary divisors
1, 3, 3, 3, 9, 9, 9, 27. (See also the next example which shows that the function ImfInvariants provides the
elementary divisors in form of an ordinary GAP list.)

In the description of the isomorphism types the following notations are used:

A x B
denotes a direct product of a group A by a group B ,

A subd B
denotes a subdirect product of A by B ,

534 Chapter 48. Group Libraries

A Y B
denotes a central product of A by B ,

A wr B
denotes a wreath product of A by B ,

A:B
denotes a split extension of A by B ,

A·B
denotes just an extension of A by B (split or nonsplit).

The groups involved are

– the cyclic groups Cn , dihedral groups Dn , and generalized quaternion groups Qn of order n, denoted by
Cn, Dn, and Qn, respectively,

– the alternating groups An and symmetric groups Sn of degree n, denoted by An and Sn, respectively,

– the linear groups GLn(q), PGLn(q), SLn(q), and PSLn(q), denoted by GL(n,q), PGL(n,q), SL(n,q), and
PSL(n,q), respectively,

– the unitary groups SUn(q) and PSUn(q), denoted by SU(n,q) and PSU(n,q), respectively,

– the symplectic groups Sp(n, q) and PSp(n, q), denoted by Sp(n,q) and PSp(n,q), respectively,

– the orthogonal groups O +
8 (2) and PO +

8 (2), denoted by O+(8,2) and PO+(8,2), respectively,

– the extraspecial groups 2 1+8
+ , 3 1+2

+ , 3 1+4
+ , and 5 1+2

+ , denoted by 2+^(1+8), 3+^(1+2), 3+^(1+4), and
5+^(1+2), respectively,

– the Chevalley group G2(3), denoted by G2(3),

– the twisted Chevalley group 3D4(2), denoted by 3D4(2),

– the Suzuki group Sz (8), denoted by Sz(8),

– the Weyl groups W (An), W (Bn), W (Dn), W (En), and W (F4), denoted by W(An), W(Bn), W(Dn),
W(En), and W(F4), respectively,

– the sporadic simple groups Co1, Co2, Co3, HS , J2, M12, M22, M23, M24, and Mc, denoted by Co1, Co2,
Co3, HS, J2, M12, M22, M23, M24, and Mc, respectively,

– a point stabilizer of index 11 in M11, denoted by M10.

As mentioned above, the data assembled by the function DisplayImfInvariants are “cheap data” in the
sense that they can be provided by the library without loading any of its large matrix files or performing
any matrix calculations. The following function allows you to get proper access to these cheap data instead
of just displaying them.

3 I ImfInvariants(dim, q) F
I ImfInvariants(dim, q, z) F

ImfInvariants returns a record which provides some Z-class invariants of the groups in the z th Z-class in
the qth Q-class of i.m.f. integral matrix groups of dimension dim. A value z 6= 1 must not be specified if the
Z-classes are not known for the given dimension, i.e., if dim > 11 and dim 6∈ {13, 17, 19, 23}. The default
value of z is 1. This value of z will be accepted even if the Z-classes are not known. Then it specifies the
only representative group which is available for the qth Q-class. The greatest legal value of dim is 31.

The resulting record contains six or seven components:

size
the size of any representative group G ,

Section 12. Irreducible Maximal Finite Integral Matrix Groups 535

isSolvable
is true if G is solvable,

isomorphismType
a text string describing the isomorphism type of G (in the same notation as used by the function
DisplayImfInvariants above),

elementaryDivisors
the elementary divisors of the associated Gram matrix F (in the same format as the result of the
function ElementaryDivisorsMat, see 24.8.1),

minimalNorm
the norm of the associated short vectors,

sizesOrbitsShortVectors
the sizes of the orbits of short vectors under F ,

maximalQClass
the Q-class number of an i.m.f. group in GLn(Q) that contains G as a subgroup (only in case that
not G itself is an i.m.f. subgroup of GLn(Q)).

Note that four of these data, namely the group size, the solvability, the isomorphism type, and the corre-
sponding rational i.m.f. class, are not only Z-class invariants, but also Q-class invariants.

Note further that, though the isomorphism type is a Q-class invariant, you will sometimes get different
descriptions for different Z-classes of the same Q-class (as, e.g., for the classes 3.1.1 and 3.1.2 in the last
example above). The purpose of this behaviour is to provide some more information about the underlying
lattices.

gap> ImfInvariants(8, 15, 1);
rec(size := 2592, isSolvable := true, isomorphismType := "C2 x (S3 wr S3)",
elementaryDivisors := [1, 3, 3, 3, 9, 9, 9, 27], minimalNorm := 8,
sizesOrbitsShortVectors := [54], maximalQClass := 5)

gap> ImfInvariants(24, 1).size;
10409396852733332453861621760000
gap> ImfInvariants(23, 5, 2).sizesOrbitsShortVectors;
[552, 53130]
gap> for i in [1 .. ImfNumberQClasses(22)] do
> Print(ImfInvariants(22, i).isomorphismType, "\n"); od;
C2 wr S22 = W(B22)
(C2 x PSU(6,2)).S3
(C2 x S3) wr S11 = (C2 x W(A2)) wr S11
(C2 x S12) wr C2 = (C2 x W(A11)) wr C2
C2 x S3 x S12 = C2 x W(A2) x W(A11)
(C2 x HS).C2
(C2 x Mc).C2
C2 x S23 = C2 x W(A22)
C2 x PSL(2,23)
C2 x PSL(2,23)
C2 x PGL(2,23)
C2 x PGL(2,23)

4 I ImfMatrixGroup(dim, q) F
I ImfMatrixGroup(dim, q, z) F

ImfMatrixGroup is the essential extraction function of this library (note that its name has been changed
from ImfMatGroup in GAP 3 to ImfMatrixGroup in GAP 4). It returns a representative group, G say, of the

536 Chapter 48. Group Libraries

z th Z-class in the qth Q-class of i.m.f. integral matrix groups of dimension dim. A value z 6= 1 must not be
specified if the Z-classes are not known for the given dimension, i.e., if dim > 11 and dim 6∈ {13, 17, 19, 23}.
The default value of z is 1. This value of z will be accepted even if the Z-classes are not known. Then it
specifies the only representative group which is available for the qth Q-class. The greatest legal value of dim
is 31.

gap> G := ImfMatrixGroup(5, 1, 3);
ImfMatrixGroup(5,1,3)
gap> for m in GeneratorsOfGroup(G) do PrintArray(m); od;
[[-1, 0, 0, 0, 0],
[0, 1, 0, 0, 0],
[0, 0, 0, 1, 0],
[-1, -1, -1, -1, 2],
[-1, 0, 0, 0, 1]]

[[0, 1, 0, 0, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 1, 0],
[1, 0, 0, 0, 0],
[0, 0, 0, 0, 1]]

The attributes Size and IsSolvable will be properly set in the resulting matrix group G . In addition, it
has two attributes IsImfMatrixGroup and ImfRecord where the first one is just a logical flag set to true and
the latter one is a record. Except for the group size and the solvability flag, this record contains the same
components as the resulting record of the function ImfInvariants described above (see 48.12.3), namely the
components isomorphismType, elementaryDivisors, minimalNorm, and sizesOrbitsShortVectors and,
if G is not a rational i.m.f. group, maximalQClass. Moreover, it has the two components

form
the associated Gram matrix F , and

repsOrbitsShortVectors
representatives of the orbits of short vectors under F .

The last one of these components will be required by the function IsomorphismPermGroup below.

Example:

gap> Size(G);
3840
gap> imf := ImfRecord(G);;
gap> imf.isomorphismType;
"C2 wr S5 = C2 x W(D5)"
gap> PrintArray(imf.form);
[[4, 0, 0, 0, 2],
[0, 4, 0, 0, 2],
[0, 0, 4, 0, 2],
[0, 0, 0, 4, 2],
[2, 2, 2, 2, 5]]

gap> imf.elementaryDivisors;
[1, 4, 4, 4, 4]
gap> imf.minimalNorm;
4

If you want to perform calculations in such a matrix group G you should be aware of the fact that the
permutation group routines of GAP are much more efficient than the matrix group routines. Hence we

Section 12. Irreducible Maximal Finite Integral Matrix Groups 537

recommend that you do your computations, whenever possible, in the isomorphic permutation group which
is induced by the action of G on one of the orbits of the associated short vectors. You may call one of the
following functions IsomorphismPermGroup or IsomorphismPermGroupImfGroup to get an isomorphism to
such a permutation group (note that these GAP 4 functions have replaced the GAP 3 functions PermGroup
and PermGroupImfGroup).

5 I IsomorphismPermGroup(G) M

returns an isomorphism, ϕ say, from the given i.m.f. integral matrix group G to a permutation group
P := ϕ(G) acting on a minimal orbit, S say, of short vectors of G such that each matrix m ∈ G is mapped
to the permutation induced by its action on S .

Note that in case of a large orbit the construction of ϕ may be space and time consuming. Fortunately,
there are only six Q-classes in the library for which the smallest orbit of short vectors is of size greater than
20000, the worst case being the orbit of size 196560 for the Leech lattice (dim = 24, q = 3).

The inverse isomorphism ϕ−1 from P to G is constructed by determining a Q-base B ⊂ S of Q1×dim in
S and, in addition, the associated base change matrix M which transforms B into the standard base of
Z1×dim . This allows a simple computation of the preimage ϕ−1(p) of any permutation p ∈ P as follows. If,
for 1 ≤ i ≤ dim, bi is the position number in S of the i th base vector in B , it suffices to look up the vector
whose position number in S is the image of bi under p and to multiply this vector by M to get the i th row
of ϕ−1(p).

You may use the functions Image and PreImage (see 31.3.6 and 31.4.6) to switch from G to P and back
from P to G .

As an example, let us continue the preceding example and compute the solvable residuum of the group G .

gap> # Perform the computations in an isomorphic permutation group.
gap> phi := IsomorphismPermGroup(G);;
gap> P := Image(phi);
Group([(1,7,6)(2,9)(4,5,10), (2,3,4,5)(6,9,8,7)])
gap> D := DerivedSubgroup(P);
Group([(1,2,10,9)(3,8)(4,5)(6,7), (1,3,10,8)(2,5)(4,7)(6,9),
(1,2,8,7,5)(3,4,6,10,9)])

gap> Size(D);
960
gap> IsPerfectGroup(D);
true
gap> # We have found the solvable residuum of P,
gap> # now move the results back to the matrix group G.
gap> R := PreImage(phi, D);
<matrix group of size 960 with 3 generators>
gap> for m in GeneratorsOfGroup(R) do PrintArray(m); od;
[[-1, -1, -1, -1, 2],
[0, -1, 0, 0, 0],
[0, 0, 0, 1, 0],
[0, 0, 1, 0, 0],
[-1, -1, 0, 0, 1]]

[[0, 0, 0, 1, 0],
[-1, -1, -1, -1, 2],
[0, 0, -1, 0, 0],
[1, 0, 0, 0, 0],
[0, -1, -1, 0, 1]]

[[0, -1, 0, 0, 0],
[0, 0, 1, 0, 0],

538 Chapter 48. Group Libraries

[0, 0, 0, -1, 0],
[1, 1, 1, 1, -2],
[0, 0, 1, 0, -1]]

6 I IsomorphismPermGroupImfGroup(G, n) F

IsomorphismPermGroupImfGroup returns an isomorphism, ϕ say, from the given i.m.f. integral matrix group
G to a permutation group P acting on the nth orbit, S say, of short vectors of G such that each matrix m
∈ G is mapped to the permutation induced by its action on S .

The only difference to the above function IsomorphismPermGroup is that you can specify the orbit to be used.
In fact, as the orbits of short vectors are sorted by increasing sizes, the function IsomorphismPermGroup(
G) has been implemented such that it is equivalent to IsomorphismPermGroupImfGroup(G, 1).

gap> ImfInvariants(12, 9).sizesOrbitsShortVectors;
[120, 300]
gap> G := ImfMatrixGroup(12, 9);
ImfMatrixGroup(12,9)
gap> phi1 := IsomorphismPermGroupImfGroup(G, 1);;
gap> P1 := Image(phi1);
<permutation group of size 2400 with 2 generators>
gap> LargestMovedPoint(P1);
120
gap> phi2 := IsomorphismPermGroupImfGroup(G, 2);;
gap> P2 := Image(phi2);
<permutation group of size 2400 with 2 generators>
gap> LargestMovedPoint(P2);
300

49 Semigroups

This chapter describes functions for creating semigroups and determining information about them.

1 I IsSemigroup(D) P

returns true if the object D is a semigroup. A semigroup is a magma (see 33) with associative multipli-
cation.

2 I Semigroup(gen1, gen2 ...) F
I Semigroup(gens) F

In the first form, Semigroup returns the semigroup generated by the arguments gen1 , gen2 , . . . , that is,
the closure of these elements under multiplication. In the second form, Semigroup returns the semigroup
generated by the elements in the homogeneous list gens; a square matrix as only argument is treated as one
generator, not as a list of generators.

It is not checked whether the underlying multiplication is associative, use Magma (see 33.2.1) and IsAsso-
ciative (see 33.4.7) if you want to check whether a magma is in fact a semigroup.

gap> a:= Transformation([2, 3, 4, 1]);
Transformation([2, 3, 4, 1])
gap> b:= Transformation([2, 2, 3, 4]);
Transformation([2, 2, 3, 4])
gap> s:= Semigroup(a, b);
<semigroup with 2 generators>

3 I Subsemigroup(S, gens) F
I SubsemigroupNC(S, gens) F

are just synonyms of Submagma and SubmagmaNC, respectively (see 33.2.7).

gap> a:=GeneratorsOfSemigroup(s)[1];
Transformation([2, 3, 4, 1])
gap> t:=Subsemigroup(s,[a]);
<semigroup with 1 generator>

4 I SemigroupByGenerators(gens) O

is the underlying operation of Semigroup (see 49).

5 I AsSemigroup(C) A

If C is a collection whose elements form a semigroup (see 49) then AsSemigroup returns this semigroup.
Otherwise fail is returned.

6 I AsSubsemigroup(D, C) O

Let D be a domain and C a collection. If C is a subset of D that forms a semigroup then AsSubsemigroup
returns this semigroup, with parent D . Otherwise fail is returned.

540 Chapter 49. Semigroups

7 I GeneratorsOfSemigroup(S) A

Semigroup generators of a semigroup D are the same as magma generators (see 33.4.1).

gap> GeneratorsOfSemigroup(s);
[Transformation([2, 3, 4, 1]), Transformation([2, 2, 3, 4])]
gap> GeneratorsOfSemigroup(t);
[Transformation([2, 3, 4, 1])]

8 I FreeSemigroup([wfilt,]rank) F
I FreeSemigroup([wfilt,]rank, name) F
I FreeSemigroup([wfilt,]name1, name2, ...) F
I FreeSemigroup([wfilt,]names) F
I FreeSemigroup([wfilt,]infinity, name, init) F

Called in the first form, FreeSemigroup returns a free semigroup on rank generators. Called in the second
form, FreeSemigroup returns a free semigroup on rank generators, printed as name1, name2 etc., that is,
each name is the concatenation of the string name and an integer from 1 to range. Called in the third form,
FreeSemigroup returns a free semigroup on as many generators as arguments, printed as name1 , name2
etc. Called in the fourth form, FreeSemigroup returns a free semigroup on as many generators as the length
of the list names, the i -th generator being printed as names[i]. Called in the fifth form, FreeSemigroup
returns a free semigroup on infinitely many generators, where the first generators are printed by the names
in the list init , and the other generators by name and an appended number.

If the extra argument wfilt is given, it must be either IsSyllableWordsFamily or IsLetterWordsFamily
or IsWLetterWordsFamily or IsBLetterWordsFamily. The filter then specifies the representation used for
the elements of the free group (see 35.6). If no such filter is given, a letter representation is used.

gap> f1 := FreeSemigroup(3);
<free semigroup on the generators [s1, s2, s3]>
gap> f2 := FreeSemigroup(3 , "generator");
<free semigroup on the generators [generator1, generator2, generator3]>
gap> f3 := FreeSemigroup("gen1" , "gen2");
<free semigroup on the generators [gen1, gen2]>
gap> f4 := FreeSemigroup(["gen1" , "gen2"]);
<free semigroup on the generators [gen1, gen2]>

9 I SemigroupByMultiplicationTable(A) F

returns the semigroup whose multiplication is defined by the square matrix A (see 33.3.1) if such a semigroup
exists. Otherwise fail is returned.

The following functions determine information about semigroups:

10 I IsRegularSemigroup(S) P

returns true if S is regular—i.e. if every D class of S is regular.

11 I IsRegularSemigroupElement(S, x) O

returns true if x has a general inverse in S—i.e. there is an element y ∈ S such that xyx = x and yxy = y .

12 I IsSimpleSemigroup(S) P

is true if and only if the semigroup has no proper ideals.

13 I IsZeroSimpleSemigroup(S) P

is true if and only if the semigroup has no proper ideals except for 0, where S is a semigroup with zero. If
the semigroup does not find its zero, then a break-loop is entered.

Section 2. Ideals of semigroups 541

14 I IsZeroGroup(S) P

is true if and only if the semigroup is a group with zero adjoined.

15 I IsReesCongruenceSemigroup(S) P

returns true if S is a Rees Congruence semigroup, that is, if all congruences of S are Rees Congruences.

49.1 Making transformation semigroups

Cayley’s Theorem gives special status to semigroups of transformations, and accordingly there are special
functions to deal with them, and to create them from other finite semigroups.

1 I IsTransformationSemigroup(obj) P
I IsTransformationMonoid(obj) P

A transformation semigroup (resp. monoid) is a subsemigroup (resp. submonoid) of the full transformation
monoid. Note that for a transformation semigroup to be a transformation monoid we necessarily require the
identity transformation to be an element.

2 I DegreeOfTransformationSemigroup(S) A

The number of points the semigroup acts on.

3 I IsomorphismTransformationSemigroup(S) A
I HomomorphismTransformationSemigroup(S, r) O

IsomorphismTransformationSemigroup is a generic attribute which is a transformation semigroup isomor-
phic to S (if such can be computed). In the case of an fp- semigroup, a todd-coxeter will be attempted.
For a semigroup of endomorphisms of a finite domain of n elements, it will be to a semigroup of trans-
formations of {1, . . . ,n}. Otherwise, it will be the right regular representation on S or S 1 if S has no
MultiplicativeNeutralElement.

HomomorphismTransformationSemigroup finds a representation of S as transformations of the set of equiv-
alence classes of the right congruence r .

4 I IsFullTransformationSemigroup(obj) P

5 I FullTransformationSemigroup(degree) F

Returns the full transformation semigroup of degree degree.

49.2 Ideals of semigroups

Ideals of semigroups are the same as ideals of the semigroup when considered as a magma. For documentation
on ideals for magmas, see Magma (33.2.1).

1 I SemigroupIdealByGenerators(S, gens) O

S is a semigroup, gens is a list of elements of S . Returns the two-sided ideal of S generated by gens.

2 I ReesCongruenceOfSemigroupIdeal(I) A

A two sided ideal I of a semigroup S defines a congruence on S given by ∆ ∪ I × I .

3 I IsLeftSemigroupIdeal(I) P
I IsRightSemigroupIdeal(I) P
I IsSemigroupIdeal(I) P

Categories of semigroup ideals.

542 Chapter 49. Semigroups

49.3 Congruences for semigroups

An equivalence or a congruence on a semigroup is the equivalence or congruence on the semigroup considered
as a magma. So, to deal with equivalences and congruences on semigroups, magma functions are used. For
documentation on equivalences and congruences for magmas, see Magma (33.2.1).

1 I IsSemigroupCongruence(c) P

a magma congruence c on a semigroup.

2 I IsReesCongruence(c) P

returns true precisely when the congruence c has at most one nonsingleton congruence class.

49.4 Quotients

Given a semigroup and a congruence on the semigroup, one can construct a new semigroup: the quotient
semigroup. The following functions deal with quotient semigroups in GAP.

1 I IsQuotientSemigroup(S) C

is the category of semigroups constructed from another semigroup and a congruence on it

Elements of a quotient semigroup are equivalence classes of elements of QuotientSemigroupPreimage(S)
under the congruence QuotientSemigroupCongruence(S).

It is probably most useful for calculating the elements of the equivalence classes by using Elements or by
looking at the images of elements of the QuotientSemigroupPreimage(S) under QuotientSemigroupHo-
momorphism(S):QuotientSemigroupPreimage(S) → S .

For intensive computations in a quotient semigroup, it is probably worthwhile finding another representation
as the equality test could involve enumeration of the elements of the congruence classes being compared.

2 I HomomorphismQuotientSemigroup(cong) F

for a congruence cong and a semigroup S . Returns the homomorphism from S to the quotient of S by cong .

3 I QuotientSemigroupPreimage(S) A
I QuotientSemigroupCongruence(S) A
I QuotientSemigroupHomomorphism(S) A

for a quotient semigroup S .

49.5 Green’s Relations

Green’s equivalence relations play a very important role in semigroup theory. In this section we describe
how they can be used in GAP.

The five Green’s relations are R, L, J , H , D : two elements x , y from S are R-related if and only if xS 1 = yS 1,
L-related if and only if S 1x = S 1y and J -related if and only if S 1xS 1 = S 1yS 1; finally, H = R ∧ L, and
D = R ◦ L.

Recall that relations R, L and J induce a partial order among the elements of the semigroup: for two
elements x , y from S , we say that x is less than or equal to y in the order on R if xS 1 ⊆ yS 1; similarly, x is
less than or equal to y under L if S 1x ⊆ S 1y ; finally x is less than or equal to y under J if S 1xS 1 ⊆ S 1tS 1.
We extend this preorder to a partial order on equivalence classes in the natural way.

Section 5. Green’s Relations 543

1 I GreensRRelation(semigroup) A
I GreensLRelation(semigroup) A
I GreensJRelation(semigroup) A
I GreensDRelation(semigroup) A
I GreensHRelation(semigroup) A

The Green’s relations (which are equivalence relations) are attributes of the semigroup semigroup.

2 I IsGreensRelation(bin-relation) P
I IsGreensRRelation(equiv-relation) P
I IsGreensLRelation(equiv-relation) P
I IsGreensJRelation(equiv-relation) P
I IsGreensHRelation(equiv-relation) P
I IsGreensDRelation(equiv-relation) P

3 I IsGreensClass(equiv-class) P
I IsGreensRClass(equiv-class) P
I IsGreensLClass(equiv-class) P
I IsGreensJClass(equiv-class) P
I IsGreensHClass(equiv-class) P
I IsGreensDClass(equiv-class) P

return true if the equivalence class equiv-class is a Green’s class of any type, or of R, L, J , H , D type,
respectively, or false otherwise.

4 I IsGreensLessThanOrEqual(C1, C2) O

returns true if the greens class C1 is less than or equal to C2 under the respective ordering (as defined
above), and false otherwise.

Only defined for R, L and J classes.

5 I RClassOfHClass(H) A
I LClassOfHClass(H) A

are attributes reflecting the natural ordering over the various Green’s classes. RClassOfHClass and LClas-
sOfHClass return the R and L classes respectively in which an H class is contained.

6 I EggBoxOfDClass(Dclass) A

returns for a Green’s D class Dclass a matrix whose rows represent R classes and columns represent L
classes. The entries are the H classes.

7 I DisplayEggBoxOfDClass(Dclass) F

displays a “picture” of the D class Dclass, as an array of 1s and 0s. A 1 represents a group H class.

8 I GreensRClassOfElement(S, a) O
I GreensLClassOfElement(S, a) O
I GreensDClassOfElement(S, a) O
I GreensJClassOfElement(S, a) O
I GreensHClassOfElement(S, a) O

Creates the class of the element a in the semigroup S where is one of L, R, D, J or H.

544 Chapter 49. Semigroups

9 I GreensRClasses(semigroup) A
I GreensLClasses(semigroup) A
I GreensJClasses(semigroup) A
I GreensDClasses(semigroup) A
I GreensHClasses(semigroup) A

return the R, L, J , H , or D Green’s classes, respectively for semigroup semigroup. EquivlanceClasses for a
Green’s relation lead to one of these functions.

10 I GroupHClassOfGreensDClass(Dclass) A

for a D class Dclass of a semigroup, returns a group H class of the D class, or fail if there is no group H
class.

11 I IsGroupHClass(Hclass) P

returns true if the Greens H class Hclass is a group, which in turn is true if and only if Hclassˆ2 intersects
Hclass.

12 I IsRegularDClass(Dclass) P

returns true if the Greens D class Dclass is regular. A D class is regular if and only if each of its elements
is regular, which in turn is true if and only if any one element of Dclass is regular. Idempotents are regular
since eee = e so it follows that a Greens D class containing an idempotent is regular. Conversely, it is true
that a regular D class must contain at least one idempotent. (See [How76], Prop. 3.2).

49.6 Rees Matrix Semigroups

In this section we describe GAP functions for Rees matrix semigroups and Rees 0-matrix semigroups. The
importance of this construction is that Rees Matrix semigroups over groups are exactly the completely
simple semigroups, and Rees 0-matrix semigroups over groups are the completely 0-simple semigroups

Recall that a Rees Matrix semigroup is constructed from a semigroup (the underlying semigroup), and a
matrix. A Rees Matrix semigroup element is a triple (s, i , lambda) where s is an element of the underlying
semigroup S and i , lambda are indices. This can be thought of as a matrix with zero everywhere except for an
occurrence of s at row i and column lambda. The multiplication is defined by (i , s, λ)∗(j , t , µ) = (i , sPλj t , µ)
where P is the defining matrix of the semigroup. In the case that the underlying semigroup has a zero we
can make the ReesZeroMatrixSemigroup, wherein all elements whose s entry is the zero of the underlying
semigroup are identified to the unique zero of the Rees 0-matrix semigroup.

1 I ReesMatrixSemigroup(S, matrix) F

for a semigroup S and matrix whose entries are in S . Returns the Rees Matrix semigroup with multiplication
defined by matrix .

2 I ReesZeroMatrixSemigroup(S, matrix) F

for a semigroup S with zero, and matrix over S returns the Rees 0-Matrix semigroup such that all elements
(i , 0, λ) are identified to zero.

The zero in S is found automatically. If one cannot be found, an error is signalled.

3 I IsReesMatrixSemigroup(T) P

returns true if the object T is a (whole) Rees matrix semigroup.

4 I IsReesZeroMatrixSemigroup(T) P

returns true if the object T is a (whole) Rees 0-matrix semigroup.

Section 6. Rees Matrix Semigroups 545

5 I ReesMatrixSemigroupElement(R, a, i, lambda) F
I ReesZeroMatrixSemigroupElement(R, a, i, lambda) F

for a Rees matrix semigroup R, a in UnderlyingSemigroup(R), i and lambda in the row (resp. column)
ranges of R, returns the element of R corresponding to the matrix with zero everywhere and a in row i and
column x .

6 I IsReesMatrixSemigroupElement(e) C
I IsReesZeroMatrixSemigroupElement(e) C

is the category of elements of a Rees (0-) matrix semigroup. Returns true if e is an element of a Rees Matrix
semigroup.

7 I SandwichMatrixOfReesMatrixSemigroup(R) A
I SandwichMatrixOfReesZeroMatrixSemigroup(R) A

each return the defining matrix of the Rees (0-) matrix semigroup.

8 I RowIndexOfReesMatrixSemigroupElement(x) A
I RowIndexOfReesZeroMatrixSemigroupElement(x) A
I ColumnIndexOfReesMatrixSemigroupElement(x) A
I ColumnIndexOfReesZeroMatrixSemigroupElement(x) A
I UnderlyingElementOfReesMatrixSemigroupElement(x) A
I UnderlyingElementOfReesZeroMatrixSemigroupElement(x) A

For an element x of a Rees Matrix semigroup, of the form (i, s, lambda), the row index is i , the column
index is lambda and the underlying element is s. If we think of an element as a matrix then this corresponds
to the row where the non-zero entry is, the column where the non-zero entry is and the entry at that position,
respectively.

9 I ReesZeroMatrixSemigroupElementIsZero(x) P

returns true if x is the zero of the Rees 0-matrix semigroup.

10 I AssociatedReesMatrixSemigroupOfDClass(D) A

Given a regular D class of a finite semigroup, it can be viewed as a Rees matrix semigroup by identifying
products which do not lie in the D class with zero, and this is what it is returned.

Formally, let I1 be the ideal of all J classes less than or equal to D , I2 the ideal of all J classes strictly less
than D , and ρ the Rees congruence associated with I2. Then I /ρ is zero-simple. Then AssociatedReesMa-
trixSemigroupOfDClass(D) returns this zero-simple semigroup as a Rees matrix semigroup.

11 I IsomorphismReesMatrixSemigroup(obj) A

an isomorphism to a Rees matrix semigroup over a group (resp. zero group).

50 Monoids

This chapter describes functions for monoids. Currently there are only few of them. More general functions
for magmas and semigroups can be found in Chapters 33 and 49.

1 I IsMonoid(D) P

A monoid is a magma-with-one (see 33) with associative multiplication.

2 I Monoid(gen1, gen2 ...) F
I Monoid(gens) F
I Monoid(gens, id) F

In the first form, Monoid returns the monoid generated by the arguments gen1 , gen2 ..., that is, the closure
of these elements under multiplication and taking the 0-th power. In the second form, Monoid returns the
monoid generated by the elements in the homogeneous list gens; a square matrix as only argument is treated
as one generator, not as a list of generators. In the third form, Monoid returns the monoid generated by the
elements in the homogeneous list gens, with identity id .

It is not checked whether the underlying multiplication is associative, use MagmaWithOne (see 33.2.2) and
IsAssociative (see 33.4.7) if you want to check whether a magma-with-one is in fact a monoid.

3 I Submonoid(M , gens) F
I SubmonoidNC(M , gens) F

are just synonyms of SubmagmaWithOne and SubmagmaWithOneNC, respectively (see 33.2.8).

4 I MonoidByGenerators(gens) O
I MonoidByGenerators(gens, one) O

is the underlying operation of Monoid (see 50).

5 I AsMonoid(C) A

If C is a collection whose elements form a monoid (see 50) then AsMonoid returns this monoid. Otherwise
fail is returned.

6 I AsSubmonoid(D, C) O

Let D be a domain and C a collection. If C is a subset of D that forms a monoid then AsSubmonoid returns
this monoid, with parent D . Otherwise fail is returned.

7 I GeneratorsOfMonoid(M) A

Monoid generators of a monoid M are the same as magma-with-one generators (see 33.4.2).

8 I TrivialSubmonoid(M) A

is just a synonym for TrivialSubmagmaWithOne (see 33.4.14).

547

9 I FreeMonoid([wfilt,]rank) F
I FreeMonoid([wfilt,]rank, name) F
I FreeMonoid([wfilt,]name1, name2, ...) F
I FreeMonoid([wfilt,]names) F
I FreeMonoid([wfilt,]infinity, name, init) F

Called in the first form, FreeMonoid returns a free monoid on rank generators. Called in the second form,
FreeMonoid returns a free monoid on rank generators, printed as name1, name2 etc., that is, each name is
the concatenation of the string name and an integer from 1 to range. Called in the third form, FreeMonoid
returns a free monoid on as many generators as arguments, printed as name1 , name2 etc. Called in the
fourth form, FreeMonoid returns a free monoid on as many generators as the length of the list names, the
i -th generator being printed as names[i]. Called in the fifth form, FreeMonoid returns a free monoid on
infinitely many generators, where the first generators are printed by the names in the list init , and the other
generators by name and an appended number.

If the extra argument wfilt is given, it must be either IsSyllableWordsFamily or IsLetterWordsFamily
or IsWLetterWordsFamily or IsBLetterWordsFamily. The filter then specifies the representation used for
the elements of the free group (see 35.6). If no such filter is given, a letter representation is used.

10 I MonoidByMultiplicationTable(A) F

returns the monoid whose multiplication is defined by the square matrix A (see 33.3.1) if such a monoid
exists. Otherwise fail is returned.

51
Finitely Presented

Semigroups
and Monoids

A finitely presented semigroup (resp. finitely presented monoid) is a quotient of a free semigroup
(resp. free monoid) on a finite number of generators over a finitely generated congruence on the free semigroup
(resp. free monoid).

Finitely presented semigroups are obtained by factoring a free semigroup by a set of relations (a generating
set for the congruence), ie, a set of pairs of words in the free semigroup.

gap> f:=FreeSemigroup("a","b");;
gap> x:=GeneratorsOfSemigroup(f);;
gap> s:=f/[[x[1]*x[2],x[2]*x[1]]];
<fp semigroup on the generators [a, b]>
gap> GeneratorsOfSemigroup(s);
[a, b]
gap> RelationsOfFpSemigroup(s);
[[a*b, b*a]]

Finitely presented monoids are obtained by factoring a free monoid by a set of relations, i.e. a set of pairs
of words in the free monoid.

gap> f:=FreeMonoid("a","b");;
gap> x:=GeneratorsOfMonoid(f);
[a, b]
gap> e:=Identity(f);
<identity ...>
gap> m:=f/[[x[1]*x[2],e]];
<fp monoid on the generators [a, b]>
gap> RelationsOfFpMonoid(m);
[[a*b, <identity ...>]]

Notice that for GAP a finitely presented monoid is not a finitely presented semigroup.

gap> IsFpSemigroup(m);
false

However, one can build a finitely presented semigroup isomorphic to that finitely presented monoid (see
51.1.3).

Also note that is not possible to refer to the generators by their names. These names are not variables, but
just display figures. So, if one wants to access the generators by their names, one first has to introduce the
respective variables and to assign the generators to them.

549

gap> f:=FreeSemigroup("a","b");;
gap> x:=GeneratorsOfSemigroup(f);;
gap> s:=f/[[x[1]*x[2],x[2]*x[1]]];;
gap> a;
Variable: ’a’ must have a value

gap> a:=GeneratorsOfSemigroup(s)[1];
a
gap> b:=GeneratorsOfSemigroup(s)[2];
b
gap> a in f;
false
gap> a in s;
true

The generators of the free semigroup (resp. free monoid) are different from the generators of the finitely
presented semigroup (resp. finitely presented monoid) (even though they are displayed by the same names).
This means that words in the generators of the free semigroup (resp. free monoid) are not elements of the
finitely presented semigroup (resp. finitely presented monoid). Conversely elements of the finitely presented
semigroup (resp. finitely presented monoid) are not words of the free semigroup (resp. free monoid).

Calculations comparing elements of an finitely presented semigroup may run into problems: there are finitely
presented semigroups for which no algorithm exists (it is known that no such algorithm can exist) that will
tell for two arbitrary words in the generators whether the corresponding elements in the finitely presented
semigroup are equal. Therefore the methods used by GAP to compute in finitely presented semigroups may
run into warning errors, run out of memory or run forever. If the finitely presented semigroup is (by theory)
known to be finite the algorithms are guaranteed to terminate (if there is sufficient memory available), but
the time needed for the calculation cannot be bounded a priori. The same can be said for monoids. (See
51.5.)

gap> a*b=a^5;
false
gap> a^5*b^2*a=a^6*b^2;
true

Note than elements of a finitely presented semigroup (or monoid) are not printed in a unique way:

gap> a^5*b^2*a;
a^5*b^2*a
gap> a^6*b^2;
a^6*b^2

1 I IsSubsemigroupFpSemigroup(t) A

true if t is a finitely presented semigroup or a subsemigroup of a finitely presented semigroup (generally
speaking, such a subsemigroup can be constructed with Semigroup(gens), where gens is a list of elements
of a finitely presented semigroup).

2 I IsSubmonoidFpMonoid(t) A

true if t is a finitely presented monoid or a submonoid of a finitely presented monoid (generally speaking,
such a semigroup can be constructed with Monoid(gens), where gens is a list of elements of a finitely
presented monoid).

A submonoid of a monoid has the same identity as the monoid.

550 Chapter 51. Finitely Presented Semigroups and Monoids

3 I IsFpSemigroup(s) P

is a synonym for IsSubsemigroupFpSemigroup(s) and IsWholeFamily(s) (this is because a subsemigroup
of a finitely presented semigroup is not necessarily finitely presented).

4 I IsFpMonoid(m) P

is a synonym for IsSubmonoidFpMonoid(m) and IsWholeFamily(m) (this is because a submonoid of a
finitely presented monoid is not necessarily finitely presented).

5 I IsElementOfFpSemigroup(elm) C

returns true if elm is an element of a finitely presented semigroup.

6 I IsElementOfFpMonoid(elm) C

returns true if elm is an element of a finitely presented monoid.

7 I FpGrpMonSmgOfFpGrpMonSmgElement(elm) O

returns the finitely presented group, monoid or semigroup to which elm belongs

gap> f := FreeSemigroup("a","b");;
gap> a := GeneratorsOfSemigroup(f)[1];;
gap> b := GeneratorsOfSemigroup(f)[2];;
gap> s := f / [[a^2 , a*b]];;
gap> IsFpSemigroup(s);
true
gap> t := Semigroup([GeneratorsOfSemigroup(s)[1]]);
<semigroup with 1 generator>
gap> IsSubsemigroupFpSemigroup(t);
true
gap> IsElementOfFpSemigroup(GeneratorsOfSemigroup(t)[1]);
true

51.1 Creating Finitely Presented Semigroups

1 I F/rels

creates a finitely presented semigroup given by the presentation 〈gens | rels〉 where gens are the generators
of the free semigroup F , and the relations rels are entered as pairs of words in the generators of the free
semigroup.

gap> f:=FreeSemigroup(3);;
gap> s:=GeneratorsOfSemigroup(f);;
gap> f/[[s[1]*s[2]*s[1],s[1]] , [s[2]^4,s[1]]];
<fp semigroup on the generators [s1, s2, s3]>

One may also call the following functions to construct finitely presented semigroups:

2 I FactorFreeSemigroupByRelations(f , rels) F

for a free semigroup f and rels is a list of pairs of elements of f . Returns the finitely presented semigroup
which is the quotient of f by the least congruence on f generated by the pairs in rels.

gap> FactorFreeSemigroupByRelations(f,[[s[1]*s[2]*s[1],s[1]],[s[2]^4,s[1]]]);
<fp semigroup on the generators [s1, s2, s3]>

Finally, if one has a finitely presented group or a finitely presented monoid, to find an isomorphic finitely
presented semigroup use

Section 3. Preimages in the Free Semigroup 551

3 I IsomorphismFpSemigroup(s) A

for a semigroup s returns an isomorphism from s to a finitely presented semigroup

gap> f := FreeGroup(2);;
gap> g := f/[f.1^4,f.2^5];
<fp group on the generators [f1, f2]>
gap> phi := IsomorphismFpSemigroup(g);
MappingByFunction(<fp group on the generators
[f1, f2]>, <fp semigroup on the generators
[<identity ...>, f1^-1, f1, f2^-1, f2
]>, function(x) ... end, function(x) ... end)

gap> s := Range(phi);
<fp semigroup on the generators [<identity ...>, f1^-1, f1, f2^-1, f2]>

51.2 Comparison of Elements of Finitely Presented Semigroups
1 I a = b

Two elements of a finitely presented semigroup are equal if they are equal in the semigroup. Nevertheless they
may be represented as different words in the generators. Because of the fundamental problems mentioned in
the introduction to this chapter such a test may take a very long time and cannot be guaranteed to finish
(see 51.5).

51.3 Preimages in the Free Semigroup
1 I FreeSemigroupOfFpSemigroup(s) A

returns the underlying free semigroup for the finitely presented semigroup s, ie, the free semigroup over
which s is defined as a quotient (this is the free semigroup generated by the free generators provided by
FreeGeneratorsOfFpSemigroup(s)).

2 I FreeGeneratorsOfFpSemigroup(s) A

returns the underlying free generators corresponding to the generators of the finitely presented semigroup
s.

3 I RelationsOfFpSemigroup(s) A

returns the relations of the finitely presented semigroup s as pairs of words in the free generators provided
by FreeGeneratorsOfFpSemigroup(s).

gap> f := FreeSemigroup("a" , "b");;
gap> a := GeneratorsOfSemigroup(f)[1];;
gap> b := GeneratorsOfSemigroup(f)[2];;
gap> s := f / [[a^3 , a] , [b^3 , b] , [a*b , b*a]];
<fp semigroup on the generators [a, b]>
gap> Size(s);
8
gap> fs := FreeSemigroupOfFpSemigroup(s);;
gap> f = fs;
true
gap> FreeGeneratorsOfFpSemigroup(s);
[a, b]
gap> RelationsOfFpSemigroup(s);
[[a^3, a], [b^3, b], [a*b, b*a]]

Elements of a finitely presented semigroup are not words, but are represented using a word from the free
semigroup as representative.

552 Chapter 51. Finitely Presented Semigroups and Monoids

4 I UnderlyingElement(elm) O

for an element elm of a finitely presented semigroup, it returns the word from the free semigroup that is
used as a representative for elm.

gap> w := GeneratorsOfSemigroup(s)[1] * GeneratorsOfSemigroup(s)[2];
a*b
gap> IsWord (w);
false
gap> ue := UnderlyingElement(w);
a*b
gap> IsWord(ue);
true

5 I ElementOfFpSemigroup(fam, w) O

for a family fam of elements of a finitely presented semigroup and a word w in the free generators underlying
this finitely presented semigroup, this operation creates the element of the finitely presented semigroup with
the representative w in the free semigroup.

gap> fam := FamilyObj(GeneratorsOfSemigroup(s)[1]);;
gap> ge := ElementOfFpSemigroup(fam, a*b);
a*b
gap> ge in f;
false
gap> ge in s;
true

51.4 Finitely presented monoids

1 I F/rels

creates a finitely presented monoid given by the monoid presentation 〈gens | rels〉 where gens are the
generators of the free monoid F , and the relations rel are entered as pairs of words in both the identity and
the generators of the free monoid.

gap> f := FreeMonoid(3);
<free monoid on the generators [m1, m2, m3]>
gap> x := GeneratorsOfMonoid(f);
[m1, m2, m3]
gap> e:= Identity (f);
<identity ...>
gap> m := f/[[x[1]^3,e] , [x[1]*x[2],x[2]]];
<fp monoid on the generators [m1, m2, m3]>

The functionality available for finitely presented monoids is essentially the same as that available for finitely
presented semigroups, and thus the previous sections apply (with the obvious changes) to finitely presented
monoids.

Section 5. Rewriting Systems and the Knuth-Bendix Procedure 553

51.5 Rewriting Systems and the Knuth-Bendix Procedure

If a finitely presented semigroup has a confluent rewriting system then it has a solvable word problem, that
is, there is an algorithm to decide when two words in the free underlying semigroup represent the same
element of the finitely presented semigroup. Indeed, once we have a confluent rewriting system, it is possible
to successfully test that two words represent the same element in the semigroup, by reducing both words
using the rewriting system rules. This is, at the moment, the method that GAP uses to check equality in
finitely presented semigroups and monoids.

1 I ReducedConfluentRewritingSystem(S) A
I ReducedConfluentRewritingSystem(S , ordering) A

in the first form returns a reduced confluent rewriting system of the finitely presented semigroup or monoid
S with respect to the length plus lexicographic ordering on words (also called the shortlex ordering; for the
definition see for example Sims [Sim94]).

In the second form it returns a reduced confluent rewriting system of the finitely presented semigroup or
monoid S with respect to the reduction ordering ordering (see 29).

Notice that this might not terminate. In particular, if the semigroup or monoid S does not have a solvable
word problem then it this will certainly never end. Also, in this case, the object returned is an immutable
rewriting system, because once we have a confluent rewriting system for a finitely presented semigroup or
monoid we do not want to allow it to change (as it was most probably very time consuming to get it in the
first place). Furthermore, this is also an attribute storing object (see 13.4).

gap> f := FreeSemigroup("a" , "b");;
gap> a := GeneratorsOfSemigroup(f)[1];;
gap> b := GeneratorsOfSemigroup(f)[2];;
gap> g := f / [[a^2 , a*b] , [a^4 , b]];;
gap> rws := ReducedConfluentRewritingSystem(g);
Rewriting System for Semigroup([a, b]) with rules
[[a*b, a^2], [a^4, b], [b*a, a^2], [b^2, a^2]]

The creation of a reduced confluent rewriting system for a semigroup or for a monoid, in GAP, uses the Knuth-
Bendix procedure for strings, which manipulates a rewriting system of the semigroup or monoid and attempts
to make it confluent (See 36. See also Sims [Sim94]). (Since the word problem for semigroups/monoids is
not solvable in general, Knuth-Bendix procedure cannot always terminate).

In order to apply this procedure we will build a rewriting system for the semigroup or monoid, which we will
call a Knuth-Bendix Rewriting System (we need to define this because we need the rewriting system
to store some information needed for the implementation of the Knuth-Bendix procedure).

Actually, Knuth-Bendix Rewriting Systems do not only serve this purpose. Indeed these are objects which
are mutable and which can be manipulated (see 36).

Note that the implemented version of the Knuth-Bendix procedure, in GAP returns, if it terminates, a
confluent rewriting system which is reduced. Also, a reduction ordering has to be specified when building
a rewriting system. If none is specified, the shortlex ordering is assumed (note that the procedure may
terminate with a certain ordering and not with another one).

On Unix systems it is possible to replace the built-in Knuth-Bendix by other routines, for example the
package kbmag offers such a possibility.

2 I KB REW V
I GAPKB REW V

KB REW is a global record variable whose components contain functions used for Knuth-Bendix. By default
KB REW is assigned to GAPKB REW, which contains the KB functions provided by the GAP library.

554 Chapter 51. Finitely Presented Semigroups and Monoids

3 I KnuthBendixRewritingSystem(s,wordord)
I KnuthBendixRewritingSystem(m,wordord)

in the first form, for a semigroup s and a reduction ordering for the underlying free semigroup, it returns the
Knuth-Bendix rewriting system of the finitely presented semigroup s using the reduction ordering wordord .
In the second form, for a monoid m and a reduction ordering for the underlying free semigroup, it returns the
Knuth-Bendix rewriting system of the finitely presented semigroup s using the reduction ordering wordord .

4 I SemigroupOfRewritingSystem(rws) A

returns the semigroup over which rws is a rewriting system

5 I MonoidOfRewritingSystem(rws) A

returns the monoid over which rws is a rewriting system

6 I FreeSemigroupOfRewritingSystem(rws) A

returns the free semigroup over which rws is a rewriting system

7 I FreeMonoidOfRewritingSystem(rws) A

returns the free monoid over which rws is a rewriting system

gap> f1 := FreeSemigroupOfRewritingSystem(rws);
<free semigroup on the generators [a, b]>
gap> f1=f;
true
gap> g1 := SemigroupOfRewritingSystem(rws);
<fp semigroup on the generators [a, b]>
gap> g1=g;
true

As mentioned before, having a confluent rewriting system, one can decide whether two words represent the
same element of a finitely presented semigroup (or finitely presented monoid).

gap> a := GeneratorsOfSemigroup(g)[1];
a
gap> b := GeneratorsOfSemigroup(g)[2];
b
gap> a*b*a=a^3;
true
gap> ReducedForm(rws,UnderlyingElement(a*b*a));
a^3
gap> ReducedForm(rws,UnderlyingElement(a^3));
a^3

51.6 Todd-Coxeter Procedure

This procedure gives a standard way of finding a transformation representation of a finitely presented semi-
group. Usually one does not explicitly call this procedure but uses IsomorphismTransformationSemigroup
or HomomorphismTransformationSemigroup (see 49.1.3).

1 I CosetTableOfFpSemigroup(r) A

r is a right congruence of an fp-semigroup S . This attribute is the coset table of FP semigroup S on a
right congruence r . Given a right congruence r we represent S as a set of transformations of the congruence
classes of r .
The images of the cosets under the generators are compiled in a list table such that table[i][s] contains the
image of coset s under generator i .

52 Transformations

This chapter describes functions for transformations.

A transformation in GAP is an endomorphism of a set of integers of the form {1, . . . ,n}. Transformations
are taken to act on the right, which defines the composition i (αβ) = (iα)β for i in {1, . . . ,n}.
For a transformation α on the set {1, . . . ,n}, we define its degree to be n, its image list to be the list,
[1α, . . . ,nα], its image to be the image list considered as a set, and its rank to be the size of the image. We
also define the kernel of α to be the equivalence relation containing the pair (i , j) if and only if iα = jα.

Note that unlike permutations, we do not consider unspecified points to be fixed by a transformation.
Therefore multiplication is only defined on two transformations of the same degree.

1 I IsTransformation(obj) C
I IsTransformationCollection(obj) C

We declare it as IsMultiplicativeElementWithOne since the identity automorphism of {1, . . . ,n} is a
multiplicative two sided identity for any transformation on the same set.

2 I TransformationFamily(n) F
I TransformationType(n) F
I TransformationData(n) F

For each n > 0 there is a single family and type of transformations on n points. To speed things up, we
store these in a database of types. The three functions above a then access functions. If the nth entry isn’t
yet created, they trigger creation as well.

For n > 0, element n of the type database is [TransformationFamily(n), TransformationType(n)]

3 I Transformation(images) F
I TransformationNC(images) F

both return a transformation with the image list images. The normal version checks that the all the elements
of the given list lie within the range {1, . . . ,n} where n is the length of images, but for speed purposes, a
non-checking version is also supplied.

4 I IdentityTransformation(n) F

return the identity transformation of degree n

5 I RandomTransformation(n) F

returns a random transformation of degree n JDM

6 I DegreeOfTransformation(trans) A

returns the degree of trans.

556 Chapter 52. Transformations

gap> t:= Transformation([2, 3, 4, 2, 4]);
Transformation([2, 3, 4, 2, 4])
gap> DegreeOfTransformation(t);
5

7 I ImageListOfTransformation(trans) A

returns the image list of trans.

gap> ImageListOfTransformation(t);
[2, 3, 4, 2, 4]

8 I ImageSetOfTransformation(trans) A

returns the image of trans as a set.

gap> ImageSetOfTransformation(t);
[2, 3, 4]

9 I RankOfTransformation(trans) A

returns the rank of trans.

gap> RankOfTransformation(t);
3

10 I KernelOfTransformation(trans) A

Returns the kernel of trans as an equivalence relation (See 32.1).

gap> KernelOfTransformation(t);
[[1, 4], [2], [3, 5]]

11 I PreimagesOfTransformation(trans, i) O

returns the subset of {1, . . . ,n} which maps to i under trans.

gap> PreimagesOfTransformation(t, 2);
[1, 4]

12 I RestrictedTransformation(trans, alpha) O

The transformation trans is restricted to only those points of alpha.

13 I AsTransformation(O) O
I AsTransformation(O, n) O
I AsTransformationNC(O, n) O

returns the object O as a transformation. Supported objects are permutations and binary relations on
points. In the second form, the operation returns a transformation of degree n, signalling an error if such a
representation is not possible. AsTransformationNC does not perform this check.

557

gap> AsTransformation((1, 3)(2, 4));
Transformation([3, 4, 1, 2])
gap> AsTransformation((1, 3)(2, 4), 10);
Transformation([3, 4, 1, 2, 5, 6, 7, 8, 9, 10])

gap> AsTransformation((1, 3)(2, 4), 3);
Error, Permutation moves points over the degree specified called from
<function>(<arguments>) called from read-eval-loop
Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> quit;

14 I PermLeftQuoTransformation(tr1, tr2) O

Given transformations tr1 and tr2 with equal kernel and image, we compute the permutation induced by
(tr1)−1∗tr2 on the set of images of tr1 . If the kernels and images are not equal, an error is signaled.

15 I BinaryRelationTransformation(trans) O

returns trans when considered as a binary relation.

16 I TransformationRelation(R) O

returns the binary relation R when considered as a transformation. Only makes sense for injective binary
relations over [1..n]. Returns an error if the relation is not over [1..n], and fail if it is not injective.

53
Additive Magmas

(preliminary)

This chapter deals with domains that are closed under addition +, which are called near-additive magmas
in GAP. Together with the domains closed under multiplication *, (see 33), they are the basic algebraic
structures. In many cases, the addition is commutative (see 53.3.1), the domain is called an additive magma
then; every module (see 55), vector space (see 59), ring (see 54), or field (see 56) is an additive magma. In the
cases of all (near-)additive magma-with-zero or (near-)additive magma-with-inverses, additional
additive structure is present (see 53.1).

53.1 (Near-)Additive Magma Categories

1 I IsNearAdditiveMagma(obj) C

A near-additive magma in GAP is a domain A with an associative but not necessarily commutative
addition +: A×A→ A.

2 I IsNearAdditiveMagmaWithZero(obj) C

A near-additive magma-with-zero in GAP is a near-additive magma A with an operation 0* (or Zero)
that yields the zero of A.

So a near-additive magma-with-zero A does always contain a unique additively neutral element z , i.e.,
z + a = a = a + z holds for all a ∈ A (see 53.3.5). This element z can be computed with the operation Zero
(see 30.10.3) as Zero(A), and z is also equal to Zero(elm) and to 0*elm for each element elm in A.

Note that a near-additive magma containing a zero may not lie in the category IsNearAdditiveMagmaW-
ithZero (see 30.6).

3 I IsNearAdditiveGroup(obj) C
I IsNearAdditiveMagmaWithInverses(obj) C

A near-additive group in GAP is a near-additive magma-with-zero A with an operation -1*: A→ A that
maps each element a of A to its additive inverse -1*a (or AdditiveInverse(a), see 30.10.9).

The addition + of A is assumed to be associative, so a near-additive group is not more than a near-additive
magma-with-inverses. IsNearAdditiveMagmaWithInverses is just a synonym for IsNearAdditiveGroup,
and can be used alternatively in all function names involving NearAdditiveGroup.

Note that not every trivial near-additive magma is a near-additive magma-with-zero, but every trivial near-
additive magma-with-zero is a near-additive group.

4 I IsAdditiveMagma(obj) C

An additive magma in GAP is a domain A with an associative and commutative addition +: A×A→ A,
see 53.1.1 and 53.3.1.

5 I IsAdditiveMagmaWithZero(obj) C

An additive magma-with-zero in GAP is an additive magma A with an operation 0* (or Zero) that yields
the zero of A.

Section 2. (Near-)Additive Magma Generation 559

So an additive magma-with-zero A does always contain a unique additively neutral element z , i.e., z + a =
a = a + z holds for all a ∈ A (see 53.3.5). This element z can be computed with the operation Zero
(see 30.10.3) as Zero(A), and z is also equal to Zero(elm) and to 0*elm for each element elm in A.

Note that an additive magma containing a zero may not lie in the category IsAdditiveMagmaWithZero
(see 30.6).

6 I IsAdditiveGroup(obj) C
I IsAdditiveMagmaWithInverses(obj) C

An additive group in GAP is an additive magma-with-zero A with an operation -1*: A → A that maps
each element a of A to its additive inverse -1*a (or AdditiveInverse(a), see 30.10.9).

The addition + of A is assumed to be commutative and associative, so an additive group is not more than
an additive magma-with-inverses. IsAdditiveMagmaWithInverses is just a synonym for IsAdditive-
Group, and can be used alternatively in all function names involving AdditiveGroup.

Note that not every trivial additive magma is an additive magma-with-zero, but every trivial additive
magma-with-zero is an additive group.

53.2 (Near-)Additive Magma Generation

1 I NearAdditiveMagma(gens) F
I NearAdditiveMagma(Fam, gens) F

returns the (near-)additive magma A that is generated by the elements in the list gens, that is, the closure
of gens under addition +. The family Fam of A can be entered as first argument; this is obligatory if gens
is empty (and hence also A is empty).

2 I NearAdditiveMagmaWithZero(gens) F
I NearAdditiveMagmaWithZero(Fam, gens) F

returns the (near-)additive magma-with-zero A that is generated by the elements in the list gens, that is,
the closure of gens under addition + and Zero. The family Fam of A can be entered as first argument; this
is obligatory if gens is empty (and hence A is trivial).

3 I NearAdditiveGroup(gens) F
I NearAdditiveGroup(Fam, gens) F

returns the (near-)additive group A that is generated by the elements in the list gens, that is, the closure of
gens under addition +, Zero, and AdditiveInverse. The family Fam of A can be entered as first argument;
this is obligatory if gens is empty (and hence A is trivial).

The underlying operations for which methods can be installed are the following.

4 I NearAdditiveMagmaByGenerators(gens) O
I NearAdditiveMagmaByGenerators(Fam, gens) O

5 I NearAdditiveMagmaWithZeroByGenerators(gens) O
I NearAdditiveMagmaWithZeroByGenerators(Fam, gens) O

6 I NearAdditiveGroupByGenerators(gens) O
I NearAdditiveGroupByGenerators(Fam, gens) O

Substructures of an additive magma can be formed as follows.

560 Chapter 53. Additive Magmas (preliminary)

7 I SubnearAdditiveMagma(D, gens) F
I SubnearAdditiveMagmaNC(D, gens) F

SubadditiveMagma returns the near-additive magma generated by the elements in the list gens, with parent
the domain D . SubadditiveMagmaNC does the same, except that it is not checked whether the elements of
gens lie in D .

8 I SubnearAdditiveMagmaWithZero(D, gens) F
I SubnearAdditiveMagmaWithZeroNC(D, gens) F

SubadditiveMagmaWithZero returns the near-additive magma-with-zero generated by the elements in the
list gens, with parent the domain D . SubadditiveMagmaWithZeroNC does the same, except that it is not
checked whether the elements of gens lie in D .

9 I SubnearAdditiveGroup(D, gens) F
I SubnearAdditiveGroupNC(D, gens) F

SubadditiveGroup returns the near-additive group generated by the elements in the list gens, with parent
the domain D . SubadditiveGroupNC does the same, except that it is not checked whether the elements of
gens lie in D .

53.3 Attributes and Properties for (Near-)Additive Magmas

1 I IsAdditivelyCommutative(A) P

A near-additive magma A in GAP is additively commutative if for all elements a, b ∈ A the equality
a + b = b + a holds.

Note that the commutativity of the multiplication * in a multiplicative structure can be tested with
IsCommutative, (see 33.4.9).

2 I GeneratorsOfNearAdditiveMagma(A) A
I GeneratorsOfAdditiveMagma(A) A

is a list gens of elements of the near-additive magma A that generates A as a near-additive magma, that is,
the closure of gens under addition is A.

3 I GeneratorsOfNearAdditiveMagmaWithZero(A) A
I GeneratorsOfAdditiveMagmaWithZero(A) A

is a list gens of elements of the near-additive magma-with-zero A that generates A as a near-additive
magma-with-zero, that is, the closure of gens under addition and Zero (see 30.10.3) is A.

4 I GeneratorsOfNearAdditiveGroup(A) A
I GeneratorsOfAdditiveGroup(A) A

is a list gens of elements of the near-additive group A that generates A as a near-additive group, that is,
the closure of gens under addition, taking the zero element, and taking additive inverses (see 30.10.9) is A.

5 I AdditiveNeutralElement(A) A

returns the element z in the near-additive magma A with the property that z + a = a = a + z holds for all
a ∈ A, if such an element exists. Otherwise fail is returned.

A near-additive magma that is not a near-additive magma-with-zero can have an additive neutral element
z ; in this case, z cannot be obtained as Zero(A) or as 0*elm for an element elm in A, see 30.10.3.

6 I TrivialSubnearAdditiveMagmaWithZero(A) A

is the additive magma-with-zero that has the zero of the near-additive magma-with-zero A as only element.

Section 4. Operations for (Near-)Additive Magmas 561

53.4 Operations for (Near-)Additive Magmas

1 I ClosureNearAdditiveGroup(A, a) O
I ClosureNearAdditiveGroup(A, B) O

returns the closure of the near-additive magma A with the element a or the near-additive magma B ,
w.r.t. addition, taking the zero element, and taking additive inverses.

54 Rings

This chapter deals with domains that are additive groups closed under multiplication *. Such a domain, if
* and + are distributive, is called a ring in GAP. Each division ring, field (see 56), or algebra (see 60) is a
ring, important examples are the integers (see 14) and matrix rings.

In the case of a ring-with-one, additional multiplicative structure is present, see 54.3.1.

Several functions for ring elements, such as IsPrime (54.5.7) and Factors (54.5.8), are defined only relative
to a ring R, which can be entered as an optional argument; if R is omitted then a default ring is formed
from the ring elements given as arguments, see 54.1.3.

54.1 Generating Rings

1 I IsRing(R) P

A ring in GAP is an additive group (see 53.1.6) that is also a magma (see 33.1.1), such that addition + and
multiplication * are distributive.

The multiplication need not be associative (see 33.4.7). For example, a Lie algebra (see 61) is regarded as
a ring in GAP.

2 I Ring(r , s, ...) F
I Ring(coll) F

In the first form Ring returns the smallest ring that contains all the elements r , s... etc. In the second form
Ring returns the smallest ring that contains all the elements in the collection coll . If any element is not an
element of a ring or if the elements lie in no common ring an error is raised.

Ring differs from DefaultRing (see 54.1.3) in that it returns the smallest ring in which the elements lie,
while DefaultRing may return a larger ring if that makes sense.

gap> Ring(2, E(4));
<ring with 2 generators>

3 I DefaultRing(r , s, ...) F
I DefaultRing(coll) F

In the first form DefaultRing returns a ring that contains all the elements r , s, ... etc. In the second form
DefaultRing returns a ring that contains all the elements in the collection coll . If any element is not an
element of a ring or if the elements lie in no common ring an error is raised.

The ring returned by DefaultRing need not be the smallest ring in which the elements lie. For example
for elements from cyclotomic fields, DefaultRing may return the ring of integers of the smallest cyclotomic
field in which the elements lie, which need not be the smallest ring overall, because the elements may in fact
lie in a smaller number field which is itself not a cyclotomic field.

(For the exact definition of the default ring of a certain type of elements, look at the corresponding method
installation.)

DefaultRing is used by the ring functions like Quotient, IsPrime, Factors, or Gcd if no explicit ring is
given.

Section 1. Generating Rings 563

Ring (see 54.1.2) differs from DefaultRing in that it returns the smallest ring in which the elements lie,
while DefaultRing may return a larger ring if that makes sense.

gap> DefaultRing(2, E(4));
GaussianIntegers

4 I RingByGenerators(C) O

RingByGenerators returns the ring generated by the elements in the collection C , i. e., the closure of C
under addition, multiplication, and taking additive inverses.

gap> RingByGenerators([2, E(4)]);
<ring with 2 generators>

5 I DefaultRingByGenerators(coll) O

gap> DefaultRingByGenerators([2, E(4)]);
GaussianIntegers

6 I GeneratorsOfRing(R) A

GeneratorsOfRing returns a list of elements such that the ring R is the closure of these elements under
addition, multiplication, and taking additive inverses.

gap> R:=Ring(2, 1/2);
<ring with 2 generators>
gap> GeneratorsOfRing(R);
[2, 1/2]

7 I AsRing(C) A

If the elements in the collection C form a ring then AsRing returns this ring, otherwise fail is returned.

8 I Subring(R, gens) F
I SubringNC(R, gens) F

returns the ring with parent R generated by the elements in gens. When the second form, SubringNC is
used, it is not checked whether all elements in gens lie in R.

gap> R:= Integers;
Integers
gap> S:= Subring(R, [4, 6]);
<ring with 2 generators>
gap> Parent(S);
Integers

9 I ClosureRing(R, r) O
I ClosureRing(R, S) O

For a ring R and either an element r of its elements family or a ring S , ClosureRing returns the ring
generated by both arguments.

gap> ClosureRing(Integers, E(4));
<ring-with-one, with 2 generators>

10 I Quotient(R, r, s) O
I Quotient(r, s) O

In the first form Quotient returns the quotient of the two ring elements r and s in the ring R. In the second
form Quotient returns the quotient of the two ring elements r and s in their default ring. It returns fail
if the quotient does not exist in the respective ring.

564 Chapter 54. Rings

(To perform the division in the quotient field of a ring, use the quotient operator /.)

gap> Quotient(2, 3);
fail
gap> Quotient(6, 3);
2

54.2 Ideals in Rings

A left ideal in a ring R is a subring of R that is closed under multiplication with elements of R from the
left.

A right ideal in a ring R is a subring of R that is closed under multiplication with elements of R from the
right.

A two-sided ideal or simply ideal in a ring R is both a left ideal and a right ideal in R.

So being a (left/right/two-sided) ideal is not a property of a domain but refers to the acting ring(s). Hence
we must ask, e. g., IsIdeal(R, I) if we want to know whether the ring I is an ideal in the ring R. The
property IsIdealInParent can be used to store whether a ring is an ideal in its parent.

(Whenever the term Ideal occurs without specifying prefix Left or Right, this means the same as TwoSide-
dIdeal. Conversely, any occurrence of TwoSidedIdeal can be substituted by Ideal.)

For any of the above kinds of ideals, there is a notion of generators, namely GeneratorsOfLeftIdeal,
GeneratorsOfRightIdeal, and GeneratorsOfTwoSidedIdeal. The acting rings can be accessed as Left-
ActingRingOfIdeal and RightActingRingOfIdeal, respectively. Note that ideals are detected from known
values of these attributes, especially it is assumed that whenever a domain has both a left and a right acting
ring then these two are equal.

Note that we cannot use LeftActingDomain and RightActingDomain here, since ideals in algebras are
themselves vector spaces, and such a space can of course also be a module for an action from the right. In
order to make the usual vector space functionality automatically available for ideals, we have to distinguish
the left and right module structure from the additional closure properties of the ideal.

Further note that the attributes denoting ideal generators and acting ring are used to create ideals if this is
explicitly wanted, but the ideal relation in the sense of IsIdeal is of course independent of the presence of
the attribute values.

Ideals are constructed with LeftIdeal, RightIdeal, TwoSidedIdeal. Principal ideals of the form x ∗ R,
R ∗ x , R ∗ x ∗ R can also be constructed with a simple multiplication.

Currently many methods for dealing with ideals need linear algebra to work, so they are mainly applicable
to ideals in algebras.

1 I TwoSidedIdeal(R, gens[, "basis"]) F
I Ideal(R, gens[, "basis"]) F
I LeftIdeal(R, gens[, "basis"]) F
I RightIdeal(R, gens[, "basis"]) F

Let R be a ring, and gens a list of collection of elements in R. TwoSidedIdeal, LeftIdeal, and RightIdeal
return the two-sided, left, or right ideal, respectively, I in R that is generated by gens. The ring R can be
accessed as LeftActingRingOfIdeal or RightActingRingOfIdeal (or both) of I .

If R is a left F -module then also I is a left F -module, in particular the LeftActingDomain (see 55.1.11)
values of R and I are equal.

If the optional argument "basis" is given then gens are assumed to be a list of basis vectors of I viewed
as a free F -module. (This is mainly applicable to ideals in algebras.) In this case, it is not checked whether
gens really is linearly independent and whether gens is a subset of R.

Section 2. Ideals in Rings 565

Ideal is simply a synonym of TwoSidedIdeal.

gap> R:= Integers;;
gap> I:= Ideal(R, [2]);
<two-sided ideal in Integers, (1 generators)>

2 I TwoSidedIdealNC(R, gens[, "basis"]) F
I IdealNC(R, gens[, "basis"]) F
I LeftIdealNC(R, gens[, "basis"]) F
I RightIdealNC(R, gens[, "basis"]) F

The effects of TwoSidedIdealNC, LeftIdealNC, and RightIdealNC are the same as TwoSidedIdeal, Left-
Ideal, and RightIdeal, respectively (see 54.2.1), but they do not check whether all entries of gens lie in
R.

3 I IsTwoSidedIdeal(R, I) O
I IsLeftIdeal(R, I) O
I IsRightIdeal(R, I) O
I IsTwoSidedIdealInParent(I) P
I IsLeftIdealInParent(I) P
I IsRightIdealInParent(I) P

The properties IsTwoSidedIdealInParent etc., are attributes of the ideal, and once known they are stored
in the ideal.

gap> A:= FullMatrixAlgebra(Rationals, 3);
(Rationals^[3, 3])
gap> I:= Ideal(A, [Random(A)]);
<two-sided ideal in (Rationals^[3, 3]), (1 generators)>
gap> IsTwoSidedIdeal(A, I);
true

4 I TwoSidedIdealByGenerators(R, gens) O
I IdealByGenerators(R, gens) O

TwoSidedIdealByGenerators returns the ring that is generated by the elements of the collection gens under
addition, multiplication, and multiplication with elements of the ring R from the left and from the right.

R can be accessed by LeftActingRingOfIdeal or RightActingRingOfIdeal, gens can be accessed by
GeneratorsOfTwoSidedIdeal.

5 I LeftIdealByGenerators(R, gens) O

LeftIdealByGenerators returns the ring that is generated by the elements of the collection gens under
addition, multiplication, and multiplication with elements of the ring R from the left.

R can be accessed by LeftActingRingOfIdeal, gens can be accessed by GeneratorsOfLeftIdeal.

6 I RightIdealByGenerators(R, gens) O

RightIdealByGenerators returns the ring that is generated by the elements of the collection gens under
addition, multiplication, and multiplication with elements of the ring R from the right.

R can be accessed by RightActingRingOfIdeal, gens can be accessed by GeneratorsOfRightIdeal.

7 I GeneratorsOfTwoSidedIdeal(I) A
I GeneratorsOfIdeal(I) A

is a list of generators for the bi-ideal I , with respect to the action of LeftActingRingOfIdeal(I) from
the left and the action of RightActingRingOfIdeal(I)from the right.

566 Chapter 54. Rings

Note that LeftActingRingOfIdeal(I) and RightActingRingOfIdeal(I) coincide if I is a two-sided ideal.

gap> A:= FullMatrixAlgebra(Rationals, 3);;
gap> I:= Ideal(A, [One(A)]);;
gap> GeneratorsOfIdeal(I);
[[[1, 0, 0], [0, 1, 0], [0, 0, 1]]]

8 I GeneratorsOfLeftIdeal(I) A

is a list of generators for the left ideal I , with respect to the action of LeftActingRingOfIdeal(I) from
the left.

9 I GeneratorsOfRightIdeal(I) A

is a list of generators for the right ideal I , with respect to the action of RightActingRingOfIdeal(I)
from the right.

10 I LeftActingRingOfIdeal(I) A
I RightActingRingOfIdeal(I) A

11 I AsLeftIdeal(R, S) O
I AsRightIdeal(R, S) O
I AsTwoSidedIdeal(R, S) O

Let S be a subring of R.

If S is a left ideal in R then AsLeftIdeal returns this left ideal, otherwise fail is returned. If S is a right
ideal in R then AsRightIdeal returns this right ideal, otherwise fail is returned. If S is a two-sided ideal
in R then AsTwoSidedIdeal returns this two-sided ideal, otherwise fail is returned.

gap> A:= FullMatrixAlgebra(Rationals, 3);;
gap> B:= DirectSumOfAlgebras(A, A);
<algebra over Rationals, with 6 generators>
gap> C:= Subalgebra(B, Basis(B){[1..9]});
<algebra over Rationals, with 9 generators>
gap> I:= AsTwoSidedIdeal(B, C);
<two-sided ideal in <algebra of dimension 18 over Rationals>, (9 generators)>

54.3 Rings With One

1 I IsRingWithOne(R) P

A ring-with-one in GAP is a ring (see 54.1.1) that is also a magma-with-one (see 33.1.2).

Note that the identity and the zero of a ring-with-one need not be distinct. This means that a ring that
consists only of its zero element can be regarded as a ring-with-one.

This is especially useful in the case of finitely presented rings, in the sense that each factor of a ring-with-one
is again a ring-with-one.

2 I RingWithOne(r, s, ...) F
I RingWithOne(C) F

In the first form RingWithOne returns the smallest ring with one that contains all the elements r , s... etc.
In the second form RingWithOne returns the smallest ring with one that contains all the elements in the
collection C . If any element is not an element of a ring or if the elements lie in no common ring an error is
raised.

Section 4. Properties of Rings 567

gap> RingWithOne([4, 6]);
<ring-with-one, with 2 generators>

3 I RingWithOneByGenerators(coll) O

RingWithOneByGenerators returns the ring-with-one generated by the elements in the collection coll , i. e.,
the closure of coll under addition, multiplication, taking additive inverses, and taking the identity of an
element.

4 I GeneratorsOfRingWithOne(R) A

GeneratorsOfRingWithOne returns a list of elements such that the ring R is the closure of these elements
under addition, multiplication, taking additive inverses, and taking the identity element One(R).

R itself need not be known to be a ring-with-one.

gap> R:= RingWithOne([4, 6]);
<ring-with-one, with 2 generators>
gap> GeneratorsOfRingWithOne(R);
[4, 6]

5 I SubringWithOne(R, gens) F
I SubringWithOneNC(R, gens) F

returns the ring with one with parent R generated by the elements in gens. When the second form, SubringNC
is used, it is not checked whether all elements in gens lie in R.

gap> R:= SubringWithOne(Integers, [4, 6]);
<ring-with-one, with 2 generators>
gap> Parent(R);
Integers

54.4 Properties of Rings

1 I IsIntegralRing(R) P

A ring-with-one R is integral if it is commutative, contains no nontrivial zero divisors, and if its identity is
distinct from its zero.

gap> IsIntegralRing(Integers);
true

2 I IsUniqueFactorizationRing(R) C

A ring R is called a unique factorization ring if it is an integral ring (see 54.4.1), and every element has
a unique factorization into irreducible elements, i.e., a unique representation as product of irreducibles (see
54.5.6). Unique in this context means unique up to permutations of the factors and up to multiplication of
the factors by units (see 54.5.2).

Mathematically, a field should therefore also be a unique factorization ring, since every element is a unit. In
GAP, however, at least at present fields do not lie in the filter IsUniqueFactorizationRing (see 54.4.2),
since Operations such as Factors, Gcd, StandardAssociate and so on do not apply to fields (the results
would be trivial, and not especially useful) and Methods which require their arguments to lie in IsUnique-
FactorizationRing expect these Operations to work.

(Note that we cannot install a subset maintained method for this category since the factorization of an
element needs not exist in a subring. As an example, consider the subring 4N+ 1 of the ring 4Z+ 1; in the
subring, the element 3 · 3 · 11 · 7 has the two factorizations 33 · 21 = 9 · 77, but in the large ring there is the

568 Chapter 54. Rings

unique factorization (−3) · (−3) · (−11) · (−7), and it is easy to see that every element in 4Z+ 1 has a unique
factorization.)

gap> IsUniqueFactorizationRing(PolynomialRing(Rationals, 1));
true

3 I IsLDistributive(C) P

is true if the relation a ∗ (b + c) = (a ∗ b) + (a ∗ c) holds for all elements a, b, c in the collection C , and
false otherwise.

4 I IsRDistributive(C) P

is true if the relation (a + b) ∗ c = (a ∗ c) + (b ∗ c) holds for all elements a, b, c in the collection C , and
false otherwise.

5 I IsDistributive(C) P

is true if the collection C is both left and right distributive, and false otherwise.

gap> IsDistributive(Integers);
true

6 I IsAnticommutative(R) P

is true if the relation a ∗ b = −b ∗ a holds for all elements a, b in the ring R, and false otherwise.

7 I IsZeroSquaredRing(R) P

is true if a ∗ a is the zero element of the ring R for all a in R, and false otherwise.

8 I IsJacobianRing(R) P

is true if the Jacobi identity holds in R, and false otherwise. The Jacobi identity means that x ∗ (y ∗ z) +
z ∗ (x ∗ y) + y ∗ (z ∗ x) is the zero element of R, for all elements x , y , z in R.

gap> L:= FullMatrixLieAlgebra(GF(5), 7);
<Lie algebra over GF(5), with 13 generators>
gap> IsJacobianRing(L);
true

54.5 Units and Factorizations

1 I IsUnit(R, r) O
I IsUnit(r) O

In the first form IsUnit returns true if r is a unit in the ring R. In the second form IsUnit returns true
if the ring element r is a unit in its default ring (see 54.1.3).

An element r is called a unit in a ring R, if r has an inverse in R.

IsUnit may call Quotient.

2 I Units(R) A

Units returns the group of units of the ring R. This may either be returned as a list or as a group.

An element r is called a unit of a ring R, if r has an inverse in R. It is easy to see that the set of units
forms a multiplicative group.

Section 5. Units and Factorizations 569

gap> Units(GaussianIntegers);
[-1, 1, -E(4), E(4)]
gap> Units(GF(16));
<group with 1 generators>

3 I IsAssociated(R, r, s) O
I IsAssociated(r, s) O

In the first form IsAssociated returns true if the two ring elements r and s are associated in the ring R
and false otherwise. In the second form IsAssociated returns true if the two ring elements r and s are
associated in their default ring (see 54.1.3) and false otherwise.
Two elements r and s of a ring R are called associated if there is a unit u of R such that ru = s.

4 I Associates(R, r) O
I Associates(r) O

In the first form Associates returns the set of associates of r in the ring R. In the second form Associates
returns the set of associates of the ring element r in its default ring (see 54.1.3).
Two elements r and s of a ring R are called associated if there is a unit u of R such that ru = s.

gap> Associates(Integers, 2);
[-2, 2]
gap> Associates(GaussianIntegers, 2);
[-2, 2, -2*E(4), 2*E(4)]

5 I StandardAssociate(R, r) O
I StandardAssociate(r) O

In the first form StandardAssociate returns the standard associate of the ring element r in the ring R. In
the second form StandardAssociate returns the standard associate of the ring element r in its default ring
(see 54.1.3).
The standard associate of a ring element r of R is an associated element of r which is, in a ring dependent
way, distinguished among the set of associates of r . For example, in the ring of integers the standard associate
is the absolute value.

gap> x:= Indeterminate(Rationals, "x");;
gap> StandardAssociate(-x^2-x+1);
x^2+x-1

6 I IsIrreducibleRingElement(R, r) O
I IsIrreducibleRingElement(r) O

In the first form IsIrreducibleRingElement returns true if the ring element r is irreducible in the ring R
and false otherwise. In the second form IsIrreducibleRingElement returns true if the ring element r is
irreducible in its default ring (see 54.1.3) and false otherwise.
An element r of a ring R is called irreducible if r is not a unit in R and if there is no nontrivial factorization
of r in R, i.e., if there is no representation of r as product st such that neither s nor t is a unit (see 54.5.1).
Each prime element (see 54.5.7) is irreducible.

gap> IsIrreducibleRingElement(Integers, 2);
true

7 I IsPrime(R, r) O
I IsPrime(r) O

In the first form IsPrime returns true if the ring element r is a prime in the ring R and false otherwise.
In the second form IsPrime returns true if the ring element r is a prime in its default ring (see 54.1.3) and
false otherwise.

570 Chapter 54. Rings

An element r of a ring R is called prime if for each pair s and t such that r divides st the element r divides
either s or t . Note that there are rings where not every irreducible element (see 54.5.6) is a prime.

8 I Factors(R, r) O
I Factors(r) O

In the first form Factors returns the factorization of the ring element r in the ring R. In the second form
Factors returns the factorization of the ring element r in its default ring (see 54.1.3). The factorization is
returned as a list of primes (see 54.5.7). Each element in the list is a standard associate (see 54.5.5) except
the first one, which is multiplied by a unit as necessary to have Product(Factors(R, r)) = r . This
list is usually also sorted, thus smallest prime factors come first. If r is a unit or zero, Factors(R, r) =
[r].

gap> x:= Indeterminate(GF(2), "x");;
gap> pol:= x^2+x+1;
x^2+x+Z(2)^0
gap> Factors(pol);
[x^2+x+Z(2)^0]
gap> Factors(PolynomialRing(GF(4)), pol);
[x+Z(2^2), x+Z(2^2)^2]

9 I PadicValuation(r, p) O

PadicValuation is the operation to compute the p-adic valuation of a ring element r .

54.6 Euclidean Rings

1 I IsEuclideanRing(R) C

A ring R is called a Euclidean ring if it is an integral ring and there exists a function δ, called the Euclidean
degree, from R − {0R} to the nonnegative integers, such that for every pair r ∈ R and s ∈ R − {0R} there
exists an element q such that either r − qs = 0R or δ(r − qs) < δ(s). In GAP the Euclidean degree δ is
implicitly built into an ring and cannot be changed. The existence of this division with remainder implies
that the Euclidean algorithm can be applied to compute a greatest common divisor of two elements, which
in turn implies that R is a unique factorization ring.

gap> IsEuclideanRing(GaussianIntegers);
true

2 I EuclideanDegree(R, r) O
I EuclideanDegree(r) O

In the first form EuclideanDegree returns the Euclidean degree of the ring element in the ring R. In the
second form EuclideanDegree returns the Euclidean degree of the ring element r in its default ring. R must
of course be a Euclidean ring (see 54.6.1).

gap> EuclideanDegree(GaussianIntegers, 3);
9

3 I EuclideanQuotient(R, r, m) O
I EuclideanQuotient(r, m) O

In the first form EuclideanQuotient returns the Euclidean quotient of the ring elements r and m in the
ring R. In the second form EuclideanQuotient returns the Euclidean quotient of the ring elements r and
m in their default ring. The ring R must be a Euclidean ring (see 54.6.1) otherwise an error is signalled.

Section 7. Gcd and Lcm 571

gap> EuclideanQuotient(8, 3);
2

4 I EuclideanRemainder(R, r, m) O
I EuclideanRemainder(r, m) O

In the first form EuclideanRemainder returns the remainder of the ring element r modulo the ring element
m in the ring R. In the second form EuclideanRemainder returns the remainder of the ring element r
modulo the ring element m in their default ring. The ring R must be a Euclidean ring (see 54.6.1) otherwise
an error is signalled.

gap> EuclideanRemainder(8, 3);
2

5 I QuotientRemainder(R, r, m) O
I QuotientRemainder(r, m) O

In the first form QuotientRemainder returns the Euclidean quotient and the Euclidean remainder of the
ring elements r and m in the ring R. In the second form QuotientRemainder returns the Euclidean quotient
and the Euclidean remainder of the ring elements r and m in their default ring as pair of ring elements. The
ring R must be a Euclidean ring (see 54.6.1) otherwise an error is signalled.

gap> QuotientRemainder(GaussianIntegers, 8, 3);
[3, -1]

54.7 Gcd and Lcm

1 I Gcd(R, r1, r2, ...) F
I Gcd(R, list) F
I Gcd(r1, r2, ...) F
I Gcd(list) F

In the first two forms Gcd returns the greatest common divisor of the ring elements r1, r2, ... resp. of
the ring elements in the list list in the ring R. In the second two forms Gcd returns the greatest common
divisor of the ring elements r1, r2, ... resp. of the ring elements in the list list in their default ring (see
54.1.3). R must be a Euclidean ring (see 54.6.1) so that QuotientRemainder (see 54.6.5) can be applied to
its elements. Gcd returns the standard associate (see 54.5.5) of the greatest common divisors.

A greatest common divisor of the elements r1, r2, . . . of the ring R is an element of largest Euclidean degree
(see 54.6.2) that is a divisor of r1, r2,

We define Gcd(r, 0R) = Gcd(0R, r) = StandardAssociate(r) and Gcd(0R, 0R) = 0R.

gap> Gcd(Integers, [10, 15]);
5

2 I GcdOp(R, r, s) O
I GcdOp(r, s) O

GcdOp is the operation to compute the greatest common divisor of two ring elements r , s in the ring R or
in their default ring.

3 I GcdRepresentation(R, r1, r2, ...) F
I GcdRepresentation(R, list) F
I GcdRepresentation(r1, r2, ...) F
I GcdRepresentation(list) F

In the first two forms GcdRepresentation returns the representation of the greatest common divisor of the
ring elements r1, r2, ... resp. of the ring elements in the list list in the ring R. In the second two forms

572 Chapter 54. Rings

GcdRepresentation returns the representation of the greatest common divisor of the ring elements r1, r2,
... resp. of the ring elements in the list list in their default ring (see 54.1.3). R must be a Euclidean ring
(see 54.6.1) so that Gcd (see 54.7.1) can be applied to its elements.
The representation of the gcd g of the elements r1, r2, . . . of a ring R is a list of ring elements s1, s2, . . . of R,
such that g = s1r1 + s2r2 + · · ·. That this representation exists can be shown using the Euclidean algorithm,
which in fact can compute those coefficients.

gap> x:= Indeterminate(Rationals, "x");;
gap> GcdRepresentation(x^2+1, x^3+1);
[-1/2*x^2-1/2*x+1/2, 1/2*x+1/2]

4 I GcdRepresentationOp(R, r, s) O
I GcdRepresentationOp(r, s) O

GcdRepresentationOp is the operation to compute the representation of the greatest common divisor of
two ring elements r , s in the ring R or in their default ring, respectively.

5 I Lcm(R, r1, r2, ...) F
I Lcm(R, list) F
I Lcm(r1, r2, ...) F
I Lcm(list) F

In the first two forms Lcm returns the least common multiple of the ring elements r1, r2, ... resp. of the
ring elements in the list list in the ring R. In the second two forms Lcm returns the least common multiple
of the ring elements r1, r2, ... resp. of the ring elements in the list list in their default ring (see 54.1.3).
R must be a Euclidean ring (see 54.6.1) so that Gcd (see 54.7.1) can be applied to its elements. Lcm returns
the standard associate (see 54.5.5) of the least common multiples.
A least common multiple of the elements r1, r2, . . . of the ring R is an element of smallest Euclidean degree
(see 54.6.2) that is a multiple of r1, r2,
We define Lcm(r, 0R) = Lcm(0R, r) = StandardAssociate(r) and Lcm(0R, 0R) = 0R.
Lcm uses the equality lcm(m,n) = m ∗ n/gcd(m,n) (see 54.7.1).

6 I LcmOp(R, r, s) O
I LcmOp(r, s) O

LcmOp is the operation to compute the least common multiple of two ring elements r , s in the ring R or in
their default ring, respectively.

7 I QuotientMod(R, r, s, m) O
I QuotientMod(r, s, m) O

In the first form QuotientMod returns the quotient of the ring elements r and s modulo the ring element m
in the ring R. In the second form QuotientMod returns the quotient of the ring elements r and s modulo
the ring element m in their default ring (see 54.1.3). R must be a Euclidean ring (see 54.6.1) so that
EuclideanRemainder (see 54.6.4) can be applied. If the modular quotient does not exist, fail is returned.
The quotient q of r and s modulo m is an element of R such that qs = r modulo m, i.e., such that qs − r
is divisible by m in R and that q is either 0 (if r is divisible by m) or the Euclidean degree of q is strictly
smaller than the Euclidean degree of m.

gap> QuotientMod(7, 2, 3);
2

8 I PowerMod(R, r, e, m) O
I PowerMod(r, e, m) O

In the first form PowerMod returns the e-th power of the ring element r modulo the ring element m in the
ring R. In the second form PowerMod returns the e-th power of the ring element r modulo the ring element

Section 7. Gcd and Lcm 573

m in their default ring (see 54.1.3). e must be an integer. R must be a Euclidean ring (see 54.6.1) so that
EuclideanRemainder (see 54.6.4) can be applied to its elements.

If e is positive the result is r e modulo m. If e is negative then PowerMod first tries to find the inverse of r
modulo m, i.e., i such that ir = 1 modulo m. If the inverse does not exist an error is signalled. If the inverse
does exist PowerMod returns PowerMod(R, i, -e, m).

PowerMod reduces the intermediate values modulo m, improving performance drastically when e is large and
m small.

gap> PowerMod(12, 100000, 7);
2

9 I InterpolatedPolynomial(R, x, y) O

InterpolatedPolynomial returns, for given lists x , y of elements in a ring R of the same length n, say, the
unique polynomial of degree less than n which has value y [i] at x [i], for all i ∈ {1, . . . ,n}. Note that the
elements in x must be distinct.

gap> InterpolatedPolynomial(Integers, [1, 2, 3], [5, 7, 0]);
-9/2*x^2+31/2*x-6

55
Modules

(preliminary)

55.1 Generating modules

1 I IsLeftOperatorAdditiveGroup(D) C

A domain D lies in IsLeftOperatorAdditiveGroup if it is an additive group that is closed under scalar
multplication from the left, and such that λ ∗ (x + y) = λ ∗ x + λ ∗ y for all scalars λ and elements x , y ∈ D .

2 I IsLeftModule(M) C

A domain M lies in IsLeftModule if it lies in IsLeftOperatorAdditiveGroup, and the set of scalars forms
a ring, and (λ + µ) ∗ x = λ ∗ x + µ ∗ x for scalars λ, µ and x ∈ M , and scalar multiplication satisfies
λ ∗ (µ ∗ x) = (λ ∗ µ) ∗ x for scalars λ, µ and x ∈ M .

gap> V:= FullRowSpace(Rationals, 3);
(Rationals^3)
gap> IsLeftModule(V);
true

3 I GeneratorsOfLeftOperatorAdditiveGroup(D) A

returns a list of elements of D that generates D as a left operator additive group.

4 I GeneratorsOfLeftModule(M) A

returns a list of elements of M that generate M as a left module.

gap> V:= FullRowSpace(Rationals, 3);;
gap> GeneratorsOfLeftModule(V);
[[1, 0, 0], [0, 1, 0], [0, 0, 1]]

5 I AsLeftModule(R, D) O

if the domain D forms an additive group and is closed under left multiplication by the elements of R, then
AsLeftModule(R, D) returns the domain D viewed as a left module.

gap> coll:= [[0*Z(2),0*Z(2)], [Z(2),0*Z(2)], [0*Z(2),Z(2)], [Z(2),Z(2)]];
[[0*Z(2), 0*Z(2)], [Z(2)^0, 0*Z(2)], [0*Z(2), Z(2)^0],
[Z(2)^0, Z(2)^0]]

gap> AsLeftModule(GF(2), coll);
<vector space of dimension 2 over GF(2)>

6 I IsRightOperatorAdditiveGroup(D) C

A domain D lies in IsRightOperatorAdditiveGroup if it is an additive group that is closed under scalar
multplication from the right, and such that (x + y)∗λ = x ∗λ+ y ∗λ for all scalars λ and elements x , y ∈ D .

Section 2. Submodules 575

7 I IsRightModule(M) C

A domain M lies in IsRightModule if it lies in IsRightOperatorAdditiveGroup, and the set of scalars
forms a ring, and x ∗ (λ + µ) = x ∗ λ + x ∗ µ for scalars λ, µ and x ∈ M , and scalar multiplication satisfies
(x ∗ µ) ∗ λ = x ∗ (µ ∗ λ) for scalars λ, µ and x ∈ M .

8 I GeneratorsOfRightOperatorAdditiveGroup(D) A

returns a list of elements of D that generates D as a right operator additive group.

9 I GeneratorsOfRightModule(M) A

returns a list of elements of M that generate M as a left module.

10 I LeftModuleByGenerators(R, gens) O
I LeftModuleByGenerators(R, gens, zero) O

returns the left module over R generated by gens.

gap> coll:= [[Z(2),0*Z(2)], [0*Z(2),Z(2)], [Z(2),Z(2)]];;
gap> V:= LeftModuleByGenerators(GF(16), coll);
<vector space over GF(2^4), with 3 generators>

11 I LeftActingDomain(D) A

Let D be an external left set, that is, D is closed under the action of a domain L by multiplication from the
left. Then L can be accessed as value of LeftActingDomain for D .

55.2 Submodules
1 I Submodule(M , gens) F

I Submodule(M , gens, "basis") F

is the left module generated by the collection gens, with parent module M . The second form generates the
submodule of M for that the list gens is known to be a list of basis vectors; in this case, it is not checked
whether gens really are linearly independent and whether all in gens lie in M .

gap> coll:= [[Z(2),0*Z(2)], [0*Z(2),Z(2)], [Z(2),Z(2)]];;
gap> V:= LeftModuleByGenerators(GF(16), coll);;
gap> W:= Submodule(V, [coll[1], coll[2]]);
<vector space over GF(2^4), with 2 generators>
gap> Parent(W) = V;
true

2 I SubmoduleNC(M , gens) F
I SubmoduleNC(M , gens, "basis") F

SubmoduleNC does the same as Submodule, except that it does not check whether all in gens lie in M .

3 I ClosureLeftModule(M , m) O

is the left module generated by the left module generators of M and the element m.

gap> V:= LeftModuleByGenerators(Rationals, [[1, 0, 0], [0, 1, 0]]);
<vector space over Rationals, with 2 generators>
gap> ClosureLeftModule(V, [1, 1, 1]);
<vector space over Rationals, with 3 generators>

4 I TrivialSubmodule(M) A

returns the zero submodule of M .

gap> V:= LeftModuleByGenerators(Rationals, [[1, 0, 0], [0, 1, 0]]);;
gap> TrivialSubmodule(V);
<vector space over Rationals, with 0 generators>

576 Chapter 55. Modules (preliminary)

55.3 Free Modules

1 I IsFreeLeftModule(M) C

A left module is free as module if it is isomorphic to a direct sum of copies of its left acting domain.

Free left modules can have bases.

The characteristic (see 30.10.1) of a free left module is defined as the characteristic of its left acting domain
(see 55.1.11).

2 I FreeLeftModule(R, gens) F
I FreeLeftModule(R, gens, zero) F
I FreeLeftModule(R, gens, "basis") F
I FreeLeftModule(R, gens, zero, "basis") F

FreeLeftModule(R, gens) is the free left module over the ring R, generated by the vectors in the
collection gens.

If there are three arguments, a ring R and a collection gens and an element zero, then FreeLeftModule(
R, gens, zero) is the R-free left module generated by gens, with zero element zero.

If the last argument is the string "basis" then the vectors in gens are known to form a basis of the free
module.

It should be noted that the generators gens must be vectors, that is, they must support an addition and a
scalar action of R via left multiplication. (See also Section 30.3 for the general meaning of “generators” in
GAP.) In particular, FreeLeftModule is not an equivalent of commands such as FreeGroup (see 35.2.1) in
the sense of a constructor of a free group on abstract generators; Such a construction seems to be unnecessary
for vector spaces, for that one can use for example row spaces (see 59.8.4) in the finite dimensional case
and polynomial rings (see 64.14.1) in the infinite dimensional case. Moreover, the definition of a “natural”
addition for elements of a given magma (for example a permutation group) is possible via the construction
of magma rings (see Chapter 63).

gap> V:= FreeLeftModule(Rationals, [[1, 0, 0], [0, 1, 0]], "basis");
<vector space of dimension 2 over Rationals>

3 I AsFreeLeftModule(F, D) O

if the domain D is a free left module over F , then AsFreeLeftModule(F, D) returns the domain D
viewed as free left module over F .

4 I Dimension(M) A

A free left module has dimension n if it is isomorphic to a direct sum of n copies of its left acting domain.

(We do not mark Dimension as invariant under isomorphisms since we want to call UseIsomorphismRela-
tion also for free left modules over different left acting domains.)

gap> V:= FreeLeftModule(Rationals, [[1, 0], [0, 1], [1, 1]]);;
gap> Dimension(V);
2

5 I IsFiniteDimensional(M) P

is true if M is a free left module that is finite dimensional over its left acting domain, and false otherwise.

Section 3. Free Modules 577

gap> V:= FreeLeftModule(Rationals, [[1, 0], [0, 1], [1, 1]]);;
gap> IsFiniteDimensional(V);
true

6 I UseBasis(V , gens) O

The vectors in the list gens are known to form a basis of the free left module V . UseBasis stores information
in V that can be derived form this fact, namely

– gens are stored as left module generators if no such generators were bound (this is useful especially if
V is an algebra),

– the dimension of V is stored.

gap> V:= FreeLeftModule(Rationals, [[1, 0], [0, 1], [1, 1]]);;
gap> UseBasis(V, [[1, 0], [1, 1]]);
gap> V; # now V knows its dimension
<vector space of dimension 2 over Rationals>

7 I IsRowModule(V) P

A row module is a free left module whose elements are row vectors.

8 I IsMatrixModule(V) P

A matrix module is a free left module whose elements are matrices.

9 I IsFullRowModule(M) P

A full row module is a module Rn , for a ring R and a nonnegative integer n.

More precisely, a full row module is a free left module over a ring R such that the elements are row vectors
with entries in R and such that the dimension is equal to the length of the row vectors.

Several functions delegate their tasks to full row modules, for example Iterator and Enumerator.

10 I FullRowModule(R, n) F

is the row module R^n, for a ring R and a nonnegative integer n.

gap> V:= FullRowModule(Integers, 5);
(Integers^5)

11 I IsFullMatrixModule(M) P

A full matrix module is a module R[m,n], for a ring R and two nonnegative integers m, n.

More precisely, a full matrix module is a free left module over a ring R such that the elements are matrices
with entries in R and such that the dimension is equal to the number of entries in each matrix.

12 I FullMatrixModule(R, m, n) F

is the row module R^[m,n], for a ring R and nonnegative integers m and n.

gap> FullMatrixModule(GaussianIntegers, 3, 6);
(GaussianIntegers^[3, 6])

13 I IsHandledByNiceBasis(M) C

For a free left module M in this category, essentially all operations are performed using a “nicer” free left
module, which is usually a row module.

56
Fields and

Division Rings

A division ring is a ring (see Chapter 54) in which every non-zero element has an inverse. The most
important class of division rings are the commutative ones, which are called fields.

GAP supports finite fields (see Chapter 57) and abelian number fields (see Chapter 58), in particular the
field of rationals (see Chapter 16).

This chapter describes the general GAP functions for fields and division rings.

If a field F is a subfield of a commutative ring C , C can be considered as a vector space over the (left)
acting domain F (see Chapter 59). In this situation, we call F the field of definition of C .

Each field in GAP is represented as a vector space over a subfield (see 56.1.2), thus each field is in fact a
field extension in a natural way, which is used by functions such as Norm and Trace (see 56.3).

56.1 Generating Fields

1 I IsDivisionRing(D) C

A division ring in GAP is a nontrivial associative algebra D with a multiplicative inverse for each nonzero
element. In GAP every division ring is a vector space over a division ring (possibly over itself). Note that
being a division ring is thus not a property that a ring can get, because a ring is usually not represented as
a vector space.

The field of coefficients is stored as LeftActingDomain(D).

2 I IsField(D) P

A field is a commutative division ring (see 56.1.1 and 33.4.9).

gap> IsField(GaloisField(16)); # the field with 16 elements
true
gap> IsField(Rationals); # the field of rationals
true
gap> q:= QuaternionAlgebra(Rationals);; # a noncommutative division ring
gap> IsField(q); IsDivisionRing(q);
false
true
gap> mat:= [[1]];; a:= Algebra(Rationals, [mat]);;
gap> IsDivisionRing(a); # an algebra not constructed as a division ring
false

3 I Field(z, ...) F
I Field(list) F
I Field(F, list) F

Field returns the smallest field K that contains all the elements z , . . ., or the smallest field K that contains
all elements in the list list . If no subfield F is given, K is constructed as a field over itself, i.e. the left acting

Section 1. Generating Fields 579

domain of K is K . In the third form, Field constructs the field generated by the field F and the elements
in the list list , as a vector space over F .

4 I DefaultField(z, ...) F
I DefaultField(list) F

DefaultField returns a field K that contains all the elements z , . . ., or a field K that contains all elements
in the list list .

This field need not be the smallest field in which the elements lie, cf. Field (see 56.1.3). For example, for
elements from cyclotomic fields DefaultField returns the smallest cyclotomic field in which the elements
lie, but the elements may lie in a smaller number field which is not a cyclotomic field.

gap> Field(Z(4)); Field([Z(4), Z(8)]); # finite fields
GF(2^2)
GF(2^6)
gap> Field(E(9)); Field(CF(4), [E(9)]); # abelian number fields
CF(9)
AsField(GaussianRationals, CF(36))
gap> f1:= Field(EB(5)); f2:= DefaultField(EB(5));
NF(5,[1, 4])
CF(5)
gap> f1 = f2; IsSubset(f2, f1);
false
true

5 I DefaultFieldByGenerators([z, ...]) O

returns the default field containing the elements z ,. . .. This field may be bigger than the smallest field
containing these elements.

6 I GeneratorsOfDivisionRing(D) A

generators with respect to addition, multiplication, and taking inverses (the identity cannot be omitted ...)

7 I GeneratorsOfField(F) A

generators with respect to addition, multiplication, and taking inverses. This attribute is the same as Gen-
eratorsOfDivisionRing (see 56.1.6).

8 I DivisionRingByGenerators([z, ...]) O
I DivisionRingByGenerators(F, [z, ...]) O

The first version returns a division ring as vector space over FieldOverItselfByGenerators(gens).

9 I AsDivisionRing(C) O
I AsDivisionRing(F, C) O
I AsField(C) O
I AsField(F, C) O

If the collection C can be regarded as a division ring then AsDivisionRing(C) is the division ring that
consists of the elements of C , viewed as a vector space over its prime field; otherwise fail is returned.

In the second form, if F is a division ring contained in C then the returned division ring is viewed as a
vector space over F .

AsField is just a synonym for AsDivisionRing.

580 Chapter 56. Fields and Division Rings

56.2 Subfields of Fields

1 I Subfield(F, gens) F
I SubfieldNC(F, gens) F

Constructs the subfield of F generated by gens.

2 I FieldOverItselfByGenerators([z, ...]) O

This operation is needed for the call of Field or FieldByGenerators without explicitly given subfield, in
order to construct a left acting domain for such a field.

3 I PrimitiveElement(D) A

is an element of D that generates D as a division ring together with the left acting domain.

4 I PrimeField(D) A

The prime field of a division ring D is the smallest field which is contained in D . For example, the prime
field of any field in characteristic zero is isomorphic to the field of rational numbers.

5 I IsPrimeField(D) P

A division ring is a prime field if it is equal to its prime field (see 56.2.4).

6 I DegreeOverPrimeField(F) A

is the degree of the field F over its prime field (see 56.2.4).

7 I DefiningPolynomial(F) A

is the defining polynomial of the field F as a field extension over the left acting domain of F . A root of the
defining polynomial can be computed with RootOfDefiningPolynomial (see 56.2.8).

8 I RootOfDefiningPolynomial(F) A

is a root in the field F of its defining polynomial as a field extension over the left acting domain of F . The
defining polynomial can be computed with DefiningPolynomial (see 56.2.7).

9 I FieldExtension(F, poly) O

is the field obtained on adjoining a root of the irreducible polynomial poly to the field F .

10 I Subfields(F) A

is the set of all subfields of the field F .

56.3 Galois Action

Let L > K be a field extension of finite degree. Then to each element α ∈ L, we can associate a K -linear
mapping ϕα on L, and for a fixed K -basis of L, we can associate to α the matrix Mα (over K) of this
mapping.

The norm of α is defined as the determinant of Mα, the trace of α is defined as the trace of Mα, the
minimal polynomial µα and the trace polynomial χα of α are defined as the minimal polynomial
(see 56.3.2) and the characteristic polynomial (see 24.12.1 and 56.3.3) of Mα. (Note that µα depends only
on K whereas χα depends on both L and K .)

Thus norm and trace of α are elements of K , and µα and χα are polynomials over K , χα being a power of
µα, and the degree of χα equals the degree of the field extension L > K .

The conjugates of α in L are those roots of χα (with multiplicity) that lie in L; note that if only L is given,
there is in general no way to access the roots outside L.

Section 3. Galois Action 581

Analogously, the Galois group of the extension L > K is defined as the group of all those field automor-
phisms of L that fix K pointwise.
If L > K is a Galois extension then the conjugates of α are all roots of χα (with multiplicity), the set of
conjugates equals the roots of µα, the norm of α equals the product and the trace of α equals the sum of
the conjugates of α, and the Galois group in the sense of the above definition equals the usual Galois group,
Note that MinimalPolynomial(F, z) is a polynomial over F , whereas Norm(F, z) is the norm of
the element z in F w.r.t. the field extension F > LeftActingDomain(F).

1 I GaloisGroup(F) A

The Galois group of a field F is the group of all field automorphisms of F that fix the subfield K =
LeftActingDomain(F) pointwise.
Note that the field extension F > K need not be a Galois extension.

gap> g:= GaloisGroup(AsField(GF(2^2), GF(2^12)));;
gap> Size(g); IsCyclic(g);
6
true
gap> h:= GaloisGroup(CF(60));;
gap> Size(h); IsAbelian(h);
16
true

2 I MinimalPolynomial(F, z[, ind]) O

returns the minimal polynomial of z over the field F . This is a generator of the ideal in F [x] of all polynomials
which vanish on z . (This definition is consistent with the general definition of MinimalPolynomial for rings,
see 64.8.1.)

gap> MinimalPolynomial(Rationals, E(8));
x_1^4+1
gap> MinimalPolynomial(CF(4), E(8));
x_1^2+(-E(4))
gap> MinimalPolynomial(CF(8), E(8));
x_1+(-E(8))

3 I TracePolynomial(L, K, z[, inum]) O

returns the polynomial that is the product of (X − c) where c runs over the conjugates of z in the field
extension L over K . The polynomial is returned as a univariate polynomial over K in the indeterminate
number inum (defaulting to 1).
This polynomial is sometimes also called the characteristic polynomial of z w.r.t. the field extension L >
K . Therefore methods are installed for CharacteristicPolynomial (see 24.12.1) that call TracePolynomial
in the case of field extensions.

gap> TracePolynomial(CF(8), Rationals, E(8));
x_1^4+1
gap> TracePolynomial(CF(16), Rationals, E(8));
x_1^8+2*x_1^4+1

4 I Norm(z) A
I Norm(L, z) O
I Norm(L, K, z) O

Norm returns the norm of the field element z . If two fields L and K are given then the norm is computed
w.r.t. the field extension L > K , if only one field L is given then LeftActingDomain(L) is taken as default
for the subfield K , and if no field is given then DefaultField(z) is taken as default for L.

582 Chapter 56. Fields and Division Rings

5 I Trace(z) A
I Trace(mat) A
I Trace(L, z) O
I Trace(L, K, z) O

Trace returns the trace of the field element z . If two fields L and K are given then the trace is computed
w.r.t. the field extension L > K , if only one field L is given then LeftActingDomain(L) is taken as default
for the subfield K , and if no field is given then DefaultField(z) is taken as default for L.

The trace of a matrix is the sum of its diagonal entries. Note that this is not compatible with the definition
of Trace for field elements, so the one-argument version is not suitable when matrices shall be regarded as
field elements.

6 I Conjugates(z) A
I Conjugates(L, z) O
I Conjugates(L, K, z) O

Conjugates returns the list of conjugates of the field element z . If two fields L and K are given then the
conjugates are computed w.r.t. the field extension L > K , if only one field L is given then LeftActingDomain(
L) is taken as default for the subfield K , and if no field is given then DefaultField(z) is taken as default
for L.

The result list will contain duplicates if z lies in a proper subfield of L, respectively of the default field of z .
The result list need not be sorted.

gap> Norm(E(8)); Norm(CF(8), E(8));
1
1
gap> Norm(CF(8), CF(4), E(8));
-E(4)
gap> Norm(AsField(CF(4), CF(8)), E(8));
-E(4)
gap> Trace(E(8)); Trace(CF(8), CF(8), E(8));
0
E(8)
gap> Conjugates(CF(8), E(8));
[E(8), E(8)^3, -E(8), -E(8)^3]
gap> Conjugates(CF(8), CF(4), E(8));
[E(8), -E(8)]
gap> Conjugates(CF(16), E(8));
[E(8), E(8)^3, -E(8), -E(8)^3, E(8), E(8)^3, -E(8), -E(8)^3]

The default methods for field elements are as follows. MinimalPolynomial solves a system of linear equations,
TracePolynomial computes the appropriate power of the minimal polynomial, Norm and Trace values
are obtained as coefficients of the characteristic polynomial, and Conjugates uses the factorization of the
characteristic polynomial.

For elements in finite fields and cyclotomic fields, one wants to do the computations in a different way since
the field extensions in question are Galois extensions, and the Galois groups are well-known in these cases.
More general, if a field is in the category IsFieldControlledByGaloisGroup then the default methods are
the following. Conjugates returns the sorted list of images (with multiplicity) of the element under the
Galois group, Norm computes the product of the conjugates, Trace computes the sum of the conjugates,
TracePolynomial and MinimalPolynomial compute the product of linear factors x − c with c ranging over
the conjugates and the set of conjugates, respectively.

Section 3. Galois Action 583

7 I NormalBase(F) A
I NormalBase(F, elm) O

Let F be a field that is a Galois extension of its subfield LeftActingDomain(F). Then NormalBase returns
a list of elements in F that form a normal basis of F , that is, a vector space basis that is closed under the
action of the Galois group (see 56.3.1) of F .

If a second argument elm is given, it is used as a hint for the algorithm to find a normal basis with the
algorithm described in [Art68].

gap> NormalBase(CF(5));
[-E(5), -E(5)^2, -E(5)^3, -E(5)^4]
gap> NormalBase(CF(4));
[1/2-1/2*E(4), 1/2+1/2*E(4)]
gap> NormalBase(GF(3^6));
[Z(3^6)^2, Z(3^6)^6, Z(3^6)^18, Z(3^6)^54, Z(3^6)^162, Z(3^6)^486]
gap> NormalBase(GF(GF(8), 2));
[Z(2^6), Z(2^6)^8]

57 Finite Fields

This chapter describes the special functionality which exists in GAP for finite fields and their elements. Of
course the general functionality for fields (see Chapter 56) also applies to finite fields.

In the following, the term finite field element is used to denote GAP objects in the category IsFFE
(see 57.1.1), and finite field means a field consisting of such elements. Note that in principle we must
distinguish these fields from (abstract) finite fields. For example, the image of the embedding of a finite field
into a field of rational functions in the same characteristic is of course a finite field but its elements are not
in IsFFE, and in fact GAP does currently not support such fields.

Special representations exist for row vectors and matrices over small finite fields (see sections 23.2 and 24.13).

57.1 Finite Field Elements

1 I IsFFE(obj) C
I IsFFECollection(obj) C
I IsFFECollColl(obj) C

Objects in the category IsFFE are used to implement elements of finite fields. In this manual, the term finite
field element always means an object in IsFFE. All finite field elements of the same characteristic form
a family in GAP (see 13.1). Any collection of finite field elements (see 28) lies in IsFFECollection, and a
collection of such collections (e.g., a matrix) lies in IsFFECollColl.

2 I Z(p^d) F
I Z(p,d) F

For creating elements of a finite field the function Z can be used. The call Z(p,d) (alternatively Z(p^d))
returns the designated generator of the multiplicative group of the finite field with p^d elements. p must be
a prime.

GAP can represent elements of all finite fields GF(p^d) such that either (1) pˆd ¡= 65536 (in which case
an extremely efficient internal representation is used); (2) d = 1, (in which case, for large p, the field is
represented the machinery of Residue Class Rings (see section 14.4) or (3) if the Conway Polynomial of
degree d over GF(p) is known, or can be computed, (see “ref:conway polynomial”).

If you attempt to construct an element of GF(p^d) for which d > 1 and the relevant Conway Polynomial
is not known, and not necessarily easy to find (see 57.5.2), then GAP will stop with an error and enter the
break loop. If you leave this break loop by entering return; GAP will attempt to compute the Conway
Polynomial, which may take a very long time.

The root returned by Z is a generator of the multiplicative group of the finite field with pd elements, which
is cyclic. The order of the element is of course pd − 1. The pd − 1 different powers of the root are exactly
the nonzero elements of the finite field.

Thus all nonzero elements of the finite field with p^d elements can be entered as Z(p^d)^i . Note that this
is also the form that GAP uses to output those elements when they are stored in the internal representation.
In larger fields, it is more convenient to enter and print elements as linear combinations of powers of the
primitive element. See section 57.6.

Section 1. Finite Field Elements 585

The additive neutral element is 0*Z(p). It is different from the integer 0 in subtle ways. First IsInt(0*Z(p)
) (see 14.1.1) is false and IsFFE(0*Z(p)) (see 57.1.1) is true, whereas it is just the other way around
for the integer 0.

The multiplicative neutral element is Z(p)^0. It is different from the integer 1 in subtle ways. First IsInt(
Z(p)^0) (see 14.1.1) is false and IsFFE(Z(p)^0) (see 57.1.1) is true, whereas it is just the other way
around for the integer 1. Also 1+1 is 2, whereas, e.g., Z(2)^0 + Z(2)^0 is 0*Z(2).

The various roots returned by Z for finite fields of the same characteristic are compatible in the following
sense. If the field GF (pn) is a subfield of the field GF (pm), i.e., n divides m, then Z (pn) = Z (pm)(pm−1)/(pn−1).
Note that this is the simplest relation that may hold between a generator of GF (pn) and GF (pm), since
Z (pn) is an element of order pm−1 and Z (pm) is an element of order pn−1. This is achieved by choosing Z (p)
as the smallest primitive root modulo p and Z (pn) as a root of the n-th Conway polynomial (see 57.5.1)
of characteristic p. Those polynomials were defined by J. H. Conway, and many of them were computed by
R. A. Parker.

gap> a:= Z(32);
Z(2^5)
gap> a+a;
0*Z(2)
gap> a*a;
Z(2^5)^2
gap> b := Z(3,12);
z
gap> b*b;
z2
gap> b+b;
2z
gap> Print(b^100,"\n");
Z(3)^0+Z(3,12)^5+Z(3,12)^6+2*Z(3,12)^8+Z(3,12)^10+Z(3,12)^11

gap> Z(11,40);
Error, Conway Polynomial 11^40 will need to computed and might be slow
return to continue called from
FFECONWAY.ZNC(p, d) called from
<function>(<arguments>) called from read-eval-loop
Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk>

Elements of finite fields can be compared using the operators = and <. The call a = b returns true if and
only if the finite field elements a and b are equal. Furthermore a < b tests whether a is smaller than b. The
exact behaviour of this comparison depends on which of two Categories the field elements belong to:

3 I IsLexOrderedFFE(ffe) C
I IsLogOrderedFFE(ffe) C

Finite field elements are ordered in GAP (by <) first by characteristic and then by their degree (ie the size
of the smallest field containing them). Amongst irreducible elements of a given field, the ordering depends
on which of these categories the elements of the field belong to (all elements of a given field should belong
to the same one)

Elements in ’IsLexOrderedFFE’ are ordered lexicographically by their coefficients with respect to the canon-
ical basis of the field

586 Chapter 57. Finite Fields

Elements in ’IsLogOrderedFFE’ are ordered according to their discrete logarithms with respect to the
’PrimitiveElement’ of the field.

For the comparison of finite field elements with other GAP objects, see 4.11.

gap> Z(16)^10 = Z(4)^2; # this illustrates the embedding of GF(4) in GF(16)
true
gap> 0 < 0*Z(101);
true
gap> Z(256) > Z(101);
false
gap> Z(2,20) < Z(2,20)^2; # this illustrates the lexicographic ordering
false

57.2 Operations for Finite Field Elements

Since finite field elements are scalars, the operations Characteristic, One, Zero, Inverse, AdditiveIn-
verse, Order can be applied to then (see 30.10). Contrary to the situation with other scalars, Order is
defined also for the zero element in a finite field, with value 0.

gap> Characteristic(Z(16)^10); Characteristic(Z(9)^2);
2
3
gap> Characteristic([Z(4), Z(8)]);
2
gap> One(Z(9)); One(0*Z(4));
Z(3)^0
Z(2)^0
gap> Inverse(Z(9)); AdditiveInverse(Z(9));
Z(3^2)^7
Z(3^2)^5
gap> Order(Z(9)^7);
8

1 I DegreeFFE(z) O
I DegreeFFE(vec) O
I DegreeFFE(mat) O

DegreeFFE returns the degree of the smallest finite field F containing the element z , respectively all elements
of the vector vec over a finite field (see 23), or matrix mat over a finite field (see 24).

gap> DegreeFFE(Z(16)^10);
2
gap> DegreeFFE(Z(16)^11);
4
gap> DegreeFFE([Z(2^13), Z(2^10)]);
130

2 I LogFFE(z, r) O

LogFFE returns the discrete logarithm of the element z in a finite field with respect to the root r . An error
is signalled if z is zero. fail is returned if z is not a power of r .

The discrete logarithm of an element z with respect to a root r is the smallest nonnegative integer i such
that r i = z .

Section 3. Creating Finite Fields 587

gap> LogFFE(Z(409)^116, Z(409)); LogFFE(Z(409)^116, Z(409)^2);
116
58

3 I IntFFE(z) O

IntFFE returns the integer corresponding to the element z , which must lie in a finite prime field. That is
IntFFE returns the smallest nonnegative integer i such that i * One(z) = z .

The correspondence between elements from a finite prime field of characteristic p (for p < 216) and the
integers between 0 and p−1 is defined by choosing Z(p) the element corresponding to the smallest primitive
root mod p (see 15.2.3).

IntFFE is installed as a method for the operation Int (see 14.1.3) with argument a finite field element.

gap> IntFFE(Z(13)); PrimitiveRootMod(13);
2
2
gap> IntFFE(Z(409));
21
gap> IntFFE(Z(409)^116); 21^116 mod 409;
311
311

4 I IntFFESymm(z) O
I IntFFESymm(vec) O

For a finite prime field element z , IntFFESymm returns the corresponding integer of smallest absolute value.
That is IntFFESymm returns the integer i of smallest absolute value that i * One(z) = z .

For a vector vec, the operation returns the result if applying IntFFESymm to every entry of the vector.

The correspondence between elements from a finite prime field of characteristic p (for p < 216) and the
integers between −p/2 and p/2 is defined by choosing Z(p) the element corresponding to the smallest
positive primitive root mod p (see 15.2.3) and reducing results to the −p/2 · ·p/2 range.

gap> IntFFE(Z(13)^2);IntFFE(Z(13)^3);
4
8
gap> IntFFESymm(Z(13)^2);IntFFESymm(Z(13)^3);
4
-5

5 I IntVecFFE(vecffe) O

is the list of integers corresponding to the vector vecffe of finite field elements in a prime field (see 57.2.3).

57.3 Creating Finite Fields

DefaultField (see 56.1.4) and DefaultRing (see 54.1.3) for finite field elements are defined to return the
smallest field containing the given elements.

588 Chapter 57. Finite Fields

gap> DefaultField([Z(4), Z(4)^2]); DefaultField([Z(4), Z(8)]);
GF(2^2)
GF(2^6)

1 I GaloisField(p^d) F
I GF(p^d) F
I GaloisField(p, d) F
I GF(p, d) F
I GaloisField(subfield, d) F
I GF(subfield, d) F
I GaloisField(p, pol) F
I GF(p, pol) F
I GaloisField(subfield, pol) F
I GF(subfield, pol) F

GaloisField returns a finite field. It takes two arguments. The form GaloisField(p, d), where p, d
are integers, can also be given as GaloisField(p^d). GF is an abbreviation for GaloisField.

The first argument specifies the subfield S over which the new field F is to be taken. It can be a prime or a
finite field. If it is a prime p, the subfield is the prime field of this characteristic.

The second argument specifies the extension. It can be an integer or an irreducible polynomial over the field
S . If it is an integer d , the new field is constructed as the polynomial extension with the Conway polynomial
(see 57.5.1) of degree d over the subfield S . If it is an irreducible polynomial pol over S , the new field is
constructed as polynomial extension of the subfield S with this polynomial; in this case, pol is accessible
as the value of DefiningPolynomial (see 56.2.7) for the new field, and a root of pol in the new field is
accessible as the value of RootOfDefiningPolynomial (see 56.2.8).

Note that the subfield over which a field was constructed determines over which field the Galois group,
conjugates, norm, trace, minimal polynomial, and trace polynomial are computed (see 56.3.1, 56.3.6, 56.3.4,
56.3.5, 56.3.2, 56.3.3).

The field is regarded as a vector space (see 59) over the given subfield, so this determines the dimension and
the canonical basis of the field.

gap> f1:= GF(2^4);
GF(2^4)
gap> Size(GaloisGroup (f1));
4
gap> BasisVectors(Basis(f1));
[Z(2)^0, Z(2^4), Z(2^4)^2, Z(2^4)^3]
gap> f2:= GF(GF(4), 2);
AsField(GF(2^2), GF(2^4))
gap> Size(GaloisGroup(f2));
2
gap> BasisVectors(Basis(f2));
[Z(2)^0, Z(2^4)]

2 I PrimitiveRoot(F) A

A primitive root of a finite field is a generator of its multiplicative group. A primitive root is always a
primitive element (see 56.2.3), the converse is in general not true.

gap> f:= GF(3^5);
GF(3^5)
gap> PrimitiveRoot(f);
Z(3^5)

Section 5. Conway Polynomials 589

57.4 FrobeniusAutomorphism

1 I FrobeniusAutomorphism(F) A

returns the Frobenius automorphism of the finite field F as a field homomorphism (see 31.11).

The Frobenius automorphism f of a finite field F of characteristic p is the function that takes each
element z of F to its p-th power. Each automorphism of F is a power of f . Thus f is a generator for the
Galois group of F relative to the prime field of F , and an appropriate power of f is a generator of the Galois
group of F over a subfield (see 56.3.1).

gap> f := GF(16);
GF(2^4)
gap> x := FrobeniusAutomorphism(f);
FrobeniusAutomorphism(GF(2^4))
gap> Z(16) ^ x;
Z(2^4)^2
gap> x^2;
FrobeniusAutomorphism(GF(2^4))^2

The image of an element z under the i -th power of f is computed as the pi -th power of z . The product of
the i -th power and the j -th power of f is the k -th power of f , where k is ij (mod Size(F)−1). The zeroth
power of f is IdentityMapping(F).

57.5 Conway Polynomials

1 I ConwayPolynomial(p, n) F

is the Conway polynomial of the finite field GF (pn) as polynomial over the prime field in characteristic p.

The Conway polynomial Φn,p of GF (pn) is defined by the following properties.

First define an ordering of polynomials of degree n over GF (p) as follows. f =
∑n

i=0(−1)i fi x i is smaller
than g =

∑n
i=0(−1)i gi x i if and only if there is an index m ≤ n such that fi = gi for all i > m, and f̃m < g̃m ,

where c̃ denotes the integer value in {0, 1, . . . , p − 1} that is mapped to c ∈ GF (p) under the canonical
epimorphism that maps the integers onto GF (p).

Φn,p is primitive over GF (p) (see 64.4.12). That is, Φn,p is irreducible, monic, and is the minimal polynomial
of a primitive root of GF (pn).

For all divisors d of n the compatibility condition Φd ,p(x
pn−1
pm−1) ≡ 0 (mod Φn,p(x)) holds. (That is, the

appropriate power of a zero of Φn,p is a zero of the Conway polynomial Φd ,p .)

With respect to the ordering defined above, Φn,p shall be minimal.

The computation of Conway polynomials can be time consuming. Therefore, GAP comes with a list of
precomputed polynomials. If a requested polynomial is not stored then GAP prints a warning and computes
it by checking all polynomials in the order defined above for the defining conditions. If n is not a prime this is
probably a very long computation. (Some previously known polynomials with prime n are not stored in GAP
because they are quickly recomputed.) Use the function 57.5.2 to check in advance if ConwayPolynomial
will give a result after a short time.

Note that primitivity of a polynomial can only be checked if GAP can factorize pn − 1. A sufficiently new
version of the FactInt package contains many precomputed factors of such numbers from various factorization
projects.

See [Lüb] for further information on known Conway polynomials.

If pol is a result returned by ConwayPolynomial the command Print(InfoText(pol)); will print some
info on the origin of that particular polynomial.

590 Chapter 57. Finite Fields

For some purposes it may be enough to have any primitive polynomial for an extension of a finite field
instead of the Conway polynomial, see 57.5.3 below.

gap> ConwayPolynomial(2, 5); ConwayPolynomial(3, 7);
x_1^5+x_1^2+Z(2)^0
x_1^7-x_1^2+Z(3)^0

2 I IsCheapConwayPolynomial(p, n) F

Returns true if ConwayPolynomial(p, n) will give a result in reasonable time. This is either the case
when this polynomial is pre-computed, or if n is a not too big prime.

3 I RandomPrimitivePolynomial(F, n[, i]) F

For a finite field F and a positive integer n this function returns a primitive polynomial of degree n over F ,
that is a zero of this polynomial has maximal multiplicative order |F |n − 1. If i is given then the polynomial
is written in variable number i over F (see 64.1.1), the default for i is 1.

Alternatively, F can be a prime power q, then F = GF(q) is assumed. And i can be a univariate polynomial
over F , then the result is a polynomial in the same variable.

This function can work for much larger fields than those for which Conway polynomials are available, of
course GAP must be able to factorize |F |n − 1.

57.6 Printing, Viewing and Displaying Finite Field Elements

Internal finite field elements are Viewed, Printed and Displayed (see section 6.3 for the distinctions between
these operations) as powers of the primitive root (except for the zero element, which is displayed as 0 times
the primitive root). Thus:

gap> Z(2);
Z(2)^0
gap> Z(5)+Z(5);
Z(5)^2
gap> Z(256);
Z(2^8)
gap> Zero(Z(125));
0*Z(5)

Note also that each element is displayed as an element of the field it generates. Note also that the size of
the field is printed as a power of the characteristic.

Elements of larger fields are printed as GAP expressions with represent them as a sum of low powers of the
primitive root:

gap> Print(Z(3,20)^100,"\n");
2*Z(3,20)^2+Z(3,20)^4+Z(3,20)^6+Z(3,20)^7+2*Z(3,20)^9+2*Z(3,20)^10+2*Z(3,20)^1\
2+2*Z(3,20)^15+2*Z(3,20)^17+Z(3,20)^18+Z(3,20)^19
gap> Print(Z(3,20)^((3^20-1)/(3^10-1)),"\n");
Z(3,20)^3+2*Z(3,20)^4+2*Z(3,20)^7+Z(3,20)^8+2*Z(3,20)^10+Z(3,20)^11+2*Z(3,20)^\
12+Z(3,20)^13+Z(3,20)^14+Z(3,20)^15+Z(3,20)^17+Z(3,20)^18+2*Z(3,20)^19
gap> Z(3,20)^((3^20-1)/(3^10-1)) = Z(3,10);
true

Note from the second example above, that these elements are not always written over the smallest possible
field before being output.

Section 6. Printing, Viewing and Displaying Finite Field Elements 591

The View and Display methods for these large finite field elements use a slightly more compact, but mathe-
matically equivalent representation. The primitive root is represented by z; its ith power by zi and k times
this power by kzi .

gap> Z(5,20)^100;
z2+z4+4z5+2z6+z8+3z9+4z10+3z12+z13+2z14+4z16+3z17+2z18+2z19

This output format is always used for Display. For View it is used only if its length would not exceed
ViewLength lines. Longer output is replaced by <<an element of GF(p, d)>>.

gap> Z(2,409)^100000;
<<an element of GF(2, 409)>>
gap> Display(Z(2,409)^100000);
z2+z3+z4+z5+z6+z7+z8+z10+z11+z13+z17+z19+z20+z29+z32+z34+z35+z37+z40+z45+z46+z\
48+z50+z52+z54+z55+z58+z59+z60+z66+z67+z68+z70+z74+z79+z80+z81+z82+z83+z86+z91\
+z93+z94+z95+z96+z98+z99+z100+z101+z102+z104+z106+z109+z110+z112+z114+z115+z11\
8+z119+z123+z126+z127+z135+z138+z140+z142+z143+z146+z147+z154+z159+z161+z162+z\
168+z170+z171+z173+z174+z181+z182+z183+z186+z188+z189+z192+z193+z194+z195+z196\
+z199+z202+z204+z205+z207+z208+z209+z211+z212+z213+z214+z215+z216+z218+z219+z2\
20+z222+z223+z229+z232+z235+z236+z237+z238+z240+z243+z244+z248+z250+z251+z256+\
z258+z262+z263+z268+z270+z271+z272+z274+z276+z282+z286+z288+z289+z294+z295+z29\
9+z300+z301+z302+z303+z304+z305+z306+z307+z308+z309+z310+z312+z314+z315+z316+z\
320+z321+z322+z324+z325+z326+z327+z330+z332+z335+z337+z338+z341+z344+z348+z350\
+z352+z353+z356+z357+z358+z360+z362+z364+z366+z368+z372+z373+z374+z375+z378+z3\
79+z380+z381+z383+z384+z386+z387+z390+z395+z401+z402+z406+z408

Finally note that elements of large prime fields are stored and displayed as residue class objects. So

gap> Z(65537);
ZmodpZObj(3, 65537)

58
Abelian

Number Fields

An abelian number field is a field in characteristic zero that is a finite dimensional normal extension
of its prime field such that the Galois group is abelian. In GAP, one implementation of abelian number
fields is given by fields of cyclotomic numbers (see Chapter 18). Note that abelian number fields can also
be constructed with the more general AlgebraicExtension (see 65.1.1), a discussion of advantages and
disadvantages can be found in 18.6. The functions described in this chapter have been developed for fields
whose elements are in the filter IsCyclotomic (see 18.1.3), they may or may not work well for abelian
number fields consisting of other kinds of elements.

Throughout this chapter, Qn will denote the cyclotomic field generated by the field Q of rationals together
with n-th roots of unity.

In 58.1, constructors for abelian number fields are described, 58.2 introduces operations for abelian number
fields, 58.3 deals with the vector space structure of abelian number fields, and 58.4 describes field automor-
phisms of abelian number fields,

58.1 Construction of Abelian Number Fields

Besides the usual construction using Field or DefaultField (see 58.2), abelian number fields consisting of
cyclotomics can be created with CyclotomicField and AbelianNumberField.

1 I CyclotomicField(n) F
I CyclotomicField(gens) F
I CyclotomicField(subfield, n) F
I CyclotomicField(subfield, gens) F

The first version creates the n-th cyclotomic field Qn . The second version creates the smallest cyclotomic
field containing the elements in the list gens. In both cases the field can be generated as an extension of a
designated subfield subfield (cf. 58.3).

CyclotomicField can be abbreviated to CF, this form is used also when GAP prints cyclotomic fields.

Fields constructed with the one argument version of CF are stored in the global list CYCLOTOMIC FIELDS, so
repeated calls of CF just fetch these field objects after they have been created once.

gap> CyclotomicField(5); CyclotomicField([Sqrt(3)]);
CF(5)
CF(12)
gap> CF(CF(3), 12); CF(CF(4), [Sqrt(7)]);
AsField(CF(3), CF(12))
AsField(GaussianRationals, CF(28))

2 I AbelianNumberField(n, stab) F

For a positive integer n and a list stab of prime residues modulo n, AbelianNumberField returns the fixed
field of the group described by stab (cf. 58.2.4), in the n-th cyclotomic field. AbelianNumberField is mainly

Section 2. Operations for Abelian Number Fields 593

thought for internal use and for printing fields in a standard way; Field (see 56.1.3, cf. also 58.2) is probably
more suitable if one knows generators of the field in question.

AbelianNumberField can be abbreviated to NF, this form is used also when GAP prints abelian number
fields.

Fields constructed with NF are stored in the global list ABELIAN NUMBER FIELDS, so repeated calls of NF just
fetch these field objects after they have been created once.

gap> NF(7, [1]);
CF(7)
gap> f:= NF(7, [1, 2]); Sqrt(-7); Sqrt(-7) in f;
NF(7,[1, 2, 4])
E(7)+E(7)^2-E(7)^3+E(7)^4-E(7)^5-E(7)^6
true

3 I GaussianRationals V
I IsGaussianRationals(obj) C

GaussianRationals is the field Q4 = Q(
√
−1) of Gaussian rationals, as a set of cyclotomic numbers, see

Chapter 18 for basic operations. This field can also be obtained as CF(4) (see 58.1.1).

The filter IsGaussianRationals returns true for the GAP object GaussianRationals, and false for all
other GAP objects.

(For details about the field of rationals, see Chapter 16.)

gap> CF(4) = GaussianRationals;
true
gap> Sqrt(-1) in GaussianRationals;
true

58.2 Operations for Abelian Number Fields

For operations for elements of abelian number fields, e.g., Conductor (see 18.1.5) or ComplexConjugate
(see 18.5.2), see Chapter 18.

For a dense list l of cyclotomics, DefaultField (see 56.1.4) returns the smallest cyclotomic field containing
all entries of l , Field (see 56.1.3) returns the smallest field containing all entries of l , which need not be a
cyclotomic field. In both cases, the fields represent vector spaces over the rationals (see 58.3).

gap> DefaultField([E(5)]); DefaultField([E(3), ER(6)]);
CF(5)
CF(24)
gap> Field([E(5)]); Field([E(3), ER(6)]);
CF(5)
NF(24,[1, 19])

Factoring of polynomials over abelian number fields consisting of cyclotomics works in principle but is not
very efficient if the degree of the field extension is large.

594 Chapter 58. Abelian Number Fields

gap> x:= Indeterminate(CF(5));
x_1
gap> Factors(PolynomialRing(Rationals), x^5-1);
[x_1-1, x_1^4+x_1^3+x_1^2+x_1+1]
gap> Factors(PolynomialRing(CF(5)), x^5-1);
[x_1-1, x_1+(-E(5)), x_1+(-E(5)^2), x_1+(-E(5)^3), x_1+(-E(5)^4)]

1 I IsNumberField(F) P

returns true if the field F is a finite dimensional extension of a prime field in characteristic zero, and false
otherwise.

2 I IsAbelianNumberField(F) P

returns true if the field F is a number field (see 58.2.1) that is a Galois extension of the prime field, with
abelian Galois group (see 56.3.1).

3 I IsCyclotomicField(F) P

returns true if the field F is a cyclotomic field, i.e., an abelian number field (see 58.2.2) that can be
generated by roots of unity.

gap> IsNumberField(CF(9)); IsAbelianNumberField(Field([ER(3)]));
true
true
gap> IsNumberField(GF(2));
false
gap> IsCyclotomicField(CF(9));
true
gap> IsCyclotomicField(Field([Sqrt(-3)]));
true
gap> IsCyclotomicField(Field([Sqrt(3)]));
false

4 I GaloisStabilizer(F) A

Let F be an abelian number field (see 58.2.2) with conductor n, say. (This means that the n-th cyclotomic
field is the smallest cyclotomic field containing F , see 18.1.5.) GaloisStabilizer returns the set of all those
integers k in the range from 1 to n such that the field automorphism induced by raising n-th roots of unity
to the k -th power acts trivially on F .

gap> r5:= Sqrt(5);
E(5)-E(5)^2-E(5)^3+E(5)^4
gap> GaloisCyc(r5, 4) = r5; GaloisCyc(r5, 2) = r5;
true
false
gap> GaloisStabilizer(Field([r5]));
[1, 4]

Section 3. Integral Bases of Abelian Number Fields 595

58.3 Integral Bases of Abelian Number Fields

Each abelian number field is naturally a vector space over Q. Moreover, if the abelian number field F contains
the n-th cyclotomic field Qn then F is a vector space over Qn . In GAP, each field object represents a vector
space object over a certain subfield S , which depends on the way F was constructed. The subfield S can be
accessed as the value of the attribute LeftActingDomain (see 55.1.11).

The return values of NF (see 58.1.2) and of the one argument versions of CF (see 58.1.1) represent vector
spaces over Q, and the return values of the two argument version of CF represent vector spaces over the
field that is given as the first argument. For an abelian number field F and a subfield S of F , a GAP object
representing F as a vector space over S can be constructed using AsField (see 56.1.9).

Let F be the cyclotomic field Qn , represented as a vector space over the subfield S . If S is the cyclotomic
field Qm , with m a divisor of n, then CanonicalBasis(F) returns the Zumbroich basis of F relative
to S , which consists of the roots of unity E(n)i where i is an element of the list ZumbroichBase(n, m
) (see 58.3.1). If S is an abelian number field that is not a cyclotomic field then CanonicalBasis(F)
returns a normal S -basis of F , i.e., a basis that is closed under the field automorphisms of F .

Let F be the abelian number field NF(n, stab), with conductor n, that is itself not a cyclotomic field,
represented as a vector space over the subfield S . If S is the cyclotomic field Qm , with m a divisor of n,
then CanonicalBasis(F) returns the Lenstra basis of F relative to S that consists of the sums of roots
of unity described by LenstraBase(n, stab, stab, m) (see 58.3.2). If S is an abelian number field that
is not a cyclotomic field then CanonicalBasis(F) returns a normal S -basis of F .

gap> f:= CF(8);; # a cycl. field over the rationals
gap> b:= CanonicalBasis(f);; BasisVectors(b);
[1, E(8), E(4), E(8)^3]
gap> Coefficients(b, Sqrt(-2));
[0, 1, 0, 1]
gap> f:= AsField(CF(4), CF(8));; # a cycl. field over a cycl. field
gap> b:= CanonicalBasis(f);; BasisVectors(b);
[1, E(8)]
gap> Coefficients(b, Sqrt(-2));
[0, 1+E(4)]
gap> f:= AsField(Field([Sqrt(-2)]), CF(8));;
gap> # a cycl. field over a non-cycl. field
gap> b:= CanonicalBasis(f);; BasisVectors(b);
[1/2+1/2*E(8)-1/2*E(8)^2-1/2*E(8)^3, 1/2-1/2*E(8)+1/2*E(8)^2+1/2*E(8)^3]
gap> Coefficients(b, Sqrt(-2));
[E(8)+E(8)^3, E(8)+E(8)^3]
gap> f:= Field([Sqrt(-2)]); # a non-cycl. field over the rationals
NF(8,[1, 3])
gap> b:= CanonicalBasis(f);; BasisVectors(b);
[1, E(8)+E(8)^3]
gap> Coefficients(b, Sqrt(-2));
[0, 1]

1 I ZumbroichBase(n, m) F

Let n and m be positive integers, such that m divides n. ZumbroichBase returns the set of exponents i for
which E(n)^i belongs to the (generalized) Zumbroich basis of the cyclotomic field Qn , viewed as a vector
space over Qm .

This basis is defined as follows. Let P denote the set of prime divisors of n, n =
∏

p∈P pνp , and m =
∏

p∈P pµp

with µp ≤ νp . Let en = E(n), and {e j
n1
}j∈J ⊗ {ek

n2
}k∈K = {e j

n1
· ek

n2
}j∈J ,k∈K .

596 Chapter 58. Abelian Number Fields

Then the basis is

Bn,m =
⊗
p∈P

νp−1⊗
k=µp

{e j
pk+1}j∈Jk,p where Jk ,p =


{0} ; k = 0, p = 2
{0, 1} ; k > 0, p = 2

{1, . . . , p − 1} ; k = 0, p 6= 2
{− p−1

2 , . . . , p−1
2 } ; k > 0, p 6= 2

Bn,1 is equal to the basis of Qn over the rationals which is introduced in [Zum89]. Also the conversion of
arbitrary sums of roots of unity into its basis representation, and the reduction to the minimal cyclotomic
field are described in this thesis. (Note that the notation here is slightly different from that there.)

Bn,m consists of roots of unity, it is an integral basis (that is, exactly the integral elements in Qn have
integral coefficients w.r.t. Bn,m , cf. 18.1.4), it is a normal basis for squarefree n and closed under complex
conjugation for odd n.

Note: For n ≡ 2 (mod 4), we have ZumbroichBase(n, 1) = 2 * ZumbroichBase(n/2, 1) and List(
ZumbroichBase(n, 1), x -> E(n)^x) = List(ZumbroichBase(n/2, 1), x -> E(n/2)^x).

gap> ZumbroichBase(15, 1); ZumbroichBase(12, 3);
[1, 2, 4, 7, 8, 11, 13, 14]
[0, 3]
gap> ZumbroichBase(10, 2); ZumbroichBase(32, 4);
[2, 4, 6, 8]
[0, 1, 2, 3, 4, 5, 6, 7]

2 I LenstraBase(n, stabilizer, super, m) F

Let n and m be positive integers, such that m divides n, stabilizer be a list of prime residues modulo n, which
describes a subfield of the n-th cyclotomic field (see 58.2.4), and super be a list representing a supergroup
of the group given by stabilizer .

LenstraBase returns a list [b1, b2, . . . , bk] of lists, each bi consisting of integers such that the elements∑
j∈bi

E(n)j form a basis of the abelian number field NF(n, stabilizer), as a vector space over the m-th
cyclotomic field (see 58.1.2).

This basis is an integral basis, that is, exactly the integral elements in NF(n, stabilizer) have integral
coefficients. (For details about this basis, see [Bre97].)

If possible then the result is chosen such that the group described by super acts on it, consistently with
the action of stabilizer , i.e., each orbit of super is a union of orbits of stabilizer . (A usual case is super =
stabilizer , so there is no additional condition.

Note: The bi are in general not sets, since for stabilizer = super , the first entry is always an element of
ZumbroichBase(n, m); this property is used by NF (see 58.1.2) and Coefficients (see 58.3).

stabilizer must not contain the stabilizer of a proper cyclotomic subfield of the n-th cyclotomic field, i.e.,
the result must describe a basis for a field with conductor n.

gap> LenstraBase(24, [1, 19], [1, 19], 1);
[[1, 19], [8], [11, 17], [16]]
gap> LenstraBase(24, [1, 19], [1, 5, 19, 23], 1);
[[1, 19], [5, 23], [8], [16]]
gap> LenstraBase(15, [1, 4], PrimeResidues(15), 1);
[[1, 4], [2, 8], [7, 13], [11, 14]]

The first two results describe two bases of the field Q3(
√

6), the third result describes a normal basis of
Q3(
√

5).

Section 4. Galois Groups of Abelian Number Fields 597

58.4 Galois Groups of Abelian Number Fields

The field automorphisms of the cyclotomic field Qn (see Chapter 18) are given by the linear maps ∗k on Qn
that are defined by E(n)∗k = E(n)k , where 1 ≤ k < n and Gcd(n, k) = 1 hold (see 18.5.1). Note that this
action is not equal to exponentiation of cyclotomics, i.e., for general cyclotomics z , z∗k is different from z k .
(In GAP, the image of a cyclotomic z under ∗k can be computed as GaloisCyc(z , k).)

gap> (E(5) + E(5)^4)^2; GaloisCyc(E(5) + E(5)^4, 2);
-2*E(5)-E(5)^2-E(5)^3-2*E(5)^4
E(5)^2+E(5)^3

For Gcd(n, k) 6= 1, the map E(n) 7→ E(n)k does not define a field automorphism of Qn but only a Q-linear
map.

gap> GaloisCyc(E(5)+E(5)^4, 5); GaloisCyc((E(5)+E(5)^4)^2, 5);
2
-6

1 I ANFAutomorphism(F, k) F

Let F be an abelian number field and k an integer that is coprime to the conductor (see 18.1.5) of F . Then
ANFAutomorphism returns the automorphism of F that is defined as the linear extension of the map that
raises each root of unity in F to its k -th power.

gap> f:= CF(25);
CF(25)
gap> alpha:= ANFAutomorphism(f, 2);
ANFAutomorphism(CF(25), 2)
gap> alpha^2;
ANFAutomorphism(CF(25), 4)
gap> Order(alpha);
20
gap> E(5)^alpha;
E(5)^2

The Galois group Gal(Qn ,Q) of the field extension Qn/Q is isomorphic to the group (Z/nZ)∗ of prime
residues modulo n, via the isomorphism (Z/nZ)∗ → Gal(Qn ,Q) that is defined by k + nZ 7→ (z 7→ z∗k).
The Galois group of the field extension Qn/L with any abelian number field L ⊆ Qn is simply the factor
group of Gal(Qn ,Q) modulo the stabilizer of L, and the Galois group of L/L′, with L′ an abelian number
field contained in L, is the subgroup in this group that stabilizes L′. These groups are easily described in
terms of (Z/nZ)∗. Generators of (Z/nZ)∗ can be computed using GeneratorsPrimeResidues (see 15.1.4).
In GAP, a field extension L/L′ is given by the field object L with LeftActingDomain value L′ (see 58.3).

gap> f:= CF(15);
CF(15)
gap> g:= GaloisGroup(f);
<group with 2 generators>
gap> Size(g); IsCyclic(g); IsAbelian(g);
8
false
true
gap> Action(g, NormalBase(f), OnPoints);
Group([(1,6)(2,4)(3,8)(5,7), (1,4,3,7)(2,8,5,6)])

The following example shows Galois groups of a cyclotomic field and of a proper subfield that is not a
cyclotomic field.

598 Chapter 58. Abelian Number Fields

gap> gens1:= GeneratorsOfGroup(GaloisGroup(CF(5)));
[ANFAutomorphism(CF(5), 2)]
gap> gens2:= GeneratorsOfGroup(GaloisGroup(Field(Sqrt(5))));
[ANFAutomorphism(NF(5,[1, 4]), 2)]
gap> Order(gens1[1]); Order(gens2[1]);
4
2
gap> Sqrt(5)^gens1[1] = Sqrt(5)^gens2[1];
true

The following example shows the Galois group of a cyclotomic field over a non-cyclotomic field.

gap> g:= GaloisGroup(AsField(Field([Sqrt(5)]), CF(5)));
<group with 1 generators>
gap> gens:= GeneratorsOfGroup(g);
[ANFAutomorphism(AsField(NF(5,[1, 4]), CF(5)), 4)]
gap> x:= last[1];; x^2;
IdentityMapping(AsField(NF(5,[1, 4]), CF(5)))

58.5 Gaussians

1 I GaussianIntegers V

GaussianIntegers is the ring Z[
√
−1] of Gaussian integers. This is a subring of the cyclotomic field Gaus-

sianRationals, see 58.1.3.

2 I IsGaussianIntegers(obj) C

is the defining category for the domain GaussianIntegers.

59 Vector Spaces
1 I IsLeftVectorSpace(V) C

I IsVectorSpace(V) C

A vector space in GAP is a free left module (see 55.3.1) over a division ring (see Chapter 56).

Whenever we talk about an F -vector space V then V is an additive group (see 53.1.6) on which the division
ring F acts via multiplication from the left such that this action and the addition in V are left and right
distributive. The division ring F can be accessed as value of the attribute LeftActingDomain (see 55.1.11).

The characteristic (see 30.10.1) of a vector space is equal to the characteristic of its left acting domain.

Vector spaces in GAP are always left vector spaces, IsLeftVectorSpace and IsVectorSpace are synonyms.

59.1 Constructing Vector Spaces

1 I VectorSpace(F, gens[, zero][, "basis"]) F

For a field F and a collection gens of vectors, VectorSpace returns the F -vector space spanned by the
elements in gens.

The optional argument zero can be used to specify the zero element of the space; zero must be given if
gens is empty. The optional string "basis" indicates that gens is known to be linearly independent over F ,
in particular the dimension of the vector space is immediately set; note that Basis (see 59.4.2) need not
return the basis formed by gens if the argument "basis" is given.

gap> V:= VectorSpace(Rationals, [[1, 2, 3], [1, 1, 1]]);
<vector space over Rationals, with 2 generators>

2 I Subspace(V , gens[, "basis"]) F
I SubspaceNC(V , gens[, "basis"]) F

For an F -vector space V and a list or collection gens that is a subset of V , Subspace returns the F -vector
space spanned by gens; if gens is empty then the trivial subspace (see 59.2.2) of V is returned. The parent
(see 30.7) of the returned vector space is set to V .

SubspaceNC does the same as Subspace, except that it omits the check whether gens is a subset of V .

The optional string "basis" indicates that gens is known to be linearly independent over F . In this case the
dimension of the subspace is immediately set, and both Subspace and SubspaceNC do not check whether
gens really is linearly independent and whether gens is a subset of V .

gap> V:= VectorSpace(Rationals, [[1, 2, 3], [1, 1, 1]]);;
gap> W:= Subspace(V, [[0, 1, 2]]);
<vector space over Rationals, with 1 generators>

3 I AsVectorSpace(F, D) O

Let F be a division ring and D a domain. If the elements in D form an F -vector space then AsVectorSpace
returns this F -vector space, otherwise fail is returned.

AsVectorSpace can be used for example to view a given vector space as a vector space over a smaller or
larger division ring.

600 Chapter 59. Vector Spaces

gap> V:= FullRowSpace(GF(27), 3);
(GF(3^3)^3)
gap> Dimension(V); LeftActingDomain(V);
3
GF(3^3)
gap> W:= AsVectorSpace(GF(3), V);
<vector space over GF(3), with 9 generators>
gap> Dimension(W); LeftActingDomain(W);
9
GF(3)
gap> AsVectorSpace(GF(9), V);
fail

4 I AsSubspace(V , U) O

Let V be an F -vector space, and U a collection. If U is a subset of V such that the elements of U form
an F -vector space then AsSubspace returns this vector space, with parent set to V (see 59.1.3). Otherwise
fail is returned.

gap> V:= VectorSpace(Rationals, [[1, 2, 3], [1, 1, 1]]);;
gap> W:= VectorSpace(Rationals, [[1/2, 1/2, 1/2]]);;
gap> U:= AsSubspace(V, W);
<vector space over Rationals, with 1 generators>
gap> Parent(U) = V;
true
gap> AsSubspace(V, [[1, 1, 1]]);
fail

59.2 Operations and Attributes for Vector Spaces

1 I GeneratorsOfLeftVectorSpace(V) A
I GeneratorsOfVectorSpace(V) A

For an F -vector space V , GeneratorsOfLeftVectorSpace returns a list of vectors in V that generate V as
an F -vector space.

gap> GeneratorsOfVectorSpace(FullRowSpace(Rationals, 3));
[[1, 0, 0], [0, 1, 0], [0, 0, 1]]

2 I TrivialSubspace(V) A

For a vector space V , TrivialSubspace returns the subspace of V that consists of the zero vector in V .

gap> V:= GF(3)^3;;
gap> triv:= TrivialSubspace(V);
<vector space over GF(3), with 0 generators>
gap> AsSet(triv);
[[0*Z(3), 0*Z(3), 0*Z(3)]]

Section 4. Bases of Vector Spaces 601

59.3 Domains of Subspaces of Vector Spaces

1 I Subspaces(V) A
I Subspaces(V , k) O

Let V be a finite vector space. In the first form, Subspaces returns the domain of all subspaces of V . In
the second form, k must be a nonnegative integer, and Subspaces returns the domain of all k -dimensional
subspaces of V .

Special Size and Iterator methods are provided for these domains.

2 I IsSubspacesVectorSpace(D) C

The domain of all subspaces of a (finite) vector space or of all subspaces of fixed dimension, as returned by
Subspaces (see 59.3.1) lies in the category IsSubspacesVectorSpace.

gap> D:= Subspaces(GF(3)^3);
Subspaces((GF(3)^3))
gap> Size(D);
28
gap> iter:= Iterator(D);;
gap> NextIterator(iter);
<vector space over GF(3), with 0 generators>
gap> NextIterator(iter);
<vector space of dimension 1 over GF(3)>
gap> IsSubspacesVectorSpace(D);
true

59.4 Bases of Vector Spaces

In GAP, a basis of a free left F -module V is a list of vectors B = [v1, v2, . . . , vn] in V such that V is
generated as a left F -module by these vectors and such that B is linearly independent over F . The integer
n is the dimension of V (see 55.3.4). In particular, as each basis is a list (see Chapter 21), it has a length
(see 21.17.5), and the i -th vector of B can be accessed as B [i].

gap> V:= Rationals^3;
(Rationals^3)
gap> B:= Basis(V);
CanonicalBasis((Rationals^3))
gap> Length(B);
3
gap> B[1];
[1, 0, 0]

The operations described below make sense only for bases of finite dimensional vector spaces. (In practice
this means that the vector spaces must be low dimensional, that is, the dimension should not exceed a few
hundred.)

Besides the basic operations for lists (see 21.2), the basic operations for bases are BasisVectors
(see 59.5.1), Coefficients (see 59.5.3), LinearCombination (see 59.5.4), and UnderlyingLeftModule
(see 59.5.2). These and other operations for arbitrary bases are described in 59.5.

For special kinds of bases, further operations are defined (see 59.6).

GAP supports the following three kinds of bases.

Relative bases delegate the work to other bases of the same free left module, via basechange matrices
(see 59.4.4).

602 Chapter 59. Vector Spaces

Bases handled by nice bases delegate the work to bases of isomorphic left modules over the same left
acting domain (see 59.10).
Finally, of course there must be bases in GAP that really do the work.
For example, in the case of a Gaussian row or matrix space V (see 59.8), Basis(V) is a semi-echelonized
basis (see 59.8.7) that uses Gaussian elimination; such a basis is of the third kind. Basis(V , vectors) is
either semi-echelonized or a relative basis. Other examples of bases of the third kind are canonical bases of
finite fields and of abelian number fields.
Bases handled by nice bases are described in 59.10. Examples are non-Gaussian row and matrix spaces, and
subspaces of finite fields and abelian number fields that are themselves not fields.

1 I IsBasis(obj) C

In GAP, a basis of a free left module is an object that knows how to compute coefficients w.r.t. its basis
vectors (see 59.5.3). Bases are constructed by Basis (see 59.4.2). Each basis is an immutable list, the i -th
entry being the i -th basis vector.
(See 59.7 for mutable bases.)

gap> V:= GF(2)^2;;
gap> B:= Basis(V);;
gap> IsBasis(B);
true
gap> IsBasis([[1, 0], [0, 1]]);
false
gap> IsBasis(Basis(Rationals^2, [[1, 0], [0, 1]]));
true

2 I Basis(V) A
I Basis(V , vectors) O
I BasisNC(V , vectors) O

Called with a free left F -module V as the only argument, Basis returns an F -basis of V whose vectors are
not further specified.
If additionally a list vectors of vectors in V is given that forms an F -basis of V then Basis returns this
basis; if vectors is not linearly independent over F or does not generate V as a free left F -module then fail
is returned.
BasisNC does the same as Basis for two arguments, except that it does not check whether vectors form a
basis.
If no basis vectors are prescribed then Basis need not compute basis vectors; in this case, the vectors are
computed in the first call to BasisVectors.

gap> V:= VectorSpace(Rationals, [[1, 2, 7], [1/2, 1/3, 5]]);;
gap> B:= Basis(V);
SemiEchelonBasis(<vector space over Rationals, with 2 generators>, ...)
gap> BasisVectors(B);
[[1, 2, 7], [0, 1, -9/4]]
gap> B:= Basis(V, [[1, 2, 7], [3, 2, 30]]);
Basis(<vector space over Rationals, with 2 generators>,
[[1, 2, 7], [3, 2, 30]])
gap> Basis(V, [[1, 2, 3]]);
fail

3 I CanonicalBasis(V) A

If the vector space V supports a canonical basis then CanonicalBasis returns this basis, otherwise fail
is returned.

Section 5. Operations for Vector Space Bases 603

The defining property of a canonical basis is that its vectors are uniquely determined by the vector space. If
canonical bases exist for two vector spaces over the same left acting domain (see 55.1.11) then the equality
of these vector spaces can be decided by comparing the canonical bases.

The exact meaning of a canonical basis depends on the type of V . Canonical bases are defined for example
for Gaussian row and matrix spaces (see 59.8).

If one designs a new kind of vector spaces (see 59.11) and defines a canonical basis for these spaces then the
CanonicalBasis method one installs (see 2.2.1 in “Programming in GAP”) must not call Basis. On the
other hand, one probably should install a Basis method that simply calls CanonicalBasis, the value of the
method (see 2.2 and 2.3 in “Programming in GAP”) being CANONICAL BASIS FLAGS.

gap> vecs:= [[1, 2, 3], [1, 1, 1], [1, 1, 1]];;
gap> V:= VectorSpace(Rationals, vecs);;
gap> B:= CanonicalBasis(V);
CanonicalBasis(<vector space over Rationals, with 3 generators>)
gap> BasisVectors(B);
[[1, 0, -1], [0, 1, 2]]

4 I RelativeBasis(B, vectors) O
I RelativeBasisNC(B, vectors) O

A relative basis is a basis of the free left module V that delegates the computation of coefficients etc. to
another basis of V via a basechange matrix.

Let B be a basis of the free left module V , and vectors a list of vectors in V .

RelativeBasis checks whether vectors form a basis of V , and in this case a basis is returned in which
vectors are the basis vectors; otherwise fail is returned.

RelativeBasisNC does the same, except that it omits the check.

59.5 Operations for Vector Space Bases
1 I BasisVectors(B) A

For a vector space basis B , BasisVectors returns the list of basis vectors of B . The lists B and BasisVec-
tors(B) are equal; the main purpose of BasisVectors is to provide access to a list of vectors that does
not know about an underlying vector space.

gap> V:= VectorSpace(Rationals, [[1, 2, 7], [1/2, 1/3, 5]]);;
gap> B:= Basis(V, [[1, 2, 7], [0, 1, -9/4]]);;
gap> BasisVectors(B);
[[1, 2, 7], [0, 1, -9/4]]

2 I UnderlyingLeftModule(B) A

For a basis B of a free left module V , say, UnderlyingLeftModule returns V .

The reason why a basis stores a free left module is that otherwise one would have to store the basis vectors
and the coefficient domain separately. Storing the module allows one for example to deal with bases whose
basis vectors have not yet been computed yet (see 59.4.2); furthermore, in some cases it is convenient to test
membership of a vector in the module before computing coefficients w.r.t. a basis.

gap> B:= Basis(GF(2)^6);; UnderlyingLeftModule(B);
(GF(2)^6)

3 I Coefficients(B, v) O

Let V be the underlying left module of the basis B , and v a vector such that the family of v is the elements
family of the family of V . Then Coefficients(B, v) is the list of coefficients of v w.r.t. B if v lies in
V , and fail otherwise.

604 Chapter 59. Vector Spaces

gap> V:= VectorSpace(Rationals, [[1, 2, 7], [1/2, 1/3, 5]]);;
gap> B:= Basis(V, [[1, 2, 7], [0, 1, -9/4]]);;
gap> Coefficients(B, [1/2, 1/3, 5]);
[1/2, -2/3]
gap> Coefficients(B, [1, 0, 0]);
fail

4 I LinearCombination(B, coeff) O
I LinearCombination(vectors, coeff) O

If B is a basis of length n, say, and coeff is a row vector of the same length as B , LinearCombination
returns the vector

∑n
i=1 coeff [i] ∗ B [i].

If vectors and coeff are homogeneous lists of the same length n, say, LinearCombination returns the vector∑n
i=1 coeff [i] ∗ vectors[i]. Perhaps the most important usage is the case where vectors forms a basis.

gap> V:= VectorSpace(Rationals, [[1, 2, 7], [1/2, 1/3, 5]]);;
gap> B:= Basis(V, [[1, 2, 7], [0, 1, -9/4]]);;
gap> LinearCombination(B, [1/2, -2/3]);
[1/2, 1/3, 5]

5 I EnumeratorByBasis(B) A

For a basis B of the free left F -module V of dimension n, say, EnumeratorByBasis returns an enumerator
that loops over the elements of V as linear combinations of the vectors of B with coefficients the row vectors
in the full row space (see 59.8.4) of dimension n over F , in the succession given by the default enumerator
of this row space.

gap> V:= GF(2)^3;;
gap> enum:= EnumeratorByBasis(CanonicalBasis(V));;
gap> Print(enum{ [1 .. 4] }, "\n");
[[0*Z(2), 0*Z(2), 0*Z(2)], [0*Z(2), 0*Z(2), Z(2)^0],
[0*Z(2), Z(2)^0, 0*Z(2)], [0*Z(2), Z(2)^0, Z(2)^0]]

gap> B:= Basis(V, [[1, 1, 1], [1, 1, 0], [1, 0, 0]] * Z(2));;
gap> enum:= EnumeratorByBasis(B);;
gap> Print(enum{ [1 .. 4] }, "\n");
[[0*Z(2), 0*Z(2), 0*Z(2)], [Z(2)^0, 0*Z(2), 0*Z(2)],
[Z(2)^0, Z(2)^0, 0*Z(2)], [0*Z(2), Z(2)^0, 0*Z(2)]]

6 I IteratorByBasis(B) O

For a basis B of the free left F -module V of dimension n, say, IteratorByBasis returns an iterator that
loops over the elements of V as linear combinations of the vectors of B with coefficients the row vectors in
the full row space (see 59.8.4) of dimension n over F , in the succession given by the default enumerator of
this row space.

gap> V:= GF(2)^3;;
gap> iter:= IteratorByBasis(CanonicalBasis(V));;
gap> for i in [1 .. 4] do Print(NextIterator(iter), "\n"); od;
[0*Z(2), 0*Z(2), 0*Z(2)]
[0*Z(2), 0*Z(2), Z(2)^0]
[0*Z(2), Z(2)^0, 0*Z(2)]
[0*Z(2), Z(2)^0, Z(2)^0]
gap> B:= Basis(V, [[1, 1, 1], [1, 1, 0], [1, 0, 0]] * Z(2));;
gap> iter:= IteratorByBasis(B);;
gap> for i in [1 .. 4] do Print(NextIterator(iter), "\n"); od;

Section 6. Operations for Special Kinds of Bases 605

[0*Z(2), 0*Z(2), 0*Z(2)]
[Z(2)^0, 0*Z(2), 0*Z(2)]
[Z(2)^0, Z(2)^0, 0*Z(2)]
[0*Z(2), Z(2)^0, 0*Z(2)]

59.6 Operations for Special Kinds of Bases
1 I IsCanonicalBasis(B) P

If the underlying free left module V of the basis B supports a canonical basis (see 59.4.3) then IsCanoni-
calBasis returns true if B is equal to the canonical basis of V , and false otherwise.

2 I IsIntegralBasis(B) P

Let B be an S -basis of a field F , say, for a subfield S of F , and let R and M be the rings of algebraic
integers in S and F , respectively. IsIntegralBasis returns true if B is also an R-basis of M , and false
otherwise.

3 I IsNormalBasis(B) P

Let B be an S -basis of a field F , say, for a subfield S of F . IsNormalBasis returns true if B is invariant
under the Galois group (see 56.3.1) of the field extension F/S , and false otherwise.

gap> B:= CanonicalBasis(GaussianRationals);
CanonicalBasis(GaussianRationals)
gap> IsIntegralBasis(B); IsNormalBasis(B);
true
false

4 I StructureConstantsTable(B) A

Let B be a basis of a free left module R, say, that is also a ring. In this case StructureConstantsTable
returns a structure constants table T in sparse representation, as used for structure constants algebras (see
Section 6.2 of the GAP User’s Tutorial).
If B has length n then T is a list of length n + 2. The first n entries of T are lists of length n. T [n + 1] is
one of 1, −1, or 0; in the case of 1 the table is known to be symmetric, in the case of −1 it is known to be
antisymmetric, and 0 occurs in all other cases. T [n + 2] is the zero element of the coefficient domain.
The coefficients w.r.t. B of the product of the i -th and j -th basis vector of B are stored in T [i][j] as a list
of length 2; its first entry is the list of positions of nonzero coefficients, the second entry is the list of these
coefficients themselves.
The multiplication in an algebra A with vector space basis B with basis vectors [v1, . . . , vn] is determined
by the so-called structure matrices Mk = [mijk]ij , 1 ≤ k ≤ n. The Mk are defined by vi vj =

∑
k mi ,j ,k vk . Let

a = [a1, . . . , an] and b = [b1, . . . , bn]. Then

(
∑

i

ai vi)(
∑

j

bj vj) =
∑
i ,j

ai bj (vi vj) =
∑

k

(
∑

j

(
∑

i

ai mi ,j ,k)bj)vk =
∑

k

(aMk btr)vk .

In the following example we temporarily increase the line length limit from its default value 80 to 83 in
order to get a nicer output format.

gap> A:= QuaternionAlgebra(Rationals);;
gap> SizeScreen([83,]);;
gap> StructureConstantsTable(Basis(A));
[[[[1], [1]], [[2], [1]], [[3], [1]], [[4], [1]]],
[[[2], [1]], [[1], [-1]], [[4], [1]], [[3], [-1]]],
[[[3], [1]], [[4], [-1]], [[1], [-1]], [[2], [1]]],
[[[4], [1]], [[3], [1]], [[2], [-1]], [[1], [-1]]],
0, 0]

gap> SizeScreen([80,]);;

606 Chapter 59. Vector Spaces

59.7 Mutable Bases

It is useful to have a mutable basis of a free module when successively closures with new vectors are
formed, since one does not want to create a new module and a corresponding basis for each step.

Note that the situation here is different from the situation with stabilizer chains, which are (mutable or
immutable) records that do not need to know about the groups they describe, whereas each (immutable)
basis stores the underlying left module (see 59.5.2).

So immutable bases and mutable bases are different categories of objects. The only thing they have in
common is that one can ask both for their basis vectors and for the coefficients of a given vector.

Since Immutable produces an immutable copy of any GAP object, it would in principle be possible to
construct a mutable basis that is in fact immutable. In the sequel, we will deal only with mutable bases that
are in fact mutable GAP objects, hence these objects are unable to store attribute values.

Basic operations for immutable bases are NrBasisVectors (see 59.7.3), IsContainedInSpan (see 59.7.5),
CloseMutableBasis (see 59.7.6), ImmutableBasis (see 59.7.4), Coefficients (see 59.5.3), and BasisVec-
tors (see 59.5.1). ShallowCopy (see 12.7.1) for a mutable basis returns a mutable plain list containing the
current basis vectors.

Since mutable bases do not admit arbitrary changes of their lists of basis vectors, a mutable basis is not a
list. It is, however, a collection, more precisely its family (see 13.1) equals the family of its collection of basis
vectors.

Mutable bases can be constructed with MutableBasis.

Similar to the situation with bases (cf. 59.4), GAP supports the following three kinds of mutable bases.

The generic method of MutableBasis returns a mutable basis that simply stores an immutable basis;
clearly one wants to avoid this whenever possible with reasonable effort.

There are mutable bases that store a mutable basis for a nicer module. Note that this is meaningful only if
the mechanism of computing nice and ugly vectors (see 59.10) is invariant under closures of the basis; this
is the case for example if the vectors are matrices, Lie objects, or elements of structure constants algebras.

There are mutable bases that use special information to perform their tasks; examples are mutable bases of
Gaussian row and matrix spaces.

1 I IsMutableBasis(MB) C

Every mutable basis lies in the category IsMutableBasis.

2 I MutableBasis(R, vectors[, zero]) O

MutableBasis returns a mutable basis for the R-free module generated by the vectors in the list vectors.
The optional argument zero is the zero vector of the module; it must be given if vectors is empty.

Note that vectors will in general not be the basis vectors of the mutable basis!

gap> MB:= MutableBasis(Rationals, [[1, 2, 3], [0, 1, 0]]);
<mutable basis over Rationals, 2 vectors>

3 I NrBasisVectors(MB) O

For a mutable basis MB , NrBasisVectors returns the current number of basis vectors of MB . Note that
this operation is not an attribute, as it makes no sense to store the value. NrBasisVectors is used mainly
as an equivalent of Dimension for the underlying left module in the case of immutable bases.

Section 8. Row and Matrix Spaces 607

gap> MB:= MutableBasis(Rationals, [[1, 1], [2, 2]]);;
gap> NrBasisVectors(MB);
1

4 I ImmutableBasis(MB[, V]) O

ImmutableBasis returns the immutable basis B , say, with the same basis vectors as in the mutable basis
MB .

If the second argument V is present then V is the value of UnderlyingLeftModule (see 59.5.2) for B . The
second variant is used mainly for the case that one knows the module for the desired basis in advance, and
if it has a nicer structure than the module known to MB , for example if it is an algebra.

gap> MB:= MutableBasis(Rationals, [[1, 1], [2, 2]]);;
gap> B:= ImmutableBasis(MB);
SemiEchelonBasis(<vector space of dimension 1 over Rationals>, [[1, 1]])
gap> UnderlyingLeftModule(B);
<vector space of dimension 1 over Rationals>

5 I IsContainedInSpan(MB, v) O

For a mutable basis MB over the coefficient ring R, say, and a vector v , IsContainedInSpan returns true
is v lies in the R-span of the current basis vectors of MB , and false otherwise.

6 I CloseMutableBasis(MB, v) O

For a mutable basis MB over the coefficient ring R, say, and a vector v , CloseMutableBasis changes MB
such that afterwards it describes the R-span of the former basis vectors together with v .

Note that if v enlarges the dimension then this does in general not mean that v is simply added to the
basis vectors of MB . Usually a linear combination of v and the other basis vectors is added, and also the old
basis vectors may be modified, for example in order to keep the list of basis vectors echelonized (see 59.8.7).

gap> MB:= MutableBasis(Rationals, [[1, 1, 3], [2, 2, 1]]);
<mutable basis over Rationals, 2 vectors>
gap> IsContainedInSpan(MB, [1, 0, 0]);
false
gap> CloseMutableBasis(MB, [1, 0, 0]);
gap> MB;
<mutable basis over Rationals, 3 vectors>
gap> IsContainedInSpan(MB, [1, 0, 0]);
true

59.8 Row and Matrix Spaces

1 I IsRowSpace(V) F

A row space in GAP is a vector space that consists of row vectors (see Chapter 23).

2 I IsMatrixSpace(V) F

A matrix space in GAP is a vector space that consists of matrices (see Chapter 24).

3 I IsGaussianSpace(V) F

The filter IsGaussianSpace (see 13.2) for the row space (see 59.8.1) or matrix space (see 59.8.2) V over
the field F , say, indicates that the entries of all row vectors or matrices in V , respectively, are all contained
in F . In this case, V is called a Gaussian vector space. Bases for Gaussian spaces can be computed using
Gaussian elimination for a given list of vector space generators.

608 Chapter 59. Vector Spaces

gap> mats:= [[[1,1],[2,2]], [[3,4],[0,1]]];;
gap> V:= VectorSpace(Rationals, mats);;
gap> IsGaussianSpace(V);
true
gap> mats[1][1][1]:= E(4);; # an element in an extension field
gap> V:= VectorSpace(Rationals, mats);;
gap> IsGaussianSpace(V);
false
gap> V:= VectorSpace(Field(Rationals, [E(4)]), mats);;
gap> IsGaussianSpace(V);
true

4 I FullRowSpace(F, n) F

For a field F and a nonnegative integer n, FullRowSpace returns the F -vector space that consists of all row
vectors (see 23) of length n with entries in F .

An alternative to construct this vector space is via F^n.

gap> FullRowSpace(GF(9), 3);
(GF(3^2)^3)
gap> GF(9)^3; # the same as above
(GF(3^2)^3)

5 I FullMatrixSpace(F, m, n) F

For a field F and two positive integers m and n, FullMatrixSpace returns the F -vector space that consists
of all m by n matrices (see 24.1.1) with entries in F .

If m = n then the result is in fact an algebra (see 60.4.4).

An alternative to construct this vector space is via F^[m,n].

gap> FullMatrixSpace(GF(2), 4, 5);
(GF(2)^[4, 5])
gap> GF(2)^[4, 5]; # the same as above
(GF(2)^[4, 5])

6 I DimensionOfVectors(M) A

For a left module M that consists of row vectors (see 55.3.7), DimensionOfVectors returns the common
length of all row vectors in M . For a left module M that consists of matrices (see 55.3.8), DimensionOfVec-
tors returns the common matrix dimensions (see 24.3.1) of all matrices in M .

gap> DimensionOfVectors(GF(2)^5);
5
gap> DimensionOfVectors(GF(2)^[2,3]);
[2, 3]

7 I IsSemiEchelonized(B) P

Let B be a basis of a Gaussian row or matrix space V , say (see 59.8.3) over the field F .

If V is a row space then B is semi-echelonized if the matrix formed by its basis vectors has the property that
the first nonzero element in each row is the identity of F , and all values exactly below these pivot elements
are the zero of F (cf. 24.9.1).

If V is a matrix space then B is semi-echelonized if the matrix obtained by replacing each basis vector by
the concatenation of its rows is semi-echelonized (see above, cf. 24.9.4).

Section 8. Row and Matrix Spaces 609

gap> V:= GF(2)^2;;
gap> B1:= Basis(V, [[0, 1], [1, 0]] * Z(2));;
gap> IsSemiEchelonized(B1);
true
gap> B2:= Basis(V, [[0, 1], [1, 1]] * Z(2));;
gap> IsSemiEchelonized(B2);
false

8 I SemiEchelonBasis(V) A
I SemiEchelonBasis(V , vectors) O
I SemiEchelonBasisNC(V , vectors) O

Let V be a Gaussian row or matrix vector space over the field F (see 59.8.3, 59.8.1, 59.8.2).

Called with V as the only argument, SemiEchelonBasis returns a basis of V that has the property Is-
SemiEchelonized (see 59.8.7).

If additionally a list vectors of vectors in V is given that forms a semi-echelonized basis of V then SemiEch-
elonBasis returns this basis; if vectors do not form a basis of V then fail is returned.

SemiEchelonBasisNC does the same as SemiEchelonBasis for two arguments, except that it is not checked
whether vectors form a semi-echelonized basis.

gap> V:= GF(2)^2;;
gap> B:= SemiEchelonBasis(V);
SemiEchelonBasis((GF(2)^2), ...)
gap> Print(BasisVectors(B), "\n");
[[Z(2)^0, 0*Z(2)], [0*Z(2), Z(2)^0]]
gap> B:= SemiEchelonBasis(V, [[1, 1], [0, 1]] * Z(2));
SemiEchelonBasis((GF(2)^2), <an immutable 2x2 matrix over GF2>)
gap> Print(BasisVectors(B), "\n");
[[Z(2)^0, Z(2)^0], [0*Z(2), Z(2)^0]]
gap> Coefficients(B, [0, 1] * Z(2));
[0*Z(2), Z(2)^0]
gap> Coefficients(B, [1, 0] * Z(2));
[Z(2)^0, Z(2)^0]
gap> SemiEchelonBasis(V, [[0, 1], [1, 1]] * Z(2));
fail

9 I IsCanonicalBasisFullRowModule(B) P

IsCanonicalBasisFullRowModule returns true if B is the canonical basis (see 59.6.1) of a full row module
(see 55.3.9), and false otherwise.

The canonical basis of a Gaussian row space is defined as the unique semi-echelonized (see 59.8.7) basis
with the additional property that for j > i the position of the pivot of row j is bigger than the position of
the pivot of row i , and that each pivot column contains exactly one nonzero entry.

10 I IsCanonicalBasisFullMatrixModule(B) P

IsCanonicalBasisFullMatrixModule returns true if B is the canonical basis (see 59.6.1) of a full matrix
module (see 55.3.11), and false otherwise.

The canonical basis of a Gaussian matrix space is defined as the unique semi-echelonized (see 59.8.7)
basis for which the list of concatenations of the basis vectors forms the canonical basis of the corresponding
Gaussian row space.

610 Chapter 59. Vector Spaces

11 I NormedRowVectors(V) A

For a finite Gaussian row space V (see 59.8.1, 59.8.3), NormedRowVectors returns a list of those nonzero
vectors in V that have a one in the first nonzero component.
The result list can be used as action domain for the action of a matrix group via OnLines (see 39.2.12),
which yields the natural action on one-dimensional subspaces of V (see also 59.3.1).

gap> vecs:= NormedRowVectors(GF(3)^2);
[[0*Z(3), Z(3)^0], [Z(3)^0, 0*Z(3)], [Z(3)^0, Z(3)^0],
[Z(3)^0, Z(3)]]

gap> Action(GL(2,3), vecs, OnLines);
Group([(3,4), (1,2,4)])

12 I SiftedVector(B, v) O

Let B be a semi-echelonized basis (see 59.8.7) of a Gaussian row or matrix space V (see 59.8.3), and v a
row vector or matrix, respectively, of the same dimension as the elements in V . SiftedVector returns the
residuum of v with respect to B , which is obtained by successively cleaning the pivot positions in v by
subtracting multiples of the basis vectors in B . So the result is the zero vector in V if and only if v lies in
V .
B may also be a mutable basis (see 59.7) of a Gaussian row or matrix space.

gap> V:= VectorSpace(Rationals, [[1, 2, 7], [1/2, 1/3, 5]]);;
gap> B:= Basis(V);;
gap> SiftedVector(B, [1, 2, 8]);
[0, 0, 1]

59.9 Vector Space Homomorphisms

Vector space homomorphisms (or linear mappings) are defined in Section 31.10. GAP provides special
functions to construct a particular linear mapping from images of given elements in the source, from a matrix
of coefficients, or as a natural epimorphism.
F -linear mappings with same source and same range can be added, so one can form vector spaces of linear
mappings.

1 I LeftModuleGeneralMappingByImages(V , W , gens, imgs) O

Let V and W be two left modules over the same left acting domain R, say, and gens and imgs lists (of
the same length) of elements in V and W , respectively. LeftModuleGeneralMappingByImages returns the
general mapping with source V and range W that is defined by mapping the elements in gens to the
corresponding elements in imgs, and taking the R-linear closure.
gens need not generate V as a left R-module, and if the specification does not define a linear mapping then
the result will be multi-valued; hence in general it is not a mapping (see 31.2.3).

gap> V:= Rationals^2;;
gap> W:= VectorSpace(Rationals, [[1,2,3], [1,0,1]]);;
gap> f:= LeftModuleGeneralMappingByImages(V, W,
> [[1,0],[2,0]], [[1,0,1],[1,0,1]]);
[[1, 0], [2, 0]] -> [[1, 0, 1], [1, 0, 1]]
gap> IsMapping(f);
false

2 I LeftModuleHomomorphismByImages(V , W , gens, imgs) F
I LeftModuleHomomorphismByImagesNC(V , W , gens, imgs) O

Let V and W be two left modules over the same left acting domain R, say, and gens and imgs lists (of
the same length) of elements in V and W , respectively. LeftModuleHomomorphismByImages returns the left

Section 9. Vector Space Homomorphisms 611

R-module homomorphism with source V and range W that is defined by mapping the elements in gens to
the corresponding elements in imgs.
If gens does not generate V or if the homomorphism does not exist (i.e., if mapping the generators describes
only a multi-valued mapping) then fail is returned. For creating a possibly multi-valued mapping from V to
W that respects addition, multiplication, and scalar multiplication, LeftModuleGeneralMappingByImages
can be used.
LeftModuleHomomorphismByImagesNC does the same as LeftModuleHomomorphismByImages, except that it
omits all checks.

gap> V:=Rationals^2;;
gap> W:=VectorSpace(Rationals, [[1, 0, 1], [1, 2, 3]]);;
gap> f:=LeftModuleHomomorphismByImages(V, W,
> [[1, 0], [0, 1]], [[1, 0, 1], [1, 2, 3]]);
[[1, 0], [0, 1]] -> [[1, 0, 1], [1, 2, 3]]
gap> Image(f, [1,1]);
[2, 2, 4]

3 I LeftModuleHomomorphismByMatrix(BS, matrix, BR) O

Let BS and BR be bases of the left R-modules V and W , respectively. LeftModuleHomomorphismByMatrix
returns the R-linear mapping from V to W that is defined by the matrix matrix as follows. The image of
the i -th basis vector of BS is the linear combination of the basis vectors of BR with coefficients the i -th row
of matrix .

gap> V:= Rationals^2;;
gap> W:= VectorSpace(Rationals, [[1, 0, 1], [1, 2, 3]]);;
gap> f:= LeftModuleHomomorphismByMatrix(Basis(V),
> [[1, 2], [3, 1]], Basis(W));
<linear mapping by matrix, (Rationals^
2) -> <vector space over Rationals, with 2 generators>>

4 I NaturalHomomorphismBySubspace(V , W) O

For an R-vector space V and a subspace W of V , NaturalHomomorphismBySubspace returns the R-linear
mapping that is the natural projection of V onto the factor space V / W .

gap> V:= Rationals^3;;
gap> W:= VectorSpace(Rationals, [[1, 1, 1]]);;
gap> f:= NaturalHomomorphismBySubspace(V, W);
<linear mapping by matrix, (Rationals^3) -> (Rationals^2)>

5 I Hom(F, V , W) O

For a field F and two vector spaces V and W that can be regarded as F -modules (see 55.1.5), Hom returns
the F -vector space of all F -linear mappings from V to W .

gap> V:= Rationals^2;;
gap> W:= VectorSpace(Rationals, [[1, 0, 1], [1, 2, 3]]);;
gap> H:= Hom(Rationals, V, W);
Hom(Rationals, (Rationals^2), <vector space over Rationals, with
2 generators>)
gap> Dimension(H);
4

6 I End(F, V) O

For a field F and a vector space V that can be regarded as an F -module (see 55.1.5), End returns the
F -algebra of all F -linear mappings from V to V .

612 Chapter 59. Vector Spaces

gap> A:= End(Rationals, Rationals^2);
End(Rationals, (Rationals^2))
gap> Dimension(A);
4

7 I IsFullHomModule(M) P

A full hom module is a module of all R-linear mappings between two left R-modules. The function Hom
(see 59.9.5) can be used to construct a full hom module.

gap> V:= Rationals^2;;
gap> W:= VectorSpace(Rationals, [[1, 0, 1], [1, 2, 3]]);;
gap> H:= Hom(Rationals, V, W);;
gap> IsFullHomModule(H);
true

8 I IsPseudoCanonicalBasisFullHomModule(B) P

A basis of a full hom module is called pseudo canonical basis if the matrices of its basis vectors w.r.t. the
stored bases of source and range contain exactly one identity entry and otherwise zeros.

Note that this is not a canonical basis (see 59.4.3) because it depends on the stored bases of source and
range.

gap> IsPseudoCanonicalBasisFullHomModule(Basis(H));
true

9 I IsLinearMappingsModule(V) F

If an F -vector space V is in the filter IsLinearMappingsModule then this expresses that V consists of linear
mappings, and that V is handled via the mechanism of nice bases (see 59.10) in the following way. Let S
and R be the source and the range, respectively, of each mapping in V . Then the NiceFreeLeftModuleInfo
value of V is a record with the components basissource (a basis BS of S) and basisrange (a basis BR of
R), and the NiceVector value of v ∈ V is defined as the matrix of the F -linear mapping v w.r.t. the bases
BS and BR.

59.10 Vector Spaces Handled By Nice Bases

There are kinds of free R-modules for which efficient computations are possible because the elements are
“nice”, for example subspaces of full row modules or of full matrix modules. In other cases, a “nice” canonical
basis is known that allows one to do the necessary computations in the corresponding row module, for
example algebras given by structure constants.

In many other situations, one knows at least an isomorphism from the given module V to a “nicer” free left
module W , in the sense that for each vector in V , the image in W can easily be computed, and analogously
for each vector in W , one can compute the preimage in V .

This allows one to delegate computations w.r.t. a basis B , say, of V to the corresponding basis C , say, of
W . We call W the nice free left module of V , and C the nice basis of B . (Note that it may happen
that also C delegates questions to a “nicer” basis.) The basis B indicates the intended behaviour by the
filter IsBasisByNiceBasis (see 59.10.5), and stores C as value of the attribute NiceBasis (see 59.10.4). V
indicates the intended behaviour by the filter IsHandledByNiceBasis (see 59.10.6), and stores W as value
of the attribute NiceFreeLeftModule (see 59.10.1).

The bijection between V and W is implemented by the functions NiceVector (see 59.10.2) and UglyVector
(see 59.10.2); additional data needed to compute images and preimages can be stored as value of Nice-
FreeLeftModuleInfo (see 59.10.3).

Section 11. How to Implement New Kinds of Vector Spaces 613

1 I NiceFreeLeftModule(V) A

For a free left module V that is handled via the mechanism of nice bases, this attribute stores the associated
free left module to which the tasks are delegated.

2 I NiceVector(V , v) O
I UglyVector(V , r) O

NiceVector and UglyVector provide the linear bijection between the free left module V and W := Nice-
FreeLeftModule(V).

If v lies in the elements family of the family of V then NiceVector(v) is either fail or an element in
the elements family of the family of W .

If r lies in the elements family of the family of W then UglyVector(r) is either fail or an element in
the elements family of the family of V .

If v lies in V (which usually cannot be checked without using W) then UglyVector(V , NiceVector(
V , v)) = v . If r lies in W (which usually can be checked) then NiceVector(V , UglyVector(V , r
)) = r .

(This allows one to implement for example a membership test for V using the membership test in W .)

3 I NiceFreeLeftModuleInfo(V) A

For a free left module V that is handled via the mechanism of nice bases, this operation has to provide the
necessary information (if any) for calls of NiceVector and UglyVector (see 59.10.2).

4 I NiceBasis(B) A

Let B be a basis of a free left module V that is handled via nice bases. If B has no basis vectors stored at
the time of the first call to NiceBasis then NiceBasis(B) is obtained as Basis(NiceFreeLeftModule(
V)). If basis vectors are stored then NiceBasis(B) is the result of the call of Basis with arguments
NiceFreeLeftModule(V) and the NiceVector values of the basis vectors of B .

Note that the result is fail if and only if the “basis vectors” stored in B are in fact not basis vectors.

The attributes GeneratorsOfLeftModule of the underlying left modules of B and the result of NiceBasis
correspond via NiceVector and UglyVector.

5 I IsBasisByNiceBasis(B) C

This filter indicates that the basis B delegates tasks such as the computation of coefficients (see 59.5.3) to
a basis of an isomorphisc “nicer” free left module.

6 I IsHandledByNiceBasis(M) C

For a free left module M in this category, essentially all operations are performed using a “nicer” free left
module, which is usually a row module.

59.11 How to Implement New Kinds of Vector Spaces

1 I DeclareHandlingByNiceBasis(name, info) F
I InstallHandlingByNiceBasis(name, record) F

These functions are used to implement a new kind of free left modules that shall be handled via the
mechanism of nice bases (see 59.10).

name must be a string, a filter f with this name is created, and a logical implication from f to IsHandled-
ByNiceBasis (see 59.10.6) is installed.

record must be a record with the following components.

614 Chapter 59. Vector Spaces

detect
a function of four arguments R, l , V , and z , where V is a free left module over the ring R with
generators the list or collection l , and z is either the zero element of V or false (then l is nonempty);
the function returns true if V shall lie in the filter f , and false otherwise; the return value may
also be fail, which indicates that V is not to be handled via the mechanism of nice bases at all,

NiceFreeLeftModuleInfo
the NiceFreeLeftModuleInfo method for left modules in f ,

NiceVector
the NiceVector method for left modules V in f ; called with V and a vector v ∈ V , this function
returns the nice vector r associated with v , and

UglyVector
the UglyVector method for left modules V in f ; called with V and a vector r in the NiceFreeLeft-
Module value of V , this function returns the vector v ∈ V to which r is associated.

The idea is that all one has to do for implementing a new kind of free left modules handled by the mechanism
of nice bases is to call DeclareHandlingByNiceBasis and InstallHandlingByNiceBasis, which causes the
installation of the necessary methods and adds the pair [f , record.detect] to the global list NiceBasis-
FiltersInfo. The LeftModuleByGenerators methods call CheckForHandlingByNiceBasis (see 59.11.3),
which sets the appropriate filter for the desired left module if applicable.

2 I NiceBasisFiltersInfo V

An overview of all kinds of vector spaces that are currently handled by nice bases is given by the global
list NiceBasisFiltersInfo. Examples of such vector spaces are vector spaces of field elements (but not the
fields themselves) and non-Gaussian row and matrix spaces (see 59.8.3).

3 I CheckForHandlingByNiceBasis(R, gens, M , zero) F

Whenever a free left module is constructed for which the filter IsHandledByNiceBasis may be useful, Check-
ForHandlingByNiceBasis should be called. (This is done in the methods for VectorSpaceByGenerators,
AlgebraByGenerators, IdealByGenerators etc. in the GAP library.)

The arguments of this function are the coefficient ring R, the list gens of generators, the constructed module
M itself, and the zero element zero of M ; if gens is nonempty then the zero value may also be false.

60 Algebras

An algebra is a vector space equipped with a bilinear map (multiplication). This chapter describes the
functions in GAP that deal with general algebras and associative algebras.

Algebras in GAP are vector spaces in a natural way. So all the functionality for vector spaces (see Chapter
59) is also applicable to algebras.

1 I InfoAlgebra V

is the info class for the functions dealing with algebras (see 7.4).

60.1 Constructing Algebras by Generators

1 I Algebra(F, gens) F
I Algebra(F, gens, zero) F
I Algebra(F, gens, "basis") F
I Algebra(F, gens, zero, "basis") F

Algebra(F, gens) is the algebra over the division ring F , generated by the vectors in the list gens.

If there are three arguments, a division ring F and a list gens and an element zero, then Algebra(F,
gens, zero) is the F -algebra generated by gens, with zero element zero.

If the last argument is the string "basis" then the vectors in gens are known to form a basis of the algebra
(as an F -vector space).

gap> m:= [[0, 1, 2], [0, 0, 3], [0, 0, 0]];;
gap> A:= Algebra(Rationals, [m]);
<algebra over Rationals, with 1 generators>
gap> Dimension(A);
2

2 I AlgebraWithOne(F, gens) F
I AlgebraWithOne(F, gens, zero) F
I AlgebraWithOne(F, gens, "basis") F
I AlgebraWithOne(F, gens, zero, "basis") F

AlgebraWithOne(F, gens) is the algebra-with-one over the division ring F , generated by the vectors in
the list gens.

If there are three arguments, a division ring F and a list gens and an element zero, then AlgebraWithOne(
F, gens, zero) is the F -algebra-with-one generated by gens, with zero element zero.

If the last argument is the string "basis" then the vectors in gens are known to form a basis of the algebra
(as an F -vector space).

616 Chapter 60. Algebras

gap> m:= [[0, 1, 2], [0, 0, 3], [0, 0, 0]];;
gap> A:= AlgebraWithOne(Rationals, [m]);
<algebra-with-one over Rationals, with 1 generators>
gap> Dimension(A);
3
gap> One(A);
[[1, 0, 0], [0, 1, 0], [0, 0, 1]]

60.2 Constructing Algebras as Free Algebras

1 I FreeAlgebra(R, rank) F
I FreeAlgebra(R, rank, name) F
I FreeAlgebra(R, name1, name2, ...) F

is a free (nonassociative) algebra of rank rank over the ring R. Here name, and name1 , name2 ,... are optional
strings that can be used to provide names for the generators.

gap> A:= FreeAlgebra(Rationals, "a", "b");
<algebra over Rationals, with 2 generators>
gap> g:= GeneratorsOfAlgebra(A);
[(1)*a, (1)*b]
gap> (g[1]*g[2])*((g[2]*g[1])*g[1]);
(1)*((a*b)*((b*a)*a))

2 I FreeAlgebraWithOne(R, rank) F
I FreeAlgebraWithOne(R, rank, name) F
I FreeAlgebraWithOne(R, name1, name2, ...) F

is a free (nonassociative) algebra-with-one of rank rank over the ring R. Here name, and name1 , name2 ,...
are optional strings that can be used to provide names for the generators.

gap> A:= FreeAlgebraWithOne(Rationals, 4, "q");
<algebra-with-one over Rationals, with 4 generators>
gap> GeneratorsOfAlgebra(A);
[(1)*<identity ...>, (1)*q.1, (1)*q.2, (1)*q.3, (1)*q.4]
gap> One(A);
(1)*<identity ...>

3 I FreeAssociativeAlgebra(R, rank) F
I FreeAssociativeAlgebra(R, rank, name) F
I FreeAssociativeAlgebra(R, name1, name2, ...) F

is a free associative algebra of rank rank over the ring R. Here name, and name1 , name2 ,... are optional
strings that can be used to provide names for the generators.

gap> A:= FreeAssociativeAlgebra(GF(5), 4, "a");
<algebra over GF(5), with 4 generators>

4 I FreeAssociativeAlgebraWithOne(R, rank) F
I FreeAssociativeAlgebraWithOne(R, rank, name) F
I FreeAssociativeAlgebraWithOne(R, name1, name2, ...) F

is a free associative algebra-with-one of rank rank over the ring R. Here name, and name1 , name2 ,... are
optional strings that can be used to provide names for the generators.

Section 3. Constructing Algebras by Structure Constants 617

gap> A:= FreeAssociativeAlgebraWithOne(Rationals, "a", "b", "c");
<algebra-with-one over Rationals, with 3 generators>
gap> GeneratorsOfAlgebra(A);
[(1)*<identity ...>, (1)*a, (1)*b, (1)*c]
gap> One(A);
(1)*<identity ...>

60.3 Constructing Algebras by Structure Constants

For an introduction into structure constants and how they are handled by GAP, we refer to Section 6.2 of
the user’s tutorial.

1 I EmptySCTable(dim, zero) F
I EmptySCTable(dim, zero, "symmetric") F
I EmptySCTable(dim, zero, "antisymmetric") F

EmptySCTable returns a structure constants table for an algebra of dimension dim, describing trivial
multiplication. zero must be the zero of the coefficients domain. If the multiplication is known to be
(anti)commutative then this can be indicated by the optional third argument.
For filling up the structure constants table, see 60.3.2.

gap> EmptySCTable(2, Zero(GF(5)), "antisymmetric");
[[[[], []], [[], []]], [[[], []], [[], []]], -1,
0*Z(5)]

2 I SetEntrySCTable(T, i, j, list) F

sets the entry of the structure constants table T that describes the product of the i -th basis element with
the j -th basis element to the value given by the list list .
If T is known to be antisymmetric or symmetric then also the value T[j][i] is set.
list must be of the form [ck1

ij , k1, ck2
ij , k2, . . .].

The entries at the odd positions of list must be compatible with the zero element stored in T . For convenience,
these entries may also be rational numbers that are automatically replaced by the corresponding elements
in the appropriate prime field in finite characteristic if necessary.

gap> T:= EmptySCTable(2, 0);;
gap> SetEntrySCTable(T, 1, 1, [1/2, 1, 2/3, 2]);
gap> T;
[[[[1, 2], [1/2, 2/3]], [[], []]],
[[[], []], [[], []]], 0, 0]

3 I GapInputSCTable(T, varname) F

is a string that describes the structure constants table T in terms of EmptySCTable and SetEntrySCTable.
The assignments are made to the variable varname.

gap> T:= EmptySCTable(2, 0);;
gap> SetEntrySCTable(T, 1, 2, [1, 2]);
gap> SetEntrySCTable(T, 2, 1, [1, 2]);
gap> GapInputSCTable(T, "T");
"T:= EmptySCTable(2, 0);\nSetEntrySCTable(T, 1, 2, [1,2]);\nSetEntrySCTabl\
e(T, 2, 1, [1,2]);\n"

4 I TestJacobi(T) F

tests whether the structure constants table T satisfies the Jacobi identity vi ∗(vj ∗vk)+vj ∗(vk ∗vi)+vk ∗(vi ∗
vj) = 0 for all basis vectors vi of the underlying algebra, where i ≤ j ≤ k . (Thus antisymmetry is assumed.)

618 Chapter 60. Algebras

The function returns true if the Jacobi identity is satisfied, and a failing triple [i, j, k] otherwise.

gap> T:= EmptySCTable(2, 0, "antisymmetric");;
gap> SetEntrySCTable(T, 1, 2, [1, 2]);;
gap> TestJacobi(T);
true

5 I AlgebraByStructureConstants(R, sctable) F
I AlgebraByStructureConstants(R, sctable, name) F
I AlgebraByStructureConstants(R, sctable, names) F
I AlgebraByStructureConstants(R, sctable, name1, name2, ...) F

returns a free left module A over the ring R, with multiplication defined by the structure constants table
sctable. Here name and name1 , name2 , ... are optional strings that can be used to provide names for the
elements of the canonical basis of A. names is a list of strings that can be entered instead of the specific
names name1 , name2 , The vectors of the canonical basis of A correspond to the vectors of the basis
given by sctable.

It is not checked whether the coefficients in sctable are really elements in R.

gap> T:= EmptySCTable(2, 0);;
gap> SetEntrySCTable(T, 1, 1, [1/2, 1, 2/3, 2]);
gap> A:= AlgebraByStructureConstants(Rationals, T);
<algebra of dimension 2 over Rationals>
gap> b:= BasisVectors(Basis(A));;
gap> b[1]^2;
(1/2)*v.1+(2/3)*v.2
gap> b[1]*b[2];
0*v.1

6 I IdentityFromSCTable(T) F

Let T be a structure constants table of an algebra A of dimension n. IdentityFromSCTable(T) is either
fail or the vector of length n that contains the coefficients of the multiplicative identity of A with respect
to the basis that belongs to T .

gap> T:= EmptySCTable(2, 0);;
gap> SetEntrySCTable(T, 1, 1, [1, 1]);;
gap> SetEntrySCTable(T, 1, 2, [1, 2]);;
gap> SetEntrySCTable(T, 2, 1, [1, 2]);;
gap> IdentityFromSCTable(T);
[1, 0]

7 I QuotientFromSCTable(T, num, den) F

Let T be a structure constants table of an algebra A of dimension n. QuotientFromSCTable(T) is either
fail or the vector of length n that contains the coefficients of the quotient of num and den with respect to
the basis that belongs to T .

We solve the equation system num = xden. If no solution exists, fail is returned.

In terms of the basis B with vectors b1, . . . , bn this means for num =
∑n

i=1 ai bi , den =
∑n

i=1 ci bi , x =∑n
i=1 xi bi that ak =

∑
i ,j ci xj cijk for all k . Here cijk denotes the structure constants with respect to B . This

means that (as a vector) a = xM with Mjk =
∑n

i=1 cijk ci .

Section 4. Some Special Algebras 619

gap> T:= EmptySCTable(2, 0);;
gap> SetEntrySCTable(T, 1, 1, [1, 1]);;
gap> SetEntrySCTable(T, 2, 1, [1, 2]);;
gap> SetEntrySCTable(T, 1, 2, [1, 2]);;
gap> QuotientFromSCTable(T, [0,1], [1,0]);
[0, 1]

60.4 Some Special Algebras

1 I QuaternionAlgebra(F[, a, b]) F

Let F be a field or a list of field elements, let F be the field generated by F , and let a and b two elements in F .
QuaternionAlgebra returns a quaternion algebra over F , with parameters a and b, i.e., a four-dimensional
associative F -algebra with basis (e, i , j , k) and multiplication defined by ee = e, ei = ie = i , ej = je = j ,
ek = ke = k , ii = ae, ij = −ji = k , ik = −ki = aj , jj = be, jk = −kj = bi , kk = −abe. The default value
for both a and b is −1 ∈ F .

The GeneratorsOfAlgebra (see 60.8.1) and CanonicalBasis (see 59.4.3) value of an algebra constructed
with QuaternionAlgebra is the list [e, i , j , k].

Two quaternion algebras with the same parameters a, b lie in the same family, so it makes sense to consider
their intersection or to ask whether they are contained in each other. (This is due to the fact that the results
of QuaternionAlgebra are cached, in the global variable QuaternionAlgebraData.

The embedding of the field GaussianRationals into a quaternion algebra A over Rationals is not uniquely
determined. One can specify one as a vector space homomorphism that maps 1 to the first algebra generator
of A, and E(4) to one of the others.

gap> QuaternionAlgebra(Rationals);
<algebra-with-one of dimension 4 over Rationals>

2 I ComplexificationQuat(vector) F
I ComplexificationQuat(matrix) F

Let A = eF ⊕ iF ⊕ jF ⊕ kF be a quaternion algebra over the field F of cyclotomics, with basis (e, i , j , k).

If v = v1 + v2j is a row vector over A with v1 = ew1 + iw2 and v2 = ew3 + iw4 then ComplexificationQuat(
v) is the concatenation of w1 + E(4)w2 and w3 + E(4)w4.

If M = M1+M2j is a matrix over A with M1 = eN1+iN2 and M2 = eN3+iN4 then ComplexificationQuat(
M) is the block matrix A over eF ⊕ iF such that A(1, 1) = N1 + E(4)N2, A(2, 2) = N1− E(4)N2, A(1, 2) =
N3 + E(4)N4 and A(2, 1) = −N3 + E(4)N4.

Then ComplexificationQuat(v)*ComplexificationQuat(M)= ComplexificationQuat(v*M), since

vM = v1M1 + v2jM1 + v1M2j + v2jM2j = (v1M1 − v2M2) + (v1M2 + v2M1)j .

3 I OctaveAlgebra(F) F

The algebra of octonions over F .

gap> OctaveAlgebra(Rationals);
<algebra of dimension 8 over Rationals>

4 I FullMatrixAlgebra(R, n) F
I MatrixAlgebra(R, n) F
I MatAlgebra(R, n) F

is the full matrix algebra Rn×n , for a ring R and a nonnegative integer n.

620 Chapter 60. Algebras

gap> A:=FullMatrixAlgebra(Rationals, 20);
(Rationals^[20, 20])
gap> Dimension(A);
400

5 I NullAlgebra(R) A

The zero-dimensional algebra over R.

gap> A:= NullAlgebra(Rationals);
<algebra over Rationals>
gap> Dimension(A);
0

60.5 Subalgebras

1 I Subalgebra(A, gens) F
I Subalgebra(A, gens, "basis") F

is the F -algebra generated by gens, with parent algebra A, where F is the left acting domain of A.

Note that being a subalgebra of A means to be an algebra, to be contained in A, and to have the same left
acting domain as A.

An optional argument "basis" may be added if it is known that the generators already form a basis of the
algebra. Then it is not checked whether gens really are linearly independent and whether all elements in
gens lie in A.

gap> m:= [[0, 1, 2], [0, 0, 3], [0, 0, 0]];;
gap> A:= Algebra(Rationals, [m]);
<algebra over Rationals, with 1 generators>
gap> B:= Subalgebra(A, [m^2]);
<algebra over Rationals, with 1 generators>

2 I SubalgebraNC(A, gens) F
I SubalgebraNC(A, gens, "basis") F

SubalgebraNC constructs the subalgebra generated by gens, only it does not check whether all elements in
gens lie in A.

gap> m:= RandomMat(3, 3);;
gap> A:= Algebra(Rationals, [m]);
<algebra over Rationals, with 1 generators>
gap> SubalgebraNC(A, [IdentityMat(3, 3)], "basis");
<algebra of dimension 1 over Rationals>

3 I SubalgebraWithOne(A, gens) F
I SubalgebraWithOne(A, gens, "basis") F

is the algebra-with-one generated by gens, with parent algebra A.

The optional third argument "basis" may be added if it is known that the elements from gens are linearly
independent. Then it is not checked whether gens really are linearly independent and whether all elements
in gens lie in A.

Section 6. Ideals 621

gap> m:= [[0, 1, 2], [0, 0, 3], [0, 0, 0]];;
gap> A:= AlgebraWithOne(Rationals, [m]);
<algebra-with-one over Rationals, with 1 generators>
gap> B1:= SubalgebraWithOne(A, [m]);;
gap> B2:= Subalgebra(A, [m]);;
gap> Dimension(B1);
3
gap> Dimension(B2);
2

4 I SubalgebraWithOneNC(A, gens) F
I SubalgebraWithOneNC(A, gens, "basis") F

SubalgebraWithOneNC does not check whether all elements in gens lie in A.

gap> m:= RandomMat(3, 3);; A:= Algebra(Rationals, [m]);;
gap> SubalgebraWithOneNC(A, [m]);
<algebra-with-one over Rationals, with 1 generators>

5 I TrivialSubalgebra(A) A

The zero dimensional subalgebra of the algebra A.

gap> A:= QuaternionAlgebra(Rationals);;
gap> B:= TrivialSubalgebra(A);
<algebra over Rationals>
gap> Dimension(B);
0

60.6 Ideals

For constructing and working with ideals in algebras the same functions are available as for ideals in rings. So
for the precise description of these functions we refer to Chapter 54. Here we give examples demonstrating
the use of ideals in algebras. For an introduction into the construction of quotient algebras we refer to
Chapter 6.2 of the user’s tutorial.

gap> m:= [[0, 2, 3], [0, 0, 4], [0, 0, 0]];;
gap> A:= AlgebraWithOne(Rationals, [m]);;
gap> I:= Ideal(A, [m]); # i.e., the two-sided ideal of ‘A’ generated by ‘m’.
<two-sided ideal in <algebra-with-one of dimension 3 over Rationals>,
(1 generators)>

gap> Dimension(I);
2
gap> GeneratorsOfIdeal(I);
[[[0, 2, 3], [0, 0, 4], [0, 0, 0]]]
gap> BasisVectors(Basis(I));
[[[0, 1, 3/2], [0, 0, 2], [0, 0, 0]],
[[0, 0, 1], [0, 0, 0], [0, 0, 0]]]

gap> A:= FullMatrixAlgebra(Rationals, 4);;
gap> m:= NullMat(4, 4);; m[1][4]:=1;;
gap> I:= LeftIdeal(A, [m]);
<left ideal in (Rationals^[4, 4]), (1 generators)>
gap> Dimension(I);
4

622 Chapter 60. Algebras

gap> GeneratorsOfLeftIdeal(I);
[[[0, 0, 0, 1], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]]

gap> mats:= [[[1,0],[0,0]], [[0,1],[0,0]], [[0,0],[0,1]]];;
gap> A:= Algebra(Rationals, mats);;
gap> # Form the two-sided ideal for which ‘mats[2]’ is known to be
gap> # the unique basis element.
gap> I:= Ideal(A, [mats[2]], "basis");
<two-sided ideal in <algebra of dimension 3 over Rationals>, (dimension 1)>

60.7 Categories and Properties of Algebras

1 I IsFLMLOR(obj) C

A FLMLOR (“free left module left operator ring”) in GAP is a ring that is also a free left module.

Note that this means that being a FLMLOR is not a property a ring can get, since a ring is usually not
represented as an external left set.

Examples are magma rings (e.g. over the integers) or algebras.

gap> A:= FullMatrixAlgebra(Rationals, 2);;
gap> IsFLMLOR (A);
true

2 I IsFLMLORWithOne(obj) C

A FLMLOR-with-one in GAP is a ring-with-one that is also a free left module.

Note that this means that being a FLMLOR-with-one is not a property a ring-with-one can get, since a
ring-with-one is usually not represented as an external left set.

Examples are magma rings-with-one or algebras-with-one (but also over the integers).

gap> A:= FullMatrixAlgebra(Rationals, 2);;
gap> IsFLMLORWithOne (A);
true

3 I IsAlgebra(obj) C

An algebra in GAP is a ring that is also a left vector space. Note that this means that being an algebra is
not a property a ring can get, since a ring is usually not represented as an external left set.

gap> A:= MatAlgebra(Rationals, 3);;
gap> IsAlgebra(A);
true

4 I IsAlgebraWithOne(obj) C

An algebra-with-one in GAP is a ring-with-one that is also a left vector space. Note that this means that
being an algebra-with-one is not a property a ring-with-one can get, since a ring-with-one is usually not
represented as an external left set.

gap> A:= MatAlgebra(Rationals, 3);;
gap> IsAlgebraWithOne(A);
true

5 I IsLieAlgebra(A) P

An algebra A is called Lie algebra if a ∗ a = 0 for all a in A and (a ∗ (b ∗ c)) + (b ∗ (c ∗ a)) + (c ∗ (a ∗ b)) = 0
for all a, b, c in A (Jacobi identity).

Section 8. Attributes and Operations for Algebras 623

gap> A:= FullMatrixLieAlgebra(Rationals, 3);;
gap> IsLieAlgebra(A);
true

6 I IsSimpleAlgebra(A) P

is true if the algebra A is simple, and false otherwise. This function is only implemented for the cases
where A is an associative or a Lie algebra. And for Lie algebras it is only implemented for the case where
the ground field is of characteristic 0.

gap> A:= FullMatrixLieAlgebra(Rationals, 3);;
gap> IsSimpleAlgebra(A);
false
gap> A:= MatAlgebra(Rationals, 3);;
gap> IsSimpleAlgebra(A);
true

7 I IsFiniteDimensional(matalg) O

returns true (always) for a matrix algebra matalg , since matrix algebras are always finite dimensional.

gap> A:= MatAlgebra(Rationals, 3);;
gap> IsFiniteDimensional(A);
true

8 I IsQuaternion(obj) C
I IsQuaternionCollection(obj) C
I IsQuaternionCollColl(obj) C

IsQuaternion is the category of elements in an algebra constructed by QuaternionAlgebra. A collection
of quaternions lies in the category IsQuaternionCollection. Finally, a collection of quaternion collections
(e.g., a matrix of quaternions) lies in the category IsQuaternionCollColl.

gap> A:= QuaternionAlgebra(Rationals);;
gap> b:= BasisVectors(Basis(A));
[e, i, j, k]
gap> IsQuaternion(b[1]);
true
gap> IsQuaternionCollColl([[b[1], b[2]], [b[3], b[4]]]);
true

60.8 Attributes and Operations for Algebras

1 I GeneratorsOfAlgebra(A) A

returns a list of elements that generate A as an algebra.

gap> m:= [[0, 1, 2], [0, 0, 3], [0, 0, 0]];;
gap> A:= AlgebraWithOne(Rationals, [m]);
<algebra-with-one over Rationals, with 1 generators>
gap> GeneratorsOfAlgebra(A);
[[[1, 0, 0], [0, 1, 0], [0, 0, 1]],
[[0, 1, 2], [0, 0, 3], [0, 0, 0]]]

2 I GeneratorsOfAlgebraWithOne(A) A

returns a list of elements of A that generate A as an algebra with one.

624 Chapter 60. Algebras

gap> m:= [[0, 1, 2], [0, 0, 3], [0, 0, 0]];;
gap> A:= AlgebraWithOne(Rationals, [m]);
<algebra-with-one over Rationals, with 1 generators>
gap> GeneratorsOfAlgebraWithOne(A);
[[[0, 1, 2], [0, 0, 3], [0, 0, 0]]]

3 I ProductSpace(U , V) O

is the vector space 〈u ∗ v ; u ∈ U , v ∈ V 〉, where U and V are subspaces of the same algebra.

If U = V is known to be an algebra then the product space is also an algebra, moreover it is an ideal in U .
If U and V are known to be ideals in an algebra A then the product space is known to be an algebra and
an ideal in A.

gap> A:= QuaternionAlgebra(Rationals);;
gap> b:= BasisVectors(Basis(A));;
gap> B:= Subalgebra(A, [b[4]]);
<algebra over Rationals, with 1 generators>
gap> ProductSpace(A, B);
<vector space of dimension 4 over Rationals>

4 I PowerSubalgebraSeries(A) A

returns a list of subalgebras of A, the first term of which is A; and every next term is the product space of
the previous term with itself.

gap> A:= QuaternionAlgebra(Rationals);
<algebra-with-one of dimension 4 over Rationals>
gap> PowerSubalgebraSeries(A);
[<algebra-with-one of dimension 4 over Rationals>]

5 I AdjointBasis(B) A

Let x be an element of an algebra A. Then the adjoint map of x is the left multiplication by x . It is a linear
map of A. For the basis B of an algebra A, this function returns a particular basis C of the matrix space
generated by adA, (the matrix spaces spanned by the matrices of the left multiplication); namely a basis
consisting of elements of the form adxi , where xi is a basis element of B .

gap> A:= QuaternionAlgebra(Rationals);;
gap> AdjointBasis(Basis(A));
Basis(<vector space over Rationals, with 4 generators>,
[[[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]],
[[0, -1, 0, 0], [1, 0, 0, 0], [0, 0, 0, -1], [0, 0, 1, 0]],
[[0, 0, -1, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, -1, 0, 0]],
[[0, 0, 0, -1], [0, 0, -1, 0], [0, 1, 0, 0], [1, 0, 0, 0]]])

6 I IndicesOfAdjointBasis(B) A

Let A be an algebra and let B be the basis that is output by AdjointBasis(Basis(A)). This function
returns a list of indices. If i is an index belonging to this list, then adxi is a basis vector of the matrix space
spanned by adA, where xi is the i -th basis vector of the basis B .

gap> L:= FullMatrixLieAlgebra(Rationals, 3);;
gap> B:= AdjointBasis(Basis(L));;
gap> IndicesOfAdjointBasis(B);
[1, 2, 3, 4, 5, 6, 7, 8]

7 I AsAlgebra(F, A) O

Returns the algebra over F generated by A.

Section 8. Attributes and Operations for Algebras 625

gap> V:= VectorSpace(Rationals, [IdentityMat(2)]);;
gap> AsAlgebra(Rationals, V);
<algebra of dimension 1 over Rationals>

8 I AsAlgebraWithOne(F, A) O

If the algebra A has an identity, then it can be viewed as an algebra with one over F . This function returns
this algebra with one.

gap> V:= VectorSpace(Rationals, [IdentityMat(2)]);;
gap> A:= AsAlgebra(Rationals, V);;
gap> AsAlgebraWithOne(Rationals, A);
<algebra-with-one over Rationals, with 1 generators>

9 I AsSubalgebra(A, B) O

If all elements of the algebra B happen to be contained in the algebra A, then B can be viewed as a
subalgebra of A. This function returns this subalgebra.

gap> A:= FullMatrixAlgebra(Rationals, 2);;
gap> V:= VectorSpace(Rationals, [IdentityMat(2)]);;
gap> B:= AsAlgebra(Rationals, V);;
gap> BA:= AsSubalgebra(A, B);
<algebra of dimension 1 over Rationals>

10 I AsSubalgebraWithOne(A, B) O

If B is an algebra with one, all elements of which happen to be contained in the algebra with one A, then
B can be viewed as a subalgebra with one of A. This function returns this subalgebra with one.

gap> A:= FullMatrixAlgebra(Rationals, 2);;
gap> V:= VectorSpace(Rationals, [IdentityMat(2)]);;
gap> B:= AsAlgebra(Rationals, V);;
gap> C:= AsAlgebraWithOne(Rationals, B);;
gap> AC:= AsSubalgebraWithOne(A, C);
<algebra-with-one over Rationals, with 1 generators>

11 I MutableBasisOfClosureUnderAction(F, Agens, from, init, opr, zero, maxdim) F

Let F be a ring, Agens a list of generators for an F -algebra A, and from one of "left", "right", "both";
(this means that elements of A act via multiplication from the respective side(s).) init must be a list of
initial generating vectors, and opr the operation (a function of two arguments).

MutableBasisOfClosureUnderAction returns a mutable basis of the F -free left module generated by the
vectors in init and their images under the action of Agens from the respective side(s).

zero is the zero element of the desired module. maxdim is an upper bound for the dimension of the closure;
if no such upper bound is known then the value of maxdim must be infinity.

MutableBasisOfClosureUnderAction can be used to compute a basis of an associative algebra generated
by the elements in Agens. In this case from may be "left" or "right", opr is the multiplication *, and init
is a list containing either the identity of the algebra or a list of algebra generators. (Note that if the algebra
has an identity then it is in general not sufficient to take algebra-with-one generators as init , whereas of
course Agens need not contain the identity.)

(Note that bases of not necessarily associative algebras can be computed using MutableBasisOfNonasso-
ciativeAlgebra.)

Other applications of MutableBasisOfClosureUnderAction are the computations of bases for (left/ right/
two-sided) ideals I in an associative algebra A from ideal generators of I ; in these cases Agens is a list of

626 Chapter 60. Algebras

algebra generators of A, from denotes the appropriate side(s), init is a list of ideal generators of I , and opr
is again *.

(Note that bases of ideals in not necessarily associative algebras can be computed using MutableBa-
sisOfIdealInNonassociativeAlgebra.)

Finally, bases of right A-modules also can be computed using MutableBasisOfClosureUnderAction. The
only difference to the ideal case is that init is now a list of right module generators, and opr is the operation
of the module.

gap> A:= QuaternionAlgebra(Rationals);;
gap> g:= GeneratorsOfAlgebra(A);;
gap> B:= MutableBasisOfClosureUnderAction(Rationals, g, "left", [g[1]], *, Zero(A), 4);
<mutable basis over Rationals, 4 vectors>
gap> BasisVectors(B);
[e, i, j, k]

12 I MutableBasisOfNonassociativeAlgebra(F, Agens, zero, maxdim) F

is a mutable basis of the (not necessarily associative) F -algebra that is generated by Agens, has zero element
zero, and has dimension at most maxdim. If no finite bound for the dimension is known then infinity must
be the value of maxdim.

The difference to MutableBasisOfClosureUnderAction is that in general it is not sufficient to multiply just
with algebra generators. (For special cases of nonassociative algebras, especially for Lie algebras, multiplying
with algebra generators suffices.)

gap> L:= FullMatrixLieAlgebra(Rationals, 4);;
gap> m1:= Random(L);;
gap> m2:= Random(L);;
gap> MutableBasisOfNonassociativeAlgebra(Rationals, [m1, m2], Zero(L),
> 16);
<mutable basis over Rationals, 16 vectors>

13 I MutableBasisOfIdealInNonassociativeAlgebra(F, Vgens, Igens, zero, from, maxdim) F

is a mutable basis of the ideal generated by Igens under the action of the (not necessarily associative) F -
algebra with vector space generators Vgens. The zero element of the ideal is zero, from is one of "left",
"right", "both" (with the same meaning as in MutableBasisOfClosureUnderAction), and maxdim is a
known upper bound on the dimension of the ideal; if no finite bound for the dimension is known then
infinity must be the value of maxdim.

The difference to MutableBasisOfClosureUnderAction is that in general it is not sufficient to multiply just
with algebra generators. (For special cases of nonassociative algebras, especially for Lie algebras, multiplying
with algebra generators suffices.)

gap> mats:= [[[1, 0], [0, -1]], [[0,1],[0,0]]];;
gap> A:= Algebra(Rationals, mats);;
gap> basA:= BasisVectors(Basis(A));;
gap> B:= MutableBasisOfIdealInNonassociativeAlgebra(Rationals, basA,
> [mats[2]], 0*mats[1], "both", infinity);
<mutable basis over Rationals, 1 vectors>
gap> BasisVectors(B);
[[[0, 1], [0, 0]]]

14 I DirectSumOfAlgebras(A1, A2) O
I DirectSumOfAlgebras(list) O

is the direct sum of the two algebras A1 and A2 respectively of the algebras in the list list .

Section 8. Attributes and Operations for Algebras 627

If all involved algebras are associative algebras then the result is also known to be associative. If all involved
algebras are Lie algebras then the result is also known to be a Lie algebra.

All involved algebras must have the same left acting domain.

The default case is that the result is a structure constants algebra. If all involved algebras are matrix
algebras, and either both are Lie algebras or both are associative then the result is again a matrix algebra
of the appropriate type.

gap> A:= QuaternionAlgebra(Rationals);;
gap> DirectSumOfAlgebras([A, A, A]);
<algebra of dimension 12 over Rationals>

15 I FullMatrixAlgebraCentralizer(F, lst) F

Let lst be a nonempty list of square matrices of the same dimension n, say, with entries in the field F .
FullMatrixAlgebraCentralizer returns the centralizer of all matrices in lst , inside the full matrix algebra
of n × n matrices over F .

gap> A:= QuaternionAlgebra(Rationals);;
gap> mats:= List(BasisVectors(Basis(A)), x -> AdjointMatrix(Basis(A), x));;
gap> FullMatrixAlgebraCentralizer(Rationals, mats);
<algebra-with-one of dimension 4 over Rationals>

16 I RadicalOfAlgebra(A) A

is the maximal nilpotent ideal of A, where A is an associative algebra.

gap> m:= [[0, 1, 2], [0, 0, 3], [0, 0, 0]];;
gap> A:= AlgebraWithOneByGenerators(Rationals, [m]);
<algebra-with-one over Rationals, with 1 generators>
gap> RadicalOfAlgebra(A);
<algebra of dimension 2 over Rationals>

17 I CentralIdempotentsOfAlgebra(A) A

For an associative algebra A, this function returns a list of central primitive idempotents such that their
sum is the identity element of A. Therefore A is required to have an identity.

(This is a synonym of CentralIdempotentsOfSemiring.)

gap> A:= QuaternionAlgebra(Rationals);;
gap> B:= DirectSumOfAlgebras([A, A, A]);
<algebra of dimension 12 over Rationals>
gap> CentralIdempotentsOfAlgebra(B);
[v.9, v.5, v.1]

18 I DirectSumDecomposition(L) A

This function calculates a list of ideals of the algebra L such that L is equal to their direct sum. Currently
this is only implemented for semisimple associative algebras, and Lie algebras (semisimple or not).

gap> G:= SymmetricGroup(4);;
gap> A:= GroupRing(Rationals, G);
<algebra-with-one over Rationals, with 2 generators>
gap> dd:= DirectSumDecomposition(A);
[<two-sided ideal in <algebra-with-one of dimension 24 over Rationals>,

(1 generators)>,
<two-sided ideal in <algebra-with-one of dimension 24 over Rationals>,

(1 generators)>,

628 Chapter 60. Algebras

<two-sided ideal in <algebra-with-one of dimension 24 over Rationals>,
(1 generators)>,

<two-sided ideal in <algebra-with-one of dimension 24 over Rationals>,
(1 generators)>,

<two-sided ideal in <algebra-with-one of dimension 24 over Rationals>,
(1 generators)>]

gap> List(dd, Dimension);
[1, 1, 4, 9, 9]

19 I LeviMalcevDecomposition(L) A

A Levi-Malcev subalgebra of the algebra L is a semisimple subalgebra complementary to the radical of L.
This function returns a list with two components. The first component is a Levi-Malcev subalgebra, the
second the radical. This function is implemented for associative and Lie algebras.

gap> m:= [[1, 2, 0], [0, 1, 3], [0, 0, 1]];;
gap> A:= Algebra(Rationals, [m]);;
gap> LeviMalcevDecomposition(A);
[<algebra of dimension 1 over Rationals>,
<algebra of dimension 2 over Rationals>]

20 I Grading(A) A

Let G be an Abelian group and A an algebra. Then A is said to be graded over G if for every g ∈ G there
is a subspace Ag of A such that Ag ·Ah ⊂ Ag+h for g , h ∈ G . In GAP 4 a grading of an algebra is a record
containing the following components:

source
the Abelian group over which the algebra is graded. hom components
a function assigning to each element from the source a subspace of the algebra. min degree
in the case where the algebra is graded over the integers this is the minimum number for which
hom components returns a nonzero subspace. max degree
is analogous to min degree.

We note that there are no methods to compute a grading of an arbitrary algebra; however some algebras
get a natural grading when they are constructed (see 61.8.4, 61.11.2).

We note also that these components may be not enough to handle the grading efficiently, and another record
component may be needed. For instance in a Lie algebra L constructed by JenningsLieAlgebra, the length
of the of the range [Grading(L)!.min degree .. Grading(L)!.max degree] may be non-polynomial in
the dimension of L. To handle efficiently this situation, an optional component can be used:

non zero hom components
the subset of source for which hom components returns a nonzero subspace.

gap> G:= SmallGroup(3^6, 100);
<pc group of size 729 with 6 generators>
gap> L:= JenningsLieAlgebra(G);
<Lie algebra of dimension 6 over GF(3)>
gap> g:= Grading(L);
rec(min_degree := 1, max_degree := 9, source := Integers,
hom_components := function(d) ... end)

gap> g.hom_components(3);
<vector space over GF(3), with 1 generators>
gap> g.hom_components(14);
<vector space over GF(3), with 0 generators>

Section 9. Homomorphisms of Algebras 629

60.9 Homomorphisms of Algebras

Algebra homomorphisms are vector space homomorphisms that preserve the multiplication. So the default
methods for vector space homomorphisms work, and in fact there is not much use of the fact that source
and range are algebras, except that preimages and images are algebras (or even ideals) in certain cases.

1 I AlgebraGeneralMappingByImages(A, B, gens, imgs) O

is a general mapping from the F -algebra A to the F -algebra B . This general mapping is defined by mapping
the entries in the list gens (elements of A) to the entries in the list imgs (elements of B), and taking the
F -linear and multiplicative closure.

gens need not generate A as an F -algebra, and if the specification does not define a linear and multiplicative
mapping then the result will be multivalued. Hence, in general it is not a mapping. For constructing a linear
map that is not necessarily multiplicative, we refer to LeftModuleHomomorphismByImages (59.9.2).

gap> A:= QuaternionAlgebra(Rationals);;
gap> B:= FullMatrixAlgebra(Rationals, 2);;
gap> bA:= BasisVectors(Basis(A));; bB:= BasisVectors(Basis(B));;
gap> f:= AlgebraGeneralMappingByImages(A, B, bA, bB);
[e, i, j, k] -> [[[1, 0], [0, 0]], [[0, 1], [0, 0]],
[[0, 0], [1, 0]], [[0, 0], [0, 1]]]

gap> Images(f, bA[1]);
<add. coset of <algebra over Rationals, with 60 generators>>

2 I AlgebraHomomorphismByImages(A, B, gens, imgs) F

AlgebraHomomorphismByImages returns the algebra homomorphism with source A and range B that is
defined by mapping the list gens of generators of A to the list imgs of images in B .

If gens does not generate A or if the homomorphism does not exist (i.e., if mapping the generators describes
only a multi-valued mapping) then fail is returned.

One can avoid the checks by calling AlgebraHomomorphismByImagesNC, and one can construct multi-valued
mappings with AlgebraGeneralMappingByImages.

gap> T:= EmptySCTable(2, 0);;
gap> SetEntrySCTable(T, 1, 1, [1,1]); SetEntrySCTable(T, 2, 2, [1,2]);
gap> A:= AlgebraByStructureConstants(Rationals, T);;
gap> m1:= NullMat(2, 2);; m1[1][1]:= 1;;
gap> m2:= NullMat(2, 2);; m2[2][2]:= 1;;
gap> B:= AlgebraByGenerators(Rationals, [m1, m2]);;
gap> bA:= BasisVectors(Basis(A));; bB:= BasisVectors(Basis(B));;
gap> f:= AlgebraHomomorphismByImages(A, B, bA, bB);
[v.1, v.2] -> [[[1, 0], [0, 0]], [[0, 0], [0, 1]]]
gap> Image(f, bA[1]+bA[2]);
[[1, 0], [0, 1]]

3 I AlgebraHomomorphismByImagesNC(A, B, gens, imgs) O

AlgebraHomomorphismByImagesNC is the operation that is called by the function AlgebraHomomorphism-
ByImages. Its methods may assume that gens generates A and that the mapping of gens to imgs defines an
algebra homomorphism. Results are unpredictable if these conditions do not hold.

For creating a possibly multi-valued mapping from A to B that respects addition, multiplication, and scalar
multiplication, AlgebraGeneralMappingByImages can be used.

For the definitions of the algebras A and B in the next example we refer to the previous example.

630 Chapter 60. Algebras

gap> f:= AlgebraHomomorphismByImagesNC(A, B, bA, bB);
[v.1, v.2] -> [[[1, 0], [0, 0]], [[0, 0], [0, 1]]]

4 I AlgebraWithOneGeneralMappingByImages(A, B, gens, imgs) O

This function is analogous to 60.9.1; the only difference being that the identity of A is automatically mapped
to the identity of B .

gap> A:= QuaternionAlgebra(Rationals);;
gap> B:= FullMatrixAlgebra(Rationals, 2);;
gap> bA:= BasisVectors(Basis(A));; bB:= BasisVectors(Basis(B));;
gap> f:= AlgebraWithOneGeneralMappingByImages(A,B,bA{[2,3,4]},bB{[1,2,3]});
[i, j, k, e] -> [[[1, 0], [0, 0]], [[0, 1], [0, 0]],
[[0, 0], [1, 0]], [[1, 0], [0, 1]]]

5 I AlgebraWithOneHomomorphismByImages(A, B, gens, imgs) F

AlgebraWithOneHomomorphismByImages returns the algebra-with-one homomorphism with source A and
range B that is defined by mapping the list gens of generators of A to the list imgs of images in B .

The difference between an algebra homomorphism and an algebra-with-one homomorphism is that in the
latter case, it is assumed that the identity of A is mapped to the identity of B , and therefore gens needs to
generate A only as an algebra-with-one.

If gens does not generate A or if the homomorphism does not exist (i.e., if mapping the generators describes
only a multi-valued mapping) then fail is returned.

One can avoid the checks by calling AlgebraWithOneHomomorphismByImagesNC, and one can construct
multi-valued mappings with AlgebraWithOneGeneralMappingByImages.

gap> m1:= NullMat(2, 2);; m1[1][1]:=1;;
gap> m2:= NullMat(2, 2);; m2[2][2]:=1;;
gap> A:= AlgebraByGenerators(Rationals, [m1,m2]);;
gap> T:= EmptySCTable(2, 0);;
gap> SetEntrySCTable(T, 1, 1, [1,1]);
gap> SetEntrySCTable(T, 2, 2, [1,2]);
gap> B:= AlgebraByStructureConstants(Rationals, T);;
gap> bA:= BasisVectors(Basis(A));; bB:= BasisVectors(Basis(B));;
gap> f:= AlgebraWithOneHomomorphismByImages(A, B, bA{[1]}, bB{[1]});
[[[1, 0], [0, 0]], [[1, 0], [0, 1]]] -> [v.1, v.1+v.2]

6 I AlgebraWithOneHomomorphismByImagesNC(A, B, gens, imgs) O

AlgebraWithOneHomomorphismByImagesNC is the operation that is called by the function AlgebraWithOne-
HomomorphismByImages. Its methods may assume that gens generates A and that the mapping of gens to
imgs defines an algebra-with-one homomorphism. Results are unpredictable if these conditions do not hold.

For creating a possibly multi-valued mapping from A to B that respects addition, multiplication, identity,
and scalar multiplication, AlgebraWithOneGeneralMappingByImages can be used.

gap> m1:= NullMat(2, 2);; m1[1][1]:=1;;
gap> m2:= NullMat(2, 2);; m2[2][2]:=1;;
gap> A:= AlgebraByGenerators(Rationals, [m1,m2]);;
gap> T:= EmptySCTable(2, 0);;
gap> SetEntrySCTable(T, 1, 1, [1,1]);
gap> SetEntrySCTable(T, 2, 2, [1,2]);
gap> B:= AlgebraByStructureConstants(Rationals, T);;
gap> bA:= BasisVectors(Basis(A));; bB:= BasisVectors(Basis(B));;

Section 9. Homomorphisms of Algebras 631

gap> f:= AlgebraWithOneHomomorphismByImagesNC(A, B, bA{[1]}, bB{[1]});
[[[1, 0], [0, 0]], [[1, 0], [0, 1]]] -> [v.1, v.1+v.2]

7 I NaturalHomomorphismByIdeal(A, I) O

is the homomorphism of algebras provided by the natural projection map of A onto the quotient algebra
A/I . This map can be used to take pre-images in the original algebra from elements in the quotient.

gap> L:= FullMatrixLieAlgebra(Rationals, 3);;
gap> C:= LieCentre(L);
<two-sided ideal in <Lie algebra of dimension 9 over Rationals>, (dimension 1
)>

gap> hom:= NaturalHomomorphismByIdeal(L, C);
<linear mapping by matrix, <Lie algebra of dimension
9 over Rationals> -> <Lie algebra of dimension 8 over Rationals>>
gap> ImagesSource(hom);
<Lie algebra of dimension 8 over Rationals>

8 I OperationAlgebraHomomorphism(A, B[, opr]) O
I OperationAlgebraHomomorphism(A, V [, opr]) O

OperationAlgebraHomomorphism returns an algebra homomorphism from the F -algebra A into a matrix
algebra over F that describes the F -linear action of A on the basis B of a free left module respectively on
the free left module V (in which case some basis of V is chosen), via the operation opr .

The homomorphism need not be surjective. The default value for opr is OnRight.

If A is an algebra-with-one then the operation homomorphism is an algebra-with-one homomorphism because
the identity of A must act as the identity.

gap> m1:= NullMat(2, 2);; m1[1][1]:= 1;;
gap> m2:= NullMat(2, 2);; m2[2][2]:= 1;;
gap> B:= AlgebraByGenerators(Rationals, [m1, m2]);;
gap> V:= FullRowSpace(Rationals, 2);
(Rationals^2)
gap> f:=OperationAlgebraHomomorphism(B, Basis(V), OnRight);
<op. hom. Algebra(Rationals,
[[[1, 0], [0, 0]], [[0, 0], [0, 1]]]) -> matrices of dim. 2>
gap> Image(f, m1);
[[1, 0], [0, 0]]

9 I IsomorphismFpAlgebra(A) A

isomorphism from the algebra A onto a finitely presented algebra. Currently this is only implemented for
associative algebras with one.

gap> A:= QuaternionAlgebra(Rationals);
<algebra-with-one of dimension 4 over Rationals>
gap> f:= IsomorphismFpAlgebra(A);
[e, i, j, k, e] -> [[(1)*x.1], [(1)*x.2], [(1)*x.3], [(1)*x.4],
[(1)*<identity ...>]]

10 I IsomorphismMatrixAlgebra(A) A

isomorphism from the algebra A onto a matrix algebra. Currently this is only implemented for associative
algebras with one.

632 Chapter 60. Algebras

gap> T:= EmptySCTable(2, 0);;
gap> SetEntrySCTable(T, 1, 1, [1,1]); SetEntrySCTable(T, 2, 2, [1,2]);
gap> A:= AlgebraByStructureConstants(Rationals, T);;
gap> A:= AsAlgebraWithOne(Rationals, A);;
gap> f:=IsomorphismMatrixAlgebra(A);
<op. hom. AlgebraWithOne(Rationals, ...) -> matrices of dim. 2>
gap> Image(f, BasisVectors(Basis(A))[1]);
[[1, 0], [0, 0]]

11 I IsomorphismSCAlgebra(B) A
I IsomorphismSCAlgebra(A) A

For a basis B of an algebra A, say, IsomorphismSCAlgebra returns an algebra isomorphism from A to an
algebra S given by structure constants (see 60.3), such that the canonical basis of S is the image of B .

For an algebra A, IsomorphismSCAlgebra chooses a basis of A and returns the IsomorphismSCAlgebra
value for that basis.

gap> IsomorphismSCAlgebra(GF(8));
CanonicalBasis(GF(2^3)) -> CanonicalBasis(<algebra of dimension 3 over GF(
2)>)
gap> IsomorphismSCAlgebra(GF(2)^[2,2]);
CanonicalBasis((GF(2)^[2, 2])) -> CanonicalBasis(<algebra of dimension
4 over GF(2)>)

12 I RepresentativeLinearOperation(A, v, w, opr) O

is an element of the algebra A that maps the vector v to the vector w under the linear operation described
by the function opr . If no such element exists then fail is returned.

gap> m1:= NullMat(2, 2);; m1[1][1]:= 1;;
gap> m2:= NullMat(2, 2);; m2[2][2]:= 1;;
gap> B:= AlgebraByGenerators(Rationals, [m1, m2]);;
gap> RepresentativeLinearOperation(B, [1,0], [1,0], OnRight);
[[1, 0], [0, 0]]
gap> RepresentativeLinearOperation(B, [1,0], [0,1], OnRight);
fail

60.10 Representations of Algebras

An algebra module is a vector space together with an action of an algebra. So a module over an algebra
is constructed by giving generators of a vector space, and a function for calculating the action of algebra
elements on elements of the vector space. When creating an algebra module, the generators of the vector
space are wrapped up and given the category IsLeftAlgebraModuleElement or IsRightModuleElement if
the algebra acts from the left, or right respectively. (So in the case of a bi-module the elements get both
categories.) Most linear algebra computations are delegated to the original vector space.

The transition between the original vector space and the corresponding algebra module is handled by Ex-
tRepOfObj and ObjByExtRep. For an element v of the algebra module, ExtRepOfObj(v) returns the
underlying element of the original vector space. Furthermore, if vec is an element of the original vector
space, and fam the elements family of the corresponding algebra module, then ObjByExtRep(fam, vec)
returns the corresponding element of the algebra module. Below is an example of this.

The action of the algebra on elements of the algebra module is constructed by using the operator ^. If x is
an element of an algebra A, and v an element of a left A-module, then x^v calculates the result of the action
of x on v. Similarly, if v is an element of a right A-module, then v^x calculates the action of x on v.

Section 10. Representations of Algebras 633

1 I LeftAlgebraModuleByGenerators(A, op, gens) O

Constructs the left algebra module over A generated by the list of vectors gens. The action of A is described
by the function op. This must be a function of two arguments; the first argument is the algebra element,
and the second argument is a vector; it outputs the result of applying the algebra element to the vector.

2 I RightAlgebraModuleByGenerators(A, op, gens) O

Constructs the right algebra module over A generated by the list of vectors gens. The action of A is described
by the function op. This must be a function of two arguments; the first argument is a vector, and the second
argument is the algebra element; it outputs the result of applying the algebra element to the vector.

3 I BiAlgebraModuleByGenerators(A, B, opl, opr, gens) O

Constructs the algebra bi-module over A and B generated by the list of vectors gens. The left action of A is
described by the function opl , and the right action of B by the function opr . opl must be a function of two
arguments; the first argument is the algebra element, and the second argument is a vector; it outputs the
result of applying the algebra element on the left to the vector. opr must be a function of two arguments; the
first argument is a vector, and the second argument is the algebra element; it outputs the result of applying
the algebra element on the right to the vector.

gap> A:= Rationals^[3,3];
(Rationals^[3, 3])
gap> V:= LeftAlgebraModuleByGenerators(A, *, [[1, 0, 0]]);
<left-module over (Rationals^[3, 3])>
gap> W:= RightAlgebraModuleByGenerators(A, *, [[1, 0, 0]]);
<right-module over (Rationals^[3, 3])>
gap> M:= BiAlgebraModuleByGenerators(A, A, *, *, [[1, 0, 0]]);
<bi-module over (Rationals^[3, 3]) (left) and (Rationals^
[3, 3]) (right)>

In the above examples, the modules V, W, and M are 3-dimensional vector spaces over the rationals. The
algebra A acts from the left on V, from the right on W, and from the left and from the right on M.

4 I LeftAlgebraModule(A, op, V) O

Constructs the left algebra module over A with underlying space V . The action of A is described by the
function op. This must be a function of two arguments; the first argument is the algebra element, and the
second argument is a vector from V ; it outputs the result of applying the algebra element to the vector.

5 I RightAlgebraModule(A, op, V) O

Constructs the right algebra module over A with underlying space V . The action of A is described by the
function op. This must be a function of two arguments; the first argument is a vector, from V and the
second argument is the algebra element; it outputs the result of applying the algebra element to the vector.

6 I BiAlgebraModule(A, B, opl, opr, V) O

Constructs the algebra bi-module over A and B with underlying space V . The left action of A is described
by the function opl , and the right action of B by the function opr . opl must be a function of two arguments;
the first argument is the algebra element, and the second argument is a vector from V ; it outputs the result
of applying the algebra element on the left to the vector. opr must be a function of two arguments; the
first argument is a vector from V , and the second argument is the algebra element; it outputs the result of
applying the algebra element on the right to the vector.

634 Chapter 60. Algebras

gap> A:= Rationals^[3,3];;
gap> V:= Rationals^3;
(Rationals^3)
gap> V:= Rationals^3;;
gap> M:= BiAlgebraModule(A, A, *, *, V);
<bi-module over (Rationals^[3, 3]) (left) and (Rationals^
[3, 3]) (right)>
gap> Dimension(M);
3

7 I GeneratorsOfAlgebraModule(M) A

A list of elements of M that generate M as an algebra module.

gap> A:= Rationals^[3,3];;
gap> V:= LeftAlgebraModuleByGenerators(A, *, [[1, 0, 0]]);;
gap> GeneratorsOfAlgebraModule(V);
[[1, 0, 0]]

8 I IsAlgebraModuleElement(obj) C
I IsAlgebraModuleElementCollection(obj) C
I IsAlgebraModuleElementFamily(fam) C

Category of algebra module elements. If an object has IsAlgebraModuleElementCollection, then it is an
algebra module. If a family has IsAlgebraModuleElementFamily, then it is a family of algebra module
elements (every algebra module has its own elements family).

9 I IsLeftAlgebraModuleElement(obj) C
I IsLeftAlgebraModuleElementCollection(obj) C

Category of left algebra module elements. If an object has IsLeftAlgebraModuleElementCollection, then
it is a left-algebra module.

10 I IsRightAlgebraModuleElement(obj) C
I IsRightAlgebraModuleElementCollection(obj) C

Category of right algebra module elements. If an object has IsRightAlgebraModuleElementCollection,
then it is a right-algebra module.

gap> A:= Rationals^[3,3];
(Rationals^[3, 3])
gap> M:= BiAlgebraModuleByGenerators(A, A, *, *, [[1, 0, 0]]);
<bi-module over (Rationals^[3, 3]) (left) and (Rationals^
[3, 3]) (right)>
gap> vv:= BasisVectors(Basis(M));
[[1, 0, 0], [0, 1, 0], [0, 0, 1]]
gap> IsLeftAlgebraModuleElement(vv[1]);
true
gap> IsRightAlgebraModuleElement(vv[1]);
true
gap> vv[1] = [1, 0, 0];
false
gap> ExtRepOfObj(vv[1]) = [1, 0, 0];
true
gap> ObjByExtRep(ElementsFamily(FamilyObj(M)), [1, 0, 0]) in M;
true

Section 10. Representations of Algebras 635

gap> xx:= BasisVectors(Basis(A));;
gap> xx[4]^vv[1]; # left action
[0, 1, 0]
gap> vv[1]^xx[2]; # right action
[0, 1, 0]

11 I LeftActingAlgebra(V) A

Here V is a left-algebra module; this function returns the algebra that acts from the left on V .

12 I RightActingAlgebra(V) A

Here V is a right-algebra module; this function returns the algebra that acts from the right on V .

13 I ActingAlgebra(V) O

Here V is an algebra module; this function returns the algebra that acts on V (this is the same as Left-
ActingAlgebra(V) if V is a left module, and RightActingAlgebra(V) if V is a right module; it will
signal an error if V is a bi-module).

gap> A:= Rationals^[3,3];;
gap> M:= BiAlgebraModuleByGenerators(A, A, *, *, [[1, 0, 0]]);;
gap> LeftActingAlgebra(M);
(Rationals^[3, 3])
gap> RightActingAlgebra(M);
(Rationals^[3, 3])
gap> V:= RightAlgebraModuleByGenerators(A, *, [[1, 0, 0]]);;
gap> ActingAlgebra(V);
(Rationals^[3, 3])

14 I IsBasisOfAlgebraModuleElementSpace(B) C

If a basis B lies in the category IsBasisOfAlgebraModuleElementSpace, then B is a basis of a subspace
of an algebra module. This means that B has the record field B!.delegateBasis set. This last object is a
basis of the corresponding subspace of the vector space underlying the algebra module (i.e., the vector space
spanned by all ExtRepOfObj(v) for v in the algebra module).

gap> A:= Rationals^[3,3];;
gap> M:= BiAlgebraModuleByGenerators(A, A, *, *, [[1, 0, 0]]);;
gap> B:= Basis(M);
Basis(<3-dimensional bi-module over (Rationals^
[3, 3]) (left) and (Rationals^[3, 3]) (right)>,
[[1, 0, 0], [0, 1, 0], [0, 0, 1]])
gap> IsBasisOfAlgebraModuleElementSpace(B);
true
gap> B!.delegateBasis;
SemiEchelonBasis(<vector space of dimension 3 over Rationals>,
[[1, 0, 0], [0, 1, 0], [0, 0, 1]])

15 I MatrixOfAction(B, x) O
I MatrixOfAction(B, x, side) O

Here B is a basis of an algebra module and x is an element of the algebra that acts on this module. This
function returns the matrix of the action of x with respect to B . If x acts from the left, then the coefficients
of the images of the basis elements of B (under the action of x) are the columns of the output. If x acts
from the right, then they are the rows of the output.

636 Chapter 60. Algebras

If the module is a bi-module, then the third parameter side must be specified. This is the string left, or
right depending whether x acts from the left or the right.

gap> M:= LeftAlgebraModuleByGenerators(A, *, [[1, 0, 0]]);;
gap> x:= Basis(A)[3];
[[0, 0, 1], [0, 0, 0], [0, 0, 0]]
gap> MatrixOfAction(Basis(M), x);
[[0, 0, 1], [0, 0, 0], [0, 0, 0]]

16 I SubAlgebraModule(M , gens [, ”basis”]) O

is the sub-module of the algebra module M , generated by the vectors in gens. If as an optional argument
the string basis is added, then it is assumed that the vectors in gens form a basis of the submodule.

gap> m1:= NullMat(2, 2);; m1[1][1]:= 1;;
gap> m2:= NullMat(2, 2);; m2[2][2]:= 1;;
gap> A:= Algebra(Rationals, [m1, m2]);;
gap> M:= LeftAlgebraModuleByGenerators(A, *, [[1, 0], [0, 1]]);
<left-module over <algebra over Rationals, with 2 generators>>
gap> bb:= BasisVectors(Basis(M));
[[1, 0], [0, 1]]
gap> V:= SubAlgebraModule(M, [bb[1]]);
<left-module over <algebra over Rationals, with 2 generators>>
gap> Dimension(V);
1

17 I LeftModuleByHomomorphismToMatAlg(A, hom) O

Here A is an algebra and hom a homomorphism from A into a matrix algebra. This function returns the
left A-module defined by the homomorphism hom.

18 I RightModuleByHomomorphismToMatAlg(A, hom) O

Here A is an algebra and hom a homomorphism from A into a matrix algebra. This function returns the
right A-module defined by the homomorphism hom.

First we produce a structure constants algebra with basis elements x , y , z such that x 2 = x , y2 = y , xz = z ,
zy = z and all other products are zero.

gap> T:= EmptySCTable(3, 0);;
gap> SetEntrySCTable(T, 1, 1, [1, 1]);
gap> SetEntrySCTable(T, 2, 2, [1, 2]);
gap> SetEntrySCTable(T, 1, 3, [1, 3]);
gap> SetEntrySCTable(T, 3, 2, [1, 3]);
gap> A:= AlgebraByStructureConstants(Rationals, T);
<algebra of dimension 3 over Rationals>

Now we construct an isomorphic matrix algebra.

gap> m1:= NullMat(2, 2);; m1[1][1]:= 1;;
gap> m2:= NullMat(2, 2);; m2[2][2]:= 1;;
gap> m3:= NullMat(2, 2);; m3[1][2]:= 1;;
gap> B:= Algebra(Rationals, [m1, m2, m3]);
<algebra over Rationals, with 3 generators>

Finally we construct the homomorphism and the corresponding right module.

Section 10. Representations of Algebras 637

gap> f:= AlgebraHomomorphismByImages(A, B, Basis(A), [m1, m2, m3]);;
gap> RightModuleByHomomorphismToMatAlg(A, f);
<right-module over <algebra of dimension 3 over Rationals>>

19 I AdjointModule(A) A

returns the A-module defined by the left action of A on itself.

gap> m1:= NullMat(2, 2);; m1[1][1]:= 1;;
gap> m2:= NullMat(2, 2);; m2[2][2]:= 1;;
gap> m3:= NullMat(2, 2);; m3[1][2]:= 1;;
gap> A:= Algebra(Rationals, [m1, m2, m3]);
<algebra over Rationals, with 3 generators>
gap> V:= AdjointModule(A);
<3-dimensional left-module over <algebra of dimension 3 over Rationals>>
gap> v:= Basis(V)[3];
[[0, 1], [0, 0]]
gap> W:= SubAlgebraModule(V, [v]);
<left-module over <algebra of dimension 3 over Rationals>>
gap> Dimension(W);
1

20 I FaithfulModule(A) A

returns a faithful finite-dimensional left-module over the algebra A. This is only implemented for associative
algebras, and for Lie algebras of characteristic 0. (It may also work for certain Lie algebras of characteristic
p > 0.)

gap> T:= EmptySCTable(2, 0);;
gap> A:= AlgebraByStructureConstants(Rationals, T);
<algebra of dimension 2 over Rationals>

A is a 2-dimensional algebra where all products are zero.

gap> V:= FaithfulModule(A);
<left-module over <algebra of dimension 2 over Rationals>>
gap> vv:= BasisVectors(Basis(V));
[[1, 0, 0], [0, 1, 0], [0, 0, 1]]
gap> xx:= BasisVectors(Basis(A));
[v.1, v.2]
gap> xx[1]^vv[3];
[1, 0, 0]

21 I ModuleByRestriction(V , sub) O
I ModuleByRestriction(V , subl, subr) O

Here V is an algebra module and sub is a subalgebra of the acting algebra of V . This function returns the
module that is the restriction of V to sub. So it has the same underlying vector space as V , but the acting
algebra is sub. If two subalgebras are given then V is assumed to be a bi-module, and subl a subalgebra of
the algebra acting on the left, and subr a subalgebra of the algebra acting on the right.

638 Chapter 60. Algebras

gap> A:= Rationals^[3,3];;
gap> V:= LeftAlgebraModuleByGenerators(A, *, [[1, 0, 0]]);;
gap> B:= Subalgebra(A, [Basis(A)[1]]);
<algebra over Rationals, with 1 generators>
gap> W:= ModuleByRestriction(V, B);
<left-module over <algebra over Rationals, with 1 generators>>

22 I NaturalHomomorphismBySubAlgebraModule(V , W) O

Here V must be a sub-algebra module of V . This function returns the projection from V onto V /W . It is
a linear map, that is also a module homomorphism. As usual images can be formed with Image(f, v)
and pre-images with PreImagesRepresentative(f, u).

The quotient module can also be formed by entering V /W .

gap> A:= Rationals^[3,3];;
gap> B:= DirectSumOfAlgebras(A, A);
<algebra over Rationals, with 6 generators>
gap> T:= StructureConstantsTable(Basis(B));;
gap> C:= AlgebraByStructureConstants(Rationals, T);
<algebra of dimension 18 over Rationals>
gap> V:= AdjointModule(C);
<left-module over <algebra of dimension 18 over Rationals>>
gap> W:= SubAlgebraModule(V, [Basis(V)[1]]);
<left-module over <algebra of dimension 18 over Rationals>>
gap> f:= NaturalHomomorphismBySubAlgebraModule(V, W);
<linear mapping by matrix, <
18-dimensional left-module over <algebra of dimension 18 over Rationals>> -> <
9-dimensional left-module over <algebra of dimension 18 over Rationals>>>
gap> quo:= ImagesSource(f); # i.e., the quotient module
<9-dimensional left-module over <algebra of dimension 18 over Rationals>>
gap> v:= Basis(quo)[1];
[1, 0, 0, 0, 0, 0, 0, 0, 0]
gap> PreImagesRepresentative(f, v);
v.4
gap> Basis(C)[4]^v;
[1, 0, 0, 0, 0, 0, 0, 0, 0]

23 I DirectSumOfAlgebraModules(list) O
I DirectSumOfAlgebraModules(V , W) O

Here list must be a list of algebra modules. This function returns the direct sum of the elements in the list
(as an algebra module). The modules must be defined over the same algebras.

In the second form is short for DirectSumOfAlgebraModules([V , W])

gap> A:= FullMatrixAlgebra(Rationals, 3);;
gap> V:= BiAlgebraModuleByGenerators(A, A, *, *, [[1,0,0]]);;
gap> W:= DirectSumOfAlgebraModules(V, V);
<6-dimensional left-module over (Rationals^[3, 3])>
gap> BasisVectors(Basis(W));
[([1, 0, 0])(+)([0, 0, 0]), ([0, 1, 0])(+)([0, 0, 0]),
([0, 0, 1])(+)([0, 0, 0]), ([0, 0, 0])(+)([1, 0, 0]),
([0, 0, 0])(+)([0, 1, 0]), ([0, 0, 0])(+)([0, 0, 1])]

Section 10. Representations of Algebras 639

24 I TranslatorSubalgebra(M , U , W) O

Here M is an algebra module, and U and W are two subspaces of M . Let A be the algebra acting on M .
This function returns the subspace of elements of A that map U into W . If W is a sub-algebra-module (i.e.,
closed under the action of A), then this space is a subalgebra of A.

This function works for left, or right modules over a finite-dimensional algebra. We stress that it is not
checked whether U and W are indeed subspaces of M . If this is not the case nothing is guaranteed about
the behaviour of the function.

gap> A:= FullMatrixAlgebra(Rationals, 3);
(Rationals^[3, 3])
gap> V:= Rationals^[3,2];
(Rationals^[3, 2])
gap> M:= LeftAlgebraModule(A, *, V);
<left-module over (Rationals^[3, 3])>
gap> bm:= Basis(M);;
gap> U:= SubAlgebraModule(M, [bm[1]]);
<left-module over (Rationals^[3, 3])>
gap> TranslatorSubalgebra(M, U, M);
<algebra of dimension 9 over Rationals>
gap> W:= SubAlgebraModule(M, [bm[4]]);
<left-module over (Rationals^[3, 3])>
gap> T:=TranslatorSubalgebra(M, U, W);
<algebra of dimension 0 over Rationals>

61 Lie Algebras

A Lie algebra L is an algebra such that xx = 0 and x (yz) + y(zx) + z (xy) = 0 for all x , y , z ∈ L. A common
way of creating a Lie algebra is by taking an associative algebra together with the commutator as product.
Therefore the product of two elements x , y of a Lie algebra is usually denoted by [x , y], but in GAP this
denotes the list of the elements x and y ; hence the product of elements is made by the usual *. This gives
no problems when dealing with Lie algebras given by a table of structure constants. However, for matrix
Lie algebras the situation is not so easy as * denotes the ordinary (associative) matrix multiplication. In
GAPthis problem is solved by wrapping elements of a matrix Lie algebra up as LieObjects, and then define
the * for LieObjects to be the commutator (see 61.1);

61.1 Lie objects

Let x be a ring element, then LieObject(x) wraps x up into an object that contains the same data (namely
x). The multiplication * for Lie objects is formed by taking the commutator. More exactly, if l1 and l2 are the
Lie objects corresponding to the ring elements r1 and r2, then l1 ∗ l2 is equal to the Lie object corresponding
to r1 ∗ r2 − r2 ∗ r2. Two rules for Lie objects are worth noting:

– An element is not equal to its Lie element.

– If we take the Lie object of an ordinary (associative) matrix then this is again a matrix; it is therefore
a collection (of its rows) and a list. But it is not a collection of collections of its entries, and its family
is not a collections family.

1 I LieObject(obj) A

Let obj be a ring element. Then LieObject(obj) is the corresponding Lie object. If obj lies in the family
F , then LieObject(obj) lies in the family LieFamily(F) (see 61.1.3).

gap> m:= [[1, 0], [0, 1]];;
gap> lo:= LieObject(m);
LieObject([[1, 0], [0, 1]])
gap> m*m;
[[1, 0], [0, 1]]
gap> lo*lo;
LieObject([[0, 0], [0, 0]])

2 I IsLieObject(obj) C
I IsLieObjectCollection(obj) C

An object lies in IsLieObject if and only if it lies in a family constructed by LieFamily.

Section 2. Constructing Lie algebras 641

gap> m:= [[1, 0], [0, 1]];;
gap> lo:= LieObject(m);
LieObject([[1, 0], [0, 1]])
gap> IsLieObject(m);
false
gap> IsLieObject(lo);
true

3 I LieFamily(Fam) A

is a family F in bijection with the family Fam, but with the Lie bracket as infix multiplication. That is, for
x , y in Fam, the product of the images in F will be the image of x ∗ y − y ∗ x .

The standard type of objects in a Lie family F is F!.packedType.

The bijection from Fam to F is given by Embedding(Fam, F); this bijection respects addition and
additive inverses.

4 I UnderlyingFamily(Fam) A

If Fam is a Lie family then UnderlyingFamily(Fam) is a family F such that Fam = LieFamily(F).

61.2 Constructing Lie algebras

In this section we describe functions that create Lie algebras. Creating and working with subalgebras goes
exactly in the same way as for general algebras; so for that we refer to Chapter 60.

1 I LieAlgebraByStructureConstants(R, sctable) F
I LieAlgebraByStructureConstants(R, sctable, name) F
I LieAlgebraByStructureConstants(R, sctable, name1, name2, ...) F

LieAlgebraByStructureConstants does the same as AlgebraByStructureConstants, except that the re-
sult is assumed to be a Lie algebra. Note that the function does not check whether sctable satisfies the Jacobi
identity. (So if one creates a Lie algebra this way with a table that does not satisfy the Jacobi identity, errors
may occur later on.)

gap> T:= EmptySCTable(2, 0, "antisymmetric");;
gap> SetEntrySCTable(T, 1, 2, [1/2, 1]);
gap> L:= LieAlgebraByStructureConstants(Rationals, T);
<Lie algebra of dimension 2 over Rationals>

2 I LieAlgebra(L) F
I LieAlgebra(F, gens) F
I LieAlgebra(F, gens, zero) F
I LieAlgebra(F, gens, "basis") F
I LieAlgebra(F, gens, zero, "basis") F

For an associative algebra L, LieAlgebra(L) is the Lie algebra isomorphic to L as a vector space but
with the Lie bracket as product.

LieAlgebra(F, gens) is the Lie algebra over the division ring F , generated as Lie algebra by the Lie
objects corresponding to the vectors in the list gens.

Note that the algebra returned by LieAlgebra does not contain the vectors in gens. The elements in gens
are wrapped up as Lie objects (see 61.1). This allows one to create Lie algebras from ring elements with
respect to the Lie bracket as product. But of course the product in the Lie algebra is the usual *.

If there are three arguments, a division ring F and a list gens and an element zero, then LieAlgebra(F,
gens, zero) is the corresponding F -Lie algebra with zero element the Lie object corresponding to zero.

642 Chapter 61. Lie Algebras

If the last argument is the string "basis" then the vectors in gens are known to form a basis of the algebra
(as an F -vector space).

Note that even if each element in gens is already a Lie element, i.e., is of the form LieElement(elm) for
an object elm, the elements of the result lie in the Lie family of the family that contains gens as a subset.

gap> A:= FullMatrixAlgebra(GF(7), 4);;
gap> L:= LieAlgebra(A);
<Lie algebra of dimension 16 over GF(7)>
gap> mats:= [[[1, 0], [0, -1]], [[0, 1], [0, 0]], [[0, 0], [1, 0]]];;
gap> L:= LieAlgebra(Rationals, mats);
<Lie algebra over Rationals, with 3 generators>

3 I FreeLieAlgebra(R, rank) F
I FreeLieAlgebra(R, rank, name) F
I FreeLieAlgebra(R, name1, name2, ...) F

Returns a free Lie algebra of rank rank over the ring R. FreeLieAlgebra(R, name1, name2,...) returns
a free Lie algebra over R with generators named name1 , name2 , and so on. The elements of a free Lie algebra
are written on the Hall-Lyndon basis.

gap> L:= FreeLieAlgebra(Rationals, "x", "y", "z");
<Lie algebra over Rationals, with 3 generators>
gap> g:= GeneratorsOfAlgebra(L);; x:= g[1];; y:=g[2];; z:= g[3];;
gap> z*(y*(x*(z*y)));
(-1)*((x*(y*z))*(y*z))+(-1)*((x*((y*z)*z))*y)+(-1)*(((x*z)*(y*z))*y)

4 I FullMatrixLieAlgebra(R, n) F
I MatrixLieAlgebra(R, n) F
I MatLieAlgebra(R, n) F

is the full matrix Lie algebra Rn×n , for a ring R and a nonnegative integer n.

gap> FullMatrixLieAlgebra(GF(9), 10);
<Lie algebra over GF(3^2), with 19 generators>

5 I RightDerivations(B) A
I LeftDerivations(B) A
I Derivations(B) A

These functions all return the matrix Lie algebra of derivations of the algebra A with basis B .

RightDerivations(B) returns the algebra of derivations represented by their right action on the algebra
A. This means that with respect to the basis B of A, the derivation D is described by the matrix [di ,j] which
means that D maps the i -th basis element bi to

∑n
j=1 dij bj .

LeftDerivations(B) returns the Lie algebra of derivations represented by their left action on the algebra
A. So the matrices contained in the algebra output by LeftDerivations(B) are the transposes of the
matrices contained in the output of RightDerivations(B).

Derivations is just a synonym for RightDerivations.

gap> A:= OctaveAlgebra(Rationals);
<algebra of dimension 8 over Rationals>
gap> L:= Derivations(Basis(A));
<Lie algebra of dimension 14 over Rationals>

6 I SimpleLieAlgebra(type, n, F) F

This function constructs the simple Lie algebra of type type and of rank n over the field F .

Section 3. Distinguished Subalgebras 643

type must be one of A, B, C, D, E, F, G, H, K, S, W. For the types A to G, n must be a positive integer.
The last four types only exist over fields of characteristic p > 0. If the type is H, then n must be a list of
positive integers of even length. If the type is K, then n must be a list of positive integers of odd length.
For the other types, S and W, n must be a list of positive integers of any length. In some cases the Lie
algebra returned by this function is not simple. Examples are the Lie algebras of type An over a field of
characteristic p > 0 where p divides n + 1, and the Lie algebras of type Kn where n is a list of length 1.

If type is one of A, B, C, D, E, F, G, and F is a field of characteristic zero, then the basis of the returned
Lie algebra is a Chevalley basis.

gap> SimpleLieAlgebra("E", 6, Rationals);
<Lie algebra of dimension 78 over Rationals>
gap> SimpleLieAlgebra("A", 6, GF(5));
<Lie algebra of dimension 48 over GF(5)>
gap> SimpleLieAlgebra("W", [1,2], GF(5));
<Lie algebra of dimension 250 over GF(5)>
gap> SimpleLieAlgebra("H", [1,2], GF(5));
<Lie algebra of dimension 123 over GF(5)>

61.3 Distinguished Subalgebras

Here we describe functions that calculate well-known subalgebras and ideals of a Lie algebra (such as the
centre, the centralizer of a subalgebra, etc.).

1 I LieCentre(L) A
I LieCenter(L) A

The Lie centre of the Lie algebra L is the kernel of the adjoint mapping, that is, the set {a ∈ L;∀x ∈ L :
ax = 0}.
In characteristic 2 this may differ from the usual centre (that is the set of all a ∈ L such that ax = xa for
all x ∈ L). Therefore, this operation is named LieCentre and not Centre.

gap> L:= FullMatrixLieAlgebra(GF(3), 3);
<Lie algebra over GF(3), with 5 generators>
gap> LieCentre(L);
<two-sided ideal in <Lie algebra of dimension 9 over GF(3)>, (dimension 1)>

2 I LieCentralizer(L, S) O

is the annihilator of S in the Lie algebra L, that is, the set {a ∈ L;∀s ∈ S : a ∗ s = 0}. Here S may be a
subspace or a subalgebra of L.

gap> L:= SimpleLieAlgebra("G", 2, Rationals);
<Lie algebra of dimension 14 over Rationals>
gap> b:= BasisVectors(Basis(L));;
gap> LieCentralizer(L, Subalgebra(L, [b[1], b[2]]));
<Lie algebra of dimension 1 over Rationals>

3 I LieNormalizer(L, U) O

is the normalizer of the subspace U in the Lie algebra L, that is, the set NL(U) = {x ∈ L; [x ,U] ⊂ U }.

644 Chapter 61. Lie Algebras

gap> L:= SimpleLieAlgebra("G", 2, Rationals);
<Lie algebra of dimension 14 over Rationals>
gap> b:= BasisVectors(Basis(L));;
gap> LieNormalizer(L, Subalgebra(L, [b[1], b[2]]));
<Lie algebra of dimension 8 over Rationals>

4 I LieDerivedSubalgebra(L) A

is the (Lie) derived subalgebra of the Lie algebra L.

gap> L:= FullMatrixLieAlgebra(GF(3), 3);
<Lie algebra over GF(3), with 5 generators>
gap> LieDerivedSubalgebra(L);
<Lie algebra of dimension 8 over GF(3)>

5 I LieNilRadical(L) A

This function calculates the (Lie) nil radical of the Lie algebra L.

In the following two examples we temporarily increase the line length limit from its default value 80 to 81
in order to make the long output expressions fit each into one line.

gap> mats:= [[[1,0],[0,0]], [[0,1],[0,0]], [[0,0],[0,1]]];;
gap> L:= LieAlgebra(Rationals, mats);;
gap> SizeScreen([81,]);;
gap> LieNilRadical(L);
<two-sided ideal in <Lie algebra of dimension 3 over Rationals>, (dimension 2)>
gap> SizeScreen([80,]);;

6 I LieSolvableRadical(L) A

Returns the (Lie) solvable radical of the Lie algebra L.

gap> L:= FullMatrixLieAlgebra(Rationals, 3);;
gap> SizeScreen([81,]);;
gap> LieSolvableRadical(L);
<two-sided ideal in <Lie algebra of dimension 9 over Rationals>, (dimension 1)>
gap> SizeScreen([80,]);;

7 I CartanSubalgebra(L) A

A Cartan subalgebra of a Lie algebra L is defined as a nilpotent subalgebra of L equal to its own Lie
normalizer in L.

gap> L:= SimpleLieAlgebra("G", 2, Rationals);;
gap> CartanSubalgebra(L);
<Lie algebra of dimension 2 over Rationals>

61.4 Series of Ideals

1 I LieDerivedSeries(L) A

is the (Lie) derived series of the Lie algebra L.

Section 5. Properties of a Lie Algebra 645

gap> mats:= [[[1,0],[0,0]], [[0,1],[0,0]], [[0,0],[0,1]]];;
gap> L:= LieAlgebra(Rationals, mats);;
gap> LieDerivedSeries(L);
[<Lie algebra of dimension 3 over Rationals>,
<Lie algebra of dimension 1 over Rationals>,
<Lie algebra of dimension 0 over Rationals>]

2 I LieLowerCentralSeries(L) A

is the (Lie) lower central series of the Lie algebra L.

gap> mats:= [[[1, 0], [0, 0]], [[0,1],[0,0]], [[0,0],[0,1]]];;
gap> L:=LieAlgebra(Rationals, mats);;
gap> LieLowerCentralSeries(L);
[<Lie algebra of dimension 3 over Rationals>,
<Lie algebra of dimension 1 over Rationals>]

3 I LieUpperCentralSeries(L) A

is the (Lie) upper central series of the Lie algebra L.

gap> mats:= [[[1, 0], [0, 0]], [[0,1],[0,0]], [[0,0],[0,1]]];;
gap> L:=LieAlgebra(Rationals, mats);;
gap> LieUpperCentralSeries(L);
[<two-sided ideal in <Lie algebra of dimension 3 over Rationals>,

(dimension 1)>, <Lie algebra over Rationals, with 0 generators>]

61.5 Properties of a Lie Algebra

1 I IsLieAbelian(L) P

is true if L is a Lie algebra such that each product of elements in L is zero, and false otherwise.

gap> T:= EmptySCTable(5, 0, "antisymmetric");;
gap> L:= LieAlgebraByStructureConstants(Rationals, T);
<Lie algebra of dimension 5 over Rationals>
gap> IsLieAbelian(L);
true

2 I IsLieNilpotent(L) P

A Lie algebra L is defined to be (Lie) nilpotent when its (Lie) lower central series reaches the trivial subal-
gebra.

gap> T:= EmptySCTable(5, 0, "antisymmetric");;
gap> L:= LieAlgebraByStructureConstants(Rationals, T);
<Lie algebra of dimension 5 over Rationals>
gap> IsLieNilpotent(L);
true

3 I IsLieSolvable(L) P

A Lie algebra L is defined to be (Lie) solvable when its (Lie) derived series reaches the trivial subalgebra.

gap> T:= EmptySCTable(5, 0, "antisymmetric");;
gap> L:= LieAlgebraByStructureConstants(Rationals, T);
<Lie algebra of dimension 5 over Rationals>
gap> IsLieSolvable(L);
true

646 Chapter 61. Lie Algebras

61.6 Direct Sum Decompositions

In this section we describe two functions that calculate a direct sum decomposition of a Lie algebra; the
so-called Levi decomposition and the decomposition into a direct sum of ideals.

1 I LeviMalcevDecomposition(L) A

A Levi-Malcev subalgebra of the algebra L is a semisimple subalgebra complementary to the radical of L.
This function returns a list with two components. The first component is a Levi-Malcev subalgebra, the
second the radical. This function is implemented for associative and Lie algebras.

gap> L:= FullMatrixLieAlgebra(Rationals, 5);;
gap> LeviMalcevDecomposition(L);
[<Lie algebra of dimension 24 over Rationals>,
<two-sided ideal in <Lie algebra of dimension 25 over Rationals>,

(dimension 1)>]

2 I DirectSumDecomposition(L) A

This function calculates a list of ideals of the algebra L such that L is equal to their direct sum. Currently
this is only implemented for semisimple associative algebras, and Lie algebras (semisimple or not).

gap> L:= FullMatrixLieAlgebra(Rationals, 5);;
gap> DirectSumDecomposition(L);
[<two-sided ideal in

<two-sided ideal in <Lie algebra of dimension 25 over Rationals>,
(dimension 1)>, (dimension 1)>,

<two-sided ideal in <two-sided ideal in
<Lie algebra of dimension 25 over Rationals>, (dimension 24)>,

(dimension 24)>]

61.7 Semisimple Lie Algebras and Root Systems

This section contains some functions for dealing with semisimple Lie algebras and their root systems.

1 I SemiSimpleType(L) A

Let L be a semisimple Lie algebra, i.e., a direct sum of simple Lie algebras. Then SemiSimpleType returns
the type of L, i.e., a string containing the types of the simple summands of L.

gap> L:= SimpleLieAlgebra("E", 8, Rationals);;
gap> b:= BasisVectors(Basis(L));;
gap> K:= LieCentralizer(L, Subalgebra(L, [b[61]+b[79]+b[101]+b[102]]));
<Lie algebra of dimension 102 over Rationals>
gap> lev:= LeviMalcevDecomposition(K);;
gap> SemiSimpleType(lev[1]);
"B3 A1"

2 I ChevalleyBasis(L) A

Here L must be a semisimple Lie algebra with a split Cartan subalgebra. Then ChevalleyBasis(L)
returns a list consisting of three sublists. Together these sublists form a Chevalley basis of L. The first list
contains the positive root vectors, the second list contains the negative root vectors, and the third list the
Cartan elements of the Chevalley basis.

Section 7. Semisimple Lie Algebras and Root Systems 647

gap> L:= SimpleLieAlgebra("G", 2, Rationals);
<Lie algebra of dimension 14 over Rationals>
gap> ChevalleyBasis(L);
[[v.1, v.2, v.3, v.4, v.5, v.6], [v.7, v.8, v.9, v.10, v.11, v.12],
[v.13, v.14]]

3 I IsRootSystem(obj) C

Category of root systems.

4 I IsRootSystemFromLieAlgebra(obj) C

Category of root systems that come from (semisimple) Lie algebras. They often have special attributes such
as UnderlyingLieAlgebra, PositiveRootVectors, NegativeRootVectors, CanonicalGenerators.

5 I RootSystem(L) A

RootSystem calculates the root system of the semisimple Lie algebra L with a split Cartan subalgebra.

gap> L:= SimpleLieAlgebra("G", 2, Rationals);
<Lie algebra of dimension 14 over Rationals>
gap> R:= RootSystem(L);
<root system of rank 2>
gap> IsRootSystem(R);
true
gap> IsRootSystemFromLieAlgebra(R);
true

6 I UnderlyingLieAlgebra(R) A

Here R is a root system coming from a semisimple Lie algebra L. This function returns L.

7 I PositiveRoots(R) A

The list of positive roots of the root system R.

8 I NegativeRoots(R) A

The list of negative roots of the root system R.

9 I PositiveRootVectors(R) A

A list of positive root vectors of the root system R that comes from a Lie algebra L. This is a list in bijection
with the list PositiveRoots(L). The root vector is a non-zero element of the root space (in L) of the
corresponding root.

10 I NegativeRootVectors(R) A

A list of negative root vectors of the root system R that comes from a Lie algebra L. This is a list in bijection
with the list NegativeRoots(L). The root vector is a non-zero element of the root space (in L) of the
corresponding root.

11 I SimpleSystem(R) A

A list of simple roots of the root system R.

12 I CartanMatrix(R) A

The Cartan matrix of the root system R, relative to the simple roots in SimpleSystem(R).

648 Chapter 61. Lie Algebras

13 I BilinearFormMat(R) A

The matrix of the bilinear form of the root system R. If we denote this matrix by B , then we have B(i , j) =
(αi , αj), where the αi are the simple roots of R.

14 I CanonicalGenerators(R) A

Here R must be a root system coming from a semisimple Lie algebra L. This function returns 3l generators
of L, x1, . . . , xl , y1, . . . , yl , h1, . . . , hl , where xi lies in the root space corresponding to the i -th simple root of
the root system of L, yi lies in the root space corresponding to − the i -th simple root, and the hi are elements
of the Cartan subalgebra. These elements satisfy the relations hi ∗ hj = 0, xi ∗ yj = δij hi , hj ∗ xi = cij xi ,
hj ∗ yi = −cij yi , where cij is the entry of the Cartan matrix on position ij .

Also if a is a root of the root system R (so a is a list of numbers), then we have the relation hi ∗ x = a[i]x ,
where x is a root vector corresponding to a.

gap> L:= SimpleLieAlgebra("G", 2, Rationals);;
gap> R:= RootSystem(L);;
gap> UnderlyingLieAlgebra(R);
<Lie algebra of dimension 14 over Rationals>
gap> PositiveRoots(R);
[[2, -1], [-3, 2], [-1, 1], [1, 0], [3, -1], [0, 1]]
gap> x:= PositiveRootVectors(R);
[v.1, v.2, v.3, v.4, v.5, v.6]
gap> g:=CanonicalGenerators(R);
[[v.1, v.2], [v.7, v.8], [v.13, v.14]]
gap> g[3][1]*x[1];
(2)*v.1
gap> g[3][2]*x[1];
(-1)*v.1
gap> # i.e., x[1] is the root vector belonging to the root [2, -1]
gap> BilinearFormMat(R);
[[1/12, -1/8], [-1/8, 1/4]]

The next few sections deal with the Weyl group of a root system. A Weyl group is represented by its
action on the weight lattice. A weight is by definition a linear function λ : H → F (where F is the
ground field), such that the values λ(hi) are all integers (where the hi are the Cartan elements of the
CanonicalGenerators). On the other hand each weight is determined by these values. Therefore we represent
a weight by a vector of integers; the i -th entry of this vector is the value λ(hi). Now the elements of the
Weyl group are represented by matrices, and if g is an element of a Weyl group and w a weight, then w*g
gives the result of applying g to w. Another way of applying the i -th simple reflection to a weight is by using
the function ApplySimpleReflection (see below).

A Weyl group is generated by the simple reflections. So GeneratorsOfGroup(W) for a Weyl group W gives
a list of matrices and the i -th entry of this list is the simple reflection corresponding to the i -th simple root
of the corresponding root system.

15 I IsWeylGroup(G) P

A Weyl group is a group generated by reflections, with the attribute SparseCartanMatrix set.

16 I SparseCartanMatrix(W) A

This is a sparse form of the Cartan matrix of the corresponding root system. If we denote the Cartan matrix
by C, then the sparse Cartan matrix of W is a list (of length equal to the length of the Cartan matrix), where
the i-th entry is a list consisting of elements [j, C[i][j]], where j is such that C[i][j] is non-zero.

Section 7. Semisimple Lie Algebras and Root Systems 649

17 I WeylGroup(R) A

The Weyl group of the root system R. It is generated by the simple reflections. A simple reflection is
represented by a matrix, and the result of letting a simple reflection m act on a weight w is obtained by w*m.

gap> L:= SimpleLieAlgebra("F", 4, Rationals);;
gap> R:= RootSystem(L);;
gap> W:= WeylGroup(R);
<matrix group with 4 generators>
gap> IsWeylGroup(W);
true
gap> SparseCartanMatrix(W);
[[[1, 2], [3, -1]], [[2, 2], [4, -1]],
[[1, -1], [3, 2], [4, -1]], [[2, -1], [3, -2], [4, 2]]]

gap> g:= GeneratorsOfGroup(W);;
gap> [1, 1, 1, 1]*g[2];
[1, -1, 1, 2]

18 I ApplySimpleReflection(SC, i, wt) O

Here SC is the sparse Cartan matrix of a Weyl group. This function applies the i -th simple reflection to the
weight wt , thus changing wt .

gap> L:= SimpleLieAlgebra("F", 4, Rationals);;
gap> W:= WeylGroup(RootSystem(L));;
gap> C:= SparseCartanMatrix(W);;
gap> w:= [1, 1, 1, 1];;
gap> ApplySimpleReflection(C, 2, w);
gap> w;
[1, -1, 1, 2]

19 I LongestWeylWordPerm(W) A

Let g0 be the longest element in the Weyl group W , and let {α1, . . . , αl} be a simple system of the cor-
responding root system. Then g0 maps αi to −ασ(i), where σ is a permutation of (1, . . . , l). This function
returns that permutation.

gap> L:= SimpleLieAlgebra("E", 6, Rationals);;
gap> W:= WeylGroup(RootSystem(L));;
gap> LongestWeylWordPerm(W);
(1,6)(3,5)

20 I ConjugateDominantWeight(W , wt) O
I ConjugateDominantWeightWithWord(W , wt) O

Here W is a Weyl group and wt a weight (i.e., a list of integers). This function returns the unique dominant
weight conjugate to wt under W .

ConjugateDominantWegihtWithWord(W , wt) returns a list of two elements. The first of these is the
dominant weight conjugate do wt . The second element is a list of indices of simple reflections that have to
be applied to wt in order to get the dominant weight conjugate to it.

650 Chapter 61. Lie Algebras

gap> L:= SimpleLieAlgebra("E", 6, Rationals);;
gap> W:= WeylGroup(RootSystem(L));;
gap> C:= SparseCartanMatrix(W);;
gap> w:= [1, -1, 2, -2, 3, -3];;
gap> ConjugateDominantWeight(W, w);
[2, 1, 0, 0, 0, 0]
gap> c:= ConjugateDominantWeightWithWord(W, w);
[[2, 1, 0, 0, 0, 0], [2, 4, 2, 3, 6, 5, 4, 2, 3, 1]]
gap> for i in [1..Length(c[2])] do
> ApplySimpleReflection(C, c[2][i], w);
> od;
gap> w;
[2, 1, 0, 0, 0, 0]

21 I WeylOrbitIterator(W , wt) O

Returns an iterator for the orbit of the weight wt under the action of the Weyl group W .

gap> L:= SimpleLieAlgebra("E", 6, Rationals);;
gap> W:= WeylGroup(RootSystem(L));;
gap> orb:= WeylOrbitIterator(W, [1, 1, 1, 1, 1, 1]);
<iterator>
gap> NextIterator(orb);
[1, 1, 1, 1, 1, 1]
gap> NextIterator(orb);
[-1, -1, -1, -1, -1, -1]
gap> orb:= WeylOrbitIterator(W, [1, 1, 1, 1, 1, 1]);
<iterator>
gap> k:= 0;
0
gap> while not IsDoneIterator(orb) do
> w:= NextIterator(orb); k:= k+1;
> od;
gap> k; # this is the size of the Weyl group of E6
51840

61.8 Restricted Lie algebras

A Lie algebra L over a field of characteristic p > 0 is called restricted if there is a map x 7→ x p from L into
L (called a p-map) such that adx p = (adx)p , (αx)p = αpx p and (x + y)p = x p + yp +

∑p−1
i=1 si (x , y), where

si : L×L→ L are certain Lie polynomials in two variables. Using these relations we can calculate yp for all
y ∈ L, once we know x p for x in a basis of L. Therefore a p-map is represented in GAP by a list containing
the images of the basis vectors of a basis B of L. For this reason this list is an attribute of the basis B .

1 I IsRestrictedLieAlgebra(L) P

Test whether L is restricted.

gap> L:= SimpleLieAlgebra("W", [2], GF(5));
<Lie algebra of dimension 25 over GF(5)>
gap> IsRestrictedLieAlgebra(L);
false
gap> L:= SimpleLieAlgebra("W", [1], GF(5));
<Lie algebra of dimension 5 over GF(5)>

Section 8. Restricted Lie algebras 651

gap> IsRestrictedLieAlgebra(L);
true

2 I PthPowerImages(B) A

Here B is a basis of a restricted Lie algebra. This function returns the list of the images of the basis vectors
of B under the p-map.

gap> L:= SimpleLieAlgebra("W", [1], GF(11));
<Lie algebra of dimension 11 over GF(11)>
gap> B:= Basis(L);
CanonicalBasis(<Lie algebra of dimension 11 over GF(11)>)
gap> PthPowerImages(B);
[0*v.1, v.2, 0*v.1, 0*v.1, 0*v.1, 0*v.1, 0*v.1, 0*v.1, 0*v.1, 0*v.1, 0*v.1]

3 I PthPowerImage(B, x) O

B is a basis of a restricted Lie algebra L. This function calculates for an element x of L the image of x under
the p-map.

gap> L:= SimpleLieAlgebra("W", [1], GF(11));;
gap> B:= Basis(L);;
gap> x:= B[1]+B[11];
v.1+v.11
gap> PthPowerImage(B, x);
v.1+v.11

4 I JenningsLieAlgebra(G) A

Let G be a nontrivial p-group, and let G = G1 ⊃ G2 ⊃ · · · ⊃ Gm = 1 be its Jennings series (see 37.17.14).
Then the quotients Gi/Gi+1 are elementary abelian p-groups, i.e., they can be viewed as vector spaces over
GF(p). Now the Jennings-Lie algebra L of G is the direct sum of those vector spaces. The Lie bracket on L
is induced by the commutator in G . Furthermore, the map g 7→ gp in G induces a p-map in L making L
into a restricted Lie algebra. In the canonical basis of L this p-map is added as an attribute. A Lie algebra
created by JenningsLieAlgebra is naturally graded. The attribute Grading is set.

5 I PCentralLieAlgebra(G) A

Here G is a nontrivial p-group. PCentralLieAlgebra(G) does the same as JenningsLieAlgebra(G
) except that the p-central series is used instead of the Jennings series (see 37.17.13). This function also
returns a graded Lie algebra. However, it is not necessarily restricted.

gap> G:= SmallGroup(3^6, 123);
<pc group of size 729 with 6 generators>
gap> L:= JenningsLieAlgebra(G);
<Lie algebra of dimension 6 over GF(3)>
gap> HasPthPowerImages(Basis(L));
true
gap> PthPowerImages(Basis(L));
[v.6, 0*v.1, 0*v.1, 0*v.1, 0*v.1, 0*v.1]
gap> g:= Grading(L);
rec(min_degree := 1, max_degree := 3, source := Integers,
hom_components := function(d) ... end)

gap> List([1,2,3], g.hom_components);
[<vector space over GF(3), with 3 generators>,
<vector space over GF(3), with 2 generators>,
<vector space over GF(3), with 1 generators>]

652 Chapter 61. Lie Algebras

61.9 The Adjoint Representation

In this section we show functions for calculating with the adjoint representation of a Lie algebra (and the
corresponding trace form, called the Killing form) (see also 60.8.5 and 60.8.6).

1 I AdjointMatrix(B, x) O

is the matrix of the adjoint representation of the element x w.r.t. the basis B . The adjoint map is the left
multiplication by x . The i -th column of the resulting matrix represents the image of the the i -th basis vector
of B under left multiplication by x .

gap> L:= SimpleLieAlgebra("A", 1, Rationals);;
gap> AdjointMatrix(Basis(L), Basis(L)[1]);
[[0, 0, -2], [0, 0, 0], [0, 1, 0]]

2 I AdjointAssociativeAlgebra(L, K) A

is the associative matrix algebra (with 1) generated by the matrices of the adjoint representation of the
subalgebra K on the Lie algebra L.

gap> L:= SimpleLieAlgebra("A", 1, Rationals);;
gap> AdjointAssociativeAlgebra(L, L);
<algebra of dimension 9 over Rationals>
gap> AdjointAssociativeAlgebra(L, CartanSubalgebra(L));
<algebra of dimension 3 over Rationals>

3 I KillingMatrix(B) A

is the matrix of the Killing form κ with respect to the basis B , i.e., the matrix (κ(bi , bj)) where b1, b2 . . . are
the basis vectors of B .

gap> L:= SimpleLieAlgebra("A", 1, Rationals);;
gap> KillingMatrix(Basis(L));
[[0, 4, 0], [4, 0, 0], [0, 0, 8]]

4 I KappaPerp(L, U) O

is the orthogonal complement of the subspace U of the Lie algebra L with respect to the Killing form κ,
that is, the set U⊥ = {x ∈ L;κ(x , y) = 0 for all y ∈ L}.
U⊥ is a subspace of L, and if U is an ideal of L then U⊥ is a subalgebra of L.

gap> L:= SimpleLieAlgebra("A", 1, Rationals);;
gap> b:= BasisVectors(Basis(L));;
gap> V:= VectorSpace(Rationals, [b[1],b[2]]);;
gap> KappaPerp(L, V);
<vector space of dimension 1 over Rationals>

5 I IsNilpotentElement(L, x) O

x is nilpotent in L if its adjoint matrix is a nilpotent matrix.

gap> L:= SimpleLieAlgebra("A", 1, Rationals);;
gap> IsNilpotentElement(L, Basis(L)[1]);
true

6 I NonNilpotentElement(L) A

A non-nilpotent element of a Lie algebra L is an element x such that adx is not nilpotent. If L is not
nilpotent, then by Engel’s theorem non nilpotent elements exist in L. In this case this function returns a
non nilpotent element of L, otherwise (if L is nilpotent) fail is returned.

Section 11. Finitely Presented Lie Algebras 653

gap> L:= SimpleLieAlgebra("G", 2, Rationals);;
gap> NonNilpotentElement(L);
v.13
gap> IsNilpotentElement(L, last);
false

7 I FindSl2(L, x) O

This function tries to find a subalgebra S of the Lie algebra L with S isomorphic to sl2 and such that the
nilpotent element x of L is contained in S . If such an algebra exists then it is returned, otherwise fail is
returned.

gap> L:= SimpleLieAlgebra("G", 2, Rationals);;
gap> b:= BasisVectors(Basis(L));;
gap> IsNilpotentElement(L, b[1]);
true
gap> FindSl2(L, b[1]);
<Lie algebra of dimension 3 over Rationals>

61.10 Universal Enveloping Algebras

1 I UniversalEnvelopingAlgebra(L) A
I UniversalEnvelopingAlgebra(L, B) O

Returns the universal enveloping algebra of the Lie algebra L. The elements of this algebra are written on
a Poincare-Birkhoff-Witt basis.

In the second form B must be a basis of L. If this second argument is given, then an isomorphic copy of the
universal enveloping algebra is returned, generated by the images (in the universal enveloping algebra) of
the elements of B .

gap> L:= SimpleLieAlgebra("A", 1, Rationals);;
gap> UL:= UniversalEnvelopingAlgebra(L);
<algebra-with-one of dimension infinity over Rationals>
gap> g:= GeneratorsOfAlgebraWithOne(UL);
[[(1)*x.1], [(1)*x.2], [(1)*x.3]]
gap> g[3]^2*g[2]^2*g[1]^2;
[(-4)*x.1*x.2*x.3^3+(1)*x.1^2*x.2^2*x.3^2+(2)*x.3^3+(2)*x.3^4]

61.11 Finitely Presented Lie Algebras

Finitely presented Lie algebras can be constructed from free Lie algebras by using the / constructor, i.e.,
FL/[r1...rk] is the quotient of the free Lie algebra FL by the ideal generated by the elements r1...rk
of FL. If the finitely presented Lie algebra K happens to be finite dimensional then an isomorphic structure
constants Lie algebra can be constructed by NiceAlgebraMonomorphism(K), which returns a surjective
homomorphism. The structure constants Lie algebra can then be accessed by calling Range for this map.
Also limited computations with elements of the finitely presented Lie algebra are possible.

654 Chapter 61. Lie Algebras

gap> L:= FreeLieAlgebra(Rationals, "s", "t");
<Lie algebra over Rationals, with 2 generators>
gap> gL:= GeneratorsOfAlgebra(L);; s:= gL[1];; t:= gL[2];;
gap> K:= L/[s*(s*t), t*(t*(s*t)), s*(t*(s*t))-t*(s*t)];
<Lie algebra over Rationals, with 2 generators>
gap> h:= NiceAlgebraMonomorphism(K);
[[(1)*s], [(1)*t]] -> [v.1, v.2]
gap> U:= Range(h);
<Lie algebra of dimension 3 over Rationals>
gap> IsLieNilpotent(U);
true
gap> gK:= GeneratorsOfAlgebra(K);
[[(1)*s], [(1)*t]]
gap> gK[1]*(gK[2]*gK[1]) = Zero(K);
true

1 I FpLieAlgebraByCartanMatrix(C) F

Here C must be a Cartan matrix. The function returns the finitely-presented Lie algebra over the field of
rational numbers defined by this Cartan matrix. By Serre’s theorem, this Lie algebra is a semisimple Lie
algebra, and its root system has Cartan matrix C .

gap> C:= [[2, -1], [-3, 2]];;
gap> K:= FpLieAlgebraByCartanMatrix(C);
<Lie algebra over Rationals, with 6 generators>
gap> h:= NiceAlgebraMonomorphism(K);
[[(1)*x1], [(1)*x2], [(1)*x3], [(1)*x4], [(1)*x5], [(1)*x6]] ->
[v.1, v.2, v.3, v.4, v.5, v.6]
gap> SemiSimpleType(Range(h));
"G2"

2 I NilpotentQuotientOfFpLieAlgebra(FpL, max) F
I NilpotentQuotientOfFpLieAlgebra(FpL, max, weights) F

Here FpL is a finitely presented Lie algebra. Let K be the quotient of FpL by the max+1-th term of its
lower central series. This function calculates a surjective homomorphism of FpL onto K . When called with
the third argument weights, the k -th generator of FpL gets assigned the k -th element of the list weights. In
that case a quotient is calculated of FpL by the ideal generated by all elements of weight max+1. If the list
weights only consists of 1’s then the two calls are equivalent. The default value of weights is a list (of length
equal to the number of generators of FpL) consisting of 1’s.

If the relators of FpL are homogeneous, then the resulting algebra is naturally graded.

gap> L:= FreeLieAlgebra(Rationals, "x", "y");;
gap> g:= GeneratorsOfAlgebra(L);; x:= g[1]; y:= g[2];
(1)*x
(1)*y
gap> rr:=[((y*x)*x)*x-6*(y*x)*y, 3*((((y*x)*x)*x)*x)*x-20*(((y*x)*x)*x)*y];
[(-1)*(x*(x*(x*y)))+(6)*((x*y)*y),
(-3)*(x*(x*(x*(x*(x*y)))))+(20)*(x*(x*((x*y)*y)))+(-20)*((x*(x*y))*(x*y))]

gap> K:= L/rr;
<Lie algebra over Rationals, with 2 generators>
gap> h:=NilpotentQuotientOfFpLieAlgebra(K, 50, [1,2]);
[[(1)*x], [(1)*y]] -> [v.1, v.2]

Section 12. Modules over Lie Algebras and Their Cohomology 655

gap> L:= Range(h);
<Lie algebra of dimension 50 over Rationals>
gap> Grading(L);
rec(min_degree := 1, max_degree := 50, source := Integers,
hom_components := function(d) ... end)

61.12 Modules over Lie Algebras and Their Cohomology

Representations of Lie algebras are dealt with in the same way as representations of ordinary algebras (see
60.10). In this section we mainly deal with modules over general Lie algebras and their cohomology. The
next section is devoted to modules over semisimple Lie algebras.

1 I FaithfulModule(A) A

returns a faithful finite-dimensional left-module over the algebra A. This is only implemented for associative
algebras, and for Lie algebras of characteristic 0. (It may also work for certain Lie algebras of characteristic
p > 0.)

gap> T:= EmptySCTable(3, 0, "antisymmetric");;
gap> SetEntrySCTable(T, 1, 2, [1, 3]);
gap> L:= LieAlgebraByStructureConstants(Rationals, T);
<Lie algebra of dimension 3 over Rationals>
gap> V:= FaithfulModule(L);
<left-module over <Lie algebra of dimension 3 over Rationals>>
gap> vv:= BasisVectors(Basis(V));
[[1, 0, 0], [0, 1, 0], [0, 0, 1]]
gap> x:= Basis(L)[3];
v.3
gap> List(vv, v -> x^v);
[[0, 0, 0], [1, 0, 0], [0, 0, 0]]

An s-cochain of a module V over a Lie algebra L, is an s-linear map

c : L× · · · × L→ V (s factors L)

that is skew-symmetric (meaning that if any of the arguments are interchanged, c changes to −c).

Let {x1, . . . , xn} be a basis of L. Then any s-cochain is determined by the values c(xi1 , . . . , xis), where
1 ≤ i1 < i2 < · · · < is ≤ dim L. Now this value again is a linear combination of basis elements of V :
c(xi1 , . . . , xis) =

∑
λk

i1,...,is
vk . Denote the dimension of V by r . Then we represent an s-cocycle by a list of r

lists. The j -th of those lists consists of entries of the form

[[i1, i2, . . . , is], λj
i1,...,is

]

where the coefficient on the second position is non-zero. (We only store those entries for which this coefficient
is non-zero.) It follows that every s-tuple (i1, . . . , is) gives rise to r basis elements.

So the zero cochain is represented by a list of the form [[], [], . . . , []]. Furthermore, if V is, e.g., 4-dimensional,
then the 2-cochain represented by

[[[[1,2], 2]], [], [[[1,2], 1/2]], []]

maps the pair (x1, x2) to 2v1 + 1/2v3 (where v1 is the first basis element of V , and v3 the third), and all
other pairs to zero.

656 Chapter 61. Lie Algebras

By definition, 0-cochains are constant maps c(x) = vc ∈ V for all x ∈ L. So 0-cochains have a different
representation: they are just represented by the list [vc].
Cochains are constructed using the function Cochain (see 61.12.3), if c is a cochain, then its corresponding
list is returned by ExtRepOfObj(c).

2 I IsCochain(obj) C
I IsCochainCollection(obj) C

Categories of cochains and of collections of cochains.

3 I Cochain(V , s, obj) O

Constructs a s-cochain given by the data in obj , with respect to the Lie algebra module V . If s is non-zero,
then obj must be a list.

gap> L:= SimpleLieAlgebra("A", 1, Rationals);;
gap> V:= AdjointModule(L);
<3-dimensional left-module over <Lie algebra of dimension 3 over Rationals>>
gap> c1:= Cochain(V, 2, [[[[1, 3], -1]], [], [[[2, 3], 1/2]]]);
<2-cochain>
gap> ExtRepOfObj(c1);
[[[[1, 3], -1]], [], [[[2, 3], 1/2]]]
gap> c2:= Cochain(V, 0, Basis(V)[1]);
<0-cochain>
gap> ExtRepOfObj(c2);
v.1
gap> IsCochain(c2);
true

4 I CochainSpace(V , s) O

Returns the space of all s-cochains with respect to V .

gap> L:= SimpleLieAlgebra("A", 1, Rationals);;
gap> V:= AdjointModule(L);;
gap> C:=CochainSpace(V, 2);
<vector space of dimension 9 over Rationals>
gap> BasisVectors(Basis(C));
[<2-cochain>, <2-cochain>, <2-cochain>, <2-cochain>, <2-cochain>,
<2-cochain>, <2-cochain>, <2-cochain>, <2-cochain>]

gap> ExtRepOfObj(last[1]);
[[[[1, 2], 1]], [], []]

5 I ValueCochain(c, y1, y2, ..., ys) F

Here c is an s-cochain. This function returns the value of c when applied to the s elements y1 to ys (that
lie in the Lie algebra acting on the module corresponding to c). It is also possible to call this function with
two arguments: first c and then the list containing y1,...,ys.

gap> L:= SimpleLieAlgebra("A", 1, Rationals);;
gap> V:= AdjointModule(L);;
gap> C:= CochainSpace(V, 2);;
gap> c:= Basis(C)[1];
<2-cochain>
gap> ValueCochain(c, Basis(L)[2], Basis(L)[1]);
(-1)*v.1

6 I LieCoboundaryOperator(c) V

This is a function that takes an s-cochain, and returns an s+1 -cochain. The coboundary operator is applied.

Section 13. Modules over Semisimple Lie Algebras 657

gap> L:= SimpleLieAlgebra("A", 1, Rationals);;
gap> V:= AdjointModule(L);;
gap> C:= CochainSpace(V, 2);;
gap> c:= Basis(C)[1];;
gap> c1:= LieCoboundaryOperator(c);
<3-cochain>
gap> c2:= LieCoboundaryOperator(c1);
<4-cochain>

7 I Cocycles(V , s) O

is the space of all s-cocycles with respect to the Lie algebra module V . That is the kernel of the coboundary
operator when restricted to the space of s-cochains.

8 I Coboundaries(V , s) O

is the space of all s-coboundaries with respect to the Lie algebra module V . That is the image of the
coboundary operator, when applied to the space of s-1 -cochains. By definition the space of all 0-coboundaries
is zero.

gap> T:= EmptySCTable(3, 0, "antisymmetric");;
gap> SetEntrySCTable(T, 1, 2, [1, 3]);
gap> L:= LieAlgebraByStructureConstants(Rationals, T);;
gap> V:= FaithfulModule(L);
<left-module over <Lie algebra of dimension 3 over Rationals>>
gap> Cocycles(V, 2);
<vector space of dimension 7 over Rationals>
gap> Coboundaries(V, 2);
<vector space over Rationals, with 9 generators>
gap> Dimension(last);
5

61.13 Modules over Semisimple Lie Algebras

This section contains functions for calculating information on representations of semisimple Lie algebras.
First we have some functions for calculating some combinatorial data (set of dominant weights, the dominant
character, the decomposition of a tensor product, the dimension of a highest-weight module). Then there is
a function for creating an admissible lattice in the universal enveloping algebra of a semisimple Lie algebra.
Finally we have a function for constructing a highest-weight module over a semisimple Lie algebra.

1 I DominantWeights(R, maxw) O

Returns a list consisting of two lists. The first of these contains the dominant weights (written on the basis
of fundamental weights) of the irreducible highest-weight module over the Lie algebra with root system R.
The i -th element of the second list is the level of the i -th dominant weight. (Where level is defined as follows.
For a weight µ we write µ = λ−

∑
i kiαi , where the αi are the simple roots, and λ the highest weight. Then

the level of µ is
∑

i ki .

2 I DominantCharacter(L, maxw) O
I DominantCharacter(R, maxw) O

For a highest weight maxw and a semisimple Lie algebra L, this returns the dominant weights of the highest-
weight module over L, with highest weight maxw . The output is a list of two lists, the first list contains the
dominant weights; the second list contains their multiplicities.

The first argument can also be a root system, in which case the dominant character of the highest-weight
module over the corresponding semisimple Lie algebra is returned.

658 Chapter 61. Lie Algebras

3 I DecomposeTensorProduct(L, w1, w2) O

Here L is a semisimple Lie algebra and w1 , w2 are dominant weights. Let Vi be the irreducible highest-weight
module over L with highest weight wi for i = 1, 2. Let W = V1 ⊗ V2. Then in general W is a reducible
L-module. Now this function returns a list of two lists. The first of these is the list of highest weights of
the irreducible modules occurring in the decomposition of W as a direct sum of irreducible modules. The
second list contains the multiplicities of these weights (i.e., the number of copies of the irreducible module
with the corresponding highest weight that occur in W). The algorithm uses Klimyk’s formula (see [Kli68]
or [Kli66] for the original Russian version).

4 I DimensionOfHighestWeightModule(L, w) O

Here L is a semisimple Lie algebra, and w a dominant weight. This function returns the dimension of the
highest-weight module over L with highest weight w . The algorithm uses Weyl’s dimension formula.

gap> L:= SimpleLieAlgebra("F", 4, Rationals);;
gap> R:= RootSystem(L);;
gap> DominantWeights(R, [1, 1, 0, 0]);
[[[1, 1, 0, 0], [2, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0],

[1, 0, 0, 0], [0, 0, 0, 0]], [0, 3, 4, 8, 11, 19]]
gap> DominantCharacter(L, [1, 1, 0, 0]);
[[[1, 1, 0, 0], [2, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0],

[1, 0, 0, 0], [0, 0, 0, 0]], [1, 1, 4, 6, 14, 21]]
gap> DecomposeTensorProduct(L, [1, 0, 0, 0], [0, 0, 1, 0]);
[[[1, 0, 1, 0], [1, 0, 0, 0], [0, 0, 0, 1], [0, 1, 0, 0],

[2, 0, 0, 0], [0, 0, 1, 0], [1, 1, 0, 0]],
[1, 1, 1, 1, 1, 1, 1]]

gap> DimensionOfHighestWeightModule(L, [1, 2, 3, 4]);
79316832731136

Let L be a semisimple Lie algebra over a field of characteristic 0, and let R be its root system. For a positive
root α we let xα and yα be positive and negative root vectors respectively, both from a fixed Chevalley basis
of L. Furthermore, h1, . . . , hl are the Cartan elements from the same Chevalley basis. Also we set

x (n)
α =

x n
α

n!
, y(n)

α =
yn
α

n!
.

Furthermore, let α1, . . . , αs denote the positive roots of R. For multi-indices N = (n1, . . . ,ns), M =
(m1, . . . ,ms) and K = (k1, . . . , ks) (where ni ,mi , ki ≥ 0) set

x N = x (n1)
α1 · · · x

(ns)
αs ,

yM = y(m1)
α1 · · · y(ms)

αs ,
hK =

(h1
k1

)
· · ·
(hl

kl

)
Then by a theorem of Kostant, the x (n)

α and y(n)
α generate a subring of the universal enveloping algebra

U (L) spanned (as a free Z -module) by the elements

yM hK x N

(see, e.g., [Hum72] or [Hum78], Section 26) So by the Poincare-Birkhoff-Witt theorem this subring is a lattice
in U (L). Furthermore, this lattice is invariant under the x (n)

α and y(n)
α . Therefore, it is called an admissible

lattice in U (L).

The next functions enable us to construct the generators of such an admissible lattice.

Section 13. Modules over Semisimple Lie Algebras 659

5 I IsUEALatticeElement(obj) C
I IsUEALatticeElementCollection(obj) C
I IsUEALatticeElementFamily(fam) C

is the category of elements of an admissible lattice in the universal enveloping algebra of a semisimple Lie
algebra L.

6 I LatticeGeneratorsInUEA(L) A

Here L must be a semisimple Lie algebra of characteristic 0. This function returns a list of generators of
an admissible lattice in the universal enveloping algebra of L, relative to the Chevalley basis contained in
ChevalleyBasis(L). First are listed the negative root vectors (denoted by y1, . . . , ys), then the positive
root vectors (denoted by x1, . . . , xs). At the end of the list there are the Cartan elements. They are printed
as (hi/1), which means (

hi

1

)
.

In general the printed form (hi/ k) means (
hi

k

)
.

Also y(m)
i is printed as yi^(m), which means that entering yi^m at the GAP prompt results in the output

m!*yi^(m).

Products of lattice generators are collected using the following order: first come the y(mi)
i (in the same order

as the positive roots), then the
(hi

ki

)
, and then the x (ni)

i (in the same order as the positive roots).

7 I ObjByExtRep(F, descr) O

creates an object in the family F which has the external representation descr .

An UEALattice element is represented by a list of the form

[m1, c1, m2, c2,.....]

where the c1,c2 etc. are coefficients, and the m1, m2 etc. monomials. A monomial is a list of the form [ind1,
e1, ind2, e2,] where ind1, ind2 are indices, and e1, e2 etc. are exponents. Let N be the number of positive
roots of the underlying Lie algebra. The indices lie between 1 and dim L. If an index lies between 1 and
N, then it represents a negative root vector (corresponding to the root NegativeRoots(R)[ind], where
R is the root system of L). This leads to a factor yind1^(e1) in the printed form of the monomial (which
equals zˆe1/e1!, where z is a basis element of L). If an index lies between N+1 and 2N, then it represents
a positive root vector. Finally, if ind lies between 2N+1 and 2N+rank, then it represents an element of the
Cartan subalgebra. This is printed as (h 1/ e 1), meaning h 1 choose e 1 (h 1,...,h rank are the canonical
Cartan generators).

The zero element is represented by the empty list, the identity element by the list [[], 1].

gap> L:= SimpleLieAlgebra("G", 2, Rationals);;
gap> g:=LatticeGeneratorsInUEA(L);
[y1, y2, y3, y4, y5, y6, x1, x2, x3, x4, x5, x6, (h13/1), (h14/1)]
gap> IsUEALatticeElement(g[1]);
true
gap> g[1]^3;
6*y1^(3)
gap> q:= g[7]*g[1]^2;
-2*y1+2*y1*(h13/1)+2*y1^(2)*x1
gap> ExtRepOfObj(q);
[[1, 1], -2, [1, 1, 13, 1], 2, [1, 2, 7, 1], 2]

660 Chapter 61. Lie Algebras

8 I IsWeightRepElement(obj) C
I IsWeightRepElementCollection(obj) C
I IsWeightRepElementFamily(fam) C

Is a category of vectors, that is used to construct elements of highest-weight modules (by HighestWeight-
Module).

WeightRepElements are represented by a list of the form [v1, c1, v2, c2,], where the vi are basis
vectors, and the ci coefficients. Furthermore a basis vector v is a weight vector. It is represented by a list
of form [k, mon, wt], where k is an integer (the basis vectors are numbered from 1 to dim V , where
V is the highest weight module), mon is an UEALatticeElement (which means that the result of applying
mon to a highest weight vector is v) and wt is the weight of v . A WeightRepElement is printed as mon*v0,
where v0 denotes a fixed highest weight vector.

If v is a WeightRepElement, then ExtRepOfObj(v) returns the corresponding list, and if list is such
a list and fam a WeightRepElementFamily, then ObjByExtRep(list, fam) returns the corresponding
WeightRepElement.

9 I HighestWeightModule(L, wt) F

returns the highest weight module with highest weight wt of the semisimple Lie algebra L of characteristic
0.

Note that the elements of such a module lie in the category IsLeftAlgebraModuleElement (and in particular
they do not lie in the category IsWeightRepElement). However, if v is an element of such a module, then
ExtRepOfObj(v) is a WeightRepElement.

Note that for the following examples of this chapter we increase the line length limit from its default value
80 to 81 in order to make some long output expressions fit into the lines.

gap> SizeScreen([81,]);;
gap> K1:= SimpleLieAlgebra("G", 2, Rationals);;
gap> K2:= SimpleLieAlgebra("B", 2, Rationals);;
gap> L:= DirectSumOfAlgebras(K1, K2);
<Lie algebra of dimension 24 over Rationals>
gap> V:= HighestWeightModule(L, [0, 1, 1, 1]);
<224-dimensional left-module over <Lie algebra of dimension 24 over Rationals>>
gap> vv:= GeneratorsOfLeftModule(V);;
gap> vv[100];
y5*y7*y10*v0
gap> e:= ExtRepOfObj(vv[100]);
y5*y7*y10*v0
gap> ExtRepOfObj(e);
[[100, y5*y7*y10, [-3, 2, -1, 1]], 1]
gap> Basis(L)[17]^vv[100];
-1*y5*y7*y8*v0-1*y5*y9*v0

61.14 Tensor Products and Exterior and Symmetric Powers

1 I TensorProductOfAlgebraModules(list) O
I TensorProductOfAlgebraModules(V , W) O

Here the elements of list must be algebra modules. The tensor product is returned as an algebra module.

Section 14. Tensor Products and Exterior and Symmetric Powers 661

gap> L:= SimpleLieAlgebra("G",2,Rationals);;
gap> V:= HighestWeightModule(L, [1, 0]);;
gap> W:= TensorProductOfAlgebraModules([V, V, V]);
<343-dimensional left-module over <Lie algebra of dimension 14 over Rationals>>
gap> w:= Basis(W)[1];
1*(1*v0<x>1*v0<x>1*v0)
gap> Basis(L)[1]^w;
<0-tensor>
gap> Basis(L)[7]^w;
1*(1*v0<x>1*v0<x>y1*v0)+1*(1*v0<x>y1*v0<x>1*v0)+1*(y1*v0<x>1*v0<x>1*v0)

2 I ExteriorPowerOfAlgebraModule(V , k) O

Here V must be an algebra module, defined over a Lie algebra. This function returns the k -th exterior power
of V as an algebra module.

gap> L:= SimpleLieAlgebra("G",2,Rationals);;
gap> V:= HighestWeightModule(L, [1, 0]);;
gap> W:= ExteriorPowerOfAlgebraModule(V, 3);
<35-dimensional left-module over <Lie algebra of dimension 14 over Rationals>>
gap> w:= Basis(W)[1];
1*(1*v0/\y1*v0/\y3*v0)
gap> Basis(L)[10]^w;
1*(1*v0/\y1*v0/\y6*v0)+1*(1*v0/\y3*v0/\y5*v0)+1*(y1*v0/\y3*v0/\y4*v0)

3 I SymmetricPowerOfAlgebraModule(V , k) O

Here V must be an algebra module. This function returns the k -th symmetric power of V (as an algebra
module).

gap> L:= SimpleLieAlgebra("G",2,Rationals);;
gap> V:= HighestWeightModule(L, [1, 0]);;
gap> W:= SymmetricPowerOfAlgebraModule(V, 3);
<84-dimensional left-module over <Lie algebra of dimension 14 over Rationals>>
gap> w:= Basis(W)[1];
1*(1*v0.1*v0.1*v0)
gap> Basis(L)[2]^w;
<0-symmetric element>
gap> Basis(L)[7]^w;
3*(1*v0.1*v0.y1*v0)

4 I DirectSumOfAlgebraModules(list) O
I DirectSumOfAlgebraModules(V , W) O

Here list must be a list of algebra modules. This function returns the direct sum of the elements in the list
(as an algebra module). The modules must be defined over the same algebras.
In the second form is short for DirectSumOfAlgebraModules([V , W])

gap> L:= SimpleLieAlgebra("C", 3, Rationals);;
gap> V:= HighestWeightModule(L, [1, 1, 0]);
<64-dimensional left-module over <Lie algebra of dimension 21 over Rationals>>
gap> W:= HighestWeightModule(L, [0, 0, 2]);
<84-dimensional left-module over <Lie algebra of dimension 21 over Rationals>>
gap> U:= DirectSumOfAlgebraModules(V, W);
<148-dimensional left-module over <Lie algebra of dimension 21 over Rationals>>
gap> SizeScreen([80,]);;

62
Finitely Presented

Algebras

Currently the GAP library contains only few functions dealing with general finitely presented algebras, so
this file is merely a placeholder.

The special case of finitely presented Lie algebras is described in 61.11, and there is also a GAP package
fplsa for computing structure constants of f initely presented Lie (super)algebras.

63 Magma Rings

Given a magma M then the free magma ring (or magma ring for short) RM of M over a ring-with-one
R is the set of finite sums

∑
i∈I ri mi with ri ∈ R, and mi ∈ M . With the obvious addition and R-action

from the left, RM is a free R-module with R-basis M , and with the usual convolution product, RM is a
ring.

Typical examples of free magma rings are

− (multivariate) polynomial rings (see 64.14), where the magma is a free abelian monoid generated by the
indeterminates,

− group rings (see 63.1.5), where the magma is a group,

− Laurent polynomial rings, which are group rings of the free abelian groups generated by the indetermi-
nates,

− free algebras and free associative algebras, with or without one, where the magma is a free magma or
a free semigroup, or a free magma-with-one or a free monoid, respectively.

Note that a free Lie algebra is not a magma ring, because of the additional relations given by the Jacobi
identity; see 63.4 for a generalization of magma rings that covers such structures.

The coefficient ring R and the magma M cannot be regarded as subsets of RM , hence the natural embed-
dings of R and M into RM must be handled via explicit embedding maps (see 63.3). Note that in a magma
ring, the addition of elements is in general different from an addition that may be defined already for the
elements of the magma; for example, the addition in the group ring of a matrix group does in general not
coincide with the addition of matrices. Consider the following example.

gap> a:= Algebra(GF(2), [[[Z(2)]]]);; Size(a);
2
gap> rm:= FreeMagmaRing(GF(2), a);;
gap> emb:= Embedding(a, rm);;
gap> z:= Zero(a);; o:= One(a);;
gap> imz:= z ^ emb; IsZero(imz);
(Z(2)^0)*[[0*Z(2)]]
false
gap> im1:= (z + o) ^ emb;
(Z(2)^0)*[[Z(2)^0]]
gap> im2:= z ^ emb + o ^ emb;
(Z(2)^0)*[[0*Z(2)]]+(Z(2)^0)*[[Z(2)^0]]
gap> im1 = im2;
false

664 Chapter 63. Magma Rings

63.1 Free Magma Rings

1 I FreeMagmaRing(R, M) F

is a free magma ring over the ring R, free on the magma M .

2 I GroupRing(R, G) F

is the group ring of the group G , over the ring R.

3 I IsFreeMagmaRing(D) C

A domain lies in the category IsFreeMagmaRing if it has been constructed as a free magma ring. In partic-
ular, if D lies in this category then the operations LeftActingDomain (see 55.1.11) and UnderlyingMagma
(see 63.1.6) are applicable to D , and yield the ring R and the magma M such that D is the magma ring
RM .

So being a magma ring in GAP includes the knowledge of the ring and the magma. Note that a magma ring
RM may abstractly be generated as a magma ring by a magma different from the underlying magma M .
For example, the group ring of the dihedral group of order 8 over the field with 3 elements is also spanned
by a quaternion group of order 8 over the same field.

gap> d8:= DihedralGroup(8);
<pc group of size 8 with 3 generators>
gap> rm:= FreeMagmaRing(GF(3), d8);
<algebra-with-one over GF(3), with 3 generators>
gap> emb:= Embedding(d8, rm);;
gap> gens:= List(GeneratorsOfGroup(d8), x -> x^emb);;
gap> x1:= gens[1] + gens[2];;
gap> x2:= (gens[1] - gens[2]) * gens[3];;
gap> x3:= gens[1] * gens[2] * (One(rm) - gens[3]);;
gap> g1:= x1 - x2 + x3;;
gap> g2:= x1 + x2;;
gap> q8:= Group(g1, g2);;
gap> Size(q8);
8
gap> ForAny([d8, q8], IsAbelian);
false
gap> List([d8, q8], g -> Number(AsList(g), x -> Order(x) = 2));
[5, 1]
gap> Dimension(Subspace(rm, q8));
8

4 I IsFreeMagmaRingWithOne(obj) C

5 I IsGroupRing(obj) P

A group ring is a magma ring where the underlying magma is a group.

6 I UnderlyingMagma(RM) A

7 I AugmentationIdeal(RG) A

is the augmentation ideal of the group ring RG , i.e., the kernel of the trivial representation of RG .

Section 3. Natural Embeddings related to Magma Rings 665

63.2 Elements of Free Magma Rings

1 I IsElementOfFreeMagmaRing(obj) C
I IsElementOfFreeMagmaRingCollection(obj) C

2 I IsElementOfFreeMagmaRingFamily(Fam) C

Elements of families in this category have trivial normalisation, i.e., efficient methods for \= and \<.

In order to treat elements of free magma rings uniformly, also without an external representation, the
attributes CoefficientsAndMagmaElements (see 63.2.3) and ZeroCoefficient (see 63.2.4) were introduced
that allow one to “take an element of an arbitrary magma ring into pieces”.

Conversely, for constructing magma ring elements from coefficients and magma elements, ElementOfMag-
maRing (see 63.2.5) can be used. (Of course one can also embed each magma element into the magma ring,
see 63.3, and then form the linear combination, but many unnecessary intermediate elements are created
this way.)

3 I CoefficientsAndMagmaElements(elm) A

is a list that contains at the odd positions the magma elements, and at the even positions their coefficients
in the element elm.

4 I ZeroCoefficient(elm) A

For an element elm of a magma ring (modulo relations) RM , ZeroCoefficient returns the zero element of
the coefficient ring R.

5 I ElementOfMagmaRing(Fam, zerocoeff , coeffs, mgmelms) O

ElementOfMagmaRing returns the element
∑n

i=1 ci m ′i , where coeffs = [c1, c2, . . . , cn] is a list of coefficients,
mgmelms = [m1,m2, . . . ,mn] is a list of magma elements, and m ′i is the image of mi under an embedding
of a magma containing mi into a magma ring whose elements lie in the family Fam. zerocoeff must be the
zero of the coefficient ring containing the ci .

63.3 Natural Embeddings related to Magma Rings

Neither the coefficient ring R nor the magma M are regarded as subsets of the magma ring RM , so one
has to use embeddings (see 31.1.10) explicitly whenever one needs for example the magma ring element
corresponding to a given magma element. Here is an example.

gap> f:= Rationals;; g:= SymmetricGroup(3);;
gap> fg:= FreeMagmaRing(f, g);
<algebra-with-one over Rationals, with 2 generators>
gap> Dimension(fg);
6
gap> gens:= GeneratorsOfAlgebraWithOne(fg);
[(1)*(1,2,3), (1)*(1,2)]
gap> (3*gens[1] - 2*gens[2]) * (gens[1] + gens[2]);
(-2)*()+(3)*(2,3)+(3)*(1,3,2)+(-2)*(1,3)
gap> One(fg);
(1)*()
gap> emb:= Embedding(g, fg);;
gap> elm:= (1,2,3)^emb; elm in fg;
(1)*(1,2,3)
true
gap> new:= elm + One(fg);
(1)*()+(1)*(1,2,3)

666 Chapter 63. Magma Rings

gap> new^2;
(1)*()+(2)*(1,2,3)+(1)*(1,3,2)
gap> emb2:= Embedding(f, fg);;
gap> elm:= One(f)^emb2; elm in fg;
(1)*()
true

63.4 Magma Rings modulo Relations

A more general construction than that of free magma rings allows one to create rings that are not free
R-modules on a given magma M but arise from the magma ring RM by factoring out certain identities.
Examples for such structures are finitely presented (associative) algebras and free Lie algebras (see 61.2.3).

In GAP, the use of magma rings modulo relations is limited to situations where a normal form of the
elements is known and where one wants to guarantee that all elements actually constructed are in normal
form. (In particular, the computation of the normal form must be cheap.) This is because the methods for
comparing elements in magma rings modulo relations via \= and \< just compare the involved coefficients
and magma elements, and also the vector space functions regard those monomials as linearly independent
over the coefficients ring that actually occur in the representation of an element of a magma ring modulo
relations.

Thus only very special finitely presented algebras will be represented as magma rings modulo relations, in
general finitely presented algebras are dealt with via the mechanism described in Chapter 62.

1 I IsElementOfMagmaRingModuloRelations(obj) C
I IsElementOfMagmaRingModuloRelationsCollection(obj) C

This category is used, e. g., for elements of free Lie algebras.

2 I IsElementOfMagmaRingModuloRelationsFamily(Fam) C

3 I NormalizedElementOfMagmaRingModuloRelations(F, descr) O

Let F be a family of magma ring elements modulo relations, and descr the description of an element in
a magma ring modulo relations. NormalizedElementOfMagmaRingModuloRelations returns a description
of the same element, but normalized w.r.t. the relations. So two elements are equal if and only if the
result of NormalizedElementOfMagmaRingModuloRelations is equal for their internal data, that is, Coef-
ficientsAndMagmaElements will return the same for the corresponding two elements.

NormalizedElementOfMagmaRingModuloRelations is allowed to return descr itself, it need not make a
copy. This is the case for example in the case of free magma rings.

4 I IsMagmaRingModuloRelations(obj) C

A GAP object lies in the category IsMagmaRingModuloRelations if it has been constructed as a magma ring
modulo relations. Each element of such a ring has a unique normal form, so CoefficientsAndMagmaElements
is well-defined for it.

This category is not inherited to factor structures, which are in general best described as finitely presented
algebras, see Chapter 62.

Section 6. Technical Details about the Implementation of Magma Rings 667

63.5 Magma Rings modulo the Span of a Zero Element

1 I IsElementOfMagmaRingModuloSpanOfZeroFamily(Fam) C

We need this for the normalization method, which takes a family as first argument.

2 I IsMagmaRingModuloSpanOfZero(RM) C

3 I MagmaRingModuloSpanOfZero(R, M , z) F

Let R be a ring, M a magma, and z an element of M with the property that z ∗m = z for all m ∈ M . The
element z could be called a “zero element” of M , but note that in general z cannot be obtained as Zero(
m) for each m ∈ M , so this situation does not match the definition of Zero (see 30.10.3).

MagmaRingModuloSpanOfZero returns the magma ring RM modulo the relation given by the identification
of z with zero. This is an example of a magma ring modulo relations, see 63.4.

63.6 Technical Details about the Implementation of Magma Rings

The family containing elements in the magma ring RM in fact contains all elements with coefficients in the
family of elements of R and magma elements in the family of elements of M . So arithmetic operations with
coefficients outside R or with magma elements outside M might create elements outside RM .

It should be mentioned that each call of FreeMagmaRing creates a new family of elements, so for example the
elements of two group rings of permutation groups over the same ring lie in different families and therefore
are regarded as different.

gap> g:= SymmetricGroup(3);;
gap> h:= AlternatingGroup(3);;
gap> IsSubset(g, h);
true
gap> f:= GF(2);;
gap> fg:= GroupRing(f, g);
<algebra-with-one over GF(2), with 2 generators>
gap> fh:= GroupRing(f, h);
<algebra-with-one over GF(2), with 1 generators>
gap> IsSubset(fg, fh);
false
gap> o1:= One(fh); o2:= One(fg); o1 = o2;
(Z(2)^0)*()
(Z(2)^0)*()
false
gap> emb:= Embedding(g, fg);;
gap> im:= Image(emb, h);
<group of size 3 with 1 generators>
gap> IsSubset(fg, im);
true

There is no generic external representation for elements in an arbitrary free magma ring. For example,
polynomials are elements of a free magma ring, and they have an external representation relying on the
special form of the underlying monomials. On the other hand, elements in a group ring of a permutation
group do not admit such an external representation.

For convenience, magma rings constructed with FreeAlgebra, FreeAssociativeAlgebra, FreeAlgebraW-
ithOne, and FreeAssociativeAlgebraWithOne support an external representation of their elements, which
is defined as a list of length 2, the first entry being the zero coefficient, the second being a list with the

668 Chapter 63. Magma Rings

external representations of the magma elements at the odd positions and the corresponding coefficients at
the even positions.

As the above examples show, there are several possible representations of magma ring elements, the repre-
sentations used for polynomials (see 64) as well as the default representation IsMagmaRingObjDefaultRep
of magma ring elements. The latter simply stores the zero coefficient and a list containing the coefficients of
the element at the even positions and the corresponding magma elements at the odd positions, where the
succession is compatible with the ordering of magma elements via .

64
Polynomials and

Rational Functions

Let R be a commutative ring-with-one. We call a free associative algebra A over R a polynomial ring
over R. The free generators of A are called indeterminates, they are usually denoted by x1, x2, The
number of indeterminates is called the rank of A. The elements of A are called polynomials. Products
of indeterminates are called monomials, every polynomial can be expressed as a finite sum of products of
monomials with ring elements in a form like r1,0x1 + r1,1x1x2 + r0,1x2 + · · · with ri ,j ∈ R.

A polynomial ring of rank 1 is called an univariate polynomial ring, its elements are univariate polyno-
mials.

Polynomial rings of smaller rank naturally embed in rings of higher rank; if S is a subring of R then a
polynomial ring over S naturally embeds in a polynomial ring over R of the same rank. Note however that
GAP does not consider R as a subset of a polynomial ring over R; for example the zero of R (0) and the
zero of the polynomial ring (0x 0) are different objects.

Internally, indeterminates are represented by positive integers, but it is possible to give names to them to
have them printed in a nicer way. Beware, however that there is not necessarily any relation between the
way an indeterminate is called and the way it is printed. See section 64.1 for details.

If R is an integral domain, the polynomial ring A over R is an integral domain as well and one can therefore
form its quotient field Q . This field is called a field of rational functions. Again A embeds naturally into
Q and GAP will perform this embedding implicitly. (In fact it implements the ring of rational functions over
R.) To avoid problems with leading coefficients, however, R must be a unique factorization domain.

64.1 Indeterminates

GAP implements a polynomial ring with countably many indeterminates. These indeterminates can be
referred to by positive integers. If only a number num of indeterminates is required they default to [1..num].

It is possible to assign names to indeterminates. These names only provide a means for printing the inde-
terminates in a nice way, but have not necessary any relations to variable names. Indeterminates that have
not been assigned a name will be printed as “x nr”.

It is possible to assign the same name to different indeterminates (though it is probably not a good idea to
do so). Asking twice for an indeterminate with the name nam will produce two different indeterminates!

When asking for indeterminates with certain names, GAP usually will take the first indeterminates that are
not yet named, name these accordingly and return them. Thus when asking for named indeterminates, no
relation between names and indeterminate numbers can be guaranteed. The attribute IndeterminateNum-
berOfLaurentPolynomial(indet) will return the number of the indeterminate indet .

1 I Indeterminate(R, [nr]) O
I Indeterminate(R, [avoid]) O
I Indeterminate(R, name[, avoid]) O
I Indeterminate(fam, nr) O

returns indeterminate number nr over the ring R. If nr is not given it defaults to 1. If the number is not
specified a list avoid of indeterminates may be given. The function will return an indeterminate that is

670 Chapter 64. Polynomials and Rational Functions

guaranteed to be different from all the indeterminates in avoid . The third usage returns an indeterminate
called name (also avoiding the indeterminates in avoid if given).

gap> a:=Indeterminate(GF(3));
x_1
gap> x:=Indeterminate(GF(3),"x");
x
gap> Indeterminate(GF(3),"x")=x;
false
gap> y:=Indeterminate(GF(3),"y");z:=Indeterminate(GF(3),"X");
y
X
gap> Indeterminate(GF(3),3);
y
gap> Indeterminate(GF(3),[y,z]);
x

2 I IndeterminateNumberOfUnivariateRationalFunction(rfun) A

returns the number of the indeterminate in which the univariate rational function rfun is expressed. (This
also provides a way to obtain the number of a given indeterminate.)

A constant rational function might not possess an indeterminate number. In this case IndeterminateNum-
berOfUnivariateRationalFunction will default to a value of 1. Therefore two univariate polynomials may
be considered to be in the same univariate polynomial ring if their indeterminates have the same number or
one if of them is constant. (see also 64.1.5 and 64.20.7).

3 I IndeterminateOfUnivariateRationalFunction(rfun) A

returns the indeterminate in which the univariate rational function rfun is expressed. (cf. 64.1.2.)

gap> IndeterminateNumberOfUnivariateRationalFunction(z);
4
gap> IndeterminateOfUnivariateRationalFunction(z^5+z);
X

4 I IndeterminateName(fam, nr) O
I HasIndeterminateName(fam, nr) O
I SetIndeterminateName(fam, nr, name) O

SetIndeterminateName assigns the name name to indeterminate nr in the rational functions family fam.
It issues an error if the indeterminate was already named.

IndeterminateName returns the name of the nr -th indeterminate (and returns fail if no name has been
assigned).

HasIndeterminateName tests whether indeterminate nr has already been assigned a name

gap> IndeterminateName(FamilyObj(x),3);
"y"
gap> HasIndeterminateName(FamilyObj(x),5);
false
gap> SetIndeterminateName(FamilyObj(x),10,"bla");
gap> Indeterminate(GF(3),10);
bla

As a convenience there is a special method installed for SetName that will assign a name to an indeterminate.

Section 3. Comparison of Rational Functions 671

gap> a:=Indeterminate(GF(3),5);
x_5
gap> SetName(a,"ah");
gap> a^5+a;
ah^5+ah

5 I CIUnivPols(upol, upol) F

This function (whose name stands for “CommonIndeterminateOfUnivariatePolynomials”) takes two uni-
variate polynomials as arguments. If both polynomials are given in the same indeterminate number indnum
(in this case they are “compatible” as univariate polynomials) it returns indnum. In all other cases it re-
turns fail. CIUnivPols also accepts if either polynomial is constant but formally expressed in another
indeterminate, in this situation the indeterminate of the other polynomial is selected.

64.2 Operations for Rational Functions

The rational functions form a field, therefore all arithmetic operations are applicable to rational functions.

1 I f + g
I f - g
I f * g
I f / g

gap> x:=Indeterminate(Rationals,1);;y:=Indeterminate(Rationals,2);;
gap> f:=3+x*y+x^5;;g:=5+x^2*y+x*y^2;;
gap> a:=g/f;
(x_1^2*x_2+x_1*x_2^2+5)/(x_1^5+x_1*x_2+3)

Note that the quotient f /g of two polynomials might be represented as a rational function again. If g is
known to divide f the call Quotient(f ,g) (see 54.1.10) should be used instead.

2 I f mod g

For two Laurent polynomials f and g , f mod g is the Euclidean remainder (see 54.6.4) of f modulo g .

At the moment GAP does not contain a proper multivariate Gcd algorithm. Therefore it cannot be guaranteed
that rational functions will always be represented as a quotient of coprime polynomials. In certain unfortunate
situations this might lead to a degree explosion.

All polynomials as well as all the univariate polynomials in the same indeterminate form subrings of this
field. If two rational functions are known to be in the same subring, the result will be expressed as element
in this subring.

64.3 Comparison of Rational Functions

1 I f = g

Two rational functions f and g are equal if the product Numerator(f)∗Denominator(g) equals Numerator(g)∗
Denominator(f).

672 Chapter 64. Polynomials and Rational Functions

gap> x:=Indeterminate(Rationals,"x");;y:=Indeterminate(Rationals,"y");;
gap> f:=3+x*y+x^5;;g:=5+x^2*y+x*y^2;;
gap> a:=g/f;
(x^2*y+x*y^2+5)/(x^5+x*y+3)
gap> b:=(g*f)/(f^2);
(x^7*y+x^6*y^2+5*x^5+x^3*y^2+x^2*y^3+3*x^2*y+3*x*y^2+5*x*y+15)/(x^10+2*x^6*y+6\
*x^5+x^2*y^2+6*x*y+9)
gap> a=b;
true

2 I f < g

The ordering of rational functions is defined in several steps. Monomials (products of indeterminates) are
sorted first by degree, then lexicographically (with x1 > x2) (see 64.16.8). Products of monomials with ring
elements (“terms”) are compared first by their monomials and then by their coefficients.

gap> x>y;
true
gap> x^2*y<x*y^2;
false
gap> x*y<x^2*y;
true
gap> x^2*y < 5* y*x^2;
true

Polynomials are compared by comparing the largest terms in turn until they differ.

gap> x+y<y;
false
gap> x<x+1;
true

Rational functions are compared by comparing the polynomial Numerator(f) ∗ Denominator(g) with the
polynomial Numerator(g) ∗ Denominator(f). (As the ordering of monomials used by GAP is invariant under
multiplication this is independent of common factors in numerator and denominator.)

gap> f/g<g/f;
false
gap> f/g<(g*g)/(f*g);
false

For univariate polynomials this reduces to an ordering first by total degree and then lexicographically on
the coefficients.

64.4 Properties and Attributes of Rational Functions

1 I IsPolynomialFunction(obj) C
I IsRationalFunction(obj) C

A polynomial function is an element of a polynomial ring (not necessarily an UFD).

A rational function is an element of the quotient field of a polynomial ring over an UFD. It is represented
as a quotient of two polynomials, its numerator (see 64.4.2) and its denominator (see 64.4.3)

2 I NumeratorOfRationalFunction(ratfun) A

returns the nominator of the rational function ratfun.

Section 4. Properties and Attributes of Rational Functions 673

As no proper multivariate gcd has been implemented yet, numerators and denominators are not guaranteed
to be reduced!

3 I DenominatorOfRationalFunction(ratfun) A

returns the denominator of the rational function ratfun.

As no proper multivariate gcd has been implemented yet, numerators and denominators are not guaranteed
to be reduced!

gap> x:=Indeterminate(Rationals,1);;y:=Indeterminate(Rationals,2);;
gap> DenominatorOfRationalFunction((x*y+x^2)/y);
y
gap> NumeratorOfRationalFunction((x*y+x^2)/y);
x^2+x*y

4 I IsPolynomial(ratfun) P

A polynomial is a rational functions whose denominator is one. (If the coefficients family forms a field this
is equivalent to the denominator being constant.)

If the base family is not a field, it may be impossible to represent the quotient of a polynomial by a ring
element as a polynomial again, but it will have to be represented as a rational function.

gap> IsPolynomial((x*y+x^2*y^3)/y);
true
gap> IsPolynomial((x*y+x^2)/y);
false

5 I AsPolynomial(poly) A

If poly is a rational function that is a polynomial this attribute returns an equal rational function p such
that p is equal to its numerator and the denominator of p is one.

gap> AsPolynomial((x*y+x^2*y^3)/y);
x^2*y^2+x

6 I IsUnivariateRationalFunction(ratfun) P

A rational function is univariate if its numerator and its denominator are both polynomials in the same
one indeterminate. The attribute IndeterminateNumberOfUnivariateRationalFunction can be used to
obtain the number of this common indeterminate.

7 I CoefficientsOfUnivariateRationalFunction(rfun) A

if rfun is a univariate rational function, this attribute returns a list [ncof ,dcof ,val] where ncof and dcof are
coefficient lists of univariate polynomials n and d and a valuation val such that rfun = x val · n/d where x is
the variable with the number given by 64.1.2. Numerator and Denominator are guaranteed to be cancelled.

8 I IsUnivariatePolynomial(ratfun) P

A univariate polynomial is a polynomial in only one indeterminate.

9 I CoefficientsOfUnivariatePolynomial(pol) A

CoefficientsOfUnivariatePolynomial returns the coefficient list of the polynomial pol , sorted in ascend-
ing order.

10 I IsLaurentPolynomial(ratfun) P

A Laurent polynomial is a univariate rational function whose denominator is a monomial. Therefore every
univariate polynomial is a Laurent polynomial.

674 Chapter 64. Polynomials and Rational Functions

The attribute CoefficientsOfLaurentPolynomial (see 64.12.2) gives a compact representation as Laurent
polynomial.

11 I IsConstantRationalFunction(ratfun) P

A constant rational function is a function whose numerator and denominator are polynomials of degree 0.
All these tests are applicable to every rational function. Depending on the internal representation of the
rational function, however some of these tests (in particular, univariateness) might be expensive in some
cases.
For reasons of performance within algorithms it can be useful to use other attributes, which give a slightly
more technical representation. See section 64.19 for details.

12 I IsPrimitivePolynomial(F, pol) O

For a univariate polynomial pol of degree d in the indeterminate X , with coefficients in a finite field F with
q elements, say, IsPrimitivePolynomial returns true if

1. pol divides X qd−1 − 1, and

2. for each prime divisor p of qd − 1, pol does not divide X (qd−1)/p − 1,

and false otherwise.

13 I SplittingField(f) A

returns the smallest field which contains the coefficients of f and the roots of f .

64.5 Univariate Polynomials

Some of the operations are actually defined on the larger domain of Laurent polynomials (see 64.12). For
this section you can simply ignore the word “Laurent” if it occurs in a description.

1 I UnivariatePolynomial(ring, cofs[, ind]) O

constructs an univariate polynomial over the ring ring in the indeterminate ind with the coefficients given
by coefs.

2 I UnivariatePolynomialByCoefficients(fam, cofs, ind) O

constructs an univariate polynomial over the coefficients family fam and in the indeterminate ind with the
coefficients given by coefs. This function should be used in algorithms to create polynomials as it avoids
overhead associated with UnivariatePolynomial.

3 I DegreeOfLaurentPolynomial(pol) A

The degree of a univariate (Laurent) polynomial pol is the largest exponent n of a monomial x n of pol .

gap> p:=UnivariatePolynomial(Rationals,[1,2,3,4],1);
4*x^3+3*x^2+2*x+1
gap> UnivariatePolynomialByCoefficients(FamilyObj(1),[9,2,3,4],73);
4*x_73^3+3*x_73^2+2*x_73+9
gap> CoefficientsOfUnivariatePolynomial(p);
[1, 2, 3, 4]
gap> DegreeOfLaurentPolynomial(p);
3
gap> IndeterminateNumberOfLaurentPolynomial(p);
1
gap> IndeterminateOfLaurentPolynomial(p);
x

We remark that some functions for multivariate polynomials (which will be defined in the following sections)
permit a different syntax for univariate polynomials which drops the requirement to specify the indetermi-
nate. Examples are Value, Discriminant, Derivative, LeadingCoefficient and LeadingMonomial:

Section 6. Polynomials as Univariate Polynomials in one Indeterminate 675

gap> Value(p,Z(5));
Z(5)^2
gap> LeadingCoefficient(p);
4
gap> Derivative(p);
12*x^2+6*x+2

4 I RootsOfUPol(upol) F
I RootsOfUPol(field, upol) F
I RootsOfUPol("split", upol) F

This function returns a list of all roots of the univariate polynomial upol in its default domain. If field is
given the roots over field are taken, if the first parameter is the string "split" the field is taken to be the
splitting field of the polynomial.

gap> RootsOfUPol(50-45*x-6*x^2+x^3);
[10, 1, -5]

5 I UnivariatenessTestRationalFunction(f) F

takes a rational function f and tests whether it is univariate or even a Laurent polynomial. It returns a list
[isunivariate, indet, islaurent, cofs] where indet is the indeterminate number and cofs (if applicable)
the coefficients lists. The list cofs is the CoefficientsOfLaurentPolynomial if islaurent is true and the
CoefficientsOfUnivariateRationalFunction if islaurent is false and isunivariate true. As there is no
proper multivariate gcd, it might return fail for isunivariate.

The info class for univariate polynomials is InfoPoly.

64.6 Polynomials as Univariate Polynomials in one Indeterminate

1 I DegreeIndeterminate(pol, ind) O
I DegreeIndeterminate(pol, inum) O

returns the degree of the polynomial pol in the indeterminate ind (respectively indeterminate number inum).

gap> f:=x^5+3*x*y+9*y^7+4*y^5*x+3*y+2;
9*y^7+4*x*y^5+x^5+3*x*y+3*y+2
gap> DegreeIndeterminate(f,1);
5
gap> DegreeIndeterminate(f,y);
7

2 I PolynomialCoefficientsOfPolynomial(pol, ind) O
I PolynomialCoefficientsOfPolynomial(pol, inum) O

PolynomialCoefficientsOfPolynomial returns the coefficient list (whose entries are polynomials not in-
volving the indeterminate ind) describing the polynomial pol viewed as a polynomial in ind . Instead of ind
also the indeterminate number inum can be given.

gap> PolynomialCoefficientsOfPolynomial(f,2);
[x^5+2, 3*x+3, 0, 0, 0, 4*x, 0, 9]

3 I LeadingCoefficient(pol) O

returns the leading coefficient (that is the coefficient of the leading monomial, see 64.6.4) of the polynomial
pol .

676 Chapter 64. Polynomials and Rational Functions

4 I LeadingMonomial(pol) F

returns the leading monomial (with respect to the ordering given by 64.16.14 of the polynomial pol as a list
containing indeterminate numbers and exponents.

gap> LeadingCoefficient(f,1);
1
gap> LeadingCoefficient(f,2);
9
gap> LeadingMonomial(f);
[2, 7]
gap> LeadingCoefficient(f);
9

5 I Derivative(ufun) O
I Derivative(ratfun, ind) O
I Derivative(ratfun, inum) O

returns the derivative upoly ′ of the univariate rational function ufun by its indeterminant. The second version
returns the derivative of ratfun by the indeterminate ind (respectively indeterminate number inum) when
viewing ratfun as univariate in ind .

gap> Derivative(f,2);
63*y^6+20*x*y^4+3*x+3

6 I Discriminant(upol) O
I Discriminant(pol, ind) O
I Discriminant(pol, inum) O

returns the discriminant disc(upoly) of the univariate polynomial upoly by its indeterminant. The second
version returns the discriminant of pol by the indeterminate ind (respectively indeterminate number inum).

gap> Discriminant(f,1);
20503125*y^28+262144*y^25+27337500*y^22+19208040*y^21+1474560*y^17+13668750*y^\
16+18225000*y^15+6075000*y^14+1105920*y^13+3037500*y^10+6489720*y^9+4050000*y^\
8+900000*y^7+62208*y^5+253125*y^4+675000*y^3+675000*y^2+300000*y+50000

7 I Resultant(pol1, pol2, inum) O
I Resultant(pol1, pol2, ind) O

computes the resultant of the polynomials pol1 and pol2 with respect to the indeterminate ind or indeter-
minate number inum. The resultant considers pol1 and pol2 as univariate in ind and returns an element of
the corresponding base ring (which might be a polynomial ring).

gap> Resultant(x^4+y,y^4+x,1);
y^16+y
gap> Resultant(x^4+y,y^4+x,2);
x^16+x

Section 9. Cyclotomic Polynomials 677

64.7 Multivariate Polynomials

1 I Value(ratfun, indets, vals[, one]) O
I Value(upol, value[, one]) O

The first variant takes a rational function ratfun and specializes the indeterminates given in indets to the
values given in vals, replacing the i -th indeterminate indets i by vals i . If this specialization results in a
constant polynomial, an element of the coefficient ring is returned. If the specialization would specialize the
denominator of ratfun to zero, an error is raised.

A variation is the evaluation at elements of another ring R, for which a multiplication with elements of the
coefficient ring of ratfun are defined. In this situation the identity element of R may be given by a further
argument one which will be used for x 0 for any specialized indeterminate x .

The second version takes an univariate rational function and specializes the value of its indeterminate to
val . Again, an optional argument one may be given.

gap> Value(x*y+y+x^7,[x,y],[5,7]);
78167

Note that the default values for one can lead to different results than one would expect: For example for
a matrix M , the values M + M 0 and M + 1 are different. As Value defaults to the one of the coefficient
ring, when evaluating Matrices in polynomials always the correct one should be given!

2 I OnIndeterminates(poly, perm) F

A permutation perm acts on the multivariate polynomial poly by permuting the indeterminates as it permutes
points.

gap> OnIndeterminates(x^7*y+x*y^4,(1,17)(2,28));
x_17^7*x_28+x_17*x_28^4
gap> Stabilizer(Group((1,2,3,4),(1,2)),x*y,OnIndeterminates);
Group([(1,2), (3,4)])

64.8 Minimal Polynomials

1 I MinimalPolynomial(R, elm[, ind]) O

returns the minimal polynomial of elm over the ring R, expressed in the indeterminate number ind . If
ind is not given, it defaults to 1.

The minimal polynomial is the monic polynomial of smallest degree with coefficients in R that has value
zero at elm.

gap> MinimalPolynomial(Rationals,[[2,0],[0,2]]);
x-2

64.9 Cyclotomic Polynomials

1 I CyclotomicPolynomial(F, n) F

is the n-th cyclotomic polynomial over the ring F .

gap> CyclotomicPolynomial(Rationals,5);
x^4+x^3+x^2+x+1

678 Chapter 64. Polynomials and Rational Functions

64.10 Polynomial Factorization

At the moment GAP provides only methods to factorize univariate polynomials over finite fields (see Chap-
ter 57) and over subfields of cyclotomic fields (see Chapter 58).

1 I Factors([R,]upoly[,opt])

returns a list of the irreducible factors of the univariate polynomial upoly in the polynomial ring R. (That
is factors over the CoefficientsRing of R.)

It is possible to pass a record opt as a third argument. This record can contain the following components:

onlydegs
is a set of positive integers. The factorization assumes that all irreducible factors have a degree in
this set.

stopdegs
is a set of positive integers. The factorization will stop once a factor of degree in stopdegs has been
found and will return the factorization found so far.

gap> f:= CyclotomicPolynomial(GF(2), 7);
x_1^6+x_1^5+x_1^4+x_1^3+x_1^2+x_1+Z(2)^0
gap> Factors(f);
[x_1^3+x_1+Z(2)^0, x_1^3+x_1^2+Z(2)^0]
gap> Factors(PolynomialRing(GF(8)), f);
[x_1+Z(2^3), x_1+Z(2^3)^2, x_1+Z(2^3)^3, x_1+Z(2^3)^4, x_1+Z(2^3)^5,
x_1+Z(2^3)^6]

gap> f:= MinimalPolynomial(Rationals, E(4));
x^2+1
gap> Factors(f);
[x^2+1]
gap> Factors(PolynomialRing(Rationals), f);
[x^2+1]
gap> Factors(PolynomialRing(CF(4)), f);
[x+(-E(4)), x+E(4)]

2 I FactorsSquarefree(pring, upol, opt) O

returns a factorization of the squarefree, monic, univariate polynomial upoly in the polynomial ring pring ;
opt must be a (possibly empty) record of options. upol must not have zero as a root. This function is used
by the factoring algorithms.

64.11 Polynomials over the Rationals

The following functions are only available to polynomials with rational coefficients:

1 I PrimitivePolynomial(f) F

takes a polynomial f with rational coefficients and computes a new polynomial with integral coefficients,
obtained by multiplying with the Lcm of the denominators of the coefficients and casting out the con-
tent (the Gcd of the coefficients). The operation returns a list [newpol ,coeff] with rational coeff such that
coeff *newpol=f .

2 I PolynomialModP(pol, p) F

for a rational polynomial pol this function returns a polynomial over the field with p elements, obtained by
reducing the coefficients modulo p.

Section 11. Polynomials over the Rationals 679

3 I GaloisType(f [, cand]) F

Let f be an irreducible polynomial with rational coefficients. This function returns the type of Gal(f)
(considered as a transitive permutation group of the roots of f). It returns a number i if Gal(f) is permutation
isomorphic to TransitiveGroup(n,i) where n is the degree of f .

Identification is performed by factoring appropriate Galois resolvents as proposed in [MS85]. This function
is provided for rational polynomials of degree up to 15. However, in some cases the required calculations
become unfeasibly large.

For a few polynomials of degree 14, a complete discrimination is not yet possible, as it would require
computations, that are not feasible with current factoring methods.

This function requires the transitive groups library to be installed (see 48.6).

4 I ProbabilityShapes(f) F

Let f be an irreducible polynomial with rational coefficients. This function returns a list of the most likely
type(s) of Gal(f) (see GaloisType – 64.11.3), based on factorization modulo a set of primes. It is very fast,
but the result is only probabilistic.

This function requires the transitive groups library to be installed (see 48.6).

gap> f:=x^9-9*x^7+27*x^5-39*x^3+36*x-8;;
gap> GaloisType(f);
25
gap> TransitiveGroup(9,25);
[1/2.S(3)^3]3
gap> ProbabilityShapes(f);
[25]

The following operations are used by GAP inside the factorization algorithm but might be of interest also
in other contexts.

5 I BombieriNorm(pol) F

computes weighted Norm [pol] 2 of pol which is a good measure for factor coeffietients (see [BTW93]).

6 I MinimizedBombieriNorm(f) A

This function applies linear Tschirnhaus transformations (x 7→ x + i) to the polynomial f , trying to get the
Bombieri norm of f small. It returns a list [new polynomial, i of transformation].

7 I HenselBound(pol, [minpol, den]) F

returns the Hensel bound of the polynomial pol . If the computation takes place over an algebraic extension,
then the minimal polynomial minpol and denominator den must be given.

8 I OneFactorBound(pol) F

returns the coefficient bound for a single factor of the rational polynomial pol .

680 Chapter 64. Polynomials and Rational Functions

64.12 Laurent Polynomials

A univariate polynomial can be written in the form r0 + r1x + · · ·+ rnx n with ri ∈ R. Formally, there is no
reason to start with 0, if m is an integer, we can consider objects of the form rmx m +rm+1x m+1+· · ·+rnx n . We
call these Laurent polynomials. Laurent polynomials also can be considered as quotients of a univariate
polynomial by a power of the indeterminate. The addition and multiplication of univariate polynomials
extends to Laurent polynomials (though it might be impossible to interpret a Laurent polynomial as a
function) and many functions for univariate polynomials extend to Laurent polynomials (or extended versions
for Laurent polynomials exist).

1 I LaurentPolynomialByCoefficients(fam, cofs, val [, ind]) O

constructs a Laurent polynomial over the coefficients family fam and in the indeterminate ind (defaulting
to 1) with the coefficients given by coefs and valuation val .

2 I CoefficientsOfLaurentPolynomial(laurent) A

For a Laurent polynomial this function returns a pair [cof , val], consisting of the coefficient list (in
ascending order) cof and the valuation val of the Laurent polynomial laurent .

gap> p:=LaurentPolynomialByCoefficients(FamilyObj(1),
> [1,2,3,4,5],-2);
5*x^2+4*x+3+2*x^-1+x^-2
gap> NumeratorOfRationalFunction(p);DenominatorOfRationalFunction(p);
5*x^4+4*x^3+3*x^2+2*x+1
x^2
gap> CoefficientsOfLaurentPolynomial(p*p);
[[1, 4, 10, 20, 35, 44, 46, 40, 25], -4]

3 I IndeterminateNumberOfLaurentPolynomial(pol) F

Is a synonym for IndeterminateNumberOfUnivariateRationalFunction (see 64.1.2).

4 I QuotRemLaurpols(left, right, mode) F

takes two Laurent polynomials left and right and computes their quotient. Depending on the integer variable
mode it returns:

1. the quotient (there might be some remainder),

2. the remainder,

3. a list [q ,r] of quotient and remainder,

4. the quotient if there is no remainder and fail otherwise.

64.13 Univariate Rational Functions

1 I UnivariateRationalFunctionByCoefficients(fam, ncof , dcof , val[, ind]) O

constructs a univariate rational function over the coefficients family fam and in the indeterminate ind
(defaulting to 1) with numerator and denominator coefficients given by ncof and dcof and valuation val .

Section 14. Polynomial Rings 681

64.14 Polynomial Rings

While polynomials depend only on the family of the coefficients, polynomial rings A are defined over a base
ring R. A polynomial is an element of A if and only if all its coefficients are contained in R. Besides providing
domains and an easy way to create polynomials, polynomial rings can affect the behavior of operations like
factorization into irreducibles.

1 I PolynomialRing(ring, rank, [avoid]) O
I PolynomialRing(ring, names, [avoid]) O
I PolynomialRing(ring, indets) O
I PolynomialRing(ring, indetnums) O

creates a polynomial ring over ring . If a positive integer rank is given, this creates the polynomial ring
in rank indeterminates. These indeterminates will have the internal index numbers 1 to rank . The second
usage takes a list names of strings and returns a polynomial ring in indeterminates labelled by names. These
indeterminates have “new” internal index numbers as if they had been created by calls to Indeterminate.
(If the argument avoid is given it contains indeterminates that should be avoided, in this case internal index
numbers are incremented to skip these variables). In the third version, a list of indeterminates indets is
given. This creates the polynomial ring in the indeterminates indets. Finally, the fourth version specifies
indeterminates by their index number.

To get the indeterminates of a polynomial ring use IndeterminatesOfPolynomialRing. (Indeterminates
created independently with Indeterminate will usually differ, though they might be given the same name
and display identically – see section 64.1).

2 I IndeterminatesOfPolynomialRing(pring) A

returns a list of the indeterminates of the polynomial ring pring

3 I CoefficientsRing(pring) A

returns the ring of coefficients of the polynomial ring pring , that is the ring over which pring was defined.

gap> r:=PolynomialRing(GF(7));
GF(7)[x_1]
gap> r:=PolynomialRing(GF(7),3);
GF(7)[x_1,x_2,x_3]
gap> IndeterminatesOfPolynomialRing(r);
[x_1, x_2, x_3]
gap> r2:=PolynomialRing(GF(7),[5,7,12]);
GF(7)[x_5,x_7,x_12]
gap> CoefficientsRing(r);
GF(7)
gap> r:=PolynomialRing(GF(7),3);
GF(7)[x_1,x_2,x_3]
gap> r2:=PolynomialRing(GF(7),3,IndeterminatesOfPolynomialRing(r));
GF(7)[x_4,x_5,x_6]
gap> r:=PolynomialRing(GF(7),["x","y","z","z2"]);
GF(7)[x,y,z,z2]

If you need to work with a polynomial ring and its indeterminates the following two approaches will produce
a ring that contains given variables (see section 64.1 for details about the internal numbering): Either, first
create the ring and then get the indeterminates as IndeterminatesOfPolynomialRing.

682 Chapter 64. Polynomials and Rational Functions

gap> r := PolynomialRing(Rationals,["x","y"]);;
gap> indets := IndeterminatesOfPolynomialRing(r);;
gap> x := indets[1]; y := indets[2];
x
y

Alternatively, first create the indeterminates and then create the ring including these indeterminates.

gap> x:=X(Rationals,"x");;y:=X(Rationals,"y");;
gap> PolynomialRing(Rationals,[x,y]);;

As a convenient shortcut, intended mainly for interactive working, the indeterminates of a polynomial ring
’r’ can be accessed as ’r.i ’, which corresponds exactly to IndeterminatesOfPolynomialRing(r)[i] or, if
they have names, as ’r.name’. Note that the number i is not an indeterminate number, but simply an index
into the indeterminates list of r;

gap> r := PolynomialRing(Rationals, ["x", "y"]);;
gap> r.1; r.2; r.x; r.y;
x
y
x
y
gap> IndeterminateNumberOfLaurentPolynomial(r.1);
7

As GAP objects polynomials can exist without a polynomial ring being defined and polynomials cannot be
associated to a particular polynomial ring. (For example dividing a polynomial which is in a polynomial ring
over the integers by another integer will result in a polynomial over the rationals, not in a rational function
over the integers.)

4 I IsPolynomialRing(pring) C

is the category of polynomial rings

5 I IsFiniteFieldPolynomialRing(pring) C

is the category of polynomial rings over a finite field (see Chapter 57).

6 I IsAbelianNumberFieldPolynomialRing(pring) C

is the category of polynomial rings over a field of cyclotomics (see the chapters 18 and 58).

7 I IsRationalsPolynomialRing(pring) C

is the category of polynomial rings over the rationals (see Chapter 16).

gap> IsPolynomialRing(r);
true
gap> IsFiniteFieldPolynomialRing(r);
false
gap> IsRationalsPolynomialRing(r);
true

Section 16. Monomial Orderings 683

64.15 Univariate Polynomial Rings
1 I UnivariatePolynomialRing(R [, nr]) O

I UnivariatePolynomialRing(R [, avoid]) O
I UnivariatePolynomialRing(R, name [, avoid]) O

returns a univariate polynomial ring in the indeterminate nr over the base ring R. if nr is not given it
defaults to 1. If the number is not specified a list avoid of indeterminates may be given. The function will
return a ring in an indeterminate that is guaranteed to be different from all the indeterminates in avoid .
The third usage returns a ring in an indeterminate called name (also avoiding the indeterminates in avoid
if given).

2 I IsUnivariatePolynomialRing(pring) C

is the category of polynomial rings with one indeterminate.

gap> r:=UnivariatePolynomialRing(Rationals,"x");
Rationals[x]
gap> r2:=PolynomialRing(Rationals,["q"]);
Rationals[q]
gap> IsUnivariatePolynomialRing(r);
true
gap> IsUnivariatePolynomialRing(r2);
true

64.16 Monomial Orderings

It is often desirable to consider the monomials within a polynomial to be arranged with respect to a certain
ordering. Such an ordering is called a monomial ordering if it is total, invariant under multiplication with
other monomials and admits no infinite descending chains. For details on monomial orderings see [CLO97].
In GAP, monomial orderings are represented by objects that provide a way to compare monomials (as
polynomials as well as – for efficiency purposes within algorithms – in the internal representation as lists).
Normally the ordering chosen should be admissible, i.e. it must be compatible with products: If a < b then
ca < cb for all monomials a, b and c.

1 I IsMonomialOrdering(obj) C

A monomial ordering is an object representing a monomial ordering. Its attributes MonomialComparison-
Function and MonomialExtrepComparisonFun are actual comparison functions.

2 I LeadingMonomialOfPolynomial(pol, ord) F

returns the leading monomial (with respect to the ordering ord) of the polynomial pol .

gap> x:=X(Rationals,"x");;y:=X(Rationals,"y");;z:=X(Rationals,"z");;
gap> lexord:=MonomialLexOrdering();grlexord:=MonomialGrlexOrdering();
MonomialLexOrdering()
MonomialGrlexOrdering()
gap> f:=2*x+3*y+4*z+5*x^2-6*z^2+7*y^3;
7*y^3+5*x^2-6*z^2+2*x+3*y+4*z
gap> LeadingMonomialOfPolynomial(f,lexord);
x^2
gap> LeadingMonomialOfPolynomial(f,grlexord);
y^3

3 I LeadingTermOfPolynomial(pol, ord) F

returns the leading term (with respect to the ordering ord) of the polynomial pol , i.e. the product of leading
coefficient and leading monomial.

684 Chapter 64. Polynomials and Rational Functions

4 I LeadingCoefficientOfPolynomial(pol, ord) O

returns the leading coefficient (that is the coefficient of the leading monomial, see 64.16.2) of the polynomial
pol .

gap> LeadingTermOfPolynomial(f,lexord);
5*x^2
gap> LeadingTermOfPolynomial(f,grlexord);
7*y^3
gap> LeadingCoefficientOfPolynomial(f,lexord);
5

Each monomial ordering provides two functions to compare monomials. These functions work as “is less
than”, i.e. they return true if and only if the left argument is smaller.

5 I MonomialComparisonFunction(O) A

If O is an object representing a monomial ordering, this attribute returns a function that can be used
to compare or sort monomials (and polynomials which will be compared by their monomials in decreasing
order) in this order.

gap> MonomialComparisonFunction(lexord);
function(a, b) ... end
gap> l:=[f,Derivative(f,x),Derivative(f,y),Derivative(f,z)];;
gap> Sort(l,MonomialComparisonFunction(lexord));l;
[-12*z+4, 21*y^2+3, 10*x+2, 7*y^3+5*x^2-6*z^2+2*x+3*y+4*z]

6 I MonomialExtrepComparisonFun(O) A

If O is an object representing a monomial ordering, this attribute returns a function that can be used to
compare or sort monomials in their external representation (as lists). This comparison variant is used
inside algorithms that manipulate the external representation.

The following monomial orderings are predefined in GAP:

7 I MonomialLexOrdering() F
I MonomialLexOrdering(vari) F

This function creates a lexicographic ordering for monomials. Monomials are compared first by the exponents
of the largest variable, then the exponents of the second largest variable and so on.

The variables are ordered according to their (internal) index, i.e. x1 is larger than x2 and so on. If vari is
given, and is a list of variables or variable indices, instead this arrangement of variables (in descending order;
i.e. the first variable is larger than the second) is used as the underlying order of variables.

gap> l:=List(Tuples([1..3],3),i->x^(i[1]-1)*y^(i[2]-1)*z^(i[3]-1));
[1, z, z^2, y, y*z, y*z^2, y^2, y^2*z, y^2*z^2, x, x*z, x*z^2, x*y, x*y*z,
x*y*z^2, x*y^2, x*y^2*z, x*y^2*z^2, x^2, x^2*z, x^2*z^2, x^2*y, x^2*y*z,
x^2*y*z^2, x^2*y^2, x^2*y^2*z, x^2*y^2*z^2]

gap> Sort(l,MonomialComparisonFunction(MonomialLexOrdering()));l;
[1, z, z^2, y, y*z, y*z^2, y^2, y^2*z, y^2*z^2, x, x*z, x*z^2, x*y, x*y*z,
x*y*z^2, x*y^2, x*y^2*z, x*y^2*z^2, x^2, x^2*z, x^2*z^2, x^2*y, x^2*y*z,
x^2*y*z^2, x^2*y^2, x^2*y^2*z, x^2*y^2*z^2]

gap> Sort(l,MonomialComparisonFunction(MonomialLexOrdering([y,z,x])));l;
[1, x, x^2, z, x*z, x^2*z, z^2, x*z^2, x^2*z^2, y, x*y, x^2*y, y*z, x*y*z,
x^2*y*z, y*z^2, x*y*z^2, x^2*y*z^2, y^2, x*y^2, x^2*y^2, y^2*z, x*y^2*z,
x^2*y^2*z, y^2*z^2, x*y^2*z^2, x^2*y^2*z^2]

gap> Sort(l,MonomialComparisonFunction(MonomialLexOrdering([z,x,y])));l;

Section 16. Monomial Orderings 685

[1, y, y^2, x, x*y, x*y^2, x^2, x^2*y, x^2*y^2, z, y*z, y^2*z, x*z, x*y*z,
x*y^2*z, x^2*z, x^2*y*z, x^2*y^2*z, z^2, y*z^2, y^2*z^2, x*z^2, x*y*z^2,
x*y^2*z^2, x^2*z^2, x^2*y*z^2, x^2*y^2*z^2]

8 I MonomialGrlexOrdering() F
I MonomialGrlexOrdering(vari) F

This function creates a degree/lexicographic ordering. In this oredring monomials are compared first by
their total degree, then lexicographically (see MonomialLexOrdering).

The variables are ordered according to their (internal) index, i.e. x1 is larger than x2 and so on. If vari is
given, and is a list of variables or variable indices, instead this arrangement of variables (in descending order;
i.e. the first variable is larger than the second) is used as the underlying order of variables.

9 I MonomialGrevlexOrdering() F
I MonomialGrevlexOrdering(vari) F

This function creates a “grevlex” ordering. In this ordering monomials are compared first by total degree
and then backwards lexicographically. (This is different than “grlex” ordering with variables reversed.)

The variables are ordered according to their (internal) index, i.e. x1 is larger than x2 and so on. If vari is
given, and is a list of variables or variable indices, instead this arrangement of variables (in descending order;
i.e. the first variable is larger than the second) is used as the underlying order of variables.

gap> Sort(l,MonomialComparisonFunction(MonomialGrlexOrdering()));l;
[1, z, y, x, z^2, y*z, y^2, x*z, x*y, x^2, y*z^2, y^2*z, x*z^2, x*y*z,
x*y^2, x^2*z, x^2*y, y^2*z^2, x*y*z^2, x*y^2*z, x^2*z^2, x^2*y*z, x^2*y^2,
x*y^2*z^2, x^2*y*z^2, x^2*y^2*z, x^2*y^2*z^2]

gap> Sort(l,MonomialComparisonFunction(MonomialGrevlexOrdering()));l;
[1, z, y, x, z^2, y*z, x*z, y^2, x*y, x^2, y*z^2, x*z^2, y^2*z, x*y*z,
x^2*z, x*y^2, x^2*y, y^2*z^2, x*y*z^2, x^2*z^2, x*y^2*z, x^2*y*z, x^2*y^2,
x*y^2*z^2, x^2*y*z^2, x^2*y^2*z, x^2*y^2*z^2]

gap> Sort(l,MonomialComparisonFunction(MonomialGrlexOrdering([z,y,x])));l;
[1, x, y, z, x^2, x*y, y^2, x*z, y*z, z^2, x^2*y, x*y^2, x^2*z, x*y*z,
y^2*z, x*z^2, y*z^2, x^2*y^2, x^2*y*z, x*y^2*z, x^2*z^2, x*y*z^2, y^2*z^2,
x^2*y^2*z, x^2*y*z^2, x*y^2*z^2, x^2*y^2*z^2]

10 I EliminationOrdering(elim) F
I EliminationOrdering(elim, rest) F

This function creates an elimination ordering for eliminating the variables in elim. Two monomials are
compared first by the exponent vectors for the variables listed in elim (a lexicographic comparison with
respect to the ordering indicated in elim). If these submonomial are equal, the submonomials given by the
other variables are compared by a graded lexicographic ordering (with respect to the variable order given
in rest , if called with two parameters).

Both elim and rest may be a list of variables of a list of variable indices.

11 I PolynomialReduction(poly, gens, order) F

reduces the polynomial poly by the ideal generated by the polynomials in gens, using the order order of
monomials. Unless gens is a Gröbner basis the result is not guaranteed to be unique.

The operation returns a list of length two, the first entry is the remainder after the reduction. The second
entry is a list of quotients corresponding to gens.

Note that the strategy used by PolynomialReduction differs from the standard textbook reduction algo-
rithm, which is provided by PolynomialDivisionAlgorithm.

686 Chapter 64. Polynomials and Rational Functions

12 I PolynomialReducedRemainder(poly, gens, order) F

thios operation does the same way as PolynomialReduction (see 64.16.11) but does not keep track of the
actual quotients and returns only the remainder (it is therfore slightly faster).

13 I PolynomialDivisionAlgorithm(poly, gens, order) F

This function implements the division algorithm for multivariate polynomials as given in theorem 3 in
chapter 2 of [CLO97]. (It might be slower than PolynomialReduction but the remainders are guaranteed
to agree with the textbook.)

The operation returns a list of length two, the first entry is the remainder after the reduction. The second
entry is a list of quotients corresponding to gens.

gap> bas:=[x^3*y*z,x*y^2*z,z*y*z^3+x];;
gap> pol:=x^7*z*bas[1]+y^5*bas[3]+x*z;;
gap> PolynomialReduction(pol,bas,MonomialLexOrdering());
[-y*z^5, [x^7*z, 0, y^5+z]]
gap> PolynomialReducedRemainder(pol,bas,MonomialLexOrdering());
-y*z^5
gap> PolynomialDivisionAlgorithm(pol,bas,MonomialLexOrdering());
[-y*z^5, [x^7*z, 0, y^5+z]]

14 I MonomialExtGrlexLess(a, b) F

implements comparison of monomial in their external representation by a “grlex” order with x1 > x2 (This
is exactly the same as the ordering by MonomialGrlexOrdering(), see 64.16). The function takes two
monomials a and b in expanded form and returns whether the first is smaller than the second. (This
ordering is also used by GAP internally for representing polynomials as a linear combination of monomials.)

See section 64.20 for details on the expanded form of monomials.

64.17 Groebner Bases

A Groebner Basis of an ideal I i, in a polynomial ring R, with respect to a monomial ordering, is a set of
ideal generators G such that the ideal generated by the leading monomials of all polynomials in G is equal
to the ideal generated by the leading monomials of all polynomials in I .

For more details on Groebner bases see [CLO97].

1 I GroebnerBasis(L, O) O
I GroebnerBasis(I , O) O
I GroebnerBasisNC(L, O) O

Let O be a monomial ordering and L be a list of polynomials that generate an ideal I . This operation returns
a Groebner basis of I with respect to the ordering O .“

GroebnerBasisNC works like GroebnerBasis with the only distinction that the first argument has to be a
list of polynomials and that no test is performed to check whether the ordering is defined for all occuring
variables.

Note that GAP at the moment only includes a na”ıve implementation of Buchberger’s algorithm (which is
mainly intended as a teaching tool). It might not be sufficient for serious problems.

Section 18. Rational Function Families 687

gap> l:=[x^2+y^2+z^2-1,x^2+z^2-y,x-y];;
gap> GroebnerBasis(l,MonomialLexOrdering());
[x^2+y^2+z^2-1, x^2+z^2-y, x-y, -y^2-y+1, -z^2+2*y-1, 1/2*z^4+2*z^2-1/2]
gap> GroebnerBasis(l,MonomialLexOrdering([z,x,y]));
[x^2+y^2+z^2-1, x^2+z^2-y, x-y, -y^2-y+1]
gap> GroebnerBasis(l,MonomialGrlexOrdering());
[x^2+y^2+z^2-1, x^2+z^2-y, x-y, -y^2-y+1, -z^2+2*y-1]

2 I ReducedGroebnerBasis(L, O) O
I ReducedGroebnerBasis(I , O) O

a Groebner basis B (see 64.17.1) is reduced if no monomial in a polynomial in B is divisible by the leading
monomial of another polynomial in B . This operation computes a Groebner basis with respect to O and
then reduces it.

gap> ReducedGroebnerBasis(l,MonomialGrlexOrdering());
[x-y, z^2-2*y+1, y^2+y-1]
gap> ReducedGroebnerBasis(l,MonomialLexOrdering());
[z^4+4*z^2-1, -1/2*z^2+y-1/2, -1/2*z^2+x-1/2]
gap> ReducedGroebnerBasis(l,MonomialLexOrdering([y,z,x]));
[x^2+x-1, z^2-2*x+1, -x+y]

For performance reasons it can be advantageous to define monomial orderings once and then to reuse them:

gap> ord:=MonomialGrlexOrdering();;
gap> GroebnerBasis(l,ord);
[x^2+y^2+z^2-1, x^2+z^2-y, x-y, -y^2-y+1, -z^2+2*y-1]
gap> ReducedGroebnerBasis(l,ord);
[x-y, z^2-2*y+1, y^2+y-1]

3 I StoredGroebnerBasis(I) A

For an ideal I in a polynomial ring, this attribute holds a list [B ,O] where B is a Groebner basis for the
monomial ordering O . this can be used to test membership or canonical coset representatives.

4 I InfoGroebner V

This info class gives information about Groebner basis calculations.

64.18 Rational Function Families

All rational functions defined over a ring lie in the same family, the rational functions family over this ring.

In GAP therefore the family of a polynomial depends only on the family of the coefficients, all polynomials
whose coefficients lie in the same family are “compatible”.

1 I RationalFunctionsFamily(fam) A

creates a family containing rational functions with coefficients in fam. All elements of the RationalFunc-
tionsFamily are rational functions (see 64.4.1).

2 I IsPolynomialFunctionsFamily(obj) C
I IsRationalFunctionsFamily(obj) C

IsPolynomialFunctionsFamily is the category of a family of polynomials. For families over an UFD, the
category becomes IsRationalFunctionsFamily (as rational functions and quotients are only provided for
families over an UFD.)

688 Chapter 64. Polynomials and Rational Functions

gap> fam:=RationalFunctionsFamily(FamilyObj(1));
NewFamily("RationalFunctionsFamily(...)", [618, 620],
[82, 85, 89, 93, 97, 100, 103, 107, 111, 618, 620])

3 I CoefficientsFamily(rffam) A

If rffam has been created as RationalFunctionsFamily(cfam) this attribute holds the coefficients family
cfam.

GAP does not embed the base ring in the polynomial ring. While multiplication and addition of base ring
elements to rational functions return the expected results, polynomials and rational functions are not equal.

gap> 1=Indeterminate(Rationals)^0;
false

64.19 The Representations of Rational Functions

GAP uses four representations of rational functions: Rational functions given by numerator and denominator,
polynomials, univariate rational functions (given by coefficient lists for numerator and denominator and
valuation) and Laurent polynomials (given by coefficient list and valuation).

These representations do not necessarily reflect mathematical properties: While an object in the Laurent
polynomials representation must be a Laurent polynomial it might turn out that a rational function given
by numerator and denominator is actually a Laurent polynomial and the property tests in section 64.4 will
find this out.

Each representation is associated one or several “defining attributes” that give an “external” representation
(see 64.20) of the representation in the form of lists and are the defining information that tells a rational
function what it is.

GAP also implements methods to compute these attributes for rational functions in other representations,
provided it would be possible to express an mathematically equal rational function in the representation
associated with the attribute. (That is one can always get a numerator/denominator representation of a
polynomial while an arbitrary function of course can compute a polynomial representation only if it is a
polynomial.)

Therefore these attributes can be thought of as “conceptual” representations that allow us – as far as possible
– to consider an object as a rational function, a polynomial or a Laurent polynomial, regardless of the way
it is represented in the computer.

Functions thus usually do not need to care about the representation of a rational function. Depending on
its (known in the context or determined) properties, they can access the attribute representing the rational
function in the desired way.

Consequentially, methods for rational functions are installed for properties and not for representations.

When creating new rational functions however they must be created in one of the three representations. In
most cases this will be the representation for which the “conceptual” representation in which the calculation
was done is the defining attribute.

Iterated operations (like forming the product over a list) therefore will tend to stay in the most suitable rep-
resentation and the calculation of another conceptual representation (which may be comparatively expensive
in certain circumstances) is not necessary.

Section 20. The Defining Attributes of Rational Functions 689

64.20 The Defining Attributes of Rational Functions

In general, rational functions are given in terms of monomials. They are represented by lists, using numbers
(see 64.1) for the indeterminates.

A monomial is a product of powers of indeterminates. A monomial is stored as a list (we call this the
expanded form of the monomial) of the form [inum,exp,inum,exp,...] where each inum is the number
of an indeterminate and exp the corresponding exponent. The list must be sorted according to the numbers
of the indeterminates. Thus for example, if x , y and z are the first three indeterminates, the expanded form
of the monomial x 5z 8 = z 8x 5 is [1,5,3,8].

The representation of a polynomials is a list of the form [mon,coeff ,mon,coeff ,...] where mon is a
monomial in expanded form (that is given as list) and coeff its coefficient. The monomials must be sorted
according to the total degree/lexicographic order (This is the same as given by the “grlex” monomial
ordering, see 64.16.8). We call this the external representation of a polynomial. (The reason for ordering
is that addition of polynomials becomes linear in the number of monomials instead of quadratic; the reason
for the particular ordering chose is that it is compatible with multiplication and thus gives acceptable
performance for quotient calculations.)

1 I IsRationalFunctionDefaultRep(obj) R

is the default representation of rational functions. A rational function in this representation is defined by the
attributes ExtRepNumeratorRatFun and ExtRepDenominatorRatFun where ExtRepNumeratorRatFun and
ExtRepDenominatorRatFun are both external representations of a polynomial.

2 I ExtRepNumeratorRatFun(ratfun) A

returns the external representation of the numerator polynomial of the rational function ratfun. Numerator
and Denominator are not guaranteed to be cancelled against each other.

3 I ExtRepDenominatorRatFun(ratfun) A

returns the external representation of the denominator polynomial of the rational function ratfun. Numerator
and Denominator are not guaranteed to be cancelled against each other.

4 I ZeroCoefficientRatFun(ratfun) O

returns the zero of the coefficient ring. This might be needed to represent the zero polynomial for which the
external representation of the numerator is the empty list.

5 I IsPolynomialDefaultRep(obj) R

is the default representation of polynomials. A polynomial in this representation is defined by the compo-
nents and ExtRepNumeratorRatFun where ExtRepNumeratorRatFun is the external representation of the
polynomial.

6 I ExtRepPolynomialRatFun(polynomial) A

returns the external representation of a polynomial. The difference to ExtRepNumeratorRatFun is that
rational functions might know to be a polynomial but can still have a non-vanishing denominator. In this
case ExtRepPolynomialRatFun has to call a quotient routine.

7 I IsLaurentPolynomialDefaultRep(obj) R

This representation is used for Laurent polynomials and univariate polynomials. It represents a Laurent
polynomial via the attributes CoefficientsOfLaurentPolynomial (see 64.12.2) and IndeterminateNum-
berOfLaurentPolynomial (see 64.12.3).

The attributes that give a representation of a a rational function as a Laurent polynomial are Coef-
ficientsOfLaurentPolynomial (see 64.12.2) and IndeterminateNumberOfUnivariateRationalFunction
(see 64.1.2).

690 Chapter 64. Polynomials and Rational Functions

Algorithms should use only the attributes ExtRepNumeratorRatFun, ExtRepDenominatorRatFun, ExtRep-
PolynomialRatFun, CoefficientsOfLaurentPolynomial and – if the univariate function is not constant
– IndeterminateNumberOfUnivariateRationalFunction as the low-level interface to work with a polyno-
mial. They should not refer to the actual representation used.

64.21 Creation of Rational Functions

The operations LaurentPolynomialByCoefficients (see 64.12.1), PolynomialByExtRep and Rational-
FunctionByExtRep are used to construct objects in the three basic representations for rational functions.

1 I RationalFunctionByExtRep(rfam, num, den) F
I RationalFunctionByExtRepNC(rfam, num, den) F

constructs a rational function (in the representation IsRationalFunctionDefaultRep) in the rational func-
tion family rfam, the rational function itself is given by the external representations num and den for
numerator and denominator. No cancellation takes place.

The variant RationalFunctionByExtRepNC does not perform any test of the arguments and thus potentially
can create illegal objects. It only should be used if speed is required and the arguments are known to be in
correct form.

2 I PolynomialByExtRep(rfam, extrep) F
I PolynomialByExtRepNC(rfam, extrep) F

constructs a polynomial (in the representation IsPolynomialDefaultRep) in the rational function family
rfam, the polynomial itself is given by the external representation extrep.

The variant PolynomialByExtRepNC does not perform any test of the arguments and thus potentially can
create illegal objects. It only should be used if speed is required and the arguments are known to be in
correct form.

gap> fam:=RationalFunctionsFamily(FamilyObj(1));;
gap> p:=PolynomialByExtRep(fam,[[1,2],1,[2,1,15,7],3]);
3*y*x_15^7+x^2
gap> q:=p/(p+1);
(3*y*x_15^7+x^2)/(3*y*x_15^7+x^2+1)
gap> ExtRepNumeratorRatFun(q);
[[1, 2], 1, [2, 1, 15, 7], 3]
gap> ExtRepDenominatorRatFun(q);
[[], 1, [1, 2], 1, [2, 1, 15, 7], 3]

3 I LaurentPolynomialByExtRep(fam, cofs, val , ind) F
I LaurentPolynomialByExtRepNC(fam, cofs, val , ind) F

creates a Laurent polynomial in the family fam with [cofs,val] as value of CoefficientsOfLaurentPolyno-
mial. No coefficient shifting is performed. This is the lowest level function to create a Laurent polynomial but
will rely on the coefficients being shifted properly and will not perform any tests. Unless this is guaranteed
for the parameters, LaurentPolynomialByCoefficients (see 64.12.1) should be used.

Section 23. Cancellation Tests for Rational Functions 691

64.22 Arithmetic for External Representations of Polynomials

The following operations are used internally to perform the arithmetic for polynomials in their “external”
representation (see 64.20) as lists.

1 I ZippedSum(z1, z2, czero, funcs) O

computes the sum of two external representations of polynomials z1 and z2 . czero is the appropriate co-
efficient zero and funcs a list [monomial less, coefficient sum] containing a monomial comparison and
a coefficient addition function. This list can be found in the component fam!.zippedSum of the rational
functions family.

Note that coefficient sum must be a proper “summation” function, not a function computing differences.

2 I ZippedProduct(z1, z2, czero, funcs) O

computes the product of two external representations of polynomials z1 and z2 . czero is the appropriate
coefficient zero and funcs a list [monomial prod, monomial less, coefficient sum, coefficient prod] con-
taining functions to multiply and compare monomials, to add and to multiply coefficients. This list can be
found in the component fam!.zippedProduct of the rational functions family.

3 I QuotientPolynomialsExtRep(fam, a, b) F

Let a and b the external representations of two polynomials in the rational functions family fam. This
function computes the external representation of the quotient of both polynomials, it returns fail if b does
not divide a.

Functions to perform arithmetic with the coefficient lists of Laurent polynomials are described in section 23.3.

64.23 Cancellation Tests for Rational Functions

GAP does not contain a multivariate GCD algorithm. The following operations are used internally to try to
keep the denominators as small as possible

1 I RationalFunctionByExtRepWithCancellation(rfam, num, den) F

constructs a rational function as RationalFunctionByExtRep does but tries to cancel out common factors
of numerator and denominator, calling TryGcdCancelExtRepPolynomials.

2 I TryGcdCancelExtRepPolynomials(fam, a, b) F

Let f and g be two polynomials given by the ext reps a and b. This function tries to cancel common factors
between a and b and returns a list [ac,bc] of cancelled numerator and denominator ext rep. As there is no
proper multivariate GCD cancellation is not guaranteed to be optimal.

3 I HeuristicCancelPolynomials(fam, ext1, ext2) O

is called by TryGcdCancelExtRepPol to perform the actual work. It will return either fail or a new list
[num,den] of cancelled numerator and denominator. The cancellation performed is not necessarily optimal.

65
Algebraic

extensions of fields

If we adjoin a root α of an irreducible polynomial f ∈ K [x] to the field K we get an algebraic extension
K (α), which is again a field. We call K the base field of K (α).

By Kronecker’s construction, we may identify K (α) with the factor ring K [x]/(f), an identification that also
provides a method for computing in these extension fields.

It is important to note that different extensions of the same field are entirely different (and its elements lie
in different families), even if mathematically one could be embedded in the other one.

Currently GAP only allows extension fields of fields K , when K itself is not an extension field.

65.1 Creation of Algebraic Extensions

1 I AlgebraicExtension(K, f) O

constructs an extension L of the field K by one root of the irreducible polynomial f , using Kronecker’s
construction. L is a field whose LeftActingDomain is K . The polynomial f is the DefiningPolynomial of
L and the attribute RootOfDefiningPolynomial of L holds a root of f in L (see 56.2.8).

gap> x:=Indeterminate(Rationals,"x");;
gap> p:=x^4+3*x^2+1;;
gap> e:=AlgebraicExtension(Rationals,p);
<algebraic extension over the Rationals of degree 4>
gap> IsField(e);
true
gap> a:=RootOfDefiningPolynomial(e);
a

2 I IsAlgebraicExtension(obj) C

is the category of algebraic extensions of fields.

gap> IsAlgebraicExtension(e);
true
gap> IsAlgebraicExtension(Rationals);
false

65.2 Elements in Algebraic Extensions

According to Kronecker’s construction, the elements of an algebraic extension considered to be polynomials
in the primitive element. The elements of the base field are represented as polynomials of degree 0. GAP
therefore displays elements of an algebraic extension as polynomials in an indeterminate “a”, which is a root
of the defining polynomial of the extension. Polynomials of degree 0 are displayed with a leading exclamation
mark to indicate that they are different from elements of the base field.

The usual field operations are applicable to algebraic elements.

Section 2. Elements in Algebraic Extensions 693

gap> a^3/(a^2+a+1);
-1/2*a^3+1/2*a^2-1/2*a
gap> a*(1/a);
!1

The external representation of algebraic extension elements are the polynomial coefficients in the primitive
element a, the operations ExtRepOfObj and ObjByExtRep can be used for conversion.

gap> ExtRepOfObj(One(a));
[1, 0, 0, 0]
gap> ExtRepOfObj(a^3+2*a-9);
[-9, 2, 0, 1]
gap> ObjByExtRep(FamilyObj(a),[3,19,-27,433]);
433*a^3-27*a^2+19*a+3

GAP does not embed the base field in its algebraic extensions and therefore lists which contain elements of
the base field and of the extension are not homogeneous and thus cannot be used as polynomial coefficients
or to form matrices. The remedy is to multiply the list(s) with the One of the extension which will embed
all entries in the extension.

gap> m:=[[1,a],[0,1]];
[[1, a], [0, 1]]
gap> IsMatrix(m);
false
gap> m:=m*One(e);
[[!1, a], [!0, !1]]
gap> IsMatrix(m);
true
gap> m^2;
[[!1, 2*a], [!0, !1]]

1 I IsAlgebraicElement(obj) C

is the category for elements of an algebraic extension.

66
p-adic Numbers

(preliminary)

In this chapter p is always a (fixed) prime.

The p-adic numbers Qp are the completion of the rational numbers with respect to the valuation νp(pv a
b) = v

if p divides neither a nor b. They form a field of characteristic 0 which nevertheless shows some behaviour
of the finite field with p elements.

A p-adic numbers can be approximated by a “p-adic expansion” which is similar to the decimal expansion
used for the reals (but written from left to right). So for example if p = 2, the numbers 1,2,3,4, 12 and 4

5 are
represented as 1(2), 0 ·1(2), 1 ·1(2), 0 ·01(2), 10(2) and 0 ·0101(2). Approximation means to ignore powers of
p, so for example with only 2 digits accuracy 4

5 would be approximated as 0 ·01(2). The important difference
to the decimal approximation is that p-adic approximation is a ring homomorphism on the subrings of p-adic
numbers whose valuation is bounded from below.

In GAP, p-adic numbers are represented by approximations. A family of (approximated) p-adic numbers
consists of p-adic numbers with a certain precision and arithmetic with these numbers is done with this
precision.

66.1 Pure p-adic Numbers

Pure p-adic numbers are the p-adic numbers described so far.

1 I PurePadicNumberFamily(p, precision) O

returns the family of pure p-adic numbers over the prime p with precision “digits”.

2 I PadicNumber(fam,rat)

returns the element of the p-adic number family fam that is used to represent the rational number rat .

p-adic numbers allow the usual operations for fields.

gap> fam:=PurePadicNumberFamily(2,3);;
gap> a:=PadicNumber(fam,4/5);
0.0101(2)
gap> 3*a;
0.0111(2)
gap> a/2;
0.101(2)
gap> a*10;
0.001(2)

3 I Valuation(obj) O

The Valuation is the p-part of the p-adic number.

4 I ShiftedPadicNumber(padic, int) O

ShiftedPadicNumber takes a p-adic number padic and an integer shift and returns the p-adic number c,
that is padic* p^shift . The shift is just added to the p-part.

Section 2. Extensions of the p-adic Numbers 695

5 I IsPurePadicNumber(obj) C

6 I IsPurePadicNumberFamily(fam) C

66.2 Extensions of the p-adic Numbers

The usual Kronecker construction with an irreducible polynomial can be used to construct extensions of the
p-adic numbers. Let L be such an extension. Then there is a subfield K < L such that K is an unramified
extension of the p-adic numbers and L/K is purely ramified. (For an explanation of “ramification” see for
example [Neu92], section II.7 or another book on algebraic number theory. Essentially, an extension L of the
p-adic numbers generated by a rational polynomial f is unramified if f remains squarefree modulo p and is
completely ramified if modulo p the polynomial f is a power of a linear factor while remaining irreducible
over the p-adic numbers.) The representation of extensions of p-adic numbers in GAP uses this subfield.

1 I PadicExtensionNumberFamily(p, precision, unram, ram) F

An extended p-adic field L is given by two polynomials h and g with coeff.-lists unram (for the unramified
part) and ram (for the ramified part). Then L is isomorphic to Qp [x , y]/(h(x), g(y)).

This function takes the prime number p and the two coefficient lists unram and ram for the two polynomials.
The polynomial given by the coefficients in unram must be a cyclotomic polynomial and the polynomial
given by ram an Eisenstein-polynomial (or 1+x). This is not checked by GAP.

Every number out of L is represented as a coeff.-list for the basis {1, x , x 2, . . . , y , xy , x 2y , . . .} of L. The
integer precision is the number of “digits” that all the coefficients have.

A general comment: the polynomials with which PadicExtensionNumberFamily is called define an extension
of Qp . It must be ensured that both polynomials are really irreducible over Qp ! For example xˆ2+x+1 is not
irreducible over Q p. Therefore the “extension” PadicExtensionNumberFamily(3, 4, [1,1,1], [1,1]) contains
non-invertible “pseudo-p-adic numbers”. Conversely, if an “extension” contains noninvertible elements one
of the polynomials was not irreducible.

2 I PadicNumber(fam, rat) O
I PadicNumber(purefam, list) O
I PadicNumber(extfam, list) O

create a p-adic number in the p-adic numbers family fam. The first usage returns the p-adic number corre-
sponding to the rational rat .

The second usage takes a pure p-adic numbers family purefam and a list list of length 2 and returns the
number p^list[1] * list[2]. It must be guaranteed that no entry of list[2] is divisible by the prime p.
(Otherwise precision will get lost.)

The third usage creates a number in the family extfam of a p-adic extension. The second entry must be a
list L of length 2 such that list [2] is the list of coeff. for the basis {1, . . . , x f−1 · ye−1} of the extended p-adic
field and list [1] is a common p-part of all the coeff.

p-adic numbers allow the usual field operations.

gap> efam:=PadicExtensionNumberFamily(3, 5, [1,1,1], [1,1]);;
gap> PadicNumber(efam,7/9);
padic(120(3),0(3))

A word of warning: Depending on the actual representation of quotients, precision may seem to “vanish”.
For example in PadicExtensionNumberFamily(3, 5, [1,1,1], [1,1]) the number (1.2000, 0.1210)(3) can be
represented as [0, [1.2000, 0.1210]] or as [-1, [12.000, 1.2100]] (here the coefficients have
to be multiplied by p−1).

696 Chapter 66. p-adic Numbers (preliminary)

So there may be a number (1.2, 2.2)(3) which seems to have only two digits of precision instead of the
declared 5. But internally the number is stored as [-3, [0.0012, 0.0022]] and so has in fact maximum
precision.

3 I IsPadicExtensionNumber(obj) C

4 I IsPadicExtensionNumberFamily(fam) C

67 The MeatAxe

The MeatAxe [Par84] is a tool for the examination of submodules of a group algebra. It is a basic tool for
the examination of group actions on finite-dimensional modules.

GAP uses the improved MeatAxe of Derek Holt and Sarah Rees, and also incorporates further improvements
of Ivanyos and Lux.

67.1 MeatAxe Modules

1 I GModuleByMats(gens, field)
I GModuleByMats(emptygens, dim, field)

creates a MeatAxe module over field from a list of invertible matrices gens which reflect a group’s action. If
the list of generators is empty, the dimension must be given as second argument.

MeatAxe routines are on a level with Gaussian elimination. Therefore they do not deal with GAP modules
but essentially with lists of matrices. For the MeatAxe, a module is a record with components

generators
A list of matrices which represent a group operation on a finite dimensional row vector space.

dimension
The dimension of the vector space (this is the common length of the row vectors (see 59.8.6)).

field
The field over which the vector space is defined.

Once a module has been created its entries may not be changed. A MeatAxe may create a new component
NameOfMeatAxe in which it can store private information. By a MeatAxe “submodule” or “factor module”
we denote actually the induced action on the submodule, respectively factor module. Therefore the sub-
modules or factor modules are again MeatAxe modules. The arrangement of generators is guaranteed to
be the same for the induced modules, but to obtain the complete relation to the original module, the bases
used are needed as well.

67.2 Module Constructions

1 I PermutationGModule(G, F) F

Called with a permutation group G and a finite field F , PermutationGModule returns the natural permu-
tation module M over F for the group of permutation matrices that acts on the canonical basis of M in the
same way as G acts on the points up to its largest moved point (see 40.2.2).

2 I TensorProductGModule (m1,m2) F

TensorProductGModule calculates the tensor product of the modules m1 and m2 . They are assumed to be
modules over the same algebra so, in particular, they should have the same number of generators.

3 I WedgeGModule (module)

WedgeGModule calculates the wedge product of a G-module. That is the action on antisymmetric tensors.

698 Chapter 67. The MeatAxe

67.3 Selecting a Different MeatAxe

All MeatAxe routines are accessed via the global variable MTX, which is a record whose components hold
the various functions. It is possible to have several implementations of a MeatAxe available. Each MeatAxe
represents its routines in an own global variable and assigning MTX to this variable selects the corresponding
MeatAxe.

67.4 Accessing a Module

Even though a MeatAxe module is a record, its components should never be accessed outside of MeatAxe
functions. Instead the following operations should be used:

1 I MTX.Generators(module)

returns a list of matrix generators of module.

2 I MTX.Dimension(module)

returns the dimension in which the matrices act.

3 I MTX.Field(module)

returns the field over which module is defined.

67.5 Irreducibility Tests

1 I MTX.IsIrreducible(module) AST

tests whether the module module is irreducible (i.e. contains no proper submodules.)

2 I MTX.IsAbsolutelyIrreducible(module) AST

A module is absolutely irreducible if it remains irreducible over the algebraic closure of the field. (Formally:
If the tensor product L ⊗K M is irreducible where M is the module defined over K and L is the algebraic
closure of K .)

3 I MTX.DegreeSplittingField(module)

returns the degree of the splitting field as extension of the prime field.

67.6 Finding Submodules

1 I MTX.SubmoduleGModule(module, subspace) F
I MTX.SubGModule(module, subspace) F

subspace should be a subspace of (or a vector in) the underlying vector space of module i.e. the full row
space of the same dimension and over the same field as module. A normalized basis of the submodule of
module generated by subspace is returned.

2 I MTX.ProperSubmoduleBasis(module) F

returns the basis of a proper submodule of module and fail if no proper submodule exists.

3 I MTX.BasesSubmodules(module) F

returns a list containing a basis for every submodule.

4 I MTX.BasesMinimalSubmodules(module) F

returns a list of bases of all minimal submodules.

Section 7. Induced Actions 699

5 I MTX.BasesMaximalSubmodules(module) F

returns a list of bases of all maximal submodules.

6 I MTX.BasisRadical(module) F

returns a basis of the radical of module.

7 I MTX.BasisSocle(module) F

returns a basis of the socle of module.

8 I MTX.BasesMinimalSupermodules(module, sub) F

returns a list of bases of all minimal supermodules of the submodule given by the basis sub.

9 I MTX.BasesCompositionSeries(module) F

returns a list of bases of submodules in a composition series in ascending order.

10 I MTX.CompositionFactors(module) F

returns a list of composition factors of module in ascending order.

11 I MTX.CollectedFactors(module) F

returns a list giving all irreducible composition factors with their frequencies.

67.7 Induced Actions

1 I MTX.NormedBasisAndBaseChange(sub)

returns a list [bas,change] where bas is a normed basis (i.e. in echelon form with pivots normed to 1) for
sub and change is the base change from bas to sub (the basis vectors of bas expressed in coefficients for sub)

2 I MTX.InducedActionSubmodule(module, sub) F
I MTX.InducedActionSubmoduleNB(module, sub) F

creates a new module corresponding to the action of module on sub. In the NB version the basis sub must be
normed. (That is it must be in echelon form with pivots normed to 1. See MTX.NormedBasisAndBaseChange)

3 I MTX.InducedActionFactorModule(module, sub[, compl]) F

creates a new module corresponding to the action of module on the factor of sub. If compl is given, it has
to be a basis of a (vector space-)complement of sub. The action then will correspond to compl .

The basis sub has to be given in normed form. (That is it must be in echelon form with pivots normed to
1. See MTX.NormedBasisAndBaseChange)

4 I MTX.InducedActionMatrix(mat,sub)
I MTX.InducedActionMatrixNB(mat,sub)
I MTX.InducedActionFactorMatrix(mat, sub[, compl]) F

work the same way as the above functions for modules, but take as input only a single matrix.

5 I MTX.InducedAction(module, sub[, type]) F

Computes induced actions on submodules or factormodules and also returns the corresponding bases. The
action taken is binary encoded in type: 1 stands for subspace action, 2 for factor action and 4 for action of
the full module on a subspace adapted basis. The routine returns the computed results in a list in sequence
(sub,quot ,both,basis) where basis is a basis for the whole space, extending sub. (Actions which are not
computed are omitted, so the returned list may be shorter.) If no type is given, it is assumed to be 7. The
basis given in sub must be normed!

All these routines return fail if sub is not a proper subspace.

700 Chapter 67. The MeatAxe

67.8 Module Homomorphisms

1 I MTX.IsEquivalent(module1, module2) F

tests two irreducible modules for equivalence.

2 I MTX.Isomorphism(module1, module2) F

returns an isomorphism from module1 to module2 (if one exists) and fail otherwise. It requires that one
of the modules is known to be irreducible. It implicitly assumes that the same group is acting, otherwise
the results are unpredictable. The isomorphism is given by a matrix M , whose rows give the images of the
standard basis vectors of module2 in the standard basis of module1. That is, conjugation of the generators
of module2 with M yields the generators of module1 .

3 I MTX.Homomorphism(module1, module2, mat) F

mat should be a dim1 × dim2 matrix defining a homomorphism from module1 to module2 . This function
verifies that mat really does define a module homomorphism, and then returns the corresponding homomor-
phism between the underlying row spaces of the modules. This can be used for computing kernels, images
and pre-images.

4 I MTX.Homomorphisms(module1, module2) F

returns a basis of all homomorphisms from the irreducible module module1 to module2 .

5 I MTX.Distinguish(cf , nr) F

Let cf be the output of MTX.CollectedFactors. This routine tries to find a group algebra element that has
nullity zero on all composition factors except number nr .

67.9 Invariant Forms

The functions in this section can only be applied to an absolutely irreducible MeatAxe module module.

1 I MTX.InvariantBilinearForm(module) F

returns an invariant bilinear form, which may be symmetric or anti-symmetric, of module, or fail if no such
form exists.

2 I MTX.InvariantSesquilinearForm(module) F

returns an invariant hermitian (= self-adjoint) sesquilinear form of module, which must be defined over a
finite field whose order is a square, or fail if no such form exists.

3 I MTX.InvariantQuadraticForm(module) F

returns an invariant quadratic form of module, or fail if no such form exists. If the characteristic of the
field over which module is defined is not 2, then the invariant bilinear form (if any) divided by two will be
returned. In characteristic 2, the form returned will be lower triangular.

4 I MTX.BasisInOrbit(module) F

returns a basis of the underlying vector space of module which is contained in an orbit of the action of the
generators of module on that space. This is used by MTX.InvariantQuadraticForm in characteristic 2.

5 I MTX.OrthogonalSign(module) F

for an even dimensional module, returns 1 or -1, according as MTX.InvariantQuadraticForm(module) is
of + or - type. For an odd dimensional module, returns 0. For a module with no invariant quadratic form,
returns fail. This calculation uses an algorithm due to Jon Thackray.

Section 10. The Smash MeatAxe 701

67.10 The Smash MeatAxe

The standard MeatAxe provided in the GAP library is is based on the MeatAxe in the GAP 3 package Smash,
originally written by Derek Holt and Sarah Rees [HR94]. It is accessible via the variable SMTX to which MTX is
assigned by default. For the sake of completeness the remaining sections document more technical functions
of this MeatAxe.

1 I SMTX.RandomIrreducibleSubGModule(module) F

returns the module action on a random irreducible submodule.

2 I SMTX.GoodElementGModule(module) F

finds an element with minimal possible nullspace dimension if module is known to be irreducible.

3 I SMTX.SortHomGModule(module1, module2, homs) F

Function to sort the output of Homomorphisms.

4 I SMTX.MinimalSubGModules(module1, module2[, max])

returns (at most max) bases of submodules of module2 which are isomorphic to the irreducible module
module1 .

5 I SMTX.Setter(string)

returns a setter function for the component smashMeataxe.(string).

6 I SMTX.Getter(string)

returns a getter function for the component smashMeataxe.(string).

7 I SMTX.IrreducibilityTest(module)

Tests for irreducibility and sets a subbasis if reducible. It neither sets an irreducibility flag, nor tests it. Thus
the routine also can simply be called to obtain a random submodule.

8 I SMTX.AbsoluteIrreducibilityTest(module)

Tests for absolute irreducibility and sets splitting field degree. It neither sets an absolute irreducibility flag,
nor tests it.

9 I SMTX.MinimalSubGModule(module, cf , nr)

returns the basis of a minimal submodule of module containing the indicated composition factor. It assumes
Distinguish has been called already.

10 I SMTX.MatrixSum(matrices1, matrices2)

creates the direct sum of two matrix lists.

11 I SMTX.CompleteBasis(module, pbasis)

extends the partial basis pbasis to a basis of the full space by action of module. It returns whether it
succeeded.

702 Chapter 67. The MeatAxe

67.11 Smash MeatAxe Flags

The following getter routines access internal flags. For each routine, the appropriate setter’s name is prefixed
with Set.

1 I SMTX.Subbasis

Basis of a submodule.

2 I SMTX.AlgEl

list [newgens,coefflist] giving an algebra element used for chopping.

3 I SMTX.AlgElMat

matrix of SMTX.AlgEl.

4 I SMTX.AlgElCharPol

minimal polynomial of SMTX.AlgEl.

5 I SMTX.AlgElCharPolFac

uses factor of SMTX.AlgEl.

6 I SMTX.AlgElNullspaceVec

nullspace of the matrix evaluated under this factor.

7 I SMTX.AlgElNullspaceDimension

dimension of the nullspace.

8 I SMTX.CentMat

9 I SMTX.CentMatMinPoly

68 Tables of Marks

The concept of a table of marks was introduced by W. Burnside in his book “Theory of Groups of Finite
Order”, see [Bur55]. Therefore a table of marks is sometimes called a Burnside matrix.

The table of marks of a finite group G is a matrix whose rows and columns are labelled by the conjugacy
classes of subgroups of G and where for two subgroups A and B the (A,B)–entry is the number of fixed
points of B in the transitive action of G on the cosets of A in G . So the table of marks characterizes the set
of all permutation representations of G .

Moreover, the table of marks gives a compact description of the subgroup lattice of G , since from the numbers
of fixed points the numbers of conjugates of a subgroup B contained in a subgroup A can be derived.

A table of marks of a given group G can be constructed from the subgroup lattice of G (see 68.3). For
several groups, the table of marks can be restored from the GAP library of tables of marks (see 68.14).

Given the table of marks of G , one can display it (see 68.4) and derive information about G and its Burnside
ring from it (see 68.7, 68.8, 68.9). Moreover, tables of marks in GAP provide an easy access to the classes of
subgroups of their underlying groups (see 68.11).

68.1 More about Tables of Marks

Let G be a finite group with n conjugacy classes of subgroups C1,C2, . . . ,Cn and representatives Hi ∈ Ci ,
1 ≤ i ≤ n. The table of marks of G is defined to be the n × n matrix M = (mij) where the mark mij is
the number of fixed points of the subgroup Hj in the action of G on the right cosets of Hi in G .

Since Hj can only have fixed points if it is contained in a point stablizer the matrix M is lower triangular if
the classes Ci are sorted according to the condition that if Hi is contained in a conjugate of Hj then i ≤ j .

Moreover, the diagonal entries mii are nonzero since mii equals the index of Hi in its normalizer in G . Hence
M is invertible. Since any transitive action of G is equivalent to an action on the cosets of a subgroup of G ,
one sees that the table of marks completely characterizes the set of all permutation representations of G .

The marks mij have further meanings. If H1 is the trivial subgroup of G then each mark mi1 in the first
column of M is equal to the index of Hi in G since the trivial subgroup fixes all cosets of Hi . If Hn = G
then each mnj in the last row of M is equal to 1 since there is only one coset of G in G . In general, mij
equals the number of conjugates of Hi containing Hj , multiplied by the index of Hi in its normalizer in G .
Moreover, the number cij of conjugates of Hj which are contained in Hi can be derived from the marks mij
via the formula

cij =
mij mj1

mi1mjj
.

Both the marks mij and the numbers of subgroups cij are needed for the functions described in this chapter.

A brief survey of properties of tables of marks and a description of algorithms for the interactive construction
of tables of marks using GAP can be found in [Pfe97].

704 Chapter 68. Tables of Marks

68.2 Table of Marks Objects in GAP

A table of marks of a group G in GAP is represented by an immutable (see 12.6) object tom in the category
IsTableOfMarks (see 68.6.2), with defining attributes SubsTom (see 68.7.1) and MarksTom (see 68.7.1). These
two attributes encode the matrix of marks in a compressed form. The SubsTom value of tom is a list where
for each conjugacy class of subgroups the class numbers of its subgroups are stored. These are exactly the
positions in the corresponding row of the matrix of marks which have nonzero entries. The marks themselves
are stored via the MarksTom value of tom, which is a list that contains for each entry in SubsTom(tom)
the corresponding nonzero value of the table of marks.

It is possible to create table of marks objects that do not store a group, moreover one can create a table of
marks object from a matrix of marks (see 68.3.1). So it may happen that a table of marks object in GAP is
in fact not the table of marks of a group. To some extent, the consistency of a table of marks object can be
checked (see 68.9), but GAP knows no general way to prove or disprove that a given matrix of nonnegative
integers is the matrix of marks for a group. Many functions for tables of marks work well without access
to the group –this is one of the arguments why tables of marks are so useful–, but for example normalizers
(see 68.9.4) and derived subgroups (see 68.9.2) of subgroups are in general not uniquely determined by the
matrix of marks.

GAP tables of marks are assumed to be in lower triangular form, that is, if a subgroup from the conjugacy
class corresponding to the i -th row is contained in a subgroup from the class corresponding to the j -th row
j then i ≤ j .

The MarksTom information can be computed from the values of the attributes NrSubsTom, LengthsTom,
OrdersTom, and SubsTom (see 68.7.2, 68.7.3, 68.7.2). NrSubsTom stores a list containing for each entry in
the SubsTom value the corresponding number of conjugates that are contained in a subgroup, LengthsTom
a list containing for each conjugacy class of subgroups its length, and OrdersTom a list containing for each
class of subgroups their order. So the MarksTom value of tom may be missing provided that the values of
NrSubsTom, LengthsTom, and OrdersTom are stored in tom.

Additional information about a table of marks is needed by some functions. The class numbers of normalizers
in G and the number of the derived subgroup of G can be stored via appropriate attributes (see 68.9.4,
68.9.2).

If tom stores its group G and a bijection from the rows and columns of the matrix of marks of tom to
the classes of subgroups of G then clearly normalizers, derived subgroup etc. can be computed from this
information. But in general a table of marks need not have access to G , for example tom might have
been constructed from a generic table of marks (see 68.13), or as table of marks of a factor group from a
given table of marks (see 68.9.11). Access to the group G is provided by the attribute UnderlyingGroup
(see 68.7.7) if this value is set. Access to the relevant information about conjugacy classes of subgroups
of G –compatible with the ordering of rows and columns of the marks in tom– is signalled by the filter
IsTableOfMarksWithGens (see 68.11).

Several examples in this chapter require the GAP Library of Tables of Marks to be available. If it is not yet
loaded then we load it now.

gap> LoadPackage("tomlib");
true

68.3 Constructing Tables of Marks

1 I TableOfMarks(G) A
I TableOfMarks(string) A
I TableOfMarks(matrix) A

In the first form, G must be a finite group, and TableOfMarks constructs the table of marks of G . This
computation requires the knowledge of the complete subgroup lattice of G (see 37.20.1). If the lattice

Section 3. Constructing Tables of Marks 705

is not yet stored then it will be constructed. This may take a while if G is large. The result has the
IsTableOfMarksWithGens value true (see 68.11).

In the second form, string must be a string, and TableOfMarks gets the table of marks with name string
from the GAP library (see 68.14). If no table of marks with this name is contained in the library then fail
is returned.

In the third form, matrix must be a matrix or a list of rows describing a lower triangular matrix where the
part above the diagonal is omitted. For such an argument matrix , TableOfMarks returns a table of marks
object (see 68.2) for which matrix is the matrix of marks. Note that not every matrix (containing only
nonnegative integers and having lower triangular shape) describes a table of marks of a group. Necessary
conditions are checked with IsInternallyConsistent (see 68.9), and fail is returned if matrix is proved
not to describe a matrix of marks; but if TableOfMarks returns a table of marks object created from a
matrix then it may still happen that this object does not describe the table of marks of a group.

For an overview of operations for table of marks objects, see the introduction to the Chapter 68.

gap> tom:= TableOfMarks(AlternatingGroup(5));
TableOfMarks(Alt([1 .. 5]))
gap> TableOfMarks("J5");
fail
gap> a5:= TableOfMarks("A5");
TableOfMarks("A5")
gap> mat:=
> [[60, 0, 0, 0, 0, 0, 0, 0, 0], [30, 2, 0, 0, 0, 0, 0, 0, 0],
> [20, 0, 2, 0, 0, 0, 0, 0, 0], [15, 3, 0, 3, 0, 0, 0, 0, 0],
> [12, 0, 0, 0, 2, 0, 0, 0, 0], [10, 2, 1, 0, 0, 1, 0, 0, 0],
> [6, 2, 0, 0, 1, 0, 1, 0, 0], [5, 1, 2, 1, 0, 0, 0, 1, 0],
> [1, 1, 1, 1, 1, 1, 1, 1, 1]];;
gap> TableOfMarks(mat);
TableOfMarks(<9 classes>)

The following TableOfMarks methods for a group are installed.

– If the group is known to be cyclic then TableOfMarks constructs the table of marks essentially without
the group, instead the knowledge about the structure of cyclic groups is used.

– If the lattice of subgroups is already stored in the group then TableOfMarks computes the table of
marks from the lattice (see 68.3.2).

– If the group is known to be solvable then TableOfMarks takes the lattice of subgroups (see 37.20.1) of
the group –which means that the lattice is computed if it is not yet stored– and then computes the
table of marks from it. This method is also accessible via the global function TableOfMarksByLattice
(see 68.3.2).

– If the group doesn’t know its lattice of subgroups or its conjugacy classes of subgroups then the table
of marks and the conjugacy classes of subgroups are computed at the same time by the cyclic extension
method. Only the table of marks is stored because the conjugacy classes of subgroups or the lattice of
subgroups can be easily read off (see 68.3.3).

Conversely, the lattice of subgroups of a group with known table of marks can be computed using the table of
marks, via the function LatticeSubgroupsByTom. This is also installed as a method for LatticeSubgroups.

2 I TableOfMarksByLattice(G) F

TableOfMarksByLattice computes the table of marks of the group G from the lattice of subgroups of G .
This lattice is computed via LatticeSubgroups (see 37.20.1) if it is not yet stored in G . The function
TableOfMarksByLattice is installed as a method for TableOfMarks for solvable groups and groups with

706 Chapter 68. Tables of Marks

stored subgroup lattice, and is available as a global variable only in order to provide explicit access to this
method.

3 I LatticeSubgroupsByTom(G) F

LatticeSubgroupsByTom computes the lattice of subgroups of G from the table of marks of G , using
RepresentativeTom (see 68.11.4).

68.4 Printing Tables of Marks

The default ViewObj (see 6.3.3) method for tables of marks prints the string "TableOfMarks", followed by
–if known– the identifier (see 68.7.9) or the group of the table of marks enclosed in brackets; if neither group
nor identifier are known then just the number of conjugacy classes of subgroups is printed instead.

The default PrintObj (see 6.3.3) method for tables of marks does the same as ViewObj, except that the
group is is Print-ed instead of View-ed.

The default Display (see 6.3.4) method for a table of marks tom produces a formatted output of the marks
in tom. Each line of output begins with the number of the corresponding class of subgroups. This number
is repeated if the output spreads over several pages. The number of columns printed at one time depends
on the actual line length, which can be accessed and changed by the function SizeScreen (see 6.12.1).

The optional second argument arec of Display can be used to change the default style for displaying a
character as shown above. arec must be a record, its relevant components are the following.

classes
a list of class numbers to select only the rows and columns of the matrix that correspond to this
list for printing,

form
one of the strings "subgroups", "supergroups"; in the former case, at position (i , j) of the matrix
the number of conjugates of Hj contained in Hi is printed, and in the latter case, at position (i , j)
the number of conjugates of Hi which contain Hj is printed.

gap> tom:= TableOfMarks("A5");;
gap> Display(tom);
1: 60
2: 30 2
3: 20 . 2
4: 15 3 . 3
5: 12 . . . 2
6: 10 2 1 . . 1
7: 6 2 . . 1 . 1
8: 5 1 2 1 . . . 1
9: 1 1 1 1 1 1 1 1 1

gap> Display(tom, rec(classes:= [1, 2, 3, 4, 8]));
1: 60
2: 30 2
3: 20 . 2
4: 15 3 . 3
8: 5 1 2 1 1

Section 5. Sorting Tables of Marks 707

gap> Display(tom, rec(form:= "subgroups"));
1: 1
2: 1 1
3: 1 . 1
4: 1 3 . 1
5: 1 . . . 1
6: 1 3 1 . . 1
7: 1 5 . . 1 . 1
8: 1 3 4 1 . . . 1
9: 1 15 10 5 6 10 6 5 1

gap> Display(tom, rec(form:= "supergroups"));
1: 1
2: 15 1
3: 10 . 1
4: 5 1 . 1
5: 6 . . . 1
6: 10 2 1 . . 1
7: 6 2 . . 1 . 1
8: 5 1 2 1 . . . 1
9: 1 1 1 1 1 1 1 1 1

68.5 Sorting Tables of Marks

1 I SortedTom(tom, perm) O

SortedTom returns a table of marks where the rows and columns of the table of marks tom are reordered
according to the permutation perm.

Note that in each table of marks in GAP, the matrix of marks is assumed to have lower triangular shape
(see 68.2). If the permutation perm does not have this property then the functions for tables of marks might
return wrong results when applied to the output of SortedTom.

The returned table of marks has only those attribute values stored that are known for tom and listed in
TableOfMarksComponents (see 68.6.4).

gap> tom:= TableOfMarksCyclic(6);; Display(tom);
1: 6
2: 3 3
3: 2 . 2
4: 1 1 1 1

gap> sorted:= SortedTom(tom, (2,3));; Display(sorted);
1: 6
2: 2 2
3: 3 . 3
4: 1 1 1 1

gap> wrong:= SortedTom(tom, (1,2));; Display(wrong);
1: 3
2: . 6
3: . 2 2
4: 1 1 1 1

708 Chapter 68. Tables of Marks

2 I PermutationTom(tom) A

For the table of marks tom of the group G stored as UnderlyingGroup value of tom (see 68.7.7), Permu-
tationTom is a permutation π such that the i -th conjugacy class of subgroups of G belongs to the iπ-th
column and row of marks in tom.

This attribute value is bound only if tom was obtained from another table of marks by permuting with
SortedTom (see 68.5.1), and there is no default method to compute its value.

The attribute is necessary because the original and the sorted table of marks have the same identifier and the
same group, and information computed from the group may depend on the ordering of marks, for example
the fusion from the ordinary character table of G into tom.

gap> MarksTom(tom)[2];
[3, 3]
gap> MarksTom(sorted)[2];
[2, 2]
gap> HasPermutationTom(sorted);
true
gap> PermutationTom(sorted);
(2,3)

68.6 Technical Details about Tables of Marks

1 I InfoTom V

is the info class for computations concerning tables of marks.

2 I IsTableOfMarks(obj) C

Each table of marks belongs to this category.

3 I TableOfMarksFamily V

Each table of marks belongs to this family.

4 I TableOfMarksComponents V

The list TableOfMarksComponents is used when a table of marks object is created from a record via Convert-
ToTableOfMarks (see 68.6.5). TableOfMarksComponents contains at position 2i − 1 a name of an attribute
and at position 2i the corresponding attribute getter function.

5 I ConvertToTableOfMarks(record) F

ConvertToTableOfMarks converts a record with components from TableOfMarksComponents into a table
of marks object with the corresponding attributes.

gap> record:= rec(MarksTom:= [[4], [2, 2], [1, 1, 1]],
> SubsTom:= [[1], [1, 2], [1, 2, 3]]);;
gap> ConvertToTableOfMarks(record);;
gap> record;
TableOfMarks(<3 classes>)

Section 7. Attributes of Tables of Marks 709

68.7 Attributes of Tables of Marks

1 I MarksTom(tom) A
I SubsTom(tom) A

The matrix of marks (see 68.1) of the table of marks tom is stored in a compressed form where zeros are
omitted, using the attributes MarksTom and SubsTom. If M is the square matrix of marks of tom (see 68.7.10)
then the SubsTom value of tom is a list that contains at position i the list of all positions of nonzero entries
of the i -th row of M , and the MarksTom value of tom is a list that contains at position i the list of the
corresponding marks.

MarksTom and SubsTom are defining attributes of tables of marks (see 68.2). There is no default method
for computing the SubsTom value, and the default MarksTom method needs the values of NrSubsTom and
OrdersTom (see 68.7.2, 68.7.2).

gap> a5:= TableOfMarks("A5");
TableOfMarks("A5")
gap> MarksTom(a5);
[[60], [30, 2], [20, 2], [15, 3, 3], [12, 2], [10, 2, 1, 1],
[6, 2, 1, 1], [5, 1, 2, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1]]

gap> SubsTom(a5);
[[1], [1, 2], [1, 3], [1, 2, 4], [1, 5], [1, 2, 3, 6],
[1, 2, 5, 7], [1, 2, 3, 4, 8], [1, 2, 3, 4, 5, 6, 7, 8, 9]]

2 I NrSubsTom(tom) A
I OrdersTom(tom) A

Instead of storing the marks (see 68.7.1) of the table of marks tom one can use a matrix which contains
at position (i , j) the number of subgroups of conjugacy class j that are contained in one member of the
conjugacy class i . These values are stored in the NrSubsTom value in the same way as the marks in the
MarksTom value.

OrdersTom returns a list that contains at position i the order of a representative of the i -th conjugacy class
of subgroups of tom.

One can compute the NrSubsTom and OrdersTom values from the MarksTom value of tom and vice versa.

gap> NrSubsTom(a5);
[[1], [1, 1], [1, 1], [1, 3, 1], [1, 1], [1, 3, 1, 1],
[1, 5, 1, 1], [1, 3, 4, 1, 1], [1, 15, 10, 5, 6, 10, 6, 5, 1]]

gap> OrdersTom(a5);
[1, 2, 3, 4, 5, 6, 10, 12, 60]

3 I LengthsTom(tom) A

For a table of marks tom, LengthsTom returns a list of the lengths of the conjugacy classes of subgroups.

gap> LengthsTom(a5);
[1, 15, 10, 5, 6, 10, 6, 5, 1]

4 I ClassTypesTom(tom) A

ClassTypesTom distinguishes isomorphism types of the classes of subgroups of the table of marks tom as
far as this is possible from the SubsTom and MarksTom values of tom.

Two subgroups are clearly not isomorphic if they have different orders. Moreover, isomorphic subgroups
must contain the same number of subgroups of each type.

Each type is represented by a positive integer. ClassTypesTom returns the list which contains for each class
of subgroups its corresponding type.

710 Chapter 68. Tables of Marks

gap> a6:= TableOfMarks("A6");;
gap> ClassTypesTom(a6);
[1, 2, 3, 3, 4, 5, 6, 6, 7, 7, 8, 9, 10, 11, 11, 12, 13, 13, 14, 15, 15, 16]

5 I ClassNamesTom(tom) A

ClassNamesTom constructs generic names for the conjugacy classes of subgroups of the table of marks tom.
In general, the generic name of a class of non–cyclic subgroups consists of three parts and has the form
"(o) t l", where o indicates the order of the subgroup, t is a number that distinguishes different types of
subgroups of the same order, and l is a letter that distinguishes classes of subgroups of the same type and
order. The type of a subgroup is determined by the numbers of its subgroups of other types (see 68.7.4).
This is slightly weaker than isomorphism.

The letter is omitted if there is only one class of subgroups of that order and type, and the type is omitted if
there is only one class of that order. Moreover, the braces around the type are omitted if the type number
has only one digit.

For classes of cyclic subgroups, the parentheses round the order and the type are omitted. Hence the most
general form of their generic names is "o,l". Again, the letter is omitted if there is only one class of cyclic
subgroups of that order.

gap> ClassNamesTom(a6);
["1", "2", "3a", "3b", "5", "4", "(4)_2a", "(4)_2b", "(6)a", "(6)b", "(8)",
"(9)", "(10)", "(12)a", "(12)b", "(18)", "(24)a", "(24)b", "(36)", "(60)a",
"(60)b", "(360)"]

6 I FusionsTom(tom) AM

For a table of marks tom, FusionsTom is a list of fusions into other tables of marks. Each fusion is a list
of length two, the first entry being the Identifier (see 68.7.9) value of the image table, the second entry
being the list of images of the class positions of tom in the image table.

This attribute is mainly used for tables of marks in the GAP library (see 68.14).

gap> fus:= FusionsTom(a6);;
gap> fus[1];
["L3(4)", [1, 2, 3, 3, 14, 5, 9, 7, 15, 15, 24, 26, 27, 32, 33, 50, 57, 55,

63, 73, 77, 90]]

7 I UnderlyingGroup(tom) A

UnderlyingGroup is used to access an underlying group that is stored on the table of marks tom. There is
no default method to compute an underlying group if it is not stored.

gap> UnderlyingGroup(a6);
Group([(1,2)(3,4), (1,2,4,5)(3,6)])

8 I IdempotentsTom(tom) A
I IdempotentsTomInfo(tom) A

IdempotentsTom encodes the idempotents of the integral Burnside ring described by the table of marks tom.
The return value is a list l of positive integers such that each row vector describing a primitive idempotent
has value 1 at all positions with the same entry in l , and 0 at all other positions.

According to A. Dress [Dre69] (see also [Pfe97]), these idempotents correspond to the classes of perfect
subgroups, and each such idempotent is the characteristic function of all those subgroups that arise by
cyclic extension from the corresponding perfect subgroup (see 68.9.7).

Section 7. Attributes of Tables of Marks 711

IdempotentsTomInfo returns a record with components fixpointvectors and primidems, both bound to
lists. The i -th entry of the fixpointvectors list is the 0−1-vector describing the i -th primitive idempotent,
and the i -th entry of primidems is the decomposition of this idempotent in the rows of tom.

gap> IdempotentsTom(a5);
[1, 1, 1, 1, 1, 1, 1, 1, 9]
gap> IdempotentsTomInfo(a5);
rec(
primidems := [[1, -2, -1, 0, 0, 1, 1, 1], [-1, 2, 1, 0, 0, -1, -1, -1,

1]],
fixpointvectors := [[1, 1, 1, 1, 1, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0,

0, 1]])

9 I Identifier(tom) A

The identifier of a table of marks tom is a string. It is used for printing the table of marks (see 68.4) and in
fusions between tables of marks (see 68.7.6).

If tom is a table of marks from the GAP library of tables of marks (see 68.14) then it has an identifier, and
if tom was constructed from a group with Name value (see 12.8.2) then this name is chosen as Identifier
value. There is no default method to compute an identifier in all other cases.

gap> Identifier(a5);
"A5"

10 I MatTom(tom) A

MatTom returns the square matrix of marks (see 68.1) of the table of marks tom which is stored in a
compressed form using the attributes MarksTom and SubsTom (see 68.7.1). This may need substantially more
space than the values of MarksTom and SubsTom.

gap> MatTom(a5);
[[60, 0, 0, 0, 0, 0, 0, 0, 0], [30, 2, 0, 0, 0, 0, 0, 0, 0],
[20, 0, 2, 0, 0, 0, 0, 0, 0], [15, 3, 0, 3, 0, 0, 0, 0, 0],
[12, 0, 0, 0, 2, 0, 0, 0, 0], [10, 2, 1, 0, 0, 1, 0, 0, 0],
[6, 2, 0, 0, 1, 0, 1, 0, 0], [5, 1, 2, 1, 0, 0, 0, 1, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1]]

11 I MoebiusTom(tom) A

MoebiusTom computes the Möbius values both of the subgroup lattice of the group G with table of marks
tom and of the poset of conjugacy classes of subgroups of G . It returns a record where the component mu
contains the Möbius values of the subgroup lattice, and the component nu contains the Möbius values of
the poset.

Moreover, according to an observation of Isaacs et al. (see [HIÖ89], [Pah93]), the values on the subgroup
lattice often can be derived from those of the poset of conjugacy classes. These “expected values” are returned
in the component ex, and the list of numbers of those subgroups where the expected value does not coincide
with the actual value are returned in the component hyp. For the computation of these values, the position
of the derived subgroup of G is needed (see 68.9.2). If it is not uniquely determined then the result does not
have the components ex and hyp.

712 Chapter 68. Tables of Marks

gap> MoebiusTom(a5);
rec(mu := [-60, 4, 2,,, -1, -1, -1, 1], nu := [-1, 2, 1,,, -1, -1, -1, 1]

, ex := [-60, 4, 2,,, -1, -1, -1, 1], hyp := [])
gap> tom:= TableOfMarks("M12");;
gap> moebius:= MoebiusTom(tom);;
gap> moebius.hyp;
[1, 2, 4, 16, 39, 45, 105]
gap> moebius.mu[1]; moebius.ex[1];
95040
190080

12 I WeightsTom(tom) A

WeightsTom extracts the weights from the table of marks tom, i.e., the diagonal entries of the matrix of
marks (see 68.7.1), indicating the index of a subgroup in its normalizer.

gap> wt:= WeightsTom(a5);
[60, 2, 2, 3, 2, 1, 1, 1, 1]

This information may be used to obtain the numbers of conjugate supergroups from the marks.

gap> marks:= MarksTom(a5);;
gap> List([1 .. 9], x -> marks[x] / wt[x]);
[[1], [15, 1], [10, 1], [5, 1, 1], [6, 1], [10, 2, 1, 1],
[6, 2, 1, 1], [5, 1, 2, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1]]

68.8 Properties of Tables of Marks

For a table of marks tom of a group G , the following properties have the same meaning as the corresponding
properties for G . Additionally, if a positive integer sub is given as the second argument then the value of
the corresponding property for the sub-th class of subgroups of tom is returned.

1 I IsAbelianTom(tom[, sub])
I IsCyclicTom(tom[, sub])
I IsNilpotentTom(tom[, sub])
I IsPerfectTom(tom[, sub])
I IsSolvableTom(tom[, sub])

gap> tom:= TableOfMarks("A5");;
gap> IsAbelianTom(tom); IsPerfectTom(tom);
false
true
gap> IsAbelianTom(tom, 3); IsNilpotentTom(tom, 7);
true
false
gap> IsPerfectTom(tom, 7); IsSolvableTom(tom, 7);
false
true
gap> for i in [1 .. 6] do
> Print(i, ": ", IsCyclicTom(a5, i), " ");
> od; Print("\n");
1: true 2: true 3: true 4: false 5: true 6: false

Section 9. Other Operations for Tables of Marks 713

68.9 Other Operations for Tables of Marks

1 I IsInternallyConsistent(tom) O

For a table of marks tom, IsInternallyConsistent decomposes all tensor products of rows of tom. It
returns true if all decomposition numbers are nonnegative integers, and false otherwise. This provides a
strong consistency check for a table of marks.

2 I DerivedSubgroupTom(tom, sub) O
I DerivedSubgroupsTom(tom) F

For a table of marks tom and a positive integer sub, DerivedSubgroupTom returns either a positive integer i
or a list l of positive integers. In the former case, the result means that the derived subgroups of the subgroups
in the sub-th class of tom lie in the i -th class. In the latter case, the class of the derived subgroups could
not be uniquely determined, and the position of the class of derived subgroups is an entry of l .

Values computed with DerivedSubgroupTom are stored using the attribute DerivedSubgroupsTomPossible
(see 68.9.3).

DerivedSubgroupsTom is just the list of DerivedSubgroupTom values for all values of sub.

3 I DerivedSubgroupsTomPossible(tom) AM
I DerivedSubgroupsTomUnique(tom) A

Let tom be a table of marks. The value of the attribute DerivedSubgroupsTomPossible is a list in which
the value at position i –if bound– is a positive integer or a list; the meaning of the entry is the same as in
DerivedSubgroupTom (see 68.9.2).

If the value of the attribute DerivedSubgroupsTomUnique is known for tom then it is a list of positive
integers, the value at position i being the position of the class of derived subgroups of the i -th class of
subgroups in tom. The derived subgroups are in general not uniquely determined by the table of marks
if no UnderlyingGroup value is stored, so there is no default method for DerivedSubgroupsTomUnique.
But in some cases the derived subgroups are explicitly set when the table of marks is constructed. The
DerivedSubgroupsTomUnique value is automatically set when the last missing unique value is entered in
the DerivedSubgroupsTomPossible list by DerivedSubgroupTom.

gap> a5:= TableOfMarks("A5");
TableOfMarks("A5")
gap> DerivedSubgroupTom(a5, 2);
1
gap> DerivedSubgroupsTom(a5);
[1, 1, 1, 1, 1, 3, 5, 4, 9]

4 I NormalizerTom(tom, sub) O
I NormalizersTom(tom) A

Let tom be the table of marks of a group G , say. NormalizerTom tries to find the conjugacy class of the
normalizer N in G of a subgroup U in the sub-th class of tom. The return value is either the list of class
numbers of those subgroups that have the right size and contain the subgroup and all subgroups that clearly
contain it as a normal subgroup, or the class number of the normalizer if it is uniquely determined by
these conditions. If tom knows the subgroup lattice of G (see 68.11.3) then all normalizers are uniquely
determined. NormalizerTom should never return an empty list.

NormalizersTom returns the list of positions of the classes of normalizers of subgroups in tom. In addition
to the criteria for a single class of subgroup used by NormalizerTom, the approximations of normalizers for
several classes are used and thus NormalizersTom may return better approximations than NormalizerTom.

714 Chapter 68. Tables of Marks

gap> NormalizerTom(a5, 4);
8
gap> NormalizersTom(a5);
[9, 4, 6, 8, 7, 6, 7, 8, 9]

The example shows that a subgroup with class number 4 in A5 (which is a Kleinian four group) is normalized
by a subgroup in class 8. This class contains the subgroups of A5 which are isomorphic to A4.

5 I ContainedTom(tom, sub1, sub2) O

ContainedTom returns the number of subgroups in class sub1 of the table of marks tom that are contained
in one fixed member of the class sub2 .

6 I ContainingTom(tom, sub1, sub2) O

ContainingTom returns the number of subgroups in class sub2 of the table of marks tom that contain one
fixed member of the class sub1 .

gap> ContainedTom(a5, 3, 5); ContainedTom(a5, 3, 8);
0
4
gap> ContainingTom(a5, 3, 5); ContainingTom(a5, 3, 8);
0
2

7 I CyclicExtensionsTom(tom) A
I CyclicExtensionsTom(tom, p) O
I CyclicExtensionsTom(tom, list) O

According to A. Dress [Dre69], two columns of the table of marks tom are equal modulo the prime p if and
only if the corresponding subgroups are connected by a chain of normal extensions of order p.

In the second form, CyclicExtensionsTom returns the classes of this equivalence relation. In the third form,
list must be a list of primes, and the return value is the list of classes of the relation obtained by considering
chains of normal extensions of prime order where all primes are in list . In the first form, the result is the
same as in the third form, with second argument the set of prime divisors of the size of the group of tom.

(This information is not used by NormalizerTom (see 68.9.4) although it might give additional restrictions
in the search of normalizers.)

gap> CyclicExtensionsTom(a5, 2);
[[1, 2, 4], [3, 6], [5, 7], [8], [9]]

8 I DecomposedFixedPointVector(tom, fix) O

Let tom be the table of marks of the group G , say, and let fix be a vector of fixed point numbers w.r.t. an
action of G , i.e., a vector which contains for each class of subgroups the number of fixed points under the
given action. DecomposedFixedPointVector returns the decomposition of fix into rows of the table of marks.
This decomposition corresponds to a decomposition of the action into transitive constituents. Trailing zeros
in fix may be omitted.

gap> DecomposedFixedPointVector(a5, [16, 4, 1, 0, 1, 1, 1]);
[0, 0, 0, 0, 0, 1, 1]

The vector fix may be any vector of integers. The resulting decomposition, however, will not be integral, in
general.

Section 9. Other Operations for Tables of Marks 715

gap> DecomposedFixedPointVector(a5, [0, 0, 0, 0, 1, 1]);
[2/5, -1, -1/2, 0, 1/2, 1]

9 I EulerianFunctionByTom(tom, n[, sub]) O

In the first form EulerianFunctionByTom computes the Eulerian function (see 37.16.3) of the underlying
group G of the table of marks tom, that is, the number of n-tuples of elements in G that generate G . In the
second form EulerianFunctionByTom computes the Eulerian function of each subgroup in the sub-th class
of subgroups of tom.

For a group G whose table of marks is known, EulerianFunctionByTom is installed as a method for Eule-
rianFunction (see 37.16.3).

gap> EulerianFunctionByTom(a5, 2);
2280
gap> EulerianFunctionByTom(a5, 3);
200160
gap> EulerianFunctionByTom(a5, 2, 3);
8

10 I IntersectionsTom(tom, sub1, sub2) O

The intersections of the groups in the sub1 -th conjugacy class of subgroups of the table of marks tom
with the groups in the sub2 -th conjugacy classes of subgroups of tom are determined up to conjugacy by
the decomposition of the tensor product of their rows of marks. IntersectionsTom returns a list l that
describes this decomposition. The i -th entry in l is the multiplicity of groups in the i -th conjugacy class as
an intersection.

gap> IntersectionsTom(a5, 8, 8);
[0, 0, 1, 0, 0, 0, 0, 1]

Any two subgroups of class number 8 (A4) of A5 are either equal and their intersection has again class
number 8, or their intersection has class number 3, and is a cyclic subgroup of order 3.

11 I FactorGroupTom(tom, n) O

For a table of marks tom of the group G , say, and the normal subgroup N of G corresponding to the n-th
class of subgroups of tom, FactorGroupTom returns the table of marks of the factor group G/N .

gap> s4:= TableOfMarks(SymmetricGroup(4));
TableOfMarks(Sym([1 .. 4]))
gap> LengthsTom(s4);
[1, 3, 6, 4, 1, 3, 3, 4, 3, 1, 1]
gap> OrdersTom(s4);
[1, 2, 2, 3, 4, 4, 4, 6, 8, 12, 24]
gap> s3:= FactorGroupTom(s4, 5);
TableOfMarks(Group([f1, f2]))
gap> Display(s3);
1: 6
2: 3 1
3: 2 . 2
4: 1 1 1 1

12 I MaximalSubgroupsTom(tom) A
I MaximalSubgroupsTom(tom, sub) O

In the first form MaximalSubgroupsTom returns a list of length two, the first entry being the list of positions
of the classes of maximal subgroups of the whole group of the table of marks tom, the second entry being

716 Chapter 68. Tables of Marks

the list of class lengths of these groups. In the second form the same information for the sub-th class of
subgroups is returned.

13 I MinimalSupergroupsTom(tom, sub) O

For a table of marks tom, MinimalSupergroupsTom returns a list of length two, the first entry being the list
of positions of the classes containing the minimal supergroups of the groups in the sub-th class of subgroups
of tom, the second entry being the list of class lengths of these groups.

gap> MaximalSubgroupsTom(s4);
[[10, 9, 8], [1, 3, 4]]
gap> MaximalSubgroupsTom(s4, 10);
[[5, 4], [1, 4]]
gap> MinimalSupergroupsTom(s4, 5);
[[9, 10], [3, 1]]

68.10 Standard Generators of Groups

An s-tuple of standard generators of a given group G is a vector (g1, g2, . . . , gs) of elements gi ∈ G
satisfying certain conditions (depending on the isomorphism type of G) such that

1. 〈g1, g2, . . . , gs〉 = G and

2. the vector is unique up to automorphisms of G , i.e., for two vectors (g1, g2, . . . , gs) and (h1, h2, . . . , hs)
of standard generators, the map gi 7→ hi extends to an automorphism of G .

For details about standard generators, see [Wil96].

1 I StandardGeneratorsInfo(G) A

When called with the group G , StandardGeneratorsInfo returns a list of records with at least one of the
components script and description. Each such record defines standard generators of groups isomorphic
to G , the i -th record is referred to as the i -th set of standard generators for such groups. The value of script
is a dense list of lists, each encoding a command that has one of the following forms.

A definition [i ,n, k] or [i ,n]
means to search for an element of order n, and to take its k -th power as candidate for the i -th
standard generator (the default for k is 1),

a relation [i1, k1, i2, k2, . . . , im , km ,n] with m > 1
means a check whether the element gk1

i1 gk2
i2 · · · g

km
im

has order n; if gj occurs then of course the j -th
generator must have been defined before,

a relation [[i1, i2, . . . , im], slp,n]
means a check whether the result of the straight line program slp (see 35.8) applied to the candidates
gi1 , gi2 , . . . , gim has order n, where the candidates gj for the j -th standard generators must have been
defined before,

a condition [[i1, k1, i2, k2, . . . , im , km], f , v]
means a check whether the GAP function in the global list StandardGeneratorsFunctions (see
68.10.3) that is followed by the list f of strings returns the value v when it is called with G and
gk1

i1 gk2
i2 · · · g

km
im

.

Optional components of the returned records are

generators
a string of names of the standard generators,

Section 10. Standard Generators of Groups 717

description
a string describing the script information in human readable form, in terms of the generators
value,

classnames
a list of strings, the i -th entry being the name of the conjugacy class containing the i -th standard
generator, according to the ATLAS character table of the group (see 69.8.10), and

ATLAS
a boolean; true means that the standard generators coincide with those defined in Rob Wilson’s
ATLAS of Group Representations (see [Wil]), and false means that this property is not guaranteed.

There is no default method for an arbitrary isomorphism type, since in general the definition of standard
generators is not obvious.
The function StandardGeneratorsOfGroup (see 68.10.5) can be used to find standard generators of a given
group isomorphic to G .
The generators and description values, if not known, can be computed by HumanReadableDefinition
(see 68.10.2).

gap> StandardGeneratorsInfo(TableOfMarks("L3(3)"));
[rec(generators := "a, b",

description := "|a|=2, |b|=3, |C(b)|=9, |ab|=13, |ababb|=4",
script := [[1, 2], [2, 3], [[2, 1], ["|C(",, ")|"], 9],

[1, 1, 2, 1, 13], [1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 4]],
ATLAS := true)]

2 I HumanReadableDefinition(info) F
I ScriptFromString(string) F

Let info be a record that is valid as value of StandardGeneratorsInfo (see 68.10.1). HumanReadableDefi-
nition returns a string that describes the definition of standard generators given by the script component
of info in human readable form. The names of the generators are taken from the generators component
(default names "a", "b" etc. are computed if necessary), and the result is stored in the description com-
ponent.
ScriptFromString does the converse of HumanReadableDefinition, i.e., it takes a string string as returned
by HumanReadableDefinition, and returns a corresponding script list.
If “condition” lines occur in the script (see 68.10.1) then the functions that occur must be contained in
StandardGeneratorsFunctions (see 68.10.3).

gap> scr:= ScriptFromString("|a|=2, |b|=3, |C(b)|=9, |ab|=13, |ababb|=4");
[[1, 2], [2, 3], [[2, 1], ["|C(",, ")|"], 9], [1, 1, 2, 1, 13],
[1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 4]]

gap> info:= rec(script:= scr);
rec(script := [[1, 2], [2, 3], [[2, 1], ["|C(",, ")|"], 9],

[1, 1, 2, 1, 13], [1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 4]])
gap> HumanReadableDefinition(info);
"|a|=2, |b|=3, |C(b)|=9, |ab|=13, |ababb|=4"
gap> info;
rec(script := [[1, 2], [2, 3], [[2, 1], ["|C(",, ")|"], 9],

[1, 1, 2, 1, 13], [1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 4]],
generators := "a, b",
description := "|a|=2, |b|=3, |C(b)|=9, |ab|=13, |ababb|=4")

3 I StandardGeneratorsFunctions V

StandardGeneratorsFunctions is a list of even length. At position 2i − 1, a function of two arguments is
stored, which are expected to be a group and a group element. At position 2i a list of strings is stored such

718 Chapter 68. Tables of Marks

that first inserting a generator name in all holes and then forming the concatenation yields a string that
describes the function at the previous position; this string must contain the generator enclosed in round
brackets (and).

This list is used by the functions StandardGeneratorsInfo (see 68.10.1), HumanReadableDefinition, and
ScriptFromString (see 68.10.2). Note that the lists at even positions must be pairwise different.

gap> StandardGeneratorsFunctions{ [1, 2] };
[function(G, g) ... end, ["|C(",, ")|"]]

4 I IsStandardGeneratorsOfGroup(info, G, gens) F

Let info be a record that is valid as value of StandardGeneratorsInfo (see 68.10.1), G a group, and gens
a list of generators for G . In this case, IsStandardGeneratorsOfGroup returns true if gens satisfies the
conditions of the script component of info, and false otherwise.

Note that the result true means that gens is a list of standard generators for G only if G has the isomorphism
type for which info describes standard generators.

5 I StandardGeneratorsOfGroup(info, G[, randfunc]) F

Let info be a record that is valid as value of StandardGeneratorsInfo (see 68.10.1), and G a group of the
isomorphism type for which info describes standard generators. In this case, StandardGeneratorsOfGroup
returns a list of standard generators (see Section 68.10) of G .

The optional argument randfunc must be a function that returns an element of G when called with G ; the
default is PseudoRandom.

In each call to StandardGeneratorsOfGroup, the script component of info is scanned line by line. randfunc
is used to find an element of the prescribed order whenever a definition line is met, and for the relation and
condition lines in the script list, the current generator candidates are checked; if a condition is not fulfilled,
all candidates are thrown away, and the procedure starts again with the first line. When the conditions are
fulfilled after processing the last line of the script list, the standard generators are returned.

Note that if G has the wrong isomorphism type then StandardGeneratorsOfGroup returns a list of elements
in G that satisfy the conditions of the script component of info if such elements exist, and does not
terminate otherwise. In the former case, obviously the returned elements need not be standard generators
of G .

gap> a5:= AlternatingGroup(5);
Alt([1 .. 5])
gap> info:= StandardGeneratorsInfo(TableOfMarks("A5"))[1];
rec(generators := "a, b", description := "|a|=2, |b|=3, |ab|=5",
script := [[1, 2], [2, 3], [1, 1, 2, 1, 5]], ATLAS := true)

gap> IsStandardGeneratorsOfGroup(info, a5, [(1,3)(2,4), (3,4,5)]);
true
gap> IsStandardGeneratorsOfGroup(info, a5, [(1,3)(2,4), (1,2,3)]);
false
gap> s5:= SymmetricGroup(5);;
gap> RepresentativeAction(s5, [(1,3)(2,4), (3,4,5)],
> StandardGeneratorsOfGroup(info, a5), OnPairs) <> fail;
true

Section 11. Accessing Subgroups via Tables of Marks 719

68.11 Accessing Subgroups via Tables of Marks

Let tom be the table of marks of the group G , and assume that tom has access to G via the UnderlyingGroup
value (see 68.7.7). Then it makes sense to use tom and its ordering of conjugacy classes of subgroups of G for
storing information for constructing representatives of these classes. The group G is in general not sufficient
for this, tom needs more information; this is available if and only if the IsTableOfMarksWithGens value of
tom is true (see 68.11.3). In this case, RepresentativeTom (see 68.11.4) can be used to get a subgroup of
the i -th class, for all i .

GAP provides two different possibilities to store generators of the representatives of classes of subgroups.
The first is implemented by the attribute GeneratorsSubgroupsTom (see 68.11.1), which uses explicit gen-
erators. The second, more general, possibility is implemented by the attributes StraightLineProgramsTom
(see 68.11.2) and StandardGeneratorsInfo (see 68.11.5). The StraightLineProgramsTom value encodes
the generators as straight line programs (see 35.8) that evaluate to the generators in question when applied
to standard generators of G . This means that on the one hand, standard generators of G must be known in
order to use StraightLineProgramsTom. On the other hand, the straight line programs allow one to compute
easily generators not only of a subgroup U of G but also generators of the image of U in any representation
of G , provided that one knows standard generators of the image of G under this representation (see 68.11.4
for details and an example).

1 I GeneratorsSubgroupsTom(tom) A

Let tom be a table of marks with IsTableOfMarksWithGens value true. Then GeneratorsSubgroupsTom
returns a list of length two, the first entry being a list l of elements of the group stored as UnderlyingGroup
value of tom, the second entry being a list that contains at position i a list of positions in l of generators of
a representative of a subgroup in class i .

The GeneratorsSubgroupsTom value is known for all tables of marks that have been computed with Table-
OfMarks (see 68.3.1) from a group, and there is a method to compute the value for a table of marks that
admits RepresentativeTom (see 68.11.4).

2 I StraightLineProgramsTom(tom) A

For a table of marks tom with IsTableOfMarksWithGens value true, StraightLineProgramsTom returns
a list that contains at position i either a list of straight line programs or a straight line program (see 35.8),
encoding the generators of a representative of the i -th conjugacy class of subgroups of UnderlyingGroup(
tom); in the former case, each straight line program returns a generator, in the latter case, the program
returns the list of generators.

There is no default method to compute the StraightLineProgramsTom value of a table of marks if they are
not yet stored. The value is known for all tables of marks that belong to the GAP library of tables of marks
(see 68.14).

3 I IsTableOfMarksWithGens(tom) F

This filter shall express the union of the filters IsTableOfMarks and HasStraightLineProgramsTom and
IsTableOfMarks and HasGeneratorsSubgroupsTom. If a table of marks tom has this filter set then tom
can be asked to compute information that is in general not uniquely determined by a table of marks, for
example the positions of derived subgroups or normalizers of subgroups (see 68.9.2, 68.9.4).

gap> a5:= TableOfMarks("A5");; IsTableOfMarksWithGens(a5);
true
gap> HasGeneratorsSubgroupsTom(a5); HasStraightLineProgramsTom(a5);
false
true
gap> alt5:= TableOfMarks(AlternatingGroup(5));;
gap> IsTableOfMarksWithGens(alt5);

720 Chapter 68. Tables of Marks

true
gap> HasGeneratorsSubgroupsTom(alt5); HasStraightLineProgramsTom(alt5);
true
false
gap> progs:= StraightLineProgramsTom(a5);;
gap> OrdersTom(a5);
[1, 2, 3, 4, 5, 6, 10, 12, 60]
gap> IsCyclicTom(a5, 4);
false
gap> Length(progs[4]);
2
gap> progs[4][1];
<straight line program>
gap> Display(progs[4][1]); # first generator of an el. ab group of order 4
input:
r:= [g1, g2];
program:
r[3]:= r[2]*r[1];
r[4]:= r[3]*r[2]^-1*r[1]*r[3]*r[2]^-1*r[1]*r[2];
return value:
r[4]
gap> x:= [[Z(2)^0, 0*Z(2)], [Z(2^2), Z(2)^0]];;
gap> y:= [[Z(2^2), Z(2)^0], [0*Z(2), Z(2^2)^2]];;
gap> res1:= ResultOfStraightLineProgram(progs[4][1], [x, y]);
[[Z(2)^0, 0*Z(2)], [Z(2^2)^2, Z(2)^0]]
gap> res2:= ResultOfStraightLineProgram(progs[4][2], [x, y]);
[[Z(2)^0, 0*Z(2)], [Z(2^2), Z(2)^0]]
gap> w:= y*x;;
gap> res1 = w*y^-1*x*w*y^-1*x*y;
true
gap> subgrp:= Group(res1, res2);; Size(subgrp); IsCyclic(subgrp);
4
false

4 I RepresentativeTom(tom, sub) O
I RepresentativeTomByGenerators(tom, sub, gens) O
I RepresentativeTomByGeneratorsNC(tom, sub, gens) O

Let tom be a table of marks with IsTableOfMarksWithGens value true (see 68.11.3), and sub a positive
integer. RepresentativeTom returns a representative of the sub-th conjugacy class of subgroups of tom.

RepresentativeTomByGenerators and RepresentativeTomByGeneratorsNC return a representative of the
sub-th conjugacy class of subgroups of tom, as a subgroup of the group generated by gens. This means that
the standard generators of tom are replaced by gens.

RepresentativeTomByGenerators checks whether mapping the standard generators of tom to gens extends
to a group isomorphism, and returns fail if not. RepresentativeTomByGeneratorsNC omits all checks.
So RepresentativeTomByGenerators is thought mainly for debugging purposes; note that when several
representatives are constructed, it is cheaper to construct (and check) the isomorphism once, and to map
the groups returned by RepresentativeTom under this isomorphism. The idea behind Representative-
TomByGeneratorsNC, however, is to avoid the overhead of using isomorphisms when gens are known to be
standard generators.

Section 12. The Interface between Tables of Marks and Character Tables 721

gap> RepresentativeTom(a5, 4);
Group([(2,3)(4,5), (2,4)(3,5)])

5 I StandardGeneratorsInfo(tom) A

For a table of marks tom, a stored value of StandardGeneratorsInfo equals the value of this attribute for
the underlying group (see 68.7.7) of tom, cf. Section 68.10.

In this case, the GeneratorsOfGroup value of the underlying group G of tom is assumed to be in fact a list
of standard generators for G ; So one should be careful when setting the StandardGeneratorsInfo value by
hand.

There is no default method to compute the StandardGeneratorsInfo value of a table of marks if it is not
yet stored.

gap> std:= StandardGeneratorsInfo(a5);
[rec(generators := "a, b", description := "|a|=2, |b|=3, |ab|=5",

script := [[1, 2], [2, 3], [1, 1, 2, 1, 5]], ATLAS := true)]
gap> # Now find standard generators of an isomorphic group.
gap> g:= SL(2,4);;
gap> repeat
> x:= PseudoRandom(g);
> until Order(x) = 2;
gap> repeat
> y:= PseudoRandom(g);
> until Order(y) = 3 and Order(x*y) = 5;
gap> # Compute a representative w.r.t. these generators.
gap> RepresentativeTomByGenerators(a5, 4, [x, y]);
Group([[[Z(2)^0, Z(2^2)], [0*Z(2), Z(2)^0]],
[[Z(2)^0, Z(2^2)^2], [0*Z(2), Z(2)^0]]])

gap> # Show that the new generators are really good.
gap> grp:= UnderlyingGroup(a5);;
gap> iso:= GroupGeneralMappingByImages(grp, g,
> GeneratorsOfGroup(grp), [x, y]);;
gap> IsGroupHomomorphism(iso);
true
gap> IsBijective(iso);
true

68.12 The Interface between Tables of Marks and Character Tables

The following examples require the GAP Character Table Library to be available. If it is not yet loaded then
we load it now.

gap> LoadPackage("ctbllib");
true

1 I FusionCharTableTom(tbl, tom) O
I PossibleFusionsCharTableTom(tbl, tom[, options]) O

Let tbl be the ordinary character table of the group G , say, and tom the table of marks of G . Fusion-
CharTableTom determines the fusion of the classes of elements from tbl to the classes of cyclic subgroups on
tom, that is, a list that contains at position i the position of the class of cyclic subgroups in tom that are
generated by elements in the i -th conjugacy class of elements in tbl .

Three cases are handled differently.

722 Chapter 68. Tables of Marks

1. The fusion is explicitly stored on tbl . Then nothing has to be done. This happens only if both tbl and
tom are tables from the GAP library (see 68.14 and the manual of the GAP Character Table Library).

2. The UnderlyingGroup values of tbl and tom are known and equal. Then the group is used to compute
the fusion.

3. There is neither fusion nor group information available. In this case only necessary conditions can
be checked, and if they are not sufficient to detemine the fusion uniquely then fail is returned by
FusionCharTableTom.

PossibleFusionsCharTableTom computes the list of possible fusions from tbl to tom, according to the
criteria that have been checked. So if FusionCharTableTom returns a unique fusion then the list returned
by PossibleFusionsCharTableTom for the same arguments contains exactly this fusion, and if Fusion-
CharTableTom returns fail then the length of this list is different from 1.

The optional argument options must be a record that may have the following components.

fusionmap
a parametrized map which is an approximation of the desired map,

quick
a Boolean; if true then as soon as only one possibility remains this possibility is returned immedi-
ately; the default value is false.

gap> a5c:= CharacterTable("A5");;
gap> fus:= FusionCharTableTom(a5c, a5);
[1, 2, 3, 5, 5]

2 I PermCharsTom(fus, tom) O
I PermCharsTom(tbl, tom) O

PermCharsTom returns the list of transitive permutation characters from the table of marks tom. In the first
form, fus must be the fusion map from the ordinary character table of the group of tom to tom (see 68.12.1).
In the second form, tbl must be the character table of the group of which tom is the table of marks. If the
fusion map is not uniquely determined (see 68.12.1) then fail is returned.

If the fusion map fus is given as first argument then each transitive permutation character is represented by
its values list. If the character table tbl is given then the permutation characters are class function objects
(see Chapter 70).

gap> PermCharsTom(a5c, a5);
[Character(CharacterTable("A5"), [60, 0, 0, 0, 0]),
Character(CharacterTable("A5"), [30, 2, 0, 0, 0]),
Character(CharacterTable("A5"), [20, 0, 2, 0, 0]),
Character(CharacterTable("A5"), [15, 3, 0, 0, 0]),
Character(CharacterTable("A5"), [12, 0, 0, 2, 2]),
Character(CharacterTable("A5"), [10, 2, 1, 0, 0]),
Character(CharacterTable("A5"), [6, 2, 0, 1, 1]),
Character(CharacterTable("A5"), [5, 1, 2, 0, 0]),
Character(CharacterTable("A5"), [1, 1, 1, 1, 1])]

gap> PermCharsTom(fus, a5)[1];
[60, 0, 0, 0, 0]

Section 13. Generic Construction of Tables of Marks 723

68.13 Generic Construction of Tables of Marks

The following three operations construct a table of marks only from the data given, i.e., without underlying
group.

1 I TableOfMarksCyclic(n) O

TableOfMarksCyclic returns the table of marks of the cyclic group of order n.

A cyclic group of order n has as its subgroups for each divisor d of n a cyclic subgroup of order d .

2 I TableOfMarksDihedral(n) O

TableOfMarksDihedral returns the table of marks of the dihedral group of order m.

For each divisor d of m, a dihedral group of order m = 2n contains subgroups of order d according to the
following rule. If d is odd and divides n then there is only one cyclic subgroup of order d . If d is even and
divides n then there are a cyclic subgroup of order d and two classes of dihedral subgroups of order d (which
are cyclic, too, in the case d = 2, see the example below). Otherwise (i.e., if d does not divide n) there is
just one class of dihedral subgroups of order d .

3 I TableOfMarksFrobenius(p, q) O

TableOfMarksFrobenius computes the table of marks of a Frobenius group of order pq , where p is a prime
and q divides p − 1.

gap> Display(TableOfMarksCyclic(6));
1: 6
2: 3 3
3: 2 . 2
4: 1 1 1 1

gap> Display(TableOfMarksDihedral(12));
1: 12
2: 6 6
3: 6 . 2
4: 6 . . 2
5: 4 . . . 4
6: 3 3 1 1 . 1
7: 2 2 . . 2 . 2
8: 2 . 2 . 2 . . 2
9: 2 . . 2 2 . . . 2

10: 1 1 1 1 1 1 1 1 1 1

gap> Display(TableOfMarksFrobenius(5, 4));
1: 20
2: 10 2
3: 5 1 1
4: 4 . . 4
5: 2 2 . 2 2
6: 1 1 1 1 1 1

724 Chapter 68. Tables of Marks

68.14 The Library of Tables of Marks

The GAP package TomLib provides access to several hundred tables of marks of almost simple groups and
their maximal subgroups. If this package is installed then the tables from this database can be accessed via
TableOfMarks with argument a string (see 68.3.1). If also the GAP Character Table Library is installed and
contains the ordinary character table of the group for which one wants to fetch the table of marks then one
can also call TableOfMarks with argument the character table.

A list of all names of tables of marks in the database can be obtained via AllLibTomNames.

gap> names:= AllLibTomNames();;
gap> "A5" in names;
true

69 Character Tables

This chapter describes operations for character tables of finite groups.

Operations for characters (or, more general, class functions) are described in Chapter 70.

For a description of the GAP Library of Character Tables, see the separate manual for the GAP package
ctbllib.

Several examples in this chapter require the GAP Character Table Library to be available. If it is not yet
loaded then we load it now.

gap> LoadPackage("ctbllib");
true

69.1 Some Remarks about Character Theory in GAP

It seems to be necessary to state some basic facts –and maybe warnings– at the beginning of the character
theory package. This holds for people who are familiar with character theory because there is no global
reference on computational character theory, although there are many papers on this topic, such as [NPP84]
or [LP91]. It holds, however, also for people who are familiar with GAP because the general concept of
domains (see Chapter 12.4) plays no important role here –we will justify this later in this section.

Intuitively, characters (or more generally, class functions) of a finite group G can be thought of as
certain mappings defined on G , with values in the complex number field; the set of all characters of G forms
a semiring, with both addition and multiplication defined pointwise, which is naturally embedded into the
ring of generalized (or virtual) characters in the natural way. A Z-basis of this ring, and also a vector
space basis of the complex vector space of class functions of G , is given by the irreducible characters of G .

At this stage one could ask where there is a problem, since all these algebraic structures are supported by
GAP. But in practice, these structures are of minor importance, compared to individual characters and the
character tables themselves (which are not domains in the sense of GAP).

For computations with characters of a finite group G with n conjugacy classes, say, we fix an ordering of the
classes, and then identify each class with its position according to this ordering. Each character of G can be
represented by a list of length n in which the character value for elements of the i -th class is stored at the
i -th position. Note that we need not know the conjugacy classes of G physically, even our knowledge of G
may be implicit in the sense that, e.g., we know how many classes of involutions G has, and which length
these classes have, but we never have seen an element of G , or a presentation or representation of G . This
allows us to work with the character tables of very large groups, e.g., of the so-called monster, where GAP
has (currently) no chance to deal with the group.

As a consequence, also other information involving characters is given implicitly. For example, we can talk
about the kernel of a character not as a group but as a list of classes (more exactly: a list of their positions
according to the chosen ordering of classes) forming this kernel; we can deduce the group order, the contained
cyclic subgroups and so on, but we do not get the group itself.

726 Chapter 69. Character Tables

So typical calculations with characters involve loops over lists of character values. For example, the scalar
product of two characters χ, ψ of G given by

[χ, ψ] =
1
|G |

∑
g∈G

χ(g)ψ(g−1)

can be written as

Sum([1 .. n], i -> SizesConjugacyClasses(t)[i] * chi[i]
* ComplexConjugate(psi[i]));

where t is the character table of G , and chi, psi are the lists of values of χ, ψ, respectively.

It is one of the advantages of character theory that after one has translated a problem concerning groups
into a problem concerning only characters, the necessary calculations are mostly simple. For example, one
can often prove that a group is a Galois group over the rationals using calculations with structure constants
that can be computed from the character table, and information about (the character tables of) maximal
subgroups. When one deals with such questions, the translation back to groups is just an interpretation by
the user, it does not take place in GAP.

GAP uses character tables to store information such as class lengths, element orders, the irreducible char-
acters of G etc. in a consistent way; in the example above, we have seen that SizesConjugacyClasses(t
) is the list of class lengths of the character table t. Note that the values of these attributes rely on the
chosen ordering of conjugacy classes, a character table is not determined by something similar to generators
of groups or rings in GAP where knowledge could in principle be recovered from the generators but is stored
mainly for the sake of efficiency.

Note that the character table of a group G in GAP must not be mixed up with the list of complex irreducible
characters of G . The irreducible characters are stored in a character table via the attribute Irr (see 69.8.2).

Two further important instances of information that depends on the ordering of conjugacy classes are power
maps and fusion maps. Both are represented as lists of integers in GAP. The k -th power map maps each
class to the class of k -th powers of its elements, the corresponding list contains at each position the position
of the image. A class fusion map between the classes of a subgroup H of G and the classes of G maps
each class c of H to that class of G that contains c, the corresponding list contains again the positions of
image classes; if we know only the character tables of H and G but not the groups themselves, this means
with respect to a fixed embedding of H into G . More about power maps and fusion maps can be found in
Chapter 71.

So class functions, power maps, and fusion maps are represented by lists in GAP. If they are plain lists then
they are regarded as class functions etc. of an appropriate character table when they are passed to GAP
functions that expect class functions etc. For example, a list with all entries equal to 1 is regarded as the
trivial character if it is passed to a function that expects a character. Note that this approach requires the
character table as an argument for such a function.

One can construct class function objects that store their underlying character table and other attribute
values (see Chapter 70). This allows one to omit the character table argument in many functions, and it
allows one to use infix operations for tensoring or inducing class functions.

69.2 History of Character Theory Stuff in GAP

GAP provides functions for dealing with group characters since the version GAP 3.1, which was released in
March 1992. The reason for adding this branch of mathematics to the topics of GAP was (apart from the use-
fulness of character theoretic computations in general) the insight that GAP provides an ideal environment
for developing the algorithms needed. In particular, it had been decided at Lehrstuhl D für Mathematik that
the CAS system (a standalone Fortran program together with a database of character tables, see [NPP84])

Section 3. Creating Character Tables 727

should not be developed further and the functionality of CAS should be made available in GAP. The back-
ground was that extending CAS (by new Fortran code) had turned out to be much less flexible than writing
analogous GAP library code.

For integrating the existing character theory algorithms, GAP’s memory management and long integer
arithmetic were useful as well as the list handling –it is an important feature of character theoretic methods
that questions about groups are translated into manipulations of lists; on the other hand, the datatype of
cyclotomics (see Chapter 18.1.2) was added to the GAP kernel because of the character theory algorithms.
For developing further code, also other areas of GAP’s library became interesting, such as permutation
groups, finite fields, and polynomials.

The development of character theory code for GAP has been supported by several DFG grants, in particular
the project “Representation Theory of Finite Groups and Finite Dimensional Algebras” (until 1991), and
the Schwerpunkt “Algorithmische Zahlentheorie und Algebra” (from 1991 until 1997). Besides that, several
Diploma theses at Lehrstuhl D were concerned with the development and/or implementation of algorithms
dealing with characters in GAP.

The major contributions can be listed as follows.

• The arithmetic for the cyclotomics data type, following [Zum89], was first implemented by Marco van
Meegen; an alternative approach was studied in the diploma thesis of Michael Scherner (see [Sch92])
but was not efficient enough; later Martin Schönert replaced the implementation by a better one.

• The basic routines for characters and character tables were written by Thomas Breuer and Götz Pfeiffer.

• The lattice related functions, such as LLL, OrthogonalEmbeddings, and DnLattice, were implemented
by Ansgar Kaup (see [Kau92]).

• Functions for computing possible class fusions, possible power maps, and table automorphisms were
written by Thomas Breuer (see [Bre91]).

• Functions for computing possible permutation characters were written by Thomas Breuer (see [Bre91])
and Götz Pfeiffer (see [Pfe91]).

• Functions for computing character tables from groups were written by Alexander Hulpke (Dixon-
Schneider algorithm, see [Hul93]) and Hans Ulrich Besche (Baum algorithm and Conlon algorithm,
see [Bes92]).

• Functions for dealing with Clifford matrices were written by Ute Schiffer (see [Sch94]).

• Functions for monomiality questions were written by Thomas Breuer and Erzsébet Horváth.

Since then, the code has been maintained and extended further by Alexander Hulpke (code related to his
implementation of the Dixon-Schneider algorithm) and Thomas Breuer.

Currently GAP does not provide special functionality for computing Brauer character tables, but there is
an interface to the MOC system (see [HJLP]), and the GAP Character Table Library contains many known
Brauer character tables.

69.3 Creating Character Tables

There are in general five different ways to get a character table in GAP. You can

1. compute the table from a group,

2. read a file that contains the table data,

3. construct the table using generic formulae,

4. derive it from known character tables, or

5. combine partial information about conjugacy classes, power maps of the group in question, and about
(character tables of) some subgroups and supergroups.

728 Chapter 69. Character Tables

In 1., the computation of the irreducible characters is the hardest part; the different algorithms available
for this are described in 69.12. Possibility 2. is used for the character tables in the GAP Character Table
Library, see the manual of this library. Generic character tables –as addressed by 3.– are described in 2.3 in
the manual of the GAP Character Table Library. Several occurrences of 4. are described in 69.18. The last
of the above possibilities @is currently not supported and will be described in a chapter of its
own when it becomes available@.

The operation CharacterTable (see 69.3.1) can be used for the cases 1.–3.

1 I CharacterTable(G) O
I CharacterTable(G, p) O
I CharacterTable(ordtbl, p) O
I CharacterTable(name[, param]) O

Called with a group G , CharacterTable calls the attribute OrdinaryCharacterTable (see 69.8.4). Called
with first argument a group G or an ordinary character table ordtbl , and second argument a prime p,
CharacterTable calls the operation BrauerTable (see 69.3.2). Called with a string name and perhaps
optional parameters param, CharacterTable delegates to CharacterTableFromLibrary, which tries to
access the GAP Character Table Library (see the manual of this library for an overview of admissible strings
name).

Probably the most interesting information about the character table is its list of irreducibles, which can
be accessed as the value of the attribute Irr (see 69.8.2). If the argument of CharacterTable is a string
name then the irreducibles are just read from the library file, therefore the returned table stores them
already. However, if CharacterTable is called with a group G or with an ordinary character table ordtbl ,
the irreducible characters are not computed by CharacterTable. They are only computed when the Irr
value is accessed for the first time, for example when Display is called for the table (see 69.11). This means
for example that CharacterTable returns its result very quickly, and the first call of Display for this table
may take some time because the irreducible characters must be computed at that time before they can
be displayed together with other information stored on the character table. The value of the filter HasIrr
indicates whether the irreducible characters have been computed already.

The reason why CharacterTable does not compute the irreducible characters is that there are situations
where one only needs the “table head”, that is, the information about class lengths, power maps etc., but
not the irreducibles. For example, if one wants to inspect permutation characters of a group then all one
has to do is to induce the trivial characters of subgroups one is interested in; for that, only class lengths and
the class fusion are needed. Or if one wants to compute the Molien series (see 70.12.1) for a given complex
matrix group, the irreducible characters of this group are in general of no interest.

For details about different algorithms to compute the irreducible characters, see 69.12.

If the group G is given as an argument, CharacterTable accesses the conjugacy classes of G and therefore
causes that these classes are computed if they were not yet stored (see 69.6).

2 I BrauerTable(ordtbl, p) O
I BrauerTable(G, p) O
I BrauerTableOp(ordtbl, p) O
I ComputedBrauerTables(ordtbl) AM

Called with an ordinary character table ordtbl or a group G , BrauerTable returns its p-modular character
table if GAP can compute this table, and fail otherwise. The p-modular table can be computed for p-solvable
groups (using the Fong-Swan Theorem) and in the case that ordtbl is a table from the GAP character table
library for which also the p-modular table is contained in the table library.

The default method for a group and a prime delegates to BrauerTable for the ordinary character table of this
group. The default method for ordtbl uses the attribute ComputedBrauerTables for storing the computed
Brauer table at position p, and calls the operation BrauerTableOp for computing values that are not yet
known.

Section 3. Creating Character Tables 729

So if one wants to install a new method for computing Brauer tables then it is sufficient to install it for
BrauerTableOp.

The \mod operator for a character table and a prime (see 69.7) delegates to BrauerTable.

3 I CharacterTableRegular(tbl, p) F

For an ordinary character table tbl and a prime integer p, CharacterTableRegular returns the “table head”
of the p-modular Brauer character table of tbl . This is the restriction of tbl to its p-regular classes, like the
return value of BrauerTable (see 69.3.2), but without the irreducible Brauer characters. (In general, these
characters are hard to compute, and BrauerTable may return fail for the given arguments, for example if
tbl is a table from the GAP character table library.)

The returned table head can be used to create p-modular Brauer characters, by restricting ordinary charac-
ters, for example when one is interested in approximations of the (unknown) irreducible Brauer characters.

gap> g:= SymmetricGroup(4);
Sym([1 .. 4])
gap> tbl:= CharacterTable(g);; HasIrr(tbl);
false
gap> tblmod2:= CharacterTable(tbl, 2);
BrauerTable(Sym([1 .. 4]), 2)
gap> tblmod2 = CharacterTable(tbl, 2);
true
gap> tblmod2 = BrauerTable(tbl, 2);
true
gap> tblmod2 = BrauerTable(g, 2);
true
gap> libtbl:= CharacterTable("M");
CharacterTable("M")
gap> CharacterTableRegular(libtbl, 2);
BrauerTable("M", 2)
gap> BrauerTable(libtbl, 2);
fail
gap> CharacterTable("Symmetric", 4);
CharacterTable("Sym(4)")
gap> ComputedBrauerTables(tbl);
[, BrauerTable(Sym([1 .. 4]), 2)]

4 I SupportedCharacterTableInfo V

SupportedCharacterTableInfo is a list that contains at position 3i − 2 an attribute getter function, at
position 3i−1 the name of this attribute, and at position 3i a list containing one or two of the strings "class",
"character", depending on whether the attribute value relies on the ordering of classes or characters. This
allows one to set exactly the components with these names in the record that is later converted to the new
table, in order to use the values as attribute values. So the record components that shall not be regarded
as attribute values can be ignored. Also other attributes of the old table are ignored.

SupportedCharacterTableInfo is used when (ordinary or Brauer) character table objects are created from
records, using ConvertToCharacterTable (see 69.3.5).

New attributes and properties can be notified to SupportedCharacterTableInfo by creating them with
DeclareAttributeSuppCT and DeclarePropertySuppCT instead of DeclareAttribute and DeclareProp-
erty.

730 Chapter 69. Character Tables

5 I ConvertToCharacterTable(record) F
I ConvertToCharacterTableNC(record) F

Let record be a record. ConvertToCharacterTable converts record into a component object (see 3.9 in
“Programming in GAP”) representing a character table. The values of those components of record whose
names occur in SupportedCharacterTableInfo (see 69.3.4) correspond to attribute values of the returned
character table. All other components of the record simply become components of the character table object.

If inconsistencies in record are detected, fail is returned. record must have the component UnderlyingChar-
acteristic bound (see 69.8.9), since this decides about whether the returned character table lies in IsOr-
dinaryTable or in IsBrauerTable (see 69.4.1, 69.4.1).

ConvertToCharacterTableNC does the same except that all checks of record are omitted.

An example of a conversion from a record to a character table object can be found in Section 69.11.2.

69.4 Character Table Categories

1 I IsNearlyCharacterTable(obj) C
I IsCharacterTable(obj) C
I IsOrdinaryTable(obj) C
I IsBrauerTable(obj) C
I IsCharacterTableInProgress(obj) C

Every “character table like object” in GAP lies in the category IsNearlyCharacterTable. There are four
important subcategories, namely the ordinary tables in IsOrdinaryTable, the Brauer tables in Is-
BrauerTable, the union of these two in IsCharacterTable, and the incomplete ordinary tables in
IsCharacterTableInProgress.

We want to distinguish ordinary and Brauer tables because a Brauer table may delegate tasks to the ordinary
table of the same group, for example the computation of power maps. A Brauer table is constructed from
an ordinary table and stores this table upon construction (see 69.8.4).

Furthermore, IsOrdinaryTable and IsBrauerTable denote character tables that provide enough informa-
tion to compute all power maps and irreducible characters (and in the case of Brauer tables to get the
ordinary table), for example because the underlying group (see 69.6.1) is known or because the table is a
library table (see the manual of the GAP Character Table Library). We want to distinguish these tables
from partially known ordinary tables that cannot be asked for all power maps or all irreducible characters.

The character table objects in IsCharacterTable are always immutable (see 12.6). This means mainly that
the ordering of conjugacy classes used for the various attributes of the character table cannot be changed;
see 69.19 for how to compute a character table with a different ordering of classes.

The GAP objects in IsCharacterTableInProgress represent incomplete ordinary character tables. This
means that not all irreducible characters, not all power maps are known, and perhaps even the number
of classes and the centralizer orders are known. Such tables occur when the character table of a group G
is constructed using character tables of related groups and information about G but for example without
explicitly computing the conjugacy classes of G . An object in IsCharacterTableInProgress is first of all
mutable, so nothing is stored automatically on such a table, since otherwise one has no control of side-
effects when a hypothesis is changed. Operations for such tables may return more general values than for
other tables, for example class functions may contain unknowns (see Chapter 19) or lists of possible values
in certain positions, the same may happen also for power maps and class fusions (see 71.3). @Incomplete
tables in this sense are currently not supported and will be described in a chapter of their own
when they become available.@ Note that the term “incomplete table” shall express that GAP cannot
compute certain values such as irreducible characters or power maps. A table with access to its group is
therefore always complete, also if its irreducible characters are not yet stored.

Section 6. The Interface between Character Tables and Groups 731

gap> g:= SymmetricGroup(4);;
gap> tbl:= CharacterTable(g); modtbl:= tbl mod 2;
CharacterTable(Sym([1 .. 4]))
BrauerTable(Sym([1 .. 4]), 2)
gap> IsCharacterTable(tbl); IsCharacterTable(modtbl);
true
true
gap> IsBrauerTable(modtbl); IsBrauerTable(tbl);
true
false
gap> IsOrdinaryTable(tbl); IsOrdinaryTable(modtbl);
true
false
gap> IsCharacterTable(g); IsCharacterTable(Irr(g));
false
false

2 I InfoCharacterTable V

is the info class (see 7.4) for computations with character tables.

3 I NearlyCharacterTablesFamily V

Every character table like object lies in this family (see 13.1).

69.5 Conventions for Character Tables

The following few conventions should be noted.

– The class of the identity element is expected to be the first one; thus the degree of a character is the
character value at position 1.

– The trivial character of a character table need not be the first in the list of irreducibles.

– Most functions that take a character table as an argument and work with characters expect these
characters as an argument, too. For some functions, the list of irreducible characters serves as the
default, i.e, the value of the attribute Irr (see 69.8.2); in these cases, the Irr value is automatically
computed if it was not yet known.

– For a stored class fusion, the image table is denoted by its Identifier value (see 69.8.12); each library
table has a unique identifier by which it can be accessed (see 2.2 in the manual for the GAP Character
Table Library), tables constructed from groups get an identifier that is unique in the current GAP
session.

69.6 The Interface between Character Tables and Groups

For a character table with underlying group (see 69.6.1), the interface between table and group consists of
three attribute values, namely the group, the conjugacy classes stored in the table (see ConjugacyClasses
below) and the identification of the conjugacy classes of table and group (see IdentificationOfConju-
gacyClasses below).

Character tables constructed from groups know these values upon construction, and for character tables
constructed without groups, these values are usually not known and cannot be computed from the table.

However, given a group G and a character table of a group isomorphic to G (for example a character table
from the GAP table library), one can tell GAP to use the given table as the character table of G (see 69.6.4).

732 Chapter 69. Character Tables

Tasks may be delegated from a group to its character table or vice versa only if these three attribute values
are stored in the character table.

1 I UnderlyingGroup(ordtbl) A

For an ordinary character table ordtbl of a finite group, the group can be stored as value of UnderlyingGroup.

Brauer tables do not store the underlying group, they access it via the ordinary table (see 69.8.4).

2 I ConjugacyClasses(tbl) A

For a character table tbl with known underlying group G , the ConjugacyClasses value of tbl is a list of
conjugacy classes of G . All those lists stored in the table that are related to the ordering of conjugacy
classes (such as sizes of centralizers and conjugacy classes, orders of representatives, power maps, and all
class functions) refer to the ordering of this list.

This ordering need not coincide with the ordering of conjugacy classes as stored in the underlying group of
the table (see 69.19). One reason for this is that otherwise we would not be allowed to use a library table as
the character table of a group for which the conjugacy classes are stored already. (Another, less important
reason is that we can use the same group as underlying group of character tables that differ only w.r.t. the
ordering of classes.)

The class of the identity element must be the first class (see 69.5).

If tbl was constructed from G then the conjugacy classes have been stored at the same time when G was
stored. If G and tbl were connected later than in the construction of tbl , the recommended way to do this
is via ConnectGroupAndCharacterTable (see 69.6.4). So there is no method for ConjugacyClasses that
computes the value for tbl if it is not yet stored.

Brauer tables do not store the (p-regular) conjugacy classes, they access them via the ordinary table
(see 69.8.4) if necessary.

3 I IdentificationOfConjugacyClasses(tbl) A

For an ordinary character table tbl with known underlying group G , IdentificationOfConjugacyClasses
returns a list of positive integers that contains at position i the position of the i -th conjugacy class of tbl in
the list ConjugacyClasses(G).

gap> g:= SymmetricGroup(4);;
gap> repres:= [(1,2), (1,2,3), (1,2,3,4), (1,2)(3,4), ()];;
gap> ccl:= List(repres, x -> ConjugacyClass(g, x));;
gap> SetConjugacyClasses(g, ccl);
gap> tbl:= CharacterTable(g);; # the table stores already the values
gap> HasConjugacyClasses(tbl); HasUnderlyingGroup(tbl);
true
true
gap> UnderlyingGroup(tbl) = g;
true
gap> HasIdentificationOfConjugacyClasses(tbl);
true
gap> IdentificationOfConjugacyClasses(tbl);
[5, 1, 2, 3, 4]

4 I ConnectGroupAndCharacterTable(G, tbl[, arec]) F
I ConnectGroupAndCharacterTable(G, tbl, bijection) F

Let G be a group and tbl a character table of (a group isomorphic to) G , such that G does not store its
OrdinaryCharacterTable value and tbl does not store its UnderlyingGroup value. ConnectGroupAndChar-
acterTable calls CompatibleConjugacyClasses, trying to identify the classes of G with the columns of
tbl .

Section 6. The Interface between Character Tables and Groups 733

If this identification is unique up to automorphisms of tbl (see 69.8.8) then tbl is stored as CharacterTable
value of G , in tbl the values of UnderlyingGroup, ConjugacyClasses, and IdentificationOfConjugacy-
Classes are set, and true is returned.

Otherwise, i.e., if GAP cannot identify the classes of G up to automorphisms of G , false is returned.

If a record arec is present as third argument, its meaning is the same as for CompatibleConjugacyClasses
(see 69.6.5).

If a list bijection is entered as third argument, it is used as value of IdentificationOfConjugacyClasses,
relative to ConjugacyClasses(G), without further checking, and true is returned.

5 I CompatibleConjugacyClasses(G, ccl, tbl[, arec]) O
I CompatibleConjugacyClasses(tbl[, arec]) O

In the first form, ccl must be a list of the conjugacy classes of the group G , and tbl the ordinary character table
of G . Then CompatibleConjugacyClasses returns a list l of positive integers that describes an identification
of the columns of tbl with the conjugacy classes ccl in the sense that l [i] is the position in ccl of the class
corresponding to the i -th column of tbl , if this identification is unique up to automorphisms of tbl (see 69.8.8);
if GAP cannot identify the classes, fail is returned.

In the second form, tbl must be an ordinary character table, and CompatibleConjugacyClasses checks
whether the columns of tbl can be identified with the conjugacy classes of a group isomorphic to that
for which tbl is the character table; the return value is a list of all those sets of class positions for which
the columns of tbl cannot be distinguished with the invariants used, up to automorphisms of tbl . So the
identification is unique if and only if the returned list is empty.

The usual approach is that one first calls CompatibleConjugacyClasses in the second form for checking
quickly whether the first form will be successful, and only if this is the case the more time consuming
calculations with both group and character table are done.

The following invariants are used.

1. element orders (see 69.8.5),

2. class lengths (see 69.8.7),

3. power maps (see 71.1.1, 71.1.1),

4. symmetries of the table (see 69.8.8).

If the optional argument arec is present then it must be a record whose components describe additional
information for the class identification. The following components are supported.

natchar
if G is a permutation group or matrix group then the value of this component is regarded as the
list of values of the natural character (see 70.7.2) of G , w.r.t. the ordering of classes in tbl ,

bijection
a list describing a partial bijection; the i -th entry, if bound, is the position of the i -th conjugacy
class of tbl in the list ccl .

gap> g:= AlternatingGroup(5);
Alt([1 .. 5])
gap> tbl:= CharacterTable("A5");
CharacterTable("A5")
gap> HasUnderlyingGroup(tbl); HasOrdinaryCharacterTable(g);
false
false
gap> CompatibleConjugacyClasses(tbl); # unique identification

734 Chapter 69. Character Tables

[]
gap> ConnectGroupAndCharacterTable(g, tbl);
true
gap> HasConjugacyClasses(tbl); HasUnderlyingGroup(tbl);
true
true
gap> IdentificationOfConjugacyClasses(tbl);
[1, 2, 3, 4, 5]
gap> # Here is an example where the identification is not unique.
gap> CompatibleConjugacyClasses(CharacterTable("J2"));
[[17, 18], [9, 10]]

69.7 Operators for Character Tables

The following infix operators are defined for character tables.

tbl1 * tbl2
the direct product of two character tables (see 69.18.1),

tbl / list
the table of the factor group modulo the normal subgroup spanned by the classes in the list list
(see 69.18.3),

tbl mod p
the p-modular Brauer character table corresponding to the ordinary character table tbl (see 69.3.1),

tbl.name
the position of the class with name name in tbl (see 69.8.10).

69.8 Attributes and Properties of Character Tables

Several attributes for groups are valid also for character tables. These are on one hand those that have the
same meaning for both group and character table, and whose values can be read off or computed, respectively,
from the character table, such as Size, IsAbelian, or IsSolvable. On the other hand, there are attributes
whose meaning for character tables is different from the meaning for groups, such as ConjugacyClasses.

1 I CharacterDegrees(G) A
I CharacterDegrees(G, p) O
I CharacterDegrees(tbl) A

In the first two forms, CharacterDegrees returns a collected list of the degrees of the absolutely irreducible
characters of the group G ; the optional second argument p must be either zero or a prime integer denoting
the characteristic, the default value is zero. In the third form, tbl must be an (ordinary or Brauer) character
table, and CharacterDegrees returns a collected list of the degrees of the absolutely irreducible characters
of tbl .

(The default method for the call with only argument a group is to call the operation with second argument
0.)

For solvable groups, the default method is based on [Con90b].

Section 8. Attributes and Properties of Character Tables 735

gap> CharacterDegrees(SymmetricGroup(4));
[[1, 2], [2, 1], [3, 2]]
gap> CharacterDegrees(SymmetricGroup(4), 2);
[[1, 1], [2, 1]]
gap> CharacterDegrees(CharacterTable("A5"));
[[1, 1], [3, 2], [4, 1], [5, 1]]
gap> CharacterDegrees(CharacterTable("A5") mod 2);
[[1, 1], [2, 2], [4, 1]]

2 I Irr(G) A
I Irr(G, p) O
I Irr(tbl) A

Called with a group G , Irr returns the irreducible characters of the ordinary character table of G . Called
with a group G and a prime integer p, Irr returns the irreducible characters of the p-modular Brauer table
of G . Called with an (ordinary or Brauer) character table tbl , Irr returns the list of all complex absolutely
irreducible characters of tbl .

For a character table tbl with underlying group, Irr may delegate to the group. For a group G , Irr may
delegate to its character table only if the irreducibles are already stored there.

(If G is p-solvable (see 37.15.18) then the p-modular irreducible characters can be computed by the Fong-
Swan Theorem; in all other cases, there may be no method.)

Note that the ordering of columns in the Irr matrix of the group G refers to the ordering of conjugacy
classes in CharacterTable(G), which may differ from the ordering of conjugacy classes in G (see 69.6).
As an extreme example, for a character table obtained from sorting the classes of CharacterTable(G),
the ordering of columns in the Irr matrix respects the sorting of classes (see 69.19), so the irreducibles of
such a table will in general not coincide with the irreducibles stored as Irr(G) although also the sorted
table stores the group G .

The ordering of the entries in the attribute Irr of a group need not coincide with the ordering of its
IrreducibleRepresentations (see 69.12.4) value.

In the following example we temporarily increase the line length limit from its default value 80 to 85 in
order to get a nicer output format.

gap> Irr(SymmetricGroup(4));
[Character(CharacterTable(Sym([1 .. 4])), [1, -1, 1, 1, -1]),
Character(CharacterTable(Sym([1 .. 4])), [3, -1, -1, 0, 1]),
Character(CharacterTable(Sym([1 .. 4])), [2, 0, 2, -1, 0]),
Character(CharacterTable(Sym([1 .. 4])), [3, 1, -1, 0, -1]),
Character(CharacterTable(Sym([1 .. 4])), [1, 1, 1, 1, 1])]

gap> Irr(SymmetricGroup(4), 2);
[Character(BrauerTable(Sym([1 .. 4]), 2), [1, 1]),
Character(BrauerTable(Sym([1 .. 4]), 2), [2, -1])]

gap> SizeScreen([85,]);;
gap> Irr(CharacterTable("A5"));
[Character(CharacterTable("A5"), [1, 1, 1, 1, 1]),
Character(CharacterTable("A5"), [3, -1, 0, -E(5)-E(5)^4, -E(5)^2-E(5)^3]),
Character(CharacterTable("A5"), [3, -1, 0, -E(5)^2-E(5)^3, -E(5)-E(5)^4]),
Character(CharacterTable("A5"), [4, 0, 1, -1, -1]),
Character(CharacterTable("A5"), [5, 1, -1, 0, 0])]

gap> SizeScreen([80,]);;
gap> Irr(CharacterTable("A5") mod 2);
[Character(BrauerTable("A5", 2), [1, 1, 1, 1]),

736 Chapter 69. Character Tables

Character(BrauerTable("A5", 2), [2, -1, E(5)+E(5)^4, E(5)^2+E(5)^3]),
Character(BrauerTable("A5", 2), [2, -1, E(5)^2+E(5)^3, E(5)+E(5)^4]),
Character(BrauerTable("A5", 2), [4, 1, -1, -1])]

3 I LinearCharacters(G) A
I LinearCharacters(G, p) O
I LinearCharacters(tbl) A

LinearCharacters returns the linear (i.e., degree 1) characters in the Irr (see 69.8.2) list of the group G
or the character table tbl , respectively. In the second form, LinearCharacters returns the p-modular linear
characters of the group G .
For a character table tbl with underlying group, LinearCharacters may delegate to the group. For a group
G , LinearCharacters may delegate to its character table only if the irreducibles are already stored there.
The ordering of linear characters in tbl need not coincide with the ordering of linear characters in the
irreducibles of tbl (see 69.8.2).

gap> LinearCharacters(SymmetricGroup(4));
[Character(CharacterTable(Sym([1 .. 4])), [1, 1, 1, 1, 1]),
Character(CharacterTable(Sym([1 .. 4])), [1, -1, 1, 1, -1])]

4 I OrdinaryCharacterTable(G) A
I OrdinaryCharacterTable(modtbl) A

OrdinaryCharacterTable returns the ordinary character table of the group G or the Brauer character table
modtbl , respectively.
Since Brauer character tables are constructed from ordinary tables, the attribute value for modtbl is already
stored (cf. 69.4).

gap> OrdinaryCharacterTable(SymmetricGroup(4));
CharacterTable(Sym([1 .. 4]))
gap> tbl:= CharacterTable("A5");; modtbl:= tbl mod 2;
BrauerTable("A5", 2)
gap> OrdinaryCharacterTable(modtbl) = tbl;
true

The following operations for groups are applicable to character tables and mean the same for a character
table as for the group; see the chapter about groups for the definition.

AbelianInvariants
CommutatorLength
Exponent
IsAbelian
IsCyclic
IsElementaryAbelian
IsFinite
IsMonomial
IsNilpotent
IsPerfect
IsSimple
IsSolvable
IsSporadicSimple
IsSupersolvable
NrConjugacyClasses
Size

These operations are mainly useful for selecting character tables with certain properties, also for character
tables without access to a group.

Section 8. Attributes and Properties of Character Tables 737

gap> tables:= [CharacterTable(CyclicGroup(3)),
> CharacterTable(SymmetricGroup(4)),
> CharacterTable(AlternatingGroup(5))];;
gap> List(tables, AbelianInvariants);
[[3], [2], []]
gap> List(tables, CommutatorLength);
[1, 1, 1]
gap> List(tables, Exponent);
[3, 12, 30]
gap> List(tables, IsAbelian);
[true, false, false]
gap> List(tables, IsCyclic);
[true, false, false]
gap> List(tables, IsFinite);
[true, true, true]
gap> List(tables, IsMonomial);
[true, true, false]
gap> List(tables, IsNilpotent);
[true, false, false]
gap> List(tables, IsPerfect);
[false, false, true]
gap> List(tables, IsSimple);
[true, false, true]
gap> List(tables, IsSolvable);
[true, true, false]
gap> List(tables, IsSupersolvable);
[true, false, false]
gap> List(tables, NrConjugacyClasses);
[3, 5, 5]
gap> List(tables, Size);
[3, 24, 60]

The following three attributes for character tables would make sense also for groups but are in fact
not used for groups. This is because the values depend on the ordering of conjugacy classes stored as value
of ConjugacyClasses, and this value may differ for a group and its character table (see 69.6). Note that
for character tables, the consistency of attribute values must be guaranteed, whereas for groups, there is no
need to impose such a consistency rule.

5 I OrdersClassRepresentatives(tbl) A

is a list of orders of representatives of conjugacy classes of the character table tbl , in the same ordering as
the conjugacy classes of tbl .

6 I SizesCentralizers(tbl) A

is a list that stores at position i the size of the centralizer of any element in the i -th conjugacy class of the
character table tbl .

7 I SizesConjugacyClasses(tbl) A

is a list that stores at position i the size of the i -th conjugacy class of the character table tbl .

738 Chapter 69. Character Tables

gap> tbl:= CharacterTable("A5");;
gap> OrdersClassRepresentatives(tbl);
[1, 2, 3, 5, 5]
gap> SizesCentralizers(tbl);
[60, 4, 3, 5, 5]
gap> SizesConjugacyClasses(tbl);
[1, 15, 20, 12, 12]

The following attributes apply only to character tables, not to groups.

8 I AutomorphismsOfTable(tbl) A

is the permutation group of all column permutations of the character table tbl that leave the set of irreducibles
and each power map of tbl invariant (see also 69.20.2).

gap> tbl:= CharacterTable("Dihedral", 8);;
gap> AutomorphismsOfTable(tbl);
Group([(4,5)])
gap> OrdersClassRepresentatives(tbl);
[1, 4, 2, 2, 2]
gap> SizesConjugacyClasses(tbl);
[1, 2, 1, 2, 2]

9 I UnderlyingCharacteristic(tbl) A
I UnderlyingCharacteristic(psi) A

For an ordinary character table tbl , the result is 0, for a p-modular Brauer table tbl , it is p. The underlying
characteristic of a class function psi is equal to that of its underlying character table.

The underlying characteristic must be stored when the table is constructed, there is no method to compute
it.

We cannot use the attribute Characteristic (see 30.10.1) to denote this, since of course each Brauer
character is an element of characteristic zero in the sense of GAP (see Chapter 70).

gap> tbl:= CharacterTable("A5");;
gap> UnderlyingCharacteristic(tbl);
0
gap> UnderlyingCharacteristic(tbl mod 17);
17

10 I ClassNames(tbl) A
I ClassNames(tbl, "ATLAS") O
I CharacterNames(tbl) A

ClassNames and CharacterNames return lists of strings, one for each conjugacy class or irreducible character,
respectively, of the character table tbl . These names are used when tbl is displayed.

The default method for ClassNames computes class names consisting of the order of an element in the class
and at least one distinguishing letter.

The default method for CharacterNames returns the list ["X.1", "X.2", ...], whose length is the
number of irreducible characters of tbl .

The position of the class with name name in tbl can be accessed as tbl.name.

When ClassNames is called with two arguments, the second being the string "ATLAS", the class names
returned obey the convention used in Chapter 7, Section 5 of the ATLAS of Finite Groups [CCN+85].
If one is interested in “relative” class names of almost simple ATLAS groups, one can use the function
AtlasClassNames of the GAP package AtlasRep.

Section 8. Attributes and Properties of Character Tables 739

gap> tbl:= CharacterTable("A5");;
gap> ClassNames(tbl);
["1a", "2a", "3a", "5a", "5b"]
gap> tbl.2a;
2

11 I ClassParameters(tbl) A
I CharacterParameters(tbl) A

are lists containing a parameter for each conjugacy class or irreducible character, respectively, of the character
table tbl .

It depends on tbl what these parameters are, so there is no default to compute class and character parameters.

For example, the classes of symmetric groups can be parametrized by partitions, corresponding to the cycle
structures of permutations. Character tables constructed from generic character tables (see “ref:generic
character tables”) usually have class and character parameters stored.

If tbl is a p-modular Brauer table such that class parameters are stored in the underlying ordinary table
(see 69.8.4) of tbl then ClassParameters returns the sublist of class parameters of the ordinary table, for
p-regular classes.

12 I Identifier(tbl) A

is a string that identifies the character table tbl in the current GAP session. It is used mainly for class fusions
into tbl that are stored on other character tables. For character tables without group, the identifier is also
used to print the table; this is the case for library tables, but also for tables that are constructed as direct
products, factors etc. involving tables that may or may not store their groups.

The default method for ordinary tables constructs strings of the form "CTn", where n is a positive integer.
LARGEST IDENTIFIER NUMBER is a list containing the largest integer n used in the current GAP session.

The default method for Brauer tables returns the concatenation of the identifier of the ordinary table, the
string "mod", and the (string of the) underlying characteristic.

gap> Identifier(CharacterTable("A5"));
"A5"
gap> tbl:= CharacterTable(Group(()));;
gap> Identifier(tbl); Identifier(tbl mod 2);
"CT8"
"CT8mod2"

13 I InfoText(tbl) A

is a mutable string with information about the character table tbl . There is no default method to create an
info text.

This attribute is used mainly for library tables (see the manual of the GAP Character Table Library). Usual
parts of the information are the origin of the table, tests it has passed (1.o.r. for the test of orthogonality,
pow[p] for the construction of the p-th power map, DEC for the decomposition of ordinary into Brauer
characters, TENS for the decomposition of tensor products of irreducibles), and choices made without loss of
generality.

gap> Print(InfoText(CharacterTable("A5")), "\n");
origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5]

14 I InverseClasses(tbl) A

For a character table tbl , InverseClasses returns the list mapping each conjugacy class to its inverse class.
This list can be regarded as (−1)-st power map of tbl (see 71.1.1).

740 Chapter 69. Character Tables

15 I RealClasses(tbl) A

For a character table tbl , RealClasses returns the strictly sorted list of positions of classes in tbl that consist
of real elements.

An element x is real iff it is conjugate to its inverse x−1 = x o(x)−1.

gap> InverseClasses(CharacterTable("A5"));
[1, 2, 3, 4, 5]
gap> InverseClasses(CharacterTable("Cyclic", 3));
[1, 3, 2]
gap> RealClasses(CharacterTable("A5"));
[1, 2, 3, 4, 5]
gap> RealClasses(CharacterTable("Cyclic", 3));
[1]

16 I ClassOrbit(tbl, cc) O

is the list of positions of those conjugacy classes of the character table tbl that are Galois conjugate to
the cc-th class. That is, exactly the classes at positions given by the list returned by ClassOrbit contain
generators of the cyclic group generated by an element in the cc-th class.

This information is computed from the power maps of tbl .

17 I ClassRoots(tbl) A

For a character table tbl , ClassRoots returns a list containing at position i the list of positions of the classes
of all nontrivial p-th roots, where p runs over the prime divisors of Size(tbl).

This information is computed from the power maps of tbl .

gap> ClassOrbit(CharacterTable("A5"), 4);
[4, 5]
gap> ClassRoots(CharacterTable("A5"));
[[2, 3, 4, 5], [], [], [], []]
gap> ClassRoots(CharacterTable("Cyclic", 6));
[[3, 4, 5], [], [2], [2, 6], [6], []]

The following attributes for a character table tbl correspond to attributes for the group G of tbl . But
instead of a normal subgroup (or a list of normal subgroups) of G , they return a strictly sorted list of
positive integers (or a list of such lists) which are the positions –relative to ConjugacyClasses(tbl)– of
those classes forming the normal subgroup in question.

18 I ClassPositionsOfNormalSubgroups(ordtbl) A
I ClassPositionsOfMaximalNormalSubgroups(ordtbl) A
I ClassPositionsOfMinimalNormalSubgroups(ordtbl) A

correspond to NormalSubgroups, MaximalNormalSubgroups, and MinimalNormalSubgroups for the group
of the ordinary character table ordtbl (see 37.19.7, 37.19.8, 37.19.9).

The entries of the result lists are sorted according to increasing length. (So this total order respects the
partial order of normal subgroups given by inclusion.)

19 I ClassPositionsOfAgemo(ordtbl, p) O

corresponds to Agemo (see 37.14.2) for the group of the ordinary character table ordtbl .

20 I ClassPositionsOfCentre(ordtbl) A

corresponds to Centre (see 33.4.5) for the group of the ordinary character table ordtbl .

Section 8. Attributes and Properties of Character Tables 741

21 I ClassPositionsOfDirectProductDecompositions(tbl) A
I ClassPositionsOfDirectProductDecompositions(tbl, nclasses) O

Let tbl be the ordinary character table of the group G , say. Called with the only argument tbl , ClassPo-
sitionsOfDirectProductDecompositions returns the list of all those pairs [l1, l2] where l1 and l2 are lists
of class positions of normal subgroups N1, N2 of G such that G is their direct product and |N1| ≤ |N2|
holds. Called with second argument a list nclasses of class positions of a normal subgroup N of G , Class-
PositionsOfDirectProductDecompositions returns the list of pairs describing the decomposition of N as
a direct product of two normal subgroups of G .

22 I ClassPositionsOfDerivedSubgroup(ordtbl) A

corresponds to DerivedSubgroup (see 37.12.3) for the group of the ordinary character table ordtbl .

23 I ClassPositionsOfElementaryAbelianSeries(ordtbl) A

corresponds to ElementaryAbelianSeries (see 37.17.9) for the group of the ordinary character table ordtbl .

24 I ClassPositionsOfFittingSubgroup(ordtbl) A

corresponds to FittingSubgroup (see 37.12.5) for the group of the ordinary character table ordtbl .

25 I ClassPositionsOfLowerCentralSeries(tbl) A

corresponds to LowerCentralSeries (see 37.17.11) for the group of the ordinary character table ordtbl .

26 I ClassPositionsOfUpperCentralSeries(ordtbl) A

corresponds to UpperCentralSeries (see 37.17.12) for the group of the ordinary character table ordtbl .

27 I ClassPositionsOfSupersolvableResiduum(ordtbl) A

corresponds to SupersolvableResiduum (see 37.12.11) for the group of the ordinary character table ordtbl .

28 I ClassPositionsOfNormalClosure(ordtbl, classes) O

is the sorted list of the positions of all conjugacy classes of the ordinary character table ordtbl that form the
normal closure (see 37.11.4) of the conjugacy classes at positions in the list classes.

gap> tbla5:= CharacterTable("A5");;
gap> tbls4:= CharacterTable("Symmetric", 4);;
gap> tbld8:= CharacterTable("Dihedral", 8);;
gap> ClassPositionsOfNormalSubgroups(tbls4);
[[1], [1, 3], [1, 3, 4], [1 .. 5]]
gap> ClassPositionsOfAgemo(tbls4, 2);
[1, 3, 4]
gap> ClassPositionsOfCentre(tbld8);
[1, 3]
gap> ClassPositionsOfDerivedSubgroup(tbld8);
[1, 3]
gap> ClassPositionsOfElementaryAbelianSeries(tbls4);
[[1 .. 5], [1, 3, 4], [1, 3], [1]]
gap> ClassPositionsOfElementaryAbelianSeries(tbla5);
fail
gap> ClassPositionsOfFittingSubgroup(tbls4);
[1, 3]
gap> ClassPositionsOfLowerCentralSeries(tbls4);
[[1 .. 5], [1, 3, 4]]
gap> ClassPositionsOfLowerCentralSeries(tbld8);

742 Chapter 69. Character Tables

[[1 .. 5], [1, 3], [1]]
gap> ClassPositionsOfUpperCentralSeries(tbls4);
[[1]]
gap> ClassPositionsOfUpperCentralSeries(tbld8);
[[1, 3], [1, 2, 3, 4, 5]]
gap> ClassPositionsOfSupersolvableResiduum(tbls4);
[1, 3]
gap> ClassPositionsOfNormalClosure(tbls4, [1, 4]);
[1, 3, 4]

69.9 Operations Concerning Blocks

1 I PrimeBlocks(ordtbl, p) O
I PrimeBlocksOp(ordtbl, p) O
I ComputedPrimeBlockss(tbl) A

For an ordinary character table ordtbl and a prime integer p, PrimeBlocks returns a record with the following
components.

block
a list, the value j at position i means that the i -th irreducible character of ordtbl lies in the j -th
p-block of ordtbl ,

defect
a list containing at position i the defect of the i -th block,

height
a list containing at position i the height of the i -th irreducible character of ordtbl in its block,

relevant
a list of class positions such that only the restriction to these classes need be checked for deciding
whether two characters lie in the same block, and

centralcharacter
a list containing at position i a list whose values at the positions stored in the component relevant
are the values of a central character in the i -th block.

The components relevant and centralcharacters are used by SameBlock (see 69.9.2).

If InfoCharacterTable has level at least 2, the defects of the blocks and the heights of the characters are
printed.

The default method uses the attribute ComputedPrimeBlockss for storing the computed value at position
p, and calls the operation PrimeBlocksOp for computing values that are not yet known.

Two ordinary irreducible characters χ, ψ of a group G are said to lie in the same p-block if the images of
their central characters ωχ, ωψ (see 70.8.17) under the ring homomorphism ∗: R → R/M are equal, where
R denotes the ring of algebraic integers in the complex number field, and M is a maximal ideal in R with
pR ⊆ M . (The distribution to p-blocks is in fact independent of the choice of M , see [Isa76].)

For |G | = pam where p does not divide m, the defect of a block is the integer d such that pa−d is the
largest power of p that divides the degrees of all characters in the block.

The height of a character χ in the block is defined as the largest exponent h for which ph divides χ(1)/pa−d .

Section 9. Operations Concerning Blocks 743

gap> tbl:= CharacterTable("L3(2)");;
gap> pbl:= PrimeBlocks(tbl, 2);
rec(block := [1, 1, 1, 1, 1, 2], defect := [3, 0],
height := [0, 0, 0, 1, 0, 0], relevant := [3, 5],
centralcharacter := [[,, 56,, 24], [,, -7,, 3]])

2 I SameBlock(p, omega1, omega2, relevant) F

Let p be a prime integer, omega1 and omega2 be two central characters (or their values lists) of a character
table, and relevant be a list of positions as is stored in the component relevant of a record returned by
PrimeBlocks (see 69.9.1).

SameBlock returns true if omega1 and omega2 are equal modulo any maximal ideal in the ring of complex
algebraic integers containing the ideal spanned by p, and false otherwise.

gap> omega:= List(Irr(tbl), CentralCharacter);;
gap> SameBlock(2, omega[1], omega[2], pbl.relevant);
true
gap> SameBlock(2, omega[1], omega[6], pbl.relevant);
false

3 I BlocksInfo(modtbl) A

For a Brauer character table modtbl , the value of BlocksInfo is a list of (mutable) records, the i -th entry
containing information about the i -th block. Each record has the following components.

defect
the defect of the block,

ordchars
the list of positions of the ordinary characters that belong to the block, relative to Irr(Ordi-
naryCharacterTable(modtbl)),

modchars
the list of positions of the Brauer characters that belong to the block, relative to IBr(modtbl).

Optional components are

basicset
a list of positions of ordinary characters in the block whose restriction to modtbl is maximally
linearly independent, relative to Irr(OrdinaryCharacterTable(modtbl)),

decmat
the decomposition matrix of the block, it is stored automatically when DecompositionMatrix is
called for the block (see 69.9.4),

decinv
inverse of the decomposition matrix of the block, restricted to the ordinary characters described by
basicset,

brauertree
a list that describes the Brauer tree of the block, in the case that the block is of defect 1.

744 Chapter 69. Character Tables

gap> BlocksInfo(CharacterTable("L3(2)") mod 2);
[rec(defect := 3, ordchars := [1, 2, 3, 4, 5], modchars := [1, 2, 3],

decinv := [[1, 0, 0], [0, 1, 0], [0, 0, 1]],
basicset := [1, 2, 3]),

rec(defect := 0, ordchars := [6], modchars := [4], decinv := [[1]],
basicset := [6])]

4 I DecompositionMatrix(modtbl) A
I DecompositionMatrix(modtbl, blocknr) O

Let modtbl be a Brauer character table.

In the first version DecompositionMatrix returns the decomposition matrix of modtbl , where the rows
and columns are indexed by the irreducible characters of the ordinary character table of modtbl and the
irreducible characters of modtbl , respectively,

In the second version DecompositionMatrix returns the decomposition matrix of the block of modtbl with
number blocknr ; the matrix is stored as value of the decmat component of the blocknr -th entry of the
BlocksInfo list (see 69.9.3) of modtbl .

An ordinary irreducible character is in block i if and only if all characters before the first character of the
same block lie in i − 1 different blocks. An irreducible Brauer character is in block i if it has nonzero scalar
product with an ordinary irreducible character in block i .

DecompositionMatrix is based on the more general function Decomposition (see 25.4.1).

gap> modtbl:= CharacterTable("L3(2)") mod 2;
BrauerTable("L3(2)", 2)
gap> DecompositionMatrix(modtbl);
[[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 1, 1, 0],
[1, 1, 1, 0], [0, 0, 0, 1]]

gap> DecompositionMatrix(modtbl, 1);
[[1, 0, 0], [0, 1, 0], [0, 0, 1], [0, 1, 1], [1, 1, 1]]
gap> DecompositionMatrix(modtbl, 2);
[[1]]

5 I LaTeXStringDecompositionMatrix(modtbl[, blocknr][, options]) F

is a string that contains LaTEX code to print a decomposition matrix (see 69.9.4) nicely.

The optional argument options, if present, must be a record with components phi, chi (strings used in each
label for columns and rows), collabels, rowlabels (subscripts for the labels). The defaults for phi and
chi are "\tt Y" and "\tt X", the defaults for collabels and rowlabels are the lists of positions of the
Brauer characters and ordinary characters in the respective lists of irreducibles in the character tables.

The optional components nrows and ncols denote the maximal number of rows and columns per array; if
they are present then each portion of nrows rows and ncols columns forms an array of its own which is
enclosed in \[, \].

If the component decmat is bound in options then it must be the decomposition matrix in question, in this
case the matrix is not computed from the information in modtbl .

For those character tables from the GAP table library that belong to the ATLAS of Finite Groups [CCN+85],
AtlasLabelsOfIrreducibles constructs character labels that are compatible with those used in the ATLAS
(see 2.5 and 2.5.1 in the manual of the GAP Character Table Library).

Section 10. Other Operations for Character Tables 745

gap> modtbl:= CharacterTable("L3(2)") mod 2;;
gap> Print(LaTeXStringDecompositionMatrix(modtbl, 1));
\[
\begin{array}{r|rrr} \hline
& {\tt Y}_{1}
& {\tt Y}_{2}
& {\tt Y}_{3}
\rule[-7pt]{0pt}{20pt} \\ \hline

{\tt X}_{1} & 1 & . & . \rule[0pt]{0pt}{13pt} \\
{\tt X}_{2} & . & 1 & . \\
{\tt X}_{3} & . & . & 1 \\
{\tt X}_{4} & . & 1 & 1 \\
{\tt X}_{5} & 1 & 1 & 1 \rule[-7pt]{0pt}{5pt} \\
\hline
\end{array}
\]
gap> options:= rec(phi:= "\\varphi", chi:= "\\chi");;
gap> Print(LaTeXStringDecompositionMatrix(modtbl, 1, options));
\[
\begin{array}{r|rrr} \hline
& \varphi_{1}
& \varphi_{2}
& \varphi_{3}
\rule[-7pt]{0pt}{20pt} \\ \hline

\chi_{1} & 1 & . & . \rule[0pt]{0pt}{13pt} \\
\chi_{2} & . & 1 & . \\
\chi_{3} & . & . & 1 \\
\chi_{4} & . & 1 & 1 \\
\chi_{5} & 1 & 1 & 1 \rule[-7pt]{0pt}{5pt} \\
\hline
\end{array}
\]

69.10 Other Operations for Character Tables

In the following, we list operations for character tables that are not attributes.

1 I IsInternallyConsistent(tbl) O

For an ordinary character table tbl , IsInternallyConsistent checks the consistency of the following
attribute values (if stored).

– Size, SizesCentralizers, and SizesConjugacyClasses.

– SizesCentralizers and OrdersClassRepresentatives.

– ComputedPowerMaps and OrdersClassRepresentatives.

– SizesCentralizers and Irr.

– Irr (first orthogonality relation).

For a Brauer table tbl , IsInternallyConsistent checks the consistency of the following attribute values
(if stored).

– Size, SizesCentralizers, and SizesConjugacyClasses.

746 Chapter 69. Character Tables

– SizesCentralizers and OrdersClassRepresentatives.

– ComputedPowerMaps and OrdersClassRepresentatives.

– Irr (closure under complex conjugation and Frobenius map).

If no inconsistency occurs, true is returned, otherwise each inconsistency is printed to the screen if the level
of InfoWarning is at least 1 (see 7.4), and false is returned at the end.

2 I IsPSolvableCharacterTable(tbl, p) O
I IsPSolvableCharacterTableOp(tbl, p) O
I ComputedIsPSolvableCharacterTables(tbl) A

IsPSolvableCharacterTable for the ordinary character table tbl corresponds to IsPSolvable for the group
of tbl (see 37.15.18). p must be either a prime integer or 0.

The default method uses the attribute ComputedIsPSolvableCharacterTables for storing the computed
value at position p, and calls the operation IsPSolvableCharacterTableOp for computing values that are
not yet known.

gap> tbl:= CharacterTable("Sz(8)");;
gap> IsPSolvableCharacterTable(tbl, 2);
false
gap> IsPSolvableCharacterTable(tbl, 3);
true

3 I IsClassFusionOfNormalSubgroup(subtbl, fus, tbl) F

For two ordinary character tables tbl and subtbl of a group G and its subgroup U , say, and a list fus of
positive integers that describes the class fusion of U into G , IsClassFusionOfNormalSubgroup returns true
if U is a normal subgroup of G , and false otherwise.

gap> tblc2:= CharacterTable("Cyclic", 2);;
gap> tbld8:= CharacterTable("Dihedral", 8);;
gap> fus:= PossibleClassFusions(tblc2, tbld8);
[[1, 3], [1, 4], [1, 5]]
gap> List(fus, map -> IsClassFusionOfNormalSubgroup(tblc2, map, tbld8));
[true, false, false]

4 I Indicator(tbl, n) O
I Indicator(tbl[, characters], n) O
I Indicator(modtbl, 2) O
I IndicatorOp(tbl, characters, n) O
I ComputedIndicators(tbl) A

If tbl is an ordinary character table then Indicator returns the list of n-th Frobenius-Schur indicators of
the characters in the list characters; the default of characters is Irr(tbl).

The n-th Frobenius-Schur indicator νn(χ) of an ordinary character χ of the group G is given by νn(χ) =
1
|G|
∑

g∈G χ(gn).

If tbl is a Brauer table in characteristic 6= 2 and n = 2 then Indicator returns the second indicator.

The default method uses the attribute ComputedIndicators for storing the computed value at position n,
and calls the operation IndicatorOp for computing values that are not yet known.

Section 10. Other Operations for Character Tables 747

gap> tbl:= CharacterTable("L3(2)");;
gap> Indicator(tbl, 2);
[1, 0, 0, 1, 1, 1]

5 I NrPolyhedralSubgroups(tbl, c1, c2, c3) F

returns the number and isomorphism type of polyhedral subgroups of the group with ordinary character
table tbl which are generated by an element g of class c1 and an element h of class c2 with the property
that the product gh lies in class c3 .

According to p. 233 in [NPP84], the number of polyhedral subgroups of isomorphism type V4, D2n , A4,
S4, and A5 can be derived from the class multiplication coefficient (see 69.10.6) and the number of Galois
conjugates of a class (see 69.8.16).

The classes c1 , c2 and c3 in the parameter list must be ordered according to the order of the elements in
these classes.

gap> NrPolyhedralSubgroups(tbl, 2, 2, 4);
rec(number := 21, type := "D8")

6 I ClassMultiplicationCoefficient(tbl, i, j, k) O

returns the class multiplication coefficient of the classes i , j , and k of the group G with ordinary character
table tbl .

The class multiplication coefficient ci ,j ,k of the classes i , j , k equals the number of pairs (x , y) of elements
x , y ∈ G such that x lies in class i , y lies in class j , and their product xy is a fixed element of class k .

In the center of the group algebra of G , these numbers are found as coefficients of the decomposition of the
product of two class sums Ki and Kj into class sums,

Ki Kj =
∑

k

cijk Kk .

Given the character table of a finite group G , whose classes are C1, . . . ,Cr with representatives gi ∈ Ci , the
class multiplication coefficient cijk can be computed by the following formula.

cijk =
|Ci ||Cj |
|G |

∑
χ∈Irr(G)

χ(gi)χ(gj)χ(gk)
χ(1)

.

On the other hand the knowledge of the class multiplication coefficients admits the computation of the
irreducible characters of G . (see 69.12.1).

7 I ClassStructureCharTable(tbl, classes) F

returns the so-called class structure of the classes in the list classes, for the character table tbl of the group
G . The length of classes must be at least 2.

Let C = (C1,C2, . . . ,Cn) denote the n-tuple of conjugacy classes of G that are indexed by classes. The class
structure n(C) equals the number of n-tuples (g1, g2, . . . , gn) of elements gi ∈ Ci with g1g2 · · · gn = 1. Note
the difference to the definition of the class multiplication coefficients in ClassMultiplicationCoefficient
(see 69.10.6).

748 Chapter 69. Character Tables

n(C1,C2, . . . ,Cn) is computed using the formula

n(C1,C2, . . . ,Cn) =
|C1||C2| · · · |Cn |

|G |
∑

χ∈Irr(G)

χ(g1)χ(g2) · · ·χ(gn)
χ(1)n−2

·

8 I MatClassMultCoeffsCharTable(tbl, i) F

For an ordinary character table tbl and a class position i , MatClassMultCoeffsCharTable returns the matrix
[aijk]j ,k of structure constants (see 69.10.6).

gap> tbl:= CharacterTable("L3(2)");;
gap> ClassMultiplicationCoefficient(tbl, 2, 2, 4);
4
gap> ClassStructureCharTable(tbl, [2, 2, 4]);
168
gap> ClassStructureCharTable(tbl, [2, 2, 2, 4]);
1848
gap> MatClassMultCoeffsCharTable(tbl, 2);
[[0, 1, 0, 0, 0, 0], [21, 4, 3, 4, 0, 0], [0, 8, 6, 8, 7, 7],
[0, 8, 6, 1, 7, 7], [0, 0, 3, 4, 0, 7], [0, 0, 3, 4, 7, 0]]

69.11 Printing Character Tables

The default ViewObj (see 6.3.3) method for ordinary character tables prints the string "CharacterTable",
followed by the identifier (see 69.8.12) or, if known, the group of the character table enclosed in brackets.
ViewObj for Brauer tables does the same, except that the first string is replaced by "BrauerTable", and
that the characteristic is also shown.

The default PrintObj (see 6.3.3) method for character tables does the same as ViewObj, except that the
group is is Print-ed instead of View-ed.

There are various ways to customize the Display (see 6.3.4) output for character tables. First we describe
the default behaviour, alternatives are then described below.

The default Display method prepares the data in tbl for a columnwise output. The number of columns
printed at one time depends on the actual line length, which can be accessed and changed by the function
SizeScreen (see 6.12.1).

An interesting variant of Display is the function PageDisplay which belongs to the GAPDoc package.
Convenient ways to print the Display format to a file are given by the GAPDoc function PrintTo1 or by
using PageDisplay and the facilities of the pager used, cf. 2.4.1.

Display shows certain characters (by default all irreducible characters) of tbl , together with the orders of
the centralizers in factorized form and the available power maps (see 71.1.1). The n-th displayed character
is given the name X.n.

The first lines of the output describe the order of the centralizer of an element of the class factorized into
its prime divisors.

The next line gives the name of each class. If no class names are stored on tbl , ClassNames is called
(see 69.8.10).

Preceded by a name Pn, the next lines show the nth power maps of tbl in terms of the former shown class
names.

Every ambiguous or unknown (see Chapter 19) value of the table is displayed as a question mark ?.

Section 11. Printing Character Tables 749

Irrational character values are not printed explicitly because the lengths of their printed representation
might disturb the layout. Instead of that every irrational value is indicated by a name, which is a string of
at least one capital letter.

Once a name for an irrational value is found, it is used all over the printed table. Moreover the complex
conjugate (see 18.5.2, 18.5.1) and the star of an irrationality (see 18.5.3) are represented by that very name
preceded by a / and a *, respectively.

The printed character table is then followed by a legend, a list identifying the occurring symbols with
their actual values. Occasionally this identification is supplemented by a quadratic representation of the
irrationality (see 18.5.4) together with the corresponding ATLAS notation (see [CCN+85]).

This default style can be changed by prescribing a record arec of options, which can be given

– as an optional argument in the call to Display,

– as the value of the attribute DisplayOptions (see 69.11.1) if this value is stored in the table,

– as the value of the global variable CharacterTableDisplayDefaults.User, or

– as the value of the global variable CharacterTableDisplayDefaults.Global

(in this order of precedence).

The following components of arec are supported.

centralizers
false to suppress the printing of the orders of the centralizers, or the string "ATLAS" to force the
printing of non-factorized centralizer orders in a style similar to that used in the ATLAS of Finite
Groups [CCN+85],

chars
an integer or a list of integers to select a sublist of the irreducible characters of tbl , or a list of
characters of tbl (in this case the letter "X" is replaced by "Y"),

classes
an integer or a list of integers to select a sublist of the classes of tbl ,

indicator
true enables the printing of the second Frobenius Schur indicator, a list of integers enables the
printing of the corresponding indicators (see 69.10.4),

letter
a single capital letter (e. g. "P" for permutation characters) to replace the default "X" in character
names,

powermap
an integer or a list of integers to select a subset of the available power maps, false to suppress the
printing of power maps, or the string "ATLAS" to force a printing of class names and power maps
in a style similar to that used in the ATLAS of Finite Groups [CCN+85],

Display
the function that is actually called in order to display the table; the arguments are the table and
the optional record, whose components can be used inside the Display function,

StringEntry
a function that takes either a character value or a character value and the return value of StringEn-
tryData (see below), and returns the string that is actually displayed; it is called for all character
values to be displayed, and also for the displayed indicator values (see above),

StringEntryData
a unary function that is called once with argument tbl before the character values are displayed; it
returns an object that is used as second argument of the function StringEntry,

750 Chapter 69. Character Tables

Legend
a function that takes the result of the StringEntryData call as its only argument, after the character
table has been displayed; the return value is a string that describes the symbols used in the displayed
table in a formatted way, it is printed below the displayed table.

1 I DisplayOptions(tbl) A

There is no default method to compute a value, one can set a value with SetDisplayOptions.

gap> tbl:= CharacterTable("A5");;
gap> Display(tbl);
A5

2 2 2 . . .
3 1 . 1 . .
5 1 . . 1 1

1a 2a 3a 5a 5b
2P 1a 1a 3a 5b 5a
3P 1a 2a 1a 5b 5a
5P 1a 2a 3a 1a 1a

X.1 1 1 1 1 1
X.2 3 -1 . A *A
X.3 3 -1 . *A A
X.4 4 . 1 -1 -1
X.5 5 1 -1 . .

A = -E(5)-E(5)^4
= (1-ER(5))/2 = -b5

gap> CharacterTableDisplayDefaults.User:= rec(
> powermap:= "ATLAS", centralizers:= "ATLAS", chars:= false);;
gap> Display(CharacterTable("A5"));
A5

60 4 3 5 5

p A A A A
p’ A A A A

1A 2A 3A 5A B*

gap> options:= rec(chars:= 4, classes:= [tbl.3a .. tbl.5a],
> centralizers:= false, indicator:= true,
> powermap:= [2]);;
gap> Display(tbl, options);
A5

3a 5a
2P 3a 5b
2

X.4 + 1 -1
gap> SetDisplayOptions(tbl, options); Display(tbl);
A5

Section 12. Computing the Irreducible Characters of a Group 751

3a 5a
2P 3a 5b
2

X.4 + 1 -1
gap> Unbind(CharacterTableDisplayDefaults.User);

2 I PrintCharacterTable(tbl, varname) F

Let tbl be a nearly character table, and varname a string. PrintCharacterTable prints those values of the
supported attributes (see 69.3.4) that are known for tbl ;

The output of PrintCharacterTable is GAP readable; actually reading it into GAP will bind the variable
with name varname to a character table that coincides with tbl for all printed components.

This is used mainly for saving character tables to files. A more human readable form is produced by Display.

gap> PrintCharacterTable(CharacterTable("Cyclic", 2), "tbl");
tbl:= function()
local tbl;
tbl:=rec();
tbl.Irr:=
[[1, 1], [1, -1]];
tbl.NrConjugacyClasses:=
2;
tbl.Size:=
2;
tbl.OrdersClassRepresentatives:=
[1, 2];
tbl.SizesCentralizers:=
[2, 2];
tbl.UnderlyingCharacteristic:=
0;
tbl.ClassParameters:=
[[1, 0], [1, 1]];
tbl.CharacterParameters:=
[[1, 0], [1, 1]];
tbl.Identifier:=
"C2";
tbl.InfoText:=
"computed using generic character table for cyclic groups";
tbl.ComputedPowerMaps:=
[, [1, 1]];
ConvertToLibraryCharacterTableNC(tbl);
return tbl;
end;
tbl:= tbl();

69.12 Computing the Irreducible Characters of a Group

Several algorithms are available for computing the irreducible characters of a finite group G . The default
method for arbitrary finite groups is to use the Dixon-Schneider algorithm (see 69.12.1). For supersolvable
groups, Conlon’s algorithm can be used (see 69.12.2). For abelian-by-supersolvable groups, the Baum-Clausen
algorithm for computing the irreducible representations (see 69.12.4) can be used to compute the irreducible
characters (see 69.12.3).

752 Chapter 69. Character Tables

These functions are installed in methods for Irr (see 69.8.2), but explicitly calling one of them will not set
the Irr value of G .

1 I IrrDixonSchneider(G) A

computes the irreducible characters of the finite group G , using the Dixon-Schneider method (see 69.14).
It calls DixonInit and DixonSplit, and finally returns the list returned by DixontinI (see 69.15, 69.16,
69.17).

2 I IrrConlon(G) A

For a finite solvable group G , IrrConlon returns a list of certain irreducible characters of G , among those
all irreducibles that have the supersolvable residuum of G in their kernels; so if G is supersolvable, all
irreducible characters of G are returned. An error is signalled if G is not solvable.

The characters are computed using Conlon’s algorithm (see [Con90a] and [Con90b]). For each irreducible
character in the returned list, the monomiality information (see 72.3.1) is stored.

3 I IrrBaumClausen(G) A

IrrBaumClausen returns the absolutely irreducible ordinary characters of the factor group of the finite
solvable group G by the derived subgroup of its supersolvable residuum.

The characters are computed using the algorithm by Baum and Clausen (see [BC94]). An error is signalled
if G is not solvable.

In the following example we temporarily increase the line length limit from its default value 80 to 87 in
order to get a nicer output format.

gap> g:= SL(2,3);;
gap> SizeScreen([87,]);;
gap> irr1:= IrrDixonSchneider(g);
[Character(CharacterTable(SL(2,3)), [1, 1, 1, 1, 1, 1, 1]),
Character(CharacterTable(SL(2,3)), [1, E(3)^2, E(3), 1, E(3), E(3)^2, 1]),
Character(CharacterTable(SL(2,3)), [1, E(3), E(3)^2, 1, E(3)^2, E(3), 1]),
Character(CharacterTable(SL(2,3)), [2, 1, 1, -2, -1, -1, 0]),
Character(CharacterTable(SL(2,3)), [2, E(3)^2, E(3), -2, -E(3), -E(3)^2, 0]),
Character(CharacterTable(SL(2,3)), [2, E(3), E(3)^2, -2, -E(3)^2, -E(3), 0]),
Character(CharacterTable(SL(2,3)), [3, 0, 0, 3, 0, 0, -1])]

gap> irr2:= IrrConlon(g);
[Character(CharacterTable(SL(2,3)), [1, 1, 1, 1, 1, 1, 1]),
Character(CharacterTable(SL(2,3)), [1, E(3), E(3)^2, 1, E(3)^2, E(3), 1]),
Character(CharacterTable(SL(2,3)), [1, E(3)^2, E(3), 1, E(3), E(3)^2, 1]),
Character(CharacterTable(SL(2,3)), [3, 0, 0, 3, 0, 0, -1])]

gap> irr3:= IrrBaumClausen(g);
[Character(CharacterTable(SL(2,3)), [1, 1, 1, 1, 1, 1, 1]),
Character(CharacterTable(SL(2,3)), [1, E(3), E(3)^2, 1, E(3)^2, E(3), 1]),
Character(CharacterTable(SL(2,3)), [1, E(3)^2, E(3), 1, E(3), E(3)^2, 1]),
Character(CharacterTable(SL(2,3)), [3, 0, 0, 3, 0, 0, -1])]

gap> SizeScreen([80,]);;
gap> chi:= irr2[4];; HasTestMonomial(chi);
true

4 I IrreducibleRepresentations(G) A
I IrreducibleRepresentations(G, F) O

Called with a finite group G and a field F , IrreducibleRepresentations returns a list of representatives
of the irreducible matrix representations of G over F , up to equivalence.

Section 12. Computing the Irreducible Characters of a Group 753

If G is the only argument then IrreducibleRepresentations returns a list of representatives of the abso-
lutely irreducible complex representations of G , up to equivalence.

At the moment, methods are available for the following cases: If G is abelian by supersolvable the method
of [BC94] is used.

Otherwise, if F and G are both finite, the regular module of G is split by MeatAxe methods which can
make this an expensive operation.

Finally, if F is not given (i.e. it defaults to the cyclotomic numbers) and G is a finite group, the method of
[Dix93] (see 69.12.5) is used.

For other cases no methods are implemented yet.

See also IrreducibleModules, which provides efficient methods for solvable groups.

gap> g:= AlternatingGroup(4);;
gap> repr:= IrreducibleRepresentations(g);
[Pcgs([(2,4,3), (1,3)(2,4), (1,2)(3,4)]) ->

[[[1]], [[1]], [[1]]],
Pcgs([(2,4,3), (1,3)(2,4), (1,2)(3,4)]) ->
[[[E(3)]], [[1]], [[1]]],

Pcgs([(2,4,3), (1,3)(2,4), (1,2)(3,4)]) ->
[[[E(3)^2]], [[1]], [[1]]],

Pcgs([(2,4,3), (1,3)(2,4), (1,2)(3,4)]) ->
[[[0, 0, 1], [1, 0, 0], [0, 1, 0]],
[[-1, 0, 0], [0, 1, 0], [0, 0, -1]],
[[1, 0, 0], [0, -1, 0], [0, 0, -1]]]]

gap> ForAll(repr, IsGroupHomomorphism);
true
gap> Length(repr);
4
gap> gens:= GeneratorsOfGroup(g);
[(1,2,3), (2,3,4)]
gap> List(gens, x -> x^repr[1]);
[[[1]], [[1]]]
gap> List(gens, x -> x^repr[4]);
[[[0, 0, -1], [1, 0, 0], [0, -1, 0]],
[[0, 1, 0], [0, 0, 1], [1, 0, 0]]]

5 I IrreducibleRepresentationsDixon(G) F
I IrreducibleRepresentationsDixon(G, chi) F
I IrreducibleRepresentationsDixon(G, chilist) F

computes (reresentatives of) all irreducible complex representations for the finite group G , using the method
of [Dix93], which computes the character table and computes the representation as constituent of an induced
monomial representation of a subgroup.

This method can be quite expensive for larger groups, for example it might involve calculation of the
subgroup lattice of G .

If given, chi must be a character, in this case only a representation for chi is returned.

If given, chilist must be a list of characters, in this case only representations for characters in chilist are
computed.

Note that this method might fail if for an irreducible representation there is no subgroup in which its
reduction has a linear constituent with multiplicity one.

754 Chapter 69. Character Tables

gap> a5:= AlternatingGroup(5);
Alt([1 .. 5])
gap> char:= First(Irr(a5), x -> x[1] = 4);
Character(CharacterTable(Alt([1 .. 5])), [4, 0, 1, -1, -1])
gap> hom:=IrreducibleRepresentationsDixon(a5, char);;
gap> Order(a5.1*a5.2) = Order(Image(hom, a5.1)*Image(hom, a5.2));
true
gap> reps:= List(ConjugacyClasses(a5), Representative);;
gap> List(reps, g -> TraceMat(Image(hom, g)));
[4, 0, 1, -1, -1]

69.13 Representations given by modules

1 I IrreducibleModules(G, F, dim) O

returns a list of length 2. The first entry is a generating system of G . The second entry is a list of all
irreducible modules of G over the field F in dimension dim, given as MeatAxe modules (see 67.1.1).

2 I AbsoluteIrreducibleModules(G, F, dim) O
I AbsolutIrreducibleModules(G, F, dim) O

returns a list of length 2. The first entry is a generating system of G . The second entry is a list of all absolute
irreducible modules of G over the field F in dimension dim, given as MeatAxe modules (see 67.1.1).

3 I RegularModule(G, F) O

returns a list of length 2. The first entry is a generating system of G . The second entry is the regular module
of G over F , given as a MeatAxe module (see 67.1.1).

(Extensions by modules can be formed by the command Extensions, see 44.8.4.)

69.14 The Dixon-Schneider Algorithm

The GAP library implementation of the Dixon-Schneider algorithm first computes the linear characters,
using the commutator factor group. If irreducible characters are missing afterwards, they are computed
using the techniques described in [Dix67], [Sch90] and [Hul93].

Called with a group G , the function CharacterTable (see 69.3.1) returns a character table object that stores
already information such as class lengths, but not the irreducible characters. The routines that compute
the irreducibles may use the information that is already contained in this table object. In particular the
ordering of classes in the computed characters coincides with the ordering of classes in the character table
of G (see 69.6). Thus it is possible to combine computations using the group with character theoretic
computations (see 69.15 for details), for example one can enter known characters. Note that the user is
responsible for the correctness of the characters. (There is little use in providing the trivial character to the
routine.)

The computation of irreducible characters from the group needs to identify the classes of group elements
very often, so it can be helpful to store a class list of all group elements. Since this is obviously limited by
the group order, it is controlled by the global function IsDxLargeGroup (see 69.15.8).

The routines compute in a prime field of size p, such that the exponent of the group divides (p − 1) and
such that 2

√
|G | < p. Currently prime fields of size smaller than 65 536 are handled more efficiently than

larger prime fields, so the runtime of the character calculation depends on how large the chosen prime is.

The routine stores a Dixon record (see 69.15.1) in the group that helps routines that identify classes, for
example FusionConjugacyClasses, to work much faster. Note that interrupting Dixon-Schneider calcula-
tions will prevent GAP from cleaning up the Dixon record; when the computation by IrrDixonSchneider
is complete, the possibly large record is shrunk to an acceptable size.

Section 15. Advanced Methods for Dixon-Schneider Calculations 755

69.15 Advanced Methods for Dixon-Schneider Calculations

The computation of irreducible characters of very large groups may take quite some time. On the other
hand, for the expert only a few irreducible characters may be needed, since the other ones can be computed
using character theoretic methods such as tensoring, induction, and restriction. Thus GAP provides also
step-by-step routines for doing the calculations. These routines allow one to compute some characters and
to stop before all are calculated. Note that there is no “safety net”: The routines (being somehow internal)
do no error checking, and assume the information given is correct.

When the info level of InfoCharacterTable if positive, information about the progress of splitting is printed.
(The default value is zero.)

1 I DixonRecord(G) AM

The DixonRecord of a group contains information used by the routines to compute the irreducible characters
and related information via the Dixon-Schneider algorithm such as class arrangement and character spaces
split obtained so far. Usually this record is passed as argument to all subfunctions to avoid a long argument
list. It has a component .conjugacyClasses which contains the classes of G ordered as the algorithm
needs them.

2 I DixonInit(G) F

This function does all the initializations for the Dixon-Schneider algorithm. This includes calculation of
conjugacy classes, power maps, linear characters and character morphisms. It returns a record (see 69.15.1,
69.16) that can be used when calculating the irreducible characters of G interactively.

3 I DixontinI(D) F

This function ends a Dixon-Schneider calculation. It sorts the characters according to the degree and unbinds
components in the Dixon record that are not of use any longer. It returns a list of irreducible characters.

4 I DixonSplit(D) F

This function performs one splitting step in the Dixon-Schneider algorithm. It selects a class, computes the
(partial) class sum matrix, uses it to split character spaces and stores all the irreducible characters obtained
that way.

The class to use for splitting is chosen via BestSplittingMatrix and the options described for this function
apply here.

DixonSplit returns true if a split was performed and fail otherwise.

5 I BestSplittingMatrix(D) F

returns the number of the class sum matrix that is assumed to yield the best (cost/earning ration) split.
This matrix then will be the next one computed and used.

The global option maxclasslen (defaulting to infinity) is recognized by BestSplittingMatrix: Only
classes whose length is limited by the value of this option will be considered for splitting. If no usable class
remains, fail is returned.

6 I DxIncludeIrreducibles(D, new[, newmod]) F

This function takes a list of irreducible characters new , each given as a list of values (corresponding to the
class arrangement in D), and adds these to a partial computed list of irreducibles as maintained by the
Dixon record D . This permits one to add characters in interactive use obtained from other sources and to
continue the Dixon-Schneider calculation afterwards. If the optional argument newmod is given, it must be
a list of reduced characters, corresponding to new . (Otherwise the function has to reduce the characters
itself.)

756 Chapter 69. Character Tables

The function closes the new characters under the action of Galois automorphisms and tensor products with
linear characters.

7 I SplitCharacters(D, list) F

This routine decomposes the characters given in list according to the character spaces found up to this
point. By applying this routine to tensor products etc., it may result in characters with smaller norm, even
irreducible ones. Since the recalculation of characters is only possible if the degree is small enough, the
splitting process is applied only to characters of sufficiently small degree.

8 I IsDxLargeGroup(G) F

returns true if the order of the group G is smaller than the current value of the global variable DXLARGE-
GROUPORDER, and false otherwise. In Dixon-Schneider calculations, for small groups in the above sense a
class map is stored, whereas for large groups, each occurring element is identified individually.

69.16 Components of a Dixon Record

The “Dixon record” D returned by DixonInit (see 69.15.2) stores all the information that is used by the
Dixon-Schneider routines while computing the irreducible characters of a group. Some entries, however, may
be useful to know about when using the algorithm interactively (see 69.17).

group:
the group G of which the character table is to be computed,

conjugacyClasses:
classes of G (all characters stored in the Dixon record correspond to this arrangement of classes),

irreducibles:
the already known irreducible characters (given as lists of their values on the conjugacy classes),

characterTable:
the CharacterTable value of G (whose characters are not yet known),

ClassElement(D, el):
a function that returns the number of the class of G that contains the element el .

69.17 An Example of Advanced Dixon-Schneider Calculations

First, we set the appropriate info level higher

gap> SetInfoLevel(InfoCharacterTable, 1);

for printout of some internal results. We now define our group, which is isomorphic to PSL4(3).

gap> g:= PrimitiveGroup(40,5);
PSL(4, 3)
gap> Size(g);
6065280
gap> d:= DixonInit(g);;
#I 29 classes
#I choosing prime 65521
gap> c:= d.characterTable;;

After the initialisation, two structure matrices are evaluated, yielding smaller spaces and several irreducible
characters.

Section 17. An Example of Advanced Dixon-Schneider Calculations 757

gap> DixonSplit(d);
#I Matrix 5,Representative of Order 3,Centralizer: 5832
#I Dimensions: [1, 2, 1, 4, 12, 1, 1, 2, 1, 2, 1]
5
gap> DixonSplit(d);
#I Matrix 14,Representative of Order 3,Centralizer: 1944
#I Dimensions: [1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4]
14

In this case spaces of the listed dimensions are a result of the splitting process.

We obtain three new irreducible characters by symmetrizations and notify them to the Dixon record.

gap> sym:= Symmetrizations(c, d.irreducibles, 2);;
gap> ro:= ReducedCharacters(c, d.irreducibles, sym);;
gap> Length(ro.irreducibles);
3
gap> DxIncludeIrreducibles(d, ro.irreducibles);

The tensor products of the nonlinear characters among each other are reduced with the known irreducible
characters, which yields one new irreducible character. The result is split according to the spaces found,
which yields characters of smaller norms but no new irreducibles.

gap> nlc:= Filtered(d.irreducibles, i -> i[1] > 1);;
gap> t:= Tensored(nlc, nlc);;
gap> ro2:= ReducedCharacters(c, d.irreducibles, t);;
gap> Length(ro2.irreducibles);
1
gap> DxIncludeIrreducibles(d, ro2.irreducibles);
gap> List(ro2.remainders, i -> ScalarProduct(c, i, i));
[2, 4, 6, 12, 16, 18, 24, 36, 44, 54, 72, 82, 96, 118, 132, 152, 176, 194,
204, 214, 228, 268, 306, 396, 422, 450, 472, 498, 528, 582, 612, 648, 704,
748, 856, 876, 984, 1142, 1186, 1312, 1398, 1496, 1538, 1584, 1688, 1836,
1888, 1938, 1992, 2102, 2156, 2328, 2448, 2508, 3282, 3564, 3784, 4012,
4086, 4164, 4400, 4896, 5682, 5776, 6336, 6444, 6928, 8408, 9782, 10264,
11264, 13128, 15136, 17600, 19584, 19746, 31008, 35856, 62936]

gap> t:= SplitCharacters(d, ro2.remainders);;
gap> List(t, i -> ScalarProduct(c, i, i));
[2, 8, 18, 4, 32, 50, 72, 16, 98, 128, 36, 64, 100, 144, 196, 256, 324, 400,
582, 612, 648, 704, 748, 856, 876, 984, 1142, 1186, 1312, 1398, 1496, 1538,
1584, 1688, 1836, 1888, 1938, 1992, 2102, 2156, 2328, 2448, 2508, 3282,
3564, 3784, 4012, 4086, 4164, 4400, 4896, 5682, 5776, 6336, 6444, 6928,
8408, 9782, 10264, 11264, 13128, 15136, 17600, 19584, 19746, 31008, 35856,
62936]

Finally we calculate the characters induced from all cyclic subgroups and obtain the missing irreducibles by
applying the LLL-algorithm to them.

gap> ic:= InducedCyclic(c, "all");;
gap> ro:= ReducedCharacters(c, d.irreducibles, ic);;
gap> Length(ro.irreducibles);
0
gap> l:= LLL(c, ro.remainders);;
gap> Length(l.irreducibles);
6

758 Chapter 69. Character Tables

The LLL returns class function objects (see Chapter 70), and the Dixon record works with character values
lists. So we convert them to a list of values before feeding them in the machinery of the Dixon-algorithm.

gap> l.irreducibles[1];
Character(CharacterTable(PSL(4, 3)), [416, 0, 2, 0, -16, 0, 0, 0, 0, 0,
0, 2, 0, 2, 0, -1, 0, 2, -16, 0, 0, 2, -1, 1, -1,
E(20)+E(20)^9-E(20)^13-E(20)^17, -E(20)-E(20)^9+E(20)^13+E(20)^17, 0, 0])

gap> vals:= List(l.irreducibles, ValuesOfClassFunction);;
gap> DxIncludeIrreducibles(d, vals);
gap> Length(d.irreducibles);
29
gap> Length(d.classes);
29

It turns out we have found all irreducible characters. As the last step, we obtain the irreducible characters
and tell them to the group. This makes them available also to the character table.

gap> irrs:= DixontinI(d);;
#I Total:2 matrices,[5, 14]
gap> SetIrr(g,irrs);
gap> Length(Irr(c));
29
gap> SetInfoLevel(InfoCharacterTable, 0);

69.18 Constructing Character Tables from Others

The following operations take one or more character table arguments, and return a character table. This
holds also for BrauerTable (see 69.3.2); note that the return value of BrauerTable will in general not know
the irreducible Brauer characters, and GAP might be unable to compute these characters.

Note that whenever fusions between input and output tables occur in these operations, they are stored on
the concerned tables, and the NamesOfFusionSources values are updated.

(The interactive construction of character tables using character theoretic methods and incomplete tables
is not described here.) @Currently it is not supported and will be described in a chapter of its
own when it becomes available@.

1 I CharacterTableDirectProduct(tbl1, tbl2) O

is the table of the direct product of the character tables tbl1 and tbl2 .

The matrix of irreducibles of this table is the Kronecker product (see 24.4.8) of the irreducibles of tbl1 and
tbl2 .

Products of ordinary and Brauer character tables are supported.

In general, the result will not know an underlying group, so missing power maps (for prime divisors of the
result) and irreducibles of the input tables may be computed in order to construct the table of the direct
product.

The embeddings of the input tables into the direct product are stored, they can be fetched with GetFusion-
Map (see 71.2.3); if tbl1 is equal to tbl2 then the two embeddings are distinguished by their specification
components "1" and "2", respectively.

Analogously, the projections from the direct product onto the input tables are stored, and can be distin-
guished by the specification components.

The attribute FactorsOfDirectProduct (see 69.18.2) is set to the lists of arguments.

The * operator for two character tables (see 69.7) delegates to CharacterTableDirectProduct.

Section 18. Constructing Character Tables from Others 759

gap> c2:= CharacterTable("Cyclic", 2);;
gap> s3:= CharacterTable("Symmetric", 3);;
gap> Display(CharacterTableDirectProduct(c2, s3));
C2xSym(3)

2 2 2 1 2 2 1
3 1 . 1 1 . 1

1a 2a 3a 2b 2c 6a
2P 1a 1a 3a 1a 1a 3a
3P 1a 2a 1a 2b 2c 2b

X.1 1 -1 1 1 -1 1
X.2 2 . -1 2 . -1
X.3 1 1 1 1 1 1
X.4 1 -1 1 -1 1 -1
X.5 2 . -1 -2 . 1
X.6 1 1 1 -1 -1 -1

2 I FactorsOfDirectProduct(tbl) A

For an ordinary character table that has been constructed via CharacterTableDirectProduct (see 69.18.1),
the value of FactorsOfDirectProduct is the list of arguments in the CharacterTableDirectProduct call.

Note that there is no default method for computing the value of FactorsOfDirectProduct.

3 I CharacterTableFactorGroup(tbl, classes) O

is the character table of the factor group of the ordinary character table tbl by the normal closure of the
classes whose positions are contained in the list classes.

The operator for a character table and a list of class positions (see 69.7) delegates to CharacterTableFac-
torGroup.

gap> s4:= CharacterTable("Symmetric", 4);;
gap> ClassPositionsOfNormalSubgroups(s4);
[[1], [1, 3], [1, 3, 4], [1 .. 5]]
gap> f:= CharacterTableFactorGroup(s4, [3]);
CharacterTable("Sym(4)/[1, 3]")
gap> Display(f);
Sym(4)/[1, 3]

2 1 1 .
3 1 . 1

1a 2a 3a
2P 1a 1a 3a
3P 1a 2a 1a

X.1 1 -1 1
X.2 2 . -1
X.3 1 1 1

760 Chapter 69. Character Tables

4 I CharacterTableIsoclinic(tbl) A
I CharacterTableIsoclinic(tbl, classes) O
I CharacterTableIsoclinic(tbl, classes, centre) O

If tbl is the (ordinary or modular) character table of a group with the structure 2.G .2 with a central subgroup
Z of order 2 and a normal subgroup N of index 2 that contains Z then CharacterTableIsoclinic returns
the table of the isoclinic group in the sense of the ATLAS of Finite Groups [CCN+85], Chapter 6, Section 7.
If N is not uniquely determined then the positions of the classes forming N must be entered as list classes.
If Z is not unique in N then the position of the class consisting of the involution in Z must be entered as
centre.

Note that also if tbl is a Brauer table then classes and centre denote class numbers w.r.t. the ordinary
character table.

gap> d8:= CharacterTable("Dihedral", 8);;
gap> nsg:= ClassPositionsOfNormalSubgroups(d8);
[[1], [1, 3], [1 .. 3], [1, 3, 4], [1, 3 .. 5], [1 .. 5]]
gap> q8:= CharacterTableIsoclinic(d8, nsg[3]);;
gap> Display(q8);
Isoclinic(Dihedral(8))

2 3 2 3 2 2

1a 4a 2a 4b 4c
2P 1a 2a 1a 2a 2a

X.1 1 1 1 1 1
X.2 1 1 1 -1 -1
X.3 1 -1 1 1 -1
X.4 1 -1 1 -1 1
X.5 2 . -2 . .

5 I SourceOfIsoclinicTable(tbl) A

For an ordinary character table that has been constructed via CharacterTableIsoclinic (see 69.18.4), the
value of SourceOfIsoclinicTable is the list of three arguments in the CharacterTableIsoclinic call.

Note that there is no default method for computing the value of SourceOfIsoclinicTable.

gap> SourceOfIsoclinicTable(q8);
[CharacterTable("Dihedral(8)"), [1, 2, 3], 3]

6 I CharacterTableWreathSymmetric(tbl, n) F

returns the character table of the wreath product of a group G with the full symmetric group on n points,
where tbl is the character table of G .

The result has values for ClassParameters and CharacterParameters (see 2.3.2 in the manual for the
GAP Character Table Library) stored, the entries in these lists are sequences of partitions. Note that this
parametrization prevents the principal character from being the first one in the list of irreducibles.

gap> c3:= CharacterTable("Cyclic", 3);;
gap> wr:= CharacterTableWreathSymmetric(c3, 2);;
gap> Display(wr);
C3wrS2

2 1 . . 1 . 1 1 1 1
3 2 2 2 2 2 2 1 1 1

Section 19. Sorted Character Tables 761

1a 3a 3b 3c 3d 3e 2a 6a 6b
2P 1a 3b 3a 3e 3d 3c 1a 3c 3e
3P 1a 1a 1a 1a 1a 1a 2a 2a 2a

X.1 1 1 1 1 1 1 -1 -1 -1
X.2 2 A /A B -1 /B . . .
X.3 2 /A A /B -1 B . . .
X.4 1 -/A -A -A 1 -/A -1 /A A
X.5 2 -1 -1 2 -1 2 . . .
X.6 1 -A -/A -/A 1 -A -1 A /A
X.7 1 1 1 1 1 1 1 1 1
X.8 1 -/A -A -A 1 -/A 1 -/A -A
X.9 1 -A -/A -/A 1 -A 1 -A -/A

A = -E(3)^2
= (1+ER(-3))/2 = 1+b3

B = 2*E(3)
= -1+ER(-3) = 2b3

gap> CharacterParameters(wr)[1];
[[1, 1], [], []]

69.19 Sorted Character Tables

1 I CharacterTableWithSortedCharacters(tbl) O
I CharacterTableWithSortedCharacters(tbl, perm) O

is a character table that differs from tbl only by the succession of its irreducible characters. This affects the
values of the attributes Irr (see 69.8.2) and CharacterParameters (see 2.3.2 in the manual for the GAP
Character Table Library). Namely, these lists are permuted by the permutation perm.

If no second argument is given then a permutation is used that yields irreducible characters of increasing
degree for the result. For the succession of characters in the result, see 69.19.2.

The result has all those attributes and properties of tbl that are stored in SupportedCharacterTableInfo
and do not depend on the ordering of characters (see 69.3.4).

2 I SortedCharacters(tbl, chars) O
I SortedCharacters(tbl, chars, "norm") O
I SortedCharacters(tbl, chars, "degree") O

is a list containing the characters chars, ordered as specified by the other arguments.

There are three possibilities to sort characters: They can be sorted according to ascending norms (parameter
"norm"), to ascending degree (parameter "degree"), or both (no third parameter), i.e., characters with same
norm are sorted according to ascending degree, and characters with smaller norm precede those with bigger
norm.

Rational characters in the result precede other ones with same norm and/or same degree.

The trivial character, if contained in chars, will always be sorted to the first position.

3 I CharacterTableWithSortedClasses(tbl) O
I CharacterTableWithSortedClasses(tbl, "centralizers") O
I CharacterTableWithSortedClasses(tbl, "representatives") O
I CharacterTableWithSortedClasses(tbl, permutation) O

is a character table obtained by permutation of the classes of tbl . If the second argument is the string
"centralizers" then the classes of the result are sorted according to descending centralizer orders. If the

762 Chapter 69. Character Tables

second argument is the string "representatives" then the classes of the result are sorted according to
ascending representative orders. If no second argument is given then the classes of the result are sorted ac-
cording to ascending representative orders, and classes with equal representative orders are sorted according
to descending centralizer orders.

If the second argument is a permutation perm then the classes of the result are sorted by application of this
permutation.

The result has all those attributes and properties of tbl that are stored in SupportedCharacterTableInfo
and do not depend on the ordering of classes (see 69.3.4).

4 I SortedCharacterTable(tbl, kernel) F
I SortedCharacterTable(tbl, normalseries) F
I SortedCharacterTable(tbl, facttbl, kernel) F

is a character table obtained on permutation of the classes and the irreducibles characters of tbl .

The first form sorts the classes at positions contained in the list kernel to the beginning, and sorts all
characters in Irr(tbl) such that the first characters are those that contain kernel in their kernel.

The second form does the same successively for all kernels ki in the list normalseries = [k1, k2, . . . , kn] where
ki must be a sublist of ki+1 for 1 ≤ i ≤ n − 1.

The third form computes the table F of the factor group of tbl modulo the normal subgroup formed by the
classes whose positions are contained in the list kernel ; F must be permutation equivalent to the table facttbl ,
in the sense of TransformingPermutationsCharacterTables (see 69.20.4), otherwise fail is returned. The
classes of tbl are sorted such that the preimages of a class of F are consecutive, and that the succession of
preimages is that of facttbl . Irr(tbl) is sorted as with SortCharTable(tbl, kernel).

(Note that the transformation is only unique up to table automorphisms of F , and this need not be unique
up to table automorphisms of tbl .)

All rearrangements of classes and characters are stable, i.e., the relative positions of classes and characters
that are not distinguished by any relevant property is not changed.

The result has all those attributes and properties of tbl that are stored in SupportedCharacterTableInfo
and do not depend on the ordering of classes and characters (see 69.3.4).

The ClassPermutation value of tbl is changed if necessary, see 69.5.

SortedCharacterTable uses CharacterTableWithSortedClasses and CharacterTableWithSortedChar-
acters (see 69.19.3, 69.19.1).

5 I ClassPermutation(tbl) A

is a permutation π of classes of the character table tbl . If it is stored then class fusions into tbl that are
stored on other tables must be followed by π in order to describe the correct fusion.

This attribute value is bound only if tbl was obtained from another table by permuting the classes, using
CharacterTableWithSortedClasses or SortedCharacterTable, (see 69.19.3, 69.19.4).

It is necessary because the original table and the sorted table have the same identifier (and the same group
if known), and hence the same fusions are valid for the two tables.

gap> tbl:= CharacterTable("Symmetric", 4);
CharacterTable("Sym(4)")
gap> Display(tbl);
Sym(4)

2 3 2 3 . 2
3 1 . . 1 .

Section 20. Automorphisms and Equivalence of Character Tables 763

1a 2a 2b 3a 4a
2P 1a 1a 1a 3a 2b
3P 1a 2a 2b 1a 4a

X.1 1 -1 1 1 -1
X.2 3 -1 -1 . 1
X.3 2 . 2 -1 .
X.4 3 1 -1 . -1
X.5 1 1 1 1 1

gap> srt1:= CharacterTableWithSortedCharacters(tbl);
CharacterTable("Sym(4)")
gap> List(Irr(srt1), Degree);
[1, 1, 2, 3, 3]
gap> srt2:= CharacterTableWithSortedClasses(tbl);
CharacterTable("Sym(4)")
gap> SizesCentralizers(tbl);
[24, 4, 8, 3, 4]
gap> SizesCentralizers(srt2);
[24, 8, 4, 3, 4]
gap> nsg:= ClassPositionsOfNormalSubgroups(tbl);
[[1], [1, 3], [1, 3, 4], [1 .. 5]]
gap> srt3:= SortedCharacterTable(tbl, nsg);
CharacterTable("Sym(4)")
gap> nsg:= ClassPositionsOfNormalSubgroups(srt3);
[[1], [1, 2], [1 .. 3], [1 .. 5]]
gap> Display(srt3);
Sym(4)

2 3 3 . 2 2
3 1 . 1 . .

1a 2a 3a 2b 4a
2P 1a 1a 3a 1a 2a
3P 1a 2a 1a 2b 4a

X.1 1 1 1 1 1
X.2 1 1 1 -1 -1
X.3 2 2 -1 . .
X.4 3 -1 . -1 1
X.5 3 -1 . 1 -1

gap> ClassPermutation(srt3);
(2,4,3)

69.20 Automorphisms and Equivalence of Character Tables

1 I MatrixAutomorphisms(mat[, maps, subgroup]) O

For a matrix mat , MatrixAutomorphisms returns the group of those permutations of the columns of mat
that leave the set of rows of mat invariant.

764 Chapter 69. Character Tables

If the arguments maps and subgroup are given, only the group of those permutations is constructed that
additionally fix each list in the list maps under pointwise action OnTuples, and subgroup is a permutation
group that is known to be a subgroup of this group of automorphisms.

Each entry in maps must be a list of same length as the rows of mat . For example, if mat is a list of
irreducible characters of a group then the list of element orders of the conjugacy classes (see 69.8.5) may be
an entry in maps.

2 I TableAutomorphisms(tbl, characters) O
I TableAutomorphisms(tbl, characters, "closed") O
I TableAutomorphisms(tbl, characters, subgroup) O

TableAutomorphisms returns the permutation group of those matrix automorphisms (see 69.20.1) of the list
characters that leave the element orders (see 69.8.5) and all stored power maps (see 71.1.1) of the character
table tbl invariant.

If characters is closed under Galois conjugacy –this is always fulfilled for ordinary character tables– the
string "closed" may be entered as the third argument. Alternatively, a known subgroup subgroup of the
table automorphisms can be entered as the third argument.

The attribute AutomorphismsOfTable (see 69.8.8) can be used to compute and store the table automor-
phisms for the case that characters equals Irr(tbl).

gap> tbld8:= CharacterTable("Dihedral", 8);;
gap> irrd8:= Irr(tbld8);
[Character(CharacterTable("Dihedral(8)"), [1, 1, 1, 1, 1]),
Character(CharacterTable("Dihedral(8)"), [1, 1, 1, -1, -1]),
Character(CharacterTable("Dihedral(8)"), [1, -1, 1, 1, -1]),
Character(CharacterTable("Dihedral(8)"), [1, -1, 1, -1, 1]),
Character(CharacterTable("Dihedral(8)"), [2, 0, -2, 0, 0])]

gap> orders:= OrdersClassRepresentatives(tbld8);
[1, 4, 2, 2, 2]
gap> MatrixAutomorphisms(irrd8);
Group([(4,5), (2,4)])
gap> MatrixAutomorphisms(irrd8, [orders], Group(()));
Group([(4,5)])
gap> TableAutomorphisms(tbld8, irrd8);
Group([(4,5)])

3 I TransformingPermutations(mat1, mat2) O

Let mat1 and mat2 be matrices. TransformingPermutations tries to construct a permutation π that
transforms the set of rows of the matrix mat1 to the set of rows of the matrix mat2 by permuting the
columns.

If such a permutation exists, a record with components columns, rows, and group is returned, other-
wise fail. For TransformingPermutations(mat1 ,mat2) = r 6= fail, we have mat2 = Permuted(List(
mat1, x -> Permuted(x, r.columns)),r.rows).

r.group is the group of matrix automorphisms of mat2 (see 69.20.1). This group stabilizes the transformation
in the sense that applying any of its elements to the columns of mat2 preserves the set of rows of mat2 .

4 I TransformingPermutationsCharacterTables(tbl1, tbl2) O

Let tbl1 and tbl2 be character tables. TransformingPermutationsCharacterTables tries to construct a
permutation π that transforms the set of rows of the matrix Irr(tbl1) to the set of rows of the matrix
Irr(tbl2) by permuting the columns (see 69.20.3), such that π transforms also the power maps and the
element orders.

Section 21. Storing Normal Subgroup Information 765

If such a permutation π exists then a record with the components columns (π), rows (the permutation
of Irr(tbl1) corresponding to π), and group (the permutation group of table automorphisms of tbl2 ,
see 69.8.8) is returned. If no such permutation exists, fail is returned.

gap> tblq8:= CharacterTable("Quaternionic", 8);;
gap> irrq8:= Irr(tblq8);
[Character(CharacterTable("Q8"), [1, 1, 1, 1, 1]),
Character(CharacterTable("Q8"), [1, 1, 1, -1, -1]),
Character(CharacterTable("Q8"), [1, -1, 1, 1, -1]),
Character(CharacterTable("Q8"), [1, -1, 1, -1, 1]),
Character(CharacterTable("Q8"), [2, 0, -2, 0, 0])]

gap> OrdersClassRepresentatives(tblq8);
[1, 4, 2, 4, 4]
gap> TransformingPermutations(irrd8, irrq8);
rec(columns := (), rows := (), group := Group([(4,5), (2,4)]))
gap> TransformingPermutationsCharacterTables(tbld8, tblq8);
fail
gap> tbld6:= CharacterTable("Dihedral", 6);;
gap> tbls3:= CharacterTable("Symmetric", 3);;
gap> TransformingPermutationsCharacterTables(tbld6, tbls3);
rec(columns := (2,3), rows := (1,3,2), group := Group(()))

5 I FamiliesOfRows(mat, maps) F

distributes the rows of the matrix mat into families as follows. Two rows of mat belong to the same family
if there is a permutation of columns that maps one row to the other row. Each entry in the list maps is
regarded to form a family of length 1.

FamiliesOfRows(mat, maps) returns a record with components

famreps
the list of representatives for each family,

permutations
the list that contains at position i a list of permutations that map the members of the family with
representative famreps[i] to that representative,

families
the list that contains at position i the list of positions of members of the family of representative
famreps[i]; (for the element maps[i] the only member of the family will get the number Length(
mat) + i).

69.21 Storing Normal Subgroup Information

1 I NormalSubgroupClassesInfo(tbl) AM

Let tbl be the ordinary character table of the group G . Many computations for group characters of G involve
computations in normal subgroups or factor groups of G .

In some cases the character table tbl is sufficient; for example questions about a normal subgroup N of G
can be answered if one knows the conjugacy classes that form N , e.g., the question whether a character of
G restricts irreducibly to N . But other questions require the computation of N or even more information,
like the character table of N .

In order to do these computations only once, one stores in the group a record with components to store
normal subgroups, the corresponding lists of conjugacy classes, and (if necessary) the factor groups, namely

766 Chapter 69. Character Tables

nsg:
list of normal subgroups of G , may be incomplete,

nsgclasses:
at position i , the list of positions of conjugacy classes of tbl forming the i -th entry of the nsg
component,

nsgfactors:
at position i , if bound, the factor group modulo the i -th entry of the nsg component.

NormalSubgroupClasses, FactorGroupNormalSubgroupClasses, and ClassPositionsOfNormalSubgroup
each use these components, and they are the only functions to do so.

So if you need information about a normal subgroup for that you know the conjugacy classes, you should
get it using NormalSubgroupClasses. If the normal subgroup was already used it is just returned, with all
the knowledge it contains. Otherwise the normal subgroup is added to the lists, and will be available for the
next call.

For example, if you are dealing with kernels of characters using the KernelOfCharacter function you make
use of this feature because KernelOfCharacter calls NormalSubgroupClasses.

2 I ClassPositionsOfNormalSubgroup(tbl, N) F

is the list of positions of conjugacy classes of the character table tbl that are contained in the normal
subgroup N of the underlying group of tbl .

3 I NormalSubgroupClasses(tbl, classes) F

returns the normal subgroup of the underlying group G of the ordinary character table tbl that consists of
those conjugacy classes of tbl whose positions are in the list classes.

If NormalSubgroupClassesInfo(tbl).nsg does not yet contain the required normal subgroup, and if
NormalSubgroupClassesInfo(tbl).normalSubgroups is bound then the result will be identical to the
group in NormalSubgroupClassesInfo(tbl).normalSubgroups.

4 I FactorGroupNormalSubgroupClasses(tbl, classes) F

is the factor group of the underlying group G of the ordinary character table tbl modulo the normal subgroup
of G that consists of those conjugacy classes of tbl whose positions are in the list classes.

gap> g:= SymmetricGroup(4);
Sym([1 .. 4])
gap> SetName(g, "S4");
gap> tbl:= CharacterTable(g);
CharacterTable(S4)
gap> irr:= Irr(g);
[Character(CharacterTable(S4), [1, -1, 1, 1, -1]),
Character(CharacterTable(S4), [3, -1, -1, 0, 1]),
Character(CharacterTable(S4), [2, 0, 2, -1, 0]),
Character(CharacterTable(S4), [3, 1, -1, 0, -1]),
Character(CharacterTable(S4), [1, 1, 1, 1, 1])]

gap> kernel:= KernelOfCharacter(irr[3]);
Group([(1,2)(3,4), (1,4)(2,3)])
gap> HasNormalSubgroupClassesInfo(tbl);
true
gap> NormalSubgroupClassesInfo(tbl);
rec(nsg := [Group([(1,2)(3,4), (1,4)(2,3)])], nsgclasses := [[1, 3]],
nsgfactors := [])

gap> ClassPositionsOfNormalSubgroup(tbl, kernel);

Section 21. Storing Normal Subgroup Information 767

[1, 3]
gap> FactorGroupNormalSubgroupClasses(tbl, [1, 3]);
Group([f1, f2])
gap> NormalSubgroupClassesInfo(tbl);
rec(nsg := [Group([(1,2)(3,4), (1,4)(2,3)])], nsgclasses := [[1, 3]],
nsgfactors := [Group([f1, f2])])

70 Class Functions

This chapter describes operations for class functions of finite groups. For operations concerning char-
acter tables, see Chapter 69.

Several examples in this chapter require the GAP Character Table Library to be available. If it is not yet
loaded then we load it now.

gap> LoadPackage("ctbllib");
true

1 I IsClassFunction(obj) C

A class function (in characteristic p) of a finite group G is a map from the set of (p-regular) elements in
G to the cyclotomics that is constant on conjugacy classes of G .

Each class function in GAP is represented by an immutable list, where at the i -th position the value on the
i -th conjugacy class of the character table of G is stored. The ordering of the conjugacy classes is the one
used in the underlying character table. Note that if the character table has access to its underlying group
then the ordering of conjugacy classes in the group and in the character table may differ (see 69.6); class
functions always refer to the ordering of classes in the character table.

Class function objects in GAP are not just plain lists, they store the character table of the group G
as value of the attribute UnderlyingCharacterTable (see 70.2.1). The group G itself is accessible only
via the character table and thus only if the character table stores its group, as value of the attribute
UnderlyingGroup. The reason for this is that many computations with class functions are possible without
using their groups, for example class functions of character tables in the GAP character table library do in
general not have access to their underlying groups.

There are (at least) two reasons why class functions in GAP are not implemented as mappings. First, we
want to distinguish class functions in different characteristics, for example to be able to define the Frobenius
character of a given Brauer character; viewed as mappings, the trivial characters in all characteristics coprime
to the order of G are equal. Second, the product of two class functions shall be again a class function, whereas
the product of general mappings is defined as composition.

A further argument is that the typical operations for mappings such as Image (see 31.3.6) and PreImage
(see 31.4.6) play no important role for class functions.

70.1 Why Class Functions?

In principle it is possible to represent group characters or more general class functions by the plain lists of
their values, and in fact many operations for class functions work with plain lists of class function values.
But this has two disadvantages.

First, it is then necessary to regard a values list explicitly as a class function of a particular character table,
by supplying this character table as an argument. In practice this means that with this setup, the user has
the task to put the objects into the right context. For example, forming the scalar product or the tensor
product of two class functions or forming an induced class function or a conjugate class function then needs

Section 1. Why Class Functions? 769

three arguments in this case; this is particularly inconvenient in cases where infix operations cannot be used
because of the additional argument, as for tensor products and induced class functions.

Second, when one says that “χ is a character of a group G” then this object χ carries a lot of information.
χ has certain properties such as being irreducible or not. Several subgroups of G are related to χ, such as
the kernel and the centre of χ. Other attributes of characters are the determinant and the central character.
This knowledge cannot be stored in a plain list.

For dealing with a group together with its characters, and maybe also subgroups and their characters, it is
desirable that GAP keeps track of the interpretation of characters. On the other hand, for using characters
without accessing their groups, such as characters of tables from the GAP table library, dealing just with
values lists is often sufficient. In particular, if one deals with incomplete character tables then it is often
necessary to specify the arguments explicitly, for example one has to choose a fusion map or power map
from a set of possibilities.

The main idea behind class function objects is that a class function object is equal to its values list in the
sense of \=, so class function objects can be used wherever their values lists can be used, but there are
operations for class function objects that do not work just with values lists. GAP library functions prefer to
return class function objects rather than returning just values lists, for example Irr lists (see 69.8.2) consist
of class function objects, and TrivialCharacter (see 70.7.1) returns a class function object.

Here is an example that shows both approaches. First we define some groups.

gap> S4:= SymmetricGroup(4);; SetName(S4, "S4");
gap> D8:= SylowSubgroup(S4, 2);; SetName(D8, "D8");

We do some computations using the functions described later in this Chapter, first with class function
objects.

gap> irrS4:= Irr(S4);;
gap> irrD8:= Irr(D8);;
gap> chi:= irrD8[4];
Character(CharacterTable(D8), [1, -1, 1, -1, 1])
gap> chi * chi;
Character(CharacterTable(D8), [1, 1, 1, 1, 1])
gap> ind:= chi ^ S4;
Character(CharacterTable(S4), [3, -1, -1, 0, 1])
gap> List(irrS4, x -> ScalarProduct(x, ind));
[0, 1, 0, 0, 0]
gap> det:= Determinant(ind);
Character(CharacterTable(S4), [1, 1, 1, 1, 1])
gap> cent:= CentralCharacter(ind);
ClassFunction(CharacterTable(S4), [1, -2, -1, 0, 2])
gap> rest:= Restricted(cent, D8);
ClassFunction(CharacterTable(D8), [1, -2, -1, -1, 2])

Now we repeat these calculations with plain lists of character values. Here we need the character tables in
some places.

gap> tS4:= CharacterTable(S4);;
gap> tD8:= CharacterTable(D8);;
gap> chi:= ValuesOfClassFunction(irrD8[4]);
[1, -1, 1, -1, 1]
gap> Tensored([chi], [chi])[1];
[1, 1, 1, 1, 1]
gap> ind:= InducedClassFunction(tD8, chi, tS4);

770 Chapter 70. Class Functions

ClassFunction(CharacterTable(S4), [3, -1, -1, 0, 1])
gap> List(Irr(tS4), x -> ScalarProduct(tS4, x, ind));
[0, 1, 0, 0, 0]
gap> det:= DeterminantOfCharacter(tS4, ind);
ClassFunction(CharacterTable(S4), [1, 1, 1, 1, 1])
gap> cent:= CentralCharacter(tS4, ind);
ClassFunction(CharacterTable(S4), [1, -2, -1, 0, 2])
gap> rest:= Restricted(tS4, cent, tD8);
ClassFunction(CharacterTable(D8), [1, -2, -1, -1, 2])

If one deals with character tables from the GAP table library then one has no access to their groups, but often
the tables provide enough information for computing induced or restricted class functions, symmetrizations
etc., because the relevant class fusions and power maps are often stored on library tables. In these cases it
is possible to use the tables instead of the groups as arguments. (If necessary information is not uniquely
determined by the tables then an error is signalled.)

gap> s5 := CharacterTable("A5.2");; irrs5 := Irr(s5);;
gap> m11:= CharacterTable("M11");; irrm11:= Irr(m11);;
gap> chi:= TrivialCharacter(s5);
Character(CharacterTable("A5.2"), [1, 1, 1, 1, 1, 1, 1])
gap> chi ^ m11;
Character(CharacterTable("M11"), [66, 10, 3, 2, 1, 1, 0, 0, 0, 0])
gap> Determinant(irrs5[4]);
Character(CharacterTable("A5.2"), [1, 1, 1, 1, -1, -1, -1])

Functions that compute normal subgroups related to characters have counterparts that return the list of
class positions corresponding to these groups.

gap> ClassPositionsOfKernel(irrs5[2]);
[1, 2, 3, 4]
gap> ClassPositionsOfCentre(irrs5[2]);
[1, 2, 3, 4, 5, 6, 7]

Non-normal subgroups cannot be described this way, so for example inertia subgroups (see 70.8.13) can in
general not be computed from character tables without access to their groups.

70.2 Basic Operations for Class Functions

Basic operations for class functions are UnderlyingCharacterTable (see 70.2.1), ValuesOfClassFunction
(see 70.2.2), and the basic operations for lists (see 21.2).

1 I UnderlyingCharacterTable(psi) A

For a class function psi of the group G , say, the character table of G is stored as value of UnderlyingChar-
acterTable. The ordering of entries in the list psi (see 70.2.2) refers to the ordering of conjugacy classes in
this character table.

If psi is an ordinary class function then the underlying character table is the ordinary character table of
G (see 69.8.4), if psi is a class function in characteristic p 6= 0 then the underlying character table is the
p-modular Brauer table of G (see 69.3.2). So the underlying characteristic of psi can be read off from the
underlying character table.

2 I ValuesOfClassFunction(psi) A

is the list of values of the class function psi , the i -th entry being the value on the i -th conjugacy class of
the underlying character table (see 70.2.1).

Section 3. Comparison of Class Functions 771

gap> g:= SymmetricGroup(4);
Sym([1 .. 4])
gap> psi:= TrivialCharacter(g);
Character(CharacterTable(Sym([1 .. 4])), [1, 1, 1, 1, 1])
gap> UnderlyingCharacterTable(psi);
CharacterTable(Sym([1 .. 4]))
gap> ValuesOfClassFunction(psi);
[1, 1, 1, 1, 1]
gap> IsList(psi);
true
gap> psi[1];
1
gap> Length(psi);
5
gap> IsBound(psi[6]);
false
gap> Concatenation(psi, [2, 3]);
[1, 1, 1, 1, 1, 2, 3]

70.3 Comparison of Class Functions

With respect to \= and \<, class functions behave equally to their lists of values (see 70.2.2). So two class
functions are equal if and only if their lists of values are equal, no matter whether they are class functions
of the same character table, of the same group but w.r.t. different class ordering, or of different groups.

gap> grps:= Filtered(AllSmallGroups(8), g -> not IsAbelian(g));
[<pc group of size 8 with 3 generators>,
<pc group of size 8 with 3 generators>]

gap> t1:= CharacterTable(grps[1]); SetName(t1, "t1");
CharacterTable(<pc group of size 8 with 3 generators>)
gap> t2:= CharacterTable(grps[2]); SetName(t2, "t2");
CharacterTable(<pc group of size 8 with 3 generators>)
gap> irr1:= Irr(grps[1]);
[Character(t1, [1, 1, 1, 1, 1]), Character(t1, [1, -1, -1, 1, 1]),
Character(t1, [1, -1, 1, 1, -1]), Character(t1, [1, 1, -1, 1, -1]),
Character(t1, [2, 0, 0, -2, 0])]

gap> irr2:= Irr(grps[2]);
[Character(t2, [1, 1, 1, 1, 1]), Character(t2, [1, -1, -1, 1, 1]),
Character(t2, [1, -1, 1, 1, -1]), Character(t2, [1, 1, -1, 1, -1]),
Character(t2, [2, 0, 0, -2, 0])]

gap> irr1 = irr2;
true
gap> IsSSortedList(irr1);
false
gap> irr1[1] < irr1[2];
false
gap> irr1[2] < irr1[3];
true

772 Chapter 70. Class Functions

70.4 Arithmetic Operations for Class Functions

Class functions are row vectors of cyclotomics. The additive behaviour of class functions is defined such
that they are equal to the plain lists of class function values except that the results are represented again
as class functions whenever this makes sense. The multiplicative behaviour, however, is different. This is
motivated by the fact that the tensor product of class functions is a more interesting operation than the
vector product of plain lists. (Another candidate for a multiplication of compatible class functions would
have been the inner product, which is implemented via the function ScalarProduct, see 70.8.5.) In terms of
filters, the arithmetic of class functions is based on the decision that they lie in IsGeneralizedRowVector,
with additive nesting depth 1, but they do not lie in IsMultiplicativeGeneralizedRowVector (see 21.12).

More specifically, the scalar multiple of a class function with a cyclotomic is a class function, and the sum
and the difference of two class functions of the same underlying character table (see 70.2.1) are again class
functions of this table. The sum and the difference of a class function and a list that is not a class function
are plain lists, as well as the sum and the difference of two class functions of different character tables.

gap> g:= SymmetricGroup(4);; tbl:= CharacterTable(g);;
gap> SetName(tbl, "S4"); irr:= Irr(g);
[Character(S4, [1, -1, 1, 1, -1]), Character(S4, [3, -1, -1, 0, 1]),
Character(S4, [2, 0, 2, -1, 0]), Character(S4, [3, 1, -1, 0, -1]),
Character(S4, [1, 1, 1, 1, 1])]

gap> 2 * irr[5];
Character(S4, [2, 2, 2, 2, 2])
gap> irr[1] / 7;
ClassFunction(S4, [1/7, -1/7, 1/7, 1/7, -1/7])
gap> lincomb:= irr[3] + irr[1] - irr[5];
VirtualCharacter(S4, [2, -2, 2, -1, -2])
gap> lincomb:= lincomb + 2 * irr[5];
VirtualCharacter(S4, [4, 0, 4, 1, 0])
gap> IsCharacter(lincomb);
true
gap> lincomb;
Character(S4, [4, 0, 4, 1, 0])
gap> irr[5] + 2;
[3, 3, 3, 3, 3]
gap> irr[5] + [1, 2, 3, 4, 5];
[2, 3, 4, 5, 6]
gap> zero:= 0 * irr[1];
VirtualCharacter(S4, [0, 0, 0, 0, 0])
gap> zero + Z(3);
[Z(3), Z(3), Z(3), Z(3), Z(3)]
gap> irr[5] + TrivialCharacter(DihedralGroup(8));
[2, 2, 2, 2, 2]

The product of two class functions of the same character table is the tensor product (pointwise product) of
these class functions. Thus the set of all class functions of a fixed group forms a ring, and for any field F of
cyclotomics, the F -span of a given set of class functions forms an algebra.

The product of two class functions of different tables and the product of a class function and a list that
is not a class function are not defined, an error is signalled in these cases. Note that in this respect, class
functions behave differently from their values lists, for which the product is defined as the standard scalar
product.

Section 4. Arithmetic Operations for Class Functions 773

gap> tens:= irr[3] * irr[4];
Character(S4, [6, 0, -2, 0, 0])
gap> ValuesOfClassFunction(irr[3]) * ValuesOfClassFunction(irr[4]);
4

Class functions without zero values are invertible, the inverse is defined pointwise. As a consequence, for
example groups of linear characters can be formed.

gap> tens / irr[1];
Character(S4, [6, 0, -2, 0, 0])

Other (somewhat strange) implications of the definition of arithmetic operations for class functions, together
with the general rules of list arithmetic (see 21.11), apply to the case of products involving lists of class
functions. No inverse of the list of irreducible characters as a matrix is defined; if one is interested in the
inverse matrix then one can compute it from the matrix of class function values.

gap> Inverse(List(irr, ValuesOfClassFunction));
[[1/24, 1/8, 1/12, 1/8, 1/24], [-1/4, -1/4, 0, 1/4, 1/4],
[1/8, -1/8, 1/4, -1/8, 1/8], [1/3, 0, -1/3, 0, 1/3],
[-1/4, 1/4, 0, -1/4, 1/4]]

Also the product of a class function with a list of class functions is not a vector-matrix product but the list
of pointwise products.

gap> irr[1] * irr{ [1 .. 3] };
[Character(S4, [1, 1, 1, 1, 1]), Character(S4, [3, 1, -1, 0, -1]),
Character(S4, [2, 0, 2, -1, 0])]

And the product of two lists of class functions is not the matrix product but the sum of the pointwise
products.

gap> irr * irr;
Character(S4, [24, 4, 8, 3, 4])

The powering operator \^ has several meanings for class functions. The power of a class function by a
nonnegative integer is clearly the tensor power. The power of a class function by an element that normalizes
the underlying group or by a Galois automorphism is the conjugate class function. (As a consequence, the
application of the permutation induced by such an action cannot be denoted by \^; instead one can use
Permuted, see 21.20.16.) The power of a class function by a group or a character table is the induced class
function (see 70.9.3). The power of a group element by a class function is the class function value at (the
conjugacy class containing) this element.

gap> irr[3] ^ 3;
Character(S4, [8, 0, 8, -1, 0])
gap> lin:= LinearCharacters(DerivedSubgroup(g));
[Character(CharacterTable(Alt([1 .. 4])), [1, 1, 1, 1]),
Character(CharacterTable(Alt([1 .. 4])), [1, 1, E(3)^2, E(3)]),
Character(CharacterTable(Alt([1 .. 4])), [1, 1, E(3), E(3)^2])]

gap> List(lin, chi -> chi ^ (1,2));
[Character(CharacterTable(Alt([1 .. 4])), [1, 1, 1, 1]),
Character(CharacterTable(Alt([1 .. 4])), [1, 1, E(3), E(3)^2]),
Character(CharacterTable(Alt([1 .. 4])), [1, 1, E(3)^2, E(3)])]

gap> Orbit(GaloisGroup(CF(3)), lin[2]);
[Character(CharacterTable(Alt([1 .. 4])), [1, 1, E(3)^2, E(3)]),
Character(CharacterTable(Alt([1 .. 4])), [1, 1, E(3), E(3)^2])]

774 Chapter 70. Class Functions

gap> lin[1]^g;
Character(S4, [2, 0, 2, 2, 0])
gap> (1,2,3)^lin[2];
E(3)^2

The characteristic of class functions is zero, as for all list of cyclotomics. For class functions of a p-
modular character table, such as Brauer characters, the prime p is given by the UnderlyingCharacteristic
(see 69.8.9) value of the character table.

gap> Characteristic(irr[1]);
0
gap> irrmod2:= Irr(g, 2);
[Character(BrauerTable(Sym([1 .. 4]), 2), [1, 1]),
Character(BrauerTable(Sym([1 .. 4]), 2), [2, -1])]

gap> Characteristic(irrmod2[1]);
0
gap> UnderlyingCharacteristic(UnderlyingCharacterTable(irrmod2[1]));
2

The operations ComplexConjugate, GaloisCyc, and Permuted return a class function when they are called
with a class function; The complex conjugate of a class function that is known to be a (virtual) character
is again known to be a (virtual) character, and applying an arbitrary Galois automorphism to an ordinary
(virtual) character yields a (virtual) character.

gap> ComplexConjugate(lin[2]);
Character(CharacterTable(Alt([1 .. 4])), [1, 1, E(3), E(3)^2])
gap> GaloisCyc(lin[2], 5);
Character(CharacterTable(Alt([1 .. 4])), [1, 1, E(3), E(3)^2])
gap> Permuted(lin[2], (2,3,4));
ClassFunction(CharacterTable(Alt([1 .. 4])), [1, E(3), 1, E(3)^2])

By definition of Order for arbitrary monoid elements, the determinantal order (see 70.8.18) of characters
cannot be the return value of Order for characters. One can use Order(Determinant(chi)) to compute
the determinantal order of the class function chi .

gap> det:= Determinant(irr[3]);
Character(S4, [1, -1, 1, 1, -1])
gap> Order(det);
2

70.5 Printing Class Functions

The default ViewObj (see 6.3.3) methods for class functions print one of the strings "ClassFunction",
"VirtualCharacter", "Character" (depending on whether the class function is known to be a character
or virtual character, see 70.8.1, 70.8.2), followed by the ViewObj output for the underlying character table
(see 69.11), and the list of values. The table is chosen (and not the group) in order to distinguish class
functions of different underlying characteristic (see 69.8.9).

The default PrintObj (see 6.3.3) method for class functions does the same as ViewObj, except that the
character table is is Print-ed instead of View-ed.

Note that if a class function is shown only with one of the strings "ClassFunction", "VirtualCharacter",
it may still be that it is in fact a character; just this was not known at the time when the class function was
printed.

Section 6. Creating Class Functions from Values Lists 775

In order to reduce the space that is needed to print a class function, it may be useful to give a name
(see 12.8.2) to the underlying character table.

The default Display (see 6.3.4) method for a class function chi calls Display for its underlying character
table (see 69.11), with chi as the only entry in the chars list of the options record.

gap> chi:= TrivialCharacter(CharacterTable("A5"));
Character(CharacterTable("A5"), [1, 1, 1, 1, 1])
gap> Display(chi);
A5

2 2 2 . . .
3 1 . 1 . .
5 1 . . 1 1

1a 2a 3a 5a 5b
2P 1a 1a 3a 5b 5a
3P 1a 2a 1a 5b 5a
5P 1a 2a 3a 1a 1a

Y.1 1 1 1 1 1

70.6 Creating Class Functions from Values Lists

1 I ClassFunction(tbl, values) O
I ClassFunction(G, values) O

In the first form, ClassFunction returns the class function of the character table tbl with values given by
the list values of cyclotomics. In the second form, G must be a group, and the class function of its ordinary
character table is returned.

Note that tbl determines the underying characteristic of the returned class function (see 69.8.9).

2 I VirtualCharacter(tbl, values) O
I VirtualCharacter(G, values) O

VirtualCharacter returns the virtual character (see 70.8.2) of the character table tbl or the group G ,
respectively, with values given by the list values.

It is not checked whether the given values really describe a virtual character.

3 I Character(tbl, values) O

Character returns the character (see 70.8.1) of the character table tbl or the group G , respectively, with
values given by the list values.

It is not checked whether the given values really describe a character.

gap> g:= DihedralGroup(8); tbl:= CharacterTable(g);
<pc group of size 8 with 3 generators>
CharacterTable(<pc group of size 8 with 3 generators>)
gap> SetName(tbl, "D8");
gap> phi:= ClassFunction(g, [1, -1, 0, 2, -2]);
ClassFunction(D8, [1, -1, 0, 2, -2])
gap> psi:= ClassFunction(tbl,
> List(Irr(g), chi -> ScalarProduct(chi, phi)));
ClassFunction(D8, [-3/8, 9/8, 5/8, 1/8, -1/4])
gap> chi:= VirtualCharacter(g, [0, 0, 8, 0, 0]);

776 Chapter 70. Class Functions

VirtualCharacter(D8, [0, 0, 8, 0, 0])
gap> reg:= Character(tbl, [8, 0, 0, 0, 0]);
Character(D8, [8, 0, 0, 0, 0])

4 I ClassFunctionSameType(tbl, chi, values) F

Let tbl be a character table, chi a class function object (not necessarily a class function of tbl), and values
a list of cyclotomics. ClassFunctionSameType returns the class function ψ of tbl with values list values,
constructed with ClassFunction (see 70.6.1).

If chi is known to be a (virtual) character then ψ is also known to be a (virtual) character.

gap> h:= Centre(g);;
gap> centbl:= CharacterTable(h);; SetName(centbl, "C2");
gap> ClassFunctionSameType(centbl, phi, [1, 1]);
ClassFunction(C2, [1, 1])
gap> ClassFunctionSameType(centbl, chi, [1, 1]);
VirtualCharacter(C2, [1, 1])
gap> ClassFunctionSameType(centbl, reg, [1, 1]);
Character(C2, [1, 1])

70.7 Creating Class Functions using Groups

1 I TrivialCharacter(tbl) A
I TrivialCharacter(G) A

is the trivial character of the group G or its character table tbl , respectively. This is the class function
with value equal to 1 for each class.

gap> TrivialCharacter(CharacterTable("A5"));
Character(CharacterTable("A5"), [1, 1, 1, 1, 1])
gap> TrivialCharacter(SymmetricGroup(3));
Character(CharacterTable(Sym([1 .. 3])), [1, 1, 1])

2 I NaturalCharacter(G) A
I NaturalCharacter(hom) A

If the argument is a permutation group G then NaturalCharacter returns the (ordinary) character of the
natural permutation representation of G on the set of moved points (see 40.2.3), that is, the value on each
class is the number of points among the moved points of G that are fixed by any permutation in that class.

If the argument is a matrix group G in characteristic zero then NaturalCharacter returns the (ordinary)
character of the natural matrix representation of G , that is, the value on each class is the trace of any matrix
in that class.

If the argument is a group homomorphism hom whose image is a permutation group or a matrix group then
NaturalCharacter returns the restriction of the natural character of the image of hom to the preimage of
hom.

gap> NaturalCharacter(SymmetricGroup(3));
Character(CharacterTable(Sym([1 .. 3])), [3, 1, 0])
gap> NaturalCharacter(Group([[0, -1], [1, -1]]));
Character(CharacterTable(Group([[[0, -1], [1, -1]]])),
[2, -1, -1])
gap> d8:= DihedralGroup(8);; hom:= IsomorphismPermGroup(d8);;
gap> NaturalCharacter(hom);
Character(CharacterTable(<pc group of size 8 with 3 generators>),

Section 8. Operations for Class Functions 777

[8, 0, 0, 0, 0])

3 I PermutationCharacter(G, D, opr) O
I PermutationCharacter(G, U) O

Called with a group G , an action domain or proper set D , and an action function opr (see Chapter 39),
PermutationCharacter returns the permutation character of the action of G on D via opr , that is, the
value on each class is the number of points in D that are fixed by an element in this class under the action
opr .

If the arguments are a group G and a subgroup U of G then PermutationCharacter returns the permutation
character of the action of G on the right cosets of U via right multiplication.

To compute the permutation character of a transitive permutation group G on the cosets of a point
stabilizer U , the attribute NaturalCharacter(G) can be used instead of PermutationCharacter(G,
U).

More facilities concerning permutation characters are the transitivity test (see Section 70.8) and several
tools for computing possible permutation characters (see 70.13, 70.14).

gap> PermutationCharacter(GL(2,2), AsSSortedList(GF(2)^2), OnRight);
Character(CharacterTable(SL(2,2)), [4, 2, 1])
gap> s3:= SymmetricGroup(3);; a3:= DerivedSubgroup(s3);;
gap> PermutationCharacter(s3, a3);
Character(CharacterTable(Sym([1 .. 3])), [2, 0, 2])

70.8 Operations for Class Functions

In the description of the following operations, the optional first argument tbl is needed only if the argument
chi is a plain list and not a class function object. In this case, tbl must always be the character table of
which chi shall be regarded as a class function.

1 I IsCharacter([tbl,]chi) P

An ordinary character of a group G is a class function of G whose values are the traces of a complex
matrix representation of G .

A Brauer character of G in characteristic p is a class function of G whose values are the complex lifts of
a matrix representation of G with image a finite field of characteristic p.

2 I IsVirtualCharacter([tbl,]chi) P

A virtual character is a class function that can be written as the difference of two proper characters
(see 70.8.1).

3 I IsIrreducibleCharacter([tbl,]chi) P

A character is irreducible if it cannot be written as the sum of two characters. For ordinary characters
this can be checked using the scalar product of class functions (see 70.8.5). For Brauer characters there is
no generic method for checking irreducibility.

778 Chapter 70. Class Functions

gap> S4:= SymmetricGroup(4);; SetName(S4, "S4");
gap> psi:= ClassFunction(S4, [1, 1, 1, -2, 1]);
ClassFunction(CharacterTable(S4), [1, 1, 1, -2, 1])
gap> IsVirtualCharacter(psi);
true
gap> IsCharacter(psi);
false
gap> chi:= ClassFunction(S4, SizesCentralizers(CharacterTable(S4)));
ClassFunction(CharacterTable(S4), [24, 4, 8, 3, 4])
gap> IsCharacter(chi);
true
gap> IsIrreducibleCharacter(chi);
false
gap> IsIrreducibleCharacter(TrivialCharacter(S4));
true

4 I DegreeOfCharacter(chi) A

is the value of the character chi on the identity element. This can also be obtained as chi[1].

gap> List(Irr(S4), DegreeOfCharacter);
[1, 3, 2, 3, 1]
gap> nat:= NaturalCharacter(S4);
Character(CharacterTable(S4), [4, 2, 0, 1, 0])
gap> nat[1];
4

5 I ScalarProduct([tbl,]chi, psi) O

For two class functions chi and psi which belong to the same character table tbl , ScalarProduct returns
their scalar product.

If chi and psi are class function objects, the argument tbl is not needed, but tbl is necessary if at least one
of chi , psi is just a plain list.

The scalar product of two ordinary class functions χ, ψ of a group G is defined as 1
|G|
∑

g∈G χ(g)ψ(g−1).

For two p-modular class functions, the scalar product is defined as 1
|G|
∑

g∈S χ(g)ψ(g−1). where S is the
set of p-regular elements in G .

6 I MatScalarProducts([tbl,]list1, list2) O
I MatScalarProducts([tbl,]list) O

The first form returns the matrix of scalar products (see above) of the class functions in the list list1 with
the class functions in the list list2 . More precisely, the matrix contains in the i -th row the list of scalar
products of list2 [i] with the entries of list1 .

The second form returns a lower triangular matrix of scalar products, containing for (j ≤ i) in the i -th row
in column j the value ScalarProduct(tbl , list [j], list [i]).

7 I Norm([tbl,]chi) A

For an ordinary class function chi of the group G , say, we have chi =
∑
χ∈Irr(G) aχχ, with complex coefficients

aχ. The norm of chi is defined as
∑
χ∈Irr(G) aχaχ.

Section 8. Operations for Class Functions 779

gap> tbl:= CharacterTable("A5");;
gap> ScalarProduct(TrivialCharacter(tbl), Sum(Irr(tbl)));
1
gap> ScalarProduct(tbl, [1, 1, 1, 1, 1], Sum(Irr(tbl)));
1
gap> tbl2:= tbl mod 2;
BrauerTable("A5", 2)
gap> chi:= Irr(tbl2)[1];
Character(BrauerTable("A5", 2), [1, 1, 1, 1])
gap> ScalarProduct(chi, chi);
3/4
gap> ScalarProduct(tbl2, [1, 1, 1, 1], [1, 1, 1, 1]);
3/4
gap> chars:= Irr(tbl){ [2 .. 4] };;
gap> chars:= Set(Tensored(chars, chars));;
gap> MatScalarProducts(Irr(tbl), chars);
[[0, 0, 0, 1, 1], [1, 1, 0, 0, 1], [1, 0, 1, 0, 1], [0, 1, 0, 1, 1],
[0, 0, 1, 1, 1], [1, 1, 1, 1, 1]]

gap> MatScalarProducts(tbl, chars);
[[2], [1, 3], [1, 2, 3], [2, 2, 1, 3], [2, 1, 2, 2, 3],
[2, 3, 3, 3, 3, 5]]

gap> List(chars, Norm);
[2, 3, 3, 3, 3, 5]

8 I ConstituentsOfCharacter([tbl,]chi) A

is the set of irreducible characters that occur in the decomposition of the (virtual) character chi with nonzero
coefficient.

gap> nat:= NaturalCharacter(S4);
Character(CharacterTable(S4), [4, 2, 0, 1, 0])
gap> ConstituentsOfCharacter(nat);
[Character(CharacterTable(S4), [1, 1, 1, 1, 1]),
Character(CharacterTable(S4), [3, 1, -1, 0, -1])]

9 I KernelOfCharacter([tbl,]chi) A

For a class function chi of the group G , say, KernelOfCharacter returns the normal subgroup of G that
is formed by those conjugacy classes for which the value of chi equals the degree of chi . If the underlying
character table of chi does not store the group G then an error is signalled. (See 70.8.10 for a way to handle
the kernel implicitly, by listing the positions of conjugacy classes in the kernel.)

The returned group is the kernel of any representation of G that affords chi .

10 I ClassPositionsOfKernel(chi) A

is the list of positions of those conjugacy classes that form the kernel of the character chi , that is, those
positions with character value equal to the character degree.

gap> List(Irr(S4), KernelOfCharacter);
[Group([(), (1,2)(3,4), (1,2,3)]), Group(()),
Group([(1,2)(3,4), (1,3)(2,4)]), Group(()),
Group([(), (1,2), (1,2)(3,4), (1,2,3), (1,2,3,4)])]

gap> List(Irr(S4), ClassPositionsOfKernel);
[[1, 3, 4], [1], [1, 3], [1], [1, 2, 3, 4, 5]]

780 Chapter 70. Class Functions

11 I CentreOfCharacter([tbl,]chi) A

For a character chi of the group G , say, CentreOfCharacter returns the centre of chi , that is, the normal
subgroup of all those elements of G for which the quotient of the value of chi by the degree of chi is a root
of unity.

If the underlying character table of psi does not store the group G then an error is signalled. (See 70.8.12
for a way to handle the centre implicitly, by listing the positions of conjugacy classes in the centre.)

12 I ClassPositionsOfCentre(chi) A

is the list of positions of classes forming the centre of the character chi (see 70.8.11).

gap> List(Irr(S4), CentreOfCharacter);
[Group([(), (1,2), (1,2)(3,4), (1,2,3), (1,2,3,4)]), Group(()),
Group([(1,2)(3,4), (1,3)(2,4)]), Group(()),
Group([(), (1,2), (1,2)(3,4), (1,2,3), (1,2,3,4)])]

gap> List(Irr(S4), ClassPositionsOfCentre);
[[1, 2, 3, 4, 5], [1], [1, 3], [1], [1, 2, 3, 4, 5]]

13 I InertiaSubgroup([tbl,]G, chi) O

Let chi be a character of the group H , say, and tbl the character table of H ; if the argument tbl is not given
then the underlying character table of chi (see 70.2.1) is used instead. Furthermore, let G be a group that
contains H as a normal subgroup.

InertiaSubgroup returns the stabilizer in G of chi , w.r.t. the action of G on the classes of H via conjugation.
In other words, InertiaSubgroup returns the group of all those elements g ∈ G that satisfy chi g = chi .

gap> der:= DerivedSubgroup(S4);
Group([(1,3,2), (2,4,3)])
gap> List(Irr(der), chi -> InertiaSubgroup(S4, chi));
[S4, Alt([1 .. 4]), Alt([1 .. 4]), S4]

14 I CycleStructureClass([tbl,]chi, class) O

Let permchar be a permutation character, and class the position of a conjugacy class of the character table
of permchar . CycleStructureClass returns a list describing the cycle structure of each element in class
class in the underlying permutation representation, in the same format as the result of CycleStructurePerm
(see 40.3.2).

gap> nat:= NaturalCharacter(S4);
Character(CharacterTable(S4), [4, 2, 0, 1, 0])
gap> List([1 .. 5], i -> CycleStructureClass(nat, i));
[[], [1], [2], [, 1], [,, 1]]

15 I IsTransitive([tbl,]chi) P

For a permutation character chi of the group G that corresponds to an action on the G-set Ω (see 70.7.3),
IsTransitive returns true if the action of G on Ω is transitive, and false otherwise.

16 I Transitivity([tbl,]chi) A

For a permutation character chi of the group G that corresponds to an action on the G-set Ω (see 70.7.3),
Transitivity returns the maximal nonnegative integer k such that the action of G on Ω is k -transitive.

Section 8. Operations for Class Functions 781

gap> IsTransitive(nat); Transitivity(nat);
true
4
gap> Transitivity(2 * TrivialCharacter(S4));
0

17 I CentralCharacter([tbl,]chi) A

For a character chi of the group G , say, CentralCharacter returns the central character of chi .
The central character of χ is the class function ωχ defined by ωχ(g) = |gG | · χ(g)/χ(1) for each g ∈ G .

18 I DeterminantOfCharacter([tbl,]chi) A

DeterminantOfCharacter returns the determinant character of the character chi . This is defined to be
the character obtained by taking the determinant of representing matrices of any representation affording
chi ; the determinant can be computed using EigenvaluesChar (see 70.8.19).
It is also possible to call Determinant instead of DeterminantOfCharacter.
Note that the determinant character is well-defined for virtual characters.

gap> CentralCharacter(TrivialCharacter(S4));
ClassFunction(CharacterTable(S4), [1, 6, 3, 8, 6])
gap> DeterminantOfCharacter(Irr(S4)[3]);
Character(CharacterTable(S4), [1, -1, 1, 1, -1])

19 I EigenvaluesChar([tbl,]chi, class) O

Let chi be a character of the group G , say. For an element g ∈ G in the class-th conjugacy class, of order
n, let M be a matrix of a representation affording chi .
EigenvaluesChar(tbl, chi, class) is the list of length n where at position k the multiplicity of E(n)k =
exp(2πik

n) as an eigenvalue of M is stored.
We have chi[class] = List([1 .. n], k -> E(n)^k) * EigenvaluesChar(tbl, chi, class).
It is also possible to call Eigenvalues instead of EigenvaluesChar.

gap> chi:= Irr(CharacterTable("A5"))[2];
Character(CharacterTable("A5"), [3, -1, 0, -E(5)-E(5)^4, -E(5)^2-E(5)^3
])

gap> List([1 .. 5], i -> Eigenvalues(chi, i));
[[3], [2, 1], [1, 1, 1], [0, 1, 1, 0, 1], [1, 0, 0, 1, 1]]

20 I Tensored(chars1, chars2) O

Let chars1 and chars2 be lists of (values lists of) class functions of the same character table. Tensored
returns the list of tensor products of all entries in chars1 with all entries in chars2 .

gap> irra5:= Irr(CharacterTable("A5"));;
gap> chars1:= irra5{ [1 .. 3] };; chars2:= irra5{ [2, 3] };;
gap> Tensored(chars1, chars2);
[Character(CharacterTable("A5"), [3, -1, 0, -E(5)-E(5)^4, -E(5)^2-E(5)^3

]), Character(CharacterTable("A5"),
[3, -1, 0, -E(5)^2-E(5)^3, -E(5)-E(5)^4]),

Character(CharacterTable("A5"),
[9, 1, 0, -2*E(5)-E(5)^2-E(5)^3-2*E(5)^4, -E(5)-2*E(5)^2-2*E(5)^3-E(5)^4
]), Character(CharacterTable("A5"), [9, 1, 0, -1, -1]),

Character(CharacterTable("A5"), [9, 1, 0, -1, -1]),
Character(CharacterTable("A5"),
[9, 1, 0, -E(5)-2*E(5)^2-2*E(5)^3-E(5)^4, -2*E(5)-E(5)^2-E(5)^3-2*E(5)^4
])]

782 Chapter 70. Class Functions

70.9 Restricted and Induced Class Functions

For restricting a class function of a group G to a subgroup H and for inducing a class function of H to G ,
the class fusion from H to G must be known (see 71.2).
If F is the factor group of G by the normal subgroup N then each class function of F can be naturally
regarded as a class function of G , with N in its kernel. For a class function of F , the corresponding class
function of G is called the inflated class function. Restriction and inflation are in principle the same, namely
indirection of a class function by the appropriate fusion map, and thus no extra operation is needed for this
process. But note that contrary to the case of a subgroup fusion, the factor fusion can in general not be
computed from the groups G and F ; either one needs the natural homomorphism or the factor fusion to
the character table of F must be stored on the table of G . This explains the different syntax for computing
restricted and inflated class functions.
In the following, the meaning of the optional first argument tbl is the same as in Section 70.8.

1 I RestrictedClassFunction([tbl,]chi, H) O
I RestrictedClassFunction([tbl,]chi, hom) O
I RestrictedClassFunction([tbl,]chi, subtbl) O

For a class function chi of the group G , say, and either a subgroup H of G or a homomorphism from H to
G or the character table subtbl of this subgroup, RestrictedClassFunction returns the class function of
H obtained by restricting chi to H .
In the situation that chi is a class function of a factor group F of H , the variant where hom is a homomor-
phism can be always used, the calls with argument H or subtbl work only if the factor fusion is stored on
the character table.

2 I RestrictedClassFunctions([tbl,]chars, H) O
I RestrictedClassFunctions([tbl,]chars, hom) O
I RestrictedClassFunctions([tbl,]chars, subtbl) O

RestrictedClassFunctions is similar to RestrictedClassFunction (see 70.9.1), the only difference is that
it takes a list chars of class functions instead of one class function, and returns the list of restricted class
functions.

gap> a5:= CharacterTable("A5");; s5:= CharacterTable("S5");;
gap> RestrictedClassFunction(Irr(s5)[2], a5);
Character(CharacterTable("A5"), [1, 1, 1, 1, 1])
gap> RestrictedClassFunctions(Irr(s5), a5);
[Character(CharacterTable("A5"), [1, 1, 1, 1, 1]),
Character(CharacterTable("A5"), [1, 1, 1, 1, 1]),
Character(CharacterTable("A5"), [6, -2, 0, 1, 1]),
Character(CharacterTable("A5"), [4, 0, 1, -1, -1]),
Character(CharacterTable("A5"), [4, 0, 1, -1, -1]),
Character(CharacterTable("A5"), [5, 1, -1, 0, 0]),
Character(CharacterTable("A5"), [5, 1, -1, 0, 0])]

gap> hom:= NaturalHomomorphismByNormalSubgroup(S4, der);;
gap> RestrictedClassFunctions(Irr(Image(hom)), hom);
[Character(CharacterTable(S4), [1, 1, 1, 1, 1]),
Character(CharacterTable(S4), [1, -1, 1, 1, -1])]

3 I InducedClassFunction([tbl,]chi, H) O
I InducedClassFunction([tbl,]chi, hom) O
I InducedClassFunction([tbl,]chi, suptbl) O

For a class function chi of the group G , say, and either a supergroup H of G or a homomorphism from G
to H or the character table suptbl of this supergroup, InducedClassFunction returns the class function of
H obtained by inducing chi to H .

Section 9. Restricted and Induced Class Functions 783

4 I InducedClassFunctions([tbl,]chars, H) O
I InducedClassFunctions([tbl,]chars, hom) O
I InducedClassFunctions([tbl,]chars, suptbl) O

InducedClassFunctions is similar to InducedClassFunction (see 70.9.3), the only difference is that it takes
a list chars of class functions instead of one class function, and returns the list of induced class functions.

gap> InducedClassFunctions(Irr(a5), s5);
[Character(CharacterTable("A5.2"), [2, 2, 2, 2, 0, 0, 0]),
Character(CharacterTable("A5.2"), [6, -2, 0, 1, 0, 0, 0]),
Character(CharacterTable("A5.2"), [6, -2, 0, 1, 0, 0, 0]),
Character(CharacterTable("A5.2"), [8, 0, 2, -2, 0, 0, 0]),
Character(CharacterTable("A5.2"), [10, 2, -2, 0, 0, 0, 0])]

5 I InducedClassFunctionsByFusionMap(subtbl, tbl, chars, fusionmap) F

Let subtbl and tbl be two character tables of groups H and G , such that H is a subgroup of G , let chars be
a list of class functions of subtbl , and let fusionmap be a fusion map from subtbl to tbl . The function returns
the list of induced class functions of tbl that correspond to chars, w.r.t. the given fusion map.

InducedClassFunctionsByFusionMap is the function that does the work for InducedClassFunction and
InducedClassFunctions, see 70.9.3 and 70.9.4.

gap> fus:= PossibleClassFusions(a5, s5);
[[1, 2, 3, 4, 4]]
gap> InducedClassFunctionsByFusionMap(a5, s5, Irr(a5), fus[1]);
[Character(CharacterTable("A5.2"), [2, 2, 2, 2, 0, 0, 0]),
Character(CharacterTable("A5.2"), [6, -2, 0, 1, 0, 0, 0]),
Character(CharacterTable("A5.2"), [6, -2, 0, 1, 0, 0, 0]),
Character(CharacterTable("A5.2"), [8, 0, 2, -2, 0, 0, 0]),
Character(CharacterTable("A5.2"), [10, 2, -2, 0, 0, 0, 0])]

6 I InducedCyclic(tbl) O
I InducedCyclic(tbl, "all") O
I InducedCyclic(tbl, classes) O
I InducedCyclic(tbl, classes, "all") O

InducedCyclic calculates characters induced up from cyclic subgroups of the ordinary character table tbl
to tbl , and returns the strictly sorted list of the induced characters.

If "all" is specified then all irreducible characters of these subgroups are induced, otherwise only the
permutation characters are calculated.

If a list classes is specified then only those cyclic subgroups generated by these classes are considered,
otherwise all classes of tbl are considered.

gap> InducedCyclic(a5, "all");
[Character(CharacterTable("A5"), [12, 0, 0, 2, 2]),
Character(CharacterTable("A5"), [12, 0, 0, E(5)^2+E(5)^3, E(5)+E(5)^4

]), Character(CharacterTable("A5"),
[12, 0, 0, E(5)+E(5)^4, E(5)^2+E(5)^3]),

Character(CharacterTable("A5"), [20, 0, -1, 0, 0]),
Character(CharacterTable("A5"), [20, 0, 2, 0, 0]),
Character(CharacterTable("A5"), [30, -2, 0, 0, 0]),
Character(CharacterTable("A5"), [30, 2, 0, 0, 0]),
Character(CharacterTable("A5"), [60, 0, 0, 0, 0])]

784 Chapter 70. Class Functions

70.10 Reducing Virtual Characters

The following operations are intended for the situation that one is given a list of virtual characters of a
character table and is interested in the irreducible characters of this table. The idea is to compute virtual
characters of small norm from the given ones, hoping to get eventually virtual characters of norm 1.

1 I ReducedClassFunctions([tbl,]constituents, reducibles) O
I ReducedClassFunctions([tbl,]reducibles) O

Let reducibles be a list of ordinary virtual characters of the group G , say. If constituents is given then it
must also be a list of ordinary virtual characters of G , otherwise we have constituents equal to reducibles in
the following.

ReducedClassFunctions returns a record with components remainders and irreducibles, both lists of
virtual characters of G . These virtual characters are computed as follows.

Let rems be the set of nonzero class functions obtained by subtraction of

∑
χ

[reducibles[i], χ]
[χ, χ]

· χ

from reducibles[i], where the summation runs over constituents and [χ, ψ] denotes the scalar product of
G-class functions. Let irrs be the list of irreducible characters in rems.

We project rems into the orthogonal space of irrs and all those irreducibles found this way until no
new irreducibles arise. Then the irreducibles list is the set of all found irreducible characters, and the
remainders list is the set of all nonzero remainders.

2 I ReducedCharacters([tbl,]constituents, reducibles) O

ReducedCharacters is similar to ReducedClassFunctions, the only difference is that constituents and
reducibles are assumed to be lists of characters. This means that only those scalar products must be formed
where the degree of the character in constituents does not exceed the degree of the character in reducibles.

gap> tbl:= CharacterTable("A5");;
gap> chars:= Irr(tbl){ [2 .. 4] };;
gap> chars:= Set(Tensored(chars, chars));;
gap> red:= ReducedClassFunctions(chars);
rec(remainders := [],
irreducibles := [Character(CharacterTable("A5"), [1, 1, 1, 1, 1]),

Character(CharacterTable("A5"),
[3, -1, 0, -E(5)-E(5)^4, -E(5)^2-E(5)^3]),

Character(CharacterTable("A5"),
[3, -1, 0, -E(5)^2-E(5)^3, -E(5)-E(5)^4]),

Character(CharacterTable("A5"), [4, 0, 1, -1, -1]),
Character(CharacterTable("A5"), [5, 1, -1, 0, 0])])

3 I IrreducibleDifferences(tbl, reducibles, reducibles2) F
I IrreducibleDifferences(tbl, reducibles, reducibles2, scprmat) F
I IrreducibleDifferences(tbl, reducibles, "triangle") F
I IrreducibleDifferences(tbl, reducibles, "triangle", scprmat) F

IrreducibleDifferences returns the list of irreducible characters which occur as difference of two elements
of reducibles (if "triangle" is specified) or of an element of reducibles and an element of reducibles2 .

If scprmat is not specified then it will be calculated, otherwise we must have scprmat = MatScalarProd-
ucts(tbl, reducibles) or scprmat = MatScalarProducts(tbl, reducibles, reducibles2), respectively.

Section 10. Reducing Virtual Characters 785

gap> IrreducibleDifferences(a5, chars, "triangle");
[Character(CharacterTable("A5"), [3, -1, 0, -E(5)-E(5)^4, -E(5)^2-E(5)^3

]), Character(CharacterTable("A5"),
[3, -1, 0, -E(5)^2-E(5)^3, -E(5)-E(5)^4])]

4 I LLL(tbl, characters[, y][, "sort"][, "linearcomb"]) F

LLL calls the LLL algorithm (see 25.5.1) in the case of lattices spanned by the virtual characters characters of
the ordinary character table tbl (see 70.8.5). By finding shorter vectors in the lattice spanned by characters,
i.e., virtual characters of smaller norm, in some cases LLL is able to find irreducible characters.

LLL returns a record with at least components irreducibles (the list of found irreducible characters), re-
mainders (a list of reducible virtual characters), and norms (the list of norms of the vectors in remainders).
irreducibles together with remainders form a basis of the Z-lattice spanned by characters.

Note that the vectors in the remainders list are in general not orthogonal (see 70.10.1) to the irreducible
characters in irreducibles.

Optional arguments of LLL are

y
controls the sensitivity of the algorithm, see 25.5.1,

"sort"
LLL sorts characters and the remainders component of the result according to the degrees,

"linearcomb"
the returned record contains components irreddecomp and reddecomp, which are decomposition
matrices of irreducibles and remainders, with respect to characters.

gap> s4:= CharacterTable("Symmetric", 4);;
gap> chars:= [[8, 0, 0, -1, 0], [6, 0, 2, 0, 2],
> [12, 0, -4, 0, 0], [6, 0, -2, 0, 0], [24, 0, 0, 0, 0],
> [12, 0, 4, 0, 0], [6, 0, 2, 0, -2], [12, -2, 0, 0, 0],
> [8, 0, 0, 2, 0], [12, 2, 0, 0, 0], [1, 1, 1, 1, 1]];;
gap> LLL(s4, chars);
rec(
irreducibles := [Character(CharacterTable("Sym(4)"), [2, 0, 2, -1, 0

]), Character(CharacterTable("Sym(4)"), [1, 1, 1, 1, 1]),
Character(CharacterTable("Sym(4)"), [3, 1, -1, 0, -1]),
Character(CharacterTable("Sym(4)"), [3, -1, -1, 0, 1]),
Character(CharacterTable("Sym(4)"), [1, -1, 1, 1, -1])],

remainders := [], norms := [])

5 I Extract(tbl, reducibles, grammat[, missing]) F

Let tbl be an ordinary character table, reducibles a list of characters of tbl , and grammat the matrix of scalar
products of reducibles (see 70.8.6). Extract tries to find irreducible characters by drawing conclusions out
of the scalar products, using combinatorial and backtrack means.

The optional argument missing is the maximal number of irreducible characters that occur as constituents
of reducibles. Specification of missing may accelerate Extract.

Extract returns a record ext with components solution and choice, where the value of solution is a list
[M1, . . . ,Mn] of decomposition matrices Mi (up to permutations of rows) with the property that M tr

i · X is
equal to the sublist at the positions ext.choice[i] of reducibles, for a matrix X of irreducible characters;
the value of choice is a list of length n whose entries are lists of indices.

786 Chapter 70. Class Functions

So the j -th column in each matrix Mi corresponds to reducibles[j], and each row in Mi corresponds to
an irreducible character. Decreased (see 70.10.7) can be used to examine the solution for computable
irreducibles.

gap> s4:= CharacterTable("Symmetric", 4);;
gap> red:= [[5, 1, 5, 2, 1], [2, 0, 2, 2, 0], [3, -1, 3, 0, -1],
> [6, 0, -2, 0, 0], [4, 0, 0, 1, 2]];;
gap> gram:= MatScalarProducts(s4, red, red);
[[6, 3, 2, 0, 2], [3, 2, 1, 0, 1], [2, 1, 2, 0, 0], [0, 0, 0, 2, 1],
[2, 1, 0, 1, 2]]

gap> ext:= Extract(s4, red, gram, 5);
rec(
solution := [[[1, 1, 0, 0, 2], [1, 0, 1, 0, 1], [0, 1, 0, 1, 0], [

0, 0, 1, 0, 1], [0, 0, 0, 1, 0]]],
choice := [[2, 5, 3, 4, 1]])

gap> dec:= Decreased(s4, red, ext.solution[1], ext.choice[1]);;
gap> Display(dec);
rec(
irreducibles :=
[Character(CharacterTable("Sym(4)"), [1, 1, 1, 1, 1]),

Character(CharacterTable("Sym(4)"), [3, -1, -1, 0, 1]),
Character(CharacterTable("Sym(4)"), [1, -1, 1, 1, -1]),
Character(CharacterTable("Sym(4)"), [3, 1, -1, 0, -1]),
Character(CharacterTable("Sym(4)"), [2, 0, 2, -1, 0])],

remainders := [],
matrix := [])

6 I OrthogonalEmbeddingsSpecialDimension(tbl, reducibles, grammat, ["positive",] dim) F

OrthogonalEmbeddingsSpecialDimension is a variant of OrthogonalEmbeddings (see 25.6.1) for the situ-
ation that tbl is an ordinary character table, reducibles is a list of virtual characters of tbl , grammat is the
matrix of scalar products (see 70.8.6), and dim is an upper bound for the number of irreducible characters
of tbl that occur as constituents of reducibles; if the vectors in reducibles are known to be proper characters
then the string "positive" may be entered as fourth argument. (See 25.6.1 for information why this may
help.)

OrthogonalEmbeddingsSpecialDimension first uses OrthogonalEmbeddings (see 25.6.1) to compute all
orthogonal embeddings of grammat into a standard lattice of dimension up to dim, and then calls Decreased
(see 70.10.7) in order to find irreducible characters of tbl .

OrthogonalEmbeddingsSpecialDimension returns a record with components

irreducibles
a list of found irreducibles, the intersection of all lists of irreducibles found by Decreased, for all
possible embeddings, and

remainders
a list of remaining reducible virtual characters.

gap> s6:= CharacterTable("S6");;
gap> red:= InducedCyclic(s6, "all");;
gap> Add(red, TrivialCharacter(s6));
gap> lll:= LLL(s6, red);;
gap> irred:= lll.irreducibles;
[Character(CharacterTable("A6.2_1"), [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])

Section 10. Reducing Virtual Characters 787

, Character(CharacterTable("A6.2_1"), [9, 1, 0, 0, 1, -1, -3, -3, 1,
0, 0]), Character(CharacterTable("A6.2_1"),

[16, 0, -2, -2, 0, 1, 0, 0, 0, 0, 0])]
gap> Set(Flat(MatScalarProducts(s6, irred, lll.remainders)));
[0]
gap> dim:= NrConjugacyClasses(s6) - Length(lll.irreducibles);
8
gap> rem:= lll.remainders;; Length(rem);
8
gap> gram:= MatScalarProducts(s6, rem, rem);; RankMat(gram);
8
gap> emb1:= OrthogonalEmbeddings(gram, 8);
rec(vectors := [[-1, 0, 1, 0, 1, 0, 1, 0], [1, 0, 0, 1, 0, 1, 0, 0],

[0, 1, 1, 0, 0, 0, 1, 1], [0, 1, 1, 0, 0, 0, 1, 0],
[0, 1, 1, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 1, 0],
[0, -1, 0, 0, 0, 0, 0, 1], [0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 1, 1], [0, 0, 1, 0, 0, 0, 0, 1],
[0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, -1, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 1, 1],
[0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 1]],

norms := [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
solutions := [[1, 2, 3, 7, 11, 12, 13, 15],

[1, 2, 4, 8, 10, 12, 13, 14], [1, 2, 5, 6, 9, 12, 13, 16]])

In the following example we temporarily decrease the line length limit from its default value 80 to 62 in
order to get a nicer output format.

gap> SizeScreen([62,]);;
gap> emb2:= OrthogonalEmbeddingsSpecialDimension(s6, rem, gram, 8);
rec(
irreducibles := [Character(CharacterTable("A6.2_1"),

[5, 1, -1, 2, -1, 0, 1, -3, -1, 1, 0]),
Character(CharacterTable("A6.2_1"),
[5, 1, 2, -1, -1, 0, -3, 1, -1, 0, 1]),

Character(CharacterTable("A6.2_1"),
[10, -2, 1, 1, 0, 0, -2, 2, 0, 1, -1]),

Character(CharacterTable("A6.2_1"),
[10, -2, 1, 1, 0, 0, 2, -2, 0, -1, 1])],

remainders :=
[VirtualCharacter(CharacterTable("A6.2_1"),

[0, 0, 3, -3, 0, 0, 4, -4, 0, 1, -1]),
VirtualCharacter(CharacterTable("A6.2_1"),
[6, 2, 3, 0, 0, 1, 2, -2, 0, -1, -2]),

VirtualCharacter(CharacterTable("A6.2_1"),
[10, 2, 1, 1, 2, 0, 2, 2, -2, -1, -1]),

VirtualCharacter(CharacterTable("A6.2_1"),
[14, 2, 2, -1, 0, -1, 6, 2, 0, 0, -1])])

gap> SizeScreen([80,]);;

7 I Decreased(tbl, chars, decompmat[, choice]) F

Let tbl be an ordinary character table, chars a list of virtual characters of tbl , and decompmat a decomposition
matrix, that is, a matrix M with the property that M tr · X = chars holds, where X is a list of irreducible
characters of tbl . Decreased tries to compute the irreducibles in X or at least some of them.

788 Chapter 70. Class Functions

Usually Decreased is applied to the output of Extract (see 70.10.5) or OrthogonalEmbeddings (see 25.6.1,
70.10.6); in the case of Extract, the choice component corresponding to the decomposition matrix must be
entered as argument choice of Decreased.

Decreased returns fail if it can prove that no list X of irreducible characters corresponding to the arguments
exists; otherwise Decreased returns a record with components

irreducibles
the list of found irreducible characters,

remainders
the remaining reducible characters, and

matrix
the decomposition matrix of the characters in the remainders component.

gap> s4:= CharacterTable("Symmetric", 4);;
gap> x:= Irr(s4);;
gap> red:= [x[1]+x[2], -x[1]-x[3], -x[1]+x[3], -x[2]-x[4]];;
gap> mat:= MatScalarProducts(s4, red, red);
[[2, -1, -1, -1], [-1, 2, 0, 0], [-1, 0, 2, 0], [-1, 0, 0, 2]]
gap> emb:= OrthogonalEmbeddings(mat);
rec(vectors := [[-1, 1, 1, 0], [-1, 1, 0, 1], [1, -1, 0, 0],

[-1, 0, 1, 1], [-1, 0, 1, 0], [-1, 0, 0, 1], [0, -1, 1, 0],
[0, -1, 0, 1], [0, 1, 0, 0], [0, 0, -1, 1], [0, 0, 1, 0],
[0, 0, 0, 1]], norms := [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

solutions := [[1, 6, 7, 12], [2, 5, 8, 11], [3, 4, 9, 10]])
gap> dec:= Decreased(s4, red, emb.vectors{ emb.solutions[1] });;
gap> Display(dec);
rec(
irreducibles :=
[Character(CharacterTable("Sym(4)"), [3, -1, -1, 0, 1]),

Character(CharacterTable("Sym(4)"), [1, -1, 1, 1, -1]),
Character(CharacterTable("Sym(4)"), [2, 0, 2, -1, 0]),
Character(CharacterTable("Sym(4)"), [3, 1, -1, 0, -1])],

remainders := [],
matrix := [])

gap> Decreased(s4, red, emb.vectors{ emb.solutions[2] });
fail
gap> Decreased(s4, red, emb.vectors{ emb.solutions[3] });
fail

8 I DnLattice(tbl, grammat, reducibles) F

Let tbl be an ordinary character table, and reducibles a list of virtual characters of tbl .

DnLattice searches for sublattices isomorphic to root lattices of type Dn , for n ≥ 4, in the lattice that
is generated by reducibles; each vector in reducibles must have norm 2, and the matrix of scalar products
(see 70.8.6) of reducibles must be entered as argument grammat .

DnLattice is able to find irreducible characters if there is a lattice of type Dn with n > 4. In the case n = 4,
DnLattice may fail to determine irreducibles.

DnLattice returns a record with components

irreducibles
the list of found irreducible characters,

Section 10. Reducing Virtual Characters 789

remainders
the list of remaining reducible virtual characters, and

gram
the Gram matrix of the vectors in remainders.

The remainders list is transformed in such a way that the gram matrix is a block diagonal matrix that
exhibits the structure of the lattice generated by the vectors in remainders. So DnLattice might be useful
even if it fails to find irreducible characters.

gap> s4:= CharacterTable("Symmetric", 4);;
gap> red:= [[2, 0, 2, 2, 0], [4, 0, 0, 1, 2],
> [5, -1, 1, -1, 1], [-1, 1, 3, -1, -1]];;
gap> gram:= MatScalarProducts(s4, red, red);
[[2, 1, 0, 0], [1, 2, 1, -1], [0, 1, 2, 0], [0, -1, 0, 2]]
gap> dn:= DnLattice(s4, gram, red);; Display(dn);
rec(
gram := [],
remainders := [],
irreducibles :=
[Character(CharacterTable("Sym(4)"), [2, 0, 2, -1, 0]),

Character(CharacterTable("Sym(4)"), [1, -1, 1, 1, -1]),
Character(CharacterTable("Sym(4)"), [1, 1, 1, 1, 1]),
Character(CharacterTable("Sym(4)"), [3, -1, -1, 0, 1])])

9 I DnLatticeIterative(tbl, reducibles) F

Let tbl be an ordinary character table, and reducibles either a list of virtual characters of tbl or a record
with components remainders and norms, for example a record returned by LLL (see 70.10.4).

DnLatticeIterative was designed for iterative use of DnLattice (see 70.10.8). DnLatticeIterative selects
the vectors of norm 2 among the given virtual character, calls DnLattice for them, reduces the virtual
characters with found irreducibles, calls DnLattice again for the remaining virtual characters, and so on,
until no new irreducibles are found.

DnLatticeIterative returns a record with the same components and meaning of components as LLL
(see 70.10.4).

gap> s4:= CharacterTable("Symmetric", 4);;
gap> red:= [[2, 0, 2, 2, 0], [4, 0, 0, 1, 2],
> [5, -1, 1, -1, 1], [-1, 1, 3, -1, -1]];;
gap> dn:= DnLatticeIterative(s4, red);; Display(dn);
rec(
irreducibles :=
[Character(CharacterTable("Sym(4)"), [2, 0, 2, -1, 0]),

Character(CharacterTable("Sym(4)"), [1, -1, 1, 1, -1]),
Character(CharacterTable("Sym(4)"), [1, 1, 1, 1, 1]),
Character(CharacterTable("Sym(4)"), [3, -1, -1, 0, 1])],

remainders := [],
norms := [])

790 Chapter 70. Class Functions

70.11 Symmetrizations of Class Functions

1 I Symmetrizations([tbl,]characters, n) O
I Symmetrizations([tbl,]characters, Sn) O

Symmetrizations returns the list of symmetrizations of the characters characters of the ordinary character
table tbl with the ordinary irreducible characters of the symmetric group of degree n; instead of the integer
n, the table of the symmetric group can be entered as Sn.

The symmetrization χ[λ] of the character χ of tbl with the character λ of the symmetric group Sn of degree
n is defined by

χ[λ](g) =
1
n!

∑
ρ∈Sn

λ(ρ)
n∏

k=1

χ(gk)ak (ρ),

where ak (ρ) is the number of cycles of length k in ρ.

For special kinds of symmetrizations, see 70.11.2, 70.11.3, 71.4.5 and 70.11.4, 70.11.5.

Note that the returned list may contain zero class functions, and duplicates are not deleted.

gap> tbl:= CharacterTable("A5");;
gap> Symmetrizations(Irr(tbl){ [1 .. 3] }, 3);
[VirtualCharacter(CharacterTable("A5"), [0, 0, 0, 0, 0]),
VirtualCharacter(CharacterTable("A5"), [0, 0, 0, 0, 0]),
Character(CharacterTable("A5"), [1, 1, 1, 1, 1]),
Character(CharacterTable("A5"), [1, 1, 1, 1, 1]),
Character(CharacterTable("A5"), [8, 0, -1, -E(5)-E(5)^4, -E(5)^2-E(5)^3

]), Character(CharacterTable("A5"), [10, -2, 1, 0, 0]),
Character(CharacterTable("A5"), [1, 1, 1, 1, 1]),
Character(CharacterTable("A5"), [8, 0, -1, -E(5)^2-E(5)^3, -E(5)-E(5)^4

]), Character(CharacterTable("A5"), [10, -2, 1, 0, 0])]

2 I SymmetricParts(tbl, characters, n) F

is the list of symmetrizations of the characters characters of the character table tbl with the trivial character
of the symmetric group of degree n (see 70.11.1).

gap> SymmetricParts(tbl, Irr(tbl), 3);
[Character(CharacterTable("A5"), [1, 1, 1, 1, 1]),
Character(CharacterTable("A5"), [10, -2, 1, 0, 0]),
Character(CharacterTable("A5"), [10, -2, 1, 0, 0]),
Character(CharacterTable("A5"), [20, 0, 2, 0, 0]),
Character(CharacterTable("A5"), [35, 3, 2, 0, 0])]

3 I AntiSymmetricParts(tbl, characters, n) F

is the list of symmetrizations of the characters characters of the character table tbl with the alternating
character of the symmetric group of degree n (see 70.11.1).

gap> AntiSymmetricParts(tbl, Irr(tbl), 3);
[VirtualCharacter(CharacterTable("A5"), [0, 0, 0, 0, 0]),
Character(CharacterTable("A5"), [1, 1, 1, 1, 1]),
Character(CharacterTable("A5"), [1, 1, 1, 1, 1]),
Character(CharacterTable("A5"), [4, 0, 1, -1, -1]),
Character(CharacterTable("A5"), [10, -2, 1, 0, 0])]

4 I OrthogonalComponents(tbl, chars, m) F

Section 11. Symmetrizations of Class Functions 791

If χ is a nonlinear character with indicator +1, a splitting of the tensor power χm is given by the so-called
Murnaghan functions (see [Mur58]). These components in general have fewer irreducible constituents than
the symmetrizations with the symmetric group of degree m (see 70.11.1).

OrthogonalComponents returns the Murnaghan components of the nonlinear characters of the character
table tbl in the list chars up to the power m, where m is an integer between 2 and 6.

The Murnaghan functions are implemented as in [Fra82].

Note: If chars is a list of character objects (see 70.8.1) then also the result consists of class function objects.
It is not checked whether all characters in chars do really have indicator +1; if there are characters with
indicator 0 or −1, the result might contain virtual characters (see also 70.11.5), therefore the entries of the
result do in general not know that they are characters.

gap> tbl:= CharacterTable("A8");; chi:= Irr(tbl)[2];
Character(CharacterTable("A8"), [7, -1, 3, 4, 1, -1, 1, 2, 0, -1, 0, 0,
-1, -1])

gap> OrthogonalComponents(tbl, [chi], 3);
[ClassFunction(CharacterTable("A8"), [21, -3, 1, 6, 0, 1, -1, 1, -2, 0,

0, 0, 1, 1]), ClassFunction(CharacterTable("A8"),
[27, 3, 7, 9, 0, -1, 1, 2, 1, 0, -1, -1, -1, -1]),

ClassFunction(CharacterTable("A8"), [105, 1, 5, 15, -3, 1, -1, 0, -1,
1, 0, 0, 0, 0]), ClassFunction(CharacterTable("A8"),

[35, 3, -5, 5, 2, -1, -1, 0, 1, 0, 0, 0, 0, 0]),
ClassFunction(CharacterTable("A8"), [77, -3, 13, 17, 2, 1, 1, 2, 1, 0,

0, 0, 2, 2])]

5 I SymplecticComponents(tbl, chars, m) F

If χ is a (nonlinear) character with indicator −1, a splitting of the tensor power χm is given in terms of the so-
called Murnaghan functions (see [Mur58]). These components in general have fewer irreducible constituents
than the symmetrizations with the symmetric group of degree m (see 70.11.1).

SymplecticComponents returns the symplectic symmetrizations of the nonlinear characters of the character
table tbl in the list chars up to the power m, where m is an integer between 2 and 5.

Note: If chars is a list of character objects (see 70.8.1) then also the result consists of class function objects.
It is not checked whether all characters in chars do really have indicator −1; if there are characters with
indicator 0 or +1, the result might contain virtual characters (see also 70.11.4), therefore the entries of the
result do in general not know that they are characters.

gap> tbl:= CharacterTable("U3(3)");; chi:= Irr(tbl)[2];
Character(CharacterTable("U3(3)"), [6, -2, -3, 0, -2, -2, 2, 1, -1, -1,
0, 0, 1, 1])

gap> SymplecticComponents(tbl, [chi], 3);
[ClassFunction(CharacterTable("U3(3)"), [14, -2, 5, -1, 2, 2, 2, 1, 0,

0, 0, 0, -1, -1]), ClassFunction(CharacterTable("U3(3)"),
[21, 5, 3, 0, 1, 1, 1, -1, 0, 0, -1, -1, 1, 1]),

ClassFunction(CharacterTable("U3(3)"), [64, 0, -8, -2, 0, 0, 0, 0, 1,
1, 0, 0, 0, 0]), ClassFunction(CharacterTable("U3(3)"),

[14, 6, -4, 2, -2, -2, 2, 0, 0, 0, 0, 0, -2, -2]),
ClassFunction(CharacterTable("U3(3)"), [56, -8, 2, 2, 0, 0, 0, -2, 0,

0, 0, 0, 0, 0])]

792 Chapter 70. Class Functions

70.12 Molien Series

1 I MolienSeries(psi) F
I MolienSeries(psi, chi) F
I MolienSeries(tbl, psi) F
I MolienSeries(tbl, psi, chi) F

The Molien series of the character ψ, relative to the character χ, is the rational function given by the
series

Mψ,χ(z) =
∞∑

d=0

[χ, ψ[d]]z d

where ψ[d] denotes the symmetrization of ψ with the trivial character of the symmetric group Sd (see 70.11.2).

MolienSeries returns the Molien series of psi , relative to chi , where psi and chi must be characters of the
same character table; this table must be entered as tbl if chi and psi are only lists of character values. The
default for chi is the trivial character of tbl .

The return value of MolienSeries stores a value for the attribute MolienSeriesInfo (see 70.12.2). This
admits the computation of coefficients of the series with ValueMolienSeries (see 70.12.3). Furthermore,
this attribute gives access to numerator and denominator of the Molien series viewed as rational function,
where the denominator is a product of polynomials of the form (1−z r)k ; the Molien series is also displayed in
this form. Note that such a representation is not unique, one can use MolienSeriesWithGivenDenominator
(see 70.12.4) to obtain the series with a prescribed denominator.

For more information about Molien series, see [NPP84].

gap> t:= CharacterTable(AlternatingGroup(5));;
gap> psi:= First(Irr(t), x -> Degree(x) = 3);;
gap> mol:= MolienSeries(psi);
(1-z^2-z^3+z^6+z^7-z^9) / ((1-z^5)*(1-z^3)*(1-z^2)^2)

2 I MolienSeriesInfo(ratfun) A

If the rational function ratfun was constructed by MolienSeries (see 70.12.1), a representation as quotient of
polynomials is known such that the denominator is a product of terms of the form (1−z r)k . This information
is encoded as value of MolienSeriesInfo. Additionally, there is a special PrintObj method for Molien series
based on this.

MolienSeriesInfo returns a record that describes the rational function ratfun as a Molien series. The
components of this record are

numer
numerator of ratfun (in general a multiple of the numerator one gets by NumeratorOfRational-
Function),

denom
denominator of ratfun (in general a multiple of the denominator one gets by NumeratorOfRational-
Function),

ratfun
the rational function ratfun itself,

numerstring
string corresponding to the polynomial numer, expressed in terms of z,

denomstring
string corresponding to the polynomial denom, expressed in terms of z,

denominfo
a list of the form [[r1, k1], . . . , [rn , kn]] such that denom is

∏n
i=1(1− z ri)ki .

Section 13. Possible Permutation Characters 793

summands
a list of records, each with the components numer, r, and k, describing the summand numer/(1−z r)k ,

size
the order of the underlying matrix group,

degree
the degree of the underlying matrix representation.

gap> HasMolienSeriesInfo(mol);
true
gap> MolienSeriesInfo(mol);
rec(summands := [rec(numer := [-24, -12, -24], r := 5, k := 1),

rec(numer := [-20], r := 3, k := 1),
rec(numer := [-45/4, 75/4, -15/4, -15/4], r := 2, k := 2),
rec(numer := [-1], r := 1, k := 3),
rec(numer := [-15/4], r := 1, k := 1)], size := 60, degree := 3,

numer := -x_1^9+x_1^7+x_1^6-x_1^3-x_1^2+1,
denom := x_1^12-2*x_1^10-x_1^9+x_1^8+x_1^7+x_1^5+x_1^4-x_1^3-2*x_1^2+1,
denominfo := [5, 1, 3, 1, 2, 2], numerstring := "1-z^2-z^3+z^6+z^7-z^9",
denomstring := "(1-z^5)*(1-z^3)*(1-z^2)^2",
ratfun := (1-z^2-z^3+z^6+z^7-z^9) / ((1-z^5)*(1-z^3)*(1-z^2)^2))

3 I ValueMolienSeries(molser, i) F

is the i -th coefficient of the Molien series series computed by MolienSeries.

gap> List([0 .. 20], i -> ValueMolienSeries(mol, i));
[1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 3, 0, 4, 0, 4, 1, 5, 1, 6, 1, 7]

4 I MolienSeriesWithGivenDenominator(molser, list) F

is a Molien series equal to molser as rational function, but viewed as quotient with denominator
∏n

i=1(1−z ri),
where list = [r1, r2, . . . , rn]. If molser cannot be represented this way, fail is returned.

gap> MolienSeriesWithGivenDenominator(mol, [2, 6, 10]);
(1+z^15) / ((1-z^10)*(1-z^6)*(1-z^2))

70.13 Possible Permutation Characters

For groups H and G with H ≤ G , the induced character (1G)H is called the permutation character of
the operation of G on the right cosets of H . If only the character table of G is available and not the group G
itself, one can try to get information about possible subgroups of G by inspection of those G-class functions
that might be permutation characters, using that such a class function π must have at least the following
properties. (For details, see [Isa76], Theorem 5.18.)

(a) π is a character of G ,

(b) π(g) is a nonnegative integer for all g ∈ G ,

(c) π(1) divides |G |,
(d) π(gn) ≥ π(g) for g ∈ G and integers n,

(e) [π, 1G] = 1,

(f) the multiplicity of any rational irreducible G-character ψ as a constituent of π is at most ψ(1)/[ψ,ψ],

(g) π(g) = 0 if the order of g does not divide |G |/π(1),

(h) π(1)|NG(g)| divides π(g)|G | for all g ∈ G ,

794 Chapter 70. Class Functions

(i) π(g) ≤ (|G | − π(1))/(|gG ||GalG(g)|) for all nonidentity g ∈ G , where |GalG(g)| denotes the number of
conjugacy classes of G that contain generators of the group 〈g〉,

(j) if p is a prime that divides |G |/π(1) only once then s/(p − 1) divides |G |/π(1) and is congruent to 1
modulo p, where s is the number of elements of order p in the (hypothetical) subgroup H for which
π = (1H)G holds. (Note that s/(p − 1) equals the number of Sylow p subgroups in H .)

Any G-class function with these properties is called a possible permutation character in GAP.

(Condition (d) is checked only for those power maps that are stored in the character table of G ; clearly (d)
holds for all integers if it holds for all prime divisors of the group order |G |.)
GAP provides some algorithms to compute possible permutation characters (see 70.14.1), and also provides
functions to check a few more criteria whether a given character can be a transitive permutation character
(see 70.14.2).

Some information about the subgroup U can be computed from the permutation character (1U)G using
PermCharInfo (see 70.13.1).

1 I PermCharInfo(tbl, permchars[, "LaTeX"]) F
I PermCharInfo(tbl, permchars[, "HTML"]) F

Let tbl be the ordinary character table of the group G , and permchars either the permutation character
(1U)G , for a subgroup U of G , or a list of such permutation characters. PermCharInfo returns a record with
the following components.

contained:
a list containing, for each character ψ = (1U)G in permchars, a list containing at position i the
number ψ[i]|U |/SizesCentralizers(tbl)[i], which equals the number of those elements of U that
are contained in class i of tbl ,

bound:
a list containing, for each character ψ = (1U)G in permchars, a list containing at position i the
number |U |/ gcd(|U |, SizesCentralizers(tbl)[i]), which divides the class length in U of an element
in class i of tbl ,

display:
a record that can be used as second argument of Display to display each permutation character
in permchars and the corresponding components contained and bound, for those classes where at
least one character of permchars is nonzero,

ATLAS:
a list of strings describing the decomposition of the permutation characters in permchars into the
irreducible characters of tbl , given in an ATLAS-like notation. This means that the irreducible
constituents are indicated by their degrees followed by lower case letters a, b, c, . . ., which indicate
the successive irreducible characters of tbl of that degree, in the order in which they appear in Irr(
tbl). A sequence of small letters (not necessarily distinct) after a single number indicates a sum of
irreducible constituents all of the same degree, an exponent n for the letter lett means that lett is
repeated n times. The default notation for exponentiation is lett^n, this is also chosen if the optional
third argument is the string "LaTeX"; if the third argument is the string "HTML" then exponentiation
is denoted by lett<sup>n<sup>.

gap> t:= CharacterTable("A6");;
gap> psi:= Sum(Irr(t){ [1, 3, 6] });
Character(CharacterTable("A6"), [15, 3, 0, 3, 1, 0, 0])
gap> info:= PermCharInfo(t, psi);
rec(contained := [[1, 9, 0, 8, 6, 0, 0]],
bound := [[1, 3, 8, 8, 6, 24, 24]],

Section 13. Possible Permutation Characters 795

display := rec(classes := [1, 2, 4, 5],
chars := [[15, 3, 0, 3, 1, 0, 0], [1, 9, 0, 8, 6, 0, 0],

[1, 3, 8, 8, 6, 24, 24]], letter := "I"),
ATLAS := ["1a+5b+9a"])

gap> Display(t, info.display);
A6

2 3 3 . 2
3 2 . 2 .
5 1 . . .

1a 2a 3b 4a
2P 1a 1a 3b 2a
3P 1a 2a 1a 4a
5P 1a 2a 3b 4a

Y.1 15 3 3 1
Y.2 1 9 8 6
Y.3 1 3 8 6
gap> j1:= CharacterTable("J1");;
gap> psi:= TrivialCharacter(CharacterTable("7:6"))^j1;
Character(CharacterTable("J1"), [4180, 20, 10, 0, 0, 2, 1, 0, 0, 0, 0, 0,
0, 0, 0])

gap> PermCharInfo(j1, psi).ATLAS;
["1a+56aabb+76aaab+77aabbcc+120aaabbbccc+133a^{4}bbcc+209a^{5}"]

2 I PermCharInfoRelative(tbl, tbl2, permchars) F

Let tbl and tbl2 be the ordinary character tables of two groups H and G , respectively, where H is of
index 2 in G , and permchars either the permutation character (1U)G , for a subgroup U of G , or a list
of such permutation characters. PermCharInfoRelative returns a record with the same components as
PermCharInfo (see 70.13.1), the only exception is that the entries of the ATLAS component are names
relative to tbl .

More precisely, the i -th entry of the ATLAS component is a string describing the decomposition of the i -th
entry in permchars. The degrees and distinguishing letters of the constituents refer to the irreducibles of tbl ,
as follows. The two irreducible characters of tbl2 of degree N , say, that extend the irreducible character N a
of tbl are denoted by N a+ and N a−. The irreducible character of tbl2 of degree 2N , say, whose restriction
to tbl is the sum of the irreducible characters N a and N b is denoted as N ab. Multiplicities larger than 1 of
constituents are denoted by exponents.

(This format is useful mainly for multiplicity free permutation characters.)

gap> t:= CharacterTable("A5");;
gap> t2:= CharacterTable("A5.2");;
gap> List(Irr(t2), x -> x[1]);
[1, 1, 6, 4, 4, 5, 5]
gap> List(Irr(t), x -> x[1]);
[1, 3, 3, 4, 5]
gap> permchars:= List([[1], [1,2], [1,7], [1,3,4,4,6,6,7]],
> l -> Sum(Irr(t2){ l }));
[Character(CharacterTable("A5.2"), [1, 1, 1, 1, 1, 1, 1]),
Character(CharacterTable("A5.2"), [2, 2, 2, 2, 0, 0, 0]),
Character(CharacterTable("A5.2"), [6, 2, 0, 1, 0, 2, 0]),

796 Chapter 70. Class Functions

Character(CharacterTable("A5.2"), [30, 2, 0, 0, 6, 0, 0])]
gap> info:= PermCharInfoRelative(t, t2, permchars);;
gap> info.ATLAS;
["1a^+", "1a^{\\pm}", "1a^++5a^-", "1a^++3ab+4(a^+)^{2}+5a^{\\pm}a^+"]

70.14 Computing Possible Permutation Characters

1 I PermChars(tbl) F
I PermChars(tbl, degree) F
I PermChars(tbl, arec) F

GAP provides several algorithms to determine possible permutation characters from a given character table.
They are described in detail in [BP98]. The algorithm is selected from the choice of the record components
of the optional argument record arec. The user is encouraged to try different approaches, especially if one
choice fails to come to an end.
Regardless of the algorithm used in a specific case, PermChars returns a list of all possible permutation
characters with the properties described by arec. There is no guarantee that a character of this list is in
fact a permutation character. But an empty list always means there is no permutation character with these
properties (e.g., of a certain degree).
In the first form PermChars returns the list of all possible permutation characters of the group with character
table tbl . This list might be rather long for big groups, and its computation might take much time. The
algorithm is described in Section 3.2 in [BP98]; it depends on a preprocessing step, where the inequalities
arising from the condition π(g) ≥ 0 are transformed into a system of inequalities that guides the search
(see 70.14.5). So the following commands compute the list of 39 possible permutation characters of the
Mathieu group M11.

gap> m11:= CharacterTable("M11");;
gap> SetName(m11, "m11");
gap> perms:= PermChars(m11);;
gap> Length(perms);
39

There are two different search strategies for this algorithm. The default strategy simply constructs all
characters with nonnegative values and then tests for each such character whether its degree is a divisor of
the order of the group. The other strategy uses the inequalities to predict whether a character of a certain
degree can lie in the currently searched part of the search tree. To choose this strategy, use the third form of
PermChars and set the component degree to the range of degrees (which might also be a range containing
all divisors of the group order) you want to look for; additionally, the record component ineq can take the
inequalities computed by Inequalities if they are needed more than once.
In the second form PermChars returns the list of all possible permutation characters of tbl that have degree
degree. For that purpose, a preprocessing step is performed where essentially the rational character table is
inverted in order to determine boundary points for the simplex in which the possible permutation characters
of the given degree must lie (see 70.14.3). The algorithm is described at the end of Section 3.2 in [BP98];
Note that inverting big integer matrices needs a lot of time and space. So this preprocessing is restricted to
groups with less than 100 classes, say.

gap> deg220:= PermChars(m11, 220);
[Character(m11, [220, 4, 4, 0, 0, 4, 0, 0, 0, 0]),
Character(m11, [220, 12, 4, 4, 0, 0, 0, 0, 0, 0]),
Character(m11, [220, 20, 4, 0, 0, 2, 0, 0, 0, 0])]

In the third form PermChars returns the list of all possible permutation characters that have the properties
described by the argument record arec. One such situation has been mentioned above. If arec contains a
degree as value of the record component degree then PermChars will behave exactly as in the second form.

Section 14. Computing Possible Permutation Characters 797

gap> deg220 = PermChars(m11, rec(degree:= 220));
true

For the meaning of additional components of arec besides degree, see 70.14.4.

Instead of degree, arec may have the component torso bound to a list that contains some known values of
the required characters at the right positions; at least the degree arec.torso[1] must be an integer. In this
case, the algorithm described in Section 3.3 in [BP98] is chosen. The component chars, if present, holds a
list of all those rational irreducible characters of tbl that might be constituents of the required characters.

(Note: If arec.chars is bound and does not contain all rational irreducible characters of tbl , GAP checks
whether the scalar products of all class functions in the result list with the omitted rational irreducible
characters of tbl are nonnegative; so there should be nontrivial reasons for excluding a character that is
known to be not a constituent of the desired possible permutation characters.)

gap> PermChars(m11, rec(torso:= [220]));
[Character(m11, [220, 4, 4, 0, 0, 4, 0, 0, 0, 0]),
Character(m11, [220, 20, 4, 0, 0, 2, 0, 0, 0, 0]),
Character(m11, [220, 12, 4, 4, 0, 0, 0, 0, 0, 0])]

gap> PermChars(m11, rec(torso:= [220,,,,, 2]));
[Character(m11, [220, 20, 4, 0, 0, 2, 0, 0, 0, 0])]

An additional restriction on the possible permutation characters computed can be forced if arec contains, in
addition to torso, the components normalsubgroup and nonfaithful, with values a list of class positions
of a normal subgroup N of the group G of tbl and a possible permutation character π of G , respectively, such
that N is contained in the kernel of π. In this case, PermChars returns the list of those possible permutation
characters ψ of tbl coinciding with torso wherever its values are bound and having the property that no
irreducible constituent of ψ − π has N in its kernel. If the component chars is bound in arec then the
above statements apply. An interpretation of the computed characters is the following. Suppose there exists
a subgroup V of G such that π = (1V)G ; Then N ≤ V , and if a computed character is of the form (1U)G

for a subgroup U of G then V = UN .

gap> s4:= CharacterTable("Symmetric", 4);;
gap> nsg:= ClassPositionsOfDerivedSubgroup(s4);;
gap> pi:= TrivialCharacter(s4);;
gap> PermChars(s4, rec(torso:= [12], normalsubgroup:= nsg,
> nonfaithful:= pi));
[Character(CharacterTable("Sym(4)"), [12, 2, 0, 0, 0])]
gap> pi:= Sum(Filtered(Irr(s4),
> chi -> IsSubset(ClassPositionsOfKernel(chi), nsg)));
Character(CharacterTable("Sym(4)"), [2, 0, 2, 2, 0])
gap> PermChars(s4, rec(torso:= [12], normalsubgroup:= nsg,
> nonfaithful:= pi));
[Character(CharacterTable("Sym(4)"), [12, 0, 4, 0, 0])]

The class functions returned by PermChars have the properties tested by TestPerm1, TestPerm2, and Test-
Perm3. So they are possible permutation characters. See 70.14.2 for criteria whether a possible permutation
character can in fact be a permutation character.

2 I TestPerm1(tbl, char) F
I TestPerm2(tbl, char) F
I TestPerm3(tbl, chars) F
I TestPerm4(tbl, chars) F
I TestPerm5(tbl, chars, modtbl) F

The first three of these functions implement tests of the properties of possible permutation characters listed
in Section 70.13, The other two implement test of additional properties. Let tbl be the ordinary character

798 Chapter 70. Class Functions

table of a group G , say, char a rational character of tbl , and chars a list of rational characters of tbl . For
applying TestPerm5, the knowledge of a p-modular Brauer table modtbl of G is required. TestPerm4 and
TestPerm5 expect the characters in chars to satisfy the conditions checked by TestPerm1 and TestPerm2
(see below).

The return values of the functions were chosen parallel to the tests listed in [NPP84].

TestPerm1 return 1 or 2 if char fails because of (T1) or (T2), respectively; this corresponds to the criteria
(b) and (d). Note that only those power maps are considered that are stored on tbl . If char satisfies the
conditions, 0 is returned.

TestPerm2 returns 1 if char fails because of the criterion (c), it returns 3, 4, or 5 if char fails because of
(T3), (T4), or (T5), respectively; these tests correspond to (g), a weaker form of (h), and (j). If char satisfies
the conditions, 0 is returned.

TestPerm3 returns the list of all those class functions in the list chars that satisfy criterion (h); this is a
stronger version of (T6).

TestPerm4 returns the list of all those class functions in the list chars that satisfy (T8) and (T9) for each
prime divisor p of the order of G ; these tests use modular representation theory but do not require the
knowledge of decomposition matrices (cf. TestPerm5 below).

(T8) implements the test of the fact that in the case that p divides |G | and the degree of a transitive
permutation character π exactly once, the projective cover of the trivial character is a summand of π. (This
test is omitted if the projective cover cannot be identified.)

Given a permutation character π of a group G and a prime integer p, the restriction πB to a p-block B
of G has the following property, which is checked by (T9). For each g ∈ G such that gn is a p-element of
G , πB (gn) is a nonnegative integer that satisfies |πB (g)| ≤ πB (gn) ≤ π(gn). (This is Corollary A on p. 113
of [Sco73].)

TestPerm5 requires the p-modular Brauer table modtbl of G , for some prime p dividing the order of G , and
checks whether those characters in the list chars whose degree is divisible by the p-part of the order of G
can be decomposed into projective indecomposable characters; TestPerm5 returns the sublist of all those
characters in chars that either satisfy this condition or to which the test does not apply.

gap> tbl:= CharacterTable("A5");;
gap> rat:= RationalizedMat(Irr(tbl));
[Character(CharacterTable("A5"), [1, 1, 1, 1, 1]),
Character(CharacterTable("A5"), [6, -2, 0, 1, 1]),
Character(CharacterTable("A5"), [4, 0, 1, -1, -1]),
Character(CharacterTable("A5"), [5, 1, -1, 0, 0])]

gap> tup:= Filtered(Tuples([0, 1], 4), x -> not IsZero(x));
[[0, 0, 0, 1], [0, 0, 1, 0], [0, 0, 1, 1], [0, 1, 0, 0],
[0, 1, 0, 1], [0, 1, 1, 0], [0, 1, 1, 1], [1, 0, 0, 0],
[1, 0, 0, 1], [1, 0, 1, 0], [1, 0, 1, 1], [1, 1, 0, 0],
[1, 1, 0, 1], [1, 1, 1, 0], [1, 1, 1, 1]]

gap> lincomb:= List(tup, coeff -> coeff * rat);;
gap> List(lincomb, psi -> TestPerm1(tbl, psi));
[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0]
gap> List(lincomb, psi -> TestPerm2(tbl, psi));
[0, 5, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1]
gap> Set(List(TestPerm3(tbl, lincomb), x -> Position(lincomb, x)));
[1, 4, 6, 7, 8, 9, 10, 11, 13]
gap> tbl:= CharacterTable("A7");
CharacterTable("A7")
gap> perms:= PermChars(tbl, rec(degree:= 315));
[Character(CharacterTable("A7"), [315, 3, 0, 0, 3, 0, 0, 0, 0]),

Section 14. Computing Possible Permutation Characters 799

Character(CharacterTable("A7"), [315, 15, 0, 0, 1, 0, 0, 0, 0])]
gap> TestPerm4(tbl, perms);
[Character(CharacterTable("A7"), [315, 15, 0, 0, 1, 0, 0, 0, 0])]
gap> perms:= PermChars(tbl, rec(degree:= 15));
[Character(CharacterTable("A7"), [15, 3, 0, 3, 1, 0, 0, 1, 1]),
Character(CharacterTable("A7"), [15, 3, 3, 0, 1, 0, 3, 1, 1])]

gap> TestPerm5(tbl, perms, tbl mod 5);
[Character(CharacterTable("A7"), [15, 3, 0, 3, 1, 0, 0, 1, 1])]

3 I PermBounds(tbl, d) F

Let tbl be the ordinary character table of the group G . All G-characters π satisfying π(g) > 0 and π(1) = d ,
for a given degree d , lie in a simplex described by these conditions. PermBounds computes the boundary points
of this simplex for d = 0, from which the boundary points for any other d are easily derived. (Some conditions
from the power maps of tbl are also involved.) For this purpose, a matrix similar to the rational character
table of G has to be inverted. These boundary points are used by PermChars (see 70.14.1) to construct all
possible permutation characters (see 70.13) of a given degree. PermChars either calls PermBounds or takes
this information from the bounds component of its argument record.

4 I PermComb(tbl, arec) F

PermComb computes possible permutation characters of the character table tbl by the improved combinatorial
approach described at the end of Section 3.2 in [BP98].
For computing the possible linear combinations without prescribing better bounds (i.e., when the compu-
tation of bounds shall be suppressed), enter arec:= rec(degree := degree, bounds := false), where
degree is the character degree; this is useful if the multiplicities are expected to be small, and if this is forced
by high irreducible degrees.
A list of upper bounds on the multiplicities of the rational irreducibles characters can be explicitly prescribed
as a maxmult component in arec.

5 I Inequalities(tbl, chars[, option]) O

Let tbl be the ordinary character table of a group G . The condition π(g) ≥ 0 for every possible permutation
character π of G places restrictions on the multiplicities ai of the irreducible constituents χi of π =

∑r
i=1 aiχi .

For every element g ∈ G , we have
∑r

i=1 aiχi (g) ≥ 0. The power maps provide even stronger conditions.
This system of inequalities is kind of diagonalized, resulting in a system of inequalities restricting ai in
terms of aj , j < i . These inequalities are used to construct characters with nonnegative values (see 70.14.1).
PermChars either calls Inequalities or takes this information from the ineq component of its argument
record.
The number of inequalities arising in the process of diagonalization may grow very strongly.
There are two ways to organize the projection. The first, which is chosen if no option argument is present,
is the straight approach which takes the rational irreducible characters in their original order and by this
guarantees the character with the smallest degree to be considered first. The other way, which is chosen if
the string "small" is entered as third argument option, tries to keep the number of intermediate inequalities
small by eventually changing the order of characters.

gap> tbl:= CharacterTable("M11");;
gap> PermComb(tbl, rec(degree:= 110));
[Character(CharacterTable("M11"), [110, 6, 2, 2, 0, 0, 2, 2, 0, 0]),
Character(CharacterTable("M11"), [110, 6, 2, 6, 0, 0, 0, 0, 0, 0]),
Character(CharacterTable("M11"), [110, 14, 2, 2, 0, 2, 0, 0, 0, 0])]

gap> # Now compute only multiplicity free permutation characters.
gap> bounds:= List(RationalizedMat(Irr(tbl)), x -> 1);;
gap> PermComb(tbl, rec(degree:= 110, maxmult:= bounds));
[Character(CharacterTable("M11"), [110, 6, 2, 2, 0, 0, 2, 2, 0, 0])]

800 Chapter 70. Class Functions

70.15 Operations for Brauer Characters

1 I FrobeniusCharacterValue(value, p) F

Let value be a cyclotomic whose coefficients over the rationals are in the ring Zp of p-local numbers, where
p is a prime integer. Assume that value lies in Zp [ζ] for ζ = E(pn − 1), for some positive integer n.

FrobeniusCharacterValue returns the image of value under the ring homomorphism from Zp [ζ] to the field
with pn elements that is defined with the help of Conway polynomials (see 57.5.1), more information can be
found in Sections 2–5 of [JLPW95].

If value is a Brauer character value in characteristic p then the result can be described as the corresponding
value of the Frobenius character, that is, as the trace of a representing matrix with the given Brauer character
value.

If the result of FrobeniusCharacterValue cannot be expressed as an element of a finite field in GAP (see
Chapter 57) then FrobeniusCharacterValue returns fail.

If the Conway polynomial of degree n is required for the computation then it is computed only if IsCheap-
ConwayPolynomial returns true when it is called with p and n, otherwise fail is returned.

2 I BrauerCharacterValue(mat) A

For an invertible matrix mat over a finite field F , BrauerCharacterValue returns the Brauer character
value of mat if the order of mat is coprime to the characteristic of F , and fail otherwise.

The Brauer character value of a matrix is the sum of complex lifts of its eigenvalues.

gap> g:= SL(2,4);; # 2-dim. irreducible representation of A5
gap> ccl:= ConjugacyClasses(g);;
gap> rep:= List(ccl, Representative);;
gap> List(rep, Order);
[1, 2, 5, 5, 3]
gap> phi:= List(rep, BrauerCharacterValue);
[2, fail, E(5)^2+E(5)^3, E(5)+E(5)^4, -1]
gap> List(phi{ [1, 3, 4, 5] }, x -> FrobeniusCharacterValue(x, 2));
[0*Z(2), Z(2^2), Z(2^2)^2, Z(2)^0]
gap> List(rep{ [1, 3, 4, 5] }, TraceMat);
[0*Z(2), Z(2^2), Z(2^2)^2, Z(2)^0]

3 I SizeOfFieldOfDefinition(val, p) F

For a cyclotomic or a list of cyclotomics val , and a prime integer p, SizeOfFieldOfDefinition returns the
size of the smallest finite field in characteristic p that contains the p-modular reduction of val .

The reduction map is defined as in [JLPW95], that is, the complex (pd − 1)-th root of unity E(qd − 1) is
mapped to the residue class of the indeterminate, modulo the ideal spanned by the Conway polynomial
(see 57.5.1) of degree d over the field with p elements.

If val is a Brauer character then the value returned is the size of the smallest finite field in characteristic p
over which the corresponding representation lives.

4 I RealizableBrauerCharacters(matrix, q) F

For a list matrix of absolutely irreducible Brauer characters in characteristic p, and a power q of p, Realiz-
ableBrauerCharacters returns a duplicate-free list of sums of Frobenius conjugates of the rows of matrix ,
each irreducible over the field with q elements.

Section 16. Domains Generated by Class Functions 801

gap> irr:= Irr(CharacterTable("A5") mod 2);
[Character(BrauerTable("A5", 2), [1, 1, 1, 1]),
Character(BrauerTable("A5", 2), [2, -1, E(5)+E(5)^4, E(5)^2+E(5)^3]),
Character(BrauerTable("A5", 2), [2, -1, E(5)^2+E(5)^3, E(5)+E(5)^4]),
Character(BrauerTable("A5", 2), [4, 1, -1, -1])]

gap> List(irr, phi -> SizeOfFieldOfDefinition(phi, 2));
[2, 4, 4, 2]
gap> RealizableBrauerCharacters(irr, 2);
[Character(BrauerTable("A5", 2), [1, 1, 1, 1]),
ClassFunction(BrauerTable("A5", 2), [4, -2, -1, -1]),
Character(BrauerTable("A5", 2), [4, 1, -1, -1])]

70.16 Domains Generated by Class Functions

GAP supports groups, vector spaces, and algebras generated by class functions.

71
Maps Concerning
Character Tables

Besides the characters, power maps (see 71.1) are an important part of a character table. Often their
computation is not easy, and if the table has no access to the underlying group then in general they cannot
be obtained from the matrix of irreducible characters; so it is useful to store them on the table.

If not only a single table is considered but different tables of a group and a subgroup or of a group and
a factor group are used, also class fusion maps (see 71.2) must be known to get information about the
embedding or simply to induce or restrict characters (see 70.9).

These are examples of functions from conjugacy classes which will be called maps in the following. (This
should not be confused with the term mapping, see 31.) In GAP, maps are represented by lists. Also each
character, each list of element orders, centralizer orders, or class lengths are maps, and for a permutation
perm of classes, ListPerm(perm) is a map.

When maps are constructed without access to a group, often one only knows that the image of a given class
is contained in a set of possible images, e.g., that the image of a class under a subgroup fusion is in the set
of all classes with the same element order. Using further information, such as centralizer orders, power maps
and the restriction of characters, the sets of possible images can be restricted further. In many cases, at the
end the images are uniquely determined.

Because of this approach, many functions in this chapter work not only with maps but with parametrized
maps (or paramaps for short). More about parametrized maps can be found in Section 71.3.

The implementation follows [Bre91], a description of the main ideas together with several examples can be
found in [Bre99].

Several examples in this chapter require the GAP Character Table Library to be available. If it is not yet
loaded then we load it now.

gap> LoadPackage("ctbllib");
true

71.1 Power Maps

The n-th power map of a character table is represented by a list that stores at position i the position of the
class containing the n-th powers of the elements in the i -th class. The n-th power map can be composed
from the power maps of the prime divisors p of n, so usually only power maps for primes p are actually
stored in the character table.

For an ordinary character table tbl with access to its underlying group G , the p-th power map of tbl can
be computed using the identification of the conjugacy classes of G with the classes of tbl . For an ordinary
character table without access to a group, in general the p-th power maps (and hence also the element
orders) for prime divisors p of the group order are not uniquely determined by the matrix of irreducible
characters. So only necessary conditions can be checked in this case, which in general yields only a list of
several possibilities for the desired power map. Character tables of the GAP character table library store all
p-th power maps for prime divisors p of the group order.

Power maps of Brauer tables can be derived from the power maps of the underlying ordinary tables.

Section 1. Power Maps 803

For (computing and) accessing the n-th power map of a character table, PowerMap (see 71.1.1) can be used;
if the n-th power map cannot be uniquely determined then PowerMap returns fail.

The list of all possible p-th power maps of a table in the sense that certain necessary conditions are satisfied
can be computed with PossiblePowerMaps (see 71.1.2). This provides a default strategy, the subroutines
are listed in Section 71.4.

1 I PowerMap(tbl, n[, class]) O
I PowerMapOp(tbl, n[, class]) O
I ComputedPowerMaps(tbl) A

Called with first argument a character table tbl and second argument an integer n, PowerMap returns the
n-th power map of tbl . This is a list containing at position i the position of the class of n-th powers of the
elements in the i -th class of tbl .

If the additional third argument class is present then the position of n-th powers of the class-th class is
returned.

If the n-th power map is not uniquely determined by tbl then fail is returned. This can happen only if tbl
has no access to its underlying group.

The power maps of tbl that were computed already by PowerMap are stored in tbl as value of the attribute
ComputedPowerMaps, the n-th power map at position n. PowerMap checks whether the desired power map is
already stored, computes it using the operation PowerMapOp if it is not yet known, and stores it. So methods
for the computation of power maps can be installed for the operation PowerMapOp.

gap> tbl:= CharacterTable("L3(2)");;
gap> ComputedPowerMaps(tbl);
[, [1, 1, 3, 2, 5, 6], [1, 2, 1, 4, 6, 5],,,, [1, 2, 3, 4, 1, 1]]
gap> PowerMap(tbl, 5);
[1, 2, 3, 4, 6, 5]
gap> ComputedPowerMaps(tbl);
[, [1, 1, 3, 2, 5, 6], [1, 2, 1, 4, 6, 5],, [1, 2, 3, 4, 6, 5],,
[1, 2, 3, 4, 1, 1]]

gap> PowerMap(tbl, 137, 2);
2

2 I PossiblePowerMaps(tbl, p[, options]) O

For the ordinary character table tbl of the group G , say, and a prime integer p, PossiblePowerMaps returns
the list of all maps that have the following properties of the p-th power map of tbl . (Representative orders
are used only if the OrdersClassRepresentatives value of tbl is known, see 69.8.5.)

1. For class i , the centralizer order of the image is a multiple of the i -th centralizer order; if the elements
in the i -th class have order coprime to p then the centralizer orders of class i and its image are equal.

2. Let n be the order of elements in class i . If prime divides n then the images have order n/p; otherwise
the images have order n. These criteria are checked in InitPowerMap (see 71.4.1).

3. For each character χ of G and each element g in G , the values χ(gp) and GaloisCyc(χ(g), p) are
algebraic integers that are congruent modulo p; if p does not divide the element order of g then the
two values are equal. This congruence is checked for the characters specified below in the discussion of
the options argument; For linear characters λ among these characters, the condition χ(g)p = χ(gp) is
checked. The corresponding function is Congruences (see 71.4.2).

4. For each character χ of G , the kernel is a normal subgroup N , and gp ∈ N for all g ∈ N ; moreover, if
N has index p in G then gp ∈ N for all g ∈ G , and if the index of N in G is coprime to p then gp 6∈ N
for each g 6∈ N . These conditions are checked for the kernels of all characters χ specified below, the
corresponding function is ConsiderKernels (see 71.4.3).

804 Chapter 71. Maps Concerning Character Tables

5. If p is larger than the order m of an element g ∈ G then the class of gp is determined by the power
maps for primes dividing the residue of p modulo m. If these power maps are stored in the Com-
putedPowerMaps value (see 71.1.1) of tbl then this information is used. This criterion is checked in
ConsiderSmallerPowerMaps (see 71.4.4).

6. For each character χ of G , the symmetrization ψ defined by ψ(g) = (χ(g)p − χ(gp))/p is a character.
This condition is checked for the kernels of all characters χ specified below, the corresponding function
is PowerMapsAllowedBySymmetrizations (see 71.4.6).

If tbl is a Brauer table, the possibilities are computed from those for the underlying ordinary table.

The optional argument options must be a record that may have the following components:

chars:
a list of characters which are used for the check of the criteria 3., 4., and 6.; the default is Irr(tbl
),

powermap:
a parametrized map which is an approximation of the desired map

decompose:
a Boolean; a true value indicates that all constituents of the symmetrizations of chars computed
for criterion 6. lie in chars, so the symmetrizations can be decomposed into elements of chars; the
default value of decompose is true if chars is not bound and Irr(tbl) is known, otherwise false,

quick:
a Boolean; if true then the subroutines are called with value true for the argument quick ; especially,
as soon as only one possibility remains this possibility is returned immediately; the default value is
false,

parameters:
a record with components maxamb, minamb and maxlen which control the subroutine PowerMapsAl-
lowedBySymmetrizations; it only uses characters with current indeterminateness up to maxamb,
tests decomposability only for characters with current indeterminateness at least minamb, and admits
a branch according to a character only if there is one with at most maxlen possible symmetrizations.

gap> tbl:= CharacterTable("U4(3).4");;
gap> PossiblePowerMaps(tbl, 2);
[[1, 1, 3, 4, 5, 2, 2, 8, 3, 4, 11, 12, 6, 14, 9, 1, 1, 2, 2, 3, 4, 5, 6,

8, 9, 9, 10, 11, 12, 16, 16, 16, 16, 17, 17, 18, 18, 18, 18, 20, 20,
20, 20, 22, 22, 24, 24, 25, 26, 28, 28, 29, 29]]

3 I ElementOrdersPowerMap(powermap) F

Let powermap be a nonempty list containing at position p, if bound, the p-th power map of a character
table or group. ElementOrdersPowerMap returns a list of the same length as each entry in powermap, with
entry at position i equal to the order of elements in class i if this order is uniquely determined by powermap,
and equal to an unknown (see Chapter 19) otherwise.

gap> tbl:= CharacterTable("U4(3).4");;
gap> known:= ComputedPowerMaps(tbl);;
gap> Length(known);
7
gap> sub:= ShallowCopy(known);; Unbind(sub[7]);
gap> ElementOrdersPowerMap(sub);
[1, 2, 3, 3, 3, 4, 4, 5, 6, 6, Unknown(1), Unknown(2), 8, 9, 12, 2, 2, 4, 4,
6, 6, 6, 8, 10, 12, 12, 12, Unknown(3), Unknown(4), 4, 4, 4, 4, 4, 4, 8, 8,
8, 8, 12, 12, 12, 12, 12, 12, 20, 20, 24, 24, Unknown(5), Unknown(6),

Section 1. Power Maps 805

Unknown(7), Unknown(8)]
gap> ord:= ElementOrdersPowerMap(known);
[1, 2, 3, 3, 3, 4, 4, 5, 6, 6, 7, 7, 8, 9, 12, 2, 2, 4, 4, 6, 6, 6, 8, 10,
12, 12, 12, 14, 14, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 12, 12, 12, 12, 12, 12,
20, 20, 24, 24, 28, 28, 28, 28]

gap> ord = OrdersClassRepresentatives(tbl);
true

4 I PowerMapByComposition(tbl, n) F

tbl must be a nearly character table, and n a positive integer. If the power maps for all prime divisors of n
are stored in the ComputedPowerMaps list of tbl then PowerMapByComposition returns the n-th power map
of tbl . Otherwise fail is returned.

gap> tbl:= CharacterTable("U4(3).4");; exp:= Exponent(tbl);
2520
gap> PowerMapByComposition(tbl, exp);
[1,
1, 1,
1, 1, 1]

gap> Length(ComputedPowerMaps(tbl));
7
gap> PowerMapByComposition(tbl, 11);
fail
gap> PowerMap(tbl, 11);;
gap> PowerMapByComposition(tbl, 11);
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 26, 25, 27, 28, 29, 31, 30, 33, 32, 35, 34, 37, 36, 39, 38, 41,
40, 43, 42, 45, 44, 47, 46, 49, 48, 51, 50, 53, 52]

The permutation group of matrix automorphisms (see 69.20.1) acts on the possible power maps returned
by PossiblePowerMaps (see 71.1.2) by permuting a list via Permuted (see 21.20.16) and then mapping the
images via OnPoints (see 39.2.1). Note that by definition, the group of table automorphisms acts trivially.

5 I OrbitPowerMaps(map, permgrp) F

returns the orbit of the power map map under the action of the permutation group permgrp via a combination
of Permuted (see 21.20.16) and OnPoints (see 39.2.1).

6 I RepresentativesPowerMaps(listofmaps, permgrp) F

returns a list of orbit representatives of the power maps in the list listofmaps under the action of the
permutation group permgrp via a combination of Permuted (see 21.20.16) and OnPoints (see 39.2.1).

gap> tbl:= CharacterTable("3.McL");;
gap> grp:= MatrixAutomorphisms(Irr(tbl)); Size(grp);
<permutation group with 5 generators>
32
gap> poss:= PossiblePowerMaps(CharacterTable("3.McL"), 3);
[[1, 1, 1, 4, 4, 4, 1, 1, 1, 1, 11, 11, 11, 14, 14, 14, 17, 17, 17, 4, 4,

4, 4, 4, 4, 29, 29, 29, 26, 26, 26, 32, 32, 32, 9, 8, 37, 37, 37, 40,
40, 40, 43, 43, 43, 11, 11, 11, 52, 52, 52, 49, 49, 49, 14, 14, 14, 14,
14, 14, 37, 37, 37, 37, 37, 37],

[1, 1, 1, 4, 4, 4, 1, 1, 1, 1, 11, 11, 11, 14, 14, 14, 17, 17, 17, 4, 4,
4, 4, 4, 4, 29, 29, 29, 26, 26, 26, 32, 32, 32, 8, 9, 37, 37, 37, 40,
40, 40, 43, 43, 43, 11, 11, 11, 52, 52, 52, 49, 49, 49, 14, 14, 14, 14,

806 Chapter 71. Maps Concerning Character Tables

14, 14, 37, 37, 37, 37, 37, 37]]
gap> reps:= RepresentativesPowerMaps(poss, grp);
[[1, 1, 1, 4, 4, 4, 1, 1, 1, 1, 11, 11, 11, 14, 14, 14, 17, 17, 17, 4, 4,

4, 4, 4, 4, 29, 29, 29, 26, 26, 26, 32, 32, 32, 8, 9, 37, 37, 37, 40,
40, 40, 43, 43, 43, 11, 11, 11, 52, 52, 52, 49, 49, 49, 14, 14, 14, 14,
14, 14, 37, 37, 37, 37, 37, 37]]

gap> orb:= OrbitPowerMaps(reps[1], grp);
[[1, 1, 1, 4, 4, 4, 1, 1, 1, 1, 11, 11, 11, 14, 14, 14, 17, 17, 17, 4, 4,

4, 4, 4, 4, 29, 29, 29, 26, 26, 26, 32, 32, 32, 8, 9, 37, 37, 37, 40,
40, 40, 43, 43, 43, 11, 11, 11, 52, 52, 52, 49, 49, 49, 14, 14, 14, 14,
14, 14, 37, 37, 37, 37, 37, 37],

[1, 1, 1, 4, 4, 4, 1, 1, 1, 1, 11, 11, 11, 14, 14, 14, 17, 17, 17, 4, 4,
4, 4, 4, 4, 29, 29, 29, 26, 26, 26, 32, 32, 32, 9, 8, 37, 37, 37, 40,
40, 40, 43, 43, 43, 11, 11, 11, 52, 52, 52, 49, 49, 49, 14, 14, 14, 14,
14, 14, 37, 37, 37, 37, 37, 37]]

gap> Parametrized(orb);
[1, 1, 1, 4, 4, 4, 1, 1, 1, 1, 11, 11, 11, 14, 14, 14, 17, 17, 17, 4, 4, 4,
4, 4, 4, 29, 29, 29, 26, 26, 26, 32, 32, 32, [8, 9], [8, 9], 37, 37,
37, 40, 40, 40, 43, 43, 43, 11, 11, 11, 52, 52, 52, 49, 49, 49, 14, 14, 14,
14, 14, 14, 37, 37, 37, 37, 37, 37]

71.2 Class Fusions between Character Tables

For a group G and a subgroup H of G , the fusion map between the character table of H and the character
table of G is represented by a list that stores at position i the position of the i -th class of the table of H in
the classes list of the table of G .

For ordinary character tables tbl1 and tbl2 of H and G , with access to the groups H and G , the class fusion
between tbl1 and tbl2 can be computed using the identifications of the conjugacy classes of H with the
classes of tbl1 and the conjugacy classes of G with the classes of tbl2 . For two ordinary character tables
without access to its underlying group, or in the situation that the group stored in tbl1 is not physically
a subgroup of the group stored in tbl2 but an isomorphic copy, in general the class fusion is not uniquely
determined by the information stored on the tables such as irreducible characters and power maps. So only
necessary conditions can be checked in this case, which in general yields only a list of several possibilities
for the desired class fusion. Character tables of the GAP character table library store various class fusions
that are regarded as important, for example fusions from maximal subgroups (see 71.2.2 and 2.2.2 in the
manual for the GAP Character Table Library).

Class fusions between Brauer tables can be derived from the class fusions between the underlying ordinary
tables. The class fusion from a Brauer table to the underlying ordinary table is stored when the Brauer table
is constructed from the ordinary table, so no method is needed to compute such a fusion.

For (computing and) accessing the class fusion between two character tables, FusionConjugacyClasses
(see 71.2.1) can be used; if the class fusion cannot be uniquely determined then FusionConjugacyClasses
returns fail.

The list of all possible class fusion between two tables in the sense that certain necessary conditions are
satisfied can be computed with PossibleClassFusions (see 71.2.6). This provides a default strategy, the
subroutines are listed in Section 71.5.

It should be noted that all the following functions except FusionConjugacyClasses (see 71.2.1) deal only
with the situation of class fusions from subgroups. The computation of factor fusions from a character
table to the table of a factor group is not dealt with here. Since the ordinary character table of a group
G determines the character tables of all factor groups of G , the factor fusion to a given character table of

Section 2. Class Fusions between Character Tables 807

a factor group of G is determined up to table automorphisms (see 69.8.8) once the class positions of the
kernel of the natural epimorphism have been fixed.

1 I FusionConjugacyClasses(tbl1, tbl2) O
I FusionConjugacyClasses(H , G) O
I FusionConjugacyClasses(hom[, tbl1, tbl2]) O
I FusionConjugacyClassesOp(tbl1, tbl2) O
I FusionConjugacyClassesOp(hom) A

Called with two character tables tbl1 and tbl2 , FusionConjugacyClasses returns the fusion of conjugacy
classes between tbl1 and tbl2 . (If one of the tables is a Brauer table, it will delegate this task to the underlying
ordinary table.)

Called with two groups H and G where H is a subgroup of G , FusionConjugacyClasses returns the fusion
of conjugacy classes between H and G . This is done by delegating to the ordinary character tables of H and
G , since class fusions are stored only for character tables and not for groups.

Note that the returned class fusion refers to the ordering of conjugacy classes in the character tables if the
arguments are character tables and to the ordering of conjugacy classes in the groups if the arguments are
groups (see 69.6.2).

Called with a group homomorphism hom, FusionConjugacyClasses returns the fusion of conjugacy classes
between the preimage and the image of hom; contrary to the two cases above, also factor fusions can be
handled by this variant. If hom is the only argument then the class fusion refers to the ordering of conjugacy
classes in the groups. If the character tables of preimage and image are given as tbl1 and tbl2 , respectively
(each table with its group stored), then the fusion refers to the ordering of classes in these tables.

If no class fusion exists or if the class fusion is not uniquely determined, fail is returned; this may happen
when FusionConjugacyClasses is called with two character tables that do not know compatible underlying
groups.

Methods for the computation of class fusions can be installed for the operation FusionConjugacyClassesOp.

gap> s4:= SymmetricGroup(4);
Sym([1 .. 4])
gap> tbls4:= CharacterTable(s4);;
gap> d8:= SylowSubgroup(s4, 2);
Group([(1,2), (3,4), (1,3)(2,4)])
gap> FusionConjugacyClasses(d8, s4);
[1, 2, 3, 3, 5]
gap> tbls5:= CharacterTable("S5");;
gap> FusionConjugacyClasses(CharacterTable("A5"), tbls5);
[1, 2, 3, 4, 4]
gap> FusionConjugacyClasses(CharacterTable("A5"), CharacterTable("J1"));
fail
gap> PossibleClassFusions(CharacterTable("A5"), CharacterTable("J1"));
[[1, 2, 3, 4, 5], [1, 2, 3, 5, 4]]

2 I ComputedClassFusions(tbl) A

The class fusions from the character table tbl that have been computed already by FusionConjugacyClasses
(see 71.2.1) or explicitly stored by StoreFusion (see 71.2.4) are stored in the ComputedClassFusions list
of tbl1 . Each entry of this list is a record with the following components.

name
the Identifier value of the character table to which the fusion maps,

map
the list of positions of image classes,

808 Chapter 71. Maps Concerning Character Tables

text (optional)
a string giving additional information about the fusion map, for example whether the map is uniquely
determined by the character tables,

specification (optional, rarely used)
a value that distinguishes different fusions between the same tables.

Note that stored fusion maps may differ from the maps returned by GetFusionMap and the maps entered by
StoreFusion if the table destination has a nonidentity ClassPermutation value. So if one fetches a fusion
map from a table tbl1 to a table tbl2 via access to the data in the ComputedFusionMaps list tbl1 then the
stored value must be composed with the ClassPermutation value of tbl2 in order to obtain the correct
class fusion. (If one handles fusions only via GetFusionMap and StoreFusion (see 71.2.3, 71.2.4) then this
adjustment is made automatically.)

Fusions are identified via the Identifier value of the destination table and not by this table itself because
many fusions between character tables in the GAP character table library are stored on library tables, and it
is not desirable to load together with a library table also all those character tables that occur as destinations
of fusions from this table.

For storing fusions and accessing stored fusions, see also 71.2.3, 71.2.4. For accessing the identifiers of tables
that store a fusion into a given character table, see 71.2.5.

3 I GetFusionMap(source, destination) F
I GetFusionMap(source, destination, specification) F

For two ordinary character tables source and destination, GetFusionMap checks whether the Computed-
ClassFusion list of source (see 71.2.2) contains a record with name component Identifier(destination
), and returns returns the map component of the first such record. GetFusionMap(source, destination,
specification) fetches that fusion map for which the record additionally has the specification component
specification.

If both source and destination are Brauer tables, first the same is done, and if no fusion map was found
then GetFusionMap looks whether a fusion map between the ordinary tables is stored; if so then the fusion
map between source and destination is stored on source, and then returned.

If no appropriate fusion is found, GetFusionMap returns fail. For the computation of class fusions, see 71.2.1.

4 I StoreFusion(source, fusion, destination) F

For two character tables source and destination, StoreFusion stores the fusion fusion from source to
destination in the ComputedClassFusions list (see 71.2.2) of source, and adds the Identifier string of
destination to the NamesOfFusionSources list (see NamesOfFusionSources) of destination.

fusion can either be a fusion map (that is, the list of positions of the image classes) or a record as described
in 71.2.2.

If fusions to destination are already stored on source then another fusion can be stored only if it has a record
component specification that distinguishes it from the stored fusions. In the case of such an ambiguity,
StoreFusion raises an error.

gap> ComputedClassFusions(CharacterTable(d8));
[rec(name := "CT1", map := [1, 2, 3, 3, 5])]
gap> Identifier(tbls4);
"CT1"
gap> GetFusionMap(CharacterTable(d8), tbls4);
[1, 2, 3, 3, 5]
gap> GetFusionMap(tbls4, tbls5);
fail
gap> poss:= PossibleClassFusions(tbls4, tbls5);

Section 2. Class Fusions between Character Tables 809

[[1, 5, 2, 3, 6]]
gap> StoreFusion(tbls4, poss[1], tbls5);
gap> GetFusionMap(tbls4, tbls5);
[1, 5, 2, 3, 6]

5 I NamesOfFusionSources(tbl) A

For a character table tbl , NamesOfFusionSources returns the list of identifiers of all those character tables
that are known to have fusions to tbl stored. The NamesOfFusionSources value is updated whenever a
fusion to tbl is stored using StoreFusion (see 71.2.4).

gap> NamesOfFusionSources(tbls5);
["2.A5.2", "Isoclinic(2.A5.2)", "A5", "S3x2", "(A5x3):2", "2^4:s5",
"2.M22M5", "4.M22M5", "M22.2M4", "2.M12M8", "2.2.2^4+6:S5", "2.2^4+6:S5",
"4.2^4.S5", "2.HSM10", "3^1+4:2^1+4.s5", "2^(1+4).S5", "(2^2xA5):2",
"2^10:(2^5:s5)", "3^4:S5", "M24C2B", "gl25", "mo62", "s2wrs5", "s4",
"twd5a", "w(d5)", "5:4", "CT1"]

6 I PossibleClassFusions(subtbl, tbl[, options]) O

For two ordinary character tables subtbl and tbl of the groups H and G , say, PossibleClassFusions returns
the list of all maps that have the following properties of class fusions from subtbl to tbl .

1. For class i , the centralizer order of the image in G is a multiple of the i -th centralizer order in H , and
the element orders in the i -th class and its image are equal. These criteria are checked in InitFusion
(see 71.5.1).

2. The class fusion commutes with power maps. This is checked using TestConsistencyMaps (see 71.3.12).

3. If the permutation character of G corresponding to the action of G on the cosets of H is specified (see
the discussion of the options argument below) then it prescribes for each class C of G the number of
elements of H fusing into C . The corresponding function is CheckPermChar (see 71.5.2).

4. The table automorphisms of tbl (see 69.8.8) are used in order to compute only orbit representatives.
(But note that the list returned by PossibleClassFusions contains the full orbits.)

5. For each character χ of G , the restriction to H via the class fusion is a character of H . This condition
is checked for all characters specified below, the corresponding function is FusionsAllowedByRestric-
tions (see 71.5.4).

6. The class multiplication coefficients in subtbl do not exceed the corresponding coefficients in tbl . This
is checked in ConsiderStructureConstants (see 71.2.9, and see also the comment on the parameter
verify below).

If subtbl and tbl are Brauer tables then the possibilities are computed from those for the underlying ordinary
tables.

The optional argument options must be a record that may have the following components:

chars
a list of characters of tbl which are used for the check of 5.; the default is Irr(tbl),

subchars
a list of characters of subtbl which are constituents of the retrictions of chars, the default is Irr(
subtbl),

fusionmap
a parametrized map which is an approximation of the desired map,

810 Chapter 71. Maps Concerning Character Tables

decompose
a Boolean; a true value indicates that all constituents of the restrictions of chars computed for
criterion 5. lie in subchars, so the restrictions can be decomposed into elements of subchars; the
default value of decompose is true if subchars is not bound and Irr(subtbl) is known, otherwise
false,

permchar
(a values list of) a permutation character; only those fusions affording that permutation character
are computed,

quick
a Boolean; if true then the subroutines are called with value true for the argument quick ; especially,
as soon as only one possibility remains then this possibility is returned immediately; the default
value is false,

verify
a Boolean; if false then ConsiderStructureConstants is called only if more than one orbit of
possible class fusions exists, under the action of the groups of table automorphisms; the default
value is false (because the computation of the structure constants is usually very time comsuming,
compared with checking the other criteria),

parameters
a record with components maxamb, minamb and maxlen which control the subroutine FusionsAl-
lowedByRestrictions; it only uses characters with current indeterminateness up to maxamb, tests
decomposability only for characters with current indeterminateness at least minamb, and admits a
branch according to a character only if there is one with at most maxlen possible restrictions.

gap> subtbl:= CharacterTable("U3(3)");; tbl:= CharacterTable("J4");;
gap> PossibleClassFusions(subtbl, tbl);
[[1, 2, 4, 4, 5, 5, 6, 10, 12, 13, 14, 14, 21, 21],
[1, 2, 4, 4, 5, 5, 6, 10, 13, 12, 14, 14, 21, 21],
[1, 2, 4, 4, 6, 6, 6, 10, 12, 13, 15, 15, 22, 22],
[1, 2, 4, 4, 6, 6, 6, 10, 12, 13, 16, 16, 22, 22],
[1, 2, 4, 4, 6, 6, 6, 10, 13, 12, 15, 15, 22, 22],
[1, 2, 4, 4, 6, 6, 6, 10, 13, 12, 16, 16, 22, 22]]

The permutation groups of table automorphisms (see 69.8.8) of the subgroup table subtbl and the supergroup
table tbl act on the possible class fusions returned by PossibleClassFusions (see 71.2.6), the former by
permuting a list via Permuted (see 21.20.16), the latter by mapping the images via OnPoints (see 39.2.1).

If the set of possible fusions with certain properties was computed that are not invariant under the full
groups of table automorphisms then only a smaller group acts. This may happen for example if a permutation
character or if an explicit approximation of the fusion map is prescribed in the call of PossibleClassFusions.

7 I OrbitFusions(subtblautomorphisms, fusionmap, tblautomorphisms) F

returns the orbit of the class fusion map fusionmap under the actions of the permutation groups subt-
blautomorphisms and tblautomorphisms of automorphisms of the character table of the subgroup and the
supergroup, respectively.

8 I RepresentativesFusions(subtblautomorphisms, listofmaps, tblautomorphisms) F
I RepresentativesFusions(subtbl, listofmaps, tbl) F

returns a list of orbit representatives of class fusion maps in the list listofmaps under the action of maximal
admissible subgroups of the table automorphisms subtblautomorphisms of the subgroup table and tblauto-
morphisms of the supergroup table. Both groups of table automorphisms must be permutation groups.

Section 3. Parametrized Maps 811

Instead of the groups of table automorphisms, also the character tables subtbl and tbl may be entered. In
this case, the AutomorphismsOfTable values of the tables are used.

gap> fus:= GetFusionMap(subtbl, tbl);
[1, 2, 4, 4, 5, 5, 6, 10, 12, 13, 14, 14, 21, 21]
gap> orb:= OrbitFusions(AutomorphismsOfTable(subtbl), fus,
> AutomorphismsOfTable(tbl));
[[1, 2, 4, 4, 5, 5, 6, 10, 12, 13, 14, 14, 21, 21],
[1, 2, 4, 4, 5, 5, 6, 10, 13, 12, 14, 14, 21, 21]]

gap> rep:= RepresentativesFusions(AutomorphismsOfTable(subtbl), orb,
> AutomorphismsOfTable(tbl));
[[1, 2, 4, 4, 5, 5, 6, 10, 12, 13, 14, 14, 21, 21]]

9 I ConsiderStructureConstants(subtbl, tbl, fusions, quick) F

Let subtbl and tbl be ordinary character tables and fusions be a list of possible class fusions from subtbl
to tbl . ConsiderStructureConstants returns the list of those maps σ in fusions with the property that
for all triples (i , j , k) of class positions, ClassMultiplicationCoefficient(subtbl , i , j , k) is not bigger than
ClassMultiplicationCoefficient(tbl , σ[i], σ[j], σ[k]); see 69.10.6 for the definition of class multiplication
coefficients/structure constants.

The argument quick must be a Boolean; if it is true then only those triples are checked for which for which
at least two entries in fusions have different images.

71.3 Parametrized Maps

A parametrized map is a list whose i -th entry is either unbound (which means that nothing is known
about the image(s) of the i -th class) or the image of the i -th class (i.e., an integer for fusion maps, power
maps, element orders etc., and a cyclotomic for characters), or a list of possible images of the i -th class. In
this sense, maps are special parametrized maps. We often identify a parametrized map paramap with the
set of all maps map with the property that either map[i] = paramap[i] or map[i] is contained in the
list paramap[i]; we say then that map is contained in paramap.

This definition implies that parametrized maps cannot be used to describe sets of maps where lists are
possible images. An exception are strings which naturally arise as images when class names are considered.
So strings and lists of strings are allowed in parametrized maps, and character constants (see Chapter 26)
are not allowed in maps.

1 I CompositionMaps(paramap2, paramap1[, class]) F

The composition of two parametrized maps paramap1 , paramap2 is defined as the parametrized map comp
that contains all compositions f2 ◦ f1 of elements f1 of paramap1 and f2 of paramap2 . For example, the
composition of a character χ of a group G by a parametrized class fusion map from a subgroup H to G is
the parametrized map that contains all restrictions of χ by elements of the parametrized fusion map.

CompositionMaps(paramap2, paramap1) is a parametrized map with entry CompositionMaps(paramap2,
paramap1, class) at position class. If paramap1[class] is an integer then CompositionMaps(paramap2,
paramap1, class) is equal to paramap2[paramap1[class]]. Otherwise it is the union of paramap2[i]
for i in paramap1[class].

812 Chapter 71. Maps Concerning Character Tables

gap> map1:= [1, [2 .. 4], [4, 5], 1];;
gap> map2:= [[1, 2], 2, 2, 3, 3];;
gap> CompositionMaps(map2, map1);
[[1, 2], [2, 3], 3, [1, 2]]
gap> CompositionMaps(map1, map2);
[[1, 2, 3, 4], [2, 3, 4], [2, 3, 4], [4, 5], [4, 5]]

2 I InverseMap(paramap) F

For a parametrized map paramap, InverseMap returns a mutable parametrized map whose i -th entry is
unbound if i is not in the image of paramap, equal to j if i is (in) the image of paramap[j] exactly for j ,
and equal to the set of all preimages of i under paramap otherwise.

We have CompositionMaps(paramap, InverseMap(paramap)) the identity map.

gap> tbl:= CharacterTable("2.A5");; f:= CharacterTable("A5");;
gap> fus:= GetFusionMap(tbl, f);
[1, 1, 2, 3, 3, 4, 4, 5, 5]
gap> inv:= InverseMap(fus);
[[1, 2], 3, [4, 5], [6, 7], [8, 9]]
gap> CompositionMaps(fus, inv);
[1, 2, 3, 4, 5]
gap> # transfer a power map ‘‘up’’ to the factor group
gap> pow:= PowerMap(tbl, 2);
[1, 1, 2, 4, 4, 8, 8, 6, 6]
gap> CompositionMaps(fus, CompositionMaps(pow, inv));
[1, 1, 3, 5, 4]
gap> last = PowerMap(f, 2);
true
gap> # transfer a power map of the factor group ‘‘down’’ to the group
gap> CompositionMaps(inv, CompositionMaps(PowerMap(f, 2), fus));
[[1, 2], [1, 2], [1, 2], [4, 5], [4, 5], [8, 9], [8, 9],
[6, 7], [6, 7]]

3 I ProjectionMap(fusionmap) F

For a map fusionmap, ProjectionMap returns a parametrized map whose i -th entry is unbound if i is not in
the image of fusionmap, and equal to j if j is the smallest position such that i is the image of fusionmap[j].

We have CompositionMaps(fusionmap, ProjectionMap(fusionmap)) the identity map, i.e., first pro-
jecting and then fusing yields the identity. Note that fusionmap must not be a parametrized map.

gap> ProjectionMap([1, 1, 1, 2, 2, 2, 3, 4, 5, 5, 5, 6, 6, 6]);
[1, 4, 7, 8, 9, 12]

4 I Indirected(character, paramap) O

For a map character and a parametrized map paramap, Indirected returns a parametrized map whose entry
at position i is character[paramap[i]] if paramap[i] is an integer, and an unknown (see Chapter 19)
otherwise.

Section 3. Parametrized Maps 813

gap> tbl:= CharacterTable("M12");;
gap> fus:= [1, 3, 4, [6, 7], 8, 10, [11, 12], [11, 12],
> [14, 15], [14, 15]];;
gap> List(Irr(tbl){ [1 .. 6] }, x -> Indirected(x, fus));
[[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[11, 3, 2, Unknown(9), 1, 0, Unknown(10), Unknown(11), 0, 0],
[11, 3, 2, Unknown(12), 1, 0, Unknown(13), Unknown(14), 0, 0],
[16, 0, -2, 0, 1, 0, 0, 0, Unknown(15), Unknown(16)],
[16, 0, -2, 0, 1, 0, 0, 0, Unknown(17), Unknown(18)],
[45, -3, 0, 1, 0, 0, -1, -1, 1, 1]]

5 I Parametrized(list) F

For a list list of (parametrized) maps of the same length, Parametrized returns the smallest parametrized
map containing all elements of list .

Parametrized is the inverse function to ContainedMaps (see 71.3.6).

gap> Parametrized([[1, 2, 3, 4, 5], [1, 3, 2, 4, 5],
> [1, 2, 3, 4, 6]]);
[1, [2, 3], [2, 3], 4, [5, 6]]

6 I ContainedMaps(paramap) F

For a parametrized map paramap, ContainedMaps returns the set of all maps contained in paramap.

ContainedMaps is the inverse function to Parametrized (see 71.3.5) in the sense that Parametrized(
ContainedMaps(paramap)) is equal to paramap.

gap> ContainedMaps([1, [2, 3], [2, 3], 4, [5, 6]]);
[[1, 2, 2, 4, 5], [1, 2, 2, 4, 6], [1, 2, 3, 4, 5], [1, 2, 3, 4, 6],
[1, 3, 2, 4, 5], [1, 3, 2, 4, 6], [1, 3, 3, 4, 5], [1, 3, 3, 4, 6]]

7 I UpdateMap(character, paramap, indirected) F

Let character be a map, paramap a parametrized map, and indirected a parametrized map that is contained
in CompositionMaps(character, paramap).

Then UpdateMap changes paramap to the parametrized map containing exactly the maps whose composition
with character is equal to indirected .

If a contradiction is detected then false is returned immediately, otherwise true.

gap> subtbl:= CharacterTable("S4(4).2");; tbl:= CharacterTable("He");;
gap> fus:= InitFusion(subtbl, tbl);;
gap> fus;
[1, 2, 2, [2, 3], 4, 4, [7, 8], [7, 8], 9, 9, 9, [10, 11],
[10, 11], 18, 18, 25, 25, [26, 27], [26, 27], 2, [6, 7], [6, 7],
[6, 7, 8], 10, 10, 17, 17, 18, [19, 20], [19, 20]]

gap> chi:= Irr(tbl)[2];
Character(CharacterTable("He"), [51, 11, 3, 6, 0, 3, 3, -1, 1, 2, 0,
3*E(7)+3*E(7)^2+3*E(7)^4, 3*E(7)^3+3*E(7)^5+3*E(7)^6, 2,
E(7)+E(7)^2+2*E(7)^3+E(7)^4+2*E(7)^5+2*E(7)^6,
2*E(7)+2*E(7)^2+E(7)^3+2*E(7)^4+E(7)^5+E(7)^6, 1, 1, 0, 0,
-E(7)-E(7)^2-E(7)^4, -E(7)^3-E(7)^5-E(7)^6, E(7)+E(7)^2+E(7)^4,
E(7)^3+E(7)^5+E(7)^6, 1, 0, 0, -1, -1, 0, 0, E(7)+E(7)^2+E(7)^4,
E(7)^3+E(7)^5+E(7)^6])

gap> filt:= Filtered(Irr(subtbl), x -> x[1] = 50);

814 Chapter 71. Maps Concerning Character Tables

[Character(CharacterTable("S4(4).2"), [50, 10, 10, 2, 5, 5, -2, 2, 0, 0,
0, 1, 1, 0, 0, 0, 0, -1, -1, 10, 2, 2, 2, 1, 1, 0, 0, 0, -1, -1]),

Character(CharacterTable("S4(4).2"), [50, 10, 10, 2, 5, 5, -2, 2, 0, 0,
0, 1, 1, 0, 0, 0, 0, -1, -1, -10, -2, -2, -2, -1, -1, 0, 0, 0, 1, 1])

]
gap> UpdateMap(chi, fus, filt[1] + TrivialCharacter(subtbl));
true
gap> fus;
[1, 2, 2, 3, 4, 4, 8, 7, 9, 9, 9, 10, 10, 18, 18, 25, 25, [26, 27],
[26, 27], 2, [6, 7], [6, 7], [6, 7], 10, 10, 17, 17, 18,
[19, 20], [19, 20]]

8 I MeetMaps(paramap1, paramap2) F

For two parametrized maps paramap1 and paramap2 , MeetMaps changes paramap1 such that the image of
class i is the intersection of paramap1[i] and paramap2[i].
If this implies that no images remain for a class, the position of such a class is returned. If no such incon-
sistency occurs, MeetMaps returns true.

gap> map1:= [[1, 2], [3, 4], 5, 6, [7, 8, 9]];;
gap> map2:= [[1, 3], [3, 4], [5, 6], 6, [8, 9, 10]];;
gap> MeetMaps(map1, map2); map1;
true
[1, [3, 4], 5, 6, [8, 9]]

9 I CommutativeDiagram(paramap1, paramap2, paramap3, paramap4[, improvements]) F

Let paramap1 , paramap2 , paramap3 , paramap4 be parametrized maps covering parametrized maps f1, f2,
f3, f4 with the property that CompositionMaps(f2, f1) is equal to CompositionMaps(f4, f3).
CommutativeDiagram checks this consistency, and changes the arguments such that all possible images are
removed that cannot occur in the parametrized maps fi .
The return value is fail if an inconsistency was found. Otherwise a record with the components imp1, imp2,
imp3, imp4 is returned, each bound to the list of positions where the corresponding parametrized map was
changed,
The optional argument improvements must be a record with components imp1, imp2, imp3, imp4. If such a
record is specified then only diagrams are considered where entries of the i -th component occur as preimages
of the i -th parametrized map.
When an inconsistency is detected, CommutativeDiagram immediately returns fail. Otherwise a record is
returned that contains four lists imp1, . . ., imp4: impi is the list of classes where paramap i was changed.

gap> map1:= [[1, 2, 3], [1, 3]];; map2:= [[1, 2], 1, [1, 3]];;
gap> map3:= [[2, 3], 3];; map4:= [, 1, 2, [1, 2]];;
gap> imp:= CommutativeDiagram(map1, map2, map3, map4);
rec(imp1 := [2], imp2 := [1], imp3 := [], imp4 := [])
gap> map1; map2; map3; map4;
[[1, 2, 3], 1]
[2, 1, [1, 3]]
[[2, 3], 3]
[, 1, 2, [1, 2]]
gap> imp2:= CommutativeDiagram(map1, map2, map3, map4, imp);
rec(imp1 := [], imp2 := [], imp3 := [], imp4 := [])

10 I CheckFixedPoints(inside1, between, inside2) F

Let inside1 , between, inside2 be parametrized maps, where between is assumed to map each fixed point of
inside1 (that is, inside1[i] = i) to a fixed point of inside2 (that is, between[i] is either an integer that

Section 3. Parametrized Maps 815

is fixed by inside2 or a list that has nonempty intersection with the union of its images under inside2).
CheckFixedPoints changes between and inside2 by removing all those entries violate this condition.

When an inconsistency is detected, CheckFixedPoints immediately returns fail. Otherwise the list of
positions is returned where changes occurred.

gap> subtbl:= CharacterTable("L4(3).2_2");;
gap> tbl:= CharacterTable("O7(3)");;
gap> fus:= InitFusion(subtbl, tbl);; fus{ [48, 49] };
[[54, 55, 56, 57], [54, 55, 56, 57]]
gap> CheckFixedPoints(ComputedPowerMaps(subtbl)[5], fus,
> ComputedPowerMaps(tbl)[5]);
[48, 49]
gap> fus{ [48, 49] };
[[56, 57], [56, 57]]

11 I TransferDiagram(inside1, between, inside2[, improvements]) F

Let inside1 , between, inside2 be parametrized maps covering parametrized maps m1, f , m2 with the property
that CompositionMaps(m2, f) is equal to CompositionMaps(f ,m1).

TransferDiagram checks this consistency, and changes the arguments such that all possible images are
removed that cannot occur in the parametrized maps mi and f .

So TransferDiagram is similar to CommutativeDiagram (see 71.3.9), but between occurs twice in each
diagram checked.

If a record improvements with fields impinside1, impbetween and impinside2 is specified, only those
diagrams with elements of impinside1 as preimages of inside1 , elements of impbetween as preimages of
between or elements of impinside2 as preimages of inside2 are considered.

When an inconsistency is detected, TransferDiagram immediately returns fail. Otherwise a record is re-
turned that contains three lists impinside1, impbetween, and impinside2 of positions where the arguments
were changed.

gap> subtbl:= CharacterTable("2F4(2)");; tbl:= CharacterTable("Ru");;
gap> fus:= InitFusion(subtbl, tbl);;
gap> permchar:= Sum(Irr(tbl){ [1, 5, 6] });;
gap> CheckPermChar(subtbl, tbl, fus, permchar);; fus;
[1, 2, 2, 4, 5, 7, 8, 9, 11, 14, 14, [13, 15], 16, [18, 19], 20,
[25, 26], [25, 26], 5, 5, 6, 8, 14, [13, 15], [18, 19], [18, 19],
[25, 26], [25, 26], 27, 27]

gap> tr:= TransferDiagram(PowerMap(subtbl, 2), fus, PowerMap(tbl, 2));
rec(impinside1 := [], impbetween := [12, 23], impinside2 := [])
gap> tr:= TransferDiagram(PowerMap(subtbl, 3), fus, PowerMap(tbl, 3));
rec(impinside1 := [], impbetween := [14, 24, 25], impinside2 := [])
gap> tr:= TransferDiagram(PowerMap(subtbl, 3), fus, PowerMap(tbl, 3),
> tr);
rec(impinside1 := [], impbetween := [], impinside2 := [])
gap> fus;
[1, 2, 2, 4, 5, 7, 8, 9, 11, 14, 14, 15, 16, 18, 20, [25, 26], [25, 26],
5, 5, 6, 8, 14, 13, 19, 19, [25, 26], [25, 26], 27, 27]

12 I TestConsistencyMaps(powermap1, fusionmap, powermap2[, fus imp]) F

Let powermap1 and powermap2 be lists of parametrized maps, and fusionmap a parametrized map, such
that for each i , the i -th entry in powermap1 , fusionmap, and the i -th entry in powermap2 (if bound) are valid
arguments for TransferDiagram (see 71.3.11). So a typical situation for applying TestConsistencyMaps is

816 Chapter 71. Maps Concerning Character Tables

that fusionmap is an approximation of a class fusion, and powermap1 , powermap2 are the lists of power
maps of the subgroup and the group.

TestConsistencyMaps repeatedly applies TransferDiagram to these arguments for all i until no more
changes occur.

If a list fus imp is specified then only those diagrams with elements of fus imp as preimages of fusionmap
are considered.

When an inconsistency is detected, TestConsistencyMaps immediately returns false. Otherwise true is
returned.

gap> subtbl:= CharacterTable("2F4(2)");; tbl:= CharacterTable("Ru");;
gap> fus:= InitFusion(subtbl, tbl);;
gap> permchar:= Sum(Irr(tbl){ [1, 5, 6] });;
gap> CheckPermChar(subtbl, tbl, fus, permchar);; fus;
[1, 2, 2, 4, 5, 7, 8, 9, 11, 14, 14, [13, 15], 16, [18, 19], 20,
[25, 26], [25, 26], 5, 5, 6, 8, 14, [13, 15], [18, 19], [18, 19],
[25, 26], [25, 26], 27, 27]

gap> TestConsistencyMaps(ComputedPowerMaps(subtbl), fus,
> ComputedPowerMaps(tbl));
true
gap> fus;
[1, 2, 2, 4, 5, 7, 8, 9, 11, 14, 14, 15, 16, 18, 20, [25, 26], [25, 26],
5, 5, 6, 8, 14, 13, 19, 19, [25, 26], [25, 26], 27, 27]

gap> Indeterminateness(fus);
16

13 I Indeterminateness(paramap) F

For a parametrized map paramap, Indeterminateness returns the number of maps contained in paramap,
that is, the product of lengths of lists in paramap denoting lists of several images.

gap> Indeterminateness([1, [2, 3], [4, 5], [6, 7, 8, 9, 10], 11]);
20

14 I PrintAmbiguity(list, paramap) F

For each map in the list list , PrintAmbiguity prints its position in list , the indeterminateness (see 71.3.13)
of the composition with the parametrized map paramap, and the list of positions where a list of images
occurs in this composition.

gap> paramap:= [1, [2, 3], [3, 4], [2, 3, 4], 5];;
gap> list:= [[1, 1, 1, 1, 1], [1, 1, 2, 2, 3], [1, 2, 3, 4, 5]];;
gap> PrintAmbiguity(list, paramap);
1 1 []
2 4 [2, 4]
3 12 [2, 3, 4]

15 I ContainedSpecialVectors(tbl, chars, paracharacter, func) F
I IntScalarProducts(tbl, chars, candidate) F
I NonnegIntScalarProducts(tbl, chars, candidate) F
I ContainedPossibleVirtualCharacters(tbl, chars, paracharacter) F
I ContainedPossibleCharacters(tbl, chars, paracharacter) F

Let tbl be an ordinary character table, chars a list of class functions (or values lists), paracharacter a
parametrized class function of tbl , and func a function that expects the three arguments tbl , chars, and a
values list of a class function, and that returns either true or false.

Section 3. Parametrized Maps 817

ContainedSpecialVectors returns the list of all those elements vec of paracharacter that have integral
norm, have integral scalar product with the principal character of tbl , and that satisfy func(tbl, chars,
vec) = true,

Two special cases of func are the check whether the scalar products in tbl between the vector vec and all
lists in chars are integers or nonnegative integers, respectively. These functions are accessible as global vari-
ables IntScalarProducts and NonnegIntScalarProducts, and ContainedPossibleVirtualCharacters
and ContainedPossibleCharacters provide access to these special cases of ContainedSpecialVectors.

gap> subtbl:= CharacterTable("HSM12");; tbl:= CharacterTable("HS");;
gap> fus:= InitFusion(subtbl, tbl);;
gap> rest:= CompositionMaps(Irr(tbl)[8], fus);
[231, [-9, 7], [-9, 7], [-9, 7], 6, 15, 15, [-1, 15], [-1, 15], 1,
[1, 6], [1, 6], [1, 6], [1, 6], [-2, 0], [1, 2], [1, 2],
[1, 2], 0, 0, 1, 0, 0, 0, 0]

gap> irr:= Irr(subtbl);;
gap> # no further condition
gap> cont1:= ContainedSpecialVectors(subtbl, irr, rest,
> function(tbl, chars, vec) return true; end);;
gap> Length(cont1);
24
gap> # require scalar products to be integral
gap> cont2:= ContainedSpecialVectors(subtbl, irr, rest,
> IntScalarProducts);
[[231, 7, -9, -9, 6, 15, 15, -1, -1, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0, 0, 1,

0, 0, 0, 0],
[231, 7, -9, 7, 6, 15, 15, -1, -1, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0, 0, 1, 0,

0, 0, 0],
[231, 7, -9, -9, 6, 15, 15, 15, 15, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0, 0, 1,

0, 0, 0, 0],
[231, 7, -9, 7, 6, 15, 15, 15, 15, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0, 0, 1, 0,

0, 0, 0]]
gap> # additionally require scalar products to be nonnegative
gap> cont3:= ContainedSpecialVectors(subtbl, irr, rest,
> NonnegIntScalarProducts);
[[231, 7, -9, -9, 6, 15, 15, -1, -1, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0, 0, 1,

0, 0, 0, 0],
[231, 7, -9, 7, 6, 15, 15, -1, -1, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0, 0, 1, 0,

0, 0, 0]]
gap> cont2 = ContainedPossibleVirtualCharacters(subtbl, irr, rest);
true
gap> cont3 = ContainedPossibleCharacters(subtbl, irr, rest);
true

16 I CollapsedMat(mat, maps) F

is a record with components

fusion
fusion that collapses those columns of mat that are equal in mat and also for all maps in the list
maps,

mat
the image of mat under that fusion.

818 Chapter 71. Maps Concerning Character Tables

gap> mat:= [[1, 1, 1, 1], [2, -1, 0, 0], [4, 4, 1, 1]];;
gap> coll:= CollapsedMat(mat, []);
rec(mat := [[1, 1, 1], [2, -1, 0], [4, 4, 1]],
fusion := [1, 2, 3, 3])

gap> List(last.mat, x -> x{ last.fusion }) = mat;
true
gap> coll:= CollapsedMat(mat, [[1, 1, 1, 2]]);
rec(mat := [[1, 1, 1, 1], [2, -1, 0, 0], [4, 4, 1, 1]],
fusion := [1, 2, 3, 4])

17 I ContainedDecomposables(constituents, moduls, parachar, func) F
I ContainedCharacters(tbl, constituents, parachar) F

For these functions, let constituents be a list of rational class functions, moduls a list of positive integers,
parachar a parametrized rational class function, func a function that returns either true or false when
called with (a values list of) a class function, and tbl a character table.

ContainedDecomposables returns the set of all elements χ of parachar that satisfy func(χ) = true and
that lie in the Z-lattice spanned by constituents, modulo moduls. The latter means they lie in the Z-lattice
spanned by constituents and the set

{moduls[i] · ei ; 1 ≤ i ≤ n},

where n is the length of parachar and ei is the i -th standard basis vector.

One application of ContainedDecomposables is the following. constituents is a list of (values lists of) rational
characters of an ordinary character table tbl , moduls is the list of centralizer orders of tbl (see 69.8.6), and
func checks whether a vector in the lattice mentioned above has nonnegative integral scalar product in tbl
with all entries of constituents. This situation is handled by ContainedCharacters. Note that the entries of
the result list are not necessary linear combinations of constituents, and they are not necessarily characters
of tbl .

gap> subtbl:= CharacterTable("HSM12");; tbl:= CharacterTable("HS");;
gap> rat:= RationalizedMat(Irr(subtbl));;
gap> fus:= InitFusion(subtbl, tbl);;
gap> rest:= CompositionMaps(Irr(tbl)[8], fus);
[231, [-9, 7], [-9, 7], [-9, 7], 6, 15, 15, [-1, 15], [-1, 15], 1,
[1, 6], [1, 6], [1, 6], [1, 6], [-2, 0], [1, 2], [1, 2],
[1, 2], 0, 0, 1, 0, 0, 0, 0]

gap> # compute all vectors in the lattice
gap> ContainedDecomposables(rat, SizesCentralizers(subtbl), rest,
> ReturnTrue);
[[231, 7, -9, -9, 6, 15, 15, -1, -1, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0, 0, 1,

0, 0, 0, 0],
[231, 7, -9, -9, 6, 15, 15, 15, 15, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0, 0, 1,

0, 0, 0, 0],
[231, 7, -9, 7, 6, 15, 15, -1, -1, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0, 0, 1, 0,

0, 0, 0],
[231, 7, -9, 7, 6, 15, 15, 15, 15, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0, 0, 1, 0,

0, 0, 0]]
gap> # compute only those vectors that are characters
gap> ContainedDecomposables(rat, SizesCentralizers(subtbl), rest,
> x -> NonnegIntScalarProducts(subtbl, Irr(subtbl), x));
[[231, 7, -9, -9, 6, 15, 15, -1, -1, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0, 0, 1,

0, 0, 0, 0],

Section 4. Subroutines for the Construction of Power Maps 819

[231, 7, -9, 7, 6, 15, 15, -1, -1, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0, 0, 1, 0,
0, 0, 0]]

71.4 Subroutines for the Construction of Power Maps

1 I InitPowerMap(tbl, prime) F

For an ordinary character table tbl and a prime prime, InitPowerMap returns a parametrized map that is a
first approximation of the prime-th powermap of tbl , using the conditions 1. and 2. listed in the description
of PossiblePowerMaps (see 71.1.2).

If there are classes for which no images are possible, according to these criteria, then fail is returned.

gap> t:= CharacterTable("U4(3).4");;
gap> pow:= InitPowerMap(t, 2);
[1, 1, 3, 4, 5, [2, 16], [2, 16, 17], 8, 3, [3, 4], [11, 12],
[11, 12], [6, 7, 18, 19, 30, 31, 32, 33], 14, [9, 20], 1, 1, 2, 2, 3,
[3, 4, 5], [3, 4, 5], [6, 7, 18, 19, 30, 31, 32, 33], 8, 9, 9,
[9, 10, 20, 21, 22], [11, 12], [11, 12], 16, 16, [2, 16],
[2, 16], 17, 17, [6, 18, 30, 31, 32, 33], [6, 18, 30, 31, 32, 33],
[6, 7, 18, 19, 30, 31, 32, 33], [6, 7, 18, 19, 30, 31, 32, 33], 20, 20,
[9, 20], [9, 20], [9, 10, 20, 21, 22], [9, 10, 20, 21, 22], 24, 24,
[15, 25, 26, 40, 41, 42, 43], [15, 25, 26, 40, 41, 42, 43], [28, 29],
[28, 29], [28, 29], [28, 29]]

In the argument lists of the functions Congruences, ConsiderKernels, and ConsiderSmallerPowerMaps,
tbl is an ordinary character table, chars a list of (values lists of) characters of tbl , prime a prime integer,
approxmap a parametrized map that is an approximation for the prime-th power map of tbl (e.g., a list
returned by InitPowerMap, see 71.4.1), and quick a Boolean.

The quick value true means that only those classes are considered for which approxmap lists more than one
possible image.

2 I Congruences(tbl, chars, approxmap, prime, quick) F

Congruences replaces the entries of approxmap by improved values, according to condition 3. listed in the
description of PossiblePowerMaps (see 71.1.2).

For each class for which no images are possible according to the tests, the new value of approxmap is an
empty list. Congruences returns true if no such inconsistencies occur, and false otherwise.

gap> Congruences(t, Irr(t), pow, 2, false); pow;
true
[1, 1, 3, 4, 5, 2, 2, 8, 3, 4, 11, 12, [6, 7], 14, 9, 1, 1, 2, 2, 3, 4, 5,
[6, 7], 8, 9, 9, 10, 11, 12, 16, 16, 16, 16, 17, 17, 18, 18, [18, 19],
[18, 19], 20, 20, 20, 20, 22, 22, 24, 24, [25, 26], [25, 26], 28, 28,
29, 29]

3 I ConsiderKernels(tbl, chars, approxmap, prime, quick) F

ConsiderKernels replaces the entries of approxmap by improved values, according to condition 4. listed in
the description of PossiblePowerMaps (see 71.1.2).

Congruences returns true if the orders of the kernels of all characters in chars divide the order of the group
of tbl , and false otherwise.

820 Chapter 71. Maps Concerning Character Tables

gap> t:= CharacterTable("A7.2");; init:= InitPowerMap(t, 2);
[1, 1, 3, 4, [2, 9, 10], 6, 3, 8, 1, 1, [2, 9, 10], 3, [3, 4], 6,
[7, 12]]

gap> ConsiderKernels(t, Irr(t), init, 2, false);
true
gap> init;
[1, 1, 3, 4, 2, 6, 3, 8, 1, 1, 2, 3, [3, 4], 6, 7]

4 I ConsiderSmallerPowerMaps(tbl, approxmap, prime, quick) F

ConsiderSmallerPowerMaps replaces the entries of approxmap by improved values, according to condition
5. listed in the description of PossiblePowerMaps (see 71.1.2).

ConsiderSmallerPowerMaps returns true if each class admits at least one image after the checks, otherwise
false is returned. If no element orders of tbl are stored (see 69.8.5) then true is returned without any tests.

gap> t:= CharacterTable("3.A6");; init:= InitPowerMap(t, 5);
[1, [2, 3], [2, 3], 4, [5, 6], [5, 6], [7, 8], [7, 8], 9,
[10, 11], [10, 11], 1, [2, 3], [2, 3], 1, [2, 3], [2, 3]]

gap> Indeterminateness(init);
4096
gap> ConsiderSmallerPowerMaps(t, init, 5, false);
true
gap> Indeterminateness(init);
256

5 I MinusCharacter(character, prime powermap, prime) F

Let character be (the list of values of) a class function χ, prime a prime integer p, and prime powermap a
parametrized map that is an approximation of the p-th power map for the character table of χ. MinusChar-
acter returns the parametrized map of values of χp−, which is defined by χp−(g) = (χ(g)p − χ(gp))/p.

gap> tbl:= CharacterTable("S7");; pow:= InitPowerMap(tbl, 2);;
gap> pow;
[1, 1, 3, 4, [2, 9, 10], 6, 3, 8, 1, 1, [2, 9, 10], 3, [3, 4], 6,
[7, 12]]

gap> chars:= Irr(tbl){ [2 .. 5] };;
gap> List(chars, x -> MinusCharacter(x, pow, 2));
[[0, 0, 0, 0, [0, 1], 0, 0, 0, 0, 0, [0, 1], 0, 0, 0, [0, 1]],
[15, -1, 3, 0, [-2, -1, 0], 0, -1, 1, 5, -3, [0, 1, 2], -1, 0, 0,

[0, 1]],
[15, -1, 3, 0, [-1, 0, 2], 0, -1, 1, 5, -3, [1, 2, 4], -1, 0, 0, 1],
[190, -2, 1, 1, [0, 2], 0, 1, 1, -10, -10, [0, 2], -1, -1, 0,

[-1, 0]]]

6 I PowerMapsAllowedBySymmetrizations(tbl, subchars, chars, approxmap, prime, parameters) F

Let tbl be an ordinary character table, prime a prime integer, approxmap a parametrized map that is an
approximation of the prime-th power map of tbl (e.g., a list returned by InitPowerMap, see 71.4.1), chars
and subchars two lists of (values lists of) characters of tbl , and parameters a record with components maxlen,
minamb, maxamb (three integers), quick (a Boolean), and contained (a function). Usual values of contained
are ContainedCharacters or ContainedPossibleCharacters.

PowerMapsAllowedBySymmetrizations replaces the entries of approxmap by improved values, according to
condition 6. listed in the description of PossiblePowerMaps (see 71.1.2).

More precisely, the strategy used is as follows.

Section 5. Subroutines for the Construction of Class Fusions 821

First, for each χ ∈ chars, let minus:= MinusCharacter(χ, approxmap, prime).

– If Indeterminateness(minus) = 1 and parameters.quick = false then the scalar products of minus
with subchars are checked; if not all scalar products are nonnegative integers then an empty list is
returned, otherwise χ is deleted from the list of characters to inspect.

– Otherwise if Indeterminateness(minus) is smaller than parameters.minamb then χ is deleted from
the list of characters.

– If parameters.minamb ≤ Indeterminateness(minus) ≤ parameters.maxamb then construct the list of
contained class functions poss:= parameters.contained(tbl, subchars, minus) and Parametrized(
poss), and improve the approximation of the power map using UpdateMap.

If this yields no further immediate improvements then we branch. If there is a character from chars left
with less or equal parameters.maxlen possible symmetrizations, compute the union of power maps allowed
by these possibilities. Otherwise we choose a class C such that the possible symmetrizations of a character
in chars differ at C , and compute recursively the union of all allowed power maps with image at C fixed in
the set given by the current approximation of the power map.

gap> tbl:= CharacterTable("U4(3).4");;
gap> pow:= InitPowerMap(tbl, 2);;
gap> Congruences(tbl, Irr(tbl), pow, 2);; pow;
[1, 1, 3, 4, 5, 2, 2, 8, 3, 4, 11, 12, [6, 7], 14, 9, 1, 1, 2, 2, 3, 4, 5,
[6, 7], 8, 9, 9, 10, 11, 12, 16, 16, 16, 16, 17, 17, 18, 18, [18, 19],
[18, 19], 20, 20, 20, 20, 22, 22, 24, 24, [25, 26], [25, 26], 28, 28,
29, 29]

gap> PowerMapsAllowedBySymmetrizations(tbl, Irr(tbl), Irr(tbl),
> pow, 2, rec(maxlen:= 10, contained:= ContainedPossibleCharacters,
> minamb:= 2, maxamb:= infinity, quick:= false));
[[1, 1, 3, 4, 5, 2, 2, 8, 3, 4, 11, 12, 6, 14, 9, 1, 1, 2, 2, 3, 4, 5, 6,

8, 9, 9, 10, 11, 12, 16, 16, 16, 16, 17, 17, 18, 18, 18, 18, 20, 20,
20, 20, 22, 22, 24, 24, 25, 26, 28, 28, 29, 29]]

71.5 Subroutines for the Construction of Class Fusions

1 I InitFusion(subtbl, tbl) F

For two ordinary character tables subtbl and tbl , InitFusion returns a parametrized map that is a first
approximation of the class fusion from subtbl to tbl , using condition 1. listed in the description of Possi-
bleClassFusions (see 71.2.6).

If there are classes for which no images are possible, according to this criterion, then fail is returned.

gap> subtbl:= CharacterTable("2F4(2)");; tbl:= CharacterTable("Ru");;
gap> fus:= InitFusion(subtbl, tbl);
[1, 2, 2, 4, [5, 6], [5, 6, 7, 8], [5, 6, 7, 8], [9, 10], 11, 14,
14, [13, 14, 15], [16, 17], [18, 19], 20, [25, 26], [25, 26],
[5, 6], [5, 6], [5, 6], [5, 6, 7, 8], [13, 14, 15],
[13, 14, 15], [18, 19], [18, 19], [25, 26], [25, 26],
[27, 28, 29], [27, 28, 29]]

2 I CheckPermChar(subtbl, tbl, approxmap, permchar) F

CheckPermChar replaces the entries of the parametrized map approxmap by improved values, according to
condition 3. listed in the description of PossibleClassFusions (see 71.2.6).

822 Chapter 71. Maps Concerning Character Tables

CheckPermChar returns true if no inconsistency occurred, and false otherwise.

gap> permchar:= Sum(Irr(tbl){ [1, 5, 6] });;
gap> CheckPermChar(subtbl, tbl, fus, permchar); fus;
true
[1, 2, 2, 4, 5, 7, 8, 9, 11, 14, 14, [13, 15], 16, [18, 19], 20,
[25, 26], [25, 26], 5, 5, 6, 8, 14, [13, 15], [18, 19], [18, 19],
[25, 26], [25, 26], 27, 27]

3 I ConsiderTableAutomorphisms(approxmap, grp) F

ConsiderTableAutomorphisms replaces the entries of the parametrized map approxmap by improved values,
according to condition 4. listed in the description of PossibleClassFusions (see 71.2.6).

Afterwards exactly one representative of fusion maps (contained in approxmap) in each orbit under the
action of the permutation group grp is contained in the modified parametrized map.

ConsiderTableAutomorphisms returns the list of positions where approxmap was changed.

gap> ConsiderTableAutomorphisms(fus, AutomorphismsOfTable(tbl));
[16]
gap> fus;
[1, 2, 2, 4, 5, 7, 8, 9, 11, 14, 14, [13, 15], 16, [18, 19], 20, 25,
[25, 26], 5, 5, 6, 8, 14, [13, 15], [18, 19], [18, 19], [25, 26],
[25, 26], 27, 27]

4 I FusionsAllowedByRestrictions(subtbl, tbl, subchars, chars, approxmap, parameters) F

Let subtbl and tbl be ordinary character tables, subchars and chars two lists of (values lists of) characters
of subtbl and tbl , respectively, approxmap a parametrized map that is an approximation of the class fu-
sion of subtbl in tbl , and parameters a record with components maxlen, minamb, maxamb (three integers),
quick (a Boolean), and contained (a function). Usual values of contained are ContainedCharacters or
ContainedPossibleCharacters.

FusionsAllowedByResrictions replaces the entries of approxmap by improved values, according to condi-
tion 5. listed in the description of PossibleClassFusions (see 71.2.6).

More precisely, the strategy used is as follows.

First, for each χ ∈ chars, let restricted:= CompositionMaps(χ, approxmap).

– If Indeterminateness(restricted) = 1 and parameters.quick = false then the scalar products of
restricted with subchars are checked; if not all scalar products are nonnegative integers then an empty
list is returned, otherwise χ is deleted from the list of characters to inspect.

– Otherwise if Indeterminateness(minus) is smaller than parameters.minamb then χ is deleted from
the list of characters.

– If parameters.minamb ≤ Indeterminateness(restricted) ≤ parameters.maxamb then construct
poss:= parameters.contained(subtbl, subchars, restricted) and Parametrized(poss), and
improve the approximation of the fusion map using UpdateMap.

If this yields no further immediate improvements then we branch. If there is a character from chars left with
less or equal parameters.maxlen possible restrictions, compute the union of fusion maps allowed by these
possibilities. Otherwise we choose a class C such that the possible restrictions of a character in chars differ
at C , and compute recursively the union of all allowed fusion maps with image at C fixed in the set given
by the current approximation of the fusion map.

Section 5. Subroutines for the Construction of Class Fusions 823

gap> subtbl:= CharacterTable("U3(3)");; tbl:= CharacterTable("J4");;
gap> fus:= InitFusion(subtbl, tbl);;
gap> TestConsistencyMaps(ComputedPowerMaps(subtbl), fus,
> ComputedPowerMaps(tbl));
true
gap> fus;
[1, 2, 4, 4, [5, 6], [5, 6], [5, 6], 10, [12, 13], [12, 13],
[14, 15, 16], [14, 15, 16], [21, 22], [21, 22]]

gap> ConsiderTableAutomorphisms(fus, AutomorphismsOfTable(tbl));
[9]
gap> fus;
[1, 2, 4, 4, [5, 6], [5, 6], [5, 6], 10, 12, [12, 13],
[14, 15, 16], [14, 15, 16], [21, 22], [21, 22]]

gap> FusionsAllowedByRestrictions(subtbl, tbl, Irr(subtbl),
> Irr(tbl), fus, rec(maxlen:= 10,
> contained:= ContainedPossibleCharacters, minamb:= 2,
> maxamb:= infinity, quick:= false));
[[1, 2, 4, 4, 5, 5, 6, 10, 12, 13, 14, 14, 21, 21],
[1, 2, 4, 4, 6, 6, 6, 10, 12, 13, 15, 15, 22, 22],
[1, 2, 4, 4, 6, 6, 6, 10, 12, 13, 16, 16, 22, 22]]

72
Monomiality

Questions

This chapter describes functions dealing with the monomiality of finite (solvable) groups and their characters.

All these functions assume characters to be class function objects as described in Chapter 70, lists of
character values are not allowed.

The usual property tests of GAP that return either true or false are not sufficient for us. When we
ask whether a group character χ has a certain property, such as quasiprimitivity, we usually want more
information than just yes or no. Often we are interested in the reason why a group character χ was
proved to have a certain property, e.g., whether monomiality of χ was proved by the observation that the
underlying group is nilpotent, or whether it was necessary to construct a linear character of a subgroup
from which χ can be induced. In the latter case we also may be interested in this linear character. Therefore
we need test functions that return a record containing such useful information. For example, the record
returned by the function TestQuasiPrimitive (see 72.2.3) contains the component isQuasiPrimitive
(which is the known boolean property flag), and additionally the component comment, a string telling the
reason for the value of the isQuasiPrimitive component, and in the case that the argument χ was not
quasiprimitive also the component character, which is an irreducible constituent of a nonhomogeneous
restriction of χ to a normal subgroup. Besides these test functions there are also the known properties, e.g.,
the property IsQuasiPrimitive which will call the attribute TestQuasiPrimitive, and return the value of
the isQuasiPrimitive component of the result.

A few words about how to use the monomiality functions seem to be necessary. Monomiality questions
usually involve computations in many subgroups and factor groups of a given group, and for these groups
often expensive calculations such as that of the character table are necessary. So one should be careful
not to construct the same group over and over again, instead the same group object should be reused,
such that its character table need to be computed only once. For example, suppose you want to restrict
a character to a normal subgroup N that was constructed as a normal closure of some group elements,
and suppose that you have already computed with normal subgroups (by calls to NormalSubgroups or
MaximalNormalSubgroups) and their character tables. Then you should look in the lists of known normal
subgroups whether N is contained, and if so you can use the known character table. A mechanism that
supports this for normal subgroups is described in 69.21.

Also the following hint may be useful in this context. If you know that sooner or later you will compute the
character table of a group G then it may be advisable to compute it as soon as possible. For example, if
you need the normal subgroups of G then they can be computed more efficiently if the character table of G
is known, and they can be stored compatibly to the contained G-conjugacy classes. This correspondence of
classes list and normal subgroup can be used very often.

Several examples in this chapter use the symmetric group S4 and the special linear group SL(2, 3). For
running the examples, you must first define the groups, for example as follows.

gap> S4:= SymmetricGroup(4);; SetName(S4, "S4");
gap> Sl23:= SL(2, 3);;

1 I InfoMonomial V

Most of the functions described in this chapter print some (hopefully useful) information if the info level
of the info class InfoMonomial is at least 1 (see 7.4 for details).

Section 2. Primitivity of Characters 825

72.1 Character Degrees and Derived Length

1 I Alpha(G) A

For a group G , Alpha returns a list whose i -th entry is the maximal derived length of groups G/ ker(χ) for
χ ∈ Irr(G) with χ(1) at most the i -th irreducible degree of G .

2 I Delta(G) A

For a group G , Delta returns the list [1, alp[2] - alp[1], ..., alp[n] - alp[n-1]], where alp
= Alpha(G) (see 72.1.1).

3 I IsBergerCondition(G) P
I IsBergerCondition(chi) P

Called with an irreducible character chi of the group G , IsBergerCondition returns true if chi satisfies
M ′ ≤ ker(χ) for every normal subgroup M of G with the property that M ≤ ker(ψ) for all ψ ∈ Irr(G) with
ψ(1) < χ(1), and false otherwise.

Called with a group G , IsBergerCondition returns true if all irreducible characters of G satisfy the
inequality above, and false otherwise.

For groups of odd order the result is always true by a theorem of T. R. Berger (see [Ber76], Thm. 2.2).

In the case that false is returned InfoMonomial tells about a degree for which the inequality is violated.

gap> Alpha(Sl23);
[1, 3, 3]
gap> Alpha(S4);
[1, 2, 3]
gap> Delta(Sl23);
[1, 2, 0]
gap> Delta(S4);
[1, 1, 1]
gap> IsBergerCondition(S4);
true
gap> IsBergerCondition(Sl23);
false
gap> List(Irr(Sl23), IsBergerCondition);
[true, true, true, false, false, false, true]
gap> List(Irr(Sl23), Degree);
[1, 1, 1, 2, 2, 2, 3]

72.2 Primitivity of Characters

1 I TestHomogeneous(chi, N) F

For a group character chi of the group G , say, and a normal subgroup N of G , TestHomogeneous returns
a record with information whether the restriction of chi to N is homogeneous, i.e., is a multiple of an
irreducible character.

N may be given also as list of conjugacy class positions w.r.t. the character table of G .

The components of the result are

isHomogeneous
true or false,

comment
a string telling a reason for the value of the isHomogeneous component,

826 Chapter 72. Monomiality Questions

character
irreducible constituent of the restriction, only bound if the restriction had to be checked,

multiplicity
multiplicity of the character component in the restriction of chi .

gap> n:= DerivedSubgroup(Sl23);;
gap> chi:= Irr(Sl23)[7];
Character(CharacterTable(SL(2,3)), [3, 0, 0, 3, 0, 0, -1])
gap> TestHomogeneous(chi, n);
rec(isHomogeneous := false, comment := "restriction checked",
character := Character(CharacterTable(Group(
[[[0*Z(3), Z(3)], [Z(3)^0, 0*Z(3)]],
[[Z(3), 0*Z(3)], [0*Z(3), Z(3)]],
[[Z(3)^0, Z(3)], [Z(3), Z(3)]]])), [1, -1, 1, -1, 1]),

multiplicity := 1)
gap> chi:= Irr(Sl23)[4];
Character(CharacterTable(SL(2,3)), [2, 1, 1, -2, -1, -1, 0])
gap> cln:= ClassPositionsOfNormalSubgroup(CharacterTable(Sl23), n);
[1, 4, 7]
gap> TestHomogeneous(chi, cln);
rec(isHomogeneous := true, comment := "restricts irreducibly")

2 I IsPrimitiveCharacter(chi) P

For a character chi of the group G , say, IsPrimitiveCharacter returns true if chi is not induced from any
proper subgroup, and false otherwise.

gap> IsPrimitive(Irr(Sl23)[4]);
true
gap> IsPrimitive(Irr(Sl23)[7]);
false

3 I TestQuasiPrimitive(chi) A
I IsQuasiPrimitive(chi) P

TestQuasiPrimitive returns a record with information about quasiprimitivity of the group character chi ,
i.e., whether chi restricts homogeneously to every normal subgroup of its group. The result record contains
at least the components isQuasiPrimitive (with value either true or false) and comment (a string telling
a reason for the value of the component isQuasiPrimitive). If chi is not quasiprimitive then there is
additionally a component character, with value an irreducible constituent of a nonhomogeneous restriction
of chi .

IsQuasiPrimitive returns true or false, depending on whether the character chi is quasiprimitive.

Note that for solvable groups, quasiprimitivity is the same as primitivity (see 72.2.2).

gap> chi:= Irr(Sl23)[4];
Character(CharacterTable(SL(2,3)), [2, 1, 1, -2, -1, -1, 0])
gap> TestQuasiPrimitive(chi);
rec(isQuasiPrimitive := true, comment := "all restrictions checked")
gap> chi:= Irr(Sl23)[7];
Character(CharacterTable(SL(2,3)), [3, 0, 0, 3, 0, 0, -1])
gap> TestQuasiPrimitive(chi);
rec(isQuasiPrimitive := false, comment := "restriction checked",
character := Character(CharacterTable(Group(

Section 3. Testing Monomiality 827

[[[0*Z(3), Z(3)], [Z(3)^0, 0*Z(3)]],
[[Z(3), 0*Z(3)], [0*Z(3), Z(3)]],
[[Z(3)^0, Z(3)], [Z(3), Z(3)]]])), [1, -1, 1, -1, 1]))

4 I TestInducedFromNormalSubgroup(chi[, N]) F
I IsInducedFromNormalSubgroup(chi) P

TestInducedFromNormalSubgroup returns a record with information whether the irreducible character chi
of the group G , say, is induced from a proper normal subgroup of G . If the second argument N is present,
which must be a normal subgroup of G or the list of class positions of a normal subgroup of G , it is checked
whether chi is induced from N .

The result contains always the components isInduced (either true or false) and comment (a string telling
a reason for the value of the component isInduced). In the true case there is a component character
which contains a character of a maximal normal subgroup from which chi is induced.

IsInducedFromNormalSubgroup returns true if chi is induced from a proper normal subgroup of G , and
false otherwise.

gap> List(Irr(Sl23), IsInducedFromNormalSubgroup);
[false, false, false, false, false, false, true]
gap> List(Irr(S4){ [1, 3, 4] },
> TestInducedFromNormalSubgroup);
[rec(isInduced := false, comment := "linear character"),
rec(isInduced := true, comment := "induced from component ’.character’",

character := Character(CharacterTable(Alt([1 .. 4])),
[1, 1, E(3)^2, E(3)])),

rec(isInduced := false, comment := "all maximal normal subgroups checked"
)]

72.3 Testing Monomiality

A character χ of a finite group G is called monomial if χ is induced from a linear character of a subgroup
of G . A finite group G is called monomial (or M -group) if each ordinary irreducible character of G is
monomial.

There are GAP properties IsMonomialGroup (see 37.15.9) and IsMonomialCharacter, but one can use
IsMonomial instead.

1 I TestMonomial(chi) A
I TestMonomial(G) A
I TestMonomial(chi, uselattice) O
I TestMonomial(G, uselattice) O

Called with a group character chi of a group G , TestMonomial returns a record containing information
about monomiality of the group G or the group character chi , respectively.

If TestMonomial proves the character chi to be monomial then the result contains components isMonomial
(with value true), comment (a string telling a reason for monomiality), and if it was necessary to compute
a linear character from which chi is induced, also a component character.

If TestMonomial proves chi or G to be nonmonomial then the value of the component isMonomial is false,
and in the case of G a nonmonomial character is the value of the component character if it had been
necessary to compute it.

A Boolean can be entered as the second argument uselattice; if the value is true then the subgroup lattice
of the underlying group is used if necessary, if the value is false then the subgroup lattice is used only for
groups of order at most TestMonomialUseLattice (see 72.3.2). The default value of uselattice is false.

828 Chapter 72. Monomiality Questions

For a group whose lattice must not be used, it may happen that TestMonomial cannot prove or disprove
monomiality; then the result record contains the component isMonomial with value "?". This case occurs
in the call for a character chi if and only if chi is not induced from the inertia subgroup of a component of
any reducible restriction to a normal subgroup. It can happen that chi is monomial in this situation. For a
group, this case occurs if no irreducible character can be proved to be nonmonomial, and if no decision is
possible for at least one irreducible character.

gap> TestMonomial(S4);
rec(isMonomial := true, comment := "abelian by supersolvable group")
gap> TestMonomial(Sl23);
rec(isMonomial := false, comment := "list Delta(G) contains entry > 1")

2 I TestMonomialUseLattice V

This global variable controls for which groups the operation TestMonomial (see 72.3.1) may compute the
subgroup lattice. The value can be set to a positive integer or infinity, the default is 1000.

3 I IsMonomialNumber(n) P

For a positive integer n, IsMonomialNumber returns true if every solvable group of order n is monomial,
and false otherwise. One can also use IsMonomial instead.

Let νp(n) denote the multiplicity of the prime p as factor of n, and ord(p, q) the multiplicative order of p
(mod q).

Then there exists a solvable nonmonomial group of order n if and only if one of the following conditions is
satisfied.

1. ν2(n) ≥ 2 and there is a p such that νp(n) ≥ 3 and p ≡ −1 (mod 4),

2. ν2(n) ≥ 3 and there is a p such that νp(n) ≥ 3 and p ≡ 1 (mod 4),

3. there are odd prime divisors p and q of n such that ord(p, q) is even and ord(p, q) < νp(n) (especially
νp(n) ≥ 3),

4. there is a prime divisor q of n such that ν2(n) ≥ 2ord(2, q) + 2 (especially ν2(n) ≥ 4),

5. ν2(n) ≥ 2 and there is a p such that p ≡ 1 (mod 4), ord(p, q) is odd, and 2ord(p, q) < νp(n) (especially
νp(n) ≥ 3).

These five possibilities correspond to the five types of solvable minimal nonmonomial groups (see 72.4.2)
that can occur as subgroups and factor groups of groups of order n.

gap> Filtered([1 .. 111], x -> not IsMonomial(x));
[24, 48, 72, 96, 108]

4 I TestMonomialQuick(chi) A
I TestMonomialQuick(G) A

TestMonomialQuick does some cheap tests whether the irreducible character chi resp. the group G is
monomial. Here “cheap” means in particular that no computations of character tables are involved. The
return value is a record with components

isMonomial
either true or false or the string "?", depending on whether (non)monomiality could be proved,
and

comment
a string telling the reason for the value of the isMonomial component.

Section 3. Testing Monomiality 829

A group G is proved to be monomial by TestMonomialQuick if G is nilpotent or Sylow abelian by super-
solvable, or if G is solvable and its order is not divisible by the third power of a prime, Nonsolvable groups
are proved to be nonmonomial by TestMonomialQuick.

An irreducible character chi is proved to be monomial if it is linear, or if its codegree is a prime power, or
if its group knows to be monomial, or if the factor group modulo the kernel can be proved to be monomial
by TestMonomialQuick.

gap> TestMonomialQuick(Irr(S4)[3]);
rec(isMonomial := true, comment := "whole group is monomial")
gap> TestMonomialQuick(S4);
rec(isMonomial := true, comment := "abelian by supersolvable group")
gap> TestMonomialQuick(Sl23);
rec(isMonomial := "?", comment := "no decision by cheap tests")

5 I TestSubnormallyMonomial(G) A
I TestSubnormallyMonomial(chi) A
I IsSubnormallyMonomial(G) P
I IsSubnormallyMonomial(chi) P

A character of the group G is called subnormally monomial (SM for short) if it is induced from a linear
character of a subnormal subgroup of G . A group G is called SM if all its irreducible characters are SM.

TestSubnormallyMonomial returns a record with information whether the group G or the irreducible char-
acter chi of G is SM.

The result has components isSubnormallyMonomial (either true or false) and comment (a string telling a
reason for the value of the component isSubnormallyMonomial); in the case that the isSubnormallyMono-
mial component has value false there is also a component character, with value an irreducible character
of G that is not SM.

IsSubnormallyMonomial returns true if the group G or the group character chi is subnormally monomial,
and false otherwise.

gap> TestSubnormallyMonomial(S4);
rec(isSubnormallyMonomial := false,
character := Character(CharacterTable(S4), [3, -1, -1, 0, 1]),
comment := "found non-SM character")

gap> TestSubnormallyMonomial(Irr(S4)[4]);
rec(isSubnormallyMonomial := false,
comment := "all subnormal subgroups checked")

gap> TestSubnormallyMonomial(DerivedSubgroup(S4));
rec(isSubnormallyMonomial := true, comment := "all irreducibles checked")

6 I TestRelativelySM(G) A
I TestRelativelySM(chi) A
I TestRelativelySM(G, N) O
I TestRelativelySM(chi, N) O
I IsRelativelySM(chi) P
I IsRelativelySM(G) P

In the first two cases, TestRelativelySM returns a record with information whether the argument, which
must be a SM group G or an irreducible character chi of a SM group G , is relatively SM with respect to
every normal subgroup of G .

In the second two cases, a normal subgroup N of G is the second argument. Here TestRelativelySM returns
a record with information whether the first argument is relatively SM with respect to N , i.e, whether there is

830 Chapter 72. Monomiality Questions

a subnormal subgroup H of G that contains N such that the character chi resp. every irreducible character
of G is induced from a character ψ of H such that the restriction of ψ to N is irreducible.

The result record has the components isRelativelySM (with value either true or false) and comment
(a string that describes a reason). If the argument is a group G that is not relatively SM with respect to
a normal subgroup then additionally the component character is bound, with value a not relatively SM
character of such a normal subgroup.

IsRelativelySM returns true if the SM group G or the irreducible character chi of the SM group G is
relatively SM with respect to every normal subgroup of G , and false otherwise.

Note that it is not checked whether G is SM.

gap> IsSubnormallyMonomial(DerivedSubgroup(S4));
true
gap> TestRelativelySM(DerivedSubgroup(S4));
rec(isRelativelySM := true,
comment := "normal subgroups are abelian or have nilpotent factor group")

72.4 Minimal Nonmonomial Groups

1 I IsMinimalNonmonomial(G) P

A group G is called minimal nonmonomial if it is nonmonomial, and all proper subgroups and factor
groups are monomial.

gap> IsMinimalNonmonomial(Sl23); IsMinimalNonmonomial(S4);
true
false

2 I MinimalNonmonomialGroup(p, factsize) F

is a solvable minimal nonmonomial group described by the parameters factsize and p if such a group exists,
and false otherwise.

Suppose that the required group K exists. Then factsize is the size of the Fitting factor K/F (K), and this
value is 4, 8, an odd prime, twice an odd prime, or four times an odd prime. In the case that factsize is
twice an odd prime, the centre Z (K) is cyclic of order 2p+1. In all other cases p is the (unique) prime that
divides the order of F (K).

The solvable minimal nonmonomial groups were classified by van der Waall, see [vdW76].

gap> MinimalNonmonomialGroup(2, 3); # the group SL(2,3)
2^(1+2):3
gap> MinimalNonmonomialGroup(3, 4);
3^(1+2):4
gap> MinimalNonmonomialGroup(5, 8);
5^(1+2):Q8
gap> MinimalNonmonomialGroup(13, 12);
13^(1+2):2.D6
gap> MinimalNonmonomialGroup(1, 14);
2^(1+6):D14
gap> MinimalNonmonomialGroup(2, 14);
(2^(1+6)Y4):D14

73 Installing GAP

GAP runs on a large number of different operating systems. It behaves slightly different on each of those.
This chapter describes the behaviour of GAP, the installation, and the options on some of those operating
systems.

Currently it contains instructions for UNIX (which includes the popular variant Linux), for Apple Mac-
intosh computers under OS X (see 73.14) as well under the “classic” MacOS (see 73.15), and finally for
Windows.

For other systems the section 73.13 gives hints how to approach such a port.

73.1 Installation Overview

To permit compatibility over a wide range of operating systems, the installation of GAP might differ from
what you are accustomed to for you particular operating system. In particular, there is no “Installer”
program.

Installing the GAP distribution alone takes about 150MB of disk space. The packages add another 100MB.
(These are upper limits. Unix is more efficient in storing a large number of small files than Windows.) You
also should have at least 64MB of memory to run GAP.

The installation consists of 5 easy steps:

-
Get the archive(s) suitable for your system

-
Unpack

-
Compile (unless a binary has been provided already)

-
Test the installation

-
Install packages. (Some packages will only work under Unix and OS X).

Installation will always install the full version of GAP. There is no “Upgrade” mode. If you are worried
about losing the old version, you can keep an existing installation of GAP in another directory, it will not
be overwritten.

Section 73.8 contains information about the manual, where to find and how to print it. Section 73.9 lists
common problems with the installation.

832 Chapter 73. Installing GAP

73.2 Get the Archives

You can get archives for the GAP distribution from

http://www.gap-system.org . As different operating systems use different archive formats, GAP is
available in a variety of archives. These archives slightly differ in the treatment of text or binary files. If you
get the wrong archive you might get error messages during compilation or not be able to look at text files
in an editor.

If you use

Unix
you can use the .tar.gz, .tar.bz2 or .zoo archives.

Macintosh OS X
you can use the .tar.gz or .zoo archives (or install the MacOS version, see also 73.14).

MacOS
Use the .zoo archive. Also make sure you get the .sit StuffIt archives for the unzoo uncompressor.

Windows
Use the -win.zip or the .zoo archives.

Now get the installation archives of the right kind, according to your operating system. You want to get the
archives:

gap4r4p12
which contains the main GAP installation

packages4r4p12
which contains GAP packages that provide further functionality

unzoo
Only if you use the .zoo archives: Unix and OS X users get the source code unzoo.c, MacOS users
get the .sit archive and Windows users the .exe binary.

htmie4r4p12
An alternative version of the HTML manual which uses a nonstandard “symbol” font instead of
Unicode characters. If you use a webbrowser such as Internet Explorer that has difficulties with
rendering Unicode correctly, you might want to replace the HTML documentation with this version.
(See section 73.8.)

xtom4r4p12
Contains about 80MB of further tables of marks. (You can always install this later if the need
arises.)

Note that starting with release 4.4, the distribution archives for GAP will always contain the most recent
bugfix. Thus if you install anew from scratch, you will not need to get any bugfixes.

73.3 Unpacking

The concrete act of unpacking will vary slightly, depending on the operating system and the type of archive
used.

Unix, OS X
Under Unix or OS X unpack the archive gap4r4p12 in whatever place you want GAP to reside. If
you use the .zoo archive, you will have to compile the unzoo program first

Section 4. Compilation 833

cc -o unzoo -DSYS_IS_UNIX -O unzoo.c
./unzoo -x gap4r4p12.zoo

(If you unpack the archive as root user under UNIX, make sure that you issue the command umask 022
before, to ensure that users will have permissions to read the files.)

MacOS
if the .sit archive did not extract autmatically, click it to force extraction. You will end up with an
applications, unzoo 4.4 PPC. Now move this applications, as well as the gap4r4p12.zoo archive to
the Folder in which you want to install GAP. Drag the archive gap4r4p12.zoo onto the icon of
‘unzoo 4.4 PPC. You will get a window with many lines of text output. This process will create a
folder gap4r4 in the current folder.

Windows
The archive must be extracted to the main directory of the C: drive. (If you do not have permissions
or sufficient free space to create directories there, see section 73.17.) If you use the .zoo archives
we provide move unzoo.exe and gap4r4p12.zoo in the C: directory, open the MS-DOS (or Command
Prompt) window. (You can find this under “Start/Programs/Accessories”.) In this window issue the
commands

cd c:\
unzoo -x gap4r4p12.zoo

(It might be necessary to use upper case letters instead)
If you prefer to use the -win.zip archive use a ZIP extractor. Make sure that you specify extraction
to the c:/ folder (with no extra directory name – the directory is part of the archive) to avoid
extraction in a wrong place or in a separate directory. After extraction you can start GAP with the
file

C:\GAP4R4\bin\gapw95.exe

73.4 Compilation

For the MacOS and Windows version the unpacking process will already have put binaries in place. Un-
der Unix and OS X you will have to compile (OS X users please see section 73.14 for information about
compilation) such a binary yourself.

Go into the directory gap4r4 (which you just created by unpacking). Issue the two commands

./configure
make

Both will produce a lot of text output. You should end up with a shell script bin/gap.sh which you can use
to start GAP. (If you want, you can copy this script later to a directory that is listed in your search path.)

OS X users please note that this script must be started from within the Terminal Application. It is not
possible to start GAP by clicking this script.

If you get weird error messages from these commands, make sure that you got the Unix version of GAP (i.e.
not the -win.zip format archive) and that you extracted the archive on the machine on which you compile.
Also see section 73.10 below for further information.

If you use OS X in the “Panther” release (version 10.3), you might want to change the call to make to

make COPTS="-fast -mcpu=7450"

on a G4 system or to

834 Chapter 73. Installing GAP

make COPTS="-O3 -mtune=G5 -mcpu=G5 -mpowerpc64"

on a G5 system (please note that the -fast compiler option causes problems on a G5 at the time of this
writing – February 2004). Initial tests indicate that this will give you substantially improved performance.

Unless you want to use the same installation of GAP also under Windows or MacOS (not OS X), issue the
command

make removewin

to delete unnecessary files that are Windows-only and only take up about 2MB of space.

73.5 Test of the installation

You are now at a point where you can start GAP for the first time. Unix and OS X users type

./bin/gap.sh

MacOS users click the Application GAP 4 PPC in the gap4r4 directory, Windows users start

C:\GAP4R4\bin\gapw95.exe

GAP should start up with its banner and after a little while give you a command prompt >.

Try a few commands to see if the compilation succeeded.

gap> 2 * 3 + 4;
10
gap> Factorial(30);
265252859812191058636308480000000
gap> m11 := Group((1,2,3,4,5,6,7,8,9,10,11),(3,7,11,8)(4,10,5,6));;
gap> Size(m11);
7920
gap> Length(ConjugacyClasses(m11));
10
gap> Factors(10^42 + 1);
#I IsPrimeInt: probably prime, but not proven: 4458192223320340849
[29, 101, 281, 9901, 226549, 121499449, 4458192223320340849]

If you get the error message “hmm, I cannot find lib/init.g” you are likely to have installed only the
binary (or on Windows have not installed GAP in the root directory of the C: drive).

If GAP starts but you get error messages for the commands you issued, the files in the lib directory are
likely to be corrupt or incomplete. Make sure that you used the proper archive and that extraction proceeded
without errors.

Especially try the command line editing and history facilities, because they are probably the most machine
dependent feature of GAP. Enter a few commands and then make sure that ctr -P redisplays the last command,
that ctr -E moves the cursor to the end of the line, that ctr -B moves the cursor back one character, and that
ctr -D deletes single characters. So, after entering the above commands, typing

ctr -P ctr -E ctr -B ctr -B ctr -B ctr -B ctr -D 2 return

should give the following lines:

gap> Factors(10^42 + 2);
#I IsPrimeInt: probably prime, but not proven: 3145594690908701990242740067
[2, 3, 433, 953, 128400049, 3145594690908701990242740067]

If you want to run a more thorough test (this is not required), you can read in a test script that exercises
more of GAPs capabilities.

Section 7. Finish Installation and Cleanup 835

gap> Read(Filename(DirectoriesLibrary("tst"), "testall.g"));

The test requires about 60-70MB of memory and runs about 2 minutes on a Pentium III/1 GHz machine.
You will get a large number of lines with output about the progress of the tests.

test file GAP4stones time(msec)

testing: /home/fac/a/hulpke/gap4/tst/zlattice.tst
zlattice.tst 0 0
testing: /home/fac/a/hulpke/gap4/tst/gaussian.tst
gaussian.tst 0 10
[further lines deleted]

Windows users should note that the MS-DOS/Command Prompt user interface provided by Microsoft might
not offer history scrolling or cut and paste with the mouse. See section 73.17 for a way around this.

73.6 Packages

To extract the packages, extract the package4r4p12 archive in the “gap4r4/pkg’ directory by the same
method used to extracted the main archive. (If you use unzoo or under MacOS move both the unzoo binary
and the archive in the pkg directory and extract there.)
For packages that consist only of GAP code no further installation is necessary. Some packages however
contain external binaries that will require separate compilation. (If you use the MacOS version or Windows
you will not be able to use external binaries anyhow any you can skip the rest of this section.) You can
skip this compilation now and do it later – GAP will work fine, just the capabilities of the affected packages
won’t be available.
In general, each package contains a README file that contains information about the package and the necessary
installation. Typically the installation for a package consists of changing in the packages directory and issuing
the commands ./configure; make in the packages directory. (This has to be done separately for exery
package).
If you have problems with package installations please contact the package authors as listed in the packages
README file.

73.7 Finish Installation and Cleanup

Congratulations, your installation is finished.
Once the installation is complete, we would like to ask you to send us a short note to support@gap-system.org,
telling us about the installation. (This is just a courtesy; we like to know how many people are using GAP
and get feedback regarding difficulties (hopefully none) that users may have had with installation.)
We also suggest that you subscribe to our GAP Forum mailing list; see the GAP web pages for details.
Whenever there is a bug fix or new release of GAP this is where it is announced. The GAP Forum also deals
with user questions of a general nature; bug reports and other problems you have while installing and/or
using GAP should be sent to support@gap-system.org.
At this point you can also delete all archive files. (You might want to keep unzoo if you used it in case a
bugfix will be released.)
The directories trans, small and prim within gap4r4 contain data libraries. If you are short of disk space
you can erase some of them. Similarly, you can erase and any of the GAP package directories in pkg that
you have decided you don’t need, but then of course you will not be able to access these data or packages.
(You should do this only if you have diskspace problems as you might find out later that you need certain
packages.)
If you are new to GAP, you might want to read through the following two sections for information about
the documentation.

836 Chapter 73. Installing GAP

73.8 The Documentation

The GAP manual is distributed in various “books”. The standard distribution contains four of them (as well
as a comprehensive index). GAP packages (see Chapter 74 and, in particular, Section 74.2) provide their
own documentation in their own doc directories.

All documentation will be available automatically for the online help (see Section 2.8 in the Tutorial and
Chapter 2 in this manual for more details).

There also is (if installed) an HTML version of some books that can be viewed with an HTML browser,
see 2.3. Some of these use unicode characters for mathematical formulae. If your browser is not able to
display these (older versions of Internet Explorer do not), get the htmie4r4p12 archive which provides
math symbols in a different encoding. (Mozilla, Konqueror and Safari all support unicode characters.)

The manual is also available in pdf format. In the full UNIX distribution (gap4r4p12.zoo) these files are
included in the directory gap4r4/doc in the subdirectories tut (a beginner’s tutorial), ref (the reference
manual), prg (programmer’s tutorial), ext (programmer’s reference) and new (new material that might still
change in future versions).

If you want to use these manual files with the online help you may check (or make sure) that your system
provides some additional software like

xpdf
see

http://www.foolabs.com/xpdf/

xdvi
see any of the CTAN sites/mirrors; the main site is:

http://www.ctan.org/
and the mirrors are listed at:

http://www.ctan.org/tex-archive/CTAN.sites
At any of the mirrors the path of the file containing the xdvi archive (after the main site name) is
tex-archive/dviware/xdvi/xdvi.tar.gz.

acroread
see

http://www.adobe.com/products/acrobat/readstep.html

As a complete beginner, we suggest you read the tutorial first for an introduction to GAP 4. Then start to
use the system with extensive use of the online help system (see Section 2.8 in the Tutorial and Chapter 2
in this manual).

If you have experience with GAP 3, it might be still worthwhile to at least glance over the first chapters of the
tutorial. You however should read the last chapter of the tutorial, “Migrating to GAP4”. This chapter gives
a summary of changes between GAP 3 and GAP 4 that will affect the user. It also explains a “compatibility
mode” you may turn on to make GAP 4 behave a bit more like GAP 3.

As some of the manuals are quite large, you should not immediately print them. If you start using GAP
it can be helpful to print the tutorial (and probably the first chapters of the reference manual). There is
no compelling reason to print the whole of the reference manual, better use the online help which provides
useful search features.

Section 9. If Things Go Wrong 837

73.9 If Things Go Wrong

This section lists a few common problems when installing or running GAP and their remedies. Also see the
FAQ list on the GAP web pages at

http://www.gap-system.org/Faq/faq.html

GAP starts with a warning “hmm, I cannot find ’lib/init.g’”.
You either started only the binary or did not edit the shell script/batch file to give the correct
library path. You must start the binary with the command line option -l path where path is the
path to the GAP home directory. See section 3.1 in the reference manual.

When starting, GAP produces error messages about undefined variables.
You might have a .gaprc file that was intended for GAP 3 but is not compatible with GAP 4. See
section 3.4 in chapter 3 of the reference manual.

GAP complains: “corrupted completion file”.
Some library files got changed without rebuilding the completion files. This is often a sign that
earlier a bugfix was not installed properly or that you changed the library yourself. In the latter
case, start GAP with command line option -N and see section 3.5.

GAP stops with an error message “exceeded the permitted memory”.
Your job got bigger than what is permitted by default (256MB). (This is a safety feature to avoid
single jobs wrecking a multi-user system.) You can type return; to continue, if the error message
happens repeatedly you better start the job anew and use the command line option -o to set a
higher memory limit.

GAP stops with an error message: “cannot extend the workspace any more”.
Your calculation exceeded the available memory. Most likely you asked GAP to do something which
required more memory than you have (as listing all elements of S15 for example). You can use the
command line option -g (see section 3.1 in the reference manual) to display how much memory GAP
uses. If this is below what your machine has available extending the workspace is impossible. Start
GAP with more memory or use the -a option to pre-allocate initially a large piece of workspace.

GAP is not able to allocate memory above a certain limit
Being a 32 bit program, GAP currently is unable to use over 4GB of memory. Since the address
space also has to keep the operating system, 3GB probably are an upper limit for a GAP workspace.

Depending on the operating system, it also might be necessary to compile the GAP binary statically (i.e. to
include all system libraries) to avoid collisions with system libraries located by default at an address within
the workspace. (Under Linux for example, 1GB is a typical limit.) You can compile a static binary using
make static.

Windows users also see below for a built-in limit.

make complains about not being able to find files in cnf or src which exist.
The dates of the new files were not extracted properly (Alpha-OSF machines are prone to this).
Call

touch * cnf/* src/*

from the main GAP directory (this ought to reset the date of all relevant files to “now”) and try again.

Recompilation does not actually compile changed files.
The dates of the new files were not extracted properly. Go in the source directory and touch (UNIX
command to change date) the new files.

Recompilation fails or the new binary crashes.
Call make clean and restart the configure / make process completely from scratch. (It is possible
that the operating system and/or compiler got upgraded in the meantime and so the existing .o
files cannot be used any longer.

838 Chapter 73. Installing GAP

A calculation runs into an error “no method found”.
GAP is not able to execute a certain operation with the given arguments. Besides the possibility of
bugs in the library this means two things: Either GAP truly is incapable of coping with this task
(the objects might be too complicated for the existing algorithms or there might be no algorithm
that can cope with the input). Another possibility is that GAP does not know that the objects
have certain nice properties (like being finite) which are required for the available algorithms. See
sections 7.2.1 and 13.7.1.

Problems specific to Windows

Command line editing does not work under Windows.
The default key commands are UNIX-like. GAP also tries to emulate some of the special keys under
Windows, however if the key repeat is set too high, Windows loses parts of the codes for these keys
and thus GAP cannot recognize them. Windows98 produces the same scan code for all cursor keys.
As GAP does not interface directly with the Windows machinery, there is no known way around
this problem. Use the Unix-style cursor commands.

The ^-key or "-key cannot be entered.
This is a problem if you are running a keyboard driver for some non-english languages. These drivers
catch the ^ character to produce the French circumflex accent and do not pass it properly to GAP.
No fix is known.

GAP does not start or cannot expand memory
You will have to edit a registry entry to be able to use more than 127MB of memory. See 73.17.

Cut and Paste does not work
You might want to start GAP under rxvt – see 73.17. Also

http://www.gap-system.org/Faq/Hardware-OS/hardware-os.html might give a remedy.

You get an error message about the cygwin1.dll
GAP comnes with a version of this dynamic library. If you have another version installed (use
“Find”), delete the older one (and probably copy the newer one in both places).

If all these remedies fail or you encountered a bug please send a mail to support@gap-system.org.
Please give:

• a (short, if possible) self-contained excerpt of a GAP session containing both input and output that
illustrates your problem (including comments of why you think it is a bug); and

• state the type of machine, operating system, (compiler used, if UNIX/Linux) and version of GAP (for
example “gap4r4p12, fix1”) you are using (the line after the GAP 4 banner starting:

GAP4, Version: 4...

when your GAP 4 starts up, supplies the information required).

73.10 Known Problems of the Configure Process

If make complains “Do not know how to make xyz” but xyz is an existing file, it is likely that the dates of
the files were not extracted properly (Alpha-OSF machines are prone to this). Call

touch * cnf/* src/*

from the main GAP directory (this ought to reset the date of all relevant files to “now”) and try again.

Sometimes the configure process does not properly figure out the “inline” compiler command. If you get
error messages that complain that “inline” is unknown, edit the file config.h in the bin/target subdirectory
and replace the line

Section 12. Optimization and Compiler Options 839

/* #undef inline */

by

#define inline

and then try to compile again.

The configure script respects compiler settings given in environment variables. However such settings may
conflict with the automatic configuration process. If configure produces strange error messages about not
being able to run the compiler, check whether environment variables that might affect the compilation (in
particular CC, LD, CFLAGS, LDFLAGS and C INCLUDE PATH) are set and reset them using unsetenv.

Some users reported problems with make, while the GNU version gmake worked. Thus if problems occur you
should try gmake instead if it is installed on your machine.

73.11 Problems on Particular Systems

The highest levels of optimization of the OSF/4 C compiler cc on the Compaq alpha chip make assumptions
about the use of pointers which are not valid for GAP, and produce executables that can crash; -O3 seems
to be safe, but -O4 and -fast are not.

On Sun and IRIX systems which are capable of running in 32 or 64 bit modes, it is possible to build a 64 bit
version of GAP, but special procedures are needed (and, on Suns, a compiler bug must be circumvented). If
you wish to compile on such a system, please send an email to support@gap-system.org.

73.12 Optimization and Compiler Options

Because of the large variety of different versions of UNIX and different compilers it is possible that the
configure process will not chose best possible optimization level, but you might need to tell make about it.

If you want to compile GAP with further compiler options (for example specific processor optimizations)
you will have to assign them to the variable COPTS as in the following example when calling make:

make COPTS=-option

If there are several compiler options or if they contain spaces you might have to enclose them by quotes to
avoid depending on the shell you are using.

The configure process also introduces some default compiler options. (See the Makefile in the bin directory
for details.) You can eliminate these by assigning the variable CFLAGS (which contains the default options
and COPTS) to the desired list of compiler options in the same way as you would assign COPTS.

The recommended C compiler for GAP is the GNU C compiler gcc, or a related compiler such as egcs.
There are two reasons for this recommendation: firstly we use gcc in GAP development and so this combina-
tion has been far more heavily tested than any other and secondly, we have found that it generally produces
code which is faster than that produced by other compilers.

If you do wish to use another compiler, you should remove config.cache and config.status in the GAP
root directory, set the environment variable CC to the name of your preferred compiler and then rerun
configure and make. You may have to experiment to determine the best values for CFLAGS and/or COPTS
as described above. Please let us (support@gap-system.org) know the results of your experiments.

840 Chapter 73. Installing GAP

73.13 Porting GAP

Porting GAP to a new operating system should not be very difficult. However, GAP expects some features
from the operating system and the compiler and porting GAP to a system or with a compiler that do not
have those features may prove very difficult.

The design of GAP makes it quite portable. GAP consists of a small kernel written in the programming
language C and a large library written in the programming language provided by the GAP kernel, which is
also called GAP.

Once the kernel has been ported, the library poses no additional problem, because all those functions only
need the kernel to work, they need no additional support from the environment.

The kernel itself is separated into a large part that is largely operating system and compiler independent,
and one file that contains all the operating system and compiler dependent functions. Usually only this file
must be modified to port GAP to a new operating system.

Now let us take a look at the minimal support that GAP needs from the operating system and the machine:

You need enough main memory in your computer. The size of the GAP kernel varies between 1.5 and 2.5
MByte (depending on the machine). The GAP library additionally takes a minimum of 10MByte and the
library of functions that GAP loads takes up another 1.5 MByte. So it is clear that at least 16 MByte of
main memory are required to do any serious work with GAP.

Additionally, the GAP kernel needs a flat address space, that is all the memory is available in one contiguous
chunk.

Note that this implies that there is no point in trying to port GAP to plain MS-DOS running on IBM PCs
and compatibles. The version of GAP for IBM PC compatibles that we provide runs on machines with the
Intel 80486, Pentium or beyond processor under 32-bit Windows. (This is also necessary, because, as just
mentioned, GAP wants to view its memory as a large flat address space.)

Next let us turn to the requirements for the C compiler and its library.

As was already mentioned, the GAP kernel is written in the C language. We have tried to use as few features
of the C language as possible. GAP has been compiled without problems with compilers that adhere to the
old definition from Kernighan and Ritchie, and with compilers that adhere to the new definition from the
ANSI-C standard.

Porting GAP to another UNIX should not be hard. You need some very basic understanding of C and UNIX.
If you plan to port GAP to a non-UNIX system please contact support@gap-system.org.

The configuration script runs various tests to determine the configuration of your system. It produces a file
bin/architecture/config.h which contains definitions according to the test results. It might be, however,
that the tests used don’t produce on your machine the results they are expected to or that further tests are
necessary. If this is the case the easiest way is to edit the config.h script, remove all object files and call
make in the bin/architecture subdirectory. If you have to resort to changing or amending this file, please tell
us what had to be changed (mail to support@gap-system.org). If you had to add further definitions
please also tell what properties of your system these defines represent.

If GAP compiles but crashes while reading the library or during a garbage collection with a bus error it is
possible that the configuration script did not guess the permitted pointer alignment correctly. This value is
stored in the line

#define C_STACK_ALIGN 2

of config.h. Increase the value to the next power of 2 (≤ 8) and compile GAP anew.

There is still a Makefile in the src directory, but it is not used by the configuration process any longer. As
a last resort you might want to try this file, but please still report your problems to support.

Section 14. GAP for Macintosh OS X 841

73.14 GAP for Macintosh OS X

OS X, the new version of the Macintosh operating system, is built on top of a variant of Unix. Thus there
are two ways to run GAP under this operating system.

The first way is simply to follow the instructions in section 73.15 below and to run the binary we provide in
the “Classic” environment.

The second way is to install the Unix version of GAP.

We recommend to use this (Unix) version because you will be able to use all features of GAP as well as
all packages. However for installation you might need a basic knowledge of Unix. Note also that the Unix
version of GAP uses Unix style text files. (These files differ from older style macintosh text files in that
lines do not contain a trailing CR character. Depending on what text editor you use you might not be able
to inspect GAP library files and potentially might run into problems with program files you create if they
contain strings that go over several lines.)

The following are a couple of notes and remarks about this:

You will need a compiler. The gcc C compiler is not installed by default, but is part of the “Developer tools”
package. This package might be in an installer package already on your system (look at the Installer folder
under Applications), if not you can get it for free from Apple by registering as a developer. See

http://developer.apple.com for details. For the “Panther” release (10.3) of OS X, gcc is part of
the “XCode” development tools which you should install.

To compile and run GAP you will have to open the Terminal application and type the Unix command into
its window. The Terminal application can be found in the Utilities folder in the Applications folder.
GAP also will run in such a window.

The next thing to note is that you should get the Unix type GAP archives, i.e. usually the tar archive, not
the zip archive (You won’t be able to compile the program as given in the .zip archive).

(If you prefer to use the .zoo type archive over .tar you can use this as well. However then you will need
to use the Unix version of unzoo, which you will need to compile first by the command

gcc -o unzoo -DSYS_IS_UNIX -O unzoo.c

If you use the Macintosh version of the unzoo extractor, the text files will be converted to MacOS format
and you will have problems with the compilation.)

Go (using the cd command in the terminal window) into the directory where you want to install GAP, and
copy the archives (and the unzoo program if you want to use zoo) in this directory. Then extract the archive
by the command

tar zxvf gap4r4p12.tar.gz

(respectively – if you prefer zoo –

gcc -o unzoo -DSYS_IS_UNIX -O unzoo.c
./unzoo -x gap4r4p12.zoo

)

Then simply follow the Unix installation instructions to compile GAP.

842 Chapter 73. Installing GAP

73.15 GAP for MacOS

This section contains information about GAP that is specific to the port of GAP for Apple Macintosh systems
under MacOS (simply called GAP for MacOS below).

To run GAP for MacOS you need an Apple Macintosh with a Motorola M68020, M68030, or M68040
processor, or a Power Macintosh. The computer must have at least 16MByte of (physical) memory and a
harddisk. For serious calculations, much more may be needed. The operating system must be System 7 or
higher. GAP for MacOS runs under System X, however only in Classic Mode.

The section 73.18 describes the copyright as it applies to the executable version that we distribute. The
section 73.16 describes how you install GAP for MacOS.

Please refer to the relevant sections of Chapter 3 in the GAP reference manual (included with the GAP
distribution for an overview over the features of GAP for MacOS.

73.16 Installation of GAP for MacOS

Installing GAP under MacOS is fairly easy. First, decide into which folder you want to install GAP 4.4.12.
GAP will be installed in a subfolder gap4r4 of this folder. You can later move GAP to a different location.

Note that certain parts of the output in the examples should only be taken as rough outline, especially file
sizes and file dates are not to be taken literally.

If you encounter problems please also see section 73.9 of this document.

Get the Mac-specific files described in 73.2, that is, the distribution gap4r4p12.zoo and the binary archive
unzoo4r4-PPC.sit,

How you can get those files is described in the section 73.2. Remember that the distribution consists of
binary files and that you must transmit them in binary mode.

If the sit files did not extract automatically click on them to extract them. If even this fails use one of the
standard decompression utilities, such as Stuffit Expander.

After this process you should end up with two applications, GAP 4 PPC and unzoo 4.4 PPC.

The latter is used to uncompress the .zoo archives which contain most of GAP. The zoo archives we provide
for GAP contain comments which indicate whether files are text or binary files. The unzoo we provide uses
these comments. If you use another zoo extractor you might lose this information and end up with files that
contain text but cannot be opened as text files.

The following installation example assumes that you are installing GAP in the folder Applications on a
PowerPC Macintosh. (For a 68k Macintosh you should replace all references to PPC to ones referring to 68K

Move the file gap4r4p12.zoo into the folder Applications and drag it onto the icon of unzoo 4.4 PPC.
You will get many lines of output in this window.

This should have created a folder gap4r4 in the current folder.

(You will not need the file gap4r4p12.zoo any longer. If you are short of disk space you can remove it now.)

If you got not the full distribution file but several small files, extract all of them (except the GAP packages!)
in this way.

Move GAP 4 PPC and the bugfix file (if there is one) in the folder gap4r4. Drag the bugfix file onto the icon
of unzoo 4.4 PPC to decompress it.

If you got any GAP packages, move them into the pkg folder in the folder folder gap4r4 extract them there,
in the same way as the bugfix.

After extraction you may discard all .zoo files if you are short of disk space.

The folders trans, small and prim contain data libraries. If you are short of disk space you can erase some
of them and any GAP package directories in the pkg directory that you don’t need, but then of course

Section 16. Installation of GAP for MacOS 843

you will not be able to access these data and packages. (Any GAP package that has a C code component
is essentially UNIX-dependent and you may as well delete those; such packages typically describe in their
README files that they require configure and make to complete their installation or have a src directory.)

Before you use GAP, you should set up GAP’s memory allocation, by setting appropriate values by selecting
the GAP application and Get Info... in the Finder’s File menu (in order to be able to modify the values
there, you have to do this before you launch GAP).

The maximum amount of workspace GAP can use depends on the amount of memory the Finder allocates
to GAP when it is launched. The maximum amount of GAP workspace is this value, minus a certain amount
used internally by the GAP application (for the PPC version, currently around 1.7 Megabytes, plus the size
of the GAP application if you do not use virtual memory, and 2.9 Megabytes for the 68K version), minus
any additional amount set with the -a, -P or -W command line options (see below).

You can find information about the amount of free GAP workspace, the total amount of available workspace,
and the remaining free memory, by choosing About GAP in the Apple menu.

To ensure efficient operation, you should not allocate more memory to GAP than the amount of physical
memory in your computer. If you are not using virtual memory, the amount may have to be considerably
less (depending on your system and the number of other applications which you may want to run at the
same time).

If you notice heavy disk use during garbage collections, this is a clear indication that you have allocated too
much memory to GAP.

In order to test your installation now run the GAP application by clicking on GAP 4 PPC. You should get the
GAP banner and then the GAP prompt in a window titled GAP log. (The process of starting GAP may take
a while.)

Try a few things to see if the installation succeeded.

gap> 2 * 3 + 4;
10
gap> Factorial(30);
265252859812191058636308480000000
gap> Factors(10^42 + 1);
[29, 101, 281, 9901, 226549, 121499449, 4458192223320340849]
gap> m11 := Group((1,2,3,4,5,6,7,8,9,10,11),(3,7,11,8)(4,10,5,6));;
gap> Size(m11);
7920
gap> Length(ConjugacyClasses(m11));
10

A set of test files is provided, running them all probably takes some 40 minutes on a 200 MHz PPC machine.
This is not a necessary part of the installation; it only serves as a confirmation that everything went OK.
The full test suite takes some time and uses quite a bit of memory (around 70MB), so you may wish to skip
this step or run only part of the tests. This does no harm.

Initially we must ensure that the print width of GAP is 80 characters per line which we achieve with the
SizeScreen command (otherwise we will be swamped with error messages).

gap> SizeScreen([80,]);;
gap> Filename(DirectoriesLibrary("tst"), "testall.g");
"./tst/testall.g"
gap> Read(last);
[many output lines omitted]

The information about the manual is system independent; you can find it in section 73.8.

844 Chapter 73. Installing GAP

A few final reminders:

• We would appreciate after installation your sending us a short note at support@gap-system.org
(even if you have installed GAP 3 before). Generally, we do not reply to such emails; we only use them
to gain some idea of how many people use GAP and of the machines/operating systems on which GAP
has been successfully installed.

• We also suggest that you subscribe to our GAP Forum mailing list; see the GAP web pages for details.
Whenever there is a bug fix or new release of GAP this is where it is announced. The GAP Forum also
deals with user questions of a general nature; bug reports and other problems you have while installing
and/or using GAP should be sent to support@gap-system.org.

That’s all, your installation should be complete. Please refer to Chapter 3 in the GAP reference manual for
a description of some special features and options of GAP for MacOS.

We hope that you will enjoy using GAP. Remember, if you have problems, do not hesitate to contact us at
support@gap-system.org. See Section 73.9 for what to include in a bug report.

73.17 Expert Windows installation

This section decribes how to get a better shell for GAP and how to install GAP in another directory. These
tasks are slightly complicated due to problems in the design of Windows, if you have not edited a batch file
before you might want to contact your system administrator for help.

Some users report that the rxvt shell (see

http://www.rxvt.org) gives a better windows environment for cut/paste etc.

You can find a copy of this program in the bin subdirectory of the GAP installation. Please note that
this program is not part of the GAP distribution and that we cannot offer any support for it.
You can start GAP under this program via the gaprxvt.bat script in the bin subdirectory.

(The program has been tested only under a particular version of Windows98. It might not work under
other releases. It also might be necessary to adapt paths in the batch file.) Under rxvt the standard Unix
XWindows cut-and-paste operations (left mouse button cuts, middle mouse button pastes) work. After you
terminate GAP a text window might stay on which you can safely delete.

If you decide to install GAP in another directory than C: you can do so, but you will have to edit a batch
file and use this file to start GAP.

First unpack the GAP distribution in the directory you want.

Lets suppose you want GAP to reside in the directory

C:\MY PROGRAMS\GAP

Extract GAP (as described in the previous section for C:) in this directory. (alternatively, you can also first
unpack it in

C:\GAP4R4

test it there first, and afterwards move it in the desired location.)

You now will have to edit the provided batch file, that will be used to start GAP. This batch file is needed,
since GAP otherwise will not find its library directories. The file sits in the bin directory of the GAP
distribution, i.e. in our example

C:\MY PROGRAMS\GAP\GAPGAP4R4\bin\gap.bat

This file should contain the following single line (which might be broken over in several lines in this manual
as the page width is limited):

Section 18. Copyrights 845

"C:\MY PROGRAMS\GAP\GAPGAP4R4\bin\gapw95.exe" -m 14m
-l "C:\MY PROGRAMS\GAP\GAPGAP4R4" %1 %2 %3 %4 %5 %6 %7 %8

You now should be able to start GAP by clicking this gap.bat file.
If you also want to use rxvt you have to edit the gaprxvt.bat file to take care of the changed path in two
places for the GAP binary as well as for the GAP library.
By default, the “cygwin” environment we use limits a programs workspace to 128MB of memory. To increase
this limit, it is necessary to edit the Windows registry.
WARNING: Editing the registry is the Windows equivalent of open heart surgery. Do not attempt this
change if you have no previous experience in doing this. The web page

http://www.cygwin.com/cygwin-ug-net/setup-maxmem.html gives further details.
Before changing the entries, you might have to run GAP once first to create the appropriate registry keys.
The shell script usemem.bat in the bin directory sets a registry entry

/HKEY_LOCAL_MACHINE/Software/Cygnus Solutions/Cygwin/heap_chunk_in_mb

to decimal 1024.
If you prefer to do the change by hand, open regedit and go to the Cygwin Key listed above. Then choose
new value and add heap chunk in mb. Modify it to contain decimal 1024.

73.18 Copyrights

In addition to the general copyright for GAP set forth in the Copyright the following terms apply to the
versions of GAP for Windows and MacOS.
The executable of GAP for Windows that we distribute was compiled with the gnuwin32 compiler of the
cygwin package. This compiler can be obtained by anonymous ftp from a variety of general public FTP
archives. Many thanks to the Free Software Foundation and RedHat Software for this amazing piece of work.
The GNU C compiler is
Copyright (C) 2002 Free Software Foundation, Inc. 675 Mass Ave, Cambridge, MA 02139,
USA
under the terms of the GNU General Public License (GPL).
The Cygwin32 API library is also covered by the GNU GPL. The executable we provide is linked against
this library (and in the process includes GPL’d Cygwin32 glue code). This means that the executable falls
under the GPL too, which it does anyhow.
The cygwin1.dll, libW11.dll, rxvt.exe and regtool.exe binaries are taken unmodified from the Cygwin
distribution. They are copyright by RedHat Software and released under the GPL. You can find more
information about cygwin under

http://www.cygwin.com . You also will be able to obtain the sources for cygwin from this place.
The system dependent part of GAP for MacOS was written by Burkhard Höfling (his email address is
b.hoefling@tu-bs.de). He assigns the copyright to the GAP group. Many thanks to Burkhard for his help!
Burkhard Höfling’s port was partly based on an earlier port of GAP for the Mac, which was done by Dave
Bayer (dab@math.columbia.edu) and used the Mac Programmers Workshop (MPW)
compiler. Many thanks to Dave for his work. Moreover, the built-in editor is based upon the freeware text
editor PlainText by Mel Park which, in turn, uses TE32K, a TextEdit replacement by Roy Wood. It also
uses Internet Config.
For technical reasons we do not distribute the Macintosh specific source and project files as part of the
standard archives. If you are interested in compiling GAP yourself, we are happy to provide you with the
appropriate files (contact us at support@gap-system.org). The source can be compiled with CodeWarrior
Pro 5 with Apple’s Universal Headers 3.3 installed.
Please contact the author b.hoefling@tu-bs.de or
support@gap-system.org if you need further information.

74 GAP Packages

The functionality of GAP can be extended by loading GAP packages. Many packages are distributed together
with the core system of GAP consisting of the GAP kernel, the GAP library and the various data libraries.

GAP packages are written by (groups of) GAP users which may not be members of the GAP developer team.
The responsibility and copyright of a GAP package remains with the original author(s).

GAP packages have their own documentation which is smoothly integrated into the GAP help system.

All GAP users who develop new code are invited to share the results of their efforts with other GAP users
by making the code and its documentation available in form of a package. Information how to do this is
available from the GAP Web pages (

http://www.gap-system.org) and in the extension manual 4. There are possibilities to get a package
distributed together with GAP and it is possible to submit a package to a formal refereeing process.

In this Chapter we describe how to use existing packages.

74.1 Installing a GAP Package

Before a package can be used it must be installed. With a standard installation of GAP there should be
quite a few packages already available. But since GAP packages are released independently of the main GAP
system it may be sensible to upgrade or install new packages between upgrades of your GAP installation.

A package consists of a collection of files within a single directory that must be a subdirectory of the pkg
directory in one of the GAP root directories, see 9.2. (If you don’t have access to the pkg directory in your
main GAP installation you can add private root directories as explained in that section.)

Whenever you get from somewhere an archive of a GAP package it should be accompanied with a README
file that explains its installation. Some packages just consist of GAP code and the installation is done
by unpacking the archive in one of the places described above. There are also packages that need further
installation steps, there may be for example some external programs which have to be compiled (this is often
done by just saying ./configure; make inside the unpacked package directory, but check the individual
README files).

74.2 Loading a GAP Package

Some GAP packages are prepared for automatic loading, that is they will be loaded automatically with
GAP, others must in each case be separately loaded by a call to LoadPackage.

1 I LoadPackage(name[, version]) F
I LoadPackage(name[, version, banner[, outercalls]]) F

loads the GAP package with name name. If the optional version string version is given, the package will
only be loaded in a version number at least as large as version, or equal to version if its first character is =
(see 4.14 in “Extending GAP”). The argument name is case insensitive.

Section 3. Functions for GAP Packages 847

LoadPackage will return true if the package has been successfully loaded and will return fail if the package
could not be loaded. The latter may be the case if the package is not installed, if necessary binaries have
not been compiled, or if the version number of the available version is too small.

If the package name has already been loaded in a version number at least or equal to version, respectively,
LoadPackage returns true without doing anything else.

If the optional third argument banner is false then no package banner is printed. The fourth argument
outercalls is used only for recursive calls of LoadPackage, when the loading process for a package triggers
the loading of other packages.

After a package has been loaded its code and documentation should be available as other parts of the GAP
library are.

The documentation of each GAP package will tell you if the package loads automatically or not. Also, GAP
prints the list of names of all GAP packages which have been loaded (either by automatic loading or via
LoadPackage commands in one’s .gaprc file or the like) at the end of the initialization process.

A GAP package may also install only its documentation automatically but still need loading by LoadPackage.
In this situation the online help displays (not loaded) in the header lines of the manual pages belonging
to this GAP package.

If for some reason you don’t want certain packages to be automatically loaded, GAP provides three levels
for disabling autoloading:

The autoloading of specific packages can be overwritten for the whole GAP installation by putting a file
NOAUTO into a pkg directory that contains lines with the names of packages which should not be automatically
loaded.

Furthermore, individual users can disable the autoloading of specific packages by using the following com-
mand in their .gaprc file (see 3.4).

ExcludeFromAutoload(pkgnames);

where pkgnames is the list of names of the GAP packages in question.

Using the -A command line option when starting up GAP (see 3.1), automatic loading is switched off, and
the scanning of the pkg directories containing the installed packages is delayed until the first call of 74.2.1.

74.3 Functions for GAP Packages

The following functions are mainly used in files contained in a package and not by users of a package.

1 I ReadPackage(name, file) F
I ReadPackage(pkg-file) F
I RereadPackage(name, file) F
I RereadPackage(pkg-file) F

In the first form, ReadPackage reads the file file of the GAP package name, where file is given as a path
relative to the home directory of name. In the second form where only one argument pkg-file is given, this
should be the path of a file relative to the pkg subdirectory of GAP root paths (see 9.2 in the GAP Reference
Manual). Note that in this case, the package name is assumed to be equal to the first part of pkg-file, so
this form is not recommended.

The absolute path is determined as follows. If the package in question has already been loaded then the file
in the directory of the loaded version is read. If the package is available but not yet loaded then the directory
given by TestPackageAvailability (see 74.3.2), without prescribed version number, is used. (Note that
the ReadPackage call does not force the package to be loaded.)

If the file is readable then true is returned, otherwise false.

Each of name, file and pkg-file should be a string. The name argument is case insensitive.

848 Chapter 74. GAP Packages

RereadPackage does the same as ReadPackage, except that also read-only global variables are overwritten
(cf 9.7.13 in the GAP Reference Manual).

2 I TestPackageAvailability(name, version) F
I TestPackageAvailability(name, version, intest) F

For strings name and version, TestPackageAvailability tests whether the GAP package name is available
for loading in a version that is at least version, or equal to version if the first character of version is =, see
Section 4.14 of “Extending GAP” for details about version numbers.

The result is true if the package is already loaded, fail if it is not available, and the string denoting the
GAP root path where the package resides if it is available, but not yet loaded. A test function (the value of
the component AvailabilityTest in the PackageInfo.g file of the package) should therefore test for the
result of TestPackageAvailability being not equal to fail.

The argument name is case insensitive.

The optional argument intest is a list of pairs [pkgnam, pkgversion] such that the function has been
called with these arguments on outer levels. (Note that several packages may require each other, with different
required versions.)

3 I InstalledPackageVersion(name) F

If the GAP package with name name has already been loaded then InstalledPackageVersion returns the
string denoting the version number of this version of the package. If the package is available but has not
yet been loaded then the version number string for that version of the package that currently would be
loaded. (Note that loading another package might force loading another version of the package name, so
the result of InstalledPackageVersion will be different afterwards.) If the package is not available then
fail is returned.

The argument name is case insensitive.

4 I DirectoriesPackageLibrary(name[, path]) F

takes the string name, a name of a GAP package and returns a list of directory objects for those sub-
directory/ies containing the library functions of this GAP package, for the version that is already loaded or
would be loaded if no other version is explicitly prescribed, up to one directory for each pkg sub-directory of
a path in GAPInfo.RootPaths. The default is that the library functions are in the subdirectory lib of the
GAP package’s home directory. If this is not the case, then the second argument path needs to be present
and must be a string that is a path name relative to the home directory of the GAP package with name
name.

Note that DirectoriesPackageLibrary may be called in the AvailabilityTest function in the package’s
PackageInfo.g file, so we cannot guarantee that the returned directories belong to a version that really can
be loaded.

As an example, the following returns a directory object for the library functions of the GAP package Example:

gap> DirectoriesPackageLibrary("Example", "gap");
[dir("/home/werner/gap/4.0/pkg/example/gap/")]

Observe that we needed the second argument "gap" here, since Example’s library functions are in the
sub-directory gap rather than lib.

In order to find a subdirectory deeper than one level in a package directory, the second argument is again
necessary whether or not the desired subdirectory relative to the package’s directory begins with lib. The
directories in path should be separated by / (even on systems, like Windows, which use \ as the directory
separator). For example, suppose there is a package somepackage with a subdirectory m11 in the directory
data, then we might expect the following:

Section 3. Functions for GAP Packages 849

gap> DirectoriesPackageLibrary("somepackage", "data/m11");
[dir("/home/werner/gap/4.0/pkg/somepackage/data/m11")]

5 I DirectoriesPackagePrograms(name) F

returns a list of the bin/architecture subdirectories of all packages name where architecture is the architecture
on which GAP has been compiled and the version of the installed package coincides with the version of the
package name that either is already loaded or that would be the first version GAP would try to load (if no
other version is explicitly prescribed).

Note that DirectoriesPackagePrograms is likely to be called in the AvailabilityTest function in the
package’s PackageInfo.g file, so we cannot guarantee that the returned directories belong to a version that
really can be loaded.

The directories returned by DirectoriesPackagePrograms are the place where external binaries of the GAP
package name for the current package version and the current architecture should be located.

gap> DirectoriesPackagePrograms("nq");
[dir("/home/werner/gap/4.0/pkg/nq/bin/i686-unknown-linux2.0.30-gcc/")]

6 I CompareVersionNumbers(supplied, required) F
I CompareVersionNumbers(supplied, required, "equal") F

compares two version numbers, given as strings. They are split at non-digit characters, the resulting integer
lists are compared lexicographically. The routine tests whether supplied is at least as large as required ,
and returns true or false accordingly. A version number ending in dev is considered to be infinite. See
Section 4.14 of “Extending GAP” for details about version numbers.

75
Replaced

and Removed
Command Names

In general we try to keep GAP 4 compatible with former releases as much as possible. Nevertheless, from
time to time it seems appropriate to remove some commands or to change the names of some commands or
variables. There are various reasons for that: Some functionality was improved and got another (hopefully
better) interface, names turned out to be too special or too general for the underlying functionality, or names
are found to be unintuitive or inconsistent with other names.

In this chapter we collect such old names while pointing to the sections which explain how to substitute
them. Usually, old names will be available for several releases; they may be removed when they don’t seem
to be used any more.

75.1 Group Actions - Name Changes

The concept of a group action is sometimes referred to as a “group operation”. In GAP 3 as well as in older
versions of GAP 4 the term Operation was used instead of Action. We decided to change the names to
avoid confusion with the term “operation” as in DeclareOperation and “Operations for Xyz”.

Here are some examples of such name changes.

OLD NOW USE

Operation Action
RepresentativeOperation RepresentativeAction
OperationHomomorphism ActionHomomorphism
FunctionOperation FunctionAction

75.2 Package Interface - Obsolete Functions and Name Changes

With GAP 4.4 the package interface was changed. Thereby some functions became obsolete and the names
of some others were made more consistent.

The following functions are no longer needed: DeclarePackage, DeclareAutoPackage, DeclarePackage-
Documentation and DeclarePackageAutoDocumentation. They are substituted by entries in the Package-
Info.g files, see 4.5.

The following function names were changed.

OLD NOW USE

RequirePackage LoadPackage
ReadPkg ReadPackage
RereadPkg RereadPackage
CreateCompletionFilesPkg CreateCompletionFilesPackage

Section 4. Miscellaneous Name Changes or Removed Names 851

75.3 Normal Forms of Integer Matrices - Name Changes

Former versions of GAP 4 documented several functions for computing the Smith or Hermite normal form
of integer matrices. Some of them were never implemented and it was unclear which commands to use.
The functionality of all of these commands is now available with NormalFormIntMat (see 25.2.9) and a few
interface functions.

75.4 Miscellaneous Name Changes or Removed Names

In former releases of GAP 4 there were some global variable names bound to general information about
the running GAP (path names, command line options, ...). Although they were not officially documented
they were used by several users and in some packages. We mention here BANNER and QUIET. This type of
information is now collected in a record with name GAPInfo and will become documented after a test phase.

Here are some further name changes.

OLD NOW USE

MonomialTotalDegreeLess MonomialExtGrlexLess
NormedVectors NormedRowVectors

852 Chapter 76. Replaced and Removed Command Names

Bibliography

[AMW82] D[avid] G. Arrell, S[anjiv] Manrai, and M[ichael] F. Worboys. A procedure for obtaining simplified
defining relations for a subgroup. In Campbell and Robertson [CR82], pages 155–159.

[AR84] D[avid] G. Arrell and E[dmund] F. Robertson. A modified Todd-Coxeter algorithm. In Atkinson
[Atk84], pages 27–32.

[Art68] E[mil] Artin. Galoissche Theorie. Verlag Harri Deutsch, Frankfurt/Main, 1968.

[Atk84] Michael D. Atkinson, editor. Computational Group Theory, Proceedings LMS Symposium on
Computational Group Theory, Durham 1982. Academic Press, 1984.

[Bak84] Alan Baker. A concise introduction to the theory of numbers. Cambridge University Press, 1984.

[BC76] M[ichael] J. Beetham and C[olin] M. Campbell. A note on the Todd-Coxeter coset enumeration
algorithm. Proc. Edinburgh Math. Soc. Edinburgh Math. Notes, 20:73–79, 1976.

[BC89] Richard P. Brent and Graeme L. Cohen. A new lower bound for odd perfect numbers. Math. Comp.,
53:431–437, 1989.

[BC94] Ulrich Baum and Michael Clausen. Computing irreducible representations of supersolvable groups.
Math. Comput., 207:351–359, 1994.

[BCFS91] L[ászló] Babai, G[ene] Cooperman, L[arry] Finkelstein, and Á[kos] Seress. Nearly linear time
algorithms for permutation groups with a small base. In Proceedings of the International Symposium
on Symbolic and Algebraic Computation (ISSAC’91), Bonn 1991, pages 200–209. ACM Press, 1991.

[BE99a] Hans Ulrich Besche and Bettina Eick. Construction of finite groups. J. Symbolic Comput.,
27(4):387–404, 1999.

[BE99b] Hans Ulrich Besche and Bettina Eick. The groups of order at most 1000 except 512 and 768. J.
Symbolic Comput., 27(4):405–413, 1999.

[BE01] Hans Ulrich Besche and Bettina Eick. The groups of order qn · p. Comm. Alg., 29(4):1759–1772,
2001.

[BEO01] Hans Ulrich Besche, Bettina Eick, and E. A. O’Brien. The groups of order at most 2000. Electronic
Research Announcements of the AMS, 7:1 – 4, 2001.

[BEO02] Hans Ulrich Besche, Bettina Eick, and E. A. O’Brien. A millenium project: constructing small
groups. IJAC, 12:623 – 644, 2002.

[Ber76] T. R. Berger. Characters and derived length in groups of odd order. J. Algebra, 39:199–207, 1976.

[Bes92] Hans Ulrich Besche. Die Berechnung von Charaktergraden und Charakteren endlicher auflösbarer
Gruppen im Computeralgebrasystem GAP. Diplomarbeit, Lehrstuhl D für Mathematik, Rheinisch
Westfälische Technische Hochschule, Aachen, Germany, 1992.

[BFS79] F. Rudolf Beyl, Ulrich Felgner, and Peter Schmid. On groups occurring as center factor groups. J.
Algebra, 61(1):161–177, 1979.

[BJR87] R. Brown, D. L. Johnson, and E. F. Robertson. Some computations of nonabelian tensor products
of groups. J. Algebra, 111(1):177–202, 1987.

[BL98] Thomas Breuer and Steve Linton. The GAP 4 type system. organizing algebraic algorithms. In
Gloor [Glo98], pages 38–45.

[BM83] Gregory Butler and John McKay. The transitive groups of degree up to 11. Comm. Algebra,
11:863–911, 1983.

854 Bibliography

[Bou70] N. Bourbaki. Éléments de Mathématique, Algèbre I, volume 1. Hermann, Paris, 1970.

[BP98] Thomas Breuer and Götz Pfeiffer. Finding Possible Permutation Characters. J. Symbolic Comput.,
26:343–354, 1998.

[Bre91] Thomas Breuer. Potenzabbildungen, Untergruppenfusionen, Tafel-Automorphismen. Diplomarbeit,
Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschule, Aachen, Germany,
1991.

[Bre97] Thomas Breuer. Integral bases for subfields of cyclotomic fields. AAECC, 8:279–289, 1997.

[Bre99] Thomas Breuer. Computing Possible Class Fusions from Character Tables. Comm. Algebra,
27(6):2733–2748, 1999.

[BTW93] Bernhard Beauzamy, Vilmar Trevisan, and Paul S. Wang. Polynomial factorization: Sharp bounds,
Efficient algorithms. J. Symbolic Comput., 15:393–413, 1993.

[Bur55] W[illiam S.] Burnside. Theory of Groups of Finite Order. Dover Publications, New York, 1955.
Unabridged republication of the second edition, published in 1911.

[But93] Gregory Butler. The transitive groups of degree fourteen and fifteen. J. Symbolic Comput., pages
413–422, 1993.

[Can73] John J. Cannon. Construction of defining relators for finite groups. Discrete Math., pages 105–129,
1973.

[Car72] R. W. Carter. Simple groups of Lie type, volume 28 of Pure and Applied Mathematics. John Wiley
and Sons, 1972.

[CCN+85] J[ohn] H. Conway, R[obert] T. Curtis, S[imon] P. Norton, R[ichard] A. Parker, and R[obert] A.
Wilson. Atlas of finite groups. Oxford University Press, 1985.

[CHM98] John H. Conway, Alexander Hulpke, and John McKay. On transitive permutation groups. LMS J.
Comput. Math., 1:1–8, 1998.

[CLO97] David Cox, John Little, and Donal O’Shea. Ideals, varieties, and algorithms. Undergraduate Texts
in Mathematics. Springer-Verlag, New York, second edition, 1997. An introduction to computational
algebraic geometry and commutative algebra.

[Coh93] Henri Cohen. A Course in Computational Algebraic Number Theory, volume 138 of Graduate Texts
in Mathematics. Springer, Berlin, Heidelberg and New York, 1993.

[Con90a] S[am] B. Conlon. Calculating characters of p-groups. J. Symbolic Comput., 9(5 & 6):535–550, 1990.

[Con90b] S[am] B. Conlon. Computing modular and projective character degrees of soluble groups. J.
Symbolic Comput., 9(5 & 6):551–570, 1990.

[CR82] Colin M. Campbell and Edmund F. Robertson, editors. Groups-St.Andrews 1981, Proceedings of
a conference, St.Andrews 1981, volume 71 of London Math. Soc. Lecture Note Series. Cambridge
University Press, 1982.

[DE05] Heiko Dietrich and Bettina Eick. Groups of cube-free order. Accepted by J. Alg., 2005.

[Dix67] J[ohn] D. Dixon. High speed computations of group characters. Numer. Math., 10:446–450, 1967.

[Dix93] John D. Dixon. Constructing representations of finite groups. In Larry Finkelstein and William M.
Kantor, editors, Proceedings of the 1991 DIMACS Workshop on Groups and Computation,
volume 11 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages
105–112. American Mathematical Society, 1993.

[DM88] John D. Dixon and Brian Mortimer. The primitive permutation groups of degree less than 1000.
Math. Proc. Cambridge Philos. Soc., 103:213–238, 1988.

[Dre69] Andreas [W. M.] Dress. A characterization of solvable groups. Math. Z., 110:213–217, 1969.

[EH02] Bettina Eich and Burkhard Höfling. The solvable primitive permutation groups of degree at most
6560. submitted, 2002.

Bibliography 855

[Eic97] Bettina Eick. Special presentations for finite soluble groups and computing (pre-)Frattini subgroups.
In Larry Finkelstein and William M. Kantor, editors, Proceedings of the 2nd DIMACS Workshop
held at Rutgers University, New Brunswick, NJ, June 7–10, 1995, volume 28 of DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, pages 101–112. American Mathematical
Society, 1997.

[Ell98] Graham Ellis. On the capability of groups. Proc. Edinburgh Math. Soc. (2), 41(3):487–495, 1998.

[EO98] Bettina Eick and E. A. O’Brien. The groups of order 512. In Matzat Greuel, Hiss, editor,
Proceedings of ‘Abschlusstagung des DFG Schwerpunktes Algorithmische Algebra und Zahlentheorie
in Heidelberg. Springer, 1998.

[EO99] Bettina Eick and E. A. O’Brien. Enumerating p-groups. J. Austral. Math. Soc., 67:191 – 205, 1999.

[FJNT95] V[olkmar] Felsch, D[avid] L. Johnson, J[oachim] Neubüser, and S[ergey] V. Tsaranov. The structure
of certain Coxeter groups. In C[olin] M. Campbell, T[haddeus] C. Hurley, E[dmund] F. Robertson,
S[ean] J. Tobin, and J[ames] J. Ward, editors, Groups ’93 Galway / St.Andrews, Galway 1993,
Volume 1, volume 211 of London Math. Soc. Lecture Note Series, pages 177–190. Cambridge
University Press, 1995.

[FN79] Volkmar Felsch and Joachim Neubüser. An algorithm for the computation of conjugacy classes
and centralizers in p-groups. In Edward W. Ng, editor, Symbolic and Algebraic Computation
(Proceedings of EUROSAM 79, An International Symposium on Symbolic and Algebraic
Manipulation, Marseille, 1979), Lecture Notes in Computer Science, 72, pages 452–465. Springer,
Berlin, Heidelberg and New York, 1979.

[Fra82] J[ames] S. Frame. Recursive computation of tensor power components. Bayreuther Math. Schr.,
10:153–159, 1982.

[Gir03] Boris Girnat. Klassifikation der Gruppen bis zur Ordnung p5. Staatsexamensarbeit, TU
Braunschweig, 2003.

[Glo98] Oliver Gloor, editor. Proceedings of the 1998 International Symposium on Symbolic and Algebraic
Computation. The Association for Computing Machinery, ACM Press, 1998.

[Hal59] Marshall Hall, Jr. The theory of Groups. Macmillan, 1959.

[Hav69] George Havas. Symbolic and algebraic calculation. Basser Computing Dept., Technical Report 89,
Basser Department of Computer Science, University of Sydney, Sydney, Australia, 1969.

[Hav74] George Havas. A Reidemeister-Schreier program. In M[ichael] F. Newman, editor, Proceedings
of the Second International Conference on the Theory of Groups, Canberra, 1973, volume 372 of
Lecture Notes in Math., pages 347–356. Springer, Berlin, Heidelberg and New York, 1974.

[HB82] B[ertram] Huppert and N[orman] Blackburn. Endliche Gruppen II, volume 1242 of Grundlehren
Math. Wiss. Springer, Berlin, Heidelberg and New York, 1982.

[HIÖ89] Trevor [O.] Hawkes, I. M[artin] Isaacs, and M. Özaydin. On the Möbius function of a finite group.
Rocky Mountain J. Math., 19:1003–1034, 1989.

[HJLP] Gerhard Hiss, Christoph Jansen, Klaus Lux, and Richard [A.] Parker. Computational modular
character theory.

http://www.math.rwth-aachen.de/LDFM/homes/MOC/CoMoChaT/.

[HKRR84] George Havas, P[eter] E. Kenne, J[ames] S. Richardson, and E[dmund] F. Robertson. A Tietze
transformation program. In Atkinson [Atk84], pages 67–71.

[How76] J. M. Howie. An introduction to semigroup theory. Academic Press [Harcourt Brace Jovanovich
Publishers], London, 1976. L.M.S. Monographs, No. 7.

[HP89] Derek F. Holt and W[ilhelm] Plesken. Perfect Groups. Oxford Math. Monographs. Oxford University
Press, 1989.

856 Bibliography

[HR94] Derek [F.] Holt and Sarah Rees. Testing modules for irreducibility. J. Austral. Math. Soc. Ser. A,
57:1–16, 1994.

[Hul93] Alexander Hulpke. Zur Berechnung von Charaktertafeln. Diplomarbeit, Lehrstuhl D für Mathema-
tik, Rheinisch Westfälische Technische Hochschule, 1993.

[Hul96] Alexander Hulpke. Konstruktion transitiver Permutationsgruppen. Dissertation, Rheinisch West-
fälische Technische Hochschule, Aachen, Germany, 1996.

[Hul98] Alexander Hulpke. Computing normal subgroups. In Gloor [Glo98], pages 194–198.

[Hul99] Alexander Hulpke. Computing subgroups invariant under a set of automorphisms. J. Symbolic
Comput., 27(4):415–427, 1999.

[Hul00] Alexander Hulpke. Conjugacy classes in finite permutation groups via homomorphic images. Math.
Comp., 69(232):1633–1651, 2000.

[Hul01] Alexander Hulpke. Representing subgroups of finitely presented groups by quotient subgroups.
Experimental Mathematics, 10(3):369–381, 2001.

[Hul05] Alexander Hulpke. Constructing transitive permutation groups. J. Symbolic Comput., 39:1–30,
2005.

[Hum72] James E. Humphreys. Introduction to Lie algebras and representation theory. Springer-Verlag, New
York, 1972. Graduate Texts in Mathematics, Vol. 9.

[Hum78] James E. Humphreys. Introduction to Lie algebras and representation theory. Springer-Verlag, New
York, 1978. Second printing, revised.

[Hup67] B[ertram] Huppert. Endliche Gruppen I, volume 134 of Grundlehren Math. Wiss. Springer, Berlin,
Heidelberg and New York, 1967.

[IE94] Hiroyuki Ishibashi and A. G. Earnest. Two-element generation of orthogonal groups over finite
fields. J. Algebra, 165(1):164–171, 1994.

[Isa76] I. M. Isaacs. Character theory of finite groups, volume 69 of Pure and applied mathematics.
Academic Press, New York, 1976. xii+303 pp., ISBN 0-12-374550-0.

[JLPW95] Christoph Jansen, Klaus Lux, Richard [A.] Parker, and Robert [A.] Wilson. An Atlas of Brauer
Characters, volume 11 of London Math. Soc. Monographs. Oxford University Press, 1995.

[Joh97] D. L. Johnson. Presentations of groups. Cambridge University Press, Cambridge, second edition,
1997.

[Kau92] Ansgar Kaup. Gitterbasen und Charaktere endlicher Gruppen. Diplomarbeit, Lehrstuhl D für Ma-
thematik, Rheinisch Westfälische Technische Hochschule, Aachen, Germany, 1992.

[KL90] Peter Kleidman and Martin Liebeck. The subgroup structure of the finite classical groups.
Cambridge University Press, 1990.

[Kli66] A. U. Klimyk. Decomposition of the direct product of irreducible representations of semisimple Lie
algebras into irreducible representations. Ukrain. Mat. Ž., 18(5):19–27, 1966.

[Kli68] A. U. Klimyk. Decomposition of a direct product of irreducible representations of a semisimple Lie
algebra into irreducible representations. In American Mathematical Society Translations. Series 2,
volume 76, pages 63–73. American Mathematical Society, Providence, R.I., 1968.

[KLM01] Gregor Kemper, Frank Lübeck, and Kay Magaard. Matrix generators for the Ree groups 2G2(q).
Comm. Algebra, 29(1):407–413, 2001.

[Knu98] Donald E. Knuth. The Art of Computer Programming, Volume 2: Seminumerical Algorithms.
Addison-Wesley, third edition, 1998.

[Lüb] Frank Lübeck. Conway polynomials for finite fields.

http://www.math.rwth-aachen.de:8001/~Frank.Luebeck/data/ConwayPol.

Bibliography 857

[Leo91] Jeffrey S. Leon. Permutation group algorithms based on partitions, I: theory and algorithms. J.
Symbolic Comput., 12:533–583, 1991.

[LLL82] A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring polynomials with rational coefficients.
Math. Ann., 261:513–534, 1982.

[LNS84] R[einhard] Laue, J[oachim] Neubüser, and U[lrich] Schoenwaelder. Algorithms for finite soluble
groups and the SOGOS system. In Atkinson [Atk84], pages 105–135.

[LP91] Klaus Lux and Herbert Pahlings. Computational aspects of representation theory of finite groups. In
G. O. Michler and C. R. Ringel, editors, Representation theory of finite groups and finite-dimensional
algebras, volume 95 of Progress in Mathematics, pages 37–64. Birkhäuser, Basel, 1991.

[Mac81] I. G. Macdonald. Numbers of conjugacy classes in some finite classical groups. Bull. Austral. Math.
Soc., 23(1):23–48, 1981.

[MN89] M[atthias] Mecky and J[oachim] Neubüser. Some remarks on the computation of conjugacy classes
of soluble groups. Bull. Austral. Math. Soc., 40(2):281–292, 1989.

[MNVL03] E.A. O’Brien M.F. Newman and M.R. Vaughan-Lee. Groups and nilpotent lie rings whose order is
the sixth of a prime. J. Alg., 278:383 – 401, 2003.

[MS85] John McKay and Leonard H. Soicher. Computing Galois groups over the rationals. J. Number
Theory, 20:273–281, 1985.

[Mur58] F[rancis] D. Murnaghan. The orthogonal and symplectic groups. Communications Series A 13,
Dublin Inst. Adv. Studies, 1958.

[MV97] Meena Mahajan and V. Vinay. Determinant: combinatorics, algorithms, and complexity. Chicago
J. Theoret. Comput. Sci., pages Article 5, 26 pp. (electronic), 1997.

[Neb95] Gabriele Nebe. Endliche rationale Matrixgruppen vom Grad 24. Dissertation, Rheinisch Westfäli-
sche Technische Hochschule, Aachen, Germany, 1995.

[Neb96] Gabriele Nebe. Finite subgroups of GLn(Q) for 25 ≤ n ≤ 31. Comm. Alg., 24 (7):2341–2397, 1996.

[Neu82] Joachim Neubüser. An elementary introduction to coset table methods in computational group
theory. In Campbell and Robertson [CR82], pages 1–45.

[Neu92] Jürgen Neukirch. Algebraische Zahlentheorie. Springer, Berlin, Heidelberg and New York, 1992.

[New77] M[ichael] F. Newman. Determination of groups of prime-power order. In R. A. Bryce, J. Cossey,
and M[ichael] F. Newman, editors, Group theory, Proc. Miniconf., Austral. Nat. Univ., Canberra,
1975, volume 573 of Lecture Notes in Math., pages 73–84. Springer, Berlin, Heidelberg and New
York, 1977.

[New90] M[ichael] F. Newman. Proving a group infinite. Arch. Math. (Basel), 54(3):209–211, 1990.

[NP95a] G[abriele] Nebe and W[ilhelm] Plesken. Finite rational matrix groups, volume 556 of AMS Memoirs.
American Mathematical Society, 1995.

[NP95b] G[abriele] Nebe and W[ilhelm] Plesken. Finite rational matrix groups of degree 16, pages 74–144.
Volume 556 of AMS Memoirs [NP95a], 1995.

[NPP84] J[oachim] Neubüser, H[erbert] Pahlings, and W[ilhelm] Plesken. CAS; design and use of a system
for the handling of characters of finite groups. In Atkinson [Atk84], pages 195–247.

[O’B90] E[amonn] A. O’Brien. The p-group generation algorithm. J. Symbolic Comput., 9:677–698, 1990.

[O’B91] E[amonn] A. O’Brien. The groups of order 256. J. Algebra, 143:219–235, 1991.

[Pah93] Herbert Pahlings. On the Möbius function of a finite group. Arch. Math. (Basel), 60:7–14, 1993.

[Par84] Richard Parker. The Computer Calculation of Modular Characters (the MeatAxe). In Atkinson
[Atk84], pages 267–274.

858 Bibliography

[Pfe91] G. Pfeiffer. Von Permutationscharakteren und Markentafeln. Diplomarbeit, Lehrstuhl D für Ma-
thematik, Rheinisch Westfälische Technische Hochschule, 1991.

[Pfe97] G. Pfeiffer. The Subgroups of M24, or How to Compute the Table of Marks of a Finite Group.
Experiment. Math., 6(3):247–270, 1997.

[Ple85] W[ilhelm] Plesken. Finite unimodular groups of prime degree and circulants. J. Algebra, 97:286–312,
1985.

[Ple90] W[ilhelm] Plesken. Additive decompositions of positive integral quadratic forms. The paper is
available at Lehrstuhl B für Mathematik, Rheinisch Westfälische Technische Hochschule Aachen,
may be it will be published in the near future, 1990.

[PN95] W[ilhelm] Plesken and G[abriele] Nebe. Finite rational matrix groups, pages 1–73. Volume 556 of
AMS Memoirs [NP95a], 1995.

[Poh87] M[ichael] Pohst. A modification of the LLL reduction algorithm. J. Symbolic Comput., 4:123–127,
1987.

[PP77] Wilhelm Plesken and Michael Pohst. On maximal finite irreducible subgroups of GL(n,Z). I. the
five and seven dimensional cases, II. the six dimensional case. Math. Comp., 31:536–576, 1977.

[PP80] Wilhelm Plesken and Michael Pohst. On maximal finite irreducible subgroups of GL(n,Z). III. the
nine dimensional case, IV. remarks on even dimensions with application to n = 8, V. the eight
dimensional case and a complete description of dimensions less than ten. Math. Comp., 34:245–301,
1980.

[RD05] Colva M. Roney-Dougal. The primitive permutation groups of degree less than 2500. To appear in
Journal of Algebra, 2005.

[RDU03] Colva M. Roney-Dougal and William R. Unger. The affine primitive permutation groups of degree
less than 1000. Journal of Symbolic Computation, 35:421–439, 2003.

[Rin93] Michael Ringe. The C MeatAxe, Release 1.5. Lehrstuhl D für Mathematik, Rheinisch Westfälische
Technische Hochschule, Aachen, Germany, 1993.

[Rob88] E[dmund] F. Robertson. Tietze transformations with weighted substring search. J. Symbolic
Comput., 6:59–64, 1988.

[Roy87] Gordon F. Royle. The transitive groups of degree twelve. J. Symbolic Comput., pages 255–268,
1987.

[Sch90] Gerhard J. A. Schneider. Dixon’s character table algorithm revisited. J. Symbolic Comput., 9:601–
606, 1990.

[Sch92] Michael Scherner. Erweiterung einer Arithmetik von Kreisteilungskörpern auf deren Teilkörper und
deren Implementation in GAP. Diplomarbeit, Lehrstuhl D für Mathematik, Rheinisch Westfälische
Technische Hochschule, Aachen, Germany, 1992.

[Sch94] Ute Schiffer. Cliffordmatrizen. Diplomarbeit, Lehrstuhl D für Mathematik, Rheinisch Westfälische
Technische Hochschule, Aachen, Germany, 1994.

[Sco73] L. L. Scott. Modular permutation representations. Trans. Amer. Math. Soc., 175:101–121, 1973.

[Sho92] Mark W. Short. The Primitive Soluble Permutation Groups of Degree less than 256, volume 1519
of Lecture Notes in Math. Springer, Berlin, Heidelberg and New York, 1992.

[Sim70] Charles C. Sims. Computational methods in the study of permutation groups. In John Leech, editor,
Computational Problems in Abstract Algebra, Proc. Conf. Oxford, 1967, pages 169–183. Pergamon
Press, Oxford, 1970.

[Sim90] Charles C. Sims. Computing the order of a solvable permutation group. J. Symbolic Comput.,
9:699–705, 1990.

[Sim94] C. C. Sims. Computation with Finitely Presented Groups. Cambridge University Press, 1994.

Bibliography 859

[Sim97] Charles C. Sims. Computing with subgroups of automorphism groups of finite groups. In Wolfgang
Küchlin, editor, Proceedings of the 1997 International Symposium on Symbolic and Algebraic
Computation, pages 40–403. The Association for Computing Machinery, ACM Press, 1997.

[Sou94] Bernd Souvignier. Irreducible finite integral matrix groups of degree 8 and 10. Math. Comp.,
63:335–350, 1994.

[SPA89] Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschule, Aachen, Germany.
SPAS - Subgroup Presentation Algorithms System, version 2.5, User’s reference manual, 1989.

[Tay87] D. E. Taylor. Pairs of generators for matrix groups. I. The Cayley Bulletin, 3, 1987.

[The93] Heiko Theißen. Methoden zur Bestimmung der rationalen Konjugiertheit in endlichen Gruppen.
Diplomarbeit, Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschule, 1993.

[The97] Heiko Theißen. Eine Methode zur Normalisatorberechnung in Permutationsgruppen mit Anwen-
dungen in der Konstruktion primitiver Gruppen. Dissertation, Rheinisch Westfälische Technische
Hochschule, Aachen, Germany, 1997.

[vdW76] Robert W. van der Waall. On symplectic primitive modules and monomial groups. Indagationes
Math., 38:362–375, 1976.

[Wag90] Stan Wagon. Editor’s corner: the Euclidean algorithm strikes again. Amer. Math. Monthly,
97(2):125–129, 1990.

[Wil] Robert A. Wilson. ATLAS of Finite Group Representations.

http://www.mat.bham.ac.uk/atlas/.

[Wil96] R[obert] A. Wilson. Standard generators for sporadic simple groups. J. Algebra, 184:505–515, 1996.

[Zag90] D. Zagier. A one-sentence proof that every prime p ≡ 1 (mod 4) is a sum of two squares. Amer.
Math. Monthly, 97(2):144, 1990.

[Zum89] Matthias Zumbroich. Grundlagen einer Arithmetik in Kreisteilungskörpern und ihre Implementa-
tion in CAS. Diplomarbeit, Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hoch-
schule, Aachen, Germany, 1989.

Index

This index covers only this manual. A page number in italics refers to a whole section which is devoted
to the indexed subject. Keywords are sorted with case and spaces ignored, e.g., “PermutationCharacter”
comes before “permutation group”.

(Near-)Additive Magma Categories, 558
(Near-)Additive Magma Generation, 559
+, 48
-, 48
-A, 30
-B, 30
-C, 31
-D, 30
-K, 29
-L, 29
-M, 30
-N, 30
-O, 30
-P, 31

on Macintosh, 31
-R, 29
-T, 31
-U, 31
-W, 31

on Macintosh, 32
-X, 31
-Y, 31
-a, 30

on Macintosh, 32
-b, 27
-e, 27

on Macintosh, 32
-f, 27

on Macintosh, 32
-g, 28
-g -g, 28
-h, 27
-i, 31
-l, 29
-m, 28
-n, 28

on Macintosh, 32
-o, 28

on Macintosh, 32
-p, 31
-q, 27
-r, 29
-x, 28
-y, 28
-z, 31

on Macintosh, 31
.gaprc, 33
/, 48

for character tables, 734
*, 48

for character tables, 734
\’, 252
\XYZ, 252
\", 252
\\, 252
\b, 252
\c, 252
\in, operation for testing membership, 277
\n, 252
\r, 252
^, 48

for class functions, 773
1-Cohomology, 380
2-Cohomology and Extensions, 459

A
AbelianGroup, 512
AbelianInvariants, for character tables, 736

for groups, 369
Abelian Invariants for Subgroups, 479
AbelianInvariantsMultiplier, 383
AbelianInvariantsNormalClosureFpGroup, 479
AbelianInvariantsNormalClosureFpGroupRrs,

479
AbelianInvariantsOfList, 244
AbelianInvariantsSubgroupFpGroup, 479
AbelianInvariantsSubgroupFpGroupMtc, 479

Index 861

AbelianInvariantsSubgroupFpGroupRrs, 479
AbelianNumberField, 592
abelian number field, 594
abelian number fields, canonicalbasis, 595
abelian number fields, Galois group, 597
AbelianSubfactorAction, 405
About Group Actions, 397
AbsInt, 127
AbsoluteIrreducibleModules, 754
AbsoluteValue, 159
absolute value of an integer, 127
AbsolutIrreducibleModules, 754
abstract word, 326
AbstractWordTietzeWord, 488
accessing, list elements, 175

record elements, 263
Accessing a Module, 698
Accessing Record Elements, 263
Accessing Subgroups via Tables of Marks, 719
AClosestVectorCombinationsMatFFEVecFFE, 220
AClosestVectorCombinationsMatFFEVec-

FFECoords, 220
ActingAlgebra, 635
ActingDomain, 409
Acting OnRight and OnLeft, 435
Action, 404
action, by conjugation, 398

on blocks, 398
on sets, 398

ActionHomomorphism, 403
Action of a group on itself, 405
Action on Subfactors Defined by a Pcgs, 450
actions, 398
Actions of Matrix Groups, 431
ActorOfExternalSet, 411
Add, 178
add, an element to a set, 198
AddCoeffs, 218
AddGenerator, 490
AddGenerators, 346
AddGeneratorsExtendSchreierTree, 427
addition, 48

list and non-list, 187
matrices, 224
matrix and scalar, 224
operation, 297
rational functions, 671
scalar and matrix, 224

scalar and matrix list, 226
scalar and vector, 216
vector and scalar, 216
vectors, 216

Additive Arithmetic for Lists, 187
AdditiveInverse, 295
AdditiveInverseAttr, 295
AdditiveInverseImmutable, 295
AdditiveInverseMutable, 295
AdditiveInverseOp, 295
AdditiveInverseSameMutability, 295
AdditiveInverseSM, 295
AdditiveNeutralElement, 560
AddRelator, 490
AddRowVector, 218
AddRule, 346
AddRuleReduced, 346
AddSet, 198
AdjointAssociativeAlgebra, 652
AdjointBasis, 624
AdjointMatrix, 652
AdjointModule, 637
Advanced Features of GAP, 30
Advanced List Manipulations, 206
Advanced Methods for Dixon-Schneider

Calculations, 755
AffineAction, 450
AffineActionLayer, 450
AffineOperation, 450
AffineOperationLayer, 450
Agemo, 366
Algebra, 615
AlgebraByStructureConstants, 618
AlgebraGeneralMappingByImages, 629
AlgebraHomomorphismByImages, 629
AlgebraHomomorphismByImagesNC, 629
AlgebraicExtension, 692
AlgebraWithOne, 615
AlgebraWithOneGeneralMappingByImages, 630
AlgebraWithOneHomomorphismByImages, 630
AlgebraWithOneHomomorphismByImagesNC, 630
AllBlocks, 408
AllIrreducibleSolvableGroups, 530
AllLibraryGroups, 518
AllPrimitiveGroups, 518
AllSmallGroups, 521
AllTransitiveGroups, 518
Alpha, 825

862 Index

AlternatingGroup, 512
and, 171

for filters, 117, 172
An Example of Advanced Dixon-Schneider

Calculations, 756
ANFAutomorphism, 597
AntiSymmetricParts, 790
antisymmetric relation, 316
Append, 179
AppendTo, 95

for streams, 101
Apple, 841, 842
ApplicableMethod, 78
ApplicableMethod, 78
ApplicableMethodTypes, 78
Apply, 201
ApplySimpleReflection, 649
ApproximateSuborbitsStabilizerPermGroup, 425
ARCH IS MAC, 35
ARCH IS UNIX, 35
ARCH IS WINDOWS, 35
arg, special function argument, 46, 56
Arithmetic for External Representations of

Polynomials, 691
Arithmetic for Lists, 185
Arithmetic Operations for Class Functions, 772
Arithmetic Operations for Elements, 297
Arithmetic Operations for General Mappings, 310
Arithmetic Operators, 48
Arrangements, 149
arrow notation for functions, 57
AsAlgebra, 624
AsAlgebraWithOne, 625
AsBinaryRelationOnPoints, 317
AsBlockMatrix, 240
AscendingChain, 372
AsDivisionRing, 579
AsDuplicateFreeList, 200
AsField, 579
AsFreeLeftModule, 576
AsGroup, 351
AsGroupGeneralMappingByImages, 387
AsLeftIdeal, 566
AsLeftModule, 574
AsList, 272
AsMagma, 321
AsMonoid, 546
AsPolynomial, 673

AsRightIdeal, 566
AsRing, 563
AsSemigroup, 539
Assert, 81
AssertionLevel, 81
Assertions, 81
AsSet, 272
AssignGeneratorVariables, 333
assignment, to a list, 177

to a record, 263
variable, 50

Assignments, 50
AssignNiceMonomorphismAutomorphismGroup, 393
AssociatedPartition, 154
AssociatedReesMatrixSemigroupOfDClass, 545
Associates, 569
associativity, 48
AssocWordByLetterRep, 338
AsSortedList, 272
AsSSortedList, 272
AsStruct , 289
AsSubalgebra, 625
AsSubalgebraWithOne, 625
AsSubgroup, 352
AsSubgroupOfWholeGroupByQuotient, 477
AsSubmagma, 322
AsSubmonoid, 546
AsSubsemigroup, 539
AsSubspace, 600
AsSubstruct , 292
AsTransformation, 556
AsTransformationNC, 556
AsTwoSidedIdeal, 566
AsVectorSpace, 599
at exit functions, 73
ATLAS Irrationalities, 161
AtlasIrrationality, 163
atomic irrationalities, 161
Attributes, 121
Attributes and Operations for Algebras, 623
Attributes and Properties for (Near-)Additive

Magmas, 560
Attributes and Properties for Collections, 273
Attributes and Properties for Magmas, 323
Attributes and Properties for Matrix Groups, 430
Attributes and Properties of Character Tables, 734
Attributes and Properties of Elements, 293

Index 863

Attributes of and Operations on Equivalence
Relations, 318

Attributes of Tables of Marks, 709
AttributeValueNotSet, 122
AugmentationIdeal, 664
AugmentedCosetTableInWholeGroup, 471
AugmentedCosetTableMtc, 471
AugmentedCosetTableRrs, 471
Augmented Coset Tables and Rewriting, 471
automatic loading of gap packages, 846
AutomorphismDomain, 392
AutomorphismGroup, 392

for groups with pcgs, 451
automorphism group, of number fields, 597
Automorphisms and Equivalence of Character

Tables, 763
AutomorphismsOfTable, 738

B
bN , 161
backslash character, 252
backspace character, 252
Backtrace, GAP3 name for Where, 70
Backtrack, 427
BANNER, 851
BaseFixedSpace, 231
BaseIntersectionIntMats, 241
BaseIntMat, 241
BaseMat, 234
BaseMatDestructive, 234
BaseOfGroup, 424
BaseOrthogonalSpaceMat, 234
Bases of Vector Spaces, 601
BaseStabChain, 424
BaseSteinitzVectors, 234
Basic Actions, 398
Basic Groups, 511
Basic Operations for Class Functions, 770
Basic Operations for Lists, 175
BasicWreathProductOrdering, 285
Basis, 602
BasisNC, 602
BasisVectors, 603
Bell, 148
Bernoulli, 148
BestQuoInt, 129
BestSplittingMatrix, 755
BiAlgebraModule, 633

BiAlgebraModuleByGenerators, 633
BilinearFormMat, 648
binary relation, 315
BinaryRelationByElements, 315
BinaryRelationOnPoints, 317
BinaryRelationOnPointsNC, 317
Binary Relations on Points, 317
BinaryRelationTransformation, 557
BindGlobal, 45
Binomial, 147
blank, 41
BlistList, 211
Block Matrices, 240
BlockMatrix, 240
Blocks, 408
BlocksInfo, 743
Block Systems, 408
BlownUpMat, 236
BlownUpVector, 236
BlowUpIsomorphism, 431
BNF, 59
body, 55
BombieriNorm, 679
Boolean Lists Representing Subsets, 211
bound, 43
Brauer character, 777
BrauerCharacterValue, 800
BrauerTable, 728
BrauerTableOp, 728
BravaisGroup, 434
BravaisSubgroups, 434
BravaisSupergroups, 434
Break, 55
break loop message, 70
Break Loops, 67
break statement, 55
browsing backwards, 22
browsing backwards one chapter, 23
browsing forward, 22
browsing forward one chapter, 23
browsing the next section browsed, 23
browsing the previous section browsed, 23
Browsing through the Sections, 22
bug reports, see If Things Go Wrong, 838
Building new orderings, 281

C
cN , 161

864 Index

Calculating with Group Automorphisms, 393
Calendar Arithmetic, 259
CallFuncList, 62
Calling a function with a list argument that is

interpreted as several arguments, 62
Cancellation Tests for Rational Functions, 691
CanComputeIndex, 384
CanComputeIsSubset, 384
CanComputeSize, 384
CanComputeSizeAnySubgroup, 384
candidates, for permutation characters, 793, 796
CanEasilyCompareElements, 296
CanEasilyCompareElementsFamily, 296
CanEasilyComputePcgs, 437
CanEasilySortElements, 296
CanEasilySortElementsFamily, 296
CanEasilyTestMembership, 384
CanonicalBasis, 602
canonical basis, for matrix spaces, 609

for row spaces, 609
CanonicalGenerators, 648
CanonicalPcElement, 439
CanonicalPcgs, 442
CanonicalPcgsByGeneratorsWithImages, 444
CanonicalRepresentativeDeterminatorOf-

ExternalSet, 411
CanonicalRepresentativeOfExternalSet, 411
CanonicalRightCosetElement, 358
Carmichael’s lambda function, 139
carriage return character, 252
CartanMatrix, 647
CartanSubalgebra, 644
Cartesian, 202
Categories, 118
Categories and Properties of Algebras, 622
Categories for Streams and the StreamsFamily, 97
Categories of Associative Words, 331
Categories of Matrices, 223
CategoriesOfObject, 120
Categories of Words and Nonassociative Words, 326
CategoryCollections, 269
Center, 324
center, 323
CentralCharacter, 781
central character, 781
CentralIdempotentsOfAlgebra, 627
centraliser, 323
Centralizer, 323

for groups with pcgs, 451
CentralizerInGLnZ, 434
CentralizerModulo, 373
CentralizerSizeLimitConsiderFunction, 452
CentralNormalSeriesByPcgs, 446
Centre, 324

for groups with pcgs, 451
centre, of a character, 780
CentreOfCharacter, 780
CF, 592
ChangeStabChain, 426
Changing Presentations, 490
Changing the Help Viewer, 23
Changing the Representation, 290
Changing the Structure, 289
CHAR INT, 258
CHAR SINT, 258
Character, 775
Character Conversion, 258
CharacterDegrees, 734
Character Degrees and Derived Length, 825
Characteristic, 293
characteristic, for class functions, 774
CharacteristicPolynomial, 235
characteristic polynomial, for field elements, 581
CharacterNames, 738
CharacterParameters, 739
characters, 768

permutation, 793, 796
symmetrizations of, 790

CharacterTable, 728
Character Table Categories, 730
CharacterTableDirectProduct, 758
CharacterTableFactorGroup, 759
CharacterTableIsoclinic, 760
CharacterTableRegular, 729
character tables, 727

access to, 727
calculate, 727
infix operators, 734
of groups, 727

CharacterTableWithSortedCharacters, 761
CharacterTableWithSortedClasses, 761
CharacterTableWreathSymmetric, 760
character value, of group element using powering

operator, 773
CharsFamily, 254
CheapFactorsInt, 134

Index 865

CheckFixedPoints, 814
CheckForHandlingByNiceBasis, 614
CheckPermChar, 821
ChevalleyBasis, 646
ChiefNormalSeriesByPcgs, 447
ChiefSeries, 370
ChiefSeriesThrough, 370
ChiefSeriesUnderAction, 370
ChineseRem, 130
Chinese remainder, 131
Chomp, 257
CIUnivPols, 671
ClassElementLattice, 375
classes, real, 740
ClassesSolvableGroup, 451
ClassFunction, 775
class function, 768
class function objects, 768
class functions, 811

as ring elements, 772
ClassFunctionSameType, 776
Class Fusions between Character Tables, 806
Classical Groups, 513
ClassMultiplicationCoefficient, for character

tables, 747
class multiplication coefficient, 747, 748
ClassNames, 738
ClassNamesTom, 710
ClassOrbit, 740
ClassParameters, 739
ClassPermutation, 762
ClassPositionsOfAgemo, 740
ClassPositionsOfCentre, for characters, 780

for character tables, 740
ClassPositionsOfDerivedSubgroup, 741
ClassPositionsOfDirectProduct-

Decompositions, 741
ClassPositionsOfElementaryAbelianSeries, 741
ClassPositionsOfFittingSubgroup, 741
ClassPositionsOfKernel, 779
ClassPositionsOfLowerCentralSeries, 741
ClassPositionsOfMaximalNormalSubgroups, 740
ClassPositionsOfMinimalNormalSubgroups, 740
ClassPositionsOfNormalClosure, 741
ClassPositionsOfNormalSubgroup, 766
ClassPositionsOfNormalSubgroups, 740
ClassPositionsOfSupersolvableResiduum, 741
ClassPositionsOfUpperCentralSeries, 741

ClassRoots, 740
ClassStructureCharTable, 747
ClassTypesTom, 709
CleanedTailPcElement, 440
ClearCacheStats, 84
ClearProfile, 83
clone, an object, 113
CloseMutableBasis, 607
CloseStream, 98
ClosureGroup, 354
ClosureGroupAddElm, 354
ClosureGroupCompare, 354
ClosureGroupDefault, 354
ClosureGroupIntest, 354
ClosureLeftModule, 575
ClosureNearAdditiveGroup, 561
Closure Operations and Other Constructors, 317
ClosureRing, 563
Closures of (Sub)groups, 354
ClosureStruct , 289
ClosureSubgroup, 354
ClosureSubgroupNC, 354
Coboundaries, 657
Cochain, 656
CochainSpace, 656
Cocycles, 657
cocycles, 380
CodePcGroup, 462
CodePcgs, 462
Coding a Pc Presentation, 462
coefficient, binomial, 147
Coefficient List Arithmetic, 218
Coefficients, 603
coefficients, for cyclotomics, 159
CoefficientsAndMagmaElements, 665
CoefficientsFamily, 688
CoefficientsMultiadic, 130
CoefficientsOfLaurentPolynomial, 680
CoefficientsOfUnivariatePolynomial, 673
CoefficientsOfUnivariateRationalFunction,

673
CoefficientsQadic, 130
CoefficientsRing, 681
CoeffsCyc, 159
CoeffsMod, 219
cohomology, 380
COHORTS PRIMITIVE GROUPS, 528
CoKernelOfAdditiveGeneralMapping, 312

866 Index

CoKernelOfMultiplicativeGeneralMapping, 311
CollapsedMat, 817
Collected, 200
Collection Families, 268
CollectionsFamily, 268
Coloring the Prompt and Input, 38
ColorPrompt, 38
ColumnIndexOfReesMatrixSemigroupElement, 545
ColumnIndexOfReesZeroMatrixSemigroup-

Element, 545
Combinations, 149
Combinations, Arrangements and Tuples, 149
CombinatorialCollector, 456
Combinatorial Numbers, 147
Comm, 297

for words, 335
Command Line Options, 27
comments, 41
CommutativeDiagram, 814
CommutatorFactorGroup, 373
CommutatorLength, 364

for character tables, 736
CommutatorSubgroup, 363
Compacted, 199
CompanionMat, 237
CompareVersionNumbers, 849
comparison, fp semigroup elements, 551

operation, 296
rational functions, 671

Comparison of Associative Words, 334
Comparison of Class Functions, 771
Comparison of Elements of Finitely Presented

Groups, 465
Comparison of Elements of Finitely Presented

Semigroups, 551
Comparison of Permutations, 413
Comparison of Rational Functions, 671
Comparison of Words, 328
Comparison Operations for Elements, 296
Comparisons, 47
comparisons, of booleans, 170

of lists, 184
Comparisons of Booleans, 170
Comparisons of Cyclotomics, 161
Comparisons of Lists, 184
Comparisons of Records, 265
Comparisons of Strings, 254
CompatibleConjugacyClasses, 733

CompatiblePairs, 460
Compilation, 833
Compiling Library Code, 36
Complementclasses, 363
ComplementclassesEA, 382
ComplementIntMat, 242
ComplementSystem, 366
Completion Files, 34
ComplexConjugate, 164

for class functions, 774
ComplexificationQuat, 619
Components of a Dixon Record, 756
CompositionMapping, 305

for Frobenius automorphisms, 589
CompositionMapping2, 305
CompositionMaps, 811
CompositionOfStraightLinePrograms, 342
CompositionSeries, 370

for groups with pcgs, 451
ComputedBrauerTables, 728
ComputedClassFusions, 807
ComputedIndicators, 746
ComputedIsPSolvableCharacterTables, 746
ComputedPowerMaps, 803
ComputedPrimeBlockss, 742
Computing a Pcgs, 437
Computing a Permutation Representation, 417
Computing Pc Groups, 457
Computing Possible Permutation Characters, 796
Computing the Irreducible Characters of a Group,

751
Concatenation, 199
concatenation, of lists, 199
Conductor, 159
ConfluentRws, 346
Congruences, for character tables, 819
Congruences for semigroups, 542
ConjugacyClass, 360
Conjugacy Classes, 360
ConjugacyClasses, attribute, 360

for character tables, 732
for groups with pcgs, 451
for linear groups, 517

ConjugacyClassesByOrbits, 361
ConjugacyClassesByRandomSearch, 361
Conjugacy Classes in Classical Groups, 517
Conjugacy Classes in Solvable Groups, 451
ConjugacyClassesMaximalSubgroups, 374

Index 867

ConjugacyClassesPerfectSubgroups, 377
ConjugacyClassesSubgroups, 374
ConjugacyClassSubgroups, 374
conjugate, matrix, 225

of a word, 335
ConjugateDominantWeight, 649
ConjugateDominantWeightWithWord, 649
ConjugateGroup, 351
Conjugates, 582
ConjugateSubgroup, 353
ConjugateSubgroups, 353
conjugation, 398
ConjugatorAutomorphism, 391
ConjugatorAutomorphismNC, 391
ConjugatorIsomorphism, 390
ConjugatorOfConjugatorIsomorphism, 391
ConnectGroupAndCharacterTable, 732
ConsiderKernels, 819
ConsiderSmallerPowerMaps, 820
ConsiderStructureConstants, 811
ConsiderTableAutomorphisms, 822
ConstantTimeAccessList, 195
constituent, of a group character, 778
ConstituentsCompositionMapping, 306
ConstituentsOfCharacter, 779
Constructing Algebras as Free Algebras, 616
Constructing Algebras by Generators, 615
Constructing Algebras by Structure Constants, 617
Constructing Character Tables from Others, 758
Constructing Domains, 288
Constructing Lie algebras, 641
Constructing Pc Groups, 455
Constructing Subdomains, 292
Constructing Tables of Marks, 704
Constructing Vector Spaces, 599
Construction of Abelian Number Fields, 592
Construction of Stabilizer Chains, 422
Constructors for Basic Groups, 517
ContainedCharacters, 818
ContainedDecomposables, 818
ContainedMaps, 813
ContainedPossibleCharacters, 816, 817
ContainedPossibleVirtualCharacters, 816, 817
ContainedSpecialVectors, 816, 817
ContainedTom, 714
ContainingTom, 714
ContinuedFractionApproximationOfRoot, 143
ContinuedFractionExpansionOfRoot, 143

Continued Fractions, 143
continue statement, 55
Conventions for Character Tables, 731
convert, to a string, 253
Converting Groups to Finitely Presented Groups,

473
ConvertToCharacterTable, 730
ConvertToCharacterTableNC, 730
ConvertToMatrixRep, 237
ConvertToMatrixRepNC, 237
ConvertToRangeRep, 209
ConvertToStringRep, 253
ConvertToTableOfMarks, 708
ConvertToVectorRep, 217
ConvertToVectorRepNC, 217
ConwayPolynomial, 589
Conway Polynomials, 589
coprime, 48
copy, 113

an object, 113
COPY LIST ENTRIES, 179
CopyOptionsDefaults, 426
Copyrights, 845
CopyStabChain, 426
Core, 362
CorrespondingGeneratorsByModuloPcgs, 444
coset, 357
CosetLeadersMatFFE, 220
Cosets, 357
CosetTable, 467
CosetTableBySubgroup, 468
CosetTableDefaultLimit, 469
CosetTableDefaultMaxLimit, 469
CosetTableFromGensAndRels, 468
CosetTableInWholeGroup, 471
CosetTableOfFpSemigroup, 554
Coset Tables and Coset Enumeration, 467
Coset tables for subgroups in the whole group, 471
CosetTableStandard, 470
CRC, 37
CrcFile, 95

example, 37
CRC Numbers, 37
CreateCompletionFiles, 34
CreateCompletionFilesPkg, 850
Creating Character Tables, 727
Creating Class Functions from Values Lists, 775
Creating Class Functions using Groups, 776

868 Index

Creating Finite Fields, 587
Creating Finitely Presented Groups, 464
Creating Finitely Presented Semigroups, 550
Creating Group Homomorphisms, 385
Creating Groups, 350
Creating Mappings, 305
Creating Permutations, 415
Creating Presentations, 482
Creation of Algebraic Extensions, 692
Creation of Rational Functions, 690
Credit, 21
CrystGroupDefaultAction, 435
Cycle, 406
CycleLength, 406
CycleLengths, 406
Cycles, 406
CycleStructureClass, 780
CycleStructurePerm, 414
CyclicExtensionsTom, 714
CyclicGroup, 511
CyclotomicField, 592
cyclotomic field elements, 157
cyclotomic fields, canonicalbasis, 595
CyclotomicPolynomial, 677
Cyclotomic Polynomials, 677
Cyclotomics, 157
cyclotomics, defaultfield, 593

D
dN , 161
Darstellungsgruppe, see EpimorphismSchurCover,

383
DataType, 125
data type, unknown, 168
DayDMY, 260
DaysInMonth, 259
DaysInYear, 259
Debugging Recursion, 85
DEC, 245
DeclareAutoPackage, 850
DeclareHandlingByNiceBasis, 613
DeclareInfoClass, 80
DeclarePackage, 850
DeclarePackageAutoDocumentation, 850
DeclarePackageDocumentation, 850
DecodeTree, 500
DecodeTree, 500
decompose, a group character, 778

DecomposedFixedPointVector, 714
DecomposeTensorProduct, 658
Decomposition, 245
DecompositionInt, 246
DecompositionMatrix, 744
decomposition matrix, 245
Decompositions, 245
Decreased, 787
DefaultField, 579

for cyclotomics, 160
for finite field elements, 587

DefaultFieldByGenerators, 579
DefaultFieldOfMatrix, 226
DefaultFieldOfMatrixGroup, 430
DefaultRing, 562

for finite field elements, 587
DefaultRingByGenerators, 563
DefaultStabChainOptions, 423
Defining a Pcgs Yourself, 437
DefiningPolynomial, 580
DefiningQuotientHomomorphism, 477
DegreeFFE, 586
DegreeIndeterminate, 675
DegreeOfBinaryRelation, 316
DegreeOfCharacter, 778
DegreeOfLaurentPolynomial, 674
DegreeOfTransformation, 555
DegreeOfTransformationSemigroup, 541
DegreeOverPrimeField, 580
Delta, 825
denominator, of a rational, 146
DenominatorCyc, 160
DenominatorOfModuloPcgs, 443
DenominatorOfRationalFunction, 673
DenominatorRat, 146
deprecated, 850
DepthOfPcElement, 439
DepthOfUpperTriangularMatrix, 235
Derangements, 151
Derivations, 642
Derivative, 676
DerivedLength, 371
DerivedSeriesOfGroup, 371
DerivedSubgroup, 363
DerivedSubgroupsTom, 713
DerivedSubgroupsTomPossible, 713
DerivedSubgroupsTomUnique, 713
DerivedSubgroupTom, 713

Index 869

DescriptionOfRootOfUnity, 160
Determinant, 227
determinant character, 781
DeterminantIntMat, 245
DeterminantMat, 227
DeterminantMatDestructive, 227
DeterminantMatDivFree, 227
Determinant of an integer matrix, 245
DeterminantOfCharacter, 781
Developing rewriting systems, 348
DiagonalizeIntMat, 243
DiagonalizeMat, 232
DiagonalMat, 228
DiagonalOfMat, 235
Difference, 276
DifferenceBlist, 212
DihedralGroup, 512
Dimension, 576
DimensionOfHighestWeightModule, 658
DimensionOfMatrixGroup, 430
DimensionOfVectors, 608
DimensionsLoewyFactors, 372
DimensionsMat, 226
Directories, 91
DirectoriesLibrary, 91
DirectoriesPackageLibrary, 848
DirectoriesPackagePrograms, 849
DirectoriesSystemPrograms, 92
Directory, 91
DirectoryContents, 92
DirectoryCurrent, 91
DirectoryTemporary, 91
DirectProduct, 505
DirectProductOp, 505
Direct Products, 505
DirectSumDecomposition, 627

for Lie algebras, 646
Direct Sum Decompositions, 646
DirectSumOfAlgebraModules, 638

for Lie algebras, 661
DirectSumOfAlgebras, 626
DisableAttributeValueStoring, 123
disable automatic loading, 846
Discriminant, 676
Display, 67

for character tables, 748, 775
for tables of marks, 706

DisplayCacheStats, 84

DisplayCompositionSeries, 370
DisplayEggBoxOfDClass, 543
DisplayImfInvariants, 532
DisplayInformationPerfectGroups, 525
DisplayOptions, 750
DisplayOptionsStack, 89
DisplayProfile, 83
DisplayRevision, 84
DistancesDistributionMatFFEVecFFE, 220
DistancesDistributionVecFFEsVecFFE, 220
DistanceVecFFE, 220
Distinguished Subalgebras, 643
division, 48

operation, 297
DivisionRingByGenerators, 579
division rings, 578
divisors, of an integer, 134
DivisorsInt, 134
Dixon-Schneider algorithm, 754
DixonInit, 755
DixonRecord, 755
DixonSplit, 755
DixontinI, 755
DMYDay, 260
DMYhmsSeconds, 261
DnLattice, 788
DnLatticeIterative, 789
do, 53
document formats (text, dvi, ps, pdf, html), 23
Domain, 293
DomainByGenerators, 293
Domain Categories, 290
Domains, 110
Domains Generated by Class Functions, 801
Domains of Subspaces of Vector Spaces, 601
DominantCharacter, 657
DominantWeights, 657
DoubleCoset, 359
DoubleCosetRepsAndSizes, 360
Double Cosets, 359
DoubleCosets, operation, 359
DoubleCosetsNC, operation, 359
doublequote character, 252
doublequotes, 250
DownEnv, 71
Dummy Streams, 106
duplicate free, 195
DuplicateFreeList, 200

870 Index

Duplication of Lists, 181
Duplication of Objects, 113
DxIncludeIrreducibles, 755

E
E, 157
eN , 161
EANormalSeriesByPcgs, 445
Earns, 407
EB, 161
EC, 161
Echelonized Matrices, 232
ED, 161
Edit, 75
Editing Files, 75
Editor Support, 75
EE, 161
EF, 161
Efficiency of Homomorphisms, 388
EG, 161
EggBoxOfDClass, 543
EH, 161
EI, 162
Eigenspaces, 231
Eigenvalues, 231
EigenvaluesChar, 781
Eigenvectors, 231
Eigenvectors and eigenvalues, 231
EJ, 162
EK, 162
EL, 162
ElementaryAbelianGroup, 512
ElementaryAbelianSeries, 371
ElementaryAbelianSeriesLargeSteps, 371
Elementary Divisors, 232
ElementaryDivisorsMat, 232
ElementaryDivisorsMatDestructive, 232
Elementary Operations for a Pcgs, 438
Elementary Operations for a Pcgs and an Element,

439
Elementary Operations for Integers, 127
Elementary Operations for Rationals, 145
Elementary Tietze Transformations, 493
ElementOfFpGroup, 466
ElementOfFpSemigroup, 552
ElementOfMagmaRing, 665
ElementOrdersPowerMap, 804
ElementProperty, 427

Elements, 273
elements, definition, 109

of a list or collection, 273
Elements as equivalence classes, 109
ElementsFamily, 268
Elements in Algebraic Extensions, 692
Elements of Free Magma Rings, 665
Elements of pc groups, 454
ElementsStabChain, 425
Elements with Prescribed Images, 403
element test, for lists, 183
elif, 51
EliminatedWord, 336
EliminationOrdering, 685
else, 51
EM, 162
emacs, 75
Embedding, 306

example for direct products, 505
example for semidirect products, 507
example for wreath products, 508
for group products, 510
for Lie algebras, 641
for magma rings, 665

embeddings, find all, 394
Embeddings and Projections for Group Products,

510
EmptyBinaryRelation, 315
EmptyMatrix, 228
EmptyPlist, 183
EmptySCTable, 617
EmptyStabChain, 426
EmptyString, 253
EnableAttributeValueStoring, 123
End, 611
end, 55
Enlarging Internally Represented Lists, 183
Enumerator, 269
EnumeratorByBasis, 604
EnumeratorByFunctions, 270
Enumerators, 209
EnumeratorSorted, 269
environment, 55
Epicentre, 383
EpimorphismFromFreeGroup, 354
EpimorphismNilpotentQuotient, 478
EpimorphismNonabelianExteriorSquare, 383
EpimorphismPGroup, 478

Index 871

EpimorphismQuotientSystem, 478
epimorphisms, find all, 394
EpimorphismSchurCover, 383
equality, associative words, 334

elements of finitely presented groups, 465
nonassociative words, 328
of records, 265
operation, 296
pcwords, 454

Equality and Comparison of Domains, 288
equality test, 47

for permutations, 413
equivalence class, 319
Equivalence Classes, 319
EquivalenceClasses, attribute, 319
EquivalenceClassOfElement, 319
EquivalenceClassOfElementNC, 319
EquivalenceClassRelation, 319
equivalence relation, 316, 318
EquivalenceRelationByPairs, 318
EquivalenceRelationByPairsNC, 318
EquivalenceRelationByPartition, 318
EquivalenceRelationByPartitionNC, 318
EquivalenceRelationByProperty, 318
EquivalenceRelationByRelation, 318
EquivalenceRelationPartition, 318
Equivalence Relations, 318
ER, 162
Error, 73
Error, 73
ErrorCount, 73
ErrorCount, 73
ErrorNoTraceBack, 69
errors, syntax, 64
ES, 162
escaped characters, 252
escaping non-special characters, 252
ET, 162
EU, 162
EuclideanDegree, 570
EuclideanQuotient, 570
EuclideanRemainder, 571
Euclidean Rings, 570
Euler’s totient function, 138
EulerianFunction, 369
EulerianFunctionByTom, 715
EV, 162
EvalStraightLineProgElm, 344

EvalString, 259
evaluation, 42

strings, 258
EW, 162
EX, 162
ExactSizeConsiderFunction, 379
Exec, 108
Exec, 108
execution, 49
exit, 73
expanded form of monomials, 689
Expert Windows installation, 844
Exponent, 369

for character tables, 736
exponent, of the prime residue group, 139
exponentiation, operation, 297
ExponentOfPcElement, 439
ExponentsConjugateLayer, 440
ExponentsOfCommutator, 440
ExponentsOfConjugate, 440
ExponentsOfPcElement, 439
ExponentsOfRelativePower, 440
Exponents of Special Products, 440
ExponentSumWord, 335
ExponentSyllable, 337
Expressing Group Elements as Words in Generators,

354
Expressions, 42
ExtendedPcgs, 442
ExtendStabChain, 426
Extension, 459
ExtensionNC, 459
ExtensionRepresentatives, 460
Extensions, 459
Extensions of the p-adic Numbers, 695
ExteriorCentre, 383
ExteriorPowerOfAlgebraModule, 661
ExternalOrbit, 410
ExternalOrbits, 410
ExternalOrbitsStabilizers, 410
External Representation for Nonassociative Words,

330
external representation of polynomials, 689
ExternalSet, 409
External Sets, 409
ExternalSubset, 410
Extract, 785
ExtraspecialGroup, 512

872 Index

ExtRepDenominatorRatFun, 689
ExtRepNumeratorRatFun, 689
ExtRepOfObj, external representation, for

cyclotomics, 160
ExtRepPolynomialRatFun, 689
EY, 162

F
fN , 161
FactorCosetAction, 405

for fp groups, 468
FactorCosetOperation, 468
FactorFreeSemigroupByRelations, 550
FactorGroup, 373
FactorGroupFpGroupByRels, 464
FactorGroupNC, 373
FactorGroupNormalSubgroupClasses, 766
Factor Groups, 373
Factor Groups of Polycyclic Groups - Modulo Pcgs,

443
Factor Groups of Polycyclic Groups in their Own

Representation, 444
FactorGroupTom, 715
Factorial, 147
Factorization, 355
factorization, 354
Factors, 570

of univariate polynomial, 678
FactorsInt, 132
FactorsOfDirectProduct, 759
FactorsSquarefree, 678
Fail, 170
fail, 170
FaithfulModule, 637

for Lie algebras, 655
Families, 116
FamiliesOfGeneralMappingsAndRanges, 314
FamiliesOfRows, 765
FamilyForOrdering, 282
FamilyObj, 116
FamilyPcgs, 454
FamilyRange, 314
FamilySource, 314
FAQ, 837
features, under UNIX, 27
fi, 51
Fibonacci, 155
Fibonacci and Lucas Sequences, 155

Field, 578
FieldExtension, 580
field homomorphisms, Frobenius, 589
FieldOfMatrixGroup, 430
FieldOverItselfByGenerators, 580
fields, 578
File Access, 93
FileDescriptorOfStream, 98
Filename, 92
Filename, 92
File Operations, 94
File Streams, 103
Filtered, 203
Filters, 117
Filters Controlling the Arithmetic Behaviour of

Lists, 185
Finding Positions in Lists, 191
Finding Submodules, 698
FindSl2, 653
Finish Installation and Cleanup, 835
Finite Field Elements, 584
Finitely Presented Lie Algebras, 653
Finitely presented monoids, 552
finiteness test, for a list or collection, 273
Finite Perfect Groups, 523
First, 204
FittingSubgroup, 364
Flat, 200
flush character, 252
For, 53
ForAll, 204
ForAny, 204
for loop, 53
FpElmComparisonMethod, 465
FpGroupPresentation, 483
FpGrpMonSmgOfFpGrpMonSmgElement, 550
FpLieAlgebraByCartanMatrix, 654
frame, 790, 791
FrattiniSubgroup, 364

for groups with pcgs, 451
FreeAlgebra, 616
FreeAlgebraWithOne, 616
FreeAssociativeAlgebra, 616
FreeAssociativeAlgebraWithOne, 616
FreeGeneratorsOfFpGroup, 465
FreeGeneratorsOfFpSemigroup, 551
FreeGeneratorsOfWholeGroup, 465
FreeGroup, 332

Index 873

FreeGroupOfFpGroup, 465
Free Groups, Monoids and Semigroups, 332
FreeLeftModule, 576
FreeLieAlgebra, 642
FreeMagma, 329
FreeMagmaRing, 664
Free Magma Rings, 664
Free Magmas, 329
FreeMagmaWithOne, 329
Free Modules, 576
FreeMonoid, 547

with example, 332
FreeMonoidOfRewritingSystem, 554
FreeProduct, 510
Free Products, 510
FreeSemigroup, 332

with examples, 540
FreeSemigroupOfFpSemigroup, 551
FreeSemigroupOfRewritingSystem, 554
Frobenius automorphism, 589
FrobeniusAutomorphism, 589
FrobeniusAutomorphism, 589
FrobeniusCharacterValue, 800
FullMatrixAlgebra, 619
FullMatrixAlgebraCentralizer, 627
FullMatrixLieAlgebra, 642
FullMatrixModule, 577
FullMatrixSpace, 608
FullRowModule, 577
FullRowSpace, 608
FullTransformationSemigroup, 541
Function, 55
function, 55
FunctionAction, 409
function call, 46

with arguments, 46
with options, 47

Function Calls, 46
FunctionOperation, 850
functions, 61, 304

definition by arrow notation, 57
definition of, 55
recursive, 55
with a variable number of arguments, 46, 56

FunctionsFamily, 63
Functions for Coding Theory, 220
Functions for GAP Packages, 847
Functions that do nothing, 63

Function that Modify Boolean Lists, 213
Function Types, 63
FusionCharTableTom, 721
FusionConjugacyClasses, 807
FusionConjugacyClassesOp, 807
fusions, 806
FusionsAllowedByRestrictions, 822
FusionsTom, 710

G
G-sets, 397, 409
gN , 161
gac, 35
Galois Action, 580
Galois Conjugacy of Cyclotomics, 164
GaloisCyc, 164

for class functions, 774
GaloisField, 588
GaloisGroup, of field, 581

of rational class of a group, 362
Galois Groups of Abelian Number Fields, 597
GaloisMat, 165
GaloisStabilizer, 594
GaloisType, 679
gap.rc, 32, 33
GAP3, 34
Gap3CatalogueIdGroup, 521
GAP for Macintosh OS X, 841
GAP for MacOS, 842
GAPInfo, 851
GAPInfo.RootPaths, 29
GapInputPcGroup, 458
GapInputSCTable, 617
GAPKB REW, 553
GAP Root Directory, 90
GasmanLimits, 87
GasmanMessageStatus, 87
GasmanStatistics, 87
Gaussian algorithm, 230
GaussianIntegers, 598
GaussianRationals, 593
Gaussians, 598
Gcd, 571
Gcd and Lcm, 571
Gcdex, 130
GcdInt, 129
GcdOp, 571
GcdRepresentation, 571

874 Index

GcdRepresentationOp, 572
General Binary Relations, 315
GeneralisedEigenspaces, 231
GeneralisedEigenvalues, 231
generalized characters, 768
GeneralizedEigenspaces, 231
GeneralizedEigenvalues, 231
GeneralLinearGroup, 514
GeneralMappingByElements, 305
General Mappings, 313
GeneralMappingsFamily, 314
GeneralOrthogonalGroup, 515
GeneralUnitaryGroup, 514
Generating Fields, 578
Generating modules, 574
Generating Rings, 562
generator, of the prime residue group, 140
GeneratorsOfAdditiveGroup, 560
GeneratorsOfAdditiveMagma, 560
GeneratorsOfAdditiveMagmaWithZero, 560
GeneratorsOfAlgebra, 623
GeneratorsOfAlgebraModule, 634
GeneratorsOfAlgebraWithOne, 623
GeneratorsOfDivisionRing, 579
GeneratorsOfDomain, 293
GeneratorsOfEquivalenceRelationPartition,

318
GeneratorsOfField, 579
GeneratorsOfGroup, 351
GeneratorsOfIdeal, 565
GeneratorsOfLeftIdeal, 566
GeneratorsOfLeftModule, 574
GeneratorsOfLeftOperatorAdditiveGroup, 574
GeneratorsOfLeftVectorSpace, 600
GeneratorsOfMagma, 323
GeneratorsOfMagmaWithInverses, 323
GeneratorsOfMagmaWithOne, 323
GeneratorsOfMonoid, 546
GeneratorsOfNearAdditiveGroup, 560
GeneratorsOfNearAdditiveMagma, 560
GeneratorsOfNearAdditiveMagmaWithZero, 560
GeneratorsOfPresentation, 482
GeneratorsOfRightIdeal, 566
GeneratorsOfRightModule, 575
GeneratorsOfRightOperatorAdditiveGroup, 575
GeneratorsOfRing, 563
GeneratorsOfRingWithOne, 567
GeneratorsOfRws, 346

GeneratorsOfSemigroup, 540
GeneratorsOfStruct , 289
GeneratorsOfTwoSidedIdeal, 565
GeneratorsOfVectorSpace, 600
GeneratorsPrimeResidues, 139
GeneratorsSmallest, 380
GeneratorsSubgroupsTom, 719
GeneratorSyllable, 337
Generic Construction of Tables of Marks, 723
GetFusionMap, 808
Get the Archives, 832
getting help, 22
GF, 588
GL, 514
GL and SL, 431
Global Memory Information, 87
GlobalMersenneTwister, 136
GlobalRandomSource, 136
GModuleByMats, 697
GO, 515
GQuotients, 394
Grading, 628
Green’s Relations, 542
GreensDClasses, 544
GreensDClassOfElement, 543
GreensDRelation, 543
GreensHClasses, 544
GreensHClassOfElement, 543
GreensHRelation, 543
GreensJClasses, 544
GreensJClassOfElement, 543
GreensJRelation, 543
GreensLClasses, 544
GreensLClassOfElement, 543
GreensLRelation, 543
GreensRClasses, 544
GreensRClassOfElement, 543
GreensRRelation, 543
Groebner Bases, 686
GroebnerBasis, 686
GroebnerBasisNC, 686
Group, 350
group actions, 397, 398

operations syntax, 397
Group Actions - Name Changes, 850
group algebra, 663
Group Automorphisms, 390
GroupByRws, 456

Index 875

GroupByRwsNC, 456
group characters, 768
Group Elements, 350
GroupGeneralMappingByImages, 386
GroupHClassOfGreensDClass, 544
GroupHomomorphismByFunction, 386
GroupHomomorphismByImages, 385
GroupHomomorphismByImagesNC, 385
GroupOfPcgs, 438
group operations, 398, 850
Group Properties, 367
GroupRing, 664
group ring, 663
Groups of Automorphisms, 392
GroupStabChain, 425
GroupWithGenerators, 351
GU, 514

H
hN , 161
HallSubgroup, 365
HallSystem, 366

for groups with pcgs, 451
Handling of Streams in the Background, 106
HasAbelianFactorGroup, 373
HasElementaryAbelianFactorGroup, 373
HasIndeterminateName, 670
HasParent, 291
HasseDiagramBinaryRelation, 317
HeadPcElementByNumber, 440
HenselBound, 679
hermite normal form, 851
HermiteNormalFormIntegerMat, 243
HermiteNormalFormIntegerMatTransform, 243
HeuristicCancelPolynomials, 691
HexStringInt, 255
HighestWeightModule, 660
History of Character Theory Stuff in GAP, 726
HMSMSec, 260
Hom, 611
HomeEnumerator, 409
Homomorphism for very large groups, 389
HomomorphismQuotientSemigroup, 542
homomorphisms, find all, 394
homomorphisms, Frobenius, field, 589
Homomorphisms of Algebras, 629
HomomorphismTransformationSemigroup, 541
How to Implement New Kinds of Vector Spaces, 613

HumanReadableDefinition, 717

I
iN , 162
Ideal, 564
IdealByGenerators, 565
IdealNC, 565
Ideals, 621
Ideals in Rings, 564
Ideals of semigroups, 541
Idempotents, 324
IdempotentsTom, 710
IdempotentsTomInfo, 710
Identical Lists, 180
Identical Objects, 110
Identical Records, 264
IdentificationOfConjugacyClasses, 732
Identifier, for character tables, 739

for tables of marks, 711
Identifiers, 42
Identity, 293
IdentityBinaryRelation, 315
IdentityFromSCTable, 618
IdentityMapping, 306
IdentityMat, 228
IdentityTransformation, 555
IdFunc, 63
IdGap3SolvableGroup, 521
IdGroup, 521
IdSmallGroup, 521
IdsOfAllSmallGroups, 521
If, 51
if statement, 51
If Things Go Wrong, 837
Image, 308

for Frobenius automorphisms, 589
image, vector under matrix, 225
ImageElm, 308
ImageListOfTransformation, 556
Images, 308
ImagesElm, 307
ImageSetOfTransformation, 556
ImagesRepresentative, 307
ImagesSet, 307
ImagesSmallestGenerators, 389
ImagesSource, 307
Images under Mappings, 307
ImaginaryPart, 164

876 Index

ImfInvariants, 534
ImfMatrixGroup, 535
ImfNumberQClasses, 532
ImfNumberQQClasses, 532
ImfNumberZClasses, 532
Immutable, 112
ImmutableBasis, 607
ImmutableMatrix, 237
in, for collections, 277

for lists, 183
for strictly sorted lists, 197
operation for, 277

IndependentGeneratorsOfAbelianGroup, 380
Indeterminate, 669
IndeterminateName, 670
Indeterminateness, 816
IndeterminateNumberOfLaurentPolynomial, 680
IndeterminateNumberOfUnivariateRational-

Function, 670
IndeterminateOfUnivariateRationalFunction,

670
Indeterminates, 669
IndeterminatesOfPolynomialRing, 681
Index, 352
IndexInWholeGroup, 352
IndexNC, 352
Index numbers of primitive groups, 529
Indicator, 746
IndicatorOp, 746
IndicesCentralNormalSteps, 445
IndicesChiefNormalSteps, 446
IndicesEANormalSteps, 445
IndicesInvolutaryGenerators, 470
IndicesNormalSteps, 447
IndicesOfAdjointBasis, 624
IndicesPCentralNormalStepsPGroup, 446
IndicesStabChain, 425
Indirected, 812
Induced Actions, 699
InducedAutomorphism, 393
InducedClassFunction, 782
InducedClassFunctions, 783
InducedClassFunctionsByFusionMap, 783
InducedCyclic, 783
InducedPcgs, 441
InducedPcgsByGenerators, 441
InducedPcgsByGeneratorsNC, 441
InducedPcgsByPcSequence, 441

InducedPcgsByPcSequenceAndGenerators, 442
InducedPcgsByPcSequenceNC, 441
InducedPcgsWrtFamilyPcgs, 454
InducedPcgsWrtSpecialPcgs, 449
Inequalities, 799
inequality, of records, 265
inequality test, 47
InertiaSubgroup, 780
Infinity, 160
infinity, 160
inflated class functions, 782
Info, 80
InfoAlgebra, 615
InfoAttributes, 123
InfoBckt, 427
InfoCharacterTable, 731
InfoCoh, 382
InfoComplement, 363
InfoCoset, 360
InfoFpGroup, 464
Info Functions, 80
InfoGroebner, 687
InfoGroup, 351
InfoLattice, 377
InfoLevel, 80
InfoMatrix, 223
InfoMonomial, 824
InfoNumtheor, 138
InfoOptions, 89
InfoPcSubgroup, 380
Information about a function, 61
Information about the version used, 84
InfoText, 739
InfoTom, 708
InfoWarning, 81
Init, 136
InitFusion, 821
InitPowerMap, 819
InjectionZeroMagma, 322
InnerAutomorphism, 391
InnerAutomorphismNC, 391
InnerAutomorphismsAutomorphismGroup, 392
inner product, of group characters, 778
Input-Output Streams, 104
InputLogTo, 95

for streams, 102
stop logging input, 95

InputOutputLocalProcess, 105

Index 877

InputTextFile, 103
InputTextNone, 106
InputTextString, 104
InputTextUser, 103
InsertTrivialStabilizer, 426
InstallAtExit, 73
installation, 831
Installation of GAP for MacOS, 842
Installation Overview, 831
InstallCharReadHookFunc, 106
InstalledPackageVersion, 848
InstallFactorMaintenance, 299
InstallHandlingByNiceBasis, 613
Installing a GAP Package, 846
InstallIsomorphismMaintenance, 299
InstallSubsetMaintenance, 299
Int, 127

for cyclotomics, 158
for strings, 258

INT CHAR, 258
integer part of a quotient, 129
Integers, 126
Integral Bases of Abelian Number Fields, 595
IntegralizedMat, 246
IntegratedStraightLineProgram, 342
IntermediateGroup, 372
IntermediateResultOfSLP, 343
IntermediateResultOfSLPWithoutOverwrite, 343
IntermediateResultsOfSLPWithoutOverwrite,

343
IntermediateSubgroups, 372
Internally Represented Cyclotomics, 166
Internally Represented Strings, 253
InterpolatedPolynomial, 573
IntersectBlist, 213
Intersection, 275

for groups with pcgs, 451
intersection, of collections, 275

of sets, 198
Intersection2, 275
IntersectionBlist, 212
IntersectionsTom, 715
IntersectSet, 198
IntFFE, 587
IntFFESymm, 587
IntHexString, 258
IntScalarProducts, 816, 817
IntVecFFE, 587

InvariantBilinearForm, 432
InvariantElementaryAbelianSeries, 371
Invariant Forms, 432, 700
InvariantLattice, 434
InvariantQuadraticForm, 432
InvariantSesquilinearForm, 432
InvariantSubgroupsElementaryAbelianGroup,

378
Inverse, 295
inverse, group homomorphism, 387

matrix, 225
of class function, 773

InverseAttr, 295
InverseClasses, 739
InverseGeneralMapping, 305
InverseImmutable, 295
InverseMap, 812
InverseMatMod, 239
InverseMutable, 295
InverseOp, 295
InverseRepresentative, 425
InverseSameMutability, 295
InverseSM, 295
Invoking the Help, 22
Irr, 735
irrationalities, 157
IrrBaumClausen, 752
IrrConlon, 752
IrrDixonSchneider, 752
Irreducibility Tests, 698
irreducible character, 777
irreducible characters, computation, 755
IrreducibleDifferences, 784
Irreducible Maximal Finite Integral Matrix Groups,

531
IrreducibleModules, 754

for groups with pcgs, 451
IrreducibleRepresentations, 752
IrreducibleRepresentationsDixon, 753
IrreducibleSolvableGroup, 530
IrreducibleSolvableGroupMS, 530
Irreducible Solvable Matrix Groups, 530
Is16BitsFamily, 338
Is32BitsFamily, 338
Is8BitsFamily, 338
IsAbelian, 324

for character tables, 736
IsAbelianNumberField, 594

878 Index

IsAbelianNumberFieldPolynomialRing, 682
IsAbelianTom, 712
IsAdditiveElement, 300
IsAdditiveElementWithInverse, 300
IsAdditiveElementWithZero, 300
IsAdditiveGroup, 559
IsAdditiveGroupGeneralMapping, 312
IsAdditiveGroupHomomorphism, 312
IsAdditivelyCommutative, 560
IsAdditivelyCommutativeElement, 302
IsAdditivelyCommutativeElementCollColl, 302
IsAdditivelyCommutativeElementCollection,

302
IsAdditivelyCommutativeElementFamily, 302
IsAdditiveMagma, 558
IsAdditiveMagmaWithInverses, 559
IsAdditiveMagmaWithZero, 558
IsAlgebra, 622
IsAlgebraGeneralMapping, 313
IsAlgebraHomomorphism, 313
IsAlgebraicElement, 693
IsAlgebraicExtension, 692
IsAlgebraModuleElement, 634
IsAlgebraModuleElementCollection, 634
IsAlgebraModuleElementFamily, 634
IsAlgebraWithOne, 622
IsAlgebraWithOneGeneralMapping, 313
IsAlgebraWithOneHomomorphism, 313
IsAlphaChar, 254
IsAlternatingGroup, 418
IsAnticommutative, 568
IsAntisymmetricBinaryRelation, 316
IsAssociated, 569
IsAssociative, 324
IsAssociativeElement, 302
IsAssociativeElementCollColl, 302
IsAssociativeElementCollection, 302
IsAssocWord, 331
IsAssocWordWithInverse, 331
IsAssocWordWithOne, 331
IsAutomorphismGroup, 392
IsBasicWreathLessThanOrEqual, 334
IsBasicWreathProductOrdering, 286
IsBasis, 602
IsBasisByNiceBasis, 613
IsBasisOfAlgebraModuleElementSpace, 635
IsBergerCondition, 825
IsBijective, 307

IsBinaryRelation, 315
same as IsEndoGeneralMapping, 315

IsBLetterAssocWordRep, 338
IsBLetterWordsFamily, 338
IsBlist, 211
IsBlockMatrixRep, 240
IsBool, 170
IsBound, for lists, 179
IsBound and Unbind for Lists, 179
IsBound and Unbind for Records, 266
IsBoundGlobal, 45
IsBrauerTable, 730
IsBravaisGroup, 434
IsBuiltFromAdditiveMagmaWithInverses, 347
IsBuiltFromGroup, 347
IsBuiltFromMagma, 347
IsBuiltFromMagmaWithInverses, 347
IsBuiltFromMagmaWithOne, 347
IsBuiltFromSemigroup, 347
IsCanonicalBasis, 605
IsCanonicalBasisFullMatrixModule, 609
IsCanonicalBasisFullRowModule, 609
IsCanonicalNiceMonomorphism, 390
IsCanonicalPcgs, 442
IsCentral, 324
IsCentralFactor, 383
IsChar, 250
IsCharacter, 777
IsCharacteristicSubgroup, 353
IsCharacterTable, 730
IsCharacterTableInProgress, 730
IsCharCollection, 250
IsCheapConwayPolynomial, 590
IsClassFunction, 768
IsClassFusionOfNormalSubgroup, 746
IsClosedStream, 97
IsCochain, 656
IsCochainCollection, 656
IsCollection, 268
IsCollectionFamily, 268
IsCommutative, 324
IsCommutativeElement, 302
IsCommutativeElementCollColl, 302
IsCommutativeElementCollection, 302
IsCompositionMappingRep, 305
IsConfluent, 345

for pc groups, 456

Index 879

IsConjugacyClassSubgroupsByStabilizerRep,
374

IsConjugacyClassSubgroupsRep, 374
IsConjugate, 362
IsConjugatorAutomorphism, 391
IsConjugatorIsomorphism, 391
IsConstantRationalFunction, 674
IsConstantTimeAccessGeneralMapping, 313
IsConstantTimeAccessList, 174
IsContainedInSpan, 607
IsCopyable, 112
IsCyc, 158
IsCyclic, 367

for character tables, 736
IsCyclicTom, 712
IsCyclotomic, 158
IsCyclotomicField, 594
IsCyclotomicMatrixGroup, 433
IsDenseList, 173
IsDiagonalMat, 227
IsDigitChar, 254
IsDirectoryPath, 93
IsDistributive, 568
IsDivisionRing, 578
IsDomain, 292
IsDoneIterator, 279
IsDoubleCoset, 360
IsDuplicateFree, 195
IsDuplicateFreeList, 195
IsDxLargeGroup, 756
IsElementaryAbelian, 367

for character tables, 736
IsElementOfFpMonoid, 550
IsElementOfFpSemigroup, 550
IsElementOfFreeMagmaRing, 665
IsElementOfFreeMagmaRingCollection, 665
IsElementOfFreeMagmaRingFamily, 665
IsElementOfMagmaRingModuloRelations, 666
IsElementOfMagmaRingModuloRelations-

Collection, 666
IsElementOfMagmaRingModuloRelationsFamily,

666
IsElementOfMagmaRingModuloSpanOfZeroFamily,

667
IsEmpty, 273
IsEmptyString, 253
IsEndOfStream, 100
IsEndoGeneralMapping, 313

same as IsBinaryRelation, 315
IsEqualSet, 197
IsEquivalenceClass, 319
IsEquivalenceRelation, 316
IsEuclideanRing, 570
IsEvenInt, 127
IsExecutableFile, 93
IsExistingFile, 93
IsExtAElement, 300
IsExternalOrbit, 410
IsExternalSet, 409
IsExternalSubset, 410
IsExtLElement, 300
IsExtRElement, 300
IsFamilyPcgs, 454
IsFFE, 584
IsFFECollColl, 584
IsFFECollection, 584
IsField, 578
IsFieldControlledByGaloisGroup, 581
IsFieldHomomorphism, 313
IsFinite, 273

for character tables, 736
IsFiniteDimensional, 576

for matrix algebras, 623
IsFiniteFieldPolynomialRing, 682
IsFinitelyGeneratedGroup, 368
IsFiniteOrderElement, 302
IsFiniteOrderElementCollColl, 302
IsFiniteOrderElementCollection, 302
IsFiniteOrdersPcgs, 438
IsFixedStabilizer, 427
IsFLMLOR, 622
IsFLMLORWithOne, 622
IsFpGroup, 464
IsFpMonoid, 550
IsFpSemigroup, 550
IsFreeGroup, 332
IsFreeLeftModule, 576
IsFreeMagmaRing, 664
IsFreeMagmaRingWithOne, 664
IsFromFpGroupGeneralMappingByImages, 396
IsFromFpGroupHomomorphismByImages, 396
IsFromFpGroupStdGensGeneralMappingByImages,

396
IsFromFpGroupStdGensHomomorphismByImages,

396
IsFullHomModule, 612

880 Index

IsFullMatrixModule, 577
IsFullRowModule, 577
IsFullSubgroupGLorSLRespectingBilinearForm,

432
IsFullSubgroupGLorSLRespectingQuadratic-

Form, 433
IsFullSubgroupGLorSLRespectingSesquilinear-

Form, 432
IsFullTransformationSemigroup, 541
IsFunction, 63
IsGAPRandomSource, 136
IsGaussianIntegers, 598
IsGaussianRationals, 593
IsGaussianSpace, 607
IsGaussInt, 160
IsGaussRat, 160
IsGeneralizedDomain, 292
IsGeneralizedRowVector, 185
IsGeneralLinearGroup, 431
IsGeneralMapping, 313
IsGeneralMappingFamily, 314
IsGeneratorsOfStruct , 289
IsGL, 431
IsGlobalRandomSource, 136
IsGreensClass, 543
IsGreensDClass, 543
IsGreensDRelation, 543
IsGreensHClass, 543
IsGreensHRelation, 543
IsGreensJClass, 543
IsGreensJRelation, 543
IsGreensLClass, 543
IsGreensLessThanOrEqual, 543
IsGreensLRelation, 543
IsGreensRClass, 543
IsGreensRelation, 543
IsGreensRRelation, 543
IsGroup, 351
IsGroupGeneralMapping, 311
IsGroupGeneralMappingByAsGroupGeneral-

MappingByImages, 396
IsGroupGeneralMappingByImages, 396
IsGroupGeneralMappingByPcgs, 396
IsGroupHClass, 544
IsGroupHomomorphism, 311
IsGroupOfAutomorphisms, 392
IsGroupRing, 664
IsHandledByNiceBasis, 577

for vector spaces, 613
IsHandledByNiceMonomorphism, 390
IsHasseDiagram, 316
IsHomogeneousList, 174
IsIdempotent, 295
IsIdenticalObj, 110
IsIncomparableUnder, 282
IsInducedFromNormalSubgroup, 827
IsInducedPcgs, 441
IsInducedPcgsWrtSpecialPcgs, 449
IsInfBitsFamily, 338
IsInfinity, 160
IsInjective, 307
IsInnerAutomorphism, 391
IsInputOutputStream, 104
IsInputStream, 97
IsInputTextNone, 97
IsInputTextStream, 97
IsInt, 127
IsIntegerMatrixGroup, 434
IsIntegers, 126
IsIntegralBasis, 605
IsIntegralCyclotomic, 158
IsIntegralRing, 567
IsInternallyConsistent, 114

for character tables, 745
for tables of marks, 713

IsIrreducibleCharacter, 777
IsIrreducibleRingElement, 569
IsIterator, 279
IsJacobianElement, 302
IsJacobianElementCollColl, 302
IsJacobianElementCollection, 302
IsJacobianRing, 568
IsLaurentPolynomial, 673
IsLaurentPolynomialDefaultRep, 689
IsLDistributive, 568
IsLeftAlgebraModuleElement, 634
IsLeftAlgebraModuleElementCollection, 634
IsLeftIdeal, 565
IsLeftIdealInParent, 565
IsLeftModule, 574
IsLeftModuleGeneralMapping, 312
IsLeftModuleHomomorphism, 312
IsLeftOperatorAdditiveGroup, 574
IsLeftSemigroupIdeal, 541
IsLeftVectorSpace, 599
IsLessThanOrEqualUnder, 282

Index 881

IsLessThanUnder, 282
IsLetterAssocWordRep, 337
IsLetterWordsFamily, 337
IsLexicographicallyLess, 201
IsLexOrderedFFE, 585
IsLieAbelian, 645
IsLieAlgebra, 622
IsLieMatrix, 224
IsLieNilpotent, 645
IsLieObject, 640
IsLieObjectCollection, 640
IsLieSolvable, 645
IsLinearMapping, 312
IsLinearMappingsModule, 612
IsList, 173
IsListDefault, 186
IsListOrCollection, 269
IsLogOrderedFFE, 585
IsLowerAlphaChar, 254
IsLowerTriangularMat, 227
IsMagma, 320
IsMagmaHomomorphism, 310
IsMagmaRingModuloRelations, 666
IsMagmaRingModuloSpanOfZero, 667
IsMagmaWithInverses, 320
IsMagmaWithInversesIfNonzero, 320
IsMagmaWithOne, 320
IsMapping, 306
IsMatchingSublist, 194
IsMatrix, 223
IsMatrixGroup, 430
IsMatrixModule, 577
IsMatrixSpace, 607
IsMersenneTwister, 136
IsMinimalNonmonomial, 830
IsModuloPcgs, 443
IsMonoid, 546
IsMonomial, for characters, 827

for character tables, 736
for groups, 827
for positive integers, 828

IsMonomialGroup, 367
IsMonomialMatrix, 227
IsMonomialNumber, 828
IsMonomialOrdering, 683
IsMultiplicativeElement, 300
IsMultiplicativeElementWithInverse, 301
IsMultiplicativeElementWithOne, 301

IsMultiplicativeElementWithZero, 301
IsMultiplicativeGeneralizedRowVector, 185
IsMultiplicativeZero, 324
IsMutable, 112
IsMutableBasis, 606
IsNaturalAlternatingGroup, 417
IsNaturalGL, 432
IsNaturalGLnZ, 434
IsNaturalSL, 432
IsNaturalSLnZ, 434
IsNaturalSymmetricGroup, 417
IsNearAdditiveElement, 300
IsNearAdditiveElementWithInverse, 300
IsNearAdditiveElementWithZero, 300
IsNearAdditiveGroup, 558
IsNearAdditiveMagma, 558
IsNearAdditiveMagmaWithInverses, 558
IsNearAdditiveMagmaWithZero, 558
IsNearlyCharacterTable, 730
IsNearRingElement, 301
IsNearRingElementWithInverse, 301
IsNearRingElementWithOne, 301
IsNegRat, 146
IsNilpotent, for character tables, 736

for groups with pcgs, 451
IsNilpotentElement, 652
IsNilpotentGroup, 367
IsNilpotentTom, 712
IsNonassocWord, 327
IsNonassocWordCollection, 327
IsNonassocWordWithOne, 327
IsNonassocWordWithOneCollection, 327
IsNonnegativeIntegers, 126
IsNonSPGeneralMapping, 314
IsNonTrivial, 273
IsNormal, 352
IsNormalBasis, 605
IsNotIdenticalObj, 111
IsNumberField, 594
IsObject, 109
IsOddInt, 127
isomorphic, pc group, 457, 458
IsomorphicSubgroups, 394
IsomorphismFpAlgebra, 631
IsomorphismFpGroup, 473

for subgroups of fp groups, 475
IsomorphismFpGroupByGenerators, 473
IsomorphismFpGroupByGeneratorsNC, 473

882 Index

IsomorphismFpGroupByPcgs, 455
IsomorphismFpSemigroup, 551
IsomorphismGroups, 394
IsomorphismMatrixAlgebra, 631
IsomorphismPcGroup, 458
IsomorphismPermGroup, 417

for Imf matrix groups, 537
IsomorphismPermGroupImfGroup, 538
IsomorphismReesMatrixSemigroup, 545
IsomorphismRefinedPcGroup, 457
IsomorphismRepStruct , 290
isomorphisms, find all, 394
IsomorphismSCAlgebra, 632
IsomorphismSimplifiedFpGroup, 476
IsomorphismSpecialPcGroup, 458
IsomorphismTransformationSemigroup, 541
IsomorphismTypeInfoFiniteSimpleGroup, 368
IsOne, 295
IsOperation, 63
IsOrdering, 281
IsOrderingOnFamilyOfAssocWords, 283
IsOrdinaryMatrix, 223
IsOrdinaryTable, 730
IsOutputStream, 97
IsOutputTextNone, 98
IsOutputTextStream, 98
IsPadicExtensionNumber, 696
IsPadicExtensionNumberFamily, 696
IsParentPcgsFamilyPcgs, 454
IsPartialOrderBinaryRelation, 316
IsPcGroup, 455
IsPcGroupGeneralMappingByImages, 396
IsPcGroupHomomorphismByImages, 396
IsPcgs, 437
IsPcgsCentralSeries, 445
IsPcgsChiefSeries, 446
IsPcgsElementaryAbelianSeries, 445
IsPcgsPCentralSeriesPGroup, 446
IsPerfect, for character tables, 736
IsPerfectGroup, 367
IsPerfectTom, 712
IsPerm, 412
IsPermCollColl, 412
IsPermCollection, 412
IsPermGroup, 416
IsPermGroupGeneralMappingByImages, 396
IsPermGroupHomomorphismByImages, 396
IsPGroup, 368

IsPNilpotent, 369
IsPolycyclicGroup, 367
IsPolynomial, 673
IsPolynomialDefaultRep, 689
IsPolynomialFunction, 672
IsPolynomialFunctionsFamily, 687
IsPolynomialRing, 682
IsPosInt, 127
IsPositiveIntegers, 126
IsPosRat, 146
IsPreimagesByAsGroupGeneralMappingByImages,

396
IsPreOrderBinaryRelation, 316
IsPrime, 569
IsPrimeField, 580
IsPrimeInt, 131
IsPrimeOrdersPcgs, 438
IsPrimePowerInt, 132
IsPrimitive, 408
IsPrimitiveCharacter, 826
IsPrimitivePolynomial, 674
IsPrimitiveRootMod, 140
IsProbablyPrimeInt, 131
IsPseudoCanonicalBasisFullHomModule, 612
IsPSolvable, 369
IsPSolvableCharacterTable, 746
IsPSolvableCharacterTableOp, 746
IsPurePadicNumber, 695
IsPurePadicNumberFamily, 695
IsQuasiPrimitive, 826
IsQuaternion, 623
IsQuaternionCollColl, 623
IsQuaternionCollection, 623
IsQuickPositionList, 209
IsQuotientSemigroup, 542
IsRandomSource, 136
IsRange, 208
IsRat, 145
IsRationalFunction, 672
IsRationalFunctionDefaultRep, 689
IsRationalFunctionsFamily, 687
IsRationalMatrixGroup, 433
IsRationals, 145
IsRationalsPolynomialRing, 682
IsRDistributive, 568
IsReadableFile, 93
IsReadOnlyGlobal, 44
IsRecord, 262

Index 883

IsRecordCollColl, 262
IsRecordCollection, 262
IsReduced, 346
IsReductionOrdering, 283
IsReesCongruence, 542
IsReesCongruenceSemigroup, 541
IsReesMatrixSemigroup, 544
IsReesMatrixSemigroupElement, 545
IsReesZeroMatrixSemigroup, 544
IsReesZeroMatrixSemigroupElement, 545
IsReflexiveBinaryRelation, 315
IsRegular, 407
IsRegularDClass, 544
IsRegularSemigroup, 540
IsRegularSemigroupElement, 540
IsRelativelySM, 829
IsRestrictedLieAlgebra, 650
IsRewritingSystem, 345
IsRightAlgebraModuleElement, 634
IsRightAlgebraModuleElementCollection, 634
IsRightCoset, 358
IsRightIdeal, 565
IsRightIdealInParent, 565
IsRightModule, 575
IsRightOperatorAdditiveGroup, 574
IsRightSemigroupIdeal, 541
IsRing, 562
IsRingElement, 301
IsRingElementWithInverse, 301
IsRingElementWithOne, 301
IsRingGeneralMapping, 313
IsRingHomomorphism, 313
IsRingWithOne, 566
IsRingWithOneGeneralMapping, 313
IsRingWithOneHomomorphism, 313
IsRootSystem, 647
IsRootSystemFromLieAlgebra, 647
IsRowModule, 577
IsRowSpace, 607
IsRowVector, 215
IsScalar, 301
IsSemiEchelonized, 608
IsSemigroup, 539
IsSemigroupCongruence, 542
IsSemigroupIdeal, 541
IsSemiRegular, 407
IsSet, 195
IsShortLexLessThanOrEqual, 334

IsShortLexOrdering, 284
IsSimple, for character tables, 736
IsSimpleAlgebra, 623
IsSimpleGroup, 367
IsSimpleSemigroup, 540
IsSingleValued, 306
IsSL, 432
IsSolvable, for character tables, 736
IsSolvableGroup, 367
IsSolvableTom, 712
IsSortedList, 195
IsSpecialLinearGroup, 432
IsSpecialPcgs, 448
IsSPGeneralMapping, 314
IsSporadicSimple, for character tables, 736
IsSSortedList, 195
IsStandardGeneratorsOfGroup, 718
IsStraightLineProgElm, 343
IsStraightLineProgram, 339
IsStream, 97
IsString, 250
IsStringRep, 253
IsStruct , 290
IsSubgroup, 352
IsSubgroupFpGroup, 464
IsSubgroupOfWholeGroupByQuotientRep, 477
IsSubgroupSL, 432
IsSubmonoidFpMonoid, 549
IsSubnormal, 353
IsSubnormallyMonomial, 829
IsSubsemigroupFpSemigroup, 549
IsSubset, 275
IsSubsetBlist, 212
IsSubsetLocallyFiniteGroup, 368
IsSubsetSet, 198
IsSubspacesVectorSpace, 601
IsSubstruct , 292
IsSupersolvable, for character tables, 736

for groups with pcgs, 451
IsSupersolvableGroup, 367
IsSurjective, 307
IsSyllableAssocWordRep, 338
IsSyllableWordsFamily, 338
IsSymmetricBinaryRelation, 316
IsSymmetricGroup, 418
IsTable, 174
IsTableOfMarks, 708
IsTableOfMarksWithGens, 719

884 Index

IsToPcGroupGeneralMappingByImages, 396
IsToPcGroupHomomorphismByImages, 396
IsToPermGroupGeneralMappingByImages, 396
IsToPermGroupHomomorphismByImages, 396
IsTotal, 306
IsTotalOrdering, 282
IsTransformation, 555
IsTransformationCollection, 555
IsTransformationMonoid, 541
IsTransformationSemigroup, 541
IsTransitive, for characters, 780

for class functions, 780
for group actions, 407

IsTransitiveBinaryRelation, 316
IsTranslationInvariantOrdering, 283
IsTrivial, 273
IsTuple, 304
IsTwoSidedIdeal, 565
IsTwoSidedIdealInParent, 565
IsUEALatticeElement, 659
IsUEALatticeElementCollection, 659
IsUEALatticeElementFamily, 659
IsUniqueFactorizationRing, 567
IsUnit, 568
IsUnivariatePolynomial, 673
IsUnivariatePolynomialRing, 683
IsUnivariateRationalFunction, 673
IsUnknown, 168
IsUpperAlphaChar, 254
IsUpperTriangularMat, 227
IsValidIdentifier, 42
IsVector, 301
IsVectorSpace, 599
IsVirtualCharacter, 777
IsWeightLexOrdering, 285
IsWeightRepElement, 660
IsWeightRepElementCollection, 660
IsWeightRepElementFamily, 660
IsWellFoundedOrdering, 282
IsWeylGroup, 648
IsWholeFamily, 274
IsWLetterAssocWordRep, 338
IsWLetterWordsFamily, 338
IsWord, 326
IsWordCollection, 327
IsWordWithInverse, 326
IsWordWithOne, 326
IsWreathProductOrdering, 286

IsWritableFile, 93
IsZero, 295
IsZeroGroup, 541
IsZeroSimpleSemigroup, 540
IsZeroSquaredElement, 303
IsZeroSquaredElementCollColl, 303
IsZeroSquaredElementCollection, 303
IsZeroSquaredRing, 568
IsZmodnZObj, 135
IsZmodnZObjNonprime, 135
IsZmodpZObj, 135
IsZmodpZObjLarge, 135
IsZmodpZObjSmall, 135
Iterated, 206
Iterator, 278
iterator, for low index subgroups, 472
IteratorByBasis, 604
IteratorByFunctions, 280
IteratorList, 280
Iterators, 278
IteratorSorted, 279

J
jN , 162
Jacobi, 140
JenningsLieAlgebra, 651
JenningsSeries, 372
JoinEquivalenceRelations, 318
JoinStringsWithSeparator, 257
JordanDecomposition, 236

K
kN , 162
KappaPerp, 652
KB REW, 553
KernelOfAdditiveGeneralMapping, 312
KernelOfCharacter, 779
KernelOfMultiplicativeGeneralMapping, 311
KernelOfTransformation, 556
Keywords, 41
KillingMatrix, 652
KnownAttributesOfObject, 121
Known Problems of the Configure Process, 838
KnownPropertiesOfObject, 124
KnownTruePropertiesOfObject, 124
KnowsHowToDecompose, 384
KnuthBendixRewritingSystem, 554
Krasner-Kaloujnine theorem, 509
KroneckerProduct, 229

Index 885

KuKGenerators, 509

L
lN , 162
Lambda, 138
Language Overview, 39
larger or equal, 47
larger test, 47
LargestElementGroup, 380
LargestElementStabChain, 425
LargestMovedPoint, 413
LargestUnknown, 168
last, 64
LastSystemError, 90
LaTeXStringDecompositionMatrix, 744
lattice base reduction, 246, 247
lattice basis reduction, for virtual characters, 785
LatticeByCyclicExtension, 377
LatticeGeneratorsInUEA, 659
Lattice Reduction, 246
LatticeSubgroups, 375
LatticeSubgroupsByTom, 706
LaurentPolynomialByCoefficients, 680
LaurentPolynomialByExtRep, 690
LaurentPolynomialByExtRepNC, 690
Laurent Polynomials, 680
LClassOfHClass, 543
Lcm, 572
LcmInt, 130
LcmOp, 572
LeadCoeffsIGS, 442
LeadingCoefficient, 675
LeadingCoefficientOfPolynomial, 684
LeadingExponentOfPcElement, 439
LeadingMonomial, 676
LeadingMonomialOfPolynomial, 683
LeadingTermOfPolynomial, 683
Leaving GAP, 73
LeftActingAlgebra, 635
LeftActingDomain, 575
LeftActingRingOfIdeal, 566
LeftAlgebraModule, 633
LeftAlgebraModuleByGenerators, 633
left cosets, 358
LeftDerivations, 642
LeftIdeal, 564
LeftIdealByGenerators, 565
LeftIdealNC, 565

LeftModuleByGenerators, 575
LeftModuleByHomomorphismToMatAlg, 636
LeftModuleGeneralMappingByImages, 610
LeftModuleHomomorphismByImages, 610
LeftModuleHomomorphismByImagesNC, 610
LeftModuleHomomorphismByMatrix, 611
LeftQuotient, 297

for words, 335
LeftShiftRowVector, 219
legacy, 850
Legendre, 141
Length, 195

of an associative word, 335
length, of a word, 335
LengthsTom, 709
LenstraBase, 596
LessThanFunction, 282
LessThanOrEqualFunction, 282
LetterRepAssocWord, 338
LevelsOfGenerators, 286
LeviMalcevDecomposition, 628

for Lie algebras, 646
Lexical Structure, 40
LexicographicOrdering, 283
LGFirst, 449
LGLayers, 449
LGLength, 449
LGWeights, 448
library tables, 727
LieAlgebra, 641
LieAlgebraByStructureConstants, 641
LieBracket, 297
LieCenter, 643
LieCentralizer, 643
LieCentre, 643
LieCoboundaryOperator, 656
LieDerivedSeries, 644
LieDerivedSubalgebra, 644
LieFamily, 641
LieLowerCentralSeries, 645
LieNilRadical, 644
LieNormalizer, 643
LieObject, 640
Lie objects, 640
LieSolvableRadical, 644
LieUpperCentralSeries, 645
LiftedInducedPcgs, 444
LiftedPcElement, 444

886 Index

LinearAction, 450
LinearActionLayer, 450
LinearCharacters, 736
LinearCombination, 604
LinearCombinationPcgs, 439
Linear equations over the integers and Integral

Matrices, 241
LinearIndependentColumns, 246
Linear Mappings, 312
LinearOperation, 450
LinearOperationLayer, 450
Line Editing, 74
LinesOfStraightLineProgram, 340
List, 203
list and non-list, difference, 188

left quotient, 190
mod, 190
product, 189
quotient, 190

List Assignment, 177
list assignment, operation, 175
ListBlist, 212
list boundedness test, operation, 175
List Categories, 173
list element, access, 175

assignment, 177
operation, 175

List Elements, 175
list equal, comparison, 184
ListN, 206
list of available books, 23
ListPerm, 415
Lists and Collections, 269
list smaller, comparison, 184
ListStabChain, 425
list unbind, operation, 175
ListWithIdenticalEntries, 191
ListX, 206
LLL, 785
LLL algorithm, for Gram matrices, 247

for vectors, 246
for virtual characters, 785

LLLReducedBasis, 246
LLLReducedGramMat, 247
LoadDynamicModule, 35
Loading a GAP Package, 846
loading a saved workspace, 37
LoadPackage, 846

local, 55
logarithm, discrete, 140

of a root of unity, 160
LogFFE, 586
logical, 170
logical operations, 171
LogInt, 128
LogMod, 139
LogModShanks, 139
LogTo, 95

for streams, 101
stop logging, 95

LongestWeylWordPerm, 649
loop, read eval print, 64
loop, for, 53

repeat, 52
while, 52

loop over iterator, 54
loop over object, 54
loop over range, 53
loops, leaving, 55

restarting, 55
LowercaseString, 255
LowerCentralSeriesOfGroup, 371
Low Index Subgroups, 472
LowIndexSubgroupsFpGroup, 472
LowIndexSubgroupsFpGroupIterator, 472
Low Level Routines to Modify and Create Stabilizer

Chains, 426
Lucas, 155

M
mN , 162
Macintosh, 841, 842
MacOS, 842
Magma, 321
MagmaByGenerators, 321
MagmaByMultiplicationTable, 322
Magma Categories, 320
MagmaElement, 322
Magma Generation, 321
MagmaHomomorphismByFunctionNC, 310
Magma Homomorphisms, 310
MagmaRingModuloSpanOfZero, 667
Magma Rings modulo Relations, 666
Magma Rings modulo the Span of a Zero Element,

667
Magmas Defined by Multiplication Tables, 322

Index 887

MagmaWithInverses, 321
MagmaWithInversesByGenerators, 321
MagmaWithInversesByMultiplicationTable, 322
MagmaWithOne, 321
MagmaWithOneByGenerators, 321
MagmaWithOneByMultiplicationTable, 322
Main Loop, 64
MakeConfluent, 346
MakeImmutable, 112
MakeReadOnlyGlobal, 44
MakeReadWriteGlobal, 44
Making transformation semigroups, 541
Manual Conventions, 20
map, parametrized, 811
MappedWord, 328
MappingByFunction, 305
MappingPermListList, 415
Mappings that Respect Addition, 312
Mappings that Respect Multiplication, 311
Mappings which are Compatible with Algebraic

Structures, 310
maps, 802
MarksTom, 709
MatAlgebra, 619
MatClassMultCoeffsCharTable, 748
MathieuGroup, 513
MatLieAlgebra, 642
matrices, commutator, 226
Matrices as Basis of a Row Space, 234
Matrices as Linear Mappings, 235
Matrices over Finite Fields, 237
Matrices Representing Linear Equations and the

Gaussian Algorithm, 230
MatrixAlgebra, 619
MatrixAutomorphisms, 763
matrix automorphisms, 805
MatrixByBlockMatrix, 240
Matrix Constructions, 228
Matrix Groups in Characteristic 0, 433
MatrixLieAlgebra, 642
MatrixOfAction, 635
matrix spaces, 607
MatScalarProducts, 778
MatTom, 711
MaximalAbelianQuotient, 373
MaximalBlocks, 408
MaximalNormalSubgroups, 375
MaximalSubgroupClassReps, 374

MaximalSubgroups, 374
for groups with pcgs, 451

MaximalSubgroupsLattice, 376
MaximalSubgroupsTom, 715
Maximum, 201
MaximumList, 202
MeatAxe Modules, 697
MeetEquivalenceRelations, 318
MeetMaps, 814
Membership Test for Collections, 277
Membership Test for Lists, 183
MemoryUsage, 114
MinimalElementCosetStabChain, 425
MinimalGeneratingSet, 380

for groups with pcgs, 451
MinimalNonmonomialGroup, 830
Minimal Nonmonomial Groups, 830
MinimalNormalSubgroups, 375
MinimalPolynomial, 677

over a field, 581
over a ring, 677

Minimal Polynomials, 677
MinimalStabChain, 423
MinimalSupergroupsLattice, 376
MinimalSupergroupsTom, 716
MinimizedBombieriNorm, 679
Minimum, 201
MinimumList, 202
MinusCharacter, 820
Miscellaneous, 144
Miscellaneous Name Changes or Removed Names,

851
mod, integers, 135

laurent polynomials, 671
lists, 190
rationals, 48

mod, 48
arithmetic operators, 48
for character tables, 734
residue class rings, 134

modular inverse, 48
modular remainder, 48
modular roots, 142
ModuleByRestriction, 637
Module Constructions, 697
Module Homomorphisms, 700
ModuleOfExtension, 460

888 Index

Modules over Lie Algebras and Their Cohomology,
655

Modules over Semisimple Lie Algebras, 657
modulo, 48

arithmetic operators, 48
for pcgs, 443
residue class rings, 134

ModuloPcgs, 443
MoebiusMu, 143
MoebiusTom, 711
Molien Series, 792
MolienSeries, 792
MolienSeriesInfo, 792
MolienSeriesWithGivenDenominator, 793
Monoid, 546
MonoidByGenerators, 546
MonoidByMultiplicationTable, 547
MonoidOfRewritingSystem, 554
MonomialComparisonFunction, 684
MonomialExtGrlexLess, 686
MonomialExtrepComparisonFun, 684
MonomialGrevlexOrdering, 685
MonomialGrlexOrdering, 685
MonomialLexOrdering, 684
Monomial Orderings, 683
MonomialTotalDegreeLess, 851
monomorphisms, find all, 394
MorClassLoop, 394
More about Boolean Lists, 214
More About Global Variables, 44
More about Tables of Marks, 703
MostFrequentGeneratorFpGroup, 470
MovedPoints, 414
Moved Points of Permutations, 413
MTX.BasesCompositionSeries, 699
MTX.BasesMaximalSubmodules, 699
MTX.BasesMinimalSubmodules, 698
MTX.BasesMinimalSupermodules, 699
MTX.BasesSubmodules, 698
MTX.BasisInOrbit, 700
MTX.BasisRadical, 699
MTX.BasisSocle, 699
MTX.CollectedFactors, 699
MTX.CompositionFactors, 699
MTX.DegreeSplittingField, 698
MTX.Dimension, 698
MTX.Distinguish, 700
MTX.Field, 698

MTX.Generators, 698
MTX.Homomorphism, 700
MTX.Homomorphisms, 700
MTX.InducedAction, 699
MTX.InducedActionFactorMatrix, 699
MTX.InducedActionFactorModule, 699
MTX.InducedActionMatrix, 699
MTX.InducedActionMatrixNB, 699
MTX.InducedActionSubmodule, 699
MTX.InducedActionSubmoduleNB, 699
MTX.InvariantBilinearForm, 700
MTX.InvariantQuadraticForm, 700
MTX.InvariantSesquilinearForm, 700
MTX.IsAbsolutelyIrreducible, 698
MTX.IsEquivalent, 700
MTX.IsIrreducible, 698
MTX.Isomorphism, 700
MTX.NormedBasisAndBaseChange, 699
MTX.OrthogonalSign, 700
MTX.ProperSubmoduleBasis, 698
MTX.SubGModule, 698
MTX.SubmoduleGModule, 698
multiplication, 48

matrices, 225
matrix and matrix list, 226
matrix and scalar, 224
matrix and vector, 225
operation, 297
scalar and matrix, 224
scalar and matrix list, 226
scalar and vector, 216
vector and matrix, 225
vector and matrix list, 226
vector and scalar, 216
vectors, 216

MultiplicationTable, 322
Multiplicative Arithmetic for Lists, 188
Multiplicative Arithmetic Functions, 142
MultiplicativeNeutralElement, 324
multiplicative order of an integer, 139
MultiplicativeZero, 324
MultiplicativeZeroOp, 294
multiplicity, of constituents of a group character,

778
multiplier, 383
multisets, 197
Multivariate Polynomials, 677
MultRowVector, 219

Index 889

Murnaghan components, 790, 791
Mutability and Copyability, 111
Mutability Status and List Arithmetic, 190
Mutable Bases, 606
MutableBasis, 606
MutableBasisOfClosureUnderAction, 625
MutableBasisOfIdealInNonassociativeAlgebra,

626
MutableBasisOfNonassociativeAlgebra, 626
MutableCopyMat, 229
MutableIdentityMat, 229
MutableNullMat, 229

N
nk , 163
Name, 114
NameFunction, 61
NameRNam, 267
NamesFilter, 118
NamesGVars, 45
NamesLocalVariablesFunction, 61
NamesOfFusionSources, 809
NamesSystemGVars, 45
NamesUserGVars, 45
NaturalCharacter, 776
Natural Embeddings related to Magma Rings, 665
NaturalHomomorphismByGenerators, 310
NaturalHomomorphismByIdeal, 631
NaturalHomomorphismByNormalSubgroup, 373
NaturalHomomorphismByNormalSubgroupNC, 373
NaturalHomomorphismBySubAlgebraModule, 638
NaturalHomomorphismBySubspace, 611
NearAdditiveGroup, 559
NearAdditiveGroupByGenerators, 559
NearAdditiveMagma, 559
NearAdditiveMagmaByGenerators, 559
NearAdditiveMagmaWithZero, 559
NearAdditiveMagmaWithZeroByGenerators, 559
NearlyCharacterTablesFamily, 731
negative number, 48
NegativeRoots, 647
NegativeRootVectors, 647
NestingDepthA, 186
NestingDepthM, 186
NewInfoClass, 80
newline, 41
newline character, 252
NewmanInfinityCriterion, 480

New Presentations and Presentations for Subgroups,
475

NextIterator, 279
NextPrimeInt, 132
NF, 593
NiceBasis, 613
NiceBasisFiltersInfo, 614
NiceFreeLeftModule, 613
NiceFreeLeftModuleInfo, 613
NiceMonomorphism, 390
NiceMonomorphismAutomGroup, 393
Nice Monomorphisms, 390
NiceObject, 390
NiceVector, 613
NilpotencyClassOfGroup, 367
NilpotentQuotientOfFpLieAlgebra, 654
NK, 163
NOAUTO, 847
NonabelianExteriorSquare, 383
NonnegativeIntegers, 126
NonnegIntScalarProducts, 816, 817
NonNilpotentElement, 652
Norm, 581

of character, 778
NormalBase, 583
NormalClosure, 363
NormalFormIntMat, 244
Normal Forms of Integer Matrices - Name Changes,

851
Normal Forms over the Integers, 242
NormalIntersection, 363
NormalizedElementOfMagmaRingModulo-

Relations, 666
NormalizedWhitespace, 256
Normalizer, 362
normalizer, 362
NormalizerInGLnZ, 434
NormalizerInGLnZBravaisGroup, 434
NormalizersTom, 713
NormalizerTom, 713
NormalizeWhitespace, 256
NormalSeriesByPcgs, 447
Normal Structure, 362
NormalSubgroupClasses, 766
NormalSubgroupClassesInfo, 765
NormalSubgroups, 375
NormedRowVector, 217
NormedRowVectors, 610

890 Index

NormedVectors, 851
not, 172
NrArrangements, 150
NrBasisVectors, 606
NrCombinations, 149
NrConjugacyClasses, 361

for character tables, 736
NrConjugacyClassesGL, 517
NrConjugacyClassesGU, 517
NrConjugacyClassesPGL, 517
NrConjugacyClassesPGU, 517
NrConjugacyClassesPSL, 517
NrConjugacyClassesPSU, 517
NrConjugacyClassesSL, 517
NrConjugacyClassesSLIsogeneous, 517
NrConjugacyClassesSU, 517
NrConjugacyClassesSUIsogeneous, 517
NrDerangements, 152
NrInputsOfStraightLineProgram, 340
NrMovedPoints, 414
NrOrderedPartitions, 154
NrPartitions, 153
NrPartitionsSet, 152
NrPartitionTuples, 155
NrPermutationsList, 151
NrPolyhedralSubgroups, 747
NrPrimitiveGroups, 528
NrRestrictedPartitions, 154
NrSubsTom, 709
NrTransitiveGroups, 519
NrTuples, 151
NrUnorderedTuples, 150
NullAlgebra, 620
NullMat, 228
NullspaceIntMat, 241
NullspaceMat, 230
NullspaceMatDestructive, 230
NullspaceModQ, 239
Number, 203
number, Bell, 148

binomial, 147
Stirling, of the first kind, 148
Stirling, of the second kind, 149

NumberArgumentsFunction, 61
NumberFFVector, 218
number field, 594
number fields, Galois group, 597
NumberIrreducibleSolvableGroups, 530

NumberPerfectGroups, 524
NumberPerfectLibraryGroups, 524
NumberSmallGroups, 521
NumberSyllables, 336
numerator, of a rational, 146
NumeratorOfModuloPcgs, 443
NumeratorOfRationalFunction, 672
NumeratorRat, 146
Numerical Group Attributes, 369

O
Op(G), see PCore, 362
ObjByExtRep, 659
Objects, 109
obsolete, 850
OCOneCocycles, 382
octal character codes, 252
OctaveAlgebra, 619
od, 53
OldGeneratorsOfPresentation, 498
Omega, 366
ONanScottType, 418
OnBreak, 68
OnBreakMessage, 70
One, 293
OneAttr, 293
OneCoboundaries, 381
OneCocycles, 381
one cohomology, 380
OneFactorBound, 679
OneImmutable, 293
OneIrreducibleSolvableGroup, 530
OneLibraryGroup, 519
OneMutable, 293
OneOfPcgs, 438
OneOp, 293
OnePrimitiveGroup, 519
OneSameMutability, 293
OneSM, 293
OneSmallGroup, 521
OneTransitiveGroup, 519
OnIndeterminates, 677

as a permutation action, 399
OnLeftInverse, 398
OnLines, 399

example, 514
OnPairs, 398
OnPoints, 398

Index 891

OnRight, 398
OnSets, 398
OnSetsDisjointSets, 399
OnSetsSets, 398
OnSetsTuples, 399
OnSubspacesByCanonicalBasis, 400
OnTuples, 398
OnTuplesSets, 399
OnTuplesTuples, 399
Operation, 850
OperationAlgebraHomomorphism, 631
Operational Structure of Domains, 287
OperationHomomorphism, 850
operations, for booleans, 171
Operations and Attributes for Vector Spaces, 600
Operations applicable to All Streams, 98
Operations Concerning Blocks, 742
Operations for (Near-)Additive Magmas, 561
Operations for Abelian Number Fields, 593
operations for algebraic elements, 692
Operations for Associative Words, 335
Operations for Associative Words by their Syllables,

336
Operations for Booleans, 171
Operations for Brauer Characters, 800
Operations for Class Functions, 777
Operations for Collections, 275
Operations for Cyclotomics, 157
Operations for Domains, 292
Operations for Finite Field Elements, 586
Operations for Finitely Presented Groups, 466
Operations for Group Homomorphisms, 387
Operations for Input Streams, 98
Operations for Lists, 199
Operations for Output Streams, 101
Operations for Pc Groups, 458
Operations for Rational Functions, 671
Operations for Special Kinds of Bases, 605
Operations for Stabilizer Chains, 424
Operations for Vector Space Bases, 603
Operations for Words, 328
Operations on elements of the algebra, 346
Operations on rewriting systems, 345
Operations to Evaluate Strings, 258
Operations to Produce or Manipulate Strings, 255
Operations which have Special Methods for Groups

with Pcgs, 451
operators, 42

arithmetic, 48
associativity, 49
for cyclotomics, 161
for lists, 185
precedence, 48, 49

Operators for Character Tables, 734
Operators for Matrices, 224
Operators for Row Vectors, 215
Optimization and Compiler Options, 839
options, 27, 831

command line, filenames, 29
command line, internal, 31

options, under UNIX, 27
or, 171
Orbit, 400
OrbitFusions, 810
OrbitLength, 401
OrbitLengths, 401
OrbitLengthsDomain, 401
OrbitPerms, 416
OrbitPowerMaps, 805
Orbits, operation/attribute, 401
Orbits, 400
OrbitsDomain, 401
OrbitsPerms, 416
OrbitStabChain, 425
OrbitStabilizer, 402
OrbitStabilizerAlgorithm, 402
Orbit Stabilizer Methods for Polycyclic Groups, 451
Order, 296

of a class function, 774
order, of a group, 350

of a list, collection or domain, 274
of the prime residue group, 138

OrderedPartitions, 153
ordering, booleans, 171

of records, 266
OrderingByLessThanFunctionNC, 281
OrderingByLessThanOrEqualFunctionNC, 281
OrderingOfRewritingSystem, 345
OrderingOnGenerators, 283
OrderingsFamily, 281
Orderings on families of associative words, 283
OrderMod, 139
OrderOfRewritingSystem, 345
OrdersClassRepresentatives, 737
OrdersTom, 709
Ordinal, 259

892 Index

ordinary character, 777
OrdinaryCharacterTable, 736
OrthogonalComponents, 790
Orthogonal Embeddings, 248
OrthogonalEmbeddings, 248
OrthogonalEmbeddingsSpecialDimension, 786
OSX, 841
Other Filters, 125
Other Operations Applicable to any Object, 114
Other Operations for Character Tables, 745
Other Operations for Tables of Marks, 713
output, suppressing, 64
OutputLogTo, 95

for streams, 102
stop logging output, 95

OutputTextFile, 103
OutputTextNone, 106
OutputTextString, 104
OutputTextUser, 104

P
p-group, 368
package, 846
Package Interface - Obsolete Functions and Name

Changes, 850
Packages, 835
PadicCoefficients, 246
PadicExtensionNumberFamily, 695
PadicNumber, 695

for pure padics, 694
PadicValuation, 570
Pager, 25
Parametrized, 813
Parametrized Maps, 811
parametrized maps, 802
Parent, 291
ParentPcgs, 441
Parents, 291
PartialFactorization, 133
partial order, 316
PartialOrderByOrderingFunction, 317
PartialOrderOfHasseDiagram, 316
Partitions, 153
partitions, improper, of an integer, 154

ordered, of an integer, 154
restricted, of an integer, 154

PartitionsGreatestEQ, 154
PartitionsGreatestLE, 154

PartitionsSet, 152
PartitionTuples, 155
PcElementByExponents, 439
PcElementByExponentsNC, 439
PCentralLieAlgebra, 651
PCentralNormalSeriesByPcgsPGroup, 446
PCentralSeries, 372
PcGroupCode, 462
PcGroupCodeRec, 462
PcGroupFpGroup, 455
Pc groups versus fp groups, 455
PcGroupWithPcgs, 457
Pcgs, 437
Pcgs OrbitStabilizer, 451
Pcgs and Normal Series, 445
PcgsByPcSequence, 437
PcgsByPcSequenceNC, 437
PcgsCentralSeries, 445
PcgsChiefSeries, 446
PcgsElementaryAbelianSeries, 445
PcgsPCentralSeriesPGroup, 446
PClassPGroup, 369
PCore, 362
PcSeries, 438
PerfectGroup, 523
perfect groups, 523
PerfectIdentification, 524
PerfectResiduum, 364
Perform, 201
Permanent, 156
Permanent of a Matrix, 156
PermBounds, 799
PermCharInfo, 794
PermCharInfoRelative, 795
PermChars, 796
PermCharsTom, 722
PermComb, 799
PermLeftQuoTransformation, 557
PermList, 415
PermListList, 201
Permutation, 406
PermutationCharacter, 777
permutation character, 822
permutation characters, possible, 793, 796
PermutationCycle, 406
PermutationCycleOp, 406
PermutationGModule, 697
PermutationMat, 228

Index 893

PermutationsFamily, 412
Permutations Induced by Elements and Cycles, 406
PermutationsList, 151
PermutationTom, 708
Permuted, 202

as a permutation action, 400
for class functions, 774

PGL, 516
PGU, 516
Phi, 138
point stabilizer, 402
Polycyclic Generating Systems, 436
PolynomialByExtRep, 690
PolynomialByExtRepNC, 690
PolynomialCoefficientsOfPolynomial, 675
PolynomialDivisionAlgorithm, 686
Polynomial Factorization, 678
PolynomialModP, 678
PolynomialReducedRemainder, 686
PolynomialReduction, 685
PolynomialRing, 681
Polynomial Rings, 681
Polynomials as Univariate Polynomials in one

Indeterminate, 675
polynomials over abelian number fields, factors, 593
Polynomials over the Rationals, 678
PopOptions, 88
Portability, 90
Porting GAP, 840
Position, 191
PositionBound, 193
PositionCanonical, 192
PositionFirstComponent, 194
PositionNonZero, 194
PositionNot, 194
PositionNthOccurrence, 192
PositionProperty, 193
Positions, 192
PositionSet, 193
PositionsOp, 192
PositionSorted, 192
PositionStream, 100
PositionSublist, 194
PositionWord, 335
PositiveIntegers, 126
positive number, 48
PositiveRoots, 647
PositiveRootVectors, 647

PossibleClassFusions, 809
PossibleFusionsCharTableTom, 721
Possible Permutation Characters, 793
possible permutation characters, 793, 796
PossiblePowerMaps, 803
power, 48

matrix, 225
meaning for class functions, 773
of words, 335

PowerMap, 803
PowerMapByComposition, 805
PowerMapOp, 803
Power Maps, 802
PowerMapsAllowedBySymmetrizations, 820
PowerMod, 572
PowerModCoeffs, 221
PowerModInt, 131
PowerPartition, 155
powerset, 149
PowerSubalgebraSeries, 624
PQuotient, 477
precedence, 48
precedence test, for permutations, 413
PrefrattiniSubgroup, 364

for groups with pcgs, 451
PreImage, 309
PreImageElm, 309
PreImages, 309
PreImagesElm, 308
Preimages in the Free Group, 465
Preimages in the Free Semigroup, 551
PreimagesOfTransformation, 556
PreImagesRange, 308
PreImagesRepresentative, 309
PreImagesSet, 309
Preimages under Homomorphisms from an FpGroup,

476
Preimages under Mappings, 308
preorder, 316
PresentationFpGroup, 482
PresentationNormalClosure, 487
PresentationNormalClosureRrs, 487
PresentationSubgroup, 485
PresentationSubgroupMtc, 486
PresentationSubgroupRrs, 485
PresentationViaCosetTable, 483
previous result, 64
PrevPrimeInt, 132

894 Index

PrimaryGeneratorWords, 486
primary subgroup generators, 500
PrimeBlocks, 742
PrimeBlocksOp, 742
PrimeField, 580
Prime Integers and Factorization, 131
PrimePGroup, 369
PrimePowersInt, 134
prime residue group, 138

exponent, 139
generator, 140
order, 138

Prime Residues, 138
PrimeResidues, function, 138
Primes, 131
primitive, 408
PRIMITIVE INDICES MAGMA, 529
PrimitiveElement, 580
PrimitiveGroup, 528
Primitive Groups, 418
PrimitiveGroupsIterator, 528
PrimitiveIdentification, 529
PrimitiveIndexIrreducibleSolvableGroup, 530
Primitive Permutation Groups, 527
PrimitivePolynomial, 678
PrimitiveRoot, 588
PrimitiveRootMod, 140
primitive root modulo an integer, 140
Primitive Roots and Discrete Logarithms, 139
Primitivity of Characters, 825
Print, 66
PrintAmbiguity, 816
PrintArray, 229
PrintCharacterTable, 751
PrintFactorsInt, 134
PrintFormattingStatus, 102
Printing, Viewing and Displaying Finite Field

Elements, 590
Printing Character Tables, 748
Printing Class Functions, 774
Printing Presentations, 488
Printing Tables of Marks, 706
PrintObj, 67

for character tables, 748, 774
for tables of marks, 706

PrintTo, 95
for streams, 101

ProbabilityShapes, 679

problems, 837
Problems on Particular Systems, 839
procedure call, 50
Procedure Calls, 50
procedure call with arguments, 50
Process, 107
Process, 107
PROD GF2MAT GF2MAT ADVANCED, 239
PROD GF2MAT GF2MAT SIMPLE, 239
Product, 205
product, of words, 335

rational functions, 671
ProductCoeffs, 221
ProductOfStraightLinePrograms, 343
ProductSpace, 624
ProductX, 207
ProfileFunctions, 83
ProfileGlobalFunctions, 83
ProfileMethods, 82
ProfileOperations, 82
ProfileOperationsAndMethods, 82
PROFILETHRESHOLD, 83
Profiling, 82
ProjectedInducedPcgs, 444
ProjectedPcElement, 444
Projection, 306

example for direct products, 505
example for semidirect products, 507
example for subdirect products, 508
example for wreath products, 508
for group products, 510

ProjectionMap, 812
projections, find all, 394
ProjectiveActionHomomorphismMatrixGroup, 431
ProjectiveActionOnFullSpace, 431
ProjectiveGeneralLinearGroup, 516
ProjectiveGeneralUnitaryGroup, 516
ProjectiveOrder, 238
ProjectiveSpecialLinearGroup, 516
ProjectiveSpecialUnitaryGroup, 516
ProjectiveSymplecticGroup, 516
prompt, 64

partial, 64
Properties, 124
Properties and Attributes for Lists, 194
Properties and Attributes of (General) Mappings,

306
Properties and Attributes of Binary Relations, 315

Index 895

Properties and Attributes of Matrices, 226
Properties and Attributes of Rational Functions,

672
Properties and basic functionality, 282
Properties of a Lie Algebra, 645
Properties of rewriting systems, 347
Properties of Rings, 567
Properties of Tables of Marks, 712
PRump, 365
PseudoRandom, 278
PSL, 516
PSP, 516
PSp, 516
PSU, 516
PthPowerImage, 651
PthPowerImages, 651
Pure p-adic Numbers, 694
PurePadicNumberFamily, 694
PushOptions, 88

Q
Quadratic, 164
quadratic residue, 141
QuaternionAlgebra, 619
QUIET, 851
QUIT, emergency quit, 73
quit, in emergency, 73
quit, 68
QUITTING, 73
QuoInt, 129
Quotient, 563
quotient, for finitely presented groups, 464

matrices, 225
matrix and matrix list, 226
matrix and scalar, 225
of free monoid, 552
of free semigroup, 550
of words, 335
rational functions, 671
scalar and matrix, 225
scalar and matrix list, 226
vector and matrix, 225

QuotientFromSCTable, 618
Quotient Methods, 477
QuotientMod, 572
QuotientPolynomialsExtRep, 691
QuotientRemainder, 571
Quotients, 542

Quotients and Remainders, 129
QuotientSemigroupCongruence, 542
QuotientSemigroupHomomorphism, 542
QuotientSemigroupPreimage, 542
QuotRemLaurpols, 680

R
rN , 162
RadicalGroup, 364
RadicalOfAlgebra, 627
Random, 136

[coll], 277
for integers, 129
for rationals, 146

RandomBinaryRelationOnPoints, 317
random element, of a list or collection, 277
Random Elements, 277
RandomInvertibleMat, 230
RandomIsomorphismTest, 462
Random Isomorphism Testing, 462
Randomized Methods for Permutation Groups, 420
RandomList, 278
RandomMat, 230
Random Matrices, 230
RandomPrimitivePolynomial, 590
random seed, 278
RandomSource, 137
Random Sources, 136
RandomTransformation, 555
RandomUnimodularMat, 230
Range, 307
range, 207
Ranges, 207
RankAction, 407
RankFilter, 117
RankMat, 230
RankOfTransformation, 556
RankPGroup, 369
Rat, 146

for strings, 258
RationalClass, 361
RationalClasses, 362
RationalFunctionByExtRep, 690
RationalFunctionByExtRepNC, 690
RationalFunctionByExtRepWithCancellation,

691
Rational Function Families, 687
RationalFunctionsFamily, 687

896 Index

RationalizedMat, 166
Rationals, 145
RClassOfHClass, 543
Read, 94

for streams, 99
ReadAll, 99
ReadAllLine, 105
ReadAsFunction, 94

for streams, 99
ReadByte, 99
read eval print loop, 64
ReadLine, 99
ReadPackage, 847
ReadPkg, 850
ReadTest, 84

for streams, 99
RealClasses, 740
RealizableBrauerCharacters, 800
RealPart, 164
RecNames, 262
Recognizing Characters, 254
record, component access, 263

component assignment, 263
component variable, 263
component variable assignment, 264

Record Access Operations, 267
Record Assignment, 263
record assignment, operation, 267
record boundness test, operation, 267
record component, operation, 267
record unbind, operation, 267
Recovery from NoMethodFound-Errors, 77
recursion, 55
redisplay a help section, 23
redisplay with next help viewer, 23
ReduceCoeffs, 221
ReduceCoeffsMod, 221
ReducedAdditiveInverse, 346
ReducedCharacters, 784
ReducedClassFunctions, 784
ReducedComm, 346
ReducedConfluentRewritingSystem, 553
ReducedConjugate, 346
ReducedDifference, 346
ReducedForm, 345
ReducedGroebnerBasis, 687
ReducedInverse, 346
ReducedLeftQuotient, 346

ReducedOne, 346
ReducedPcElement, 439
ReducedPower, 346
ReducedProduct, 346
ReducedQuotient, 346
ReducedScalarProduct, 346
ReducedSum, 346
ReducedZero, 346
ReduceRules, 346
ReduceStabChain, 426
Reducing Virtual Characters, 784
Ree, 513
ReeGroup, 513
ReesCongruenceOfSemigroupIdeal, 541
ReesMatrixSemigroup, 544
ReesMatrixSemigroupElement, 545
Rees Matrix Semigroups, 544
ReesZeroMatrixSemigroup, 544
ReesZeroMatrixSemigroupElement, 545
ReesZeroMatrixSemigroupElementIsZero, 545
RefinedPcGroup, 457
ReflectionMat, 229
ReflexiveClosureBinaryRelation, 317
reflexive relation, 315
regular, 407
regular action, 404
RegularActionHomomorphism, 405
RegularModule, 754
relations, 304
Relations Between Domains, 298
RelationsOfFpSemigroup, 551
RelativeBasis, 603
RelativeBasisNC, 603
relatively prime, 48
RelativeOrderOfPcElement, 439
RelativeOrders, of a pcgs, 438
Relators in a Presentation, 488
RelatorsOfFpGroup, 465
remainder, operation, 297
remainder of a quotient, 129
RemInt, 129
Remove, 178
remove, an element from a set, 198
RemoveCharacters, 256
RemoveFile, 96
RemoveOuterCoeffs, 219
RemoveRelator, 490
RemoveSet, 198

Index 897

RemoveStabChain, 426
Repeat, 52
repeat loop, 52
ReplacedString, 256
Representation, 120
representation, as a sum of two squares, 144
Representations for Associative Words, 337
Representations for Group Homomorphisms, 396
Representations given by modules, 754
Representations of Algebras, 632
RepresentationsOfObject, 121
Representative, 274
representative, of a list or collection, 275
RepresentativeAction, 403
RepresentativeLinearOperation, 632
RepresentativeOperation, 850
RepresentativesContainedRightCosets, 359
RepresentativesFusions, 810
RepresentativeSmallest, 275
RepresentativesMinimalBlocks, 408
RepresentativesPerfectSubgroups, 377
RepresentativesPowerMaps, 805
RepresentativesSimpleSubgroups, 377
RepresentativeTom, 720
RepresentativeTomByGenerators, 720
RepresentativeTomByGeneratorsNC, 720
RequirePackage, 850
Reread, 96
REREADING, 96
RereadPackage, 847
RereadPkg, 850
Reset, 136
ResetOptionsStack, 88
residue, quadratic, 141
Residue Class Rings, 134
RespectsAddition, 312
RespectsAdditiveInverses, 312
RespectsInverses, 311
RespectsMultiplication, 311
RespectsOne, 311
RespectsScalarMultiplication, 312
RespectsZero, 312
RestoreStateRandom, 277
Restricted and Induced Class Functions, 782
RestrictedClassFunction, 782
RestrictedClassFunctions, 782
Restricted Lie algebras, 650
RestrictedMapping, 306

RestrictedPartitions, 154
RestrictedPerm, 415
RestrictedPermNC, 415
RestrictedTransformation, 556
RestrictOutputsOfSLP, 342
Resultant, 676
ResultOfStraightLineProgram, 340
Return, 58
return, 68

no value, 58
with value, 58

ReturnFail, 63
ReturnFalse, 63
return from break loop, 68
ReturnTrue, 63
Reversed, 200
RewindStream, 100
RewriteWord, 471
Rewriting in Groups and Monoids, 347
Rewriting Systems and the Knuth-Bendix

Procedure, 553
RightActingAlgebra, 635
RightActingRingOfIdeal, 566
RightAlgebraModule, 633
RightAlgebraModuleByGenerators, 633
RightCoset, 357
RightCosets, 358
right cosets, 357
RightCosetsNC, 358
RightDerivations, 642
RightIdeal, 564
RightIdealByGenerators, 565
RightIdealNC, 565
RightModuleByHomomorphismToMatAlg, 636
RightShiftRowVector, 219
RightTransversal, 358
Ring, 562
RingByGenerators, 563
Ring Homomorphisms, 313
Rings With One, 566
RingWithOne, 566
RingWithOneByGenerators, 567
RNamObj, 267
root, of 1 modulo an integer, 142

of an integer, 128
of an integer, smallest, 128
of an integer modulo another, 141

RootInt, 128

898 Index

RootMod, 141
RootOfDefiningPolynomial, 580
RootsMod, 141
Roots Modulo Integers, 140
roots of unity, 157
RootsOfUPol, 675
RootsUnityMod, 142
RootSystem, 647
RoundCyc, 159
Row and Matrix Spaces, 607
RowIndexOfReesMatrixSemigroupElement, 545
RowIndexOfReesZeroMatrixSemigroupElement,

545
row spaces, 607
Row Vectors over Finite Fields, 217
Rules, 345
Running GAP under MacOS, 31
Runtime, 82
Runtimes, 81

S
sN , 162
SameBlock, 743
SandwichMatrixOfReesMatrixSemigroup, 545
SandwichMatrixOfReesZeroMatrixSemigroup, 545
save, 37
SaveOnExitFile, 73
SaveWorkspace, 37
Saving and Loading a Workspace, 37
Saving a Pc Group, 458
saving on exit, 73
ScalarProduct, for characters, 778
Schreier, 485
Schreier-Sims, random, 420
SchurCover, 383
Schur Covers and Multipliers, 383
Schur multiplier, 383
scope, 43
ScriptFromString, 717
Searching for Homomorphisms, 394
SecHMSM, 260
secondary subgroup generators, 500
SecondsDMYhms, 260
SeekPositionStream, 100
Selecting a Different MeatAxe, 698
Selection Functions, 518
SemidirectProduct, 506
Semidirect Products, 506

SemiEchelonBasis, 609
SemiEchelonBasisNC, 609
SemiEchelonMat, 232
SemiEchelonMatDestructive, 233
SemiEchelonMats, 233
SemiEchelonMatsDestructive, 233
SemiEchelonMatTransformation, 233
Semigroup, 539
semigroup, 539
SemigroupByGenerators, 539
SemigroupByMultiplicationTable, 540
SemigroupIdealByGenerators, 541
SemigroupOfRewritingSystem, 554
semiregular, 407
Semisimple Lie Algebras and Root Systems, 646
SemiSimpleType, 646
sequence, Bernoulli, 148

Fibonacci, 155
Lucas, 156

Series of Ideals, 644
Set, 271
SetAssertionLevel, 81
SetCommutator, 456
SetConjugate, 456
SetCrystGroupDefaultAction, 435
set difference, of collections, 276
SetEntrySCTable, 617
SetGasmanMessageStatus, 87
SetHelpViewer, 24
SetIndeterminateName, 670
SetInfoLevel, 80
SetName, 114
Set Operations via Boolean Lists, 212
SetParent, 291
SetPower, 456
SetPrintFormattingStatus, 102
SetRecursionTrapInterval, 86
SetReducedMultiplication, 465
Sets, 110
sets, 173, 197
Sets of Subgroups, 374
set stabilizer, 402
Setter, 122
setter, 122
Setter and Tester for Attributes, 122
SetX, 207
ShallowCopy, 113

for lists, 181

Index 899

ShiftedCoeffs, 221
ShiftedPadicNumber, 694
Shifting and Trimming Coefficient Lists, 219
ShortestVectors, 248
ShortLexOrdering, 284
short vectors spanning a lattice, 246, 785
ShowArgument, 77
ShowArguments, 77
ShowDetails, 77
ShowImpliedFilters, 118
ShowMethods, 78
ShowOtherMethods, 78
ShrinkAllocationPlist, 183
ShrinkAllocationString, 253
ShrinkCoeffs, 222
ShrinkRowVector, 219
SiftedPcElement, 439
SiftedPermutation, 425
SiftedVector, 610
Sigma, 142
sign, of an integer, 127
Sign and Cycle Structure, 414
SignInt, 127
SignPartition, 154
SignPerm, 414
SimpleLieAlgebra, 642
SimpleSystem, 647
SimplifiedFpGroup, 484
SimplifiedFpGroup, 484
SimplifyPresentation, 491
SimsNo, 529
SimultaneousEigenvalues, 239
SingleCollector, 456
singlequote character, 252
singlequotes, 250
SINT CHAR, 258
Size, 274

for character tables, 736
for groups with pcgs, 451

size, of a list or collection, 274
SizeBlist, 212
SizeConsiderFunction, 379
SizeNumbersPerfectGroups, 524
SizeOfFieldOfDefinition, 800
SizesCentralizers, 737
SizesConjugacyClasses, 737
SizeScreen, 76
SizeScreen, 76

SizesPerfectGroups, 523
SizeStabChain, 424
SL, 514
smaller, associative words, 334

elements of finitely presented groups, 465
nonassociative words, 328
pcwords, 454
rational functions, 672

SmallerDegreePermutationRepresentation, 417
smaller or equal, 47
smaller test, 47
SmallestGeneratorPerm, 413
SmallestMovedPoint, 413
SmallestRootInt, 128
SmallGeneratingSet, 380
SmallGroup, 521
Small Groups, 520
SmallGroupsInformation, 522
Smash MeatAxe Flags, 702
smith normal form, 851
SmithNormalFormIntegerMat, 243
SmithNormalFormIntegerMatTransforms, 243
SMTX.AbsoluteIrreducibilityTest, 701
SMTX.AlgEl, 702
SMTX.AlgElCharPol, 702
SMTX.AlgElCharPolFac, 702
SMTX.AlgElMat, 702
SMTX.AlgElNullspaceDimension, 702
SMTX.AlgElNullspaceVec, 702
SMTX.CentMat, 702
SMTX.CentMatMinPoly, 702
SMTX.CompleteBasis, 701
SMTX.Getter, 701
SMTX.GoodElementGModule, 701
SMTX.IrreducibilityTest, 701
SMTX.MatrixSum, 701
SMTX.MinimalSubGModule, 701
SMTX.MinimalSubGModules, 701
SMTX.RandomIrreducibleSubGModule, 701
SMTX.Setter, 701
SMTX.SortHomGModule, 701
SMTX.Subbasis, 702
SO, 515
Socle, 365
SocleTypePrimitiveGroup, 418
SolutionIntMat, 241
SolutionMat, 231
SolutionMatDestructive, 231

900 Index

SolutionNullspaceIntMat, 241
Some Remarks about Character Theory in GAP,

725
Some Special Algebras, 619
Sort, 196
SortedCharacters, 761
SortedCharacterTable, 762
Sorted Character Tables, 761
SortedList, 271
sorted list, 195
Sorted Lists and Sets, 197
sorted lists as collections, 269
SortedSparseActionHomomorphism, 404
SortedTom, 707
Sortex, 196
Sorting Lists, 196
SortingPerm, 197
Sorting Tables of Marks, 707
SortParallel, 196
Source, 307
SourceOfIsoclinicTable, 760
SP, 515
Sp, 515
space, 41
SparseActionHomomorphism, 404
SparseCartanMatrix, 648
Special Characters, 252
special character sequences, 252
Special Filenames, 93
Special Generating Sets, 380
SpecialLinearGroup, 514
Special Multiplication Algorithms for Matrices over

GF(2), 239
SpecialOrthogonalGroup, 515
Special Pcgs, 448
SpecialPcgs, attribute, 448
Special Rules for Input Lines, 65
SpecialUnitaryGroup, 515
Specific and Parametrized Subgroups, 363
Specific Methods for Subgroup Lattice

Computations, 377
SplitCharacters, 756
SplitExtension, 460
SplitExtensions, 461
SplitString, 255
SplittingField, 674
Sqrt, 297
square root, of an integer, 128

SquareRoots, 325
SSortedList, 271
StabChain, 422
StabChainBaseStrongGenerators, 423
StabChainImmutable, 422
StabChainMutable, 422
StabChainOp, 422
StabChainOptions, 423
Stabilizer, 402
Stabilizer Chain Records, 423
Stabilizer Chains, 419
StabilizerOfExternalSet, 410
StabilizerPcgs, 451
Stabilizers, 402
StandardAssociate, 569
StandardGeneratorsFunctions, 717
StandardGeneratorsInfo, for groups, 716

for tables of marks, 721
StandardGeneratorsOfGroup, 718
Standard Generators of Groups, 716
Standardization of coset tables, 470
StandardizeTable, 470
StarCyc, 164
State, 136
Statements, 49
StateRandom, 277
Stirling1, 148
Stirling2, 149
Stirling number of the first kind, 148
Stirling number of the second kind, 149
StoredGroebnerBasis, 687
StoreFusion, 808
Storing Normal Subgroup Information, 765
StraightLineProgElm, 343
StraightLineProgGens, 344
StraightLineProgram, 339
Straight Line Program Elements, 343
StraightLineProgramNC, 339
Straight Line Programs, 339
StraightLineProgramsTom, 719
StreamsFamily, 98
StretchImportantSLPElement, 344
strictly sorted list, 195
String, 255

for cyclotomics, 159
StringDate, 260
StringOfResultOfStraightLineProgram, 341
StringPP, 255

Index 901

strings, equality of, 254
inequality of, 254
lexicographic ordering of, 254

String Streams, 104
StringTime, 260
StrongGeneratorsStabChain, 425
StronglyConnectedComponents, 317
Struct , 288
StructByGenerators, 289
StructuralCopy, 113

for lists, 181
structure constant, 747, 748
StructureConstantsTable, 605
StructureDescription, 355
Structure Descriptions, 355
StructWithGenerators, 289
SU, 515
Subalgebra, 620
SubAlgebraModule, 636
SubalgebraNC, 620
Subalgebras, 620
SubalgebraWithOne, 620
SubalgebraWithOneNC, 621
SubdirectProduct, 508
Subdirect Products, 508
SubdirectProducts, 508
subdomains, 292
Subfield, 580
SubfieldNC, 580
Subfields, 580
Subfields of Fields, 580
Subgroup, 352
SubgroupByPcgs, 442
SubgroupByProperty, 353
subgroup fusions, 806
subgroup generators tree, 500
Subgroup Lattice, 375
SubgroupNC, 352
SubgroupOfWholeGroupByCosetTable, 471
SubgroupOfWholeGroupByQuotientSubgroup, 476
Subgroup Presentations, 485
SubgroupProperty, 427
Subgroups, 352
subgroups, polyhedral, 747
Subgroups characterized by prime powers, 366
Subgroup Series, 370
SubgroupShell, 353

Subgroups of Polycyclic Groups - Canonical Pcgs,
442

Subgroups of Polycyclic Groups - Induced Pcgs, 441
SubgroupsSolvableGroup, 378
sublist, 175

access, 175
assignment, 177
operation, 176

sublist assignment, operation, 178
Submagma, 321
SubmagmaNC, 321
SubmagmaWithInverses, 321
SubmagmaWithInversesNC, 321
SubmagmaWithOne, 321
SubmagmaWithOneNC, 321
Submodule, 575
SubmoduleNC, 575
Submodules, 575
Submonoid, 546
SubmonoidNC, 546
SubnearAdditiveGroup, 560
SubnearAdditiveGroupNC, 560
SubnearAdditiveMagma, 560
SubnearAdditiveMagmaNC, 560
SubnearAdditiveMagmaWithZero, 560
SubnearAdditiveMagmaWithZeroNC, 560
SubnormalSeries, 370
Subring, 563
SubringNC, 563
SubringWithOne, 567
SubringWithOneNC, 567
Subroutines for the Construction of Class Fusions,

821
Subroutines for the Construction of Power Maps,

819
Subsemigroup, 539
SubsemigroupNC, 539
subsets, 149
subset test, for collections, 275
Subspace, 599
SubspaceNC, 599
Subspaces, 601
SubstitutedWord, 336
SubsTom, 709
Substruct , 292
SubstructNC, 292
SubSyllables, 337
subtract, a set from another, 199

902 Index

SubtractBlist, 213
subtraction, 48

matrices, 224
matrix and scalar, 224
rational functions, 671
scalar and matrix, 224
scalar and matrix list, 226
scalar and vector, 216
vector and scalar, 216
vectors, 216

SubtractSet, 199
Subword, 335
Successors, 316
Suitability for Compilation, 36
Sum, 205
Sum and Intersection of Pcgs, 447
SumFactorizationFunctionPcgs, 447
SumIntersectionMat, 234
SumX, 207
SupersolvableResiduum, 365
support, email address, 838
SupportedCharacterTableInfo, 729
SurjectiveActionHomomorphismAttr, 411
SuzukiGroup, 513
SylowComplement, 365
SylowSubgroup, 365
Sylow Subgroups and Hall Subgroups, 365
SylowSystem, 366
Symbols, 40
Symmetric and Alternating Groups, 417
SymmetricClosureBinaryRelation, 317
SymmetricGroup, 513
symmetric group, powermap, 155
SymmetricParentGroup, 418
SymmetricParts, 790
SymmetricPowerOfAlgebraModule, 661
symmetric relation, 316
Symmetrizations, 790
symmetrizations, orthogonal, 790, 791

symplectic, 791
Symmetrizations of Class Functions, 790
SymplecticComponents, 791
SymplecticGroup, 515
syntax errors, 64
system getter, 121
system setter, 121
Sz, 513

T
tN , 162
TableAutomorphisms, 764
table automorphisms, 810, 822
table of chapters for help books, 23
TableOfMarks, 704
TableOfMarksByLattice, 705
TableOfMarksComponents, 708
TableOfMarksCyclic, 723
TableOfMarksDihedral, 723
TableOfMarksFamily, 708
TableOfMarksFrobenius, 723
Table of Marks Objects in GAP, 704
table of sections for help books, 23
tables, 725, 727
tabulator, 41
Tau, 142
Technical Details about Tables of Marks, 708
Technical Details about the Implementation of

Magma Rings, 667
Technical Matters Concerning General Mappings,

313
TemporaryGlobalVarName, 46
Tensored, 781
TensorProductGModule , 697
TensorProductOfAlgebraModules, 660
Tensor Products and Exterior and Symmetric

Powers, 660
test, for a primitive root, 140

for a rational, 145
for records, 262
for set equality, 198

TestConsistencyMaps, 815
Tester, 122
tester, 122
Test Files, 84
TestHomogeneous, 825
TestInducedFromNormalSubgroup, 827
Testing Finiteness of Finitely Presented Groups, 480
Testing for the System Architecture, 35
Testing Monomiality, 827
TestJacobi, 617
TestMonomial, 827
TestMonomialQuick, 828
TestMonomialUseLattice, 828
Test of the installation, 834
TestPackageAvailability, 848
TestPerm1, 797

Index 903

TestPerm2, 797
TestPerm3, 797
TestPerm4, 797
TestPerm5, 797
TestQuasiPrimitive, 826
TestRelativelySM, 829
Tests for Actions, 407
Tests for the Availability of Methods, 384
TestSubnormallyMonomial, 829
The .gaprc file, 33
The Adjoint Representation, 652
The Compiler, 35
The Defining Attributes of Rational Functions, 689
The Dixon-Schneider Algorithm, 754
The Documentation, 836
The External Representation for Associative Words,

339
The family pcgs, 454
The Interface between Character Tables and Groups,

731
The Interface between Tables of Marks and

Character Tables, 721
The Library of Tables of Marks, 724
then, 51
The Natural Action, 416
The Pager Command, 25
The Permutation Image of an Action, 403
The Representations of Rational Functions, 688
The Smash MeatAxe, 701
The Syntax in BNF, 59
ThreeGroup library, 521
Tietze Options, 503
Tietze Transformations, 490
Tietze Transformations that introduce new

Generators, 495
TietzeWordAbstractWord, 488
time, 82
Timing, 81
Todd-Coxeter Procedure, 554
Trace, 227

for field elements, 582
of a matrix, 227

TracedCosetFpGroup, 468
TraceImmediateMethods, 79
TraceMat, 227
TraceMethods, 79
TracePolynomial, 581

Tracing generator images through Tietze
transformations, 498

Tracing Methods, 79
TransferDiagram, 815
Transformation, 555
TransformationData, 555
TransformationFamily, 555
TransformationNC, 555
TransformationRelation, 557
TransformationType, 555
TransformingPermutations, 764
TransformingPermutationsCharacterTables, 764
transitive, 407
TransitiveClosureBinaryRelation, 317
TransitiveGroup, 519
TransitiveIdentification, 519
Transitive Permutation Groups, 519
transitive relation, 316
Transitivity, for characters, 780

for class functions, 780
for group actions, 407

TranslatorSubalgebra, 639
transporter, 403
TransposedMat, 228
TransposedMatAttr, 228
TransposedMatDestructive, 229
TransposedMatImmutable, 228
TransposedMatMutable, 228
TransposedMatOp, 228
TransposedMatrixGroup, 430
Transversals, 358
Triangular Matrices, 235
TriangulizedIntegerMat, 242
TriangulizedIntegerMatTransform, 242
TriangulizedNullspaceMat, 230
TriangulizedNullspaceMatDestructive, 230
TriangulizeIntegerMat, 242
TriangulizeMat, 230
TrivialCharacter, 776
TrivialGroup, 511
TrivialIterator, 280
TrivialSubalgebra, 621
TrivialSubgroup, 363
TrivialSubmagmaWithOne, 325
TrivialSubmodule, 575
TrivialSubmonoid, 546
TrivialSubnearAdditiveMagmaWithZero, 560
TrivialSubspace, 600

904 Index

TryCosetTableInWholeGroup, 471
TryGcdCancelExtRepPolynomials, 691
Tuples, 151
tuple stabilizer, 402
TwoClosure, 427
TwoCoboundaries, 459
TwoCocycles, 459
TwoCohomology, 459
TwoGroup library, 521
TwoSidedIdeal, 564
TwoSidedIdealByGenerators, 565
TwoSidedIdealNC, 565
TwoSquares, 144
type, boolean, 170

cyclotomic, 157
records, 262
strings, 250

TypeObj, 125
TypeOfDefaultGeneralMapping, 314
Types, 125
TzEliminate, 493
TzFindCyclicJoins, 494
TzGo, 491
TzGoGo, 492
TzImagesOldGens, 499
TzInitGeneratorImages, 498
TzNewGenerator, 490
TzOptions, 503
TzPreImagesNewGens, 499
TzPrint, 489
TzPrintGeneratorImages, 499
TzPrintGenerators, 488
TzPrintLengths, 489
TzPrintOptions, 504
TzPrintPairs, 489
TzPrintPresentation, 489
TzPrintRelators, 488
TzPrintStatus, 489
TzSearch, 493
TzSearchEqual, 494
TzSort, 482
TzSubstitute, 495
TzSubstituteCyclicJoins, 498

U
uN , 162
UglyVector, 613
Unbind, 44

for lists, 179
UnbindGlobal, 45
UnderlyingCharacteristic, 738
UnderlyingCharacterTable, 770
UnderlyingElement, fp group elements, 466

fp semigroup elements, 552
UnderlyingElementOfReesMatrixSemigroup-

Element, 545
UnderlyingElementOfReesZeroMatrixSemigroup-

Element, 545
UnderlyingExternalSet, 411
UnderlyingFamily, 641
UnderlyingGeneralMapping, 307
UnderlyingGroup, for character tables, 732

for tables of marks, 710
UnderlyingLeftModule, 603
UnderlyingLieAlgebra, 647
UnderlyingMagma, 664
UnderlyingRelation, 307
UnInstallCharReadHookFunc, 106
Union, 276
union, of collections, 276

of sets, 198
Union2, 276
UnionBlist, 212
Unique, 200
UniteBlist, 213
UniteBlistList, 213
UniteSet, 198
Units, 568
Units and Factorizations, 568
UnivariatenessTestRationalFunction, 675
UnivariatePolynomial, 674
UnivariatePolynomialByCoefficients, 674
UnivariatePolynomialRing, 683
Univariate Polynomial Rings, 683
Univariate Polynomials, 674
UnivariateRationalFunctionByCoefficients,

680
Univariate Rational Functions, 680
UniversalEnvelopingAlgebra, 653
Universal Enveloping Algebras, 653
UNIX, features, 27

options, 27
UNIXSelect, 98
Unknown, 168
UnloadSmallGroupsData, 522
UnorderedTuples, 150

Index 905

Unpacking, 832
UnprofileFunctions, 83
UnprofileMethods, 83
until, 52
UntraceMethods, 79
UpdateMap, 813
UpEnv, 71
UpperCentralSeriesOfGroup, 372
UpperSubdiagonal, 235
UseBasis, 577
UseFactorRelation, 298
Useful Categories for all Elements of a Family, 302
Useful Categories of Elements, 300
UseIsomorphismRelation, 298
User Streams, 103
UseSubsetRelation, 298
utilities for editing GAP files, 75

V
vN , 162
Valuation, 694
Value, 677
ValueCochain, 656
ValueGlobal, 45
ValueMolienSeries, 793
ValueOption, 89
ValuePol, 221
ValuesOfClassFunction, 770
Variable Access in a Break Loop, 71
Variables, 43
Vectors as coefficients of polynomials, 220
VectorSpace, 599
VectorSpaceByPcgsOfElementaryAbelianGroup,

450
Vector Space Homomorphisms, 610
Vector Spaces Handled By Nice Bases, 612
vi, 75
View, 66
View and Print, 66
ViewObj, 67

for character tables, 748
for class functions, 774
for tables of marks, 706

vim, 75
VirtualCharacter, 775
virtual character, 777
virtual characters, 768

W
wN , 162
WedgeGModule , 697

WeekDay, 260
WeightLexOrdering, 284
WeightOfGenerators, 285
WeightsTom, 712
WeightVecFFE, 220
WeylGroup, 649
WeylOrbitIterator, 650
Where, 70
While, 52
while loop, 52
Whitespaces, 41
Why Class Functions?, 768
WordAlp, 255
words, in generators, 354
Working with large degree permutation groups, 428
WreathProduct, 508
wreath product embedding, 509
WreathProductImprimitiveAction, 509
WreathProductOrdering, 286
WreathProductProductAction, 509
Wreath Products, 508
WriteAll, 101
WriteByte, 101
WriteLine, 101

X
xN , 162

Y
yN , 162

Z
Z, 584
ZClassRepsQClass, 434
Zero, 294
ZeroAttr, 294
ZeroCoefficient, 665
ZeroCoefficientRatFun, 689
ZeroImmutable, 294
ZeroMapping, 306
ZeroMutable, 294
ZeroOp, 294
ZeroSameMutability, 294
ZeroSM, 294
ZippedProduct, 691
ZippedSum, 691
ZmodnZ, 135
ZmodnZObj, 135
ZmodpZ, 135
ZmodpZNC, 135
ZumbroichBase, 595
Zuppos, 377

	
	Acknowledgement
	Contents
	Copyright Notice
	About the GAP Reference Manual
	Manual Conventions
	Credit

	The Help System
	Invoking the Help
	Browsing through the Sections
	Changing the Help Viewer
	The Pager Command

	Running GAP
	Command Line Options
	Advanced Features of GAP
	Running GAP under MacOS
	The .gaprc file
	Completion Files
	Testing for the System Architecture
	The Compiler
	Suitability for Compilation
	Compiling Library Code
	CRC Numbers
	Saving and Loading a Workspace
	Coloring the Prompt and Input

	The Programming Language
	Language Overview
	Lexical Structure
	Symbols
	Whitespaces
	Keywords
	Identifiers
	Expressions
	Variables
	More About Global Variables
	Function Calls
	Comparisons
	Arithmetic Operators
	Statements
	Assignments
	Procedure Calls
	If
	While
	Repeat
	For
	Break
	Continue
	Function
	Return
	The Syntax in BNF

	Functions
	Information about a function
	Calling a function with a list argument that is interpreted as several arguments
	Functions that do nothing
	Function Types

	Main Loop and Break Loop
	Main Loop
	Special Rules for Input Lines
	View and Print
	Break Loops
	Variable Access in a Break Loop
	Error
	ErrorCount
	Leaving GAP
	Line Editing
	Editing Files
	Editor Support
	SizeScreen

	Debugging and Profiling Facilities
	Recovery from NoMethodFound-Errors
	ApplicableMethod
	Tracing Methods
	Info Functions
	Assertions
	Timing
	Profiling
	Information about the version used
	Test Files
	Debugging Recursion
	Global Memory Information

	Options Stack
	Files and Filenames
	Portability
	GAP Root Directory
	Directories
	Filename
	Special Filenames
	File Access
	File Operations

	Streams
	Categories for Streams and the StreamsFamily
	Operations applicable to All Streams
	Operations for Input Streams
	Operations for Output Streams
	File Streams
	User Streams
	String Streams
	Input-Output Streams
	Dummy Streams
	Handling of Streams in the Background

	Processes
	Process
	Exec

	Objects and Elements
	Objects
	Elements as equivalence classes
	Sets
	Domains
	Identical Objects
	Mutability and Copyability
	Duplication of Objects
	Other Operations Applicable to any Object

	Types of Objects
	Families
	Filters
	Categories
	Representation
	Attributes
	Setter and Tester for Attributes
	Properties
	Other Filters
	Types

	Integers
	Elementary Operations for Integers
	Quotients and Remainders
	Prime Integers and Factorization
	Residue Class Rings
	Random Sources

	Number Theory
	Prime Residues
	Primitive Roots and Discrete Logarithms
	Roots Modulo Integers
	Multiplicative Arithmetic Functions
	Continued Fractions
	Miscellaneous

	Rational Numbers
	Elementary Operations for Rationals

	Combinatorics
	Combinatorial Numbers
	Combinations, Arrangements and Tuples
	Fibonacci and Lucas Sequences
	Permanent of a Matrix

	Cyclotomic Numbers
	Operations for Cyclotomics
	Infinity
	Comparisons of Cyclotomics
	ATLAS Irrationalities
	Galois Conjugacy of Cyclotomics
	Internally Represented Cyclotomics

	Unknowns
	Booleans
	Fail
	Comparisons of Booleans
	Operations for Booleans

	Lists
	List Categories
	Basic Operations for Lists
	List Elements
	List Assignment
	IsBound and Unbind for Lists
	Identical Lists
	Duplication of Lists
	Membership Test for Lists
	Enlarging Internally Represented Lists
	Comparisons of Lists
	Arithmetic for Lists
	Filters Controlling the Arithmetic Behaviour of Lists
	Additive Arithmetic for Lists
	Multiplicative Arithmetic for Lists
	Mutability Status and List Arithmetic
	Finding Positions in Lists
	Properties and Attributes for Lists
	Sorting Lists
	Sorted Lists and Sets
	Operations for Lists
	Advanced List Manipulations
	Ranges
	Enumerators

	Boolean Lists
	Boolean Lists Representing Subsets
	Set Operations via Boolean Lists
	Function that Modify Boolean Lists
	More about Boolean Lists

	Row Vectors
	Operators for Row Vectors
	Row Vectors over Finite Fields
	Coefficient List Arithmetic
	Shifting and Trimming Coefficient Lists
	Functions for Coding Theory
	Vectors as coefficients of polynomials

	Matrices
	Categories of Matrices
	Operators for Matrices
	Properties and Attributes of Matrices
	Matrix Constructions
	Random Matrices
	Matrices Representing Linear Equations and the Gaussian Algorithm
	Eigenvectors and eigenvalues
	Elementary Divisors
	Echelonized Matrices
	Matrices as Basis of a Row Space
	Triangular Matrices
	Matrices as Linear Mappings
	Matrices over Finite Fields
	Special Multiplication Algorithms for Matrices over GF(2)
	Block Matrices

	Integral matrices and lattices
	Linear equations over the integers and Integral Matrices
	Normal Forms over the Integers
	Determinant of an integer matrix
	Decompositions
	Lattice Reduction
	Orthogonal Embeddings

	Strings and Characters
	Special Characters
	Internally Represented Strings
	Recognizing Characters
	Comparisons of Strings
	Operations to Produce or Manipulate Strings
	Character Conversion
	Operations to Evaluate Strings
	Calendar Arithmetic

	Records
	Accessing Record Elements
	Record Assignment
	Identical Records
	Comparisons of Records
	IsBound and Unbind for Records
	Record Access Operations

	Collections
	Collection Families
	Lists and Collections
	Attributes and Properties for Collections
	Operations for Collections
	Membership Test for Collections
	Random Elements
	Iterators

	Orderings
	Building new orderings
	Properties and basic functionality
	Orderings on families of associative words

	Domains and their Elements
	Operational Structure of Domains
	Equality and Comparison of Domains
	Constructing Domains
	Changing the Structure
	Changing the Representation
	Domain Categories
	Parents
	Constructing Subdomains
	Operations for Domains
	Attributes and Properties of Elements
	Comparison Operations for Elements
	Arithmetic Operations for Elements
	Relations Between Domains
	Useful Categories of Elements
	Useful Categories for all Elements of a Family

	Mappings
	Creating Mappings
	Properties and Attributes of (General) Mappings
	Images under Mappings
	Preimages under Mappings
	Arithmetic Operations for General Mappings
	Mappings which are Compatible with Algebraic Structures
	Magma Homomorphisms
	Mappings that Respect Multiplication
	Mappings that Respect Addition
	Linear Mappings
	Ring Homomorphisms
	General Mappings
	Technical Matters Concerning General Mappings

	Relations
	General Binary Relations
	Properties and Attributes of Binary Relations
	Binary Relations on Points
	Closure Operations and Other Constructors
	Equivalence Relations
	Attributes of and Operations on Equivalence Relations
	Equivalence Classes

	Magmas
	Magma Categories
	Magma Generation
	Magmas Defined by Multiplication Tables
	Attributes and Properties for Magmas

	Words
	Categories of Words and Nonassociative Words
	Comparison of Words
	Operations for Words
	Free Magmas
	External Representation for Nonassociative Words

	Associative Words
	Categories of Associative Words
	Free Groups, Monoids and Semigroups
	Comparison of Associative Words
	Operations for Associative Words
	Operations for Associative Words by their Syllables
	Representations for Associative Words
	The External Representation for Associative Words
	Straight Line Programs
	Straight Line Program Elements

	Rewriting Systems
	Operations on rewriting systems
	Operations on elements of the algebra
	Properties of rewriting systems
	Rewriting in Groups and Monoids
	Developing rewriting systems

	Groups
	Group Elements
	Creating Groups
	Subgroups
	Closures of (Sub)groups
	Expressing Group Elements as Words in Generators
	Structure Descriptions
	Cosets
	Transversals
	Double Cosets
	Conjugacy Classes
	Normal Structure
	Specific and Parametrized Subgroups
	Sylow Subgroups and Hall Subgroups
	Subgroups characterized by prime powers
	Group Properties
	Numerical Group Attributes
	Subgroup Series
	Factor Groups
	Sets of Subgroups
	Subgroup Lattice
	Specific Methods for Subgroup Lattice Computations
	Special Generating Sets
	1-Cohomology
	Schur Covers and Multipliers
	Tests for the Availability of Methods

	Group Homomorphisms
	Creating Group Homomorphisms
	Operations for Group Homomorphisms
	Efficiency of Homomorphisms
	Homomorphism for very large groups
	Nice Monomorphisms
	Group Automorphisms
	Groups of Automorphisms
	Calculating with Group Automorphisms
	Searching for Homomorphisms
	Representations for Group Homomorphisms

	Group Actions
	About Group Actions
	Basic Actions
	Orbits
	Stabilizers
	Elements with Prescribed Images
	The Permutation Image of an Action
	Action of a group on itself
	Permutations Induced by Elements and Cycles
	Tests for Actions
	Block Systems
	External Sets

	Permutations
	Comparison of Permutations
	Moved Points of Permutations
	Sign and Cycle Structure
	Creating Permutations

	Permutation Groups
	The Natural Action
	Computing a Permutation Representation
	Symmetric and Alternating Groups
	Primitive Groups
	Stabilizer Chains
	Randomized Methods for Permutation Groups
	Construction of Stabilizer Chains
	Stabilizer Chain Records
	Operations for Stabilizer Chains
	Low Level Routines to Modify and Create Stabilizer Chains
	Backtrack
	Working with large degree permutation groups

	Matrix Groups
	Attributes and Properties for Matrix Groups
	Actions of Matrix Groups
	GL and SL
	Invariant Forms
	Matrix Groups in Characteristic 0
	Acting OnRight and OnLeft

	Polycyclic Groups
	Polycyclic Generating Systems
	Computing a Pcgs
	Defining a Pcgs Yourself
	Elementary Operations for a Pcgs
	Elementary Operations for a Pcgs and an Element
	Exponents of Special Products
	Subgroups of Polycyclic Groups - Induced Pcgs
	Subgroups of Polycyclic Groups - Canonical Pcgs
	Factor Groups of Polycyclic Groups - Modulo Pcgs
	Factor Groups of Polycyclic Groups in their Own Representation
	Pcgs and Normal Series
	Sum and Intersection of Pcgs
	Special Pcgs
	Action on Subfactors Defined by a Pcgs
	Orbit Stabilizer Methods for Polycyclic Groups
	Operations which have Special Methods for Groups with Pcgs
	Conjugacy Classes in Solvable Groups

	Pc Groups
	The family pcgs
	Elements of pc groups
	Pc groups versus fp groups
	Constructing Pc Groups
	Computing Pc Groups
	Saving a Pc Group
	Operations for Pc Groups
	2-Cohomology and Extensions
	Coding a Pc Presentation
	Random Isomorphism Testing

	Finitely Presented Groups
	Creating Finitely Presented Groups
	Comparison of Elements of Finitely Presented Groups
	Preimages in the Free Group
	Operations for Finitely Presented Groups
	Coset Tables and Coset Enumeration
	Standardization of coset tables
	Coset tables for subgroups in the whole group
	Augmented Coset Tables and Rewriting
	Low Index Subgroups
	Converting Groups to Finitely Presented Groups
	New Presentations and Presentations for Subgroups
	Preimages under Homomorphisms from an FpGroup
	Quotient Methods
	Abelian Invariants for Subgroups
	Testing Finiteness of Finitely Presented Groups

	Presentations and Tietze Transformations
	Creating Presentations
	SimplifiedFpGroup
	Subgroup Presentations
	Relators in a Presentation
	Printing Presentations
	Changing Presentations
	Tietze Transformations
	Elementary Tietze Transformations
	Tietze Transformations that introduce new Generators
	Tracing generator images through Tietze transformations
	DecodeTree
	Tietze Options

	Group Products
	Direct Products
	Semidirect Products
	Subdirect Products
	Wreath Products
	Free Products
	Embeddings and Projections for Group Products

	Group Libraries
	Basic Groups
	Classical Groups
	Conjugacy Classes in Classical Groups
	Constructors for Basic Groups
	Selection Functions
	Transitive Permutation Groups
	Small Groups
	Finite Perfect Groups
	Primitive Permutation Groups
	Index numbers of primitive groups
	Irreducible Solvable Matrix Groups
	Irreducible Maximal Finite Integral Matrix Groups

	Semigroups
	Making transformation semigroups
	Ideals of semigroups
	Congruences for semigroups
	Quotients
	Green's Relations
	Rees Matrix Semigroups

	Monoids
	Finitely Presented Semigroups and Monoids
	Creating Finitely Presented Semigroups
	Comparison of Elements of Finitely Presented Semigroups
	Preimages in the Free Semigroup
	Finitely presented monoids
	Rewriting Systems and the Knuth-Bendix Procedure
	Todd-Coxeter Procedure

	Transformations
	Additive Magmas
	(Near-)Additive Magma Categories
	(Near-)Additive Magma Generation
	Attributes and Properties for (Near-)Additive Magmas
	Operations for (Near-)Additive Magmas

	Rings
	Generating Rings
	Ideals in Rings
	Rings With One
	Properties of Rings
	Units and Factorizations
	Euclidean Rings
	Gcd and Lcm

	Modules
	Generating modules
	Submodules
	Free Modules

	Fields and Division Rings
	Generating Fields
	Subfields of Fields
	Galois Action

	Finite Fields
	Finite Field Elements
	Operations for Finite Field Elements
	Creating Finite Fields
	FrobeniusAutomorphism
	Conway Polynomials
	Printing, Viewing and Displaying Finite Field Elements

	Abelian Number Fields
	Construction of Abelian Number Fields
	Operations for Abelian Number Fields
	Integral Bases of Abelian Number Fields
	Galois Groups of Abelian Number Fields
	Gaussians

	Vector Spaces
	Constructing Vector Spaces
	Operations and Attributes for Vector Spaces
	Domains of Subspaces of Vector Spaces
	Bases of Vector Spaces
	Operations for Vector Space Bases
	Operations for Special Kinds of Bases
	Mutable Bases
	Row and Matrix Spaces
	Vector Space Homomorphisms
	Vector Spaces Handled By Nice Bases
	How to Implement New Kinds of Vector Spaces

	Algebras
	Constructing Algebras by Generators
	Constructing Algebras as Free Algebras
	Constructing Algebras by Structure Constants
	Some Special Algebras
	Subalgebras
	Ideals
	Categories and Properties of Algebras
	Attributes and Operations for Algebras
	Homomorphisms of Algebras
	Representations of Algebras

	Lie Algebras
	Lie objects
	Constructing Lie algebras
	Distinguished Subalgebras
	Series of Ideals
	Properties of a Lie Algebra
	Direct Sum Decompositions
	Semisimple Lie Algebras and Root Systems
	Restricted Lie algebras
	The Adjoint Representation
	Universal Enveloping Algebras
	Finitely Presented Lie Algebras
	Modules over Lie Algebras and Their Cohomology
	Modules over Semisimple Lie Algebras
	Tensor Products and Exterior and Symmetric Powers

	Finitely Presented Algebras
	Magma Rings
	Free Magma Rings
	Elements of Free Magma Rings
	Natural Embeddings related to Magma Rings
	Magma Rings modulo Relations
	Magma Rings modulo the Span of a Zero Element
	Technical Details about the Implementation of Magma Rings

	Polynomials and Rational Functions
	Indeterminates
	Operations for Rational Functions
	Comparison of Rational Functions
	Properties and Attributes of Rational Functions
	Univariate Polynomials
	Polynomials as Univariate Polynomials in one Indeterminate
	Multivariate Polynomials
	Minimal Polynomials
	Cyclotomic Polynomials
	Polynomial Factorization
	Polynomials over the Rationals
	Laurent Polynomials
	Univariate Rational Functions
	Polynomial Rings
	Univariate Polynomial Rings
	Monomial Orderings
	Groebner Bases
	Rational Function Families
	The Representations of Rational Functions
	The Defining Attributes of Rational Functions
	Creation of Rational Functions
	Arithmetic for External Representations of Polynomials
	Cancellation Tests for Rational Functions

	Algebraic extensions of fields
	Creation of Algebraic Extensions
	Elements in Algebraic Extensions

	p-adic Numbers
	Pure p-adic Numbers
	Extensions of the p-adic Numbers

	The MeatAxe
	MeatAxe Modules
	Module Constructions
	Selecting a Different MeatAxe
	Accessing a Module
	Irreducibility Tests
	Finding Submodules
	Induced Actions
	Module Homomorphisms
	Invariant Forms
	The Smash MeatAxe
	Smash MeatAxe Flags

	Tables of Marks
	More about Tables of Marks
	Table of Marks Objects in GAP
	Constructing Tables of Marks
	Printing Tables of Marks
	Sorting Tables of Marks
	Technical Details about Tables of Marks
	Attributes of Tables of Marks
	Properties of Tables of Marks
	Other Operations for Tables of Marks
	Standard Generators of Groups
	Accessing Subgroups via Tables of Marks
	The Interface between Tables of Marks and Character Tables
	Generic Construction of Tables of Marks
	The Library of Tables of Marks

	Character Tables
	Some Remarks about Character Theory in GAP
	History of Character Theory Stuff in GAP
	Creating Character Tables
	Character Table Categories
	Conventions for Character Tables
	The Interface between Character Tables and Groups
	Operators for Character Tables
	Attributes and Properties of Character Tables
	Operations Concerning Blocks
	Other Operations for Character Tables
	Printing Character Tables
	Computing the Irreducible Characters of a Group
	Representations given by modules
	The Dixon-Schneider Algorithm
	Advanced Methods for Dixon-Schneider Calculations
	Components of a Dixon Record
	An Example of Advanced Dixon-Schneider Calculations
	Constructing Character Tables from Others
	Sorted Character Tables
	Automorphisms and Equivalence of Character Tables
	Storing Normal Subgroup Information

	Class Functions
	Why Class Functions?
	Basic Operations for Class Functions
	Comparison of Class Functions
	Arithmetic Operations for Class Functions
	Printing Class Functions
	Creating Class Functions from Values Lists
	Creating Class Functions using Groups
	Operations for Class Functions
	Restricted and Induced Class Functions
	Reducing Virtual Characters
	Symmetrizations of Class Functions
	Molien Series
	Possible Permutation Characters
	Computing Possible Permutation Characters
	Operations for Brauer Characters
	Domains Generated by Class Functions

	Maps Concerning Character Tables
	Power Maps
	Class Fusions between Character Tables
	Parametrized Maps
	Subroutines for the Construction of Power Maps
	Subroutines for the Construction of Class Fusions

	Monomiality Questions
	Character Degrees and Derived Length
	Primitivity of Characters
	Testing Monomiality
	Minimal Nonmonomial Groups

	Installing GAP
	Installation Overview
	Get the Archives
	Unpacking
	Compilation
	Test of the installation
	Packages
	Finish Installation and Cleanup
	The Documentation
	If Things Go Wrong
	Known Problems of the Configure Process
	Problems on Particular Systems
	Optimization and Compiler Options
	Porting GAP
	GAP for Macintosh OS X
	GAP for MacOS
	Installation of GAP for MacOS
	Expert Windows installation
	Copyrights

	GAP Packages
	Installing a GAP Package
	Loading a GAP Package
	Functions for GAP Packages

	Replaced and Removed Command Names
	Group Actions - Name Changes
	Package Interface - Obsolete Functions and Name Changes
	Normal Forms of Integer Matrices - Name Changes
	Miscellaneous Name Changes or Removed Names

	Bibliography
	Index
	
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

