
Ion: Notes for the module and patch writer

Tuomo Valkonen
tuomov at iki.fi

August 6, 2007

Ion: Notes for the module and patch writer
Copyright © 2003–2004 Tuomo Valkonen.

This document is free; you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

This document is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FIT-
NESS FOR A PARTICULAR PURPOSE. See the section entitled“GNU General Public
License” for more details.

Abstract

This document is an unorganized collection of notes for those who want to write modules
or patches to Ion.

Contents

1 Class and object hierarchies 2
1.1 Class hierarchy . 2
1.2 Object hierarchies: WRegion parents and managers 4

1.2.1 Parent–child relations . 4
1.2.2 Manager–managed relations . 5

1.3 Summary . 5

2 Object system implementation 5

3 The Lua interface 6
3.1 Supported types . 6
3.2 Exporting functions . 7
3.3 Calling Lua functions and code . 7
3.4 Miscellaneous notes . 8

1

4 Miscellaneous design notes 8
4.1 Destroying WObj:s . 8
4.2 The types char* and const char* as function parameters and return values 9

5 C coding style 9
5.1 Whitespace . 9
5.2 Braces . 10
5.3 Names . 10
5.4 Miscellaneous . 10

A The GNU General Public License 11

1 Class and object hierarchies

While Ion does not not have a truly object-oriented design 1, things that appear on the
computer screen are, however, quite naturally expressed as such “objects”. Therefore Ion
implements a rather primitive OO system for these screen objects and some other things.

It is essential for the module writer to learn this object system, but also people who
write their own binding configuration files necessarily come into contact with the class
and object hierarchies – you need to know which binding setup routines apply where,
and what functions can be used as handlers in which bindings. It is the purpose of this
section to attempt to explain these hierarchies. If you do not wish the read the full
section, at least read the summary at the end of it, so that you understand the very
basic relations.

For simplicity we consider only the essential-for-basic-configuration Ioncore, mod tiling
and mod query classes. See Appendix ?? for the full class hierarchy visible to Lua side.

1.1 Class hierarchy

One of the most important principles of object-oriented design methodology is inheri-
tance; roughly how classes (objects are instances of classes) extend on others’ features.
Inheritance gives rise to class hierarchy. In the case of single-inheritance this hierarchy
can be expressed as a tree where the class at the root is inherited by all others below it
and so on. Figure 1 lists out the Ion class hierarchy and below we explain what features
of Ion the classes implement.

The core classes:
Obj Is the base of Ion’s object system.
WRegion is the base class for everything corresponding to something on the screen.

Each object of type WRegion has a size and position relative to the parent WRe-
gion. While a big part of Ion operates on these instead of more specialised classes,

1. the author doesn’t like such artificial designs

2

Obj
|-->WRegion
| |-->WClientWin
| |-->WWindow
| | |-->WMPlex
| | | |-->WFrame
| | | |-->WScreen
| | | |-->WRootWin
| | |-->WInput (mod_query)
| | |-->WEdln (mod_query)
| | |-->WMessage (mod_query)
| |-->WGroup
| | |-->WGroupWS
| | |-->WGroupCW
| |-->WTiling (mod_tiling)
|-->WSplit (mod_tiling)

Figure 1: Partial Ioncore, mod tiling and mod query class hierarchy.

WRegion is a “virtual” base class in that there are no objects of “pure” type WRe-
gion; all concrete regions are objects of some class that inherits WRegion.

WClientWin is a class for client window objects, the objects that window managers
are supposed to manage.

WWindow is the base class for all internal objects having an X window associated to
them (WClientWins also have X windows associated to them).

WMPlex is a base class for all regions that “multiplex” other regions. This means that
of the regions managed by the multiplexer, only one can be displayed at a time.

WScreen is an instance of WMPlex for screens.
WRootWin is the class for root windows of X screens. It is an instance of WScreen.

Note that an “X screen” or root window is not necessarily a single physical screen
as a root window may be split over multiple screens when ugly hacks such as
Xinerama are used. (Actually there can be only one root window when Xinerama
is used.)

WFrame is the class for frames. While most Ion’s objects have no graphical presen-
tation, frames basically add to WMPlexes the decorations around client windows
(borders, tabs).

WGroup is the base class for groups. Particular types of groups are workspaces (WGroupWS)
and groups of client windows (WGroupCW).

Classes implemented by the mod tiling module:
WTiling is the class for tilings of frames.
WSplit (or, more specifically, classes that inherit it) encode the WTiling tree structure.
Classes implemented by the mod query module:
WInput is a virtual base class for the two classes below.

3

WRootWins
|-->WScreens

|-->WGroupWSs
|-->WTilings
|-->WClientWins in full screen mode
|-->WFrames

|-->WGroupCWs
|-->WClientWins
|-->WFrames for transients
|-->a possible WEdln or WMessage

Figure 2: Most common parent–child relations

WEdln is the class for the “queries”, the text inputs that usually appear at bottoms
of frames and sometimes screens. Queries are the functional equivalent of “mini
buffers” in many text editors.

WMessage implements the boxes for warning and other messages that Ion may wish
to display to the user. These also usually appear at bottoms of frames.

There are also some other “proxy” classes that do not refer to objects on the screen. The
only important one of these for basic configuration is WMoveresMode that is used for
binding callbacks in the move and resize mode.

1.2 Object hierarchies: WRegion parents and managers

1.2.1 Parent–child relations

Each object of type WRegion has a parent and possibly a manager associated to it.
The parent for an object is always a WWindow and for WRegion with an X window
(WClientWin, WWindow) the parent WWindow is given by the same relation of the X
windows. For other WRegions the relation is not as clear. There is generally very few
restrictions other than the above on the parent—child relation but the most common is
as described in Figure 2.

WRegions have very little control over their children as a parent. The manager WRegion
has much more control over its managed WRegions. Managers, for example, handle resize
requests, focusing and displaying of the managed regions. Indeed the manager—managed
relationship gives a better picture of the logical ordering of objects on the screen. Again,
there are generally few limits, but the most common hierarchy is given in Figure 3. Note
that sometimes the parent and manager are the same object and not all objects may
have a manager (e.g. the dock in the dock module at the time of writing this) but all
have a parent–a screen if not anything else.

4

WRootWins
|-->WScreens

|-->WGroupCWs for full screen WClientWins
| |-->WClientWins
| |-->WFrames for transients (dialogs)
| |--> WClientWin
|-->WGroupWSs for workspaces
| |-->WTiling
| | |-->WFrames
| | | |-->WGroupCWs (with contents as above)
| | |-->possibly a WStatusBar or WDock
| |-->WFrames for floating content
| |-->possibly a WEdln, WMessage or WMenu
| |-->possibly a WStatusBar or WDock (if no tiling)
|-->WFrames for sticky stuff, such as the scratchpad

Figure 3: Most common manager–managed relations

1.2.2 Manager–managed relations

Note that a workspace can manage another workspace. This can be achieved with the
attach_new function, and allows you to nest workspaces as deep as you want.

1.3 Summary

In the standard setup, keeping queries, messages and menus out of consideration:

� The top-level objects that matter are screens and they correspond to physical
screens. The class for screens is WScreen.

� Screens contain (multiplex) groups (WGroup) and other objects, such as WFrames.
Some of these are mutually exclusive to be viewed at a time.

� Groups of the specific kind WGroupWS often contain a WTiling tiling for tiling
frames (WFrame), but groups may also directly contain floating frames.

� Frames are the objects with decorations such as tabs and borders. Frames contain
(multiplex) among others (groups of) client windows, to each of which corresponds
a tab in the frame’s decoration. Only one client window (or other object) can be
shown at a time in each frame. The class for client windows is WClientWin.

2 Object system implementation

First, to get things clear, what are considered objects here are C structures containing
a properly initialised structure defined in ioncore/obj.h as the first element (or the first
element of the structure which is the first element and so on which gives rise to inheri-
tance). The WObj structure contains a pointer to a WObjDescr class type info structure

5

and a list of so called “watches”. The WObjDescr structure simply lists the class name,
a table of dynamic functions and a pointer to deinitialisation function (or “destructor”).

Ion does not do any reference counting, garbage collecting or other fancy things related
to automatic safe freeing of objects with its simplistic object system. Instead special
watches (the WWatch structure) may be used to create safe references to objects that
might be destroyed during the time the specific pointer is needed. When an object is
destroyed, its list of watches is processed, setting the pointers in the watches to NULL
and the watch handlers for each watch are called.

3 The Lua interface

This section finally describes the implementation details and how modules should us
the Lua interface. First, in section 3.1 we look at types supported by the interface,
how objects are passed to Lua code and how Lua tables should be accessed from Ion and
modules. In section 3.2 the methods for exporting functions and how they are called from
Lua are explained and in section 3.3 the method for calling Lua functions is explained.

3.1 Supported types

The following types are supported in passing parameters between the C side of Ion and
Lua:

Identifier character C type Description
i int Integer
s char* String
S const char* Constant string
d double
b bool
t ExtlTab Reference to Lua table
f ExltFn Reference to Lua function.
o Any WObj*

The difference between identifiers ’s’ and ’S’ is that constant strings as return values are
not free’d by the level 1 call handler (see below) after passing to Lua (lua_pushstring
always makes a copy) unlike normal strings. String parameters are always assumed to
be the property of the caller and thus implicitly const.

Likewise, if a reference to ’t’ or ’f’ is wished to be stored beyond the lifetime of a function
receiving such as an argument, a new reference should be created with extl_ref_table
/fn. References can be free’d with extl_unref_table/fn. References gotten as return
values with the extl_table_get (how these work should be self-explanatory!) functions
are property of the caller and should be unreferenced with the above-mentioned functions
when no longer needed. The functions extl_fn/table_none() return the equivalent of
NULL.

6

WObjs are passed to Lua code with WWatch userdatas pointing to them so the objects
can be safely deleted although Lua code might still be referencing them. (This is why
SWIG or tolua would not have helped in creating the interface: extra wrappers for each
function would still have been needed to nicely integrate into Ion’s object system. Even in
the case that Ion was written in C++ this would be so unless extra bloat adding pointer-
like objects were used everywhere instead of pointers.) It may be sometimes necessary
check in Lua code that a value known to be an Ion WObj is of certain type. This can be
accomplished with obj_is(obj, "typename"). obj_typename(obj) returns type name
for a WObj.

3.2 Exporting functions

Exported functions (those available to the extension language) are defined by placing
EXTL_EXPORT before the function implementation in the C source. The script mkex-
ports.pl is then used to automatically generate exports.c from the source files if MAKE_
EXPORTS=modulename is specified in the Makefile. All pointers with type beginning with
a ’W’ are assumed to be pointers to something inheriting WObj. In addition to a ta-
ble of exported functions and second level call handlers for these, exports.c will contain
two functions module_register_exports() and module_unregister_exports() that
should then be called in module initialisation and deinitialisation code.

You’ve seen the terms level 1 and 2 call handler mentioned above. The Lua support code
uses two so called call handlers to convert and check the types of parameters passed from
Lua to C and back to Lua. The first one of these call handlers is the same for all exported
functions and indeed lua sees all exported as the same C function (the L1 call handler)
but with different upvalues passing a structure describing the actual function and the
second level call handler. The L1 call handler checks that the parameters received from
Lua match a template given as a string of the identifier characters defined above. If
everything checks out ok, the parameters are then put in an array of C unions that can
contain anyof these known types and the L2 call handler is called.

The L2 call handler (which is automatically generated by the mkexports.pl script) for
each exported function checks that the passed WObjs are of the more refined type
required by the function and then calls the actual function. While the WObj checking
could be done in the L1 handler too, the L2 call handlers are needed because we may
not know how the target platform passes each parameter type to the called function.
Thefore we must let the C compiler generate the code to convert from a simple and
known enough parameter passing method (the unions) to the actual parameter passing
method. When the called function returns everything is done in reverse order for return
values (only one return value is supported by the generated L2 call handlers).

3.3 Calling Lua functions and code

The functions extl_call, extl_call_named, extl_dofile and extl_dostring call a
referenced function (ExtlFn), named function, execute a string and a file, respectively.

7

The rest of the parameters for all these functions are similar. The ’spec’ argument is a
string of identifier characters (see above) describing the parameters to be passed. These
parameters follow after ’rspec’. For dofile and dostring these parameters are passed in the
global table arg (same as used for program command lien parameters) and for functions
as you might expect. The parameter ’rspec’ is a similar description of return values.
Pointers to variables that should be set to the return values follow after the input values.
The return value of all these functions tells if the call and parameter passing succeeded
or not.

Sometimes it is necessary to block calls to all but a limited set of Ion functions. This
can be accomplished with extl_set_safelist. The parameter to this function is a
NULL-terminated array of strings and the return value is a similar old safelist. The
call extl_set_safelist(NULL) removes any safelist and allows calls to all exported
functions.

3.4 Miscellaneous notes

Configuration files should be read as before with the function read_config_for except
that the list of known options is no longer present.

Winprops are now stored in Lua tables and can contain arbitrary properties. The ’proptab’
entry in each WClientWin is a reference to a winprop table or extl_table_none() if
such does not exist and properties may be read with the extl_table_gets functions.
(It is perfectly legal to pass extl_table_none() references to extl_table_get*.)

4 Miscellaneous design notes

4.1 Destroying WObj:s

To keep Ion’s code as simple as possible yet safe, there are restrictions when the WObj
destroy_obj function that calls watches, the deinit routine and frees memory may be
called directly. In all other cases the mainloop_defer_destroy function should be used
to defer the call of destroy_obj until Ioncore returns to its main event loop.

Calling the destroy_obj function directly is allowed in the following cases:

� In the deinit handler for another object. Usually managed objects are destroyed
this way.

� The object was created during the current call to the function that wants to get
rid of the object. This is the case, for example, when the function created a frame
to manage some other object but for some reason failed to reparent the object to
this frame.

� In a deferred action handler set with mainloop_defer_action. Like deferred de-
stroys, other deferred actions are called when Ioncore has returned to the main
loop.

8

� You are absolute sure that C code outside your code has no references to the object.

If there are no serious side effects from deferring destroying the object or you’re unsure
whether it is safe to destroy the object immediately, use mainloop_defer_destroy.

4.2 The types char* and const char* as function parameters and return
values

The following rules should apply to using strings as return values and parameters to
functions.

Type Return value Parameter
const char* The string is owned by the called

function and the caller is only
quaranteed short-term read ac-
cess to the string.

The called function may only read
the string during its execution.
For further reference a copy must
be made.

char* The string is the caller’s responsi-
bility and it must free it when no
longer needed.

The called function may modify
the string but the “owner” of the
string is case-dependant.

5 C coding style

If you want to submit patches to Ion, you must follow my coding style, even if you think
it is the root of all evil. We don’t want the code to be an incomprehensible mess of styles
and I have better things to do than fix other people’s style to match mine. The style
should be obvious by studying the source, but here’s a list of some things to take note
of.

5.1 Whitespace

� Indentations of 4 with spaces.
� No extra spaces between operators, delimiters etc. except

– around logical and, or (&&, ||)
– around the conditional a ? b : c
– after commas and semicolons

In my opinion this helps pointing out arithmetic or other expressions within logical
expressions or parameter lists.

� All kinds of labels are out-tended to the level of the higher level block. For example:
void foo()
{
again:

switch(asdf){
case 1:

...

9

break;
default:

...
break;

}
}

5.2 Braces

� Opening brace is at the end of the line, except in function bodies, where it is at
the beginning of the line following the definition.

� Never put the body of a control statement on the same line with the statement
(e.g. if(foo){ bar() }).
For example, the block
void foo(int a, int b)
{

if(a==b && c+d==e){
...

}
}
has correct style while the block
void foo(int a,int b) {

if (a == b && c + d == e) {
...

}
}
does not.

� The else keyword follows immediately after the closing brace of previous if, if
any. (This might change so I don’t care if you put it on the next line.)

� I have used the convention that control statement bodies containing a single state-
ment do not need braces around the block if, in case of the if all the blocks in
if ... else if ... else contain just one statement. If you want to, just use
braces in every case.

5.3 Names

� Function and variable names only have lower case letters. Type names are in mixed
case while constants and macros (#defines) are in upper case letters.

5.4 Miscellaneous

� In the definition of a pointer variable, the asterisk is attached to the variable name:
char *s;. (One could claim this an exception to the second rule.)

10

� You might optionally want to use Jed’s foldings to group blocks of related code in
a file to keep it organized:
/*{{{ Many related functions */

void code()
{

...
}

...

/*}}}*/

I think that’s mostly it. Study the source when in doubt.

A The GNU General Public License

Version 2, June 1991

Copyright © 1989, 1991 Free Software Foundation, Inc.

59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public License is intended to guarantee your
freedom to share and change free software—to make sure the software is free for all its
users. This General Public License applies to most of the Free Software Foundation’s
software and to any other program whose authors commit to using it. (Some other Free
Software Foundation software is covered by the GNU Library General Public License
instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish), that you receive source code or
can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

11

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified
by someone else and passed on, we want its recipients to know that what they have is not
the original, so that any problems introduced by others will not reflect on the original
authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses,
in effect making the program proprietary. To prevent this, we have made it clear that
any patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

Terms and Conditions For Copying, Distribution and
Modification

0. This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this General
Public License. The “Program”, below, refers to any such program or work, and
a “work based on the Program” means either the Program or any derivative work
under copyright law: that is to say, a work containing the Program or a portion of
it, either verbatim or with modifications and/or translated into another language.
(Hereinafter, translation is included without limitation in the term“modification”.)
Each licensee is addressed as “you”.
Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work
based on the Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as
you receive it, in any medium, provided that you conspicuously and appropriately
publish on each copy an appropriate copyright notice and disclaimer of warranty;
keep intact all the notices that refer to this License and to the absence of any
warranty; and give any other recipients of the Program a copy of this License
along with the Program.
You may charge a fee for the physical act of transferring a copy, and you may at
your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus
forming a work based on the Program, and copy and distribute such modifications

12

or work under the terms of Section 1 above, provided that you also meet all of
these conditions:
(a) You must cause the modified files to carry prominent notices stating that you

changed the files and the date of any change.
(b) You must cause any work that you distribute or publish, that in whole or

in part contains or is derived from the Program or any part thereof, to be
licensed as a whole at no charge to all third parties under the terms of this
License.

(c) If the modified program normally reads commands interactively when run,
you must cause it, when started running for such interactive use in the most
ordinary way, to print or display an announcement including an appropriate
copyright notice and a notice that there is no warranty (or else, saying that
you provide a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this License.
(Exception: if the Program itself is interactive but does not normally print
such an announcement, your work based on the Program is not required to
print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms,
do not apply to those sections when you distribute them as separate works. But
when you distribute the same sections as part of a whole which is a work based on
the Program, the distribution of the whole must be on the terms of this License,
whose permissions for other licensees extend to the entire whole, and thus to each
and every part regardless of who wrote it.
Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control
the distribution of derivative or collective works based on the Program.
In addition, mere aggregation of another work not based on the Program with
the Program (or with a work based on the Program) on a volume of a storage or
distribution medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section
2) in object code or executable form under the terms of Sections 1 and 2 above
provided that you also do one of the following:
(a) Accompany it with the complete corresponding machine-readable source code,

which must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange; or,

(b) Accompany it with a written offer, valid for at least three years, to give any
third party, for a charge no more than your cost of physically performing
source distribution, a complete machine-readable copy of the corresponding
source code, to be distributed under the terms of Sections 1 and 2 above on
a medium customarily used for software interchange; or,

(c) Accompany it with the information you received as to the offer to distribute

13

corresponding source code. (This alternative is allowed only for noncommer-
cial distribution and only if you received the program in object code or exe-
cutable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making mod-
ifications to it. For an executable work, complete source code means all the source
code for all modules it contains, plus any associated interface definition files, plus
the scripts used to control compilation and installation of the executable. However,
as a special exception, the source code distributed need not include anything that is
normally distributed (in either source or binary form) with the major components
(compiler, kernel, and so on) of the operating system on which the executable runs,
unless that component itself accompanies the executable.
If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from
the same place counts as distribution of the source code, even though third parties
are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such parties remain
in full compliance.

5. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its
derivative works. These actions are prohibited by law if you do not accept this
License. Therefore, by modifying or distributing the Program (or any work based
on the Program), you indicate your acceptance of this License to do so, and all its
terms and conditions for copying, distributing or modifying the Program or works
based on it.

6. Each time you redistribute the Program (or any work based on the Program),
the recipient automatically receives a license from the original licensor to copy,
distribute or modify the Program subject to these terms and conditions. You may
not impose any further restrictions on the recipients’ exercise of the rights granted
herein. You are not responsible for enforcing compliance by third parties to this
License.

7. If, as a consequence of a court judgment or allegation of patent infringement or
for any other reason (not limited to patent issues), conditions are imposed on you
(whether by court order, agreement or otherwise) that contradict the conditions
of this License, they do not excuse you from the conditions of this License. If
you cannot distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may not
distribute the Program at all. For example, if a patent license would not permit
royalty-free redistribution of the Program by all those who receive copies directly
or indirectly through you, then the only way you could satisfy both it and this

14

License would be to refrain entirely from distribution of the Program.
If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system,
which is implemented by public license practices. Many people have made generous
contributions to the wide range of software distributed through that system in
reliance on consistent application of that system; it is up to the author/donor to
decide if he or she is willing to distribute software through any other system and
a licensee cannot impose that choice.
This section is intended to make thoroughly clear what is believed to be a conse-
quence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places
the Program under this License may add an explicit geographical distribution
limitation excluding those countries, so that distribution is permitted only in or
among countries not thus excluded. In such case, this License incorporates the
limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the
General Public License from time to time. Such new versions will be similar in
spirit to the present version, but may differ in detail to address new problems or
concerns.
Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and “any later version”, you
have the option of following the terms and conditions either of that version or of
any later version published by the Free Software Foundation. If the Program does
not specify a version number of this License, you may choose any version ever
published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose
distribution conditions are different, write to the author to ask for permission. For
software which is copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our decision will be
guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

No Warranty
11. Because the program is licensed free of charge, there is no warranty

for the program, to the extent permitted by applicable law. Ex-
cept when otherwise stated in writing the copyright holders and/or
other parties provide the program “as is” without warranty of any
kind, either expressed or implied, including, but not limited to, the
implied warranties of merchantability and fitness for a particular

15

purpose. The entire risk as to the quality and performance of the
program is with you. Should the program prove defective, you assume
the cost of all necessary servicing, repair or correction.

12. In no event unless required by applicable law or agreed to in writ-
ing will any copyright holder, or any other party who may modify
and/or redistribute the program as permitted above, be liable to
you for damages, including any general, special, incidental or con-
sequential damages arising out of the use or inability to use the
program (including but not limited to loss of data or data being
rendered inaccurate or losses sustained by you or third parties or a
failure of the program to operate with any other programs), even
if such holder or other party has been advised of the possibility of
such damages.

End of Terms and Conditions

Appendix: How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to
the public, the best way to achieve this is to make it free software which everyone can
redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each
file should have at least the “copyright” line and a pointer to where the full notice is
found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) yyyy name of author

This program is free software; you can redistribute it and/or modify it un-
der the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your option) any
later version.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc., 59
Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an
interactive mode:

16

Gnomovision version 69, Copyright (C) yyyy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type
‘show w’.
This is free software, and you are welcome to redistribute it under certain
conditions; type ‘show c’ for details.

The hypothetical commands show w and show c should show the appropriate parts of the
General Public License. Of course, the commands you use may be called something other
than show w and show c; they could even be mouse-clicks or menu items—whatever suits
your program.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to
permit linking proprietary applications with the library. If this is what you want to do,
use the GNU Library General Public License instead of this License.

17

Index
call handler, 7

destroy_obj, 8

extl_call, 7
extl_call_named, 7
extl_dofile, 7
extl_dostring, 7
extl_set_safelist, 8
ExtlFn, 6
ExtlTab, 6

mainloop_defer_action, 8
mainloop_defer_destroy, 8
manager, 4

Obj, 2

parent, 4

read_config_for, 8
root window, 3

screen
physical, 3
X, 3

WClientWin, 3
WEdln, 4
WFrame, 3
WGroup, 3
WGroupCW, 3
WGroupWS, 3
WInput, 3
WMessage, 4
WObj, 5
WObjDescr, 5
WRegion, 2
WRootWin, 3
WScreen, 3
WSplit, 3
WTiling, 3
WWatch, 6
WWindow, 3

Xinerama, 3

18

	 Class and object hierarchies
	 Class hierarchy
	 Object hierarchies: WRegion parents and managers
	 Parent--child relations
	 Manager--managed relations

	 Summary

	 Object system implementation
	 The Lua interface
	 Supported types
	 Exporting functions
	 Calling Lua functions and code
	 Miscellaneous notes

	 Miscellaneous design notes
	 Destroying WObj:s
	 The types !char*! and !const char*! as function parameters and return values

	 C coding style
	 Whitespace
	 Braces
	 Names
	 Miscellaneous

	 The GNU General Public License

