Home | Trees | Index | Help |
|
---|
Package nltk_lite :: Package tag :: Module unigram :: Class Affix |
|
object
--+ |TagI
--+ |SequentialBackoff
--+ | Affix
MarshalAffix
tag.Affix
can be used, it should be trained on a tagged
corpus. Using this training data, it will find the most likely tag for
each word type. It will then use this information to assign the most
frequent tag to each word. If the tag.Affix
encounters a
prefix or suffix in a word for which it has no data, it will assign the
tag None
.
Method Summary | |
---|---|
Construct a new affix stochastic tagger. | |
__repr__(self)
| |
size(self)
| |
tag_one(self,
token,
history)
| |
Train tag.Affix using the given training data. | |
Inherited from SequentialBackoff :
tag ,
tag_sents
Inherited from object :
__delattr__ ,
__getattribute__ ,
__hash__ ,
__new__ ,
__reduce__ ,
__reduce_ex__ ,
__setattr__ ,
__str__
|
Method Details |
---|
__init__(self,
length,
minlength,
cutoff=1,
backoff=None)
Construct a new affix stochastic tagger. The new tagger should be
trained, using the |
train(self, tagged_corpus, verbose=False)Traintag.Affix using the given training data. If this
method is called multiple times, then the training data will be
combined.
|
Home | Trees | Index | Help |
|
---|
Generated by Epydoc 2.1 on Tue Sep 5 09:37:21 2006 | http://epydoc.sf.net |