
WrapITK: Enhanced languages support
for the Insight Toolkit

Release 0.2

Gaëtan Lehmann1, Zachary Pincus2 and Benoit Regrain3

July 30, 2006

1INRA, UMR 1198; ENVA; CNRS, FRE 2857, Biologie du Développement et Reproduction, Jouy en
Josas, F-78350, France

2Program in Biomedical Informatics and Department of Biochemistry, Stanford University School of
Medicine, Stanford, California

3CREATIS, CNRS UMR 5515, 69621 Villeurbanne, France

Abstract

ITK [1] is a huge image analysis library, which contains lots of state of the arts algorithms implementa-
tions. However, using it in C++ can be difficult and is definitively bad suited for prototyping. WrapITK
aims to allow classes from ITK (and custom, classes that interact with ITK) to be ”wrapped” for use with
languages like Python [2], Tcl [3], and Java [4].

Contents

I Introduction 4

II Supported languages and plateforms 6

III Performance and memory usage 7

IV User guide 8

1 Installation 8
1.1 Get the software sources. 8
1.2 ITK . 8
1.3 CableSwig. 8
1.4 Python. 8
1.5 Tcl . 9
1.6 Java . 9

Contents 2

1.7 Build options . 9
1.8 Install WrapITK or use it in the build tree. 10
1.9 Binary packages. 10

2 Python usage 11
2.1 Configuring python and importing the libraries. 12
2.2 Template usage. 12
2.3 TheNew()method . 13
2.4 Python sequences and ITK. 14
2.5 Python specific functions in theitk module. 16
2.6 Advanced Features. 20
2.7 Full python script examples. 21

3 TCL usage 22

4 Java usage 22

V Developer guide 23

5 WrapITK description 23
5.1 Creating a CMakeLists.txt file for a wrapper library. 23
5.2 Creating wrapXXX.cmake files to wrap classes. 23

6 Extending or customizing WrapITK 27

7 External projects 27
7.1 Why external projects?. 27
7.2 Building . 27
7.3 Usage . 27
7.4 Installation . 28
7.5 Top-level CMakeLists for external projects. 28
7.6 Examples . 28
7.7 BufferConversion: an example of extension for one language 28
7.8 ItkVtkGlue: an example of extension for all languages, including C++ 29

8 Extending language support and adding more languages 30
8.1 Generating target language code. 30
8.2 typemaps . 30

9 Contributing to WrapITK 30

VI Known bugs 32

VII Acknowledgments 33

Contents 3

VIII Conclusion 34

4

Part I

Introduction

WrapITK is a project designed to allow classes from ITK (and custom, classes that interact with ITK) to be
”wrapped” for use with languages like Python [2], Tcl [3], and Java [4].

Note that ITK already has a wrapping infrastructure, and that WrapITK is based on it, and use the same
tools: CMake [5], GCC-XML [6] and CableSwig1 [8]. This project aims to address the following deficits of
the existing wrappers (and others):

• ITK is a huge library, but only a small number of classes are available in target languages. It become
quickly frustrating for the user, especially when he has to spend lot of time to extend the current set
of classes. Even if it is not yet complete, the WrapITK’s set of classes have been highly extended.
Moreover, the user can choose at build time which types and which dimensions he want to wrap. With
202 wrapped filters, WrapITK covers 63% of the available filters.

• The template arguments set is poorly chosen, making sometime impossible to create a pipeline. In
WrapITK, most of the filters have the same input and output types, and only a few filters allow to
change type. This make the types manipulated by filters more consistent, and the user should always
be able to build his pipeline.

• Lots of types returned by ITK object’s methods are not usablein target languages. For example, the
GetPixel() method of the classitk::Image returns a string describing a pointer, but don’t return
the pixel value. In WrapITK, most types used in classes are available in target languages.

• Names in target languages are inconsistent. WrapITK use a strict naming convention which should
make easier to identify the template arguments.

• The ITK wrapping system is difficult to understand and maintain. WrapITK was written - and thor-
oughly documented - to be as easy as possible to understand, maintain, and extend.

• It is non-trivial to add wrappers for different ITK classes to the system. In WrapITK, adding a wrapper
can be as simple as adding a single file containing a few well-documented cmake macros.

• It is difficult if not impossible to add original-style ITK wrappers for external C++ classes that interact
with ITK. WrapITK provides explicit hooks for external C++ classes to be wrapped and even installed
in the WrapITK tree so that they interact seamlessly with theother wrapped classes.

• The python’sInsightToolkit module is only structured as a big list of names. It make it nearly
unusable in the python interpreter. WrapITK comes with a newwell designed python module easy to
use in interpreter, and providing run-time lookup of templated types - thing which can’t be easily done
in C++. Additionally, WrapITK ensures thatSmartPointers are always returned and acceptable as
input, so no bare pointers are ever exposed to Python. This isnot the case in the standard ITK
wrappers.

• ITK was broken on MacOS X [9] with python.

• Loading python modules can take lot of time. With WrapITK, bydefault, only the modules really
used are loaded, and so the loading time is higly shorter in common situations.

1CableSwig is based on a now quite old version of SWIG [7].

5

The article you’re reading is not as nice and complete than what we would have done, but it seems important
to us to release our work and to get feedbacks as soon as possible. The article will continue to evolve with
WrapITK.

6

Part II

Supported languages and plateforms

Java, Tcl and Python builds properly and are fully usable. However, Java and Tcl don’t yet have the extended
features added to Python2.

WrapITK is mainly developed on Mandriva Linux [10] and MacOS X [9] and so is well tested on this
palteforms. It also builds on windows [11], but require more testing to be sure everything work as it should.
See below for details about how to report bugs are contributepatches.

Several tests are available3 for Python, Tcl and Java. They ensure the high quality of WrapITK. They can
be run with thectest command.

2Any help to extend Java and Tcl support would be higly appreciated.
3There is currently 67 tests with the default configuration.

7

Part III

Performance and memory usage

WrapITK provides an interface to some C++ compiled code, andso, execution time are very similar to pure
C++ programs in most of cases.

The major difference comes from the memory usage: while a C++program will produce a binary executable
containing only the required code, WrapITK binary containsall the classes wrapped, and so WrapITK can
take a significant amount of memory.

Some comvenient features, like sequence management in python, can be quite inefficient and should not be
used in a loop.

8

Part IV

User guide

1 Installation

1.1 Get the software sources

A tarball archive is submitted with the article.

The last version can be obtained from the development repository with darcs [12]. The command is
darcs get --partial http://voxel.jouy.inra.fr/darcs/contrib-itk/WrapITK/4.

For the user who don’t want to use darcs [12] but still want the last development version, a nightly updated
archive is available athttp://voxel.jouy.inra.fr/darcs/contrib-itk/WrapITK/WrapITK.tar.gz
or http://voxel.jouy.inra.fr/darcs/contrib-itk/WrapITK/WrapITK.zip.

1.2 ITK

WrapITK will work properly with the ITK 2.8.1 release.

There are some optional patches to the ITK source inWrapITK/patches/optional which can be applied
to version 2.8.1. These optional patches provide better support for python by providing some methods like
__str__, or methods for standard python sequence interface (see below).

Some required patch may appear in the development version version of WrapITK. Those patches are re-
quired for the last stable version of ITK, and should be already integrated in the last CVS version of ITK.

1.3 CableSwig

WrapITK requires ITK and CableSwig [1] to have been previously down-
loaded and built. To get a development version of CableSwig,simply run:
cvs -d:pserver:anonymous@public.kitware.com:/cvsroot/CableSwig co CableSwig (Note
that no cvs login is needed here.)

If you check out CableSwig into theInsight/Utilities directory, then it will be built as a part of ITK,
and will be automatically detected by WrapITK when ITK is found.

1.4 Python

Python [2] is required only to build python support. WrapITK is reported to work with python 2.3 and
python 2.4. However, the test framework requires thesubprocess module available in standard only in
python 2.4 and above. To run the python test with python 2.3, you have to installsubprocess.

4Note that the–partial option is required on systems with case insensitive filesystem like windows or Mac Os X.

http://voxel.jouy.inra.fr/darcs/contrib-itk/WrapITK/WrapITK.tar.gz
http://voxel.jouy.inra.fr/darcs/contrib-itk/WrapITK/WrapITK.zip

1.5 Tcl 9

1.5 Tcl

Tcl [3] is required only to build tcl support. WrapITK have been tested with Tcl 8.4.11.

1.6 Java

Java [4] is required only to build java support. WrapITK have been tested with java1.5.0_06-b05 and
1.4.2_11.

1.7 Build options

After CableSwig and ITK have been (possibly patched) and built, building WrapITK with cmake is simple.
Runccmake in a new directory with the path to the WrapITK source tree as the first argument, and provide
the locations of the ITK and CableSwig build trees if ccmake so requests. Build options are relatively
self-explanatory.

The project is provided with defaults build option which should OK for most of users. However, for specific
needs, you might want to change those options:

• WRAP_TEMPLATE_IF_DIMS is the list of dimensions which will be available in the target languages.
The dimensions must be separated by a semicolon (;). By default dimensions 2 and 3 are available.

• WRAP_covariant_vector_double, OFF by default.

• WRAP_covariant_vector_float, ON by default.

• WRAP_double OFF, by default.

• WRAP_float ON, by default. Note that it is the only signed type selected by default, so you will have
to use floats to manipulate signed values.

• WRAP_rgb_unsigned_char, ON by default.

• WRAP_rgb_unsigned_short, OFF by default.

• WRAP_signed_char, OFF by default.

• WRAP_signed_long, OFF by default.

• WRAP_signed_short, OFF by default.

• WRAP_unsigned_char, OFF by default.

• WRAP_unsigned_long, OFF by default. Some filters, likeWatershedImageFilter require this type.
Some filters to return to a wrapped type fromunsigned long are provided, even if this option is set
to OFF.

• WRAP_unsigned_short, ON by default.unsigned short is the only integer type available by default.
This type have been choose rather thanunsigned char to be able to manipulate 8-bits as well as 16-
bits images, and to be able to manipulate labeled images morethan 255 labels. It is still possible to
save images with theunsigned char type, even ifWRAP_unsigned_char is set toOFF.

1.8 Install WrapITK or use it in the build tree 10

• WRAP_vector_double, OFF by default.

• WRAP_vector_float, ON by default.

The user should modify those options carefully: activate all the types, and/or add lots of dimensions will
produce very large binary files which will take lots of memoryonce loaded.

Note that each individual filter that is wrapped can declare which dimensions it should be wrapped for,
and what image types it can accept. For example, a filter coulddeclare that it should only be wrapped for
3D images with floating-point typed pixels. In this case, then wrappers will only be created if the user
has selected to build 3-dimensional image wrappers and has selected one or more floating point types (e.g.
double or float) in ccmake. Thus, the ccmake configuration specifies the maximum possible range of image
and filter types to be created, and each filter is wrapped for some subset of that range.

Project should always be built outside the source directory, in abuild directory for example.

1.8 Install WrapITK or use it in the build tree

Once built, WrapITK can be installed or used in place.

1.9 Binary packages

RPM packages for Mandriva Linux 2006 are available athttp://voxel.jouy.inra.fr/mdk/mima2. To
install WrapITK for mandriva linux 2006.0, just add a new media with the command

urpmi.addmedia mima2-2006.0 http://voxel.jouy.inra.fr/mdk/mima2/2006.0/i586/

and install the package you want with

urpmi python-itk

This media also contain several packages which may be usefulto use WrapITK, and which are not available
in mandriva linux 2006.0. Here is the full list:

• cmake

• darcs

• itk-data

• itk-doc

• itk-examples

• itkvtk-devel

• libitk

• libitk-devel

http://voxel.jouy.inra.fr/mdk/mima2

11

• libvtk

• libvtk-devel

• libvtk-qt

• python-itk

• python-itk-numarray

• python-itkvtk

• python-vtk

• tcl-itk

• tcl-vtk

• vtk-data

• vtk-doc

• vtk-examples

• vtk-test-suite

• wrapitk-devel

WrapITK is also available in cooker, the development version of mandriva.

2 Python usage

In this section, we detail python usage. Some of the examplesshown here are copied from the console, and
so show the interpreter prompt:

2> 12+3
2> 15

3> result = 12+3

4>

In the example above,12+3 is what is wrote in the interpreter, and15 is the result.2>, 3>, 4> are the prompt
of the interpreter.

2.1 Configuring python and importing the libraries 12

2.1 Configuring python and importing the libraries

If WrapITK has been installed, then using it from within python is trivial: simply issue the command
import itk, and you are ready to go. This is because WrapITK installs a.pth file in the python
site-packages directory so that python knows where to find the itk scripts.

On linux boxes however, the user have to set theLD_LIBRARY_PATH to point to libSwigRuntime.so. For
exampleexport LD_LIBRARY_PATH=/usr/lib/InsightToolkit/WrapITK/Python-SWIG. This step is
not required with the mandriva’s package.

If WrapITK has not been installed, then you will either need to set thePYTHONPATH environment variable
to contain the directory/path-to-WrapITK-build/Python, add this path tosys.paths within python, or
start python from that directory. After this,import itk will work properly.

2.2 Template usage

Most class in the itk python module are ”template proxy classes” that encapsulate all of the template instan-
tiations that were created at build time. If three-dimensional unsigned char andunsigned short image
types were created, they can be accessed as follows:

• itk.Image[itk.UC, 3]

• itk.Image[itk.US, 3]

Note that the C typeunsigned char is given withitk.UC, andunsigned short with itk.US.

The template parameters can also be put in a variable, and declared once in a script:

dim = 3
pixelType = itk.UC
imageType = itk.Image[pixelType, dim]

image = imageType.New()

This construction is similar to what is done in C++, and make it easy to change the dimension used for
example - it can even be changed at run-time.

A more convenient syntax for usage in interpreter is also available:

• itk.Image.UC3

• itk.Image.US3

itk.Image.UC3 refere to the same class thanitk.Image[itk.UC, 3] but have the advantage to allow to
use the tab-completion in the interpreter, and so let the user easily know which template arguments he can
use. However, this notation is more rigid than the one above and won’t let the user specify the type and the
dimension used in a single place, and thus, should be use onlyin interpreter.

Filters templated on images can be similarly accessed:

• itk.ImageFileReader[itk.Image[itk.UC,3]]

2.3 The New() method 13

• or itk.ImageFileReader[itk.Image.UC3]

• or itk.ImageFileReader.IUC3

• or itk.ImageFileReader[imageType]

• or even with an instance of the class used as template parameter: itk.ImageFileReader[image].

This makes it easy to write generic routines which can deal with any input image type. For example, a
function which take an image as parameter and write it to a filewithout having to give the image type can
be:

def write(image, fileName) :
writer = itk.ImageFileWriter[image].New()
writer.SetFileName(fileName)
writer.SetInput(image)
writer.Update()

2.3 The New() method

Lots of classes have aNew() method which returns a smart pointer to an object of that class. In python, the
New() method has some additional features:

• Arguments to the new method are assumed to be filter inputs. Soyou could write:

adder = itk.AddImageFilter[...].New()
adder.SetInput1(readerA.GetOutput())
adder.SetInput2(readerB.GetOutput())

or you could write

adder = itk.AddImageFilter[...].New(readerA.GetOutput(), readerB.GetOutput())

or even

adder = itk.AddImageFilter[...].New(readerA, readerB)

In that case,New() will use theGetOutput() method of the object, if it exist, to get the image and
set the inputs of the new filter.

• Additionally, keyword arguments are allowed as well. Keyword arguments cause the corresponding
Set... method to be called, so you could write the following:

itk.ImageFileWriter[image].New(image, FileName="foo.tif")

or

itk.ImageFileWriter[image].New(Input=image, FileName="foo.tif")

2.4 Python sequences and ITK 14

With that notation, thewrite function becomes more simple:

def write(image, fileName) :
writer = itk.ImageFileWriter[image].New(image, FileName=fileName)
writer.Update()

and, more important, most of classes can be instantiated andparametered in one line, which make ITK less
verbose, and a lots more easy to use in the interpreter.

2.4 Python sequences and ITK

To set the radius of aMedianImageFilter object, for example, the user have to create aSize object and
use it as argument of theSetRadius() method.

12> radius = itk.Size[2]()

13> radius.SetElement(0, 3)

14> radius.SetElement(1, 5)

15> median.SetRadius(radius)

Note that theSetElement() method doesn’t check the bound of the object, and thus is unsafe. The follow-
ing code is executed, and can lead to a segmentation fault.

16> radius.SetElement(1000, 5)

A more safe and convenient way to do that, if you have installed the optional patches, is to use the standard
python list interface.

17> radius[0] = 3

18> radius[1] = 5

This time, a bound check is performed, and the user is not ableto use an invalid index.

20> radius[2] = 1

exceptions.IndexError Traceback (most recent call last)

/home/glehmann/src/contrib-itk/regionalExtrema/<ipython console>

/home/glehmann/src/contrib-itk/regionalExtrema/itkSize.py in __setitem__(*args)

IndexError: /usr/include/InsightToolkit/Common/itkSize.h:202:
itk::ERROR: Size: index out of range

2.4 Python sequences and ITK 15

Even if it’s a safe method, it is still not really convenient.

Instead of usingSize object, it is possible to use python sequences, like lists and tuples.

21> median.SetRadius([3, 5])

22> median.SetRadius((3, 5))

Also, with the optional patches, some itk object can be converted to python sequences.

22> median.GetRadius()
22> <C itk::Size<(2)> instance at _58b40f09_p_itk__SizeT2_t>

23> list(median.GetRadius())
23> [3, 5]

24> tuple(median.GetRadius())
24> (3, 5)

To set the same radius for all dimensions, it is possible to use the* python sequence operator - that way, it
is possible to write code independent of dimension.

25> median.SetRadius([3]*2)

Or a simple number can also be used.

26> median.SetRadius(3)

Here is the list of itk classes which can currently be substituted by python sequences:

• Array

• ContinuousIndex

• CovariantVector

• FixedArray

• Index

• Offset

• Size

• Vector

2.5 Python specific functions in the itk module 16

2.5 Python specific functions in the itk module

Some convenient functions are provided with the itk module.They all begin with a lower case character to
clearly show they are not part of ITK.

• itk.image(object) try to return an image from the object given in parameter. If the object is an
image, it is returned without changes. If the object is a filter, the object returned byGetOutput()
method is returned. This function is used in most of the next functions to allow the user to pass an
image or a filter, and is available here for the same usage in some custom fuctions.

• itk.range(object) return the range of values of an image in a tuple.object can be an image or a
filter. In case of a filter,itk.image() is used to get the output image of the filter. The function update
the pipeline by callingUpdateOutputInformation() andUpdate().

This function is only a convenient function for a common taskwhile prototyping.

Example:

1> import itk

2> reader = itk.ImageFileReader.IUC2.New(FileName="cthead1.png")

3> itk.range(reader)
3> (0, 255)

• itk.size(object) return the size of an image.object can be an image or a filter. In case of a filter,
itk.image() is used to get the output image of the filter. The function update only the information of
the pipeline, by callingUpdateOutputInformation(), but don’t trigger a full update of the pipeline.

This function is only a convenient function for a common taskwhile prototyping.

Example:

4> itk.size(reader)
4> <C itk::Size<(2)> instance at _d40b8a09_p_itk__SizeT2_t>

5> print itk.size(reader)
<Size [256, 256]>

6> list(itk.size(reader))
6> [256, 256]

Note that commands 5 and 6 can be used only with the optional patches.

• itk.template(object) returns the template class and parameters of a class or instance of this class.

Example:

7> itk.template(reader)
7> (<itkTemplate itk::ImageFileReader>, (<class ’itkImage.itkImageUC2’>,))

2.5 Python specific functions in the itk module 17

• itk.write(object, fileName) write an image in a file, without having to pass the image type.
object can be an image or a filter. In case of a filter,itk.image() is used to get the output image of
the filter. The function update the pipeline by callingUpdateOutputInformation() andUpdate().

This function is only a convenient function for a common taskwhile prototyping.

Example:

8> itk.write(reader, ’out.png’)

• itk.show(), itk.show2D() and itk.show3D() are used to display images.itk.show2D() re-
quires to have imview [13] installed.itk.show3D() requires to have Vtk for python, ItkVtkGlue5 for
python, PyQt [14], and iPython [15] installed, and to use iPython with the-qthread option.

itk.show() call the best viewer according to the image type.

itk.show2D() can be called with a 3D image as parameter to show the image slice by slice.

itk.show3D() display a volumic rendering of the image. See Figure1.

Figure 1: A screenshot of WrapITK in action with python.

• itk.strel(d, s) is used to create a binary ball structuring of dimensiond and sizes. Structuring
element support is quite bad currently in WrapITK and shouldchange in the future. Usingitk.strel
rather than creating aBinaryBallStructuringElement directly is recommended to have backward
compatibility when the structuring element type will be changed.

• itk.auto_progress(b) is used to automatically add a progress report to all the newly created filters.
b must beTrue or False. If b is true, something like

9> median.Update()
itkMedianImageFilterIF2IF2: 0.109990

is displayed on the standard output. While prototyping, it is a convenient way for the user to know if
the execution time will be short or if he can do something moreuseful6 than waiting for the filter to
complete.

5ItkVtkGlue can be found in theExternalProjectdirectory of WrapITK
6like having a cup of tea

2.5 Python specific functions in the itk module 18

itk.auto_progress(True) also set an import callback which show the module name when the
module are imported.

• itk.class_(object) return the class of an object. The__class__ attribute is often not what the
user want with ITK.itk.class_ is a convenient function to get the class of an ITK object.

Note that it is calledclass_ and notclass, becauseclass is a reserved word in python.

Example:

10> median.__class__
10> <class ’itkMedianImageFilter.itkMedianImageFilterIF2IF2_PointerPtr’>

11> itk.class_(median)
11> <class ’itkMedianImageFilter.itkMedianImageFilterIF2IF2’>

• itk.echo(object, file) is a convenient function to call thePrint() method of an ITK object
without the need to pass aStringStream object. This function is less useful with the optional patches:
the__str__() method do a very similar job with a better integration with python.

Example:

12> itk.echo(median)
MedianImageFilter (0x82c5b68)

RTTI typeinfo: itk::MedianImageFilter<itk::Image<unsigned char, 3u>, itk::Image<unsigned
Reference Count: 1
Modified Time: 10
Debug: Off
Observers:

none
Number Of Required Inputs: 1
Number Of Required Outputs: 1
Number Of Threads: 2
ReleaseDataFlag: Off
ReleaseDataBeforeUpdateFlag: Off
No Inputs
Output 0: (0x875da68)
AbortGenerateData: Off
Progress: 0
Multithreader:

RTTI typeinfo: itk::MultiThreader
Reference Count: 1
Modified Time: 2
Debug: Off
Observers:
none

Thread Count: 2
Global Maximum Number Of Threads: 0

Radius: [1, 1, 1]

2.5 Python specific functions in the itk module 19

• itk.pipeline class let the developer easily create a custom pipeline which can then be manipulated
as a pure ITK filter. It provide several methods:

– __init__(self, input=None) is the constructor of the pipeline. The input of the pipeline
can be passed as parameter.

– connect(self, filter) connect a new filter to the pipeline. The output of the last filter
in the pipeline will be set as the input of the filter passed as parameter, and the filter passed as
parameter will be added to the filter list.

– append(self, filter) add a filter to the pipeline’s filters list, but don’t connect it. The
connection must be done by the user. This method is likely to be used with filters with several
inputs.

– clear(self) clear the filter list.

– GetOutput(self) return the output of the last filter in the pipeline. If another output is
needed, usepipeline[-1].GetAnotherOutput() instead of this method, or subclass pipeline
to implement anotherGetOutput() method.

– SetInput(self, input) set the input of the first filter in the pipeline. If another input is
needed, usepipeline[0].SetAnotherIntput() instead of this method, or subclass pipeline
to implement anotherSetIntput() method.

– GetInput(self) return the input of the last filter in the pipeline. If anotherinput is needed,
usepipeline[0].GetAnotherInput() instead of this method, or subclass pipeline to imple-
ment anotherGetInput() method.

– Update(self) update the pipeline by callingUpdate() method on the last filter in the
pipeline.

– __getitem__(self, i) and__len__(self) provide common python list manipulation
interface to the pipeline object.

Example: ITK current implementation of morphological dilation, erosion, opening and closing can be
very inefficient with large structuring elements. Also, WrapITK only give access to ball structuring
element. The following class illustrate the use ofitk.pipeline class to implement a efficient open-
ing in 3 dimensions with a box structuring element. We here take advantage of structuring element
decomposition: a dilation (or erosion) by a box can be more efficiently computed by perfoming 3
dilations (or erosion) with line structuring element oriented on each dimension. Theitk.pipeline
encapsulate the 6 filters needed to perform the efficient opening, and take care of setting the structur-
ing element for all the internal filters in theSetKernel(self, x,y,z), according to the size wanted
by the user.

class mkOpeningPipe (itk.pipeline):
def __init__(self, Input, x=1, y=1, z=1):

im = itk.image(Input)
itk.pipeline.__init__(self, im)
KernelType = itk.class_(itk.strel(3, 0))
InType = itk.class_(im)
self.connect(itk.GrayscaleErodeImageFilter[InType, InType, KernelType].New())
self.connect(itk.GrayscaleErodeImageFilter[InType, InType, KernelType].New())
self.connect(itk.GrayscaleErodeImageFilter[InType, InType, KernelType].New())
self.connect(itk.GrayscaleDilateImageFilter[InType, InType, KernelType].New())

2.6 Advanced Features 20

self.connect(itk.GrayscaleDilateImageFilter[InType, InType, KernelType].New())
self.connect(itk.GrayscaleDilateImageFilter[InType, InType, KernelType].New())
self.SetKernel(x,y,z)

def SetKernel(self, x,y,z):
self[0].SetKernel(itk.strel(3, (x,0,0)))
self[1].SetKernel(itk.strel(3, (0,y,0)))
self[2].SetKernel(itk.strel(3, (0,0,z)))
self[3].SetKernel(itk.strel(3, (x,0,0)))
self[4].SetKernel(itk.strel(3, (0,y,0)))
self[5].SetKernel(itk.strel(3, (0,0,z)))

ThemkOpeningPipe object can be used as a standard ITK filter:

reader = itk.ImageFileReader.IUC3.New(FileName=’image.tif’)
opening = mkOpeningPipe(reader)
ws = itk.MorphologicalWatershedImageFilter.IUC3IUC3.New(opening)
itk.write(ws, "result.tif")

2.6 Advanced Features

As an extra bonus, it is possible to view the doxygen documentation for each class as the python docstring.
This string is available as:

print itk.Image.__doc__

or even better (if you use iPython)

itk.Image?

Several steps are necessary to obtain this nirvana, however. First, when configuring the build in ccmake, you must set
DOXYGEN_MAN_PATH to some directory where man pages for the ITK classes will be created. Then, after the build, you
must runmake_doxygen_config.py from within thePython directory in the build directory, to collect information
about the wrapped classes and create a doxygen configurationfile to make these man pages. Finally, run doxygen with
that configuration file. After these three simple steps, class docstrings will contain the man page information. Note
that this is limited to systems which support the pythoncommands module, and which havegroff in the path. This
basically means anything but windows [11] will work. (Cygwin should work too.)

In addition (as mentioned above), WrapITK by default ensures that no bare pointers are ever returned to python:
instead reference-countingSmartPointers are used. However, there may be times when extracting a barepointer or
creating a newSmartPointer is necessary. To get a bare pointer from a smart pointer, use theGetPointer() method,
as in ITK proper. To create a new smart pointer, theSmartPointer template proxy class can be used just as above:

smartPtr = itk.SmartPointer[itk.Image[itk.US, 2]](image.GetPointer())

or just

smartPtr = itk.SmartPointer[image](image.GetPointer())

2.7 Full python script examples 21

WrapITK modules can be very long to import. TheitkConfig module define aImportCallback method which will
be called when each sub module is imported in the import process.ImportCallback can be customized to report the
progress status of the import process. It must be a function that can take the name of the library being imported as
a parameter. Here is an example of a very basic callback function which display the name of the submodule being
imported on the standard error output.

import sys, itkConfig
def stderr_callback(name, progress):

if progress == 0:
print >> sys.stderr, "Loading %s..." % name,

if progress == 1:
print >> sys.stderr, "done"

itkConfig.ImportCallback = stderr_callback
import itk

progress take only the value 0 and 1, but may take values between 0 and 1 in the future.

It must be noticed that usingimport itk load only python code, and doesn’t load any C++ compiled code. This
feature is calledlazy loading. It imply some specific behaviors:

• import itk is done in a very short time

• a compiled module is loaded only when a class in that module isused. Thus, when a python program is run,
only the revelant modules are loaded in memory

• using a class in a program can block the program (for a short time). The user can choose to load the entire
library at once with the commanditk.force_load().

2.7 Full python script examples

This script is the exact transcription to python of the C++ example which can be found at Examples/Filtering/Gradi-
entMagnitudeRecursiveGaussianImageFilter.cxx in the ITK source tree. More information about the filters used can
be found in the ITK Software Guide [26], section 6.4.2.

import itk
from sys import argv

InputPixelType = itk.F
OutputPixelType = itk.F

InputImageType = itk.Image[InputPixelType, 2]
OutputImageType = itk.Image[OutputPixelType, 2]

reader = itk.ImageFileReader[InputImageType].New(FileName=argv[1])

filter = itk.GradientMagnitudeRecursiveGaussianImageFilter[InputImageType, OutputImageType].New(
reader,
Sigma=float(argv[3]))

filter.Update();

WritePixelType = itk.UC
WriteImageType = itk.Image[WritePixelType, 2]

rescaler = itk.RescaleIntensityImageFilter[OutputImageType, WriteImageType].New(filter,

22

OutputMinimum=0,
OutputMaximum=255)

writer = itk.ImageFileWriter[WriteImageType].New(rescaler, FileName=argv[2])

writer.Update();

More examples can be found in the directoryPython/Tests.

3 TCL usage

Some examples are available inTcl/Tests directory.

Write me.

4 Java usage

Some examples are available inJava/Tests directory.

Write me.

23

Part V

Developer guide

What follows is a brief description of how the WrapITK build system works, how it can be extended, and how to write
external projects.

5 WrapITK description

5.1 Creating a CMakeLists.txt file for a wrapper library

Each WrapITK sub-library (e.g.Base, or SpatialObject) lives in a sub-directory of the WrapITK project (within
theModules directory) with aCMakeLists.txt file that describes how that library and language support files (e.g.
python template definitions) is to be created. Moreover, anyexternal project will need a similar file to describe how to
create that library.

SeeSampleCMakeLists.txt in this directory for a description of each macro and option that can appear in such a
file. What follows is the usual set of commands that will appear:

BEGIN_WRAPPER_LIBRARY("MySpatialObjectExtensions")
SET(WRAPPER_LIBRARY_DEPENDS SpatialObject Base)
SET(WRAPPER_LIBRARY_LINK_LIBRARIES ITKCommon)
WRAPPER_LIBRARY_CREATE_WRAP_FILES()
WRAPPER_LIBRARY_CREATE_LIBRARY()

• BEGIN_WRAPPER_LIBRARY() sets up the environment to wrap a set of classes into a librarywith a given name.
This macro is defined inConfigureWrapping.cmake WRAPPER_LIBRARY_DEPENDS stores the list of WrapITK
libraries on which the current library depends (e.g. which libraries wrap classes likeImage or SpatialObject,
that are going to be used in the current library). Every project should at least depend onBase.

• WRAPPER_LIBRARY_LINK_LIBRARIES stores a set of other libraries to add at link time. This can be3rd party
libraries that you will use (be sure to properly setLINK_DIRECTORIES in this case), or more commonly, the
ITK libraries that need to be linked in, likeITKCommon, ITKIO, or other.

• WRAPPER_LIBRARY_CREATE_WRAP_FILES() scans all of thewrap_XXX.cmake files in the current directory
and uses the directives within to create CableSwig input files for these classes. Information about template
instantiations is also recorded for the language support files that are created next. This macro is defined in
CreateCableSwigInputs.cmake, and calls language support macros fromCreateLanguageSupport.cmake.

• Finally, WRAPPER_LIBRARY_CREATE_LIBRARY() creates rules to parse the CableSwig inputs and compile a
wrapper library. This macro also causes various language support files to be created (python only cur-
rently) which make it easy to load that library in python, andwhich know about the template instances de-
fined. This macro is defined inCreateWrapperLibrary.cmake, and calls language support macros from
CreateLanguageSupport.cmake.

5.2 Creating wrap XXX.cmake files to wrap classes

A wrap_XXX.cmake file defines a group of classes and/or template instantiations to be wrapped. Often one such file is
defined for each class wrapped, but this is not strictly necessary.

Within such a file, directives are issued to wrap classes and particular template instances.

WrapITK define several macros and variable designed to:

5.2 Creating wrap XXX.cmake files to wrap classes 24

• make creation of wrappers easy. The syntax is simple enough to get in quickly.

• make choice of template arguments explicit. It should be easy to understand the idea of the author of a wrapper
by reading the file.

• support mostly transparently the dimensions and types chosen by the user.

The most common case should be to create a new wrapper for a simple image filter, likeMedianImageFilter. Let
see that example in details.

Here is theBasicFiltersB/wrap_itkMedianImageFilter.cmake file:

WRAP_CLASS("itk::MedianImageFilter" POINTER)
WRAP_IMAGE_FILTER_USIGN_INT(2)
WRAP_IMAGE_FILTER_SIGN_INT(2)
WRAP_IMAGE_FILTER_REAL(2)

END_WRAP_CLASS()

The file contains aWRAP_CLASS - END_WRAP_CLASS block, which itself contains someWRAP_IMAGE_FILTER_* macros.
WRAP_CLASS("itk::MedianImageFilter" POINTER) begin the wrapping of theitk::MedianImageFilter tem-
plated class. The name of the class must be fully qualified. The option POINTER indicate that the object
of the class can be manipulated with aSmartPointer, and that theSmartPointer specialization for the class
itk::MedianImageFilter must be created.

Then, severalWRAP_IMAGE_FILTER_* macros are called. They are convenient macro to create wrapper for classes
which take only image types as template arguments. The parameter, here2, give the number of required template
arguments. The two image types used as template parameter are the same.

All of the available directives are defined and documented inCreateCableSwigInputs.cmake. The basics are pre-
sented here:

• WRAP_CLASS("fully_qualified::ClassName" [POINTER|POINTER_WITH_SUPERCLASS]) causes a tem-
plated class to be wrapped. All namespaces must be included in the class name, and note that no template
instantiation is given. Template instantiations are created with variousWRAP directives, described below, be-
tween invocations ofWRAP_CLASS() andEND_WRAP_CLASS().

WRAP_CLASS("itk::ImageFilter") issues an implicit call toWRAP_INCLUDE("itkImageFilter.h"), so
the header for the wrapped class itself does not need to be manually included. To disable this behavior, set
WRAPPER_AUTO_INCLUDE_HEADERS to OFF.

The final optional parameter toWRAP_CLASS is POINTER or POINTER_WITH_SUPERCLASS. If no options are
passed, then the class is wrapped as-is. IfPOINTER is passed, then the class and the typedef’dclass::Pointer
type is wrapped. (Class::Pointer had better be aSmartPointer instantiation, or things won’t work. This
is always the case for ITK-style code.) IfPOINTER_WITH_SUPERCLASS is provided, thenclass::Pointer,
class::Superclass andclass::Superclass::Pointer are all wrapped. (Again, this only works for ITK-
style code where the class has a typedef’dSuperclass, and the superclass hasSelf andPointer typedefs).
POINTER_WITH_SUPERCLASS is especially useful for wrapping classes whose superclasses depend on the tem-
plate definitions of the given filter. E.g. any of the functor image filters, which define totally different superclass
template parameters depending on which functor is used.

• END_WRAP_CLASS() – end a block of template instantiations for a particular class.

• WRAP_INCLUDE("header.h"). By default, itkMedianImageFilter.h is included when the causes the
itk::MedianImageFilter is wrapped, and this behavior is most of the time enough. If itnot enough, this
macro can be used to include some specific files.

• WRAPPER_AUTO_INCLUDE_HEADERS. This variable is set toON by default, but can be set toOFF to disable the
auto include feature. This feature should be used when several classes to wrap come from the same header file.
WRAPPER_AUTO_INCLUDE_HEADERS is re-set toON for each newwrap_xxx.cmake file.

5.2 Creating wrap XXX.cmake files to wrap classes 25

• WRAP_TEMPLATE("mangled_suffix" "template parameters"). When issued betweenWRAP_CLASS and
END_WRAP_CLASS, this command causes a particular template instantiation of the current class to be wrapped.
The parametermangled_suffix is a suffix to append to the class’s name that uniquely identifies this particular
template instantiation, and ”template parameters” are whatever should go between the< > template instantia-
tion brackets. (Do not include the brackets.) If you are wrapping a filter, there are simpler macros to use, which
are defined at the bottom ofCreateCableSwigInputs and described below.

• WRAP_NON_TEMPLATE_CLASS("fully_qualified::ClassName" [POINTER|POINTER_WITH_SUPERCLASS]).
Same asWRAP_CLASS, but creates a wrapper for a non-templated class. NoEND_WRAP_CLASS() is necessary
after this macro because there is no block of template instantiating commands to close.

WrapITK define some lists which group the types and dimensions. Those list can be used by the developer to create a
wrappers but mustneverbe modified.

• WRAP_ITK_DIMS contains all the dimensions selected by the user.

• WRAP_ITK_USIGN_INT contains all unsigned integer types selected by the user.

• WRAP_ITK_SIGN_INT contains all signed integer types selected by the user.

• WRAP_ITK_INT contains all signed and unsigned integral types selected bythe user.

• WRAP_ITK_REAL contains all the real types selected by the user.

• WRAP_ITK_SCALAR contains all the scalar types selected by the user.

• WRAP_ITK_RGB contains all theRGB types selected by the user.

• WRAP_ITK_VECTOR_REAL contains all theVector types selected by the user.

• WRAP_ITK_COV_VECTOR_REAL contains all theCovariantVector types selected by the user.

• WRAP_ITK_VECTOR contains all theVector andCovariantVector types selected by the user.

• WRAP_ITK_ALL_TYPES contains all the types selected by the user.

• SMALLER_THAN_D contains all the types ”smaller” thandouble selected by the user. This variable is useful
when a filter decrease the range of pixel value, likeBinaryThresholdImageFilter.

• SMALLER_THAN_UL contains all the types ”smaller” thanunsigned long selected by the user.

• SMALLER_THAN_US contains all the types ”smaller” thanunsigned short selected by the user.

• SMALLER_THAN_SL contains all the types ”smaller” thansigned long selected by the user.

• SMALLER_THAN_SS contains all the types ”smaller” thansigned short selected by the user.

WrapITK provides some macros to manipulate those list and use them to create the wrappers. Most of those macros are
there to fill a lack of feature to manipulate lists in CMake, and should be replaced by some CMake native commands
in the future.

• UNIQUE(var list) create a new list calledvar composed of the same element than the ones inlist without
duplicate. This macro is useful to impose a type even if it hasn’t been selected by the user. The following
line for example, fromModules/IO/wrap_itkImageFileReader.cmake, force the unsigned char type to be
wrapped:

UNIQUE(image_types "UC;${WRAP_ITK_ALL_TYPES}")

• SORT(var list) create a new list calledvar which contains the same elements thanlist sorted lexicograph-
ically

• INTERSECTION(var list1 list2) create a new list calledvar which is the intersection of listslist1 and
list2

5.2 Creating wrap XXX.cmake files to wrap classes 26

• REMOVE(var list1 list2) Remove elements inlist2 from list1 and store the result invar

• INCREMENT(var number) incrementnumber by one an store the result invar

• DECREMENT(var number) decrementnumber by one an store the result invar

• FILTER_DIMS(var dimension_condition) processes adimension_condition and returns a list of the di-
mensions that (a) meet the condition, and (b) were selected to be wrapped. Recall that the condition is either a
CMake list of dimensions, or a string of the form ”n+” where n is a number.

Some convenient macros are available to wrap image filters.

These macros often take an optional second parameter which is a ”dimensionality condition” to restrict the dimensions
that the filter will be instantiated for. The condition can either be a single number indicating the one dimension
allowed, a list of dimensions that are allowed (either as a single-delimited string or just a set of separate parameters),
or something of the formn+ (wheren is a number) indicating that instantiations are allowed fordimension n and
above.

• WRAP_IMAGE_FILTER_type(size) . type can be one of:

– USIGN_INT to select all the image types with unsigned integral pixel types selected by the user

– SIGN_INT to select all the image types with signed integral pixel types selected by the user

– INT to select all the image types with signed and unsigned integral pixel types selected by the user

– REAL to select all the image types with real pixel types selected by the user

– VECTOR_REAL to select all the image types withVector pixel types selected by the user

– COV_VECTOR_REAL to select all the image types withCovariantVector pixel types selected by the user

– RGB to select all the image types withRGBPixel pixel types selected by the user

– SCALAR to select all the image types with scalar pixel types selected by the user

– VECTOR to select all the image types withVector andCovariantVector pixel types selected by the user

– ALL to select all the image types selected by the user.

This macro create a template instantiation withsize itk::Image parameters of the given pixel type.
So if you are wrapping a filter which should take two images with integral pixel types, write
WRAP_IMAGE_FILTER_USIGN_INT(2). The specific integral data type(s) (char, long, or short in the
WRAP_IMAGE_FILTER_USIGN_INT case) will be determined by the user-selected build parameters (e.g.
WRAP_long, andWRAP_short).

• WRAP_IMAGE_FILTER(param_types param_count) is a more general macro for wrapping image filters that
need one or more image parameters of the same type. The first parameter to this macro is a list of image pixel
types for which filter instantiations should be created. Thesecond is aparam_count parameter which controls
how many image template parameters are created. The optional third parameter is a dimensionality condition.

E.g. WRAP_IMAGE_FILTER("${WRAP_ITK_ALL}" 2) will create template instantiations of the filter for every
pixel type that the user has selected.

• WRAP_IMAGE_FILTER_TYPES(). Creates template instantiations of the current image filter, for all the dimen-
sions selected by the user (or dimensions selected by the user that meet the optional dimensionality condition).
This macro takes a variable number of arguments, which should correspond to the image pixel types of the
images in the filter’s template parameter list. The optionaldimensionality condition should be placed in the last
parameter.

• WRAP_IMAGE_FILTER_COMBINATIONS() takes a variable number of parameters. Each parame-
ter is a list of image pixel types. Filter instantiations arecreated for every combination of dif-
ferent pixel types in different parameters. A dimensionality condition may be optionally spec-
ified as the first parameter. E.g. WRAP_IMAGE_FILTER_COMBINATIONS("UC;US" "UC;US")
will create: filter<itk::Image<unsigned char, d>, itk::Image<unsigned char, d> >,

27

filter<itk::Image<unsigned char, d>, itk::Image<unsigned short, d> >,
filter<itk::Image<unsigned short, d>, itk::Image<unsigned char, d> >, and
filter<itk::Image<unsigned short, d>, itk::Image<unsigned short, d> > where d is the
image dimension, for each selected image dimension.

6 Extending or customizing WrapITK

To minimize build times and library size, it is possible to manually prevent various classes from being wrapped.
WrapITK is divided into several sub-libraries, each with a sub-directory: Algorithms, BasicFilters[ABC],
Common[AB], IO, Numerics, SpatialObject, and VXLNumerics. Within these directories are sets or
wrap_XXX.cmake files, whereXXX is the name of the class (or set of classes) to be wrapped. To prevent one of
these classes from being wrapped, simply rename the file to anything that doesnot start withwrap_ and end with
cmake. (E.g. append.notwrapped to the name.) (This is probably unsafe to do in theCommon, Numerics, or IO
directories.)

To add classes to be wrapped, it is recommended that you create a simpleExternal Projectdescribed below. If this
is out of the question, you could create additionalwrap_XXX.cmake files in the appropriate directory. (Read on for
instructions as to what to put in these files.)

7 External projects

7.1 Why external projects?

External projects let the developer access some custom class with the target languages and is a powerful way to extend
WrapITK, test new wrapper, wrap more types, etc. A nice side effect of wrappers, for contributions7 for example, is to
build all the methods of the wrapped classes, and so to be sure everything builds as it should8. In WrapITK, we used
them to avoid managing switches if some dependencies or not found: the project must found its dependencies or fail.

External projects are not yet supported for Tcl and Java. See9 to contribute external project support for those lan-
guages.

7.2 Building

To build an external project, first ensure that WrapITK has been properly built. Then useccmake to configure a build
directory for the external project. If WrapITK has not been installed, you will have to manually enter the path to the
WrapITK build directory.

By default, the build options are the same than the one used for building WrapITK, but can be modified in the advanced
options.

7.3 Usage

Once an external project has been built, it can be tested directly from the build tree. Start python in
the external project build directory’s Python subdirectory, and run the commandimport ProjectConfig (or

7A nice template for contributions to the Insight Journal [16] which include the template code to build wrap-
pers is available athttp://voxel.jouy.inra.fr/darcs/contrib-itk/template/. Just use the commanddarcs get
http://voxel.jouy.inra.fr/darcs/contrib-itk/template/ contribNameand edit the project name in theCMakeLists.txtfile to begin your
new contribution.

8We have found and fixed numbers of bug in ITK while adding more classes to WrapITK

http://voxel.jouy.inra.fr/darcs/contrib-itk/template/

7.4 Installation 28

import ProjectConfig-[Debug|Release|...] if you were using an IDE, depending on which build configura-
tion was set from the IDE). This command sets up the search paths properly so that WrapITK and the newly-created
library files can be found. Then typeimport ... (where... is replaced with the name of the external project; e.g.
import BufferConversion), and use the project.

7.4 Installation

Simply typemake install (or run your IDE’s install step) to install the external project into the WrapITK tree
(provided WrapITK has already been installed). Now the external project can be used just like any of the other
WrapITK libraries, and it will be imported into theitk namespace when theimport itk command is issued from
Python.

7.5 Top-level CMakeLists for external projects

In addition to having a set ofwrap_XXX.cmake files and the proper commands to read in these files and create a
library (all described above), an external project’s CMakeLists file needs at least one additional command to start it
out: FIND_PACKAGE(WrapITK REQUIRED).

This command will cause cmake to try to find the WrapITK build/install directory. If WrapITK has been installed,
this will work on the first try. Otherwise, you will have to set(within ccmake, or in the CMakeLists if you prefer) the
variableWrapITK_DIR to contain the path to the WrapITK build directory.

7.6 Examples

In WrapITK/ExternalProjects there are several sample ”External Projects” that can be built to provide additional
functionality to WrapITK and to serve as a demonstration forhow to create your own such projects. One project is an
ITK-VTK [17] bridge, and the other is a Python class to allow conversion from Numeric/Numarray/numpy [18, 19, 20]
matrices to ITK images (and vice-versa).

More examples can be found in the contributions to the Insight Journal [16], or directly at
http://voxel.jouy.inra.fr/darcs/contrib-itk/.

7.7 BufferConversion: an example of extension for one language

This project is a python only project. It requires to have Numeric, Numarray or numpy installed on your system, and
will let the user convert ITK images to python matrices, and python matrices to ITK images. It thus provide a bridge
between ITK and other great python tools like SciPy?? (and a lot of others).

Once installed, the function are directly available in theitk module - there is nothing special to import. A
PyBuffer template let you choose the type to convert, exactly like with the ITK classes. You can then use the
GetArrayFromImage() andGetImageFromArray() method to convert respectively a array to an ITK image, and an
ITK image to an array. There is no need to instantiate aPyBuffer object: the methods arestatic.

1> import itk

2> reader = itk.ImageFileReader.IUS2.New(FileName=’cthead1.png’)

3> array = itk.PyBuffer.IUS2.GetArrayFromImage(reader.GetOutput())

4> array
4>
array([[0, 0, 0, ..., 0, 0, 0],

http://voxel.jouy.inra.fr/darcs/contrib-itk/

7.8 ItkVtkGlue: an example of extension for all languages, including C++ 29

[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0],
...,
[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0]], type=UInt16)

5> image = itk.PyBuffer.IUS2.GetImageFromArray(array)

6> image
6> <C itk::SmartPointer<(itk::Image<(unsigned short,2)>)> instance at _50684208_p_itk__SmartPointerTitk_

Because PyBuffer is a python only external project, its directory structure is very simple - there is no subdirectory.
This external project should be used as an example for all thelanguages specific external projects.

7.8 ItkVtkGlue: an example of extension for all languages, including C++

ItkVtkGlue wrap the classes used to convert data from ITK to VTK [17] and from VTK to ITK. Those classes comes
from the InsightApplications [1], and make the conversion as simple in python as in C++. It hasbeen tested with VTK
5.0.0.

With the python lazy loading, the classes are not loaded by default, and thus avoid loading the entire vtk code in
memory. The classes are directly available in theitk module, and the underlaying code is loaded only when those
classes are used.

Example:

1> import itk

2> reader = itk.ImageFileReader.IUC3.New()

3> converter = itk.ImageToVTKImageFilter.IUC3.New(reader)

4> converter.GetOutput()
4> <libvtkFilteringPython.vtkImageData vtkobject at 0xb7675b60>

Theitk.show3D class use the classImageToVTKImageFilter to create the volume rendering shown in Figure1.

This project provide new feature for all the languages, including C++. Its directory structure reflect that.

|-- CMakeLists.txt
|-- Wrapping
| |-- CMakeLists.txt
| |-- Python
| | |-- CMakeLists.txt
| | |-- Tests
| | | |-- CMakeLists.txt
| | | |-- CannyEdgeDetectionImageFilter.py
| | | ‘-- simpleItkVtkPipeline.py
| | ‘-- itkvtk.py
| |-- itkvtk.swg
| |-- wrap_itkImageToVTKImageFilter.cmake
| ‘-- wrap_itkVTKImageToImageFilter.cmake
|-- images

30

| ‘-- cthead1.png
‘-- src

|-- itkImageToVTKImageFilter.h
|-- itkImageToVTKImageFilter.txx
|-- itkVTKImageToImageFilter.h
‘-- itkVTKImageToImageFilter.txx

The C++ source files are in directory src, while the files needed for WrapITK are in Wrapping. The CMake-
Lists.txt file in the root of the project includes the Wrapping sub directory only if the user ask for it with the option
BUILD WRAPPERS. Some python specific code can be found in Wrapping/Python directory, and some python tests
in Wrapping/Python/Tests. The itkvtk.swg file contains thetypemaps required to return vtk objects. The images di-
rectory contains the images used for the tests. Putting the images in this directory rather than in the root of the project
prevent overriding the reference files during the test, if the build is done in the source tree. The project should also
provide C++ tests - it is not done yet.

8 Extending language support and adding more languages

Write me.

8.1 Generating target language code

Write me.

8.2 typemaps

Write me.

9 Contributing to WrapITK

WrapITK is an opensource project, and so all contributions are welcome. Here are some points which requires special
attention:

• Test it and report problem. That’s the more important thing to do: we need feedbacks to enhance WrapITK
quality ! Report all bugs you may found tohttp://voxel.jouy.inra.fr/roundup/wrapitk/ [21].

• Work on tcl, java, and others. We are not tcl or java developers, and so are not able to complete the work for
those languages. Any help from tcl and java expert would be highly appreciated. Also, there is no reason to be
limited to python, tcl and java, and WrapITK can be extended to other languages supported by swig like perl
[22], ruby [23], ocaml [24] and others.

• Add more classes. WrapITK add lots of new classes compared tothe current wrapping system, but there is still
lots of work to do, especially to support more filter dedicated toVector pixels.

darcs [12] allow to easily contribute to WrapITK, by sending patch by email, while keeping credits for the work done.
Feel free to send patches; they will be tested and integratedin the project.

The basic commands to know are:

• darcs get --partial http://voxel.jouy.inra.fr/darcs/contrib-itk/WrapITK/ to get a copy of
WrapITK repository.

http://voxel.jouy.inra.fr/roundup/wrapitk/

31

• darcs whatsnew to display the changes you have done in your copy of the repository.

• darcs record to record the changes you have made in your copy of the repository. darcs will propose you to
select some changes to record. It is better to create one patch for each feature or bug fix, rather than one big
patch for all your current changes.

• darcs send to send by email the patches you have recorded withdarcs record. Please send your patches to
the WrapITK bugtracker (wrapitk-bugmaster@jouy.inra.fr9) so everyone would be able to find it easily.

Read theGetting startedsection of the darcs manual [12] for more information.

A web interface [25] for the WrapITK’s darcs repository is available athttp://voxel.jouy.inra.fr/darcsweb/.

9Note that you must have an account to be able to send somethingto the bug tracker. Visit
http://voxel.jouy.inra.fr/roundup/wrapitk/ to create one.

http://voxel.jouy.inra.fr/darcsweb/
http://voxel.jouy.inra.fr/roundup/wrapitk/

32

Part VI

Known bugs

Seehttp://voxel.jouy.inra.fr/roundup/wrapitk/.

http://voxel.jouy.inra.fr/roundup/wrapitk/

33

Part VII

Acknowledgments

I thank Dr Pierre Adenot and all theEmbryon et Biotechnologieteam for their patience during the long development
time before getting a tool really usable.

We would like to thank Charl P. Botha for is help to debug WrapITK on windows plateform, and for the patches he
has contributed, as well as Richard Beare for his early interest in using itk with python, for his useful feedbacks, and
for his work on buffer conversion in python.

We thank André Bongers for his help to debug java build on windows plateform.

We thank Brad King for his assistance during the developmentprocess.

Finally, we thank the ITK developers for the great tool whichis ITK, and for the previous work done on wrapping
system - without it WrapITK would not be there.

34

Part VIII

Conclusion

ITK is a great library, with the drawback to be nearly unusable for prototyping, and to have a poor support for other
languages than C++. WrapITK address those issue and finally give to ITK a good support for python. Java and Tcl,
while not as much tweaked than python part, also take benefit of the higher number of wrapped classes, and of the
increase of consistency in available types and names.

References 35

References

[1] http://www.itk.org. (document), 1.3, 7.8

[2] http://www.python.org. (document), I, 1.4

[3] http://www.tcl.tk. (document), I, 1.5

[4] http://java.sun.com. (document), I, 1.6

[5] http://www.cmake.org. I

[6] http://www.gccxml.org. I

[7] http://www.swig.org/. 1

[8] http://www.itk.org/HTML/CableSwig.html. I

[9] http://www.apple.com/macosx. I, II

[10] http://www.mandriva.com. II

[11] http://www.microsoft.com/windows. II , 2.6

[12] http://www.darcs.net. 1.1, 9

[13] http://www.cmis.csiro.au/Hugues.Talbot/imview/. 2.5

[14] http://www.riverbankcomputing.co.uk/pyqt. 2.5

[15] http://ipython.scipy.org. 2.5

[16] http://www.insight-journal.org. 7, 7.6

[17] http://www.vtk.org. 7.6, 7.8

[18] http://numeric.scipy.org. 7.6

[19] http://www.stsci.edu/resources/software hardware/numarray. 7.6

[20] http://www.numpy.org. 7.6

[21] http://roundup.sourceforge.net. 9

[22] http://www.perl.org. 9

[23] http://www.ruby-lang.org. 9

[24] http://caml.inria.fr. 9

[25] http://auriga.wearlab.de/∼alb/darcsweb/. 9

[26] L. Ibanez and W. Schroeder. The ITK Software Guide. Kitware, Inc. ISBN 1-930934-10-6,
http://www.itk.org/ItkSoftwareGuide.pdf, 2003.2.7

http://www.itk.org
http://www.python.org
http://www.tcl.tk
http://java.sun.com
http://www.cmake.org
http://www.gccxml.org
http://www.swig.org/
http://www.itk.org/HTML/CableSwig.html
http://www.apple.com/macosx
http://www.mandriva.com
http://www.microsoft.com/windows
http://www.darcs.net
http://www.cmis.csiro.au/Hugues.Talbot/imview/
http://www.riverbankcomputing.co.uk/pyqt
http://ipython.scipy.org
http://www.insight-journal.org
http://www.vtk.org
http://numeric.scipy.org
http://www.stsci.edu/resources/software_hardware/numarray
http://www.numpy.org
http://roundup.sourceforge.net
http://www.perl.org
http://www.ruby-lang.org
http://caml.inria.fr
http://auriga.wearlab.de/~alb/darcsweb/

	I Introduction
	II Supported languages and plateforms
	III Performance and memory usage
	IV User guide
	Installation
	Get the software sources
	ITK
	CableSwig
	Python
	Tcl
	Java
	Build options
	Install WrapITK or use it in the build tree
	Binary packages

	Python usage
	Configuring python and importing the libraries
	Template usage
	The New() method
	Python sequences and ITK
	Python specific functions in the itk module
	Advanced Features
	Full python script examples

	TCL usage
	Java usage

	V Developer guide
	WrapITK description
	Creating a CMakeLists.txt file for a wrapper library
	Creating wrap_XXX.cmake files to wrap classes

	Extending or customizing WrapITK
	External projects
	Why external projects?
	Building
	Usage
	Installation
	Top-level CMakeLists for external projects
	Examples
	BufferConversion: an example of extension for one language
	ItkVtkGlue: an example of extension for all languages, including C++

	Extending language support and adding more languages
	Generating target language code
	typemaps

	Contributing to WrapITK

	VI Known bugs
	VII Acknowledgments
	VIII Conclusion

