Contributed by James Craig Burley (craig@jcb-sc.com). Inspired by a first pass
at translating ‘g77-0.5.16/f£/D0OC’ that was contributed to Craig by David Ronis
(ronis@onsager.chem.mcgill.ca).

Using and Porting GNU Fortran

James Craig Burley

Last updated 2003-05-13

for version GCC-3.3.6

mailto:craig@jcb-sc.com
mailto:ronis@onsager.chem.mcgill.ca

For the GCC-3.3.6 Version™

Published by the Free Software Foundation
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA

Copyright (© 1995,1996,1997,1998,1999,2000,2001,2002,2003,2004 Free Software Foundation,
Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.2 or any later version published by the Free
Software Foundation; with the Invariant Sections being “GNU General Public License” and
“Funding Free Software”, the Front-Cover texts being (a) (see below), and with the Back-Cover
Texts being (b) (see below). A copy of the license is included in the section entitled “GNU Free
Documentation License”.

(a) The FSF’s Front-Cover Text is:

A GNU Manual

(b) The FSF’s Back-Cover Text is:

You have freedom to copy and modify this GNU Manual, like GNU software. Copies published
by the Free Software Foundation raise funds for GNU development.

Short Contents

Introduction « v v v v v v oottt oot i e et e soesssocssseasssoecsssossss 1
GNU GENERAL PUBLIC LICENSE &+ v o o o ot i et ittt ittt seenenennesas 3
GNU Free Documentation [icense « o o v v v v v v v v v e e e e st i eeeenennenoensns 9
Contributors to GNU Fortran. . .. oo e e e oo e e e ot iveeeeooeesssosoescccnns 17
Funding Free Software . . v o v v oo vt i it i ittt ittt tennenonnns 19
1 Funding GNU Fortran eeveeee e e i ittt ennsoeeeeeeoosoesnss 21
2 Getting Started o o v oo v ettt it e i e i e e e e i 23
3 Whatis GNU Fortran? . o o v v v v et esseeeeeeeooooosssssneees 25
4 Compile Fortran, C, or Other Programs. oo v et eeeeeeeesesns 29
5 GNU Fortran Command Options « v v v oo oo v v v v eeessesnnnonnns 31
6 News About GNU Fortran. ..o oo v e e v v i et inneeieeeeeeneeooonnns 51
7 User-visible Changes e o v v o v oo v et e vt et oeseeoeseeooseeoesseosnss 67
8 The GNU Fortran Language « . o v v v v v et v v v vvvvveeeeeeessssnnns 7
9 Other DialectS o v v v v v v vt vt v v e vvosessssosooseesssscsssssssnees 177
10 The GNU Fortran Compiler . v v v v v oo i it i ittt eeeeeeeeensnnns 189
11 Other Compilers. v oo v v v oo i it ittt e eeneeeeesessssssssannnss 217
12 Other Languages « v v v v v oo v e e oo ettt eeeeoeeeeooeosssssssssss 219
13 Debugging and Interfacing . « o o« o v v v v vt et i ittt i i 223
14 Collected Fortran Wisdom « « v v v v v v v v v v v oo o et eeeeseseennosossss 233
15 Known Causes of Trouble with GNU Fortran . .« e o oo v v v v v v v eeenns 249
16 Open QUESHIONS + v v v v v v v v oo oot oo oooeseeseooosssssssssssssas 275
17 Reporting BUugs o v v v v oo oottt it iiinneeeeeseeeeoonnnosossssss 277
18 How To Get Help with GNU Fortran . « « o v e v v v v v v i v i i i e eeeennnns 281
19 Adding Options o v v v v v v v v oo e ittt eeeeseeeeeeossssssssssnsas 283
B o 1 <1 1 285
21 Front End . oo oo v i i i it i e it ie et eesseeessesssscnssocosses 291
22 DiagnostiCs o v v v v v vttt vttt oottt seoesseeeetnnssees 313

Keyword Index o o v v o oo oo v v e e ettt i iiiiennnnneeeeeoosoooonnnnes 321

11

Using and Porting GNU Fortran

iii

Table of Contents

Introduction ittt iiiiiinnnn. 1

GNU GENERAL PUBLIC LICENSE....................... 3

Preamble 3
TERMS AND CONDITIONS FOR COPYING,

DISTRIBUTION AND MODIFICATION 3

How to Apply These Terms to Your New Programs............................... 8

GNU Free Documentation License.......................... 9

ADDENDUM: How to use this License for your documents....................... 15

Contributors to GNU Fortran............................. 17

Funding Free Software................. 19

1 Funding GNU Fortran............... ..., 21

2 Getting Started i, 23

3 What is GNU Fortran?cc0vviiinnnn.. 25

4 Compile Fortran, C, or Other Programs................ 29

5 GNU Fortran Command Options....................... 31

5.1 Option SUMMATY . .. oottt ettt et e et e e ettt 31

5.2 Options Controlling the Kind of Output........... 32

5.3 Shorthand Options 34

5.4 Options Controlling Fortran Dialect 35

5.5 Options to Request or Suppress Warnings 39

5.6 Options for Debugging Your Program or GNU Fortran...................... 42

5.7 Options That Control Optimization............ 43

5.8 Options Controlling the Preprocessor 45

5.9 Options for Directory Search 45

5.10 Options for Code Generation Conventions..................oviinerinn.... 46

5.11 Environment Variables Affecting GNU Fortran 50

6 News About GNU Fortran............................. 51

7 User-visible Changesoiiiiiiiiia.. 67

iv Using and Porting GNU Fortran

8 The GNU Fortran Languageovn... 77
8.1 Direction of Language Development.......... 77
8.2 ANSI FORTRAN 77 Standard Supportcooiiiiieeiin... 78

8.2.1 No Passing External Assumed-length.............................. 79

8.2.2 No Passing Dummy Assumed-length 79

8.2.3 No Pathological Implied-DO.............. 79

8.2.4 No Useless Implied-DO........ ... 79

8.3 Conformance.t 79
8.4 Notation Used in This Chapter.............coo o, 80
8.5 Fortran Terms and Conceptso 81
8.5.1 Syntactic Items. 81

8.5.2 Statements, Comments, and Lines................................. 82

8.5.3 Scope of Symbolic Names and Statement Labels.................... 82

8.6 Characters, Lines, and Execution Sequence...................oiiverin.... 82
8.6.1 GNU Fortran Character Set, 82

8.6.2 LANES ..ot 83

8.6.3 Continuation Line 84

8.6.4 Statements 84

8.6.5 Statement Labels........ 84

8.6.6 Order of Statements and Lines................... 85

8.6.7 Including Source Text 85

8.6.8 Cpp-style directives 86

8.7 Data Types and Constantso i 86
8.7.1 Data Types ..o 87

8.7.1.1 Double Notation 87

8.7.1.2 Star Notation.............coiuniiiiieeen.. 87

8.7.1.3 Kind Notation, 88

8.7.2 Constantso 91

8.7.3 Integer Typeo 91

8.7.4 Character Type.o 91

8.8 EXPIeSSIONSottt 92
8.8.1 The %LOC(O) Constructovire e 92

8.9 Specification Statements 92
8.9.1 NAMELIST Statementuiiniireeeenaaan.. 93

8.9.2 DOUBLE COMPLEX Statement, 93

8.10 Control Statements. 93
8.10.1 DO WHILE e 93

8.10.2 END DO ... 93

8.10.3 Construct Names 94

8.10.4 The CYCLE and EXIT Statements.....................coovuneinn... 94

8.11 Functions and Subroutines i 95
8.11.1 The %AVAL() Constructcovueie e 95

8.11.2 The 4REF() ConsStruct ...t 95

8.11.3 The %DESCR() Constructcoouniineeeeieeeen.. 96

8.11.4 Generics and Specifics. ... 96

8.11.5 REAL(Q) and AIMAG() of Complex.............ccoiiiiiiinnn. ... 99

8.11.6 CMPLX() of DOUBLE PRECISIONovuireieeieeaannnn. 100

8.11.7 MIL-STD 1753 SUPPOTt « . v e vt et e 100

8.11.8 £77/f2c Intrinsics 100

8.11.9 Table of Intrinsic Functions............... 100
8.11.9.1 Abort Intrinsic. ... 101

8.11.9.2 Abs Intrinsic..........ovviuerie . 101

8.11.9.3 Access Intrinsic ... 102

8.11.9.4 AChar Intrinsicov i 102

8.11.9.5

8.11.9.6

8.11.9.7

8.11.9.8

8.11.9.9

8.11.9.10
8.11.9.11
8.11.9.12
8.11.9.13
8.11.9.14
8.11.9.15
8.11.9.16
8.11.9.17
8.11.9.18
8.11.9.19
8.11.9.20
8.11.9.21
8.11.9.22
8.11.9.23
8.11.9.24
8.11.9.25
8.11.9.26
8.11.9.27
8.11.9.28
8.11.9.29
8.11.9.30
8.11.9.31
8.11.9.32
8.11.9.33
8.11.9.34
8.11.9.35
8.11.9.36
8.11.9.37
8.11.9.38
8.11.9.39
8.11.9.40
8.11.9.41
8.11.9.42
8.11.9.43
8.11.9.44
8.11.9.45
8.11.9.46
8.11.9.47
8.11.9.48
8.11.9.49
8.11.9.50
8.11.9.51
8.11.9.52
8.11.9.53
8.11.9.54
8.11.9.55
8.11.9.56
8.11.9.57
8.11.9.58

ACos Intrinsico 102
AdjustL Intrinsic. ... i 103
AdjustR Intrinsic 103
Almag Intrinsic 103
Alnt Intrinsic. ... 103
Alarm Intrinsic ... 104
All Intrinsico 104
Allocated Intrinsic o 104
ALog Intrinsic 104
ALoglO Intrinsic. ... 104
AMax0 Intrinsico 105
AMax] Intrinsic 105
AMINnO Intrinsic. . ..o 105
AMinl IntrinSic.t 105
AMod Intrinsicot 106
And Intrinsict 106
ANInt Intrinsic o 106
Any Intrinsic 107
ASIn IntrinsSic.oov ot 107
Associated Intrinsic 107
ATan Intrinsic 107
ATan2 Intrinsic 107
BesJO Intrinsic.ot 108
BesJl Intrinsic.o 108
BesIN Intrinsicoo i 108
BesYO Intrinsic . ..o 108
BesY1 Intrinsic 109
BesYN Intrinsic. 109
Bit_Size Intrinsic.o 109
BTest Intrinsic. 109
CAbs IntrinsicC . ..ot 110
CCoS INtrinsiC . . oo v e e 110
Ceiling Intrinsic. ... 110
CExp Intrinsic........ ... o i 110
Char Intrinsic 111
ChDir Intrinsic (subroutine) 111
ChMod Intrinsic (subroutine) 112
CLog Intrinsic ... 112
Cmplx Intrinsic............ oo 112
Complex Intrinsic 113
Conjg Intrinsic............oo i 113
Cos IntrinsiC.o 114
CosH Intrinsicoooi e 114
Count Intrinsic ... 114
CPU_Time IntrinSic..........ooiieiiae .. 114
CShift Intrinsic 114
CSin Intrinsic. 115
CSqRt Intrinsic 115
CTime Intrinsic (subroutine).......................... 115
CTime Intrinsic (function)............................ 115
DAbs Intrinsic 116
DACoS IntrinsicC.covv v 116
DASIn Intrinsic 116
DATan Intrinsic.o e 116

vi

8.11.9.59
8.11.9.60
8.11.9.61
8.11.9.62
8.11.9.63
8.11.9.64
8.11.9.65
8.11.9.66
8.11.9.67
8.11.9.68
8.11.9.69
8.11.9.70
8.11.9.71
8.11.9.72
8.11.9.73
8.11.9.74
8.11.9.75
8.11.9.76
8.11.9.77
8.11.9.78
8.11.9.79
8.11.9.80
8.11.9.81
8.11.9.82
8.11.9.83
8.11.9.84
8.11.9.85
8.11.9.86
8.11.9.87
8.11.9.88
8.11.9.89
8.11.9.90
8.11.9.91
8.11.9.92
8.11.9.93
8.11.9.94
8.11.9.95
8.11.9.96
8.11.9.97
8.11.9.98
8.11.9.99
8.11.9.100
8.11.9.101
8.11.9.102
8.11.9.103
8.11.9.104
8.11.9.105
8.11.9.106
8.11.9.107
8.11.9.108
8.11.9.109
8.11.9.110
8.11.9.111
8.11.9.112

Using and Porting GNU Fortran

DATan2 Intrinsicooe e 117
Date_and_Time Intrinsic........... 117
DbesJO Intrinsic 117
DbesJ1 Intrinsic . ..ot 118
DbesJN Intrinsic. ... 118
DbesYO Intrinsic. 118
DbesY1 Intrinsic 118
DbesYN Intrinsic . ..ot 119
Dble Intrinsic. ... 119
DCos Intrinsic 119
DCosH Intrinsic 120
DDIM Intrinsict 120
DErF Intrinsic. . ..o 120
DErFC Intrinsico vt e e 120
DExp Intrinsic. ... 120
Digits Intrinsic.........o 121
DIM Intrinsico it 121
DInt Intrinsic. ... 121
DLog Intrinsic ... 121
DLogl0 Intrinsic 122
DMax1 Intrinsict 122
DMinl IntrinSic.ot i 122
DMod Intrinsico v 122
DNInt Intrinsic 123
Dot_Product Intrinsic 123
DProd Intrinsic......... .. o 123
DSign Intrinsiccco i 123
DSin Intrinsic.o oo 123
DSinH Intrinsic 124
DSqRt Intrinsic.oovein e 124
DTan Intrinsic............ o 124
DTanH Intrinsic ... 124
DTime Intrinsic (subroutine).......................... 125
EOShift Intrinsic. 125
Epsilon Intrinsic 125
ErF Intrinsic 125
ErFC Intrinsic 126
ETime Intrinsic (subroutine).......................... 126
ETime Intrinsic (function) 126
Exit Intrinsic ... 127
Exp Intrinsic 127

Exponent Intrinsic 127

FDate Intrinsic (subroutine) 127

FDate Intrinsic (function) 128

FGet Intrinsic (subroutine) 128

FGetC Intrinsic (subroutine)......................... 129

Float Intrinsic i 129

Floor Intrinsic 129

Flush Intrinsic........... . . 129

FNum Intrinsic 130

FPut Intrinsic (subroutine) 130

FPutC Intrinsic (subroutine)......................... 130

Fraction Intrinsic 131

FSeek Intrinsic 131

8.11.9.113
8.11.9.114
8.11.9.115
8.11.9.116
8.11.9.117
8.11.9.118
8.11.9.119
8.11.9.120
8.11.9.121
8.11.9.122
8.11.9.123
8.11.9.124
8.11.9.125
8.11.9.126
8.11.9.127
8.11.9.128
8.11.9.129
8.11.9.130
8.11.9.131
8.11.9.132
8.11.9.133
8.11.9.134
8.11.9.135
8.11.9.136
8.11.9.137
8.11.9.138
8.11.9.139
8.11.9.140
8.11.9.141
8.11.9.142
8.11.9.143
8.11.9.144
8.11.9.145
8.11.9.146
8.11.9.147
8.11.9.148
8.11.9.149
8.11.9.150
8.11.9.151
8.11.9.152
8.11.9.153
8.11.9.154
8.11.9.155
8.11.9.156
8.11.9.157
8.11.9.158
8.11.9.159
8.11.9.160
8.11.9.161
8.11.9.162
8.11.9.163
8.11.9.164
8.11.9.165
8.11.9.166

FStat Intrinsic (subroutine).......................... 131
FStat Intrinsic (function).................. 132
FTell Intrinsic (subroutine) 132
FTell Intrinsic (function) 133
GError Intrinsic ...t 133
GetArg Intrinsic 133
GetCWD Intrinsic (subroutine) 134
GetCWD Intrinsic (function) 134
GetEnv Intrinsic............... 134
GetGId Intrinsic 134
GetLog Intrinsic 135
GetPId Intrinsic . ..o 135
GetUId Intrinsico oo e 135
GMTime Intrinsic. 135
HostNm Intrinsic (subroutine) 136
HostNm Intrinsic (function) 136
Huge Intrinsic o 137
TAbs Intrinsic. . ..o 137
TAChar Intrinsic 137
TAnd Intrinsic 137
TArgC Intrinsic 138
IBCIr Intrinsic. 138
IBits Intrinsic. 138
IBSet Intrinsic.............. 138
IChar Intrinsic............coo ... 139
IDate Intrinsic (UNIX)......... 139
IDIM Intrinsic oo 140
IDInt IntrinsSic 140
IDNInt Intrinsic 140
IEOr Intrinsicoooi e 140
IErrNo Intrinsic. ... 141
IFix Intrinsico 141
Imag Intrinsic 141
ImagPart Intrinsic 142
Index Intrinsic........ 142
Int Intrinsic 142
Int2 Intrinsic 143
Int8 Intrinsic ... 143
IOr Intrinsico 143
IRand Intrinsic 144
IsaTty Intrinsic........ o i i 144
IShft Intrinsic o . 144
IShftC Intrinsic o 144
ISign Intrinsic ... 145
ITime Intrinsic 145
Kill Intrinsic (subroutine) 145
Kind Intrinsic o 146
LBound Intrinsic., 146
Len Intrinsic......... ... 146
Len_Trim Intrinsic 146
LGe Intrinsict 146
LGt Intrinsico oo 147
Link Intrinsic (subroutine)........................... 147
LLe Intrinsic i 148

viii

8.11.9.167
8.11.9.168
8.11.9.169
8.11.9.170
8.11.9.171
8.11.9.172
8.11.9.173
8.11.9.174
8.11.9.175
8.11.9.176
8.11.9.177
8.11.9.178
8.11.9.179
8.11.9.180
8.11.9.181
8.11.9.182
8.11.9.183
8.11.9.184
8.11.9.185
8.11.9.186
8.11.9.187
8.11.9.188
8.11.9.189
8.11.9.190
8.11.9.191
8.11.9.192
8.11.9.193
8.11.9.194
8.11.9.195
8.11.9.196
8.11.9.197
8.11.9.198
8.11.9.199
8.11.9.200
8.11.9.201
8.11.9.202
8.11.9.203
8.11.9.204
8.11.9.205
8.11.9.206
8.11.9.207
8.11.9.208
8.11.9.209
8.11.9.210
8.11.9.211
8.11.9.212
8.11.9.213
8.11.9.214
8.11.9.215
8.11.9.216
8.11.9.217
8.11.9.218
8.11.9.219
8.11.9.220

Using and Porting GNU Fortran

LLt Intrinsic. o 148
LnBlnk Intrinsic 149
LocIntrinsic........ ... 149
Log Intrinsic..........ooo i 149
LoglO Intrinsic 149
Logical Intrinsic 150
Long Intrinsic o i 150
LShift Intrinsic 150
LStat Intrinsic (subroutine).......................... 151
LStat Intrinsic (function)............................ 151
LTime Intrinsic i 152
MatMul Intrinsic o 153
Max Intrinsic 153
Max0 Intrinsic. ... 153
Maxl Intrinsic. ... 153
MaxExponent Intrinsic............... 153
MaxLoc Intrinsic. o 154
MaxVal Intrinsic.. ... 154
MClock Intrinsic.. ... 154
MClock8 Intrinsic. 154
Merge Intrinsic i 155
Min Intrinsic 155
MinO IntrinsSic . ..o 155
Minl Intrinsic . ..ot 155
MinExponent Intrinsic 155
MinLoc Intrinsic 155
MinVal Intrinsic 156
Mod Intrinsic. ... 156
Modulo Intrinsic 156
MvBits Intrinsic 156
Nearest Intrinsic 156
NInt Intrinsic......... ..o 156
Not Intrinsic. 157
Or Intrinsic. 157
Pack Intrinsic.............. 157
PError Intrinsic........ 157
Precision Intrinsic........... 158
Present Intrinsic 158
Product Intrinsic. 158
Radix Intrinsic. 158
Rand Intrinsic i 158
Random_Number Intrinsic........................... 159
Random_Seed Intrinsic 159
Range Intrinsic 159
Real Intrinsic........ 159
RealPart Intrinsic.......... 159
Rename Intrinsic (subroutine) 160
Repeat Intrinsic 160
Reshape Intrinsic 160
RRSpacing Intrinsic.............. 160
RShift Intrinsic ...t 160
Scale Intrinsic 161
Scan Intrinsic.o 161

Second Intrinsic (function)................ 161

8.11.9.221 Second Intrinsic (subroutine) 161
8.11.9.222 Selected_Int_Kind Intrinsic 162
8.11.9.223 Selected_Real _Kind Intrinsic.................. 162
8.11.9.224 Set_Exponent Intrinsic 162
8.11.9.225 Shape Intrinsic 162
8.11.9.226 Short Intrinsic........... 162
8.11.9.227 Sign Intrinsic.............c i 163
8.11.9.228 Signal Intrinsic (subroutine) 163
8.11.9.229 Sin Intrinsic........ ... o 164
8.11.9.230 SinH Intrinsic 164
8.11.9.231 Sleep Intrinsiccvviri 164
8.11.9.232 Sngl Intrinsic.............iiii 164
8.11.9.233 Spacing Intrinsic........... ... 165
8.11.9.234 Spread Intrinsic......... ... 165
8.11.9.235 SqRt Intrinsicoo 165
8.11.9.236 SRand Intrinsic..............coo ... 165
8.11.9.237 Stat Intrinsic (subroutine).................. 165
8.11.9.238 Stat Intrinsic (function) 166
8.11.9.239 Sum Intrinsic..........o i 167
8.11.9.240 SymLnk Intrinsic (subroutine) 167
8.11.9.241 System Intrinsic (subroutine) 167
8.11.9.242 System_Clock Intrinsic 168
8.11.9.243 Tan Intrinsic oo 168
8.11.9.244 TanH Intrinsic.......... o ... 168
8.11.9.245 Time Intrinsic (UNIX) 168
8.11.9.246 Time8 Intrinsic 169
8.11.9.247 Tiny Intrinsic....... 169
8.11.9.248 Transfer Intrinsic 169
8.11.9.249 Transpose Intrinsic........... 169
8.11.9.250 Trim Intrinsic 170
8.11.9.251 TtyNam Intrinsic (subroutine) 170
8.11.9.252 TtyNam Intrinsic (function) 170
8.11.9.253 UBound Intrinsic 170
8.11.9.254 UMask Intrinsic (subroutine) 170
8.11.9.255 Unlink Intrinsic (subroutine)......................... 171
8.11.9.256 Unpack Intrinsic......... 171
8.11.9.257 Verify Intrinsic i 171
8.11.9.258 XOr Intrinsic 171
8.11.9.259 ZAbs Intrinsic 172
8.11.9.260 ZCos Intrinsic ..., 172
8.11.9.261 ZExp Intrinsic........ ... 172
8.11.9.262 ZLog Intrinsic ... 172
8.11.9.263 ZSin Intrinsic...... ... 173
8.11.9.264 ZSqRt Intrinsic................ .. L. 173
8.12 Scope and Classes of Symbolic Names.............. 173
8.12.1 Underscores in Symbol Names 173
B 13 I O o 173

8.14 Fortran 90 Features

X Using and Porting GNU Fortran
9 OtherDialectscoiiiiiiiiiiiiiiii... 177
9.1 Source FOrmo o 177
9.1.1 Carriage Returns 177

0.1.2 Tabs . .ot 177

9.1.3 Short Lines. ... 177

9.1.4 Long Lines 178

9.1.5 Ampersand Continuation Line................................... 178

9.2 Trailing Commento 178
9.3 Debug Line 178
9.4 Dollar Signs in Symbol Names. i 178
9.5 Case Sensitivityooii i 178
9.6 VXT Fortran oo e 182
9.6.1 Meaning of Double Quote 182

9.6.2 Meaning of Exclamation Point in Column 6....................... 182

9.7 Fortran 90 183
9.8 Pedantic Compilation. 183
9.9 DISEENSIONSo v ettt 184
9.9.1 TImplicit Argument Conversionooouiieeeei... 184

9.9.2 Ugly Assumed-Size ATTays.oooiiiiii i 185

9.9.3 Ugly Complex Part Extraction................................... 185

9.9.4 Ugly Null Argumentsooiiiiiiiiinniin... 186

9.9.5 Ugly Conversion of Initializers 186

9.9.6 Ugly Integer Conversionscoueiiineiiineeennneon.. 187

9.9.7 Ugly Assigned Labels i 187

10 The GNU Fortran Compiler......................... 189
10.1 Compiler Limits. 189
10.2 Run-time Environment Limits.......... 189
10.2.1 Timer Wraparoundsot 189

10.2.2 Year 2000 (Y2K) Problems........... 190

10.2.3 ArTay Size .. oot 191

10.2.4 Character-variable Length........... 191

10.2.5 Year 10000 (Y10K) Problems........... ..., 191

10.3 Compiler TyPeSot 192
10.4 Compiler Constantsttt e e 193
10.5 Compiler Intrinsics oo 193
10.5.1 Intrinsic Groupst e e 194

10.5.2 Other Intrinsicscovoi e 195
10.5.2.1 ACosD Intrinsic. ... 195

10.5.2.2 AIMax0 Intrinsic. ... 195

10.5.2.3 AIMinO Intrinsiccoooiiin . 195

10.5.2.4 AJMax0 Intrinsic 195

10.5.2.5 AJMin0 Intrinsic. ... 195

10.5.2.6 ASinD Intrinsic...........oooiiiii 195

10.5.2.7 ATan2D Intrinsic 195

10.5.2.8 ATanD Intrinsic............ccoo i 196

10.5.2.9 BlTest Intrinsic.......... ... o i 196

10.5.2.10 BJTest Intrinsic...........cooiiiiiii ... 196

10.5.2.11 CDAbs Intrinsic 196

10.5.2.12 CDCos Intrinsic.covvree i 196

10.5.2.13 CDExp Intrinsic ... 196

10.5.2.14 CDLog Intrinsic ... 197

10.5.2.15 CDSin Intrinsict 197

10.5.2.16
10.5.2.17
10.5.2.18
10.5.2.19
10.5.2.20
10.5.2.21
10.5.2.22
10.5.2.23
10.5.2.24
10.5.2.25
10.5.2.26
10.5.2.27
10.5.2.28
10.5.2.29
10.5.2.30
10.5.2.31
10.5.2.32
10.5.2.33
10.5.2.34
10.5.2.35
10.5.2.36
10.5.2.37
10.5.2.38
10.5.2.39
10.5.2.40
10.5.2.41
10.5.2.42
10.5.2.43
10.5.2.44
10.5.2.45
10.5.2.46
10.5.2.47
10.5.2.48
10.5.2.49
10.5.2.50
10.5.2.51
10.5.2.52
10.5.2.53
10.5.2.54
10.5.2.55
10.5.2.56
10.5.2.57
10.5.2.58
10.5.2.59
10.5.2.60
10.5.2.61
10.5.2.62
10.5.2.63
10.5.2.64
10.5.2.65
10.5.2.66
10.5.2.67
10.5.2.68
10.5.2.69

CDSqRE Intrinsic . ..ooovve e 197
ChDir Intrinsic (function) 197
ChMod Intrinsic (function) 198
CosD Intrinsic 198
DACosD Intrinsico 198
DASInD Intrinsic ... 198
DATan2D Intrinsic............ ... 199
DATanD Intrinsic. ... 199
Date Intrinsic.......... 199
DbleQ Intrinsic ... 199
DCmplx Intrinsic 199
DConjg Intrinsic 200
DCosD Intrinsic 200
DFloat Intrinsic. ..., 200
DFlotl Intrinsic. 200
DFlotJ Intrinsic. i 200
DImag Intrinsic.......... o i 200
DReal Intrinsic o 201
DSInD Intrinsiccco ot 201
DTanD Intrinsic ...t 201
DTime Intrinsic (function)............................ 201
FGet Intrinsic (function) 202
FGetC Intrinsic (function)............................ 202
Floatl Intrinsic 203
FloatJ Intrinsic......... 203
FPut Intrinsic (function) 203
FPutC Intrinsic (function)............................ 203
IDate Intrinsic (VXT)o, 203
TIADbs Intrinsico 204
IHAnd Intrinsic. ... 204
IIBCIr Intrinsicoo o 204
IIBits Intrinsic. 204
IIBSet Intrinsic 204
IIDIM Intrinsict e 204
IIDInt Intrinsict 204
IIDNnt Intrinsic o 205
IIEOr Intrinsic. 205
ITFix Intrinsic oo e 205
IInt Intrinsic. 205
IIOr Intrinsico 205
TIQint Intrinsic 205
TIQNNDt Intrinsicooo v 205
IIShftC Intrinsict e 205
IISign Intrinsic ... i 205
IMaxO0 Intrinsic oot e 205
IMax1l Intrinsico oot 206
IMinO Intrinsic. 206
IMinl Intrinsic.o 206
IMod Intrinsic oo 206
INInt Intrinsict 206
INot Intrinsic. ... e 206
IZExt Intrinsic.o 206
JIAbs Intrinsic.o 206

JIANd Intrinsicoov ot 206

xii

10.5.2.70
10.5.2.71
10.5.2.72
10.5.2.73
10.5.2.74
10.5.2.75
10.5.2.76
10.5.2.77
10.5.2.78
10.5.2.79
10.5.2.80
10.5.2.81
10.5.2.82
10.5.2.83
10.5.2.84
10.5.2.85
10.5.2.86
10.5.2.87
10.5.2.88
10.5.2.89
10.5.2.90
10.5.2.91
10.5.2.92
10.5.2.93
10.5.2.94
10.5.2.95
10.5.2.96
10.5.2.97
10.5.2.98
10.5.2.99
10.5.2.100
10.5.2.101
10.5.2.102
10.5.2.103
10.5.2.104
10.5.2.105
10.5.2.106
10.5.2.107
10.5.2.108
10.5.2.109
10.5.2.110
10.5.2.111
10.5.2.112
10.5.2.113
10.5.2.114
10.5.2.115
10.5.2.116
10.5.2.117
10.5.2.118
10.5.2.119
10.5.2.120
10.5.2.121
10.5.2.122
10.5.2.123

Using and Porting GNU Fortran

JIBCIr Intrinsic. ..o 206
JIBits Intrinsic 207
JIBSet Intrinsic............oviie . 207
JIDIM Intrinsic 207
JIDInt Intrinsicooo o 207
JIDNnt Intrinsic i 207
JIEOr Intrinsic 207
JIFix Intrinsic 207
JInt Intrinsic ... 207
JIOr Intrinsic. ... 207
JIQint Intrinsic 207
JIQNnt Intrinsic 208
JIShft Intrinsic 208
JIShftC Intrinsic. ... i 208
JISign Intrinsic 208
JMaxO0 Intrinsic. ... 208
JMaxl Intrinsic............o i 208
JMinO Intrinsic 208
JMinl Intrinsic 208
JMod Intrinsic...... ... i 208
JNInt Intrinsic....... 208
JNot Intrinsic. ... 209
JZExt Intrinsic 209
Kill Intrinsic (function)............ 209
Link Intrinsic (function).................. 209
QADbs Intrinsic 209
QACos Intrinsic 210
QACosD Intrinsic 210
QASin Intrinsic. ... 210
QASIND Intrinsicoovvrii 210
QATan Intrinsic 210
QATan2 Intrinsic 210
QATan2D Intrinsic........cooviinene ... 210
QATanD Intrinsic.......... 210
QCos Intrinsic 210
QCosD Intrinsic ... 210
QCosH Intrinsiccovnii 211
QDIM Intrinsicoovie e 211
QExp Intrinsic. ... 211
QExt Intrinsicoo 211
QExtD Intrinsic 211
QFloat Intrinsic o 211
QInt Intrinsic. ... 211
QLog Intrinsic 211
QLogL0 Intrinsico oo 211
QMax1 Intrinsicoviie 211
QMinl Intrinsic. ... 212
QMod Intrinsic 212
QNInt Intrinsic 212
QSin Intrinsic 212
QSinD Intrinsic........... i 212
QSinH Intrinsic........ 212
QSqRt Intrinsic. ... 212
QTan Intrinsic............ 212

10.5.2.124 QTanD Intrinsic, 212

10.5.2.125 QTanH Intrinsic 212

10.5.2.126 Rename Intrinsic (function).......................... 213

10.5.2.127 Secnds Intrinsic............. 213

10.5.2.128 Signal Intrinsic (function) 213

10.5.2.129 SinD Intrinsic ... 214

10.5.2.130 SnglQ Intrinsic ... 214

10.5.2.131 SymLnk Intrinsic (function) 214

10.5.2.132 System Intrinsic (function) 215

10.5.2.133 TanD Intrinsic.......... 215

10.5.2.134 Time Intrinsic (VXT) ... 215

10.5.2.135 UMask Intrinsic (function)........................... 216

10.5.2.136 Unlink Intrinsic (function)........................... 216

10.5.2.137 ZExt Intrinsic 216

11 Other Compilers............. 217
11.1 Dropping £2c Compatibilityo 217
11.2 Compilers Other Than £2c....... ... e 218
12 Other Languagesccoviiiiiiinnnnnnnnennns 219
12.1 Tools and advice for interoperating with C and C++....................... 219
12.1.1 C Interfacing Tools 219

12.1.2 Accessing Type Informationin C 219

12.1.3 Generating Skeletons and Prototypes with f2¢c................... 219

12.1.4 CH++ Considerationsoouuiu i 220

12.1.5 Startup Code.o 220

13 Debugging and Interfacing........................... 223
13.1 Main Program Unit (PROGRAM), 223
13.2 Procedures (SUBROUTINE and FUNCTION) 224
13.3 Functions (FUNCTION and RETURN) ... 224
134 NAINES .. oo 225
13.5 Common Blocks (COMMON) 226
13.6 Local Equivalence Areas (EQUIVALENCE) 226
13.7 Complex Variables (COMPLEX) i 226
13.8 Arrays (DIMENSION) e 226
13.9 Adjustable Arrays (DIMENSION)o i 227
13.10 Alternate Entry Points (ENTRY) i, 228
13.11 Alternate Returns (SUBROUTINE and RETURN) 230
13.12 Assigned Statement Labels (ASSIGN and GOTO) 230
13.13 Run-time Library Errors........ 231

xiv

Using and Porting GNU Fortran

14 Collected Fortran Wisdom........................... 233
14.1 Advantages Over £2¢ 233
14.1.1 Language Extensions................. ... 233

14.1.2 Diagnostic Abilities. 233

14.1.3 Compiler Options.oi i 234

14.1.4 Compiler Speed 234

14.1.5 Program Speed 234

14.1.6 Ease of Debugging 234

14.1.7 Character and Hollerith Constants.............................. 235

14.2 Block Data and Libraries 235
14.3 00D - oottt 236
14.4 Working Programs 238
14.4.1 Not My TYPe o oo 238

14.4.2 Variables Assumed To Be Zero............ 239

14.4.3 Variables Assumed To Be Saved 239

14.4.4 Unwanted Variables.......... 239

14.4.5 Unused ATgUMENtScoiti i 239

14.4.6 Surprising Interpretations of Code 240

14.4.7 Aliasing Assumed To Work.......... 240

14.4.8 Output Assumed To Flush 242

14.4.9 Large File Unit Numbers........... 242
14.4.10 Floating-point precision 243
14.4.11 Inconsistent Calling Sequences................ 243

14.5 Overly Convenient Command-line Options 244
14.6 Faster Programs 245
14.6.1 Aligned Data. 245

14.6.2 Prefer Automatic Uninitialized Variables 246

14.6.3 Avoid f2c Compatibility 246

14.6.4 Use Submodel Optionsooiert e 246

15 Known Causes of Trouble with GNU Fortran......... 249
15.1 Bugs Not In GNU Fortran 249
15.1.1 Signal 11 and Friends o 249

15.1.2 Cannot Link Fortran Programs 250

15.1.3 Large Common Blocks 250

15.1.4 Debugger Problems......... 250

15.1.5 NeXTStep Problems 250

15.1.6 Stack Overflow 251

15.1.7 Nothing Happens............. 252

15.1.8 Strange Behavior at Run Time 252

15.1.9 Floating-point Errors 253

15.2 Known Bugs In GNU Fortrano .. 254
15.3 Missing Features 256
15.3.1 Better Source Model 256

15.3.2 Fortran 90 SUPPOIt 257

15.3.3 Intrinsics in PARAMETER Statements 257

15.3.4 Arbitrary Concatenation 257

15.3.5 SELECT CASE on CHARACTER Typecoviiiie .. 257

15.3.6 RECURSIVE Keywordcoiiiiniiiiiane, 257

15.3.7 Increasing Precision/Range.............. 257

15.3.8 Popular Non-standard Types 258

15.3.9 Full Support for Compiler Types. ..., 258

15.3.10 Array Bounds Expressions.oiiiiiii. 258

15.3.11 POINTER Statementsiiiiiiienii... 258
15.3.12 Sensible Non-standard Constructs.............................. 259
15.3.13 READONLY Keywordt 259
15.3.14 FLUSH Statement 259
15.3.15 Expressions in FORMAT Statements 259
15.3.16 Explicit Assembler Code i 260
15.3.17 Q Edit Descriptor 260
15.3.18 Old-style PARAMETER Statements 260
15.3.19 TYPE and ACCEPT I/O Statements.............................. 260
15.3.20 STRUCTURE, UNION, RECORD, MAP., 260
15.3.21 OPEN, CLOSE, and INQUIRE Keywords.............coovueeennei... 261
15.3.22 ENCODE and DECODEot ittt e ettt e 261
15.3.23 AUTOMATIC Statementc.ouneinmreeeieeeennn. 261
15.3.24 Suppressing Space Padding of Source Lines..................... 262
15.3.25 Fortran Preprocessor. 262
15.3.26 Bit Operations on Floating-point Data 262
15.3.27 Really Ugly Character Assignments 263
15.3.28 POSIX Standardcoouiiir 263
15.3.29 Floating-point Exception Handling............................. 263
15.3.30 Nonportable Conversions.iuineiinnnernao... 263
15.3.31 Large Automatic ATraysouunineeiiiiiiiianne. .. 263
15.3.32 Support for Threadso .. 263
15.3.33 Enabling Debug Lines........... 264
15.3.34 Better Warnings. 264
15.3.35 Gracefully Handle Sensible Bad Code 264
15.3.36 Non-standard Conversions.ooeeiuineeiuineannn.. 264
15.3.37 Non-standard Intrinsics, 265
15.3.38 Modifying DO Variable 265
15.3.39 Better Pedantic Compilation 265
15.3.40 Warn About Implicit Conversions.ovveoo.... 265
15.3.41 Invalid Use of Hollerith Constant 265
15.3.42 Dummy Array Without Dimensioning Dummy.................. 265
15.3.43 Invalid FORMAT Specifiersc .. 266
15.3.44 Ambiguous Dialects. 266
15.3.45 Unused Labels. 266
15.3.46 Informational Messages ... 266
15.3.47 Uninitialized Variables at Run Time 266
15.3.48 Portable Unformatted Files............. 266
15.3.49 Better List-directed I/O........ 267
15.3.50 Default to Console I/O....... 267
15.3.51 Labels Visible to Debugger, 267
15.4 Disappointments and Misunderstandings................................. 268
15.4.1 Mangling of Names in Source Code 268
15.4.2 Multiple Definitions of External Names.......................... 268
15.4.3 Limitation on Implicit Declarations 268
15.5 Certain Changes We Don’t Want to Make................................ 268
15.5.1 Backslash in Constants. 268
15.5.2 Initializing Before Specifying 270
15.5.3 Context-Sensitive Intrinsicness................. 270
15.5.4 Context-Sensitive Constants................. 271
15.5.5 Equivalence Versus Equality 271
15.5.6 Order of Side Effects.......... 272

15.6 Warning Messages and Error Messages., 273

XVi

16

17

18

19

20

21

Using and Porting GNU Fortran

Open Questions.........coiiiiiiiineeinneneennnanns 275
Reporting Bugs............. ..., 277
17.1 Have You Found a Bug? 277
17.2 How to Report Bugs. ... 279
How To Get Help with GNU Fortran................. 281
Adding Options.........coviiiiiiiiiiinnnnnnnnnnn. 283
Projectsttt 285
20.1 Improve Efficiency. 285
20.2 Better Optimization 285
20.3 Simplify Portingo 286
20.4 More EXtensionsot e 287
20.5 Machine Model 287
20.6 Internals Documentation........... 288
20.7 Internals Improvements 288
20.8 Better Diagnostics. 289
Front End i 291
21.1 OVerview Of SOUICES oottt et 291
21.2 Overview of Translation Process............ 293
21.2.1 gr7stripcard.o 294

21.2.2 1O C et 295

21.2.3 StaC . e 297

21.2.4 SULC et 297

2125 SUQeC . e 298

21.2.6 StD.C. o 298

2127 @XPIiC oottt e 298

21.2.8 SEC.C et 298

21.2.9 SUA.C. vt 298

21.2.10 SEe.C ettt 298

21.2.11 Gotchas (Transforming) 298
21.2.11.1 Multi-character Lexemes.............................. 298

21.2.11.2 Space-padding Lexemesiiii. ... 299

21.2.11.3 Bizarre Free-form Hollerith Constants 299

21.2.11.4 Hollerith Constants 299

21.2.11.5 Confusing Function Keyword 300

21.2.11.6 Weird READ ... 300

21.2.12 TBD (Transforming)................ i, 301

21.3 Philosophy of Code Generation.......... 301
214 Two-pass Designo 303
21.4.1 Two-pass Code 303

21.4.2 Why Two Passest 304

21.5 Challenges Posed. 306
21.6 Transforming Statementso oottt 306
21.6.1 Statements Needing Temporaries..................ooiii.... 307

21.6.2 Transforming DO WHILE 307

21.6.3 Transforming Iterative DO 308

21.6.4 Transforming Block IF 308

21.6.5 Transforming SELECT CASE 309

21.7 Transforming EXpressionsueer e 310
21.8 Internal Naming Conventionsouieiiiiiiiiiinnnnneeeo... 310
22 DiagnostiCsvviiiiiiiiiiiiieiii it 313
22,1 CMPAMBIG. . . .ottt et e e e e e e e e 313
22.2 EXPIMP . ottt 315
22.3 INTGLOB . .ottt e e e e e e e e e e e e e 315
22,4 LEX ottt et e 316
22.0 GLOBALS . .ottt 318
22.6 LINKFATILttt e e e e e e e e e e e e e e e e 318
22.7 Y2KBAD . .t 319

Keyword IndexX.........cciiiiiiiiiniiiiiiiiinnnnnn. 321

xviii Using and Porting GNU Fortran

Introduction 1

Introduction

This manual documents how to run, install and port g77, as well as its new features and
incompatibilities, and how to report bugs. It corresponds to the GCC-3.3.6 version of g77.

Using and Porting GNU Fortran

GNU GENERAL PUBLIC LICENSE 3

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (© 1989, 1991 Free Software Foundation, Inc.
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it.
By contrast, the GNU General Public License is intended to guarantee your freedom to share
and change free software—to make sure the software is free for all its users. This General Public
License applies to most of the Free Software Foundation’s software and to any other program
whose authors commit to using it. (Some other Free Software Foundation software is covered
by the GNU Library General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free software
(and charge for this service if you wish), that you receive source code or can get it if you want
it, that you can change the software or use pieces of it in new free programs; and that you know
you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these
rights or to ask you to surrender the rights. These restrictions translate to certain responsibilities
for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must
give the recipients all the rights that you have. You must make sure that they, too, receive or
can get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone under-
stands that there is no warranty for this free software. If the software is modified by someone
else and passed on, we want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the
danger that redistributors of a free program will individually obtain patent licenses, in effect
making the program proprietary. To prevent this, we have made it clear that any patent must
be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by
the copyright holder saying it may be distributed under the terms of this General Public
License. The “Program”, below, refers to any such program or work, and a “work based
on the Program” means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it, either verbatim or with
modifications and/or translated into another language. (Hereinafter, translation is included
without limitation in the term “modification”.) Each licensee is addressed as “you”.

Using and Porting GNU Fortran

Activities other than copying, distribution and modification are not covered by this License;
they are outside its scope. The act of running the Program is not restricted, and the output
from the Program is covered only if its contents constitute a work based on the Program
(independent of having been made by running the Program). Whether that is true depends
on what the Program does.

. You may copy and distribute verbatim copies of the Program’s source code as you receive
it, in any medium, provided that you conspicuously and appropriately publish on each copy
an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that
refer to this License and to the absence of any warranty; and give any other recipients of
the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option
offer warranty protection in exchange for a fee.

. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under the
terms of Section 1 above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you changed
the files and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a whole
at no charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you must
cause it, when started running for such interactive use in the most ordinary way, to
print or display an announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide a warranty) and that
users may redistribute the program under these conditions, and telling the user how to
view a copy of this License. (Exception: if the Program itself is interactive but does
not normally print such an announcement, your work based on the Program is not
required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Program, and can be reasonably considered independent
and separate works in themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you distribute the same
sections as part of a whole which is a work based on the Program, the distribution of the
whole must be on the terms of this License, whose permissions for other licensees extend to
the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work
written entirely by you; rather, the intent is to exercise the right to control the distribution
of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program
(or with a work based on the Program) on a volume of a storage or distribution medium
does not bring the other work under the scope of this License.

. You may copy and distribute the Program (or a work based on it, under Section 2) in object
code or executable form under the terms of Sections 1 and 2 above provided that you also
do one of the following;:

a. Accompany it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distribution,

GNU GENERAL PUBLIC LICENSE 5

a complete machine-readable copy of the corresponding source code, to be distributed
under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

¢. Accompany it with the information you received as to the offer to distribute corre-
sponding source code. (This alternative is allowed only for noncommercial distribution
and only if you received the program in object code or executable form with such an
offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications
to it. For an executable work, complete source code means all the source code for all
modules it contains, plus any associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a special exception, the
source code distributed need not include anything that is normally distributed (in either
source or binary form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component itself accompanies
the executable.

If distribution of executable or object code is made by offering access to copy from a
designated place, then offering equivalent access to copy the source code from the same
place counts as distribution of the source code, even though third parties are not compelled
to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly pro-
vided under this License. Any attempt otherwise to copy, modify, sublicense or distribute
the Program is void, and will automatically terminate your rights under this License. How-
ever, parties who have received copies, or rights, from you under this License will not have
their licenses terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing
else grants you permission to modify or distribute the Program or its derivative works.
These actions are prohibited by law if you do not accept this License. Therefore, by modi-
fying or distributing the Program (or any work based on the Program), you indicate your
acceptance of this License to do so, and all its terms and conditions for copying, distributing
or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify the
Program subject to these terms and conditions. You may not impose any further restrictions
on the recipients’ exercise of the rights granted herein. You are not responsible for enforcing
compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they do
not excuse you from the conditions of this License. If you cannot distribute so as to satisfy
simultaneously your obligations under this License and any other pertinent obligations,
then as a consequence you may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by all those who receive
copies directly or indirectly through you, then the only way you could satisfy both it and
this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circum-
stance, the balance of the section is intended to apply and the section as a whole is intended
to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of
protecting the integrity of the free software distribution system, which is implemented by

10.

11.

12.

Using and Porting GNU Fortran

public license practices. Many people have made generous contributions to the wide range
of software distributed through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing to distribute software
through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of
the rest of this License.

If the distribution and/or use of the Program is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the Program
under this License may add an explicit geographical distribution limitation excluding those
countries, so that distribution is permitted only in or among countries not thus excluded. In
such case, this License incorporates the limitation as if written in the body of this License.

The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version
number of this License which applies to it and “any later version”, you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Program does not specify a version number of this
License, you may choose any version ever published by the Free Software Foundation.

If you wish to incorporate parts of the Program into other free programs whose distribution
conditions are different, write to the author to ask for permission. For software which
is copyrighted by the Free Software Foundation, write to the Free Software Foundation;
we sometimes make exceptions for this. Our decision will be guided by the two goals of
preserving the free status of all derivatives of our free software and of promoting the sharing
and reuse of software generally.

NO WARRANTY

BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WAR-
RANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICA-
BLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITH-
OUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE
QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCI-
DENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR IN-
ABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH
ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

GNU GENERAL PUBLIC LICENSE

END OF TERMS AND CONDITIONS

8 Using and Porting GNU Fortran

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start
of each source file to most effectively convey the exclusion of warranty; and each file should have
at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) year name of author

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an
interactive mode:
Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show ¢’ for details.
The hypothetical commands ‘show w’ and ‘show ¢’ should show the appropriate parts of the
General Public License. Of course, the commands you use may be called something other than
‘show w’ and ‘show c’; they could even be mouse-clicks or menu items—whatever suits your

program.
You should also get your employer (if you work as a programmer) or your school, if any, to
sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

signature of Ty Coomn, 1 April 1989
Ty Coon, President of Vice
This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the GNU
Library General Public License instead of this License.

GNU Free Documentation License 9

GNU Free Documentation License

Version 1.2, November 2002

Copyright (©) 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful
document free in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The “Document”, below, refers to any such manual
or work. Any member of the public is a licensee, and is addressed as “you”. You accept
the license if you copy, modify or distribute the work in a way requiring permission under
copyright law.

A “Modified Version” of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero Invariant Sections.
If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.
A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25
words.

10

Using and Porting GNU Fortran

A “Transparent” copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, that is suitable for revising
the document straightforwardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety of formats
suitable for input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for
any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain Ascil without markup,
Texinfo input format, LaTEX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML, PostScript or PDF designed for human modification.
Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include
proprietary formats that can be read and edited only by proprietary word processors, SGML
or XML for which the DTD and/or processing tools are not generally available, and the
machine-generated HTML, PostScript or PDF produced by some word processors for output
purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title page.
For works in formats which do not have any title page as such, “Title Page” means the
text near the most prominent appearance of the work’s title, preceding the beginning of the
body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the
Title” of such a section when you modify the Document means that it remains a section
“Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use technical measures
to obstruct or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.
COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent and visible.

GNU Free Documentation License 11

You may add other material on the covers in addition. Copying with changes limited to
the covers, as long as they preserve the title of the Document and satisfy these conditions,
can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy,
or state in or with each Opaque copy a computer-network location from which the general
network-using public has access to download using public-standard network protocols a
complete Transparent copy of the Document, free of added material. If you use the latter
option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has fewer than
five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

O

Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copy-
right notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating
at least the title, year, new authors, and publisher of the Modified Version as given
on the Title Page. If there is no section Entitled “History” in the Document, create
one stating the title, year, authors, and publisher of the Document as given on its
Title Page, then add an item describing the Modified Version as stated in the previous
sentence.

12

Using and Porting GNU Fortran

J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the “History”
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in
the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title
with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorse-
ments of your Modified Version by various parties—for example, statements of peer review
or that the text has been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace the
old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to
use their names for publicity for or to assert or imply endorsement of any Modified Version.

COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled

GNU Free Documentation License 13

10.

“Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections
Entitled “Endorsements.”

COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with
a single copy that is included in the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation’s users beyond what the individual works permit. When the
Document is included an aggregate, this License does not apply to the other works in the
aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in
the Document, and any Warrany Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers. In
case of a disagreement between the translation and the original version of this License or a
notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”,
the requirement (section 4) to Preserve its Title (section 1) will typically require changing
the actual title.

TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or distribute
the Document is void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under this License will not
have their licenses terminated so long as such parties remain in full compliance.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies
to it, you have the option of following the terms and conditions either of that specified

http://www.gnu.org/copyleft/

14

Using and Porting GNU Fortran

version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation.

GNU Free Documentation License 15

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:
with the Invariant Sections being list their titles, with
the Front-Cover Texts being list, and with the Back-Cover Texts
being list.
If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU General
Public License, to permit their use in free software.

16

Using and Porting GNU Fortran

Contributors to GNU Fortran 17

Contributors to GNU Fortran

In addition to James Craig Burley, who wrote the front end, many people have helped create
and improve GNU Fortran.

e The packaging and compiler portions of GNU Fortran are based largely on the GNU CC
compiler. See section “Contributors to GCC” in Using the GNU Compiler Collection
(GCC), for more information.

e The run-time library used by GNU Fortran is a repackaged version of the 1ibf2c library
(combined from the 1ibF77 and 1ibI77 libraries) provided as part of £2¢, available for free
from netlib sites on the Internet.

e Cygnus Support and The Free Software Foundation contributed significant money and/or
equipment to Craig’s efforts.

e The following individuals served as alpha testers prior to g77’s public release. This work
consisted of testing, researching, sometimes debugging, and occasionally providing small
amounts of code and fixes for g77, plus offering plenty of helpful advice to Craig:

Jonathan Corbet
Dr. Mark Fernyhough
Takafumi Hayashi (The University of Aizu)—takafumiQu-aizu.ac.jp
Kate Hedstrom
Michel Kern (INRIA and Rice University)—Michel.Kern@inria.fr
Dr. A. O. V. Le Blanc
Dave Love
Rick Lutowski
Toon Moene
Rick Niles
Derk Reefman
Wayne K. Schroll
Bill Thorson
Pedro A. M. Vazquez
Tan Watson
e Dave Love (d.love@dl.ac.uk) wrote the libU77 part of the run-time library.

e Scott Snyder (snyder@dOsgif.fnal.gov) provided the patch to add rudimentary support
for INTEGER*1, INTEGER*2, and LOGICAL*1. This inspired Craig to add further support,
even though the resulting support would still be incomplete.

e David Ronis (ronis@onsager.chem.mcgill.ca) inspired and encouraged Craig to rewrite
the documentation in texinfo format by contributing a first pass at a translation of the old
‘g77-0.5.16/£/DOC’ file.

e Toon Moene (toon@moene.indiv.nluug.nl) performed some analysis of generated code as
part of an overall project to improve g77 code generation to at least be as good as £2¢ used
in conjunction with gcc. So far, this has resulted in the three, somewhat experimental,
options added by g77 to the gcc compiler and its back end.

(These, in turn, had made their way into the egcs version of the compiler, and do not exist
in gcc version 2.8 or versions of g77 based on that version of gcc.)

e John Carr (jfc@mit.edu) wrote the alias analysis improvements.

e Thanks to Mary Cortani and the staff at Craftwork Solutions (support@craftwork.com)
for all of their support.

mailto:takafumi@u-aizu.ac.jp
mailto:Michel.Kern@inria.fr
mailto:d.love@dl.ac.uk
mailto:snyder@d0sgif.fnal.gov
mailto:ronis@onsager.chem.mcgill.ca
mailto:toon@moene.indiv.nluug.nl
mailto:jfc@mit.edu
mailto:support@craftwork.com

18 Using and Porting GNU Fortran

e Many other individuals have helped debug, test, and improve g77 over the past several
years, and undoubtedly more people will be doing so in the future. If you have done so, and
would like to see your name listed in the above list, please ask! The default is that people
wish to remain anonymous.

Funding Free Software 19

Funding Free Software

If you want to have more free software a few years from now, it makes sense for you to help
encourage people to contribute funds for its development. The most effective approach known
is to encourage commercial redistributors to donate.

Users of free software systems can boost the pace of development by encouraging for-a-fee
distributors to donate part of their selling price to free software developers—the Free Software
Foundation, and others.

The way to convince distributors to do this is to demand it and expect it from them. So
when you compare distributors, judge them partly by how much they give to free software
development. Show distributors they must compete to be the one who gives the most.

To make this approach work, you must insist on numbers that you can compare, such as,
“We will donate ten dollars to the Frobnitz project for each disk sold.” Don’t be satisfied with
a vague promise, such as “A portion of the profits are donated,” since it doesn’t give a basis for
comparison.

Even a precise fraction “of the profits from this disk” is not very meaningful, since creative
accounting and unrelated business decisions can greatly alter what fraction of the sales price
counts as profit. If the price you pay is $50, ten percent of the profit is probably less than a
dollar; it might be a few cents, or nothing at all.

Some redistributors do development work themselves. This is useful too; but to keep everyone
honest, you need to inquire how much they do, and what kind. Some kinds of development make
much more long-term difference than others. For example, maintaining a separate version of a
program contributes very little; maintaining the standard version of a program for the whole
community contributes much. Easy new ports contribute little, since someone else would surely
do them; difficult ports such as adding a new CPU to the GNU Compiler Collection contribute
more; major new features or packages contribute the most.

By establishing the idea that supporting further development is “the proper thing to do”
when distributing free software for a fee, we can assure a steady flow of resources into making
more free software.

Copyright (©) 1994 Free Software Foundation, Inc.
Verbatim copying and redistribution of this section is permitted
without royalty; alteration is not permitted.

20

Using and Porting GNU Fortran

Chapter 1: Funding GNU Fortran 21

1 Funding GNU Fortran

James Craig Burley (craig@jcb-sc.com), the original author of g77, stopped working on it in
September 1999 (He has a web page at http://world.std.com/%7Eburley/.)

GNU Fortran is currently maintained by Toon Moene (toon@moene.indiv.nluug.nl), with
the help of countless other volunteers.

As with other GNU software, funding is important because it can pay for needed equipment,
personnel, and so on.

The FSF provides information on the best way to fund ongoing development of GNU software
(such as GNU Fortran) in documents such as the “GNUS Bulletin”. Email gnu@gnu.org for
information on funding the FSF.

Another important way to support work on GNU Fortran is to volunteer to help out.
Email gcc@gcc.gnu.org to volunteer for this work.

However, we strongly expect that there will never be a version 0.6 of g77. Work on this
compiler has stopped as of the release of GCC 3.1, except for bug fixing. g77 will be succeeded
by g95 - see http://g95.sourceforge.net.

See [Funding Free Software|, page 19, for more information.

mailto:craig@jcb-sc.com
http://world.std.com/%7Eburley/
mailto:toon@moene.indiv.nluug.nl
mailto:gnu@gnu.org
mailto:gcc@gcc.gnu.org
http://g95.sourceforge.net

22

Using and Porting GNU Fortran

Chapter 2: Getting Started 23

2 Getting Started

If you don’t need help getting started reading the portions of this manual that are most important
to you, you should skip this portion of the manual.

If you are new to compilers, especially Fortran compilers, or new to how compilers are
structured under UNIX and UNIX-like systems, you’ll want to see Chapter 3 [What is GNU
Fortran?], page 25.

If you are new to GNU compilers, or have used only one GNU compiler in the past and not
had to delve into how it lets you manage various versions and configurations of gcc, you should
see Chapter 4 [G77 and GCC], page 29.

Everyone except experienced g77 users should see Chapter 5 [Invoking G77], page 31.

If you're acquainted with previous versions of g77, you should see Chapter 6 [News About
GNU Fortran], page 51. Further, if you've actually used previous versions of g77, especially if
you’ve written or modified Fortran code to be compiled by previous versions of g77, you should
see Chapter 7 [Changes], page 67.

If you intend to write or otherwise compile code that is not already strictly conforming ANSI
FORTRAN 77—and this is probably everyone—you should see Chapter 8 [Language], page 77.

If you run into trouble getting Fortran code to compile, link, run, or work properly, you
might find answers if you see Chapter 13 [Debugging and Interfacing], page 223, see Chapter 14
[Collected Fortran Wisdom]|, page 233, and see Chapter 15 [Trouble], page 249. You might also
find that the problems you are encountering are bugs in g77—see Chapter 17 [Bugs|, page 277,
for information on reporting them, after reading the other material.

If you need further help with g77, or with freely redistributable software in general, see
Chapter 18 [Service], page 281.

If you would like to help the g77 project, see Chapter 1 [Funding GNU Fortran]|, page 21, for
information on helping financially, and see Chapter 20 [Projects], page 285, for information on
helping in other ways.

If you're generally curious about the future of g77, see Chapter 20 [Projects|, page 285. If
you're curious about its past, see [Contributors|, page 17, and see Chapter 1 [Funding GNU
Fortran], page 21.

To see a few of the questions maintainers of g77 have, and that you might be able to answer,
see Chapter 16 [Open Questions], page 275.

24

Using and Porting GNU Fortran

Chapter 3: What is GNU Fortran? 25

3

What is GNU Fortran?

GNU Fortran, or g77, is designed initially as a free replacement for, or alternative to, the UNIX
£77 command. (Similarly, gcc is designed as a replacement for the UNIX cc command.)

g77 also is designed to fit in well with the other fine GNU compilers and tools.

Sometimes these design goals conflict—in such cases, resolution often is made in favor of

fitting in well with Project GNU. These cases are usually identified in the appropriate sections
of this manual.

As compilers, g77, gcc, and £77 share the following characteristics:

They read a user’s program, stored in a file and containing instructions written in the
appropriate language (Fortran, C, and so on). This file contains source code.

They translate the user’s program into instructions a computer can carry out more quickly
than it takes to translate the instructions in the first place. These instructions are called
machine code—code designed to be efficiently translated and processed by a machine such
as a computer. Humans usually aren’t as good writing machine code as they are at writing
Fortran or C, because it is easy to make tiny mistakes writing machine code. When writing
Fortran or C, it is easy to make big mistakes.

They provide information in the generated machine code that can make it easier to find
bugs in the program (using a debugging tool, called a debugger, such as gdb).

They locate and gather machine code already generated to perform actions requested by
statements in the user’s program. This machine code is organized into libraries and is
located and gathered during the link phase of the compilation process. (Linking often is
thought of as a separate step, because it can be directly invoked via the 1d command.
However, the g77 and gcc commands, as with most compiler commands, automatically
perform the linking step by calling on 1d directly, unless asked to not do so by the user.)

They attempt to diagnose cases where the user’s program contains incorrect usages of
the language. The diagnostics produced by the compiler indicate the problem and the
location in the user’s source file where the problem was first noticed. The user can use this
information to locate and fix the problem. (Sometimes an incorrect usage of the language
leads to a situation where the compiler can no longer make any sense of what follows—
while a human might be able to—and thus ends up complaining about many “problems” it
encounters that, in fact, stem from just one problem, usually the first one reported.)

They attempt to diagnose cases where the user’s program contains a correct usage of the
language, but instructs the computer to do something questionable. These diagnostics
often are in the form of warnings, instead of the errors that indicate incorrect usage of the
language.

How these actions are performed is generally under the control of the user. Using command-

line options, the user can specify how persnickety the compiler is to be regarding the program
(whether to diagnose questionable usage of the language), how much time to spend making the
generated machine code run faster, and so on.

g77 consists of several components:

A modified version of the gcc command, which also might be installed as the system’s cc
command. (In many cases, cc refers to the system’s “native” C compiler, which might be
a non-GNU compiler, or an older version of gcc considered more stable or that is used to
build the operating system kernel.)

The g77 command itself, which also might be installed as the system’s £77 command.

The 1ibg2c run-time library. This library contains the machine code needed to support
capabilities of the Fortran language that are not directly provided by the machine code
generated by the g77 compilation phase.

26 Using and Porting GNU Fortran

libg2c is just the unique name g77 gives to its version of 1ibf2c to distinguish it from any
copy of 1ibf2c installed from f2c (or versions of g77 that built 1ibf2c under that same
name) on the system.

The maintainer of 1ibf2c currently is dmg@bell-labs.com.
e The compiler itself, internally named £771.

Note that £771 does not generate machine code directly—it generates assembly code that
is a more readable form of machine code, leaving the conversion to actual machine code to
an assembler, usually named as.

gcc is often thought of as “the C compiler” only, but it does more than that. Based on
command-line options and the names given for files on the command line, gcc determines which
actions to perform, including preprocessing, compiling (in a variety of possible languages), as-
sembling, and linking.

For example, the command ‘gcc foo.c’ drives the file ‘foo.c’ through the preprocessor cpp,
then the C compiler (internally named cc1), then the assembler (usually as), then the linker
(1d), producing an executable program named ‘a.out’ (on UNIX systems).

As another example, the command ‘gcc foo.cc’ would do much the same as ‘gcc foo.c’, but
instead of using the C compiler named cc1, gcc would use the C++ compiler (named cciplus).

In a GNU Fortran installation, gcc recognizes Fortran source files by name just like it does
C and C++ source files. It knows to use the Fortran compiler named £771, instead of ccl or
cclplus, to compile Fortran files.

Non-Fortran-related operation of gcc is generally unaffected by installing the GNU Fortran
version of gcc. However, without the installed version of gcc being the GNU Fortran version,
gce will not be able to compile and link Fortran programs—and since g77 uses gcc to do most
of the actual work, neither will g77!

The g77 command is essentially just a front-end for the gcc command. Fortran users will
normally use g77 instead of gcc, because g77 knows how to specify the libraries needed to link
with Fortran programs (1ibg2c and 1m). g77 can still compile and link programs and source
files written in other languages, just like gcc.

The command ‘g77 -v’ is a quick way to display lots of version information for the various
programs used to compile a typical preprocessed Fortran source file—this produces much more
output than ‘gcc -v’ currently does. (If it produces an error message near the end of the
output—diagnostics from the linker, usually 1d—you might have an out-of-date 1ibf2c that
improperly handles complex arithmetic.) In the output of this command, the line beginning
‘GNU Fortran Front End’ identifies the version number of GNU Fortran; immediately preceding
that line is a line identifying the version of gcc with which that version of g77 was built.

The 1ibf2c library is distributed with GNU Fortran for the convenience of its users, but is
not part of GNU Fortran. It contains the procedures needed by Fortran programs while they
are running.

For example, while code generated by g77 is likely to do additions, subtractions, and mul-
tiplications in line—in the actual compiled code—it is not likely to do trigonometric functions
this way.

Instead, operations like trigonometric functions are compiled by the £771 compiler (invoked
by g77 when compiling Fortran code) into machine code that, when run, calls on functions in
libg2c, so 1libg2c must be linked with almost every useful program having any component
compiled by GNU Fortran. (As mentioned above, the g77 command takes care of all this for
you.)

The £771 program represents most of what is unique to GNU Fortran. While much of the
libg2c component comes from the 1ibf2c component of £2c, a free Fortran-to-C converter

mailto:dmg@bell-labs.com

Chapter 3: What is GNU Fortran? 27

distributed by Bellcore (AT&T), plus 1ibU77, provided by Dave Love, and the g77 command is
just a small front-end to gcc, £771 is a combination of two rather large chunks of code.

One chunk is the so-called GNU Back End, or GBE, which knows how to generate fast code
for a wide variety of processors. The same GBE is used by the C, C++, and Fortran compiler
programs ccl, cclplus, and £771, plus others. Often the GBE is referred to as the “gcc back
end” or even just “gcc”’—in this manual, the term GBE is used whenever the distinction is
important.

The other chunk of £771 is the majority of what is unique about GNU Fortran—the code
that knows how to interpret Fortran programs to determine what they are intending to do, and
then communicate that knowledge to the GBE for actual compilation of those programs. This
chunk is called the Fortran Front End (FFE). The cc1 and cclplus programs have their own
front ends, for the C and C++ languages, respectively. These fronts ends are responsible for
diagnosing incorrect usage of their respective languages by the programs the process, and are
responsible for most of the warnings about questionable constructs as well. (The GBE handles
producing some warnings, like those concerning possible references to undefined variables.)

Because so much is shared among the compilers for various languages, much of the behavior
and many of the user-selectable options for these compilers are similar. For example, diagnostics
(error messages and warnings) are similar in appearance; command-line options like ‘-Wall’ have
generally similar effects; and the quality of generated code (in terms of speed and size) is roughly
similar (since that work is done by the shared GBE).

28

Using and Porting GNU Fortran

Chapter 4: Compile Fortran, C, or Other Programs 29

4 Compile Fortran, C, or Other Programs

A GNU Fortran installation includes a modified version of the gcc command.
In a non-Fortran installation, gcc recognizes C, C++, and Objective-C source files.

In a GNU Fortran installation, gcc also recognizes Fortran source files and accepts Fortran-
specific command-line options, plus some command-line options that are designed to cater to
Fortran users but apply to other languages as well.

See section “Compile C; C++; Objective-C; Ada; Fortran; or Java” in Using the GNU Com-
piler Collection (GCC), for information on the way different languages are handled by the GNU
CC compiler (gcc).

Also provided as part of GNU Fortran is the g77 command. The g77 command is designed
to make compiling and linking Fortran programs somewhat easier than when using the gcc
command for these tasks. It does this by analyzing the command line somewhat and changing
it appropriately before submitting it to the gcc command.

Use the ‘-v’ option with g77 to see what is going on—the first line of output is the invocation
of the gcc command.

30

Using and Porting GNU Fortran

Chapter 5: GNU Fortran Command Options 31

5 GNU Fortran Command Options

The g77 command supports all the options supported by the gcc command. See section “GCC
Command Options” in Using the GNU Compiler Collection (GCC), for information on the
non-Fortran-specific aspects of the gcc command (and, therefore, the g77 command).

All gcc and g77 options are accepted both by g77 and by gcc (as well as any other drivers
built at the same time, such as g++), since adding g77 to the gcc distribution enables acceptance
of g77 options by all of the relevant drivers.

In some cases, options have positive and negative forms; the negative form of ‘~ffoo’ would
be ‘-fno-foo’. This manual documents only one of these two forms, whichever one is not the
default.

5.1 Option Summary

Here is a summary of all the options specific to GNU Fortran, grouped by type. Explanations
are in the following sections.

Overall Options
See Section 5.2 [Options Controlling the Kind of Output], page 32.

-fversion -fset-g77-defaults -fno-silent

Shorthand Options
See Section 5.3 [Shorthand Options|, page 34.

-f£66 -fno-f66 -ff77 -fno-f77 -fno-ugly

Fortran Language Options
See Section 5.4 [Options Controlling Fortran Dialect], page 35.

-ffree-form -fno-fixed-form -f£90

-fvxt -fdollar-ok -fno-backslash

-fno-ugly-args -fno-ugly-assign -fno-ugly-assumed
-fugly-comma -fugly-complex -fugly-init -fugly-logint
-fonetrip -ftypeless-boz

-fintrin-case-initcap -fintrin-case-upper
-fintrin-case-lower -fintrin-case-any
-fmatch-case-initcap -fmatch-case-upper
-fmatch-case-lower -fmatch-case-any
-fsource-case-upper -fsource-case-lower
-fsource-case-preserve

-fsymbol-case-initcap -fsymbol-case-upper
-fsymbol-case-lower -fsymbol-case-any
-fcase-strict-upper -fcase-strict-lower
-fcase-initcap -fcase-upper -fcase-lower -fcase-preserve
-ff2c-intrinsics-delete -ff2c-intrinsics-hide
-ff2c-intrinsics-disable -ff2c-intrinsics-enable
-fbadu77-intrinsics-delete -fbadu77-intrinsics-hide
-fbadu77-intrinsics-disable -fbadu77-intrinsics-enable
-ff90-intrinsics-delete -ff90-intrinsics-hide
-f£f90-intrinsics-disable -ff90-intrinsics-enable
-fgnu-intrinsics-delete -fgnu-intrinsics-hide
-fgnu-intrinsics-disable -fgnu-intrinsics-enable
-fmil-intrinsics-delete -fmil-intrinsics-hide
-fmil-intrinsics-disable -fmil-intrinsics-enable
-funix-intrinsics-delete -funix-intrinsics-hide
-funix-intrinsics-disable -funix-intrinsics-enable
-fvxt-intrinsics-delete -fvxt-intrinsics-hide
-fvxt-intrinsics-disable -fvxt-intrinsics-enable
-ffixed-line-length-n -ffixed-line-length-none

Warning Options
See Section 5.5 [Options to Request or Suppress Warnings|, page 39.

32 Using and Porting GNU Fortran

-fsyntax-only -pedantic -pedantic-errors -fpedantic
-w -Wno-globals -Wimplicit -Wunused -Wuninitialized
-Wall -Wsurprising
-Werror -W

Debugging Options
See Section 5.6 [Options for Debugging Your Program or GCC], page 42.
g
Optimization Options
See Section 5.7 [Options that Control Optimization], page 43.

-malign-double

-ffloat-store -fforce-mem -fforce-addr -fno-inline

-ffast-math -fstrength-reduce -frerun-cse-after-loop
-funsafe-math-optimizations -ffinite-math-only -fno-trapping-math
-fexpensive-optimizations -fdelayed-branch

-fschedule-insns -fschedule-insn2 -fcaller-saves

-funroll-loops -funroll-all-loops

-fno-move-all-movables -fno-reduce-all-givs

-fno-rerun-loop-opt

Directory Options
See Section 5.9 [Options for Directory Search], page 45.
-Idir -I-
Code Generation Options
See Section 5.10 [Options for Code Generation Conventions|, page 46.

-fno-automatic -finit-local-zero -fno-f2c
-ff2c-library -fno-underscoring -fno-ident
-fpcc-struct-return -freg-struct-return
-fshort-double -fno-common -fpack-struct
-fzeros -fno-second-underscore
-femulate-complex
-falias-check -fargument-alias
-fargument-noalias -fno-argument-noalias-global
-fno-globals -fflatten-arrays
-fbounds-check -ffortran-bounds-check

5.2 Options Controlling the Kind of Output

Compilation can involve as many as four stages: preprocessing, code generation (often what is
really meant by the term “compilation”), assembly, and linking, always in that order. The first
three stages apply to an individual source file, and end by producing an object file; linking com-
bines all the object files (those newly compiled, and those specified as input) into an executable
file.

For any given input file, the file name suffix determines what kind of program is contained
in the file—that is, the language in which the program is written is generally indicated by the
suffix. Suffixes specific to GNU Fortran are listed below. See section “Options Controlling the
Kind of Output” in Using the GNU Compiler Collection (GCC), for information on suffixes
recognized by GNU CC.

file.f
file.for

file.FOR Fortran source code that should not be preprocessed.

Such source code cannot contain any preprocessor directives, such as #include,
#define, #if, and so on.

You can force ‘. £’ files to be preprocessed by cpp by using ‘-x £77-cpp-input’. See
Section 22.4 [LEX], page 316.

Chapter 5: GNU Fortran Command Options 33

file.F
file.fpp

file.FPP Fortran source code that must be preprocessed (by the C preprocessor cpp, which
is part of GNU CC).

Note that preprocessing is not extended to the contents of files included by the
INCLUDE directive—the #include preprocessor directive must be used instead.

file.r Ratfor source code, which must be preprocessed by the ratfor com-
mand, which is available separately (as it is not yet part of the
GNU Fortran distribution). A public domain version in C is at

http://sepwww.stanford.edu/sep/prof/ratfor.shar.?2.

UNIX users typically use the ‘file.f’ and ‘file.F’ nomenclature. Users of other operating
systems, especially those that cannot distinguish upper-case letters from lower-case letters in
their file names, typically use the ‘file.for’ and ‘file.fpp’ nomenclature.

Use of the preprocessor cpp allows use of C-like constructs such as #define and #include,
but can lead to unexpected, even mistaken, results due to Fortran’s source file format. It is
recommended that use of the C preprocessor be limited to #include and, in conjunction with
#define, only #if and related directives, thus avoiding in-line macro expansion entirely. This
recommendation applies especially when using the traditional fixed source form. With free
source form, fewer unexpected transformations are likely to happen, but use of constructs such
as Hollerith and character constants can nevertheless present problems, especially when these
are continued across multiple source lines. These problems result, primarily, from differences
between the way such constants are interpreted by the C preprocessor and by a Fortran compiler.

Another example of a problem that results from using the C preprocessor is that a Fortran
comment line that happens to contain any characters “interesting” to the C preprocessor, such
as a backslash at the end of the line, is not recognized by the preprocessor as a comment
line, so instead of being passed through “raw”, the line is edited according to the rules for the
preprocessor. For example, the backslash at the end of the line is removed, along with the
subsequent newline, resulting in the next line being effectively commented out—unfortunate if
that line is a non-comment line of important code!

Note: The ‘-traditional’ and ‘-undef’ flags are supplied to cpp by default, to help avoid
unpleasant surprises. See section “Options Controlling the Preprocessor” in Using the GNU
Compiler Collection (GCC). This means that ANSI C preprocessor features (such as the ‘#
operator) aren’t available, and only variables in the C reserved namespace (generally, names
with a leading underscore) are liable to substitution by C predefines. Thus, if you want to do
system-specific tests, use, for example, ‘#ifdef __linux__’ rather than ‘#ifdef linux’. Use

the ‘-=v’ option to see exactly how the preprocessor is invoked.

Unfortunately, the ‘~traditional’ flag will not avoid an error from anything that cpp sees
as an unterminated C comment, such as:

C Some Fortran compilers accept /* as starting
C an inline comment.

See Section 9.2 [Trailing Comment|, page 178.

The following options that affect overall processing are recognized by the g77 and gcc com-
mands in a GNU Fortran installation:

—-fversion
Ensure that the g77 version of the compiler phase is reported, if run, and, starting
in egcs version 1.1, that internal consistency checks in the ‘£771" program are run.

4 4

This option is supplied automatically when ‘-v’ or ‘--verbose’ is specified as a
command-line option for g77 or gcc and when the resulting commands compile
Fortran source files.

http://sepwww.stanford.edu/sep/prof/ratfor.shar.2

34

-fset-g77-

Using and Porting GNU Fortran

In GCC 3.1, this is changed back to the behavior gcc displays for ‘. c’ files.

defaults
Version info: This option was obsolete as of egcs version 1.1. The effect is instead
achieved by the lang_init_options routine in ‘gcc/gcc/f/com.c’.

Set up whatever gcc options are to apply to Fortran compilations, and avoid running
internal consistency checks that might take some time.

This option is supplied automatically when compiling Fortran code via the g77 or
gcc command. The description of this option is provided so that users seeing it in
the output of, say, ‘g77 -v’ understand why it is there.

Also, developers who run £771 directly might want to specify it by hand to get the
same defaults as they would running £771 via g77 or gcc However, such developers
should, after linking a new f£771 executable, invoke it without this option once,
e.g. via ./f771 —quiet < /dev/null, to ensure that they have not introduced any
internal inconsistencies (such as in the table of intrinsics) before proceeding—g77
will crash with a diagnostic if it detects an inconsistency.

—-fno-silent

Print (to stderr) the names of the program units as they are compiled, in a form
similar to that used by popular UNIX £77 implementations and f2c

See section “Options Controlling the Kind of Output” in Using the GNU Compiler Collection
(GCC), for information on more options that control the overall operation of the gcc command
(and, by extension, the g77 command).

5.3 Shorthand Options

The following options serve as “shorthand” for other options accepted by the compiler:

-fugly

-fno-ugly

-f£66

Note: This option is no longer supported. The information, below, is provided to
aid in the conversion of old scripts.

Specify that certain “ugly” constructs are to be quietly accepted. Same as:
-fugly-args -fugly-assign -fugly-assumed
-fugly-comma -fugly-complex -fugly-init
-fugly-logint
These constructs are considered inappropriate to use in new or well-maintained
portable Fortran code, but widely used in old code. See Section 9.9 [Distensions],
page 184, for more information.

Specify that all “ugly” constructs are to be noisily rejected. Same as:
-fno-ugly-args -fno-ugly-assign -fno-ugly-assumed
-fno-ugly-comma -fno-ugly-complex -fno-ugly-init
-fno-ugly-logint

See Section 9.9 [Distensions], page 184, for more information.

Specify that the program is written in idiomatic FORTRAN 66. Same as ‘~fonetrip
-fugly-assumed’.

The ‘-fno-f66° option is the inverse of ‘-ff66’. As such, it is the same as
‘~fno-onetrip -fno-ugly-assumed’.

The meaning of this option is likely to be refined as future versions of g77 provide
more compatibility with other existing and obsolete Fortran implementations.

Chapter 5: GNU Fortran Command Options 35

-££77

—fno-£f77

Specify that the program is written in idiomatic UNIX FORTRAN 77 and/or the
dialect accepted by the £2¢c product. Same as ‘~fbackslash -fno-typeless-boz’.
The meaning of this option is likely to be refined as future versions of g77 provide
more compatibility with other existing and obsolete Fortran implementations.

The ‘-fno-£77’ option is not the inverse of ‘-££77’. It specifies that the program is
not written in idiomatic UNIX FORTRAN 77 or £2¢ but in a more widely portable
dialect. ‘~fno-£77’ is the same as ‘~fno-backslash’.

The meaning of this option is likely to be refined as future versions of g77 provide
more compatibility with other existing and obsolete Fortran implementations.

5.4 Options Controlling Fortran Dialect

The following options control the dialect of Fortran that the compiler accepts:

-ffree-form
-fno-fixed-form

Specify that the source file is written in free form (introduced in Fortran 90) instead
of the more-traditional fixed form.

-££90 Allow certain Fortran-90 constructs.

This option controls whether certain Fortran 90 constructs are recognized. (Other
Fortran 90 constructs might or might not be recognized depending on other options
such as ‘-fvxt’, ‘-ff90-intrinsics-enable’, and the current level of support for
Fortran 90.)

See Section 9.7 [Fortran 90], page 183, for more information.

-fvxt Specify the treatment of certain constructs that have different meanings depending
on whether the code is written in GNU Fortran (based on FORTRAN 77 and akin
to Fortran 90) or VXT Fortran (more like VAX FORTRAN).
The default is ‘~fno-vxt’. ‘-fvxt’ specifies that the VXT Fortran interpretations
for those constructs are to be chosen.
See Section 9.6 [VXT Fortran], page 182, for more information.

-fdollar-ok

Allow ‘$’” as a valid character in a symbol name.

-fno-backslash

Specify that ‘\’ is not to be specially interpreted in character and Hollerith constants
a la C and many UNIX Fortran compilers.

For example, with ‘~fbackslash’ in effect, ‘A\nB’ specifies three characters, with
the second one being newline. With ‘~fno-backslash’, it specifies four characters,
CA?, 6\7’ Cn77 and 4B7.

Note that g77 implements a fairly general form of backslash processing that is
incompatible with the narrower forms supported by some other compilers. For
example, ‘?A\003B’’ is a three-character string in g77 whereas other compilers that
support backslash might not support the three-octal-digit form, and thus treat that
string as longer than three characters.

See Section 15.5.1 [Backslash in Constants], page 269, for information on why
‘~fbackslash’ is the default instead of ‘~fno-backslash’.

-fno-ugly-args

Disallow passing Hollerith and typeless constants as actual arguments (for example,
‘CALL FOO (4HABCD)’).

36 Using and Porting GNU Fortran

See Section 9.9.1 [Ugly Implicit Argument Conversion|, page 185, for more informa-
tion.

-fugly-assign
Use the same storage for a given variable regardless of whether it is used to hold an
assigned-statement label (as in ‘ASSIGN 10 TO I’) or used to hold numeric data (as
in ‘I =23).
See Section 9.9.7 [Ugly Assigned Labels], page 187, for more information.

-fugly-assumed
Assume any dummy array with a final dimension specified as ‘1’ is really an assumed-
size array, as if ‘*’ had been specified for the final dimension instead of ‘1.

For example, ‘DIMENSION X (1)’ is treated as if it had read ‘DIMENSION X (*)’.
See Section 9.9.2 [Ugly Assumed-Size Arrays], page 185, for more information.

-fugly-comma
In an external-procedure invocation, treat a trailing comma in the argument list
as specification of a trailing null argument, and treat an empty argument list as
specification of a single null argument.
For example, ‘CALL FOO(,)’ is treated as ‘CALL FOO(%VAL(0), %VAL(0))’. That is,
two null arguments are specified by the procedure call when ‘-fugly-comma’ is in
force. And ‘F = FUNC()’ is treated as ‘F = FUNC(%VAL(0))’.
The default behavior, ‘~fno-ugly-comma’, is to ignore a single trailing comma in an
argument list. So, by default, ‘CALL FOO(X,)’ is treated exactly the same as ‘CALL
FOO(X)'.

See Section 9.9.4 [Ugly Null Arguments|, page 186, for more information.
-fugly-complex

Do not complain about ‘REAL(expr)’ or ‘AIMAG(expr)’ when expr is a COMPLEX

type other than COMPLEX (KIND=1)—usually this is used to permit COMPLEX (KIND=2)

(DOUBLE COMPLEX) operands.

The ‘=££90’ option controls the interpretation of this construct.

See Section 9.9.3 [Ugly Complex Part Extraction], page 185, for more information.
-fno-ugly-init

Disallow use of Hollerith and typeless constants as initial values (in PARAMETER and

DATA statements), and use of character constants to initialize numeric types and vice

versa.

For example, ‘DATA I/’F’/, CHRVAR/65/, J/4HABCD/’ is disallowed by

‘~fno-ugly-init’.

See Section 9.9.5 [Ugly Conversion of Initializers|, page 186, for more information.
-fugly-logint

Treat INTEGER and LOGICAL variables and expressions as potential stand-ins for each

other.

For example, automatic conversion between INTEGER and LOGICAL is enabled, for
many contexts, via this option.

See Section 9.9.6 [Ugly Integer Conversions], page 187, for more information.
-fonetrip

Executable iterative DO loops are to be executed at least once each time they are
reached.

ANSI FORTRAN 77 and more recent versions of the Fortran standard specify that
the body of an iterative DO loop is not executed if the number of iterations calculated

Chapter 5: GNU Fortran Command Options 37

from the parameters of the loop is less than 1. (For example, ‘D0 10 I = 1, 0’.) Such
a loop is called a zero-trip loop.

Prior to ANSI FORTRAN 77, many compilers implemented DO loops such that the
body of a loop would be executed at least once, even if the iteration count was zero.
Fortran code written assuming this behavior is said to require one-trip loops. For
example, some code written to the FORTRAN 66 standard expects this behavior
from its DO loops, although that standard did not specify this behavior.

The ‘-fonetrip’ option specifies that the source file(s) being compiled require one-
trip loops.

This option affects only those loops specified by the (iterative) DO statement and by
implied-DO lists in I/O statements. Loops specified by implied-DO0 lists in DATA and
specification (non-executable) statements are not affected.

-ftypeless-boz
Specifies that prefix-radix non-decimal constants, such as ‘Z’ABCD’’, are typeless
instead of INTEGER (KIND=1).

You can test for yourself whether a particular compiler treats the prefix form as
INTEGER (KIND=1) or typeless by running the following program:

EQUIVALENCE (I, R)

R = Z’ABCD1234’

J = Z’ABCD1234’

IF (J .EQ. I) PRINT *, ’Prefix form is TYPELESS’

IF (J .NE. I) PRINT *, ’Prefix form is INTEGER’

END

Reports indicate that many compilers process this form as INTEGER(KIND=1),

though a few as typeless, and at least one based on a command-line option specifying
some kind of compatibility.

-fintrin-case-initcap
-fintrin-case-upper
-fintrin-case-lower
-fintrin-case-any
Specify expected case for intrinsic names. ‘~fintrin-case-lower’ is the default.

-fmatch-case-initcap
-fmatch-case-upper
-fmatch-case-lower
-fmatch-case-any
Specify expected case for keywords. ‘~fmatch-case-lower’ is the default

-fsource-case-upper

-fsource-case-lower

-fsource-case-preserve
Specify whether source text other than character and Hollerith constants is to be
translated to uppercase, to lowercase, or preserved as is. ‘~fsource-case-lower’ is
the default.

-fsymbol-case-initcap

-fsymbol-case-upper

-fsymbol-case-lower

-fsymbol-case-any
Specify valid cases for user-defined symbol names. ‘-fsymbol-case-any’ is the
default.

38 Using and Porting GNU Fortran

-fcase-strict-upper
Same as ‘-fintrin-case-upper -fmatch-case-upper -fsource-case-preserve
-fsymbol-case-upper’. (Requires all pertinent source to be in uppercase.)

—fcase-strict-lower
Same as ‘-fintrin-case-lower -fmatch-case-lower -fsource-case-preserve
-fsymbol-case-lower’. (Requires all pertinent source to be in lowercase.)

-fcase-initcap
Same as ‘~fintrin-case-initcap -fmatch-case-initcap
-fsource-case-preserve -fsymbol-case-initcap’. (Requires all perti-
nent source to be in initial capitals, as in ‘Print *,SqRt(Value)’.)

-fcase-upper
Same as ‘-fintrin-case-any -fmatch-case-any -fsource-case-upper
-fsymbol-case-any’. (Maps all pertinent source to uppercase.)

-fcase-lower
Same as ‘-fintrin-case-any -fmatch-case-any -fsource-case-lower
-fsymbol-case-any’. (Maps all pertinent source to lowercase.)

-fcase-preserve
Same as ‘-fintrin-case-any -fmatch-case-any -fsource-case-preserve
-fsymbol-case-any’. (Preserves all case in user-defined symbols, while allowing
any-case matching of intrinsics and keywords. For example, ‘call Foo(i,I)’ would
pass two different variables named ‘i’ and ‘I’ to a procedure named ‘Foo’.)

-fbadu77-intrinsics-delete

-fbadu77-intrinsics-hide

-fbadu77-intrinsics-disable

-fbadu77-intrinsics-enable
Specify status of UNIX intrinsics having inappropriate forms.
‘-fbadu77-intrinsics-enable’ is the default. See Section 10.5.1 [Intrin-
sic Groups|, page 194

-ff2c-intrinsics-delete

-ff2c-intrinsics-hide

-ff2c-intrinsics-disable

-ff2c-intrinsics-enable
Specify status of f2c-specific intrinsics. ‘-ff2c-intrinsics-enable’ is the default.
See Section 10.5.1 [Intrinsic Groups|, page 194.

-ff90-intrinsics-delete

-ff90-intrinsics-hide

-ff90-intrinsics-disable

-ff90-intrinsics-enable
Specify status of F90-specific intrinsics. ‘~ff90-intrinsics-enable’ is the default.
See Section 10.5.1 [Intrinsic Groups|, page 194.

-fgnu-intrinsics-delete

-fgnu-intrinsics-hide

-fgnu-intrinsics-disable

-fgnu-intrinsics-enable
Specify status of Digital’s COMPLEX-related intrinsics.
‘~fgnu-intrinsics-enable’ is the default. See Section 10.5.1 [Intrinsic
Groups|, page 194.

Chapter 5: GNU Fortran Command Options 39

-fmil-intrinsics-delete

-fmil-intrinsics-hide

-fmil-intrinsics-disable

-fmil-intrinsics-enable
Specify status of MIL-STD-1753-specific intrinsics. ‘~fmil-intrinsics-enable’ is
the default. See Section 10.5.1 [Intrinsic Groups], page 194.

—-funix-intrinsics-delete

-funix-intrinsics-hide

-funix-intrinsics-disable

—-funix-intrinsics-enable
Specify status of UNIX intrinsics. ‘~-funix-intrinsics-enable’ is the default. See
Section 10.5.1 [Intrinsic Groups|, page 194

-fvxt-intrinsics-delete

—-fvxt-intrinsics-hide

-fvxt-intrinsics-disable

-fvxt-intrinsics-enable
Specify status of VXT intrinsics. ‘-fvxt-intrinsics-enable’ is the default. See
Section 10.5.1 [Intrinsic Groups|, page 194

-ffixed-line-length-n
Set column after which characters are ignored in typical fixed-form lines in the source
file, and through which spaces are assumed (as if padded to that length) after the
ends of short fixed-form lines.

Popular values for n include 72 (the standard and the default), 80 (card image),
and 132 (corresponds to “extended-source” options in some popular compilers).
n may be ‘none’, meaning that the entire line is meaningful and that continued
character constants never have implicit spaces appended to them to fill out the line.
‘~ffixed-line-length-0" means the same thing as ‘~ffixed-line-length-none’.

See Section 9.1 [Source Form], page 177, for more information.

5.5 Options to Request or Suppress Warnings

Warnings are diagnostic messages that report constructions which are not inherently erroneous
but which are risky or suggest there might have been an error.

You can request many specific warnings with options beginning ‘-W’, for example
‘~Wimplicit’ to request warnings on implicit declarations. Each of these specific warning
options also has a negative form beginning ‘-Wno-’ to turn off warnings; for example,
‘~Wno-implicit’. This manual lists only one of the two forms, whichever is not the default.

These options control the amount and kinds of warnings produced by GNU Fortran:

-fsyntax-only
Check the code for syntax errors, but don’t do anything beyond that.

-pedantic
Issue warnings for uses of extensions to ANSI FORTRAN 77. ‘-pedantic’ also
applies to C-language constructs where they occur in GNU Fortran source files,
such as use of ‘\e’ in a character constant within a directive like ‘#include’.

Valid ANSI FORTRAN 77 programs should compile properly with or without this
option. However, without this option, certain GNU extensions and traditional For-
tran features are supported as well. With this option, many of them are rejected.

40 Using and Porting GNU Fortran

Some users try to use ‘-pedantic’ to check programs for strict ANSI conformance.
They soon find that it does not do quite what they want—it finds some non-ANSI
practices, but not all. However, improvements to g77 in this area are welcome.

-pedantic-errors
Like ‘-pedantic’, except that errors are produced rather than warnings.

—-fpedantic
Like ‘-pedantic’, but applies only to Fortran constructs.

-w Inhibit all warning messages.

-Wno-globals
Inhibit warnings about use of a name as both a global name (a subroutine, function,
or block data program unit, or a common block) and implicitly as the name of an
intrinsic in a source file.

Also inhibit warnings about inconsistent invocations and/or definitions of global pro-
cedures (function and subroutines). Such inconsistencies include different numbers
of arguments and different types of arguments.

-Wimplicit
Warn whenever a variable, array, or function is implicitly declared. Has an
effect similar to using the IMPLICIT NONE statement in every program unit.

(Some Fortran compilers provide this feature by an option named ‘-u’ or
‘/WARNINGS=DECLARATIONS’.)

-Wunused Warn whenever a variable is unused aside from its declaration.

-Wuninitialized
Warn whenever an automatic variable is used without first being initialized.
These warnings are possible only in optimizing compilation, because they require
data-flow information that is computed only when optimizing. If you don’t specify
‘-0’, you simply won’t get these warnings.
These warnings occur only for variables that are candidates for register allocation.
Therefore, they do not occur for a variable whose address is taken, or whose size is
other than 1, 2, 4 or 8 bytes. Also, they do not occur for arrays, even when they
are in registers.

Note that there might be no warning about a variable that is used only to compute
a value that itself is never used, because such computations may be deleted by
data-flow analysis before the warnings are printed.

These warnings are made optional because GNU Fortran is not smart enough to see
all the reasons why the code might be correct despite appearing to have an error.
Here is one example of how this can happen:

SUBROUTINE DISPAT(J)
IF (J.EQ.1) I=1

IF (J.EQ.2) I=4

IF (J.EQ.3) I=5
CALL FOO(I)

END

If the value of J is always 1, 2 or 3, then I is always initialized, but GNU Fortran
doesn’t know this. Here is another common case:

SUBROUTINE MAYBE(FLAG)
LOGICAL FLAG
IF (FLAG) VALUE = 9.4

Chapter 5: GNU Fortran Command Options 41

IF (FLAG) PRINT *, VALUE
END

This has no bug because VALUE is used only if it is set.

-Wall The ‘-Wunused’ and ‘-Wuninitialized’ options combined. These are all the options
which pertain to usage that we recommend avoiding and that we believe is easy to
avoid. (As more warnings are added to g77 some might be added to the list enabled
by ‘-Wall’.)

The remaining ‘-W. ..’ options are not implied by ‘-Wall’ because they warn about construc-
tions that we consider reasonable to use, on occasion, in clean programs.

-Wsurprising
Warn about “suspicious” constructs that are interpreted by the compiler in a way
that might well be surprising to someone reading the code. These differences can re-
sult in subtle, compiler-dependent (even machine-dependent) behavioral differences.
The constructs warned about include:

e Expressions having two arithmetic operators in a row, such as ‘X*-Y’. Such a
construct is nonstandard, and can produce unexpected results in more com-
plicated situations such as ‘Xx*-Y*Z’. g77 along with many other compilers,
interprets this example differently than many programmers, and a few other
compilers. Specifically, g77 interprets ‘X**-Y*Z’ as ‘(Xx*(-Y))*Z’, while oth-
ers might think it should be interpreted as ‘X** (= (Y*Z))’.

A revealing example is the constant expression ‘2x*-2%1.’ which g77 evaluates
to .25, while others might evaluate it to 0., the difference resulting from the
way precedence affects type promotion.

(The ‘-fpedantic’ option also warns about expressions having two arithmetic
operators in a row.)

e Expressions with a unary minus followed by an operand and then a binary

operator other than plus or minus. For example, ‘-=2**2’ produces a warning,
because the precedence is ‘= (2**2)’, yielding -4, not ‘(-2)**2’, which yields 4,
and which might represent what a programmer expects.
An example of an expression producing different results in a surprising way is
‘~I*3’, where I holds the value ‘-2147483648" and S holds ‘0.5’. On many
systems, negating I results in the same value, not a positive number, because
it is already the lower bound of what an INTEGER(KIND=1) variable can hold.
So, the expression evaluates to a positive number, while the “expected” inter-
pretation, ‘(-I)*S’, would evaluate to a negative number.

Even cases such as ‘~I*J’ produce warnings, even though, in most configurations
and situations, there is no computational difference between the results of the
two interpretations—the purpose of this warning is to warn about differing
interpretations and encourage a better style of coding, not to identify only
those places where bugs might exist in the user’s code.

e DO loops with DO variables that are not of integral type—that is, using REAL
variables as loop control variables. Although such loops can be written to work
in the “obvious” way, the way g77 is required by the Fortran standard to inter-
pret such code is likely to be quite different from the way many programmers
expect. (This is true of all DO loops, but the differences are pronounced for
non-integral loop control variables.)

See Section 14.3 [Loops], page 236, for more information.

42 Using and Porting GNU Fortran

-Werror Make all warnings into errors.

-W Turns on “extra warnings” and, if optimization is specified via ‘-0’, the
‘~Wuninitialized’ option. (This might change in future versions of g77

“Fxtra warnings” are issued for:
e Unused parameters to a procedure (when ‘-Wunused’ also is specified).

e Overflows involving floating-point constants (not available for certain configu-
rations).

See section “Options to Request or Suppress Warnings” in Using the GNU Compiler Collec-
tion (GCC), for information on more options offered by the GBE shared by g77 gcc and other
GNU compilers.

Some of these have no effect when compiling programs written in Fortran:

-Wcomment
-Wformat

-Wparentheses
-Wswitch

-Wswitch-default
-Wswitch-enum
-Wtraditional
-Wshadow

-Wid-clash-len

-Wlarger-than-len

-Wconversion

-Waggregate-return

-Wredundant-decls
These options all could have some relevant meaning for GNU Fortran programs, but
are not yet supported.

5.6 Options for Debugging Your Program or GNU Fortran

GNU Fortran has various special options that are used for debugging either your program or
gr7

-g Produce debugging information in the operating system’s native format (stabs,
COFF, XCOFF, or DWARF). GDB can work with this debugging information.

A sample debugging session looks like this (note the use of the breakpoint):

$ cat gdb.f
PROGRAM PROG
DIMENSION A(10)
DATA A /1.,2.,3.,4.,5.,6.,7.,8.,9.,10./
A(5) = 4.
PRINT*,A
END
$ g77 -g -0 gdb.f
$ gdb a.out

(gdb) break MAIN__

Breakpoint 1 at 0x8048e96: file gdb.f, line 4.
(gdb) run

Starting program: /home/toon/g77-bugs/./a.out
Breakpoint 1, MAIN__ () at gdb.f:4

4 A(5) = 4.

Chapter 5: GNU Fortran Command Options 43

Current language: auto; currently fortran
(gdb) print a(b)

$1 =5

(gdb) step

5 PRINT*,A
(gdb) print a(5)

$2 = 4

One could also add the setting of the breakpoint and the first run command to the
file ‘. gdbinit’ in the current directory, to simplify the debugging session.

See section “Options for Debugging Your Program or GCC” in Using the GNU Compiler
Collection (GCC), for more information on debugging options.

5.7 Options That Control Optimization

Most Fortran users will want to use no optimization when developing and testing programs,
and use ‘-0’ or ‘-02’ when compiling programs for late-cycle testing and for production use.
However, note that certain diagnostics—such as for uninitialized variables—depend on the flow
analysis done by ‘-0’, i.e. you must use ‘-0’ or ‘-02’ to get such diagnostics.

The following flags have particular applicability when compiling Fortran programs:

-malign-double
(Intel x86 architecture only.)

Noticeably improves performance of g77 programs making heavy use of
REAL(KIND=2) (DOUBLE PRECISION) data on some systems. In particular, systems
using Pentium, Pentium Pro, 586, and 686 implementations of the i386 architecture
execute programs faster when REAL (KIND=2) (DOUBLE PRECISION) data are aligned
on 64-bit boundaries in memory.

This option can, at least, make benchmark results more consistent across various
system configurations, versions of the program, and data sets.

Note: The warning in the gcc documentation about this option does not apply,
generally speaking, to Fortran code compiled by g77

See Section 14.6.1 [Aligned Datal, page 245, for more information on alignment
issues.

Also also note: The negative form of ‘-malign-double’ is °

not ‘~-benign-double’.

-mno-align-double’,

-ffloat-store
Might help a Fortran program that depends on exact IEEE conformance on some
machines, but might slow down a program that doesn’t.

This option is effective when the floating-point unit is set to work in IEEE 854
‘extended precision’—as it typically is on x86 and m68k GNU systems—rather than
IEEE 754 double precision. ‘~ffloat-store’ tries to remove the extra precision by
spilling data from floating-point registers into memory and this typically involves
a big performance hit. However, it doesn’t affect intermediate results, so that it is
only partially effective. ‘Excess precision’ is avoided in code like:

b+ c
a * e

a
d

but not in code like:
d=(b +c) *xe

For another, potentially better, way of controlling the precision, see Section 14.4.10
[Floating-point precision|, page 243.

44 Using and Porting GNU Fortran

—-fforce-mem
-fforce-addr
Might improve optimization of loops.

-fno-inline
Don’t compile statement functions inline. Might reduce the size of a program unit—
which might be at expense of some speed (though it should compile faster). Note
that if you are not optimizing, no functions can be expanded inline.

-ffast-math
Might allow some programs designed to not be too dependent on IEEE behavior for
floating-point to run faster, or die trying. Sets ‘-funsafe-math-optimizations’,
‘~ffinite-math-only’, and ‘-fno-trapping-math’.

-funsafe-math-optimizations
Allow optimizations that may be give incorrect results for certain IEEE inputs.

-ffinite-math-only
Allow optimizations for floating-point arithmetic that assume that arguments and
results are not NaNs or +-Infs.

This option should never be turned on by any ‘-0’ option since it can result in
incorrect output for programs which depend on an exact implementation of IEEE
or ISO rules/specifications.

The default is ‘~fno-finite-math-only’.

-fno-trapping-math
Allow the compiler to assume that floating-point arithmetic will not generate traps
on any inputs. This is useful, for example, when running a program using IEEE
"non-stop" floating-point arithmetic.

-fstrength-reduce
Might make some loops run faster.

—-frerun-cse-after-loop
-fexpensive-optimizations
-fdelayed-branch
-fschedule-insns
-fschedule-insns2
-fcaller-saves
Might improve performance on some code.

-funroll-loops
Typically improves performance on code using iterative DO loops by unrolling them
and is probably generally appropriate for Fortran, though it is not turned on at any
optimization level. Note that outer loop unrolling isn’t done specifically; decisions
about whether to unroll a loop are made on the basis of its instruction count.

Also, no ‘loop discovery’! is done, so only loops written with DO benefit from loop
optimizations, including—but not limited to—unrolling. Loops written with IF and
GOTO are not currently recognized as such. This option unrolls only iterative DO
loops, not DO WHILE loops.

1 loop discovery refers to the process by which a compiler, or indeed any reader of a program, determines
which portions of the program are more likely to be executed repeatedly as it is being run. Such discovery
typically is done early when compiling using optimization techniques, so the “discovered” loops get more
attention—and more run-time resources, such as registers—from the compiler. It is easy to “discover” loops
that are constructed out of looping constructs in the language (such as Fortran’s D0). For some programs,
“discovering” loops constructed out of lower-level constructs (such as IF and GOTO) can lead to generation of
more optimal code than otherwise.

Chapter 5: GNU Fortran Command Options 45

-funroll-all-loops
Probably improves performance on code using DO WHILE loops by unrolling them in
addition to iterative DO loops. In the absence of DO WHILE, this option is equivalent
to ‘-funroll-loops’ but possibly slower.

-fno-move-all-movables

-fno-reduce-all-givs

-fno-rerun-loop-opt
In general, the optimizations enabled with these options will lead to faster code
being generated by GNU Fortran; hence they are enabled by default when issuing
the g77 command.

‘~fmove-all-movables’ and ‘-freduce-all-givs’ will enable loop optimization to
move all loop-invariant index computations in nested loops over multi-rank array
dummy arguments out of these loops.

‘~frerun-loop-opt’ will move offset calculations resulting from the fact that For-
tran arrays by default have a lower bound of 1 out of the loops.

These three options are intended to be removed someday, once loop optimization is
sufficiently advanced to perform all those transformations without help from these
options.

See section “Options That Control Optimization” in Using the GNU Compiler Collection
(GCC), for more information on options to optimize the generated machine code.

5.8 Options Controlling the Preprocessor

These options control the C preprocessor, which is run on each C source file before actual
compilation.

See section “Options Controlling the Preprocessor” in Using the GNU Compiler Collection
(GCC), for information on C preprocessor options.

Some of these options also affect how g77 processes the INCLUDE directive. Since this directive
is processed even when preprocessing is not requested, it is not described in this section. See
Section 5.9 [Options for Directory Search], page 45, for information on how g77 processes the
INCLUDE directive.

However, the INCLUDE directive does not apply preprocessing to the contents of the included
file itself.

Therefore, any file that contains preprocessor directives (such as #include, #define, and
#if) must be included via the #include directive, not via the INCLUDE directive. Therefore,
any file containing preprocessor directives, if included, is necessarily included by a file that itself
contains preprocessor directives.

5.9 Options for Directory Search

These options affect how the cpp preprocessor searches for files specified via the #include direc-
tive. Therefore, when compiling Fortran programs, they are meaningful when the preprocessor
is used.

Some of these options also affect how g77 searches for files specified via the INCLUDE directive,
although files included by that directive are not, themselves, preprocessed. These options are:

-T-

46

-Idir

Using and Porting GNU Fortran

These affect interpretation of the INCLUDE directive (as well as of the #include
directive of the cpp preprocessor).

Note that ‘-Idir’ must be specified without any spaces between ‘-1’ and the di-
rectory name—that is, ‘-Ifoo/bar’ is valid, but ‘-I foo/bar’ is rejected by the
g77 compiler (though the preprocessor supports the latter form). Also note that
the general behavior of ‘-~I’ and INCLUDE is pretty much the same as of ‘-1’ with
#include in the cpp preprocessor, with regard to looking for ‘header.gcc’ files and
other such things.

See section “Options for Directory Search” in Using the GNU Compiler Collection
(GCC), for information on the ‘-I’ option.

5.10 Options for Code Generation Conventions

These machine-independent options control the interface conventions used in code generation.

Most of them have both positive and negative forms; the negative form of ‘-ffoo’ would be
‘~fno-foo’. In the table below, only one of the forms is listed—the one which is not the default.
You can figure out the other form by either removing ‘no-’ or adding it.

—-fno—automatic

Treat each program unit as if the SAVE statement was specified for every local
variable and array referenced in it. Does not affect common blocks. (Some Fortran
compilers provide this option under the name ‘-static’.)

—-finit-local-zero

-fno-f2c

Specify that variables and arrays that are local to a program unit (not in a common
block and not passed as an argument) are to be initialized to binary zeros.

Since there is a run-time penalty for initialization of variables that are not given
the SAVE attribute, it might be a good idea to also use ‘-fno-automatic’ with
‘~finit-local-zero’.

Do not generate code designed to be compatible with code generated by £2c use the
GNU calling conventions instead.

The f2c¢ calling conventions require functions that return type REAL(KIND=1) to
actually return the C type double, and functions that return type COMPLEX to
return the values via an extra argument in the calling sequence that points to where
to store the return value. Under the GNU calling conventions, such functions simply
return their results as they would in GNU C—REAL (KIND=1) functions return the C
type float, and COMPLEX functions return the GNU C type complex (or its struct
equivalent).

This does not affect the generation of code that interfaces with the 1ibg2c library.

However, because the 1ibg2c library uses f2c calling conventions, g77 rejects at-
tempts to pass intrinsics implemented by routines in this library as actual arguments
when ‘-fno-f2c¢’ is used, to avoid bugs when they are actually called by code ex-
pecting the GNU calling conventions to work.

For example, ‘INTRINSIC ABS;CALL FOO(ABS)’ is rejected when ‘-fno-f2c¢’ is in
force. (Future versions of the g77 run-time library might offer routines that provide
GNU-callable versions of the routines that implement the £2c intrinsics that may
be passed as actual arguments, so that valid programs need not be rejected when
‘~fno-f2c’ is used.)

Caution: If ‘~fno-f2c’ is used when compiling any source file used in a program, it
must be used when compiling all Fortran source files used in that program.

Chapter 5: GNU Fortran Command Options 47

-ff2c-library
Specify that use of 1ibg2c (or the original 1ibf2c) is required. This is the default
for the current version of g77

Currently it is not valid to specify ‘~fno-f2c-1library’. This option is provided so
users can specify it in shell scripts that build programs and libraries that require
the 1ibf2c library, even when being compiled by future versions of g77 that might
otherwise default to generating code for an incompatible library.

-fno-underscoring
Do not transform names of entities specified in the Fortran source file by appending
underscores to them.

With ‘~funderscoring’ in effect, g77 appends two underscores to names with under-
scores and one underscore to external names with no underscores. (g77 also appends
two underscores to internal names with underscores to avoid naming collisions with
external names. The ‘-fno-second-underscore’ option disables appending of the
second underscore in all cases.)

This is done to ensure compatibility with code produced by many UNIX Fortran
compilers, including £2c¢ which perform the same transformations.

Use of ‘~fno-underscoring’ is not recommended unless you are experimenting with
issues such as integration of (GNU) Fortran into existing system environments (vis-
a-vis existing libraries, tools, and so on).

For example, with ‘-funderscoring’, and assuming other defaults like
‘~fcase-lower’ and that ‘j()’ and ‘max_count()’ are external functions while
‘my_var’ and ‘lvar’ are local variables, a statement like

I =J(O + MAX_COUNT (MY_VAR, LVAR)

is implemented as something akin to:

i =j_(0 + max_count__(&my_var &lvar) ;

— }

With ‘~fno-underscoring’, the same statement is implemented as:

i = j(+ max_count(&my_var, &lvar);

Use of ‘~fno-underscoring’ allows direct specification of user-defined names while
debugging and when interfacing g77 code with other languages.

Note that just because the names match does not mean that the interface imple-
mented by g77 for an external name matches the interface implemented by some
other language for that same name. That is, getting code produced by g77 to link to
code produced by some other compiler using this or any other method can be only a
small part of the overall solution—getting the code generated by both compilers to
agree on issues other than naming can require significant effort, and, unlike naming
disagreements, linkers normally cannot detect disagreements in these other areas.

Also, note that with ‘~fno-underscoring’, the lack of appended underscores intro-
duces the very real possibility that a user-defined external name will conflict with a
name in a system library, which could make finding unresolved-reference bugs quite
difficult in some cases—they might occur at program run time, and show up only
as buggy behavior at run time.

In future versions of g77 we hope to improve naming and linking issues so that
debugging always involves using the names as they appear in the source, even if
the names as seen by the linker are mangled to prevent accidental linking between
procedures with incompatible interfaces.

-fno-second-underscore
Do not append a second underscore to names of entities specified in the Fortran
source file.

48

-fno-ident

—-fzeros

Using and Porting GNU Fortran

This option has no effect if ‘~fno-underscoring’ is in effect.

Otherwise, with this option, an external name such as ‘MAX_COUNT’ is implemented as
a reference to the link-time external symbol ‘max_count_’, instead of ‘max_count__’".

Ignore the ‘#ident’ directive.

Treat initial values of zero as if they were any other value.

As of version 0.5.18, g77 normally treats DATA and other statements that are used
to specify initial values of zero for variables and arrays as if no values were actu-
ally specified, in the sense that no diagnostics regarding multiple initializations are
produced.

This is done to speed up compiling of programs that initialize large arrays to zeros.

Use ‘-fzeros’ to revert to the simpler, slower behavior that can catch multiple
initializations by keeping track of all initializations, zero or otherwise.

Caution: Future versions of g77 might disregard this option (and its negative form,
the default) or interpret it somewhat differently. The interpretation changes will
affect only non-standard programs; standard-conforming programs should not be
affected.

-femulate-complex

Implement COMPLEX arithmetic via emulation, instead of using the facilities of the
gce back end that provide direct support of complex arithmetic.

(gcc had some bugs in its back-end support for complex arithmetic, due primarily
to the support not being completed as of version 2.8.1 and egcs 1.1.2.)

Use ‘~femulate-complex’ if you suspect code-generation bugs, or experience com-
piler crashes, that might result from g77 using the COMPLEX support in the gcc back
end. If using that option fixes the bugs or crashes you are seeing, that indicates a
likely g77 bugs (though, all compiler crashes are considered bugs), so, please report
it. (Note that the known bugs, now believed fixed, produced compiler crashes rather
than causing the generation of incorrect code.)

Use of this option should not affect how Fortran code compiled by g77 works in
terms of its interfaces to other code, e.g. that compiled by f2c

As of GCC version 3.0, this option is not necessary anymore.

Caution: Future versions of g77 might ignore both forms of this option.

-falias-check
-fargument-alias
-fargument-noalias
-fno-argument-noalias-global

Version info: These options are not supported by versions of g77 based on gcc
version 2.8.

These options specify to what degree aliasing (overlap) is permitted between argu-
ments (passed as pointers) and COMMON (external, or public) storage.

The default for Fortran code, as mandated by the FORTRAN 77 and Fortran 90
standards, is ‘~fargument-noalias-global’. The default for code written in the C
language family is ‘~-fargument-alias’.

Note that, on some systems, compiling with ‘-fforce-addr’ in effect can produce
more optimal code when the default aliasing options are in effect (and when opti-
mization is enabled).

Chapter 5: GNU Fortran Command Options 49

See Section 14.4.7 [Aliasing Assumed To Work], page 240, for detailed information
on the implications of compiling Fortran code that depends on the ability to alias
dummy arguments.

-fno-globals
Disable diagnostics about inter-procedural analysis problems, such as disagreements
about the type of a function or a procedure’s argument, that might cause a com-
piler crash when attempting to inline a reference to a procedure within a pro-
gram unit. (The diagnostics themselves are still produced, but as warnings, unless
‘~Wno-globals’ is specified, in which case no relevant diagnostics are produced.)

Further, this option disables such inlining, to avoid compiler crashes resulting from
incorrect code that would otherwise be diagnosed.

As such, this option might be quite useful when compiling existing, “working” code
that happens to have a few bugs that do not generally show themselves, but which
g77 diagnoses.

Use of this option therefore has the effect of instructing g77 to behave more like it
did up through version 0.5.19.1, when it paid little or no attention to disagreements
between program units about a procedure’s type and argument information, and
when it performed no inlining of procedures (except statement functions).

Without this option, g77 defaults to performing the potentially inlining procedures
as it started doing in version 0.5.20, but as of version 0.5.21, it also diagnoses
disagreements that might cause such inlining to crash the compiler as (fatal) errors,
and warns about similar disagreements that are currently believed to not likely to
result in the compiler later crashing or producing incorrect code.

-fflatten-arrays
Use back end’s C-like constructs (pointer plus offset) instead of its ARRAY_REF con-
struct to handle all array references.

Note: This option is not supported. It is intended for use only by g77 developers,
to evaluate code-generation issues. It might be removed at any time.

-fbounds-check

—-ffortran-bounds-check
Enable generation of run-time checks for array subscripts and substring start and
end points against the (locally) declared minimum and maximum values.

The current implementation uses the 1ibf2c library routine s_rnge to print the
diagnostic.

However, whereas £2c generates a single check per reference for a multi-dimensional
array, of the computed offset against the valid offset range (0 through the size of
the array), g77 generates a single check per subscript expression. This catches some
cases of potential bugs that £2¢c does not, such as references to below the beginning
of an assumed-size array.

g77 also generates checks for CHARACTER substring references, something £2c¢ cur-
rently does not do.

Use the new ‘~ffortran-bounds-check’ option to specify bounds-checking for only
the Fortran code you are compiling, not necessarily for code written in other lan-
guages.

Note: To provide more detailed information on the offending subscript, g77 provides
the 1ibg2c run-time library routine s_rnge with somewhat differently-formatted
information. Here’s a sample diagnostic:

Subscript out of range on file line 4, procedure rnge.f/bf.

50

Using and Porting GNU Fortran

Attempt to access the -6-th element of variable b[subscript-2-of-2].

Aborted
The above message indicates that the offending source line is line 4 of the file
‘rnge . f’, within the program unit (or statement function) named ‘bf’. The offended
array is named ‘b’. The offended array dimension is the second for a two-dimensional
array, and the offending, computed subscript expression was ‘=6’.

For a CHARACTER substring reference, the second line has this appearance:
Attempt to access the 11-th element of variable a[start-substring].

This indicates that the offended CHARACTER variable or array is named ‘a’, the
offended substring position is the starting (leftmost) position, and the offending
substring expression is ‘11’.

(Though the verbage of s_rnge is not ideal for the purpose of the g77 compiler, the
above information should provide adequate diagnostic abilities to it users.)

See section “Options for Code Generation Conventions” in Using the GNU Compiler Collec-

tion (GCC), for information on more options offered by the GBE shared by g77 gcc and other
GNU compilers.

Some of these do not work when compiling programs written in Fortran:

-fpcc-struct-return
-freg-struct-return

You should not use these except strictly the same way as you used them to build
the version of 1ibg2c with which you will be linking all code compiled by g77 with
the same option.

—-fshort-double

This probably either has no effect on Fortran programs, or makes them act loopy.

-fno-common

Do not use this when compiling Fortran programs, or there will be Trouble.

-fpack-struct

This probably will break any calls to the 1ibg2c library, at the very least, even if
it is built with the same option.

5.11 Environment Variables Affecting GNU Fortran

GNU Fortran currently does not make use of any environment variables to control its operation
above and beyond those that affect the operation of gcc.

See section “Environment Variables Affecting GCC” in Using the GNU Compiler Collection

(GCC), for information on environment variables.

Chapter 6: News About GNU Fortran 51

6 News About GNU Fortran

Changes made to recent versions of GNU Fortran are listed below, with the most recent version
first.

The changes are generally listed in order:
Code-generation and run-time-library bug-fixes
Compiler and run-time-library crashes involving valid code that have been fixed
New features
Fixes and enhancements to existing features
New diagnostics

Internal improvements

No Ot W

Miscellany

This order is not strict—for example, some items involve a combination of these elements.

Note that two variants of g77 are tracked below. The egcs variant is described vis-a-vis
previous versions of egcs and/or an official FSF version, as appropriate. Note that all such
variants are obsolete as of July 1999 - the information is retained here only for its historical
value.

Therefore, egcs versions sometimes have multiple listings to help clarify how they differ
from other versions, though this can make getting a complete picture of what a particular egcs
version contains somewhat more difficult.

For information on bugs in the GCC-3.3.6 version of g77, see Section 15.2 [Known Bugs In
GNU Fortran|, page 254.

An online, “live” version of this document (derived directly from the mainline, development
version of g77 within gcc) is available at http://gcc.gnu.org/onlinedocs/g77/News.html.

The following information was last updated on 2003-05-18:

In GCC 3.3 versus GCC 3.2:

e Problem Reports fixed (in chronological order of submission):

1832 -list directed i/o overflow hangs, -fbounds-check doesn’t detect

3924 g77 generates code which is rejected by GAS if COFF debugging info is re-
quested

6286 Broken links on web pages

6367 (libf2c) multiple repeat counts confuse namelist read into array

6491 Logical operations error on logicals when using -fugly-logint

6742 Generation of C++ Prototype for FORTRAN and extern "C"

7113 Failure of g77.f-torture/execute/f90-intrinsic-bit.f -Os on irix6.5

7236 (libf2c) OPEN(...,RECL=nnn,...) without ACCESS="DIRECT" should assume
a direct access file

7278 g77 "bug"; the executable misbehave (use of options -O2 -fno-automatic gave
wrong results)

7384 (libf2c) DATE_AND_TIME milliseconds field inactive on Windows

7388 Incorrect output with 0-based array of characters

http://gcc.gnu.org/onlinedocs/g77/News.html

52

Using and Porting GNU Fortran

8587 Double complex zero ** double precision number -> NaN instead of zero

9038 -ffixed-line-length-none -x f77-cpp-input gives: Warning: unknown register
name line-length-none

9263 ICE caused by invalid PARAMETER in implied DO loop

10197 Direct access files not unformatted by default

10726 Documentation for function IDATE Intrinsic (UNIX) is wrong [fixed in 3.3.1].

Richard Henderson (rth@redhat.com) analyzed and improved the handling of (no-)aliasing
information for dummy arguments and improved the optimization of induction variables in
unrolled loops.

In GCC 3.2 versus GCC 3.1:

Problem Reports fixed (in chronological order of submission):

7681 ICE in compensate_edge, at reg-stack.c:2591
8308 gce-3.x does not compile files with suffix .r (RATFOR) [Fixed in 3.2.1]
9258 [3.2/3.3/3.4 regression| ICE in compensate_edge, at reg-stack.c:2589

In GCC 3.1 (formerly known as g77-0.5.27) versus GCC 3.0:

Problem Reports fixed (in chronological order of submission):

947 Data statement initialization with subscript of kind INTEGER*2
3743 Reference to intrinsic ‘ISHFT’ invalid

3807 Function BESJN(integer,double) problems

3957 g77 -pipe -xf77-cpp-input sends output to stdout

4279 g77 -h" gives bogus output

4730 ICE on valid input using CALL EXIT(%VAL(...))

4752 g77 -v -¢ -xf77-version /dev/null -xnone causes ice

4885 BACKSPACE example that doesn’t work as of gce/g77-3.0.x
5122 g77 rejects accepted use of INTEGER*2 as type of DATA statement loop index
5397 ICE on compiling source with 540 000 000 REAL array

5473 ICE on BESJN(integer*8,real)

5837 bug in loop unrolling

6106 sparc-sun-solaris2.7 gce-3.1 extra g77 testsuite failures w/-m64
6138 Incorrect acces of integer®1 variables on PA

6304 Failure of LAPACK test dtest on irix6.5 with -mabi=64 -O2

g77 now has its man page generated from the texinfo documentation, to guarantee that it
remains up to date.
g77 used to reject the following program on 32-bit targets:

PROGRAM PROG
DIMENSION A(140 000 000)
END

with the message:

mailto:rth@redhat.com

Chapter 6: News About GNU Fortran 53

In

prog.f: In program ‘prog’:
prog.f:2:
DIMENSION A(140 000 000)

Array ‘a’ at (7) is too large to handle

because 140 000 000 REALs is larger than the largest bit-extent that can be expressed in 32
bits. However, bit-sizes never play a role after offsets have been converted to byte addresses.
Therefore this check has been removed, and the limit is now 2 Gbyte of memory (around
530 000 000 REALSs). Note: On GNU/Linux systems one has to compile and link programs
that occupy more than 1 Gbyte statically, i.e. g77 -static

Based on work done by Juergen Pfeifer (juergen.pfeifer@gmx.net) libf2c is now a shared
library. One can still link in all objects with the program by specifying the ‘-static’ option.

Robert Anderson (rwa@alumni.princeton.edu) thought up a two line change that enables
g77 to compile such code as:

SUBROUTINE SUB(A, N)
DIMENSION N(2)
DIMENSION A(N(1),N(2))
A(1,1) = 1.

END

Note the use of array elements in the bounds of the adjustable array A.

George Helffrich (george@geo.titech.ac.jp) implemented a change in substring index
checking (when specifying ‘~fbounds-check’) that permits the use of zero length substrings
of the form string(1:0).

Based on code developed by Pedro Vazquez (vazquez@penelope.iqm.unicamp.br), the

libf2c library is now able to read and write files larger than 2 Gbyte on 32-bit target
machines, if the operating system supports this.

0.5.26, GCC 3.0 versus GCC 2.95:

When a REWIND was issued after a WRITE statement on an unformatted file, the implicit
truncation was performed by copying the truncated file to /tmp and copying the result back.
This has been fixed by using the ftruncate OS function. Thanks go to the GAMESS
developers for bringing this to our attention.

Using options ‘-g’, ‘-ggdb’ or ‘-gdwarf [-2]’ (where appropriate for your target) now also
enables debugging information for COMMON BLOCK and EQUIVALENCE items to be
emitted. Thanks go to Andrew Vaught (andy@xena.eas.asu.edu) and George Helffrich
(george@geology.bristol.ac.uk) for fixing this longstanding problem.

It is not necessary anymore to use the option ‘~-femulate-complex’ to compile Fortran code
using COMPLEX arithmetic, even on 64-bit machines (like the Alpha). This will improve
code generation.

INTRINSIC arithmetic functions are now treated as routines that do not depend on any-
thing but their argument(s). This enables further instruction scheduling, because it is
known that they cannot read or modify arbitrary locations.

Upgrade to 1ibf2c as of 2000-12-05.

This fixes a bug where a namelist containing initialization of LOGICAL items and a variable
starting with T or F would be read incorrectly.

The TtyNam intrinsics now set Name to all spaces (at run time) if the system has no ttyname
implementation available.

Upgrade to 1ibf2c as of 1999-06-28.

This fixes a bug whereby input to a NAMELIST read involving a repeat count, such as
‘K(5)=10%3’, was not properly handled by 1ibf2c. The first item was written to ‘K(5)’, but

mailto:juergen.pfeifer@gmx.net
mailto:rwa@alumni.princeton.edu
mailto:george@geo.titech.ac.jp
mailto:vazquez@penelope.iqm.unicamp.br
mailto:andy@xena.eas.asu.edu
mailto:george@geology.bristol.ac.uk

54

Using and Porting GNU Fortran

the remaining nine were written elsewhere (still within the array), not necessarily starting
at ‘K(6)".

In 0.5.25, GCC 2.95 (EGCS 1.2) versus EGCS 1.1.2:

g77 no longer generates bad code for assignments, or other conversions, of REAL or COMPLEX
constant expressions to type INTEGER(KIND=2) (often referred to as INTEGER*8).

For example, ‘INTEGER*8 J; J = 4E10’ now works as documented.

g77 no longer truncates INTEGER (KIND=2) (usually INTEGER*8) subscript expressions when
evaluating array references on systems with pointers widers than INTEGER(KIND=1) (such
as Alphas).

g77 no longer generates bad code for an assignment to a COMPLEX variable or array that
partially overlaps one or more of the sources of the same assignment (a very rare construc-
tion). It now assigns through a temporary, in cases where such partial overlap is deemed
possible.

libg2c (1ibf2c) no longer loses track of the file being worked on during a BACKSPACE
operation.

libg2c (1ibf2c) fixes a bug whereby input to a NAMELIST read involving a repeat count,
such as ‘K(5)=10%3’, was not properly handled by 1ibf2c. The first item was written to
‘K(5)’, but the remaining nine were written elsewhere (still within the array), not necessarily
starting at ‘K(6)’.

Automatic arrays now seem to be working on HP-UX systems.

The Date intrinsic now returns the correct result on big-endian systems.

Fix g77 so it no longer crashes when compiling I/O statements using keywords that de-
fine INTEGER values, such as ‘I0OSTAT=j’, where j is other than default INTEGER (such as
INTEGER#2). Instead, it issues a diagnostic.

Fix g77 so it properly handles ‘DATA A/rpt*val/’, where rpt is not default INTEGER, such
as INTEGER#*2, instead of producing a spurious diagnostic. Also fix ‘DATA (A(I),I=1,N)’,
where ‘N’ is not default INTEGER to work instead of crashing g77.

The ‘-ax’ option is now obeyed when compiling Fortran programs. (It is passed to the
‘£771 driver.)

The new ‘~fbounds-check’ option causes g77 to compile run-time bounds checks of array
subscripts, as well as of substring start and end points.

libg2c now supports building as multilibbed library, which provides better support for
systems that require options such as ‘-mieee’ to work properly.

Source file names with the suffixes ‘.FOR’ and ‘.FPP’ now are recognized by g77 as if they
ended in ‘.for’ and ‘.fpp’, respectively.

The order of arguments to the subroutine forms of the CTime, DTime, ETime, and TtyNam
intrinsics has been swapped. The argument serving as the returned value for the corre-
sponding function forms now is the second argument, making these consistent with the
other subroutine forms of 1ibU77 intrinsics.

g77 now warns about a reference to an intrinsic that has an interface that is not Year 2000
(Y2K) compliant. Also, 1ibg2c has been changed to increase the likelihood of catching
references to the implementations of these intrinsics using the EXTERNAL mechanism (which
would avoid the new warnings).

See Section 10.2.2 [Year 2000 (Y2K) Problems|, page 190, for more information.

g77 now warns about a reference to a function when the corresponding subsequent function
program unit disagrees with the reference concerning the type of the function.

Chapter 6: News About GNU Fortran 55

‘~fno-emulate-complex’ is now the default option. This should result in improved perfor-
mance of code that uses the COMPLEX data type.

e The ‘-malign-double’ option now reliably aligns all double-precision variables and arrays
on Intel x86 targets.

e Even without the ‘-malign-double’ option, g77 reliably aligns local double-precision vari-
ables that are not in EQUIVALENCE areas and not SAVE'd.

e g77 now open-codes (“inlines”) division of COMPLEX operands instead of generating a run-
time call to the 1ibf2c routines c_div or z_div, unless the ‘-0s’ option is specified.

e g77 no longer generates code to maintain errno, a C-language concept, when performing
operations such as the SqRt intrinsic.

e g77 developers can temporarily use the ‘-fflatten-arrays’ option to compare how the
compiler handles code generation using C-like constructs as compared to the Fortran-like
method constructs normally used.

e A substantial portion of the g77 front end’s code-generation component was rewritten. It
now generates code using facilities more robustly supported by the gcc back end. One
effect of this rewrite is that some codes no longer produce a spurious “label lab used before
containing binding contour” message.

e Support for the ‘~fugly’ option has been removed.

e Improve documentation and indexing, including information on Year 2000 (Y2K) compli-
ance, and providing more information on internals of the front end.

e Upgrade to 1ibf2c as of 1999-05-10.

In 0.5.24 versus 0.5.23:

There is no g77 version 0.5.24 at this time, or planned. 0.5.24 is the version number designated
for bug fixes and, perhaps, some new features added, to 0.5.23. Version 0.5.23 requires gcc 2.8.1,
as 0.5.24 was planned to require.

Due to EGCS becoming GCC (which is now an acronym for “GNU Compiler Collection”), and
EGCS 1.2 becoming officially designated GCC 2.95, there seems to be no need for an actual 0.5.24
release.

To reduce the confusion already resulting from use of 0.5.24 to designate g77 versions within
EGCS versions 1.0 and 1.1, as well as in versions of g77 documentation and notices during that
period, “mainline” g77 version numbering resumes at 0.5.25 with GCC 2.95 (EGCS 1.2), skipping
over 0.5.24 as a placeholder version number.

To repeat, there is no g77 0.5.24, but there is now a 0.5.25. Please remain calm and return
to your keypunch units.

In EGCS 1.1.2 versus EGCS 1.1.1:

e Fix the IDate intrinsic (VXT) (in 1libg2c) so the returned year is in the documented,
non-Y2K-compliant range of 0-99, instead of being returned as 100 in the year 2000.

See Section 10.5.2.43 [IDate Intrinsic (VXT)], page 204, for more information.

e Fix the Date_and_Time intrinsic (in 1ibg2c) to return the milliseconds value properly in
Values(8).

e Fix the LStat intrinsic (in 1ibg2c) to return device-ID information properly in SArray (7).

e Improve documentation.

56

In

Using and Porting GNU Fortran

EGCS 1.1.1 versus EGCS 1.1:

Fix 1ibg2c so it performs an implicit ENDFILE operation (as appropriate) whenever a REWIND
is done.

(This bug was introduced in 0.5.23 and egcs 1.1 in g77’s version of 1ibf2c.)

Fix 1ibg2c so it no longer crashes with a spurious diagnostic upon doing any 1/0 following
a direct formatted write.

(This bug was introduced in 0.5.23 and egcs 1.1 in g77’s version of 1ibf2c.)
Fix g77 so it no longer crashes compiling references to the Rand intrinsic on some systems.

Fix g77 portion of installation process so it works better on some systems (those with shells
requiring ‘else true’ clauses on if constructs for the completion code to be set properly).

EGCS 1.1 versus EGCS 1.0.3:

Fix bugs in the 1ibU77 intrinsic HostNm that wrote one byte beyond the end of its CHARACTER
argument, and in the 1ibU77 intrinsics GMTime and LTime that overwrote their arguments.

Assumed arrays with negative bounds (such as ‘REAL A(-1:%)’) no longer elicit spurious
diagnostics from g77, even on systems with pointers having different sizes than integers.

This bug is not known to have existed in any recent version of gcc. It was introduced in
an early release of egcs.

Valid combinations of EXTERNAL, passing that external as a dummy argument without
explicitly giving it a type, and, in a subsequent program unit, referencing that external as
an external function with a different type no longer crash g77.

CASE DEFAULT no longer crashes g77.

The ‘-Wunused’ option no longer issues a spurious warning about the “master” procedure
generated by g77 for procedures containing ENTRY statements.

Support ‘FORMAT (I<expr>)’ when expr is a compile-time constant INTEGER expression.

Fix g77 ‘-g’ option so procedures that use ENTRY can be stepped through, line by line, in
gdb.

Allow any REAL argument to intrinsics Second and CPU_Time.

Use tempnam, if available, to open scratch files (as in ‘OPEN(STATUS=’SCRATCH’)’) so that
the TMPDIR environment variable, if present, is used.

g77’s version of 1ibf2c separates out the setting of global state (such as command-line
arguments and signal handling) from ‘main.o’ into distinct, new library archive members.

This should make it easier to write portable applications that have their own (non-Fortran)
main() routine properly set up the 1ibf2c environment, even when 1ibf2c (now libg2c)
is a shared library.

g77 no longer installs the ‘£77° command and ‘f77.1" man page in the ‘/usr’ or
‘/usr/local’ hierarchy, even if the ‘f77-install-ok’ file exists in the source or build
directory. See the installation documentation for more information.

g77 no longer installs the ‘libf2c.a’ library and ‘f2c.h’ include file in the ‘/usr’ or
‘/usr/local’ hierarchy, even if the ‘f2c-install-ok’ or ‘f2c-exists-ok’ files exist in
the source or build directory. See the installation documentation for more information.

The ‘1ibf2c.a’ library produced by g77 has been renamed to ‘libg2c.a’. It is installed
only in the gcc “private” directory hierarchy, ‘gcc-1ib’. This allows system administrators
and users to choose which version of the 1ibf2c library from netlib they wish to use on a
case-by-case basis. See the installation documentation for more information.

Chapter 6: News About GNU Fortran 57

e The ‘f2c.h’ include (header) file produced by g77 has been renamed to ‘g2c.h’. It is
installed only in the gcc “private” directory hierarchy, ‘gcc-1ib’. This allows system ad-
ministrators and users to choose which version of the include file from netlib they wish to
use on a case-by-case basis. See the installation documentation for more information.

e The g77 command now expects the run-time library to be named 1libg2c.a instead of
libf2c.a, to ensure that a version other than the one built and installed as part of the
same g77 version is picked up.

e During the configuration and build process, g77 creates subdirectories it needs only as it
needs them. Other cleaning up of the configuration and build process has been performed
as well.

e install-info now used to update the directory of Info documentation to contain an entry
for g77 (during installation).

e Some diagnostics have been changed from warnings to errors, to prevent inadvertent use
of the resulting, probably buggy, programs. These mostly include diagnostics about use
of unsupported features in the OPEN, INQUIRE, READ, and WRITE statements, and about
truncations of various sorts of constants.

e Improve compilation of FORMAT expressions so that a null byte is appended to the last
operand if it is a constant. This provides a cleaner run-time diagnostic as provided by
libf2c for statements like ‘PRINT > (I1°, 42’.

e Improve documentation and indexing.

e The upgrade to 1ibf2c as of 1998-06-18 should fix a variety of problems, including those
involving some uses of the T format specifier, and perhaps some build (porting) problems
as well.

In EGCS 1.1 versus g77 0.5.23:

e Fix a code-generation bug that afflicted Intel x86 targets when ‘=02’ was specified compiling,
for example, an old version of the DNRM2 routine.

The x87 coprocessor stack was being mismanaged in cases involving assigned GOTO and
ASSTIGN.

e g77 no longer produces incorrect code and initial values for EQUIVALENCE and COMMON ag-
gregates that, due to “unnatural” ordering of members vis-a-vis their types, require initial
padding.

e Fix g77 crash compiling code containing the construct ‘CMPLX(0.)’ or similar.

e g77 no longer crashes when compiling code containing specification statements such as
‘INTEGER (KIND=7) PTR’.

e g77 no longer crashes when compiling code such as ‘J = SIGNAL(1, 2)’.

e g77 now treats ‘%ULOC(expr)’ and ‘LOC(expr)’ as “ordinary” expressions when they are
used as arguments in procedure calls. This change applies only to global (filewide) analysis,
making it consistent with how g77 actually generates code for these cases.

Previously, g77 treated these expressions as denoting special “pointer” arguments for the
purposes of filewide analysis.

e Fix g77 crash (or apparently infinite run-time) when compiling certain complicated expres-
sions involving COMPLEX arithmetic (especially multiplication).

e Align static double-precision variables and arrays on Intel x86 targets regardless of whether
‘-malign-double’ is specified.

Generally, this affects only local variables and arrays having the SAVE attribute or given
initial values via DATA.

58

In

Using and Porting GNU Fortran

The g77 driver now ensures that ‘-1g2c’ is specified in the link phase prior to any occurrence
of ‘-1m’. This prevents accidentally linking to a routine in the SunOS4 ‘~1m’ library when
the generated code wants to link to the one in 1ibf2c (1ibg2c).

g77 emits more debugging information when ‘-g’ is used.

This new information allows, for example, which __g77_length_a to be used in gdb to
determine the type of the phantom length argument supplied with CHARACTER variables.

This information pertains to internally-generated type, variable, and other information, not
to the longstanding deficiencies vis-a-vis COMMON and EQUIVALENCE.

The F90 Date_and_Time intrinsic now is supported.

The F90 System_Clock intrinsic allows the optional arguments (except for the Count argu-
ment) to be omitted.

Upgrade to 1ibf2c as of 1998-06-18.

Improve documentation and indexing.

0.5.23 versus 0.5.22:

This release contains several regressions against version 0.5.22 of g77, due to using the
“vanilla” gcc back end instead of patching it to fix a few bugs and improve performance in
a few cases.

Features that have been dropped from this version of g77 due to their being implemented
via g77-specific patches to the gcc back end in previous releases include:

— Support for __restrict__ keyword, the options ‘-fargument-alias’,

‘-fargument-noalias’, and ‘-fargument-noalias-global’, and the corresponding
alias-analysis code.

(egcs has the alias-analysis code, but not the __restrict__ keyword. egcs g77 users
benefit from the alias-analysis code despite the lack of the __restrict__ keyword,
which is a C-language construct.)

— Support for the GNU compiler options ‘~fmove-all-movables’, ‘~freduce-all-givs’,
and ‘-frerun-loop-opt’.
(egcs supports these options. g77 users of egcs benefit from them even if they are not
explicitly specified, because the defaults are optimized for g77 users.)
— Support for the ‘=W option warning about integer division by zero.
— The Intel x86-specific option ‘-malign-double’ applying to stack-allocated data as well
as statically-allocate data.
Note that the ‘gcc/f/gbe/’ subdirectory has been removed from this distribution as a result
of g77 no longer including patches for the gcc back end.
Fix bugs in the 1ibU77 intrinsic HostNm that wrote one byte beyond the end of its CHARACTER
argument, and in the 1ibU77 intrinsics GMTime and LTime that overwrote their arguments.
Support gcc version 2.8, and remove support for prior versions of gec.
Remove support for the ‘--driver’ option, as g77 now does all the driving, just like gcc.
CASE DEFAULT no longer crashes g77.

Valid combinations of EXTERNAL, passing that external as a dummy argument without
explicitly giving it a type, and, in a subsequent program unit, referencing that external as
an external function with a different type no longer crash g77.

g77 no longer installs the ‘£77° command and ‘f77.1" man page in the ‘/usr’ or
‘/usr/local’ hierarchy, even if the ‘f77-install-ok’ file exists in the source or build
directory. See the installation documentation for more information.

Chapter 6: News About GNU Fortran 59

In

g77 no longer installs the ‘libf2c.a’ library and ‘f2c.h’ include file in the ‘/usr’ or
‘/usr/local’ hierarchy, even if the ‘f2c-install-ok’ or ‘f2c-exists-ok’ files exist in
the source or build directory. See the installation documentation for more information.

The ‘1ibf2c.a’ library produced by g77 has been renamed to ‘libg2c.a’. It is installed
only in the gcc “private” directory hierarchy, ‘gcc-1ib’. This allows system administrators
and users to choose which version of the 1ibf2c library from netlib they wish to use on a
case-by-case basis. See the installation documentation for more information.

The ‘f2c.h’ include (header) file produced by g77 has been renamed to ‘g2c.h’. It is
installed only in the gcc “private” directory hierarchy, ‘gcc-1ib’. This allows system ad-
ministrators and users to choose which version of the include file from netlib they wish to
use on a case-by-case basis. See the installation documentation for more information.

The g77 command now expects the run-time library to be named libg2c.a instead of
libf2c.a, to ensure that a version other than the one built and installed as part of the
same g77 version is picked up.

The ‘~Wunused’ option no longer issues a spurious warning about the “master” procedure
generated by g77 for procedures containing ENTRY statements.

g77’s version of 1ibf2c separates out the setting of global state (such as command-line
arguments and signal handling) from ‘main.o’ into distinct, new library archive members.

This should make it easier to write portable applications that have their own (non-Fortran)
main() routine properly set up the 1ibf2c environment, even when 1ibf2c (now libg2c)
is a shared library.

During the configuration and build process, g77 creates subdirectories it needs only as it
needs them, thus avoiding unnecessary creation of, for example, ‘stagel/f/runtime’ when
doing a non-bootstrap build. Other cleaning up of the configuration and build process has
been performed as well.

install-info now used to update the directory of Info documentation to contain an entry
for g77 (during installation).

Some diagnostics have been changed from warnings to errors, to prevent inadvertent use
of the resulting, probably buggy, programs. These mostly include diagnostics about use
of unsupported features in the OPEN, INQUIRE, READ, and WRITE statements, and about
truncations of various sorts of constants.

Improve documentation and indexing.
Upgrade to 1ibf2c as of 1998-04-20.

This should fix a variety of problems, including those involving some uses of the T format
specifier, and perhaps some build (porting) problems as well.

0.5.22 versus 0.5.21:

Fix code generation for iterative DO loops that have one or more references to the iteration
variable, or to aliases of it, in their control expressions. For example, ‘D0 10 J=2,J’ now is
compiled correctly.

Fix a code-generation bug that afflicted Intel x86 targets when ‘-02’ was specified compiling,
for example, an old version of the DNRM2 routine.

The x87 coprocessor stack was being mismanaged in cases involving assigned GOTO and
ASSIGN.

Fix DTime intrinsic so as not to truncate results to integer values (on some systems).

Fix Signal intrinsic so it offers portable support for 64-bit systems (such as Digital Alphas
running GNU/Linux).

60

Using and Porting GNU Fortran

Fix run-time crash involving NAMELIST on 64-bit machines such as Alphas.

Fix g77 version of 1ibf2c so it no longer produces a spurious ‘I/0 recursion’ diagnostic
at run time when an I/O operation (such as ‘READ *,I’) is interrupted in a manner that
causes the program to be terminated via the f_exit routine (such as via C-c).

Fix g77 crash triggered by CASE statement with an omitted lower or upper bound.
Fix g77 crash compiling references to CPU_Time intrinsic.

Fix g77 crash (or apparently infinite run-time) when compiling certain complicated expres-
sions involving COMPLEX arithmetic (especially multiplication).

Fix g77 crash on statements such as ‘PRINT *, (REAL(Z(I)),I=1,2)’, where ‘Z’ is DOUBLE
COMPLEX.

Fix a g++ crash.
Support ‘FORMAT (I<expr>)’ when expr is a compile-time constant INTEGER expression.

Fix g77 ‘-g’ option so procedures that use ENTRY can be stepped through, line by line, in
gdb.

Fix a profiling-related bug in gcc back end for Intel x86 architecture.
Allow any REAL argument to intrinsics Second and CPU_Time.
Allow any numeric argument to intrinsics Int2 and Int8.

Use tempnam, if available, to open scratch files (as in ‘OPEN(STATUS=’SCRATCH’)’) so that
the TMPDIR environment variable, if present, is used.

Rename the gcc keyword restrict to __restrict__, to avoid rejecting valid, existing, C
programs. Support for restrict is now more like support for complex.

Fix ‘-fpedantic’ to not reject procedure invocations such as ‘I=J()’ and ‘CALL FOO()’.

Fix ‘~fugly-comma’ to affect invocations of only external procedures. Restore rejection of
gratuitous trailing omitted arguments to intrinsics, as in ‘I=MAX(3,4,,)".

Fix compiler so it accepts ‘-fgnu-intrinsics-*" and ‘-fbadu77-intrinsics-*’ options.

Improve diagnostic messages from 1ibf2c so it is more likely that the printing of the active
format string is limited to the string, with no trailing garbage being printed.

(Unlike £2¢, g77 did not append a null byte to its compiled form of every format string
specified via a FORMAT statement. However, f2c would exhibit the problem anyway for a
statement like ‘PRINT ’ (I)garbage’, 1’ by printing ‘(I)garbage’ as the format string.)

Improve compilation of FORMAT expressions so that a null byte is appended to the last
operand if it is a constant. This provides a cleaner run-time diagnostic as provided by
libf2c for statements like ‘PRINT > (I1°, 42’.

Fix various crashes involving code with diagnosed errors.
Fix cross-compilation bug when configuring 1ibf2c.
Improve diagnostics.

Improve documentation and indexing.

Upgrade to 1ibf2c as of 1997-09-23. This fixes a formatted-I/O bug that afflicted 64-bit
systems with 32-bit integers (such as Digital Alpha running GNU /Linux).

EGCS 1.0.2 versus EGCS 1.0.1:

Fix g77 crash triggered by CASE statement with an omitted lower or upper bound.

Fix g77 crash on statements such as ‘PRINT *, (REAL(Z(I)),I=1,2)’, where ‘Z’ is DOUBLE
COMPLEX.

Chapter 6: News About GNU Fortran 61

In

In

In

Fix ‘-fPIC’ (such as compiling for ELF targets) on the Intel x86 architecture target so
invalid assembler code is no longer produced.

Fix ‘~-fpedantic’ to not reject procedure invocations such as ‘I=J()’ and ‘CALL FOO()’.

Fix ‘-fugly-comma’ to affect invocations of only external procedures. Restore rejection of
gratuitous trailing omitted arguments to intrinsics, as in ‘I=MAX(3,4,,)".

Fix compiler so it accepts ‘~fgnu-intrinsics-*’ and ‘-fbadu77-intrinsics-*’ options.

EGCS 1.0.1 versus EGCS 1.0:

Fix run-time crash involving NAMELIST on 64-bit machines such as Alphas.

EGCS 1.0 versus g77 0.5.21:

Version 1.0 of egcs contains several regressions against version 0.5.21 of g77, due to using
the “vanilla” gcc back end instead of patching it to fix a few bugs and improve performance
in a few cases.

Features that have been dropped from this version of g77 due to their being implemented
via g77-specific patches to the gcc back end in previous releases include:

— Support for the C-language restrict keyword.
— Support for the ‘-W’ option warning about integer division by zero.
— The Intel x86-specific option ‘-malign-double’ applying to stack-allocated data as well
as statically-allocate data.
Note that the ‘gcc/f/gbe/’ subdirectory has been removed from this distribution as a result
of g77 being fully integrated with the egcs variant of the gcc back end.

Fix code generation for iterative DO loops that have one or more references to the iteration
variable, or to aliases of it, in their control expressions. For example, ‘D0 10 J=2,J’ now is
compiled correctly.

Fix DTime intrinsic so as not to truncate results to integer values (on some systems).
Some Fortran code, miscompiled by g77 built on gcc version 2.8.1 on m68k-next-nextstep3
configurations when using the ‘-02’ option, is now compiled correctly. It is believed that a C
function known to miscompile on that configuration when using the ‘-02 -funroll-loops’
options also is now compiled correctly.

Remove support for non-egcs versions of gcc.

Remove support for the ‘--driver’ option, as g77 now does all the driving, just like gcc.
Allow any numeric argument to intrinsics Int2 and Int8.

Improve diagnostic messages from 1ibf2c so it is more likely that the printing of the active
format string is limited to the string, with no trailing garbage being printed.

(Unlike £2¢, g77 did not append a null byte to its compiled form of every format string
specified via a FORMAT statement. However, £2c would exhibit the problem anyway for a
statement like ‘PRINT ’ (I)garbage’, 1’ by printing ‘(I)garbage’ as the format string.)
Upgrade to 1ibf2c as of 1997-09-23. This fixes a formatted-I/O bug that afflicted 64-bit
systems with 32-bit integers (such as Digital Alpha running GNU /Linux).

0.5.21:

Fix a code-generation bug introduced by 0.5.20 caused by loop unrolling (by specifying
‘~funroll-loops’ or similar). This bug afflicted all code compiled by version 2.7.2.2.£.2 of
gcc (C, C++, Fortran, and so on).

62

Using and Porting GNU Fortran

Fix a code-generation bug manifested when combining local EQUIVALENCE with a DATA
statement that follows the first executable statement (or is treated as an executable-context
statement as a result of using the ‘~fpedantic’ option).

Fix a compiler crash that occurred when an integer division by a constant zero is detected.
Instead, when the ‘W’ option is specified, the gcc back end issues a warning about such
a case. This bug afflicted all code compiled by version 2.7.2.2.f.2 of gcc (C, C++, Fortran,
and so on).

Fix a compiler crash that occurred in some cases of procedure inlining. (Such cases became
more frequent in 0.5.20.)

Fix a compiler crash resulting from using DATA or similar to initialize a COMPLEX variable or
array to zero.

Fix compiler crashes involving use of AND, OR, or XOR intrinsics.

Fix compiler bug triggered when using a COMMON or EQUIVALENCE variable as the target of
an ASSIGN or assigned-GOTO statement.

Fix compiler crashes due to using the name of a some non-standard intrinsics (such as FTell
or FPutC) as such and as the name of a procedure or common block. Such dual use of a
name in a program is allowed by the standard.

Place automatic arrays on the stack, even if SAVE or the ‘-fno-automatic’ option is in
effect. This avoids a compiler crash in some cases.

The ‘-malign-double’ option now reliably aligns DOUBLE PRECISION optimally on Pentium
and Pentium Pro architectures (586 and 686 in gcc).

New option ‘-Wno-globals’ disables warnings about “suspicious” use of a name both as a
global name and as the implicit name of an intrinsic, and warnings about disagreements
over the number or natures of arguments passed to global procedures, or the natures of the
procedures themselves.

The default is to issue such warnings, which are new as of this version of g77.

New option ‘~fno-globals’ disables diagnostics about potentially fatal disagreements anal-
ysis problems, such as disagreements over the number or natures of arguments passed to
global procedures, or the natures of those procedures themselves.

The default is to issue such diagnostics and flag the compilation as unsuccessful. With this
option, the diagnostics are issued as warnings, or, if ‘~Wno-globals’ is specified, are not
issued at all.

This option also disables inlining of global procedures, to avoid compiler crashes resulting
from coding errors that these diagnostics normally would identify.

Diagnose cases where a reference to a procedure disagrees with the type of that procedure,
or where disagreements about the number or nature of arguments exist. This avoids a
compiler crash.

Fix parsing bug whereby g77 rejected a second initialization specification immediately fol-
lowing the first’s closing ‘/” without an intervening comma in a DATA statement, and the
second specification was an implied-DO list.

Improve performance of the gcc back end so certain complicated expressions involving
COMPLEX arithmetic (especially multiplication) don’t appear to take forever to compile.

Fix a couple of profiling-related bugs in gcc back end.

Integrate GNU Ada’s (GNAT’s) changes to the back end, which consist almost entirely of
bug fixes. These fixes are circa version 3.10p of GNAT.

Include some other gcc fixes that seem useful in g77’s version of gcc. (See ‘gcc/ChangeLog’
for details—compare it to that file in the vanilla gcc-2.7.2.3.tar.gz distribution.)

Chapter 6: News About GNU Fortran 63

e Fix 1ibU77 routines that accept file and other names to strip trailing blanks from them, for
consistency with other implementations. Blanks may be forcibly appended to such names
by appending a single null character (‘CHAR(0)’) to the significant trailing blanks.

e Fix CHMOD intrinsic to work with file names that have embedded blanks, commas, and so
on.

e Fix SIGNAL intrinsic so it accepts an optional third Status argument.

e Fix IDATEQ) intrinsic subroutine (VXT form) so it accepts arguments in the correct order.
Documentation fixed accordingly, and for GMTIME() and LTIME() as well.

e Make many changes to 1ibU77 intrinsics to support existing code more directly.

Such changes include allowing both subroutine and function forms of many routines, chang-
ing MCLOCK () and TIME() to return INTEGER(KIND=1) values, introducing MCLOCK8() and
TIME8() to return INTEGER(KIND=2) values, and placing functions that are intended to
perform side effects in a new intrinsic group, badu77.

e Improve 1ibU77 so it is more portable.
e Add options ‘-fbadu77-intrinsics-delete’, ‘~fbadu77-intrinsics-hide’, and so on.
e Fix crashes involving diagnosed or invalid code.

e g77 and gcc now do a somewhat better job detecting and diagnosing arrays that are too large
to handle before these cause diagnostics during the assembler or linker phase, a compiler
crash, or generation of incorrect code.

e Make some fixes to alias analysis code.
e Add support for restrict keyword in gcc front end.

e Support gcc version 2.7.2.3 (modified by g77 into version 2.7.2.3.f.1), and remove support
for prior versions of gcc.

e Incorporate GNAT’s patches to the gcc back end into g77’s, so GNAT users do not need
to apply GNAT’s patches to build both GNAT and g77 from the same source tree.

e Modify make rules and related code so that generation of Info documentation doesn’t require
compilation using gcec. Now, any ANSI C compiler should be adequate to produce the g77
documentation (in particular, the tables of intrinsics) from scratch.

e Add INT2 and INT8 intrinsics.

e Add CPU_TIME intrinsic.

e Add ALARM intrinsic.

e CTIME intrinsic now accepts any INTEGER argument, not just INTEGER (KIND=2).

e Warn when explicit type declaration disagrees with the type of an intrinsic invocation.
e Support ‘*£771° entry in gcc ‘specs’ file.

e Fix typo in make rule g77-cross, used only for cross-compiling.

e Fix libf2c build procedure to re-archive library if previous attempt to archive was inter-
rupted.

e Change gcc to unroll loops only during the last invocation (of as many as two invocations)
of loop optimization.

e Improve handling of ‘-fno-f2c¢’ so that code that attempts to pass an intrinsic as an actual
argument, such as ‘CALL FOO(ABS)’, is rejected due to the fact that the run-time-library
routine is, effectively, compiled with ‘~ff2c¢’ in effect.

e Fix g77 driver to recognize ‘-fsyntax-only’ as an option that inhibits linking, just
like ‘-=c’ or ‘-8’, and to recognize and properly handle the ‘-nostdlib’, ‘-M’, ‘-MM’,
‘-nodefaultlibs’, and ‘-Xlinker’ options.

e Upgrade to 1ibf2c as of 1997-08-16.

64

Using and Porting GNU Fortran

Modify 1ibf2c to consistently and clearly diagnose recursive I/O (at run time).

g77 driver now prints version information (such as produced by g77 -v) to stderr instead
of stdout.

The ‘.r’ suffix now designates a Ratfor source file, to be preprocessed via the ratfor
command, available separately.

Fix some aspects of how gcc determines what kind of system is being configured and
what kinds are supported. For example, GNU Linux/Alpha ELF systems now are directly
supported.

Improve diagnostics.
Improve documentation and indexing.

Include all pertinent files for 1ibf2c that come from netlib.bell-1labs.com; give any such
files that aren’t quite accurate in g77’s version of 1ibf2c the suffix ‘.netlib’.

Reserve INTEGER (KIND=0) for future use.

In 0.5.20:

The ‘~fno-typeless-boz’ option is now the default.

This option specifies that non-decimal-radix constants using the prefixed-radix form (such as
‘Z°1234°7) are to be interpreted as INTEGER (KIND=1) constants. Specify ‘~-ftypeless-boz’
to cause such constants to be interpreted as typeless.

(Version 0.5.19 introduced ‘-fno-typeless-boz’ and its inverse.)

See Section 5.4 [Options Controlling Fortran Dialect], page 35, for information on the
‘~ftypeless-boz’ option.

Options ‘-ff90-intrinsics-enable’ and ‘-fvxt-intrinsics-enable’ now are the de-
faults.

Some programs might use names that clash with intrinsic names defined (and now enabled)
by these options or by the new 1ibU77 intrinsics. Users of such programs might need to
compile them differently (using, for example, ‘~ff90-intrinsics-disable’) or, better yet,
insert appropriate EXTERNAL statements specifying that these names are not intended to be
names of intrinsics.

The ALWAYS_FLUSH macro is no longer defined when building 1ibf2c, which should result
in improved I/O performance, especially over NF'S.

Note: If you have code that depends on the behavior of 1ibf2c¢ when built with ALWAYS_
FLUSH defined, you will have to modify 1ibf2c accordingly before building it from this and
future versions of g77.

See Section 14.4.8 [Output Assumed To Flush], page 242, for more information.

Dave Love’s implementation of 1ibU77 has been added to the version of 1ibf2c distributed
with and built as part of g77. g77 now knows about the routines in this library as intrinsics.

New option ‘-fvxt’ specifies that the source file is written in VXT Fortran, instead of GNU
Fortran.

See Section 9.6 [VXT Fortran|, page 182, for more information on the constructs recognized
when the ‘-fvxt’ option is specified.

The ‘-fvxt-not-£90’ option has been deleted, along with its inverse, ‘-f£90-not-vxt’.

If you used one of these deleted options, you should re-read the pertinent documentation to
determine which options, if any, are appropriate for compiling your code with this version
of g77.

See Chapter 9 [Other Dialects], page 177, for more information.

Chapter 6: News About GNU Fortran 65

e The ‘-fugly’ option now issues a warning, as it likely will be removed in a future version.

(Enabling all the ‘-fugly-*" options is unlikely to be feasible, or sensible, in the future, so
users should learn to specify only those ‘-fugly-*’ options they really need for a particular
source file.)

e The ‘-fugly-assumed’ option, introduced in version 0.5.19, has been changed to better
accommodate old and new code.

See Section 9.9.2 [Ugly Assumed-Size Arrays|, page 185, for more information.

e Make a number of fixes to the g77 front end and the gcc back end to better support Alpha
(AXP) machines. This includes providing at least one bug-fix to the gcc back end for
Alphas.

e Related to supporting Alpha (AXP) machines, the LOC() intrinsic and %LOC() construct
now return values of INTEGER(KIND=0) type, as defined by the GNU Fortran language.

This type is wide enough (holds the same number of bits) as the character-pointer type on
the machine.

On most machines, this won’t make a difference, whereas, on Alphas and other systems
with 64-bit pointers, the INTEGER (KIND=0) type is equivalent to INTEGER(KIND=2) (often
referred to as INTEGER*8) instead of the more common INTEGER(KIND=1) (often referred
to as INTEGER*4).

e Emulate COMPLEX arithmetic in the g77 front end, to avoid bugs in complex support in
the gcc back end. New option ‘~fno-emulate-complex’ causes g77 to revert the 0.5.19
behavior.

e Fix bug whereby ‘REAL A(1)’, for example, caused a compiler crash if ‘~fugly-assumed’
was in effect and A was a local (automatic) array. That case is no longer affected by the
new handling of ‘~fugly-assumed’.

e Fix g77 command driver so that ‘g77 -o foo.f’ no longer deletes ‘foo.f’ before issuing
other diagnostics, and so the ‘-x’ option is properly handled.

e FEnable inlining of subroutines and functions by the gcc back end. This works as it does
for gcc itself—program units may be inlined for invocations that follow them in the same
program unit, as long as the appropriate compile-time options are specified.

e Dummy arguments are no longer assumed to potentially alias (overlap) other dummy ar-
guments or COMMON areas when any of these are defined (assigned to) by Fortran code.

This can result in faster and /or smaller programs when compiling with optimization enabled,
though on some systems this effect is observed only when ‘-fforce-addr’ also is specified.

New options ‘-falias-check’, ‘-fargument-alias’, ‘-fargument-noalias’, and
‘-fno-argument-noalias-global’ control the way g77 handles potential aliasing.

See Section 14.4.7 [Aliasing Assumed To Work], page 240, for detailed information on why
the new defaults might result in some programs no longer working the way they did when
compiled by previous versions of g77.

e The CONJG() and DCONJG() intrinsics now are compiled in-line.

e The bug-fix for 0.5.19.1 has been re-done. The g77 compiler has been changed back to
assume 1ibf2c has no aliasing problems in its implementations of the COMPLEX (and DOUBLE
COMPLEX) intrinsics. The 1ibf2c has been changed to have no such problems.

As a result, 0.5.20 is expected to offer improved performance over 0.5.19.1, perhaps as good
as 0.5.19 in most or all cases, due to this change alone.

Note: This change requires version 0.5.20 of 1ibf2c, at least, when linking code produced
by any versions of g77 other than 0.5.19.1. Use ‘g77 -v’ to determine the version numbers
of the 1ibF77, 1ibI77, and 1ibU77 components of the 1ibf2c library. (If these version
numbers are not printed—in particular, if the linker complains about unresolved references

66

In

the

Using and Porting GNU Fortran

to names like ‘g77__fvers__"—that strongly suggests your installation has an obsolete
version of 1ibf2c.)

New option ‘-fugly-assign’ specifies that the same memory locations are to be used to
hold the values assigned by both statements ‘I = 3’ and ‘ASSIGN 10 TO I’, for example.
(Normally, g77 uses a separate memory location to hold assigned statement labels.)

See Section 9.9.7 [Ugly Assigned Labels|, page 187, for more information.

FORMAT and ENTRY statements now are allowed to precede IMPLICIT NONE statements.
Produce diagnostic for unsupported SELECT CASE on CHARACTER type, instead of crashing,
at compile time.

Fix crashes involving diagnosed or invalid code.

Change approach to building 1ibf2c archive (‘1ibf2c.a’) so that members are added to
it only when truly necessary, so the user that installs an already-built g77 doesn’t need to

have write access to the build tree (whereas the user doing the build might not have access
to install new software on the system).

Support gcc version 2.7.2.2 (modified by g77 into version 2.7.2.2.f.2), and remove support
for prior versions of gcc.

Upgrade to 1ibf2c as of 1997-02-08, and fix up some of the build procedures.

Improve general build procedures for g77, fixing minor bugs (such as deletion of any file
named ‘€771’ in the parent directory of gcc/).

Enable full support of INTEGER(KIND=2) (often referred to as INTEGER*8) available in
1ibf2c and ‘f2c.h’ so that £2c¢ users may make full use of its features via the g77 version
of ‘f2c.h’ and the INTEGER(KIND=2) support routines in the g77 version of 1ibf2c.

Improve g77 driver and 1ibf2c so that ‘g77 -v’ yields version information on the library.

The SNGL and FLOAT intrinsics now are specific intrinsics, instead of synonyms for the generic
intrinsic REAL.

New intrinsics have been added. These are REALPART, IMAGPART, COMPLEX, LONG, and SHORT.

A new group of intrinsics, gnu, has been added to contain the new REALPART, IMAGPART,
and COMPLEX intrinsics. An old group, dcp, has been removed.

Complain about industry-wide ambiguous references ‘REAL(expr)’ and ‘AIMAG(expr)’,
where expr is DOUBLE COMPLEX (or any complex type other than COMPLEX), unless ‘-f£90’
option specifies Fortran 90 interpretation or new ‘-fugly-complex’ option, in conjunction
with ‘-fnot-£90’, specifies £2¢ interpretation.

Make improvements to diagnostics.
Speed up compiler a bit.

Improvements to documentation and indexing, including a new chapter containing infor-
mation on one, later more, diagnostics that users are directed to pull up automatically via
a message in the diagnostic itself.

(Hence the menu item M for the node Diagnostics in the top-level menu of the Info docu-
mentation.)

previous versions:

Information on previous versions is archived in ‘gcc/gec/f/news.texi’ following the test of
DOC-O0LDNEWS macro.

Chapter 7: User-visible Changes 67

7 User-visible Changes

This chapter describes changes to g77 that are visible to the programmers who actually write and
maintain Fortran code they compile with g77. Information on changes to installation procedures,
changes to the documentation, and bug fixes is not provided here, unless it is likely to affect
how users use g77. See Chapter 6 [News About GNU Fortran], page 51, for information on such
changes to g77.

Note that two variants of g77 are tracked below. The egcs variant is described vis-a-vis
previous versions of egcs and/or an official FSF version, as appropriate. Note that all such
variants are obsolete as of July 1999 - the information is retained here only for its historical
value.

Therefore, egcs versions sometimes have multiple listings to help clarify how they differ
from other versions, though this can make getting a complete picture of what a particular egcs
version contains somewhat more difficult.

For information on bugs in the GCC-3.3.6 version of g77, see Section 15.2 [Known Bugs In
GNU Fortran|, page 254.

The following information was last updated on 2003-05-18:

In GCC 3.3 versus GCC 3.2:

e Problem Reports fixed (in chronological order of submission):

1832 -list directed i/o overflow hangs, -fbounds-check doesn’t detect

3924 g77 generates code which is rejected by GAS if COFF debugging info is re-
quested

6286 Broken links on web pages

6367 (libf2c) multiple repeat counts confuse namelist read into array

6491 Logical operations error on logicals when using -fugly-logint

6742 Generation of C++ Prototype for FORTRAN and extern "C"

7113 Failure of g77.f-torture/execute/f90-intrinsic-bit.f -Os on irix6.5

7236 (libf2c) OPEN(...,RECL=nnn,...) without ACCESS='DIRECT’ should assume
a direct access file

7278 g77 "bug"; the executable misbehave (use of options -O2 -fno-automatic gave
wrong results)

7384 (libf2c) DATE_AND_TIME milliseconds field inactive on Windows

7388 Incorrect output with 0-based array of characters

8587 Double complex zero ** double precision number -> NaN instead of zero

9038 -ffixed-line-length-none -x f77-cpp-input gives: Warning: unknown register
name line-length-none

9263 ICE caused by invalid PARAMETER in implied DO loop

10197 Direct access files not unformatted by default

10726 Documentation for function IDATE Intrinsic (UNIX) is wrong [fixed in 3.3.1].

e Richard Henderson (rth@redhat.com) analyzed and improved the handling of (no-)aliasing
information for dummy arguments and improved the optimization of induction variables in
unrolled loops.

mailto:rth@redhat.com

68

Using and Porting GNU Fortran

In GCC 3.2 versus GCC 3.1:

Problem Reports fixed (in chronological order of submission):

7681 ICE in compensate_edge, at reg-stack.c:2591
8308 gce-3.x does not compile files with suffix .r (RATFOR) [Fixed in 3.2.1]
9258 [3.2/3.3/3.4 regression] ICE in compensate_edge, at reg-stack.c:2589

In GCC 3.1 (formerly known as g77-0.5.27) versus GCC 3.0:

Problem Reports fixed (in chronological order of submission):

947 Data statement initialization with subscript of kind INTEGER*2
3743 Reference to intrinsic ‘ISHFT’ invalid

3807 Function BESJN(integer,double) problems

3957 g77 -pipe -xf77-cpp-input sends output to stdout

4279 g77 -h" gives bogus output

4730 ICE on valid input using CALL EXIT(%VAL(...))

4752 g77 -v -¢ -x{77-version /dev/null -xnone causes ice

4885 BACKSPACE example that doesn’t work as of gee/g77-3.0.x
5122 g77 rejects accepted use of INTEGER*2 as type of DATA statement loop index
5397 ICE on compiling source with 540 000 000 REAL array

5473 ICE on BESJN(integer*8,real)

5837 bug in loop unrolling

6106 sparc-sun-solaris2.7 gcc-3.1 extra g77 testsuite failures w/-m64
6138 Incorrect acces of integer®1 variables on PA

6304 Failure of LAPACK test dtest on irix6.5 with -mabi=64 -O2

g77 now has its man page generated from the texinfo documentation, to guarantee that it
remains up to date.
g77 used to reject the following program on 32-bit targets:

PROGRAM PROG
DIMENSION A(140 000 000)
END

with the message:
prog.f: In program ‘prog’:
prog.f:2:
DIMENSION A(140 000 000)

Array ‘a’ at (7) is too large to handle

because 140 000 000 REALs is larger than the largest bit-extent that can be expressed in 32
bits. However, bit-sizes never play a role after offsets have been converted to byte addresses.
Therefore this check has been removed, and the limit is now 2 Gbyte of memory (around
530 000 000 REALS). Note: On GNU/Linux systems one has to compile and link programs
that occupy more than 1 Gbyte statically, i.e. g77 -static

Based on work done by Juergen Pfeifer (juergen.pfeifer@gmx.net) libf2c is now a shared
library. One can still link in all objects with the program by specifying the ‘-static’ option.

mailto:juergen.pfeifer@gmx.net

Chapter 7: User-visible Changes 69

e Robert Anderson (rwa@alumni.princeton.edu) thought up a two line change that enables
g77 to compile such code as:

SUBROUTINE SUB(A, N)
DIMENSION N(2)
DIMENSION A(N(1),N(2))
A(1,1) = 1.

END

Note the use of array elements in the bounds of the adjustable array A.

e George Helffrich (george@geo.titech.ac.jp) implemented a change in substring index
checking (when specifying ‘~fbounds-check’) that permits the use of zero length substrings
of the form string(1:0).

e Based on code developed by Pedro Vazquez (vazquez@penelope.iqm.unicamp.br), the
libf2c library is now able to read and write files larger than 2 Gbyte on 32-bit target
machines, if the operating system supports this.

In 0.5.26, GCC 3.0 versus GCC 2.95:

e When a REWIND was issued after a WRITE statement on an unformatted file, the implicit
truncation was performed by copying the truncated file to /tmp and copying the result back.
This has been fixed by using the ftruncate OS function. Thanks go to the GAMESS
developers for bringing this to our attention.

e Using options ‘-g’, ‘-ggdb’ or ‘-gdwarf [-2] " (where appropriate for your target) now also
enables debugging information for COMMON BLOCK and EQUIVALENCE items to be
emitted. Thanks go to Andrew Vaught (andy@xena.eas.asu.edu) and George Helffrich
(george@geology.bristol.ac.uk) for fixing this longstanding problem.

e [t is not necessary anymore to use the option ‘~femulate-complex’ to compile Fortran code
using COMPLEX arithmetic, even on 64-bit machines (like the Alpha). This will improve
code generation.

e INTRINSIC arithmetic functions are now treated as routines that do not depend on any-
thing but their argument(s). This enables further instruction scheduling, because it is
known that they cannot read or modify arbitrary locations.

In 0.5.25, GCC 2.95 (EGCS 1.2) versus EGCS 1.1.2:

e The new ‘-fbounds-check’ option causes g77 to compile run-time bounds checks of array
subscripts, as well as of substring start and end points.

e 1libg2c now supports building as multilibbed library, which provides better support for
systems that require options such as ‘-mieee’ to work properly.

e Source file names with the suffixes ‘.FOR’ and ‘.FPP’ now are recognized by g77 as if they
ended in ‘.for’ and ‘.fpp’, respectively.

e The order of arguments to the subroutine forms of the CTime, DTime, ETime, and TtyNam
intrinsics has been swapped. The argument serving as the returned value for the corre-
sponding function forms now is the second argument, making these consistent with the
other subroutine forms of 1ibU77 intrinsics.

e g77 now warns about a reference to an intrinsic that has an interface that is not Year 2000
(Y2K) compliant. Also, 1ibg2c has been changed to increase the likelihood of catching
references to the implementations of these intrinsics using the EXTERNAL mechanism (which
would avoid the new warnings).

See Section 10.2.2 [Year 2000 (Y2K) Problems|, page 190, for more information.

mailto:rwa@alumni.princeton.edu
mailto:george@geo.titech.ac.jp
mailto:vazquez@penelope.iqm.unicamp.br
mailto:andy@xena.eas.asu.edu
mailto:george@geology.bristol.ac.uk

70 Using and Porting GNU Fortran

e ‘—fno-emulate-complex’ is now the default option. This should result in improved perfor-
mance of code that uses the COMPLEX data type.

e The ‘-malign-double’ option now reliably aligns all double-precision variables and arrays
on Intel x86 targets.

e g77 no longer generates code to maintain errno, a C-language concept, when performing
operations such as the SqRt intrinsic.

e Support for the ‘~fugly’ option has been removed.

In 0.5.24 versus 0.5.23:

There is no g77 version 0.5.24 at this time, or planned. 0.5.24 is the version number designated
for bug fixes and, perhaps, some new features added, to 0.5.23. Version 0.5.23 requires gcc 2.8.1,
as 0.5.24 was planned to require.

Due to EGCS becoming GCC (which is now an acronym for “GNU Compiler Collection”), and
EGCS 1.2 becoming officially designated GCC 2.95, there seems to be no need for an actual 0.5.24
release.

To reduce the confusion already resulting from use of 0.5.24 to designate g77 versions within
EGCS versions 1.0 and 1.1, as well as in versions of g77 documentation and notices during that
period, “mainline” g77 version numbering resumes at 0.5.25 with GCC 2.95 (EGCS 1.2), skipping
over 0.5.24 as a placeholder version number.

To repeat, there is no g77 0.5.24, but there is now a 0.5.25. Please remain calm and return
to your keypunch units.

In EGCS 1.1.2 versus EGCS 1.1.1:

In EGCS 1.1.1 versus EGCS 1.1:

In EGCS 1.1 versus EGCS 1.0.3:

e Support ‘FORMAT (I<expr>)’ when expr is a compile-time constant INTEGER expression.

e Fix g77 ‘-g’ option so procedures that use ENTRY can be stepped through, line by line, in
gdb.

e Allow any REAL argument to intrinsics Second and CPU_Time.

e Use tempnam, if available, to open scratch files (as in ‘OPEN(STATUS=’SCRATCH’)’) so that
the TMPDIR environment variable, if present, is used.

e g77’s version of 1ibf2c separates out the setting of global state (such as command-line
arguments and signal handling) from ‘main.o’ into distinct, new library archive members.

This should make it easier to write portable applications that have their own (non-Fortran)
main() routine properly set up the 1ibf2c environment, even when 1ibf2c (now libg2c)
is a shared library.

e The g77 command now expects the run-time library to be named libg2c.a instead of
libf2c.a, to ensure that a version other than the one built and installed as part of the
same g77 version is picked up.

e Some diagnostics have been changed from warnings to errors, to prevent inadvertent use
of the resulting, probably buggy, programs. These mostly include diagnostics about use
of unsupported features in the OPEN, INQUIRE, READ, and WRITE statements, and about
truncations of various sorts of constants.

Chapter 7: User-visible Changes 71

In

In

EGCS 1.1 versus g77 0.5.23:

g77 now treats ‘%4LOC(expr)’ and ‘LOC(expr)’ as “ordinary” expressions when they are
used as arguments in procedure calls. This change applies only to global (filewide) analysis,
making it consistent with how g77 actually generates code for these cases.

Previously, g77 treated these expressions as denoting special “pointer” arguments for the
purposes of filewide analysis.

Align static double-precision variables and arrays on Intel x86 targets regardless of whether
‘-malign-double’ is specified.

Generally, this affects only local variables and arrays having the SAVE attribute or given
initial values via DATA.

The g77 driver now ensures that ‘-1g2c¢’ is specified in the link phase prior to any occurrence
of ‘~1m’. This prevents accidentally linking to a routine in the SunOS4 ‘~1m’ library when
the generated code wants to link to the one in 1ibf2c (1ibg2c).

g77 emits more debugging information when ‘-g’ is used.

This new information allows, for example, which __g77_length_a to be used in gdb to
determine the type of the phantom length argument supplied with CHARACTER variables.
This information pertains to internally-generated type, variable, and other information, not
to the longstanding deficiencies vis-a-vis COMMON and EQUIVALENCE.

The F90 Date_and_Time intrinsic now is supported.

The F90 System_Clock intrinsic allows the optional arguments (except for the Count argu-
ment) to be omitted.

0.5.23 versus 0.5.22:

This release contains several regressions against version 0.5.22 of g77, due to using the
“vanilla” gcc back end instead of patching it to fix a few bugs and improve performance in
a few cases.

Features that have been dropped from this version of g77 due to their being implemented
via g77-specific patches to the gcc back end in previous releases include:

— Support for __restrict__ keyword, the options ‘-fargument-alias’,

‘-fargument-noalias’, and ‘-fargument-noalias-global’, and the corresponding
alias-analysis code.

(egcs has the alias-analysis code, but not the __restrict__ keyword. egcs g77 users
benefit from the alias-analysis code despite the lack of the __restrict__ keyword,
which is a C-language construct.)

— Support for the GNU compiler options ‘~fmove-all-movables’, ‘~freduce-all-givs’,
and ‘~frerun-loop-opt’.
(egcs supports these options. g77 users of egcs benefit from them even if they are not
explicitly specified, because the defaults are optimized for g77 users.)

— Support for the ‘-W’ option warning about integer division by zero.

— The Intel x86-specific option ‘-malign-double’ applying to stack-allocated data as well
as statically-allocate data.

Support gcc version 2.8, and remove support for prior versions of gec.
Remove support for the ‘--driver’ option, as g77 now does all the driving, just like gcc.

The g77 command now expects the run-time library to be named libg2c.a instead of
libf2c.a, to ensure that a version other than the one built and installed as part of the
same g77 version is picked up.

72

In

In

In

In

Using and Porting GNU Fortran

g77’s version of 1ibf2c separates out the setting of global state (such as command-line
arguments and signal handling) from ‘main.o’ into distinct, new library archive members.

This should make it easier to write portable applications that have their own (non-Fortran)
main() routine properly set up the 1ibf2c environment, even when 1ibf2c (now libg2c)
is a shared library.

Some diagnostics have been changed from warnings to errors, to prevent inadvertent use
of the resulting, probably buggy, programs. These mostly include diagnostics about use
of unsupported features in the OPEN, INQUIRE, READ, and WRITE statements, and about
truncations of various sorts of constants.

0.5.22 versus 0.5.21:

Fix Signal intrinsic so it offers portable support for 64-bit systems (such as Digital Alphas
running GNU/Linux).
Support ‘FORMAT (I<expr>)’ when expr is a compile-time constant INTEGER expression.

Fix g77 ‘-g’ option so procedures that use ENTRY can be stepped through, line by line, in
gdb.

Allow any REAL argument to intrinsics Second and CPU_Time.
Allow any numeric argument to intrinsics Int2 and Int8.

Use tempnam, if available, to open scratch files (as in ‘OPEN(STATUS=’SCRATCH’)’) so that
the TMPDIR environment variable, if present, is used.

Rename the gce keyword restrict to __restrict__, to avoid rejecting valid, existing, C
programs. Support for restrict is now more like support for complex.

Fix ‘-fugly-comma’ to affect invocations of only external procedures. Restore rejection of
gratuitous trailing omitted arguments to intrinsics, as in ‘I=MAX(3,4,,)" .

Fix compiler so it accepts ‘~fgnu-intrinsics-*" and ‘-fbadu77-intrinsics-*’ options.

EGCS 1.0.2 versus EGCS 1.0.1:

Fix compiler so it accepts ‘~fgnu-intrinsics-*" and ‘-fbadu77-intrinsics-*’ options.

EGCS 1.0.1 versus EGCS 1.0:

EGCS 1.0 versus g77 0.5.21:

Version 1.0 of egcs contains several regressions against version 0.5.21 of g77, due to using
the “vanilla” gcc back end instead of patching it to fix a few bugs and improve performance
in a few cases.

Features that have been dropped from this version of g77 due to their being implemented
via g77-specific patches to the gcc back end in previous releases include:

— Support for the C-language restrict keyword.
— Support for the ‘-W option warning about integer division by zero.
— The Intel x86-specific option ‘-malign-double’ applying to stack-allocated data as well
as statically-allocate data.
Remove support for the ‘--driver’ option, as g77 now does all the driving, just like gcc.

Allow any numeric argument to intrinsics Int2 and Int8.

Chapter 7: User-visible Changes 73

In

In

0.5.21:

When the ‘-W’ option is specified, gcc, g77, and other GNU compilers that incorporate the
gce back end as modified by g77, issue a warning about integer division by constant zero.

New option ‘~Wno-globals’ disables warnings about “suspicious” use of a name both as a
global name and as the implicit name of an intrinsic, and warnings about disagreements
over the number or natures of arguments passed to global procedures, or the natures of the
procedures themselves.

The default is to issue such warnings, which are new as of this version of g77.

New option ‘~fno-globals’ disables diagnostics about potentially fatal disagreements anal-
ysis problems, such as disagreements over the number or natures of arguments passed to
global procedures, or the natures of those procedures themselves.

The default is to issue such diagnostics and flag the compilation as unsuccessful. With this
option, the diagnostics are issued as warnings, or, if ‘-Wno-globals’ is specified, are not
issued at all.

This option also disables inlining of global procedures, to avoid compiler crashes resulting
from coding errors that these diagnostics normally would identify.

Fix 1ibU77 routines that accept file and other names to strip trailing blanks from them, for
consistency with other implementations. Blanks may be forcibly appended to such names
by appending a single null character (‘CHAR(0)’) to the significant trailing blanks.

Fix CHMOD intrinsic to work with file names that have embedded blanks, commas, and so
on.

Fix SIGNAL intrinsic so it accepts an optional third Status argument.
Make many changes to 1ibU77 intrinsics to support existing code more directly.

Such changes include allowing both subroutine and function forms of many routines, chang-
ing MCLOCK() and TIME() to return INTEGER(KIND=1) values, introducing MCLOCK8() and
TIME8() to return INTEGER(KIND=2) values, and placing functions that are intended to
perform side effects in a new intrinsic group, badu77.

Add options ‘-fbadu77-intrinsics-delete’, ‘-fbadu77-intrinsics-hide’, and so on.
Add INT2 and INTS8 intrinsics.

Add CPU_TIME intrinsic.

Add ALARM intrinsic.

CTIME intrinsic now accepts any INTEGER argument, not just INTEGER (KIND=2).

g77 driver now prints version information (such as produced by g77 -v) to stderr instead
of stdout.

The ‘.r’ suffix now designates a Ratfor source file, to be preprocessed via the ratfor
command, available separately.

0.5.20:

The ‘~fno-typeless-boz’ option is now the default.

This option specifies that non-decimal-radix constants using the prefixed-radix form (such as
‘Z°1234°7) are to be interpreted as INTEGER (KIND=1) constants. Specify ‘-ftypeless-boz’
to cause such constants to be interpreted as typeless.

(Version 0.5.19 introduced ‘-fno-typeless-boz’ and its inverse.)

See Section 5.4 [Options Controlling Fortran Dialect], page 35, for information on the
‘~-ftypeless-boz’ option.

74

Using and Porting GNU Fortran

Options ‘-ff90-intrinsics-enable’ and ‘-fvxt-intrinsics-enable’ now are the de-
faults.

Some programs might use names that clash with intrinsic names defined (and now enabled)
by these options or by the new 1ibU77 intrinsics. Users of such programs might need to
compile them differently (using, for example, ‘~ff90-intrinsics-disable’) or, better yet,
insert appropriate EXTERNAL statements specifying that these names are not intended to be
names of intrinsics.

The ALWAYS_FLUSH macro is no longer defined when building 1ibf2c, which should result
in improved I/O performance, especially over NFS.

Note: If you have code that depends on the behavior of 1ibf2c¢ when built with ALWAYS_
FLUSH defined, you will have to modify 1ibf2c accordingly before building it from this and
future versions of g77.

See Section 14.4.8 [Output Assumed To Flush], page 242, for more information.

Dave Love’s implementation of 1ibU77 has been added to the version of 1ibf2c distributed
with and built as part of g77. g77 now knows about the routines in this library as intrinsics.
New option ‘-fvxt’ specifies that the source file is written in VXT Fortran, instead of GNU
Fortran.

See Section 9.6 [VXT Fortran|, page 182, for more information on the constructs recognized
when the ‘-fvxt’ option is specified.

The ‘~fvxt-not-£90’ option has been deleted, along with its inverse, ‘-f£90-not-vxt’.

If you used one of these deleted options, you should re-read the pertinent documentation to
determine which options, if any, are appropriate for compiling your code with this version
of g77.

See Chapter 9 [Other Dialects], page 177, for more information.

The ‘-fugly’ option now issues a warning, as it likely will be removed in a future version.
(Enabling all the ‘-fugly-*" options is unlikely to be feasible, or sensible, in the future, so

users should learn to specify only those ‘~fugly-*’ options they really need for a particular
source file.)

The ‘-fugly-assumed’ option, introduced in version 0.5.19, has been changed to better
accommodate old and new code.

See Section 9.9.2 [Ugly Assumed-Size Arrays], page 185, for more information.

Related to supporting Alpha (AXP) machines, the LOC() intrinsic and %LOC() construct
now return values of INTEGER (KIND=0) type, as defined by the GNU Fortran language.

This type is wide enough (holds the same number of bits) as the character-pointer type on
the machine.

On most machines, this won’t make a difference, whereas, on Alphas and other systems
with 64-bit pointers, the INTEGER (KIND=0) type is equivalent to INTEGER(KIND=2) (often
referred to as INTEGER#8) instead of the more common INTEGER(KIND=1) (often referred
to as INTEGER*4).

Emulate COMPLEX arithmetic in the g77 front end, to avoid bugs in complex support in
the gcc back end. New option ‘-fno-emulate-complex’ causes g77 to revert the 0.5.19
behavior.

Dummy arguments are no longer assumed to potentially alias (overlap) other dummy ar-
guments or COMMON areas when any of these are defined (assigned to) by Fortran code.
This can result in faster and/or smaller programs when compiling with optimization enabled,
though on some systems this effect is observed only when ‘-fforce-addr’ also is specified.
New options ‘-falias-check’, ‘-fargument-alias’, ‘-fargument-noalias’, and
‘-fno-argument-noalias-global’ control the way g77 handles potential aliasing.

Chapter 7: User-visible Changes 75

In

the

See Section 14.4.7 [Aliasing Assumed To Work], page 240, for detailed information on why
the new defaults might result in some programs no longer working the way they did when
compiled by previous versions of g77.

New option ‘-fugly-assign’ specifies that the same memory locations are to be used to
hold the values assigned by both statements ‘I = 3" and ‘ASSIGN 10 TO I’, for example.
(Normally, g77 uses a separate memory location to hold assigned statement labels.)

See Section 9.9.7 [Ugly Assigned Labels|, page 187, for more information.
FORMAT and ENTRY statements now are allowed to precede IMPLICIT NONE statements.

Enable full support of INTEGER(KIND=2) (often referred to as INTEGER*8) available in
libf2c and ‘f2c.h’ so that £2c¢ users may make full use of its features via the g77 version
of ‘f2c.h’ and the INTEGER (KIND=2) support routines in the g77 version of 1ibf2c.

Improve g77 driver and 1ibf2c so that ‘g77 -v’ yields version information on the library.

The SNGL and FLOAT intrinsics now are specific intrinsics, instead of synonyms for the generic
intrinsic REAL.

New intrinsics have been added. These are REALPART, IMAGPART, COMPLEX, LONG, and SHORT.

A new group of intrinsics, gnu, has been added to contain the new REALPART, IMAGPART,
and COMPLEX intrinsics. An old group, dcp, has been removed.

Complain about industry-wide ambiguous references ‘REAL(expr)’ and ‘AIMAG(expr)’,
where expr is DOUBLE COMPLEX (or any complex type other than COMPLEX), unless ‘-£f£90’
option specifies Fortran 90 interpretation or new ‘-fugly-complex’ option, in conjunction
with ‘-fnot-f90’, specifies f2¢ interpretation.

previous versions:

Information on previous versions is archived in ‘gcc/gec/f/news.texi’ following the test of
DOC-OLDNEWS macro.

76

Using and Porting GNU Fortran

Chapter 8: The GNU Fortran Language 7

8 The GNU Fortran Language

GNU Fortran supports a variety of extensions to, and dialects of, the Fortran language.
Its primary base is the ANSI FORTRAN 77 standard, currently available on the network
at http://www.fortran.com/fortran/F77_std/rjcnf0001.html or as monolithic text at
http://wuw.fortran.com/fortran/F77_std/f77_std.html. It offers some extensions that are
popular among users of UNIX £77 and f2c compilers, some that are popular among users of
other compilers (such as Digital products), some that are popular among users of the newer
Fortran 90 standard, and some that are introduced by GNU Fortran.

(If you need a text on Fortran, a few freely available electronic references have pointers from
http://www.fortran.com/F/books.html. There is a ‘cooperative net project’, User Notes on
Fortran Programming at ftp://vms.huji.ac.il/fortran/ and mirrors elsewhere; some of this
material might not apply specifically to g77.)

Part of what defines a particular implementation of a Fortran system, such as g77, is the
particular characteristics of how it supports types, constants, and so on. Much of this is left up
to the implementation by the various Fortran standards and accepted practice in the industry.

The GNU Fortran language is described below. Much of the material is organized along the
same lines as the ANSI FORTRAN 77 standard itself.

See Chapter 9 [Other Dialects], page 177, for information on features g77 supports that are
not part of the GNU Fortran language.

Note: This portion of the documentation definitely needs a lot of work!
8.1 Direction of Language Development

The purpose of the following description of the GNU Fortran language is to promote wide
portability of GNU Fortran programs.

GNU Fortran is an evolving language, due to the fact that g77 itself is in beta test. Some
current features of the language might later be redefined as dialects of Fortran supported by g77
when better ways to express these features are added to g77, for example. Such features would
still be supported by g77, but would be available only when one or more command-line options
were used.

The GNU Fortran language is distinct from the GNU Fortran compilation system (g77).

For example, g77 supports various dialects of Fortran—in a sense, these are languages other
than GNU Fortran—though its primary purpose is to support the GNU Fortran language, which
also is described in its documentation and by its implementation.

On the other hand, non-GNU compilers might offer support for the GNU Fortran language,
and are encouraged to do so.

Currently, the GNU Fortran language is a fairly fuzzy object. It represents something of
a cross between what g77 accepts when compiling using the prevailing defaults and what this
document describes as being part of the language.

Future versions of g77 are expected to clarify the definition of the language in the docu-
mentation. Often, this will mean adding new features to the language, in the form of both
new documentation and new support in g77. However, it might occasionally mean removing a
feature from the language itself to “dialect” status. In such a case, the documentation would
be adjusted to reflect the change, and g77 itself would likely be changed to require one or more
command-line options to continue supporting the feature.

The development of the GNU Fortran language is intended to strike a balance between:

e Serving as a mostly-upwards-compatible language from the de facto UNIX Fortran dialect
as supported by £77.

http://www.fortran.com/fortran/F77_std/rjcnf0001.html
http://www.fortran.com/fortran/F77_std/f77_std.html
http://www.fortran.com/F/books.html
ftp://vms.huji.ac.il/fortran/

78 Using and Porting GNU Fortran

e Offering new, well-designed language features. Attributes of such features include not mak-
ing existing code any harder to read (for those who might be unaware that the new features
are not in use) and not making state-of-the-art compilers take longer to issue diagnostics,
among others.

e Supporting existing, well-written code without gratuitously rejecting non-standard con-
structs, regardless of the origin of the code (its dialect).

e Offering default behavior and command-line options to reduce and, where reasonable, elim-
inate the need for programmers to make any modifications to code that already works in
existing production environments.

e Diagnosing constructs that have different meanings in different systems, languages, and
dialects, while offering clear, less ambiguous ways to express each of the different meanings
so programmers can change their code appropriately.

One of the biggest practical challenges for the developers of the GNU Fortran language is
meeting the sometimes contradictory demands of the above items.

For example, a feature might be widely used in one popular environment, but the exact same
code that utilizes that feature might not work as expected—perhaps it might mean something
entirely different—in another popular environment.

Traditionally, Fortran compilers—even portable ones—have solved this problem by simply
offering the appropriate feature to users of the respective systems. This approach treats users
of various Fortran systems and dialects as remote “islands”, or camps, of programmers, and
assume that these camps rarely come into contact with each other (or, especially, with each
other’s code).

Project GNU takes a radically different approach to software and language design, in that it
assumes that users of GNU software do not necessarily care what kind of underlying system they
are using, regardless of whether they are using software (at the user-interface level) or writing
it (for example, writing Fortran or C code).

As such, GNU users rarely need consider just what kind of underlying hardware (or, in
many cases, operating system) they are using at any particular time. They can use and write
software designed for a general-purpose, widely portable, heterogeneous environment—the GNU
environment.

In line with this philosophy, GNU Fortran must evolve into a product that is widely ported
and portable not only in the sense that it can be successfully built, installed, and run by users,
but in the larger sense that its users can use it in the same way, and expect largely the same
behaviors from it, regardless of the kind of system they are using at any particular time.

This approach constrains the solutions g77 can use to resolve conflicts between various camps
of Fortran users. If these two camps disagree about what a particular construct should mean,
g77 cannot simply be changed to treat that particular construct as having one meaning with-
out comment (such as a warning), lest the users expecting it to have the other meaning are
unpleasantly surprised that t