ModSecurity for Apache 1.8.7
User Guide

Copyright © 2002-2005 Ivan Ristic <ivanr@webkreatom>
http://www.modsecurity.org

ModSecurity for Apache 1.8.7 User Guide 2

Table of Contents

ModSecurity for Apache 1.8.7 USer GUITE. ... o eeurermmmnniiiiiiiiiiiiiiiinnennneees
T oo [Tox i o] o PSR RTT 6
o= 153 o PSSR 6
ACKNOWIEAGMENTS. ... it e e e e e eeeee s 6
(0] | £= To! F SRR PP 7
10153 7= =1 1o o P 7

GV S A LSS, ittt ettt ettt e e e e e ettt e e e e e e e ettt e e e e e eeanaa 7
Nightly Snapshot DOWNIOA............uuuuiiiieeeeeeieiiieiceeeeeeeeeeeeeeeeeeee e e eeee e 8
Stable Release DoOwWNIoad............coovvviieeeeeeee e, 8
INStalliNG frOM SOUICE...... i ciiiiii e eemmme e e et e e 8
DS 0.ttt ——————— ettt e e e b e e e e e e e naa e e e e annaes 8
Static installation with Apache 1.X........oo e 8
INStalling fromM DINAIY.........ccoiiiii e e e e e e e e e 9
APBCNE LiXoiiiiiiiiiiieee e e a e 9
APACHE 2. X e e 9
(0] oo 11 =4[] o 1SR 9
Turning filtering on and Off.............uuiiieee e 10
POST SCANNING....ccutiiieiiiiiiii e e et s e e e e e e e e eeate s e eeaeeeeassaaaaaeeaeeeeeennes 10
Turning buffering off dynamically...........cccccc 10.
Chunked transfer encoding...........ooveiiiieeceeee e 11
Default aCtion liSt.......c.ouiiiiiiii e 11
IMPHCIE VAIIAALION. ... 12
Filter INNEITANCE. ... eeenee 12
URL Encoding Validation..............uueiiiiiceeeeiiiiiii s e 12
Unicode Encoding Validation..............cooimmmmiiiiiiiiiiiiieeeeee e 13

BYte range ChECK........cooiiiiee e e e e e 13

ModSecurity for Apache 1.8.7 User Guide

Allowing others to See MOUSECUIILY..........icccmm e 14
[D7=] 018 o o | o TP 15
=0 [0 TSIy 111 0= T o RS 15

SIMPIE FIEIING. ..eeeeiiiieii et e e 15

Path NOrmalization.......... oo e 16

Null byte attack prevention.................o e e e eeeeeeeeeeeeeeeeeeee e 16

R ETo [FoT =Y d o] £ =TT] o] o PP 16

INVEITEd EXPIESSIONS. ... i iiieiiieeeeeee et s s e e e e e e e eatas s e e e eeeeeatann e eeeseeeennnnnens 17
AAVANCE TIEIING ... ettt 17
Argument filtering eXCepPLioNS.........o.uuuiice e 19

[0 0] (1= T PP PO 19

OULPUL FIEIING . ..o e e e e e e e e 19

A CTIONS. .t antnbaennrrnnne 20

SPECIfYING ACHONS........ccoi ittt eeeeaees 21

BUIIE-IN @CHIONS. ...t e s e e e e e e e e eens 21

022 LS 21
=1 [0 1 PP 21
[0 = 0 PP 22
STALUS ..ttt e et eer e e 22
1= 1= o 22
X ettt ettt ettt et mmm——— e e e et e e e b b h e e ettt e e b b e e e et eennnnae b e s 22
oo 22
7] oo PP 22
£ 4] 0] = PP 23
o = 11 o P 23
PAUSE . ..ttt ettt e e e e e ettt e e e e e et bbb e e e e e aeeeeenbaaa s 23

Request headers added by mod_Security.........ccccceeiviiiiiiee, 23

Handling rule matches using ErrorDOCUMENt........cccoevieeeiiiiiiiiiiiiiiieeeeeee 24

Making ModSecurity talk to your firewall..........c.cc.ooooviiiii e 24.
(1L U] o] [0 F=To BT U] o] o Lo] o SO 25

Choosing where to upload fileS..........uuueoo s 25

RV 13T o {11 25

Storing UPloaded fIlES.......cooiiiee e 25

Upload memory Mit.........oooooiiiii e 25

ModSecurity for Apache 1.8.7 User Guide 4

Impedance MiSMAatCN..........oooii e 26
Other fRALUIES. ... uuii e et e e e e e ee e e 27
Server identity MasKiNG.........uuuuuuiiiiiii e 27
CRIOOT SUPPOIT....cciiiieii ittt ettt e e e et e e e e e e e smnnee e e e e e e e 27
Standard approach...........c.ooii i —— 27
The MOd_SECUILY WAY.....ceviiiiiiiiee e e 28
Required module ordering for chroot support (Apath®.................ccooeeee 29
Required module ordering for chroot support (Apa2h@..............cccceevennneeee. 29
How the mod_security Chroot WOrKS..........cooeecceiiiiiiiiiiiieeeee 29
Solving common security ProblemsS............ oo 30
DIreCtory traversal..........ccooiiiiiiiiiieeeeme e 30
Cross site SCrptiNg attaCkS.............i e eeeeeeee e 30
SQL/database attaCks...........coovuuiiiitimmmmr et e e e e e e e eaas 31
Operating system command eXEeCULION..........cccceeeerrrrrrerrrrrerinnrienirirnnrnnnnen. 31.
Buffer overflow attacks.......... ... 31
(101 0] 1N (oo o o T SRR 32
AUAIT [OGGING. oo e e 32
Unique request identifiers. e e e 33
(O pTeTo L] [g 1Y o= U (o 1N (o T TP 33
The teStNG ULIILY.....cooiiiiiiiiieeeee e 34
Technology SPECIfiC NOLES.........uuuiiii e e 35
PHP PECUIIAITIES. . .uvueue e eeem e 35
Additional EXamPIES.......uuuiiiiiiee e 35
Parameter ChecCking.........cooooiiiii e e 35
FIlE UPIOAA.ceiiiieiiiiiiiiie e e 35
Securing FOrmMail..........oooo oo 36
T A 0] 4 4= 1 [T TP U U TP PP 36
SPEEM. ..o e e e 36
MemOry CONSUMPLION........uiiiiiiiiiis e s e e e e e e e e e e e et e e e e e s 36
Other things to WatCh fOr...........oviviiiiicme e, 37
KINOWN ISSUBS. ... et e e ettt e beeeeeeeeeeeeeees 37
T g oTe) = | A 10 (= 37

O N TESOUICES . .. e e e et e e e ner e enns 37

ModSecurity for Apache 1.8.7 User Guide

Appendix A: Recommended Configuration........cccccc..eeeeeeeiiieiiieiiiiieeneee. 38

ModSecurity for Apache 1.8.7 User Guide 6

Introduction

ModSecurity is an open source intrusion detectiord grevention engine for web
applications. It can also be called an web apptoafirewall. It operates embedded into the
web server, acting as a powerful umbrella - shigjdipplications from attacks.

ModSecurity integrates with the web server, indreagour power to deal with web attacks.
Some of its features worth mentioning are:

+ Request filtering; incoming requests are analysed as they comenthpafore they
get handled by the web server or other modulesic{igtspeaking, some processing
is done on the request before it reaches ModSgdoit that is unavoidable in the
embedded mode of operation.)

« Anti-evasion techniques; paths and parameters are normalised before @m#dhkes
place in order to fight evasion techniques.

+ Understanding of the HTTP protocoal; since the engine understands HTTP, it
performs very specific and fine granulated filtgrirFor example, it is possible to
look at individual parameters, or named cookie @slu

- POST payload analysis; the engine will intercept the contents transrditising the
POST method, too.

- Audit logging; full details of every request (including POST)nche logged for
forensic analysis later.

- HTTPS filtering; since the engine is embedded in the web senvget$ access to
request data after decryption takes place.

+ Compressed content filtering; same as above, the security engine has access to
request data after decompression takes place.

ModSecurity can be used to detect attacks, ortectiand prevent attacks.

Licensing

ModSecurity is available under two licenses. Usins choose to use the software under the
terms of the GNU General Public Licengdty://www.gnu.org/licenses/gpl.htilas an Open
Source / Free Software product. Alternatively, d@ety of commercial licenses is available:
end-user licenses for individual or site-wide dgpient, OEM licenses for closed-source
distribution with applications, web servers, orig#g appliances. For more information on
commercial licensing please contact Thinking Stotde

Thinking Stone Ltd

Tel: +44 845 0580628

Fax: +44 870 7623934
http://www.thinkingstone.com
contact@thinkingstone.com

Acknowledgments
This module would not be possible without the fie®ple who have created the Apache Web

7 ModSecurity for Apache 1.8.7 User Guide

server, and the fine people who have spent mangshmulding the Apache modules | used to
learn Apache module programming from. My speciahits goes to those who designed and
wrotemod_rewrite

Contact

ModSecurity is developed by Ivan Ristic and ThirkBtone. Comments and feature requests
are welcome. Please send your emaiisdar@webkreator.com

Please do not send support requests to my persomail address. | do
spend time responding to support queries but tdespond privately any
more. Doing so prevents other users from using muahives to find
answers for themselves. If you need answers quicklyyou want
guaranteed response times consider purchasing camam&upport from
Thinking Stone.

Installation

Before you begin with installation you will needdboose your preferred installation method.
First you need to choose whether to install theskaversion of ModSecurity directly from
CVS (best features, but possibly unstable) or heddtest stable releaseegommended). If
you choose a stable release, it might be possibiestall ModSecurity from binary. It is
always possible to compile it from source code.

The following few pages will give you more inforriwat on benefits of choosing one method
over another.

CVS Access

If you want to access the latest version of the utedou need to get it from the CVS
repository. The list of changes made since thedidile release is normally available on the
web site (and in the filCHANGES. The CVS repository for ModSecurity is hosted by
SourceForge (http://www.sf.net). You can accestiréctly or view if through web using this
address: http://cvs.sourceforge.net/cgi-bin/viewayigmod-security/

To download the source code to your computer yoedn® execute the following two
commands:

cvs -d:pserver.anonymous@-cvs.sourceforge.net:/cvsro ot/mod-
security login
cvs -z3 -d:pserver:anonymous@cvs.sourceforge.net:/c vsroot/mod-

security co mod_security

The first line will log you in as an anonymous ysamd the second will download all files
available in the repository.

ModSecurity for Apache 1.8.7 User Guide 8

Nightly Snapshot Download

If you don't like CVS but you still want the latesdrsion you can download the latest nightly
tarball from the following address:

http://www.modsecurity.org/download/snapshot/modusiéy-snapshot.tar.gz

New features are added to mod_security one bywitte regression tests being run after each
change. This should ensure that the version avaifaim CVS is always usable.

Stable Release Download

To download the stable release go Itp://www.modsecurity.org/download/Binary
distributions are sometimes available. If they #ney are listed on the download page. If not
download the source code distribution.

Installing from source

When installing from source you have two choicesnstall the module into the web server
itself, or to compilenod_security.énto a dynamic shared object (DSO).

DSO

Installing as DSO is easier, and the procedurégssame for both Apache branches. First
unpack the distribution somewhere (anywhere wi)l dad compile the module with:

/apachehome/bin/apxs -cia mod_security.c

After this you only need to stop and then start &gea(if you try to restart it you may get a
segfault):

lapachehome/bin/apachect! stop
lapachehome/bin/apachectl start

I've had reports from people using platforms thatndt have theapxs
utility installed. In some Unix distribution thiodl is distributed in a
separate package. The problem arises when thaagad& not installed b
default. To resolve this problem read the docummafrom your
vendor to discover how you can add your own custgrache modules.
(On some RedHat platforms you need to install tekpgehttp-devel to
get access to thepxsutility).

Static installation with Apache 1.x

When a module is compiled statically, it gets entlsetlinto the body of the web server. This
method results in a slightly faster executabletbatthe compilation method (and subsequent
maintenance) is a bit more complicated.

After unpacking the distribution copyod_security.d¢o the foldersrc/modules/extran the
Apache source code tree. Then reconfigure spegiffie configuration script to enable the
new module:

9 ModSecurity for Apache 1.8.7 User Guide

.Jconfigure \

<your other configuration options here> \
--activate-module=src/modules/extra/mod_security \
-—enable-module=security

Compile, install, and start the web server as yaunally do.

Installing from binary

In some circumstances, you will want to install thedule as a binary. At the moment | only
make Windows binaries available for download. Whrestialling from binary you are likely to
have two DSO libraries in the distribution, one éaich major Apache branch. Choose the file
appropriate for the version you are using. Thercged as described below:

Apache 1.x

Copymod_security.sgon Unix) ormod_security.dl{on Windows) tdibexec/ (this folder is
relative to the Apache installation, not the soutee). Then add the following line to
httpd.conf

LoadModule security_module libexec/mod_security. o)

Depending on your existing configuration (you mayd chosen to configure module loading
order explicitly) it may be necessary to activdite tnodule using thaddModul e directive:

AddModule mod_security.c

In most cases it is not important where you addlite It is recommended (and, in fact,
mandatory if you intend to use the internal chifeature) to makenod_securityexecute last
in the module chain.Read the section “Required reodrdering for chroot support (Apache
1.x)” for more information.

Apache 2.x

Copymod_security.sgon Unix) ormod_security.dl{lon Windows) tamodules/ (this folder
is relative to the Apache installation, not the reeutree). Then add the following line to
httpd.conf

LoadModule security_ module modules/mod_security. o)

Configuration

ModSecurity configuration directives are added toury configuration file (typically
httpd.conf directly. When it is not always certain whethesdule will be enabled or disabled
on web server start it is customary to encloseatgiguration directives in &l f Modul e>
container tag. This allows Apache to ignore thefigomation directives when the module is
not active.

<IfModule mod_security.c>
mod_security configuration directives

ModSecurity for Apache 1.8.7 User Guide 10

#...
</IfModule>

Since Apache allows configuration data to exisiiore than one file it is possible to group
ModSecurity configuration directives in a singlée f{e.g. modsecurity.coffand include it
from httpd.confwith thel ncl ude directive:

Include conf/modsecurity.conf

Turning filtering on and off
The filtering engine is disabled by default. Torstaonitoring requests add the following to
your configuration file:

SeckFilterEngine On

Supported parameter values for this parameter are:
« On- analyse every request
« Off —do nothing

« DynamicOnly - analyse only requests generated dynamicallyratme. Using
this option will prevent your web server from usitige precious CPU cycles to
check requests for static files. To understand MwmdSecurity decides what is a
dynamically generated request read the sectiond€ihg what to log".

POST scanning
Request body payload (BOST payload) scanning is disabled by default. To tsgou need
to turn it on:

SecFilterScanPOST On

mod_security supports two encoding types for tlpgest body:
+ application/x-www-form-urlencoded - used to transfer form data
« multipart/form-data — used for file transfer

Other encodings are not used by most web applitatibo make sure that only requests with
these two encoding types are accepted by the weferseadd the following line to your
configuration file:

SeckFilterSelective HTTP_Content-Type \
"1("$| application/x-www-form-urlencoded$|*multipar t/form-
data;)"

Turning buffering off dynamically

It is possible to turfPOST payload scanning off on per-request basis. If Madf@ity sees that
an environment variabl/ODSEC NOPOSTBUFFERI NG is defined it will not perfornPCST
payload buffering. For example, to tuR@ST payload buffering off for file uploads use the

11 ModSecurity for Apache 1.8.7 User Guide

following:

SetEnvifNoCase Content-Type \
""multipart/form-data;" "MODSEC_NOPOSTBUFFERING=Do not buffer
file uploads"

The value assigned to tHhdODSEC NOPOSTBUFFERI NG variable will be written to the
debug log, so you can put in there something tlilatell you why was buffering turned off.

Chunked transfer encoding

The HTTP protocol supports a method of requessfesirwhere the size of the payload is not
known in advance. The body of the request is dedivén chunks. Hence the namteunked
transfer encoding ModSecurity does not support chunked requestthiattime; when a
request is made with chunked encoding it will igntre body of the request. As far as | am
aware no browser uses chunked encoding to sen@sequAlthough Apache does support
this encoding for some operations many moduled.don'

Left unattended this may present an opportunityaforattacker to sneak malicious payload.
Add the following line to your configuration to prent attackers to exploit this weakness:

SeckFilterSelective HTTP_Transfer-Encoding "1"$"

This will not affect your ability to send responsesing the chunked transfer encoding.

Default action list

Whenever a rule is matched against a request, om®e actions are performed. Individual
filters can each have their own actions but itasier to define a default set of actions for alll
filters. (You can always have per-rule actionsatiywant.) You define default actions with
the configuration directiv€ecFi | t er Def aul t Act i on. For example, the following will
configure the engine to log each rule match, ajetre¢he request with status cotie4:

SeckFilterDefaultAction "deny,log,status:404"

The SecFilterDefaul t Acti on directive accepts only one parameter, a comma-
separated list of actions separated. The actionsspecify here will be performed on every
filter match, except for rules that have their caation lists.

ModSecurity for Apache 1.8.7 User Guide 12

As of 1.8.6, if you specify a non-fatal defaultiantlist (a list that will
not cause the request to be rejected, for exahge pass) such action
list will be ignored during the initialization phase. The initializatio
phase is designed to gather information aboutealjaest. Allowing non-
fatal actions would cause some pieces of the réqodee missing. Since
this information is required for internal proceggsuch actions cannot be
allowed. If you want ModSecurity to operate in &t&tt-only” mode you
need to disable all implicit validations (URL endaugl validation,
Unicode encoding validation, cookie format validati and byte range
restrictions).

Implicit validation

As of 1.8.6 implicit request validation (if configrd) will be performed only at the beginning
of request processing. After that only will norrealion be performed. This change allows for
better protection (request headers are now autocafigtichecked at the beginning). It also
allows for a "detect-only" mode of operation ofaslin the rule set.

Filter inheritance

Filters defined in parent folders are usually inteer by nested Apache configurations. This is
behavior is acceptable (and required) in most ¢cdmésot all the time. Sometimes you need
to relax checks in some part of the site. By usiefSecFi | t er | nheri t ance directive:

SecFilterInheritance Off

you can instruct ModSecurity to disregard pareltgrs so that you can start with rules from
the scratch. This directive affeatsly rules. The configuration is always inherited frtime
parent context but you can override it as you deaged using appropriate configuration
directives.

Configuration and rule inheritance @ways enabled by default. If you
have a configuration context beneath one that had inheritance
disabled you will have to explicitly disable inhance again if that is
what you need.

URL Encoding Validation

Special characters need to be encoded before theybe transmitted in the URL. Any
character can be replaced using the three charamt@sinatior?<Y, whereXY represents an
hexadecimal character code (de&://www.rfc-editor.org/rfc/ric1738.txtor more details).
Hexadecimal numbers only allow letters A to F, htiackers sometimes use other letters in
order to trick the decoding algorithm. ModSecudhecks all supplied encodings in order to
verify they are valid.

You can turn URL encoding validation on with thddwing line:

13 ModSecurity for Apache 1.8.7 User Guide
SecFilterCheckURLENncoding On

This directive does not check encoding in a POSylopal when the
nmul ti part/form data encoding (file upload) is used. It is not
necessary to do so because URL encoding is notfas#ids encoding.

Unicode Encoding Validation

Like many other features Unicode encoding validattodisabled by default. You should turn
it on if your application or the underlying operafisystem accept/understand Unicode.

More information on Unicode and UTF-8 encoding banfound in RFC
2279 (http://www.ietf.org/rfc/rfc2279.txt).

SecFilterCheckUnicodeEncoding On

This feature will assume UTF-8 encoding and checkliree types of errors:

- Not enough bytes. UTF-8 supports two, three, four, five, and sixdogncodings.
ModSecurity will locate cases when a byte or meniissing.

« Invalid encoding. The two most significant bits in most charactees supposed to
be fixed toOx80. Attackers can use this to subvert Unicode desoder

« Overlong characters. ASCIl characters are mapped directly into the Odé
space and are thus represented with a single Hgtgever, most ASCII characters
can also be encoded with two, three, four, fivel six characters thus tricking the
decoder into thinking that the character is somethélse (and, presumably,
avoiding the security check).

Byte range check

You can force requests to consist only of bytemfeocertain byte range. This can be useful
to avoid stack overflow attacks (since they usuedigtain "random" binary content).

To only allow bytes from 32 to 126 (inclusive), uke following directive:

SeckFilterForceByteRange 32 126

Default range values are 0 and 255, i.e. all bgtaes are allowed.

This directive does not check byte range in a PQ@&yload when
nmul ti part/form data encoding (file upload) is used. Doing so
would prevent binary files from being uploaded. Hwoer, after the
parameters are extracted from such request theghaeked for a valid
range.

ModSecurity for Apache 1.8.7 User Guide 14

Allowing others to see ModSecurity

Normally, attackers won't be able to tell whethearyweb server is running mod_security or
not. You can give yourself away by sending specifiessages, or by using unusual HTTP
codes (e.g406). If you want to stay hidden your best bet ishe tesponse cod€®0, which
stands for “Internal Server Error”. Attackers tleatcounter such a response might think that
your application has crashed. Since vulberableiegins often crash when they encounter
unexpected input the fact ModSecurity is active magain hidden from the attacker.

There is another school of thought on this mattich says that you should not hide the fact
that you are running ModSecurity. The theory ségd if they see it they will know you pay
attention and that breaking into will be very diffit. And that they will go away looking for a
weaker target. Or maybe they will become more da@texd and challenged.

By default Apache will return the information orsedtf with every request it serves.
ModSecurity keeps quiet buy default (this is theoramended state), but you can allow
others to see it by adding the following line taiyconfiguration:

SecServerResponseToken On

The result will be similar to this:

[ivanr@wkx conf]$ telnet 0 8080
Trying 0.0.0.0...

Connected to 0.

Escape character is "]".

GET /HTTP/1.0

HTTP/1.1 406 Not Acceptable

Date: Mon, 19 May 2003 18:13:51 GMT
Server: Apache/2.0.45 (Unix) mod_security/1.5
Content-Length: 351

Connection: close

Content-Type: text/html; charset=iso-8859-1

<IDOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">

<html><head>

<title>406 Not Acceptable</title>

</head><body>

<h1>Not Acceptable</h1>

<p>An appropriate representation of the requested r esource /
could not be found on this server.</p>

<hr />

<address>Apache/2.0.45 (Unix) mod_security/1.4.2 Se rver at
wkx.dyndns.org Port 80</address>

</body></html>

Connection closed by foreign host.

15 ModSecurity for Apache 1.8.7 User Guide

You should note that Apache itself supports twotime directives,Ser ver Tokens and
Server Si gnat ur e. Using these directives you can completely hide itiformation on
your server, no matter how you configured ModSeguri

Debugging

Use theSecFi | t er DebuglLog directive to choose a file where debug output il
written. If the parameter does not start with avémd slash, Apache home path will be
prepended to it.

SecFilterDebuglLog logs/modsec_debug_log
You can control how detailed the debug log is Vit Fi | t er DebuglLevel :
SecFilterDebuglLevel 4

Possible log values are:
« 0-none
+ 1 - significant events (these will also be repoitethe error_log)
« 2 -info messages

+ 3 -more detailed info messages

ModSecurity uses log levels up until 9 internaliyt khey are only useful
for debugging purposes.

Request filtering

When the filtering engine is enabled, every incamiequest is intercepted and analysed
before it is processed. The analysis begins wiérges of built-in checks designed to validate
the request format. These checks can be control#itg configuration directives. In the
second stage, the request goes through a senisgtlefined filters that are matched against
the request. Whenever there is a positive matchgineactions are taken.

Simple filtering
The most simplest form of filtering is, well, sinepllit looks like this:

SecFilter KEYWORD

For each simple filter like this, ModSecurity wilok for the keyword in the request. The
search is pretty broad; it will be applied to tirstfline of the request (the one that looks like
this GET /i ndex. php?par anet er =val ue HTTP/ 1. 0). In case of POST requests,
the body of the request will be searched too (plex)the request body buffering is enabled,
of course).

ModSecurity for Apache 1.8.7 User Guide 16

Path normalization

Filters are not applied to raw request data, buaamormalized copy instead. We do this
because attackers can (and do) apply various evdsithniques to avoid detection. For
example, you might want to setup a filter that distshell command execution:

SecFilter /bin/sh

But the attacker may use a strihi n/ . / sh (which has the same meaning) in order to
avoid the filter.

ModSecurity automatically applies the followingrisformations:
« On Windows only, convetit to/
+ Reducd ./ to/
+ Reduce //to/
- Decode URL-encoded characters

You can choose whether to enable or disable thewirlg checks:
« Verify URL encoding

- Allow only bytes from a certain range to be used

Normalization, as implemented in the current versocd ModSecurity,
can sometimes make your job harder. For examplenyay have a hard
time writing a signature that will detect a URI smhere. This is
because a URI that appears in the request as/'hitpll be translated
during the normalisation process to "http:/". Nthat there is only one
forward slash in the second version.

Null byte attack prevention

Null byte attacks try to confuse C/C++ based saftwend trick it into thinking that a string
ends before it actually does. This type of an A&ttec typically rejected with a proper
SecFi | t er Byt eRange filter. However, if you do not do this a null byt¢an interfere with
ModSecurity processing. To fight this, ModSecutdgks for null bytes during the decoding
phase and converts them into spaces. So, whereeltéfe filter:

SecFilter hidden
would not detect the word hidden in this request:

GET /one/two/three?p=visible%00hidden HTTP/1.0

it now works as expected.

Regular expressions

The simplest method of filtering | discussed eaiieactually slightly more complex. Its full
syntax is as follows:

17 ModSecurity for Apache 1.8.7 User Guide

SecFilter KEYWORD [ACTIONS]

First of all, the keyword is not a simple textidtan regular expression. A regular expression
is a mini programming language designed to pattesiching in text. To make most out of

this (now) powerful tool you need to understandufagexpressions well. | recommend that
you start with one of the following resources:

+ Perl-compatible regular expressions man phtip://www.pcre.org/pcre.txt

- Perl Regular Expressiorisitp://www.perldoc.com/perl5.6/pod/perlre.html

« Mastering Regular Expressiongtp.//www.oreilly.com/catalog/regex/

+ Google search on regular expressidmtp://www.google.com/search?q=reqular¥%
20expressions

Be careful with regular expressions of typd| B) +. Applying such
expressions over large quantities of text can lkeadtack overflow on
platforms that have small stack size (for examméndows). Stack
overflow will result in non-exploitable segmentatitault.

The second parameter is an action list definitwamich specifies what will happen if the filter
matches. Actions are explained later in this manual

Inverted expressions

If exclamation mark is the first character of aulag expression, the filter will treat that
regular expression as inverted. For example, thewimg:

SeckFilter !php

will reject all requests that do not contain thedvyohp.

Advanced filtering
While SecFi | t er allows you to start quickly, you will soon discovihat the search it
performs is too broad, and doesn't work very wllother directive:

SeckFilterSelective LOCATION KEYWORD [ACTIONS]

allows you to choose exactly where you want thecketo be performed. THEEYWORD and
the ACTI ONS bits are the same as BecFi | t er. The LOCATI ON bit requires further
explanation.

The LOCATI ON parameter consist of a series of location idemsfiseparated with a pipe.
Examine the following example:

SeckFilterSelective "REMOTE_ADDR|REMOTE_HOST" KEYWOR D

It will apply the regular expression only the IRdegks of the client and the host name.
The list of possible location identifiers includds CGI variables, and some more. Here is the

ModSecurity for Apache 1.8.7 User Guide

full list:

REMOTE_ADDR
REMOTE_HOST
REMOTE_USER
REMOTE_| DENT
REQUEST METHOD
SCRI PT_FI LENAVE
PATH_| NFO
QUERY_STRI NG
AUTH_TYPE
DOCUVENT _ROOT
SERVER_ADM N
SERVER_NANME
SERVER_ADDR
SERVER_PORT
SERVER_PROTOCOL
SERVER_SOFTWARE
TI ME_YEAR

TI ME_MON

TI ME_DAY

TI ME_HOUR
TIME_M N

TI ME_SEC

TI ME_WDAY

TI ME

APl _VERSI ON
THE_REQUEST
REQUEST_URI
REQUEST_FI LENAME
| S SUBREQ

There are some special locations:

POST_PAYLQOAD - filter the body of the POST request

ARGS - filter arguments, the same @IERY_STRI NG POST_PAYLQAD
ARGS_NANMES - variable/parameter names only

ARGS_VALUES - variable/parameter values only

COOKI ES_NANMES - cookie names only

18

19 ModSecurity for Apache 1.8.7 User Guide

+ COOKI ES_VALUES - cookie values only
And even more special:
-« HTTP_header — search request headeyader
« ENV_vari abl e — search environment variahlar i abl e
+ ARG vari abl e — search request variable/paramei@ri abl e

+ COKI E_nane - search cookie with nanmearne

Argument filtering exceptions
The ARG var i abl e location names support inverted usage when usgethter with the
ARG location. For example:

SecFilterSelective "ARGS|'ARG_param" KEYWORD

will search all arguments except the one napedam

Cookies

ModSecurity provides full support for Cookies. Bgfault cookies will be treated as if they
were in version 0 format (Netscape-style cookieywever, version 1 cookies (as defined in
RFC 2965) are also supported. To enable version obkie support use the
SecFilterCookieFormat directive:

enable version 1 (RFC 2965) cookies
SecFilterCookieFormat 1

By default, ModSecurity will not try to normalizedakie names and values. However, since
some applications and platforms (e.g. PHP) do emcmbkie content you can choose to
apply normalisation techniques to cookies. This islone using the
SecFi | t er Nor mal i zeCooki es directive.

SecFilterNormalizeCookies On

Prior to version 1.8.7 ModSecurity supported the
SecFi | t er CheckCooki eFor mat directive. Due to recent changes
in 1.8.7 this directive is now deprecated. It cdifi be used in the
configuration but it does not do anything. The dire will be
completely removed in the 1.9.x branch.

Output filtering

ModSecurity supports output filtering in the versiior Apache 2. It is disabled by default so
you need to enable it first:

SecFilterScanOutput On

After that, simply add selective filters using &sial variableOUTPUT:

ModSecurity for Apache 1.8.7 User Guide 20

SecFilterSelective OUTPUT “credit card numbers"

Those who have perhaps followed my columnistigt//www.webkreator.com/phixhow that

| am somewhat obsessed with the inability of PHPrevent fatal errors. | have gone to great
lengths to prevent fatal errors from spiling to den users (see
http://www.webkreator.com/php/configuration/handkfatal-and-parse-errors.hiptbut now,
finally, 1 don't have to worry any more about thehe following will catch PHP output error
in the response body, replace the response widhtran, and execute a custom PHP script (so
that the application administrator can be notified)

SeckFilterSelective OUTPUT "Fatal error:" deny,statu s:500
ErrorDocument 500 /php-fatal-error.html

You should note that although you can mix outplier§s with input filters, they armot
executed at the same time. Input filters are exechefore a request is processed by Apache,
while the output filters are executed after Apacbmpletes request processing.

Actionsski pnext andchai n do not work with output filters.

Output filtering is only useful for plain text amtiTML output. Applying regular expressions
to binary content (for example images) will onlpwl down the server. ModSecurity can
selectively apply output filtering to responses dshson their mime type. Using the
SecFi | t er Qut put M neTypes directive you can tell it which mime types to wafor:

SecFilterOutputMimeTypes "(null) text/html text/pla in"

Configured as in example above ModSecurity will lgpputput filters to plain text files,
HTML files, and files where the mime type is noesjfied "“(null)".

Using output buffering will make ModSecurity keemetwhole of the
page output in memory, no matter how large it isie Tmemory
consumption igver twice the size of the page length.

Actions
There are several types of actions:

« A primary action will make a decision whether tontinue with the request or not.
There can exist only one primary action. If you pateral primary actions in the
parameter, the last action to be seen will be erecuPrimary actions ameny,
pass, andr edi rect .

- Secondary actions will be performed on a filter chaindependently on the
decision made by primary actions. There can benamyber of secondary actions.
For exampleexec is one secondary action.

+ Flow actions can change the flow of rules, caush&filtering engine to jump to
another rule, or to skip one or several rules. Fhotions arehai n andski p.

21 ModSecurity for Apache 1.8.7 User Guide

« Parameters are not really actions, but a methoattathing parameters to filters.
Some of this parameters can be used by real ackongxamplest at us supplies
the response code to the primary actiemy .

Specifying actions

There are three places where you can put actioms.i€theSecFi | t er Def aul t Acti on
directive, where you define actions you want exegwn most filter matches:

SeckFilterDefaultAction "deny,log,status:500"

This example defines an action list that consithree actions. Commas are used to separate
actions in a list. The first two actions consistaadingle word. But the third action requires a
parameter. Use double colon to separate the pagafnein the action name.

You can also specify per-filter actions. Both filtgy directives $ecFilter and
SecFi |l t er Sel ecti ve) accept a set of actions as an optional paraméfieen using per-
filter actions it is assumed the request will beeted on a filter match. If you want to allow
the request to proceed you must do that by explisietting a non-fatal action (such as
“log,pass”.

As of 1.8.6, if you specify a non-fatal defaultiant(such as "log,pass")
then it will be ignored during mod_security initialization phase. The
initialization phase is designed to gather infoioratabout the request,
allowing non-fatal actions would cause some piafethe request to be
missing (for internal processing in mod_securify)erefore if you want
mod_security to operate in a "detect-only" mode gbould disable all
implicit validations (check URL encoding, Unicodmokie format, byte
range).

Built-in actions

pass
Allow request to continue on filter match. Thisiantis useful when you want to log a match
but otherwise do not want to take action.

SecFilter KEYWORD "log,pass"

allow

This is a stronger version of the previous filtfter this action is performed the request will
be allowed through and no other filters will bedi

stop filter processing for request coming from
the administrator's workstation
SecFilterSelective REMOTE_ADDR "7192.168.2.993%" all ow

ModSecurity for Apache 1.8.7 User Guide 22

deny

Interrupt request processing on a filter match. edsl thest at us action is used too,
ModSecurity will immediately return a HTTBOO error code. If a request is denied the
headempd_security-acti on will be added to the list of request headers. Tieader
will contain the status code used.

status

Use the supplied HTTP status code when requestied. The following rule:

SecFilter KEYWORD "deny,status:404"

will return a "Page not found" response when trigge The Apacheer r or Docunent
directive will be triggered if present in the canfration. Therefore if you have previously
defined a custom error page for a given status ithgil be executed and its output presented
to the user.

redirect

On filter match redirect the user to the given URbr example:

SecFilter KEYWORD "redirect:http://www.modsecurity. org

This configuration directive will always overrideTHP status code, or the deny keyword.
The URL must not contain a comma.

exec

Execute a binary on filter match. Full path to bfeary is required:

SecFilter KEYWORD "exec:/homel/ivanr/report-attack.p I"

This directive does not effect a primary actioiit iéxists. This action will always call script
with no parameters, but providing all informatiam the environment. All the usual CGI
environment variables will be there.

You can have one binary executed per filter matéRecution will add the header
nod_securi ty-execut ed to the list of request headers.

You should be aware that forking a threaded procesdts in all threads
being replicated in the new process. Forking camefiore incur larger
overhead in multithreaded operation.

log
Log filter match to the Apache error log.

nolog
Do not log filter match to the Apache error log.

23 ModSecurity for Apache 1.8.7 User Guide

skipnext

This action allows you to skip over one or moressulYou will use this action when you
establish that there is no need to perform some t@s a particular request. By default, the
action will skip over the next rule. It can jumpyamumber of rules provided you supply the
optional parameter:

SeckFilterSelective ARG _p valuel skipnext:2
SeckFilterSelective ARG_p value2
SeckFilterSelective ARG_p value3

chain

Rule chaining allows you to chain several rules iatbigger test. Only the last rule in the
chain will affect the request but in order to redtchall rules before it must be matched too.
Here is an example of how you might use this featur

| wanted to restrict the administration accountldg in only from a certain IP address.
However, the administration login panel was shawi#tli other users and | couldn't use the
standard Apache features for this. So | used ttveseules:

SecFilterSelective ARG_username admin chain
SecFilterSelective REMOTE_ADDR ""“YOUR_IP_ADDRESS _H ERES$"

The first rule matches only if there exists a patruser nane and its value iadm n.
Only then will the second rule be executed andilittyy to match the remote address of the
request to the single IP address. If there is néciménote the exclamation mark at the
beginning) the request is rejected.

pause

Pause for the specified amount of milliseconds fgefesponding to a request. This is useful
to slow down or completely confuse some web scanr@wme scanners will give up if the
pause is too long.

Be careful with this option as it comes at a c@stery web server
installation is configured with a limit, the maxilmaumber of requests
that may be served at at any given time. Usinghg ltelay time with this
option may create a "voluntary" denial of servicdack if the
vulnerability scanner is executing requests in lgréiherefore many .

Request headers added by mod_security

Wherever possible, ModSecurity will add informatieimthe request headers, thus allowing
your scripts to find and use them. Obviously, ydll mave to configure ModSecurity not to
reject requests in order for your scripts to becated at all. At a first glance it may be strange
that I'm using the request headers for this purpostead of, for example, environment
variables. Although environment variables wouldnbere elegant, input headers are always
visible to scripts executed using d&frror Docunent directive (see below) while

ModSecurity for Apache 1.8.7 User Guide 24

environment variables are not.

This is the list of headers added:
+ mod_security-executed ; with the path to the binary executed
+ mod_security-action ; with the status code returned

« mod_security-message ; the message about the problem detected, the aame
the message added to the error log

Handling rule matches using ErrorDocument

If your configuration returns a HTTP status c&@®, and you configure Apache to execute a
custom script whenever this code occurs (for examprror Docunent 500 /
err or 500. php) you will be able to use your favourite scriptiaiggine to respond to errors.
The information on the error will be in the envinsent variablesREDI RECT_* and
HTTP_MOD_SECURI TY_* (as described herehttp://httpd.apache.org/docs-2.0/custom-
error.htm).

Making ModSecurity talk to your firewall

In some cases, after detecting a particularly dangeattack or a series of attacks you will
want to prevent further attacks coming from the sawmurce. You can do this by modifying
the firewall to reject all traffic coming from a ggular IP address (I have written a helper
script that works with pt abl es, download it from herenttp://www.apachesecurity.rjet

This method can be very dangerous since it caritriesa denial of service (DOS) attack. For
example, an attacker can use a proxy to launcklkattd&Rejecting all requests from a proxy
server can be very dangerous since all legitimsgesuwill be affected too.

Since most proxies send information describingdhiginal client (some information on this
is available herehttp://www.webkreator.com/cms/view.php/1685.htminder the "Stop
hijacking" header), we can try to be smart and fimel real IP address. While this can work,
consider the following scenario:

- The attacker is accessing the application dirdutliyis pretending to be a proxy
server, citing a random (or valid) IP address a&sréal source IP address. If we
start rejecting requests based on that deductemniation, the attacker will
simply change the IP address and continue. As @tre® might have banned
legitimate users while the attacker is still frearching for application holes.

Therefore this method can be useful only if youndballow access to the application through
proxies, or allow access only through proxies @& well known and, more importantly,
trusted.

If you still want to ban requests based on IP agkl(& spite of all our warnings), you will
need to write a small script that will executedaofilter match. The script should extract the
IP address of the attacker from environment vaembdnd then make a callitpt abl es or

i pchai ns to ban the IP address. We will include a sampigtsdoing this with a future
version of mod_security.

25 ModSecurity for Apache 1.8.7 User Guide

File upload support

ModSecurity supports theul ti part/f or m dat a encoding used for file uploads.

Choosing where to upload files

ModSecurity will always upload files to a temporaliyectory. You can choose the directory
using theSec Upl oadDi r directive:

SecUploadDir /tmp

It is better to choose a private directory for fterage, somewhere only the web server user is
allowed access. Otherwise, other server users mayple to access the files uploaded through
the web server.

Verifying files
You can choose to execute an external script tifyveffile before it is allowed to go through

the web server to the application. ThecUpl oadAppr oveScri pt directive enables this
function. Like in the following example:

SecUploadApproveScript /full/path/to/the/script.sh

The script will be given one parameter on the comunline - the full path to the file being
uploaded. It may do with the file whatever it like&fter processing it, it should write the
response on the standard output. If the first dtaraof the response is "1" the file will be
accepted. Anything else, and the whole requestbeiltejected. Your script may use the rest
of the line to write a more descriptive error mgssal his message will be stored to the debug
log.

Storing uploaded files
You can choose to keep files uploaded through thie server. Simply add the following line
to your configuration:

SecUploadKeepFiles On

Files will be stored at a path defined using$ee Upl oadDi r directive.

Upload memory limit

Apache 1.x does not offer a proper infrastructoradéquest interception. It is only possible to
intercept requests storing them completely in therating memory. With Apache 1.x there is
a choice to analyseul ti part/form dat a (file upload) requests in memory or not
analyse them at all (selectively tUPQST processing off).

With Apache 2.x, however, you can define the amafimhemory you want to spend parsing
mul ti part/form dat a requests in memory. When a request is larger thearmemory
you have allowed a temporary file will be used. Tedault value is 60 KB but the limit can

ModSecurity for Apache 1.8.7 User Guide 26

be changed using tfgecUpl oadl nMenor yLi mi t directive:

SecUploadinMemoryLimit 125000

Impedance mismatch

Web application firewalls have a difficult job tng to make sense of data that passes by,
without any knowledge of the application and itsibass logic. The protection they provide
comes from having an independent layer of secorityhe outside. Because data validation is
done twice, security can be increased without ltatintouch the application. In some cases,
however, the fact that everything is done twicendpsi problems. Problems can arise in the
areas where the communication protocols are ndtspetified, or where either the device or
the application do things that are not in the djmtion.

The worst offender is the cookie specification. t(fdly all four of them:
http://wp.netscape.com/newsref/std/cookie_spec,htmlhttp://www.ietf.org/rfc/rfc2109.txt
http://www.ietf.org/rfc/rfc2964.txt http://www.ietf.org/rfc/rfc2965.tx) For many of the
cases, possible in real life, there is no mentiothe specification - leaving the programmers
to do what they think is appropriate. For the latggart this is not a problem when the
cookies are well formed, as most of them are. Tioblpm is also not evident because most
applications parse cookies they themselves sebdctimes a problem when you think from a
point of view of a web application firewall, anddatermined adversary trying to get past it.
I'll explain with an example.

In the 1.8.x branch and until 1.8.6 ModSecurityngde improvements in 1.8.7) used a v1
cookie parser. When | wrote the parser | thoughtas really good because it could handle
both vO and v1 cookies. However, | made a mistdkebthinking like an attacker would. As
Stefan Esser pointed out to me, the differencesdmi vO and v1 formats could be exploited
to make a v1 parser see one cookie where a vOrpaosed see more. Here it is:

Cookie: innocent="; nasty=payload; third="

You see, a v0O parser does not understand douldegjult typically only looks for semi-
colons and splits the header accordingly. Suchrsepaees cookies “innocent”, “nasty”, and

“third”. A v1 parser, on the other hand, sees amg cookie - “innocent”.

How is the impedance mismatch affecting the webiegon firewall users and developers?
It certainly makes our lives more difficult but tlsaall right - it's a part of the game.
Developers will have to work to incorporate betad smarter parsing routines. For example,
there are two cookie parsers in ModSecurity 1.84 the user can choose which one to use.
(A vO format parser is now used by default.) Buthsimprovements, since they cannot be
automated, only make using the firewall more diffic one more thing for the users to think
about and configure.

On the other hand, the users, if they don’t warthiok about cookie parsers, can always fall
back to use those parts T TP that are much better defined. Headers, for exanipétead

of using COOKI E_i nnocent to target an individual cookie they can just use
HTTP_Cooki e to target the whole cookie header. Other varialdesh asARGS, will look

at all variables at once no matter how hard adviess&ry to mask them.

27 ModSecurity for Apache 1.8.7 User Guide

Other features

Server identity masking

One technique that often helps slow down and cenattackers is the web server identity
change. Web servers typically send their identiith @very HTTP response in ti8er ver
header. Apache is particularly helpful here, nollysending its name and full version by
default, but it also allows server modules to ajipieir versions too.

To change the identity of the Apache web serverwould have to go into the source code,
find where the name "Apache" is hard-coded, changsd recompile the server. The same
effect can be achieved using thec Ser ver Si gnat ur e directive:

SecServerSignature "Microsoft-11S/5.0"

It should be noted that although this works quitdiwskilled attackers (and tools) may use

other techniques to "fingerprint" the web servesr Example, default files, error message,
ordering of the outgoing headers, the way the seBgponds to certain requests and similar -
can all give away the true identity. | will looktanfurther enhancing the support for identity

masking in the future releases of mod_security.

If you change Apache signature but you are annbyetthe strange message in the error log
(some modules are still visible - this only affettte error log, from the outside it still works
as expected):

[Fri Jun 11 04:02:28 2004] [notice] Microsoft-11S/5 .0
mod_ssl/2.8.12 OpenSSL/0.9.6b configured -- resumin g normal
operations

Then you should re-arrange the modules loadingram@ellow mod_security to run last,
exactly as explained for chrooting.

In order for this directive to work you must leaset/Ser ver Tokens to
Ful I .

Chroot support

Standard approach

ModSecurity includes support for Apache filesystawiation, or chrooting. Chrooting is a
process of confining an application into a spepat of the file system, sometimes called a
"jail". Once the chroot (short for “change rootperation is performed, the application can
no longer access what lies outside the jail. Ohgroot user can escape the jail. A vital part
of the chrooting process is not allowing anythiogt related oot processes oroot suid
binaries) inside the jail. The idea is that if dtaeker manages to break in through the web
server he won't have much to do because he, tldyenin jail, with no means to escape.

ModSecurity for Apache 1.8.7 User Guide 28

Applications do not have to support chrooting. Aapplication can be chrooted using the
chrootbinary. The following line:

chroot /chroot/apache /ust/local/web/bin/apachectl start

will start Apache but only after replacing the figystem with what lies beneath
chroot/apache

Unfortunately, things are not as simple as thise Pnoblem is that applications typically
require shared libraries, and various other fileg binaries to function properly. So, to make
them function you must make copies of requiredsfdad make them available inside the jail.
This is not an easy task (take a look Htp://penguin.epfl.ch/chroot.htmfor detailed
instructions on how to chroot an Apache web server)

The mod_security way

While | was chrooting an Apache the other day lized that | was bored with the process
and | started looking for ways to simplify it. Agesult, | built the chrooting functionality into

the mod_security module itself, making the wholeocess less complicated. With
mod_security under your belt, you only need to e line to the configuration file:

SecChrootDir /chroot/apache

and your web server will be chrooted successfully.

Apart from simplicity, mod_security chrooting breiganother advantage. Unlike external
chrooting (mentioned previously) mod_security chirap requires no additional files to exist
in jail. The chroot call is made after web servatidlization but before forking. Because of
this, all shared libraries are already loadedwalb server modules are initialized, and log
files are opened. You only need your data in jail.

There are some cases, however, when you will nddii@nal files in jail, and that is if you
intend to execute CGI scripts or system binariégyTmay have their own file requirements.
If you fall within this category then you need tmpeed with the external chroot procedure as
normal but you still won't have to think of the Agpe itself.

With Apache 2.x, the default value for thecept Mut ex directive is
pt hr ead. Sometimes this setting prevents Apache from vingrkivhen
the chroot functionality is used. S&tcept Mut ex to any other setting
to overcome this problem (ejgosi xsen).

If you configure chroot to leave log files outsittee jail, Apache will
have file descriptors pointing to files outside tf@l. The chroot
mechanism was not initially designed for securityl aome people fill
uneasy about this. Make your own decisidireat this feature as
somewhat experimental.

The files used by Apache for authentication musnbile the jail since these files are opened
on every request.

29 ModSecurity for Apache 1.8.7 User Guide

Required module ordering for chroot support (Apache 1.x)

As mentioned above, the chroot call must be pedorrat a specific moment in Apache
initialization, only after all other modules areti@ized. This means that ModSecurity must
be the first on the list of modules. To ensure,tlyau will probably need to make some
changes to module ordering, using the followingfignmation directives:

ClearModuleList
AddModule mod_security.c
AddModule ...

AddModule ...

AddModule ...

The first directive clears the list. You must pubd&ecurity next, followed by all other
modules you intend to use (excéptp_core.¢ which is always automatically added and you
do not have to worry about it). You can find ou tst of built-in modules by executing the
httpd binary with the- | switch:

Jhttpd -1

If you choose to put the Apache binary and the st files outside of
jail, you won't be able to use thapachect| graceful and
apachect|l restart commands anymore. That would require
Apache reaching out of the jail, which is not pbksi With Apache 2,
even theapachect| stop command may not work. For future
releases | will create replacement scripts to vewdund this problem.

Required module ordering for chroot support (Apache 2.x)

With Apache 2.x you shouldn't need to manually @pne module ordering since Apache 2.x
already includes support for module ordering iredélyn ModSecurity uses this feature to tell
Apache 2.x when exactly to call it and chroot wdiikgou're having problems let me know).

There was a change in how the process is startdgpache2. Thenttpd binary itself now
creates the pid file with the process number. Beeanf this you will need to put Apache in
jail at the same folder as outside the jail. Assygniyour Apache outside jail is in
“/usr/local/web/apache”and you want jail to be dtchroot” you must create a folder
“Ichroot/usr/local/web/apache/logs”

When started, the Apache will create jiisl file there (assuming you haven't changed the
position of thepid file in thehttpd.confin which case you probably know what you're doing)

How the mod_security chroot works

If you encounter problems on your platform it may Wseful to know how mod_security
performs the chroot isolation. Module ordering ecessary because we don't change the
source code of the server. The other problem wd teeevercome is the fact that all modules
are initialized twice. This is a problem becausethia initialization function we can't tell
whether we are being called for the first or foe $econd time. (Actually, it is possible to

ModSecurity for Apache 1.8.7 User Guide 30

determine that in Apache 2 but not in Apache 1.)dBkecurity uses a lock file which it
creates during the first initialization phase armkes it in the second go.

By default, the file is created in the logs foldeglative to the web server root
"logs/modsec_chroot.lock'Use theSec Chr oot Lock directive to change it to some other
path.

Since version 1.8, if ModSecurity fails to perfochroot for any reason it
will prevent the server from starting. If it faite detect chroot failure
during the configuration phase and then deteasriintime, it will write

a message about that in the error log and exitlild. This may not be
pretty but it is better than running without a geaiton of a chroot jail
when you think such protection exists.

Solving common security problems

As an example of ModSecurity capabilities we wéintbnstrate how you can use it to detect
and prevent the most common security problems. \6fétwgo into detail here about problems
themselves but a very good description is availablthe Open Web Application Security
Project's guide, available fattp://www.owasp.org

Directory traversal

If your scripts are dealing with the file systenerthyou need to pay attention to certain meta
characters and constructs. For example, a chareamteination. . / in a path is a request to
go up one directory level.

In normal operation there is no need for this cti@racombination to occur in requests and
you can forbid them with the following filter:

SecFilter "\.\./"

Cross site scripting attacks

Cross site scripting attacks (XSS) occur when &ackér injects HTML or/and Javascript

code into your Web pages and then that code getsueed by other users. This is usually
done by adding HTML to places where you would nqieet them. A successful XSS attack
can result in the attacker obtaining the cookigair session and gaining full access to the
application!

Proper defense against this attack is parameterifiiy (and thus removing the offending
HTML/Javascript) but often you must protect exigtiapplications without changing them.
This can be done with one of the following filters:

SeckFilter "<script"
SeckFilter "<.+>"

The first filter will protect only against Javagariinjection with the<scri pt > tag. The
second filter is more general, and disallows anyviHTcode in parameters.

31 ModSecurity for Apache 1.8.7 User Guide

You need to be careful when applying filters likéstsince many application want HTML in
parameters (e.g. CMS applications, forums, etcu ¥an this with selective filtering. For
example, you can have the second filter from alasva general site-wide rule, but later relax
rules for a particular script with the followingdex
<Location /cms/article-update.php>
SecFilterlnheritance Off
other filters here ...
SeckFilterSelective "ARGS|!ARG_body" "<.+>"
</Location>

This code fragment will only accept HTML in a namaalametebody. In reality you will
probably add a few more named parameters to the lis

SQL/database attacks

Most Web applications nowadays rely heavily on blases for data manipulation. Unless
great care is taken to perform database accesly,safeattacker can inject arbitrary SQL
commands directly into the database. This can résuhe attacker reading sensitive data,
changing it, or even deleting it from the databaltegether.

Filters like:
SecFilter "delete[[:space:]]+from"

SeckFilter "insert[[:space:]]+into"
SeckFilter "select.+from"

can protect you from most SQL-related attacks. &re® only examples, you need to craft
your filters carefully depending on the actual Bate engine you use.

Operating system command execution

Web applications are sometimes written to execpiraiing system commands to perform
operations. A persistent attacker may find a halghie concept, allowing him to execute
arbitrary commands on the system.

A filter like this:

SecFilterSelective ARGS "bin/"

will detect attempts to execute binaries residmgarious folders on a Unix-related operating
system.

Buffer overflow attacks

Buffer overflow is a technique of overflowing thgeeution stack of a program and adding
assembly instructions in an attempt to get thencaeel. In some circumstances it may be
possible to prevent these types of attack by uiadine similar to:

SecFilterByteRange 32 126

ModSecurity for Apache 1.8.7 User Guide 32

as it will only accept requests that consists débyrom this range. Whether you use this type
of protection or not depends on your applicatiod tire used character encoding.

If you want to support multiple ranges, regular reggions come to rescue. You can use
something like:

SecFilterSelective THE_ REQUEST "!"[\xOa\x0d\x20-\x7 fl+$"

Custom logging

Since 1.8 it is possible to use Apache custom hagdo log only those requests where
mod_security was involved. This is because ModSgcumow defines an environment

variablenod_securi ty-rel evant whenever it performs an action. To use a custam lo
file, add the following (or similar) to your configation:

CustomLog logs/modsec_custom_log \
"%h %I %u %t \"%r\" %>s %b %{mod_security-message}i "\
env=mod_security-relevant

Audit logging

Standard Apache logging will not help much if yoeed to trace back steps of a particular
user or an attacker. The problem is that only & serall subset of each request is written to a
log file. This problem can be remedied with theitlatjging feature of ModSecurity. These
two directives:

SecAuditEngine On
SecAuditLog logs/audit_log

will let mod_security know that you want a full autbg stored into the log file audit log.
Here is an example of how a request is logged:

Request: 192.168.0.2 - - [[18/May/2003:11:20:43 +01 00]] "GET/
cgi-bin/printenv?p1=666 HTTP/1.0" 406 822
Handler: cgi-script

GET /cgi-bin/printenv?p1=666 HTTP/1.0

Host: wkx.dyndns.org:8080

User-Agent: mod_security regression test utility

Connection: Close

mod_security-message: Access denied with code 406. Pattern
match "666" at ARGS_SELECTIVE.

mod_security-action: 406

HTTP/1.0 406 Not Acceptable

33 ModSecurity for Apache 1.8.7 User Guide

You can see that on the first line you get what poumally get from Apache. The second
line contains the name of the handler that was @sgxh to handle the request. Full request
(with additional mod_security headers) is giverelathe separator, and the response headers
(in this case there is only one line) is given raftiee empty line.

When thePOST filtering is on, thePOST payload will always be included in the audit log.
Actual response will never be included (at leastimohis version).

At this time, the audit logging part of the modul#l log Apache 1.x error messages, on the
line below theHandl er : line. The line will always begin witkr r or : . This functionality
will be added to the Apache 2.x version of the medfupossible.

Unique request identifiers

If you addmod_unique_ido the Apache configuration mod_security will deté and use the
environment variable it generatddN{ QUE | D). Its value will be written to the audit log.
You could write the unique ID in an error pagehie tiser and use it later to track and fix a
false positive.

Choosing what to log

TheSecAudi t Engi ne parameter accepts one of four values:
- On-log all requests
- Off —do notlog requests at all

- RelevantOnly - only log relevant requests. Relevant requestsharse requests
that caused a filter match.

« DynamicOrRelevant - log dynamically generated or relevant requests.
request is considered dynamic if its handler ismuit

Getting ModSecurity to log dynamic requests can etames require a little bit of work
depending on your configuration. In Apache thearyesponse to a request is generated by a
so-calledhandler If there is a handler attached to a requestatighbe considered to be of a
dynamic nature. In practice, however, Apache carcddigured to server dynamic pages
without a handler (it then chooses the module basethe resource MIME type). This will
happen, for example, if you configure PHP as imsé&d in the main distribution:

AddType application/x-httpd-php .php

While this works, it isn't entirely correct. Howeyéf you replace the above line with the
following:

AddHandler application/x-httpd-php .php

PHP will work just as well, Apache will have a hérdassigned to the request, and audit
logger will be able to log selectively.

ModSecurity for Apache 1.8.7 User Guide 34

The testing utility

A small HTTP testing utility was developed as pafrthe ModSecurity effort. It provides a
simple and easy way to send crafted HTTP requesisserver, and to determine whether the
attack was successfully detected or not.

Calling the utility without parameters will resittits usage printed:

$./run-test.pl
Usage: ./run-test.pl host[:port] testfilel, testfil ez, ...

First parameter is the host name of the serveh pgtt being optional. All other parameters
are filenames of files containing crafted HTTP resps.

To make your life a little bit easier, the utilityill generate certain request headers
automatically:

+ Host: hostnane
« User-Agent: nod_security regression testing utility
« Connection: C ose

You can include them in the request if you needrtee utility will not add them if they are
already there.

Here is how an HTTP request looks like:

01 Simple keyword filter

#

mod_security is configured not to allow
the "/cgi-bin/keyword" pattern

#

GET /cgi-bin/keyword HTTP/1.0

This request consists only of the first line, with additional headers. You can create as
complicated requests as you wish. Here is one ebeaofig POST method usage:

10 Keyword in POST

#

POST /cgi-bin/printenv HTTP/1.0

Content-Type: application/x-www-form-urlencoded

Content-Length: 5

p=333

Lines that are at the beginning of the file andibegth # will be treated as comments. The
first line is special, and it should contain theneaof the test.

The utility expects statu800 as a result and will treat such responses as sseself you
want some other response you need to tell it biingrthe expected response code on the first
line (anywhere on the line). Like this:

35 ModSecurity for Apache 1.8.7 User Guide

14 Redirect action (requires 302)
GET /cgi-bin/test.cgi?p=xxx HTTP/1.0

The brackets and the "requires" keyword are notiired but are recommended for better
readability.

Technology specific notes

PHP peculiarities

When writing ModSecurity rules that are meant tot@ct PHP applications one needs to have
a list of PHP peculiarities in mind. It is oftensgao design a rule that works when you are
attacking yourself in one way but completely missatack variant. Below is a list of things |
am aware about:

« When ther egi st er _gl obal s is set toOn request parameters become global
variables. (In PHP 4.x it is even possible to odertheGLOBALS array).

- Cookies are treated as request parameters.
« Whitespace at the beginning of parameters is ighore
- The remaining whitespace (in parameter names)ngerted to underscores.

« The order in which parameters are taken from tlgeigst and the environment is
EGPCS (environment, get, post, cookies, built-in vare#)l This means that a
PCOST parameter will overwrite the parameters transjgode the request line (in
QUERY_STRI NG).

+ When themagi c_quot es_gpc is set taOn PHP will use backslash to escape the
following characters: single quote, double quotgkslash, antlULL.

« If magi c_quot es_sybase is set to On only the single quote will be escaped
using another single quote. In this casenthgi c_quot es_gpc setting becomes
irrelevant.

Additional Examples

Parameter checking

Regular expressions can be pretty powerful. Heteoig you can check whether a parameter
is an integer between 0 and 99999:

SecFilterSelective ARG_parameter "I"[0-9]{1,5}$"

File upload
Forbid file upload for the application as a whddat allow it in a subfolder:
Reject requests with header "Content-Type" set

to "multipart/form-data"
SeckFilterSelective HTTP_CONTENT_TYPE multipart/form -data

ModSecurity for Apache 1.8.7 User Guide 36

Only for the script that performs upload
<Location /upload.php>
Do not inherit filters from the parent folder
SecFilterinheritance Off
</Location>

Securing FormMail
Earlier versions of FormMail could be abused todsemail to any recipient (I've been told
that there is a new version that can be securquedsg.

Only for the FormMail script
<Location /cgi-bin/FormMail>

Reject request where the value of parameter " recipient"”
does not end with "@webkreator.com"
SeckFilterSelective ARG _recipient "!@webkreator. com$™>
</Location>
Performance

The protection provided by ModSecurity comes abst.cYour web server becomes a little bit
slower and uses more memory.

Speed

In my experience, the speed difference is not Bamit. | did some testing at the early stages
of development and the speed difference was ardli¥d. However, if you configure
ModSecurity to work only on dynamic requests thiiedence becomes smaller. On real-life
web sites one access to a dynamic page is accoesphyiseveral access to other types of
files (CSS, JavaScript, images). The performangaenis directly related to the complexity
of the configuration. You can use the performaneasarement improvements in the Apache
2 version of the module to measure exactly how nmimbh ModSecurity spends working on
each request. In my tests this was usually 2-disedbnds (on a server with a 2 GHz
processor).

Memory consumption

In order to be able to analyze a request, ModSgcstores the request data in memory. In
most cases this is not a big deal since most régjaes small. However, it can be a problem
for parts of the web site where files are beingpbaged. To avoid this problem you need to
turn the request body buffering off for those paftshe web site. (This is only a problem in
the Apache 1.x version. The Apache 2.x version ugk a temporary file on disk for storage
when a request is too large to be stored in membrany case it is advisable to review and
configure various limits in the Apache configuratio (see
http://httpd.apache.org/docs/mod/core.htmi#limitrestbody for a description of
Li m t Request Body, Li nmit Request sFi el ds, Li mt RequestFi el dsi ze and

37 ModSecurity for Apache 1.8.7 User Guide

Li m t Request Li ne directives).

Other things to watch for

The debugging feature can be very useful but itegriarge amounts of data to a file for every
request. As such it creates a bottleneck for b@syess. There is no reason to use the
debugging mode on production servers so keep.it off

The audit log feature is similar and also introdueebottleneck for two reasons. First, large
amounts of data are written to the disk, and secacckss to the file must be synchronized. If
you still want to use the audit log try to creatany different audit logs, one for each
application running on the server, to minimize $lgachronization overhead (this advice does
not remove the overhead in the Apache 2.x versamalise synchronization is performed via
a central mutex).

Known issues
There are some known issues:

+ (Apache 2 only) ModSecurity supports response hotirception but it does not
take care of response headers explicitly. It mgypka that some of the original
response headers get through.

- (Apache 2 only) Response body interception is naty f compatible with
mod_deflate at the moment. To ensure smooth opardodSecurity will remove
prevent mod_deflate from operating on those (anlgt on those) responses that
have been intercepted.

Important notes
Please read the following notes:

- You should carefully consider the impact of eveiiefing rule you add to the
configuration. You particularly don't want to deagcess using very broad rules.
This results in false positives and very angry siser

Although ModSecurity can be used irtaccess files (Al | owOverri de
Opt i ons is required to do this), ghould not be enabled for use by parties you do
not trust.

Other resources

Other interesting resources available:

- Web Security Appliance With Apache and mod_secwitgecurityFocus article:
http://www.securityfocus.com/infocus/1739

+ Introduction to mod_security published on ONLamp.com:
http://www.onlamp.com/pub/a/apache/2003/11/26/medusty.html

ModSecurity for Apache 1.8.7 User Guide 38

Appendix A: Recommended Configuration

Below is the recommended minimal mod_security gpmfition. It is only a starting point
designed not to give you an instant headache. Ylould look into tightening the
configuration where you can.

Only inspect dynamic requests
(YOU MUST TEST TO MAKE SURE IT WORKS AS EXPECTED)
SeckFilterEngine DynamicOnly

Reject requests with status 403
SeckFilterDefaultAction "deny,log,status:403"

Some sane defaults
SecFilterScanPOST On
SecFilterCheckURLENcoding On
SecFilterCheckCookieFormat Off
SecFilterCheckUnicodeEncoding Off

Accept almost all byte values
SecFilterForceByteRange 1 255

Server masking is optional
SecServerSignature "Microsoft-11S/5.0"

SecUploadDir /tmp
SecUploadKeepFiles Off

Only record the interesting stuff
SecAuditEngine RelevantOnly
SecAuditLog logs/audit_log

You normally won't need debug logging
SecFilterDebugLevel 0
SecFilterDebuglLog logs/modsec_debug_log

Only accept request encodings we know how to hand le

we exclude GET requests from this because some (a utomated)
clients supply "text/html" as Content-Type

SecFilterSelective REQUEST_METHOD ""(GET|HEAD)$" ¢ hain
SeckFilterSelective HTTP_Content-Type \
"I(*application/x-www-form-urlencoded$| multipart/f orm-data;)"

Require Content-Length to be provided with

39

ModSecurity for Apache 1.8.7 User Guide

every POST request
SecFilterSelective REQUEST _METHOD ""POST$" chain
SeckFilterSelective HTTP_Content-Length " $"

Don't accept transfer encodings we know we don't handle
(and you don't need it anyway)
SecFilterSelective HTTP_Transfer-Encoding ""$"

