
ModSecurity for Apache 1.8.7
User Guide

Copyright © 2002-2005 Ivan Ristic <ivanr@webkreator.com>

http://www.modsecurity.org

ModSecurity for Apache 1.8.7 User Guide 2

Table of Contents

ModSecurity for Apache 1.8.7 User Guide...1

Introduction...6

Licensing...6

Acknowledgments...6

Contact...7

Installation...7

CVS Access...7

Nightly Snapshot Download..8

Stable Release Download...8

Installing from source..8

DSO..8

Static installation with Apache 1.x...8

Installing from binary..9

Apache 1.x..9

Apache 2.x..9

Configuration...9

Turning filtering on and off...10

POST scanning..10

Turning buffering off dynamically...10

Chunked transfer encoding..11

Default action list...11

Implicit validation..12

Filter inheritance..12

URL Encoding Validation...12

Unicode Encoding Validation...13

Byte range check..13

3 ModSecurity for Apache 1.8.7 User Guide

Allowing others to see ModSecurity...14

Debugging...15

Request filtering..15

Simple filtering..15

Path normalization...16

Null byte attack prevention...16

Regular expressions...16

Inverted expressions...17

Advanced filtering...17

Argument filtering exceptions..19

Cookies..19

Output filtering..19

Actions...20

Specifying actions..21

Built-in actions...21

pass...21

allow...21

deny...22

status...22

redirect..22

exec...22

log...22

nolog...22

skipnext...23

chain..23

pause...23

Request headers added by mod_security...23

Handling rule matches using ErrorDocument...24

Making ModSecurity talk to your firewall..24

File upload support..25

Choosing where to upload files...25

Verifying files..25

Storing uploaded files..25

Upload memory limit...25

ModSecurity for Apache 1.8.7 User Guide 4

Impedance mismatch...26

Other features..27

Server identity masking...27

Chroot support...27

Standard approach..27

The mod_security way..28

Required module ordering for chroot support (Apache 1.x)..............................29

Required module ordering for chroot support (Apache 2.x)..............................29

How the mod_security chroot works..29

Solving common security problems..30

Directory traversal...30

Cross site scripting attacks..30

SQL/database attacks...31

Operating system command execution..31

Buffer overflow attacks...31

Custom logging...32

Audit logging...32

Unique request identifiers..33

Choosing what to log...33

The testing utility...34

Technology specific notes...35

PHP peculiarities..35

Additional Examples...35

Parameter checking..35

File upload...35

Securing FormMail..36

Performance...36

Speed..36

Memory consumption..36

Other things to watch for...37

Known issues...37

Important notes..37

Other resources..37

5 ModSecurity for Apache 1.8.7 User Guide

Appendix A: Recommended Configuration..38

ModSecurity for Apache 1.8.7 User Guide 6

Introduction
ModSecurity is an open source intrusion detection and prevention engine for web
applications. It can also be called an web application firewall. It operates embedded into the
web server, acting as a powerful umbrella - shielding applications from attacks.

ModSecurity integrates with the web server, increasing your power to deal with web attacks.
Some of its features worth mentioning are:

• Request filtering; incoming requests are analysed as they come in, and before they
get handled by the web server or other modules. (Strictly speaking, some processing
is done on the request before it reaches ModSecurity but that is unavoidable in the
embedded mode of operation.)

• Anti-evasion techniques; paths and parameters are normalised before analysis takes
place in order to fight evasion techniques.

• Understanding of the HTTP protocol; since the engine understands HTTP, it
performs very specific and fine granulated filtering. For example, it is possible to
look at individual parameters, or named cookie values.

• POST payload analysis; the engine will intercept the contents transmitted using the
POST method, too.

• Audit logging; full details of every request (including POST) can be logged for
forensic analysis later.

• HTTPS filtering; since the engine is embedded in the web server, it gets access to
request data after decryption takes place.

• Compressed content filtering; same as above, the security engine has access to
request data after decompression takes place.

ModSecurity can be used to detect attacks, or to detect and prevent attacks.

Licensing
ModSecurity is available under two licenses. Users can choose to use the software under the
terms of the GNU General Public License (http ://www.gnu.org/licenses/gpl.html), as an Open
Source / Free Software product. Alternatively, a variety of commercial licenses is available:
end-user licenses for individual or site-wide deployment, OEM licenses for closed-source
distribution with applications, web servers, or security appliances. For more information on
commercial licensing please contact Thinking Stone Ltd:

Thinking Stone Ltd
Tel: +44 845 0580628
Fax: +44 870 7623934
http://www.thinkingstone.com
contact@thinkingstone.com

Acknowledgments
This module would not be possible without the fine people who have created the Apache Web

7 ModSecurity for Apache 1.8.7 User Guide

server, and the fine people who have spent many hours building the Apache modules I used to
learn Apache module programming from. My special thanks goes to those who designed and
wrote mod_rewrite.

Contact
ModSecurity is developed by Ivan Ristic and Thinking Stone. Comments and feature requests
are welcome. Please send your emails to ivanr@webkreator.com.

Please do not send support requests to my personal email address. I do
spend time responding to support queries but I don't respond privately any
more. Doing so prevents other users from using mail archives to find
answers for themselves. If you need answers quickly or you want
guaranteed response times consider purchasing commercial support from
Thinking Stone.

Installation
Before you begin with installation you will need to choose your preferred installation method.
First you need to choose whether to install the latest version of ModSecurity directly from
CVS (best features, but possibly unstable) or use the latest stable release (recommended). If
you choose a stable release, it might be possible to install ModSecurity from binary. It is
always possible to compile it from source code.

The following few pages will give you more information on benefits of choosing one method
over another.

CVS Access
If you want to access the latest version of the module you need to get it from the CVS
repository. The list of changes made since the last stable release is normally available on the
web site (and in the file CHANGES). The CVS repository for ModSecurity is hosted by
SourceForge (http://www.sf.net). You can access it directly or view if through web using this
address: http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/mod-security/

To download the source code to your computer you need to execute the following two
commands:

cvs -d:pserver:anonymous@cvs.sourceforge.net:/cvsro ot/mod-

security login

cvs -z3 -d:pserver:anonymous@cvs.sourceforge.net:/c vsroot/mod-

security co mod_security

The first line will log you in as an anonymous user, and the second will download all files
available in the repository.

ModSecurity for Apache 1.8.7 User Guide 8

Nightly Snapshot Download
If you don't like CVS but you still want the latest version you can download the latest nightly
tarball from the following address:

http://www.modsecurity.org/download/snapshot/mod_security-snapshot.tar.gz

New features are added to mod_security one by one, with regression tests being run after each
change. This should ensure that the version available from CVS is always usable.

Stable Release Download
To download the stable release go to http://www.modsecurity.org/download/. Binary
distributions are sometimes available. If they are, they are listed on the download page. If not
download the source code distribution.

Installing from source
When installing from source you have two choices: to install the module into the web server
itself, or to compile mod_security.c into a dynamic shared object (DSO).

DSO
Installing as DSO is easier, and the procedure is the same for both Apache branches. First
unpack the distribution somewhere (anywhere will do), and compile the module with:

/apachehome/bin/apxs -cia mod_security.c

After this you only need to stop and then start Apache (if you try to restart it you may get a
segfault):

/apachehome/bin/apachectl stop

/apachehome/bin/apachectl start

I've had reports from people using platforms that do not have the apxs
utility installed. In some Unix distribution this tool is distributed in a
separate package. The problem arises when that package is not installed b
default. To resolve this problem read the documentation from your
vendor to discover how you can add your own custom Apache modules.
(On some RedHat platforms you need to install the package http-devel to
get access to the apxs utility).

Static installation with Apache 1.x
When a module is compiled statically, it gets embedded into the body of the web server. This
method results in a slightly faster executable but the the compilation method (and subsequent
maintenance) is a bit more complicated.

After unpacking the distribution copy mod_security.c to the folder src/modules/extra in the
Apache source code tree. Then reconfigure specifying the configuration script to enable the
new module:

9 ModSecurity for Apache 1.8.7 User Guide

./configure \

<your other configuration options here> \

--activate-module=src/modules/extra/mod_security \

-–enable-module=security

Compile, install, and start the web server as you normally do.

Installing from binary
In some circumstances, you will want to install the module as a binary. At the moment I only
make Windows binaries available for download. When installing from binary you are likely to
have two DSO libraries in the distribution, one for each major Apache branch. Choose the file
appropriate for the version you are using. Then proceed as described below:

Apache 1.x
Copy mod_security.so (on Unix) or mod_security.dll (on Windows) to libexec/ (this folder is
relative to the Apache installation, not the source tree). Then add the following line to
httpd.conf:

LoadModule security_module libexec/mod_security. so

Depending on your existing configuration (you may have chosen to configure module loading
order explicitly) it may be necessary to activate the module using the AddModule directive:

AddModule mod_security.c

In most cases it is not important where you add the line. It is recommended (and, in fact,
mandatory if you intend to use the internal chroot feature) to make mod_security execute last
in the module chain.Read the section “Required module ordering for chroot support (Apache
1.x)” for more information.

Apache 2.x
Copy mod_security.so (on Unix) or mod_security.dll (on Windows) to modules/ (this folder
is relative to the Apache installation, not the source tree). Then add the following line to
httpd.conf:

LoadModule security_module modules/mod_security. so

Configuration
ModSecurity configuration directives are added to your configuration file (typically
httpd.conf) directly. When it is not always certain whether module will be enabled or disabled
on web server start it is customary to enclose its configuration directives in a <IfModule>
container tag. This allows Apache to ignore the configuration directives when the module is
not active.

<IfModule mod_security.c>

 # mod_security configuration directives

ModSecurity for Apache 1.8.7 User Guide 10

 # ...

</IfModule>

Since Apache allows configuration data to exist in more than one file it is possible to group
ModSecurity configuration directives in a single file (e.g. modsecurity.conf) and include it
from httpd.conf with the Include directive:

Include conf/modsecurity.conf

Turning filtering on and off
The filtering engine is disabled by default. To start monitoring requests add the following to
your configuration file:

SecFilterEngine On

Supported parameter values for this parameter are:

• On – analyse every request

• Off – do nothing

• DynamicOnly – analyse only requests generated dynamically at runtime. Using
this option will prevent your web server from using the precious CPU cycles to
check requests for static files. To understand how ModSecurity decides what is a
dynamically generated request read the section "Choosing what to log".

POST scanning
Request body payload (or POST payload) scanning is disabled by default. To use it, you need
to turn it on:

SecFilterScanPOST On

mod_security supports two encoding types for the request body:

• application/x-www-form-urlencoded - used to transfer form data

• multipart/form-data – used for file transfer

Other encodings are not used by most web applications. To make sure that only requests with
these two encoding types are accepted by the web server, add the following line to your
configuration file:

SecFilterSelective HTTP_Content-Type \

"!(^$|^application/x-www-form-urlencoded$|^multipar t/form-

data;)"

Turning buffering off dynamically
It is possible to turn POST payload scanning off on per-request basis. If ModSecurity sees that
an environment variable MODSEC_NOPOSTBUFFERING is defined it will not perform POST
payload buffering. For example, to turn POST payload buffering off for file uploads use the

11 ModSecurity for Apache 1.8.7 User Guide

following:

SetEnvIfNoCase Content-Type \

"^multipart/form-data;" "MODSEC_NOPOSTBUFFERING=Do not buffer

file uploads"

The value assigned to the MODSEC_NOPOSTBUFFERING variable will be written to the
debug log, so you can put in there something that will tell you why was buffering turned off.

Chunked transfer encoding
The HTTP protocol supports a method of request transfer where the size of the payload is not
known in advance. The body of the request is delivered in chunks. Hence the name chunked
transfer encoding. ModSecurity does not support chunked requests at this time; when a
request is made with chunked encoding it will ignore the body of the request. As far as I am
aware no browser uses chunked encoding to send requests. Although Apache does support
this encoding for some operations many modules don't.

Left unattended this may present an opportunity for an attacker to sneak malicious payload.
Add the following line to your configuration to prevent attackers to exploit this weakness:

SecFilterSelective HTTP_Transfer-Encoding "!^$"

This will not affect your ability to send responses using the chunked transfer encoding.

Default action list
Whenever a rule is matched against a request, one or more actions are performed. Individual
filters can each have their own actions but it is easier to define a default set of actions for all
filters. (You can always have per-rule actions if you want.) You define default actions with
the configuration directive SecFilterDefaultAction. For example, the following will
configure the engine to log each rule match, and reject the request with status code 404:

SecFilterDefaultAction "deny,log,status:404"

The SecFilterDefaultAction directive accepts only one parameter, a comma-
separated list of actions separated. The actions you specify here will be performed on every
filter match, except for rules that have their own action lists.

ModSecurity for Apache 1.8.7 User Guide 12

As of 1.8.6, if you specify a non-fatal default action list (a list that will
not cause the request to be rejected, for example log,pass) such action
list will be ignored during the initialization phase. The initialization
phase is designed to gather information about the request. Allowing non-
fatal actions would cause some pieces of the request to be missing. Since
this information is required for internal processing such actions cannot be
allowed. If you want ModSecurity to operate in a "detect-only" mode you
need to disable all implicit validations (URL encoding validation,
Unicode encoding validation, cookie format validation, and byte range
restrictions).

Implicit validation
As of 1.8.6 implicit request validation (if configured) will be performed only at the beginning
of request processing. After that only will normalization be performed. This change allows for
better protection (request headers are now automatically checked at the beginning). It also
allows for a "detect-only" mode of operation of rules in the rule set.

Filter inheritance
Filters defined in parent folders are usually inherited by nested Apache configurations. This is
behavior is acceptable (and required) in most cases, but not all the time. Sometimes you need
to relax checks in some part of the site. By using the SecFilterInheritance directive:

SecFilterInheritance Off

you can instruct ModSecurity to disregard parent filters so that you can start with rules from
the scratch. This directive affects only rules. The configuration is always inherited from the
parent context but you can override it as you are pleased using appropriate configuration
directives.

Configuration and rule inheritance is always enabled by default. If you
have a configuration context beneath one that has had inheritance
disabled you will have to explicitly disable inheritance again if that is
what you need.

URL Encoding Validation
Special characters need to be encoded before they can be transmitted in the URL. Any
character can be replaced using the three character combination %XY, where XY represents an
hexadecimal character code (see http://www.rfc-editor.org/rfc/rfc1738.txt for more details).
Hexadecimal numbers only allow letters A to F, but attackers sometimes use other letters in
order to trick the decoding algorithm. ModSecurity checks all supplied encodings in order to
verify they are valid.

You can turn URL encoding validation on with the following line:

13 ModSecurity for Apache 1.8.7 User Guide

SecFilterCheckURLEncoding On

This directive does not check encoding in a POST payload when the
multipart/form-data encoding (file upload) is used. It is not
necessary to do so because URL encoding is not used for this encoding.

Unicode Encoding Validation
Like many other features Unicode encoding validation is disabled by default. You should turn
it on if your application or the underlying operating system accept/understand Unicode.

More information on Unicode and UTF-8 encoding can be found in RFC
2279 (http://www.ietf.org/rfc/rfc2279.txt).

SecFilterCheckUnicodeEncoding On

This feature will assume UTF-8 encoding and check for three types of errors:

• Not enough bytes. UTF-8 supports two, three, four, five, and six byte encodings.
ModSecurity will locate cases when a byte or more is missing.

• Invalid encoding. The two most significant bits in most characters are supposed to
be fixed to 0x80. Attackers can use this to subvert Unicode decoders.

• Overlong characters. ASCII characters are mapped directly into the Unicode
space and are thus represented with a single byte. However, most ASCII characters
can also be encoded with two, three, four, five, and six characters thus tricking the
decoder into thinking that the character is something else (and, presumably,
avoiding the security check).

Byte range check
You can force requests to consist only of bytes from a certain byte range. This can be useful
to avoid stack overflow attacks (since they usually contain "random" binary content).

To only allow bytes from 32 to 126 (inclusive), use the following directive:

SecFilterForceByteRange 32 126

Default range values are 0 and 255, i.e. all byte values are allowed.

This directive does not check byte range in a POST payload when
multipart/form-data encoding (file upload) is used. Doing so
would prevent binary files from being uploaded. However, after the
parameters are extracted from such request they are checked for a valid
range.

ModSecurity for Apache 1.8.7 User Guide 14

Allowing others to see ModSecurity
Normally, attackers won't be able to tell whether your web server is running mod_security or
not. You can give yourself away by sending specific messages, or by using unusual HTTP
codes (e.g. 406). If you want to stay hidden your best bet is to the response code 500, which
stands for “Internal Server Error”. Attackers that encounter such a response might think that
your application has crashed. Since vulberable applications often crash when they encounter
unexpected input the fact ModSecurity is active may remain hidden from the attacker.

There is another school of thought on this matter, which says that you should not hide the fact
that you are running ModSecurity. The theory says that if they see it they will know you pay
attention and that breaking into will be very difficult. And that they will go away looking for a
weaker target. Or maybe they will become more determined and challenged.

By default Apache will return the information on itself with every request it serves.
ModSecurity keeps quiet buy default (this is the recommended state), but you can allow
others to see it by adding the following line to your configuration:

SecServerResponseToken On

The result will be similar to this:

[ivanr@wkx conf]$ telnet 0 8080

Trying 0.0.0.0...

Connected to 0.

Escape character is '^]'.

GET / HTTP/1.0

HTTP/1.1 406 Not Acceptable

Date: Mon, 19 May 2003 18:13:51 GMT

Server: Apache/2.0.45 (Unix) mod_security/1.5

Content-Length: 351

Connection: close

Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">

<html><head>

<title>406 Not Acceptable</title>

</head><body>

<h1>Not Acceptable</h1>

<p>An appropriate representation of the requested r esource /

could not be found on this server.</p>

<hr />

<address>Apache/2.0.45 (Unix) mod_security/1.4.2 Se rver at

wkx.dyndns.org Port 80</address>

</body></html>

Connection closed by foreign host.

15 ModSecurity for Apache 1.8.7 User Guide

You should note that Apache itself supports two runtime directives, ServerTokens and
ServerSignature. Using these directives you can completely hide the information on
your server, no matter how you configured ModSecurity.

Debugging
Use the SecFilterDebugLog directive to choose a file where debug output will be
written. If the parameter does not start with a forward slash, Apache home path will be
prepended to it.

SecFilterDebugLog logs/modsec_debug_log

You can control how detailed the debug log is with SecFilterDebugLevel:

SecFilterDebugLevel 4

Possible log values are:

• 0 - none

• 1 - significant events (these will also be reported in the error_log)

• 2 - info messages

• 3 - more detailed info messages

ModSecurity uses log levels up until 9 internally but they are only useful
for debugging purposes.

Request filtering
When the filtering engine is enabled, every incoming request is intercepted and analysed
before it is processed. The analysis begins with a series of built-in checks designed to validate
the request format. These checks can be controlled using configuration directives. In the
second stage, the request goes through a series of user-defined filters that are matched against
the request. Whenever there is a positive match, certain actions are taken.

Simple filtering
The most simplest form of filtering is, well, simple. It looks like this:

SecFilter KEYWORD

For each simple filter like this, ModSecurity will look for the keyword in the request. The
search is pretty broad; it will be applied to the first line of the request (the one that looks like
this GET /index.php?parameter=value HTTP/1.0). In case of POST requests,
the body of the request will be searched too (provided the request body buffering is enabled,
of course).

ModSecurity for Apache 1.8.7 User Guide 16

Path normalization
Filters are not applied to raw request data, but on a normalized copy instead. We do this
because attackers can (and do) apply various evasion techniques to avoid detection. For
example, you might want to setup a filter that detects shell command execution:

SecFilter /bin/sh

But the attacker may use a string /bin/./sh (which has the same meaning) in order to
avoid the filter.

ModSecurity automatically applies the following transformations:

• On Windows only, convert \ to /

• Reduce /./ to /

• Reduce // to /

• Decode URL-encoded characters

You can choose whether to enable or disable the following checks:

• Verify URL encoding

• Allow only bytes from a certain range to be used

Normalization, as implemented in the current version of ModSecurity,
can sometimes make your job harder. For example you may have a hard
time writing a signature that will detect a URI somewhere. This is
because a URI that appears in the request as "http://" will be translated
during the normalisation process to "http:/". Note that there is only one
forward slash in the second version.

Null byte attack prevention
Null byte attacks try to confuse C/C++ based software and trick it into thinking that a string
ends before it actually does. This type of an attack is typically rejected with a proper
SecFilterByteRange filter. However, if you do not do this a null byte can interfere with
ModSecurity processing. To fight this, ModSecurity looks for null bytes during the decoding
phase and converts them into spaces. So, where before this filter:

SecFilter hidden

would not detect the word hidden in this request:

GET /one/two/three?p=visible%00hidden HTTP/1.0

it now works as expected.

Regular expressions
The simplest method of filtering I discussed earlier is actually slightly more complex. Its full
syntax is as follows:

17 ModSecurity for Apache 1.8.7 User Guide

SecFilter KEYWORD [ACTIONS]

First of all, the keyword is not a simple text. It is an regular expression. A regular expression
is a mini programming language designed to pattern matching in text. To make most out of
this (now) powerful tool you need to understand regular expressions well. I recommend that
you start with one of the following resources:

• Perl-compatible regular expressions man page, http://www.pcre.org/pcre.txt

• Perl Regular Expressions, http://www.perldoc.com/perl5.6/pod/perlre.html

• Mastering Regular Expressions, http://www.oreilly.com/catalog/regex/

• Google search on regular expressions, http://www.google.com/search?q=regular%
20expressions

Be careful with regular expressions of type (A|B)+. Applying such
expressions over large quantities of text can lead to stack overflow on
platforms that have small stack size (for example. Windows). Stack
overflow will result in non-exploitable segmentation fault.

The second parameter is an action list definition, which specifies what will happen if the filter
matches. Actions are explained later in this manual.

Inverted expressions
If exclamation mark is the first character of a regular expression, the filter will treat that
regular expression as inverted. For example, the following:

SecFilter !php

will reject all requests that do not contain the word php.

Advanced filtering
While SecFilter allows you to start quickly, you will soon discover that the search it
performs is too broad, and doesn't work very well. Another directive:

SecFilterSelective LOCATION KEYWORD [ACTIONS]

allows you to choose exactly where you want the search to be performed. The KEYWORD and
the ACTIONS bits are the same as in SecFilter. The LOCATION bit requires further
explanation.

The LOCATION parameter consist of a series of location identifiers separated with a pipe.
Examine the following example:

SecFilterSelective "REMOTE_ADDR|REMOTE_HOST" KEYWOR D

It will apply the regular expression only the IP address of the client and the host name.

The list of possible location identifiers includes all CGI variables, and some more. Here is the

ModSecurity for Apache 1.8.7 User Guide 18

full list:

• REMOTE_ADDR

• REMOTE_HOST

• REMOTE_USER

• REMOTE_IDENT

• REQUEST_METHOD

• SCRIPT_FILENAME

• PATH_INFO

• QUERY_STRING

• AUTH_TYPE

• DOCUMENT_ROOT

• SERVER_ADMIN

• SERVER_NAME

• SERVER_ADDR

• SERVER_PORT

• SERVER_PROTOCOL

• SERVER_SOFTWARE

• TIME_YEAR

• TIME_MON

• TIME_DAY

• TIME_HOUR

• TIME_MIN

• TIME_SEC

• TIME_WDAY

• TIME

• API_VERSION

• THE_REQUEST

• REQUEST_URI

• REQUEST_FILENAME

• IS_SUBREQ

There are some special locations:

• POST_PAYLOAD – filter the body of the POST request

• ARGS - filter arguments, the same as QUERY_STRING|POST_PAYLOAD

• ARGS_NAMES – variable/parameter names only

• ARGS_VALUES – variable/parameter values only

• COOKIES_NAMES - cookie names only

19 ModSecurity for Apache 1.8.7 User Guide

• COOKIES_VALUES - cookie values only

And even more special:

• HTTP_header – search request header header

• ENV_variable – search environment variable variable

• ARG_variable – search request variable/parameter variable

• COOKIE_name - search cookie with name name

Argument filtering exceptions
The ARG_variable location names support inverted usage when used together with the
ARG location. For example:

SecFilterSelective "ARGS|!ARG_param" KEYWORD

will search all arguments except the one named param.

Cookies
ModSecurity provides full support for Cookies. By default cookies will be treated as if they
were in version 0 format (Netscape-style cookies). However, version 1 cookies (as defined in
RFC 2965) are also supported. To enable version 1 cookie support use the
SecFilterCookieFormat directive:

enable version 1 (RFC 2965) cookies

SecFilterCookieFormat 1

By default, ModSecurity will not try to normalize cookie names and values. However, since
some applications and platforms (e.g. PHP) do encode cookie content you can choose to
apply normalisation techniques to cookies. This is done using the
SecFilterNormalizeCookies directive.

SecFilterNormalizeCookies On

Prior to version 1.8.7 ModSecurity supported the
SecFilterCheckCookieFormat directive. Due to recent changes
in 1.8.7 this directive is now deprecated. It can still be used in the
configuration but it does not do anything. The directive will be
completely removed in the 1.9.x branch.

Output filtering
ModSecurity supports output filtering in the version for Apache 2. It is disabled by default so
you need to enable it first:

SecFilterScanOutput On

After that, simply add selective filters using a special variable OUTPUT:

ModSecurity for Apache 1.8.7 User Guide 20

SecFilterSelective OUTPUT "credit card numbers"

Those who have perhaps followed my columns at http://www.webkreator.com/php/ know that
I am somewhat obsessed with the inability of PHP to prevent fatal errors. I have gone to great
lengths to prevent fatal errors from spilling to end users (see
http://www.webkreator.com/php/configuration/handling-fatal-and-parse-errors.html) but now,
finally, I don't have to worry any more about that. The following will catch PHP output error
in the response body, replace the response with an error, and execute a custom PHP script (so
that the application administrator can be notified):

SecFilterSelective OUTPUT "Fatal error:" deny,statu s:500

ErrorDocument 500 /php-fatal-error.html

You should note that although you can mix output filters with input filters, they are not
executed at the same time. Input filters are executed before a request is processed by Apache,
while the output filters are executed after Apache completes request processing.

Actions skipnext and chain do not work with output filters.

Output filtering is only useful for plain text and HTML output. Applying regular expressions
to binary content (for example images) will only slow down the server. ModSecurity can
selectively apply output filtering to responses based on their mime type. Using the
SecFilterOutputMimeTypes directive you can tell it which mime types to watch for:

SecFilterOutputMimeTypes "(null) text/html text/pla in"

Configured as in example above ModSecurity will apply output filters to plain text files,
HTML files, and files where the mime type is not specified "(null)".

Using output buffering will make ModSecurity keep the whole of the
page output in memory, no matter how large it is. The memory
consumption is over twice the size of the page length.

Actions
There are several types of actions:

• A primary action will make a decision whether to continue with the request or not.
There can exist only one primary action. If you put several primary actions in the
parameter, the last action to be seen will be executed. Primary actions are deny,
pass, and redirect.

• Secondary actions will be performed on a filter match independently on the
decision made by primary actions. There can be any number of secondary actions.
For example, exec is one secondary action.

• Flow actions can change the flow of rules, causing the filtering engine to jump to
another rule, or to skip one or several rules. Flow actions are chain and skip.

21 ModSecurity for Apache 1.8.7 User Guide

• Parameters are not really actions, but a method of attaching parameters to filters.
Some of this parameters can be used by real actions. For example status supplies
the response code to the primary action deny.

Specifying actions
There are three places where you can put actions. One is the SecFilterDefaultAction
directive, where you define actions you want executed on most filter matches:

SecFilterDefaultAction "deny,log,status:500"

This example defines an action list that consists of three actions. Commas are used to separate
actions in a list. The first two actions consist of a single word. But the third action requires a
parameter. Use double colon to separate the parameter from the action name.

You can also specify per-filter actions. Both filtering directives (SecFilter and
SecFilterSelective) accept a set of actions as an optional parameter. When using per-
filter actions it is assumed the request will be rejected on a filter match. If you want to allow
the request to proceed you must do that by explicitly setting a non-fatal action (such as
“log,pass”.

As of 1.8.6, if you specify a non-fatal default action (such as "log,pass")
then it will be ignored during mod_security initialization phase. The
initialization phase is designed to gather information about the request,
allowing non-fatal actions would cause some pieces of the request to be
missing (for internal processing in mod_security). Therefore if you want
mod_security to operate in a "detect-only" mode you should disable all
implicit validations (check URL encoding, Unicode, cookie format, byte
range).

Built-in actions

pass
Allow request to continue on filter match. This action is useful when you want to log a match
but otherwise do not want to take action.

SecFilter KEYWORD "log,pass"

allow
This is a stronger version of the previous filter. After this action is performed the request will
be allowed through and no other filters will be tried:

stop filter processing for request coming from

the administrator's workstation

SecFilterSelective REMOTE_ADDR "^192.168.2.99$" all ow

ModSecurity for Apache 1.8.7 User Guide 22

deny
Interrupt request processing on a filter match. Unless the status action is used too,
ModSecurity will immediately return a HTTP 500 error code. If a request is denied the
header mod_security-action will be added to the list of request headers. This header
will contain the status code used.

status
Use the supplied HTTP status code when request is denied. The following rule:

SecFilter KEYWORD "deny,status:404"

will return a "Page not found" response when triggered. The Apache ErrorDocument
directive will be triggered if present in the configuration. Therefore if you have previously
defined a custom error page for a given status then it will be executed and its output presented
to the user.

redirect
On filter match redirect the user to the given URL. For example:

SecFilter KEYWORD "redirect:http://www.modsecurity. org"

This configuration directive will always override HTTP status code, or the deny keyword.
The URL must not contain a comma.

exec
Execute a binary on filter match. Full path to the binary is required:

SecFilter KEYWORD "exec:/home/ivanr/report-attack.p l"

This directive does not effect a primary action if it exists. This action will always call script
with no parameters, but providing all information in the environment. All the usual CGI
environment variables will be there.

You can have one binary executed per filter match. Execution will add the header
mod_security-executed to the list of request headers.

You should be aware that forking a threaded process results in all threads
being replicated in the new process. Forking can therefore incur larger
overhead in multithreaded operation.

log
Log filter match to the Apache error log.

nolog
Do not log filter match to the Apache error log.

23 ModSecurity for Apache 1.8.7 User Guide

skipnext
This action allows you to skip over one or more rules. You will use this action when you
establish that there is no need to perform some tests on a particular request. By default, the
action will skip over the next rule. It can jump any number of rules provided you supply the
optional parameter:

SecFilterSelective ARG_p value1 skipnext:2

SecFilterSelective ARG_p value2

SecFilterSelective ARG_p value3

chain
Rule chaining allows you to chain several rules into a bigger test. Only the last rule in the
chain will affect the request but in order to reach it, all rules before it must be matched too.
Here is an example of how you might use this feature.

I wanted to restrict the administration account to log in only from a certain IP address.
However, the administration login panel was shared with other users and I couldn't use the
standard Apache features for this. So I used these two rules:

SecFilterSelective ARG_username admin chain

SecFilterSelective REMOTE_ADDR "!^YOUR_IP_ADDRESS_H ERE$"

The first rule matches only if there exists a parameter username and its value is admin.
Only then will the second rule be executed and it will try to match the remote address of the
request to the single IP address. If there is no match (note the exclamation mark at the
beginning) the request is rejected.

pause
Pause for the specified amount of milliseconds before responding to a request. This is useful
to slow down or completely confuse some web scanners. Some scanners will give up if the
pause is too long.

Be careful with this option as it comes at a cost. Every web server
installation is configured with a limit, the maximal number of requests
that may be served at at any given time. Using a long delay time with this
option may create a "voluntary" denial of service attack if the
vulnerability scanner is executing requests in parallel (therefore many .

Request headers added by mod_security
Wherever possible, ModSecurity will add information to the request headers, thus allowing
your scripts to find and use them. Obviously, you will have to configure ModSecurity not to
reject requests in order for your scripts to be executed at all. At a first glance it may be strange
that I'm using the request headers for this purpose instead of, for example, environment
variables. Although environment variables would be more elegant, input headers are always
visible to scripts executed using an ErrorDocument directive (see below) while

ModSecurity for Apache 1.8.7 User Guide 24

environment variables are not.

This is the list of headers added:

• mod_security-executed ; with the path to the binary executed

• mod_security-action ; with the status code returned

• mod_security-message ; the message about the problem detected, the same as
the message added to the error log

Handling rule matches using ErrorDocument
If your configuration returns a HTTP status code 500, and you configure Apache to execute a
custom script whenever this code occurs (for example: ErrorDocument 500 /
error500.php) you will be able to use your favourite scripting engine to respond to errors.
The information on the error will be in the environment variables REDIRECT_* and
HTTP_MOD_SECURITY_* (as described here: http://httpd.apache.org/docs-2.0/custom-
error.html).

Making ModSecurity talk to your firewall
In some cases, after detecting a particularly dangerous attack or a series of attacks you will
want to prevent further attacks coming from the same source. You can do this by modifying
the firewall to reject all traffic coming from a particular IP address (I have written a helper
script that works with iptables, download it from here: http://www.apachesecurity.net).

This method can be very dangerous since it can result in a denial of service (DOS) attack. For
example, an attacker can use a proxy to launch attacks. Rejecting all requests from a proxy
server can be very dangerous since all legitimate users will be affected too.

Since most proxies send information describing the original client (some information on this
is available here http://www.webkreator.com/cms/view.php/1685.html, under the "Stop
hijacking" header), we can try to be smart and find the real IP address. While this can work,
consider the following scenario:

• The attacker is accessing the application directly but is pretending to be a proxy
server, citing a random (or valid) IP address as the real source IP address. If we
start rejecting requests based on that deducted information, the attacker will
simply change the IP address and continue. As a result we might have banned
legitimate users while the attacker is still free searching for application holes.

Therefore this method can be useful only if you do not allow access to the application through
proxies, or allow access only through proxies that are well known and, more importantly,
trusted.

If you still want to ban requests based on IP address (in spite of all our warnings), you will
need to write a small script that will executed on a filter match. The script should extract the
IP address of the attacker from environment variables, and then make a call to iptables or
ipchains to ban the IP address. We will include a sample script doing this with a future
version of mod_security.

25 ModSecurity for Apache 1.8.7 User Guide

File upload support
ModSecurity supports the multipart/form-data encoding used for file uploads.

Choosing where to upload files
ModSecurity will always upload files to a temporary directory. You can choose the directory
using the SecUploadDir directive:

SecUploadDir /tmp

It is better to choose a private directory for file storage, somewhere only the web server user is
allowed access. Otherwise, other server users may be able to access the files uploaded through
the web server.

Verifying files
You can choose to execute an external script to verify a file before it is allowed to go through
the web server to the application. The SecUploadApproveScript directive enables this
function. Like in the following example:

SecUploadApproveScript /full/path/to/the/script.sh

The script will be given one parameter on the command line - the full path to the file being
uploaded. It may do with the file whatever it likes. After processing it, it should write the
response on the standard output. If the first character of the response is "1" the file will be
accepted. Anything else, and the whole request will be rejected. Your script may use the rest
of the line to write a more descriptive error message. This message will be stored to the debug
log.

Storing uploaded files
You can choose to keep files uploaded through the web server. Simply add the following line
to your configuration:

SecUploadKeepFiles On

Files will be stored at a path defined using the SecUploadDir directive.

Upload memory limit
Apache 1.x does not offer a proper infrastructure for request interception. It is only possible to
intercept requests storing them completely in the operating memory. With Apache 1.x there is
a choice to analyse multipart/form-data (file upload) requests in memory or not
analyse them at all (selectively turn POST processing off).

With Apache 2.x, however, you can define the amount of memory you want to spend parsing
multipart/form-data requests in memory. When a request is larger than the memory
you have allowed a temporary file will be used. The default value is 60 KB but the limit can

ModSecurity for Apache 1.8.7 User Guide 26

be changed using the SecUploadInMemoryLimit directive:

SecUploadInMemoryLimit 125000

Impedance mismatch
Web application firewalls have a difficult job trying to make sense of data that passes by,
without any knowledge of the application and its business logic. The protection they provide
comes from having an independent layer of security on the outside. Because data validation is
done twice, security can be increased without having to touch the application. In some cases,
however, the fact that everything is done twice brings problems. Problems can arise in the
areas where the communication protocols are not well specified, or where either the device or
the application do things that are not in the specification.

The worst offender is the cookie specification. (Actually all four of them:
http://wp.netscape.com/newsref/std/cookie_spec.html, http://www.ietf.org/rfc/rfc2109.txt,
http://www.ietf.org/rfc/rfc2964.txt, http://www.ietf.org/rfc/rfc2965.txt.) For many of the
cases, possible in real life, there is no mention in the specification - leaving the programmers
to do what they think is appropriate. For the largest part this is not a problem when the
cookies are well formed, as most of them are. The problem is also not evident because most
applications parse cookies they themselves send. It becomes a problem when you think from a
point of view of a web application firewall, and a determined adversary trying to get past it.
I’ll explain with an example.

In the 1.8.x branch and until 1.8.6 ModSecurity (I made improvements in 1.8.7) used a v1
cookie parser. When I wrote the parser I thought it was really good because it could handle
both v0 and v1 cookies. However, I made a mistake of not thinking like an attacker would. As
Stefan Esser pointed out to me, the differences between v0 and v1 formats could be exploited
to make a v1 parser see one cookie where a v0 parser would see more. Here it is:

Cookie: innocent=”; nasty=payload; third=”

You see, a v0 parser does not understand double quotes. It typically only looks for semi-
colons and splits the header accordingly. Such a parser sees cookies “innocent”, “nasty”, and
“third”. A v1 parser, on the other hand, sees only one cookie - “innocent”.

How is the impedance mismatch affecting the web application firewall users and developers?
It certainly makes our lives more difficult but that’s all right - it’s a part of the game.
Developers will have to work to incorporate better and smarter parsing routines. For example,
there are two cookie parsers in ModSecurity 1.8.7 and the user can choose which one to use.
(A v0 format parser is now used by default.) But such improvements, since they cannot be
automated, only make using the firewall more difficult - one more thing for the users to think
about and configure.

On the other hand, the users, if they don’t want to think about cookie parsers, can always fall
back to use those parts of HTTP that are much better defined. Headers, for example. Instead
of using COOKIE_innocent to target an individual cookie they can just use
HTTP_Cookie to target the whole cookie header. Other variables, such as ARGS, will look
at all variables at once no matter how hard adversaries try to mask them.

27 ModSecurity for Apache 1.8.7 User Guide

Other features

Server identity masking
One technique that often helps slow down and confuse attackers is the web server identity
change. Web servers typically send their identity with every HTTP response in the Server
header. Apache is particularly helpful here, not only sending its name and full version by
default, but it also allows server modules to append their versions too.

To change the identity of the Apache web server you would have to go into the source code,
find where the name "Apache" is hard-coded, change it, and recompile the server. The same
effect can be achieved using the SecServerSignature directive:

SecServerSignature "Microsoft-IIS/5.0"

It should be noted that although this works quite well, skilled attackers (and tools) may use
other techniques to "fingerprint" the web server. For example, default files, error message,
ordering of the outgoing headers, the way the server responds to certain requests and similar -
can all give away the true identity. I will look into further enhancing the support for identity
masking in the future releases of mod_security.

If you change Apache signature but you are annoyed by the strange message in the error log
(some modules are still visible - this only affects the error log, from the outside it still works
as expected):

[Fri Jun 11 04:02:28 2004] [notice] Microsoft-IIS/5 .0

mod_ssl/2.8.12 OpenSSL/0.9.6b configured -- resumin g normal

operations

Then you should re-arrange the modules loading order to allow mod_security to run last,
exactly as explained for chrooting.

In order for this directive to work you must leave/set ServerTokens to
Full.

Chroot support

Standard approach
ModSecurity includes support for Apache filesystem isolation, or chrooting. Chrooting is a
process of confining an application into a special part of the file system, sometimes called a
"jail". Once the chroot (short for “change root”) operation is performed, the application can
no longer access what lies outside the jail. Only the root user can escape the jail. A vital part
of the chrooting process is not allowing anything root related (root processes or root suid
binaries) inside the jail. The idea is that if an attacker manages to break in through the web
server he won't have much to do because he, too, will be in jail, with no means to escape.

ModSecurity for Apache 1.8.7 User Guide 28

Applications do not have to support chrooting. Any application can be chrooted using the
chroot binary. The following line:

chroot /chroot/apache /usr/local/web/bin/apachectl start

will start Apache but only after replacing the file system with what lies beneath /
chroot/apache.

Unfortunately, things are not as simple as this. The problem is that applications typically
require shared libraries, and various other files and binaries to function properly. So, to make
them function you must make copies of required files and make them available inside the jail.
This is not an easy task (take a look at http ://penguin.epfl.ch/chroot.html for detailed
instructions on how to chroot an Apache web server).

The mod_security way
While I was chrooting an Apache the other day I realized that I was bored with the process
and I started looking for ways to simplify it. As a result, I built the chrooting functionality into
the mod_security module itself, making the whole process less complicated. With
mod_security under your belt, you only need to add one line to the configuration file:

SecChrootDir /chroot/apache

and your web server will be chrooted successfully.

Apart from simplicity, mod_security chrooting brings another advantage. Unlike external
chrooting (mentioned previously) mod_security chrooting requires no additional files to exist
in jail. The chroot call is made after web server initialization but before forking. Because of
this, all shared libraries are already loaded, all web server modules are initialized, and log
files are opened. You only need your data in jail.

There are some cases, however, when you will need additional files in jail, and that is if you
intend to execute CGI scripts or system binaries. They may have their own file requirements.
If you fall within this category then you need to proceed with the external chroot procedure as
normal but you still won't have to think of the Apache itself.

With Apache 2.x, the default value for the AcceptMutex directive is
pthread. Sometimes this setting prevents Apache from working when
the chroot functionality is used. Set AcceptMutex to any other setting
to overcome this problem (e.g. posixsem).

If you configure chroot to leave log files outside the jail, Apache will
have file descriptors pointing to files outside the jail. The chroot
mechanism was not initially designed for security and some people fill
uneasy about this. Make your own decision. Treat this feature as
somewhat experimental.

The files used by Apache for authentication must be inside the jail since these files are opened
on every request.

29 ModSecurity for Apache 1.8.7 User Guide

Required module ordering for chroot support (Apache 1.x)
As mentioned above, the chroot call must be performed at a specific moment in Apache
initialization, only after all other modules are initialized. This means that ModSecurity must
be the first on the list of modules. To ensure that, you will probably need to make some
changes to module ordering, using the following configuration directives:

ClearModuleList

AddModule mod_security.c

AddModule ...

AddModule ...

AddModule ...

The first directive clears the list. You must put ModSecurity next, followed by all other
modules you intend to use (except http_core.c, which is always automatically added and you
do not have to worry about it). You can find out the list of built-in modules by executing the
httpd binary with the -l switch:

./httpd -l

If you choose to put the Apache binary and the supporting files outside of
jail, you won't be able to use the apachectl graceful and
apachectl restart commands anymore. That would require
Apache reaching out of the jail, which is not possible. With Apache 2,
even the apachectl stop command may not work. For future
releases I will create replacement scripts to work around this problem.

Required module ordering for chroot support (Apache 2.x)
With Apache 2.x you shouldn't need to manually configure module ordering since Apache 2.x
already includes support for module ordering internally. ModSecurity uses this feature to tell
Apache 2.x when exactly to call it and chroot works (if you're having problems let me know).

There was a change in how the process is started in Apache2. The httpd binary itself now
creates the pid file with the process number. Because of this you will need to put Apache in
jail at the same folder as outside the jail. Assuming your Apache outside jail is in
“ /usr/local/web/apache” and you want jail to be at “/chroot” you must create a folder
“/chroot/usr/local/web/apache/logs”.

When started, the Apache will create its pid file there (assuming you haven't changed the
position of the pid file in the httpd.conf in which case you probably know what you're doing).

How the mod_security chroot works
If you encounter problems on your platform it may be useful to know how mod_security
performs the chroot isolation. Module ordering is necessary because we don't change the
source code of the server. The other problem we need to overcome is the fact that all modules
are initialized twice. This is a problem because in the initialization function we can't tell
whether we are being called for the first or for the second time. (Actually, it is possible to

ModSecurity for Apache 1.8.7 User Guide 30

determine that in Apache 2 but not in Apache 1.) ModSecurity uses a lock file which it
creates during the first initialization phase and erases it in the second go.

By default, the file is created in the logs folder, relative to the web server root
"logs/modsec_chroot.lock". Use the SecChrootLock directive to change it to some other
path.

Since version 1.8, if ModSecurity fails to perform chroot for any reason it
will prevent the server from starting. If it fails to detect chroot failure
during the configuration phase and then detects it at runtime, it will write
a message about that in the error log and exit the child. This may not be
pretty but it is better than running without a protection of a chroot jail
when you think such protection exists.

Solving common security problems
As an example of ModSecurity capabilities we will demonstrate how you can use it to detect
and prevent the most common security problems. We won't go into detail here about problems
themselves but a very good description is available in the Open Web Application Security
Project's guide, available at http://www.owasp.org.

Directory traversal
If your scripts are dealing with the file system then you need to pay attention to certain meta
characters and constructs. For example, a character combination ../ in a path is a request to
go up one directory level.

In normal operation there is no need for this character combination to occur in requests and
you can forbid them with the following filter:

SecFilter "\.\./"

Cross site scripting attacks
Cross site scripting attacks (XSS) occur when an attacker injects HTML or/and Javascript
code into your Web pages and then that code gets executed by other users. This is usually
done by adding HTML to places where you would not expect them. A successful XSS attack
can result in the attacker obtaining the cookie of your session and gaining full access to the
application!

Proper defense against this attack is parameter filtering (and thus removing the offending
HTML/Javascript) but often you must protect existing applications without changing them.
This can be done with one of the following filters:

SecFilter "<script"

SecFilter "<.+>"

The first filter will protect only against Javascript injection with the <script> tag. The
second filter is more general, and disallows any HTML code in parameters.

31 ModSecurity for Apache 1.8.7 User Guide

You need to be careful when applying filters like this since many application want HTML in
parameters (e.g. CMS applications, forums, etc). You can this with selective filtering. For
example, you can have the second filter from above as a general site-wide rule, but later relax
rules for a particular script with the following code:

<Location /cms/article-update.php>

 SecFilterInheritance Off

 # other filters here ...

 SecFilterSelective "ARGS|!ARG_body" "<.+>"

</Location>

This code fragment will only accept HTML in a named parameter body. In reality you will
probably add a few more named parameters to the list.

SQL/database attacks
Most Web applications nowadays rely heavily on databases for data manipulation. Unless
great care is taken to perform database access safely, an attacker can inject arbitrary SQL
commands directly into the database. This can result in the attacker reading sensitive data,
changing it, or even deleting it from the database altogether.

Filters like:

SecFilter "delete[[:space:]]+from"

SecFilter "insert[[:space:]]+into"

SecFilter "select.+from"

can protect you from most SQL-related attacks. These are only examples, you need to craft
your filters carefully depending on the actual database engine you use.

Operating system command execution
Web applications are sometimes written to execute operating system commands to perform
operations. A persistent attacker may find a hole in the concept, allowing him to execute
arbitrary commands on the system.

A filter like this:

SecFilterSelective ARGS "bin/"

will detect attempts to execute binaries residing in various folders on a Unix-related operating
system.

Buffer overflow attacks
Buffer overflow is a technique of overflowing the execution stack of a program and adding
assembly instructions in an attempt to get them executed. In some circumstances it may be
possible to prevent these types of attack by using the line similar to:

SecFilterByteRange 32 126

ModSecurity for Apache 1.8.7 User Guide 32

as it will only accept requests that consists of bytes from this range. Whether you use this type
of protection or not depends on your application and the used character encoding.

If you want to support multiple ranges, regular expressions come to rescue. You can use
something like:

SecFilterSelective THE_REQUEST "!^[\x0a\x0d\x20-\x7 f]+$"

Custom logging
Since 1.8 it is possible to use Apache custom logging to log only those requests where
mod_security was involved. This is because ModSecurity now defines an environment
variable mod_security-relevant whenever it performs an action. To use a custom log
file, add the following (or similar) to your configuration:

CustomLog logs/modsec_custom_log \

"%h %l %u %t \"%r\" %>s %b %{mod_security-message}i " \

env=mod_security-relevant

Audit logging
Standard Apache logging will not help much if you need to trace back steps of a particular
user or an attacker. The problem is that only a very small subset of each request is written to a
log file. This problem can be remedied with the audit logging feature of ModSecurity. These
two directives:

SecAuditEngine On

SecAuditLog logs/audit_log

will let mod_security know that you want a full audit log stored into the log file audit log.
Here is an example of how a request is logged:

==

Request: 192.168.0.2 - - [[18/May/2003:11:20:43 +01 00]] "GET /

cgi-bin/printenv?p1=666 HTTP/1.0" 406 822

Handler: cgi-script

--

GET /cgi-bin/printenv?p1=666 HTTP/1.0

Host: wkx.dyndns.org:8080

User-Agent: mod_security regression test utility

Connection: Close

mod_security-message: Access denied with code 406. Pattern

match "666" at ARGS_SELECTIVE.

mod_security-action: 406

HTTP/1.0 406 Not Acceptable

==

33 ModSecurity for Apache 1.8.7 User Guide

You can see that on the first line you get what you normally get from Apache. The second
line contains the name of the handler that was supposed to handle the request. Full request
(with additional mod_security headers) is given after the separator, and the response headers
(in this case there is only one line) is given after one empty line.

When the POST filtering is on, the POST payload will always be included in the audit log.
Actual response will never be included (at least not in this version).

At this time, the audit logging part of the module will log Apache 1.x error messages, on the
line below the Handler: line. The line will always begin with Error:. This functionality
will be added to the Apache 2.x version of the module if possible.

Unique request identifiers
If you add mod_unique_id to the Apache configuration mod_security will detect it and use the
environment variable it generates (UNIQUE_ID). Its value will be written to the audit log.
You could write the unique ID in an error page to the user and use it later to track and fix a
false positive.

Choosing what to log
The SecAuditEngine parameter accepts one of four values:

• On – log all requests

• Off – do not log requests at all

• RelevantOnly – only log relevant requests. Relevant requests are those requests
that caused a filter match.

• DynamicOrRelevant – log dynamically generated or relevant requests. A
request is considered dynamic if its handler is not null.

Getting ModSecurity to log dynamic requests can sometimes require a little bit of work
depending on your configuration. In Apache theory, a response to a request is generated by a
so-called handler. If there is a handler attached to a request it should be considered to be of a
dynamic nature. In practice, however, Apache can be configured to server dynamic pages
without a handler (it then chooses the module based on the resource MIME type). This will
happen, for example, if you configure PHP as instructed in the main distribution:

AddType application/x-httpd-php .php

While this works, it isn't entirely correct. However, if you replace the above line with the
following:

AddHandler application/x-httpd-php .php

PHP will work just as well, Apache will have a handler assigned to the request, and audit
logger will be able to log selectively.

ModSecurity for Apache 1.8.7 User Guide 34

The testing utility
A small HTTP testing utility was developed as part of the ModSecurity effort. It provides a
simple and easy way to send crafted HTTP requests to a server, and to determine whether the
attack was successfully detected or not.

Calling the utility without parameters will result in its usage printed:

$./run-test.pl

Usage: ./run-test.pl host[:port] testfile1, testfil e2, ...

First parameter is the host name of the server, with port being optional. All other parameters
are filenames of files containing crafted HTTP requests.

To make your life a little bit easier, the utility will generate certain request headers
automatically:

• Host: hostname

• User-Agent: mod_security regression testing utility

• Connection: Close

You can include them in the request if you need to. The utility will not add them if they are
already there.

Here is how an HTTP request looks like:

01 Simple keyword filter

#

mod_security is configured not to allow

the "/cgi-bin/keyword" pattern

#

GET /cgi-bin/keyword HTTP/1.0

This request consists only of the first line, with no additional headers. You can create as
complicated requests as you wish. Here is one example of a POST method usage:

10 Keyword in POST

#

POST /cgi-bin/printenv HTTP/1.0

Content-Type: application/x-www-form-urlencoded

Content-Length: 5

p=333

Lines that are at the beginning of the file and begin with # will be treated as comments. The
first line is special, and it should contain the name of the test.

The utility expects status 200 as a result and will treat such responses as successes. If you
want some other response you need to tell it by writing the expected response code on the first
line (anywhere on the line). Like this:

35 ModSecurity for Apache 1.8.7 User Guide

14 Redirect action (requires 302)

GET /cgi-bin/test.cgi?p=xxx HTTP/1.0

The brackets and the "requires" keyword are not required but are recommended for better
readability.

Technology specific notes

PHP peculiarities
When writing ModSecurity rules that are meant to protect PHP applications one needs to have
a list of PHP peculiarities in mind. It is often easy to design a rule that works when you are
attacking yourself in one way but completely miss an attack variant. Below is a list of things I
am aware about:

• When the register_globals is set to On request parameters become global
variables. (In PHP 4.x it is even possible to override the GLOBALS array).

• Cookies are treated as request parameters.

• Whitespace at the beginning of parameters is ignored.

• The remaining whitespace (in parameter names) is converted to underscores.

• The order in which parameters are taken from the request and the environment is
EGPCS (environment, get, post, cookies, built-in variables). This means that a
POST parameter will overwrite the parameters transported on the request line (in
QUERY_STRING).

• When the magic_quotes_gpc is set to On PHP will use backslash to escape the
following characters: single quote, double quote, backslash, and NULL.

• If magic_quotes_sybase is set to On only the single quote will be escaped
using another single quote. In this case the magic_quotes_gpc setting becomes
irrelevant.

Additional Examples

Parameter checking
Regular expressions can be pretty powerful. Here is how you can check whether a parameter
is an integer between 0 and 99999:

SecFilterSelective ARG_parameter "!^[0-9]{1,5}$"

File upload
Forbid file upload for the application as a whole, but allow it in a subfolder:

Reject requests with header "Content-Type" set

to "multipart/form-data"

SecFilterSelective HTTP_CONTENT_TYPE multipart/form -data

ModSecurity for Apache 1.8.7 User Guide 36

Only for the script that performs upload

<Location /upload.php>

 # Do not inherit filters from the parent folder

 SecFilterInheritance Off

</Location>

Securing FormMail
Earlier versions of FormMail could be abused to send email to any recipient (I've been told
that there is a new version that can be secured properly).

Only for the FormMail script

<Location /cgi-bin/FormMail>

 # Reject request where the value of parameter " recipient"

 # does not end with "@webkreator.com"

 SecFilterSelective ARG_recipient "!@webkreator. com$">

</Location>

Performance
The protection provided by ModSecurity comes at a cost. Your web server becomes a little bit
slower and uses more memory.

Speed
In my experience, the speed difference is not significant. I did some testing at the early stages
of development and the speed difference was around 10%. However, if you configure
ModSecurity to work only on dynamic requests the difference becomes smaller. On real-life
web sites one access to a dynamic page is accompanies by several access to other types of
files (CSS, JavaScript, images). The performance impact is directly related to the complexity
of the configuration. You can use the performance measurement improvements in the Apache
2 version of the module to measure exactly how much time ModSecurity spends working on
each request. In my tests this was usually 2-4 milliseconds (on a server with a 2 GHz
processor).

Memory consumption
In order to be able to analyze a request, ModSecurity stores the request data in memory. In
most cases this is not a big deal since most requests are small. However, it can be a problem
for parts of the web site where files are being uploaded. To avoid this problem you need to
turn the request body buffering off for those parts of the web site. (This is only a problem in
the Apache 1.x version. The Apache 2.x version will use a temporary file on disk for storage
when a request is too large to be stored in memory.) In any case it is advisable to review and
configure various limits in the Apache configuration (see
http://httpd.apache.org/docs/mod/core.html#limitrequestbody for a description of
LimitRequestBody, LimitRequestsFields, LimitRequestFieldsize and

37 ModSecurity for Apache 1.8.7 User Guide

LimitRequestLine directives).

Other things to watch for
The debugging feature can be very useful but it writes large amounts of data to a file for every
request. As such it creates a bottleneck for busy servers. There is no reason to use the
debugging mode on production servers so keep it off.

The audit log feature is similar and also introduces a bottleneck for two reasons. First, large
amounts of data are written to the disk, and second, access to the file must be synchronized. If
you still want to use the audit log try to create many different audit logs, one for each
application running on the server, to minimize the synchronization overhead (this advice does
not remove the overhead in the Apache 2.x version because synchronization is performed via
a central mutex).

Known issues
There are some known issues:

• (Apache 2 only) ModSecurity supports response body interception but it does not
take care of response headers explicitly. It may happen that some of the original
response headers get through.

• (Apache 2 only) Response body interception is not fully compatible with
mod_deflate at the moment. To ensure smooth operation ModSecurity will remove
prevent mod_deflate from operating on those (and only on those) responses that
have been intercepted.

Important notes
Please read the following notes:

• You should carefully consider the impact of every filtering rule you add to the
configuration. You particularly don't want to deny access using very broad rules.
This results in false positives and very angry users.

• Although ModSecurity can be used in .htaccess files (AllowOverride
Options is required to do this), it should not be enabled for use by parties you do
not trust.

Other resources
Other interesting resources available:

• Web Security Appliance With Apache and mod_security, a SecurityFocus article:
http://www.securityfocus.com/infocus/1739

• Introduction to mod_security, published on ONLamp.com:
http://www.onlamp.com/pub/a/apache/2003/11/26/mod_security.html

ModSecurity for Apache 1.8.7 User Guide 38

Appendix A: Recommended Configuration
Below is the recommended minimal mod_security configuration. It is only a starting point
designed not to give you an instant headache. You should look into tightening the
configuration where you can.

Only inspect dynamic requests

(YOU MUST TEST TO MAKE SURE IT WORKS AS EXPECTED)

SecFilterEngine DynamicOnly

Reject requests with status 403

SecFilterDefaultAction "deny,log,status:403"

Some sane defaults

SecFilterScanPOST On

SecFilterCheckURLEncoding On

SecFilterCheckCookieFormat Off

SecFilterCheckUnicodeEncoding Off

Accept almost all byte values

SecFilterForceByteRange 1 255

Server masking is optional

SecServerSignature "Microsoft-IIS/5.0"

SecUploadDir /tmp

SecUploadKeepFiles Off

Only record the interesting stuff

SecAuditEngine RelevantOnly

SecAuditLog logs/audit_log

You normally won't need debug logging

SecFilterDebugLevel 0

SecFilterDebugLog logs/modsec_debug_log

Only accept request encodings we know how to hand le

we exclude GET requests from this because some (a utomated)

clients supply "text/html" as Content-Type

SecFilterSelective REQUEST_METHOD "!^(GET|HEAD)$" c hain

SecFilterSelective HTTP_Content-Type \

"!(^application/x-www-form-urlencoded$|^multipart/f orm-data;)"

Require Content-Length to be provided with

39 ModSecurity for Apache 1.8.7 User Guide

every POST request

SecFilterSelective REQUEST_METHOD "^POST$" chain

SecFilterSelective HTTP_Content-Length "^$"

Don't accept transfer encodings we know we don't handle

(and you don't need it anyway)

SecFilterSelective HTTP_Transfer-Encoding "!^$"

