00001 #ifndef CRYPTOPP_ECCRYPTO_H
00002 #define CRYPTOPP_ECCRYPTO_H
00003
00004
00005
00006
00007 #include "pubkey.h"
00008 #include "integer.h"
00009 #include "asn.h"
00010 #include "hmac.h"
00011 #include "sha.h"
00012 #include "gfpcrypt.h"
00013 #include "dh.h"
00014 #include "mqv.h"
00015 #include "ecp.h"
00016 #include "ec2n.h"
00017
00018 NAMESPACE_BEGIN(CryptoPP)
00019
00020
00021
00022
00023
00024 template <class EC>
00025 class DL_GroupParameters_EC : public DL_GroupParametersImpl<EcPrecomputation<EC> >
00026 {
00027 typedef DL_GroupParameters_EC<EC> ThisClass;
00028
00029 public:
00030 typedef EC EllipticCurve;
00031 typedef typename EllipticCurve::Point Point;
00032 typedef Point Element;
00033 typedef IncompatibleCofactorMultiplication DefaultCofactorOption;
00034
00035 DL_GroupParameters_EC() : m_compress(false), m_encodeAsOID(false) {}
00036 DL_GroupParameters_EC(const OID &oid)
00037 : m_compress(false), m_encodeAsOID(false) {Initialize(oid);}
00038 DL_GroupParameters_EC(const EllipticCurve &ec, const Point &G, const Integer &n, const Integer &k = Integer::Zero())
00039 : m_compress(false), m_encodeAsOID(false) {Initialize(ec, G, n, k);}
00040 DL_GroupParameters_EC(BufferedTransformation &bt)
00041 : m_compress(false), m_encodeAsOID(false) {BERDecode(bt);}
00042
00043 void Initialize(const EllipticCurve &ec, const Point &G, const Integer &n, const Integer &k = Integer::Zero())
00044 {
00045 this->m_groupPrecomputation.SetCurve(ec);
00046 SetSubgroupGenerator(G);
00047 m_n = n;
00048 m_k = k;
00049 }
00050 void Initialize(const OID &oid);
00051
00052
00053 bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const;
00054 void AssignFrom(const NameValuePairs &source);
00055
00056
00057
00058
00059 void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg);
00060
00061
00062 const DL_FixedBasePrecomputation<Element> & GetBasePrecomputation() const {return this->m_gpc;}
00063 DL_FixedBasePrecomputation<Element> & AccessBasePrecomputation() {return this->m_gpc;}
00064 const Integer & GetSubgroupOrder() const {return m_n;}
00065 Integer GetCofactor() const;
00066 bool ValidateGroup(RandomNumberGenerator &rng, unsigned int level) const;
00067 bool ValidateElement(unsigned int level, const Element &element, const DL_FixedBasePrecomputation<Element> *precomp) const;
00068 bool FastSubgroupCheckAvailable() const {return false;}
00069 void EncodeElement(bool reversible, const Element &element, byte *encoded) const
00070 {
00071 if (reversible)
00072 GetCurve().EncodePoint(encoded, element, m_compress);
00073 else
00074 element.x.Encode(encoded, GetEncodedElementSize(false));
00075 }
00076 unsigned int GetEncodedElementSize(bool reversible) const
00077 {
00078 if (reversible)
00079 return GetCurve().EncodedPointSize(m_compress);
00080 else
00081 return GetCurve().GetField().MaxElementByteLength();
00082 }
00083 Element DecodeElement(const byte *encoded, bool checkForGroupMembership) const
00084 {
00085 Point result;
00086 if (!GetCurve().DecodePoint(result, encoded, GetEncodedElementSize(true)))
00087 throw DL_BadElement();
00088 if (checkForGroupMembership && !ValidateElement(1, result, NULL))
00089 throw DL_BadElement();
00090 return result;
00091 }
00092 Integer ConvertElementToInteger(const Element &element) const;
00093 Integer GetMaxExponent() const {return GetSubgroupOrder()-1;}
00094 bool IsIdentity(const Element &element) const {return element.identity;}
00095 void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const;
00096 static std::string StaticAlgorithmNamePrefix() {return "EC";}
00097
00098
00099 OID GetAlgorithmID() const;
00100
00101
00102 Element MultiplyElements(const Element &a, const Element &b) const;
00103 Element CascadeExponentiate(const Element &element1, const Integer &exponent1, const Element &element2, const Integer &exponent2) const;
00104
00105
00106
00107
00108 static OID GetNextRecommendedParametersOID(const OID &oid);
00109
00110 void BERDecode(BufferedTransformation &bt);
00111 void DEREncode(BufferedTransformation &bt) const;
00112
00113 void SetPointCompression(bool compress) {m_compress = compress;}
00114 bool GetPointCompression() const {return m_compress;}
00115
00116 void SetEncodeAsOID(bool encodeAsOID) {m_encodeAsOID = encodeAsOID;}
00117 bool GetEncodeAsOID() const {return m_encodeAsOID;}
00118
00119 const EllipticCurve& GetCurve() const {return this->m_groupPrecomputation.GetCurve();}
00120
00121 bool operator==(const ThisClass &rhs) const
00122 {return this->m_groupPrecomputation.GetCurve() == rhs.m_groupPrecomputation.GetCurve() && this->m_gpc.GetBase(this->m_groupPrecomputation) == rhs.m_gpc.GetBase(rhs.m_groupPrecomputation);}
00123
00124 #ifdef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY
00125 const Point& GetBasePoint() const {return GetSubgroupGenerator();}
00126 const Integer& GetBasePointOrder() const {return GetSubgroupOrder();}
00127 void LoadRecommendedParameters(const OID &oid) {Initialize(oid);}
00128 #endif
00129
00130 protected:
00131 unsigned int FieldElementLength() const {return GetCurve().GetField().MaxElementByteLength();}
00132 unsigned int ExponentLength() const {return m_n.ByteCount();}
00133
00134 OID m_oid;
00135 Integer m_n;
00136 bool m_compress, m_encodeAsOID;
00137 mutable Integer m_k;
00138 };
00139
00140 CRYPTOPP_DLL_TEMPLATE_CLASS DL_GroupParameters_EC<ECP>;
00141 CRYPTOPP_DLL_TEMPLATE_CLASS DL_GroupParameters_EC<EC2N>;
00142 CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKeyImpl<DL_GroupParameters_EC<ECP> >;
00143 CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKeyImpl<DL_GroupParameters_EC<EC2N> >;
00144
00145
00146 template <class EC>
00147 class DL_PublicKey_EC : public DL_PublicKeyImpl<DL_GroupParameters_EC<EC> >
00148 {
00149 public:
00150 typedef typename EC::Point Element;
00151
00152 void Initialize(const DL_GroupParameters_EC<EC> ¶ms, const Element &Q)
00153 {this->AccessGroupParameters() = params; SetPublicElement(Q);}
00154 void Initialize(const EC &ec, const Element &G, const Integer &n, const Element &Q)
00155 {this->AccessGroupParameters().Initialize(ec, G, n); SetPublicElement(Q);}
00156
00157
00158 void BERDecodeKey2(BufferedTransformation &bt, bool parametersPresent, unsigned int size);
00159 void DEREncodeKey(BufferedTransformation &bt) const;
00160 };
00161
00162 CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKey_EC<ECP>;
00163 CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKey_EC<EC2N>;
00164 CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKeyImpl<DL_GroupParameters_EC<ECP> >;
00165 CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKeyImpl<DL_GroupParameters_EC<EC2N> >;
00166
00167
00168 template <class EC>
00169 class DL_PrivateKey_EC : public DL_PrivateKeyImpl<DL_GroupParameters_EC<EC> >
00170 {
00171 public:
00172 typedef typename EC::Point Element;
00173
00174 void Initialize(const DL_GroupParameters_EC<EC> ¶ms, const Integer &x)
00175 {this->AccessGroupParameters() = params; this->SetPrivateExponent(x);}
00176 void Initialize(const EC &ec, const Element &G, const Integer &n, const Integer &x)
00177 {this->AccessGroupParameters().Initialize(ec, G, n); this->SetPrivateExponent(x);}
00178 void Initialize(RandomNumberGenerator &rng, const DL_GroupParameters_EC<EC> ¶ms)
00179 {GenerateRandom(rng, params);}
00180 void Initialize(RandomNumberGenerator &rng, const EC &ec, const Element &G, const Integer &n)
00181 {GenerateRandom(rng, DL_GroupParameters_EC<EC>(ec, G, n));}
00182
00183
00184 void BERDecodeKey2(BufferedTransformation &bt, bool parametersPresent, unsigned int size);
00185 void DEREncodeKey(BufferedTransformation &bt) const;
00186 };
00187
00188 CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_EC<ECP>;
00189 CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_EC<EC2N>;
00190
00191
00192 template <class EC, class COFACTOR_OPTION = CPP_TYPENAME DL_GroupParameters_EC<EC>::DefaultCofactorOption>
00193 struct ECDH
00194 {
00195 typedef DH_Domain<DL_GroupParameters_EC<EC>, COFACTOR_OPTION> Domain;
00196 };
00197
00198
00199 template <class EC, class COFACTOR_OPTION = CPP_TYPENAME DL_GroupParameters_EC<EC>::DefaultCofactorOption>
00200 struct ECMQV
00201 {
00202 typedef MQV_Domain<DL_GroupParameters_EC<EC>, COFACTOR_OPTION> Domain;
00203 };
00204
00205
00206 template <class EC>
00207 struct DL_Keys_EC
00208 {
00209 typedef DL_PublicKey_EC<EC> PublicKey;
00210 typedef DL_PrivateKey_EC<EC> PrivateKey;
00211 };
00212
00213 template <class EC, class H = SHA>
00214 struct ECDSA;
00215
00216
00217 template <class EC>
00218 struct DL_Keys_ECDSA
00219 {
00220 typedef DL_PublicKey_EC<EC> PublicKey;
00221 typedef DL_PrivateKey_WithSignaturePairwiseConsistencyTest<DL_PrivateKey_EC<EC>, ECDSA<EC> > PrivateKey;
00222 };
00223
00224 CRYPTOPP_DLL_TEMPLATE_CLASS DL_Algorithm_GDSA<ECP::Point>;
00225 CRYPTOPP_DLL_TEMPLATE_CLASS DL_Algorithm_GDSA<EC2N::Point>;
00226
00227
00228 template <class EC>
00229 class DL_Algorithm_ECDSA : public DL_Algorithm_GDSA<typename EC::Point>
00230 {
00231 public:
00232 static const char * StaticAlgorithmName() {return "ECDSA";}
00233 };
00234
00235
00236 template <class EC>
00237 class DL_Algorithm_ECNR : public DL_Algorithm_NR<typename EC::Point>
00238 {
00239 public:
00240 static const char * StaticAlgorithmName() {return "ECNR";}
00241 };
00242
00243
00244 template <class EC, class H>
00245 struct ECDSA : public DL_SS<DL_Keys_ECDSA<EC>, DL_Algorithm_ECDSA<EC>, DL_SignatureMessageEncodingMethod_DSA, H>
00246 {
00247 };
00248
00249 CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_WithSignaturePairwiseConsistencyTest<DL_PrivateKey_EC<ECP>, ECDSA<ECP> >;
00250 CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_WithSignaturePairwiseConsistencyTest<DL_PrivateKey_EC<EC2N>, ECDSA<EC2N> >;
00251
00252
00253 template <class EC, class H = SHA>
00254 struct ECNR : public DL_SS<DL_Keys_EC<EC>, DL_Algorithm_ECNR<EC>, DL_SignatureMessageEncodingMethod_NR, H>
00255 {
00256 };
00257
00258
00259
00260
00261
00262 template <class EC, class COFACTOR_OPTION = NoCofactorMultiplication, bool DHAES_MODE = false>
00263 struct ECIES
00264 : public DL_ES<
00265 DL_Keys_EC<EC>,
00266 DL_KeyAgreementAlgorithm_DH<typename EC::Point, COFACTOR_OPTION>,
00267 DL_KeyDerivationAlgorithm_P1363<typename EC::Point, DHAES_MODE, P1363_KDF2<SHA1> >,
00268 DL_EncryptionAlgorithm_Xor<HMAC<SHA1>, DHAES_MODE>,
00269 ECIES<EC> >
00270 {
00271 static std::string StaticAlgorithmName() {return "ECIES";}
00272 };
00273
00274 NAMESPACE_END
00275
00276 #endif