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Abstract. We present the design of a meta-programming system em-
bedded into Nemerle1, a new functional language for the .NET plat-
form. The system enables compile-time operations – generation, trans-
formation and automated analysis of programs by means of hygienic
code quotation, syntax extensions, operating on the code like on any
other datatype (e.g. listing, adding or changing members of class def-
inition), performing partial typing of a program syntax tree (compiler
internal typing procedures are executed by a macro code) and interop-
erability with the compilation process. All these operations can be fully
parametrized with any external data (like a database, a file or a web
page).
Our system is a convenient tool for Aspects Oriented Programming with
the ability to operate on datatypes, traverse the program code and per-
form various algorithmic operations on its content.

1 Introduction

The idea of compile-time meta-programming has been studied for quite a long
time. It was incorporated into several languages, like Lisp macros [3], Scheme
hygienic macros [4], C preprocessor-based macros, C++ template system and
finally Haskell Template Meta-programming [2]. They vary in their capabilities
and ease of use, but generally imply computations during compilation of the
program and generating code from some definitions.

During this process programs are treated as object programs, which are data
supplied to meta-programs. They can be then arbitrarily transformed or analyzed
and the final result is compiled just like a regular program. These operations may
be repeated or take place in stages. In the latter case the generated programs
can generate other programs and so on.

Meta-language is a language for programming such operations. It usually has
its own syntax for describing various constructs of the object language. For exam-
ple, in our system, <[ 1 + f (2 * x) ]> denotes the syntax tree of expression
1 + f (2 * x). This idea is called quasi-quotation. The prefix quasi comes from
the possibility of inserting values of meta-language expressions into the quoted
context – if g(y) is such an expression, we can write <[ 1 + $(g (y)) ]>,
which describes a syntax tree, whose second part is replaced by the result of
evaluation of g(y).

1 The Nemerle project is supported by Microsoft Research ROTOR2 grant.
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1.1 Our contribution

While we introduce several new ideas, the most important thing about our ap-
proach is the unique combination of a powerful meta-programming system to-
gether with the language, that possesses industrial strength, object-oriented and
imperative capabilities.

The C++ example proves that there is a need for meta-programming systems
in the industry – even the quite baroque template system is widely used for
compile-time computations. This paper is a study of possible introduction of
meta-programming techniques into an industrial environment in a cleaner form.
We are therefore focused on making our system easy to use for programmers
both writing and using the macros.

Key features of our approach are:

– We develop a uniform, hygiene preserving and simple quasi-quotation sys-
tem, which does not require learning of internal compiler data structures to
generate and transform quite complicated object programs. It also provides
an easy way to write variable argument constructs (like tuples or function
calls with an arbitrary amount of parameters).

– Using macros is transparent from the user point of view – the meta-program
and common function calls are indistinguishable, so the user can use the
most complex macros prepared by others without even knowing the idea of
meta-programming.

– Flexible definition of syntax extensions allows even more straightforward
embedding of macros into the language without interfering with compiler
internals.

– Our system can be used to transform or generate practically any fragment of
a program, which, composed with .NET object-oriented structure, provides
a powerful tool for software engineering methodologies like aspects-oriented
programming.

– We allow macros to type fragments of code, which they operate on, during
their execution. This allows to parameterize them not only with the syntax
of provided expressions, but also with the entire context of the program and
types of those expressions.

– The separate compilation of macro definitions provides the clean and man-
ageable stage separation.

1.2 Characteristics of Nemerle meta-system

Our meta-system has both program generation and analysis capabilities [8]. It
can easily traverse the abstract syntax tree of the object program and gather
information about it as well as change it (often using gathered data).

The system is designed mainly for operating on object programs at compile-
time. However, using features of .NET and its dynamic code loading abilities, it
is also possible to execute macros during run-time.
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The meta-language is homogeneous, which means that it is the same as object
language. We can use common Nemerle functions within macros and the syntax
of generated programs is no different than the one used to write macros.

The quasi-quotation provides a clear separation of the object program from
the meta-language. We do this with a manual annotation to distinguish stages
of execution in a well understood fashion. Thus it is semantically clear, which
part of the code is generated and which is generating. The symbols from the
object-code are alpha-renamed so that they do not interfere with the external
code.

2 First examples

Suppose we want to add some new syntax to our language, like the for loop. We
could embed it into the compiler, but it is a rather difficult and inelegant way –
such addition is quite short and it should not involve much effort to complete.
Here a macro can be used.

macro for (init, cond, change, body) {

<[

$init;

def loop () {

if ($cond) { $body; $change; loop() }

else ()

};

loop ()

]>

}

This code creates a special meta-function, which is executed at the compile-
time in every place where its original call is placed. Its result is then inserted
into the program. Always when something like

for (i = 0, i < n, i = i + 2, a[i] = i)

is written, the appropriate code is created according to the for macro and re-
places the original call.

The macros may instruct the compiler to extend the language syntax – for
example a macro for the for loop with a C-like syntax can be defined. Writing

macro for (init, cond, change, body)

syntax ("for", "(", init, ";", cond, ";", change, ")", body)

{ ... }

would add a new rule to the parser, which allows using

for (i = 0; i < n; i = i + 2) a[i] = i

instead of the call mentioned above.
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2.1 Compiling sublanguages from strings

Macros are very useful for the initial checking and processing of the code written
as strings in a program. This relates to many simple languages, like printf

formatting string, regular expressions or even SQL queries, which are often used
directly inside the program.

Let us consider a common situation, when we want to parameterize an SQL
query with some values from our program. Most database providers in .NET

Framework allow us to write commands with parameters, but neither their syn-
tax is checked during the compilation, nor the consistency of the SQL data types
with the program is controlled.

With a well written macro, we could write

sql_loop (conn, "SELECT salary, LOWER (name) AS lname"

" FROM employees"

" WHERE salary > $min_salary")

printf ("%s : %d\n", lname, salary)

to obtain the syntax and type-checked SQL query and the following code

def cmd = SqlCommand ("SELECT salary, LOWER (name)"

" FROM employees"

" WHERE salary > @parm1", conn);

(cmd.Parameters.Add (SqlParameter ("@parm1", DbType.Int32)))

.Value = min_salary;

def r = cmd.ExecuteReader ();

while (r.Read ()) {

def salary = r.GetInt32 (0);

def lname = r.GetString (1);

printf ("%s : %d\n", lname, salary)

}

In fact the printf function here is another macro, that checks correspondence
of supplied parameters to formatting string at compile-time.

The above construct yields safer and more readable code compared to its
.NET counterparts.

3 Variable amount of arguments

The quotation provides full freedom in constructing any kind of expression. For
example, we can decompose a tuple of any size and print its elements.
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macro PrintTuple (tup, size : int)

{

def symbols = array (size);

mutable pvars = [];

mutable exps = [];

for (mutable i = size - 1; i >= 0; i--) {

symbols[i] = NewSymbol ();

pvars = <[ $(symbols[i] : name) ]> :: pvars;

exps = <[ WriteLine ($(symbols[i] : name)) ]> :: exps;

};

exps = <[ def (.. $pvars) = $tup ]> :: exps;

<[ {.. $exps } ]>

}

Note that here we need a number describing the size of the tuple. We show
later, how to obtain the type of the given expression within the macro. This, for
example, allows to compute the size of the tuple described by the tup variable.

4 Pattern matching on programs

The quotation can be used to analyze the program structure as easily as generate
it. Standard mechanism of the language, pattern matching, fits perfect for such
a purpose.

As an example we show implementation of <-> operator, which swaps values
of two expressions – like in x <-> arr[2]. We consider a simple approach first:

macro @<-> (e1, e2) {

<[ def tmp = $e1; $e1 = $e2; $e2 = tmp; ]>

}

It has however one drawback of computing both expressions twice. For exam-
ple trying to swap two random values in an array with a[rnd()] <-> a[rnd()]

will not yield expected results. We can solve this problem by precomputing parts
of expressions to be swapped2:

2 The [Hygienic] modifier is discussed later
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[Hygienic]

cache (e : Expr) : Expr * Expr

{

| <[ $obj.$mem ]> => (<[ def tmp = $obj ]>, <[ tmp.$mem ]>)

| <[ $tab [$idx] ]> =>

(<[ def (tmp1, tmp2) = ($tab, $idx) ]>, <[ tmp1 [tmp2] ]>)

| _ => (<[ () ]>, e)

}

This function returns a pair of expressions. The first one is used to cache
values and the second to operate on built equivalent of original expression using
those values. Now we can implement <-> as follows:

macro @<-> (e1, e2) {

def (cached1, safe1) = cache (e1);

def (cached2, safe2) = cache (e2);

<[

$cached1;

$cached2;

def tmp = $safe1;

$safe1 = $safe2;

$safe2 = tmp;

]>

}

5 Macros operating on declarations

Macros can operate not only on expressions, patterns, types, but also on any part
of language, like classes, interfaces, other type declarations, methods etc. The
syntax for those operations is quite different. Again, we treat language constructs
as data objects, which can be transformed, but this is not done entirely with
quotations. We use a special API, designed basing on System.Reflection, which
is used in .NET for dynamic generation of assemblies. Nemerle type system and
operations we are performing on them are not fully compatible with the interface
of Reflection (we cannot directly derive from its classes), but are quite similar.

With such a tool we can analyze, generate or change any declaration in the
program. For example, dump a definition of each data structure to an XML file,
create serialization methods or automatically generate fields or methods from
an external description.

Such macros are not called like ordinary functions, but are added as attributes
in front of the declaration, similarly as C# attributes.

[SerializeBinary ()]

public module Company {

[ToXML ("Company.xml")]



VII

public class Employee {

...

}

[FromXML ("Product.xml"), Comparable ()]

public class Product { }

}

5.1 Transforming types

Macros that operate on declarations change them in the imperative fashion.
Their first parameter is always an object representing the given declaration.

macro ToXML (ty : TypeBuilder, file : string) {

We can easily list the data contained in the provided object, like fields or
methods of a class and add a new method using their names.

def fields = ty.GetFields (BindingFlags.Instance %|

BindingFlags.Public %|

BindingFlags.DeclaredOnly);

def list_fields =

List.Map (fields, fun (x) { <[

xml_writer.WriteAttributeString

($(x.Name : string),

$(x.Name : usesite).ToString ())

]> }

);

ty.Define (<[ decl:

public ToXML () : void {

def xml_writer = XmlTextWriter ($(file : string), null);

{ ..$list_fields };

xml_writer.Close ();

}

]>);

With the macro above (perhaps modified to do some additional format-
ting) we can generate serialization methods for any class simply by adding the
[ToXML ("file.xml")] attribute.

6 Aspects-oriented programming

AOP has been proposed as a technique for separating different concerns in soft-
ware. It is often a problem, when they crosscut natural modularity of the rest of
implementation and must be written together in code, leading to tangled code.
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6.1 Join points and pointcuts

Join points are well-defined points in the execution of a program. In contrary
to many other systems, which define fixed join points in the code (like AspectJ
[10]), macros allow to place the user code in arbitrary parts of program. One
can write a macro traversing all the classes and adding some behavior to their
bodies.

A pointcut picks out join points. In Nemerle there are no hard-coded design
restrictions placed on pointcuts and the user can create any selection function.
Particularly we can write a program which enables the same join points and
pointcuts as those well established in AOP community.

6.2 Advices

Advice is a code executed at each join point picked out by a pointcut. It is
straightforward for a macro to add advices to the code by simply transforming
and combining it from given subprograms.

Consider the following code, adapted from the AspectJ tutorial:

after(Object o) throwing (Error e): publicInterface(o) {

log.Write (o, e);

}

Given some traversal strategy, one can detect places where exceptions of some
type are thrown and add their logging.

match (e) {

| <[ throw $e ]> when IsAppropriateType (e) =>

<[ log.Write ($o, $e); throw $e ]>

| _ => e

}

6.3 User interface to AOP features

In order to make the aspects oriented paradigm production-ready in Nemerle, we
have to develop an easy user interface for it. In general programmers would not
use entire power of macro transformations in every day development. It is better
to adapt existing interfaces and progressively add new power of expressiveness
to systems like AspectJ.

We think that it should be possible to implement most Aspects-oriented
and Adaptive-programming system designs with more or less complex macros.
This field is our future research direction and we will present more details after
finishing the implementation of all the necessary features.
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7 Details of our design

In this section a more formal definition of the macro and our meta-system is
provided.

A macro is a top-level function prefixed with the macro keyword, which may
have access modifiers like other methods (public, private etc.) and resides in
.NET/Nemerle namespace. It is used within the code like any other method, but
it is treated in a special way by the compiler.

Its formal parameter types are restricted to the set of Nemerle grammar
elements (including simple literal types). Parameters of the macro are always
passed as their syntax trees, which for some types are partially decomposed. For
example, literal types appear within the macro as real values (int, string, etc.),
but they are passed as syntax trees, so they must be given as constant literals
(it is obvious since these values must be known at the compile-time).

7.1 Macro as a function

A macro cannot be called recursively or passed as a first-class citizen (although
it can generate the code, which contains the calls of this macro). Still, it can
use any function from the rest of the program in a standard ML fashion, so
we consider this as a minor disadvantage. If complex computations on syntax
trees are necessary, one must simply put them into some arbitrary functions and
run the entire computation from within the macro. Such design allows to define
easily which functions are run at the compile-time without requiring any special
annotations at their use site.

7.2 Names binding in quotation

A very important property of the meta-system is called hygiene and relates to
the problem with names capture in Lisp macros, resolved later in Scheme. It
specifies that variables introduced by a macro may not bind to variables used
in the code passed to this macro. Particularly variables with the same names,
but coming from different contexts, should be automatically distinguished and
renamed.

Consider the following example:

macro identity (e) { <[ def f (x) { x }; f($e) ]> }

Calling it with identity (f(1)) might generate a confusing code like

def f (x) { x }; f (f (1))

To prevent names capture, all macro-generated variables should be renamed
to their unique counterparts, like in

def f_42 (x_43) { x_43 }; f_42 (f (1))
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In general, names in the generated code bind to definitions visible within
their scope. The binding is done after all transformations during the execution
of the macro are finished. This means that a variable used in a quotation may
not necessarily refer to the definition visible directly in the place where it is
written. Everything depends on where it occurs in the finally generated code.
Consider the following example:

def d1 = <[ def x = y + foo (4) ]>;

def d2 = <[ def y = $(Bar.Compute() : int) ]>

<[ $d2;

def foo (x) { x + 1 };

$d1;

x * 2 ]>

As macros might get large and complex it is frequently very useful to compute
parts of the expression independently and then compose the final code from
them. Still, names in such macro are alpha-renamed so that they do not capture
any external definitions. The renaming is defined as putting names created in the
single macro execution into the same “namespace”, which is mutually exclusive
with all other “namespaces” and the top-level code. This is exactly the hygiene
rule – neither the macro can capture names used in the macro-use place nor it
can define anything colliding with the external code.

This is an opposite approach to Template Haskell [2], where the lexical scop-
ing means binding variables from the object code immediately to definitions visi-
ble at the construction site of the quotation. We find our approach more flexible,
as we can transform the code with much more freedom, while still keeping the
system hygienic. This is of course just a design decision, naturally associated
with certain costs. Sometimes it is not obvious to recreate bindings simply by
looking at the code, but here we assume that a programmer of a macro knows
the structure of the code to be generated. We also lose the ability to detect
some errors earlier, but as they are always detected during the compilation of
the generated code, we believe it is a minor disadvantage.

One can think that putting all identifiers from entire macro invocation into
a single “namespace” is not a good idea, especially when we use some general
purpose code generating function from a library, which should generate only its
own unique names. To obtain such independent, hygienic functions we write

[Hygienic] f (x : Expr) : Expr { ... }

The [Hygienic] attribute is a simple macro, which transforms f to enable
its own context during execution. This way function receives the same semantics
as macro with regards to hygiene. We consider this behavior not good by default,
because code is often generated by some tool functions, especially defined locally
in macro and they should not change their context.
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7.3 Breaking hygiene

Sometimes it is useful to share some names between several macro executions.
It can be done safely by generating a unique identifier independent of macro
executions. We support it by function NewSymbol () whose return value can be
stored in a variable, providing the hygiene preserving solution.

There are also situations, where we know the exact name of the variable used
in the code passed to the macro. If we wanted to define a name referring to it,
we would have to change the scope to our macro use site. As it breaks hygiene,
it should be done in a controlled manner. Consider a macro introducing using

keyword (C# keyword, simplified for the purpose of this paper):

macro using (name : string, val, body) {

<[

def $(name : usesite) = $val;

try { $body } finally { $v.Dispose () }

]>

}

It should define a symbol binding to variables of the same name in body. But
if it contained some other external code, like in:

macro bar(ext) {

<[ using ("x", Foo (), { $ext; x.Compute () }) ]>

}

some inadvertent capture of variables in ext might happen, if x was just a plain
dynamically scoped variable.

Although it is not recommended, also nonhigienic symbols can be created, by
$(x : dyn), where x is of type string. They are bound to the nearest definition
with the same name appearing in the generated code, regardless of the context
it comes from.

7.4 Lexical scoping of global symbols

The object code often refers to variables, types or constructors imported from
other modules (e.g. .NET standard library or symbols defined in the namespace
where the macro resides). In normal code we can omit the prefix of the full name,
by including using keyword, which imports symbols from given namespace.
Unfortunately this feature used in the object code like

using System.Text.RegularExpressions;

using Finder;

macro finddigit (x : string) {

<[

def numreg = Regex (@"\d+-\d+");



XII

def m = numreg.Match (current + x);

m.Success ();

]>

}

public module Finder {

public static current : string;

}

brings some dependency on currently imported namespaces. We would like the
generated code to behave alike no matter where it is used, thus the Regex con-
structor and the current variable should be expanded to their full name –
System.Text.RegularExpressions.Regex and Finder.current, respectively.
This operation is automatically done by the quotation system. When a symbol
is not defined locally (and with the same context as described in the previous
section), its binding is looked for in global symbols imported at the quotation
definition site.

Note that there is no possibility to override security permissions this way.
Access rights from the lexical scope of the macro are not exported to the place
where the generated code is used. .NET policies do not allow this, thus the
programmer must not generate a code breaking the static security.

7.5 Accessing compiler internals

It is vital for meta-functions to be able to use all benefits they have from running
at the compile-time. They can retrieve information from the compiler, use its
methods to access, analyze and change data stored in its internal structures.

Retrieving declarations For example, we can ask the compiler to return the
type declaration of a given type. It will be available as syntax tree, just like as
we put a special macro attribute (Section 5) before that declaration. Certainly,
such a declaration must not be an external type and has to be available within
the compiled program as a source code.

def decl = Macros.GetType (<[ type: Person ]>);

xmlize (decl); // we can use macros for declarations

8 Typing during execution of macro

Some more advanced techniques are also possible. They involve a closer inter-
action with the compiler, using its methods and data structures or even inter-
weaving with internal compilation stages.

For example, we can ask the compiler to type some of object programs, which
are passed to the macro, retrieve and compare their types, etc. This means that
we can plug between many important actions performed by the compiler, adding
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our own code there. It might be just a nicer bug reporting (especially for macros
defining complex syntax extensions), making code generation dependent on input
program types or improving code analysis with additional information.

8.1 Example

Let us consider the following translation of the if condition to the standard ML
matching:

macro @if (cond, e1, e2)

syntax ("if", "(", cond, ")", e1, "else", e1) {

<[

match ($cond) {

| true => $e1

| false => $e2

}

]>

}

When if ("bar") true else false was written, the compiler would com-
plain that type of matched expression is not bool. Such an error message could
be very confusing, because the programmer may not know, that his if statement
is being transformed to the match statement. Thus, we would like to check such
errors during the execution of the macro, so we can generate a more verbose
message.

8.2 Usage

Instead of directly passing object expressions to the result of the macro, we can
first make the compiler type them and then find out if they have the proper
type. The body of the above if macro should be

def tcond = TypedExpr (cond);

def te1 = TypedExpr (e1);

def te2 = TypedExpr (e2);

if (tcond.Type == <[ ttype: bool ]> ) {

<[

match ($(tcond : typed)) {

| true => $(te1 : typed)

| false => $(te2 : typed)

}

]>

}

else

FailWith ("‘if’ condition must have type bool, " +

"while it has " + tcond.Type.ToString())
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Note that typed expressions are used again in the quotation, but with a
special splicing tag “typed”. This means that the compiler does not have to
perform the typing (in fact, it cannot do this from now on) on the provided
syntax trees. Such a notation introduces some kind of laziness in typing, which
is guided directly by a programmer of the macro.

8.3 PrintTuple example

As mentioned in remarks to the PrintTuple function, a macro which is able to
run typing of its parameters can obtain the size of a supplied tuple. We just need
to add the following lines:

match (TypedExpr (tup).Type) {

| <[ ttype: (..args) ]> =>

def size = List.Length (args);

..

}

9 How it works

We will now describe how our meta-programming system works internally.

Each macro is translated to a separate class implementing a special IMacro

interface. It provides a method to run the macro, which in most cases involves
passing it the list of Nemerle grammar elements (untyped syntax trees of object
programs).

Therefore at the compiler level a macro is a function operating on syntax
trees. There are several kinds of syntax trees used in Nemerle compiler. We will
focus on parse trees and typed trees.

Parse trees are generated by the parser as well as the quotations during macro
execution. They are mostly one-to-one with the grammar of the language.

Typed trees contain less language construct (particularly no macro invoca-
tions). These constructs are however more explicit. In particular they contain
inferred types of expressions.

The process of typing in compiler generally involves rewriting parse trees into
typed trees.

The typing function, when it encounters a macro invocation, executes the Run

method of respective macro object. The macro invocation looks like a regular
function call, so we distinguish these two cases by looking up name of invoked
function in list of currently loaded macros (the IMacro interface has a special
GetName method).

To support typing parts of macro parameters, we a special node in parse tree,
that simply holds typed tree node. Typing function simply strips parse tree box,
leaving content intact.
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9.1 Quotations

The quotation system is just a shortcut for explicitly constructing syntax trees
from compiled data types. For example f(x) expression is internally repre-
sented by E_call (E_ref ("f"), [Parm (E_ref ("x"))]), which is equiva-
lent to <[ f (x) ]>. Translating the quotation involves “lifting” the syntax
tree by one more level – we are given an expression representing a program (its
syntax tree) and we must create a representation of such expression (a larger
syntax tree). This implies building a syntax tree of the given syntax tree, like

E_call (E_ref ("f"), [Parm (E_ref ("x"))]

=>

E_call ("E_call",

[Parm (E_call ("E_ref", [Parm (E_literal

(L_string ("f")))]));

Parm (E_call ("Cons", [Parm (E_call ("Parm",

[Parm (E_call ("E_ref",

[Parm (E_literal (L_string ("x")))]))]))]))])

or using the quotation

<[ f (x) ]>

=>

<[ E_call (E_ref ("f"), [Parm (E_ref ("x"))]) ]>

Now splicing means just “do not lift”, because we want to pass the value of
the meta-language expression as the object code. Of course it is only valid when
such an expression describes (is type of) the syntax tree. Operator .. inside the
quotation is translated as the syntax tree of list containing lifted expressions
from the provided list (which must occur after ..).

9.2 Making identifiers hygienic

In this section we describe how we achieve hygiene in our system. As said before,
we use distinct “namespace” or “color” for each macro invocation. Our coloring
system is quite simple. All plain identifiers introduced in quotation receive the
color of the current macro invocation. The identifiers marked with $(id : name)

receive the color of the code that called the macro. This can be the color of the
top-level object code, as well as the color of some earlier quotation.

We describe our approach formally using a few simple inference rules.
The entire language is flattened to plain flat terms. We are only interested

here in identifiers and macro invocations. Macro invocation are written as terms
of the form macro(name, parameter), while identifiers are denoted id(v, c, g)
where v is the name of identifier, c is its color, and g is global environment for
a given symbol.

A name is a term representation of strings written in the program text.
A color is a term representation of integer, but it can take two special forms
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current() and usesite(). The global environment is a list of namespaces opened
with the using declaration in scope where given identifier was defined. We only
consider terms, where neither name nor color nor environment contain macro()
or id().

After all macros are expanded and colors resolved we can say what each name
binds to. Regular lexical scoping rules apply – some terms define symbols, some
other use it. Use refers to the nearest preceding declaration with the same color.
If there is no such declaration – the symbol is looked up in global environment
enclosed in each symbol.

Γ is a function describing dynamic semantics of compiled macros. It takes
the name of the macro and its parameter as an input and returns the result of
macro application on this parameter. If the macro needs more parameters they
can be easily encoded using cons-like terms.

Identifiers introduced by macros in a hygienic way are denoted
id(v, current(), g) while identifiers introduced with UseSiteSymbol are marked
id(v, usesite(), g) in result of this function. The global environment g there comes
from the context within which the macro was defined. Top-level object code is
already colored with a single unique color.

e1 → e′1 . . . en → en

F(e1, . . . , en) → F(e′1, . . . , e
′

n
)

(Mon) where F /∈ {macro, id}

id(v, x, g) → id(v, x, g)
(MonId)

Γ (m, e) ⇒
(u,g

′)
c e′ e′ → e′′

macro(id(m, u, g′), e) → e′′
(Expand) where c is a fresh color

e1 ⇒
(u,g

′)
c e′1 . . . en ⇒

(u,g
′)

c en

F(e1, . . . , en) ⇒
(u,g′)
c F(e′1, . . . , e

′

n
)

(ColMon) where F /∈ {id}

id(v, usesite(), g) ⇒
(u,g′)
c id(v, u, g′)

(ColUse)

id(v, current(), g) ⇒
(u,g′)
c id(v, c, g)

(ColCur)

id(v, x, g) ⇒
(u,g′)
c id(v, x, g)

(ColSkip) where x /∈ {current(), usesite()}

Definition 1. We say that e is valid if it does not contain terms of the form

id(v, current(), g) and id(v, usesite(), g).

Definition 2. We say that e is in normal form if it is valid and does not contain

macro in head of any term.

Normal form is thus an object code without macro invocation and with full
color information.
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Theorem 1. For any valid e, there exists is e′ in normal form, such that it can

be proven that e → e′.

Proof. Rules for both → and ⇒ are syntax-directed and defined for all terms.
Thus, for any e there exists e′, such that e → e′. Moreover, usage of → eliminates
all occurrences of macro(), usage of ⇒ guarantees elimination of all current()
and usesite() introduced by macros. ut

9.3 Compiling and loading

A key element of our system is the execution of meta-programs during the
compile-time. To do this they must have an executable form and be compiled
before they are used.

Macros after compilation are stored in assemblies (compiled libraries of code).
All macros defined within an assembly are listed in its metadata. Therefore,
when linking an assembly during the compilation is requested by user, we can
construct instances of all macro classes and register them by names within the
compiler.

Each macro resides in a namespace. The name of the macro is prefixed with
the name of the namespace. To use short name of macro it is necessary to issue
the using declaration for the respective namespace. This works exactly the same
as for regular functions. If a macro defines a syntax extension, it is activated only
if using for respective namespace is in force.

This is an industrial strength design. It allows macro usage without names-
pace pollution, syntax extensions can be loaded on demand, and all macros can
be used by programmers unaware of the very idea of meta-programming.

9.4 Separate Compilation

The current implementation requires macros to be compiled in a separate pass,
before the compilation of the program that uses them. This results in inability
to define and use a given macro in the same compilation unit. While we are
still researching the field of generating and running macros during the same
compilation our current approach also has some advantages.

The most important one is that it is simple and easy to understand – one
needs first to compile the macros (probably being integrated into some library),
and then load them into the compiler and finally use them. This way the stages
of compilation are clearly separated in a well understood fashion – an important
advantage in the industrial environment where meta-programming is a new and
still somewhat obscure topic.

The main problem with ad-hoc macros (introduced and used during the same
compilation) is that we need to first compile transitive closure of types (classes
with methods) used by given macro. This very macro of course cannot be used
in these types.

This issue may be hard to understand by programmers (“why doesn’t my
program compile after I added new field to this class?!”). On the other hand,
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such a dependency-closed set of types and macros can be easily split out of the
main program into the library.

Experiences of the Scheme community show [5] how many problems arise
with systems that do not provide clear separation of compilation stages. Indeed,
to avoid them in large programs, manual annotations describing dependencies
between macro libraries are introduced.

10 Related work

10.1 Scheme hygienic macros

Our system has much in common with modern Scheme macro expanders [1]:

– Alpha-renaming and binding of variables is done after macro expansion,
using the context stored in the macro in use site

– Macros can introduce new binding constructs in a controlled way, without
possibility to capture third party names.

– Call site of macros has no syntactic baggage, the only place where special
syntax appears is the macro definition – this implies simple usage of macros
by programmers not aware of meta-programming.

Still maintaining the above features we embedded the macro system into a
statically typed language. The generated code is type-checked after expansion.
We also provide a clear separation of stages – meta-function must be compiled
and stored in a library before use.

Works on Scheme last quite long, and many interesting features have been
proposed. For example first-class macros in [9] seem to be possible to implement
in Nemerle by simply passing functions operating on object code.

10.2 Template Haskell

There are interesting differences between Template Haskell [2] and Nemerle
macros:

– Resolving bindings during translating of quotations brings ability to reason
about type-correctness of object code, before it is used. It allows detecting
errors much earlier. Nevertheless, the presence of $ splicing construct makes
typing postponed to next stage of compilation, in which case new bindings
must be dynamic.

– Template Haskell macros are completely higher-order, like any other func-
tion: they can be passed as arguments, partially applied, etc. This however
requires manually annotating which code should be executed at compile-
time. We decided to make macros callable simply by name (like in Scheme),
so their usage looks like calling an ordinary function. We are still able to
use higher-order functions in meta-language (functions operating on object
code can be arbitrary), so only the top meta-function (prefixed with macro

is triggering compile-time computations.
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– We do not restrict declaration splicing to the top-level code and we also
do not introduce a special syntax for macros introducing them. This seems
a good way of taking advantage of binding names after macro expansion
and imperative style present in Nemerle. It is natural for an imperative
programmer to think about introduced definitions as about side effects of
calling macros, even if these calls reside within quoted code.

– We introduce macros operating on type declarations, which are able to im-
peratively modify them. Moreover, they look like attributes attached to type
definitions, so again programmer does not have to know anything about
meta-programming to use them.

There are still many similarities to Template Haskell. We derive the idea of
quasi-quotation and splicing directly from it. Also the idea of executing functions
during compilation and later type-checking their results is inspired by Template
Haskell.

10.3 C++ templates

C++ templates [11] are probably the most often used meta-programming system
in existence . They offer Turing complete, compile time macro system. However,
it is argued if the Turing-completeness was intentional, and expressing more
complex programs entirely in the type system, not designed for this purpose is
often quite cumbersome. Yet, the wide adoption of this feature shows need for
meta-programming systems in the industry.

There are a few lessons we have learned from C++ example. First is to keep
the system simple. Second is to require macro precompilation, not to end up
with various problems with precompiled headers (a C++ compiler must-have
feature, because of performance).

10.4 CamlP4

CamlP4 [12] is a preprocessor for OCaml. Its LL(1) parser is completely dynamic,
thus allowing quite complex grammar extensions to be expressed. Macros (called
syntax extensions) need to be compiled and loaded into the parser prior to be
used. Once run, they can construct new expressions (using quotation system),
but only at the untyped parse tree level. It is not possible to interact with
compiler in more depth.

10.5 MacroML

MacroML [6], the proposal of compile-time macros on top of an ML language,
has similar assumptions to Template Haskell by means of binding names in quo-
tations before any expansion. It additionally enables pattern for introducing hy-
gienic definition capturing macro use-site symbols (similar to our
UseSiteSymbol()). All this is done without need to break typing of quotation
before expansion.

Macros in MacroML are limited to constructing new code from given parts,
so matching and decomposing of code is not possible.
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10.6 MetaML

MetaML [7] inspired both Template Haskell and MacroML by introducing quasi-
quotation and idea of typing object code. It was developed mainly to operate
on code and execute it during runtime, so it represents a little different field of
research than ours.

11 Further work

– Runtime program generation is still very wide research area for our meta-
system. It would be useful to optimizations based on runtime only accessible
data.

– We will focus on implementing interface to Aspects-Oriented programming
features in Nemerle. It seems to be a good way of introducing meta-program-
ming paradigm to commercial environment.

– Early typing of object code – to detect as many errors as possible dur-
ing macro compilation (as opposite to macro execution) we would support
special kind of typing function. Of course we cannot tell the type of the $()-
splices in the object code (it is obviously undecidable). Additionally we are
restricted by binding of identifiers made at post-expansion time, but still we
can reject programs like <[ 1 + (x : string) ]>.
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