Nemerle

Introduction to a Functional .NET Language

Michat Moskal
University of Wroctaw

Pawet W. Olszta
University of Wroctaw

Kamil Skalski
University of Wroctaw

Computer Science Institute Computer Science Institute Computer Science Institute

Przesmyckiego 20
Poland, 50-151 Wroctaw

moskal@nemerle.org

Przesmyckiego 20
Poland, 50-151 Wroctaw

olszta@nemerle.org

Przesmyckiego 20
Poland, 50-151 Wroctaw

skalski@nemerle.org

ABSTRACT

Nemerle is a new functional language designed from the ground up for the .NET. In this paper we have
focused on features absent in traditional ML-like and object-oriented languages: variant inheritance,
assertions and powerful code-generating macros. We also gave concern for the syntax and the “spirit” of
Nemerle that makes it a good transition language for programmers with C# background.

Keywords

Functional programming, programming languages, metaprogramming.

1. MOTIVATION

Our objective was to create a statically typed func-
tional language with well founded .NET [ISO03b]
interoperability. The .NET environment, especially
since the introduction of generics [Kenn01], pro-
vides an excellent platform for high-level language
implementation which:

e comes with a rich class library in the core
system

e gives access to vast cache of additional third
party libraries

e provides automatic garbage collection and se-
curity features

e handles native code generation and low-level
optimizations (JIT)

e guarantees portability of executables

e allows integration with existing development
tools

e etc. etc.

Of course, the framework is strongly object-orie-
nted and primarily focused on traditional object-
oriented and imperative languages. Therefore po-
rts of the existing functional languages to the .NET
did not fit in as well as, for example, C# [ISO03a)
does. Addressing this issue was the main idea be-
hind the design of Nemerle.

In comparison to Haskell [Jon99] or SML [Mil91],
Nemerle is not a pure language in the functional
sense, allowing the programmer to create com-
pletely object-oriented and imperative programs.
This makes Nemerle a good transition language
for people with C-like imperative and object-orie-
nted languages background. They can take ad-
vantage of the language imperative features until
they gradually learn how to program in a func-
tional fashion.

An easy access to imperative constructs is only
one of the requirements needed in such a transi-
tion language. Probably the hardest thing about
learning ML is understanding the compiler error
messages about typing mismatches. It may seem
odd at first glance, but this is the reality — the type
inference is very nice when it works, but when it

fails, you are stuck with error messages hundred
lines from the place of the the real error.

We have decided to avoid language constructions
that produce typing errors in ML, while generat-
ing syntax errors in other languages (for example
function application being just €); requiring the
typing to be explicit, at least for global functions
— implicit typing is not really possible to achieve
when aiming for a good support for methods over-
loading.

It seems easy to observe that it is the quality
of the design of the object-oriented system that
determines usability of a programming language.
While the existing object-oriented extensions to
functional languages are appealing because of their
elegance, they do not fit the .NET framework at
all. We have decided to make our object-oriented
system simply mirror the .NET design.

2. OVERVIEW

At the high level Nemerle can be characterized as
a combination of C# at the class level and a ML-
like language at the expression level. However, the
syntax of the ML fragment is much less ambiguous
and more C-like than Algol-like. The result is an
expression-oriented language with a feeling of C+#.

Of course we also need variants!, pattern match-
ing and functional values. These can be thought
of as extensions to the base C#-like language.

There are some other facts about Nemerle that are
implied by the “not-so-ML-like .NET language”
paradigm:

e The language is statically typed, but dyna-
mic casting is available and can be used when
needed.

e The language combines functional, object-
oriented, and imperative features.

e The object system is a one-to-one mapping of
CLR’s — making it fairly easy to understand.

e The language interoperates fully with other
.NET languages — it is both a CLS consumer
and producer.

In the following sections we will show how the lan-
guage looks like and how is it different from ML
and C#. The reader is assumed to have some ba-
sic knowledge about both ML and C#.

!Called datatypes in SML, and sometimes sum types
in Caml.

It is important to mention that the language is still
evolving and that its design is quite flexible. Es-
pecially assertions and macros are relatively new
features. We are open to any suggestions.

3. THE LANGUAGE

The top-level program structure reassembles C+#.
There are namespaces, then classes and finally
methods. We also have modules (classes with all
members static and public) and variants. Let us
look at the famous example:

class Hello {
public static Main () : void {
System.Console.WriteLine ("Hello, "
+ "I have {0} years!", 22);

Another way to write it could be:

using System.Console;

module Hello {
public Main () : void {
WriteLine ("Hello cruel world.");
}
}

The basic building block of a method is a sequence.
A sequence groups local definitions (specified with
the def keyword), expressions computed for their
side effects and the final expression returned as

the value of entire sequence?.

public static factorial (x : int) : int
{
def loop (acc, x) {
if (x <= 1)
acc
else
loop (acc * x, x - 1)
}
loop (1, x)
}

In this example the local function is implicitly
typed — its type is inferred automatically by the
compiler. Global functions are explicitly typed by
design of the language.

2We put here value bindings and side-effect expres-
sions into one can. This is exactly how it works in
imperative languages and (under the hood) in eager
functional languages. It models real world behavior
better, and should be easier to understand.

Mutable values

Mutable local values are defined using declarations
like mutable x = expression ;. The value x can be
later used as a value bound with def without any
explicit dereference operator?, but can be assigned
using the assignment operator (=).

public static factorial (x : int) : int
{
mutable acc = 1;
mutable k = n;
while (k > 0) {
acc = acc * k;
k=k-1;
+;

acc

The while loop should be considered as just a
different form of tail recursion. It is in fact imple-
mented as a macro which generates the following
code:

public static factorial (x : int) : int
{
mutable acc = 1;
mutable k = n;
def loop O {
when (k > 0) {
acc = acc * k;
k=k - 1;
loop O
}
};
loop O;
acc

Our optimizer is clever enough to recognize that
it needs no new loop method here — it will just
insert the br opcode at the IL level.

The mutable keyword can be also used as a mod-
ifier on fields. The contents of such fields can be
modified using the same assignment operator.

Variantsand pattern matching
Variants are compiled to subclassing and should
be thought of as subtypes. For example:

variant BinaryTree <’a> {
| Leaf { val : ’a; %}

3Like the ! operator in ML.

| Node { left : BinaryTree <’a>;
val : ’a;
right : BinaryTree <’a>; }

Would be compiled to:

class BinaryTree<A> {}

class Node<A> : BinaryTree<A> {
BinaryTree<A> left;
A val;
BinaryTree<A> right;

b

class Leaf<A> : BinaryTree<A> {}

However, in the absence of of generics support
in the current Framework release type qualifiers
are stored as attributes alongside the type decla-
rations.

Of course we can use regular ML-like matching
over variants:

count<’a> (t : BinaryTree <’a>) : int {
match (t) {
| Node (1, _, r) =>
count (1) + 1 + count (r)
| Leaf => 1
¥
}
‘Which can be shortened to:
count<’a> (t : BinaryTree <’a>) : int {

| Node (1, _, r) =>
count (1) + 1 + count (r)
| Leaf => 1

The ’a after count quantifies following occurrenc-
es of ’a.

There is one tricky thing about the second line of
our example. It could have been written in any of
the following ways:

| (Node) as n =>
count (n.left) + 1 + count (n.right)
| Node (1, _, r) =>
count (1) + 1 + count (r)
| Node { left = 1; right = r } =>
count (1) + 1 + count (r)

| Node { left =1; val = _;
right = r } =>
count (1) + 1 + count (r)

In fact, when the compiler sees a tuple pattern and
expects a record pattern, the tuple is transformed
into a record. It is therefore not so painful to
require variant members to be named.

It is also possible to have deep patterns like Foo
(Bar (Baz)), to match constants and to match real
tuples. We also support pattern guards — that is
condition checked after pattern has matched.

Variant inheritance

The subtyping model allows the variants to carry
slightly more information then their ML counter-
parts. In particular it is possible to make the vari-
ant base class have some fields, methods or even
derive from some other class. This way all variant
options can have some common part. An example
(taken from Nemerle compiler, which is written in
Nemerle itself):

class Located {
file : string;
line : int;

}

variant Expr extends Located {
| E_call { fn : Expr;
parms : list <Expr>; }
| E_ref { name : string; }

}

public static dump (e : Expr) : void {
print ("// " + e.file + ": " +
e.line.ToString ());
match (e) {
| E_ref (name) => print (name)
| E_call (fn, parms) =>
dump (fn);
List.iter (dump, parms)
}
}

Constrained parametric types

Types can be parametrized over other types. Type
arguments can be constrained. This works the
same way as generics do in IL. It is also possible
to parametrize methods.

variant tree <’a>
where ’a :

{

IComparable <’a>

| Node {
left : tree <’a>;
data : ’a;
right : tree <’a>;
}
| Tip
}

This is the Nemerle way to do things that would
have been done with functors in ML-like langua-
ges. It is not strictly as powerful, but seems to be
good enough in practice and integrates well with
the .NET framework.

4. ASSERTIONS

Currently we have C-like assert implemented as
a macro. We plan implement have require and
ensure to support design by contract, as well as
several special assertions for mutable value enforc-
ing invariants.

e mutable values guarded with assertions —
update of this very value triggers associated
assertion

e guard assertions that are checked after up-
date of any value directly referenced from the
assertion body; checks are performed until
the end of the current block

It is possible to attach the guard assertions to
local values, instance fields and static fields (global
values).

We sometimes want assertions like x + y == 5 to
hold, with mutable x and y. To allow update of
x immediately followed by update of y a trans-
action block is introduced. Assertions to be trig-
gered during the transaction block are stacked,
and executed when the control leaves it.

It is to be reconsidered when exactly assertions
are checked. Enforcing a check after each update
can be hard in presence of parameters passed by
ref.

5. MACROS

Macros in Nemerle have much more to do with
Meta Haskell [Shea02], CamlP4 [CamlP4] or Sche-
me Lisp code-generating macros, than with macros
in the languages like C. Macros are essentially
compiler plugins — pieces of the Nemerle code that
take type or expression abstract syntax trees (or
AST for short) and return some other expressions
or types (also as AST).

Macros are by definition Turing-complete*. Mac-
ros can access external files, extract typing infor-
mation from a running database and generally do
whatever you can imagine.

Macros are executed at the compilation time. The
code they generate is later statically type checked.
Macros are thus safe. There is always a risk that a
macro will crash (or loop) during the compilation,
but there is no way to avoid that while retaining
its expressiveness.

As said before, the macros are written in Nemerle
itself. In principle it would be possible to use any
other .NET language, but Nemerle provides a spe-
cial code quotation syntax to construct and walk
its own AST. It provides a clear separation of the
meta-language from the object language it is de-
scribing.

The macros can be also executed at the run time,
taking advantage of dynamic aspects of the .NET
framework. This can be used for example to de-
velop programming language interpreters, or to
specialize the code for efficiency.

Our meta-system is closely interleaved with the
compilation process. It can perform partial typ-
ing of program’s AST. Compiler internal typing
procedures are executed by macro code in arbi-
trary order and their result can be analyzed, giv-
ing much more information about the program.

Usage
Example uses of macros:

o extending the syntax of the language

e embedding special purpose sublanguages in
Nemerle:
— printf and scanf like functions

— binding optional and named groups in
regular expression to local variables

— $-interpolation like in Bourne shell or
Perl

— binding results of SQL queries to local
variables in a type safe way

— special syntax for XPath or some other
XML-matching constructions

e generation of AST from external files

— Yacc and Burg-like tools

4Tt is not by accident like in some other languages.

— generating types from an XML schema
or DTD

e generation of external files based on AST

— pretty printing of the generated or orig-
inal code

e generation of AST based on other AST

— generating XML serialization methods

— specialization of the code at the source
language level

— support for Aspects-Oriented Program-
ming by adding cross-cutting “concerns”
to the program in algorithmic and arbi-
trarily flexible way

Example: regular expression macro

This macro matches given string against pattern
in sequence binding matched groups to variables.
Not the use of printf macro in this example.

regexp match (s) {
| "ax.+" => printf ("a\n");
| @ (?<num : int>\d+)-\w+" =>
printf ("%d\n", num + 3);
| "(?<name>(Ala|Kasia))? ma kota" =>
match (name) {
| None => printf ("noname?\n")
| Some (n) => printf ("%s\n", n)
}
| _ => printf ("default\n");
}

Example: SQL queries macro

This macro requires an SQL parser, and access to
the database we are working on, so that the types
of table columns and stored functions can be de-
termined. It is necessary to determine the types of
SQL expressions, which can be later used to pro-
duce source language bindings for values returned
by SQL queries.

ExecuteReaderLoop (conn,
"SELECT salary, LOWER (name) AS lname"
" FROM employees"
" WHERE salary > $(min_salary * 3)")
print ("$lname : $salary\n")

And the result:

def cmd = SqlCommand (
"SELECT salary, LOWER (name)"
" FROM employees"

WHERE salary > Qparml", conn);
cmd.Parameters.Add ("@parml",
min_salary * 3);

def r = cmd.ExecuteReader ();
while (r.Read ()) {

def salary = r.GetInt32 (0);

def lname = r.GetString (1);

printf ("%s : %d\n", lname, salary)
}

Example: A samplemacroimplementation
This is a sample implementation of a macro that
adds the C#-like foreach loop to the language
(together with the special syntax for this constr-
uct). This code comes directly from the compiler
implementation.

macro @foreach (iter : funparm,
collection, body)
syntax ("foreach", "(", iter, "in",
collection, ")", body)
{
match (iter) {
| <[funparm: $(iname : var)
: $ty 1> =>
<[def enumerator =
$collection.GetEnumerator ();
while (enumerator.NextMove ())
{
mutable $(iname : var) =
(enumerator.Current :> $ty);
$body;
}

| _ =
Message.fatal_error (
"iterator in ‘foreach’ must be "
+ "id with optional type")

The code generated by the presented macro is con-
structed by the quotation construct in lines 6—
13. Note that it creates code, which uses another
syntax-extending macro, the while loop.

6. CODE GENERATION

The typed abstract syntax tree of expressions is
converted into an intermediate functional descrip-
tion of a stack machine which is later used to build
the compiler output using the APT of
System.Reflection.Emit

Optimizations are performed on both the typed
AST level as well as on the intermediate represen-
tation level. For example tail calls are marked as

such during AST generation, while matching au-
tomata generation is performed after intermediate
code is generated.

Tail call elimination

We have implemented tail calls using the tail.
prefix available in IL. However, it did not bring
any improvements to the execution speed, it even
slowed things down by a factor of 15%.

For tail calls to the current function, we have im-
plemented simple transformation to argument as-
signment and goto. It brought a little speed im-
provement (over the version without tail calls),
but reduced memory usage by about 20% (com-
pared to the same version). Later we have im-
plemented real loops (that is we do not always
generate new method for local functions now), it
made things faster by about 12%.

Matching optimizations

We are working on good matching code genera-
tion using a hashing function and binary search
automates. This is, however, in a very early stage
yet.

7. SUMMARY

We have shown the key points of a new functional
language for the .NET framework. The language
combines well-known concepts in a unique fashion.
We believe that it could be used to teach the basics
of functional programming and the .NET. We also
hope it can be used outside academia as a real life,
industry language.

8. REFERENCES

[Kenn01] Kennedy A., Syme D. Design and
implementation of generics for the NET
Common language runtime in ACM
SIGPLAN 2001 conf. proc., Snowbird, Utah,
ACM Press, pp. 1-12, 2001.

[Mil91] Milner R., Tofte M., Harper R. The
Definition of Standard ML. The MIT Press,
1991.

[Jon99] Jones S. P., Hughes J. Report on the
Programming Language Haskell 98: A
non-strict, purely functional language.
Technical Report YaleU/DCS/RR-1106,
Dept. of Computer Science, Yale University,
1999.

[Shea02] Sheard T., Jones S. P.. Template
meta-programming for Haskell. In
Proceedings of the Haskell workshop, pp.
1-16. ACM Press, 2002.

[ISO03a] International Organization for
Standardization. C# Language Specification,
ISO/IEC 23270:2003, 2003.

[ISO03b] International Organization for
Standardization. Common Language
Infrastructure, ISO/IEC 23271:2003, 2003.

[CamlP4] http://caml.inria.fr/camlp4/

