
libsbml
Developer’s Manual

Ben Bornstein

bornstei@cds.caltech.edu

The SBML Team
Control and Dynamical Systems, MC 107-81

California Institute of Technology, Pasadena, CA 91125, USA

http://www.sbml.org/

October 6, 2004

libsbml Version 2.2.0

This and other projects of the SBML Team are supported by the following organizations: the Na-
tional Institutes of Health (USA); the International Joint Research Program of NEDO (Japan); the JST
ERATO-SORST Program (Japan); the Japanese Ministry of Agriculture; the Japanese Ministry of Ed-
ucation, Culture, Sports, Science and Technology; the BBSRC e-Science Initiative (UK); the DARPA
IPTO Bio-Computation Program (USA); the Army Research Office’s Institute for Collaborative Biotech-
nologies (USA); the Air Force Office of Scientific Research (USA); the California Institute of Technology
(USA); the University of Hertfordshire (UK); the Molecular Sciences Institute (USA); and the Systems
Biology Institute (Japan).

http://www.sbml.org/

Contents
1 Quick Start 3

1.1 Linux, MacOS X and Solaris . 3
1.2 Windows . 3

2 Introduction 3
3 Detailed Instructions for Configuring and Installing the Library 5

3.1 Instructions for Linux, MacOS X and Solaris . 5
3.2 Instructions for Microsoft Windows . 7

4 SBML Classes in C 8
4.1 Primitive Types . 9
4.2 Object Creation and Destruction . 9
4.3 Accessing Fields . 11
4.4 Lists . 16
4.5 Enumerations . 17
4.6 Abstract Classes . 18
4.7 Fields Inherited from SBase . 18
4.8 Typecodes . 21

5 Reading and Writing SBML Files 21
5.1 A Simple Example of Reading SBML . 23
5.2 XML Schema Validation . 25
5.3 Writing SBML Files . 26

6 Handling of Mathematical Formulas and MathML 26
6.1 Reading and Writing Formulas in Text-String Form . 26
6.2 Reading Formulas in MathML Form: MathMLDocument t and ASTs 28
6.3 Differences between SBML Level 1 Formulas and MathML 29
6.4 Additional Notes about the Handling of Mathematical Formulas 29

7 Levels of SBML 30
8 Checking the Consistency of SBML Models 32
9 Special Considerations and Known Issues 33

9.1 Conformance to SBML . 33
9.2 Issues Related to XML Parsers . 33

10 Acknowledgments 34
A Lists and ListOf t 35
B Abstract Syntax Trees and ASTNode t 35

B.1 Methods for Manipulating AST Nodes . 36
B.2 Notes about ASTNode . 40

References 41

2

1 Quick Start

libsbml requires a separate XML library for low-level XML tokenizing and Unicode support. It
currently supports the Xerces-C++ and Expat XML libraries on Linux, Windows, MacOS X and
Solaris. Many Linux systems provide one or both of these libraries either as part of their standard
distribution or as an optional RPM, Debian or Mandrake package. For more information, see
http://xml.apache.org/xerces-c/ for Xerces and http://expat.sf.net for Expat.

1.1 Linux, MacOS X and Solaris

If you have obtained the source code distribution of libsbml, then at your Linux, MacOS X or
Solaris command prompt, unpack the distribution, cd into the directory created as a result (e.g.,
libsbml-2.1.0/), and type the following command to configure libsbml for your system:

./configure

To specify Expat explicitly rather than the libsbml default of Xerces, use a command such as
the following instead (and make sure to read about the limitations surrounding the use of Expat
explained in Section 3):

./configure --with-expat

By default, libsbml only builds the C and C++ API library. If you want to configure libsbml to
build the Java, Python, Lisp and/or MATLAB API libraries as well, add the flags --with-java,
--with-python, --with-lisp, and/or --with-matlab to the configure command. For example,

./configure --with-expat --with-java --with-python

Next, compile and install the libsbml library using the following command:

make
make install

To compile programs that use libsbml with GCC (for an example, see Section 5.1):

gcc -o myapp.c myapp.c -lsbml

Note: A Perl binding is available but is not yet hooked into the configuration system. See the
file bindings/perl/README.txt for information about building and installing the Perl bindings

1.2 Windows

Unzip the libsbml distribution and open the resulting folder (which will have a name such as
libsbml-2.1.0-expat or libsbml-2.1.0-xerces). There are debug (libsbmld) and release
(libsbml) versions of libsbml, with .dll and .lib files for both versions in the win32 subdi-
rectory of the libsbml distribution. Header files are located in the subdirectory src/sbml.

Users of Visual C++ should make their Visual C++ projects link with the files libsbml.lib
or libsbmld.lib and generate code for the Multithreaded DLL or Debug Multithreaded DLL
version of the VC++ runtime, respectively.

2 Introduction

This manual describes libsbml, a application programming interface (API) library for reading,
writing and manipulating the Systems Biology Markup Language (SBML; Hucka et al., 2001,
2003; Finney and Hucka, 2003). Currently, the library supports all of SBML Level 1 Version 1 and

3

http://xml.apache.org/xerces-c/
http://expat.sf.net

Version 2, and nearly all of SBML Level 2 Version 1. (The still-unimplemented parts of Level 2
are: support for RDF, and support for MathML’s semantics, annotation and annotation-xml
elements. These will be implemented in the near future.) For more information about SBML,
please see the references or visit http://www.sbml.org/ on the Internet. libsbml is entirely
open-source under the terms of the GNU LGPL, and all source code and other materials are
freely and publicly available.

Some of the features of libsbml include:

• Complete user manual. Documentation is available in the ”docs” subdirectory in both
pre-formatted and source form. Pre-formatted documents are available in PDF, TeX DVI,
and HTML formats.

• Small memory footprint and fast runtime. The parser is event-based (SAX2) and
loads SBML data into C++ structures that mirror the SBML specification. As an example
of libsbml’s performance, the Gepasi generated 100 Yeast file (2Mb; 2000 reactions http:
//www.gepasi.org/gep3sbml.html) loads in 1.18s on a 1 GHz AMD Athlon XP and uses
1.4Mb of memory.

• Well tested: 760 unit tests, 3426 individual assertions. The entire library was
written using the test-first approach popularized by Kent Beck and eXtreme Programming,
where it’s one of the 12 principles. In libsbml, five test cases are responsible for reading
entire SBML files (three are examples from the Level 1 specification document) into memory
and verifying every field of the resulting structures.

• Memory tests: 7536 allocations and frees, 0 leaks. For use by developers, a custom
memory trace facility tracks all memory allocated and freed in both the library and all
test suites. This facility must be enabled at libsbml configuration time with ./configure
--enable-memory-tracing. (For performance reasons memory tracing should be turned
off in production environments.)

Interfaces for C, C++, Java, Python, Lisp, MATLAB and Perl. C and C++
interfaces are implemented natively; the Java, Perl and Python interfaces are implemented
using SWIG, the Simplified Wrapper Interface Generator.

• Full SBML Support. All constructs in SBML Level 1 (Versions 1 and 2) and SBML
Level 2 are supported, with the exceptions noted above (i.e., RDF, and three rarely-used
MathML constructs). The exceptions will be removed in the near future. libsbml handles
such SBML differences as the alternate spellings of species and annotation between the
SBML specifications.

The full-text of <notes> and <annotation> elements (the latter including namespace dec-
larations) may be retrieved from any SBML object. For compatibility with some technically
incorrect but popular Level 1 documents, the parser recognizes and stores notes and anno-
tations defined for the top-level <sbml> element (logging a warning).

• Written in portable, pure ISO C and C++. The build system uses GNU tools
(Autoconf, GNU Make) to build shared and static libraries.

• Support for both the Expat and Apache Xerces-C++ XML Libraries. SBML
Documents are parsed and manipulated in the Unicode codepage for efficiency (this is
Xerces-C++ native format); however, strings are transcoded to the local code page for
SBML structures.

• Full XML Schema Validation. The library can use the Apache Xerces-C++ XML
library, which supports full XML Schema validation. All XML and Schema warning, error
and fatal error messages are logged with line and column number information and may be
retrieved and manipulated programmatically. The XML Schema file used by the parser for
validation is configurable.

A companion document (Bornstein, 2004) provides a detailed reference manual for the API.

4

http://www.sbml.org/
http://www.gepasi.org/gep3sbml.html
http://www.gepasi.org/gep3sbml.html

3 Detailed Instructions for Configuring and Installing the Library

The libsbml distributions can be downloaded from the SBML project area on SourceForge.net,
at http://sf.net/projects/sbml. A link to the download area is also provided on the SBML
project home page, http://www.sbml.org.

Before you can build and use libsbml, you must first make sure you have on your system an XML
library for low-level XML tokenizing and Unicode support. Currently, libsbml can use either
Apache’s Xerces-C++ XML library or James Clark’s Expat XML library on Linux, Windows,
MacOS X and Solaris. Many systems provide one or both of these libraries either as part of their
standard distribution or as an optional RPM or Debian package. For Windows, DLL and LIB file
distributions are available for both Xerces and Expat. For more information, see the following:

• Xerces: http://xml.apache.org/xerces-c/
• Expat: http://expat.sf.net

Note that if you use Expat instead of Xerces, libsbml will not be able to validate SBML input
against the XML Schema for SBML because Expat is not a validating XML parser. Xerces is
currently the only validating parser library usable with libsbml. The implication of this is that
when using Expat, some syntactic errors in SBML inputs may go undetected; examples include
identifiers not using the correct character set, and missing required attributes. (However, the
libsbml consistency checks described in Section 8 can still be performed.) The tradeoff is that
Expat may be faster than Xerces at parsing large models.

Unless instructed otherwise, the libsbml build process will default to using Xerces. A good
way to determine whether Xerces-C++ is installed on your system is to run the configuration
command (see below); it will halt if it cannot find the Xerces-C++ library. You can provide the
configuration command with a flag telling it to use Expat instead of Xerces and you can indicate
where the libraries are located if they are not in standard locations on your system.

3.1 Instructions for Linux, MacOS X and Solaris

3.1.1 Configuring libsbml

After obtaining, uncompressing and unpacking the libsbml distribution, configure the package
by typing the following command at your Linux, MacOS X or Solaris command prompt:

./configure

To specify Expat explicitly rather than the libsbml default of Xerces, use a command such as
the following instead:

./configure --with-expat

If either Expat or Xerces is installed in a non-standard location on your computer system (e.g.,
a home directory), configure will not be able to detect it. In this case, configure needs to be
told explicitly where to find the libraries. Use the following forms:

./configure --with-expat="DIR"

or

./configure --with-xerces="DIR"

where DIR is the parent directory of where the include and lib directories of Xerces or Expat
(whichever one you are trying to use) is located. For example, on MacOS X, if you used Fink to
install Expat in Fink’s default software tree, you would configure libsbml using the following:

./configure --with-xerces="/sw"

5

http://sf.net/projects/sbml
http://www.sbml.org
http://xml.apache.org/xerces-c/
http://expat.sf.net

During the installation phase (i.e., during make install, discussed below), the default lib-
sbml installation commands will copy header files to /usr/local/include/sbml, the (shared
and static) library files to /usr/local/lib, and documentation files in various formats to
/usr/local/share/doc/libsbml-version , by default. To specify a different installation lo-
cation, use the --prefix argument to configure. For example,

./configure --prefix="/my/favorite/path"

Of course, you can combine the flags to configure, giving both --prefix and --with-expat
or --with-xerces to set both options. The libsbml configuration command also supports a
number of other options described below.

3.1.2 Building and Installing libsbml

Once configured, building should be very easy. Simply execute the following commands at your
Linux, MacOS X or Solaris command prompt:

make
make install

Note that you will probably have to perform the make install command as the user ’root’ on
your system if you used the default installation directory (/usr/local) or you set --prefix to
a system directory that only root is permitted to write into.

Finally, on most platforms, you will also need to either run the command ldconfig as user
’root’ (consult the man page for ldconfig if this is unfamiliar), or else set the environment
variable LD LIBRARY PATH in your terminal shell window. (On MacOS X, the variable is named
DYLD LIBRARY PATH.) If you do not do this, attempts to run other programs that were linked
with the libsbml library will probably fail with errors about being unable to find the library.

If all went as it should, libsbml should end up compiled and installed on your system, in either
the default location (/usr/local/) or in the location you indicated during the configuration step.

3.1.3 Additional Options: Interfaces to Java, Python, Lisp and MATLAB

libsbml includes language bindings for Java, Python, Common Lisp and MATLAB, enabling
you to write Java, Python, Lisp and MATLAB programs that call libsbml methods, and work
with libsbml through Python’s, Lisp’s and MATLAB’s interactive modes. Short tutorials for
how to use these facilities are available in the directory docs/formatted.

To enable the library extensions for Java, Python, Lisp and MATLAB, you need to supply addi-
tional options to configure. These options are --with-java, --with-python, --with-lisp, and
--with-matlab. As with other configure options, these three take an optional prefix argument;
for example,

./configure --with-java="DIR"

If you want to build multiple language bindings for libsbml, combine multiple flags together as
in the following example:

./configure --with-java --with-python

The libsbml distribution ships with certain interface files provided, so that you do not need
to have the software necessary to recreate them. However, if you obtained the libsbml dis-
tribution from CVS or want to recreate the files deliberately, you will need need SWIG, the
Simplified Wrapper and Interface Generator. More information about SWIG is available from
http://www.swig.org. At this time, libsbml is known to work only with version 1.3.21 of
SWIG; earlier versions are known not to work and the newest versions have not yet been tested.
To tell configure to enable the use of SWIG to regenerate the interface files, use the --with-swig
option to configure. If your copy of SWIG is installed in a non-standard location, you can specify

6

it on the configure command line like this:

./configure --with-swig="DIR"

As with Expat and Xerces, the /sw directory is what you would specify if you were running on
MacOS X and you used Fink to install SWIG, Python, etc.

3.1.4 Additional Options: Unit Testing

libsbml provides built-in facilities for testing itself. To run the unit tests, a second library
is required, libcheck. Check is a very lightweight C unit test framework based on the xUnit
framework popularized by Kent Beck and eXtreme Programming. Check is quite small and
once installed, it consists of only two files: libcheck.a and check.h. To download Check,
visit http://check.sf.net/. Note: Debian users can find Check as a standard add-on package
(.deb). MacOS X users can find and install Check using the Fink system.

To enable the unit testing facilities in libsbml, add the --with-check flag during configuration:

./configure --with-check

Following this, you must build libsbml and then you can run the tests:

make
make check

The make check step is optional and will build and run an extensive suite of unit tests to verify
all facets of the library. These tests are meant primarily for developers of libsbml and running
them is not required for the library to function properly. All tests should pass with no failures or
errors. If for some reason this is not the case on your system, please submit a bug report using
the facilities at http://www.sf.net/projects/sbml.

3.1.5 Additional Options: Memory Tracing

In addition to the unit tests, a custom memory tracing facility is available. It is disabled by
default and must be enabled explicitly at build time, either as an argument to configure:

./configure --enable-memory-tracing

or, in your own projects, by defining the C preprocessor symbol TRACE MEMORY:

#define TRACE_MEMORY

With memory tracing turned on, every piece of memory in both the library and all test suites is
tracked. At the end of the test run, statistics are printed on total memory allocations, dealloca-
tions and leaks. The memory statistics for the test suites should report zero leaks. If for some
reason this is not the case, please submit a report at http://www.sf.net/projects/sbml.

For performance reasons, memory tracing should be disabled in production environments. It is
disabled by default in libsbml, but if enabled it, you can reconfigure and disable it as follows:

./configure --disable-memory-tracing

After doing this, make sure to rebuild and reinstall the libsbml library.

3.2 Instructions for Microsoft Windows

The Windows distributions of libsbml come in the form of both precompiled binaries (with a
self-extracting installer), and source code. The precompiled binaries come ready-to-use and only
need to be installed. The source distribution is a .zip file containing the libsbml code that
must be extracted in a directory on your system, compiled and installed.

7

http://check.sf.net/
http://www.sf.net/projects/sbml
http://www.sf.net/projects/sbml

As mentioned above, libsbml requires that either the Xerces-C or Expat XML parsing libraries
be available on your computer prior to attempting to compile libsbml. (See the beginning of
this section for tips on obtaining these packages.) The DLL for Xerces or Expat must be placed
in the win32/bin subdirectory of the libsbml directory.

The following are the steps for using Visual Studio to compile libsbml under Windows:

1. In Visual Studio 7, open the file win32/libsbml.vcproj located in the libsbml directory.
In Visual Studio 6, the file is win32/libsbml.dsw.

2. Select the “Options” item out of the “Tools” pull-down menu, and select “Projects/Direc-
tories” (in VS7) or click the “Directories” tab (in VS6). The screen for indicating which
directories contain project-relevant files will then be displayed.

3. For “Show Directories For:”, select “Include Files”. Add the win32/include directory from
the libsbml directory if it is not already shown.

4. For “Show Directories For:”, select “Library Files”. Add the win32/bin directory from the
libsbml directory if it is not already shown. (This is the directory were you should place
the DLLs for Xerces or Expat.)

5. Select the “Rebuild All” option from the “Build” pull-down menu in Visual Studio.

4 SBML Classes in C

The SBML specification, with its UML diagrams, suggests an object-oriented (OO) design. An
API for interacting with SBML would do well to use an object-oriented programming (OOP)
style to lower the inevitable impedance mismatch between specification and implementation.
Unfortunately, the C programming language was not designed with OOP in mind and therefore
does not support many object-oriented concepts. It is possible, however, to construct a minimal
object-like system in C with few, if any, drawbacks. For these reasons, the libsbml API mimics
an object-oriented programming style.

The particular OOP-like style used by libsbml is not revolutionary. In fact, it is quite common
and comprised of only a few simple stylistic conventions:

1. SBML classes are represented as C structs with a typedef shorthand. The shorthand form
is derived by appending t to the name of the SBML class, e.g., Model becomes Model t.

2. C “objects” are nothing more than pointers to specific C structs in memory. These pointers,
instead of the structs themselves, are passed to and returned from “methods” (functions).

3. Functions meant to represent methods of (or messages to) an object are named beginning
with the SBML class, followed by an underscore and ending in the method name. The
functions take the object (pointer to struct) receiving the method as their first argument.
For example, the function prototype for the addCompartment() method of a Model is:

void Model_addCompartment(Model_t *m, Compartment_t *c);

4. Constructor and destructor names are similar to method names, but end in create() and
free(), respectively.

Every SBML class defined in the specification has a corresponding C class (see Table 1 on the
following page). The two SBML enumeration types, UnitKind and RuleType are represented as
C enumerations, but deviate slightly from the rules above (see Section 4.5). Finally, there is one
class, SBMLDocument t, that exists in the libsbml API, but not in SBML Level 1 (though the
equivalent exists in Level 2). It serves as a top-level container for models and stores warnings
and error messages encountered when an SBML document was read (see Section 5).

8

The methods for SBML classes are declared in header files that correspond to the class name
(e.g., Model.h). To include all methods for all classes in one fell swoop, #include SBMLTypes.h.

SBML Class C Class (typedef struct)

SBase SBase t

Model Model t

FunctionDefinition FunctionDefinition t

UnitDefinition UnitDefinition t

Unit Unit t

Compartment Compartment t

Parameter Parameter t

Species Species t

Reaction Reaction t

SpeciesReference SpeciesReference t

ModifierSpeciesReference ModifierSpeciesReference t

SimpleSpeciesReference SimpleSpeciesReference t

KineticLaw KineticLaw t

Rule Rule t

AssignmentRule AssignmentRule t

RateRule RateRule t

AlgebraicRule AlgebraicRule t

CompartmentVolumeRule CompartmentVolumeRule t

ParameterRule ParameterRule t

SpeciesConcentrationRule SpeciesConcentrationRule t

Event Event t

EventAssignment EventAssignment t

SBML Enumeration C Enumeration (typedef enum)

UnitKind UnitKind t

RuleType RuleType t

Table 1: SBML classes and enumerations and their corresponding C class. Italicized classes are abstract,
which sets their C implementation slightly apart from the others. See Section 4.6 for more information.

4.1 Primitive Types

The mapping from SBML primitive types to C is straightforward, as an example will help illus-
trate. A Species has at least one attribute of every primitive type defined by SBML. Figure 1
shows the UML definition for Species and the corresponding C struct side-by-side. The similarity
between the two demonstrates the mapping rules for primitive types:

1. In all cases, the form of UML attribute names, including their capitalization, are preserved
(e.g., initialAmount) when mapped to C struct fields. The names of getters and setters
(see below) reflect these names.

2. SName (in SBML Level 1) and SId (in SBML Level 2) are mapped to standard C strings
(pointers to arrays of char terminated by a NULL or 0 character; e.g., char *name). Note
that the syntax of SName and SId is not yet enforced in the API.

3. SBML types double and integer are mapped to C double and int respectively.

4. Boolean is mapped to C int, where zero represents false and non-zero represents true.

4.2 Object Creation and Destruction

This section and subsequent ones focus on functions or methods to create, destroy and otherwise
manipulate SBML C objects. Since all functions and methods follow the same naming convention,

9

id : SId
name : string {use="optional"}
compartment : SId
initialAmount : double {use="optional"}
initialConcentration: double {use="optional"}
substanceUnits : SId {use="optional"}
spatialSizeUnits : Sid {use="optional"}
hasOnlySubstanceUnits : boolean { use="optional" default="false"}
boundaryCondition : boolean {use="optional" default="false"}
charge : integer {use="optional"}
constant : boolean {use="optional" default="false"}

Species

typedef struct
{
SBASE_FIELDS;
char *id;
char *name;
char *compartment;
union
{
double Amount;
double Concentration;

} initial;
char *substanceUnits;
char *spatialSizeUnits;
int hasOnlySubstanceUnits;
int boundaryCondition;
int charge;
int constant;

} Species_t;

Figure 1: Example: the definition of SBML’s Species in UML (left) and the corresponding Species t C
struct (right) in libsbml. SBASE FIELDS is part of the OOP-like style used to implement objects in C; it is
a macro that expands into the fields defined by SBase. The use of a union for amount and concentration
reflects that these two fields are mutually exclusive in the SBML Species definition.

when discussing them generically, XXX will be used to stand for some class name and YYY some
class attribute.

To instantiate (create) an object use either the XXX create() or XXX createWith() constructor.
To destroy (free) an object use XXX free().

To give a concrete example, the following are the constructors and destructors for SBML’s Species
objects. (The complete list of API methods for Species t and other data objects in libsbml is
available in the libsbml API Reference Manual.)

Species t *Species create (void)

Creates a new Species and returns a pointer to it.

Species t *Species createWith (const char *name, const char *compartment,
double initialAmount, const char *substanceUnits, int boundaryCondition, int charge)

Creates a new Species object with the given name, compartment, initialAmount,
substanceUnits, boundaryCondition and charge and returns a pointer to it. This
convenience function is functionally equivalent to the following:

Species_t *s = Species_create();
Species_setId(s, id); Species_setCompartment(s, compartment); ...;

void Species free (Species t *s)

Frees the given Species.

The XXX createWith() constructors are a convenient way both to create SBML objects and
initialize many of their attributes in a single operation. If XXX create() is used instead, only
attributes with default values (as defined by the SBML specification) will be set. All other
attributes will be marked as not having been set.

When an SBML object is destroyed with XXX free(), all of its strings are freed (see Section 4.3 for
more information) and all of its contained objects are freed (see Section 4.4 for more information).

10

4.3 Accessing Fields

Accessing fields in data structures is accomplished using functions that offer interfaces to getting
and setting the values of the fields. The generic form of these is discussed in this section. To
give concrete examples, we repeatedly use the SBML Species class of objects.

4.3.1 Getters

The getter methods follow the naming convention XXX getYYY(). To give a concrete example,
here are the getters for Species t:

const char * Species getId (const Species t *s)

Returns the id field of this Species.

const char * Species getName (const Species t *s)

Returns the name field of this Species.

const char * Species getCompartment (const Species t *s)

Returns the compartment field of this Species.

double Species getInitialAmount (const Species t *s)

Returns the initialAmount field of this Species.

double Species getInitialConcentration (const Species t *s)

Returns the initialConcentration field of this Species.

const char * Species getSubstanceUnits (const Species t *s)

Returns the substanceUnits field of this Species.

const char * Species getSpatialSizeUnits (const Species t *s)

Returns the spatialSizeUnits field of this Species.

const char * Species getUnits (const Species t *s)

Returns the units field of this Species (SBML Level 1 only).

int Species getHasOnlySubstanceUnits (const Species t *s)

Returns true if this Species’ hasOnlySubstanceUnits field is true, false (0) otherwise.

int Species getBoundaryCondition (const Species t *s)

Returns the boundaryCondition field of this Species.

int Species getCharge (const Species t *s)

Returns the charge field of this Species.

11

int Species getConstant (const Species t *s)

Returns true (non-zero) if this Species is constant, false (0) otherwise.

Notice the Species t passed to each getter is constant. The purpose of this constness is twofold:
(1) it reinforces the notion that a getter simply returns a value and does not modify the state of
the passed-in object and (2) as a result, in certain contexts a compiler may be able to use this
information to perform certain optimizations. Notice also, whenever a getter returns a string, it
is constant (const char *); i.e., it cannot be modified or freed. The reason for this is each struct
tracks and owns all of its internal memory. To modify (or especially free) this memory without
using one of the sanctioned access methods could be particularly disasterous (most likely resulting
in a segmentation or general protection fault). Memory management issues are elaborated in the
discussion of setters in the next section.

Figure 2 provides an example of using getters.

1 /**

2 * Prints some basic information about an SBML Level 2 Species.

3 */

4 void
5 myPrintSpecies (Species_t *s, FILE *stream)
6 {
7 if (s == NULL)
8 {
9 fprintf(stream, "Null species pointer\n");

10 return;
11 }
12
13 const char none[] = "(none)";
14 const char *id = Species_getId(s);
15 const char *name = Species_getName(s);
16 const char *comp = Species_getCompartment(s);
17
18 fprintf(stream, " Species id: %s\n", id != NULL ? id : none);
19 fprintf(stream, " name: %s\n", name != NULL ? name : none);
20 fprintf(stream, "compartment id: %s\n", comp != NULL ? comp : none);
21 }

Figure 2: Demonstrates accessing the fields of an SBML Level 2 object (in this case, Species t) using getter
methods.

4.3.2 Setters

A value is assigned to a field via a set method. Requiring all assignments to be done using setter
methods allows libsbml to track (and the developer to query) the set or unset state of a field
apart from its actual value. The need to distinguish between state and value is critical and is
discussed further in Section 4.3.3. (Earlier versions of libsbml allowed primitive types to be set
directly; however, direct access made it impossible to distinguish between set and unset states of
a field, since all possible values are valid—no sentinel value exists to indicate an unset state.)

The setter methods follow the naming convention XXX setYYY(). The setters for Species t are:

void Species setId (Species t *s, const char *sid)

Sets the id field of this Species to a copy of sid.

void Species setName (Species t *s, const char *string)

Sets the name field of this Species to a copy of string (which must be conform to SName
syntax).

12

void Species setCompartment (Species t *s, const char *sid)

Sets the compartment field of this Species to a copy of sid.

void Species setInitialAmount (Species t *s, double value)

Sets the initialAmount field of this Species object to value and marks the field as set.
This method also unsets the initialConentration field of the Species object.

void Species setInitialConcentration (Species t *s, double value)

Sets the initialConcentration field of this Species to value and marks the field as set.
This method also unsets the initialAmount field.

void Species setSubstanceUnits (Species t *s, const char *sid)

Sets the substanceUnits field of this Species to a copy of sid.

void Species setSpatialSizeUnits (Species t *s, const char *sid)

Sets the spatialSizeUnits field of this Species to a copy of sid.

void Species setUnits (Species t *s, const char *sname)

Sets the units field of this Species to a copy of sname (L1 only).

void Species setHasOnlySubstanceUnits (Species t *s, int value)

Sets the hasOnlySubstanceUnits field of this Species to value (boolean).

void Species setBoundaryCondition (Species t *s, int value)

Sets the boundaryCondition field of this Species to value (boolean).

void Species setCharge (Species t *s, int value)

Sets the charge field of this Species to value and marks the field as set.

void Species setConstant (Species t *s, int value)

Sets the constant field of this Species to value (boolean).

In the case of strings, requiring setter methods also enables clean and simple memory semantics.
The rule is: every SBML object is responsible for its own memory, including SId and SName
strings. Whenever a set method is called, the passed-in string is copied and stored. If the field
being set previously contained a string, it is freed. When XXX free() is called, all strings are
freed.

For example, to set the compartment of a Species object stored in variable s to the string "cell",
you could do the following:

Species_setCompartment(s, "cell");

The effect of passing a NULL pointer as the string argument is to free the previously stored
string and mark the field as unset. The preferred method for doing this, however, is to use the
XXX unsetYYY() class of methods (see Section 4.3.3).

13

4.3.3 Field States

For each optional field without a default value, libsbml tracks both its state and value. The
state of a field indicates whether the field is set (contains a valid value) or unset (contains no
value at all). As mentioned before, the distinction between a set and unset field is critical for
both libsbml and applications that depend upon it to function correctly (in accordance with
the SBML specifications).

Take, for example, the case of outputting SBML for a species. The SBML Species object has
an optional field named charge with no defined default value. Because it’s optional, it need not
ever be read in (specified), written or manipulated. It may not have a value for a given species
in a given model. Upon writing out the definition of the species in a model, libsbml must be
able to determine whether the field has ever been set in order to know whether to output or omit
the field while writing the model.

To determine whether a particular field in a structure is set or unset, calling programs should
use libsbml’s XXX isSetYYY() class of methods. For Species t, the following are available:

int Species isSetId (const Species t *s)

Returns 1 if the id field of this Species has been set, 0 otherwise.

int Species isSetName (const Species t *s)

Returns 1 if the name of this Species has been set, 0 otherwise.
In SBML Level 1, a Species name is required and therefore should always be set. In
Level 2, the name is optional and as such may or may not be set.

int Species isSetCompartment (const Species t *s)

Returns 1 if the compartment field of this Species has been set, 0 otherwise.

int Species isSetInitialAmount (const Species t *s)

Returns 1 if the initialAmount of this Species has been set, 0 otherwise.
In SBML Level 1, a Species initialAmount is required and therefore should always be
set. In Level 2, the initialAmount field value is optional and as such may or may not
be set.

int Species isSetInitialConcentration (const Species t *s)

Returns 1 if the initialConcentration of this Species has been set, 0 otherwise.

int Species isSetSubstanceUnits (const Species t *s)

Returns 1 if the substanceUnits of this Species has been set, 0 otherwise.

int Species isSetSpatialSizeUnits (const Species t *s)

Returns 1 if the spatialSizeUnits of this Species has been set, 0 otherwise.

int Species isSetUnits (const Species t *s)

Returns 1 if the units of this Species has been set, 0 otherwise (SBML Level 1 only).

14

int Species isSetCharge (const Species t *s)

Returns 1 if the charge of this Species has been set, 0 otherwise.

Fields with default values do not have a isSetYYY() method. If the value for such a field is
never supplied by an SBML document or user, the default is used. Therefore, if an isSetYYY()
method did exist, it would always return true (1).

Required fields, on the other hand, do have isSetYYY() methods. There are two points worth
mentioning here. First, it is possible that a value for a required field is not given and a program
may want to check for and handle this case (especially if the program is an SBML validator).
Second, please be aware that in the transition from SBML Level 1 to Level 2, some fields changed
from being required to being optional. If this is the case for a particular field, the documentation
for the corresponding isSetYYY() will state it (as above).

Just as fields may be set and their set state queried, they may also be unset. Unset methods are
named (predictably) XXX unsetYYY(). The methods for unsetting fields in Species are:

void Species unsetName (Species t *s)

Unsets the name field of this Species.
In SBML Level 1, a Species name is required and therefore should always be set. In
Level 2, name is optional and as such may or may not be set.

void Species unsetInitialAmount (Species t *s)

Unsets the initialAmount field of this Species.
In SBML Level 1, a Species initialAmount is required and therefore should always be
set. In Level 2, initialAmount is optional and as such may or may not be set.

void Species unsetInitialConcentration (Species t *s)

Unsets the initialConcentration field of this Species.

void Species unsetSubstanceUnits (Species t *s)

Unsets the substanceUnits field of this Species.

void Species unsetSpatialSizeUnits (Species t *s)

Unsets the spatialSizeUnits field of this Species.

void Species unsetUnits (Species t *s)

Unsets the units field of this Species (Level 1 only).

void Species unsetCharge (Species t *s)

Unsets the charge field of this Species.

Again, for the reason mentioned above, fields with default values do not have unsetYYY() meth-
ods. Similarly, required fields have unsetYYY() methods only if they are declared optional in at
least one of SBML Level 1 and Level 2. Notice, for example, there is an isSetCompartment()
method but no corresponding unsetCompartment() (because a compartment is required for a
Species in both SBML Level 1 and Level 2).

15

4.4 Lists

The Species class of object only contains fields having types SId, SName and primitive types, but
many SBML classes also contain lists of other objects. For example, a UnitDefinition contains a
list of Units, as shown in Figure 3.

kind : UnitKind
exponent : integer {use="optional" default="1"}
scale : integer {use="optional" default="0"}
multiplier : double {use=optional default="1"}
offset : double {use=optional default="0"}

UnitDefinition Unit

id : SId
name : string { use="optional" }
unit : Unit[1..*]

Figure 3: SBML Level 2’s UnitDefinition and Unit.

To help manage this containment relationship, three standard functions are provided by libsbml:
XXX addYYY(), XXX getYYY() and XXX getNumYYY(). For example, the methods for UnitDefini-
tion are:

void UnitDefinition addUnit (UnitDefinition t *ud, Unit t *u)

Adds the given Unit to this UnitDefinition.

Unit t *UnitDefinition getUnit (const UnitDefinition t *ud, unsigned int n)

Returns the nth Unit of this UnitDefinition.

unsigned int UnitDefinition getNumUnits (const UnitDefinition t *ud)

Return the number of Units in this UnitDefinition.

Furthering the example, creating the UnitDefinition mmol/l/s with an identifer of “mmls”,
corresponding to the following SBML,

<listOfUnitDefinitions>
<unitDefinition id="mmls">
<listOfUnits>
<unit kind="mole" scale="-3"/>
<unit kind="litre" exponent="-1"/>
<unit kind="second" exponent="-1"/>

</listOfUnits>
</unitDefinition>

</listOfUnitDefinitions>

could be accomplished with the following C:

UnitDefinition_t *ud = UnitDefinition_createWith("mmls");

UnitDefinition_addUnit(ud, Unit_createWith(UNIT_KIND_MOLE , 1, -3));
UnitDefinition_addUnit(ud, Unit_createWith(UNIT_KIND_LITRE , -1, 0));
UnitDefinition_addUnit(ud, Unit_createWith(UNIT_KIND_SECOND, -1, 0));

List items are numbered starting at zero. For the case above, UnitDefinition getNumUnits(ud)
would return 3 and UnitDefinition getUnit(ud, 1) would return the second Unit structure.
(The UNIT KIND XXX enumerations are discussed later.)

Related to lists is a set of convenience methods for creating and adding SBML objects to a Model
object in a single operation. The rationale is that since a Model is the top-level container for all
other SBML objects, programmers are likely to have handles to them. Another way to construct
the above UnitDefinition t object, but this time inside a Model t, is:

16

Model_t *m = Model_createWith("MyModel");
UnitDefinition_t *ud = Model_createUnitDefinition(m);

UnitDefinition_setName(ud, "mmls");

Model_createUnit(m, Unit_createWith(UNIT_KIND_MOLE , 1, -3));
Model_createUnit(m, Unit_createWith(UNIT_KIND_LITRE , -1, 0));
Model_createUnit(m, Unit_createWith(UNIT_KIND_SECOND, -1, 0));

Model createUnit() creates a new Unit inside the Model m and returns a pointer to it (in this
case the result is discarded). The Unit t is added to the last UnitDefinition t created. One
caveat to be aware of with these methods is the case where no intermediate container exists;
e.g., if no UnitDefinition t were created above. In that case, the call to Model createUnit()
does nothing. More specifically, no Unit t is created, nothing is added to the model, and NULL
is returned.

For more detailed information on lists in libsbml and the ListOf t utility type provided in the
library, see Appendix A.

4.5 Enumerations

SBML has two enumeration types, UnitKind and RuleType (the latter only for SBML Level 1).
These translate directly to C enums with a few support functions for equality testing and con-
verting to and from strings.

typedef enum
{

UNIT_KIND_AMPERE
, UNIT_KIND_BECQUEREL

/* Omitted for space */

, UNIT_KIND_WEBER
, UNIT_KIND_INVALID

} UnitKind_t;

The following are the methods available for UnitKind:

int UnitKind equals (UnitKind t uk1, UnitKind t uk2)

Tests for logical equality between two UnitKinds. This function behaves exactly like C’s
== operator, except for the following two cases:

• UNIT KIND LITER == UNIT KIND LITRE

• UNIT KIND METER == UNIT KIND METRE

where C would yield false (since each of the above is a distinct enumeration value),
UnitKind equals(...) yields true. Returns true (!0) if uk1 is logically equivalent to
uk2, false (0) otherwise.

UnitKind t UnitKind forName (const char *name)

Returns the UnitKind with the given name (case-insensitive).

const char *UnitKind toString (UnitKind t uk)

Returns the name of the given UnitKind. The caller does not own the returned string and
is therefore not allowed to modify it.

17

The last item in the enumeration, UNIT KIND INVALID, is used whenever, as the name im-
plies, the UnitKind is invalid or unknown. The corresponding string representation is “(Invalid
UnitKind)”. When a Unit is created, its kind field is initialized to UNIT KIND INVALID. Also,
UnitKind forName() will return UNIT KIND INVALID if the passed-in name does not match any
known UnitKind.

The same ideas apply to RuleType, except there is no need for RuleType equals(). See
RuleType.h for more information.

Implementation Note: The internal table of UNIT KIND STRINGS is sorted alphabetically and
UnitKind t matches this sort order. Because of this, UnitKind forName() is able to per-
form a binary search to find a matching name, making its complexity O(log(n)). That is,
UnitKind forName() is implemented efficiently.

4.6 Abstract Classes

The SBML specification defines three classes that have no representation apart from subclasses
that specialize (inherit from) them. In OOP parlance, these types are termed abstract. The
abstract SBML classes are listed in Table 2.

SBML Class C Class (typedef struct) SBML Level

SBase SBase t all
Rule Rule t all
AssignmentRule AssignmentRule t Level 1
SimpleSpeciesReference SimpleSpeciesReference t Level 2

Table 2: Abstract SBML classes their corresponding C class. Although all classes are present in libsbml at
the same time, some of the classes only have meaning for certain levels of SBML.

The conventions for abstract classes in the libsbml API are similar to that of other classes with
a few modifications and additions.

Since abstract classes cannot be created or destroyed directly, they have no XXX create() or
XXX free() methods. Instead they have XXX init() and XXX clear() methods which subclasses
use to initialize and free their memory, respectively. Users of the API do not need to worry about
the create and free operations on these classes.

4.7 Fields Inherited from SBase

Every major structure in SBML is derived from an abstract base type called SBase. Figure 4
shows the pseudo-UML definition of SBase itself, while Figure 5 on the next page shows the
overall inheritance hierarchy of SBML. In addition to the relationships shown in Figure 5, all
substructures such as trigger on Event and the listOf lists in SBML are also derived
from SBase.

SBase

metaid : ID {use="optional"}
notes : (ANY : {namespace="http://www.w3.org/1999/xhtml"}) {minOccurs="0"}
annotation : (ANY) {minOccurs="0"}

Figure 4: The definition of SBase in SBML Level 2. See the SBML specifications for an explanation of the
notation.

The practical implication is that every class has methods for working with the metaid, notes
and annotation fields. However, the methods to work with these fields in libsbml are generic:

18

SBase

Compartment

Unit

Model

Reaction

Species

KineticLaw

Parameter

Rule

UnitDefinition

AlgebraicRule SpeciesReference

ModifierSpeciesReference

FunctionDefinition

SimpleSpeciesReference

Sbml EventAssignment

Event

RateRule

AssignmentRule StoichiometryMath

Figure 5: A UML diagram of the inheritance hierarchy of major data types in SBML. Open arrows indicate
inheritance, pointing from inheritors to their parents. In addition to these types, all substructures in SBML
(including, for example, all the listOf lists) are also derived from SBase.

const char * SBase getMetaId (const SBase t *sb)

Returns the metaid field for this SBML object.

const char * SBase getNotes (const SBase t *sb)

Returns the notes field for this SBML object.

const char * SBase getAnnotation (const SBase t *sb)

Returns the annotation field for this SBML object.

unsigned int SBase getColumn (const SBase t *sb)

Returns the column number for this SBML object.

unsigned int SBase getLine (const SBase t *sb)

Returns the line number for this SBML object.

int SBase isSetMetaId (const SBase t *sb)

Returns 1 if the metaid for this SBML object has been set, 0 otherwise.

int SBase isSetNotes (const SBase t *sb)

Returns 1 if the notes for this SBML object has been set, 0 otherwise.

int SBase isSetAnnotation (const SBase t *sb)

Returns 1 if the annotation for this SBML object has been set, 0 otherwise.

void SBase setMetaId (SBase t *sb, const char *metaid)

Sets the metaid field of the given SBML object to a copy of metaid. If object already has
a metaid, the existing string is freed before the new one is copied.

19

void SBase setNotes (SBase t *sb, const char *notes)

Sets the notes field of the given SBML object to a copy of notes. If object already has
notes, the existing string is freed before the new one is copied.

void SBase setAnnotation (SBase t *sb, const char *annotation)

Sets the annotation field of the given SBML object to a copy of annotations. If object
already has an annotation, the existing string is freed before the new one is copied.

void SBase unsetMetaId (SBase t *sb)

Unsets the metaid for this SBML object.

void SBase unsetNotes (SBase t *sb)

Unsets the notes for this SBML object.

void SBase unsetAnnotation (SBase t *sb)

Unsets the annotation for this SBML object.

The first argument to these functions is, of course, an object of type SBase. Since Species inherits
from SBase, i.e., Species t is an SBase, it can be used as the first argument to these functions.
Beware, however, that a cast is required. For example, to set the notes field of some Species
held in variable s, cast the variable to type SBase t:

SBase_setNotes((SBase_t *) s, "My Favorite Species");

The same applies to all other SBML objects.

The libsbml library’s handling of annotation elements merits further explanation. The method
SBase getAnnotation(), listed above, returns the entire annotation string attached to an SBML
data object, including the opening <annotation> XML element. This is useful when reading
SBML model files because it gives access to any XML namespaces defined on the annotation
element. For example, if a model had the following on a structure,

<annotation xmlns:mstb="http://www.sbml.org/2001/ns/matlab-sbmltoolbox">
<mstb:timestamp>2004-May-13 10:30 PST</mstb:timestamp>
<mstb:message>These are my annotations</mstb:message>

</annotation>

then SBase getAnnotation() would return all of the above as one string. (In other words, it
would not return simply what is being the <annnotation> </annotation tags. Similarly, when
creating/setting an annotation, programs should pass the entire annotation string including the
opening <annotation> element to SBase setAnnotation(). Here is an example C program
setting the same annotation string as in the example above:

const char *annotation =
"<annotation xmlns:mstb=\"http://www.sbml.org/2001/ns/matlab-sbmltoolbox\">"
" <mstb:timestamp>2004-May-13 10:30 PST</mstb:timestamp>\n"
" <mstb:message>These are my annotations</mstb:message>\n"
"</annotation>";

SBase_setAnnotation(model, annotation);

20

4.8 Typecodes

Each SBML class has a typecode that is initialized when an object is instantiated. The typecode
is a simple C enumeration, defined in SBMLTypeCodes.h (which is included by the main libsbml
include file, SBMLTypes.h, so client code does not need to include it separately):

/**

* An enumeration of SBML Level 2 types to help identify SBML objects at runtime.

* Abstract types do not have a typecode since they cannot be instantiated.

*/

typedef enum
{

SBML_COMPARTMENT
, SBML_DOCUMENT
, SBML_EVENT
, SBML_EVENT_ASSIGNMENT
, SBML_FUNCTION_DEFINITION
, SBML_KINETIC_LAW
, SBML_LIST_OF
, SBML_MODEL
, SBML_PARAMETER
, SBML_REACTION
, SBML_SPECIES
, SBML_SPECIES_REFERENCE
, SBML_MODIFIER_SPECIES_REFERENCE
, SBML_UNIT_DEFINITION
, SBML_UNIT
, SBML_ALGEBRAIC_RULE
, SBML_ASSIGNMENT_RULE
, SBML_RATE_RULE
, SBML_SPECIES_CONCENTRATION_RULE
, SBML_COMPARTMENT_VOLUME_RULE
, SBML_PARAMETER_RULE

} SBMLTypeCode_t;

The primary reason for the typecode is distinguish specific types of rules in a Model. A Model t
contains a list of rules, but a Rule t in SBML Level 1 may be of one of four specific types:
AlgebraicRule, SpeciesConcentrationRule, CompartmentVolumeRule and ParameterRule.
Having a type code associated with each object allows calling programs to distinguish its type.
Without type codes, it would be impossible.

5 Reading and Writing SBML Files

SBML may be read from a file or an in memory string into an SBMLDocument. libsbml defines
two basic read functions:

SBMLDocument t *readSBML (const char *filename)

Reads the SBML document from the file named by filename and returns a pointer to it.

SBMLDocument t *readSBMLFromString (const char *xml)

Reads the SBML document from the given XML string and returns a pointer to it. The
XML string must be complete and legal XML document. Among other things, it must
start with an XML processing instruction. For example,

<?xml version=’1.0’ encoding=’UTF-8’?>

These functions return a pointer to an SBMLDocument t object. This object represents the whole

21

SBML model; it corresponds to the Sbml class object in the SBML Level 2 specification, but does
not have a direct correspondence in SBML Level 1. (But, it is created by libsbml no matter
whether the model is Level 1 or Level 2.)

SBMLDocument t in Level 2 is derived from SBase, so that it contains the usual SBase fields of
metaid, notes and annotation, as well as two other fields defined by Sbml: level and version.
The following methods provide access to information about the level and version of the SBML
input:

unsigned int SBMLDocument getLevel (const SBMLDocument t *d)

Returns the SBML level of this SBML document.

unsigned int SBMLDocument getVersion (const SBMLDocument t *d)

Returns the SBML version of this SBML document.

Of course, the whole point of reading an SBML file or data stream is to get at the SBML model
it contains. The following method allows access to the Model object within an SBML document:

Model t * SBMLDocument getModel (const SBMLDocument t *d)

Returns the Model associated with this SBMLDocument t object.

libsbml stores warnings and error messages that may be encountered while parsing the XML
input. Each warning or error is a ParseMessage t object. To access the lists of diagnostic
messages in an SBMLDocument t object, use the following methods:

ParseMessage t *SBMLDocument getWarning (SBMLDocument t *d, unsigned int n)

Returns the nth warning encountered during the parse of this SBMLDocument or NULL if
n > getNumWarnings() - 1.

ParseMessage t *SBMLDocument getError (SBMLDocument t *d, unsigned int n);

Returns the nth error encountered during the parse of this SBMLDocument or NULL if n
> getNumErrors() - 1.

ParseMessage t *SBMLDocument getFatal (SBMLDocument t *d, unsigned int n)

Returns the nth fatal error encountered during the parse of this SBMLDocument or NULL
if n > getNumErrors() - 1.

unsigned int SBMLDocument getNumWarnings (SBMLDocument t *d)

Returns the number of warnings encountered during the parse of this SBMLDocument.

unsigned int SBMLDocument getNumErrors (SBMLDocument t *d)

Returns the number of errors encountered during the parse of this SBMLDocument.

unsigned int SBMLDocument getNumFatals (SBMLDocument t *d)

Returns the number of fatal errors encountered during the parse of this SBMLDocument.

22

void SBMLDocument printWarnings (SBMLDocument t *d, FILE *stream)

Prints all warnings encountered during the parse of this SBMLDocument to the given
stream. If no warnings have occurred, i.e. SBMLDocument getNumWarnings(d) == 0, no
output will be sent to stream. The format of the output is:

%d Warning(s):
Line %d, Col %d: %s
...

This is a convenience function to aid in debugging. For example:
SBMLDocument printWarnings(d, stdout).

void SBMLDocument printErrors (SBMLDocument t *d, FILE *stream)

Prints all errors encountered during the parse of this SBMLDocument to the given stream.
If no errors have occurred, that is, if SBMLDocument getNumErrors(d) == 0, no output
will be sent to stream. The format of the output is:

%d Error(s):
Line %d, Col %d: %s
...

This is a convenience function to aid in debugging. For example:
SBMLDocument printErrors(d, stdout).

void SBMLDocument printFatals (SBMLDocument t *d, FILE *stream)

Prints all fatals encountered during the parse of this SBMLDocument to the given stream.
If no fatals have occurred, that is, if SBMLDocument getNumFatals(d) == 0, no output
will be sent to stream. The format of the output is:

%d Fatal(s):
Line %d, Col %d: %s
...

This is a convenience function to aid in debugging. For example:
SBMLDocument printFatals(d, stdout).

There are a few other methods defined by SBMLDocument t, but their discussion is left to Section 7

5.1 A Simple Example of Reading SBML

The following example is included in the libsbml distribution as readSBML.c in the subdirectory
examples. It is not compiled as part of the normal build process, but a Makefile is provided
in the examples subdirectory that can be used to build readSBML.c and other examples. Once
libsbml itself is installed, you should be able to compile the examples by simply typing the
following command in the examples directory:

make

The readSBML program takes a single command-line argument, the name of an SBML file, reads
it into memory and reports some basic information about the file and any warnings or errors
generated by libsbml while parsing the file. Here is an example of using it on some of the
sample SBML files provided in the src/test-data subdirectory of the libsbml distribution. In
this example, the current directory is assumed to be examples.

./readSBML ../src/test-data/l1v1-branch.xml

./readSBML ../src/test-data/l1v1-minimal.xml

./readSBML ../src/test-data/l1v1-rules.xml
etc...

23

1 #include <stdio.h>
2
3 #include "sbml/SBMLTypes.h"
4
5 int
6 main (int argc, char *argv[])
7 {
8 SBMLDocument_t *d;
9 Model_t *m;

10
11 unsigned int level, version;
12
13
14 if (argc != 2)
15 {
16 printf("\n usage: printSBML <filename>\n\n");
17 return 1;
18 }
19
20 d = readSBML(argv[1]);
21 m = SBMLDocument_getModel(d);
22
23 level = SBMLDocument_getLevel (d);
24 version = SBMLDocument_getVersion(d);
25
26 printf("\n");
27 printf("File: %s (Level %u, version %u)\n", argv[1], level, version);
28
29 printf(" ");
30 if (level == 1)
31 {
32 printf("model name: %s\n", Model_getName(m));
33 }
34 else
35 {
36 printf(" model id: %s\n", Model_isSetId(m) ? Model_getId(m) : "(empty)");
37 }
38
39 printf("functionDefinitions: %d\n", Model_getNumFunctionDefinitions(m));
40 printf(" unitDefinitions: %d\n", Model_getNumUnitDefinitions(m));
41 printf(" compartments: %d\n", Model_getNumCompartments(m));
42 printf(" species: %d\n", Model_getNumSpecies(m));
43 printf(" parameters: %d\n", Model_getNumParameters(m));
44 printf(" reactions: %d\n", Model_getNumReactions(m));
45 printf(" rules: %d\n", Model_getNumRules(m));
46 printf(" events: %d\n", Model_getNumEvents(m));
47 printf("\n");
48
49 SBMLDocument_printWarnings(d, stdout);
50 SBMLDocument_printErrors (d, stdout);
51 SBMLDocument_printFatals (d, stdout);
52
53 SBMLDocument_free(d);
54 return 0;
55 }

Figure 6: The text of the program printSBML.c provided in the examples subdirectory of the libsbml
distribution.

The complete text of readSBML is shown in Figure 6.

24

5.2 XML Schema Validation

To have libsbml validate an SBML document against an SBML (XML) Schema when using
a Schema-aware parser such as Xerces requires creating an SBMLReader object and setting the
appropriate schema filename and validation level. The functions for doing this are:

SBMLReader t *SBMLReader create (void)

Creates a new SBMLReader and returns a pointer to it. By default schema validation is
off (XML SCHEMA VALIDATION NONE) and schemaFilename is NULL.

void SBMLReader free (SBMLReader t *sr)

Frees the given SBMLReader.

void SBMLReader setSchemaFilenameL1v1 (SBMLReader t *sr, const char *filename)

Sets the file containing the XML Schema used by this SBMLReader to validate SBML
Level 1 Version 1 documents. The filename should be either (1) an absolute path or (2)
a path relative to the directory containing the SBML file(s) to be read.

void SBMLReader setSchemaFilenameL1v2 (SBMLReader t *sr, const char *filename)

Sets the file containing the XML Schema used by this SBMLReader to validate SBML
Level 1 Version 2 documents. The filename should be either (1) an absolute path or (2)
a path relative to the directory containing the SBML file(s) to be read.

void SBMLReader setSchemaFilenameL2v1 (SBMLReader t *sr, const char *filename)

Sets the file containing the XML Schema used by this SBMLReader to validate SBML
Level 2 Version 1 documents. The filename should be either (1) an absolute path or (2)
a path relative to the directory containing the SBML file(s) to be read.

void SBMLReader setSchemaValidationLevel (SBMLReader t *sr, XMLSchemaValidation t
level)

Sets the level of schema validation used by this SBMLReader. The possible values for
level are:

• XML SCHEMA VALIDATION NONE (0) turns schema validation off.

• XML SCHEMA VALIDATION BASIC (1) validates an XML instance document against an
XML Schema. Those who wish to perform schema checking on SBML documents
should use this option.

• XML SCHEMA VALIDATION FULL (2) validates both the instance document itself and
the XML Schema document. The XML Schema document is checked for violation
of particle unique attribution constraints and particle derivation restrictions, which
is both time-consuming and memory intensive. Few users will be interested in this.

Note that the SBMLReader setXYZ methods above have no effect when using a parser such as
Expat, because it is not a validating XML parser and the settings have no meaning for it.

Once an SBMLReader t object has been created, two variants of the functions readSBML() and
readSBMLFromString() previously discussed in Section 5 become available. These variants can
be thought of as methods of the SBMLReader t class:

25

SBMLDocument t *SBMLReader readSBML (SBMLReader t *sr, const char *filename)

Reads the SBML document using the SBMLReader t object passed in argument sr from
the given filename and returns a pointer to it.

SBMLDocument t *SBMLReader readSBMLFromString (SBMLReader t *sr,
const char *xml)

Reads the SBML document using the SBMLReader t object passed in argument sr from
the character string passed in variable xml and returns a pointer to it. The XML string
in xml must be complete and legal XML document. Among other things, it must start
with an XML processing instruction, i.e.,

<?xml version=’1.0’ encoding=’UTF-8’?>

Schema violations are reported in the SBMLDocument t’s list of ParseMessages t, according to
the principles discussed in Section 5.

5.3 Writing SBML Files

Writing SBML is, in the end, a very simple matter in libsbml. The library provides the following
two methods for this purposes.

int writeSBML (SBMLDocument t *d,
const char *filename)

Writes the given SBML document to the given filename. Returns 1 on success and 0 on
failure (e.g., if the file named by filename could not be opened for writing).

char *writeSBMLToString (SBMLDocument t *d)

Writes the given SBML document to an in-memory string and returns a pointer to it. The
string is owned by the caller and should be freed (with free()) when no longer needed.
Returns NULL on failure.

6 Handling of Mathematical Formulas and MathML

libsbml can read and write MathML 2.0 (Ausbrooks et al., 2001) content in SBML documents
and data streams, as well as translate between MathML and the text-string formulas used in
SBML Level 1. This section describes the library’s capabilities for handling MathML and math-
ematics.

6.1 Reading and Writing Formulas in Text-String Form

In SBML Level 1, mathematical formulas are expressed as text strings using a simple C-like
syntax. In SBML Level 2, mathematical formulas are expressed in MathML syntax. libsbml
helps calling programs smooth over this difference by providing an API that allows working with
formulas in both text-string and MathML form, and to interconvert mathematical expressions
between these forms (to the extent possible by the differences between SBML Levels 1 and 2.)

Formulas in libsbml are represented internally using Abstract Syntax Trees (ASTs). ASTs
are described in detail in Appendix B. When libsbml reads an SBML model, it converts the
expressions into ASTs and stores the ASTs in the corresponding data structures that have math-
ematical formulas (such as in an SBML KineticLaw). Thus, the KineticLaw getMath() method,
for example, returns a pointer to the root of an AST corresponding to the formula stored there.

26

Many software packages provide users with the ability to express formulas for such things as
reaction rate expressions, and these packages’ interfaces often let users type in the formulas
directly as strings. libsbml provides two high-level functions for working with mathematical
expressions in the form of strings: SBML parseFormula() and SBML formulaToString().

ASTNode t *SBML parseFormula (const char *formula)

Parses the given string as a mathematical formula in SBML Level 1 syntax form, and
returns a representation of it as an Abstract Syntax Tree (AST). This function returns
the root node of the AST. If the formula contains a syntax error, this function returns
NULL instead.

char *SBML formulaToString (ASTNode t *tree)

Returns a text-string mathematical expression corresponding to the Abstract Syntax Tree
given as the argument. The caller owns the memory allocated for the returned string and
is responsible for freeing it when it is no longer needed.

Using these methods is easy. The following is a code fragment that illustrates calling the parser
function repeatedly with different formula strings, taking the ASTs returned each time and hand-
ing them back to the formula generator and comparing the strings to make sure they matched.
(This is not something a real application would ever need to do, but it does simply illustrate the
use of these two methods.)

const char *formulae[] =
{
"1",
"2.1",
"2.1e+10",
"foo",
"1 + foo",
"1 + 2",
"1 + 2 * 3",
"(1 - 2) * 3",
"1 + -2 / 3",
"1 + -2e-100 / 3",
"1 - -foo / 3",
"2 * foo^bar + 3.1",
"foo()",
"foo(1)",
"foo(1, bar)",
"foo(1, bar, 2^-3)",
""

};

ASTNode_t *n;
char *s;
int i;

for (i = 0; i < *formulae[i]; i++)
{
n = SBML_parseFormula(formulae[i]); /* Convert string to AST */

s = SBML_formulaToString(n); /* Convert AST back to string */

if (strcmp(s, formulae[i]) != 0)
{
printf("Formula ’%s’ parsed incorrectly\n", formulae[i]);

}

ASTNode_free(n);
free(s);

}

27

Section 6.4 describes some additional points that are worth knowing about the mathematical for-
mula handling in libsbml. For example, Level 1 formula strings and Level 2 MathML expressions
can be interconverted.

6.2 Reading Formulas in MathML Form: MathMLDocument t and ASTs

There may arise situations in which an application needs to convert MathML directly into an
AST. libsbml provides the utility function readMathMLFromString() for this purpose:

MathMLDocument t *readMathMLFromString (const char *xml)

Reads a string containing an XML MathML expression, constructs the corresponding
Abstract Syntax Tree and returns a pointer to a MathMLDocument t object holding the
tree structure.

The object returned by readMathMLFromString() is a simple container for an AST. The class of
this object, MathMLDocument, is not defined by the SBML language standard but is provided in
libsbml as a utility class. MathMLDocument serves as a top-level container for XML documents
containing only MathML; in some ways it mirrors the SBMLDocument class, which acts as
a container for XML documents containing SBML. The definition of MathMLDocument t is as
follows:

/**

* The MathMLDocument

*/

typedef struct
{
ASTNode_t *math;

} MathMLDocument_t;

The following are the functions defined for the MathMLDocument class:

MathMLDocument t *MathMLDocument create ()

Creates a MathMLDocument t object.

void MathMLDocument free (MathMLDocument t *d)

Frees the given MathMLDocument t object.

ASTNode t *MathMLDocument getMath (const MathMLDocument t *d)

Returns the Abstract Syntax Tree representation of the mathematical formula stored in
this MathMLDocument t object.

int MathMLDocument isSetMath (const MathMLDocument t *d)

Returns 1 if the math of this MathMLDocument has been set, 0 otherwise.

void MathMLDocument setMath (MathMLDocument t *d, ASTNode t *math)

Sets the math of this MathMLDocument to the given AST node. The node is not copied
and this MathMLDocument takes ownership of it; i.e., subsequent calls to this function
or a call to MathMLDocument free() will free the AST node (and any child nodes attached
to it).

Note that because the content passed to readMathMLFromString() is handed to an XML parser,

28

the string given as argument must be a complete XML (though not necessarily SBML) document.
The following example illustrates the use of this function with a valid MathML input.

MathMLDocument_t *doc;
ASTNode_t *ast;
char *result;

const char* s = "<?xml version=’1.0’ encoding=’UTF-8’?>"
"<math xmlns=’http://www.w3.org/1998/Math/MathML’>"
"<apply><arccos/><ci> x </ci></apply>"

"</math>";

doc = readMathMLFromString(s);
ast = MathMLDocument_getMath(doc);

The code above would create an AST structure stored in the variable ast. This tree structure
could then be inspected using the AST node methods described in Appendix B.

Finally, libsbml provides two utility methods for writing out MathML represented in ASTs.
Both of the following take a MathMLDocument t class object, convert the expression tree stored
there, and write out the appropriate text in MathML syntax.

int writeMathML (MathMLDocument t *d, const char *filename)

Writes the given MathML document to filename. Returns 1 on success and 0 on fail-
ure (e.g., if filename could not be opened for writing or the MathMLWriter character
encoding is invalid).

char * writeMathMLToString (MathMLDocument t *d)

Writes the given MathML document to an in-memory string and returns a pointer to it.
The string returned is owned by the caller and should be freed (with free()) when no
longer needed. Returns NULL on failure

6.3 Differences between SBML Level 1 Formulas and MathML

The text-string based mathematical formula syntax of SBML Level 1 is mostly compatible with
the representation of formulas in MathML. A few differences exist in the names of predefined
functions such as arccos. Table 3 on the next page gives the mapping between SBML Level 1
and Level 2 function names.

6.4 Additional Notes about the Handling of Mathematical Formulas

The libsbml formula parser has been carefully engineered so that transformations from MathML
to infix string notation and back is possible with a minimum of disruption to the structure of the
mathematical expression.

Figure 7 on page 31 shows a simple program that, when run, takes a MathML string compiled
into the program, converts it to an AST, converts that to an infix representation of the formula,
compares it to the expected form of that formula, and finally translates that formula back to
MathML and displays it. The output displayed on the terminal should have the same structure as
the MathML it started with. The program is a simple example of using the various MathML and
AST reading and writing methods, and shows that libsbml preserves the ordering and structure
of the mathematical expressions.

The string form produced by SBML formulaToString() and written by writeMathMLToString()
is in SBML Level 1 formula string syntax, a simple C-inspired infix notation defined in the
SBML Level 1 specification Hucka et al. (2001). It can therefore be handed to a program that
understands SBML Level 1 mathematical expressions, or used as part of a translation system.

29

SBML Level 1 SBML Level 2

abs abs

acos arccos

asin arcsin

atan arctan

ceil ceiling

cos cos

exp exp

floor floor

log ln

log10(x) log(10, x)

pow(x, y) power(x, y)

sqr(x) power(x, 2)

sqrt(x) root(2, x)

sin sin

tan tan

Table 3: Basic mathematical functions defined in SBML Levels 1 and 2. The underlined functions are different
between the two levels of SBML.

The libsbml distribution comes with an example program in the examples subdirectory called
translateMath that implements an interactive command-line demonstration of translating infix
formulas into MathML and vice-versa.

libsbml offers the ability to translate entire SBML Level 1 models to SBML Level 2, as explained
below, and hopefully in the future will also provide the ability to translate a subset of Level 2
models to Level 1 (though this latter capability is not yet implemented).

7 Levels of SBML

At the time of this writing, there exist 3 flavors of SBML: Level 1 Versions 1 and 2, and SBML
Level 2 Version 1. A software application may need to read and/or write any of these versions,
depending on its purpose. libsbml provides support for all three definitions of SBML.

Along with the methods discussed in Section 5, the SBMLDocument t object class also defines the
following methods that impact how a model is written out:

void SBMLDocument setModel (SBMLDocument t *d, Model t *m)

Sets the Model of this SBML document to the given Model t object. Any previously
defined model in d is unset and freed.

void SBMLDocument setLevel (SBMLDocument t *d, unsigned int level)

Sets the level of this SBML document to level. Valid levels are currently 1 and 2.

void SBMLDocument setVersion (SBMLDocument t *d, unsigned int version)

Sets the version of this SBML document to the given version number. Valid versions are
currently 1 and 2 for SBML Level 1 and 1 for SBML Level 2.

Setting the level using SBMLDocument setLevel() affects the possible fields and values available
when setting and reading fields. Certain translations take place immediately upon changing
levels. For example, if one starts with a Level 1 model and then calls SBMLDocument setLevel()

30

to set the level to 2, the model structure at that moment is translated internally so that such
things as object names are converted to id’s (which do not exist in Level 1).

The C program listed in Figure 8 is provided in the libsbml distribution in the examples
subdirectory. This command-line program takes two arguments: the name of an input file and
the name of an output file. It then translates the SBML in the input file into SBML Level 2 and
writes it out to the named output file. It may be surprising to see how short this program is.

1 #include <stdio.h>
2 #include <string.h>
3 #include "sbml/SBMLTypes.h"
4
5 int
6 main (int argc, char *argv[])
7 {
8 MathMLDocument_t *doc;
9 ASTNode_t *ast;

10 char *result;
11 MathMLDocument_t *new_doc;
12 ASTNode_t *new_mathml;
13 char *new_s;
14
15 const char* expected = "1 + f(x)";
16
17 const char* s = "<?xml version=’1.0’ encoding=’UTF-8’?>"
18 "<math xmlns=’http://www.w3.org/1998/Math/MathML’>"
19 " <apply> <plus/> <cn> 1 </cn>"
20 " <apply> <ci> f </ci> <ci> x </ci> </apply>"
21 " </apply>"
22 "</math>";
23
24 doc = readMathMLFromString(s);
25 ast = MathMLDocument_getMath(doc);
26 result = SBML_formulaToString(ast);
27
28 if (strcmp(result, expected) == 0)
29 {
30 printf("Got expected result\n");
31 }
32 else
33 {
34 printf("Mismatch after readMathMLFromString()\n");
35 }
36
37 new_mathml = SBML_parseFormula(result);
38 new_doc = MathMLDocument_create();
39 MathMLDocument_setMath(new_doc, new_mathml);
40 new_s = writeMathMLToString(new_doc);
41
42 printf("Result of writing AST:\n");
43 printf(new_s);
44
45 return 0;
46 }

Figure 7: Short program to translate MathML into a formula string and back.

31

1 #include <stdio.h>
2 #include "sbml/SBMLTypes.h"
3
4 int
5 main (int argc, char *argv[])
6 {
7 unsigned int errors = 0;
8 SBMLDocument_t *d;
9

10 if (argc != 3)
11 {
12 printf("\nusage: convertSBML <input-filename> <output-filename>\n\n");
13 return 1;
14 }
15
16 d = readSBML(argv[1]);
17
18 errors = SBMLDocument_getNumWarnings(d) + SBMLDocument_getNumErrors(d) +
19 SBMLDocument_getNumFatals(d);
20
21 if (errors > 0)
22 {
23 printf("Error(s):\n");
24
25 SBMLDocument_printWarnings(d, stdout);
26 SBMLDocument_printErrors (d, stdout);
27 SBMLDocument_printFatals (d, stdout);
28
29 printf("Conversion skipped. Please correct the above and re-run.\n");
30 }
31 else
32 {
33 SBMLDocument_setLevel(d, 2);
34 writeSBML(d, argv[2]);
35 }
36
37 SBMLDocument_free(d);
38 return errors;
39 }

Figure 8: The text of the example C program convertSBML.c.

8 Checking the Consistency of SBML Models

libsbml performs a certain amount of validation of SBML inputs at the time of parsing files
and data streams. However, the checks performed are mostly syntactic in nature, based on the
XML Schema for SBML (and as noted elsewhere, using this validation capability requires using
an XML Schema-aware parser such as Xerces).

The libsbml library also implements more extensive semantic tests and consistency checks than
those represented by the XML Schema for SBML. At the time of this writing, over 30 tests
are implemented. Examples of these consistency checks include: testing that compartments’
spatialSizeUnits fields are consistent with their spatialDimensions; testing that species with
hasOnlySubstanceUnits set to true do not also have an initialConcentration; and others.

Consistency checking rules in libsbml (and indeed, in SBML in general) are still experimental;
for this reason, the library does not perform them automatically. Calling programs must request
consistency checking to be invoked explicitly by calling the following method.

32

unsigned int SBMLDocument checkConsistency (const SBMLDocument t *d)

Performs consistency checking on the given SBML document. Calling programs can
query the results of doing the checking by calling SBMLDocument getNumWarnings(),
SBMLDocument getNumErrors(), SBMLDocument getNumFatals(), and related methods.
This method returns (as an integer) the number of consistency errors detected.
Deprecation note: this method was originally named SBMLDocument validate(). The
older name was judged confusing and has been deprecated in favor of the new name.

Here is some additional information about the libsbml procedures for checking the consistency
of an SBML model. The program contains an internal list of consistency checks. These checks are
run sequentially when SBMLDocument checkConsistency() is invoked. libsbml keeps track of
every consistency check executed; if a check returns a negative value (i.e., a failure), it increments
an internal counter and also logs an error message returned by the check. That error message is
logged to the same list of error messages where XML Schema validation errors are stored (that is,
the list kept in the SBMLDocument). The method SBMLDocument checkConsistency() returns
the count of checks failed, and the method SBMLDocument.getNumErrors() returns the length
of the list on SBMLDocument.

9 Special Considerations and Known Issues

This section summarizes special considerations, known issues and caveats surrounding the use
and behavior of libsbml.

9.1 Conformance to SBML

Currently, libsbml supports all of SBML Level 1 Version 1 and Version 2, and nearly all of
SBML Level 2 Version 1. The still-unsupported parts of the Level 2 specification are:

• Support for RDF
• Support for MathML’s semantics elements
• Support for MathML’s annotation elements
• Support for MathML’s annotation-xml elements

9.2 Issues Related to XML Parsers

Using Expat prevents libsbml from performing XML Schema-based validation of SBML input.
This removes a number of verification checks from the parsing stage and may cause unexpected
behavior in the face of malformed or invalid SBML content. Here are some implications of not
performing XML Schema validation:

• The syntax of identifiers (i.e., conformance to SId syntax) will not be verified. This means
that identifiers that are not in conformance to SBML SId specifications will be passed
through without being flagged as invalid.

• Data types of values assigned to fields in a model will not be verified for conformance to
the SBML specification. In some cases this means that those values will not be assigned
to the corresponding object structures created by libsbml. For example, reading a model
containing a compartment definition having a volume of "mumble" (a string instead of a
number) will result in libsbml simply ignoring the value and treating the input as if no
value was supplied.

• Elements present in an SBML input file or data stream, but that are not actually defined
by the SBML specification, will not be noticed. (Such SBML input should be flagged as
invalid, but will not be.)

33

• XML entity references (e.g. XML’s), which are most likely to occur in XHTML
<notes> sections, will be output as their UTF-8 byte sequence instead of the more human
readable entity reference. This is a bug in the Expat support in libsbml, stemming from a
limitation in the API of Expat. (While Expat reads and writes UTF-8 by default, it comes
with no APIs to manipulate or translate Unicode encodings. Writing such a conversion
routine and ensuring it is cross-platform is non-trivial.)

• The methods discussed in Section 5.2, namely the SBMLReader setSchemaFilename****()
methods and SBMLReader setSchemaValidationLevel(), have no effect.

Although it is poorly documented, SBML XML documents must use only the UTF-8 encoding.
Parsing a non-UTF-8 document may fail unpredictably and this particular error may be difficult
to diagnose, because it will happen in the underlying XML parser and not libsbml itself.

10 Acknowledgments

Thanks to Mike Hucka for updating and editing this manual for versions 2.0 and 2.1 of libsbml,
for developing the look-and-feel and the LaTeX style used for this and other SBML-related
manuals, and for developing the LaTeX2HTML macros used to create the HTML version.

34

A Lists and ListOf t

While list-based convenience methods (e.g., XXX getNumYYY()) are provided for every class, it
is possible to access and manipulate each list directly. All lists are themselves objects of type
ListOf t. The full set of list methods are:

unsigned int ListOf getNumItems (const ListOf t *lo)

Returns the number of items in this list.

void ListOf append (ListOf t *lo, void *item)

Adds item to the end of this list.

void * ListOf get (const ListOf t *lo, unsigned int n)

Returns the nth item in this list. If n > ListOf getNumItems(list), it returns NULL.

void ListOf prepend (ListOf t *lo, void *item)

Adds item to the beginning of this ListOf t object.

void * ListOf remove (ListOf t *lo, unsigned int n)

Removes the nth item from the given list and returns a pointer to that item. If n >
ListOf getNumItems(list), it returns NULL.

Since UnitDefinitions maintains a list of Units, the UnitDefinition example presented in Sec-
tion 4.4 could also be written as:

UnitDefinition_t *ud = UnitDefinition_createWith("mmls");

UnitDefinition_addUnit(ud, Unit_createWith(UNIT_KIND_MOLE , 1, -3));
UnitDefinition_addUnit(ud, Unit_createWith(UNIT_KIND_LITRE , -1, 0));
UnitDefinition_addUnit(ud, Unit_createWith(UNIT_KIND_SECOND, -1, 0));

However, this approach is not the preferred one. The best reason to use specific XXX getYYY()
methods over the list API in libsbml is that the former are typed to specific items, whereas
ListOf get() returns a void pointer that must be cast to a specific type. Moreover, the code
resulting from using the XXX getYYY() methods is arguably more readable.

Although many specialized methods are available for accessing various data objects in SBML, the
list API is necessary for accessing such things as the content of notes and annotation elements
on SBML’s listOf*** elements. In addition, the only way to remove an item from a list is to
use the API directly.

B Abstract Syntax Trees and ASTNode t

Abstract Syntax Trees (ASTs) in libsbml are a simple data structure for storing mathematical
expressions. For many applications, the details of ASTs are irrelevant because the applications
can use the text-string based translation functions described in Sections 6.1 and 6.2. However,
other applications do need to read and manipulate ASTs directly. This section describes lib-
sbml’s AST in detail so software authors can write code to work with them.

35

An AST node is a recursive structure containing a pointer to the node’s value (e.g., a number or
a symbol) and a list of children nodes. libsbml provides a number of methods for manipulating
ASTNode t objects, the full set of which is documented in the libsbml API Reference Manual.
The following discussion only covers a subset of all the possible methods.

B.1 Methods for Manipulating AST Nodes

First, there is a set of methods for creating and manipulating libsbml AST nodes and their
children structures:

ASTNode t * ASTNode create (void)

Creates a new ASTNode t object and returns a pointer to it. The returned node will have
a type of AST UNKNOWN and should be set to something else as soon as possible.

void ASTNode free (ASTNode t *node)

Frees the given ASTNode t including any child nodes.

unsigned int ASTNode getNumChildren (const ASTNode t *node)

Returns the number of children of this AST node or 0 is this node has no children.

void ASTNode addChild (ASTNode t *node, ASTNode t *child)

Adds the given node as a child of this AST node. Child nodes are added in left-to-right
order.

void ASTNode prependChild (ASTNode t *node, ASTNode t *child)

Adds the given node as a child of this AST node. This method adds child nodes in
right-to-left order.

ASTNode t * ASTNode getChild (const ASTNode t *node, unsigned int n)

Returns the nth child of this AST node or NULL if this node has no nth child (n >
ASTNode getNumChildren() - 1).

ASTNode t * ASTNode getLeftChild (const ASTNode t *node)

Returns the left child of this AST node. This is equivalent to ASTNode getChild(node,
0);

ASTNode t * ASTNode getRightChild (const ASTNode t *node)

Returns the right child of this AST node or NULL if this node has no right child. If
ASTNode getNumChildren(node) > 1, then this is equivalent to:

ASTNode_getChild(node, ASTNode_getNumChildren(node) - 1);

AST nodes are typed. The list of possible types is quite long, because it covers all the mathemat-
ical functions that are permitted in SBML. Table 4 on the next page shows the list of type names
which are part of the enumeration ASTNodeType t. Most of the names are hopefully fairly-self
explanatory; e.g., AST PLUS stands for the “+” operator, AST REAL signifies a real number, etc.
The following methods can be used to interrogate the type of a given AST node:

36

AST PLUS AST FUNCTION ARCCOTH AST FUNCTION POWER

AST MINUS AST FUNCTION ARCCSC AST FUNCTION ROOT

AST TIMES AST FUNCTION ARCCSCH AST FUNCTION SEC

AST DIVIDE AST FUNCTION ARCSEC AST FUNCTION SECH

AST POWER AST FUNCTION ARCSECH AST FUNCTION SIN

AST INTEGER AST FUNCTION ARCSIN AST FUNCTION SINH

AST REAL AST FUNCTION ARCSINH AST FUNCTION TAN

AST REAL E AST FUNCTION ARCTAN AST FUNCTION TANH

AST RATIONAL AST FUNCTION ARCTANH AST LOGICAL AND

AST NAME AST FUNCTION CEILING AST LOGICAL NOT

AST NAME DELAY AST FUNCTION COS AST LOGICAL OR

AST NAME TIME AST FUNCTION COSH AST LOGICAL XOR

AST CONSTANT E AST FUNCTION COT AST RELATIONAL EQ

AST CONSTANT FALSE AST FUNCTION COTH AST RELATIONAL GEQ

AST CONSTANT PI AST FUNCTION CSC AST RELATIONAL GT

AST CONSTANT TRUE AST FUNCTION CSCH AST RELATIONAL LEQ

AST LAMBDA AST FUNCTION EXP AST RELATIONAL LT

AST FUNCTION AST FUNCTION FACTORIAL AST RELATIONAL NEQ

AST FUNCTION ABS AST FUNCTION FLOOR AST UNKNOWN

AST FUNCTION ARCCOS AST FUNCTION LN

AST FUNCTION ARCCOSH AST FUNCTION LOG

AST FUNCTION ARCCOT AST FUNCTION PIECEWISE

Table 4: The list of AST node types in the enumeration ASTNodeType t.

ASTNodeType t ASTNode getType (const ASTNode t *node)

Returns the type of this AST node.

int ASTNode isConstant (const ASTNode t *node)

Returns true (non-zero) if this AST node is a MathML constant (true, false, pi, exponen-
tiale), false (0) otherwise.

int ASTNode isFunction (const ASTNode t *node)

Returns true (non-zero) if this AST node is a function in SBML L1, L2 (MathML) (ev-
erything from abs() to tanh()) or user-defined, false (0) otherwise.

int ASTNode isInteger (const ASTNode t *node)

Returns true (non-zero) if this AST node is of type AST INTEGER, false (0) otherwise.

int ASTNode isLambda (const ASTNode t *node)

Returns true (non-zero) if this AST node is of type AST LAMBDA, false (0) otherwise.

int ASTNode isLog10 (const ASTNode t *node)

Returns true (non-zero) if the given AST node represents a log10() function, false (0)
otherwise.
More precisley, the node type is AST FUNCTION LOG with two children the first of which is
an AST INTEGER equal to 10.

37

int ASTNode isLogical (const ASTNode t *node)

Returns true (non-zero) if this AST node is a MathML logical operator (and, or, not, xor),
false (0) otherwise.

int ASTNode isName (const ASTNode t *node)

Returns true (non-zero) if this AST node is a user-defined variable name in SBML L1, L2
(MathML) or the special symbols delay or time, false (0) otherwise.

int ASTNode isNumber (const ASTNode t *node)

Returns true (non-zero) if this AST node is a number, false (0) otherwise. This is func-
tionally equivalent to:

ASTNode isInteger(node) || ASTNode isReal(node)

int ASTNode isOperator (const ASTNode t *node)

Returns true (non-zero) if this AST node is an operator, false (0) otherwise. Operators
are: +, -, *, / and ^ (power).

int ASTNode isRational (const ASTNode t *node)

Returns true (non-zero) if this AST node is of type AST RATIONAL, false (0) otherwise.

int ASTNode isReal (const ASTNode t *node)

Returns true (non-zero) if the value of this AST node can represented as a real number,
false (0) otherwise. To be a represented as a real number, this node must be of one of the
following types: AST REAL, AST REAL E or AST RATIONAL.

int ASTNode isRelational (const ASTNode t *node)

Returns true (non-zero) if this AST node is a MathML relational operator (==, >=, >, <=,
<, !=), false (0) otherwise.

int ASTNode isSqrt (const ASTNode t *node)

Returns true (non-zero) if the given AST node represents a sqrt() function, false (0)
otherwise. More precisely, the node type is AST FUNCTION ROOT with two children the first
of which is an AST INTEGER equal to 2.

int ASTNode isUMinus (const ASTNode t *node)

Returns true (non-zero) if this AST node is a unary minus, false (0) otherwise. For
numbers, unary minus nodes can be ”collapsed” by negating the number. In fact,
SBML parseFormula() does this during its parse. However, unary minus nodes for sym-
bols (AST NAMES) cannot be “collapsed”, so this predicate function is necessary. A node
is defined as a unary minus node if it is of type AST MINUS and has exactly one child.

int ASTNode isUnknown (const ASTNode t *node)

Returns true (non-zero) if this AST node is of type AST UNKNOWN, false (0) otherwise.

38

Programs manipulating AST node structures should check the type of a given node before calling
methods that return a value from the node. The following meethods are available for returning
values from nodes:

char ASTNode getCharacter (const ASTNode t *node)

Returns the value of this AST node as a single character. This function should be called
only when ASTNode getType() is one of AST PLUS, AST MINUS, AST TIMES, AST DIVIDE or
AST POWER.

long ASTNode getInteger (const ASTNode t *node)

Returns the value of this AST node as a (long) integer. This function should be called
only when ASTNode getType() == AST INTEGER.

const char * ASTNode getName (const ASTNode t *node)

Returns the value of this AST node as a string. This function may be called on nodes
that are not operators (in which case, ASTNode isOperator(node) == 0) or numbers (in
which case, ASTNode isNumber(node) == 0).

long ASTNode getNumerator (const ASTNode t *node)

Returns the value of the numerator of this AST node. This function should be called only
when ASTNode getType() == AST RATIONAL.

long ASTNode getDenominator (const ASTNode t *node)

Returns the value of the denominator of this AST node. This function should be called
only when ASTNode getType() == AST RATIONAL.

double ASTNode getReal (const ASTNode t *node)

Returns the value of this AST node as a real (double). This function should be called
only when ASTNode isReal(node) != 0. This function performs the necessary arithmetic
if the node type is AST REAL E (mantissa 10^exponent) or AST RATIONAL (numerator /
denominator).

double ASTNode getMantissa (const ASTNode t *node)

Returns the value of the mantissa of this AST node. This function should be called only
when ASTNode getType() is AST REAL E or AST REAL. If AST REAL, this method is identical
to ASTNode getReal().

long ASTNode getExponent (const ASTNode t *node)

Returns the value of the exponent of this AST node. This function should be called only
when ASTNode getType() is AST REAL E or AST REAL.

int ASTNode getPrecedence (const ASTNode t *node)

Returns the precedence of this AST node (as defined in the SBML L1 specification).

Finally (and rather predictably), libsbml provides methods for setting the values of AST nodes.

39

void ASTNode setCharacter (ASTNode t *node, char value)

Sets the value of this AST node to the given character. If character is one of +, -, *, / or
^, the node type will be set accordingly. For all other characters, the node type will be
set to AST UNKNOWN.

void ASTNode setName (ASTNode t *node, const char *name)

Sets the value of this AST node to the given name. The node type will be set (to AST NAME)
only if the AST node was previously an operator (ASTNode isOperator(node) != 0) or
number (ASTNode isNumber(node) != 0). This allows names to be set for AST FUNCTIONs
and the like.

void ASTNode setInteger (ASTNode t *node, long value)

Sets the value of this AST node to the given (long) integer and sets the node type to
AST INTEGER.

void ASTNode setRational (ASTNode t *node, long numerator, long denominator)

Sets the value of this AST node to the given rational in two parts: the numerator and
denominator. The node type is set to AST RATIONAL.

void ASTNode setReal (ASTNode t *node, double value)

Sets the value of this AST node to the given real (double) and sets the node type to
AST REAL. This is functionally equivalent to:

ASTNode_setRealWithExponent(node, value, 0);

void ASTNode setRealWithExponent (ASTNode t *node, double mantissa, long exponent)

Sets the value of this AST node to the given real (double) in two parts: the mantissa and
the exponent. The node type is set to AST REAL E.

void ASTNode setType (ASTNode t *node, ASTNodeType t type)

Sets the type of this AST node to the given AST node type.

B.2 Notes about ASTNode

The following are noteworthy about the AST node representation in libsbml:

• A numerical value represented in MathML as a real number with an exponent is preserved
as such in the AST node representation, even if the number could be stored in a C double
data type. This is done so that when an SBML model is read in and then written out
again, the amount of change introduced by libsbml to the SBML during the round-trip
activity is minimized.

• Rational numbers are represented in an AST node using separate numerator and denomina-
tor values. These can be retrieved using the ASTNode t methods ASTNode getNumerator()
and ASTNode getDenominator().

• The children field of ASTNode t is a list of pointers to other ASTNode t objects. This list
is empty for AST nodes that are leaf elements, such as numbers. For AST nodes that are
actually roots of expression subtrees, the list of children points to the parsed objects that
make up the rest of the expression.

40

References

Ausbrooks, R., Buswell, S., Dalmas, S., Devitt, S., Diaz, A., Hunter, R., Smith, B., Soiffer, N.,
Sutor, R., and Watt, S. (2001). Mathematical markup language (MathML) version 2.0 (second
edition) W3C recommendation 21 October 2003.

Bornstein, B. J. (2004). LibSBML API reference manual. Available on the Internet at http:
//www.sbml.org/software/libsbml.

Finney, A. M. and Hucka, M. (2003). Systems biology markup language: Level 2 and beyond.
Biochemical Society Transactions, 31:1472–1473.

Hucka, M., Finney, A., Sauro, H. M., and Bolouri, H. (2001). Systems biology markup language
(sbml) level 1: Structures and facilities for basic model definitions. Technical report. Available
on the Internet at http://www.sbml.org/.

Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., Kitano, H., Arkin, A. P.,
Bornstein, B. J., Bray, D., Cornish-Bowden, A., Cuellar, A. A., Dronov, S., Gilles, E. D.,
Ginkel, M., Gor, V., Goryanin, I. I., Hedley, W. J., Hodgman, T. C., Hofmeyr, J.-H., Hunter,
P. J., Juty, N. S., Kasberger, J. L., Kremling, A., Kummer, U., Le Novre, N., Loew, L. M.,
Lucio, D., Mendes, P., Minch, E., Mjolsness, E. D., Nakayama, Y., Nelson, M. R., Nielsen,
P. F., Sakurada, T., Schaff, J. C., Shapiro, B. E., Shimizu, T. S., Spence, H. D., Stelling, J.,
Takahashi, K., Tomita, M., Wagner, J., and Wang, J. (2003). The systems biology markup
language (sbml): A medium for representation and exchange of biochemical network models.
Bioinformatics, 19(4):524–531.

41

http://www.sbml.org/software/libsbml
http://www.sbml.org/software/libsbml

	Quick Start
	Linux, MacOS X and Solaris
	Windows

	Introduction
	Detailed Instructions for Configuring and Installing the Library
	Instructions for Linux, MacOS X and Solaris
	Instructions for Microsoft Windows

	SBML Classes in C
	Primitive Types
	Object Creation and Destruction
	Accessing Fields
	Lists
	Enumerations
	Abstract Classes
	Fields Inherited from SBase
	Typecodes

	Reading and Writing SBML Files
	A Simple Example of Reading SBML
	XML Schema Validation
	Writing SBML Files

	Handling of Mathematical Formulas and MathML
	Reading and Writing Formulas in Text-String Form
	Reading Formulas in MathML Form: MathMLDocument_t and ASTs
	Differences between SBML Level 1 Formulas and MathML
	Additional Notes about the Handling of Mathematical Formulas

	Levels of SBML
	Checking the Consistency of SBML Models
	Special Considerations and Known Issues
	Conformance to SBML
	Issues Related to XML Parsers

	Acknowledgments
	Lists and ListOf_t
	Abstract Syntax Trees and ASTNode_t
	Methods for Manipulating AST Nodes
	Notes about ASTNode

	

