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Introduction

vsn is a method to preprocess DNA microarray intensity data. Calling vsn can be as simple as

> e2 <- vsn(e1)

where e1 is an exprSet with raw data and e2 one with normalized and transformed data. e1 can
also be a matrix, a data frame with numeric columns only, or an object of class marrayRaw.

e1 contains the raw intensity measurements from the DNA probes on a series of microarrays (with
rows corresponding to probes, columns to arrays and/or dyes). Each column is calibrated by an affine
transformation1, then the whole data are transformed by a variance-stabilizing transformation. After
this, systematic array- or dye-biases should be removed, and the variance should be approximately
independent of the mean intensity. Many statistical methods such as hypothesis tests, ANOVA modeling,
clustering, or classification work better or are easier to use if the variance of the data is roughly the
same for all observations2.

Differences between the transformed values are the so-called generalized log-ratios. If both nu-
merator and denominator are well above background, generalized log-ratios coincide with the usual
log-ratios: h(xi) − h(xj) ≈ log(xi) − log(xj) = log(xi/xj) if xi, xj � 0 . In contrast to log-ratios, they

1It is possible to stratify the transformations within columns; this is discussed in Section 4.1
2Note that vsn only addresses the dependence of the variance on the mean intensity. There may be other factors

influencing the variance, such as gene-inherent properties, or changes of the tightness of transcriptional control in different
conditions. If necessary, these need to be addressed by other methods.
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remain well-defined and statistically meaningful if xi or xj are close to zero. Please consult the paper
in the references for more on the mathematical-methodical background [1, 3, 2].

1 Running vsn on data from a single two-color array

The package includes example data from a cDNA array on which two biologically very similar samples,
one labeled in green (Cy3), one in red (Cy5), were hybridized.

> library(vsn)

> data(kidney)

The two columns of the matrix exprs(kidney) contain the green and red intensities, respectively.
Let’s try out vsn on these example data. In Fig. 1 you can see the scatterplot of the calibrated and
transformed data. For comparison, the scatterplot of the log-transformed raw intensities is also shown.

> nkid <- vsn(kidney)

vsn: 8704 x 2 matrix (1 stratum). Please wait for 10 dots: ..........

> par(mfrow = c(1, 2))

> plot(exprs(nkid), main = "vsn", pch = ".")

> plot(log.na(exprs(kidney)), main = "raw", pch = ".")
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Figure 1: Scatterplots of the kidney example data

vsn returns the transformed intensities in an object of class exprSet. Its slot exprs is a matrix of the
same size as the input data. The plot in Fig. 1 shows the complete set of n = 9216 red and green
intensities, without any thresholding or masking of data points. To verify the variance stabilization,
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there is the function meanSdPlot. For each probe k = 1, . . . , n it shows the estimated standard deviation
σ̂k on the y-axis versus the rank of the average µ̂k on the x-axis,

µ̂k =
1
d

d∑
i=1

hki σ̂2
k =

1
d− 1

d∑
i=1

(hki − µ̂k)2. (1)

> par(mfrow = c(1, 2))

> meanSdPlot(nkid, ranks = TRUE)

> meanSdPlot(nkid, ranks = FALSE)
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Figure 2: Standard deviation versus rank of the mean, and the mean, respectively

Such a plot is shown in Fig. 2. The red dots, connected by lines, show the running median of the
standard deviation3. Within each window, the median may be considered a pooled estimator of the
standard deviation, and the curve given by the red line is an estimate of the systematic dependence
of the standard deviation on the mean. After variance stabilization, this should be approximately a
horizontal line. It may have some random fluctuations, but should not show an overall trend. If this is
not the case, that usually indicates a data quality problem, or is a consequence of inadequate prior data
preprocessing (see Section 6). The rank ordering distributes the data evenly along the x-axis. A plot
in which the x-axis shows the average intensities themselves is obtained by calling the plot command
with the argument ranks=FALSE.

The parameter estimation in vsn works in an iterative manner. To verify that the iterations have
converged, you can call the function vsnPlotPar.

> par(mfrow = c(1, 2))

> vsnPlotPar(nkid, "offsets")

> vsnPlotPar(nkid, "factors")
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Figure 3: Iteration trajectory of the calibration and transformation parameters

The plots in Fig. 3 show the values of the estimated calibration and variance stabilization parameters
on the y-axis as a function of the iteration index. All curves should reach a plateau before the last
iteration. If this is not the case, the number of iterations may be increased through the parameter iter.
It could also indicate a data quality problem, see Section 6.

The generalized log-ratios for this experiment can be obtained for further processing through

> M <- exprs(nkid)[, 2] - exprs(nkid)[, 1]

> hist(M, breaks = 50, col = "#d95f0e")

The histogram is shown in Fig. 3.

2 Running vsn on data from multiple arrays (“single color normal-
ization”)

The package includes example data from a series of 8 cDNA arrays on which different lymphoma were
hybridized together with a reference cDNA [6].

> data(lymphoma)

> dim(exprs(lymphoma))

[1] 9216 16

> pData(lymphoma)

3Window width: 10%, window midpoints 5%, 10%, 15%, . . . .
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Figure 4: Histogram of generalized log-ratios for the kidney example data

name sample
1 lc7b047 reference
2 lc7b047 CLL-13
3 lc7b048 reference
4 lc7b048 CLL-13
5 lc7b069 reference
6 lc7b069 CLL-52
7 lc7b070 reference
8 lc7b070 CLL-39
9 lc7b019 reference
10 lc7b019 DLCL-0032
11 lc7b056 reference
12 lc7b056 DLCL-0024
13 lc7b057 reference
14 lc7b057 DLCL-0029
15 lc7b058 reference
16 lc7b058 DLCL-0023

The 16 columns of the lymphoma object contain the red and green intensities, respectively, from the 8
slides, as shown in the table. Thus, the CH1 intensities are in columns 1, 3, . . . , 15, the CH2 intensities
in columns 2, 4, . . . , 16. We can call vsn on all of them at once:

> lym <- vsn(lymphoma)

This calculation may take a while.

> meanSdPlot(lym)

Again, Fig. 5 helps to visually verify that the variance stabilization worked. As above, we can obtain
the generalized log-ratios for each slide, by subtracting the common reference intensities from those for
the 8 samples:
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Figure 5: Standard deviation versus rank of the mean for the lymphoma example data

> refrs <- (1:8) * 2 - 1

> samps <- (1:8) * 2

> M <- exprs(lym)[, samps] - exprs(lym)[, refrs]

> colnames(M) <- pData(lymphoma)[samps, "sample"]

> A <- rowMeans(exprs(lym))

> par(mfrow = c(1, 2))

> plot(A, M[, "CLL-13"], pch = ".")

> abline(h = 0, col = "red")

> plot(A, M[, "DLCL-0032"], pch = ".")

> abline(h = 0, col = "red")

Fig. 6 shows the analagon to the M -vs-A-plots as described in reference [5]. Note that in the left
scatterplot, there is a cloud of points at low intensities that is concentrated slightly off the line M = 0.
In the right scatterplot, a similar cloud sits right on the M = 0 line. This could be related to a quality
problem with the left slide (e. g. related to the PCR amplification or the printing, see Section 6).

3 Running vsn on Affymetrix data

The package affy provides excellent functionality for reading and processing Affymetrix genechip data.
To use vsn for the calibration and transformation of the probe intensities, a wrapper is provided that can
be used within the data processing routines of affy. See the documentation for the package affy for more
information about data structures and other available methods. Affymetrix genechips preprocessing
involves the following steps: (i) combining the perfect match (PM) and mismatch (MM) intensities into
one number per probe, (ii) calibrating, (iii) transforming, and (iv) summarizing. vsn addresses the
calibration and transformation. We can use the function expresso to run the whole process in one go:
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Figure 6: Mean-difference plots for two slides from the lymphoma example data

> library(affy)

> library(affydata)

> data(Dilution)

> normalize.AffyBatch.methods <- c(normalize.AffyBatch.methods,

+ "vsn")

> es1 = expresso(Dilution[, 1:2], bg.correct = FALSE, normalize.method = "vsn",

+ pmcorrect.method = "pmonly", summary.method = "medianpolish")

Here, we have ignored the MM values and used medianpolish for summarization, as in the RMA
method [8]. For comparison, let’s calculate expression values using another normalization method:

> es2 = expresso(Dilution[, 1:2], bgcorrect.method = "rma", normalize.method = "quantiles",

+ pmcorrect.method = "pmonly", summary.method = "medianpolish")

> x1 = exprs(es1)

> x2 = exprs(es2)

> par(mfrow = c(2, 2), pch = ".")

> plot(x1, main = "vsn: chip 3 vs 4")

> plot(x2, main = "rma: chip 3 vs 4")

> ylim = c(-0.7, 0.7)

> plot(rank(rowSums(x1)), diff(t(x1)), ylim = ylim, main = "rank(mean) vs differences")

> abline(h = 0, col = "red")

> plot(rank(rowSums(x2)), diff(t(x2)), ylim = ylim, main = "rank(mean) vs differences")

> abline(h = 0, col = "red")

The resulting plots are shown in Fig. 7.
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Figure 7: normalize.AffyBatch.vsn example
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4 The calibration parameters

If yki is the matrix of uncalibrated data, with k indexing the rows and i the columns, then the calibrated
data y′ki is obtained through scaling by λsi and shifting by osi:

y′ki =
yki − osi
λsi

, (2)

where s ≡ s(k) is the so-called stratum for probe k. In the simplest case, there is only one stratum, i. e.
the index s is always equal to 1, or may be omitted altogether. This amounts to assuming that that
the data of all probes on an array were subject to the same systematic effects, such that an array-wide
calibration is sufficient.

Sometimes, it is better to consider stratified calibration. For spotted arrays, the stratification of the
probes may be according to, for example, print-tip [5] or PCR-plate [3]. For oligonucleotide arrays,
it may be useful to stratify the probes by physico-chemical properties, e. g. to assume that probes of
different sequence composition attract systematically different levels of unspecific background signal.

The transformation to a scale where the variance of the data is approximately independent of the
mean is

hki = arsinh(a0 + b0y
′
ki) = log

(
a0 + b0y

′
ki +

√(
a0 + b0y′ki

)2 + 1
)
. (3)

Eqns. (2) and (3) can be combined, so that the whole transformation is given by

hki = arsinh(asi + bsiyki). (4)

Here, asi = a0 − b0osi/λsi and bsi = b0/λsi are the combined calibation and transformation parameters
for probes from stratum s and sample i.

We can access the calibration and transformation parameters through

> prep <- preproc(description(nkid))

> names(prep)

[1] "vsnParams" "vsnParamsIter" "vsnTrimSelection"

> prep$vsnParams

, , 1

[,1] [,2]
[1,] -0.037301 -0.01540317

, , 2

[,1] [,2]
[1,] 0.00264677 0.002573589

The description slot of an exprSet is an object of class MIAME, and may contain annotation data
pertinent to the experiment represented by the object. For an exprSet with d sample and ns probe strata
(see Section 4.1), prep$vsnParams is a numeric array with dimensions (ns, d, 2). prep$vsnParams[s,
i, 1] is what was called asi in Eqn. (4), and prep$vsnParams[s, i, 2] is bsi. Compare the numbers
printed above with the final values in Fig. 3.
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4.1 Calibration with strata

to be written ... see help page of vsn and vsnh for more details.

4.2 More on calibration

Now suppose the kidney example data were not that well measured, and the red channel had a baseline
that was shifted by 500 and a scale that differed by a factor of 0.25:

> bkid <- kidney

> exprs(bkid)[, "red"] <- 0.25 * (500 + exprs(bkid)[, "red"])

We can again call vsn on this data

> nbkid <- vsn(bkid)

> par(mfrow = c(1, 2))

> plot(exprs(bkid), main = "raw", pch = ".", log = "xy")

> plot(exprs(nbkid), main = "vsn", pch = ".")

> preproc(description(nbkid))$vsnParams[1, , ]

[,1] [,2]
[1,] -0.07043784 0.002663749
[2,] -1.34136771 0.010349088
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Figure 8: Scatterplots for badly biased data. Left hand side: raw data on log-log scale, right hand side:
after calibration and transformation with vsn.

The factor for the red channel is now about four times as large as before. The result is shown in Fig. 8.
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5 Assessing vsn

The function vsn is a parameter estimation algorithm that fits the parameters for a certain model. In
order to see how good the estimator is, we can look at bias, variance, sample size dependence, robustness
against model misspecificaton and outliers. This is done in the document convergence.pdf, which can
be found in the doc subdirectory of the package.

Practically, the more interesting question is how different microarray calibration and data transfor-
mation methods compare to each other. For this, one needs to specify a measure of goodness. One
approach is to compare the obtained values against a known truth. This can be done in controlled
spike-in experiments and in dilution series, which allow to systematically assess the performance of the
methods at different biologically relevant spike-in concentrations. Like any statistical method, one can
make different choices with respect to the trade-off between bias and variance [7].

Here, we focus on one particular aspect: the overall sensitivity and specificity in detecting differential
transcription. The following type of analysis can be applied to any data set that contains replicated
measurements made on samples from biologically distinct, known groups. The idea is that we compare
the within-group variability (among the biological replicates) to the between-group variability (between
different tissue types). The smaller the former and the larger the latter, the better we may deem the
performance of the calibration and data transformation.

Here, as a measure of the relative size of between- and within-group variability we take the size of
the t-statistics. The acceptable use of CPU time and disk memory of a package vignette is limited, thus
here we stick to a very simple-minded calculation, and a small data set. See Fig. 9 and the calculations
below. Two applications to larger data sets are described in reference [1]. More sophisticated analyses
can be made by comparing not just the distributions of t-statistics, but for example, the estimated false
discovery rates, using different test statistics. You are encouraged to try this out with your own data.

> library(marray)

> mr <- new("marrayRaw", maGf = exprs(lymphoma)[, refrs], maRf = exprs(lymphoma)[,

+ samps], maLayout = new("marrayLayout", maNgr = 4, maNgc = 4,

+ maNsr = 24, maNsc = 24))

> mn <- maNorm(mr, norm = "median", echo = TRUE)

> par(mfrow = c(1, 2))

> library(multtest)

> plot(M[, 1], mn@maM[, 1] * log(2), xlab = "M (vsn)", ylab = "M (global median)",

+ main = "slide 1", pch = ".")

> abline(a = 0, b = 1, col = "blue")

> classlabel <- regexpr("CLL", colnames(M)) > 0

> t1 <- mt.teststat(M, classlabel)

> t2 <- mt.teststat(mn@maM, classlabel)

> qqplot(t1, t2, xlab = "t (vsn)", ylab = "t (global median)",

+ main = "QQ plot", pch = ".")

> abline(a = 0, b = 1, col = "blue")

6 Quality control

vsn makes some assumptions about your data that need to hold if it is to produce meaningful results.
We have found them appropriate for many microarray experiments, but it is your responsibility to make
sure that they hold for your data.
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Figure 9: Left hand side: x-axis – generalized log-ratios for slide 1 from vsn, y-axis – log-ratios for
slide 1 after global median normalization. For most genes, the two are the same, but in some cases the
generalized log-ratio is smaller. It is never larger. This demonstrates the ratio shrinkage by the variance
stabilization. Right hand side: quantile-quantile-plot of the t-statistic for the comparison between the
4 slides with CLL and the 4 with DLCL. The t-statistics from vsn are larger, i. e. it compares more
favorable with respect to the relative size of between- and within-group variability.
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First, vsn assumes that the measured signal yik increases, to sufficient approximation, proportionally
to the mRNA abundance cik of gene k on the i-th array, or on the i-th color channel:

yik ≈ ai + bibkcik. (5)

For a series of d single-color arrays such as Affymetrix arrays or cDNA nylon membranes, i = 1, . . . , d,
and the different factors bi reflect the different initial amounts of sample mRNA, or different overall
reverse transcription, hybridization and detection efficiencies. The probe affinity bk contains factors that
affect all measurements with probe k in the same manner, such as sequence-specific labelling efficiency.
The bk are assumed to be the same across all arrays. There can be a non-zero overall offset ai for each
color channel. For a two-color cDNA array, i = 1, 2, and the bi take into account the different overall
efficiencies of the two dyes4.

Systematic effects associated with print-tip, PCR, or probe-sequence Equation 5 can be
generalized to

yik ≈ ais + bisbkcik. (6)

that is, the background term ais and the gain factor bis can be different for different groups s of probes on
an array. For example, with cDNA microarray data, it could be advantageous to fit different parameters
for each print-tip group of spots, or for groups of spots whose DNA was PCR–amplified and stored in
the same microtitre plate. For Affymetrix chips, one can find systematic dependences of the affinities
bis or the background terms ais on the probe sequence. This can be addressed by using the strata
argument of the function vsn.

Situations in which the assumptions (5) or (6) are violated include:

Saturation. The biochemical reactions and/or the photodetection can be run in such a manner that
saturation effects occur. It may be possible to rescue such data by using non-linear transformations.
Alternatively, it is recommended that the experimental parameters are chosen to avoid saturation.

Batch effects. The probe affinities bk may differ between different manufacturing batches of arrays
due, e.g., to different qualities of DNA amplification or printing. vsn cannot be used to simultaneously
calibrate and transform data from different batches.

How to reliably diagnose and deal with such violations is beyond the scope of this vignette; see the
references for more [5, 3].

Variance. A further assumption that vsn makes is that the measurement error (more exactly: the
variance) is the sum of two contributions: an additive component that has roughly the same size for all
probes on an array, and a multiplicative component that is roughly proportional in size to the signal’s
true value, with a proportionality factor (called the coefficient of variation) that is the same for all
genes [4].

4It has been reported that for some genes the dye bias is different from gene to gene, such that the proportionality
factor does not simply factorize as in (5). As long as this only occurs sporadically, this should not have much effect on the
estimation of the calibration and variance stabilization parameters. Further, by using an appropriate experimental design
such as color-swap or reference design, the effects of gene-specific dye-biases to subsequent analyses can also be reduced.
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Most genes unchanged assumption. vsn assumes that only a minority (less than half) of genes on
the arrays is detectably differentially transcribed across the experiments. If it is safe to assume that a
smaller fraction of genes is non-negligibly differentially transcribed, the efficiency of the estimation can
be improved by increasing the parameter lts.quantile from its default value of 0.5 to a value between
0.5 and 1.

Processing biases. Image analysis software for cDNA arrays typically estimates a local background
associated with each probe intensity. For Affymetrix arrays, the intensities from mismatch probes are
thought to represent the level of non-specific signal. In both cases, the raw probe intensities may
be adjusted by subtracting these background estimates. Some software packages, however, bias the
adjustment through rules based on the data values. For example, Affymetrix’ MAS 5.0 software uses
the mismatch intensity only if it is smaller than the probe’s intensity, and otherwise employs a heuristic
to make sure that the net intensities always remain positive. As a consequence, the intensities are
systematically over-estimated, and cannot be used with vsn. For Affymetrix data, we recommend to use
vsn on the probe intensities from the ”CEL file”. For cDNA data, we recommend to use only background
adjustment procedures that estimate the background independent of the observed foreground intensity.
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