
HDF5 in R: Technical Documentation and Proposals

May 14, 2004

1 Overview

This document describes various aspects of the implementation and design philosophy
of the hdf5 package in R.

It also contains a section on existing bugs and on things that need to get implemented.

1.1 Description

HDF5 is a system for storing large data sets. The acronym stands for Hierarchical Data
Format. HDF5 has a three–tiered system. There is the file, which contains groups and
each group contains datasets. The datasets are the actual data the other two layers are
organizational. The implementation in rhdf5 follows this structure. There are classes
for files, groups and datasets.

A simple example would be the following:

file Experiment1

group Patient1

dataset Mean, StdDev, NPixel

group Patient2

dataset Mean, StdDev, NPixel

For this experiment, each patient represents a different group within the experiment and
for each patient we have a number of datasets that represent the different quantities
obtained from an Affymetrix CEL file.

Each HDF5 dataset contains data that are stored in a common format. Thus, it
is natural to think of HDF5 datasets as matrices or arrays but not as data.frames in
R. One may be able to usefully think of groups or files as dataframes, at least in some
situations. For example, one may want to apply a function to the Mean array for all
patients in Experiment1.

1

The different HDF5 objects are represented by symbols in R, just as any R object
is. The implementation of an HDF5 object is as a length one vector that contains an
external pointer, EXTPTR.

This representation introduces a different evaluation model into R. R’s standard eval-
uation model can be thought of as a pass–by–value model. That means that arguments
to functions are copied and the function works on a copy of the value not on the original
object. With hdf5 objects this is not true. Functions will effectively get a pointer to
the object.

In the next code chunk we see the creating of a file, mad. This corresponds to
the physical creation of the file named microarray.h5 in the current working directory.
Within that file we can create groups and datasets. Groups can be deleted, but individual
datasets cannot. The entire HDF5 file can be removed by using unlink.

> library(rhdf5)

Attaching package 'rhdf5':

The following object(s) are masked from package:base :

is.finite is.matrix

> mad <- hdf5.open("microarray.h5")

> class(mad)

[1] "hdf5.file" "hdf5"

> hdf5.group(mad, "chip1")

> class(mad$chip1)

[1] "hdf5.group" "hdf5"

> hdf5.dataset(mad$chip1, "raw", dim = c(534, 534))

> class(mad$chip1$raw)

[1] "hdf5.dataset" "hdf5"

> raw <- mad$chip1$raw

> for (i in 1:534) {

+ raw[i, 1:534] <- runif(534)

+ }

> hdf5.group.rm(mad, "chip1")

2

In the next segment we create a function that alters the value of one of its arguments.
Then call the function with two different R objects, one an hdf5 object and one a regular
R object. Notice that the hdf5 object has its value changed.

It is entirely the users responsibility to ensure the integrity of their data. The rhdf5
cannot and does not check to see if data values have been altered.

> foo <- function(x) x[1, 1] <- 100

> raw[1, 1]

[1] 0.2363524

> foo(raw)

> raw[1, 1]

[1] 100

> x <- matrix(1:10, nc = 2)

> x[1, 1]

[1] 1

> foo(x)

> x[1, 1]

[1] 1

There seem to be some options available:

� Copy any object if it is altered. This will be fairly wasteful, and could easily fill
up a users hard disk. Perhaps we could use weak references to remove files that
are no longer referred to.

� Supply a duplicate function and allow users to copy the files that they want to
copy.

1.1.1 Size Matters

A fairly basic design strategy is to keep the rather large data sets that are stored as
HDF5 objects from ever becoming R objects. That is, we do not want to have them
stored in internal R memory unless we have to.

This desire has facilitated some changes to R and caused some design features in the
hdf5 package.

3

2 HDF5 Dataset Dataspace Overview

An HDF5 dataset is an array of data that are all in a common format. This format
can be quite general, but for now we consider only real and integer formats. The data
are stored in a particular format on disk and that format is stored in the file header.
It cannot ever change. However, translators can be put in place so that when data
are read from disk they are automatically translated into a different, specified format.
Unfortunately there seem to be no integer to real translators that are built in – we may
need to build some.

Data are selected from a dataset using a dataspace. A dataspace must be the same
size and have the same dimensions as the dataset that is being read from or written to.
The dataspace is conceptually a set of bits indicating whether an element of the dataset
is selected or not. Only those elements of the dataset that have been selected in the
dataspace are manipulated.

Thus, to select a specific subset of a number of datasets one can use a single dataspace.
Applying it to each dataset in turn yields the requisite subset, these can be processed
and the necessary values stored. This appears to form the basis of an HDF5 apply type
function.

3 Technical Things

The following are classes introduced by HDF5.

� hdf5, all other HDF5 objects inherit from hdf5.

� hdf5.file

� hdf5.group

� hdf5.dataset

Virtually none of the HDF5 functions are methods. This will be improved over time
but for now there seems to be little benefit and a lot of work.

Some functionality: Suppose that

� The $ operator works on objects with class hdf5.file or with class hdf5.group.

4 What is missing

HDF5 does not currently seem to support the deletion of individual datasets or groups,
or files. Files can easily be done from the system but we would like to be able to remove
datasets. However, HDF5 does not support the removal of individual datasets. This is
on their TODO list and we will attempt to take advantage of this functionality when it
becomes available.

4

Do we make HDF5 objects copy on alter? Do we allow a user level interface?
Much of the current interface is to allow HDF5 objects to be treated as if they were

R vectors or matrices. However, there are design differences between R and HDF5. It
might be useful to simply have an R interface to some basic HDF5 functionality. That is,
to write some interface routines that simply operate on HDF5 files as they are without
having R interfere except at the external pointer stage.

5 To Do/ WIP

The C–converter and registration routines need to be checked more carefully.
Need to sort out whether, how we are going to have HDF5 files that do not correspond

to R types (make sure that we attach R types to the HDF5 files – and that we start to
use them) –do we need typeof to become generic?

Need to stop and think about how this relates to relational database things, do they
need more types? Do they just have dataframes?

Need to figure out how to use R alloc to, more or less get char[n][m] type objects to
stick into the hdf5 string datasets;

Need to figure out how to do STRSXPs.

5

	Overview
	Description
	Size Matters

	HDF5 Dataset Dataspace Overview
	Technical Things
	What is missing
	To Do/ WIP

