dom4j cookbook

Mr. Tobias Rademacher

Mr. James Strachan

dom4j cookbook
by Mr. Tobias Rademacher and Mr. James Strachan

Published September 2001

This document provides a practical introduction to domdj. It guides you through by using a lot of examples and is
based on dom4j v1.0

Table of Contents

FOTEIWOIT. ...ttt e b e bt s et e bt e bt et e e e e e e et e b e nb e b e nbeeneeneens
L. INErOAUCING OM] ...ttt bbb bt e e bt bt et e et e b e ee e e b e nreene e s e e enn e
2.Creation of an XML Object Model USING AOMA........ccoiiiiiiiieieieee e
REAAING XML GALAL.....ceeeeeeieeeetetet et sb e 2
Integrating With Other XIML APIS.......oeee s 4
The secret of DOCUMENTFACIONY.........coiiieiiiere e 4
3.SerialiZatioN AN OULPUL........ccueieiiiiiiieiieie ettt e e e e renrennenre s
SENAlIZING 1O XML ... b nesne it 7
Customizing the OULPUL TOMMIEL...........oouiriiriierieeeeee e 8
PrNTING HTML .ot 9
BUIIAING @DOM I ...ttt et e e seesnenre s 10
GeENErating SAX EVENES.......oouiiiiieieieeee ettt n e nr e 11
v\ E= VA To = Lo g T o e (o]0 1 2 O RSS TP P PPN
(0 T 0o L= = (o TSP URUSURRRR 12
Fast index based NaVIgatiON.cccooeeerieeeeeee e 13
USING @DACKEH LISE.....cueiieeiieieieieste st 14
USING XPEEN.......eeeeeeee ettt n e r b e 14
USING VISITON PALLEIN. ...ttt nre s 15
S5.MANIPUIBLING GOMA] ...t e b e bbbt se e e e e e n e b e nbeeneeneeneas
What or g. donm¥] . DOCUITENT PrOVIGES.......cceiieieieieriesie et 17
Working with or g. domij . El @IMBNT .o 17
QUEAITIEA NAIMES.......coiieiictie ettt et ae et e et e seesaeeneesreenen 17
INSEITING BIEMENTS......coeeeeeee bbb e 18
Cloning - How many SNeeps do YOU NEEA?..........coiiiiiiieriesiesies et 18
6.USING AOMA] WITR X SLT ..ottt snenre s
7. SCNEMBEAE SUDPIONT. ...ttt ettt bbbt e e b s bbbt eb e e ae e e e e e e e b e sbeenenbeebeeneennas
Using XML Schema Data TYPeS in dOMA.........cceriiieeeierieriesie st 22
V2= [= o] IO USSP UR TSP 23
Using Apaches Xerces 1.4.x and domdj for validation.............cccceererinienienienieicscseneens 23
A perfect team - Multi SchemaValidator[MSV] and dom4jcccceeereeieieicncncnnenn 25

FUINEN REAING. ... ettt bbb r bbbt e e e e e e e e e b e ene e

Foreword

1. Introducing dom4j

Chapter 1. Introducing dom4j

domdj is a object model representing an XML Tree in memory. domd4j offers a easy-
to-use API that provides a powerfull set of features to process, manipulate or navigate
XML and work with XPath and XSLT as well as integrate with SAX, JAXP and
DOM.

domdj is designed to be interface-based in order to provide highly configurable imple-
mentation strategies. You are able to create your own XML tree implementations by
simply providing a DocumentFactory implementation. This makes it very simple to re-
suse much of the dom4j code while extending it to provide whatever implementation
features you wish.

This document will guide you through dom4j's features in a pratical way. It uses a lot
of examples with source code to achive that. The document is also desinged as a refer-
ence so that you don't have to read the entire document right now. This guide concen-
trates on daily work with dom4j and is therefore called cookbook.

2. Creation of an XML Object Model using dom4j

Chapter 2. Creation of an XML Object Model using dom4j

Normally it all starts with a set of xml-files or a single xml file that you want to pro-
cess, manipulate or navigate through to extract some values necessary in your applica-
tion. Most Java Open-Source projects using XML for deployment or as a replacement
for property filesin order to get easily readable property data.

Reading XML data

How does dom4j help you to get at the data stored in XML ? dom4j comes with a set of
builder classes that parses the xml data and creating a tree like object structure in mem-
ory. You can easily manipulate and navigate through that model. The following exam-
ple shows how you can read your data using domd4j API.

i mport java.io.File;

i nport org.domdj . Docunent ;

i mport org.domd) . Docunment Excepti on;
i nport org.domd . i o. SAXReader ;

public class Depl oyFil eLoader Sanpl e {

[** donmd] object nodel representation of a xml docunent. Note: W I
private Docunment doc;

/**

* Loads a docunent froma file.

*

* @hrow a org. dondj . Docunent Excepti on occurs whenever the buil dpt
*/
public void parseWthSAX(File aFile) throws Docunment Exception {
SAXReader xm Reader = new SAXReader ();
this.doc = xm Reader.read(aFile);

}
}

The above example code should clarify the use of or g. don¥j . i 0. SAXReader to
build a complete dom4j-tree from a given file. The org.domdj.io package of dom4;
contains a set of classes for creating and serializing XML objects. The read() method is
overloaded so that you able to pass different kind of object that represents a source.

* java.lang. String -aSystemldisa String that containsa URI e.g. aURL to
aXML file

e java.net.URL - represents a Uniform Ressource Loader or a Uniform

Ressource Identifier encasulate in a URL instance
j ava. i o. | nput St r eam- aopen input stream that transports xml data

j ava. i 0. Reader - more compartable puls the abiltiy of setting the encoding
scheme

or g. sax. | nput Sour ce - asingleinput source for a XML entity.

So we decide to add more flexiblity to our Depl oyFi | eLoader Sanpl e and add
new methods.

i mport java.io.File;

i mport org.domdj . Docunent ;
i mport org.domd) . Docunment Excepti on;
i nport org.don¥j.io. SAXReader;

public class Depl oyFil eLoader Sanpl e {

[** dond] object nodel representation of a xml docunent. Note: W I
private Docunent doc;

/**

* Loads a docunent froma file.

*

* @aram aFil e the data source

* @hrow a org. domdj . Docunment Excepi ton occurs whenever the buil dp

*/

public void parseWthSAX(File aFile) throws Docunent Exception {
SAXReader xm Reader = new SAXReader ();
this.doc = xnl Reader.read(aFile);

}

/**

* Loads a docunent froma file.

*

* @aram aURL the data source

* @hrow a org. don¥j . Docunent Excepi ton occurs whenever the buil dpt

*/

public void parseWthSAX(URL aURL) throws Document Exception {

SAXReader xm Reader = new SAXReader ();
t his. doc = xnl Reader.read(aURL);

}

Integrating with other XML APIs

domdj offers also classes for integration with the two original XML processing APIs -
SAX and DOM. So far we have been talking about reading a document with SAX. The
or g. domdj . SAXCont ent Handl er class implements several SAX interfaces di-
rectly (such as ContentHandler) so that you can embed domdj directly inside any SAX
application. You can aso use this class to implement your own specific SAX-based
Reader classif you need to.

The DOVReader class alows you to convert an existing DOM tree into a dom4j tree.
This could be usefull if you already used DOM and want to replace it step by step with
domdj or if you just needs some of DOM's behaviour and want to save memory
ressources by transforming it in a dom4j Model. You are able to transform a DOM
Document, a DOM node branch and a single element.

i mport org. sax. Docunent ;

i mport org.domdj . Docunent ;
i mport org.domd) . Docunment Excepti on;
i nport org.dondj.io. DOVReader ;

public class DOM nt egrator Sanpl e {

[** converts a WBC DOM docunent into a dond] docunent */

publ i ¢ Docunent buil dDocrent (org. w3c. dom Docunent donmDocunent) {
DOVReader xm Reader = new DOVReader () ;
return xm Reader.read(donmDocunent);

}
}

The secret of DocumentFactory

Right now we have talked a lot of reading exisiting XML information e.g. from files,
URL's or even Streams. Sometimes it's necessary to generate a XML document from
scratch within a running Java Application. The class
org. domdj . Docunent Fact or ydefines a set of factory methods to create docu-
ments, document types, elements, attributes, unparsed character data (CDATA), a
namespace, an XPathobject, a NodeFilter and some other useful instances. This makes
the Docunent Fact or yclass to a central class whenever you have to create one of
these instances by yourself.

i mport org.domdj . Docunent Fact ory;
i nport org.don¥j. Docunent;
i mport org.domdj. El enent;

public class Depl oyFil eCreator {

private Docunent Factory factory = Docunent Factory. getlnstance();
private Docunent doc;

public void generateDoc(String aRoot El enent)
doc = Docunent Factory. getlnstance().creat eDocunent ();
El enent root = doc. addEl enent (aRoot El enent) ;

}

The listing shows how to generate a new Document from scratch. The method gen-

erat eDoc(String aRoot El ement) takes a String parameter. The string value
contains the name of the root element of the new document. As you can see
org. domdj . Docunent Factory is a singleton that is accessable via
get I nst ance() asmost Java singletons are. After we obtained the instance we can
Docunent Fact or y methods. They follow the createXXX() naming convention, so if
you want to create a Attribute you would call createAttribute() instead. If your class
uses DocumentFactory a lot or uses a different DocumentFactory instance then you
could add it as a member variable and initiate it via getinstance in your constructor.

i mport org.domdj . Docunent Fact ory;
i mport org.domd) . Docunent ;
i mport org.dondj . El enent;

public class G anuat edDepl oyFi | eCreator {

private Docunent Factory factory;
private Document doc;

public Granuat edDepl oyFil eCreator () {
this.factory = Docunent Factory. getlnstance();

}

public void generateDoc(String aRoot El ement) {
doc = factory. createDocunent ();
El ement root = doc. addEl enent (aRoot El enent) ;

The Docunent and El enent interfaces have a number of helper methods for creat-
ing an XML document programmatically in asimple way.

i mport org.domdj . Docunent ;
i nport org.don¥j . Docunent Hel per;
i mport org.domdj. El enent;

public class Foo {

publ i ¢ Docunment createDocunent () {
Docunent docunent = Docunent Hel per. creat eDocunent () ;
El enent root = docunent. addEl enent("root");

El ement author2 = root. addEl enent("author")
.addAttri bute("nanme", "Toby")
.addAttribute("location", "Germany")
.addText ("Tobi as Rademacher");

El ement authorl = root.addEl ement("author")
.addAttri bute("nanme", "Janes")
.addAttribute("location", "UK")

.addText ("Janes Strachan");

return docunent;

As mentioned earlier domd4j is an interface based API. This means that DocumentFac-
tory and the reader classes in the org.dom4j.io package always use the org.domdj inter-
faces rather than any concrete implementation classes. The Collection APl and W3C's
DOM are other examples of APIsthat use this design aproach. Thiswide spread design
is described by [BillVenners].

3. Serialization and Output

Chapter 3. Serialization and Output

Once you have parsed or created a document you want to serialize it to disk or into a
plain (or encrypted) stream. domd4j provides a set of classes to serialize your dom4
treein four ways:

« XML
 HTML
« DOM

. SAX Events

Serializing to XML
org. domdj .i 0. XMLW i t eris a easy-to-use and easy-to-understand class used to
serialize a domd4jtree to a plain XML. You are able to write the XMLtree to either an
java.io.Qutput Streanor ajava.i o. Witer. This can be configured with
the overloaded constructor or via the setQutputStrean()or
set Reader () methods. Let's have alook at a example.

i nport java.io.Qutput Stream

i mport org.domdj . Docunent ;
i nport org.dondj.io. XMWiter;
i mport org.domdj.io.Cutput For nat ;

public class Depl oyFil eCreator {
private Docunent doc;

public void serializetoXM(QutputStreamout, String aEncodi ngSchene)
Qut put Format outformat = Qut put Format.createPrettyPrint();
out f or mat . set Encodi ng(aEncodi ngSchene) ;
XM.Witer witer = new XML\Witer(out, outformat);
witer.wite(this.doc);
witer.flush();

}
}

We use the constructor of XMLW i t er to pass a to given Qut put St r eam along
with the required character encoding. It iseasier touseaW i t er rather thanan Qut -

put St r eam becausethe Wi t er is String based and so has ness character encoding
issues. The write() methods of Wi t er are overloaded so that you can write all of the
domdj objectsindividually if required.

Customizing the output format

The default output format is to write the XML document as-is. If you want to change
the output format then there is a class or g. don#j . i 0. Qut put For mat which al-
lows you to define pretty printing options, to suppress the output of the XML declara-
tion, change the line ending and so on. There is aso a helper method Qut put For -

mat . createPrettyPrint() which will create a default pretty printing format
that you can further customize if you wish.

i mport java.i o. CQutput Stream

i mport org.domdj . Docunent ;
i mport org.domdj.io. XM.Witer;
i mport org.domdj.io.Cutput For nat ;

public class Depl oyFil eCreator {
private Docunent doc;

public void serializetoXM(QutputStream out, String aEncodi ngSchem
Qut put Format outformat = Qut put Format.createPrettyPrint();
out f or mat . set Encodi ng(aEncodi ngSchene) ;
XMWiter witer = new XM_\Witer(out, outformat);
witer.wite(this.doc);
witer.flush();

}

An interesting feature of Qut put For mat the ability to set the character encoding. It
isagood idiom to use this mechansim for setting the encoding as the XML Writer will
be able to use this encoding to create an OutputStream as well as to output the XML
declaration.

Thecl ose() method closesthe underlyingWi t er.

i mport java.io.Qutput Stream

i mport org.domdj . Docunent ;
i mport org.domdj.io. XM_.Witer;
i nport org.domd.io.Qut put For mat ;

public class Depl oyFil eCreator {

private Docunment doc;
private CQutput Format out For mat;

publ i c Depl oyFil eCreator() {
t hi s. out Format = Quput Format . getPrettyPrinting();

}

publ i ¢ Depl oyFi | eCreat or (Qut put For mat out Format) {
t hi s. out Format = out For mat ;

}

public void witeAsXM (QutputStream out) throws Exception {
XM Witer witer = new XMLWiter(outFormat, this.outFormat);
witer.wite(this.doc);

}

public void witeAsXM (QutputStream out, String encoding) throws Ext
t hi s. out For mat . set Encodi ng(encodi ng) ;
this.witeAsXM.(out);

}
}

The serialization methods in our little example will now set encoding using Qut put -

For mat er . The default encoding if none is specifed will be UTF-8. If you need a
simple output on screen for debbuing or testing you can omit setting of aW it er or
an Qut put St r eamcompletely as XMLW i t er will default to Syst em out .

Printing HTML

HTMLW i t er takes adomdj tree and formats it to a stream as HTML. This formatter
is similar to XMLW i t er but outputs the text of CDATA and Entity sections rather
than the serialised format as in XML and also supports many HTML element which
have no corresponding close tag such as for
 and <P>

i mport java.io.Qutput Stream
i nport org.don¥j . Docunent;

i mport org.domdj.io. HTMLWiter;
i mport org.domd.io.Qut put For nat ;

public class Depl oyFil eCreator {

private Docunent doc;
private Cutput Format out For mat ;

public Depl oyFil eCreator() {
t hi s. out Format = Quput Format. getPrettyPrinting();

}

publ i c Depl oyFi | eCreat or (Qut put For mat out Format) {
t hi s. out Format = out For nat;

}

public void witeAsHTM. (Qut put Stream out) throws Exception {
HTMWiter witer = new HTMLWiter (out Format, this.outFormat);
witer.wite(this.doc);
witer.flush();

}
}

Building a DOM tree

Sometimes it's necessary to transform your dom4j tree into a DOM tree, because you
are currently refactoring your application. dom4j is very convient for integration with
older XML API'slike DOM or SAX (see

<anchor>Generating SAX Events</anchor>

). Let's move to an example:

i mport org.w3c.dom Docunent ;

i nport org.domdj . Docunent ;
i mport org.domd).io. DOMWViter;

public class Depl oyFil eLoader Sanpl e {
private org.domdj. Docunent doc;
public org.w3c.dom Docunent transform oDOM) {

DOMWViter witer = new DOWYiter();
return witer.wite(this.doc);

}

10

Generating SAX Events

If you want to output a document as sax events in order to integrate with some existing
SAX code, you can usetheor g. domdj . SAXW i t er clas.

i nport org.xnl . Conent Handl er;

i mport org.domdj . Docunent ;
i nport org.don¥j.io. SAXWiter;

public class Depl oyFil eLoader Sanpl e {
private org.dond]. Docunent doc;

public void transfornt oSAX(Cont ent Handl er ctxHandl er) {
SAXWiter witer = new SAXWiter();
writer.setCont ent Handl er (ct xHandl er) ;
witer.wite(doc);

}
}

Using SAXWiter is fairly easy as you can see. You can resolve also
or g. dom El ement which means that you are able to process a single element
branch or even a single node with SAX.

11

4. Navigation in domd4j

Chapter 4. Navigation in dom4;

dom4j offers several powerful mechansims for navigating through a document:-

Using Iterators

* Fastindex based navigation
* Using abacked List

* Using XPath

. In-Build GOF Visitor Pattern

Using lterator

Most Java developers have aready used javautil.lterator or it's ancestor
java. util.Enuneration. Both classe are fairly involed into the Collection API
and used to visit the elements of a collection. The Iterator is appylied usualy with a
while loop and Iterator methods hasNext() and next() item. Right now Collection API
dont support Generic Type (like C++ Templates), but there's already a Early Access
Implemention available. Now let's move to an living example of it in dom4;.

inport java.util.lterator;

i mport org.domdj . Docunent ;
i nport org.donj. El enent;

public class Depl oyFil eLoader Sanpl e {

private org.dond]. Docunent doc;
private org.domdj . El enment root;

public void iterateRoot Children() {
root = this.doc.getRootEl enent();
Iterator elementlterator = root.elenentlterator();
whi | e(el enmentlterator. hasNext()){
El ement el neent = (El ement)el enmentlterator. next();
System out. println(el ement. get Nane());
}
}
}

12

The above example might be a little bit confusing if you are not too familiar with the
Collections API. Casting is necessary when you want to acess the object. Java Gener-
icswill solve this problem in future.

import java.util.lterator;

i mport org.domdj . Docunent ;
i mport org.dondj. El enent;

public class Depl oyFi |l eLoader Sanpl e {

private org.domdj . Docunent doc;
private org.dondj. El ement root;

public void iterateRoot Children(String aFilterEl enent Nane) ({
root = this.doc.getRootElenent();
Iterator elenentlterator = root.elenmentlterator(aFilterEl ement Nar
whi |l e(el ement I terator. hasNext ()){

El enent el neent = (El enent)el enentlterator. next();

} Systemout. println(el ement. get Nane());

}

}

Now the the method iterates on such Elements that have the same name as the parame-
terized String only. This can be used as a kind of filter applied on top of Collection
API's Iterator.

Fast index based Navigation

Sometimes if you need to walk a large tree very quickly, creating an
java.io. |terator instance to loop through each El enent 's children can be ex-
pensive in high performance environment. To help this situation, dom4j provides a fast
index based looping as follows.

public void treeWal k(Docunent document) {
treeWal k(document. get Root El enent ());

public void treeWal K(El enent el enent) {
for (int i =0, size = elenment.nodeCount(); i < size; i++) {
Node node = el enent. node(i);
if (node instanceof Elenent) {
treeval k((El ement) node);

13

el se {
/1l do sonething....

}
}
}

Using a backed List

You can navigate through an El enent's children using a backed Li st such that
modifications to the Li st are reflected back into the El enent . It also means that al
of the methodson Li st can be used.

i mport java.util.List;

i mport org.domdj . Docunent ;
i mport org.dondj . El enent;

public class Depl oyFil eLoader Sanpl e {
private org.domdj. Docunent doc;

public void iterateRoot Children() {
El ement root = doc. get Root El enent () ;

Li st el enents = root. el enents;

/'l we have access to the size() and other List nethods
if (elements.size() >4) {

/'l now lets renove a range of el enents

el enents. subList(3, 4).clear();

}
}
}

Using XPath

XPath isis one of the most usefull features of dom4j. Y ou can use it to retrieve nodes
from any location as well as evaluating complex expressions. A good X Path refercence
can be found in Micheal Kay's XSLT book [XSLTReference] along with the [Zvon]
Zvon tutorial.

import java.util.lterator;

i nport org.don¥j. Docunet;

14

i mport org.domdj . Docunent Hel per;
i mport org.dondj. El enent;
i nport org.domd) . XPat h;

public class Depl oyFil eLoader Sanpl e {

private org.dond]. Docunment doc;
private org.domdj . El enment root;

public void browseRoot Children() {
XPat h xpat hSel ect or = Docunent Hel per. creat eXPat h("/ peopl e/ per son|
Li st results = xpathSel ector. sel ect Nodes(doc);
for (Iterator iter = result.iterator(); iter.hasNext();) {
El ement el enent = (Elenent) iter.next();
System out . println(el enent. get Name() ;

}

}

As selectNodes returns a List we can apply | t er at or or any other operation avali-
ableonj ava. util . List.

Using Visitor Pattern

The visitor pattern has a recrusive behavior and acts like SAX in the way that partical
traversal is not possible. This means the complete document or the complete element
branch will be visited. Y ou should consider wisely when you want to use Visitor pat-
tern, but then it offers a powerful and elegant way of navigation. This document
doesn't explain Vistor Pattern in deepth, [GoF98] covers more information.

inmport java.util.lterator;

i mport org.donmdj.Visitor;

i mport org.domdj . VisitorSupport;

i mport org.domd) . Docunent ;

i mport org.dondj . El enent;

public class VisitorSanple {
public void deno(Docunent doc) {

Visitor visitor = new VisitorSupport ()
public void visit(El ement el enent) {

{

15

System out. printl n(
"Entity nane: " + elenent.getNane() + "text

)

+ el enent . g

}
¥

doc. accept(visitor);

As you can see we used a anonymous inner class to override the Vi si t or Suppor t
callback adapter method visit(Element element) and the accept() method starts the vis-
tor mechansim. Please keep in mind that the complete element branch is visited.

16

5. Manipulating dom4j

Chapter 5. Manipulating dom4j

Accessing XML content statically alone would not very special. Thus dom4j offers
several methods for manipulation a documents content.

What or g. don¥j . Docunent provides

A org.domdj . Docunent allows you to configure and retreive the root element.
You are aso able to set the DOCTYPE or a SAX based Enti t yResol ver. An
empty Docunent should be created viaor g. don¥j . Docunent Fact ory.

Working with or g. dondj . El enent

or g. dom4j . El enent isapowerfull interface providing lots of methods for manip-
ulation an Element.

c voi d changeEl enent Nane(String aNane) {
s. el enent . set Nane(aNane) ;

c void changeEl enent Text (String aText) {
s. el enent . set Text (aText);

Qualified Names

An XML Element should have a qualified name. A qualified name consits normally of
a Namespace ad a loca name. It's recommend to use
or g. domdj . Docunent Fact ory to create Qualifed Names that are provided by
or g. domdj . QNane instances.

i nport org.domdj . El enent;

i mport org.domdj . Docunent;

i mport org.domd) . Docunent Fact ory;
i nport org.dondj . QNane;

public class Depl oyFil eCreator {

17

prot ect ed Docunent depl oyDoc;
protected El enment root;

publ i c void Depl oyFi |l eCreator ()
{

QNane root Nanme = Docunent Fact ory. getl nstance().createQNane(" pr ef
this.root = Docunent Factory. getlnstance().createEl enment (r oot Nam
t hi s. depl oyDoc = Docunent Factory. getl nstance().createDocunent (t!

}
}

Inserting elements

Somethimes it's necessary to insert an element somewhere in a existing XML Tree. As
domdj is based on Collection API this causes no problems. The following expample
shows how it could be done.

public void insertEl ement At (El enent newEl enent, int index) {
El enent parent = this.elenent.getParent();
List list = parent.content();
list.add(index, newEl enent);

}

public void testinsertEl ementAt() {
/linsert an clone of current element after the current el enent
El ement newkl enment = this. el enent.clone();
this.insertEl ement At (newkl enent, this.root.indexO(this.elenent

// insert an clone of current el enment before the current el enent
this.insertEl ement At (newkl ement, this.root.indexO(this.elenent

}

Studying the Collection API should lead to more solutions for similar problem and you
will notify that dom4j fits well in the Collection Framework and both complement
each other in order to processing xml document in a comfortable way.

Cloning - How many sheeps do you need?

Elements can be cloned as well. Usually cloning is supported in Java with clone()

18

method that is derived from Obj ect , but a cloneable Object have to implement inter-
face Cl onabl e. Java support shallow copying by simply returning this for standard.
dom4j supporting deep cloning because shallow copies would not make sence in con-
text of an XML object model. This means that cloning can take a while because the
complete tree branch or event the document will be cloned. Now we have a short ook
how dom4j cloning mechanism is used.

i nport org.don¥j . Docunent;
i mport org.domdj. El enent;

public class Depl oyFil eCreator {

private El enment cloneEl enent(String nanme) {
return this.root. el enent(nane).clone();

}

private El ement cl oneDetachEl enent(String nanme) {
return this.root.createCopy(nane);

}

public class TestEl enent extends junit.framework. Test Case {

public void testdoning() throws junit.framwrk. AssertionFail edl
assert("Test cloning wth clone() failed!", this.creator.clone
assert("Test cloning with createCopy() failed!", this.creator.

}
}
}

The difference between createCopy(...) and clone() is that first is a polymorphic
method that created a decoupled deep copy whereas clone() returns a returns a deep
copy of the current document or element itself.

Consider use of Cloning

Cloning might be usefull when you want to build a element pool. Such a pool
should be desinged carefully keeping Qut OF Menor yExcept i on in mind.
You could aternativly consider to use Reference APl [Pawlan98] or Dave
Millers approach [JavawWorldTip76].

19

6. Using dom4j with XSLT

Chapter 6. Using dom4j with XSLT

With eXtensible Stylesheet Language XML got's a powerfull method of transforming
itself into other formats. Developing Exportfilter's for dataformats are normally a hard
job and so for XML XSL simpliefs that work. The aronym XSLT means the process of
transformation, that is usally done by an XSL compliant Processor. XSL covers fol-
lowing subjects:

XSL Style Sheet

XSL Processor for XSLT

FOP Processor for FOP

An XML source

Since JaxXP 1.1 TraX is the common API for proceeding a XSL Stylesheet inside of
Java. You start with a Transf or mer Fact ory and dealing with Resul t and
Sour ce. A Sour ce contains the source xml file that should be transformed. Re-
sult's contains the the result of transformation. domd4j offers
org. domdj . i o. Docunent Result and org.dom4j.i o. DocunmenSource
for compatiblity to TrAX. Whereasor g. dondj . i 0. Docunent Resul t contains a
or g. dom¥j . Docunent as result tree, Docunent Sour ce takes dom4j Docu-
ment s and pepare them for transformation. Both classes are build on top of TraX own
SAX classes. This is much more perfomant as a DOM adaptation. The following ex-
ample explains the use of XSLT with TraX and dom4;.

i mport javax.xm .transform Transforner;
i nport javax.xm .transform TransformnerFactory;
i mport javax.xm .transform stream StreanSour ce;

i nport org.don¥j. Docunent;
i mport org.domdj.io.Docunent Resul t;
i mport org.domd.io. Docunment Sour ce;

public class Docunent Styl er

{

private Transforner transfornmer;

publ i ¢ Docunent Styl er (Source aStyl eSheet) throws Exception {
/'l create the transforner
TransfornerFactory factory = Transforner Factory. newl nstance()
transfornmer = factory. newlransfornmer(aStyl eSheet);

20

publ i ¢ Docunent transform Docunent aDocunent) throws Exception {

/1l performthe transformation

Docunent Sour ce source = new Docunent Sour ce(aDocunent);
Docunent Result result = new Docunent Resul t();
transforner.transforn(source, result);

/'l return the resulting docunent
return result. get Docunent () ;

Imagine that you use XSLT to process a XML Schema in order to generate a empty
template xml file accoring the schema contraints. The above sample should how easy
the Java code is when you use dom4j and it's TraX support. If you use TemplateGener-
ator alot you should consider the application of singleton pattern, but for this example
| avoided this for simplicity. More information about TraX is provided here
[http://www.java.sun.com/xml].

21

http://www.java.sun.com/xml

7. Schemata-Support

Chapter 7. Schemata-Support

The first way to describe and constrain the form and data of a XML document isas old
as XML itself. Document Type Definitions are used since the XML Specicifiation has
been published. At lot of applications used this DTDs to describe and validate her doc-
uments. Unfortunatly the DTD Syntax was not that powerfull as needed. Written in
SGML, DTDs are a'so not so easy to handle as XML is.

During the time of DTDs a couple of people invents several other possible ways that
could be used to describe a document and force its content in the desired form. Latly
the W3C published XML Schema Specification with a couple of massive inprove-
ments. XML Schemas are no described by XML and the way to describe a Schema is
done with DTD once and not longer by every XML user. A growing group of people
using XML Schema now. But XML Schema isn't perfect. So a few people swear by
Relax or Relax NG. The reader of this document is able to choose one of the following
technologies:

* Relax NG (Regular Language description for XML Next Generation)[RelaxNG]
* Reax (Regular Language description for XML)[Relax]

« TREX[TREX]

« XML DTDSDTD]

« XML Schema[XSD]

Using XML Schema Data Types in dom4j

domdj supports currently XML Schema Data TypegDataTypes| only. The dom4j im-
plementation is based on top of MSV. Earlier dom4j releases are built on top of Suns
Tranquilo (xsdlib.jar) but we use MSV now, because its uses offers the same Tranquilo
plus exiting additional features we discuss |ater.

i mport java.util.List;

i mport org.domdj. Docunent;

i mport org.domd) . Docunent Hel per;

i nport org.don¥j . XPat h;

i mport org.domd . i 0. SAXReader ;

i mport org.domd . dataType. Dat aTypeEl enent ;

public class SchemaTypeDeno {

22

public static void main(String[] args) {

SAXReader reader = new SAXReader ();

r eader . set Docunent Fact ory(Dat at ypeDocunent Fact ory. getl nstance());

Docunment schema = return reader.read(xm File)

XPat h xpat hSel ect or = Docunent Hel per. creat eXPat h(" xsd: schenma/ xsd: c

Li st xsdEl enents = xpat hSel ector. sel ect Nodes(schema) ;

;o1 +t)

for (int 1=0; i < xsdEl enents. size(
Dat aEl enent tenpXsdEl enent = (Dat

if (tenpXsdEl enent.getData() instanceof Integer) {
t enpXsdEl enent . set Dat a(new | nt eger (23));

}
}
}

Alpha status

Note that the Data Type support is still alpha. If you find any bug, please report
it to the mailing listy. This helps us to make the Data Type support more error-
prone and trustworthy.

Validation

domdj currently comes not with its one validation engine. You are forced to use a dif-
ferent engine instead. We recommend the use of Xerces 1.4.x or later in the past, but
now you are able to use Suns Multi Schema Validator as well. Xerces is able to vali-
date against DTDs and XML Schema, but not against TREX or Relax. Y ou would be-
live it, but the Mulit Schema Validator Libery supports all earlier mentioned types for
validation.

Consider use of Validation

Using Valdiation consumes valueable resources. Use it wisdly.

Using Apaches Xerces 1.4.x and dom4j for validation

Using Xerecs 1.4.x for Schema and Validation is very easy. You have to download
Xerces at Apaches XML web sites. The past has shown that not always the newest ver-
sion is best. You can view there mailing lists in order to find out which version is
buggy and which works well. For Schema support at least Xerecs 1.4.0 is necessary. If
you work according the following rules valdation should be no problem.

23

)
at ypeEl enent) xsdEl enent s. get (i) ;

e Turnon validation mode - which isfalse for default - using a SAXReader instance

e Set the following Xerces property
http://apache.org/xml/properti es/schemalexternal -noN amespaceSchemal ocation
using the schema URI.

* CreateaSAX XMLErrorHandler and install it to your SAXReader instance.
» Parse and validate the Document.

* Output Validation/Parse Errors errors.

i mport org.domdj . Docunent ;

i nport org.domdj . El enent;

i mport org.domdj.io.CQutput For nat ;

i mport org.domd . i o. SAXReader ;

i nport org.dondj.io. XM\Witer;

i mport org.domdj.util.XMErrorHandl er;

i mport org.xm .sax. ErrorHandl er;
i mport org.xm . sax. SAXPar seExcepti on

public class SinpleValidationDeno {

public static void main(String[] args) {
SAXReader reader = new SAXReader () ;

reader. set Val i dation(true);

/'l specify the schema to use

reader . set Property(
“http://apache. org/ xm / properti es/ schena/ ext er nal - noNanespaceSchel
"prices. xsd"

/1 add an error handl er which turns any errors into XM
XMLEr r or Handl er errorHandl er = new XM_ErrorHandl er ();
reader. set ErrorHandl er(errorHandl er);

/'l now |l ets parse the docunent
Docunent docunent = reader.read(args[0]);

/1 now lets output the errors as XM

XMWiter witer = new XM\Witer(QutputFormat.createPrettyPrint()
witer.wite(errorHandl er.getErrors());

24

Xercesand Crimson

Both, Xerecs and Crimson, are JaXPable Parsers. You should be carefully in
using Crimson and Xerces in same classpath. Xerces will work only correct
when it is the mentioned before Crimson in classpath. At this time | recom-
mend that you should either Xereces or Crimson.

A perfect team - Multi Schema Validator[MSV] and dom4;j

Kohsuke Kawaguchi a deleloper from Sun created a extremly usefull tool for validtion
of XML documents. The Multi Schema Validator (MSV) supports following kinds of

Schmemata:

. Relax NG

. Relax

e« TREX

. XML DTDs

. XML Schema

You are able to use the MSV and dom4j in order to validate your Documents. The fol-
lowing examples shows you how to use the MSV and with dom4j.

i mport com sun. nmsv. gramar. G anmar ;

i nport com sun. nev. reader. util. G amrmar Loader;

i mport com sun. nsv. reader.util.lgnoreController;

i mport com sun. nsv. verifier.Docunent Decl arati on;

i mport comsun.nmsv.verifier.ValidityViolation;

i nport com sun.nev.verifier.Verifier;

i mport com sun. nsv.verifier.VerificationErrorHandl er;

i nport javax.xm . parsers. SAXPar ser Factory;
i mport org.domdj . Docunent ;
i nport org.don¥j . Docunent Excepti on;

i mport org.domd.io. SAXReader ;
i mport org.domd).io. SAX\Witer;

25

i mport org.xm . sax. Cont ent Handl er;

i mport org.xm . sax. ErrorHandl er;

i nport org.xnl.sax. Locator;

i mport org.xm .sax. SAXPar seExcepti on;

i nport java. net. URL;
inmport java.io.File;

public class Schema {

public static void main(String argv[]) {
try {
String filename = argv[O0];
String schema = argv[1];

URL fileURL = new File(filenane).toURL();
URL schemaURL = new Fil e(schema).toURL();

SAXReader reader = new SAXReader () ;

Docunment doc = reader.read(fileURL);

val i dat e(doc, schemaURL. t oExt ernal Form());
} catch (Exception e) {

e.printStackTrace(Systemerr);

}

static public void validate(Docunent doc, String schem)
t hrows Exception {

/1 Turn on Nanespace handling in theJAXP SAXPar ser Factory
SAXPar ser Fact ory saxFactory = SAXPar ser Fact ory. newl nst ance() ;

saxFactory. set NanespaceAwar e(true);

/'l create MSVs Docunent Decl aration by overriding
/1l a lgnoreController in an anonyous inner class
Docunent Decl arati on docDecl aration =

G ammar Loader . | oadVGM schema, new I gnoreController() {

public void error(Locator[] |ocations,
String nmessage,
Exception exception) {

Systemout.println("ERROR " + nessage);

}

public void error(Locator[] l|ocations, String nmessage) {

Systemout.println("WARNING " + nmessage);

}, saxFactory);

26

Il create a new Verifier that reports vlidation errors
/'l using an anonynous inner class
Verifier verifier =

new Verifier(docDeclaration, new VerificationErrorHandl et

public void onError(ValidityViolation e) {
System out. println("Docunent invalid!

public void onVWarning(ValidityViolation e) {

System out. println("Docunent invalid!

}
IDE

SAXWiter witer = new SAXWiter((ContentHandl er) verifier);

writer.setErrorHandl er(new ErrorHandl er() {

public void error(SAXParseException e) {
Systemout.println("ERROR " + e);

public void fatal Error(SAXParseException e) {
Systemout.println("Fatal:" + e);

public void warni ng(SAXPar seException e) {
Systemout.println("Warning:" + e);

1),

/'l validate now
witer.wite(doc);
if (verifier.isValid())
Systemerr.println("The docunent was valid");
el se
Systemerr.println("The docunent was not valid");

}

At the first look the use of MSV looks not trival. The Xerces validation is easier to use
in code, but not so powerfull. Currently its not clear if XML Schema will be the next
standard for validation. Relax NG gots a even more growing lobby. If you want to
build a open application that is not fixed to a specific XML parser and specific XML
Schematas you should use this powerfull tool.

27

Further Reading

Books

[XSLTReference] Michael Kay. Copyright © 2001 Worx Press, Inc.. 1-861-005067.
Worx Press. XSLT Programmer's Reference 2'nd Edition. Programmer To Program-
mer. Worx Press.

[GOF95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Copyright
© 1995 Addison Wesley Pub, Co.. 0-201-633-612. Addison-Wesley. Design Patterns:
Elements of Reusable Object-Orientated Software .

28

