
The Linux-PAM Module Writers’ Guide

Andrew G. Morgan, morgan@kernel.org DRAFT v0.76 2002/05/09

This manual documents what a programmer needs to know in order to write a module that conforms to the

Linux-PAM standard. It also discusses some security issues from the point of view of the module programmer.

Contents

1 Introduction 2

1.1 Synopsis . 2

1.2 Description . 2

2 What can be expected by the module 3

2.1 Getting and setting PAM_ITEMs and data . 3

2.1.1 Setting data . 3

2.1.2 Getting data . 4

2.1.3 Setting items . 4

2.1.4 Getting items . 5

2.1.5 The conversation mechanism . 5

2.1.6 Getting the name of a user . 6

2.1.7 Setting a Linux-PAM environment variable . 6

2.1.8 Getting a Linux-PAM environment variable . 7

2.1.9 Listing the Linux-PAM environment . 7

2.2 Other functions provided by libpam . 8

2.2.1 Understanding errors . 8

2.2.2 Planning for delays . 8

3 What is expected of a module 8

3.1 Overview . 9

3.1.1 Functional independence . 9

3.1.2 Minimizing administration problems . 9

3.1.3 Arguments supplied to the module . 9

3.2 Authentication management . 9

3.3 Account management . 11

3.4 Session management . 12

1. Introduction 2

3.5 Password management . 12

4 Generic optional arguments 13

5 Programming notes 14

5.1 Security issues for module creation . 14

5.1.1 Sufficient resources . 14

5.1.2 Who’s who? . 15

5.1.3 Using the conversation function . 15

5.1.4 Authentication tokens . 15

5.2 Use of syslog(3) . 16

5.3 Modules that require system libraries . 16

5.4 Added requirements for statically loaded modules. 17

6 An example module file 18

7 Files 18

8 See also 18

9 Notes 19

10 Author/acknowledgments 19

11 Bugs/omissions 19

12 Copyright information for this document 19

1 Introduction

1.1 Synopsis

#include <security/pam_modules.h>

gcc -fPIC -c pam_module-name.c

ld -x --shared -o pam_module-name.so pam_module-name.o

1.2 Description

Linux-PAM (Pluggable Authentication Modules for Linux) is a library that enables the local system ad-

ministrator to choose how individual applications authenticate users. For an overview of the Linux-PAM

library see the Linux-PAM System Administrators’ Guide.

2. What can be expected by the module 3

A Linux-PAM module is a single executable binary file that can be loaded by the Linux-PAM interface

library. This PAM library is configured locally with a system file, /etc/pam.conf, to authenticate a user

request via the locally available authentication modules. The modules themselves will usually be located in

the directory /usr/lib/security and take the form of dynamically loadable object files (see dlopen(3)).

Alternatively, the modules can be statically linked into the Linux-PAM library; this is mostly to allow

Linux-PAM to be used on platforms without dynamic linking available, but the two forms can be used

together. It is the Linux-PAM interface that is called by an application and it is the responsibility of the

library to locate, load and call the appropriate functions in a Linux-PAM-module.

Except for the immediate purpose of interacting with the user (entering a password etc..) the module should

never call the application directly. This exception requires a "conversation mechanism" which is documented

below.

2 What can be expected by the module

Here we list the interface that the conventions that all Linux-PAM modules must adhere to.

2.1 Getting and setting PAM_ITEMs and data

First, we cover what the module should expect from the Linux-PAM library and a Linux-PAM aware

application. Essesntially this is the libpam.* library.

2.1.1 Setting data

Synopsis:

extern int pam_set_data(pam_handle_t *pamh,

const char *module_data_name,

void *data,

void (*cleanup)(pam_handle_t *pamh,

void *data, int error_status));

The modules may be dynamically loadable objects. In general such files should not contain static variables.

This and the subsequent function provide a mechanism for a module to associate some data with the handle

pamh. Typically a module will call the pam_set_data() function to register some data under a (hopefully)

unique module_data_name. The data is available for use by other modules too but not by an application.

The function cleanup() is associated with the data and, if non-NULL, it is called when this data is over-

written or following a call to pam_end() (see the Linux-PAM Application Developers’ Guide).

The error_status argument is used to indicate to the module the sort of action it is to take in cleaning

this data item. As an example, Kerberos creates a ticket file during the authentication phase, this file might

be associated with a data item. When pam_end() is called by the module, the error_status carries the

return value of the pam_authenticate() or other libpam function as appropriate. Based on this value the

Kerberos module may choose to delete the ticket file (authentication failure) or leave it in place.

The error_status may have been logically OR’d with either of the following two values:

2. What can be expected by the module 4

PAM_DATA_REPLACE

When a data item is being replaced (through a second call to pam_set_data()) this mask is used.

Otherwise, the call is assumed to be from pam_end().

PAM_DATA_SILENT

Which indicates that the process would prefer to perform the cleanup() quietly. That is, discourages

logging/messages to the user.

2.1.2 Getting data

Synopsis:

extern int pam_get_data(const pam_handle_t *pamh,

const char *module_data_name,

const void **data);

This function together with the previous one provides a method of associating module-specific data with the

handle pamh. A successful call to pam_get_data will result in *data pointing to the data associated with

the module_data_name. Note, this data is not a copy and should be treated as constant by the module.

Note, if there is an entry but it has the value NULL, then this call returns PAM_NO_MODULE_DATA.

2.1.3 Setting items

Synopsis:

extern int pam_set_item(pam_handle_t *pamh,

int item_type,

const void *item);

This function is used to (re)set the value of one of the item_types. The reader is urged to read the entry

for this function in the Linux-PAM application developers’ manual.

In addition to the items listed there, the module can set the following two item_types:

PAM_AUTHTOK

The authentication token (often a password). This token should be ignored by all module functions

besides pam_sm_authenticate() and pam_sm_chauthtok(). In the former function it is used to pass

the most recent authentication token from one stacked module to another. In the latter function the

token is used for another purpose. It contains the currently active authentication token.

PAM_OLDAUTHTOK

The old authentication token. This token should be ignored by all module functions except

pam_sm_chauthtok().

Both of these items are reset before returning to the application. When resetting these items, the Linux-

PAM library first writes 0’s to the current tokens and then free()’s the associated memory.

The return values for this function are listed in the Linux-PAM Application Developers’ Guide.

2. What can be expected by the module 5

2.1.4 Getting items

Synopsis:

extern int pam_get_item(const pam_handle_t *pamh,

int item_type,

const void **item);

This function is used to obtain the value of the specified item_type. It is better documented in the Linux-

PAM Application Developers’ Guide. However, there are three things worth stressing here:

• Generally, if the module wishes to obtain the name of the user, it should not use this function, but

instead perform a call to pam_get_user() (see section 2.1.6 (below)).

• The module is additionally privileged to read the authentication tokens, PAM_AUTHTOK and

PAM_OLDAUTHTOK (see the section above on pam_set_data()).

• The module should not free() or alter the data pointed to by *item after a successful return from

pam_get_item(). This pointer points directly at the data contained within the *pamh structure.

Should a module require that a change is made to the this ITEM it should make the appropriate call to

pam_set_item().

2.1.5 The conversation mechanism

Following the call pam_get_item(pamh,PAM_CONV,&item), the pointer item points to a structure containing

an a pointer to a conversation-function that provides limited but direct access to the application. The purpose

of this function is to allow the module to prompt the user for their password and pass other information

in a manner consistent with the application. For example, an X-windows based program might pop up

a dialog box to report a login failure. Just as the application should not be concerned with the method

of authentication, so the module should not dictate the manner in which input (output) is obtained from

(presented to) to the user.

The reader is strongly urged to read the more complete description of the pam_conv structure,

written from the perspective of the application developer, in the Linux-PAM Application

Developers’ Guide.

The return values for this function are listed in the Linux-PAM Application Developers’ Guide.

The pam_response structure returned after a call to the pam_conv function must be free()’d by the module.

Since the call to the conversation function originates from the module, it is clear that this pam_response

structure could be either statically or dynamically (using malloc() etc.) allocated within the application.

Repeated calls to the conversation function would likely overwrite static memory, so it is required that for

a successful return from the conversation function the memory for the response structure is dynamically

allocated by the application with one of the malloc() family of commands and must be free()’d by the

module.

If the pam_conv mechanism is used to enter authentication tokens, the module should either pass the result

to the pam_set_item() library function, or copy it itself. In such a case, once the token has been stored (by

one of these methods or another one), the memory returned by the application should be overwritten with

0’s, and then free()’d.

2. What can be expected by the module 6

There is a handy macro _pam_drop_reply() to be found in <security/_pam_macros.h> that can be used

to conveniently cleanup a pam_response structure. (Note, this include file is specific to the Linux-PAM

sources, and whilst it will work with Sun derived PAM implementations, it is not generally distributed by

Sun.)

2.1.6 Getting the name of a user

Synopsis:

extern int pam_get_user(pam_handle_t *pamh,

const char **user,

const char *prompt);

This is a Linux-PAM library function that returns the (prospective) name of the user. To determine the

username it does the following things, in this order:

• checks what pam_get_item(pamh, PAM_USER, ...); would have returned. If this is not NULL this

is what it returns. Otherwise,

• obtains a username from the application via the pam_conv mechanism, it prompts the user with the

first non-NULL string in the following list:

– The prompt argument passed to the function

– What is returned by pam_get_item(pamh,PAM_USER_PROMPT, ...);

– The default prompt: “Please enter username: ”

By whatever means the username is obtained, a pointer to it is returned as the contents of *user. Note,

this memory should not be free()’d by the module. Instead, it will be liberated on the next call to

pam_get_user(), or by pam_end() when the application ends its interaction with Linux-PAM.

Also, in addition, it should be noted that this function sets the PAM_USER item that is associated with the

pam_[gs]et_item() function.

The return value of this function is one of the following:

• PAM_SUCCESS - username obtained.

• PAM_CONV_AGAIN - converstation did not complete and the caller is required to return control to the

application, until such time as the application has completed the conversation process. A module calling

pam_get_user() that obtains this return code, should return PAM_INCOMPLETE and be prepared (when

invoked the next time) to recall pam_get_user() to fill in the user’s name, and then pick up where it

left off as if nothing had happened. This procedure is needed to support an event-driven application

programming model.

• PAM_CONV_ERR - the conversation method supplied by the application failed to obtain the username.

2.1.7 Setting a Linux-PAM environment variable

Synopsis:

2. What can be expected by the module 7

extern int pam_putenv(pam_handle_t *pamh, const char *name_value);

Linux-PAM comes equipped with a series of functions for maintaining a set of environment variables.

The environment is initialized by the call to pam_start() and is erased with a call to pam_end(). This

environment is associated with the pam_handle_t pointer returned by the former call.

The default environment is all but empty. It contains a single NULL pointer, which is always required to

terminate the variable-list. The pam_putenv() function can be used to add a new environment variable,

replace an existing one, or delete an old one.

• Adding/replacing a variable

To add or overwrite a Linux-PAM environment variable the value of the argument name_value,

should be of the following form:

name_value="VARIABLE=VALUE OF VARIABLE"

Here, VARIABLE is the environment variable’s name and what follows the ‘=’ is its (new) value. (Note,

that "VARIABLE=" is a valid value for name_value, indicating that the variable is set to "".)

• Deleting a variable

To delete a Linux-PAM environment variable the value of the argument name_value, should be of

the following form:

name_value="VARIABLE"

Here, VARIABLE is the environment variable’s name and the absence of an ‘=’ indicates that the variable

should be removed.

In all cases PAM_SUCCESS indicates success.

2.1.8 Getting a Linux-PAM environment variable

Synopsis:

extern const char *pam_getenv(pam_handle_t *pamh, const char *name);

This function can be used to return the value of the given variable. If the returned value is NULL, the variable

is not known.

2.1.9 Listing the Linux-PAM environment

Synopsis:

extern char * const *pam_getenvlist(pam_handle_t *pamh);

3. What is expected of a module 8

This function returns a pointer to the entire Linux-PAM environment array. At first sight the type of the

returned data may appear a little confusing. It is basically a read-only array of character pointers, that lists

the NULL terminated list of environment variables set so far.

Although, this is not a concern for the module programmer, we mention here that an application should be

careful to copy this entire array before executing pam_end() otherwise all the variable information will be lost.

(There are functions in libpam_misc for this purpose: pam_misc_copy_env() and pam_misc_drop_env().)

2.2 Other functions provided by libpam

2.2.1 Understanding errors

• extern const char *pam_strerror(pam_handle_t *pamh, int errnum);

This function returns some text describing the Linux-PAM error associated with the argument

errnum. If the error is not recognized “Unknown Linux-PAM error” is returned.

2.2.2 Planning for delays

• extern int pam_fail_delay(pam_handle_t *pamh, unsigned int micro_sec)

This function is offered by Linux-PAM to facilitate time delays following a failed call to

pam_authenticate() and before control is returned to the application. When using this function

the module programmer should check if it is available with,

#ifdef PAM_FAIL_DELAY

....

#endif /* PAM_FAIL_DELAY */

Generally, an application requests that a user is authenticated by Linux-PAM through a call to

pam_authenticate() or pam_chauthtok(). These functions call each of the stacked authentication

modules listed in the Linux-PAM configuration file. As directed by this file, one of more of the

modules may fail causing the pam_...() call to return an error. It is desirable for there to also be a

pause before the application continues. The principal reason for such a delay is security: a delay acts

to discourage brute force dictionary attacks primarily, but also helps hinder timed (cf. covert channel)

attacks.

The pam_fail_delay() function provides the mechanism by which an application or module can sug-

gest a minimum delay (of micro_sec micro-seconds). Linux-PAM keeps a record of the longest time

requested with this function. Should pam_authenticate() fail, the failing return to the application is

delayed by an amount of time randomly distributed (by up to 25%) about this longest value.

Independent of success, the delay time is reset to its zero default value when Linux-PAM returns

control to the application.

3 What is expected of a module

The module must supply a sub-set of the six functions listed below. Together they define the function of a

Linux-PAM module. Module developers are strongly urged to read the comments on security that follow

this list.

3. What is expected of a module 9

3.1 Overview

The six module functions are grouped into four independent management groups. These groups are as

follows: authentication, account , session and password . To be properly defined, a module must define all

functions within at least one of these groups. A single module may contain the necessary functions for all

four groups.

3.1.1 Functional independence

The independence of the four groups of service a module can offer means that the module should allow for

the possibility that any one of these four services may legitimately be called in any order. Thus, the module

writer should consider the appropriateness of performing a service without the prior success of some other

part of the module.

As an informative example, consider the possibility that an application applies to change a user’s authen-

tication token, without having first requested that Linux-PAM authenticate the user. In some cases this

may be deemed appropriate: when root wants to change the authentication token of some lesser user. In

other cases it may not be appropriate: when joe maliciously wants to reset alice’s password; or when

anyone other than the user themself wishes to reset their KERBEROS authentication token. A policy for

this action should be defined by any reasonable authentication scheme, the module writer should consider

this when implementing a given module.

3.1.2 Minimizing administration problems

To avoid system administration problems and the poor construction of a /etc/pam.conf file, the module

developer may define all six of the following functions. For those functions that would not be called, the

module should return PAM_SERVICE_ERR and write an appropriate message to the system log. When this

action is deemed inappropriate, the function would simply return PAM_IGNORE.

3.1.3 Arguments supplied to the module

The flags argument of each of the following functions can be logically OR’d with PAM_SILENT, which is

used to inform the module to not pass any text (errors or warnings) to the application.

The argc and argv arguments are taken from the line appropriate to this module—that is, with the ser-

vice_name matching that of the application—in the configuration file (see the Linux-PAM System Admin-

istrators’ Guide). Together these two parameters provide the number of arguments and an array of pointers

to the individual argument tokens. This will be familiar to C programmers as the ubiquitous method of

passing command arguments to the function main(). Note, however, that the first argument (argv[0]) is a

true argument and not the name of the module.

3.2 Authentication management

To be correctly initialized, PAM_SM_AUTHmust be #define’d prior to including <security/pam_modules.h>.

This will ensure that the prototypes for static modules are properly declared.

3. What is expected of a module 10

• PAM_EXTERN int pam_sm_authenticate(pam_handle_t *pamh, int flags, int argc, const

char **argv);

This function performs the task of authenticating the user.

The flags argument can be a logically OR’d with PAM_SILENT and optionally take the following value:

PAM_DISALLOW_NULL_AUTHTOK

return PAM_AUTH_ERR if the database of authentication tokens for this authentication mechanism

has a NULL entry for the user. Without this flag, such a NULL token will lead to a success without

the user being prompted.

Besides PAM_SUCCESS return values that can be sent by this function are one of the following:

PAM_AUTH_ERR

The user was not authenticated

PAM_CRED_INSUFFICIENT

For some reason the application does not have sufficient credentials to authenticate the user.

PAM_AUTHINFO_UNAVAIL

The modules were not able to access the authentication information. This might be due to a

network or hardware failure etc.

PAM_USER_UNKNOWN

The supplied username is not known to the authentication service

PAM_MAXTRIES

One or more of the authentication modules has reached its limit of tries authenticating the user.

Do not try again.

• PAM_EXTERN int pam_sm_setcred(pam_handle_t *pamh, int flags, int argc, const char

**argv);

This function performs the task of altering the credentials of the user with respect to the corresponding

authorization scheme. Generally, an authentication module may have access to more information about

a user than their authentication token. This function is used to make such information available to

the application. It should only be called after the user has been authenticated but before a session has

been established.

Permitted flags, one of which, may be logically OR’d with PAM_SILENT are,

PAM_ESTABLISH_CRED

Set the credentials for the authentication service,

PAM_DELETE_CRED

Delete the credentials associated with the authentication service,

PAM_REINITIALIZE_CRED

Reinitialize the user credentials, and

PAM_REFRESH_CRED

Extend the lifetime of the user credentials.

3. What is expected of a module 11

Prior to Linux-PAM-0.75, and due to a deficiency with the way the auth stack was handled in the

case of the setcred stack being processed, the module was required to attempt to return the same error

code as pam_sm_authenticate did. This was necessary to preserve the logic followed by libpam as it

executes the stack of authentication modules, when the application called either pam_authenticate()

or pam_setcred(). Failing to do this, led to confusion on the part of the System Administrator.

For Linux-PAM-0.75 and later, libpam handles the credential stack much more sanely. The way

the auth stack is navigated in order to evaluate the pam_setcred() function call, independent of

the pam_sm_setcred() return codes, is exactly the same way that it was navigated when evalu-

ating the pam_authenticate() library call. Typically, if a stack entry was ignored in evaluating

pam_authenticate(), it will be ignored when libpam evaluates the pam_setcred() function call. Oth-

erwise, the return codes from each module specific pam_sm_setcred() call are treated as required.

Besides PAM_SUCCESS, the module may return one of the following errors:

PAM_CRED_UNAVAIL

This module cannot retrieve the user’s credentials.

PAM_CRED_EXPIRED

The user’s credentials have expired.

PAM_USER_UNKNOWN

The user is not known to this authentication module.

PAM_CRED_ERR

This module was unable to set the credentials of the user.

these, non-PAM_SUCCESS, return values will typically lead to the credential stack failing . The first such

error will dominate in the return value of pam_setcred().

3.3 Account management

To be correctly initialized, PAM_SM_ACCOUNT must be #define’d prior to including

<security/pam_modules.h>. This will ensure that the prototype for a static module is properly

declared.

• PAM_EXTERN int pam_sm_acct_mgmt(pam_handle_t *pamh, int flags, int argc, const char

**argv);

This function performs the task of establishing whether the user is permitted to gain access at this

time. It should be understood that the user has previously been validated by an authentication module.

This function checks for other things. Such things might be: the time of day or the date, the terminal

line, remote hostname, etc. .

This function may also determine things like the expiration on passwords, and respond that the user

change it before continuing.

Valid flags, which may be logically OR’d with PAM_SILENT, are the same as those applicable to the

flags argument of pam_sm_authenticate.

This function may return one of the following errors,

PAM_ACCT_EXPIRED

The user is no longer permitted access to the system.

3. What is expected of a module 12

PAM_AUTH_ERR

There was an authentication error.

PAM_AUTHTOKEN_REQD

The user’s authentication token has expired. Before calling this function again the application

will arrange for a new one to be given. This will likely result in a call to pam_sm_chauthtok().

PAM_USER_UNKNOWN

The user is not known to the module’s account management component.

3.4 Session management

To be correctly initialized, PAM_SM_SESSION must be #define’d prior to including

<security/pam_modules.h>. This will ensure that the prototypes for static modules are properly

declared.

The following two functions are defined to handle the initialization/termination of a session. For example,

at the beginning of a session the module may wish to log a message with the system regarding the user.

Similarly, at the end of the session the module would inform the system that the user’s session has ended.

It should be possible for sessions to be opened by one application and closed by another. This either requires

that the module uses only information obtained from pam_get_item(), or that information regarding the

session is stored in some way by the operating system (in a file for example).

• PAM_EXTERN int pam_sm_open_session(pam_handle_t *pamh, int flags, int argc, const

char **argv);

This function is called to commence a session. The only valid, but optional, flag is PAM_SILENT.

As a return value, PAM_SUCCESS signals success and PAM_SESSION_ERR failure.

• PAM_EXTERN int pam_sm_close_session(pam_handle_t *pamh, int flags, int argc, const

char **argv);

This function is called to terminate a session. The only valid, but optional, flag is PAM_SILENT.

As a return value, PAM_SUCCESS signals success and PAM_SESSION_ERR failure.

3.5 Password management

To be correctly initialized, PAM_SM_PASSWORD must be #define’d prior to including

<security/pam_modules.h>. This will ensure that the prototype for a static module is properly

declared.

• PAM_EXTERN int pam_sm_chauthtok(pam_handle_t *pamh, int flags, int argc, const char

**argv);

This function is used to (re-)set the authentication token of the user. A valid flag, which may be

logically OR’d with PAM_SILENT, can be built from the following list,

PAM_CHANGE_EXPIRED_AUTHTOK

This argument indicates to the module that the users authentication token (password) should

only be changed if it has expired. This flag is optional and must be combined with one of the

following two flags. Note, however, the following two options are mutually exclusive.

4. Generic optional arguments 13

PAM_PRELIM_CHECK

This indicates that the modules are being probed as to their ready status for altering the user’s

authentication token. If the module requires access to another system over some network it

should attempt to verify it can connect to this system on receiving this flag. If a module cannot

establish it is ready to update the user’s authentication token it should return PAM_TRY_AGAIN,

this information will be passed back to the application.

PAM_UPDATE_AUTHTOK

This informs the module that this is the call it should change the authorization tokens. If the flag

is logically OR’d with PAM_CHANGE_EXPIRED_AUTHTOK, the token is only changed if it has actually

expired.

Note, the Linux-PAM library calls this function twice in succession. The first time with

PAM_PRELIM_CHECK and then, if the module does not return PAM_TRY_AGAIN, subsequently with

PAM_UPDATE_AUTHTOK. It is only on the second call that the authorization token is (possibly) changed.

PAM_SUCCESS is the only successful return value, valid error-returns are:

PAM_AUTHTOK_ERR

The module was unable to obtain the new authentication token.

PAM_AUTHTOK_RECOVERY_ERR

The module was unable to obtain the old authentication token.

PAM_AUTHTOK_LOCK_BUSY

Cannot change the authentication token since it is currently locked.

PAM_AUTHTOK_DISABLE_AGING

Authentication token aging has been disabled.

PAM_PERM_DENIED

Permission denied.

PAM_TRY_AGAIN

Preliminary check was unsuccessful. Signals an immediate return to the application is desired.

PAM_USER_UNKNOWN

The user is not known to the authentication token changing service.

4 Generic optional arguments

Here we list the generic arguments that all modules can expect to be passed. They are not mandatory, and

their absence should be accepted without comment by the module.

debug

Use the syslog(3) call to log debugging information to the system log files.

no_warn

Instruct module to not give warning messages to the application.

5. Programming notes 14

use_first_pass

The module should not prompt the user for a password. Instead, it should obtain the previously typed

password (by a call to pam_get_item() for the PAM_AUTHTOK item), and use that. If that doesn’t work,

then the user will not be authenticated. (This option is intended for auth and passwd modules only).

try_first_pass

The module should attempt authentication with the previously typed password (by a call to

pam_get_item() for the PAM_AUTHTOK item). If that doesn’t work, then the user is prompted for

a password. (This option is intended for auth modules only).

use_mapped_pass

WARNING: coding this functionality may cause the module writer to break local encryption laws.

For example, in the U.S. there are restrictions on the export computer code that is capable of strong

encryption. It has not been established whether this option is affected by this law, but one might

reasonably assume that it does until told otherwise. For this reason, this option is not supported by

any of the modules distributed with Linux-PAM.

The intended function of this argument, however, is that the module should take the existing authen-

tication token from a previously invoked module and use it as a key to retrieve the authentication

token for this module. For example, the module might create a strong hash of the PAM_AUTHTOK item

(established by a previously executed module). Then, with logical-exclusive-or, use the result as a key

to safely store/retrieve the authentication token for this module in/from a local file etc. .

expose_account

In general the leakage of some information about user accounts is not a secure policy for modules to

adopt. Sometimes information such as users names or home directories, or preferred shell, can be used

to attack a user’s account. In some circumstances, however, this sort of information is not deemed

a threat: displaying a user’s full name when asking them for a password in a secured environment

could also be called being ’friendly’. The expose_account argument is a standard module argument

to encourage a module to be less discrete about account information as it is deemed appropriate by

the local administrator.

5 Programming notes

Here we collect some pointers for the module writer to bear in mind when writing/developing a Linux-PAM

compatible module.

5.1 Security issues for module creation

5.1.1 Sufficient resources

Care should be taken to ensure that the proper execution of a module is not compromised by a lack of system

resources. If a module is unable to open sufficient files to perform its task, it should fail gracefully, or request

additional resources. Specifically, the quantities manipulated by the setrlimit(2) family of commands

should be taken into consideration.

5. Programming notes 15

5.1.2 Who’s who?

Generally, the module may wish to establish the identity of the user requesting a service. This may not be

the same as the username returned by pam_get_user(). Indeed, that is only going to be the name of the

user under whose identity the service will be given. This is not necessarily the user that requests the service.

In other words, user X runs a program that is setuid-Y, it grants the user to have the permissions of Z. A

specific example of this sort of service request is the su program: user joe executes su to become the user

jane. In this situation X=joe, Y=root and Z=jane. Clearly, it is important that the module does not

confuse these different users and grant an inappropriate level of privilege.

The following is the convention to be adhered to when juggling user-identities.

• X, the identity of the user invoking the service request. This is the user identifier; returned by the

function getuid(2).

• Y, the privileged identity of the application used to grant the requested service. This is the effective

user identifier; returned by the function geteuid(2).

• Z, the user under whose identity the service will be granted. This is the username returned by

pam_get_user(2) and also stored in the Linux-PAM item, PAM_USER.

• Linux-PAM has a place for an additional user identity that a module may care to make use of. This

is the PAM_RUSER item. Generally, network sensitive modules/applications may wish to set/read this

item to establish the identity of the user requesting a service from a remote location.

Note, if a module wishes to modify the identity of either the uid or euid of the running process, it should

take care to restore the original values prior to returning control to the Linux-PAM library.

5.1.3 Using the conversation function

Prior to calling the conversation function, the module should reset the contents of the pointer that will

return the applications response. This is a good idea since the application may fail to fill the pointer and

the module should be in a position to notice!

The module should be prepared for a failure from the conversation. The generic error would be

PAM_CONV_ERR, but anything other than PAM_SUCCESS should be treated as indicating failure.

5.1.4 Authentication tokens

To ensure that the authentication tokens are not left lying around the items, PAM_AUTHTOK and

PAM_OLDAUTHTOK, are not available to the application: they are defined in <security/pam_modules.h>.

This is ostensibly for security reasons, but a maliciously programmed application will always have access to

all memory of the process, so it is only superficially enforced. As a general rule the module should over-

write authentication tokens as soon as they are no longer needed. Especially before free()’ing them. The

Linux-PAM library is required to do this when either of these authentication token items are (re)set.

Not to dwell too little on this concern; should the module store the authentication tokens either as (automatic)

function variables or using pam_[gs]et_data() the associated memory should be over-written explicitly

before it is released. In the case of the latter storage mechanism, the associated cleanup() function should

explicitly overwrite the *data before free()’ing it: for example,

5. Programming notes 16

/*

* An example cleanup() function for releasing memory that was used to

* store a password.

*/

int cleanup(pam_handle_t *pamh, void *data, int error_status)

{

char *xx;

if ((xx = data)) {

while (*xx)

*xx++ = ’\0’;

free(data);

}

return PAM_SUCCESS;

}

5.2 Use of syslog(3)

Only rarely should error information be directed to the user. Usually, this is to be limited to “sorry you

cannot login now ” type messages. Information concerning errors in the configuration file, /etc/pam.conf,

or due to some system failure encountered by the module, should be written to syslog(3) with facility-type

LOG_AUTHPRIV.

With a few exceptions, the level of logging is, at the discretion of the module developer. Here is the

recommended usage of different logging levels:

• As a general rule, errors encountered by a module should be logged at the LOG_ERR level. However, infor-

mation regarding an unrecognized argument, passed to a module from an entry in the /etc/pam.conf

file, is required to be logged at the LOG_ERR level.

• Debugging information, as activated by the debug argument to the module in /etc/pam.conf, should

be logged at the LOG_DEBUG level.

• If a module discovers that its personal configuration file or some system file it uses for information is

corrupted or somehow unusable, it should indicate this by logging messages at level, LOG_ALERT.

• Shortages of system resources, such as a failure to manipulate a file or malloc() failures should be

logged at level LOG_CRIT.

• Authentication failures, associated with an incorrectly typed password should be logged at level,

LOG_NOTICE.

5.3 Modules that require system libraries

Writing a module is much like writing an application. You have to provide the "conventional hooks" for it

to work correctly, like pam_sm_authenticate() etc., which would correspond to the main() function in a

normal function.

Typically, the author may want to link against some standard system libraries. As when one compiles a

normal program, this can be done for modules too: you simply append the -lXXX arguments for the desired

5. Programming notes 17

libraries when you create the shared module object. To make sure a module is linked to the libwhatever.so

library when it is dlopen()ed, try:

% gcc -shared -Xlinker -x -o pam_module.so pam_module.o -lwhatever

5.4 Added requirements for statically loaded modules.

Modules may be statically linked into libpam. This should be true of all the modules distributed with the

basic Linux-PAM distribution. To be statically linked, a module needs to export information about the

functions it contains in a manner that does not clash with other modules.

The extra code necessary to build a static module should be delimited with #ifdef PAM_STATIC and #endif.

The static code should do the following:

• Define a single structure, struct pam_module, called _pam_modname_modstruct, where modname is

the name of the module as used in the filesystem but without the leading directory name (generally

/usr/lib/security/ or the suffix (generally .so).

As a simple example, consider the following module code which defines a module that can be compiled to

be static or dynamic:

#include <stdio.h> /* for NULL define */

#define PAM_SM_PASSWORD /* the only pam_sm_... function declared */

#include <security/pam_modules.h>

PAM_EXTERN int pam_sm_chauthtok(pam_handle_t *pamh, int flags,

int argc, const char **argv)

{

return PAM_SUCCESS;

}

#ifdef PAM_STATIC /* for the case that this module is static */

struct pam_module _pam_modname_modstruct = { /* static module data */

"pam_modname",

NULL,

NULL,

NULL,

NULL,

NULL,

pam_sm_chauthtok,

};

#endif /* end PAM_STATIC */

To be linked with libpam, staticly-linked modules must be built from within the Linux-PAM-X.YY/modules/

subdirectory of the Linux-PAM source directory as part of a normal build of the Linux-PAM system.

6. An example module file 18

The Makefile, for the module in question, must execute the register_static shell script that is located in

the Linux-PAM-X.YY/modules/ subdirectory. This is to ensure that the module is properly registered with

libpam.

The two manditory arguments to register_static are the title, and the pathname of the object file

containing the module’s code. The pathname is specified relative to the Linux-PAM-X.YY/modules directory.

The pathname may be an empty string—this is for the case that a single object file needs to register more

than one struct pam_module. In such a case, exactly one call to register_staticmust indicate the object

file.

Here is an example; a line in the Makefile might look like this:

register:

ifdef STATIC

(cd ..; ./register_static pam_modname pam_modname/pam_modname.o)

endif

For some further examples, see the modules subdirectory of the current Linux-PAM distribution.

6 An example module file

At some point, we may include a fully commented example of a module in this document. For now, we point

the reader to these two locations in the public CVS repository:

• A module that always succeeds: http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/pam/Linux-PAM/modules/pam_permit/

• A module that always fails: http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/pam/Linux-PAM/modules/pam_deny/

7 Files

/usr/lib/libpam.so.*

the shared library providing applications with access to Linux-PAM.

/etc/pam.conf

the Linux-PAM configuration file.

/usr/lib/security/pam_*.so

the primary location for Linux-PAM dynamically loadable object files; the modules.

8 See also

• The Linux-PAM System Administrators’ Guide.

• The Linux-PAM Application Writers’ Guide.

• V. Samar and R. Schemers (SunSoft), “UNIFIED LOGIN WITH PLUGGABLE AUTHENTICATION

MODULES”, Open Software Foundation Request For Comments 86.0, October 1995.

9. Notes 19

9 Notes

I intend to put development comments here... like “at the moment this isn’t actually supported”. At release

time what ever is in this section will be placed in the Bugs section below! :)

• Perhaps we should keep a registry of data-names as used by pam_[gs]et_data() so there are no

unintentional problems due to conflicts?

• pam_strerror() should be internationalized....

• There has been some debate about whether initgroups() should be in an application or in a module.

It was settled by Sun who stated that initgroups is an action of the application. The modules are

permitted to add additional groups, however.

• Refinements/futher suggestions to syslog(3) usage by modules are needed.

10 Author/acknowledgments

This document was written by Andrew G. Morgan (morgan@kernel.org)with many contributions from Chris

Adams, Peter Allgeyer, Tim Baverstock, Tim Berger, Craig S. Bell, Derrick J. Brashear, Ben Buxton, Seth

Chaiklin, Oliver Crow, Chris Dent, Marc Ewing, Cristian Gafton, Emmanuel Galanos, Brad M. Garcia, Eric

Hester, Roger Hu, Eric Jacksch, Michael K. Johnson, David Kinchlea, Olaf Kirch, Marcin Korzonek, Stephen

Langasek, Nicolai Langfeldt, Elliot Lee, Luke Kenneth Casson Leighton, Al Longyear, Ingo Luetkebohle,

Marek Michalkiewicz, Robert Milkowski, Aleph One, Martin Pool, Sean Reifschneider, Jan Rekorajski, Erik

Troan, Theodore Ts’o, Jeff Uphoff, Myles Uyema, Savochkin Andrey Vladimirovich, Ronald Wahl, David

Wood, John Wilmes, Joseph S. D. Yao and Alex O. Yuriev.

Thanks are also due to Sun Microsystems, especially to Vipin Samar and Charlie Lai for their advice.

At an early stage in the development of Linux-PAM, Sun graciously made the documentation for their

implementation of PAM available. This act greatly accelerated the development of Linux-PAM.

11 Bugs/omissions

Few PAM modules currently exist. Few PAM-aware applications exist. This document is hopelessly unfin-

ished. Only a partial list of people is credited for all the good work they have done.

12 Copyright information for this document

Copyright (c) Andrew G. Morgan 1996-2002. All rights reserved.

Email: <morgan@kernel.org>

Redistribution and use in source and binary forms, with or without modification, are permitted provided

that the following conditions are met:

• 1. Redistributions of source code must retain the above copyright notice, and the entire permission

notice in its entirety, including the disclaimer of warranties.

12. Copyright information for this document 20

• 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and

the following disclaimer in the documentation and/or other materials provided with the distribution.

• 3. The name of the author may not be used to endorse or promote products derived from this software

without specific prior written permission.

Alternatively, this product may be distributed under the terms of the GNU General Public License (GPL),

in which case the provisions of the GNU GPL are required instead of the above restrictions. (This clause

is necessary due to a potential bad interaction between the GNU GPL and the restrictions contained in a

BSD-style copyright.)

THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, IN-

CLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR

BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSE-

QUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOW-

EVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIA-

BILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF

THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

$Id: pam_modules.sgml,v 1.9 2002/05/10 06:00:12 agmorgan Exp $

