GStreamer Plugin Writer’s Guide (0.8.5)

Richard John Boulton
Erik Walthinsen
Steve Baker
Leif Johnson

Ronald S. Bultje

GStreamer Plugin Writer’'s Guide (0.8.5)
by Richard John Boulton, Erik Walthinsen, Steve Baker, Leif Johnson, and Ronald S. Bultje

This material may be distributed only subject to the terms and conditions set forth in the Open Publication License, v1.0 or later (the latest version
is presently available at http://www.opencontent.org/openpub/).

Table of Contents

Lo TNEFOQUCTION 1.ttt ne ettt nn e Vii
L PTETACE ...ttt b b e n s 1
1.1. Who Should Read ThiS GUITE?cciieiirieeriereirce e 1

1.2. Preliminary REAGINGcueiieriiiiietee ettt 1

1.3. Structure of THiS GUITEccoiveiriiriiiiei e 1

P = - (ol O] (o0 o < OO SRS 4
2.1 E1ements and PIUGINSc.coiiiiiiieie ettt et st 4

2.2, PAOS....c ettt bbb 4

2.3. Data, BUFFErs and EVENTScciviiiieiriiiisieesesee s 5

2.4. MImetypes and PrOPEITIESccie ittt et bbb eas 7

1. BUIHAING @ PHUGIN .ottt b e bbbt b bt n e r b e en e nna 11
3. Constructing the BOTHEIPIALEcoiviiirieiiieire et e 12
3.1. Getting the GStreamer PIugin TeMPIAESccoviirriiiiiiirree s 12

3.2. I FIXME T Using the Project Stamp........occoerniineinneieeseeseees s 12

3.3. EXamining the BasiC COUEciviiiriiiiiee ettt 13

3.4, GSEEIEMENTDELAINScoeiiieiece e 14

3.5. GStStatiCPAdTEMPIALE.cve ettt bbb 15

3.6. CONSLIUCTON FUNCLIONSviiie ittt ettt snene e 16

3.7. The plugin_init FUNCLIONcoiiiiiiiie e 17

4. SPECITYING thE PAAScveviiee ettt 18
4.1 The HINK FUNCEION ...t 18

4.2. The getcaps FUNCHION.co.iiiiiiit et 20

4.3 EXPLICIE CAPS «.veveveteieetiieteieete sttt sttt b bbb et en e bt neebereena 21

5. The Chain fUNCLIONooviiic bbb et 22
6. WAL AIE STALES? ...ttt bbb 24
6.1. Mangaging filter SLALEc.oiiiieee b 24

7. AGUING AFGUMENTS ...ttt ettt ettt ettt b st b et e s e e st e st et e sbesbeseebeebebeb e e st sbesbeneanea 26
B SHONAIS ...t bbb b bRt bbb et R b et e et b e 29
9. Building @ TeSt APPHCALION ...c.ccueieiiieieiee ittt et ebe e 30
10. Creating a Filter with @ FIlter FACIONYccoiiiiiiieiiccereeese e 32
[T, AdVaNCed Filter CONCEPLS.......ciiiiereitieri ettt 33
11 HOW SCREAUIING WOTKScviiiiiitiiieitereei ettt ettt ettt s 34
11.1. The BaSiC SCREAUIETc.ciiiiritce e 34

11.2. The Optimal SChEAUIETci i e 34

12. HOW @ 10OPTUNC WOTKS ...ttt et ettt s 36
12.1. MUR-INPUE EIBMENTS. ...ttt bbb 36

12.2. The Bytestream ODJECE......cciviiiiiiee i 39

12.3. Adding @ SECONM OULPULc.civeverieiiiisieie ettt sttt 40

12.4. Modifying the test appliCation..........cccoveiiieienie e 41

13. TYPES AN PIOPEITIESeevieiieeieieete sttt es bbbt ene bt es 42
13.1. Building a Simple Format for TESHINGccovieiriinieiree e 42

13.2. Typefind Functions and AUtOPIUGGINGccorieiriinie e 42

13.3. LiSt OF DEfINEA TYPES ..cveviiiiieieieiteesieie sttt st st 44

14. Request and SOMELIMES PAAScvvuiiriiiirieiriee ettt 53
14. 1. SOMELIMES PAAS ...ttt ettt se et sb s 53

14.2. REAUESE PAAScveeeireteeetete sttt bbbttt nr et 56

15, CIOCKING 1.ttt ettt ekttt ekttt n et 58
16. SuppOrting DYNAMIC PArameLerS.........ovirierirrieirieers et 59
16.1. Comparing Dynamic Parameters with GObject Properties........c.ccoeevevvivreveivserienenn 59

16.2. GEttING STAMEA ...t 59

16.3. Defining Parameter SPecifiCations..........ccoveiereerreineie e 60

16.4. The Data ProCessing LOOP.cviciiieirieirisee ettt 63

L7 IMIID L.ttt bbb bbbt bR b bt R Rt b bt ek n et ee b neenas 67
L8, INTEITACES ...ttt et ettt ettt e bbbttt en et 68
18.1. How to Implement INEEITACEScoeeiieiieieieee e 68

18.2. IMIIXEF INTEITACE ...ttt 69

18.3. TUNEE INTEITACE.eceiieeieitee et 73

18.4. Color BalanCe INtErface..... ..ot 75

18.5. Property Probe INtErface........cccoo i e 75

18.6. Profile INTErTaCE ..o 78

18.7. X OVErlay INTEITACEccveueeiiie i 78

18.8. Navigation INTEITACEccuceieiieie et bbb 80

19. Tagging (Metadata and Streaminfo)...........coooiiiiiiii i 81
19.1. Reading Tags frOM SErEAMS........ceieirieriirieieiese sttt e 81

19.2. WIting TagSs 10 SIIEAMS ..ottt ettt 83

20. Events: Seeking, Navigation and MOFE..........cccie ittt 86
20.1. DOWNSEIEAM EVENTS.......cviiiiitiitiieiieie sttt st er e 86

20.2. UPSLIEAM BVENTSeiiuiiei ittt sttt sttt sttt et b e sb et et e b e sbeese e b e sbeebe e e e b saeas 87

20.3. Al EVENES TOGELNETeiiiiieieeiiei ettt ettt bbb st 88

V. Other EIEMENT TYPES ..cviiieiieet ettt s et s s st s s 93
20 WIIEING 8 SOUICE ...ttt sttt ettt stttk b et e et b bt s b b s e eb e b e bt e et sbe b e e aneas 94
21.1. The get()-FUNCLION.c.e e 94

21.2. Events, qUErying and CONVEITINGcccovreeiieirieeisieereeeee ettt sne e 94

21.3. Time, clocking and SyNChroNization.............coeoveriiinnennieee s 98
21.4.USING SPECIAI MEBMOTY ...eiiiiieieie sttt ettt bbb 101

22 WIEING 8 SINK 1.ttt ettt eb e e s 103
22.1. Data processing, events, synchronization and ClockS..........cccccvvvreneiiincisinsce s 103

22.2. SPECIAI MEIMOTY ..ottt ettt ettt b et enene 104

23. Writing a 1-t0-N Element, DEMUXET OF PAISETcovivrerieiresesieiereseseeseesesseseeseesessessessesens 106
23.1. Demuxer Caps NEGOLIATIONcviveiriiiiiiieireeteesiee st 106

23.2. Data processing and dOWNSLream BVENEScccoerireerieernieie st 106

23.3. Parsing VErsus iNtErPretingoovieerieiieereeieesiee et re e enenens 106

23.4. Simple SeekiNg and INAEXES.......cviveiriiiiiei et 108

24. Writing a N-to-1 E1ement OF DEMUXETccoiiieirieeieieiriee et 109
24.1. The Data LOOP FUNCLION........cciiiiieniiee et 109

24.2. Events in the LOOP FUNCLION. ..ottt 109

24.3. NEQOLIATION ...ttt ettt sttt b b et se e bbb e 110

24.4. Markup VS. data PrOCESSINGccerueeerieuirierieierieete st teteeesbe st st ete e seese e sbesbeseeessesnens 112

25. Writing @ N-t0-N EIBIMENT ..ot ene s 114
26. WIIting an AULOPIUGOEToiviiiiieite ettt ettt st bbb e e ene s 115
27. WIItING 8 MANAGET ...ttt ettt et b bbbttt se e b st eb et st e st et ebesbeneenenbeanen 116

RV o] o= 0 Lo Lot TSSO

28. Things to check when Writing an elementccooeieieiniii e
29. Things to check when Writing @ filter..........oooiieieie e
30. Things to check when wWriting @ SOUICE OF SINK.........ccviiiririieieereie et

List of Tables

2-1. TADIE OF BASIC TYPES. ... titeiteieiieeie sttt sttt et b b et bbbt e s b st et et et e besee e beabe 7
13-1. TADIE OF AUGIO TYPES .ttt e b et bbbt se et e b bt b et eb e bt ene s 44
13-2. TADIE OF VIABO TYPES ..ttt e b et b e ekttt ettt b e e eb e et beneenes 48
13-3. TaDIE OF CONAINET TYPES. ...eveeeiieteetete ettt sttt et b e et sb ettt sbe e bt et b e s 51
13-4. Table OF SUBLITIE TYPES ...t bbbttt e eb et nes 52
13-5. TADIE OF ONEE TYPES ...ttt e e ettt b e ekt e et b bt b e et e bt eneenes 52

List of Examples

3-1. Example PIugin Header File..........co i 13

vi

l. Introduction

GStreamer is an exremely powerful and versatile framework for creating streaming media applications.
Many of the virtues of the GStreamer framework come from its modularity: GStreamer can seamlessly
incorporate new plugin modules. But because modularity and power often come at a cost of greater
complexity (consider, for example, CORBA (http://www.omg.org/)), writing new plugins is not always
easy.

This guide is intended to help you understand the GStreamer framework (version 0.8.5) so you can
develop new plugins to extend the existing functionality. The guide addresses most issues by following
the development of an example plugin - an audio filter plugin - written in C. However, the later parts of
the guide also present some issues involved in writing other types of plugins, and the end of the guide
describes some of the Python bindings for GStreamer.

Chapter 1. Preface

1.1. Who Should Read This Guide?

This guide explains how to write new modules for GStreamer. The guide is relevant to several groups of
people:

« Anyone who wants to add support for new ways of processing data in GStreamer. For example, a
person in this group might want to create a new data format converter, a new visualization tool, or a
new decoder or encoder.

« Anyone who wants to add support for new input and output devices. For example, people in this group
might want to add the ability to write to a new video output system or read data from a digital camera
or special microphone.

« Anyone who wants to extend GStreamer in any way. You need to have an understanding of how the
plugin system works before you can understand the constraints that the plugin system places on the
rest of the code. Also, you might be surprised after reading this at how much can be done with plugins.

This guide is not relevant to you if you only want to use the existing functionality of GStreamer, or if you
just want to use an application that uses GStreamer. If you are only interested in using existing plugins to
write a new application - and there are quite a lot of plugins already - you might want to check the
GStreamer Application Development Manual. If you are just trying to get help with a GStreamer
application, then you should check with the user manual for that particular application.

1.2. Preliminary Reading

This guide assumes that you are somewhat familiar with the basic workings of GStreamer. For a gentle
introduction to programming concepts in GStreamer, you may wish to read the GStreamer Application
Development Manual first. Also check out the documentation available on the GStreamer web site
(http://gstreamer.freedesktop.org/documentation/).

Since GStreamer adheres to the GObject programming model, this guide also assumes that you
understand the basics of GObject (http://developer.gnome.org/doc/AP1/2.0/gobject/index.html)
programming. There are several good introductions to the GObject library, including the GTK+ Tutorial
(http://www.gtk.org/tutorial/) and the Glib Object system
(http://www.le-hacker.org/papers/gobject/index.html).

1.3. Structure of This Guide

To help you navigate through this guide, it is divided into several large parts. Each part addresses a

Chapter 1. Preface

particular broad topic concerning GStreamer plugin development. The parts of this guide are laid out in
the following order:

« Building a Plugin - Introduction to the structure of a plugin, using an example audio filter for
illustration.

This part covers all the basic steps you generally need to perform to build a plugin. The discussion
begins by giving examples of generating the basic structures with Constructing the Boilerplate. Then
you will learn how to write the code to get a basic filter plugin working: These steps include chapters
on Chapter 13, Chapter 4, Chapter 5, and (WRITEME: building state).

After you have finished the first steps, you will be able to create a working plugin, but your new plugin
might not have all the functionality you need. To provide some standard functionality, you will learn
how to add more features to a new plugin. These features are described in the chapters on
(WRITEME) and Chapter 8. Finally, you will see in (WRITEME) how to write a short test application
to try out your new plugin.

« Advanced Filter Concepts - Information on advanced features of GStreamer plugin development.

After learning about the basic steps, you should be able to create a functional audio or video filter
plugin with some nice features. However, GStreamer offers more for plugin writers. This part of the
guide includes chapters on more advanced topics, such as Chapter 14, . Since these features are more
advanced, the chapters can basically be read in any order, as you find that your plugins require these
features.

« Other Element Types - Explanation of writing other plugin types.

Because the first two parts of the guide use an audio filter as an example, the concepts introduced
apply to filter plugins. But many of the concepts apply equally to other plugin types, including
sources, sinks, and autopluggers. This part of the guide presents the issues that arise when working on
these more specialized plugin types. The part includes chapters on Writing a Source, Writing a Sink,
and Writing an Autoplugger.

« Appendices - Further information for plugin developers.

The appendices contain some information that stubbornly refuses to fit cleanly in other sections of the
guide. This information includes (WRITEME) and FIXME: organize better.

The remainder of this introductory part of the guide presents a short overview of the basic concepts
involved in GStreamer plugin development. Topics covered include Elements and Plugins, Pads,

Data, Buffers and Events and Types and Properties. If you are already familiar with this information, you
can use this short overview to refresh your memory, or you can skip to Building a Plugin.

Chapter 1. Preface

As you can see, there a lot to learn, so let’s get started!

« Creating compound and complex elements by extending from a GstBin. This will allow you to create
plugins that have other plugins embedded in them.

« Adding new mime-types to the registry along with typedetect functions. This will allow your plugin to
operate on a completely new media type.

Chapter 2. Basic Concepts

This chapter of the guide introduces the basic concepts of GStreamer. Understanding these concepts will
help you grok the issues involved in extending GStreamer. Many of these concepts are explained in
greater detail in the GStreamer Application Development Manual; the basic concepts presented here
serve mainly to refresh your memory.

2.1. Elements and Plugins

Elements are at the core of GStreamer. In the context of plugin development, an element is an object
derived from the GstBenent (../../gstreamer/html/GstElement.html) class. Elements provide some
sort of functionality when linked with other elements: For example, a source element provides data to a
stream, and a filter element acts on the data in a stream. Without elements, GStreamer is just a bunch of
conceptual pipe fittings with nothing to link. A large number of elements ship with GStreamer, but extra
elements can also be written.

Just writing a new element is not entirely enough, however: You will need to encapsulate your element in
a plugin to enable GStreamer to use it. A plugin is essentially a loadable block of code, usually called a
shared object file or a dynamically linked library. A single plugin may contain the implementation of
several elements, or just a single one. For simplicity, this guide concentrates primarily on plugins
containing one element.

A filter is an important type of element that processes a stream of data. Producers and consumers of data
are called source and sink elements, respectively. Bin elements contain other elements. One type of bin is
responsible for scheduling the elements that they contain so that data flows smoothly. Another type of
bin, called autoplugger elements, automatically add other elements to the bin and link them together so
that they act as a filter between two arbitary stream types.

The plugin mechanism is used everywhere in GStreamer, even if only the standard packages are being
used. A few very basic functions reside in the core library, and all others are implemented in plugins. A
plugin registry is used to store the details of the plugins in an XML file. This way, a program using
GStreamer does not have to load all plugins to determine which are needed. Plugins are only loaded
when their provided elements are requested.

See the GStreamer Library Reference for the current implementation details of Gst B enent
(../../gstreamer/ntml/GstElement.html) and GtH ugin (../../gstreamer/html/gstreamer-GstPlugin.html).

2.2. Pads

Pads are used to negotiate links and data flow between elements in GStreamer. A pad can be viewed as a

Chapter 2. Basic Concepts

“place” or “port” on an element where links may be made with other elements, and through which data
can flow to or from those elements. Pads have specific data handling capabilities: A pad can restrict the
type of data that flows through it. Links are only allowed between two pads when the allowed data types
of the two pads are compatible.

An analogy may be helpful here. A pad is similar to a plug or jack on a physical device. Consider, for
example, a home theater system consisting of an amplifier, a DVD player, and a (silent) video projector.
Linking the DVD player to the amplifier is allowed because both devices have audio jacks, and linking
the projector to the DVD player is allowed because both devices have compatible video jacks. Links
between the projector and the amplifier may not be made because the projector and amplifier have
different types of jacks. Pads in GStreamer serve the same purpose as the jacks in the home theater
system.

For the most part, all data in GStreamer flows one way through a link between elements. Data flows out
of one element through one or more source pads, and elements accept incoming data through one or
more sink pads. Source and sink elements have only source and sink pads, respectively.

See the GStreamer Library Reference for the current implementation details of a Gt Pad
(../../gstreamer/html/GstPad.html).

2.3. Data, Buffers and Events

All streams of data in GStreamer are chopped up into chunks that are passed from a source pad on one
element to a sink pad on another element. Data are structures used to hold these chunks of data.

Data contains the following important types:

« An exact type indicating what type of data (control, content, ...) this Data is.

- A reference count indicating the number of elements currently holding a reference to the buffer. When
the buffer reference count falls to zero, the buffer will be unlinked, and its memory will be freed in
some sense (see below for more details).

There are two types of data defined: events (control) and buffers (content).

Buffers may contain any sort of data that the two linked pads know how to handle. Normally, a buffer
contains a chunk of some sort of audio or video data that flows from one element to another.

Buffers also contain metadata describing the buffer’s contents. Some of the important types of metadata
are:

« A pointer to the buffer’s data.

Chapter 2. Basic Concepts

« An integer indicating the size of the buffer’s data.

« A timestamp indicating the preferred display timestamp of the content in the buffer.

Events contain information on the state of the stream flowing between the two linked pads. Events will
only be sent if the element explicitely supports them, else the core will (try to) handle the events
automatically. Events are used to indicate, for example, a clock discontinuity, the end of a media stream
or that the cache should be flushed.

Events may contain several of the following items:

« A subtype indicating the type of the contained event.

« The other contents of the event depend on the specific event type.

Events will be discussed extensively in Chapter 20. Until then, the only event that will be used is the
EOS event, which is used to indicate the end-of-stream (usually end-of-file).

See the GStreamer Library Reference for the current implementation details of a Gt Data
(../../gstreamer/html/gstreamer-GstData.html), Gt Buf f er
(../../gstreamer/html/gstreamer-GstBuffer.html) and Gst Bvent
(../../gstreamer/html/gstreamer-GstEvent.html).

2.3.1. Buffer Allocation

Buffers are able to store chunks of memory of several different types. The most generic type of buffer
contains memory allocated by malloc(). Such buffers, although convenient, are not always very fast,
since data often needs to be specifically copied into the buffer.

Many specialized elements create buffers that point to special memory. For example, the filesrc element
usually maps a file into the address space of the application (using mmap()), and creates buffers that
point into that address range. These buffers created by filesrc act exactly like generic buffers, except that
they are read-only. The buffer freeing code automatically determines the correct method of freeing the
underlying memory. Downstream elements that recieve these kinds of buffers do not need to do anything
special to handle or unreference it.

Another way an element might get specialized buffers is to request them from a downstream peer. These
are called downstream-allocated buffers. Elements can ask a peer connected to a source pad to create an
empty buffer of a given size. If a downstream element is able to create a special buffer of the correct size,
it will do so. Otherwise GStreamer will automatically create a generic buffer instead. The element that
requested the buffer can then copy data into the buffer, and push the buffer to the source pad it was
allocated from.

Chapter 2. Basic Concepts

Many sink elements have accelerated methods for copying data to hardware, or have direct access to
hardware. It is common for these elements to be able to create downstream-allocated buffers for their
upstream peers. One such example is ximagesink. It creates buffers that contain XImages. Thus, when an
upstream peer copies data into the buffer, it is copying directly into the XImage, enabling ximagesink to
draw the image directly to the screen instead of having to copy data into an XImage first.

Filter elements often have the opportunity to either work on a buffer in-place, or work while copying
from a source buffer to a destination buffer. It is optimal to implement both algorithms, since the
GStreamer framework can choose the fastest algorithm as appropriate. Naturally, this only makes sense
for strict filters -- elements that have exactly the same format on source and sink pads.

2.4. Mimetypes and Properties

GStreamer uses a type system to ensure that the data passed between elements is in a recognized format.
The type system is also important for ensuring that the parameters required to fully specify a format
match up correctly when linking pads between elements. Each link that is made between elements has a
specified type and optionally a set of properties.

2.4.1. The Basic Types

GStreamer already supports many basic media types. Following is a table of a few of the the basic types
used for buffers in GStreamer. The table contains the name ("mime type") and a description of the type,
the properties associated with the type, and the meaning of each property. A full list of supported types is
included in List of Defined Types.

Table 2-1. Table of Basic Types

Mime Type Description |Property Property Property Property
Type Values Description
audio/* All audio types | rate integer greater than 0 | The sample

rate of the data,
in samples (per
channel) per
second.

channels integer greater than 0 | The number of
channels of
audio data.

Chapter 2. Basic Concepts

Mime Type

Description

Property

Property
Type

Property
Values

Property
Description

audio/x-raw-int

Unstructured
and
uncompressed
raw integer
audio data.

endianness

integer

G_BIG_ENDIA
(1234) or
G_LITTLE_ENI
(4321)

NThe order of
bytes ina

Ddaiple. The
value
G_LITTLE_EN
(4321) means
“little-endian”
(byte-order is
“least
significant byte
first”). The
value
G_BIG_ENDIA
(1234) means
“big-endian”
(byte order is
“most
significant byte
first”).

DIAN

signed

boolean

TRUE or
FALSE

Whether the
values of the
integer samples
are signed or
not. Signed
samples use
one bit to
indicate sign
(negative or
positive) of the
value.
Unsigned
samples are
always positive.

width

integer

greater than 0

Number of bits
allocated per

sample.

Chapter 2. Basic Concepts

Mime Type

Description

Property

depth

Property
Type
integer

Property
Values

greater than 0

Property
Description
The number of
bits used per
sample. This
must be less
than or equal to
the width: If the
depth is less
than the width,
the low bits are
assumed to be
the ones used.
For example, a
width of 32 and
a depth of 24
means that each
sample is
stored in a 32
bit word, but
only the low 24
bits are actually
used.

audio/mpeg

Audio data
compressed
using the
MPEG audio
encoding
scheme.

mpegversion

integer

1,2o0r4

The
MPEG-version
used for
encoding the
data. The value
1 refers to
MPEG-1, -2
and -2.5 layer
1,20r 3. The
values 2 and 4
refer to the
MPEG-AAC
audio encoding
schemes.

Chapter 2. Basic Concepts

Mime Type

Description

Property

framed

Property
Type
boolean

Property
Values

Oorl

Property
Description
A true value
indicates that
each buffer
contains
exactly one
frame. A false
value indicates
that frames and
buffers do not
necessarily
match up.

layer

integer

1,2,0r3

The
compression
scheme layer
used to
compress the
data (only if
mpegver-
sion=1).

bitrate

integer

greater than 0

The bitrate, in
bits per second.
For VBR
(variable
bitrate) MPEG
data, this is the
average bitrate.

audio/x-vorbis

\orbis audio
data

There are
currently no
specific
properties
defined for this
type.

10

Il. Building a Plugin

You are now ready to learn how to build a plugin. In this part of the guide, you will learn how to apply
basic GStreamer programming concepts to write a simple plugin. The previous parts of the guide have
contained no explicit example code, perhaps making things a bit abstract and difficult to understand. In
contrast, this section will present both applications and code by following the development of an
example audio filter plugin called “ExampleFilter”.

The example filter element will begin with a single input pad and a single output pad. The filter will, at
first, simply pass media and event data from its sink pad to its source pad without modification. But by
the end of this part of the guide, you will learn to add some more interesting functionality, including
properties and signal handlers. And after reading the next part of the guide, Advanced Filter Concepts,
you will be able to add even more functionality to your plugins.

The example code used in this part of the guide can be found in exanpl es/ pwgy/ exanpl efil ter/ in
your GStreamer directory.

Chapter 3. Constructing the Boilerplate

In this chapter you will learn how to construct the bare minimum code for a new plugin. Starting from
ground zero, you will see how to get the GStreamer template source. Then you will learn how to use a
few basic tools to copy and modify a template plugin to create a new plugin. If you follow the examples
here, then by the end of this chapter you will have a functional audio filter plugin that you can compile
and use in GStreamer applications.

3.1. Getting the GStreamer Plugin Templates

There are currently two ways to develop a new plugin for GStreamer: You can write the entire plugin by
hand, or you can copy an existing plugin template and write the plugin code you need. The second
method is by far the simpler of the two, so the first method will not even be described here. (Errm, that is,
“it is left as an exercise to the reader.”)

The first step is to check out a copy of the gst-tenplate ~ CVS module to get an important tool and the
source code template for a basic GStreamer plugin. To check out the gst-tenplate ~ module, make sure
you are connected to the internet, and type the following commands at a command console:

shell $ cvs -d:pserver:anoncvs@vs. freedeskt op. or g/ cv s/gstr eamer co |ogin
Logging in to :pserver:anoncvs@vs. freedeskt op. org: 24 0lcvs /gstre aner

QS passvord: [ENTER

shell $ cvs -z3 -d: pserver:anoncvs@vs. freedeskt op. or g /cvs /gstre aner co gst-tenplate
gst -t enpl at e/ README

gst -t enpl at e/ gst - app/ AUTHIRS

gst -t enpl at e/ gst - app/ ChangelLog

gst -t enpl at e/ gst - app/ Mikefi | e. am

gst -t enpl at e/ gst - app/ NEVB

gst -t enpl at e/ gst - app/ README

gst -t enpl at e/ gst - app/ aut ogen. sh

gst -tenpl at e/ gst - app/ confi gure. ac

gst -t enpl at e/ gst - app/ src/ Mikefil e.am

ccccccccc

After the first command, you will have to press ENTER to log in to the CVS server. (You might have to
log in twice.) The second command will check out a series of files and directories into

.Igst-tenplate . The template you will be using is in ./gst-tenpl at e/ gst - pl ugi directory.
You should look over the files in that directory to get a general idea of the structure of a source tree for a
plugin.

12

Chapter 3. Constructing the Boilerplate

3.2. Il FIXME !l Using the Project Stamp

This section needs some fixing from someone that is aware of how this works. The only tool that looks
like the ones cited there is gst - pl ugi ns/t ool s/ fil t erst anp. sh

The first thing to do when making a new element is to specify some basic details about it: what its name
is, who wrote it, what version number it is, etc. We also need to define an object to represent the element
and to store the data the element needs. These details are collectively known as the boilerplate.

The standard way of defining the boilerplate is simply to write some code, and fill in some structures. As
mentioned in the previous section, the easiest way to do this is to copy a template and add functionality
according to your needs. To help you do so, there are some tools in the ./ gst-pl ugi ns/ t ool s/

directory. One tool, gst - qui ck- st anp , is a quick command line tool. The other,

gst - proj ect - st anp , is a full GNOME druid application that takes you through the steps of creating a
new project (either a plugin or an application).

To use pluginstamp.sh, first open up a terminal window. Change to the gst-tenplate directory, and
then run the pluginstamp.sh command. The arguments to the pluginstamp.sh are:

1. the name of the plugin, and

2. the directory that should hold a new subdirectory for the source tree of the plugin.

Note that capitalization is important for the name of the plugin. Under some operating systems,
capitalization is also important when specifying directory names. For example, the following commands
create the ExampleFilter plugin based on the plugin template and put the output files in a new directory
called ~/ src/ exanpl ef i [ter/

shell $ cd gst-tenplate
shell $ tools/plugi nstanp. sh Exanpl eF | ter ~/src

3.3. Examining the Basic Code

First we will examine the code you would be likely to place in a header file (although since the interface
to the code is entirely defined by the plugin system, and doesn’t depend on reading a header file, this is
not crucial.) The code here can be found in

exanpl es/ pwg/ exanpl efi | ter/ boi | er/ gst exam plefil ter.h .

Example 3-1. Example Plugin Header File

[+ Definition of structure storing data for this elenent. */
typedef struct _GtExanple Gst Exanpl €

13

Chapter 3. Constructing the Boilerplate

struct _GstExanpl e {
Gst H enent el enent ;

GtPad *si nkpad, * srcpad,

ghoolean silent;
H

[+ Sandard definition defining a class for this elenent. */
typedef struct Gt Exanpl eQ ass Gst Exanpl e ass;
struct Gt BExanpl eQ ass {
Gt H enent G ass parent_cl ass;
b

/+ Sandard nacros for defining types for this elenent. */
#define GST_TYFE EXAMPLE \

(gst_exanpl e_get_type())

#define GST_EXAMALH obj) \

(GK GHEX CAST((obj), GBT_TYPE BEXAVPL E GtE xanple))
#define GBT_BEXAMALE A ASY ki ass) \

(GK GHEX AASS CAST((kl ass), GBT_TYP EEXAM PREG tEanp le))
#define GBI 1S EXAVPLEH obj) \

(GK GHEX TYPH (obj), GBT_TYPE BEXAVPL B)
#define GBT_1S EXAVPLE A ASSohj) \

(GK GEX AASS TYPH (ki ass), GBT_TYP E BEXAM ALB)

/+ Sandard function returning type infornation. */
Gype gst_exanpl e get_type (voi d);

3.4. GstElementDetails

The GstElementDetails structure gives a hierarchical type for the element, a human-readable description
of the element, as well as author and version data. The entries are:

A long, english, name for the element.

The type of the element, as a hierarchy. The hierarchy is defined by specifying the top level category,
followed by a "/", followed by the next level category, etc. The type should be defined according to the
guidelines elsewhere in this document. (FIXME: write the guidelines, and give a better reference to
them)

A brief description of the purpose of the element.

The name of the author of the element, optionally followed by a contact email address in angle
brackets.

For example:

static GtHenentDetails exanpl e detail s = {

14

Chapter 3. Constructing the Boilerplate

"Ah exanple plugin’,

"Exanpl e/ F r st Exanpl €",

"Sows the basic structure of a plugin®,
"your hane <your.nane@our.isp>"

The element details are registered with the plugin during _base init O .

static void

gst_ny filter_base init (GtMHIterQass * kl ass)
{
static GGtHenentDetails ny filter_details ={
[--]
h
Gt H enent @ ass + el enent_cl ass = GoT_ HEMENT AASS (kl ass);
[--]
gst_el enent_cl ass_set_detail s (el ement _cl ass, &y filter_details);
}

3.5. GstStaticPadTemplate

A GstStaticPadTemplate is a description of a pad that the element will (or might) create and use. It
contains:

« A short name for the pad.
« Pad direction.

« Existence property. This indicates whether the pad exists always (an “always” pad), only in some
cases (a “sometimes” pad) or only if the application requested such a pad (a “request” pad).

« Supported types by this element (capabilities).

For example:

static GtSaticPadTenpl ate sink_factory =
GST_STAT C PAD TEMRLATE (

"si nk",

GBT_PAD I NK

GBT_PAD ALVAYS

GST_STAT C CAPS (" ANY")
)i

Those pad templates are registered during the _base init () function. Pads are created from these
templates in the element’s _init () function using gst_pad new fromtenpl ate () . The

15

Chapter 3. Constructing the Boilerplate

template can be retrieved from the element class using gst_el enent_cl ass_get_pad tenpl ate
() . See below for more details on this.

static wvoid

gst_ny filter_base init (GtMHFHIterQass * k| ass)
{
static GGtSaticPadTenpl ate sink factory =
[--]
, src_ factory =
[--]
Gt H enent @ ass + el enent_cl ass = GST_ HEMENT AASS (kl ass);
gst_el enent_cl ass_add pad tenpl ate (el erent _cl ass,
gst_static_pad tenpl ate get (8&rc factory));
gst_el enent_cl ass_add pad tenpl ate (el enent _cl ass,
gst_static_pad tenpl ate get (8sink factory));
[--]
}

The last argument in a template is its type or list of supported types. In this example, we use ’ANY”,
which means that this element will accept all input. In real-life situations, you would set a mimetype and
optionally a set of properties to make sure that only supported input will come in. This representation
should be a string that starts with a mimetype, then a set of comma-separates properties with their
supported values. In case of an audio filter that supports raw integer 16-bit audio, mono or stereo at any
samplerate, the correct template would look like this:

static GtSaticPadTenpl ate sink_factory =
GST_STAT C PAD TEMRLATE (
"si nk",
GBT_PAD I NK
GBT_PAD ALVAYS
GST_STAT C CAPS (
"audi of x-rawint,
"wdth = (int) 16
"depth = (int) 16,
"endi anness = (int) BYIE(RER
“channels = (int) { 1, 2},
"rate = (int) [8000, 96000]"

Values surrounded by {} are lists, values surrounded by [] are ranges. Multiple sets of types are
supported too, and should be separated by a semicolon (*;”). Later, in the chapter on pads, we will see
how to use types to know the exact format of a stream: Chapter 4.

16

Chapter 3. Constructing the Boilerplate

3.6. Constructor Functions

Each element has three functions which are used for construction of an element. These are the

_base init() function which is meant to initialize class and child class properties during each new
child class creation; the _class_init() function, which is used to initialise the class only once
(specifying what signals, arguments and virtual functions the class has and setting up global state); and
the _init() function, which is used to initialise a specific instance of this type.

3.7. The plugin_init function

Once we have written code defining all the parts of the plugin, we need to write the plugin_init()
function. This is a special function, which is called as soon as the plugin is loaded, and should return
TRUE or FALSE depending on whether it loaded initialized any dependencies correctly. Also, in this
function, any supported element type in the plugin should be registered.

static gbool ean
plugin_init (GtHugin * pl ugi n)

{
return gst_el enent_register (pl ugin, "ny filter",
GBT_RANK NONE,
GBI_TYFE W ALTHR);
}

GBT_PLWG N CEH Ne (
GST_MVERS QN MR
GST_MVERS N MNR
"ny filter",

"M filter plugin',
plugininit,

VBRI ON

"LaL,

"R reaner”,
"http://gstreaner.net/"

)

Note that the information returned by the plugin_init() function will be cached in a central registry. For
this reason, it is important that the same information is always returned by the function: for example, it
must not make element factories available based on runtime conditions. If an element can only work in
certain conditions (for example, if the soundcard is not being used by some other process) this must be
reflected by the element being unable to enter the READY state if unavailable, rather than the plugin
attempting to deny existence of the plugin.

17

Chapter 4. Specifying the pads

As explained before, pads are the port through which data goes in and out of your element, and that
makes them a very important item in the process of element creation. In the boilerplate code, we have
seen how static pad templates take care of registering pad templates with the element class. Here, we will
see how to create actual elements, use link () and getcaps () functions to let other elements
know their capabilities and how to register functions to let data flow through the element.

Inthe element _init () function, you create the pad from the pad template that has been registered
with the element class in the _base init () function. After creating the pad, you have to seta _Iink
() function pointerand a _getcaps () function pointer. Optionally, you can seta chain () function
pointer (on sink pads in filter and sink elements) through which data will come in to the element, or (on
source pads in source elements) a_get () function pointer through which data will be pulled from the
element. After that, you have to register the pad with the element. This happens like this:

static Gt Padli nkReturn gst_ny filter_link (Gt Pad * pad,
const GtGaps *caps);
static GtCGps * gst_ny filter_getcaps (Gt Pad * pad) ;
static wvoid gst_ny filter_chain (Gt Pad * pad,
GtData *data);

static void

gst_ny filter_init (GtMF I ter +filter)

{

Gst H enent G ass xklass = GBI HLEMENT (BT AASS (filter);

/* pad through which data comes in to the element x/

filter->si nkpad = gst_pad newfromtenpl ate (
gst_elenent_class_get_pad tenpl ate (klass, "sink"), "sink");

gst_pad set_link function (filter->si nkpad, gst_ny filter_link);
gst_pad set_get caps_function (filter->si nkpad, gst_ny filter_getcaps);
gst_pad set_chai n_function (filter->si nkpad, gst_ny filter_chain);
gst_el enent _add pad (GBT_B.BVENT (filter), filter->si nkpad);

/+ pad through which data goes out of the element */

filter->srcpad = gst_pad new fromtenpl ate (

gst_el enent_class_get_pad tenpl ate (klass, ‘"src"), ‘"src");
gst_pad set_|ink function (filter->srcpad, gst_ny filter_link);
gst_pad set _getcaps_function (filter->srcpad, gst_ny filter_getcaps);
gst_el enent _add pad (GBT_B.BVENT (filter), filter->srcpad);

[--]

}

18

Chapter 4. Specifying the pads

4.1. The link function

The _Iink () is called during caps negotiation. This is the process where the linked pads decide on the
streamtype that will transfer between them. A full list of type-definitions can be found in Chapter 13. A
_link () receivesa pointertoa GtGps (../../gstreamer/html/gstreamer-GstCaps.html) struct that
defines the proposed streamtype, and can respond with either “yes” (GST_PAD_LINK_OK), “no”
(GST_PAD_LINK_REFUSED) or “don’t know yet” (GST_PAD_LINK_DELAYED). If the element
responds positively towards the streamtype, that type will be used on the pad. An example:

static GtPadli nkReturn
gst_ny filter_link (Gt Pad * pad,
const GtGaps *caps)

{
GtSructure xstructure = gst_caps_get_structure (caps, 0);
GtMH I ter *filter = GBI_MW HLTER (gst_pad get _parent (pad));
GtPad *otherpad = (pad = filter->srcpad) ? filter->sinkpad :

filter->srcpad,
Gst PadLi nkRet urn ret;
const gchar *nine;

/* 9nce we're an audio filter, we vant to hande raw audio
* and from that audio type, we need to get the sanplerate and

* nuniber of channel s. */
mne = gst_structure get nane (structure);
if (strecrp (mine, “audio/x-rawint") I= 0 {

GBT_WARN NG ("Wong ninetype 9% provided, vwe only support 9",
mne, “audi o/ x-rawint");

return GST_PAD LI NK REAUED)
}

/+ we're a filter and don't touch the properties of the data
* That nmeans we can set the given caps unnodified on the next
* el enent, and use that negotiation return value as ours. */

ret = gst_pad try set_caps (ot her pad, gst_caps_copy (caps));
if (GST_PADLINKFALED (ret))
return ret;

[+ Capsnego succeeded, get the stream properties for interna
* usage and return success. */

gst_structure get _int (structure, "rate", &ilter->sanpl erate);

gst_structure get _int (structure, "channel ", & il ter->channel s);

gprint ("Gps negotiation succeeded wth % H @ % channel s\n",
filter->sanpl erate, filter->channel s);

return ret;

In here, we check the mimetype of the provided caps. Normally, you don’t need to do that in your own
plugin/element, because the core does that for you. We simply use it to show how to retrieve the

19

Chapter 4. Specifying the pads

mimetype from a provided set of caps. Types are stored in Gt Sructure
(../../gstreamer/html/gstreamer-GstStructure.html) internally. A Gst Gaps
(../../gstreamer/html/gstreamer-GstCaps.html) is nothing more than a small wrapper for 0 or more
structures/types. From the structure, you can also retrieve properties, as is shown above with the function
gst_structure get _int O .

If your link () function does not need to perform any specific operation (i.e. it will only forward
caps), you can set it to gst_pad proxy | ink . This is a link forwarding function implementation
provided by the core. It is useful for elements such as i dentity

4.2. The getcaps function

The _getcaps () funtion is used to request the list of supported formats and properties from the
element. In some cases, this will be equal to the formats provided by the pad template, in which case this
function can be omitted. In some cases, too, it will not depend on anything inside this element, but it will
rather depend on the input from another element linked to this element’s sink or source pads. In that case,
you can use gst_pad proxy_get caps as implementation, it provides getcaps forwarding in the core.
However, in many cases, the format supported by this element cannot be defined externally, but is more
specific than those provided by the pad template. In this case, you should use a _getcaps () function.
In the case as specified below, we assume that our filter is able to resample sound, so it would be able to
provide any samplerate (indifferent from the samplerate specified on the other pad) on both pads. It
explainshow a _getcaps () can be used to do this.

static GtCGps *

gst_ny filter_getcaps (GtPad *pad)
{
GtMH I ter *filter = GSI_MW HLTER (gst_pad get _parent (pad));
GtPad *otherpad = (pad = filter->srcpad) ? filter->si nkpad :
filter->srcpad;
GtCGyps *othercaps = gst_pad get_al |l oned caps (ot her pad), * Caps;
gnt n
if (gst_caps_is enpty (ot her caps))
return othercaps;
/* Ve support *xany * sanplerate, i ndi fferent from the sanplerate
* supported by the linked elenents on both sides. =*/
for (i =0, i < gst _caps get size (othercaps); i+
GtSructure xstructure = gst_caps_get_structure (ot her caps, i);
gst_structure renove field (structure, "rate");
}
caps = gst_caps_intersect (ot her caps, gst_pad get_pad tenpl ate caps (pad));

gst_caps free (ot hercaps);

return caps;

20

Chapter 4. Specifying the pads

4.3. Explicit caps

Obviously, many elements will not need this complex mechanism, because they are much simpler than
that. They only support one format, or their format is fixed but the contents of the format depend on the
stream or something else. In those cases, explicit caps are an easy way of handling caps. Explicit caps are
an easy way of specifying one, fixed, supported format on a pad. Pads using explicit caps do not
implement their own _getcaps () or _link () functions. When the exact format is known, an
elements uses gst_pad set_explicit_caps () to specify the exact format. This is very useful for
demuxers, for example.

static void

gst_ny filter_init (GtMH I ter xfilter)
{
Gt H enent @ ass xklass = GBI HLEMENT (BT AASS (filter);
[.-]
filter->srcpad = gst_pad newfromtenpl ate (
gst_elenent_class_get_pad tenpl ate (klass, "src"), “src");
gst_pad use_explicit_caps (filter->srcpad);
[..]
}
static void
gst_ny filter_sonefunction (GtMH I ter *filter)
{
GtCGps *caps = ..;
[..]
gst_pad set_explicit_caps (filter->srcpad, caps);
[..]
}

21

Chapter 5. The chain function

The chain function is the function in which all data processing takes place. In the case of a simple filter,
_chain () functions are mostly lineair functions - so for each incoming buffer, one buffer will go out,
too. Below is a very simple implementation of a chain function:

static void
gst_ny filter_chain (Gt Pad * pad,
GtData *data)
{
GtMH I ter *filter = GI_MW HLTER (gst_pad get_parent (pad));
Gt Buf fer *pbuf = GBI BHER (data);

if (Ifilter->silent)
gprint ("Hwe data of size % bytes!\n", G BAER S ZE (buf));

gst_pad push (filter->srcpad, GBT_DATA (buf));

Obviously, the above doesn’t do much useful. Instead of printing that the data is in, you would normally
process the data there. Remember, however, that buffers are not always writable. In more advanced
elements (the ones that do event processing), the incoming data might not even be a buffer.

static void
gst_ny filter_chain (Gt Pad * pad,
GtData +*data)
{
GtMH I ter *filter = GI_W HLTER (gst_pad get_parent (pad));
GstBuffer *buf, *outbuf;

if (GIISBENT (data) {
GtBent revent = GBI BMENT (data);

swtch (GSI_BVENT_TYFE (event)) {
case GBI BENT KB

[» end-of -stream we should close down al stream leftovers here =/
gst_ny filter_stop processi ng (filter);
[+ fall-through to default event handling */
defaul t:
gst_pad event_defaul t (pad, event);
br eak;
}
return;

}

buf = GST BHER (datad);

outbuf = gst_ny filter_process data (buf);
gst_buffer_unref (buf);

if (louthuf) {

22

Chapter 5. The chain function

/+ sonething wvwent wong - signa an error */

gst_el enent _error (GBT_B.BVENT (filter), STREAM FALHY (NLL), (NL);
return;

}

gst_pad push (filter->srcpad, GST_DATA (outhuf));

}

In some cases, it might be useful for an element to have control over the input data rate, too. In that case,
you probably want to write a so-called loop-based element. Source elements (with only source pads) can
also be get-based elements. These concepts will be explained in the advanced section of this guide, and
in the section that specifically discusses source pads.

23

Chapter 6. What are states?

A state describes whether the element instance is initialized, whether it is ready to transfer data and
whether it is currently handling data. There are four states defined in GStreamer: GST_STATE_NULL,
GST_STATE_READY, GST_STATE_PAUSED and GST_STATE_PLAYING.

GST_STATE_NULL (from now on referred to as “NULL”) is the default state of an element. In this
state, it has not allocated any runtime resources, it has not loaded any runtime libraries and it can
obviously not handle data.

GST_STATE_READY (from now on referred to as “READY™) is the next state that an element can be
in. In the READY state, an element has all default resources (runtime-libraries, runtime-memory)
allocated. However, it has not yet allocated or defined anything that is stream-specific. When going from
NULL to READY state (GST_STATE_NULL_TO_READY), an element should allocate any
non-stream-specific resources and should load runtime-loadable libraries (if any). When going the other
way around (from READY to NULL, GST_STATE_READY_TO_NULL), an element should unload
these libraries and free all allocated resources. Examples of such resources are hardware devices. Note
that files are generally streams, and these should thus be considered as stream-specific resources;
therefore, they should not be allocated in this state.

GST_STATE_PAUSED (from now on referred to as “PAUSED?”) is a state in which an element is by all
means able to handle data; the only *but’ here is that it doesn’t actually handle any data. When going
from the READY state into the PAUSED state (GST_STATE_READY_TO_PAUSED), the element will
usually not do anything at all: all stream-specific info is generally handled in the _link () , which is
called during caps negotiation. Exceptions to this rule are, for example, files: these are considered
stream-specific data (since one file is one stream), and should thus be opened in this state change. When
going from the PAUSED back to READY (GST_STATE_PAUSED_TO_READY), all stream-specific
data should be discarded.

GST_STATE_PLAYING (from now on referred to as “PLAYING”) is the highest state that an element
can be in. It is similar to PAUSED, except that now, data is actually passing over the pipeline. The
transition from PAUSED to PLAYING (GST_STATE_PAUSED_TO_PLAYING) should be as small as
possible and would ideally cause no delay at all. The same goes for the reverse transition
(GST_STATE_PLAYING_TO_PAUSED).

6.1. Mangaging filter state

An element can be notified of state changes through a virtual function pointer. Inside this function, the
element can initialize any sort of specific data needed by the element, and it can optionally fail to go
from one state to another.

Do not g_assert for unhandled state changes; this is taken care of by the GstElement base class.

24

Chapter 6. What are states?

static GtHementSateReturn
gst_ny filter_change state (Gt B enent *el enent);

static void

gst_ny filter_class init (GtMHIterQass * kl ass)
{
Gst H enent G ass + el enent _cl ass = GoT_ HBEMENT AASS (kl ass);
el enent _cl ass->change state = gst_ny filter_change state;
}
static GtHenentSateReturn
gst_ny filter_change state (Gt H enent * el enent)
{
GtMH I ter *filter = GSI_MW HLTER (el enent);
swtch (GST_STATE TRANS TTON (el enent)) {
case GBI_STATE NLLL TO READY.
if (lgst_ny filter_allocate nenory (filter))
return GST_STATE FA LURE
br eak;
case CBI_STATE READY_TO NLLL:
gst_ny filter_free nenory (filter);
br eak;
defaul t:
br eak;
}
if (CGST_HBVENT AASS (parent_cl ass)->change_st at €)
return GST_ HBEMENT AASS (parent_cl ass)->change state (el enent);

return GST_STATE SUXESS

25

Chapter 7. Adding Arguments

The primary and most important way of controlling how an element behaves, is through GObject
properties. GObject properties are defined in the _cl ass_init () function. The element optionally
implements a _get_property () anda _set_property () function. These functions will be
notified if an application changes or requests the value of a property, and can then fill in the value or take
action required for that property to change value internally.

/* properties */

enum {
ARGO,
ARG S LENT
[+ ALL ME =/
b
static wvoid gst_ny filter_set_property (G ect *obj ect,
gui nt prop_id,
const Gaue =*value,
Gar angpec * PSpEC) ;
static wvoid gst_ny filter_get property (Gyj ect *obj ect,
gui nt prop_id,
G/l ue *val ue,
Grar angpec * pSpec) ;
static void
gst_ny filter_class init (GtMHF IterQass * k| ass)
{
QY ect @ ass *obj ect _cl ass = G@IECT_AAsS (Kl ass);

/* define properties */

g object _class install_property (obj ect_cl ass, ARG 9 LANT,
g_paramspec_bool ean ("silent", "Slent",
"Wether to be very verbose or not",
FASE GPARMMREADRTE);

/* define wvirtua function pointers */

obj ect _cl ass->set_property = gst_ny filter_set_property;
obj ect _cl ass->get_property = gst_ny filter_get _property;
}
static void
gst_ny filter_set _property (G ect * obj ect,
gui nt prop_id,
const GAue +val ue,
GPar angpec * pSpec)
{

GtMH I ter *filter = GBI_MW HLTER (obj ect);
swtch (prop_id) {

case ARG SLEN
filter->silent = g_val ue_get_bool ean (val ue);

26

Chapter 7. Adding Arguments

gprint ("Slent argunent was changed to 9%\n",

filter->silent ? "true" @ "fase");
br eak;
defaul t:
G BIECT_ WARN | NVALI D PROPERTY I D (obj ect, prop_id, pspec) ;
br eak;
}

}

static void

gst_ny filter_get_property (G ect * obj ect,
gui nt prop_id,
G/l ue *val ue,

Graranipec * pspec)
{
GtMH I ter *filter = GSI_MW HLTER (obj ect);

swtch (prop_id) {
case ARG SLEN

g val ue_set _bool ean (value, filter->silent);
br eak;
defaul t:
G BIECT_ WARN | NVALI D PROPERTY I D (obj ect, prop_id, pspec) ;
br eak;

The above is a very simple example of how arguments are used. Graphical applications - for example
GStreamer Editor - will use these properties and will display a user-controlleable widget with which
these properties can be changed. This means that - for the property to be as user-friendly as possible - you
should be as exact as possible in the definition of the property. Not only in defining ranges in between
which valid properties can be located (for integers, floats, etc.), but also in using very descriptive (better
yet: internationalized) strings in the definition of the property, and if possible using enums and flags
instead of integers. The GObject documentation describes these in a very complete way, but below, we’ll
give a short example of where this is useful. Note that using integers here would probably completely
confuse the user, because they make no sense in this context. The example is stolen from videotestsrc.

typedef enum {
GoI M CEOESTSRC SWTE,
GST_M DEOTESTSRC S\OWY
GBI M CEOESTSRC BAK
} GtM dectestsrcPattern;

[..]

#define GBI_TYPE M CEOTESTSRC PATTERN (gst_videotestsrc_pattern get_type 0)
static Glype
gst_videotestsrc_pattern get_type (voi d)
{
static Glype Vvideotestsrc pattern type =0

27

Chapter 7. Adding Arguments

if (!videotestsrc_pattern type) {

static GEunval ue pattern types[] ={
{ GSI_M EJESTSRC SWTE, "snpte", "SWIE 100% color bars" 1},
{ GST_M CEOJESTRC S\NOW "snow', "Random (tel evision snow" },
{ GBT_M EJESTRC BAK "bl ack”, "0% BHack" 1},
{ 0, NLL, NLL },

b

Vi dectestsrc_pattern type =

g enumregi ster_static ("Gt M dect estsrcPattern”,
pattern_types);
}

return videotestsrc pattern type;
}

[..]

static void

gst_videotestsrc_class init (Gt vi deot est srcG ass * kl ass)
{
[--]
g object_class install_property (GRIECT_AASS (kl ass), ARG TYFE
g_paramspec_enum ("pattern®, "Pattern’,
"Type of test pattern to generate",
GBT_TYFE M CEOTESTSRC PATTERN 1, GPARAMREADRTE);
[--]
}

28

Chapter 8. Signals

Signals can be used to notify applications of events specific to this object. Note, however, that the
application needs to be aware of signals and their meaning, so if you’re looking for a generic way for
application- element interaction, signals are probably not what you’re looking for. In many cases,
however, signals can be very useful. See the GObject documentation for all internals about signals.

29

Chapter 9. Building a Test Application

Often, you will want to test your newly written plugin in an as small setting as possible. Ususally,
gst-launch is a good first step at testing a plugin. However, you will often need more testing features
than gst-launch can provide, such as seeking, events, interactivity and more. Writing your own small
testing program is the easiest way to accomplish this. This section explains - in a few words - how to do
that. For a complete application development guide, see the Application Development Manual
(../../manual/ntml/index.html).

At the start, you need to initialize the GStreamer core library by calling gst_init () . You can
alternatively call gst_init_wth popt_tabl es () , which will return a pointer to popt tables. You
can then use libpopt to handle the given argument table, and this will finish the GStreamer intialization.

You can create elements using gst_el enent_fact ory_nake () , where the first argument is the
element type that you want to create, and the second argument is a free-form name. The example at the
end uses a simple filesource - decoder - soundcard output pipeline, but you can use specific debugging
elements if that’s necessary. For example, an i dentity element can be used in the middle of the
pipeline to act as a data-to-application transmitter. This can be used to check the data for misbehaviours
or correctness in your test application. Also, you can use a fakesink element at the end of the pipeline
to dump your data to the stdout (in order to do this, set the dunp property to TRUE). Lastly, you can use
the efence element (indeed, an eletric fence memory debugger wrapper element) to check for memory
errors.

During linking, your test application can use fixation or filtered caps as a way to drive a specific type of
data to or from your element. This is a very simple and effective way of checking multiple types of input
and output in your element.

Running the pipeline happens through the gst_bin iterate () function. Note that during running,
you should connect to at least the “error” and “eos” signals on the pipeline and/or your plugin/element to
check for correct handling of this. Also, you should add events into the pipeline and make sure your
plugin handles these correctly (with respect to clocking, internal caching, etc.).

Never forget to clean up memory in your plugin or your test application. When going to the NULL state,
your element should clean up allocated memory and caches. Also, it should close down any references
held to possible support libraries. Your application should unref () the pipeline and make sure it
doesn’t crash.

#include <gst/gst.h>

gint

nain (gint arcg,
gchar +argv(])

{

Gst H enent * pi pel i ne, *filesrc, * decoder , xfilter, =*sink;

30

[+ initiaization */

Chapter 9. Building a Test Application

gst_init (&rgc, &argy);

[+ create elemnents */

pipeline = gst_pipeline new ("ny_pi peline");

filesrc = gst_el enent_factory nake ("filesrc", "ny_filesource");
decoder = gst_el enent_factory _nake ("rad", "ny_decoder");
filter = gst_el enent_factory _nake ("ny filter", "ny filter");
si nk = gst_el enent_factory nake ("osssi nk", "audi osi nk");

g _obj ect_set (G@IECT (filesrc), "l ocation', argv[1], NLL);
/* link everything together */

gst_el enent _| i nk_nany (filesrc, decoder, filter, sink, NLL);
gst_bin_add nany (GST BN (pipeline)), filesrc, decoder, filter, sink, NLL);
[+ run */

gst_elenent_set_state (pi peline, GST_STATE LAY NG ;

vwhile (gst_biniterate (GT_ BN (pipelineg)));

[+ clean up =/

gst_elenent_set_state (pi peline, GST_STATE NLLLY);

gst _obj ect _unr ef (GBT_BIECT (pipeline));

return O;

31

Chapter 10. Creating a Filter with a Filter
Factory

A plan for the future is to create a FilterFactory, to make the process of making a new filter a simple
process of specifying a few details, and writing a small amount of code to perform the actual data
processing. ldeally, a FilterFactory would perform the tasks of boilerplate creation, code functionality
implementation, and filter registration.

Unfortunately, this has not yet been implemented. Even when someone eventually does write a
FilterFactory, this element will not be able to cover all the possibilities available for filter writing. Thus,
some plugins will always need to be manually coded and registered.

Here is a rough outline of what is planned: You run the FilterFactory and give the factory a list of
appropriate function pointers and data structures to define a filter. With a reasonable measure of
preprocessor magic, you just need to provide a name for the filter and definitions of the functions and
data structures desired. Then you call a macro from within plugin_init() that registers the new filter. All
the fluff that goes into the definition of a filter is thus be hidden from view.

32

lll. Advanced Filter Concepts

By now, you should be able to create basic filter elements that can receive and send data. This is the
simple model that GStreamer stands for. But GStreamer can do much more than only this! In this
chapter, various advanced topics will be discussed, such as scheduling, special pad types, clocking,
events, interfaces, tagging and more. These topics are the sugar that makes GStreamer so easy to use for
applications.

Chapter 11. How scheduling works

Scheduling is, in short, a method for making sure that every element gets called once in a while to
process data and prepare data for the next element. Likewise, a kernel has a scheduler to for processes,
and your brain is a very complex scheduler too in a way. Randomly calling elements’ chain functions
won’t bring us far, however, so you’ll understand that the schedulers in GStreamer are a bit more
complex than this. However, as a start, it’s a nice picture. GStreamer currently provides two schedulers: a
basic scheduler and an optimal scheduler. As the name says, the basic scheduler (“basic”) is an
unoptimized, but very complete and simple scheduler. The optimal scheduler (“opt”), on the other hand,
is optimized for media processing, but therefore also more complex.

Note that schedulers only operate on one thread. If your pipeline contains multiple threads, each thread
will run with a separate scheduler. That is the reason why two elements running in different threads need
a queue-like element (a LECA.PLED element) in between them.

11.1. The Basic Scheduler

The basic scheduler assumes that each element is its own process. We don’t use UNIX processes or
POSIX threads for this, however; instead, we use so-called co-threads. Co-threads are threads that run
besides each other, but only one is active at a time. The advantage of co-threads over normal threads is
that they’re lightweight. The disadvantage is that UNIX or POSIX do not provide such a thing, so we
need to include our own co-threads stack for this to run.

The task of the scheduler here is to control which co-thread runs at what time. A well-written scheduler
based on co-threads will let an element run until it outputs one piece of data. Upon pushing one piece of
data to the next element, it will let the next element run, and so on. Whenever a running element requires
data from the previous element, the scheduler will switch to that previous element and run that element
until it has provided data for use in the next element.

This method of running elements as needed has the disadvantage that a lot of data will often be queued in
between two elements, as the one element has provided data but the other element hasn’t actually used it
yet. These storages of in-between-data are called bufpens, and they can be visualized as a light “queue”.

Note that since every element runs in its own (co-)thread, this scheduler is rather heavy on your system
for larger pipelines.

11.2. The Optimal Scheduler

The optimal scheduler takes advantage of the fact that several elements can be linked together in one
thread, with one element controlling the other. This works as follows: in a series of chain-based

34

Chapter 11. How scheduling works

elements, each element has a function that accepts one piece of data, and it calls a function that provides
one piece of data to the next element. The optimal scheduler will make sure that the gst_pad push 0O
function of the first element directly calls the chain-function of the second element. This significantly
decreases the latency in a pipeline. It takes similar advantage of other possibilities of short-cutting the
data path from one element to the next.

The disadvantage of the optimal scheduler is that it is not fully implemented. Also it is badly
documented; for most developers, the opt scheduler is one big black box. Features that are not
implemented include pad-unlinking within a group while running, pad-selecting (i.e. waiting for data to
arrive on a list of pads), and it can’t really cope with multi-input/-output elements (with the elements
linked to each of these in-/outputs running in the same thread) right now.

Some of our developers are intending to write a new scheduler, similar to the optimal scheduler (but
better documented and more completely implemented).

35

Chapter 12. How a loopfunc works

A loop () function is a function that is called by the scheduler, but without providing data to the
element. Instead, the element will become responsible for acquiring its own data, and it will still be
responsible of sending data over to its source pads. This method noticeably complicates scheduling; you
should only write loop-based elements when you need to. Normally, chain-based elements are preferred.
Examples of elements that have to be loop-based are elements with multiple sink pads. Since the
scheduler will push data into the pads as it comes (and this might not be synchronous), you will easily
get ascynronous data on both pads, which means that the data that arrives on the first pad has a different
display timestamp then the data arriving on the second pad at the same time. To get over these issues,
you should write such elements in a loop-based form. Other elements that are easier to write in a
loop-based form than in a chain-based form are demuxers and parsers. It is not required to write such
elements in a loop-based form, though.

Below is an example of the easiest loop-function that one can write:

static wvoid gst_ny filter_| oopfunc (Gt H enent +el enent) ;

static void

gst_ny filter_init (GtMF I ter +filter)

{

[--]

gst_el enent _set _| oopf unc (GST_H.BVENT (filter), gst_ny filter_| oopfunc);
[--]

}

static void

gst_ny filter_| oopfunc (Gt H enent * el enent)

{

GtMH I ter *filter = GBI_MW HLTER (el erent);

Gthata *datg;

[+ acquire data */
data = gst_pad pul | (filter->sinkpad);

[+ send data */
gst_pad push (filter->srcpad, data);

Obviously, this specific example has no single advantage over a chain-based element, so you should
never write such elements. However, it’s a good introduction to the concept.

36

12.1. Multi-Input Elements

Chapter 12. How a loopfunc works

Elements with multiple sink pads need to take manual control over their input to assure that the input is
synchronized. The following example code could (should) be used in an aggregator, i.e. an element that
takes input from multiple streams and sends it out intermangled. Not really useful in practice, but a good

example, again.

typedef struct _GtMH | terlnput Gontext {
gbool ean €os;
Gt Buffer x| ast buf ;

} GtMHF Iterlnput Gontext;

[..]

static void
gst_ny filter_init (GtMH I ter +filter)
{
Gt H enent G ass xklass = GBI _HBEMENT (ET_AASS (filter);
Gt M/H | ter | nput Gont ext *context;
filter->si nkpadl = gst_pad new fromtenpl ate (
gst_elenent_class_get_pad tenpl ate (klass, "sink"), "sink 1");
context = gnew) (GtMHIterlnputCntext, 1);
gst_pad set_private data (filter->si nkpadl, context);
[.-]
filter->si nkpad2 = gst_pad new fromtenpl ate (
gst_el enent_class_get_pad tenpl ate (klass, "sink"), "sink 2");
context = gnew) (GtMHIterlnputCntext, 1);
gst_pad set_private data (filter->si nkpad2, context);
[--]
gst_el enent _set | oopf unc (GBST_B.BVENT (filter),
gst_ny_filter_| oopfunc);
}
[--]
static void
gst_ny filter_l oopfunc (Gt H enent * el enent)
{
GtMH I ter *filter = GBI_MW HLTER (el erent);
Qist +padist;
Gt M/H | ter | nput Gont ext *first_context = NLL;
/* @ over each sink pad, update the cache if needed, hande E»
* or non-respondi ng streans and see wvhich data we should hande
* next. x/
for (padist = gst_el enent_get_padli st (el ement);
padiist !'= NLL; padist = glist_next (padlist)) {
GtPad *pad = GBI PAD (padist->data);
Gt M/F | ter | nput Gont ext xcontext = gst_pad get_private data (pad);

37

Chapter 12. How a loopfunc works

if (GrPDISSKC (pad))
cont i nue;

while (GBST_PADIS USMELE (pad) &&
I cont ext - >e0s && !context-> ast buf) {
GtDeta +data = gst_pad pul | (pad);

if (GBS BENT (data)) {
[+ Vé hande events inmmediately */
GtBent revent = GG BVMENT (data);

swtch (GST_BVENT_TYPE (event)) {
case GBI BENT KB

cont ext - >eos = TRE
gst_event _unref (event);
break;

case ol _BVENT [SOONT NLOB
gwarning ("HBP Hw do | handle this?');
[+ fall-through * [

defaul t:
gst_pad event_defaul t (pad, event);
br eak;
}
} else {
[+ @ store the buffer to handle synchronization below =/
cont ext - > ast buf = GBI BAFER (data);

}
}

/ = synchroni ze streans by always using the earliest buffer =/
if (context->asthuf) {

if (!first_context) {
first_context = context;
} else {
if (GST_BUAER T MESTAWP (cont ext - > ast buf) <
GST_BUHER Tl MESTAWP (first_context-> astbuf))
first_context = context;
}

}
}

/* If we hande no data at al, w're a the end-of-stream S0
* we shoud signal HEB */

if (!'first_context) {
gst_pad push (filter->srcpad, GBT_DATA (gst_event _new (GST_BVNT_E®));
gst_el enent_set _eos (el erent);
return;
}
/* S we do have datal Let’'s forward that to our source pad */
gst_pad push (filter->srcpad, GBT_DATA (first_context-> astbuf));
first_context-> ast buf = NULL;

38

Chapter 12. How a loopfunc works

Note that a loop-function is allowed to return. Better yet, a loop function has to return so the scheduler
can let other elements run (this is particularly true for the optimal scheduler). Whenever the scheduler
feels right, it will call the loop-function of the element again.

12.2. The Bytestream Object

A second type of elements that wants to be loop-based, are the so-called bytestream-elements. Until now,
we’ve only dealt with elements that receive of pull full buffers of a random size from other elements.
Often, however, it is wanted to have control over the stream at a byte-level, such as in stream parsers or
demuxers. It is possible to manually pull buffers and merge them until a certain size; it is easier, however,
to use bytestream, which wraps this behaviour.

Bytestream-using elements are ususally stream parsers or demuxers. For now, we will take a parser as an
example. Demuxers require some more magic that will be dealt with later in this guide: Chapter 14. The
goal of this parser will be to parse a text-file and to push each line of text as a separate buffer over its
source pad.

static void

gst_ny filter_l oopfunc (Gt H enent * el enent)
{
GtMH I ter *filter = GSI_MW HLTER (el enent);
gnt n, num
guint8 =data;
foo (n =0, ; nH) |
num = gst_byt estreampeek byt es (filter->bs, &ata, n + 1);
if (um !'= n+ 1) {
Gst Bvent xevent = NLLL;

guint remaning;

gst_bytestreamget _status (filter->bs, & enai ni ng, &event);
if (event) ({
if (GST_BVENT_TYFE (event) = GBI_BVENT_EX®) {
[+ end-of-file */
gst_pad push (filter->srcpad, GoT_DATA (event));
gst_el enent_set _eos (el ement);
return;
}
gst_event _unref (event);
}

/* failed to read - throw error and bail out =/

39

Chapter 12. How a loopfunc works

gst_el enent _error (el enent, STREAM READ (N, (NWW));
return;
}
/+ check if the last character is a newine x/
if (data[n = "\n) {
Gt Buffer *pbuf = gst_buffer_newand alloc (n + 1;
[+ read the line of text wthout newine - then flush the newine «/
gst_bytestreampeek data (filter->bs, &ata, n);
nencpy (GST_BUFFER DATA (buf), data, n);
GST_BUAFER DATA (buf)[n] = '\0;
gst_bytestreamfl ush fast (filter->bs, n + 1;
gprint ("Rushing '9%'\n", GST_BUHER DATA (buf));
gst_pad push (filter->srcpad, GoT_DATA (buf));
return;
}
}
}
static void
gst_ny filter_change state (GstH enent * el enent)
{
GtMH I ter *filter = GBI_MW HLTER (el erent);
swtch (GST_STATE TRANS TTON (el enent)) {

case GBT_STATE READY TO PALEED

filter->bs
br eak;

= gst_byt estreamnew

(filter->sinkpad);

case (BI_STATE PAUEED TO READY:

gst _byt estreamdest roy

br eak;
defaul t:
br eak;

}

if (CGST ELEMENT OASS
return

return

GST_ELEMENT A.ASS

(filter->bs);

(parent_cl ass)->change_st at €)

(parent_cl ass)->change _state (el enent);

GST_STATE SUOESS

In the above example, you’ll notice how bytestream handles buffering of data for you. The result is that
you can handle the same data multiple times. Event handling in bytestream is currently sort of wacky, but
it works quite well. The one big disadvantage of bytestream is that it requires the element to be
loop-based. Long-term, we hope to have a chain-based usable version of bytestream, too.

40

Chapter 12. How a loopfunc works

12.3. Adding a second output

WRITEME

12.4. Modifying the test application

WRITEME

41

Chapter 13. Types and Properties

There is a very large set of possible types that may be used to pass data between elements. Indeed, each
new element that is defined may use a new data format (though unless at least one other element
recognises that format, it will be most likely be useless since nothing will be able to link with it).

In order for types to be useful, and for systems like autopluggers to work, it is neccessary that all
elements agree on the type definitions, and which properties are required for each type. The GStreamer
framework itself simply provides the ability to define types and parameters, but does not fix the meaning
of types and parameters, and does not enforce standards on the creation of new types. This is a matter for
a policy to decide, not technical systems to enforce.

For now, the policy is simple:
- Do not create a new type if you could use one which already exists.

- If creating a new type, discuss it first with the other GStreamer developers, on at least one of: IRC,
mailing lists.

« Try to ensure that the name for a new format is as unlikely to conflict with anything else created
already, and is not a more generalised name than it should be. For example: "audio/compressed"
would be too generalised a name to represent audio data compressed with an mp3 codec. Instead
"audio/mp3" might be an appropriate name, or "audio/compressed" could exist and have a property
indicating the type of compression used.

- Ensure that, when you do create a new type, you specify it clearly, and get it added to the list of known
types so that other developers can use the type correctly when writing their elements.

13.1. Building a Simple Format for Testing

If you need a new format that has not yet been defined in our List of Defined Types, you will want to
have some general guidelines on mimetype naming, properties and such. A mimetype would ideally be
one defined by IANA,; else, it should be in the form type/x-name, where type is the sort of data this
mimetype handles (audio, video, ...) and name should be something specific for this specific type. Audio
and video mimetypes should try to support the general audio/video properties (see the list), and can use
their own properties, too. To get an idea of what properties we think are useful, see (again) the list.

Take your time to find the right set of properties for your type. There is no reason to hurry. Also,
experimenting with this is generally a good idea. Experience learns that theoretically thought-out types
are good, but they still need practical use to assure that they serve their needs. Make sure that your
property names do not clash with similar properties used in other types. If they match, make sure they
mean the same thing; properties with different types but the same names are not allowed.

42

Chapter 13. Types and Properties

13.2. Typefind Functions and Autoplugging

With only defining the types, we’re not yet there. In order for a random data file to be recognized and
played back as such, we need a way of recognizing their type out of the blue. For this purpose,
“typefinding” was introduced. Typefinding is the process of detecting the type of a datastream.
Typefinding consists of two separate parts: first, there’s an unlimited number of functions that we call
typefind functions, which are each able to recognize one or more types from an input stream. Then,
secondly, there’s a small engine which registers and calls each of those functions. This is the typefind
core. On top of this typefind core, you would normally write an autoplugger, which is able to use this
type detection system to dynamically build a pipeline around an input stream. Here, we will focus only
on typefind functions.

A typefind function ususally lives in gst - pl ugi ns/ gst/t ypefi nd/ gst t ypefi ndf u nction s.c,
unless there’s a good reason (like library dependencies) to put it elsewhere. The reason for this
centralization is to decreate the number of plugins that need to be loaded in order to detect a stream’s
type. Below is an example that will recognize AVI files, which start with a “RIFF” tag, then the size of
the file and then an “AVI ” tag:

static void

gst_ny_typefind function (Gt TypeH nd *tf,
gpoi nter dat a)
{
guint8 =data = gst_type find peek (tf, 0, 12);
if (data &

GJ NI32_FRMLE ((guint32 *) data)[0] GST_MKE FORC (R, I",)’F,'F)

GJ NI32 FRM LE ((uint32 *) data)[2] GST_MKE FOLRIC CAR,V,
gst _type find suggest (tf, GBI_TYFE A ND MX MM

gst _caps_new si npl e ("vi dedl x- nsvi deo”, NLL));

}
}

static gbool ean
plugin_init (GtHugin * pl ugi n)

{
static gchar =xexts[] = { "avi", NLL };
if (!gst_type find register (pl ugi n, ", CBT_RANK PR MRY,
gst_ny_typefind function, exts,
gst_caps_new si npl e ("vi ded/ x- nsvi deo",
NLL), NULL))
return FALSE
}
Note that gst - pl ugi ns/ gst/ t ypefi nd/ gst t ypef i ndf unctio ns.c has some simplification

macros to decrease the amount of code. Make good use of those if you want to submit typefinding
patches with new typefind functions.

43

~

Chapter 13. Types and Properties

Autoplugging will be discussed in great detail in the chapter called Writing an Autoplugger.

13.3. List of Defined Types

Below is a list of all the defined types in GStreamer. They are split up in separate tables for audio, video,
container, subtitle and other types, for the sake of readability. Below each table might follow a list of

notes that apply to that table. In the definition of each type, we try to follow the types and rules as defined
by TANA (http://www.isi.edu/in-notes/iana/assignments/media-types/media-types) for as far as possible.

Jump directly to a specific table:

« Table of Audio Types

« Table of Video Types

« Table of Container Types
« Table of Subtitle Types

« Table of Other Types

Note that many of the properties are not required, but rather optional properties. This means that most of
these properties can be extracted from the container header, but that - in case the container header does
not provide these - they can also be extracted by parsing the stream header or the stream content. The
policy is that your element should provide the data that it knows about by only parsing its own content,
not another element’s content. Example: the AVI header provides samplerate of the contained audio
stream in the header. MPEG system streams don’t. This means that an AV1 stream demuxer would
provide samplerate as a property for MPEG audio streams, whereas an MPEG demuxer would not. A
decoder needing this data would require a stream parser in between two extract this from the header or
calculate it from the stream.

Table 13-1. Table of Audio Types

Mime |DescrigtRvapertyPropertyPropertyProperty Description
Type Type |Values

All audio types.

audio/* | All rate integer | greater | The sample rate of the data, in samples (per channel)
audio than 0 | per second.
types | channels| integer | greater | The number of channels of audio data.
than 0

All raw audio types.

44

Chapter 13. Types and Properties

Mime |DescrigtRvapertyPropertyPropertyProperty Description
Type Type |Values
audio/x-| Un- endiannganteger | G_BIG_ENEHAMer of bytes in a sample. The value
raw-int | struc- (1234) |G_LITTLE_ENDIAN (4321) means “little-endian”
tured or (byte-order is “least significant byte first”). The value
and G_LITTLE_BNDENDIAN (1234) means “big-endian” (byte
uncom- (4321) |order is “most significant byte first™).
pressed |signed |boolean | TRUE | Whether the values of the integer samples are signed or
raw or not. Signed samples use one bit to indicate sign
fixed- FALSE | (negative or positive) of the value. Unsigned samples
integer are always positive.
audio width [integer |greater | Number of bits allocated per sample.
data. than 0
depth |integer |greater | The number of bits used per sample. This must be less
than 0 | than or equal to the width: If the depth is less than the
width, the low bits are assumed to be the ones used. For
example, a width of 32 and a depth of 24 means that
each sample is stored in a 32 bit word, but only the low
24 bits are actually used.
audio/x-| Un- endiannganteger | G_BIG_ENEHAMer of bytes in a sample. The value
raw- struc- (1234) |G_LITTLE_ENDIAN (4321) means “little-endian”
float tured or (byte-order is “least significant byte first”). The value
and G_LITT|& BNDENDIAN (1234) means “big-endian” (byte
uncom- (4321) |order is “most significant byte first”).
pressed | width |integer |greater | The amount of bits used and allocated per sample.
raw than 0
floating-
point
audio |y tfer | integer |greater | The number of frames per buffer. The reason for this
data. frames than 0 | property is that the element does not need to reuse
buffers or use data spanned over multiple buffers, so
this property - when used rightly - will decrease
latency. Note that some people think that this property
is very ugly, whereas others think it is vital for the use
of GStreamer in professional audio applications.
All encoded audio types.
audio/x-| AC-3 There are currently no specific properties defined or
ac3 or A52 needed for this type.
audio
streams.

45

Chapter 13. Types and Properties

Mime |DescrigtRvapertyPropertyPropertyProperty Description
Type Type |Values
audio/x-| ADPCM layout | string The layout defines the packing of the samples in the
adpcm | Audio “quick- | stream. In ADPCM, most formats store multiple
streams. time”, | samples per channel together. This number of samples
“wav”, |differs per format, hence the different layouts. On the
“mi- long term, we probably want this variable to die and use
crosoft” | something more descriptive, but this will do for now.
or
“4xm?”.
block_aljgmteger | Any Chunk buffer size.
audio/x-| Audio There are currently no specific properties defined or
cinepak | as pro- needed for this type.
vided
ina
Cinepak
(Quick-
time)
stream.
audio/x- | Audio There are currently no specific properties defined or
dv as pro- needed for this type.
vided
ina
Digital
Video
stream.
audio/x- | Free There are currently no specific properties defined or
flac Loss- needed for this type.
less
Audio
codec
(FLAC).
audio/x-| Data There are currently no specific properties defined or
gsm en- needed for this type.
coded
by the
GSM
codec.
audio/x-| A-Law There are currently no specific properties defined or
alaw Audio. needed for this type.

46

Chapter 13. Types and Properties

Mime | DescriptRvapertyPropertyPropertyProperty Description
Type Type |Values
audio/x-| Mu- There are currently no specific properties defined or
mulaw | Law needed for this type.
Audio.
audio/x-| MACE | maceversioteger |3 or6 | The version of the MACE audio codec used to encode
mace | Audio the stream.
(used in
Quick-
time).
audio/mpe§udio | mpegversioteger |1, 2 or | The MPEG-version used for encoding the data. The
data 4 value 1 refers to MPEG-1, -2 and -2.5 layer 1, 2 or 3.
com- The values 2 and 4 refer to the MPEG-AAC audio
pressed encoding schemes.
using | framed |boolean |Oor1 | A true value indicates that each buffer contains exactly
the one frame. A false value indicates that frames and
MPEG buffers do not necessarily match up.
audio
encod- |layer integer |1, 2, or | The compression scheme layer used to compress the
ing 3 data (only if mpegversion=1).
sce-
hem. - 5) T .
bitrate |integer |greater | The bitrate, in bits per second. For VBR (variable
than 0 | bitrate) MPEG data, this is the average bitrate.
audio/x- | Data There are currently no specific properties defined or
qdm2 |en- needed for this type.
coded
by the
QDM
version
2
codec.
audio/x- | Realmedisaversioninteger |1 or2 | The version of the Real Audio codec used to encode
pn- Audio the stream. 1 stands for a 14k4 stream, 2 stands for a
realaudig data. 28Kk8 stream.
audio/x- | Data There are currently no specific properties defined or
speex |en- needed for this type.
coded
by the
Speex
audio
codec

47

Chapter 13. Types and Properties

Mime |DescrigtRvapertyPropertyPropertyProperty Description
Type Type |Values
audio/x-| Vorbis There are currently no specific properties defined or
vorbis | audio needed for this type.

data
audio/x-| Windowswmavergiorteger | 1,2 or 3 | The version of the WMA codec used to encode the
wma Media stream.

Audio

Table 13-2. Table of Video Types

Mime |DescrigtRvapertyPropertyPropertyProperty Description
Type Type |Values
All video types.
video/* | All width |integer |greater |The width of the video image
video than 0
types | height |integer |greater |The height of the video image
than 0
frameratedouble | greater | The (average) framerate in frames per second. Note
than 0 |that this property does not guarantee in any way that it
will actually come close to this value. If you need a
fixed framerate, please use an element that provides
that (such as “videodrop”).
All raw video types.
video/x-| YUV |format |fourcc | YUY2, | The layout of the video. See FourCC definition site
raw- (or YVYU, | (http://www.fourcc.org/) for references and definitions.
yuv Y’Cb’Cr) UYVY, | YUY2, YVYU and UYVY are 4:2:2 packed-pixel,
video Y41P, |YA41P is 4:1:1 packed-pixel and IYU2 is 4:4:4
format. IYU2, |packed-pixel. Y42B is 4:2:2 planar, YV12 and 1420 are
Y42B, |4:2:0planar, Y41B is 4:1:1 planar and YUV9 and
YV12, | YVU9 are 4:1:0 planar. Y800 contains Y-samples only
1420, | (black/white).
Y41B,
YUV9,
YVU9,
Y800
video/x-| Red- bpp integer | greater | The number of bits allocated per pixel. This is usually
raw-rgb | Green- than0 |16, 24 or 32.
Blue depth |integer |greater | The number of bits used per pixel by the R/G/B
(RBG) than 0 | components. This is usually 15, 16 or 24.
video.

48

Chapter 13. Types and Properties

Mime | DescriptRvapertyPropertyPropertyProperty Description
Type Type |Values
endiannginiteger | G_BIG_ENEH AMder of bytes in a sample. The value
(1234) |G_LITTLE_ENDIAN (4321) means “little-endian”
or (byte-order is “least significant byte first”). The value
G_LITT& BNDENDIAN (1234) means “big-endian” (byte
(4321) | order is “most significant byte first”). For 24/32bpp,
this should always be big endian because the byte order
can be given in both.
red_maskinteger |any The masks that cover all the bits used by each of the
green_mjask samples. The mask should be given in the endianness
and specified above. This means that for 24/32bpp, the
blue_magsk masks might be opposite to host byte order (if you are
working on little-endian computers).
All encoded video types.
video/x-| 3ivx There are currently no specific properties defined or
3ivx video. needed for this type.
video/x-| DivX | divxversjenteger | 3,4 or | Version of the DivX codec used to encode the stream.
divx video. 5
video/x-| Digital |systemstféamlean | FALSE | Indicates that this stream is not a system container
dx Video. stream.
video/x-| FFMpeg| ffvversidrinteger |1 Version of the FFMpeg video codec used to encode the
ffv video. stream.
video/x-| H-263 There are currently no specific properties defined or
h263 video. needed for this type.
video/x-| H-264 There are currently no specific properties defined or
h264 | video. needed for this type.
video/x-| Huffyuv There are currently no specific properties defined or
huffyuv | video. needed for this type.
video/x-| Indeo | indeoversioteger |3 Vfersion of the Indeo codec used to encode this stream.
indeo | video.
video/x-| Motion- There are currently no specific properties defined or
jpeg JPEG needed for this type. Note that video/x-jpeg only
video. applies to Motion-JPEG pictures (YUY2 colourspace).

RGB colourspace JPEG images are referred to as
image/jpeg (JPEG image).

49

Chapter 13. Types and Properties

Mime | DescriptRvapertyPropertyPropertyProperty Description
Type Type |Values
video/mpddPEG | mpegversinteger |1, 2 or | Version of the MPEG codec that this stream was
video. 4 encoded with. Note that we have different mimetypes
for 3ivx, XviD, DivX and "standard" ISO MPEG-4.
This is not a good thing and we’re fully aware of this.
However, we do not have a solution yet.
systemstybmmolean | FALSE | Indicates that this stream is not a system container
stream.
video/x-| Microsoftmsmpegyertiger | 41,42 | Version of the MS-MPEG-4-like codec that was used
msmpeg| MPEG- or43 |to encode this version. A value of 41 refers to MS
4 video MPEG 4.1, 42 to 4.2 and 43 to version 4.3.
devia-
tions.
video/x-| Microsoftmsvideoyertgar |1 Vfersion of the codec - always 1.
msvideochtideo 1
(oldish
codec).
video/x-| Realmediamversigrinteger | 1,2 or | Version of the Real Video codec that this stream was
pn- video. 3 encoded with.
realvided
video/x-| RLE layout |string | "microsgffThe RLE format inside the Microsoft AVI container
rle anima- or has a different byte layout than the RLE format inside
tion "quick- | Apple’s Quicktime container; this property keeps track
format. time" | of the layout.
depth |integer |1to 64 | Bitdepth of the used palette. This means that the palette
that belongs to this format defines 2*depth colors.
palette_daEstBuffer Buffer containing a color palette (in native-endian
RGBA) used by this format. The buffer is of size
4*27depth.
video/x-| Sorensen svqversipinteger |1 or3 | Version of the Sorensen codec that the stream was
sv(Q Video. encoded with.
video/x-| Tarkin There are currently no specific properties defined or
tarkin | video. needed for this type.
video/x-| Theora There are currently no specific properties defined or
theora |video. needed for this type.

50

Chapter 13. Types and Properties

Mime |DescrigtRvapertyPropertyPropertyProperty Description

Type Type |Values

video/x-| VP-3 There are currently no specific properties defined or

vp3 video. needed for this type. Note that we have different
mimetypes for VP-3 and Theora, which is not
necessarily a good idea. This could probably be
improved.

video/x-| Windowswmvversiomieger | 1,2 or 3 | Version of the WMV codec that the stream was

wmv Media encoded with.

Video
video/x-| XviD There are currently no specific properties defined or
xvid video. needed for this type.

All image types.

image/jpedpint There are currently no specific properties defined or
Picture needed for this type. Note that image/jpeg only applies
Expert to RGB-colourspace JPEG images; YUY 2-colourspace
Group JPEG pictures are referred to as video/x-jpeg ("Motion
Image. JPEG").

image/pnégortable There are currently no specific properties defined or
Net- needed for this type.
work
Graph-
ics
Image.

Table 13-3. Table of Container Types

Mime |DescrigtRvapertyPropertyPropertyProperty Description
Type Type |Values
video/x-| Advanced There are currently no specific properties defined or
ms-asf | Stream- needed for this type.

ing

Format

(ASF).
video/x-| AVI. There are currently no specific properties defined or
msvideo needed for this type.
video/x-| Digital |systemstrémolean | TRUE | Indicates that this is a container system stream rather
dv Video. than an elementary video stream.

51

Chapter 13. Types and Properties

Mime |DescrigtRvapertyPropertyPropertyProperty Description
Type Type |Values
video/x-| Matroska. There are currently no specific properties defined or
matroska needed for this type.
video/mpédotion | systemstrémolean | TRUE | Indicates that this is a container system stream rather
Pic- than an elementary video stream.
tures
Expert
Group
System
Stream.
applicatipBfpmg There are currently no specific properties defined or
needed for this type.
video/quii€ktioidime. There are currently no specific properties defined or
needed for this type.
video/x-| Digital |systemstrémolean | TRUE | Indicates that this is a container system stream rather
pn- Video. than an elementary video stream.
realvideg
audio/x-| WAV. There are currently no specific properties defined or
wav needed for this type.

Table 13-4. Table of Subtitle Types

Mime |DescrigtRvapertyPropertyPropertyProperty Description
Type Type |Values

None defined yet.
Table 13-5. Table of Other Types
Mime |DescrigtRvapertyPropertyPropertyProperty Description
Type Type |Values

None defined yet.

52

Chapter 14. Request and Sometimes pads

Until now, we’ve only dealt with pads that are always available. However, there’s also pads that are only
being created in some cases, or only if the application requests the pad. The first is called a sometimes;
the second is called a request pad. The availability of a pad (always, sometimes or request) can be seen in
a pad’s template. This chapted will discuss when each of the two is useful, how they are created and
when they should be disposed.

14.1. Sometimes pads

A “sometimes” pad is a pad that is created under certain conditions, but not in all cases. This mostly
depends on stream content: demuxers will generally parse the stream header, decide what elementary
(video, audio, subtitle, etc.) streams are embedded inside the system stream, and will then create a
sometimes pad for each of those elementary streams. At its own choice, it can also create more than one
instance of each of those per element instance. The only limitation is that each newly created pad should
have a unique name. Sometimes pads are disposed when the stream data is disposed, too (i.e. when going
from PAUSED to the READY state). You should not dispose the pad on EOS, because someone might
re-activate the pipeline and seek back to before the end-of-stream point. The stream should still stay
valid after EQS, at least until the stream data is disposed. In any case, the element is always the owner of
such a pad.

The example code below will parse a text file, where the first line is a number (n). The next lines all start
with a number (0 to n-1), which is the number of the source pad over which the data should be sent.

foo
bar

NOROW

bye

The code to parse this file and create the dynamic “sometimes” pads, looks like this:

typedef struct _GtMHIter {
[-.]

ghoolean firstrun;

Qist xsrcpadist;

} GtMHIter;

static void

gst_ny filter_base init (GtMHFHIterQass * k| ass)

{
Gst H enent 4 ass + el enent _cl ass = GST_HBEMENT AASS (kl ass);
static GtSaticPadTenpl ate src_factory =
GST_STATI C PAD TEMPLATE (

53

"src_992d",
GST_PAD KRG
GST_PAD SOMETT MES
GBT_STAT C CAPS
)
[..]
gst_el enent_cl ass_add pad tenpl ate
gst_static_pad tenpl ate get
[..]

("ANY')

Chapter 14. Request and Sometimes pads

(el enent _cl ass,

(8&rc factory));

}
static void
gst_ny filter_init (GtMF I ter +filter)
{
[.-]
filter->firstrun = TRE
filter->srcpad i st = NLL;
}
| *
* Gt one line of data - wthout newine.
*
/
static GtBuffer *
gst_ny filter_getline (GtMHF I ter +filter)
{
guint8 =data;
gnt n, num
/+* max. line length is 512 characters - for safety «/
foor (n =0 n <512 n+) {
num = gst_bytestreampeek byt es (filter->bs, &ata, n + 1);
if (um !'= n + 1)
return NLLL;
[+ newine? */
if (data[n = "\n) {
Gt BUffer *puf = gst_buffer_newand alloc (n + 1;
gst_byt estream peek_byt es (filter->bs, &ata, n);
nencpy (GST_BUAFFER DATA (buf), data, n);
GST_BUAER DATA (buf)[n] = '\0;
gst_bytestreamfl ush fast (filter->bs, n + 1);
return buf;
}
}
}
static void
gst_ny filter_| oopfunc (Gt H enent * el enent)
{
GtMH I ter *filter = GSI_MW HLTER (el enent);

54

Chapter 14. Request and Sometimes pads

GstBuffer * puf ;
GtPad *pad;
gnt num n;

| *

parse header */
if (filter->firstrun) {
Gt H enent G ass * Kkl ass;

}

| *

Gst PadTenpl at e *tenpl ;
gchar * padnane;

if (Y(buf = gst_nyfilter_getline (filter))) {
gst_el enent _error (el enent , STREAV READ (N,
("Sream contains no header"));
return;
}
num = atoi (GST_BUAER DATA (buf));
gst _buffer_unref (buf);

/*x for each of the streans, create a pad =/

klass = GST_H.BMENT (ET_QASS (filter);
tenpl = gst_elenent_class get_pad tenpl ate (klass, "src_%2d");
foor (n =0 n<num nH {

padnane = g strdup printf ("src_%2d", n);

pad = gst_pad newfromtenpl ate (tenpl , padnane) ;

g free (padnane);

[+ here, you would set _getcaps () and _link () functions */

gst_el enent_add pad (el enent, pad);
filter->srcpad i st = glist_append (filter->srcpadlist, pad);
}
and now sinply parse each line and push over =/
if (!(buf = gst_nyfilter_getline (filter))) {

}

| *

GtBvent *event = gst_event_new (GST_BVENT_EKB);
Qist padist;

for (padist = srcpadlist;
padiist !'= NLL, padist = glist_next (padlist)) {
pad = GST_PAD (padist->data);
gst_event _ref (event);
gst_pad push (pad, GBI _DATA (event));

}

gst_event _unref (event);

gst_el enent_set_eos (el enent);

return;

parse stream nunber and go beyond the ':' in the data =/

num = atoi (GST_BUAER DATA (buf));
if (um >= 0 & num < glist_length (filter->srcpadiist)) {

55

Chapter 14. Request and Sometimes pads

pad = GST PAD (glist_nth data (filter->srcpadlist, nunj;
/* nmagic buffer parsing foo =/
for (n = 0 GST_BAERDATA (buf)[n] =" &
GST_BUFER DATA (buf)[n] I= '\Q'; n+)
if (GST_BUAER DATA (buf)[n] 1= "\0) {

Gt Buf f er * Sub;

[+ create subbuffer that starts right past the space. The reason

* that we don't just forward the data pointer is because the

* pointer is no longer the start of an alocated block of nenory,

but just a pointer to a position somewhere in the mdde of it.

* That cannot be freed upon disposal, so w'd either crash or have
* a nenheak. Qeating a subbuffer is asinple way to sove that. */

*

sub = gst_buffer_create sub (buf, n + 1 GIBHFERSZE (buf) - n - 1);
gst_pad push (pad, GBI _DATA (sub));
}
}
gst _buffer_unref (buf);

}

Note that we use a lot of checks everywhere to make sure that the content in the file is valid. This has two
purposes: first, the file could be erronous, in which case we prevent a crash. The second and most
important reason is that - in extreme cases - the file could be used maliciously to cause undefined
behaviour in the plugin, which might lead to security issues. Always assume that the file could be used to
do bad things.

14.2. Request pads

“Request” pads are similar to sometimes pads, except that request are created on demand of something
outside of the element rather than something inside the element. This concept is often used in muxers,
where - for each elementary stream that is to be placed in the output system stream - one sink pad will be
requested. It can also be used in elements with a variable number of input or outputs pads, such as the
tee (multi-output), swtch oraggregator (both multi-input) elements. At the time of writing this, it is
unclear to me who is responsible for cleaning up the created pad and how or when that should be done.
Below is a simple example of an aggregator based on request pads.

static GGtPad =+ gst_ny filter_request_new pad (Gt H enent * el enent ,
Gst PadTenpl at e *tenpl ,
const gchar * Nane) ;

static void
gst_ny filter_base init (GtMHFHIterQass * k| ass)

{
Gt H enent G ass + el enent _cl ass = GST_HBMBENT AASS (kl ass);

56

static GGtSaticPadTenpl ate

GST_STATI C PAD TEMPLATE (
"sink %",
GBT_PAD I NK
GST_PAD REQLEST,
GBT_STATI C GAPS

)

[..]
gst_el enent_cl ass_add pad tenpl ate
gst_static_pad tenpl ate get

sink_factory

("ANY')

(Kl ass,
(8ink factory));

Chapter 14. Request and Sometimes pads

}
static void
gst_ny filter_class init (GtMH IterQass * kl ass)
{
Gt H enent G ass + el enent _cl ass = GST_HBMENT AASS (kl ass);
[..]
el enent _cl ass- >request _new pad = gst_ny filter_request _new pad;
}
static GGtPad =
gst_ny_filter_request_new pad (Gt H enent * el enent,
Gst PadTenpl at e *tenpl ,
const gchar * NANe)
{
GtPad *pad;
Gt M/H | ter | nput Gont ext *context;
context = gnew) (GtMHIterlnputCntext, 1);
pad = gst_pad newfromtenpl ate (tenpl, nane);
gst_el enent_set_private data (pad, context);
/* nornal ly, you would set _link () and _getcaps () functions here «/
gst_el enent _add pad (el enent , pad);
return pad;
}
The _loop () function is the same as the one given previously in Multi-Input Elements.

57

Chapter 15. Clocking

WRITEME

58

Chapter 16. Supporting Dynamic Parameters

Sometimes object properties are not powerful enough to control the parameters that affect the behaviour
of your element. When this is the case you can expose these parameters as Dynamic Parameters which
can be manipulated by any Dynamic Parameters aware application.

Throughout this section, the term dparams will be used as an abbreviation for “"Dynamic Parameters".

16.1. Comparing Dynamic Parameters with GObject
Properties
Your first exposure to dparams may be to convert an existing element from using object properties to

using dparams. The following table gives an overview of the difference between these approaches. The
significance of these differences should become apparent later on.

Object Properties Dynamic Parameters
Parameter definition Class level at compile time Any level at run time
Getting and setting Implemented by element Handled entirely by dparams
subclass as functions subsystem
Extra objects required None - all functionality is Element needs to create and store
derived from base GObject a Gst CPar anManager at object
creation
Frequency and resolution of Obiject properties will only be dparams can be updated at any
updates updated between calls to _get, rate independent of calls to _get,
_chainor _loop _chain or _loop up to
sample-level accuracy

16.2. Getting Started

The dparams subsystem is contained within the gstcontrol library. You need to include the header in
your element’s source file:

#include <gst/control/control.h>

Even though the gstcontrol library may be linked into the host application, you should make sure it is
loaded inyour plugin_init function:

static gbool ean
plugininit (Gwdue *nodule, GtHugin *plugin)

59

Chapter 16. Supporting Dynamic Parameters

/+ load dparam support library */

if (!gst_library |oad ("gstcontrol "))
{
gst_info ("exanpl e could not load support library: ‘gstcontrol'\n");
return FALSE
}
}
You need to store an instance of Gst DPar anMinager in your element’s struct:

struct _GstExanpl e {
Gst H enent el enent ;

Gt DPar amMinager * dpnan;

The Gst CPar anMinager can be initialised in your element’s init function:

static void
gst_exanple_init (Gt Exanpl e * exanpl)
{

exanpl e- >dpnan = gst_dpnan_new ("exanpl e_dpran", GST_H BMENT(exanpl €)) ;

16.3. Defining Parameter Specifications

You can define the dparams you need anywhere within your element but will usually need to do so in
only a couple of places:

« Intheelementinit function, just after the call to gst_dpnan_new

« Whenever a new pad is created so that parameters can affect data going into or out of a specific pad. An
example of this would be a mixer element where a separate volume parameter is needed on every pad.

60

Chapter 16. Supporting Dynamic Parameters

There are three different ways the dparams subsystem can pass parameters into your element. Which one
you use will depend on how that parameter is used within your element. Each of these methods has its
own function to define a required dparam:

» gst_dpnan_add requi red dparamdi rect
» gst_dpnan_add requi red dparamcal | back
» gst_dpnan_add requi red dparamarray

These functions will return TRUE if the required dparam was added successfully.

The following function will be used as an example.

gbool ean

gst _dpnan_add requi red_dpar amdi rect (Gt DPar anviinager * dpnan,
Glarangpec * par amspec,
ghoolean is_log,
ghoolean is rate,
gpoi nter updat e dat &)

The common parameters to these functions are:

+ Gt CPar anManager ~dpnan the element’s dparam manager
« GParangpec *paramspec the param spec which defines the required dparam

« gboolean is log whether this dparam value should be interpreted on a log scale (such as a
frequency or a decibel value)

- gboolean is rate whether this dparam value is a proportion of the sample rate. For example with a
sample rate of 44100, 0.5 would be 22050 Hz and 0.25 would be 11025 Hz.

16.3.1. Direct Method

This method is the simplest and has the lowest overhead for parameters which change less frequently
than the sample rate. First you need somewhere to store the parameter - this will usually be in your
element’s struct.

struct _GstEBxanpl e {
Gt H enent el enent ;
Gt DPar anManager * dpnan;

gfloat vol une;

61

Chapter 16. Supporting Dynamic Parameters

b
Then to define the required dparam just call gst_dpnan add requi red dpar amdi rect and pass in
the location of the parameter to change. In this case the location is & exanpl e->vol une)
gst _dpnan_add requi red_dpar amdi r ect (
exanpl e- >dpnan,
g_paramspec _fl oat ("vol une", "ol une", "Volum e of the audio",
0.0, 1.0, 0.8 GPRMFEADRTE,
FALSE
FALSE,
& exanpl e->val une)

You can now use exanpl e- >vol une anywhere in your element knowing that it will always contain the
correct value to use.

16.3.2. Callback Method

This should be used if the you have other values to calculate whenever a parameter changes. If you used
the direct method you wouldn’t know if a parameter had changed so you would have to recalculate the
other values every time you needed them. By using the callback method, other values only have to be
recalculated when the dparam value actually changes.

The following code illustrates an instance where you might want to use the callback method. If you had a
volume dparam which was represented by a gfloat number, your element may only deal with integer
arithmetic. The callback could be used to calculate the integer scaler when the volume changes. First you
will need somewhere to store these values.

struct _GstBxanpl e {
Gst H enent el enent ;

Gst DPar amMinager * dpnan;
gfloat volune f;
gint vol une_i ;

When the required dparam is defined, the callback function gst_exanpl e_updat e vol une and some
user data (which in this case is our element instance) is passed in to the call to
gst _dpran_add requi red_dparamcal | back

gst _dpran_add requi red_dparamcal | back (

62

Chapter 16. Supporting Dynamic Parameters

exanpl e- >dpnan,

g_paramspec _fl oat ("vol une", "ol une", "Volum e of the audio",
0.0, 1.0, 0.8 GPRMFEADRTE,

FALSE

FALSE,

gst _exanpl e_updat e_vol une,

exanpl e

The callback function needs to conform to this signature

typedef void (*Gst DPMbdat eFuncti on) (Galue =*value, gpointer

In our example the callback function looks like this

static void

gst _exanpl e_updat e_vol une(G/l ue *value, gpointer data)
{

Gst Exanpl e rexample = (GtEanple =*)data;
greturn.if_fal (GBS EXAVALH exanpl e));

exanpl e->vol une_f
exanpl e->vol une_i

g val ue get float(val ue);
exanpl e- >vol une_f *x 8192

data);

Now exanpl e->vol une i can be used elsewhere and it will always contain the correct value.

16.3.3. Array Method

This method is quite different from the other two. It could be thought of as a specialised method which
should only be used if you need the advantages that it provides. Instead of giving the element a single
value it provides an array of values where each item in the array corresponds to a sample of audio in your

buffer. There are a couple of reasons why this might be useful.

- Certain optimisations may be possible since you can iterate over your dparams array and your buffer

data together.

« Some dparams may be able to interpolate changing values at the sample rate. This would allow the
array to contain very smoothly changing values which may be required for the stability and quality of

some DSP algorithms.

The array method is currently the least mature of the three methods and is not yet ready to be used in

elements, but plugin writers should be aware of its existence for the future.

63

Chapter 16. Supporting Dynamic Parameters

16.4. The Data Processing Loop

This is the most critical aspect of the dparams subsystem as it relates to elements. In a traditional audio
processing loop, a for loop will usually iterate over each sample in the buffer, processing one sample at a
time until the buffer is finished. A simplified loop with no error checking might look something like this.

static void
exanpl e_chai n (GtPad *pad, GtBuffer * buf)

{
ofloat +float_data;
int j;
Gst Exanpl e rexanple = GST_BEXAMPLE GST_(BIECT PARBNT (pad));
int numsanpl es = GBI BIHER 9 ZH buf)/ si zeof (gf | oat) ;
float_data = (dfloat *)GST_BUAER DATAbuf);

for (j =0y j < numsanples; i+ |
float_data[j] *= exanpl e->vol une;
}

To make this dparams aware, a couple of changes are needed.

static void
exanpl e_chai n (GtPad *pad, GtBuffer * buf)

{
int j =0
Gt Exanpl e rexanple = GST_BEXAMPLE GST_(BIECT PARBNT (pad));
int numsanpl es = GBI _BIHER 9 ZH buf)/ si zeof (gf | oat) ;
ofloat +float_data = (ofloat +)GBI_BUFER DATA(buf);
int frane_count down = CST_DPVN PREPROCESY exanpl e- >dpnan, num sanpl es, GBT_BUAER T MESTA!
vhile (GST_DPMMN PROCESS GONTDOMN exanpl e->d pnan, franme_count down, i A
float_data[j+H *= exanpl e->vol une;
}
}

The biggest changes here are 2 new macros, GsT_[PMIN PREPROIESS and

GST_CAVAN PROCESS GONTDOMN . You will also notice that the for loop has become a while loop.
GST_CAVAN PROCESS GONTDOMN is called as the condition for the while loop so that any required
dparams can be updated in the middle of a buffer if required. This is because one of the required
behaviours of dparams is that they can be sample accurate. This means that parameters change at the
exact timestamp that they are supposed to - not after the buffer has finished being processed.

64

Chapter 16. Supporting Dynamic Parameters

It may be alarming to see a macro as the condition for a while loop, but it is actually very efficient. The
macro expands to the following.

#define GBT_CPMNN PROCESS GOUNTDOAN dpnan, frane_count down, franme_count) \
(f rane_count down- - 1\
(f rane_count down = GBT_DPVNN PROCESY dpnan, frane_count)))

So as long as frane_count down is greater than 0, GST_CPMAN PROESS will not be called at all. Also
in many cases, GST_DPMMN PROESS will do nothing and simply return 0, meaning that there is no more
data in the buffer to process.

The macro GsT_[PMN PREPROCESS will do the following:

- Update any dparams which are due to be updated.
« Calculate how many samples should be processed before the next required update

« Return the number of samples until next update, or the number of samples in the buffer - whichever is
less.

In fact GST_DPWMMN PROCESS may do the same things as GST_DPMN PREPROCESS depending on the
mode that the dparam manager is running in (see below).

16.4.1. DParam Manager Modes

A brief explanation of dparam manager modes might be useful here even though it doesn’t generally
affect the way your element is written. There are different ways media applications will be used which
require that an element’s parameters be updated in differently. These include:

« Timelined - all parameter changes are known in advance before the pipeline is run.

« Realtime low-latency - Nothing is known ahead of time about when a parameter might change.
Changes need to be propagated to the element as soon as possible.

When a dparam-aware application gets the dparam manager for an element, the first thing it will do is set
the dparam manager mode. Current modes are "synchr onous” and "asynchr onous"

If you are in a realtime low-latency situation then the " synchr onous™ mode is appropriate. During
GST_CPMAN PREPROESS this mode will poll all dparams for required updates and propagate them.
GST_DAVMN PROCESS will do nothing in this mode. To then achieve the desired latency, the size of the
buffers needs to be reduced so that the dparams will be polled for updates at the desired frequency.

In a timelined situation, the "asynchr onous" mode will be required. This mode hasn’t actually been
implemented yet but will be described anyway. The GST_CPVMN PREPROESS call will precalculate
when and how often each dparam needs to update for the duration of the current buffer. From then on
GST_PVAN PROESS will propagate the calculated updates each time it is called until end of the buffer.
If the application is rendering to disk in non-realtime, the render could be sped up by increasing the

65

Chapter 16. Supporting Dynamic Parameters

buffer size. In the "asynchr onous” mode this could be done without affecting the sample accuracy of
the parameter updates

16.4.2. Dynamic Parameters for Video

All of the explanation so far has presumed that the buffer contains audio data with many samples. Video
should be regarded differently since a video buffer often contains only 1 frame. In this case some of the
complexity of dparams isn’t required but the other benefits still make it useful for video parameters. If a
buffer only contains one frame of video, only a single call to GST_CPVNN PREPROESS should be
required. For more than one frame per buffer, treat it the same as the audio case.

66

Chapter 17. MIDI

WRITEME

67

Chapter 18. Interfaces

Previously, in the chapter Adding Arguments, we have introduced the concept of GObject properties of
controlling an element’s behaviour. This is a very powerful, but has two big disadvantage: firstly, it is too
generic, and secondly, it isn’t dynamic.

The first disadvantage has to do with customizability of the end-user interface that will be built to control
the element. Some properties are more important than others. Some integer properties are better shown in
a spin-button widget, whereas others would be better represented by a slider widget. Such things are not
possible because the Ul has no actual meaning in the application. A Ul widget that stands for a bitrate
property is the same as an Ul widget that stands for the size of a video, as long as both are of the same
Grarangpec type. Another problem, related to the one about parameter important, is that things like
parameter grouping, function grouping or anything to make parameters coherent, is not really possible.

The second argument against parameters are that they are not dynamic. In many cases, the allowed
values for a property are not fixed, but depend on things that can only be detected at run-time. The names
of inputs for a TV card in a video4linux source element, for example, can only be retrieved from the
kernel driver when we’ve opened the device; this only happens when the element goes into the READY
state. This means that we cannot create an enum property type to show this to the user.

The solution to those problems is to create very specialized types of controls for certain often-used
controls. We use the concept of interfaces to achieve this. The basis of this all is the glib

Aypel nterface type. For each case where we think it’s useful, we’ve created interfaces which can be
implemented by elements at their own will. We’ve also created a small extension to Glypel nt er f ace
(which is static itself, too) which allows us to query for interface availability based on runtime properties.
This extension is called Gst | npl enent sI nt er f ace

(../../gstreamer/html/GstImplementsinterface.html).

One important note: interfaces do not replace properties. Rather, interfaces should be built next to
properties. There are two important reasons for this. Firstly, properties can be saved in XML files.
Secondly, properties can be specified on the commandline (gst-1aunch).

18.1. How to Implement Interfaces

Implementing interfaces is intiated in the get_type () of your element. You can register one or more
interfaces after having registered the type itself. Some interfaces have dependencies on other interfaces
or can only be registered by certain types of elements. You will be notified of doing that wrongly when
using the element: it will quit with failed assertions, which will explain what went wrong. In the case of
GStreamer, the only dependency that some interfaces have is Gt | npl enent sl nter f ace
(../../gstreamer/html/GstImplementsinterface.html). Per interface, we will indicate clearly when it
depends on this extension. If it does, you need to register support for that interface before registering
support for the interface that you’re wanting to support. The example below explains how to add support

68

Chapter 18. Interfaces

for a simple interface with no further dependencies. For a small explanation on
Gst | npl enent sl nt er f ace (../..Igstreamer/html/GstImplementsinterface.html), see the next section
about the mixer interface: Mixer Interface.

static wvoid gst _ny filter_sone interface init (Gt Sonel nt er f ace *jface);

Glype
gst_ny filter_get _type (voi d)
{
static Glype ny filter_type =0

if ('nyfilter_type) {

static const Qypelnfo ny filter_info = {
sizeof (GtMHFIterQass),
(@3asel ni t Func) gst_ny filter_base init,

NLLL,
(G2 assl ni t Func) gst_ny filter_class init,
NLLL,
NLLL,
sizeof (GtMHF lter),
0,
(@ nstancel ni t Func) gst_ny filter_init

h

static const QGnterfacelnfo sone_i nterface info =/
(G nterfacel ni t Func) gst_ny filter_sone interface init,
NLLL,
NLLL

h

ny filter_type =

g type register_static (GBT_TYFE WY A LTER

"GtMH Iter”,

&y filter_info, 0);

g type add interface static (ny_filter_type,

GST_TYPE SOME | NTHRRACE,
&one_interface info);

}
return ny filter_type;
}
static void
gst_ny filter_sone_interface init (Gt Sonel nt erf ace *j face)
{

/+ here, you would set virtual function pointers in the interface */

}

69

Chapter 18. Interfaces

18.2. Mixer Interface

The goal of the mixer interface is to provide a simple yet powerful API to applications for audio
hardware mixer/volume control. Most soundcards have hardware mixers, where volume can be changed,
they can be muted, inputs can be modified to mix their content into what will be read from the device by
applications (in our case: audio source plugins). The mixer interface is the way to control those. The
mixer interface can also be used for volume control in software (e.g. the “volume” element). The end
goal of this interface is to allow development of hardware volume control applications and for the control
of audio volume and input/output settings.

The mixer interface requires the Gst I npl enent sl nt er f ace
(../../gstreamer/html/GstImplementsinterface.html) interface to be implemented by the element. The
example below will feature both, so it serves as an example for the Gst1 npl enent sl nt er f ace
(../../gstreamer/html/GstImplementsinterface.html), too. In this interface, it is required to set a function
pointer for the supported () function. If you don’t, this function will always return FALSE (default
implementation) and the mixer interface implementation will not work. For the mixer interface, the only
required function is li st_tracks () . All other function pointers in the mixer interface are optional,
although it is strongly recommended to set function pointers for at least the get_volune () and
set_volune () functions. The API reference for this interface documents the goal of each function, so
we will limit ourselves to the implementation here.

The following example shows a mixer implementation for a software N-to-1 element. It does not show
the actual process of stream mixing, that is far too complicated for this guide.

#include <gst/mxer/nxer.h>

typedef struct GtMHIter {
[.-]

gint volung
@Qist =*tracks;
} GtMHFIter;
static wvoid gst_ny filter_inplenents interface init (Gt I npl enent sl nt erf aceQ ass *jface);
static wvoid gst _ny filter_mxer_interface init (Gt MxerQ ass +iface);
Gype
gst_ny filter_get_type (voi d)
{
[..]
static const Qnterfacelnfo i npl enents_i nterface info = {
(G nterfacel ni t Func) gst_ny filter_inplenents_ interface ini t,
NLLL,
NLLL
H
static const QGnterfacelnfo mixer_interface info ={
(G nterfacel ni t Func) gst_ny filter_mxer_interface init,
NLLL,
NLLL
h

70

Chapter 18. Interfaces

g type add interface static (ny_filter_type,
GST_TYFE | NALENBNTS | NTHRFACE,
&inpl enents_interface info);
g type add interface static (ny_filter_type,
GST_TYFE MXER
&mxer_interface info);
[.-]
}
static void
gst_ny filter_init (GtMH I ter xfilter)
{
Gt M xer Tr ack xtrack = NLL;
[.-]
filter->vol une = 100;
filter->tracks = NLL;
track = g object_new (GBT_TYFE M XER TRAXK NLL);
t rack-> abel = gstrdup ("MTrack");
t rack->numchannel s =1
track->mn_vol une =0
t rack->nax_vol une = 100;
track->f| ags = BI_MXER TRAK STFTWRE
filter->tracks = g list_append (filter->tracks, track);
}
static gbool ean
gst_ny filter_interface supported (Gt npl enent sl nt erf ace * face,
Glype i face_type)
{
greturnva _if fail (i face type = GI_TYEMXR FALSH) ;
/+ for the sake of this exanple, we'll aways support it. However, nornal |y,
* you would check whether the device youve opened supports nmixers. */
return TRE
}
static void
gst_ny filter_inplenents_interface init (Gt I npl enent sl nt er f aceQ ass *j face)
{
i face->supported = gst_ny filter_interface supported;
}
| *
+ This function returns the of support tracks (inputs, out put s)
* on this elenent instance. Hements usually build this list during
* init () o when going from NLL to READY.
*/
static const Q@ist *
gst_ny filter_mxer_list_tracks (Gt Mxer * M Xer)
{
GtMF I ter *filter = GGI_W HLTER (naxer);

71

Chapter 18. Interfaces

return filter->tracks;
}
| *
* St volune. volunes is an array of size track->numchannels, and
* each value in the array gives the wanted volune for one channel
* on the track.
*/
static void
gst_ny filter_mxer_set_vol une (Gt Mxer * MXer,
Gst M xer Tr ack = track,
gint * vol unes)
{
GtMF Iter *filter = GGI_W HLTER (naxer);
filter->vol une = vol unes[Q] ;
gprint ("Wure set to %\n", filter->vol ung);
}
static void
gst_ny filter_mxer_get_vol une (Gt M xer * M xer,
Gst M xer Tr ack = track,
gint * vol unes)
{
GtMH I ter *filter = GBI_MW HLTER (nhxer);
vol unes| O] = filter->vol une;
}
static void
gst_ny filter_nmixer_interface init (Gt MxerQ ass *| face)
{
/+ the mxer interface requires a definition of the nixer type
* hardware or software? /
GST_MXR TYFE (iface) = GBI_MXER STFTWRE
/* virtual function pointers */

iface->ist_tracks
i face->set_vol une
i face->get _vol une

gst_ny filter_mixer_set_vol une;
gst_ny filter_nixer_get_vol une;

ost_ny filter_nixer_list_tracks;

The mixer interface is very audio-centric. However, with the software flag set, the mixer can be used to
mix any kind of stream in a N-to-1 element to join (not aggregate!) streams together into one output
stream. Conceptually, that’s called mixing too. You can always use the element factory’s “category” to
indicate type of your element. In a software element that mixes random streams, you would not be

required to implement the _get _vol une () or_set_vol une

() functions. Rather, you would only

72

Chapter 18. Interfaces

implement the _set_record () toenable or disable tracks in the output stream. to make sure that a
mixer-implementing element is of a certain type, check the element factory’s category.

18.3. Tuner Interface

As opposed to the mixer interface, that’s used to join together N streams into one output stream by
mixing all streams together, the tuner interface is used in N-to-1 elements too, but instead of mixing the
input streams, it will select one stream and push the data of that stream to the output stream. It will
discard the data of all other streams. There is a flag that indicates whether this is a software-tuner (in
which case it is a pure software implementation, with N sink pads and 1 source pad) or a hardware-tuner,
in which case it only has one source pad, and the whole stream selection process is done in hardware.
The software case can be used in elements such as switch. The hardware case can be used in elements
with channel selection, such as video source elements (v4lsrc, v4l2src, etc.). If you need a specific
element type, use the element factory’s “category” to make sure that the element is of the type that you
need. Note that the interface itself is highly analog-video-centric.

This interface requires the Gt | npl enensl nt erf ace
(../../gstreamer/html/GstImplementsinterface.html) interface to work correctly.

The following example shows how to implement the tuner interface in an element. It does not show the
actual process of stream selection, that is irrelevant for this section.

#include <gst/tuner/tuner.h>

typedef struct GtMHIter {
[--]

gint activeinpu;

@Qist xchannel s;

} GtMHIter;
static wvoid gst_ny filter_inplenents interface init (Gt I npl enent sl nt erf aceQ ass *jface);
static wvoid gst _ny filter_tuner_interface init (Gt Tuner @ ass +iface);
Gype
gst_ny filter_get_type (voi d)
{
[..]
static const Qnterfacelnfo i npl enent s_i nterface info = {
(G nterfacel ni t Func) gst_ny filter_inplenents_interface ini t,
NLLL,
NLL
H
static const Qnterfacelnfo tuner_interface info = {
(G nterfacel ni t Func) gst_ny filter_tuner_interface init,
NLLL,
NLLL
b

73

g type add interface static (ny_filter_type,
GST_TYPE | MPLEMENTS | NTERFACE,
&inpl enents_interface info);
g type add interface static (ny_filter_type,
GBI_TYPE TUNRR
&unerr_interface info);
[..]
}
static wvoid
gst_ny filter_init (GtMH I ter xfilter)
{
Gst Tuner Channel * channel = NLL;
[..]
filter->active_i nput =0
filter->channel s = NLL;
channel = g_obj ect_new (GBT_TYPE_ TUNER GHANNHEL, NLL);
channel - >| abel = gstrdup ("MCannel ");
channel ->f | ags = GOT_TUNER GHANNEL | NAUT,
filter->channel s = g list_append (filter->channel s, channel);
}
static gbool ean
gst_ny filter_interface supported (Gt I npl enent sl nterface + face,
Glype i face type)
{
greturnva _if fail (i face type = GBI_TYFE TUINER FALSH);
/+ for the sake of this exanple, we'll aways support it. However,
* you would check whether the device youve opened supports tuning.
retun TRE
}

static void

gst_ny filter_inplenents_interface init

{
i face->supported

}

static const Qist *
gst_ny filter_tuner_list_channel s

{

Chapter 18. Interfaces

(Gt I npl enent sl nt er f aceQ ass

= gst_ny filter_interface supported;

(Gst Tuner *tuner)

GtMH I ter *filter = GSI_MW HLTER (tuner);

return filter->channel s;

}

static Gt Tuner Channel *
gst_ny filter_tuner_get channel
{

(Gt Tuner *tuner)

GtMH I ter *filter = GBI_MW HLTER (tuner);

74

Chapter 18. Interfaces

return glist_nth data (filter->channel s,
filter->active_input);

}
static wvoid
gst_ny filter_tuner_set_channel (Gt Tuner *tuner,
Gt Tuner Channel * channel)
{
GtMH I ter *filter = GSI_MW HLTER (tuner);
filter->active_ i nput = g list_index (filter->channel s, channel);
g _assert (filter->active_i nput >= 0);
}
static void
gst_ny filter_tuner_interface init (Gst Tuner @ ass * face)
{
iface->ist_channel s = gst_ny filter_tuner_list_channels;
i face- >get _channel = gst_ny filter_tuner_get_channel;
i face->set _channel = gst_ny filter_tuner_set_channel ;
}

As said, the tuner interface is very analog video-centric. It features functions for selecting an input or
output, and on inputs, it features selection of a tuning frequency if the channel supports frequency-tuning
on that input. Likewise, it allows signal-strength-acquiring if the input supports that. Frequency tuning
can be used for radio or cable-TV tuning. Signal-strength is an indication of the signal and can be used
for visual feedback to the user or for autodetection. Next to that, it also features norm selection, which is
only useful for analog video elements.

18.4. Color Balance Interface

WRITEME

18.5. Property Probe Interface

Property probing is a generic solution to the problem that properties’ value lists in an enumeration are
static. We’ve shown enumerations in Adding Arguments. Property probing tries to accomplish a goal
similar to enumeration lists: to have a limited, explicit list of allowed values for a property. There are two
differences between enumeration lists and probing. Firstly, enumerations only allow strings as values;
property probing works for any value type. Secondly, the contents of a probed list of allowed values may
change during the life of an element. The contents of a enumeraiton list are static. Crrently, property
probing is being used for detection of devices (e.g. for OSS elements, Video4linux elements, etc.). It
could - in theory - be used for any property, though.

75

Chapter 18. Interfaces

Property probing stores the list of allowed (or recommended) values in a Gal ueAray and returns that
to the user. NULL is a valid return value, too. The process of property probing is separated over two
virtual functions: one for probing the property to create a Gal ueArray , and one to retrieve the current
GalueAray . Those two are separated because probing might take a long time (several seconds). Also,
this simpliies interface implementation in elements. For the application, there are functions that wrap
those two. For more information on this, have a look at the API reference for the Gst Propert yProbe
interface.

Below is a example of property probing for the audio filter element; it will probe for allowed values for
the “silent” property. Indeed, this value is a gboolean so it doesn’t make much sense. Then again, it’s
only an example.

#include <gst/ propertyprobel propertyprobe. h>

static wvoid gst _ny filter_probe interface init (Gt Propert yProbel nterface *jface);
Glype
gst_ny filter_get _type (voi d)
{
[..]
static const QGnterfacelnfo probe interface info = {
(G nterfacel nit Func) gst_ny filter_probe interface init,
NLLL,
NLLL
b
[..]
g type add interface static (ny_filter_type,

GBI_TYPE PRIPERTY_PREE
&porobe_interface info);
[..]

}

static const QGist

gst_ny filter_probe get_properties (Gst Propert yRr obe * probe)
{

Q) ect @ ass * Kkl ass G BIECT_ GeT_ AASS (probe);

static @ist xprops = NLL;

it (fprops) {
Garanfpec * pspec;
pspec = g object_class find property (klass, “"silent");
props = g list_append (props, pspec);

}

return props;

}

static gbool ean

gst_ny_filter_probe needs_probe (Gst Propert yRr obe * probe,
qui nt prop_id,

76

const GParanfoec * PSPEC)

ghoolean res = FALSE
swtch (prop_id) {
case ARG ILEN
res = FASE
br eak;
defaul t:

G GBIECT WWR\ | NVALI D PRIPERTY | D

br eak;
}

return res;

}

static void
gst_ny_filter_probe probe property
gui nt
const GParanfoec
{
swtch (prop_id) {
case ARG SLEN
[+ don't need
br eak;
defaul t:

G (BIECT WAR\ | NVALI D PROFERTY | D

br eak;
}
}

static QGal ueAray *
gst_ny filter_get_silent_val ues
{

Gl ueAray
Galue value

*array

={ 0}

gvaueinit (&val ue,
/+ add TRE =/

g_val ue_set _bool ean

g val ue_array_append

(&al ue,
(array,

[+ add FALE */
g _val ue_set _bool ean
g _val ue_array_append

(&al ue,
(array,
g_val ue_unset (&al ue);

return

}

array,

static QGal ueAray *

Chapter 18. Interfaces

(probe, propid, pspec);

(Gst Propert yPr obe * pr obe,

prop_id,
* PSpec)

to do much here... * [

(probe, propid, pspec);

(GtMH I ter *filter)

= g val ue array_new (2);

G TYFE BODEAN ;

TRB);
&al ue);

FALS);
&al ue);

77

Chapter 18. Interfaces

gst_ny filter_probe get val ues (Gt Propert yProbe * probe,
gui nt prop_id,
const GParan®pec * PSPEC)

GtMH I ter *filter = GBI_MW HLTER (probe);
G/l ueAray *array = NULL

swtch (prop_id) {
case ARG ILEN

array = gst_ny filter_get_silent_val ues (filter);
br eak;
defaul t:
G BIECT_ VRN | NVALI D PRIPERTY I D (probe, prop_id, pSpec) ;
br eak;
}
return array;
}
static void
gst_ny filter_probe interface init (Gst Propert yProbel nt er f ace +iface)
{

i face->get _properties gst_ny filter_probe get_properties;
i face- >needs_probe gst_ny filter_probe_needs_probe;

i face->probe_property = gst_ny filter_probe probe property;
i face->get _val ues gst_ny filter_probe get val ues;

You don’t need to support any functions for getting or setting values. All that is handled via the standard
Ghject _set property () and _get property () functions.

18.6. Profile Interface

WRITEME

18.7. X Overlay Interface

An X Overlay is basically a video output in a XFree86 drawable. Elements implementing this interface
will draw video in a X11 window. Through this interface, applications will be proposed 2 different
modes to work with a plugin implemeting it. The first mode is a passive mode where the plugin owns,
creates and destroys the X11 window. The second mode is an active mode where the application handles
the X11 window creation and then tell the plugin where it should output video. Let’s get a bit deeper in
those modes...

78

Chapter 18. Interfaces

A plugin drawing video output in a X11 window will need to have that window at one stage or another.
Passive mode simply means that no window has been given to the plugin before that stage, so the plugin
created the window by itself. In that case the plugin is responsible of destroying that window when it’s
not needed anymore and it has to tell the applications that a window has been created so that the
application can use it. This is done using the have_xw ndow i d signal that can be emitted from the
plugin with the gst_x_overlay got_xw ndow i d method.

As you probably guessed already active mode just means sending a X11 window to the plugin so that
video output goes there. This is done using the gst_x_overl ay_set_xw ndow i d method.

It is possible to switch from one mode to another at any moment, so the plugin implementing this
interface has to handle all cases. There are only 2 methods that plugins writers have to implement and
they most probably look like that :

static void
gst_ny filter_set xw ndowid (Gt XQverl ay *overl ay, XD xw ndow i d)
{

GtMH I ter *ny filter = GBI_W HLTER (overl ay);

if (ny_filter->a ndow
gst_ny filter_destroy w ndow (ny_filter->andow;

ny_filter->a ndow = xw ndowi d;
}

static void
gst_ny filter_get desired size (Gt XQverl ay +overl ay,
gunt =wdth, guint *height)

{
GtMH I ter *ny filter = GBI_W HLTER (overl ay);
*wdth = ny filter->wdth;
*height = ny filter->height;
}
static void
gst_ny filter_xoverlay init (Gt XQverl ayQ ass * i face)
{

iface->set_xw ndowid = gst_ny filter_set_xw ndowi d;
i face->get _desired_si ze = gst_ny filter_get_desired size;
}

You will also need to use the interface methods to fire signals when needed such as in the pad link
function where you will know the video geometry and maybe create the window.

static MH | terWndow *

gst_ny filter_wndowcreate (GtMH I ter xny filter, gnt wdh, gint height)
{

MH | ter Wndow *wndow = gnew (MAHIterWndow 1);

79

gst_x overlay got xw ndow.i d

Chapter 18. Interfaces

(GT_X OERAY (ny_filter), W ndow >w n) ;
}
static Gt Padli nkReturn
gst_ny filter_sink link (GtPad *pad, const GtCyps *caps)
{
GtMH I ter xny filter = GST_W HLTER (overl ay);
gint wdth, height;
gbool ean ret;
ret = gst_structure get_int (structure, "wdth", &n dth);
ret & gst_structure get int (structure, "hei ght", &hei ght) ;
if (lret) retun GST_PADLINK REAUED)
if ('ny_filter->wndow
ny_filter->a ndow = gst_ny filter_create w ndow (ny_filter, wdth, height);

gst_x overlay got_desired si ze (GBT_X OERAY (ny_filter),

wdth, height);

18.8. Navigation Interface

WRITEME

80

Chapter 19. Tagging (Metadata and Streaminfo)

Tags are pieces of information stored in a stream that are not the content itself, butthey rather describe
the content. Most media container formats support tagging in one way or another. Ogg uses
VorbisComment for this, MP3 uses ID3, AVI and WAV use RIFF’s INFO list chunk, etc. GStreamer
provides a general way for elements to read tags from the stream and expose this to the user. The tags (at
least the metadata) will be part of the stream inside the pipeline. The consequence of this is that
transcoding of files from one format to another will automatically preserve tags, as long as the input and
output format elements both support tagging.

Tags are separated in two categories in GStreamer, even though applications won’t notice anything of
this. The first are called metadata, the second are called streaminfo. Metadata are tags that describe the
non-technical parts of stream content. They can be changed without needing to re-encode the stream
completely. Examples are “author”, “title” or “album”. The container format might still need to be
re-written for the tags to fit in, though. Streaminfo, on the other hand, are tags that describe the stream
contents technically. To change them, the stream needs to be re-encoded. Examples are “codec” or
“bitrate”. Note that some container formats (like ID3) store various streaminfo tags as metadata in the
file container, which means that they can be changed so that they don’t match the content in the file
anymore. Still, they are called metadata because technically, they can be changed without re-encoding
the whole stream, even though that makes them invalid. Files with such metadata tags will have the same
tag twice: once as metadata, once as streaminfo.

A tag reading element is called TagGetter in GStreamer. A tag writer is called Taget t er
(../../gstreamer/html/GstTagSetter.html). An element supporting both can be used in a tag editor for quick
tag changing.

19.1. Reading Tags from Streams

The basic object for tags is a Gt TagLi st (../../gstreamer/html/gstreamer-GstTagList.html). An
element that is reading tags from a stream should create an empty taglist and fill this with individual tags.
Empty tag lists can be created with gst_tag list_new () . Then, the element can fill the list using
gst_tag list_add val ues () . Note that an element probably reads metadata as strings, but values
might not necessarily be strings. Be sure to use gst_val ue_transform () to make sure that your data
is of the right type. After data reading, the application can be notified of the new taglist by calling

gst_el enent _found tags () . The tags should also be part of the datastream, so they should be
pushed over all source pads. The function gst_event _new t ag () creates an event from a taglist. This
can be pushed over source pads using gst_pad push () . Simple elements with only one source pad
can combine all these steps all-in-one by using the function gst_el enent_f ound t ags_f or_pad O .

The following example program will parse a file and parse the data as metadata/tags rathen than as actual
content-data. It will parse each line as “name:value”, where name is the type of metadata (title, author,
...) and value is the metadata value. The _getline () is the same as the one given in Sometimes pads.

81

Chapter 19. Tagging (Metadata and Streaminfo)

static void

gst_ny filter_| oopfunc (Gt H enent * el enent)

{
GtMH I ter *filter = GBI_MW HLTER (el erent);
Gt Buffer * buf ;
Gt Tagli st xtaglist = gst_tag list_new 0O;

/+* get each line and parse as netadata */
vhile ((buf = gst_ny filter_getline (filter))) {
gchar *line = GST_BUFER DATA (buf), *col on_pos, *type = NLLa

[+ get the position of the ':° and go beyond it =/
if (!(colon_pos = strchr (ling, ':")))
goto next:

/* get the string before that as type of netadata */

type = gstrndup (line, coonpos - line);
/+ content is one character beyond the ':' =/
colon pos = &col on pos[]];
if (xrcodonpos = '\0)
goto next;

[+ get the metadata category, it's value type, store it in that
* type and add it to the taglist. */

if (gst_tag exists (type)) {

Qhlue from ={ 0}, to ={ 0};

Glype to_type;

totype = gst_tag get type (type);
gvalueinit (&rom GTYESIRNG;

g val ue set_string (&rom col on pos);

gvalueinit (&o, totype);

g val ue transform (&rom &o0);

g val ue_unset (&rom;

gst_tag list_add val ues (taglist, GBT_TAG MERE APPEND

type, &o, NLL);
g_val ue_unset (&t0);

}
next:
g free (type);
gst _buffer_unref (buf);

}

/* signal nmetadata @ x/
gst_el enent_found tags for_pad (el enent, filter->srcpad, 0, taglist);
gst_tag list_free (taglist);

[+ send HB */

gst_pad send event (filter->srcpad, GBT_DATA (gst_event _new (GBT_BENT_BE®));
gst_el enent_set_eos (el enent) ;

82

Chapter 19. Tagging (Metadata and Streaminfo)

}
We currently assume the core to already know the mimetype (gst _t ag_exi sts ()). You can add new
tags to the list of known tags using gst _tag regi ster () . If you think the tag will be useful in more

cases than just your own element, it might be a good idea to add it to gsttag.c instead. That’s up to you
to decide. If you want to do it in your own element, it’s easiest to register the tag in one of your class init
functions, preferrably class_init O .

static void

gst_ny filter_class init (GtMH IterQass * kl ass)
{
[..]
gst_tag register ("ny_tag_nane", GBT_TAG HAG META
GTYFE STHNG

("ny oan tag"),
("a tag that is specific to ny owmn element"),
NALL);

19.2. Writing Tags to Streams

Tag writers are the opposite of tag readers. Tag writers only take metadata tags into account, since that’s
the only type of tags that have to be written into a stream. Tag writers can receive tags in three ways:
internal, application and pipeline. Internal tags are tags read by the element itself, which means that the
tag writer is - in that case - a tag reader, too. Application tags are tags provided to the element via the
TagSetter interface (which is just a layer). Pipeline tags are tags provided to the element from within the
pipeline. The element receives such tags via the GST_EVENT_TAG event, which means that tags
writers should automatically be event aware. The tag writer is responsible for combining all these three
into one list and writing them to the output stream.

The example below will receive tags from both application and pipeline, combine them and write them to
the output stream. It implements the tag setter so applications can set tags, and retrieves pipeline tags
from incoming events.

Gype
gst_ny filter_get_type (voi d)
{
[.-]
static const QGnterfacelnfo tag setter_info = {

NLLL,

83

Chapter 19. Tagging (Metadata and Streaminfo)

g type add interface static (ny_filter_type,
GBI_TYFE TAG SETTER
&ag setter_info);
[.-]
}

static void
gst_ny filter_init (GtMH I ter +filter)
{
GST_AAG &ET (filter, GBT_B BEMENT_BVENT_ AMRD) ;
[.-]
}

| *
* Wite one tag.
*/

static void

gst_ny filter_wite tag (const Get Tagli st xtaglist,
const gchar * t agnane,
gpoi nter dat a)

{

GtMH I ter *filter = GSI_MW HLTER (data);
GstBuffer *puffer;

guint numval ues =
const QGaue =*from
Galue to ={ 0 };

gvalueinit (&0, GTYESRN];

for (n = 0; n < numval ues;) {
from = gst_tag list_get_val ue_i ndex (taglist, t agnane,
g val ue transform (from &o);

buf = gst_buffer_new 0O;

GST_BUHER DATA (buf) = g strdup printf ("96: 9", t agnane,

g val ue get_string (&0));
Gr BFFR S ZE (buf) = strlen (GST_BUAERDATA (buf));
gst_pad push (filter->srcpad, GBT_DATA (buf));
}
g_val ue_unset (&0);
}
static void
gst_ny filter_l oopfunc (Gt B enent * el enent)
{
GtMH I ter *filter = GSI_MW HLTER (el enent);
Gt TagSetter *tagsetter = GBI_TAG SETTER (el enent) ;

gst_tag list_get tag size (list, tag nane),

84

Chapter 19. Tagging (Metadata and Streaminfo)

Gtata *data

Gst Bvent * event ;

ghoolean eos = FALSE

Gt Tagli st xtaglist = gst_taglist_new 0O;

wile (leos) {

data = gst_pad pull (filter->si nkpad);
/+ \Wre not very much interested in data rignt now x/
if (&1SBHR (data))

gst_buffer_unref (GBT_BHER (data));

event = GST_BVMENT (data);

swtch (GST_BVENT_TYPE (event)) {
case GBI _BVENTI_TAG
gst_tag list_insert (taglist, gst_event _tag get |ist (event),
GBT_TAG MRE PRFEYD) ;
gst_event _unref (event);
br eak;
case CGol BMANI KR
eos = TRE
gst_event _unref (event);
br eak;
defaul t:
gst_pad event _defaul t (filter->sinkpad, event);
br eak;
}
}

/* merge tags wth the ones retrieved from the application */
if (gst_tag setter_get list (tagsetter)) {

gst_tag list_insert (taglist,

gst_tag setter_get |ist (tagsetter),

gst_tag setter_get nerge node (tagsetter));
}

/* wite tags =*/
gst_tag list_foreach (taglist, gst_ny filter_ wite tag, filter);

/* signa HEX */
gst_pad push (filter->srcpad, GBT_DATA (gst_event _new (GST_BVENT_E®));
gst_el enent _set_eos (el ement);

Note that normally, elements would not read the full stream before processing tags. Rather, they would
read from each sinkpad until they’ve received data (since tags usually come in before the first data

buffer) and process that.

85

Chapter 20. Events: Seeking, Navigation and
More

There are many different event types but only 2 ways they can travel across the pipeline: downstream or
upstream. It is very important to understand how both of those methods work because if one element in
the pipeline is not handling them correctly the whole event system of the pipeline is broken. We will try
to explain here how these methods work and how elements are supposed to implement them.

20.1. Downstream events

Downstream events are received through the sink pad’s dataflow. Depending if your element is loop or
chain based you will receive events in your loop/chain function as a GstData with gst_pad pul | or
directly in the function call arguments. So when receiving dataflow from the sink pad you have to check
first if this data chunk is an event. If that’s the case you check what kind of event it is to react on relevant
ones and then forward others downstream using gst_pad_event def aul t . Here is an example for
both loop and chain based elements.

[+ Chain based elenent */

static wvoid

gst_ny filter_chain (Gt Pad * pad,
GtData +*data)

{
GtMH I ter *filter = GBI_MW HLTER (gst_pad get_parent (pad));
if (GBS BAEr (data)) {
GtBent *event = GST BMENT (data);
swtch (GST_BVENT_TYPE (event)) {
case Col BANIT KR
/ * end-of -stream vwe should close down al stream |eftovers here =*/
gst_ny filter_stop processing (filter);
[+ fall-through to default event handling */
defaul t:
gst_pad event _defaul t (pad, event);
br eak;
}
return;
}
}

/* Loop based element =/
static void
gst_ny filter_|loop (GstH enent * el enent)

{
GtMH I ter *filter = GBI_MW HLTER (el erent);

86

Chapter 20. Events: Seeking, Navigation and More
GtDhata =*data = NULL;

data = gst_pad pull (filter->sinkpad);

if (GBS BAENT (data)) {
GtBent +event = GBI BVMENT (data);

swtch (GST_BVENT_TYFE (event)) {
case Col BANI KR

[* end-of -stream vwe should close down al stream |eftovers here =*/
gst_ny filter_stop processing (filter);
[+ fall-through to default event handiing */
defaul t:
gst_pad event _defaul t (filter->si nkpad, event);
br eak;
}
return;

}

20.2. Upstream events

Upstream events are generated by an element somewhere in the pipeline and sent using the

gst_pad send event function. This function simply realizes the pad and call the default event handler
of that pad. The default event handler of pads is gst_pad event _def aul t , it basically sends the event
to the peer pad. So upstream events always arrive on the src pad of your element and are handled by the
default event handler except if you override that handler to handle it yourself. There are some specific
cases where you have to do that :

+ If you have multiple sink pads in your element. In that case you will have to decide which one of the
sink pads you will send the event to.

+ If you need to handle that event locally. For example a navigation event that you will want to convert
before sending it upstream.

The processing you will do in that event handler does not really matter but there are important rules you
have to absolutely respect because one broken element event handler is breaking the whole pipeline
event handling. Here they are :

+ Always forward events you won’t handle upstream using the default gst_pad event _def aul t
method.

+ If you are generating some new event based on the one you received don’t forget to gst_event_unref
the event you received.

87

Chapter 20. Events: Seeking, Navigation and More

+ Event handler function are supposed to return TRUE or FALSE indicating if the event has been

handled or not. Never simply return TRUE/FALSE in that handler except if you really know that you

have handled that event.

Here is an example of correct upstream event handling for a plugin that wants to modify navigation
events.

static gbool ean
gst_ny_filter_hand e _src_event (Gt Pad * pad,
GtBvent *event)

{
GtMH I ter *filter = GBI_MW HLTER (gst_pad get_parent (pad));

swtch (GST_BVENT_TYFE (event)) {
case GBI _BVENT_NAM GATI ON
Gst Bvent * New event = gst_event_new (GST_BVENT_NMM GATION ;5
/+ Qeate a new event based on received one and then send it =*/

gst_event _unref (event);

return gst_pad event _defaul t (pad, newevent);
defaul t:

[+ Faling back to default event handling for that pad =/
return gst_pad event_defaul t (pad, event);

20.3. All Events Together

In this chapter follows a list of all defined events that are currently being used, plus how they should be

used/interpreted. Events are stored in a Gst Event (../../gstreamer/html/gstreamer-GstEvent.html)
structure, which is simply a big C union with the types for each event in it. For the next development

cycle, we intend to switch events over to Gt Sructure

(../../gstreamer/html/gstreamer-GstStructure.html), but you don’t need to worry about that too much for

now.

In this chapter, we will discuss the following events:

« End of Stream (EOS)
« Flush

« Stream Discontinuity
« Seek Request

« Stream Filler

« Interruption

88

Chapter 20. Events: Seeking, Navigation and More

«+ Navigation

« Tag (metadata)

20.3.1. End of Stream (EOS)

End-of-stream events are sent if the stream that an element sends out is finished. An element receiving
this event (from upstream, so it receives it on its sinkpad) will generally forward the event further
downstream and set itself to EOS (gst _el enent _set_eos ()). ost_pad_event _defaul t () takes
care of all this, so most elements do not need to support this event. Exceptions are elements that explicitly
need to close a resource down on EOS, and N-to-1 elements. Note that the stream itself is not a resource
that should be closed down on EOS! Applications might seek back to a point before EOS and set the
pipeline to PLAYING again. N-to-1 elements have been discussed previously in Multi-Input Elements.

The EOS event (GST_EVENT_EOS) has no properties, and that makes it one of the simplest events in
GStreamer. It is created using gst_event _new (GST_BENT BB

Some elements support the EOS event upstream, too. This signals the element to go into EOS as soon as
possible and signal the EOS event forward downstream. This is useful for elements that have no concept
of end-of-stream themselves. Examples are TV card sources, audio card sources, etc. This is not (yet)
part of the official specifications of this event, though.

20.3.2. Flush

The flush event is being sent downstream if all buffers and caches in the pipeline should be emptied.
“Queue” elements will empty their internal list of buffers when they receive this event, for example. File
sink elements (e.g. “filesink™) will flush the kernel-to-disk cache (fdatasync () orfflush ()) when
they receive this event. Normally, elements receiving this event will simply just forward it, since most
filter or filter-like elements don’t have an internal cache of data. gst_pad event _def aul t () does
just that, so for most elements, it is enough to forward the event using the default event handler.

The flush event is created with gst_event_new (GBT_ BENT_ ALY ; . Like the EOS event, it has no
properties.

20.3.3. Stream Discontinuity

A discontinuity event is sent downstream to indicate a discontinuity in the data stream. This can happen
because the application used the seek event to seek to a different position in the stream, but it can also be
because a real-time network source temporarily lost the connection. After the connection is restored, the
data stream will continue, but not at the same point where it got lost. Therefore, a discontinuity event is
being sent downstream, too.

89

Chapter 20. Events: Seeking, Navigation and More

Depending on the element type, the event can simply be forwarded using gst_pad_event _def aul t

() , or it should be parsed and a modified event should be sent on. The last is true for demuxers, which
generally have a byte-to-time conversion concept. Their input is usually byte-based, so the incoming
event will have an offset in byte units (GST_FORMAT_BYTES), too. Elements downstream, however,
expect discontinuity events in time units, so that it can be used to update the pipeline clock. Therefore,
demuxers and similar elements should not forward the event, but parse it, free it and send a new
discontinuity event (in time units, GST_FORMAT_TIME) further downstream.

The discontinuity event is created using the function gst_event _new di scont i nuous () . It should
set a boolean value which indicates if the discontinuity event is sent because of a new media type (this
can happen if - during iteration - a new location was set on a network source or on a file source). then, it
should give a list of formats and offsets in that format. The list should be terminated by 0 as format.

static void

ny filter_some function (GtMH Iter *filter)
{
Gt Brent *event ;
[..]
event = gst_event _new di sconti nuous (FALSE
GBT_FCRWNT_BYTES 0,
GBT_FARWAT_TI ME, 0,
0);
gst_pad push (filter->srcpad, GBT_DATA (event));

[..]
}

Elements parsing this event can use macros and functions to access the various properties.
GST_BVENT 00 SCONT_ NBWMHT A (event) checks the new-media boolean value.

gst_event di scont_get val ue (event, fornat, &alue) gets the offset of the new stream
position in the specified format. If that format was not specified when creating the event, the function
returns FALSE.

20.3.4. Seek Request

Seek events are meant to request a new stream position to elements. This new position can be set in
several formats (time, bytes or “units” [a term indicating frames for video, samples for audio, etc.]).
Seeking can be done with respect to the end-of-file, start-of-file or current position, and can happen in
both upstream and downstream direction. Elements receiving seek events should, depending on the
element type, either forward it (filters, decoders), change the format in which the event is given and
forward it (demuxers), handle the event by changing the file pointer in their internal stream resource (file
sources) or something else.

Seek events are, like discontinuity events, built up using positions in specified formats (time, bytes,
units). They are created using the function gst_event _new seek () , where the first argument is the
seek type (indicating with respect to which position [current, end, start] the seek should be applied, and

90

Chapter 20. Events: Seeking, Navigation and More

the format in which the new position is given (time, bytes, units), and an offset which is the requested
position in the specified format.

static void
ny_filter_sone_function (GtMF Iter *filter)

{
Gt Bvent *event ;

[..]
/+ seek to the start of a resource =/
event = gst_event_new seek (GBT_SHK &1 | GBT_FORWAT_BYTES 0);
gst_pad push (filter->srcpad, GST_DATA (event));

[..]

}

Elements parsing this event can use macros and functions to access the properties. The seek type can be
retrieved using GST_BVENT_SHEK TYPE (event) . This seek type contains both the indicator of with

respect to what position the seek should be applied, and the format in which the seek event is given. To

get either one of these properties separately, use GST_EVENT_SHEK FORVAT (event) or

GST_BVENI_ S9K METHD (event) . The requested position is available through

GST_BVENI K OFFET (event) ,and is given in the specified format.

20.3.5. Stream Filler

The filler event is, as the name says, a “filler” of the stream which has no special meaning associated
with itself. It is used to provide data to downstream elements and should be interpreted as a way of
assuring that the normal data flow will continue further downstream. The event is especially intended for
real-time MIDI source elements, which only generate data when something changes. MIDI decoders will
therefore stall if nothing changes for several seconds, and therefore playback will stop. The filler event is
sent downstream to assure the MIDI decoder that nothing changed, so that the normal decoding process
will continue and playback will, too. Unless you intend to work with MIDI or other
control-language-based data types, you don’t need this event. You can mostly simply forward it with

gst_pad event_defaul t O -

The stream filler is created using gst_event _new (GST_ BVENT A LLER; . It has no properties.

20.3.6. Interruption

The interrupt event is generated by queue elements and sent downstream if a timeout occurs on the
stream. The scheduler will use this event to get back in its own main loop and schedule other elements.
This prevents deadlocks or a stream stall if no data is generated over a part of the pipeline for a
considerable amount of time. The scheduler will process this event internally, so any normal elements do
not need to generate or handle this event at all.

91

Chapter 20. Events: Seeking, Navigation and More

The difference between the filler event and the interrupt event is that the filler event is a real part of a
pipeline, so it will reach fellow elements, which can use it to "do nothing else than what | used to do".
The interrupt event never reaches fellow elements.

The interrupt event (gst_event_new (GBT_BVENT_I NTERRLPT) ;) has no properties.

20.3.7. Navigation

WRITEME

20.3.8. Tag (metadata)

Tagging events are being sent downstream to indicate the tags as parsed from the stream data. This is
currently used to preserve tags during stream transcoding from one format to the other. Tags are
discussed extensively in Chapter 19. Most elements will simply forward the event by calling

gst_pad event_defaul t O -

The tag event is created using the function gst_event_new t ag () - It requires a filled taglist as
argument.
Elements parsing this event can use the function gst_event _tag get |ist (event) to acquire the

taglist that was parsed.

92

V. Other Element Types

By now, we have looked at pretty much any feature that can be embedded into a GStreamer element.
However, we have limited ourselves to the simple model of a filter element. In this chapter, we will look
at the specific difficulties and things to keep in mind when writing specific types of elements. We will
discuss output elements (sinks), input elements (sources), 1-to-N elements, N-to-1 elements, N-to-N
elements, autopluggers and managers. Some of these represent elements that don’t actually exist. Rather,
they represent a general concept.

Chapter 21. Writing a Source

Source elements are the start of a data streaming pipeline. Source elements have no sink pads and have
one or more source pads. We will focus on single-sourcepad elements here, but the concepts apply
equally well to multi-sourcepad elements. This chapter will explain the essentials of source elements,
which features it should implement and which it doesn’t have to, and how source elements will interact
with other elements in a pipeline.

21.1. The get()-function

Source elements have the special option of havinga _get () -function rather thana loop () - or
_chain () -function. A _get () -function is called by the scheduler every time the next elements needs
data. Apart from corner cases, every source element will want to be _get () -based.

static GGtData * gst_ny source get (GtPad *pad);

static void

gst_ny source init (Gt MSour ce * SrC)
{
[..]
gst_pad set_get _function (src->srcpad, gst_ny source get);
}
static Gtata =
gst_ny_source_get (GtPad *pad)
{

Gt Buffer *xpuffer;

buffer = gst_buffer_new O;

GST_BUHER DATA (buf) gstrdup ("hello pipeline");
GT BRI ZE (buf) strlen (GST_BUAER DATA (buf));
/* terminating 1o]

GST_BUFER MVZS ZE (buf) = GST_BIHFFERS ZE (buf) + 1

return GST_DATA (buffer);

21.2. Events, querying and converting

One of the most important functions of source elements is to implement correct query, convert and event
handling functions. Those will continuously describe the current state of the stream. Query functions can
be used to get stream properties such as current position and length. This can be used by fellow elements
to convert this same value into a different unit, or by appliations to provide information about the

94

Chapter 21. Writing a Source

length/position of the stream to the user. Conversion functions are used to convert such values from one
unit to another. Lastly, events are mostly used to seek to positions inside the stream. Any function is
essentially optional, but the element should try to provide as much information as it knows. Note that
elements providing an event function should also list their supported events in an _get_event _nask

() function. Elements supporting query operations should list the supported operations in a
_get_query_types () function. Elements supporting either conversion or query operations should
also implement a _get fornats () function.

An example source element could, for example, be an element that continuously generates a wave tone at
44,1 kHz, mono, 16-bit. This element will generate 44100 audio samples per second or 88,2 kB/s. This
information can be used to implement such functions:

static Gt Fornat * gst_ny source fornat_|ist (Gt Pad *pad) ;
static Gt QueryType * gst_ny source query |ist (GtPd * pad) ;
static gbool ean gst_ny_source_convert (Gt Pad * pad,

Gt For nat fromfn,

gint64 fromval ,

Gt For nat xto fm,

gint64 xto val);
static gbool ean gst_ny_source_query (Gt Pad * pad,

Gt QueryType type,

Gt For nat xto fm,

gint64 xto val);

static void

gst_ny_source_init (Gt MSour ce * SIC)
{
[.-]
gst_pad set _convert_function (src->srcpad, gst_ny_source_convert);
gst_pad set _formats function (src->srcpad, gst_ny source fornat_|ist);
gst_pad set_query function (src->srcpad, gst_ny_source_query);
gst_pad set_query_type function (src->srcpad, gst_ny source query_list);
}
| *

*

This function returns an enuneration of supported Gt Fornat
* types in the query() or convert() functi ons. See gst/gstfornat. h
for a full [list.

*

*/

static GstFornat *

gst_ny source fornat_|ist (GtPad *pad)
{
static const Gt Fornat fornats[] = {
GST_FORWAT_TI ME
GST_FORWAT _CHFALLT, /* neans "audio sanpl es" */
GBT_FORWAT_BYTES
0
b

95

Chapter 21. Writing a Source

return fornats;

* This function returns an enuneration of the supported query()

* operations. Snce we generate audio internaly, we only provide

* an indication of how nmany sanples we've played so far. Hle sources
or such elements coud also provide GBI QERY TOAL for the tota
* stream length, or other things. See gst/gstquery.h for details.

*/

*

static Gt QueryType *

gst_ny source query |ist (GtPad *pad)
{
static const Gt QueryType query_types[] = {
G QERY FE TN
0,
H
return query types;
}
| *
* And below are the |ogical i npl enent at i ons.
*
/

static gbool ean

gst _ny_source_convert (Gt Pad * pad,
Gst For nat fromfnt,
gint64 fromval,
Gst For nat *to fm,
gint64 *to val)
{

ghoolean res = TRE
Gt M/Sour ce *src = GBI_W SORE (gst_pad get_parent (pad));

swtch (fromfm) {
case GBI _FARWAT_TI ME
swtch (*tofm) {
case oI FORWAT_TI ME
[+ nothing =/
br eak;
case oI FORWAT BYTES
xtoval = fromval [(GBT_SEOND / (44100 =+ 2));
br eak;

case oI FORWAT [HAULT:

xtoval = fromva [(GT_SEOO\D | 44100);
br eak;

defaul t:
res = FASE

96

br eak;

}
br eak;

case GBI FORW _BYTES
swtch (*tofm) {
case oI FORMAT_TI ME
*tova = fromva
br eak;

case oI _FARWAT BYTES
[+ nothing =/
br eak;

case oI FORWAT [HAULT:

*tova = fromval
br eak;
defaul t:
res = FASE
br eak;
}
br eak;

case GBI FORWI_CHAUT:
swtch (*tofm) {
case ol FORWAT_TI ME
xtoval = fromva
br eak;

case GBI FORWT_BYTES
*tova = fromval
br eak;

case GBI FORWAT [HALLT:
[+ nothing =/
br eak;

defaul t:
res =
br eak;

FALSE

}
br eak;

defaul t:
res =
br eak;

FALSE

return res;

}

static gbool ean

* (GBT_SEOO\D

* (GBT_SEOOD

/(44100

| 44100);

Chapter 21. Writing a Source

* 2);

97

Chapter 21. Writing a Source

gst_ny_source_query (Gt Pad * pad,
Gst QueryType type,
Gst For nat *to fm,
gint64 *to val)
{
Gt M/Sour ce *src = BT W SORE (gst_pad get_parent (pad));

ghoolean res = TRE

swtch (type) {
case GST QERY PHTION

res = gst_pad convert (pad, GBT_FORWT BYTES src->total _bytes,
to fnm, toval);
br eak;

defaul t:
res = FALSE
br eak;

return res;

Be sure to increase src->total_bytes after each call to your get () function.

Event handling has already been explained previously in the events chapter.

21.3. Time, clocking and synchronization

The above example does not provide any timing info, but will suffice for elementary data sources such as
a file source or network data source element. Things become slightly more complicated, but still very
simple, if we create artificial video or audio data sources, such as a video test image source or an
artificial audio source (e.g. sinesrc orsilence). It will become more complicated if we want the
element to be a realtime capture source, such as a video4linux source (for reading video frames from a
TV card) or an ALSA source (for reading data from soundcards supported by an ALSA-driver). Here, we
will need to make the element aware of timing and clocking.

Timestamps can essentially be generated from all the information given above without any difficulty. We
could add a very small amount of code to generate perfectly timestamped buffers from our _get
() -function:

static void

gst_ny source_ init (Gt MSour ce * SrC)
{
[--]
src->total _bytes =0
}

98

Chapter 21. Writing a Source

static GGthata *

gst_ny_source_get (GtPad *pad)

{
Gt M/Sour ce *src = GBI_W SORE (gst_pad get_parent (pad));
GtBuffer * buf ;
Gst For nat fm = GST_FORWI_TI ME

[..]
GST_BUAFER DLRAT ON (buf) = G BHFERSZE (buf) * (GBT_SHOOND / (44100 = 2));
GST_BUAER T MESTAWP (buf) = src->total _bytes * (BT FEIND /[(44100 +* 2));
src->total _bytes += G BHFHERSZE (buf);

return GBI _DATA (buf);

}
static GtSateReturn
gst_ny_source_change state (GstH enent * el enent)
{
Gt M/Sour ce *src = GBT_W SORE (el enent);
swtch (GSI_STATE PENO NG (el enent)) {
case CI_STATE PAUEED TO READY:
src->total _bytes =0
br eak;
defaul t:
br eak;
}
if (GST_HBVENT_ AASS (parent_cl ass)->change_st at €)
return GST_HBEMVENT QASS (parent _cl ass)->change _state (el enent);

return GSI_STATE SUOESS

That wasn’t too hard. Now, let’s assume real-time elements. Those can either have hardware-timing, in
which case we can rely on backends to provide sync for us (in which case you probably want to provide
a clock), or we will have to emulate that internally (e.g. to acquire sync in artificial data elements such as
sinesrc). Let’s first look at the second option (software sync). The first option (hardware sync +
providing a clock) does not require any special code with respect to timing, and the clocking section
already explained how to provide a clock.

enum {
ARGO,
[..]
ARG SING
[..]
H

static void
gst_ny source class init (Gt MSour ceQ ass * k| ass)

99

Chapter 21. Writing a Source

{
QY ect @ ass * obj ect_cl ass = GRIECT_ AAsS (kl ass);
[--]
g object _class install_property (obj ect_cl ass, ARG SING
g _paramspec_bool ean ("sync", "Sync", "Synchroni ze to clock",
FASE GPARAVREADRTE);
[--]
}
static void
gst_ny source_ init (Gt MSour ce * SrC)
{
[.-]
Src->sync = FALSE
}
static void
gst_ny_source_get (GtPad *pad)
{
Gt M/Sour ce *src = BT W SORE (gst_pad get_parent (pad));

Gt Buffer * buf ;

N

if (src->sync) {
/* wait on clock =/

gst_el enent_wai t (GST_H.BvBENT (src), GSI_BUAER T MESTAWP (buf));
}
return GST_DATA (buf);
}
static void
gst_ny _source get_property (G ect * obj ect,
gui nt prop_id,
GRar angpec * PSpPEC,
Gl ue * val ue)
{
Gt M/Sour ce *src = GBI_W SORE (gst_pad get_parent (pad));

[.

[.

}

swtch (prop_id) {

]

case ARG SYNC
g val ue_set _bool ean (value, src->sync);
br eak;

]

}

static void
gst_ny _source get_property (G ect *obj ect,

gui nt prop_id,

Grar anfpec * pspec,
const Qaue *val ue)

100

Chapter 21. Writing a Source
Gt M/Sour ce *src = GBT_W SORE (gst_pad get_parent (pad));

swtch (prop_id) {
[..]
case ARG SYINC
src->ync = g val ue get _bool ean (val ue);
br eak;

Most of this is GObject wrapping code. The actual code to do software-sync (in the _get () -function)
is relatively small.

21.4. Using special memory

In some cases, it might be useful to use specially allocated memory (e.g. nmap () ’ed DMA’able
memory) in your buffers, and those will require special handling when they are being dereferenced. For
this, GStreamer uses the concept of buffer-free functions. Those are special functions pointers that an
element can set on buffers that it created itself. The given function will be called when the buffer has
been dereferenced, so that the element can clean up or re-use memory internally rather than using the
default implementation (which simply calls g free () on the data pointer).

static void
gst_ny source buffer_free (GtBuffer * buf)

{
Gt M/Sour ce *src = BT W SORE (GBT_BLHER PR VATE (buf));

/* do useful things here, like re-queueing the buffer which
* nakes it available for DMA again. The default handler wll
* not free this buffer because of the GBI BUHER DONTHREE

* flag. =/
}
static void
gst_ny_source _get (GtPad *pad)
{
Gt M/Sour ce *src = GBI_W SORE (gst_pad get_parent (pad));

GstBuffer * buf ;

[--]
buf = gst_buffer_new 0;

GST BUHFER FREE DATA RUNC (buf) = gst_ny source buffer_free;
GST_BUHER R VATE (buf) = src;
GST_BUHER HAG SET (buf, GBST_BUFFER READONLY | GBST_BUHER DONTFRED) ;

[.-]

return GBT_DATA (buf);

101

Chapter 21. Writing a Source

Note that this concept should not be used to decrease the number of calls made to functions such as
gnalloc () inside your element. We have better ways of doing that elsewhere (GStreamer core, Glib,
Glibc, Linux kernel, etc.).

102

Chapter 22. Writing a Sink

Sinks are output elements that, opposite to sources, have no source pads and one or more (usually one)
sink pad. They can be sound card outputs, disk writers, etc. This chapter will discuss the basic
implementation of sink elements.

22.1. Data processing, events, synchronization and
clocks

Except for corner cases, sink elements will be _chain () -based elements. The concept of such
elements has been discussed before in detail, so that will be skipped here. What is very important in sink
elements, specifically in real-time audio and video sources (such as osssi nk or xi nagesi nk), is event
handling inthe _chain () -function, because most elements rely on EOS-handling of the sink element,
and because A/V synchronization can only be perfect if the element takes this into account.

How to achieve synchronization between streams depends on whether you’re a clock-providing or a
clock-receiving element. If you’re the clock provider, you can do with time whatever you want. Correct
handling would mean that you check whether the end of the previous buffer (if any) and the start of the
current buffer are the same. If so, there’s no gap between the two and you can continue playing right
away. If there is a gap, then you’ll need to wait for your clock to reach that time. How to do that depends
on the element type. In the case of audio output elements, you would output silence for a while. In the
case of video, you would show background color. In case of subtitles, show no subtitles at all.

In the case that the provided clock and the received clock are not the same (or in the case where your
element provides no clock, which is the same), you simply wait for the clock to reach the timestamp of
the current buffer and then you handle the data in it.

A simple data handling function would look like this:

static void
gst_ny_sink_chai n (Gt Pad * pad,
Gtata =*data)
{
GtMdInk *sink = GI_W SN (gst_pad get_parent (pad));
Gt Buf fer * buf ;
Gst @ ockTi ne tine;

/* only needed if the elenent is GST_BVENT_AMRE */
if (GBS BENTr (data)) {
GtBent revent = G BENT (data);

swtch (GST_BVENT_TYPE (event)) {

case Col BMANI KR
[if your elenent provides a clock, disable (inactivate) it here]

103

Chapter 22. Writing a Sink

[= pass-through * [

defaul t:
I+ the defaut handler handles discontinuities, even if your
* elerent provides a clock! */
gst_pad event _defaul t (pad, event);
br eak;
}
return;
}
buf = GST_BIHER (data);
if (G BAERTMEISVAID (buf))
tine = GBST_BUFER T MESTAW (buf);
el se

time = sink->expected next_ting;

/ * Synchroni zati on - the property is only wusefu in case the
+ elenent has the option of not syncing. S it is not useful
* for hardware-sync (cl ock- provi di ng) el enent s. */

if (sink->sync) {
/* This check is only needed if you provide a clock. Hse,
* you can always execute the 'else clause. x/

if (sink->provided cl ock = sink->recei ved_cl ock) {
[+ GBI 'SHOAND / 10 is 0,1 sec, it's an arbitrary value. The
* casts are needed because else it'll be unsigned and we
* won't detect negative values. @ x/
if (llabs ((gint64) si nk->expect ed_next _tine - (gint64) tine) >

(G sEOND / 10) |
[+ so are we ahead or behind? */
if (time > sink->expected tine) {
/* we need to wait a vhile... In case of audio, output
* silence. In case of video, output background color.
* In case of subtitles, display nothing. */
[-.]
} else {
[+ Drop data. =/
[-.]
}
}
} else {
/+* You coud do nore sophisticated things here, but we'll
* keep it sinple for the purpose of the exanple */
gst_el enent_wai t (GBT_B.BVENT (sink), tine);
}
}

/+ And now handle the data */
o

104

Chapter 22. Writing a Sink

22.2. Special memory

Like source elements, sink elements can sometimes provide externally allocated (such as X-provided or
DMA’able) memory to elements earlier in the pipeline, and thereby prevent the need for nencpy () for
incoming data. We do this by providing a pad-allocate-buffer function.

static GtBufer * gst_ny sink buffer_allocate (GtPad *pad,
guinted offset,
gui nt si ze);

static void
gst_ny sinkinit (Gt M9 nk * Si nk)

{
[.-]

gst_pad set_bufferal | oc_function ('si nk->si nkpad,

gst_ny sink buffer_allocate);

}
static void
gst_ny sink buffer_free (GtBuffer * buf)
{

GtMSnk *sink = GI_W SN (GI_BIHER PR \VATE (buf));

[+ Do whatever is needed here. */
[..]

}

static GtBuffer *

gst_ny sink buffer_all ocate (GtPad *pad,
guinté4 offset,
gui nt si ze)

{

Gt Buffer *pbuf = gst_buffer_new 0;

/* S here it's up to you to wap your private buffers and
* return that. */

GBT_BUFFER FREE DATA ALNC (buf) = gst_ny sink buffer free;
GST_BUAER PR VATE (buf) = sink
GST_BUFFER ALAG SET (buf, GBI BUFFER DONIFRED) ;
[--]
return buf;

105

Chapter 23. Writing a 1-to-N Element, Demuxer
or Parser

1-to-N elements don’t have much special needs or requirements that haven’t been discussed already. The
most important thing to take care of in 1-to-N elements (things like t ee -elements or so) is to use proper
buffer refcounting and caps negotiation. If those two are taken care of (see the tee element if you need
example code), there’s little that can go wrong.

Demuxers are the 1-to-N elements that need very special care, though. They are responsible for
timestamping raw, unparsed data into elementary video or audio streams, and there are many things that
you can optimize or do wrong. Here, several culprits will be mentioned and common solutions will be
offered. Parsers are demuxers with only one source pad. Also, they only cut the stream into buffers, they
don’t touch the data otherwise.

23.1. Demuxer Caps Negotiation

Demuxers will usually contain several elementary streams, and each of those streams’ properties will be
defined in a stream header at the start of the file (or, rather, stream) that you’re parsing. Since those are
fixed and there is no possibility to negotiate stream properties with elements earlier in the pipeline, you
should always use explicit caps on demuxer source pads. This prevents a whole lot of caps negotiation or
re-negotiation errors.

23.2. Data processing and downstream events

Data parsing, pulling this into subbuffers and sending that to the source pads of the elementary streams is
the one single most important task of demuxers and parsers. Usually, an element will havea _loop ()
function using the bytestream object to read data. Try to have a single point of data reading from the
bytestream object. In this single point, do proper event handling (in case there is any) and proper error
handling in case that’s needed. Make your element as fault-tolerant as possible, but do not go further than
possible.

23.3. Parsing versus interpreting

One particular convention that GStreamer demuxers follow is that of separation of parsing and
interpreting. The reason for this is maintainability, clarity and code reuse. An easy example of this is
something like RIFF, which has a chunk header of 4 bytes, then a length indicator of 4 bytes and then the
actual data. We write special functions to read one chunk, to peek a chunk ID and all those; that’s the

106

Chapter 23. Writing a 1-to-N Element, Demuxer or Parser

parsing part of the demuxer. Then, somewhere else, we like to write the main data processing function,
which calls this parse function, reads one chunk and then does with the data whatever it needs to do.

Some example code for RIFF-reading to illustrate the above two points:

static gbool ean

gst _ny_denuxer _peek (Gt MyDenuxer * denui,
gui nt 32 *id,
gui nt 32 * Si Z€)
{
guint8 =data;
vhile (gst_bytestreampeek bytes (denux- >bs, &ata, 4) '= 4) {

guint32 renaining;
Gt Brent *event ;

gst_bytestreamget _status (denux- >bs, & enai ni ng, &event);
if (event) ({
Gst Bvent Type type = GSI_BVENT_TYFE (event);

[+ or maybe custom event handing, up to you - we lose reference! * [
gst_pad event _defaul t (denux- >si nkpad, event);
if (type = GST_BVENT_E®
return FALSE

} else {
GST_H BVENT_HRRR (demux, STREAM READ (N, (NLD));
return FALSE

}

}

*id = GJNI32 FRMLE (((quint32 =) data)[0]);
*size = GUNI32 FRMLE (((guint32 x) data)[0]);

return TRE
}

static void
gst _ny_denuxer_| oop (Gt B enent * el enent)

{
Gst MyDenuxer *demx = GSI_W BEMUXER (el enent);
guint32 id, size

if (!gst_ny denuxer_peek (demux, & d, &size))
return;

swtch (id) {

[.. normad chunk handling ..]
}
}

107

Chapter 23. Writing a 1-to-N Element, Demuxer or Parser

Reason for this is that event handling is now centralized in one place and the 1oop () functionisa lot
cleaner and more readable. Those are common code practices, but since the mistake of not using such
common code practices has been made too often, we explicitely mention this here.

23.4. Simple seeking and indexes

Sources will generally receive a seek event in the exact supported format by the element. Demuxers,
however, can not seek in themselves directly, but need to convert from one unit (e.g. time) to the other
(e.g. bytes) and send a new event to its sink pad. Given this, the _convert () -function (or, more
general: unit conversion) is the most important function in a demuxer. Some demuxers (AVI, Matroska)
and parsers will keep an index of all chunks in a stream, firstly to improve seeking precision and
secondly so they won’t lose sync. Some other demuxers will seek the stream directly without index (e.g.
MPEG, Ogg) - usually based on something like a cumulative bitrate - and then find the closest next
chunk from their new position. The best choice depends on the format.

Note that it is recommended for demuxers to implement event, conversion and query handling functions
(using time units or so), in addition to the ones (usually in byte units) provided by the pipeline source
element.

108

Chapter 24. Writing a N-to-1 Element or
Demuxer

N-to-1 elements have been previously mentioned and discussed in both Chapter 14 and in Chapter 12.
The main noteworthy thing about N-to-1 elements is that they should always, without any single
exception, be |oop () -based. Apart from that, there is not much general that you need to know. We
will discuss one special type of N-to-1 elements here, these being muxers. The first two of these sections
apply to N-to-1 elements in general, though.

24.1. The Data Loop Function

As previously mentioned in Chapter 12, N-to-1 elements generally try to have one buffer from each sink
pad and then handle the one with the earliest timestamp. There’s some exceptions to this rule, we will
come to those later. This only works if all streams actually continuously provide input. There might be
cases where this is not true, for example subtitles (there might be no subtitle for a while), overlay images
and so forth. For this purpose, there isa _select () function in GStreamer. It checks whether input is
available on a (list of) pad(s). In this way, you can skip over the pads that are "non- continuous’.

/* Pad selection is currently broken, AXME sone day =/

24.2. Events in the Loop Function

N-to-1 elements using a cache will sometimes receive events, and it is often unclear how to handle those.
For example, how do you seek to a frame in an output file (and what’s the point of it anyway)? So, do
discontinuity or seek events make sense, and should you use them?

24.2.1. Discontinuities and flushes

Don’t do anything. They specify a discontinuity in the output, and you should continue to playback as
you would otherwise. You generally do not need to put a discontinuity in the output stream in muxers;
you would have to manually start adapting timestamps of output frames (if appliccable) to match the
previous timescale, though. Note that the output data stream should be continuous. For other types of
N-to-1-elements, it is generally fine to forward the discontinuity once it has been received from all pads.
This depends on the specific element.

109

Chapter 24. Writing a N-to-1 Element or Demuxer

24.2.2. Seeks

Depends on the element. Muxers would generally not implement this, because the concept of seeking in
an output stream at frame level is not very useful. Seeking at byte level can be useful, but that is more
generally done by muxers on sink elements.

24.2.3. End-of-Stream

Speaks for itself.

24.3. Negotiation

Most container formats will have a fair amount of issues with changing content on an elementary stream.
Therefore, you should not allow caps to be changed once you’ve started using data from them. The
easiest way to achieve this is by using explicit caps, which have been explained before. However, we’re
going to use them in a slightly different way then what you’re used to, having the core do all the work for
us.

The idea is that, as long as the stream/file headers have not been written yet and no data has been
processed yet, a stream is allowed to renegotiate. After that point, the caps should be fixed, because we
can only use a stream once. Caps may then only change within an allowed range (think MPEG, where
changes in FPS are allowed), or sometimes not at all (such as AV audio). In order to do that, we will,
after data retrieval and header writing, set an explicit caps on each sink pad, that is the minimal caps
describing the properties of the format that may not change. As an example, for MPEG audio inside an
MPEG system stream, this would mean a wide caps of audio/mpeg with mpegversion=1 and layer=[1,2].
For the same audio type in MPEG, though, the samplerate, bitrate, layer and number of channels would
become static, too. Since the (request) pads will be removed when the stream ends, the static caps will
cease to exist too, then. While the explicit caps exist, the _link () - function will not be called, since
the core will do all necessary checks for us. Note that the property of using explicit caps should be added
along with the actual explicit caps, not any earlier.

Below here follows the simple example of an AVI muxer’s audio caps negotiation. The _I i nk
() -function is fairly normal, but the -Loop () -function does some of the tricks mentioned above. There
isno _getcaps () - function since the pad template contains all that information already (not shown).

static GtPadli nkReturn
gst_avi_nux_audi o | i nk (Gt Pad * pad,
const GtGaps *caps)

{
GtAiMx *mux = GT_AM_MX (gst_pad get_parent (pad));
GtSructure xstr = gst_caps get_structure (caps, 0);
const gchar *mine = gst_structure get_nane (str);

110

[.

}

Chapter 24. Writing a N-to-1 Element or Demuxer

if (!strenp (str, "audio/ npeg")) {
[+ get version, nake sure it's 1, get layer, nake sure it's 1-3
* then create the 2-byte audio tag (0x0055) and fill an audio
* stream structure (strh/strf). */
[--]
return GBT_PAD LINK K
} else if l!strenp (str, “audio/x-rawint")) {
/+ See above, but now wth the raw audio tag (0x0001). */
[.-]
reeurn G PAD LINK (K
} else [..]

]

static void
gst_avi_nux_| oop (Gt H enent * el enent)

{

[.

GtAiMx *mux = GST_AM_MX (el enent);

]

[+ Ps we get here, we should have witten the header if we hadn't done
* that before vyet, and we're supposed to have an interna buffer from
* each pad, aso from the audio one. S here, we check again whether

* this is the first run and if so, we set static caps. =/

if (nux->first_cycle) {
const Qist =*padist = gst_elenent_get pad |ist (el enent);
Qist =*item
for (item = padist; item !'= NLL;, item = item>next) {
GtPad +*pad = item>data;
GtGps *caps;

if (/G PADISINK (pad))
cont i nue;

[+ set static caps here x/
if (!strncnp (gst_pad get nane (pad), "audio ", 6) {
[+ the strf is the struct vyou filled in the _link () function. */
swtch (strf->fornat) {
case Ox0055: /* np3 =*/

caps = gst_caps_new sinpl e ("audi of npeg”,
" npegver si on", GTYFEINT, 1,
"l ayer", GTYPE INT, 3,
"bitrate", GTYFEINT, strf->av_bps,
"rate", GTYPE I NI, strf->rate,
"channel s", GTYFE N, strf->channel s,
NLL);

break;

case 0x0001: /= pcm =/
caps = gst_caps_new sinpl e ("audi of x-rawint",
(.1
break;

(-]
}

111

} else if (!strncnp (gst_pad get _nane
[-.]

Chapter 24. Writing a N-to-1 Element or Demuxer

(pad), "video ",) {

} else {
gwarning ("ai!");
cont i nue;
}
[+ set static caps */
gst_pad use explicit_caps (pad);
gst_pad set_explicit_caps (pad, caps);
}
}
[..]
/* Next runs wll never be the first again */
mx->first_cycle = FASE

}

Note that there are other ways to achieve that, which might be useful for more complex cases. This will
do for the simple cases, though. This method is provided to simplify negotiation and renegotiation in
muxers, it is not a complete solution, nor is it a pretty one.

24.4. Markup vs. data processing

As we noted on demuxers before, we love common programming paradigms such as clean, lean and

mean code. To achieve that in muxers, it’s generally a good idea to separate the actual data stream

markup from the data processing. To illustrate, here’s how AVI muxers should write out RIFF tag chunks:

static void
gst_avi_nmux_wite chunk (Gt Avi Mix * NUX,

qui nt 32 id,
Gt Buffer * dat a)

GtBuffer * hdr;

hdr = gst_buffer_newand all oc (8);
((guint32 *) GSI_BUAER DATA (buf))[O]
((guint32 +) GCSI_BUHAER DATA (buf))[1]

gst_pad push (nux->sr cpad, hdr);
gst_pad push (nux->sr cpad, data);

}

static void

gst_avi _nux_| oop (Gt H enent * el enent)
{

GtAiMx *mux = GT_AM_MX (el enent);
Gt Buffer * buf ;

[.-]

GJNI32 TOLE
GUNI32 TOLE

(id);
(GST BFER 9 ZE

(data));

112

Chapter 24. Writing a N-to-1 Element or Demuxer

buf = gst_pad pull (mux->si nkpad[0]) ;
[.-]
gst_avi_mux_wite chunk (GST_ME FORC (o, o,'d,'b), buf) ;

}

In general, try to program clean code, that should cover pretty much everything.

113

Chapter 25. Writing a N-to-N element

FIXME: write.

114

Chapter 26. Writing an Autoplugger

FIXME: write.

115

Chapter 27. Writing a Manager

FIXME: write.

116

V. Appendices

This chapter contains things that don’t belong anywhere else.

Chapter 28. Things to check when writing an
element

Make sure the state of an element gets reset when going to NULL. Ideally, this should set all object
properties to their original state. This function should also be called from _init.

118

Chapter 29. Things to check when writing a
fi lter

119

Chapter 30. Things to check when writing a
source or sink

120

	GStreamer Plugin Writer's Guide (0.8.5)
	Table of Contents
	List of Tables
	List of Examples
	I. Introduction
	Chapter 1. Preface
	1.1. Who Should Read This Guide?
	1.2. Preliminary Reading
	1.3. Structure of This Guide

	Chapter 2. Basic Concepts
	2.1. Elements and Plugins
	2.2. Pads
	2.3. Data, Buffers and Events
	2.3.1. Buffer Allocation

	2.4. Mimetypes and Properties
	2.4.1. The Basic Types

	II. Building a Plugin
	Chapter 3. Constructing the Boilerplate
	3.1. Getting the GStreamer Plugin Templates
	3.2. !!! FIXME !!! Using the Project Stamp
	3.3. Examining the Basic Code
	3.4. GstElementDetails
	3.5. GstStaticPadTemplate
	3.6. Constructor Functions
	3.7. The plugininit function

	Chapter 4. Specifying the pads
	4.1. The link function
	4.2. The getcaps function
	4.3. Explicit caps

	Chapter 5. The chain function
	Chapter 6. What are states?
	6.1. Mangaging filter state

	Chapter 7. Adding Arguments
	Chapter 8. Signals
	Chapter 9. Building a Test Application
	Chapter 10. Creating a Filter with a Filter Factory
	III. Advanced Filter Concepts
	Chapter 11. How scheduling works
	11.1. The Basic Scheduler
	11.2. The Optimal Scheduler

	Chapter 12. How a loopfunc works
	12.1. MultiInput Elements
	12.2. The Bytestream Object
	12.3. Adding a second output
	12.4. Modifying the test application

	Chapter 13. Types and Properties
	13.1. Building a Simple Format for Testing
	13.2. Typefind Functions and Autoplugging
	13.3. List of Defined Types

	Chapter 14. Request and Sometimes pads
	14.1. Sometimes pads
	14.2. Request pads

	Chapter 15. Clocking
	Chapter 16. Supporting Dynamic Parameters
	16.1. Comparing Dynamic Parameters with GObject Properties
	16.2. Getting Started
	16.3. Defining Parameter Specifications
	16.3.1. Direct Method
	16.3.2. Callback Method
	16.3.3. Array Method

	16.4. The Data Processing Loop
	16.4.1. DParam Manager Modes
	16.4.2. Dynamic Parameters for Video

	Chapter 17. MIDI
	Chapter 18. Interfaces
	18.1. How to Implement Interfaces
	18.2. Mixer Interface
	18.3. Tuner Interface
	18.4. Color Balance Interface
	18.5. Property Probe Interface
	18.6. Profile Interface
	18.7. X Overlay Interface
	18.8. Navigation Interface

	Chapter 19. Tagging (Metadata and Streaminfo)
	19.1. Reading Tags from Streams
	19.2. Writing Tags to Streams

	Chapter 20. Events: Seeking, Navigation and More
	20.1. Downstream events
	20.2. Upstream events
	20.3. All Events Together
	20.3.1. End of Stream (EOS)
	20.3.2. Flush
	20.3.3. Stream Discontinuity
	20.3.4. Seek Request
	20.3.5. Stream Filler
	20.3.6. Interruption
	20.3.7. Navigation
	20.3.8. Tag (metadata)

	IV. Other Element Types
	Chapter 21. Writing a Source
	21.1. The get()function
	21.2. Events, querying and converting
	21.3. Time, clocking and synchronization
	21.4. Using special memory

	Chapter 22. Writing a Sink
	22.1. Data processing, events, synchronization and clocks
	22.2. Special memory

	Chapter 23. Writing a 1toN Element, Demuxer or Parser
	23.1. Demuxer Caps Negotiation
	23.2. Data processing and downstream events
	23.3. Parsing versus interpreting
	23.4. Simple seeking and indexes

	Chapter 24. Writing a Nto1 Element or Demuxer
	24.1. The Data Loop Function
	24.2. Events in the Loop Function
	24.2.1. Discontinuities and flushes
	24.2.2. Seeks
	24.2.3. EndofStream

	24.3. Negotiation
	24.4. Markup vs. data processing

	Chapter 25. Writing a NtoN element
	Chapter 26. Writing an Autoplugger
	Chapter 27. Writing a Manager
	V. Appendices
	Chapter 28. Things to check when writing an element
	Chapter 29. Things to check when writing a filter
	Chapter 30. Things to check when writing a source or sink

