GStreamer Application Development
Manual (0.8.5)

Wim Taymans
Steve Baker

Andy Wingo

GStreamer Application Development Manual (0.8.5)
by Wim Taymans, Steve Baker, and Andy Wingo

This material may be distributed only subject to the terms and conditions set forth in the Open Publication License, v1.0 or later (the latest version
is presently available at http://www.opencontent.org/opl.shtml (http://www.opencontent.org/opl.shtml))

Table of Contents

. OVEIVIBW ...ttt b bbbt e bbbt e bbbt b e b e n et neen e nn b e vii
L INEFOTUCTION ...t b ettt eb et eb s 1
1.1, WAL IS GSIIBAMET?.....cviiiieeiiiicte ittt ettt 1

2. IVIOTIVALION ... bbb ettt 2
2.1, CUITENE PIODIBMS ...ttt bbbt s b e 2

3L B0AIS ..t bbb Rt r ettt 4
3.1 THE dESIGN QOIS ...ttt et b e bbb s 4

1. BASIC CONCEPTS ...ttt sttt sttt bbbt bbbt bbbt bbb bbb 7
A EIBIMENTS ...ttt b bbbt 8
4.1 What iS an €lEMENE 2......cviviiieeiic s 8

4.2, TYPES OF BIBMENTS ...ttt 8

B PAOS ..ttt b h bR bR R bR e Rt R bbbt 11
5.1 TYPES OF PAL.....eceiieieiee bbbt 11

5.2. Capabilities 0f @ PAUcovii e 11

B. PIUGINS ...ttt bbbt b s bbb h bbb bR R R bR n e en e 15
7. LINKING EIBMENTS ...t bbb bbb et 16
ST =110 OSSOSO 17
0. BUFTIS ..ttt bbb bR bR bR bR bbb Rt bt en e 18
10. EIBMENT STALES ...ttt bbbttt bbbt 19
10.1. The different element StALES ..o it e 19

10.2. THE NULL SEALE ...ttt 19

10.3. The READY SEALE ...cveviuiitieiietiresities ettt ettt n e 19

10.4. The PAUSED SEALE......c.cvitiirieiiriiiisei sttt 20

10.5. The PLAYTNG SEALE ...veveiveieiieieresieie sttt bbbttt st 20

FEE BASIC AP L.ttt bbbt b bbb bbbttt b 21
11, INPtIAHZING GSEIBAMET ... vttt ettt st et st eb e et e et s be e 22
11.1. The POPL INEEITACEceiieiiete e bbbt 22

L2, EBMBNTS ..ottt r bbbt b et b et r ettt n e ens 24
12.1. Creating @ GSTEIBMENT.......c.viiiieee e e 24

12.2. GStEIEMENT PIOPEITIESc.eveieitieeieterie sttt sttt bbbt 24

12.3. GSEEIEMENT SIGNAIS ..ottt et bbb 25

12.4. More about GStEIEMENTFACIONY..........cviiiiiiiee e e 25

130 PAOS ..ottt bbb R bR R R R Rt R R R Rt b st r et neen e enes 27
13,1, TYPES OF PAG. ... e et ettt st 27

13.2. Capabilities OF @ PAGcc.oveieiiiiei e bbb e 29

I o 110 1oL OO SOU PP SOURP 32
15, LiNKING EIBMENTS ..ottt bbbttt 33
15.1. MaKing SIMPIE TINKSc.viviiiiiiiniice et e 33

15.2. MaKing filtered HNKS. ..o e 34

18 BINS .ttt bttt b bR bRt e Rt e bR b bt e R Rt b bt ne et er e bt e enenearas 35
16.1. Creating @ DN ..o e 35

16.2. Adding elements t0 @ DIN ..o e 35

16.3. CUSEOIM DINS ...ttt ettt 36

16.4. GROSE PAAS ...c.cveviieeeect ettt bbbttt 37

L7 BUFTEES ettt ekt b bt b et bRttt ee et e enas 40

18, EIBMENE STALES ... veeiveieeeee e ctee e et e e e ettt e et te s et e st e e ettt e seaeeesaaesaateeesaseeeseeesareesaneeerenaessseeeseneessnnes 41

18.1. Changing elemMENt STALE.........ceiriiiiee e e 41

AV S TU 1T Lo [T aTo IR T TR=To] o] L Tox= 1 a o] o IS 42
19. YOUT fIrSt @PPIICALIONoeviiiieciiici e 43
SIS0 o =11 IV o o TR 43

19.2. Compiling NEHOWOII.C......covviiriiiicet e 47

S TR TR 02 od 3 o TR 47

P I (o oo g 7T (o] SRS 48
20.1. The problems with the helloworld example ... 48

20.2. MOTE ON MIME TYPES ..ottt sttt ettt sre b enea 48

20.3. GSIIBAMET TYPESveereieeiesiist ettt sttt ettt b e ea ettt et en e nr b eb e anen e 49

20.4. Creating elements With the FAaCtOrY ... 51

20.5. GSEreamer DASIC TYPESeuviueruirieieieeie sttt sttt sttt b et b e ebe b b e e enea 51

V. AdVaNCEd GSErEAMEE CONCEPTS.ueuviiiriiitireeieteete ettt ettt sttt sttt sb et st e st e et ebeebe b e eresbe e 53
P 0] 7 To TSSOSO PT TR SOPRPRT 54
21.1. Constraints placed on the pipeline by the GstThread...........ccccooeviniiiniiniiecee, 54

21.2. When would you want t0 USe @ tread?cceoeiririniiiise s 54

P O 1N T 1= USRS 58
23 CONIBAS ...ttt ettt b bbbt bt b e b et b et ee e b bt ebenbe e ebe e b 61
23.1. Chain-based EIEMENTS.........c.oiiieie et bbb 61

23.2. LOOP-DASEA BIEMENTS ...ttt bbb 62
24.Understanding SCREAUIBTSoviiiiiiieie et st 63
25. ClIOCKS 1N GSIIBAIMETeviiiiiiiite sttt ettt sttt bt eb e b e b et nesbenraneas 64
26. DYNAMIC PIPEIINES. ..ottt ettt b e bbb b et sbe b neaneas 65
B 1Y 0L L (=Y od o o PP TSSTR 69
P2 AU (o] o] 11T o 1o RSSO 72
b2 I IO L [o I U o] o] [1To o [T PSSP 72

28.2. Using the Gst Aut opl ugCache BIEMENT .o 73

28.3. Another approach to autopluggingcoeeeeeireie i 74

29. YOUr SECON APPIICALIONc.viieiiiicieiere sttt sttt en et se e nnenre e 75
29.1. Autoplugging helIOWOTIG...........coiviieicie e 75

30. DYNAMIC PATAMELETS ...veveiereeeeeieieseeisiestesieseeteseeseeseeseste e seesassessesaeseeseasesaessessnsessesaensesessessenensen 80
T =1 1310) - T =T 80

30.2. Creating and Attaching Dynamic Parameterscooveveirnieinninseeseesesenesienees 80

30.3. Changing Dynamic Parameter ValUESccovirriiireennienenieienree s 81

30.4. Different Types of Dynamic Parameter.........cccoverrrireennierisieesneneseeesse s 82

VL XML N GSTFEAMENc.veveciesieieeieresetesteseetesteseesee e ssesseseesesseseeseeseesesteseeseesessessesanseesessensesensessesesnsasens 84
31 XML IN GSEIBAIMIETviutiteeeiterte ettt sttt ettt ee e b sttt b e b e ee e sttt sbe s b e e ebeebesbe s e et anesbeneaneas 85
31.1. Turning GStEIEMENtS INt0 XMLc.oiiiiiiiiiiiiei e 85

31.2. Loading a GstElement from an XML file.........cccoooiiiiiiiiiece e 86

31.3. Adding custom XML tags into the core XML data........cccccoeveinineininieienceees 87

AV BN o] o T=T o [o [Tt TSRO PR 90
K2 =] o 18 To o 119 To [OOSR 91
32.1. CommANd liNE OPLIONS.........cuiiuiiieirieie ettt et bbb 91

32.2. Adding debugging to @ PIUGINc..eoviiiiiriiee e e 91

33 PIOQIAIMS ...ttt bbbt b ek eb e eb e eh e e e bt eb e e at et eb e e b e e bt e nbeebeenbentenbeens 93

33 L. OSE-TROISTET .ttt bbbt ettt 93

332, GSE-TAUNCH L. 93
33.3. OST-INSPECL ...ttt bbbt 95
34, COMPONEINTS ...ttt bbb stk e bbb bbbt e et enenn e enenres 98
B4 L. GSIPIAY ..ttt bbb bbbttt 98
34.2. GSIMEIAPIAYcveveveieeiee ettt 98
34,3, GSEEAION ...ttt 98
35. GNOME INEEGIALION....c.tieiiieteiieteee ettt sttt sttt st 99
35.1. CommaANd lINE OPLIONS........cueiiiitirieie ittt snere e 99
36. WINUOWS SUDPPOIT. ...ttt ettt ettt bbbttt bt 101
36.1. Building GStreamer under WIN32cocooeiviireieiinieieeee e 101
36.2. Installation 0N the SYSEIMc..ciiiiiriee e e 101
37. QUOLES TrOm the DEVEIOPETS.cveiieeiriete ettt et 103

List of Figures

4-1. Visualisation Of @ SOUICE BIEBMENT.........cuiiiiiiiie et e e 8
4-2. Visualisation of @ filter €1EMENT ... e 9
4-3. Visualisation of a filter element with more than one oUtPUL Padoceiereiiiieinc e 9
4-4. Visualisation of @ SINK @IEMEBNT..........oiiiii e bbb 9
7-1. Visualisation of three liNKed eleMENTS.......cccoiiiiiie e e 16
8-1. Visualisation of a bin with some elements IN it..........ccooiiiiiiii e 17
16-1. Visualisation of a GtB n (../../gstreamer/html/GstBin.html) element without ghost pads 37
16-2. Visualisation of a GtB n (../../gstreamer/html/GstBin.html) element with a ghost pad 38
19-1. The "hello WOrld™ PIPEIINEc.e it 45
20-1. The Hello world pipeling With MIME tYPESccoviiiiiieieieiirereees e e 49
p N {01 £ To OO SO U RO 55
22-1. a two-threaded decOder With @ QUEUEcc.couiieirieie ettt ettt e 58

vi

. Overview

Part | gives you an overview of GStreamer design goals. Part Il rapidly covers the basics of GStreamer
programming. In Part IV we will move on to the examples. Since GStreamer uses GLib 2.0
(http://developer.gnome.org/arch/gtk/glib.html), the reader is assumed to understand the basics of the
GObject object model (http://developer.gnome.org/doc/AP1/2.0/gobject/index.html). For a gentle
introduction to this system, you may wish to read the GTK+ Tutorial (http://www.gtk.org/tutorial/), Eric
Harlow’s book Developing Linux Applications with GTK+ and GDK and the Glib Object system
(http://www.le-hacker.org/papers/gobject/index.html).

Chapter 1. Introduction

This chapter gives you an overview of the technologies described in this book.

1.1. What is GStreamer?

GStreamer is a framework for creating streaming media applications. The fundamental design comes
from the video pipeline at Oregon Graduate Institute, as well as some ideas from DirectShow.

GStreamer’s development framework makes it possible to write any type of streaming multimedia
application. The GStreamer framework is designed to make it easy to write applications that handle audio
or video or both. It isn’t restricted to audio and video, and can process any kind of data flow. The pipeline
design is made to have little overhead above what the applied filters induce. This makes GStreamer a
good framework for designing even high-end audio applications which put high demands on latency.

One of the the most obvious uses of GStreamer is using it to build a media player. GStreamer already
includes components for building a media player that can support a very wide variety of formats,
including MP3, Ogg Vorbis, MPEG1, MPEG2, AVI, Quicktime, mod, and more. GStreamer, however, is
much more than just another media player. Its main advantages are that the pluggable components can be
mixed and matched into arbitrary pipelines so that it’s possible to write a full-fledged video or audio
editing application.

The framework is based on plugins that will provide the various codec and other functionality. The
plugins can be linked and arranged in a pipeline. This pipeline defines the flow of the data. Pipelines can
also be edited with a GUI editor and saved as XML so that pipeline libraries can be made with a
minimum of effort.

The GStreamer core function is to provide a framework for plugins, data flow and media type
handling/negotiation. It also provides an API to write applications using the various plugins.

This book is about GStreamer from a developer’s point of view; it describes how to write a GStreamer
application using the GStreamer libraries and tools. For an explanation about writing plugins, we suggest
the Plugin Writers Guide.

Chapter 2. Motivation

Linux has historically lagged behind other operating systems in the multimedia arena. Microsoft’s
Windows™ and Apple’s MacOS™ both have strong support for multimedia devices, multimedia content
creation, playback, and realtime processing. Linux, on the other hand, has a poorly integrated collection
of multimedia utilities and applications available, which can hardly compete with the professional level
of software available for MS Windows and MacOS.

2.1. Current problems

We describe the typical problems in today’s media handling on Linux.

2.1.1. Multitude of duplicate code

The Linux user who wishes to hear a sound file must hunt through their collection of sound file players in
order to play the tens of sound file formats in wide use today. Most of these players basically
reimplement the same code over and over again.

The Linux developer who wishes to embed a video clip in their application must use crude hacks to run
an external video player. There is no library available that a developer can use to create a custom media

player.

2.1.2. ’One goal’ media players/libraries

Your typical MPEG player was designed to play MPEG video and audio. Most of these players have
implemented a complete infrastructure focused on achieving their only goal: playback. No provisions
were made to add filters or special effects to the video or audio data.

If you want to convert an MPEG2 video stream into an AVI file, your best option would be to take all of
the MPEG2 decoding algorithms out of the player and duplicate them into your own AVI encoder. These
algorithms cannot easily be shared across applications.

Attempts have been made to create libraries for handling various media types. Because they focus on a
very specific media type (avifile, libmpeg2, ...), significant work is needed to integrate them due to a lack
of a common API. GStreamer allows you to wrap these libraries with a common API, which significantly
simplifies integration and reuse.

Chapter 2. Motivation

2.1.3. Non unified plugin mechanisms

Your typical media player might have a plugin for different media types. Two media players will
typically implement their own plugin mechanism so that the codecs cannot be easily exchanged. The
plugin system of the typical media player is also very tailored to the specific needs of the application.

The lack of a unified plugin mechanism also seriously hinders the creation of binary only codecs. No
company is willing to port their code to all the different plugin mechanisms.

While GStreamer also uses it own plugin system it offers a very rich framework for the plugin
developper and ensures the plugin can be used in a wide range of applications, transparently interacting
with other plugins. The framework that GStreamer provides for the plugins is flexible enough to host
even the most demanding plugins.

2.1.4. Provision for network transparency

No infrastructure is present to allow network transparent media handling. A distributed MPEG encoder
will typically duplicate the same encoder algorithms found in a non-distributed encoder.

No provisions have been made for technologies such as the GNOME object embedding using Bonobo
(http://developer.gnome.org/arch/component/bonobo.html).

The GStreamer core does not use network transparent technologies at the lowest level as it only adds
overhead for the local case. That said, it shouldn’t be hard to create a wrapper around the core
components. There are tcp plugins now that implement a GStreamer Data Protocol that allows pipelines
to be slit over TCP. These are located in the gst-plugins module directory gst/tcp.

2.1.5. Catch up with the Windows™ world

We need solid media handling if we want to see Linux succeed on the desktop.

We must clear the road for commercially backed codecs and multimedia applications so that Linux can
become an option for doing multimedia.

Chapter 3. Goals

GStreamer was designed to provide a solution to the current Linux media problems.

3.1. The design goals

We describe what we try to achieve with GStreamer.

3.1.1. Clean and powerful
GStreamer wants to provide a clean interface to:
« The application programmer who wants to build a media pipeline. The programmer can use an

extensive set of powerful tools to create media pipelines without writing a single line of code.
Performing complex media manipulations becomes very easy.

« The plugin programmer. Plugin programmers are provided a clean and simple API to create self
contained plugins. An extensive debugging and tracing mechanism has been integrated. GStreamer
also comes with an extensive set of real-life plugins that serve as examples too.

3.1.2. Object oriented

GStreamer adheres to the GLib 2.0 object model. A programmer familiar with GLib 2.0 or older versions
of GTK+ will be comfortable with GStreamer.

GStreamer uses the mechanism of signals and object properties.
All objects can be queried at runtime for their various properties and capabilities.

GStreamer intends to be similar in programming methodology to GTK+. This applies to the object
model, ownership of objects, reference counting, ...

3.1.3. Extensible

All GStreamer Objects can be extended using the GObject inheritance methods.

All plugins are loaded dynamically and can be extended and upgraded independently.

Chapter 3. Goals

3.1.4. Allow binary only plugins

Plugins are shared libraries that are loaded at runtime. Since all the properties of the plugin can be set
using the GObject properties, there is no need (and in fact no way) to have any header files installed for
the plugins.

Special care has been taken to make plugins completely selfcontained. All relevant aspects of plugins can
be queried at run-time.

3.1.5. High performance

High performance is obtained by:

« using GLib’s g nemchunk and fast non-blocking allocation algorithms where possible to minimize
dynamic memory allocation.

. extremely light-weight links between plugins. Data can travel the pipeline with minimal overhead.
Data passing between plugins only involves a pointer dereference in a typical pipeline.

- providing a mechanism to directly work on the target memory. A plugin can for example directly write
to the X server’s shared memory space. Buffers can also point to arbitrary memory, such as a sound
card’s internal hardware buffer.

- refcounting and copy on write minimize usage of memcpy. Sub-buffers efficiently split buffers into
manageable pieces.

- the use of cothreads to minimize the threading overhead. Cothreads are a simple and fast user-space
method for switching between subtasks. Cothreads were measured to consume as little as 600 cpu
cycles.

- allowing hardware acceleration by using specialized plugins.

- using a plugin registry with the specifications of the plugins so that the plugin loading can be delayed
until the plugin is actually used.

- all critical data passing is free of locks and mutexes.

3.1.6. Clean core/plugins separation

The core of GStreamer is essentially media-agnostic. It only knows about bytes and blocks, and only
contains basic elements. The core of GStreamer is functional enough to even implement low-level
system tools, like cp.

All of the media handling functionality is provided by plugins external to the core. These tell the core
how to handle specific types of media.

Chapter 3. Goals
3.1.7. Provide a framework for codec experimentation
GStreamer also wants to be an easy framework where codec developers can experiment with different

algorithms, speeding up the development of open and free multimedia codecs like tarkin and vorbis
(http://www.xiph.org/ogg/index.html).

ll. Basic Concepts

We will first describe the basics of GStreamer programming by introducing the different objects needed
to create a media pipeline.

We will use a visual representation of these objects so that we can visualize the more complex pipelines
you will learn to build later on.

Chapter 4. Elements

The most important object in GStreamer for the application programmer is the Gst H enent
(../../gstreamer/html/GstElement.html)object.

4.1. What is an element ?

An element is the basic building block for the media pipeline. All the different high-level components
you are going to use are derived from GtHenent (../../gstreamer/html/GstElement.html). This means
that a lot of functions you are going to use operate on objects of this class.

Elements, from the perspective of GStreamer, are viewed as "black boxes" with a number of different
aspects. One of these aspects is the presence of "pads"” (see Chapter 5), or link points. This terminology
arises from soldering; pads are where wires can be attached.

4.2. Types of elements

4.2.1. Source elements
Source elements generate data for use by a pipeline, for example reading from disk or from a sound card.

Figure 4-1 shows how we will visualise a source element. We always draw a source pad to the right of
the element.

Figure 4-1. Visualisation of a source element

source_element

Src

Source elements do not accept data, they only generate data. You can see this in the figure because it only
has a source pad. A source pad can only generate data.

Chapter 4. Elements

4.2.2. Filters and codecs

Filter elements have both input and output pads. They operate on data they receive in their sink pads and
produce data on their source pads. For example, MPEG decoders and volume filters would fall into this
category.

Elements are not constrained as to the number of pads they might have; for example, a video mixer might
have two input pads (the images of the two different video streams) and one output pad.

Figure 4-2. Visualisation of a filter element

filter

sink src

Figure 4-2 shows how we will visualise a filter element. This element has one sink (input) pad and one
source (output) pad. Sink pads are drawn on the left of the element.

Figure 4-3. Visualisation of a filter element with more than one output pad

demuxer

video

sink

audio

Figure 4-3 shows the visualisation of a filter element with more than one output pad. An example of such
a filter is the AVI demultiplexer. This element will parse the input data and extract the audio and video
data. Most of these filters dynamically send out a signal when a new pad is created so that the application
programmer can link an arbitrary element to the newly created pad.

4.2.3. Sink elements

Sink elements are end points in a media pipeline. They accept data but do not produce anything. Disk
writing, soundcard playback, and video output would all be implemented by sink elements. Figure 4-4
shows a sink element.

Chapter 4. Elements

Figure 4-4. Visualisation of a sink element

sink_element

sink

10

Chapter 5. Pads

As we have seen in Chapter 4, the pads are the element’s interface to the outside world.

The specific type of media that the element can handle will be exposed by the pads. The description of
this media type is done with capabilities(see Section 5.2)

Pads are either source or sink pads. The terminology is defined from the view of the element itself:
elements accept data on their sink pads, and send data out on their source pads. Sink pads are drawn on
the left, while source pads are drawn on the right of an element. In general, data flows from left to right
in the graph.*

5.1. Types of pad

5.1.1. Dynamic pads

Some elements might not have all of their pads when the element is created. This can happen, for
example, with an MPEG system demultiplexer. The demultiplexer will create its pads at runtime when it
detects the different elementary streams in the MPEG system stream.

Running gst-inspect mpegdemux will show that the element has only one pad: a sink pad called ’sink’.
The other pads are "dormant”. You can see this in the pad template because there is an "EXists:
Sometimes’ property. Depending on the type of MPEG file you play, the pads will be created. We will
see that this is very important when you are going to create dynamic pipelines later on in this manual.

5.1.2. Request pads

An element can also have request pads. These pads are not created automatically but are only created on
demand. This is very useful for multiplexers, aggregators and tee elements.

The tee element, for example, has one input pad and a request padtemplate for the output pads.
Whenever an element wants to get an output pad from the tee element, it has to request the pad.

5.2. Capabilities of a pad

Since the pads play a very important role in how the element is viewed by the outside world, a
mechanism is implemented to describe the data that can flow through the pad by using capabilities.

11

Chapter 5. Pads

We will briefly describe what capabilities are, enough for you to get a basic understanding of the
concepts. You will find more information on how to create capabilities in the Plugin Writer’s Guide.

5.2.1. Capabilities

Capabilities are attached to a pad in order to describe what type of media the pad can handle.
Capabilities is shorthand for "capability chain". A capability chain is a chain of one capability or more.

The basic entity is a capability, and is defined by a name, a MIME type and a set of properties. A
capability can be chained to another capability, which is why we commonly refer to a chain of capability
entities as "capabilities". 2

Below is a dump of the capabilities of the element mad, as shown by gst-inspect. You can see two pads:
sink and src. Both pads have capability information attached to them.

The sink pad (input pad) is called ’sink’ and takes data of MIME type "audio/mp3’. It also has three
properties: layer, bitrate and framed.

The source pad (output pad) is called *src’ and outputs data of MIME type audio/raw’. It also has four
properties: format, depth, rate and channels.

Pads:

INK tenplate: " sink
Availability: A vays
Cypabi | i ti es:

"mad_sink’ :
MME type: ' audio/ np3 :

R tenplate src’
Avail ability: A vays
Cypabi | i ti es:
"nad _src’:
MME type: ’audio/raw:
fornat: Sring: int
endi anness: I nteger: 1234
wdth: Integer: 16
depth: Integer: 16
channel s: Integer range: 1 - 2
law Integer: 0
si gned: Bool ean: TRE
rate: Integer range: 11025 - 48000

12

Notes

Chapter 5. Pads

5.2.2. What are properties ?

Properties are used to describe extra information for capabilities. A property consists of a key (a string)
and a value. There are different possible value types that can be used:

« basic types:
. an integer value: the property has this exact value.
- aboolean value: the property is either TRUE or FALSE.

- a fourcc value: this is a value that is commonly used to describe an encoding for video, as used for
example by the AVI specification.

- afloat value: the property has this exact floating point value.

. astring value.

« range types:

- an integer range value: the property denotes a range of possible integers. For example, the wavparse
element has a source pad where the "rate" property can go from 8000 to 48000.

- afloat range value: the property denotes a range of possible floating point values.

- a list value: the property can take any value from a list of basic value types or range types.

5.2.3. What capabilities are used for

Capabilities describe in great detail the type of media that is handled by the pads. They are mostly used
for:

« Autoplugging: automatically finding plugins for a set of capabilities

« Compatibility detection: when two pads are linked, GStreamer can verify if the two pads are talking
about the same media types. The process of linking two pads and checking if they are compatible is
called "caps negotiation".

1. In reality, there is no objection to data flowing from a source pad to the sink pad of an element
upstream. Data will, however, always flow from a source pad of one element to the sink pad of
another.

2. Itis important to understand that the term "capabilities” refers to a chain of one capability or more.
This will be clearer when you see the structure definition of a Gt Gaps
(../../gstreamer/html/gstreamer-GstCaps.html)element.

13

Chapter 5. Pads

3. fourcc values consist of four bytes. The FOURCC Definition List (http://www.fourcc.org) is the most
complete resource on the allowed fourcc values.

14

Chapter 6. Plugins

A plugin is a shared library that contains at least one of the following items:

one or more element factories
one or more type definitions
one or more auto-pluggers

exported symbols for use in other plugins

15

Chapter 7. Linking elements

You can link the different pads of elements together so that the elements form a chain.

Figure 7-1. Visualisation of three linked elements

source_element filter sink_element

\ 4
\ 4

src sink Src sink

By linking these three elements, we have created a very simple chain. The effect of this will be that the
output of the source element (element1) will be used as input for the filter element (element2). The filter
element will do something with the data and send the result to the final sink element (element3).

Imagine the above graph as a simple MPEG audio decoder. The source element is a disk source, the filter
element is the MPEG decoder and the sink element is your audiocard. We will use this simple graph to
construct an MPEG player later in this manual.

16

Chapter 8. Bins

A bin is a container element. You can add elements to a bin. Since a bin is an element itself, it can also be
added to another bin.

Bins allow you to combine a group of linked elements into one logical element. You do not deal with the
individual elements anymore but with just one element, the bin. We will see that this is extremely
powerful when you are going to construct complex pipelines since it allows you to break up the pipeline
in smaller chunks.

The bin will also manage the elements contained in it. It will figure out how the data will flow in the bin
and generate an optimal plan for that data flow. Plan generation is one of the most complicated
procedures in GStreamer.

Figure 8-1. Visualisation of a bin with some elements in it

bin

elementl element2 element3

\ 4
\ 4

Src sink Src sink

There are two specialized bins available to the GStreamer programmer:

- apipeline: a generic container that allows scheduling of the containing elements. The toplevel bin has
to be a pipeline. Every application thus needs at least one of these.

- athread: a bin that will be run in a separate execution thread. You will have to use this bin if you have
to carefully synchronize audio and video, or for buffering. You will learn more about threads in
Chapter 21.

17

Chapter 9. Buffers

Buffers contain the data that will flow through the pipeline you have created. A source element will
typically create a new buffer and pass it through a pad to the next element in the chain. When using the
GStreamer infrastructure to create a media pipeline you will not have to deal with buffers yourself; the
elements will do that for you.

A buffer consists of:

« apointer to a piece of memory.
« the size of the memory.
- atimestamp for the buffer.

- A refcount that indicates how many elements are using this buffer. This refcount will be used to
destroy the buffer when no element has a reference to it.

GStreamer provides functions to create custom buffer create/destroy algorithms, called a

Gst BUf f er Pool . This makes it possible to efficiently allocate and destroy buffer memory. It also makes
it possible to exchange memory between elements by passing the Gst Buf f er Pool . A video element
can, for example, create a custom buffer allocation algorithm that creates buffers with XSHM as the
buffer memory. An element can use this algorithm to create and fill the buffer with data.

The simple case is that a buffer is created, memory allocated, data put in it, and passed to the next
element. That element reads the data, does something (like creating a new buffer and decoding into it),
and unreferences the buffer. This causes the data to be freed and the buffer to be destroyed. A typical
MPEG audio decoder works like this.

A more complex case is when the filter modifies the data in place. It does so and simply passes on the
buffer to the next element. This is just as easy to deal with. An element that works in place has to be
careful when the buffer is used in more than one element; a copy on write has to made in this situation.

18

Chapter 10. Element states

Once you have created a pipeline packed with elements, nothing will happen right away. This is where
the different states come into play.

10.1. The different element states

An element can be in one of the following four states:

NULL: this is the default state all elements are in when they are created and are doing nothing.
« READY: An element is ready to start doing something.

« PAUSED: The element is paused for a period of time.

« PLAYING: The element is doing something.

All elements start with the NULL state. The elements will go throught the following state changes:
NULL -> READY -> PAUSED -> PLAYING. When going from NULL to PLAYING, GStreamer will
internally go throught the intermediate states.

You can set the following states on an element:

GST_STATE NULL Reset the state of an element.

GST_STATE READY will make the element ready to start processing
data.

GST_STATE PALSD temporarily stops the data flow.

GST_STATE PLAYI NG means there really is data flowing through the
graph.

10.2. The NULL state

When you created the pipeline all of the elements will be in the NULL state. There is nothing special
about the NULL state.

Note: Don't forget to reset the pipeline to the NULL state when you are not going to use it anymore.
This will allow the elements to free the resources they might use.

19

Chapter 10. Element states

10.3. The READY state

You will start the pipeline by first setting it to the READY state. This will allow the pipeline and all the
elements contained in it to prepare themselves for the actions they are about to perform.

The typical actions that an element will perform in the READY state might be to open a file or an audio
device. Some more complex elements might have a non trivial action to perform in the READY state
such as connecting to a media server using a CORBA connection.

Note: You can also go from the NULL to PLAYING state directly without going through the READY
state. This is a shortcut; the framework will internally go through the READY and the PAUSED state
for you.

10.4. The PAUSED state

A pipeline that is playing can be set to the PAUSED state. This will temporarily stop all data flowing
through the pipeline.

You can resume the data flow by setting the pipeline back to the PLAYING state.

Note: The PAUSED state is available for temporarily freezing the pipeline. Elements will typically not
free their resources in the PAUSED state. Use the NULL state if you want to stop the data flow
permanently.

The pipeline has to be in the PAUSED or NULL state if you want to insert or modify an element in the
pipeline. We will cover dynamic pipeline behaviour in Chapter 26.

10.5. The PLAYING state

A pipeline can be started by setting it to the PLAYING state. At that time data will start to flow all the
way through the pipeline.

20

lIl. Basic API

Chapter 11. Initializing GStreamer

When writing a GStreamer application, you can simply include gst/gst.h to get access to the library
functions.

Before the GStreamer libraries can be used, gst_init has to be called from the main application. This
call will perform the necessary initialization of the library as well as parse the GStreamer-specific
command line options.

A typical program would start like this:

#include <gst/gst.h>

int
nin (int argc, char =*argv[])

{

gst_init (&rgc, &argv);

Use the GST_VERSION_MAJOR, GST_VERSION_MINOR and GST_VERSION_MICRO macros to
get the GStreamer version you are building against, or use the function gst_version to get the version
your application is linked against.

It is also possible to call the gst_init function with two NULL arguments, in which case no command
line options will be parsed by GStreamer.

11.1. The popt interface

You can also use a popt table to initialize your own parameters as shown in the next code fragment:

int

nai n(int argc, char =*argv[])

{

ghoolean silent = FALSE

gchar *savefile = NULL;

struct popt(ption options[] = {
{"silent", 'S, POPT_ARG NN\ POPT_ARFALAGSTR P, &sil ent, 0,
"do not output status infornation’, NLL},
{"out put", o, POPT_ARG STR N3 ROPT_ARFHALAG STR P, 8savefil e, 0,
"save xnh representation of pipeline to HLE and exit", "HLE'},

22

Chapter 11. Initializing GStreamer

PCPT_TABLERND
1

gst_init_wth popt_table (8&arge, &argv, options);

As shown in this fragment, you can use a popt (http://developer.gnome.org/doc/guides/popt/) table to
define your application-specific command line options, and pass this table to the function

gst_init_wth popt_table . Your application options will be parsed in addition to the standard
GStreamer options.

23

Chapter 12. Elements

12.1. Creating a GstElement

A GtHenent (../../gstreamer/html/GstElement.html) object is created from a factory. To create an
element, you have to get access to a Gst H enent Fact ory
(../../gstreamer/html/GstElementFactory.html) object using a unique factory name.

The following code example is used to get a factory that can be used to create the 'mad’ element, an mp3

decoder.
Gst H enent Fact ory *factory;
factory = gst_elenent_factory find ("nad");

Once you have the handle to the element factory, you can create a real element with the following code
fragment:

Gt H enent * el enent ;

elenent = gst_elenent_factory create (factory, "decoder");

gst_elenent_factory create will use the element factory to create an element with the given
name. The name of the element is something you can use later on to look up the element in a bin, for
example. You can pass NULL as the name argument to get a unique, default name.

A simple shortcut exists for creating an element from a factory. The following example creates an
element named "decoder" from the element factory named "mad". This convenience function is most
widely used to create an element.

Gt H enent * el enent ;

elenent = gst_el enent_factory nake ("rad', "decoder");

When you don’t need the element anymaore, you need to unref it, as shown in the following example.

Gst H enent * el enent ;

gst_obj ect _unref (GBT_BIECT (el enent));

24

Chapter 12. Elements

12.2. GstElement properties

A GtHenent (../../gstreamer/html/GstElement.html) can have several properties which are
implemented using standard Gj ect properties. The usual Gbject methods to query, set and get
property values and GParangoecs are therefore supported.

Every GtHenent (../../gstreamer/html/GstElementFactory.html) inherits at least one property of its
parent Gt (yj ect : the "name" property. This is the name you provide to the functions

gst_el enent _factory nake orgst_elenent factory create . You can get and set this property
using the functions gst_obj ect _set _nane and gst_obj ect_get nane or use the Gj ect

property mechanism as shown below.

Gt H enent * €l enent ;
Qalue value = { 0 }; /* initidize the GAaue for gobject _get() */

elenent = gst_el enent_factory nake ("rad', "decoder");
g_obj ect _set (GARIECT (el enent), "nane", "nydecoder", NLL);

gvaueinit (&val ue, GTYFE STRN3;

g object_get_property (G@IECT (el ement), "nane", &al ue);

Most plugins provide additional properties to provide more information about their configuration or to
configure the element. gst-inspect is a useful tool to query the properties of a particular element, it will
also use property introspection to give a short explanation about the function of the property and about
the parameter types and ranges it supports.

For more information about Ghject properties we recommend you read the GObject manual
(http://developer.gnome.org/doc/AP1/2.0/gobject/index.html) and an introduction to The Glib Object
system (http://le-hacker.org/papers/gobject/index.html).

12.3. GstElement signals

A GtHenent (../../gstreamer/html/GstElementFactory.html) also provides various Gj ect signals
that can be used as a flexible callback mechanism.

12.4. More about GstElementFactory

We talk some more about the GstElementFactory object.

25

Chapter 12. Elements

12.4.1. Getting information about an element using the
factory details

12.4.2. Finding out what pads an element can contain

12.4.3. Different ways of querying the factories

26

Chapter 13. Pads

As we have seen in Chapter 4, the pads are the element’s interface to the outside world.

The specific type of media that the element can handle will be exposed by the pads. The description of
this media type is done with capabilities(see Section 5.2)

Pads are either source or sink pads. The terminology is defined from the view of the element itself:
elements accept data on their sink pads, and send data out on their source pads. Sink pads are drawn on
the left, while source pads are drawn on the right of an element. In general, data flows from left to right
in the graph.*

13.1. Types of pad

13.1.1. Dynamic pads

You can attach a signal to an element to inform you when the element has created a new pad from one of
its padtemplates. The following piece of code is an example of how to do this:

static void
pad_| i nk_func (GstH enent *parser, GtPad *pad, GtH enent * pi pel i ne)

{
gprint(" *x*x* a new pad % was created\n’, gst_pad get _nane(pad));
gst_elenent_set_state (pi peline, GST_STATE PASD) ;
if (strncnp (gst_pad get_nane (pad), “private_streaml. 0", 18) = 0) {
// set up an AC3 decoder pipeline
/l link pad to the AC3 decoder pipeline
}
gst_elenent_set_state (GeT_H.BvENT (audi o_t hread), GST_STATE READY) ;
}
int
nai n(int argc, char =*argv[])
{

Gst H enent * pi pel i ne;
Gst H enent * npeg2par ser;

/| create pipeline and do sonething useful

npeg2par ser = gst_elenent_factory nake (" npegdenux”, " npegdenux") ;

27

Chapter 13. Pads

g_si gnal _connect (GQRIECT (npeg2parser), "new pad", pad_|ink_func, pi peline);

// start the pipeline
gst_elenent_set_state (GsT_H.BvENT (pi peline), GST_STATE LAY NG ;

Note: A pipeline cannot be changed in the PLAYING state.

13.1.2. Request pads

The following piece of code can be used to get a pad from the tee element. After the pad has been
requested, it can be used to link another element to it.

GtPad *pad;

elenent = gst_elenent_factory nake ("tee", "elenent");
pad = gst_el enent_get request_pad (el enent, "srcodl');

gprint ("new pad 9%\n', gst_pad get_name (pad));
The gst_element_get_request_pad method can be used to get a pad from the element based on the
name_template of the padtemplate.

It is also possible to request a pad that is compatible with another pad template. This is very useful if you
want to link an element to a multiplexer element and you need to request a pad that is compatible. The
gst_element_get_compatible_pad is used to request a compatible pad, as is shown in the next example.

Gst PadTenpl at e *tenpl ;

GtPad *pad;

el e.r;e;nt = gst_el enent_factory_nake ("tee", "elenent");

nad = gst_el enent_factory nake ("rad', "nad");

tenpl = gst_element_get pad tenpl ate by nane (nad, "sink");
pad = gst_el enent_get _conpati bl e_pad (el erent , tenpl);

gprint ("new pad 9%\n', gst_pad get_name (pad));

28

13.2. Capabilities of a pad

Chapter 13. Pads

Since the pads play a very important role in how the element is viewed by the outside world, a
mechanism is implemented to describe the data that can flow through the pad by using capabilities.

We will briefly describe what capabilities are, enough for you to get a basic understanding of the
concepts. You will find more information on how to create capabilities in the Plugin Writer’s Guide.

13.2.1. Capabilities

Capabilities are attached to a pad in order to describe what type of media the pad can handle.

Its structure is:

struct _GtGps

gchar * nang; /* the namne of this caps =*/
guintle id [+ type id (m@jor type) =/

guint refcount; /* caps are refcounted */

GthRops *properties; [+ properties for this capability

GtCGps *next; /* caps can be chained together =/

13.2.2. Getting the capabilities of a pad

*/

A pad can have a chain of capabilities attached to it. You can get the capabilities chain with:

GtCGps *caps;
caps = gst_pad get_caps (pad);
gprint ("pad nane 9\n", gst_pad get_nane (pad));
vhile (caps)
gprint (" CGypability nane 9%, MME type 9%\n",
gst_caps_get _nane (cap),
gst_caps_get_mne (cap));

caps = caps->next;
}

29

Chapter 13. Pads

13.2.3. Creating capability structures

While capabilities are mainly used inside a plugin to describe the media type of the pads, the application
programmer also has to have basic understanding of capabilities in order to interface with the plugins,
especially when using the autopluggers.

As we said, a capability has a name, a mime-type and some properties. The signature of the function to
create anew GstCaps (../../gstreamer/html/gstreamer-GstCaps.html) structure is:

GtCGps * gst _caps_new (const gchar *nane, const gchar *mine, GtRAops *props);

You can therefore create a new capability with no properties like this:
GtGps * newcaps;

newcaps = gst_caps_new ("ny_caps", "audi of x-vav", NLLL);

GstProps basically consist of a set of key-value pairs and are created with a function with this signature:

Gthops * gst _props_new (const gchar = firstnane,)

The keys are given as strings and the values are given with a set of macros:
« GST_PROPS_INT(a): An integer value

« GST_PROPS_FLOAT(a): A floating point value

« GST_PROPS_FOURCC(a): A fourcc value

« GST_PROPS BOOLEAN(a): A boolean value

« GST_PROPS_STRING(a): A string value

The values can also be specified as ranges with:

« GST_PROPS_INT_RANGE(a,b): An integer range fromato b
+ GST_PROPS_FLOAT_RANGE(a,b): A float range fromato b

All of the above values can be given with a list too, using:

« GST_PROPS_LIST(a,...): A list of property values.

30

Chapter 13. Pads

A more complex capability with properties is created like this:
GtGps * newcaps;

newcaps = gst_caps_new ("ny_caps",

"audi of x-vav",
gst _props_new (
"bitrate", GBT_PRIPS | NT_RANGE (11025, 22050)
"depth", GBT_PROPS INT (16),
"si gned”, GSI_PROS L st (

GST_PROPS BOD.EAN (TRB),
GST_PROPS BODEAN (FALD)

),
NLL

Optionally, the convenient shortcut macro can be used. The above complex capability can be created
with:

GtGps * newcaps;

newcaps = GBT_CAPS NEW ("ny_caps",

"audi of x-vav",
"bitrate", GBT_PROPS |NT RANE (11025, 22050),
"dept h", GBT_PROPS INT (16),
"si gned”, GBT_PROPS LI ST (

GST_PROPS BOD.EAN (TR,
GST_PROPS BOD.EAN (FALD)
)

Notes

1. In reality, there is no objection to data flowing from a source pad to the sink pad of an element
upstream. Data will, however, always flow from a source pad of one element to the sink pad of
another.

31

Chapter 14. Plugins

All plugins should implement one function, pl ugi n_i ni t

, that creates all the element factories and

registers all the type definitions contained in the plugin. Without this function, a plugin cannot be

registered.

The plugins are maintained in the plugin system. Optionally, the type definitions and the element
factories can be saved into an XML representation so that the plugin system does not have to load all
available plugins in order to know their definition.

The basic plugin structure has the following fields:

typedef struct _GtHugin Gt H ugi n;
struct _GtHugin {
gchar * nang; [+ nane of the plugin =/
gchar x| ongnane; /* long nane of plugin */
gchar =fil enane; [+ filenane it cane from =/
Qist *types; [+ list of types provided =*/
gint nunypes;
Qist xelenents; [+ list of elenents provided */
gint nunel enents;
Qist ~autopl uggers; /* list of autopluggers provided x/
gint nunaut opl uggers;
gbool ean | oaded; /* if the plugin is in nenory x/
h

You can query a Gi st

of available plugins with the function gst_pl ugin get |ist

gst_pl ugi n_get_nane

0;

*) pl ugi ns->dat &;

(plugin));

shows:
Qist xplugns;
plugins = gst_plugin get |ist
vwhile (plugins) {
GtHRugin *plugin = (GtHugin
gprint ("plugin 9%\n",
plugins = glist_next (pl ugi ns);
}

as this example

32

Chapter 15. Linking elements

15.1. Making simple links

You can link two pads with:

GtPad *srcpad, *sinkpad;

srcpad = gst_el enent_get pad (el enent 1, "src");
sinpad = gst_el enent_get pad (el enent 2, "sink");
/1 link them

gst_pad |ink (srecpad, si nkpad) ;

/1 and unlink them
gst_pad_unlink ('srcpad, si nkpad) ;

A convenient shortcut for the above code is done with the gst_element_link_pads () function:
/1 link them
gst_el enent _| i nk_pads (el enent 1, "src", el enent2, "sink");

// and unlink them
gst_el enent _unl i nk_pads (el enent 1, "src", elenent2, "sink");

An even more convenient shortcut but only works for single-source, single-sink elements is the
gst_element_link () function:

/1 link them
gst_el enent _|ink (el enent 1, el enent2) ;

// and unlink them
gst_el enent _unli nk (el enent 1, el enent2);

If you have more than one element to link, the gst_element_link_many () function takes a

NULL-terminated list of elements. Again this only works for single-source single-sink elements:

/l link them

33

Chapter 15. Linking elements

gst_el enent _| i nk_nany (el enent 1, el enent 2, el enent 3, el enent 4, NLL);

// and unlink them
gst_el enent _unl i nk_nany (el enent 1, el enent 2, el enent 3, el enent 4, NLL);

You can query if a pad is linked with GBT_PAD | S LI NkED (pad) .

To query for the GtPad (../../gstreamer/html/GstPad.html) a pad is linked to, use gst_pad get _peer
(pad) .

15.2. Making filtered links

You can also force a specific media type on the link by using gst_pad |ink filtered () and
gst_elenent |ink filtered () with capabilities. See Section 5.2 for an explanation of
capabilities.

34

Chapter 16. Bins

16.1. Creating a bin

Bins are created in the same way that other elements are created. ie. using an element factory, or any of
the associated convenience functions:

Gst H enent xbin, =*thread, =*pipeline

[+ create a new hin caled ’'nybin'. this bin wll be only for organizationa pur poses;
GtBn doesn't affect plan generation */
bin = gst_elenent_factory nake ("bin", "nybin");

/* create a new thread, and give it a unique nane */
thread = gst_el enent_factory nake ("thread", NLL);

/+* the core bins (GtHn, Gt Thr ead, Gst A pel i ne) also have conveni ence AAs,

gst _<bi nt ype> new (). these are equivalent to the gst_elenent_factory nake () syntax.
pipeline = gst_pipeline new ("pi pel i ne_nare");

16.2. Adding elements to a bin

Elements are added to a bin with the following code sample:

Gst H enent * el enent ;
Gst H enent =i n;

bin = gst_binnew ("nybin");

elenent = gst_elenent_factory nake ("nad', "decoder");
gst_bin add (GT_ BN (bin), elemnt);

Bins and threads can be added to other bins too. This allows you to create nested bins. Pipelines

shouldn’t be added to any other element, though. They are toplevel bins and they are directly linked to
the scheduler.

To get an element from the bin you can use:

Gst H enent * el enent ;

elenent = gst_bin get by nane (GT AN (bin, "decoder");

35

Chapter 16. Bins

You can see that the name of the element becomes very handy for retrieving the element from a bin by
using the element’s name. gst_bin_get by name () will recursively search nested bins.

To get a list of elements in a bin, use:

Qist xelenents;
elenents = gst_bin get_list (G BN (bin);

vhile (el enents) {
Gst H enent xelement = GST_HBEMENT (el enent s->dat a) ;

gprint ("el enent in bin 9%\n", GSI_BIECT NAME (GBT_BIECT (el enent)));

elenents = g list_next (el enents);

To remove an element from a bin, use:

Gt H enent * el enent ;

gst_bi n_renove (GT BN (bin), elenent);

To add many elements to a bin at the same time, use the gst_bin_add_many () function. Remember to
pass NULL as the last argument.

Gst H enent xfilesrc, * decoder, * audi osi nk;
GtBn =*hin

/* instantiate the elements and the hins... * [

gst_bin_add nany (bin, filesrc, decoder, audi osi nk, NLL);

16.3. Custom bins

The application programmer can create custom bins packed with elements to perform a specific task.
This allows you to write an MPEG audio decoder with just the following lines of code:

36

Chapter 16. Bins

[+ create the np3player element +/

Gst H enent * np3pl ayer = gst_elenent_factory nake (" np3pl ayer", "np3pl ayer");
/+ set the source np3 audio file =/

g _obj ect_set (G@IECT (np3pl ayer), "l ocation', "hel | ovor| d. np3*, NLL);

[+ start playback */

gst_elenent_set_state (GsT_H.BvENT (np3pl ayer), GST_STATE LAY NG ;

[+ pause playback */

gst_elenent_set_state (GsT_H.BvENT (np3pl ayer), GST_STATE PALSD) ;
/* stop */
gst_elenent_set_state (GST_H.BvENT (np3pl ayer), GBT_STATE NULL);

Note that the above code assumes that the mp3player bin derives itself from a Gst Thread
(../../gstreamer/html/GstThread.html), which begins to play as soon as its state is set to PLAYING. Other
bin types may need explicit iteration. For more information, see Chapter 21.

Custom bins can be created with a plugin or an XML description. You will find more information about
creating custom bin in the Plugin Writers Guide (FIXME ref).

16.4. Ghost pads

You can see from Figure 16-1 how a bin has no pads of its own. This is where "ghost pads" come into

play.
Figure 16-1. Visualisation of a GtB n (../../gstreamer/html/GstBin.html) element without ghost
pads
bin
elementl element2 element3
sink src sink src sink

37

Chapter 16. Bins

A ghost pad is a pad from some element in the bin that has been promoted to the bin. This way, the bin
also has a pad. The bin becomes just another element with a pad and you can then use the bin just like
any other element. This is a very important feature for creating custom bins.

Figure 16-2. Visualisation of a GtB n (../../gstreamer/html/GstBin.html) element with a ghost pad

bin

elementl element2 element3

1 sink src sink src sink

sink

Figure 16-2 is a representation of a ghost pad. The sink pad of element one is now also a pad of the bin.

Ghost pads can actually be added to all GtH ement (../../gstreamer/html/GstElement.html)s and not just
GtBn (././gstreamer/html/GstBin.html)s. Use the following code example to add a ghost pad to a bin:

Gst H enent =i n;
Gst H enent * el enent ;

elenment = gst_elenent_factory create ("nad', "decoder");
bin = gst_binnew ("nybin");

gst_bin add (GT BN (bin), element);

gst_el enent _add ghost _pad (bin, gst_elenent_get pad (el enent , "sink"), "sink");

In the above example, the bin now also has a pad: the pad called ’sink’ of the given element.

We can now, for example, link the source pad of a filesrc element to the bin with:

Gst H enent +filesrc;
filesrc = gst_elenent_factory create ("filesrc", "di sk_reader");

gst_el enent _| i nk_pads (filesrc, "src", bin, "sink");

38

Chapter 16. Bins

39

Chapter 17. Buffers

40

Chapter 18. Element states

18.1. Changing element state

The state of an element can be changed with the following code:
Gst H enent +hbin;
I/l create a bin, put elemnents in it and link them

gst_elenent_set_state (bin, GBI_STATE PLAYING;

You can set the following states on an element:

GST_STATE NUL Reset the state of an element.

GST_STATE READY will make the element ready to start processing
data.

GST_STATE PASD temporary stops the data flow.

GST_STATE PLAYI NG means there really is data flowing through the
graph.

41

V. Building an application

With the basic concepts out of the way, you’re ready to start building a full-scale GStreamer application.

We assume the reader is familiar with GTK+/GNOME programming.

Chapter 19. Your first application

This chapter describes the most rudimentary aspects of a GStreamer application, including initializing the
libraries, creating elements, packing them into a pipeline and playing, pausing and stopping the pipeline.

19.1. Hello world

We will create a simple first application, a complete MP3 player, using standard GStreamer components.

The player will read from a file that is given as the first argument to the program.

/ * exanpl e-begin hel I ovorl d. ¢ */
#include <gst/gst.h>

int
min (int argc, char =+argv[])
{
Gt H enent * pi pel i ne, =filesrc, * decoder, * audi osi nk;
gst_ini t(&rgc, &argv);
if (agc !'= 2) {
gprint ("usage: % <p3 filename>\n", argv[Q]);
exit (-1);
}

/* create a new pipeline to hold the elemnts */
pipeline = gst_pipeline new ("pipeline");

/* create a disk reader */

filesrc = gst_elenent_factory nake ("filesrc", "di sk_source");

g _obj ect_set (G@IECT (filesrc), "l ocation®, argv[1],

/* now it'’s time to get the decoder =/
decoder = gst_el enent_factory nake ("nad', "decoder");

/* and an audio sink =*/

audiosink = gst_elenent_factory nake ("osssink", "play_audi 0");

/+* add objects to the main pipeline =/
gst_bin_add nany (GT_ BN (pipeline), filesrc, decoder,

[+ link src to sink =/

gst_el enent _| i nk_nany (filesrc, decoder, audi osi nk, NLL);

[+ start playing =/
gst_elenent_set_state (pi peline, GBT_STATE ALAYI NG ;

vwhile (gst_biniterate (GT_ BN (pipelineg)));

NALL);

43

Chapter 19. Your first application
[+ stop the pipeline =/
gst_elenent_set_state (pi peline, GST_STATE NLLLY);
/* we don't need a reference to these objects anynore */
gst _obj ect _unref (GBT_BIECT (pipeline));
/* unreffing the pipeline unrefs the contained elenents as well =/
exit (0);

}
/ * exanpl e-end hel l oworl d. ¢ * [

Let’s go through this example step by step.
The first thing you have to do is to include the standard GStreamer headers and initialize the framework.

#include <gst/gst.h>

int
main (int argc, char *argv[])

{

gst_init(&rgc, argv);

We are going to create three elements and one pipeline. Since all elements share the same base type,
GtHerent (../../gstreamer/html/GstElement.html), we can define them as:

Gst H enent * pi pel i ne, *filesrc, * decoder , + audi osi nk;

Next, we are going to create an empty pipeline. As you have seen in the basic introduction, this pipeline
will hold and manage all the elements we are going to pack into it.

[+ create a new pipeline to hod the elements */
pipeline = gst_pipeline new ("pipeline");

We use the standard constructor for a pipeline: gst_pipeline_new ().

44

Chapter 19. Your first application

We then create a disk source element. The disk source element is able to read from a file. We use the
standard GObject property mechanism to set a property of the element: the file to read from.

[+ create a disk reader */

filesrc = gst_el enent_factory nake ("filesrc", "di sk_source");
g _obj ect_set (G@ECT (filesrc), "l ocation®, argv[1], NLL);

Note: You can check if the filesrc = NULL to verify the creation of the disk source element.

We now create the MP3 decoder element. This assumes that the mad’ plugin is installed on the system
where this application is executed.

/* now it’s time to get the decoder =/
decoder = gst_el enent_factory nake ("nad', "decoder");

gst_element_factory make() takes two arguments: a string that will identify the element you need and a
second argument: how you want to name the element. The name of the element is something you can
choose yourself and might be used to retrieve the element from a bin/pipeline.

Finally we create our audio sink element. This element will be able to play back the audio using OSS.

/* and an audio sink =*/
audiosink = gst_elenent_factory nake ("osssi nk", "play_audi 0");

We then add the elements to the pipeline.

/* add objects to the main pipeline =/
gst_bin_add nany (GST BN (pipeline)), filesrc, decoder, audi osi nk, NLL);

We link the different pads of the elements together like this:

[* link src to sink =/
gst_el enent _| i nk_nany (filesrc, decoder, audi osi nk, NLL);

We now have created a complete pipeline. We can visualise the pipeline as follows:

45

Chapter 19. Your first application

Figure 19-1. The ""hello world" pipeline

pipeline

disk_source decoder play_audio

src sink src sink

Everything is now set up to start streaming. We use the following statements to change the state of the
pipeline:

[+ start playing =/
gst_elenent_set_state (pi peline, GST_STATE LAY NG ;

Note: GStreamer will take care of the READY and PAUSED state for you when going from NULL to
PLAYING.

Since we do not use threads, nothing will happen yet. We have to call gst_bin_iterate() to execute one
iteration of the pipeline.

vhile (gst_biniterate (GT_ BN (pipelineg)));

The gst_bin_iterate() function will return TRUE as long as something interesting happened inside the
pipeline. When the end-of-file has been reached the _iterate function will return FALSE and we can end
the loop.

[+ stop the pipeline =/

gst_elenent_set_state (pi peline, GST_STATE NLLLY);
gst _obj ect _unr ef (GBT_BIECT (pipeline));
exit (0);

46

Chapter 19. Your first application

Note: Don't forget to set the state of the pipeline to NULL. This will free all of the resources held by
the elements.

19.2. Compiling helloworld.c

To compile the helloworld example, use:

gcc -Vl ‘pkg-config gstreaner-0. 8 --cflags --libs' hel | oworl d. c \
-0 hellovorld

We use pkg-config to get the compiler flags needed to compile this application. Make sure to have your
PKG_CONFIG_PATH environment variable set to the correct location if you are building this
application against the uninstalled location.

You can run the example with (substitute helloworld.mp3 with you favorite MP3 file):

.Ihellovorld hel | ovor | d. np3

19.3. Conclusion

This concludes our first example. As you see, setting up a pipeline is very low-level but powerful. You
will see later in this manual how you can create a custom MP3 element with a higher-level API.

It should be clear from the example that we can very easily replace the filesrc element with the
gnomevfssrc element, giving you instant streaming from any gnomevfs URL.

We can also choose to use another type of sink instead of the audiosink. We could use a filesink to write
the raw samples to a file, for example. It should also be clear that inserting filters, like a stereo effect, into
the pipeline is not that hard to do. The most important thing is that you can reuse already existing
elements.

47

Chapter 20. More on factories

The small application we created in the previous chapter used the concept of a factory to create the
elements. In this chapter we will show you how to use the factory concepts to create elements based on
what they do instead of what they are called.

We will first explain the concepts involved before we move on to the reworked helloworld example using
autoplugging.

20.1. The problems with the helloworld example

If we take a look at how the elements were created in the previous example we used a rather crude
mechanism:

/* now it’s time to get the parser x/
decoder = gst_el enent_factory nake ("nad', "decoder");

While this mechanism is quite effective it also has some big problems: The elements are created based
on their name. Indeed, we create an element, mad, by explicitly stating the mad element’s name. Our
little program therefore always uses the mad decoder element to decode the MP3 audio stream, even if
there are three other MP3 decoders in the system. We will see how we can use a more general way to
create an MP3 decoder element.

We have to introduce the concept of MIME types and capabilities added to the source and sink pads.

20.2. More on MIME Types

GStreamer uses MIME types to identify the different types of data that can be handled by the elements.
They are the high level mechanisms to make sure that everyone is talking about the right kind of data.

A MIME (Multipurpose Internet Mail Extension) type is a pair of strings that denote a certain type of
data. Examples include:

« audio/x-raw-int : raw audio samples
« audio/mpeg : MPEG audio
« video/mpeg : MPEG video

48

Chapter 20. More on factories

An element must associate a MIME type to its source and sink pads when it is loaded into the system.
GStreamer knows about the different elements and what type of data they expect and emit. This allows
for very dynamic and extensible element creation as we will see.

As we have seen in the previous chapter, MIME types are added to the Capability structure of a pad.

Figure 20-1 shows the MIME types associated with each pad from the "hello world" example.

Figure 20-1. The Hello world pipeline with MIME types

We will see how you can create an element based on the MIME types of its source and sink pads. This
way the end-user will have the ability to choose his/her favorite audio/mpeg decoder without you even

having to care about it.

The typing of the source and sink pads also makes it possible to autoplug’ a pipeline. We will have the

ability to say: "construct a pipeline that does an audio/mpeg to audio/x-raw-int conversion".

Note: The basic GStreamer library does not try to solve all of your autoplug problems. It leaves the
hard decisions to the application programmer, where they belong.

20.3. GStreamer types

GStreamer assigns a unique number to all registered MIME types. GStreamer also keeps a reference to a

49

bin

disk_source parse decoder p
src g sink src - sink src - S|
| | | | | L

| | | | |
| | | | | L

| | | | |

| | | | |

| | | | |

| | | | |
| audio/rhpeg : audié/mpeg : .
audi(‘)/mpeg ahdi o/raw ‘

Chapter 20. More on factories

function that can be used to determine if a given buffer is of the given MIME type.

There is also an association between a MIME type and a file extension, but the use of typefind functions
(similar to file(1)) is preferred.

The type information is maintained in a list of Gt Type . The definition of a Gt Type s like:

typedef GtGyps (* Gt TypeH ndRunc) (GtBuffer * buf , gpoi nt er *priv);

typedef struct _GtType GtType;

struct _GtType {

guintle id [+ type id (assigned) * [
gchar * mne; /+ MME type =*/
gchar xexts; | x space-del i mted list of extensions */

Gt TypeH ndRunc typefi ndf unc; [+ typefind function =*/

All operations on Gst Type occur via their guint16 id numbers, with the Gst Type structure private to
the GStreamer library.

20.3.1. MIME type to id conversion

We can obtain the id for a given MIME type with the following piece of code:
guintle id;

id = gst_type find by nmne ("audi o/ npeg");

This function will return O if the type was not known.

20.3.2. id to Gt Type conversion

We can obtain the Gst Type for a given id with the following piece of code:
GtType *type;

type = gst_type find by id (id);

50

Chapter 20. More on factories

This function will return NULL if the id was not associated with any known Gst Type

20.3.3. extension to id conversion

We can obtain the id for a given file extension with the following piece of code:

guintle id;

id = gst_type find by ext (".np3");

This function will return 0 if the extension was not known.

For more information, see Chapter 28.

20.4. Creating elements with the factory

In the previous section we described how you could obtain an element factory using MIME types. One

the factory has been obtained, you can create an element using:

Gst B enent Fact ory xfactory;
Gst H enent * el enent ;

// obtain the factory
factory = ...

elenent = gst_elenent_factory create (factory, "nane");

This way, you do not have to create elements by name which allows the end-user to select the elements

he/she prefers for the given MIME types.

20.5. GStreamer basic types

GStreamer only has two builtin types:

« audio/raw : raw audio samples

« video/raw and image/raw : raw video data

51

Chapter 20. More on factories

All other MIME types are maintained by the plugin elements.

52

V. Advanced GStreamer concepts

In this part we will cover the more advanced features of GStreamer. With the basics you learned in the
prevous part you should be able to create a ’simple’ pipeline. If you want more control over the media
types and the pipeline you should use the more low-level features of GStreamer.

Chapter 21. Threads

GStreamer has support for multithreading through the use of the Gt Thread
(../../gstreamer/html/GstThread.html) object. This object is in fact a special GtHn
(../../gstreamer/html/GstBin.html) that will become a thread when started.

To construct a new thread you will perform something like:

Gt H enent *ny_t hread;

/* create the thread object */

ny thread = gst_thread new ("ny_thread");

/* you coud have used gst_element_factory nake ("thread", "ny_thread"); */
greturnif_fail (ny_thread I= NLL);

/* add some plugins */
gst_bin add (GT_ BN (ny_thread), GST_B BMENT (funky_src));
gst_bin add (GT_BN (ny_thread), GST_B BMENT (cool _effect));

[+ link the elenents here... */

/* start playing =/
gst_elenent_set_state (GST_H.BvENT (ny_thread), GBT_STATE ALAYI NG ;

The above program will create a thread with two elements in it. As soon as it is set to the PLAYING
state, the thread will start to iterate itself. You never need to explicitly iterate a thread.

21.1. Constraints placed on the pipeline by the
GstThread

Within the pipeline, everything is the same as in any other bin. The difference lies at the thread boundary,
at the link between the thread and the outside world (containing bin). Since GStreamer is fundamentally
buffer-oriented rather than byte-oriented, the natural solution to this problem is an element that can
"buffer" the buffers between the threads, in a thread-safe fashion. This element is the queue, described
more fully in Chapter 22. It doesn’t matter if the queue is placed in the containing bin or in the thread
itself, but it needs to be present on one side or the other to enable inter-thread communication.

54

Chapter 21. Threads

21.2. When would you want to use a thread?

If you are writing a GUI application, making the top-level bin a thread will make your GUI more
responsive. If it were a pipeline instead, it would have to be iterated by your application’s event loop,
which increases the latency between events (say, keyboard presses) and responses from the GUI. In
addition, any slight hang in the GUI would delay iteration of the pipeline, which (for example) could
cause pops in the output of the sound card, if it is an audio pipeline.

Figure 21-1 shows how a thread can be visualised.

Figure 21-1. A thread

thread

disk_source parse decoder play_audio

\ 4
\ 4
\ 4

src sink src sink src sink

As an example we show the helloworld program using a thread.

/ * exanpl e-begin threads.c =/
#include <gst/gst.h>

/* we set this to TRE right before gst_ nmain (), but there could still
be a race condition between setting it and entering the function =/
ghool ean can quit = FALSE

/* eos wll be caled wen the src elenent has an end of stream «/
voi d
eos (GstH enent *sSrc, gpointer data)

{
GtThread *thread = GBT_THEAD (data);
gprint ("have eos, quitting\n");

[+ stop the bin */
gst_elenent_set_state (GeT_H.BvENT (thread), GST_STATE NLLL);

vwhile ('can quit) /* waste cycles =/
gst_nain quit 0K

55

Chapter 21. Threads

int
min (int argc, char =*argv[])

{

Gt H enent *=filesrc, * denuxer , * decoder , * converter, * audi osi nk;
Gst H enent *t hread;

if (agc < 2 {
gprint ("usage: % <o/ Vorbis fil enang>\n", argv[Q]);
exit (-1);

}

gst_init (&rgc, &argy);

[+ create a new thread to hold the elenents =/
thread = gst_thread new ("thread");

g _assert (thread !'= NLL);

[+ create a disk reader */

filesrc = gst_elenent_factory nake ("filesrc", "di sk_source");
g _assert (filesrc = NLL);

g_obj ect_set (G@IECT (filesrc), "l ocation', argv[1], NLL);
g_si gnal _connect (GA@®IECT (filesrc), " eos"

GAUBAK (eos), thread),;

/* create an ogg denuxer */
demuxer = gst_el enent_factory nake (" oggdenux”, "denuxer");
g _assert (denuxer 1= NLL);

/* create a vorbis decoder @ x/
decoder = gst_el enent_factory nake ("vorbi sdec”, "decoder");
g _assert (decoder 1= NLL);

[+ create an audio converter */
converter = gst_elenent_factory nake ("audi oconvert", "converter");
g _assert (decoder 1= NLL);

/+* and an audio sink =/
audiosink = gst_elenent_factory nake ("osssi nk", "play_audi 0");
g _assert (audi osi nk 1= NLL);

/* add objects to the thread =*/

gst_bin_add nany (GT BN (thread), filesrc, denuxer, decoder, converter, audi osi nk,
/* link them in the logical order =*/

gst_el enent _| i nk_nany (filesrc, denuxer, decoder, converter, audi osi nk, NLL);

[+ start playing =/
gst_elenent_set_state (thread, GBT_STATE LAY NG ;

/+* do whatever you want here, the thread wll be playing =/
gprint ("thread is playing\n*);

can_quit = TRE

56

N

Chapter 21. Threads
gst_main ();
gst_obj ect_unref (GST_BIECT (thread));
exit (0);

}
/ = exanpl e-end threads.c =/

57

Chapter 22. Queues

A queue is a filter element. Queues can be used to link two elements in such way that the data can be
buffered.

A buffer that is sinked to a Queue will not automatically be pushed to the next linked element but will be
buffered. It will be pushed to the next element as soon as a gst_pad_pull () is called on the queue’s source
pad.

Queues are mostly used in conjunction with a thread bin to provide an external link for the thread’s
elements. You could have one thread feeding buffers into a queue and another thread repeatedly pulling
on the queue to feed its internal elements.

Below is a figure of a two-threaded decoder. We have one thread (the main execution thread) reading the
data from a file, and another thread decoding the data.

Figure 22-1. a two-threaded decoder with a queue

thread
disk_source parse decoder
gueue
> — E— _
Src sink Src sink

The standard GStreamer queue implementation has some properties that can be changed using the
g_objet_set () method. To set the maximum number of buffers that can be queued to 30, do:

g _obj ect_set (G@IECT (queue), "max_| evel ", 30, N.LL);

The following MP3 player shows you how to create the above pipeline using a thread and a queue.
/ * exanpl e-begi n queue.c */

#include <stdib. h>
#include <gst/gst.h>

58

ghool ean pl ayi ng;

[+ eos wll be caled when the src el enment has an end of stream

voi d
eos (GstH enent * el enent , gpointer data)

{
gprint ("have eos, quitting\n");

playing = FALSE
}

int
nein (int argc, char *argv[])

{

Gst H enent +filesrc, + audi osi nk, *queue, *decode;

Gst H enent =hin;
Gst H enent *t hread,

gst_init (&rgc, &argy);

if (agc !'= 2) {
gprint ("usage: % <p3 filenamex\n", argv[Q]);
exit (-1);

}

/* create a new thread to hold the elements */
thread = gst_thread new ("thread");
g _assert (thread !'= NLL);

/* create a new bin to hold the el ements */
bin = gst_ binnew ("bin");
g _assert (bin !'= NLL);

/* create a disk reader */

filesrc = gst_elenent_factory nake ("filesrc",

g _assert (filesrc = NULL);

g _obj ect_set (G@ECT (filesrc), "l ocation®, argv[1],
g_si gnal _connect (GQAIECT (filesrc), "eos",

GCAUIBAK (eos), thread);

queue = gst_el enent_factory _nake ("queue", "queue");

g _assert (queue '= NULL);

[+ and an audio sink =x/

audiosink = gst_elenent_factory nake ("osssi nk",
g _assert (audi osi nk 1= NLL);
decode = gst_el enent_factory_nake ("rad", "decode");

/+ add objects to the main bin */

gst_bin_add nany (GT_BN (thread), decode, audi osi nk,

gst_bin_add nany (G BN (bin), filesrc, queue,

"di sk_source");

"play_audi 0");

Chapter 22. Queues

*/

thread, NLLL);

59

}

gst_el enent _|ink (filesrc, queue) ;

gst_el enent _| i nk_nany (queue, decode, audi osink, NLL);

[+ start playing =/
gst_elenent_set_state (GsT_H.BvENT (bin),

playing = TRE
vhile (playing) {

gst biniterate (GT BN (bin));
}

gst_elenent_set_state (GsT_H.BvENT (bin),

return O;

/ = exanpl e-end queue.c */

GST_STATE PLAYIND ;

GST_STATE NULL);

Chapter 22. Queues

60

Chapter 23. Cothreads

Cothreads are user-space threads that greatly reduce context switching overhead introduced by regular
kernel threads. Cothreads are also used to handle the more complex elements. They differ from other
user-space threading libraries in that they are scheduled explictly by GStreamer.

A cothread is created by a GtB n (../../gstreamer/html/GstBin.html) whenever an element is found
inside the bin that has one or more of the following properties:

« The element is loop-based instead of chain-based
« The element has multiple input pads
« The element has the MULTI_IN flag set

The GtBn (../../gstreamer/html/GstBin.html) will create a cothread context for all the elements in the
bin so that the elements will interact in cooperative multithreading.

Before proceding to the concept of loop-based elements we will first explain the chain-based elements.

23.1. Chain-based elements

Chain based elements receive a buffer of data and are supposed to handle the data and perform a
gst_pad_push.

The basic main function of a chain-based element is like:

static void
chai n_function (GtPad *pad, GtBuffer * buf f er)

{
GstBuffer *out buf fer;
/l process the bhuffer, create a new outbuffer
gst_pad push (srcpad, outbuffer);

}

Chain based function are mainly used for elements that have a one to one relation between their input
and output behaviour. An example of such an element can be a simple video blur filter. The filter takes a
buffer in, performs the blur operation on it and sends out the resulting buffer.

61

Chapter 23. Cothreads

Another element, for example, is a volume filter. The filter takes audio samples as input, performs the
volume effect and sends out the resulting buffer.

23.2. Loop-based elements

As opposed to chain-based elements, loop-based elements enter an infinite loop that looks like this:

GstBuffer *buffer, *out buf fer;

wile (1) {
buffer = gst_pad pul | (si nkpad);

Il process hbuffer, create outbuffer
vwhile (!'done) {

/1l optionaly request another buffer
buffer = gst_pad pull (si nkpad) ;

}

gst_pad push (srcpad, outbuffer);

The loop-based elements request a buffer whenever they need one.

When the request for a buffer cannot be immediately satisfied, the control will be given to the source
element of the loop-based element until it performs a push on its source pad. At that time the control is
handed back to the loop-based element, etc... The execution trace can get fairly complex using cothreads
when there are multiple input/output pads for the loop-based element. Cothread switches are performed
within the call to gst_pad_pull and gst_pad_push; from the perspective of the loop-based element, it just
"appears" that gst_pad_push (or _pull) might take a long time to return.

Loop based elements are mainly used for the more complex elements that need a specific amount of data
before they can start to produce output. An example of such an element is the MPEG video decoder. The
element will pull a buffer, perform some decoding on it and optionally request more buffers to decode,
and when a complete video frame has been decoded, a buffer is sent out. For example, any plugin using
the bytestream library will need to be loop-based.

There is no problem in putting cothreaded elements into a Gt Thread
(../../gstreamer/html/GstThread.html) to create even more complex pipelines with both user and kernel
space threads.

62

Chapter 24. Understanding schedulers

The scheduler is responsible for managing the plugins at runtime. Its main responsibilities are:

« Preparing the plugins so they can be scheduled.
« Monitoring state changes and enabling/disabling the element in the chain.
« Choosing an element as the entry point for the pipeline.

« Selecting and distributing the global clock.

The scheduler is a pluggable component; this means that alternative schedulers can be written and
plugged into GStreamer. The default scheduler uses cothreads to schedule the plugins in a pipeline.
Cothreads are fast and lightweight user-space threads.

There is usually no need to interact with the scheduler directly, however in some cases it is feasible to set
a specific clock or force a specific plugin as the entry point in the pipeline.

63

Chapter 25. Clocks in GStreamer

64

Chapter 26. Dynamic pipelines

In this chapter we will see how you can create a dynamic pipeline. A dynamic pipeline is a pipeline that
is updated or created while data is flowing through it. We will create a partial pipeline first and add more
elements while the pipeline is playing. Dynamic pipelines cause all sorts of scheduling issues and will
remain a topic of research for a long time in GStreamer.

We will show how to create an MPEG1 video player using dynamic pipelines. As you have seen in the
pad section, we can attach a signal to an element when a pad is created. We will use this to create our
MPEG1 player.

We’ll start with a simple main function:

/ * exanpl e-begi n dynanmic.c */
#include <string.h>
#include <gst/gst.h>

voi d
eof (GstH enent *SrC)
{
gprint ("have eos, quitting\n");
exit (0);
}
ghool ean
idefunc (gpointer dat a)
{
gst_ biniterate (GT BN (data));
return TRE
}
voi d
new pad creat ed (GstH enent *parse, GtPad *pad, GtH enent * pi pel i ne)
{
Gst H enent * decode_vi deo = N.LL;
Gt H enent * decode_audi o, *play, =*color, *show
Gst H enent * audi 0_queue, * Vi deo_queue;

Gt H enent *audi o_thread, * Vi deo_t hread;
gprint ("*x**x a new pad 9% was created\n’, gst_pad get _nane (pad));
gst_elenent_set_state (GsT_H.BvENT (pi peline), GST_STATE PALED) ;

[+ link to audio pad =/

if (strncnp (gst_pad get_nane (pad), ‘“audio”, 6 = 0) {
/ * construct i nt ernal pipeline elenents x/
decode_audi 0 = gst_el enent_factory nake ("nad", "decode audi0");

65

Chapter 26. Dynamic pipelines

greturnif fail (decode_audi o I= NLL);
play = gst_el enent_factory nake ("osssi nk", "play_audi 0");
greturnif _fail (play !'= NLL);

/* create the thread and pack stuff into it =/

audi o_t hread = gst_thread new ("audi o thread");

greturnif_fail (audi o_t hread I= NLL);

/ = construct queue and link everything in the nain pipeline =/
audi o_queue = gst_el enent_factory nake ("queue", "audi 0_queue");
greturnif fail (audi 0_queue I= N.LL);

gst_bin_add nany (GST BN (audio_thread),
audi 0_queue, decode_audi o, play, NLL);

[+ set up pad links */

gst_el enent _add ghost _pad (audi 0_t hread,
gst_el enent_get _pad (audi 0_queue, "sink"),
"sink");

gst_el enent _|ink (audi 0_queue, decode _audi 0);

gst_el enent _|ink (decode_audi o, play);

gst_bin add (GT_ BN (pipeline), audi o_thread);

gst_pad |ink (pad, gst_element_get pad (audi o_thread, "sink"));

/+ set up thread state and kick things off =*/
gprint ("setting to READY state\n');

gst_el enent_set_state (GsT_B.BvENT (audi 0_thread), GBT_STATE READY) ;
}
else if (strncnp (gst_pad get _nane (pad), "video ", 6) = 0 {
[* construct i nt ernal pipeline elemnents */
decode vi deo = gst_elenent_factory nake (" npeg2dec”, "decode_vi deo");
greturnif_fail (decode_vi deo I= NULL);
color = gst_elenent_factory nake ("col orspace"”, "color");
greturnif_fail (caolor = NLL);
show = gst_el enent_factory nake ("xvi deosi nk", "show');
greturnif fail (show = NLL);
/ * construct queue and link everything in the nain pipeline */
vi deo_queue = gst_el enent_factory_nake ("queue", "vi deo_queue");
greturnif_fail (vi deo_gqueue I= N.LL);

/* create the thread and pack stuff into it =/

Vi deo_t hread = gst_thread new ("vi deo_thread");
greturnif_fail (vi deo_t hread I= NLL);
gst_bin_add nany (GST_ BN (video thread), Vi deo_queue,

decode vi deo, color, show NLL);

66

}

Chapter 26. Dynamic pipelines

/+ set up pad links =/

gst_el enent _add ghost _pad (vi deo_t hread,
gst_el enent_get _pad (vi deo_queue, "sink"),
"sink");

gst_el enent _|ink (vi deo_queue, decode vi deo);

gst_el enent _| i nk_nany (decode_vi deo, color, show NLL);

gst_bin add (G BN (pipeline), vi deo_t hread);
gst_pad |ink (pad, gst_element_get pad (vi deo_thread, "sink"));

/+ set up thread state and kick things off =*/

gprint ("setting to READY state\n');

gst_elenent_set_state (GsT_H.BvENT (vi deo_thread), GBT_STATE READY) ;
}
gst_elenent_set_state (GsT_H.BvENT (pi peline), GST_STATE LAY NG ;

int
min (int argc, char =*argv[])

{

Gt H enent * pi pel i ne, xSrc, *demx;
gst_init (&rgc, &argy);

pipeline = gst_pipeline new ("pipeline");

greturnva _if fail (pipeline != NLL, -1);

src = gst_elenent_factory nake ("filesrc", "src');
greturnva _if fail (src !'= NLL, -1;

if (argc < 2

gerror ("Hease specify a video file to play !");

g _obj ect_set (G@ECT (src), "location', argv[1], NLL);
demux = gst_el enent_factory nake (" npegdenux”, "denux") ;
greturnva _if fail (demux !'= NULL, -1);

gst_bin_add nany (GT_ BN (pipeline), src, demux, N.LL);

g_si gnal _connect (GARIECT (demx), "new pad”,
GQULBAX (newpad created), pi peline);
g_si gnal _connect (GQAIECT (src), "eos",

GCQAIBAK (eof), NLL);
gst_el enent _|ink (src, demux);
gst_elenent_set_state (GsT_H.BvBENT (pi peline), GBT_STATE LAY NG ;

gide add (ide func, pi peline);

67

Chapter 26. Dynamic pipelines

gst_main (),

retun O

}
/ = exanpl e-end dynanmic.c = */

We create two elements: a file source and an MPEG demuxer. There’s nothing special about this piece of
code except for the signal 'new_pad’ that we linked to the mpegdemux element using:

g_si gnal _connect (GARIECT (demx), "new pad”,
GQAULBAK (newpad created), pi peline);

When an elementary stream has been detected in the system stream, mpegdemux will create a new pad
that will provide the data of the elementary stream. A function "new_pad_created’ will be called when
the pad is created.

In the above example, we created new elements based on the name of the newly created pad. We then
added them to a new thread. There are other possibilities to check the type of the pad, for example by
using the MIME type and the properties of the pad.

68

Chapter 27. Type Detection

Sometimes the capabilities of a pad are not specificied. The filesrc element, for example, does not know
what type of file it is reading. Before you can attach an element to the pad of the filesrc, you need to
determine the media type in order to be able to choose a compatible element.

To solve this problem, a plugin can provide the GStreamer core library with a type definition. The type
definition will contain the following information:

« The MIME type we are going to define.

« An optional string with a list of possible file extensions this type usually is associated with. the list
entries are separated with a space. eg, ".mp3 .mpa .mpg".

« An optional typefind function.

The typefind functions give a meaning to the MIME types that are used in GStreamer. The typefind
function is a function with the following definition:

typedef GtGps * (* Gt TypeH ndRunc) (GtBuffer xbuf, gpointer priv);

This typefind function will inspect a GstBuffer with data and will output a GstCaps structure describing
the type. If the typefind function does not understand the buffer contents, it will return NULL.

GStreamer has a typefind element in the set of core elements that can be used to determine the type of a
given pad.

The next example will show how a typefind element can be inserted into a pipeline to detect the media
type of a file. It will output the capabilities of the pad into an XML representation.

#include <gst/gst.h>

voi d type found (Gt H enent *typefind, GtGps * caps);
int

nai n(i nt argc, char =*argv[])

{

Gst H enent xbin, =*filesrc, * typefind;

gst_init (&rgc, &argy);

if (agc !'= 2) {
gprint ("usage: % <filenane>\n", argv[Q]);
exit (-1);

}

69

Chapter 27. Type Detection

/+ create a new bin to hod the elemnents =*/
bin = gst_ binnew ("bin");
g _assert (bin !'= NLL);
[+ create a disk reader */
filesrc = gst_elenent_factory nake ("filesrc", "di sk_source");
g _assert (filesrc = NULL);
g _obj ect_set (G@IECT (filesrc), "l ocation', argv[]], NLL);
[+ create the typefind elenent */
typefind = gst_el enent_factory nake ("typefind', "typefind');
g _assert (typefind != NLL);
/+* add objects to the main pipeline =/
gst_bin_add nany (G BN (bin), filesrc, typefind, NLL);
g_si gnal _connect (GQIECT (typefind), "have_type",
GQAUBAK (type_found), NLL) ;
gst_el enent _|ink (filesrc, typefind);
[+ start playing =/
gst_elenent_set_state (GeT_H.BvENT (bin), GCSI_STATE PLAYING;
gst_biniterate (GT_BN (bin));
gst_elenent_set_state (GeT_H.BvENT (bin), GBI_STATE NLL);

exit

(0);

We create a very simple pipeline with only a filesrc and the typefind element in it. The sinkpad of the
typefind element has been linked to the source pad of the filesrc.

We attached a signal have_type’ to the typefind element which will be called when the type of the media

stream as been detected.

The typefind function will loop over all the registered types and will execute each of the typefind
functions. As soon as a function returns a GstCaps pointer, the type_found function will be called:

voi d
type_found (Gt B enent *typefind, Gt Gaps
{

xnh Dochx r doc;

xnh NodePRt r parent ;

doc = xnhNewDoc ("10";

doc- >r oot = xnh NewDocNode (doc, NLLL,

" Capabi i ti es”,

* caps)

NALL);

70

Chapter 27. Type Detection

parent = xnhNewChild (doc->root, NLL, "Gapsl', NLLL) ;
gst_caps_save thysel f (caps, parent);

xnh DocDunp (stdout, doc);
}

In the type_found function we can print or inspect the type that has been detected using the GstCaps
APIs. In this example, we just print out the XML representation of the caps structure to stdout.

A more useful option would be to use the registry to look up an element that can handle this particular
caps structure, or we can also use the autoplugger to link this caps structure to, for example, a videosink.

71

Chapter 28. Autoplugging

GStreamer provides an API to automatically construct complex pipelines based on source and
destination capabilities. This feature is very useful if you want to convert type X to type Y but don’t care
about the plugins needed to accomplish this task. The autoplugger will consult the plugin repository,
select and link the elements needed for the conversion.

The autoplugger API is implemented in an abstract class. Autoplugger implementations reside in plugins
and are therefore optional and can be optimized for a specific task. Two types of autopluggers exist:
renderer ones and non-renderer ones. The renderer autopluggers will not have any source pads while the
non-renderer ones do. The renderer autopluggers are mainly used for media playback while the non
renderer ones are used for arbitrary format conversion.

28.1. Using autoplugging

You first need to create a suitable autoplugger with gst_autoplug_factory _make(). The name of the
autoplugger must be one of the registered autopluggers..

A list of all available autopluggers can be obtained with gst_autoplug_factory_get_list().

If the autoplugger supports the RENDERER API, use the gst_autoplug_to_renderers() function to create
a bin that links the source caps to the specified render elements. You can then add the bin to a pipeline
and run it.

Gst Aut opl ug * alt opl ug;
Gst H enent * el enent ;
Gt H enent * Si nk;

[+ create a static autopl ugger */
autoplug = gst_autopl ug factory nake ("staticrender");

|~ create an osssink */
sink = gst_elenent_factory nake ("osssi nk", "our_sink");

[+ create an element that can play audio/np3 through osssink */
elenent = gst_autoplug to renderers (aut opl ug,
gst_caps_new (
"si nk_audi o_caps",
"audi o/ np3",
NLLL
),
si nk,
NALL);

72

Chapter 28. Autoplugging

[+ add the elenent to a bin and link the sink pad =*/

If the autoplugger supports the CAPS API, use the gst_autoplug_to_caps() function to link the source
caps to the destination caps. The created bin will have source and sink pads compatible with the provided
caps.

Gst Aut opl ug * aut opl ug;
Gt H enent * el enent ;

[+ create a static autopl ugger */
autoplug = gst_autoplug factory nake ("static");

[+ create an element that converts audio/np3 to audio/raw */

elenent = gst_autopl ug to_caps (aut opl ug,
gst_caps_new (
"si nk_audi o_caps",
"audi o/ np3",
NLLL
),

gst _caps_new (
"src_audi o_caps",
"audi of raw’,

[+ add the elenent to a bin and link the src/sink pads =/

28.2. Using the GtAtoplugac he element

The Gst Aut opl ugCache element is used to cache the media stream when performing typedetection. As
we have seen in Chapter 27, the typefind function consumes a buffer to determine its media type. After
we have set up the pipeline to play the media stream we should be able to 'replay’ the previous buffer(s).
This is what the autoplugcache is used for.

The basic usage pattern for the autoplugcache in combination with the typefind element is like this:

1. Add the autoplugcache element to a bin and link the sink pad to the source pad of an element with
unknown caps.

73

Chapter 28. Autoplugging

2. Link the source pad of the autoplugcache to the sink pad of the typefind element.
3. Iterate the pipeline until the typefind element has found a type.

4. Remove the typefind element and add the plugins needed to play back the discovered media type to
the autoplugcache source pad.

5. Reset the cache to start playback of the cached data. Connect to the "cache_empty" signal.

6. In the cache_empty signal callback function, remove the autoplugcache and relink the pads.

In the next chapter we will create a new version of our helloworld example using the autoplugger, the
autoplugcache and the typefind element.

28.3. Another approach to autoplugging

The autoplug API is interesting, but often impractical. It is static; it cannot deal with dynamic pipelines.
An element that will automatically figure out and decode the type is more useful. Enter the spider.

28.3.1. The spider element

The spider element is a generalized autoplugging element. At this point (April 2002), it’s the best we’ve
got; it can be inserted anywhere within a pipeline to perform caps conversion, if possible. Consider the
following gst-launch line:

$ gst-launch filesrc |ocation=ny.np3 | spider ! osssink

The spider will detect the type of the stream, autoplug it to the osssink’s caps, and play the pipeline. It’s
neat.

28.3.2. Spider features

1. Automatically typefinds the incoming stream.

2. Has request pads on the source side. This means that it can autoplug one source stream into many
sink streams. For example, an MPEG1 system stream can have audio as well as video; that pipeline
would be represented in gst-launch syntax as

$ gst-launch filesrc |ocation=ny. npegl | spider ! { queue ! osssink }
{ queue ! xvideosink }

74

Chapter 29. Your second application

FIXME: delete this section, talk more about the spider. In a previous chapter we created a first version of
the helloworld application. We then explained a better way of creating the elements using factories
identified by MIME types and the autoplugger.

29.1. Autoplugging helloworld

We will create a second version of the helloworld application using autoplugging. Its source code is a bit
more complicated but it can handle many more data types. It can even play the audio track of a video file.

Here is the full program listing. Start by looking at the main () function.

/ * exanpl e-begin hel I ovorl d2. ¢ */
#include <gst/gst.h>

static wvoid gst_play have type (Gt B enent * typefind, GtGps *caps, GtHenent *pipelir
static wvoid gst_play _cache enpty (Gt H enent + el enent , Gst B enent *pi peline);

static void
gst_pl ay_have type (Gt H enent *typefind, GtCGps *caps, GtH enent * pi pel i ne)
{

Gst H enent * 0SSSi Nnk;

Gt H enent * new el enent ;

Gst Aut opl ug * aut opl ug;

Gt H enent * aut obi n;

Gst H enent *=filesrc;

Gst H enent * cache;

gprint ("GtH peline: play have type\n");

gst_elenent_set_state (pi peline, GBT_STATE PAED);

filesrc = gst_bin get_by nane (GT_ BN (pipeline), "di sk_source");
astobin = gst_hin get by nane (GST BN (pipeline), "autobin");
cache = gst_bin get_by nane (GST_ BN (autobin), "cache");

/* unlink the typefind from the pipeline and renove it =/
gst_el enent _unl i nk (cache, typefind);
gst_bi n renove (GST_BN (autobin), typefind);

/* and an audio sink =*/

osssink = gst_el enent_factory nake ("osssi nk", "pl ay_audi 0");
g _assert (osssink = NULL);

astoplug = gst_autopl ug factory nake ("staticrender");

g _assert (autoplug !'= N.LL);

75

Chapter 29. Your second application

new el enent = gst_autoplug to renderers (aut opl ug, caps, 0sssink, NLL);
if (!newel enent) {
gprint ("coud not autoplug, no suitable codecs found...\n");
exit (-1);
}
gst_el enent_set _nane (new el enent , "new el enent");

gst_bin add (GST_ BN (autohin), new el enent) ;

g_obj ect _set (G@IECT (cache), "reset", TRE NLL);

gst_el enent _|ink (cache, newelenent);
gst_elenent_set_state (pi peline, GST_STATE LAY NG ;
}
static wvoid
gst_pl ay cache enpty (Gt H enent * el enent , Gst B enent * pi pel i ne)
{

}

Gt H enent * aut obi n;

Gt H enent *=filesrc;

Gst H enent * cache;

Gt H enent * new el enent ;

gprint ("have cache enpty\n");

gst_elenent_set_state (pi peline, GST_STATE PALSD) ;

filesrc = gst_bin get_by nane (GST BN (pipeline), "di sk_source");
attobin = gst_bin get by nane (GT_ BN (pipeline), "aut obin");

cache = gst_bin get_by nane (GST_ BN (autohin), "cache");

new el enent = gst_bin get_by nane (GST_BN (autobin), "new el enent ") ;
gst _el enent _unl i nk (filesrc, cache);

gst_el enent _unl i nk (cache, newelenent);

gst_bi n_renove (GST_ BN (autohin), cache);

gst_el enent _| i nk (filesrc, new el enent) ;

gst_elenent_set_state (pi peline, GST_STATE LAY NG ;

gprint ("done wth cache enpty\n");

int
nein (int argc, char *argv[])

{

Gst H enent +filesrc;
Gst H enent * pi pel i ne;
Gst H enent * alt obi n;
Gst H enent *typefind;

76

Chapter 29. Your second application

Gst H enent * cache;
gst_init (&rgc, &argy);
if (agc !'= 2) {
gprint ("usage: % <filenane wth audioX\n", argv[Q]);
exit (-1);

}
/* create a new pipeline to hold the elements */
pipeline = gst_pipeline new ("pipeline");
g _assert (pipeline = NLL);
/* create a disk reader */
filesrc = gst_el enent_factory nake ("filesrc", "di sk_source");
g _assert (filesrc = NULL);
g _obj ect_set (G@IECT (filesrc), "l ocation®, argv[1], NLL);
gst_bin add (GT_ BN (pipeline), filesrc);
astobin = gst_ hinnew ("autobin");
cache = gst_el enent_factory nake ("aut opl ugcache", "cache");
g_si gnal _connect (GQ@IECT (cache), "cache_enpty",

GCQAUBAK (gst_play cache enpty), pi pel i ne);
typefind = gst_el enent_factory nake ("typefind", "typefind');
g_si gnal _connect (G@IECT (typefind), "have_type",

GQAULBAXK (gst_play _have type), pi peline);
gst_bin add (GST_BN (autohin), cache);
gst_bin add (GT'BN (autobin), typefind);
gst_el ement _| i nk (cache, typefind);
gst_el enent _add ghost _pad (aut obi n,

gst_el enent _get _pad (cache, "sink"), "sink");

gst_bin add (GT_BN pi pel i ne), aut obi n);
gst_el enent _|ink (filesrc, aut obi n);
[+ start playing =/
gst_el enent_set_stat GST_H BMENT (pi peline),
vhile (gst_biniterate (GT_ BN (pipelineg)));
[+ stop the pipeline =/
gst_elenent_set_state (GeT_H.BvENT (pi peline),
gst _obj ect_unref (GBT_BIECT (pipeline));
exit(0);
}
/ * exanpl e-end hel | owor | d2. ¢ * [

GBT_STATE ALAYING ;

GST_STATE NLLL);

77

Chapter 29. Your second application

We start by constructing a "filesrc’ element and an ’autobin’ element that holds the autoplugcache and
the typefind element.

We attach the "cache_empty" signal to gst_play_cache_empty and the "have_type" to our
gst_play_have_type function.

The _have_type function first sets the pipeline to the PAUSED state so that it can safely modify the
pipeline. It then finds the elements it is going to manipulate in the pipeline with:

filesrc = gst_bin get_by nane (GST BN (pipeline), "di sk_source");
astobin = gst_hin get by nane (GST BN (pipeline), "autobin');
cache = gst_bin get_by nane (GST_ BN (autobin), "cache");

Now we have a handle to the elements we are going to manipulate in the next step.

We don’t need the typefind element anymore so we remove it from the pipeline:
/+ unlink the typefind from the pipeline and renove it =/

gst _el enent _unl i nk (cache, "src", typefind, "sink");
gst_bin renove (G BN (autohin), typefind);

Our next step is to construct an element that can play the type we just detected. We are going to use the
autoplugger to create an element that links the type to an osssink. We add the new element to our autobin.

[+ and an audio sink =x/

osssink = gst_el enent_factory_nake("osssi nk", "play_audi 0");
g_assert (osssi nk I= NLL);
astoplug = gst_autopl ug factory nake ("staticrender");
g _assert (autoplug !'= N.LL);
new el enent = gst_autoplug to renderers (aut opl ug,
caps,
0sssi Nk,
NALL);
if (!newelenent) {
gprint ("coud not autoplug, no suitable codecs found...\n");
exit (-1);
}
gst_el enent_set _nane (new el enent , "new el enent");

gst_bin add (GST_ BN (autohin), new el enent) ;

78

Chapter 29. Your second application

Our next step is to reset the cache so that the buffers used by the typefind element are fed into the new
element we just created. We reset the cache by setting the "reset"” property of the cache element to TRUE.

g _obj ect_set (G@IECT (cache), "reset", TRE NLL);

gst_el enent _| i nk (cache, "src", new el enent , "sink");

Finally we set the pipeline back to the playing state. At this point the cache will replay the buffers. We
will be notified when the cache is empty by the gst_play_cache_empty callback function.

The cache empty function simply removes the autoplugcache element from the pipeline and relinks the
filesrc to the autoplugged element.

To compile the helloworld2 example, use:

gcc -Vl ‘pkg-config gstreaner-0. 8 --cflags --libs' hel | owor |l d2. ¢ \
-0 hellovworl d2

You can run the example with (substitute helloworld.mp3 with you favorite audio file):

.Ihel lovor | d2 hel | owor | d. np3

You can also try to use an AVI or MPEG file as its input. Using autoplugging, GStreamer will
automatically figure out how to handle the stream. Remember that only the audio part will be played
because we have only added an osssink to the pipeline.

./hel l oworl d2 nynovi e. npeg

79

Chapter 30. Dynamic Parameters

30.1. Getting Started

The Dynamic Parameters subsystem is contained within the gstcontrol library. You need to include
the header in your application’s source file:

#include <gst/gst.h>
#include <gst/control/contral.h>

Your application should link to the shared library gst cont rol

The gstcontrol library needs to be initialized when your application is run. This can be done after the
the GStreamer library has been initialized.

gst_i ni t(&rgc, sargv);
gst_control _init(&rgc, &argv);

30.2. Creating and Attaching Dynamic Parameters

Once you have created your elements you can create and attach dparams to them. First you need to get
the element’s dparams manager. If you know exactly what kind of element you have, you may be able to
get the dparams manager directly. However if this is not possible, you can get the dparams manager by
calling gst _dpnan_get _nanager

Once you have the dparams manager, you must set the mode that the manager will run in. There is
currently only one mode implemented called " synchr onous” - this is used for real-time applications
where the dparam value cannot be known ahead of time (such as a slider in a GUI). The mode is called
"synchr onous" because the dparams are polled by the element for changes before each buffer is
processed. Another yet-to-be-implemented mode is "asynchr onous" . This is used when parameter
changes are known ahead of time - such as with a timelined editor. The mode is called

" asynchr onous” because parameter changes may happen in the middle of a buffer being processed.

Gt H enent * Si NESI C;
Gt DPar anManager * dpnan;

80

Chapter 30. Dynamic Parameters

sinesrc = gst_elenent_factory nake("sinesrc","si ne- source ");
donan = gst_dpnan_get _nanager (sinesrc);
gst _dpnan_set _node(dpnan, "synchr onous") ;

If you don’t know the names of the required dparams for your element you can call

gst_dpnan | i st_dpar am specs(dpnan) to get a NULL terminated array of param specs. This
array should be freed after use. You can find the name of the required dparam by calling
g_par amspec_get _nane on each param spec in the array. In our example, "vol une" will be the

name of our required dparam.

Each type of dparam currently has its own new function. This may eventually be replaced by a factory
method for creating new instances. A default dparam instance can be created with the gst _dpar amnew
function. Once it is created it can be attached to a required dparam in the element.

GtOParam *vol une;

volure = gst_dparamnew(GTYFE DOBRE);
if (gst_dpnan attach dparam (dpnan, "vol une", vol une)) {
/* the dparam was successfully attached */

30.3. Changing Dynamic Parameter Values

All interaction with dparams to actually set the dparam value is done through simple GObject properties.
There is a property value for each type that dparams supports - these currently being "val ue_doubl €" ,
"value float" ,"valueint" and"value int64' . To set the value of a dparam, simply set the
property which matches the type of your dparam instance.

#define ZERQ(nen) nenset (&nem 0, sizeof (nem)

gdoubl e set_to val ue;
GtOParam *vol une;

Galue set_val;

ZHRqset_val);

g val ue init(&et_val, GTYEDOAB);

g_val ue_set_doubl e(&et _val , set_to val ue);

g_obj ect_set_property(G @IECT(val une), "val ue_doubl €", &et _val);

Or if you create an actual GValue instance:

81

Chapter 30. Dynamic Parameters

gdoubl e set_to val ue;

Gt Param *vol une;

Qalue +*set val;

set_val = g_new)(Qal ue, 1);

g val ue init(set_val, GTYEDOBRB);
g val ue_set_doubl e(set _val, set_to val ue);
g_obj ect_set_property(G @IECT(val une), "val ue_doubl €", set_val);

30.4. Different Types of Dynamic Parameter

There are currently only two implementations of dparams so far. They are both for real-time use so
should be run in the "synchr onous” mode.

30.4.1. GstDParam - the base dparam type

All dparam implementations will subclass from this type. It provides a basic implementation which
simply propagates any value changes as soon as it can. A new instance can be created with the function
GtParam = gst_dparamnew (Gype type) . It hasthe following object properties:

« "val ue_doubl €" - the property to set and get if it is a double dparam

« "val ue float" - the property to set and get if it is a float dparam

« "valueint" -the property to set and get if it is an integer dparam

« "val ue_int 64" - the property to set and get if it is a 64 bit integer dparam

« "is log" -readonly boolean which is TRUE if the param should be displayed on a log scale

« "israte" -readonly boolean which is TRUE if the value is a proportion of the sample rate. For

example with a sample rate of 44100, 0.5 would be 22050 Hz and 0.25 would be 11025 Hz.

30.4.2. GstDParamSmooth - smoothing real-time dparam

Some parameter changes can create audible artifacts if they change too rapidly. The GstDParamSmooth
implementation can greatly reduce these artifacts by limiting the rate at which the value can change. This
is currently only supported for double and float dparams - the other types fall back to the default
implementation. A new instance can be created with the function Gt DParam * gst_dpsnoot h_new
(Glype type) . It has the following object properties:

« "updat e period" - an int64 value specifying the number nanoseconds between updates. This will
be ignored in " synchr onous” mode since the buffer size dictates the update period.

- "slope ting” - an int64 value specifying the time period to use in the maximum slope calculation

82

Chapter 30. Dynamic Parameters

« "sl ope_del ta doubl e - a double specifying the amount a double value can change in the given
slope_time.

« "slope delta float" - a float specifying the amount a float value can change in the given
slope_time.

Audible artifacts may not be completely eliminated by using this dparam. The only way to eliminate
artifacts such as "zipper noise" would be for the element to implement its required dparams using the
array method. This would allow dparams to change parameters at the sample rate which should eliminate
any artifacts.

30.4.3. Timelined dparams

A yet-to-be-implemented subclass of GstDParam will add an API which allows the creation and
manipulation of points on a timeline. This subclass will also provide a dparam implementation which
uses linear interpolation between these points to find the dparam value at any given time. Further
subclasses can extend this functionality to implement more exotic interpolation algorithms such as
splines.

83

VI. XML in GStreamer

GStreamer has the possibility to serialize the pipelines you create using an XML format. You can load a
previously created pipeline by loading the XML file.

Chapter 31. XML in GStreamer

GStreamer uses XML to store and load its pipeline definitions. XML is also used internally to manage
the plugin registry. The plugin registry is a file that contains the definition of all the plugins GStreamer
knows about to have quick access to the specifics of the plugins.

We will show you how you can save a pipeline to XML and how you can reload that XML file again for
later use.

31.1. Turning GstElements into XML

We create a simple pipeline and write it to stdout with gst xml_write_file (). The following code
constructs an MP3 player pipeline with two threads and then writes out the XML both to stdout and to a
file. Use this program with one argument: the MP3 file on disk.

/ * exanpl e-begi n xn-np3.c */
#include <stdib.h>
#include <gst/gst.h>

ghool ean pl ayi ng;

int

min (int argc, char =*argv[])

{
Gst H enent +filesrc, * 0SSSi Nk, *queue, *queue2, *decode;
Gt H enent =i n;
Gst H enent xthread, +*thread

gst_init (&urgc, &argy);

if (agc !'= 2) {
gprint ("usage: % <p3 filename>\n", argv[Q]);
exit (-1);
}
[+ create a new thread to hold the elenents =/
thread = gst_el enent_factory nake ("thread", "thread");
g _assert (thread !'= NLL);
thread2 = gst_elenent_factory nake ("thread", "thread2");
g _assert (thread2 !'= NULL);

/* create a new bin to hold the el ements */
bin = gst_bin new ("bin");
g _assert (bin !'= NLL);

[+ create a disk reader */
filesrc = gst_elenent_factory nake ("filesrc", "di sk_source");

85

g_assert
g_obj ect_set

(filesrc !'= NULL);
(G@IECT (filesrc),

queue
queue2

= gst_el enent_factory _nake
= gst_el ement_factory_nake

/+* and an audio
osssi nk
g _assert

sink */
= gst_el enent_factory _nake
(osssink = NULL);

decode
g_assert

= gst_el enent_factory _nake
(decode !'= NULL);

/* add objects
gst_bin_add nany

to the min bin =/
(GT. BN (bin),

gst_bin_add nany (GT_BN (thread),

gst binadd (GSTBN (thread?),

gst_el enent _| i nk_nany (filesrc, queue,

gst_bin_add nany (GT_BN (bin),

/+ wite the bin to stdout =/

gst_xm_write file (GsT_H.BvENT (bin),

/* wite the bin to a file «/

gst_xnmh_write file (GsT_B.BvENT (bin,
exit (0);

}

/ * exanpl e-end xnh-np3.c */

The most important line is:

gst_xnmh_write file (GsT_B.BvENT (bin,

"l ocation",

("queue”,

("queue",

("osssi nk",

(" nad",

filesrc,

decode,

0sssi nk) ;

t hread,

Chapter 31. XML in GStreamer

argv[1], NLL);

"queue");
"queue");

"pl ay_audi 0");

"decode");

queue, NULL);

queue2, NLL);

decode, queue2, osssi nk, NLLL);

t hread2, NLLL);
stdout);
("xnhTest. gst",

fopen "w));

stdout);

gst_xml_write_file () will turn the given element into an xmIDocPtr that is then formatted and saved to a
file. To save to disk, pass the result of a fopen(2) as the second argument.

The complete element hierarchy will be saved along with the inter element pad links and the element
parameters. Future GStreamer versions will also allow you to store the signals in the XML file.

86

Chapter 31. XML in GStreamer

31.2. Loading a GstElement from an XML file

Before an XML file can be loaded, you must create a GstXML object. A saved XML file can then be
loaded with the gst_xml_parse_file (xml, filename, rootelement) method. The root element can
optionally left NULL. The following code example loads the previously created XML file and runs it.

#include <stdib.h>
#include <gst/gst.h>

int

nai n(int argc, char =*argv[])
{

GtXM. *xnmh;

Gst H enent *hin;

gbool ean ret;

gst_init (&rgc, &argy);

xnh = gst_xnh_new ();

ret = gst_xnh_parse file(xnh, "xnhTest. gst",
g _assert (ret = TRB;

bin = gst_xnh_get el enent (xrh, "bin");

g _assert (bin !'= NLL);

gst_elenent_set_state (bin, GBT_STATE PLAYING;

vhile (gst_biniterate(GST_BNbin)));
gst_elenent_set_state (bin, GBI_STATE NULL);

exit (0);

NLL);

gst_xml_get_element (xml, "name") can be used to get a specific element from the XML file.

gst_xml_get_topelements (xml) can be used to get a list of all toplevel elements in the XML file.

In addition to loading a file, you can also load a from a xmIDocPtr and an in memory buffer using
gst xml_parse_doc and gst xml_parse_memory respectively. Both of these methods return a gboolean

indicating success or failure of the requested action.

87

Chapter 31. XML in GStreamer

31.3. Adding custom XML tags into the core XML data

It is possible to add custom XML tags to the core XML created with gst_xml_write. This feature can be
used by an application to add more information to the save plugins. The editor will for example insert the
position of the elements on the screen using the custom XML tags.

It is strongly suggested to save and load the custom XML tags using a namespace. This will solve the
problem of having your XML tags interfere with the core XML tags.

To insert a hook into the element saving procedure you can link a signal to the GstElement using the
following piece of code:

Xnh NP r ns;

ns = xmhiNewNs (NLLL, "http://gstreaner.net/gst-test/1.0/", "test");

thread = gst_el enent_factory nake ("thread", "thread");
g_si gnal _connect (GA@IECT (thread), " obj ect _saved',
GQALBAXK (object_saved), g strdup ("decoder thread"));

When the thread is saved, the object_save method will be called. Our example will insert a comment tag:

static void
obj ect _saved (Gt yj ect *object, xnhNodeRr parent, gpointer data)

{
xnh NodeR r child,

child = xnmhiNewchild (parent, ns, "corment", NLL);
xr NewChi | d (child, ns, "text", (gchar =*)data);

Adding the custom tag code to the above example you will get an XML file with the custom tags in it.
Here’s an excerpt:

<gst : el enent >
<gst : nane>t hr ead</ gst : nane>
<gst : type>t hread</ gst : t ype>
<gst : versi on>0. 1. 0</ gst : ver si on>

</ gst:children>
<t est : conment >
<t est : t ext >decoder thread</test:text>
</ test: conment >
</ gst: el enent >

88

Chapter 31. XML in GStreamer

To retrieve the custom XML again, you need to attach a signal to the GstXML object used to load the
XML data. You can then parse your custom XML from the XML tree whenever an object is loaded.

We can extend our previous example with the following piece of code.

xnh = gst_xnh_new ();

g_si gnal _connect (GQRIECT (xmh), "object_|oaded",
GQAULBAK (xnh_| caded), xnh);

ret = gst_xnmh_parse file (xnh, "xmTest.gst", NLL);

g _assert (ret = TRE;

Whenever a new object has been loaded, the xml_loaded function will be called. This function looks like:

static void
xnh_| caded (GtXM *xmh, Gty ect xobject, xnhNodeRr self, gpointer data)

{
xnh NodeR r children = self->xnhChil drenNode;

vhile (children) {
if (!strenp (chil dren->nane, " conment ")) {
xnh NodePt r nodes = children->xnhChi | drenNode;

vhile (nodes) {

if (!strecnp (nodes->hane, "text")) |
gchar +*nane = g.strdup (xnhNodeGet Gont ent (nodes));
gprint ("obect % loaded wth comment '9%’\n",
gst_obj ect_get _nane (obj ect), nane) ;
}
nodes = nodes->next;
}
}
children = children>next;

As you can see, you’ll get a handle to the GstXML object, the newly loaded GstObject and the
xmINodePtr that was used to create this object. In the above example we look for our special tag inside
the XML tree that was used to load the object and we print our comment to the console.

89

VIl. Appendices

GStreamer comes prepackaged with a few programs, and some useful debugging options.

Chapter 32. Debugging

GStreamer has an extensive set of debugging tools for plugin developers.

32.1. Command line options

Applications using the GStreamer libraries accept the following set of command line argruments that
help in debugging.

« --gst-debug-hel p Print available debug categories and exit
+ --gst-debug-l evel = LBVEL Sets the default debug level from 0 (no output) to 5 (everything)

« --gst-debug= LIST Comma-separated list of category name:level pairs to set specific levels for the
individual categories. Example: GST_AUTOPLUG:5,GST_ELEMENT_*:3

+ --gst-debug-no-cal or Disable color debugging output
+ --gst-debug-disabl e Disable debugging

+ --gst-pl ugi n-spew Enable printout of errors while loading GStreamer plugins.

32.2. Adding debugging to a plugin

Plugins can define their own categories for the debugging system. Three things need to happen:

« The debugging variable needs to be defined somewhere. If you only have one source file, you can Use
GST_DEBUG_CATEGORY_STATIC to define a static debug category variable.

If you have multiple source files, you should define the variable using GST_DEBUG_CATEGORY in
the source file where you’re initializing the debug category. The other source files should use
GST_DEBUG_CATEGORY_EXTERN to declare the debug category variable, possibly by including
a common header that has this statement.

« The debugging category needs to be initialized. This is done through
GST_DEBUG_CATEGORY _INIT. If you’re using a global debugging category for the complete
plugin, you can call this in the plugin’s plugin_init . If the debug category is only used for one of
the elements, you can call it from the element’s class init function.

+ You should also define a default category to be used for debugging. This is done by defining
GST_CAT_DEFAULT for the source files where you’re using debug macros.

91

Chapter 32. Debugging

Elements can then log debugging information using the set of macros. There are five levels of debugging
information:

1. ERROR for fatal errors (for example, internal errors)

2. WARNING for warnings

3. INFO for normal information

4. DEBUG for debug information (for example, device parameters)

5. LOG for regular operation information (for example, chain handlers)

For each of these levels, there are four macros to log debugging information. Taking the LOG level as an
example, there is

GST_CAT_LOG_OBJECT logs debug information in the given GstCategory and for the given
GstObject

GST_CAT_LOG logs debug information in the given GstCategory but without a GstObject (this is
useful for libraries, for example)

GST_LOG_OBJECT logs debug information in the default GST_CAT_DEFAULT category (as
defined somewhere in the source), for the given GstObject

GST_LOG logs debug information in the default GST_CAT_DEFAULT category, without a GstObject

92

Chapter 33. Programs

33.1. gst-register

gst-register is used to rebuild the database of plugins. It is used after a new plugin has been added to the
system. The plugin database can be found, by default, in /et ¢/ gst r eaner/ r eg. xnh

33.2. gst-launch

This is a tool that will construct pipelines based on a command-line syntax.

A simple commandline looks like:

gst -1 aunch filesrc location=hello. np3 I mad ! osssink

A more complex pipeline looks like:

gst -l aunch filesrc location=redpill.vob | npegdenux nanme=denux \
denux. audi o_0O! { ac3parse ! ab2dec ! osssink } \
denux. vi deo_00! { npeg2dec ! xvideosink }

You can also use the parser in you own code. GStreamer provides a function gst_parse_launch () that you
can use to construct a pipeline. The following program lets you create an MP3 pipeline using the
gst_parse_launch () function:

#include <gst/gst.h>

int

nain (int argc, char =*argv[])
{

Gst H enent *pi pel i ne;

Gst H enent *filesrc;

Garor *error = NLL;

gst_init (&rgc, &argy);

if (agc !'= 2) {
gprint ("usage: % <ilenane>\n", argv[Q]);
return -1

93

Chapter 33. Programs

}

pipeline = gst_parse |aunch ("filesrc name=ny filesrc I mad ! osssink', &error);
if (!pipeline) {
gprint ("Parse error: 9%\n', error->nessage);

exit (2);
}
filesrc = gst_bin get_by nane (GST BN (pipeline), "ny_filesrc");
g _obj ect_set (G@IECT (filesrc), "l ocation®, argv[1], NLL);
gst_elenent_set_state (pi peline, GST_STATE LAY NG ;

vwhile (gst_biniterate (GT_ BN (pipelineg)));
gst_elenent_set_state (pi peline, GBT_STATE NLL);

retun O

Note how we can retrieve the filesrc element from the constructed bin using the element name.

33.2.1. Grammar Reference

The gst-launch syntax is processed by a flex/bison parser. This section is intended to provide a full
specification of the grammar; any deviations from this specification is considered a bug.

33.2.1.1. Elements

nad

A bare identifier (a string beginning with a letter and containing only letters, numbers, dashes,
underscores, percent signs, or colons) will create an element from a given element factory. In this
example, an instance of the "mad" MP3 decoding plugin will be created.

33.2.1.2. Links

I'si nk

An exclamation point, optionally having a qualified pad name (an the name of the pad, optionally

preceded by the name of the element) on both sides, will link two pads. If the source pad is not specified,
a source pad from the immediately preceding element will be automatically chosen. If the sink pad is not
specified, a sink pad from the next element to be constructed will be chosen. An attempt will be made to

94

Chapter 33. Programs

find compatible pads. Pad names may be preceded by an element name, as in
ny_el enent _nane. si nk_pad

33.2.1.3. Properties

location="http://gstreaner.net"

The name of a property, optionally qualified with an element name, and a value, separated by an equals
sign, will set a property on an element. If the element is not specified, the previous element is assumed.
Strings can optionally be enclosed in quotation marks. Characters in strings may be escaped with the
backtick (\). If the right-hand side is all digits, it is considered to be an integer. If it is all digits and a
decimal point, it is a double. If it is "true", "false"”, "TRUE", or "FALSE" it is considered to be boolean.
Otherwise, it is parsed as a string. The type of the property is determined later on in the parsing, and the
value is converted to the target type. This conversion is not guaranteed to work, it relies on the
g_value_convert routines. No error message will be displayed on an invalid conversion, due to
limitations in the value convert API.

33.2.1.4. Bins, Threads, and Pipelines
(..

A pipeline description between parentheses is placed into a bin. The open paren may be preceded by a
type name, asinjackbin.(...) to make a bin of a specified type. Square brackets make pipelines,
and curly braces make threads. The default toplevel bin type is a pipeline, although putting the whole
description within parentheses or braces can override this default.

33.3. gst-inspect
This is a tool to query a plugin or an element about its properties.
To query the information about the element mad, you would specify:

gst -i nspect nad

Below is the output of a query for the osssink element:

Factory Details:
Long nane: Audio Snk (O
Qass: Snk/Audio

95

Chapter 33. Programs

Descri pti on: Qtput to a sound card via OGS
\fr si on: 0.331

Author (s): Eik Ve thinsen <onega@se. ogi . edu>, Wm Taynans <w mtaynans@hel | o. be>

Qopyright: (Q 199

Q) ect
+--- Gt j ect
+---Gst H enent
+---Gt &Bsd nk
Pad Tenpl at es:

INK tenplate: " sink’
Availability: A vays
Gapabi lities:

" osssi nk_sink’ :
MME type: 'audio/raw:
format: Sring int

endi anness: I nteger: 1234
wadth: List:

I nteger: 8

I nteger: 16
depth: List:

I nteger: 8

I nteger: 16

channel s: Integer range: 1 - 2
law Integer: 0

si gned: List:

Bool ean: FALSE

Bool ean: TRE

rate: Integer range: 1000 - 48000

Hement Hags:
GST_H BMENT_ THREADBUBESTED

Hement Inplenentation:
No | oopf unc(), nust be chai n-based or not configured yet
Has change state() function: gst _osssi nk_change_state
Has custom save thysel f() functi on: gst_el enent _save t hysel f
Has custom restore thysel f() functi on: gst_el enent_restore_thysel f

Qocking Interaction:
elenent requires a clock
elenent provides a clock: Gt @sG ock

Pads:
INK sink
I npl enent at i on:
Has chai nfunc(): 0x40056f cO
Pad Tenpl ate: ' sink’

Hement Argunents:
nane : Sring (Default "elenent")

96

Chapter 33. Programs

devi ce . Qring (Default "/ dev/ dsp")

mt e : Boolean (Default false)

f or nat © Integer (Default 16)

channel s : BEum "Gt Audi osi nkChannel s" (defaul t
(0): Slence
(D): Mno
(2): Sereo

frequency . Integer (Default 11025)

fragnent . Integer (Default 6)

buf f er - si ze : Integer (Default 4096)

Hement Sgnas:
" handof f " : void user_function (GtGsInk * obect,
gpoi nter user_data);

To query the information about a plugin, you would do:

gst -i nspect gstel enent s

97

)

Chapter 34. Components

FIXME: This chapter is way out of date.

GStreamer includes components that people can include in their programs.

34.1. GstPlay

GstPlay is a GtkWidget with a simple API to play, pause and stop a media file.

34.2. GstMediaPlay

GstMediaPlay is a complete player widget.

34.3. GstEditor

GstEditor is a set of widgets to display a graphical representation of a pipeline.

98

Chapter 35. GNOME integration

GStreamer is fairly easy to integrate with GNOME applications. GStreamer uses libxml 2.0, GLib 2.0
and popt, as do all other GNOME applications. There are however some basic issues you need to address
in your GNOME applications.

35.1. Command line options

GNOME applications call gnome_program_init () to parse command-line options and initialize the
necessary gnome modules. GStreamer applications normally call gst_init (&argc, &argv) to do the same
for GStreamer.

Each of these two swallows the program options passed to the program, so we need a different way to
allow both GNOME and GStreamer to parse the command-line options. This is shown in the following
example.

/ * exanpl e-begin gnone.c */
#include <gnone. h>
#include <gst/gst.h>

int

nmin (int arge, char »**argv)

{

Gt Popt (pt i on options[] = {
{ NLL, ’'\0, POPT_ARGINILLE TABLE N.LL, O, "Breaner", NLL },
POPT_TABLEAN\D

h
GhonePr ogram * program
popt Gont ext context;
const gchar ** argvn;

Gst H enent * pi pel i ne;
Gst H enent *Src, *sink;

options[Q].arg = (void =) gst_init_get popt_table 0;

gprint ("Glling gnone _programinit wth the &reaner popt table\n");

/ * gnone_programinit wll initiaize G2 r eaner now

* as a side effect of having the Rreaner popt table passed. */

if (! (program = gnone_programinit (" ny_package", "0.1", LIBGNOMBU_MDUE
arge, argv,
GNOME_PARAM PCPT_TABLE, opti ons,
NLL)))

gerror ("gnome_programinit failed");

gprint ("Getting gnone-program popt context\n");
g _obj ect_get (program " popt - cont ext ", &cont ext , NLL);
argvn = popt Gt Ags (context);

99

if (targvn) {

gprint ("Run this exanple wth sone argunents

return O;

}

gprint ("Rinting rest of argunents\n");
vwhile (xargvn) {

gprint ("argunent: 9%\n", *xargvn);
++ar gvn;

}

/+ do sone C&reaner things to show everythings

Chapter 35. GNOME integration

to see how it works.\n");

initialized properly =/

gprint ("Doing sone CHreaner stuff to show that everything works\n");

pipeline = gst_pipeline new ("pipeline");

src = gst_elenent_factory nake ("fakesrc",

sink = gst_elenent_factory nake ("fakesi nk",
gst_bin_add nany (GT_ BN (pipeline),

gst_el enent _|ink (src, sink);

gst_elenent_set_state (pi peline, GST_STATE LAY NG ;
gst_ biniterate (GT BN (pipeline));
gst_elenent_set_state (pi peline, GST_STATE NLLLY);
return O;

}

/ * exanpl e-end gnone.c */

"Sink');

NALL);

If you try out this program, you will see that when called with --help, it will print out both GStreamer
and GNOME help arguments. All of the arguments that didn’t belong to either end up in the argvn

pointer array.

FIXME: flesh this out more. How do we get the GStreamer arguments at the end ? FIXME: add a GConf

bit.

100

Chapter 36. Windows support

36.1. Building GStreamer under Win32

There are different makefiles that can be used to build GStreamer with the usual Microsoft compiling
tools.

The Makefile is meant to be used with the GNU make program and the free version of the Microsoft
compiler (http://msdn.microsoft.com/visualc/vctoolkit2003/). You also have to modify your system
environment variables to use it from the command-line. You will also need a working Platform SDK for
Windows that is available for free from Microsoft.

The projects/makefiles will generate automatically some source files needed to compile GStreamer. That
requires that you have installed on your system some GNU tools and that they are available in your
system PATH.

The GStreamer project depends on other libraries, namely :
« GLib

* popt

+ libxml2

- libintl

« libiconv

There is now an existing package that has all these dependencies built with MSVC7.1. It exists either as
precompiled librairies and headers in both Release and Debug mode, or as the source package to build it
yourself. You can find it on http://mukoli.free.fr/gstreamer/deps/.

Notes: GNU tools needed that you can find on http://gnuwin32.sourceforge.net/

« GNU flex (tested with 2.5.4)
« GNU bison (tested with 1.35)

and http://www.mingw.org/

+ GNU make (tested with 3.80)

the generated files from the -auto makefiles will be available soon separately on the net for
convenience (people who don’t want to install GNU tools).

101

Chapter 36. Windows support

36.2. Installation on the system

By default, GSTreamer needs a registry. You have to generate it using "gst-register.exe". It will create the
file in c:\gstreamer\registry.xml that will hold all the plugins you can use.

You should install the GSTreamer core in c:\gstreamer\bin and the plugins in c:\gstreamer\plugins. Both
directories should be added to your system PATH. The library dependencies should be installed in c:\usr

For example, my current setup is :

« c:\gstreaner\registry. xn

» c:\gstreaner\bi n\gst-inspect. exe

« c:\gstreaner\bi n\gst-|aunch. exe

« c:\gstreaner\bi n\gst-register. exe
« c:\gstreaner\bi n\gst bytestreamd! |
« c:\gstreaner\bi n\gstel enents. d |

« c:\gstreaner\bi n\gstoptinal schedul er.dl |
» c:\gstreaner\bi n\gstspider.dl |

« c:\gstreaner\bin\libgtreaner-0.8.dl |
e c:\gstreaner\pl ugi ns\gst-libs.dll

» c:\gstreaner\pl ugi ns\ gst nat roska. di |
« c:\usr\bin\iconv. d|

e c\usr\binintl.dll

« c:\usr\bin\libglib-2.0-0.dl|

« c:\usr\bin\libgnodul e-2.0-0.dl |

e c:\usr\bin\libgobject-2.0-0.dl |

e c:\usr\bin\libgthread-2.0-0.dl |

e c:\usr\bin\libxm2. dll

e c:\usr\bin\popt.d |

102

Chapter 37. Quotes from the Developers

As well as being a cool piece of software, GStreamer is a lively project, with developers from around the
globe very actively contributing. We often hang out on the #gstreamer IRC channel on irc.freenode.net:
the following are a selection of amusing® quotes from our conversations.

14 Jun 2004

teuf : ok, things work much better when | don’t write incredibly stupid and buggy code

thaytan: | find that too

23 Nov 2003

Uraeus: ah yes, the sleeping part, my mind is not multitasking so | was still thinking about exercise
dolphy: Uraeus: your mind is multitasking

dolphy: Uraeus: you just miss low latency patches

14 Sep 2002

--- wingo-party is now known as wingo

* wingo holds head

16 Feb 2001

wtay: | shipped a few commerical products to >40000 people now but GStreamer is way more
exciting...

16 Feb 2001

* tool-man is a gstreamer groupie

14 Jan 2001

Omega: did you run Idconfig? maybe it talks to init?
wtay: not sure, don’t think so... I did run gstreamer-register though :-)
Omega: ah, that did it then ;-)

wtay: right

103

Chapter 37. Quotes from the Developers

Omega: probably not, but in case GStreamer starts turning into an OS, someone please let me know?

9 Jan 2001

wtay: me tar, you rpm?

wtay: hehe, forgot "zan"

Omega: ?

wtay: me tar"zan", you ...

7 Jan 2001

Omega: that means probably building an agreggating, cache-massaging queue to shove N buffers
across all at once, forcing cache transfer.

wtay: never done that before...

Omega: nope, but it’s easy to do in gstreamer <g>

wtay: sure, | need to rewrite cp with gstreamer too, someday :-)

7 Jan 2001

wtay: GStreamer; always at least one developer is awake...

5/6 Jan 2001

wtay: we need to cut down the time to create an mp3 player down to seconds...

richardb: :)

Omega: I’m wanting to something more interesting soon, | did the "draw an mp3 player in 15sec"
back in October *99.

wtay: by the time Omega gets his hands on the editor, you’ll see a complete audio mixer in the
editor :-)

richardb: Well, it clearly has the potential...

Omega: Working on it... ;-)

104

Chapter 37. Quotes from the Developers

28 Dec 2000
MPAA: We will sue you now, you have violated our IP rights!
wtay: hehehe
MPAA: How dare you laugh at us? We have lawyers! We have Congressmen! We have LARS!
wtay: 1’m so sorry your honor

MPAA: Hrumph.

* wtay bows before thy

4 Jun 2001

taaz: you witchdoctors and your voodoo mpeg?2 black magic...
omega_: um. | count three, no four different cults there <g>
ajmitch: hehe

omega_: witchdoctors, voodoo, black magic,

omega_: and mpeg

Notes

1. No guarantee of sense of humour compatibility is given.

105

	GStreamer Application Development Manual (0.8.5)
	Table of Contents
	List of Figures
	I. Overview
	Chapter 1. Introduction
	1.1. What is GStreamer?

	Chapter 2. Motivation
	2.1. Current problems
	2.1.1. Multitude of duplicate code
	2.1.2. 'One goal' media players/libraries
	2.1.3. Non unified plugin mechanisms
	2.1.4. Provision for network transparency
	2.1.5. Catch up with the Windows world

	Chapter 3. Goals
	3.1. The design goals
	3.1.1. Clean and powerful
	3.1.2. Object oriented
	3.1.3. Extensible
	3.1.4. Allow binary only plugins
	3.1.5. High performance
	3.1.6. Clean core/plugins separation
	3.1.7. Provide a framework for codec experimentation

	II. Basic Concepts
	Chapter 4. Elements
	4.1. What is an element ?
	4.2. Types of elements
	4.2.1. Source elements
	4.2.2. Filters and codecs
	4.2.3. Sink elements

	Chapter 5. Pads
	5.1. Types of pad
	5.1.1. Dynamic pads
	5.1.2. Request pads

	5.2. Capabilities of a pad
	5.2.1. Capabilities
	5.2.2. What are properties ?
	5.2.3. What capabilities are used for

	Chapter 6. Plugins
	Chapter 7. Linking elements
	Chapter 8. Bins
	Chapter 9. Buffers
	Chapter 10. Element states
	10.1. The different element states
	10.2. The NULL state
	10.3. The READY state
	10.4. The PAUSED state
	10.5. The PLAYING state

	III. Basic API
	Chapter 11. Initializing GStreamer
	11.1. The popt interface

	Chapter 12. Elements
	12.1. Creating a GstElement
	12.2. GstElement properties
	12.3. GstElement signals
	12.4. More about GstElementFactory
	12.4.1. Getting information about an element using the factory details
	12.4.2. Finding out what pads an element can contain
	12.4.3. Different ways of querying the factories

	Chapter 13. Pads
	13.1. Types of pad
	13.1.1. Dynamic pads
	13.1.2. Request pads

	13.2. Capabilities of a pad
	13.2.1. Capabilities
	13.2.2. Getting the capabilities of a pad
	13.2.3. Creating capability structures

	Chapter 14. Plugins
	Chapter 15. Linking elements
	15.1. Making simple links
	15.2. Making filtered links

	Chapter 16. Bins
	16.1. Creating a bin
	16.2. Adding elements to a bin
	16.3. Custom bins
	16.4. Ghost pads

	Chapter 17. Buffers
	Chapter 18. Element states
	18.1. Changing element state

	IV. Building an application
	Chapter 19. Your first application
	19.1. Hello world
	19.2. Compiling helloworld.c
	19.3. Conclusion

	Chapter 20. More on factories
	20.1. The problems with the helloworld example
	20.2. More on MIME Types
	20.3. GStreamer types
	20.3.1. MIME type to id conversion
	20.3.2. id to GstType conversion
	20.3.3. extension to id conversion

	20.4. Creating elements with the factory
	20.5. GStreamer basic types

	V. Advanced GStreamer concepts
	Chapter 21. Threads
	21.1. Constraints placed on the pipeline by the GstThread
	21.2. When would you want to use a thread?

	Chapter 22. Queues
	Chapter 23. Cothreads
	23.1. Chainbased elements
	23.2. Loopbased elements

	Chapter 24. Understanding schedulers
	Chapter 25. Clocks in GStreamer
	Chapter 26. Dynamic pipelines
	Chapter 27. Type Detection
	Chapter 28. Autoplugging
	28.1. Using autoplugging
	28.2. Using the GstAutoplugCache element
	28.3. Another approach to autoplugging
	28.3.1. The spider element
	28.3.2. Spider features

	Chapter 29. Your second application
	29.1. Autoplugging helloworld

	Chapter 30. Dynamic Parameters
	30.1. Getting Started
	30.2. Creating and Attaching Dynamic Parameters
	30.3. Changing Dynamic Parameter Values
	30.4. Different Types of Dynamic Parameter
	30.4.1. GstDParam the base dparam type
	30.4.2. GstDParamSmooth smoothing realtime dparam
	30.4.3. Timelined dparams

	VI. XML in GStreamer
	Chapter 31. XML in GStreamer
	31.1. Turning GstElements into XML
	31.2. Loading a GstElement from an XML file
	31.3. Adding custom XML tags into the core XML data

	VII. Appendices
	Chapter 32. Debugging
	32.1. Command line options
	32.2. Adding debugging to a plugin

	Chapter 33. Programs
	33.1. gstregister
	33.2. gstlaunch
	33.2.1. Grammar Reference
	33.2.1.1. Elements
	33.2.1.2. Links
	33.2.1.3. Properties
	33.2.1.4. Bins, Threads, and Pipelines

	33.3. gstinspect

	Chapter 34. Components
	34.1. GstPlay
	34.2. GstMediaPlay
	34.3. GstEditor

	Chapter 35. GNOME integration
	35.1. Command line options

	Chapter 36. Windows support
	36.1. Building GStreamer under Win32
	36.2. Installation on the system

	Chapter 37. Quotes from the Developers

