
‘+.ly’:

0.1 Introduction

This document shows all kinds of tips and tricks, from simple to advanced. Here you may
also find dirty tricks, or very the very latest features that have not been documented or fully
implemented yet. This document is for LilyPond version 2.0.1.

‘ac-extra-voice.ly’:

When using automatic staff changes for the one voice, the other voice must be given a name
explicitely.

4
6�

4
6� >>>>

">>>
>
"

>>

(

>

>�>3

>

>

>

>

>

>/

>

>

>

>
>
>Z

>
>Z

>
>Z

>

>Z

>

>Z

>

>Z

>>

(

>>>>
">>>

>
"

>>>>

"

>>>>
">>>

>
"

>>>>�
4
6

"� 4
6³

‘add-staccato.ly’:

Using make-music, you can add various stuff to notes. Here is an example how to add staccato
dots. Note: for this simple case one would not use scm constructs. See separate-staccato.ly first.

�� >W>W>>� �
‘add-text-script.ly’:

You can add various stuff to notes using make-music. Here is an example of how to add an
extra fingering.

In general, first do a display of the music you want to create, then write a function that will
build the structure for you.

��
6
>
3� �

‘ambitus-mixed.ly’:

Ambituses can be switched off or translated by using applyoutput.

If you want to mix per-voice and per-staff ambituses, then you have to define you have to
declare a new context type derived from the Voice context or Staff context. The derived
context must consist of the Ambitus_engraver and it must be accepted by a proper parent
context, in the below example the Staff context or Score context, respectively. The original
context and the derived context can then be used in parallel in the same score. (this is not
demonstrated in this file).

��>>>3>
�� ==

==

3

3

>>
>>

>>
>>

>>
>>

3

3

>>� �
>>3> >>>� �

‘ancient-accidentals.ly’:

Accidentals are available in different ancient styles. This file lists all of them.

4
3� 895 >5>5>893 >3>3>892 >2>>89/ >/>/>897 >7>7Accidental style = #’default>� 4
3

�66� 895 >5>5>89� >�>�>89� >�>>89 � >�>�>897 >7>7Accidental style = #’hufnagel>

�1111� 895 >5>5>89� >�>�>89� >�>>89 � >�>�>897 >7>7Accidental style = #’medicaea>

�1616� 895 >5>5>89� >�>�>89� >�>>89 � >�>�>897 >7>7Accidental style = #’vaticana>

�2121� 895 >5>5>89� >�>�>89� >�>>89 � >�>�>897 >7>7Accidental style = #’mensural>
‘ancient-font.ly’:

Here is a display of many (all?) symbols that are included in LilyPond’s support of ancient
notation.

���_

·� � �i
�

��

�

5f
�N�n N`�

:

����

:

C� C�

4

C� ?�

4

?� ?�

4

?�

5i � � � ·
?_ ���

e � � �
_ ������_

� � �e j

�

��

�

j

�W�WdM

;

MIIH

;

HG

4

GF� F� D
�

�
:

D�

�;

� � �
c ���
ii

���c
� � �

���Z�
+t
Z�Z~�X�X�

*
Xd

´
>
µ>´
>
µ>®
>>̄>̈©>¢>£>

²
>
±
>²>
±
>¬>
«>¦>¥> >� �

�
>t
Y

(('&x
�
%
Y�Y�

#r
Y�V�V�Vb�

"

W

��

�

5

W�

5

W

s � � �
} ������}

� � �s ��<� <<<�:�

�

:

Z�Z�Z�Z
�
�
;x
Z�

<
Z��[�

;
[�[

�
�
;
[�\�

;v
\

00/.
�
-v
\|�Z�

+

Z

w � � �� � �w � <� =� =x� =� =� =� =� =� =� =� =� ====z===x�� :� <� <�:
‘ancient-time.ly’:

Should use old style.

Â�� Â
‘bagpipe.ly’:

Here’s an example of bagpipe music.

8
6� �

>>
�>

>
�
>> :>>

>�>>
�>�

>>> :�>> :>>>
�
>>

�>>� 8
6

� 8
9

55

8
9� �>>

�>>> :>
�>�>�>>>>>

�>�>>> :>>>
> :�>

�>>
>
>�

>>= :>
>
>

� 8
6

99

8
6� �

>>> :>>>
> :�>

�>>
>
>�

>>> :�>> :>>>
�
>>

�>

�1313�
> :>>

>
> :> :>>>

�
>>

�>�
>�>>> :>>>>> :>

>
>>>

>
>

‘bar-always.ly’:

By setting barAlways and defaultBarType, you can automatically insert barlines every-
where.

�� :::::::: >:::: >:::: >>� �
‘bar-lines-lyric-only.ly’:

You can move around Bar_engraver and Span_bar_engraver if you want bar lines on lyrics.

��

�� <
foo

foo

bla

<

<
bar

bar

die

<

<� �
foo

foo

bla

<� �

‘bar-lines.ly’:

Different types of bar lines demonstrated.

�� >>>:: >>:: >>>� �
‘bar-number-every-five-reset.ly’:

If you would like the bar numbers to appear at regular intervals, but not starting from
measure zero, you can use the context function, set-bar-number-visibility, to automatically
set barNumberVisibility so that the bar numbers appear at regular intervals, starting from
the \applycontext.

A �� <<<<5<<<<� �A

�99� <<<<15<<<<11<<
‘bar-number-regular-interval.ly’:

Bar numbers can also be printed at regular intervals.

�� <<
8

<<<<
4

<<<� �
‘bar-number-show-all.ly’:

Second line has bar numbers on start of every measure.

�� <<<� �

4� <
6

<
5� <

4

‘beam-auto-4-8.ly’:

You can override LilyPond’s automatic beaming.

8
4� >>>>>>>>>>� 8
4

‘beam-auto-override.ly’:

This shows how auto-beaming settings can be overridden.

The auto-beamer will only engrave beams that end when:

• a rest is encountered

• another beam (entered manually) is encountered

• there’s a ’gap’ in the beam note’s durations

The beam will be ended also when now % beamAutoEnd = 0.

4
2� �>�>�>�>>>�>*>>>*�>>>�>>>�>>>>>>>>>>>>>>>>>� 4
2

‘beam-auto.ly’:

The auto-beam engraver has presets for common time signatures.

2
1� >>>>>>

4
1>>>>>>>>>>>>>>>>>>>>>>>>>>>>� 2

1

�66� >>>>>>>>>>>>>>>>>>>>>>>>�>>>>>>�>8
1>>>>>>>>

�1212� >>>>>>>>>>>>
4
2>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

�1515� >>>>>>>>>>>>
2
3>>>>>>>>>>>>�>�>8

2>>>>>>>>>>>>>>>>

�2020� >>>>>>>>>>>>>>>>>>
4
3>>>>>>>>>>>>>>>>>>>>>>>>

�2323� >>>>>>>>�>>>>>>>>>>>>>>>>>>>>>
8
3>>>>>>>>>>>>>>>>>>>>>>>>

�2828� 8
4
8
4>>

� 8
4

3030

8
4� >>>>>>

8
6>>>>>>>>>>>>>>>>>>>>>>>>>>>>

�3434� >>>>>>>>>>>>>>>>>>>>>>>>>>>
8
9>>>>>>>>>>>>

‘beam-control.ly’:

Beam positions may be controlled manually, by setting positions in the Beam grob.

�� >>>>>>>>� �
‘beam-count.ly’:

You can alter the number of stems in a beam. Here we see two sets of four 32nds joined as
if they were 8th notes.

�� >>>>>>>>>>>>>>>>� �
‘beam-dir-functions.ly’:

There are several ways to calculate the direction of a beam:

majority number count of up or down notes

mean mean center distance of all notes

median mean centre distance weighted per note

You can spot the differences of these settings from these simple examples:

These beam direction functions are defined in ‘scm/beam.scm’. If your favourite algorithm
isn’t one of these, you can hook up your own.

4
3� >>>>>>>>>

8
3>>>>>>� 4

3

‘beam-isknee.ly’:

LilyPond can beam across a Piano Staff.

��
��

>>
>� �

� �³
‘beam-neutral-direction.ly’:

When a beam falls in the middle of the staff, LilyPond normally prints the beam pointing
down. However, this behaviour can be altered if desired.

�� >>>>>>� �
‘beam-rest.ly’:

Beams over rests.

�� >>>+3>>>>+3>>>*(� �
‘blank-notes.ly’:

You can suppress printing of LilyPond output. This example shows you how to print invisible
(or blank) notes. This can be very useful when you want to do wierd tricks with LilyPond
(especially with slurs, since you can’t attach a slur to a rest or spacer rest).

�� >>>>� �
‘blank-paper-tab.ly’:

Blank music paper, another example: empty staffs and a tablature staff.

��
��� �

� �

�
��
�

�
��
�

�
��
�

‘blank-paper.ly’:

Blank music paper with clefs. Change the repeat count to get more staves.

��

��

��
‘boxed-molecule.ly’:

You can override the molecule callback to draw a box around arbitrary grobs.

��
<F>> :�>

foo>
� �

‘caps.ly’:

You can set the font to use small caps.

�� �
trix?

>�
Ma

>�
The

>
is

>
what

>� �

‘cautionaries.ly’:

LilyPond can display cautionary accidentals in different ways.

�//� 892 =89/ =2/<<2=/=2/<<892 =89/ =2/<<� // �
‘chord-names-german.ly’:

By setting ChordNames.chordRootNamer, the root of the chord may be named with a different
function.

Setting \germanChords gives true german chord-names, \semiGermanChords gives semi-
german chord-names - - with Bb and keeping the english names.

german

semi-german

�� 3
<<<

b/
3

B

b/
4

B

3B/3B

77/
<<<

his/
/

H

his/
/

H

/B//B

// <<<
h/H

h/H

B/B

///
<<<

cis/
/

C

cis/
/

C

/C//C

<<<
� �

c/Csemi-german

c/Cgerman

C/C

‘chord-names-jazz.ly’:

Chord names are generated from a list pitches. The functions constructing the names are
customisable. This file shows Jazz chords, following Ignatzek (1995), page 17 and 18, Banter
chords, and an alternative Jazz chord notation.

Ignatzek (default)

Alternative

�� 33 <<<
5333C

oC

/<<<
5/C

+C

3<<<
33C

mC

<<<� �
CAlternative

CIgnatzek (default)

�
Alt

Def

55

Def

Alt

� 33 <<<<
7/5333C

53/MmC

53 3 <<<<
735333C

o7C

<<<<
7/C

MC

33 <<<<
337C

7mC

3<<<<
7C

7C

�
Alt

Def

1010

Def

Alt

� 33 3 <<<<
53337C

/oC

/<<<<
7/5/C

5//MC

3<<<<
7/33C

MmC

3/ <<<<
5/7C

5//7C

�
Alt

Def

1414

Def

Alt

� 33 <<<<<
339C

9mC

3<<<<<
9C

9C

3 <<<<
633C

6mC

<<<<
6C

6C

�
Alt

Def

1818

Def

Alt

� 33 <<<<<
937C

93/7C

33 3 <<<<<
53339C

9/53/7mC

33 <<<<<<
3311C

11mC

33
<<<<<<<

3313C

13mC

�
Alt

Def

2222

Def

Alt

� 3<<<<<<<
13C

13C

/3 <<<<<<
11/9C

11//7C

3<<<<<<
11C

11C

/3 <<<<<
9/7C

9//7C

�
Alt

Def

2626

Def

Alt

� 33<<<<<<<
13311C

133/7C

// 3 <<<<<<
11/9/7C

11//9//7C

/3/ <<<<<
9/5/7C

9//5//7C

3/ 3<<<<<<<
13311/9C

133/11//7C

�
Alt

Def

3030

Def

Alt

� 33<<<<<<<
13311C

133/7C

<<<<<
7/9C

9/MC

/3 <<<<<<
11/9C

11//7C

33 3<<<<<<<
1339311C

133/93/7C

�
Alt

Def

3434

Def

Alt

� <<<<<<<
7/13C

13/MC

<<<<<
7/9C

9/MC

33 <<<<<<<
9313C

13/93/7C

33 3<<<<<<<
1339311C

133/93/7C

�
Alt

Def

3838

Def

Alt

� 3<<<<
754addC

4sus/7C

<<<
54addC

4susC

33 <<<<<<<
9313C

13/93/7C

/<<<<<<
11/7/9C

11//MC

�
Alt

Def

4242

Def

Alt

� 3<<<<
11add33C

11addmC

<<<<
9addC

9addC

3<<<<<
9754addC

4sus/9C

‘chord-names-no-inversions.ly’:

Chord names don’t attempt to find inversions and bass notes.

�� <<<<

133add/103E

<<<
63mE

<<<� �
C

‘chords-without-melody.ly’:

Jazz chords can also be used without notes.

::::3EMC73B7FMF

‘clef-8-syntax.ly’:

Appending _8 or ^8 to a clef name will add an octavation sign to the clef, although the clef
name needs to be in quotes (such as "treble^8").

��
8

>>>>8�>>>>
8

� �
‘clef-end-of-line.ly’:

Scales, but with clef and key signature at the end of the line.

//�� //<<<<<<<<
99 2 /�� 2 /<<<<<<<<

‘clef-manual-control.ly’:

You can use the clef engraver by using \property directly. \clef is merely a front-end to
this. All the notes in this example are central C.

�� >�>�>
8�>�>�>� �

‘coriolan-margin.ly’:

Demonstration of how to set up an orchestral score (Beethoven’s Coriolan overture).

2 Flauti ��

2 Oboi ��

4in B
Clarinetti ��
2 Fagotti ��

4in E
Corni ��

(C)
2 Trombe ��

(C-G)
Timpani ��

Violino I ��

Violino II ��

Viola ��

Contrabasso
e
Violoncello �� <� �
Contrabasso
e
Violoncello

<� �Viola

<� �Violino II

<� �Violino I

<� �
(C-G)
Timpani

<� �
(C)
2 Trombe

<� �
4in E

Corni

<� �2 Fagotti

<� �
4in B

Clarinetti

<� �2 Oboi

<� �2 Flauti

³

�

�

�

�

�

�

�

�

�

�

�

Cb.
Vc.

Vla.

Vl. II

Vl. I

Timp.

(C)
Tbe.

)4Cor(E

Fg.

)4Cl(B

Ob.

Fl.

22

Fl.

Ob.

)4Cl(B

Fg.

)4Cor(E

(C)
Tbe.

Timp.

Vl. I

Vl. II

Vla.

Cb.
Vc.

�

�

�

�

�

�

�

�

�

�

� <

<

<

<

<

<

<

<

<

<

<

³

‘count-systems.ly’:

Display the number of systems, or the system number of a Grob. This can be most useful to
assertain that a piece uses a specified number of lines.

�� <<� �
‘crescendi.ly’:

LilyPond can print crescendi in a number of different ways.

�� <<<<<
mf

<<<
pp

<
fff

� �
cresc.

‘cue-notes.ly’:

Cue notes should be set in smaller type.

Horn in F �� />/>/>
Horn

>�>>�>Bsn.*�#
21� �Horn in F

‘divisiones.ly’:

Divisiones are gregorian variants of breathing signs. Choices are divisioMinima,
divisioMaior divisioMaxima and finalis, virgula and caesura.

��
Blah

>
divisio maxima

blam.

>>
blah

>
blub,

>>
Blah

>
divisio maior

blam.

>>
blah

>
blub,

>>
Blah

>
divisio minima

blam.

>>
blah

>
blub,

>>
Blah

>� �

��
blam.

>>
blah

>
blub,

>>p

Blah

>
caesura

blam.

>>
blah

>
blub,

>>n

Blah

>
virgula

blam.

>>
blah

>
blub,

>>
Blah

>
finalis

blam.

>>
blah

>
blub,

>>

‘drarn-slurs.ly’:

Slurs can be forced to always attach to note heads.

�� >>>>>>>>� �
‘drarn.ly’:

You can attach slurs and ties to noteheads.

8
3� >>>>>>� 8
3

‘dynamic-absolute-volume.ly’:

Absolute dynamics have effect in MIDI files.

�� <
sf

<
fff

<
ff

<
f

<
mf

<
mp

<
p

<
pp

<
ppp

� �
‘dynamic-extra.ly’:

Additional tricks for dynamics. Pi‘u forte dynamic script.

�� ====>
fpiù

>� �
‘embedded-postscript.ly’:

By inserting the TEX command \embeddedps, you can insert postscript directly into the
output.

�� <>>� �
‘embedded-scm.ly’:

You can embed scm functions in your scores.

�� >� �
‘embedded-tex.ly’:

You can embed Tex commands in your score.

�� 3 × à deux>� �
‘engraver-contexts.ly’:

In polyphonic notation, many voices can share a staff: In this situation, the accidentals and
staff are shared, but the stems, slurs, beams, etc. are private to each voice. Hence, engravers
should be grouped. The engravers for note head, stems, slurs, etc. go into a group called “Voice
context,” while the engravers for key, accidental, bar, etc. go into a group called “Staff context.”
In the case of polyphony, a single Staff context contains more than one Voice context. Similarly,
more Staff contexts can be put into a single Score context.

�//� >V
>V>W

>W>W
>W>W

>W>W
>W>>/>>>>2 >>2 3>>� // �

‘engraver-one-by-one.ly’:

The notation problem, what symbols to create, is handled by plugins. Each plugin is called
Engraver. In this example, we switch on engravers one by one, in the following order

Note heads

Staff symbol

Clef

Stem

Beams, slurs, accents

Accidentals, bar lines, time signature, and key signature.

Engravers are grouped. For example, note heads, slurs, beams etc. form a Voice context.
Engravers for key, accidental, bar, etc. form the Staff context.

>>>>>>>>>>
‘extra-staff.ly’:

You can add an extra staff after the beginning of a piece.

��
��

<

<

<

<� �

<

<

<

<

<� �

<� �

‘figured-bass-alternate.ly’:

An alternate method to make bass figures is to use markup texts.

�� /
3
5
6

>2
2
6

>
7

>/
6

>� �
‘fill-a4.ly’:

This should fill a4 paper.

�� <� �
�22� <
�33� <
�44� <
�55� <
�66� <
�77� <
�88� <
�99� <

�1010� <
�1111� <
�1212� <
�1313� <
�1414� <
�1515� <
�1616� <
�1717� <
�1818� <
�1919� <
�2020� <
�2121� <
�2222� <
�2323� <
�2424� <
�2525� <
�2626� <
�2727� <
�2828� <

�2929� <
�3030� <
�3131� <
�3232� <
�3333� <
�3434� <
�3535� <
�3636� <

‘follow-thread.ly’:

Theads can be traced automagically when they switch staves by setting property
followVoice.

��
��

<
==� �

<� �³
‘force-hshift.ly’:

Force hshift to override collisions.

�� >>>>>>>>� �
‘gourlay.ly’:

This is taken from Gourlay’s paper on breaking lines.

�� =�>
= :> :>===

3

==>>=>>=� �

4�� <<4

‘gregorian-scripts.ly’:

Gregorian Scripts:

ictus, circulus, semicirculus, accentus, episem.

TODO: augmentum. Syntax: either as bracket (\augmentumInitium, \augmentumFinis), or
as head prefix with subsequently collecting all dots and putting them behind the ligature in a
vertical row. Counterexample to the second approach: Graduale Triplex, tempus per annum,
hebdomada septima, alleluia (page 280).

FIXME: horizontal spacing (ragged right mode).

FIXME: padding/minimum-distance is fragile.

] ????Î?Ñ?Ò?Í]
‘harmonic.ly’:

For stringed instruments, artificial harmonics are notated with two different notehead styles
on the same stem.

�� 5>>� �
‘header-ifelse.ly’:

High level functionality (eg. conditional defines), can be accomplished with GUILE.

This example puts the current version in the tagline via Scheme. Since the tagline isn’t used
in creating the webpage, this example doesn’t output anything unusual in the collated snippets.

�� >� �
‘hshift.ly’:

You can manually shift notes horizontally.

�� >>>>>� �
‘hymn.ly’:

You can combine two parts on the same staff using the part combiner. For vocal scores
(hymns), there is no need to add solo/a2 texts, so they should be switched off.

�� ==>=>>>>>>>>>>>
�
>>> :> :>>� �

‘improv.ly’:

Noteheads for improvisation have a different shape.

�� >
mE

>>>>F�G
7mB

G
7m3B

�GF�G
7mA�>>>>>>>>� �

7mE

‘incipit.ly’:

This shows how to make an “incipit” to indicate scordatora tuning of a violin part, using the
clefStyle property. The two first bars of Biber’s Rosary sonata III.

2
2

2
2

>3
>
>>2>

>
>>>e

>

>/

>

>

>

>2>�>
� = :// �

> :� // �

/

/

>

>>�>

= :2
2

> :2
2

‘instrument-name-grandstaff.ly’:

You can name the whole grandstaff in addition to individual staffs.

Violini

vn I ��

vn II �� >� �vn II

>� �vn I

Violini ³
‘ly2dvi-testpage.ly’:

This file tests ly2dvi titling. It should be processed with ly2dvi.

�� <<<<� �
‘maximum-rest-count.ly’:

Control the number of rests in a collision with maximum-rest-count.

�� �
((>*((*

(
((

((((
((>>>� �

‘mensural-ligatures.ly’:

LilyPond can print mensural ligatures.

��

·y ��:M

3M;;;3

:M

3M
;
;

;
;

;
;

:y ·

3� �

y
��

y :M

3M
;
;

<
<

<
<

;M

3M
8

;<<

:M

3M
;
;

<
<

<
<

‘midi-scales.ly’:

MIDI and midi2ly test file. Diff between this and midi2ly.py should be minimal.

�� >>>>//>>>>>>>>/>>>>>>>>� �

� //66 //� //////////>>>>>>>>////>>>>>>>>///>>>>

� /////1111 /////� >>>>
///////>>>>>>>>//////>>>>>>>>

� ///////1616 ///////� ////>/>>>>>>>/>/>>>>>>>2222222>>>>

� //2121 //� >>>>
////>/>>>>>>>///>/>>>>>>>

� ////2626 ////� //////////////>7>>>>>>>//////>7>>>>>>>/////>/>>>

� ///////3131 ///////�
>>>>33>>>>>>>>2222222 3>7>>>>>>>

� 333636 33� 3333333333
>>>>>>>>3333

>>>>>>>>333
>>>>

� 333334141 33333� >>>>3333333
>>>>>>>>333333

>>>>>>>>

� 33333334646 3333333� 333333
>/>>>>>>>33>/>>>>>>>222222 3>>>>

� 3335151 333� >>>>33333
>2>>>>>>>3333>2>>>>>>>

� 333335656 33333�
>2>>>>>>>3333333

>2>>>>>>>333333>2>>>
‘move-accidentals.ly’:

Positions of accidentals may be manually set. This involves some scheme code.

��
2//2 >>>>= :� �

‘move-specific-text.ly’:

You can move objects around with scheme. This example shows how to move text around.

�� m.d.>2� �
‘music-box.ly’:

This example shows prelude in C major of WTK1, but coded using Scheme functions to avoid
typing work.

��
��

>>>
>
>>>�> :=+

*>>>
>
>>>�> :=+

*>>>
>
>>>�> :=+

*>>>
>
>>>�> :=+

*>>>
>
>>>�> :=+

*>>>
>
>>>�> :=+

*>>>
>
>>>�> :=+

*>>>
>
>>>�> :=+� �

*� �=
‘music-creation.ly’:

You can create music expressions from Scheme. The mechanism for this is rather clumsy to
use, so avoid it if possible.

�� >>� �
‘nested-groups.ly’:

LilyPond can print nested groups of staffs.

��
��
��
��
��
��
��
��
��
��
��
�� >

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>� �
>� �
>� �
>� �
>� �
>� �
>� �
>� �
>� �
>� �
>� �
>� �

³

‘no-bar-lines.ly’:

You can stop LilyPond from printing bar lines by removing the engraver.

� >>>>>>>>�
‘no-staff.ly’:

You can stop LilyPond from printing the staff by removing the engraver.

� �>�>>>�
‘octave-duplicate.ly’:

Octave doubling parts of music.

��
��

>>>>
>>

>>>>
>>

>>>>
>>

>>>>
>>

>>>>
>>

>>>>
>>

>>>>
>>

>>>>
>>

>>>>
>>

>>>>
>>

>>>>
>>

>>>>
>>

>>>>
>>

>>>>
>>

>>>>
>>

>>>>
� �

>>� �³
‘ossia.ly’:

Ossias present alternatives for a piece. They are not really supported, but can be somewhat
faked in lily.

��
<

<

<� �

<�<<� �

‘part-combine-moments.ly’:

When you combine two voices with the same notes, you should only have one stem.

�� >>>>� �
2

� >>� =2

‘part-combine-staff.ly’:

You can combine parts on two staffs, as well as two voices.

��
��

>

=

>>

=� �

>� �

�
22

� >>>>

�

�
33

�

�
>>>>>>>>

>

=

>>

=

>

�
55

� >>>>>>>>>>>>>>>>>>>>

�
77

� >>=
‘part-combine.ly’:

In orchestral scores and hymns, voices are traditionally combined onto one staff. LilyPond
has a part combiner, that combines or separates two voices according to actual rhythm and
pitch. User-defined texts such as “solo” and “à2” are typeset automagically, as appropriate.

�� >>>>�>>> :>>>>>>
Solo II

>>a2>>Solo>a2>>>>>>>� �

�55� ===a2>(Solo>>(a2>(>>>>(>Solo>>(a2>
‘partial-blank.ly’:

When entering half music (i.e. for students to complete by hand) you need the spacing to
correspond to the timing – all measures same length, etc. This thing implements it by adding
invisible staff with lots of fast notes.

��
��

= :>>=>>>
� �

>� �³

�
�33�
�

=>><³
‘pedal.ly’:

Piano pedal symbols merge stop and start. The strings are configurable. Text style, bracket
style, and a mixture of both are supported.

�� >>>�>��>>�
>>

�
>�¡>�>>> �¡�>>>>>>>>>�¡>>>>� �

�66�
>>>>>>

una corda

>>>>>>>>>>>>>>>>>>

‘phrasing-slur-height.ly’:

Make PhrasingSlur higher, to avoid colission from other slurs.

�� >>>>>>>>>>>>>>>>� �
‘polymetric-differing-notes.ly’:

You can have multiple time signatures occuring at the same time, with different durations
aligned. This is done by 1. compressing one of the lines, analogous to imes, but without the
bracket, and 2. manually setting timeSignatureFraction to the desired fraction.

This example puts 3/4, 9/8 and 10/8 in parallel. The last staff shows what happens on the
inside: a 3/4 time signature is combined with a 3/5 tuplet yielding the equivalent of a 10/8.

4
3�

8
9�

8
10�

>

>

>

>>

>

>

>

>>>

>

> :
>>

> :
>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>>� 8
10

>� 8
9

>� 4
3

3

‘polymetric.ly’:

You can have multiple time signatures occuring at the same time.

This is done by moving the timing engraver to staff context. Also, Staff should be given
the alias Timing to make ime command work correctly. Barlines distort the regular spacing,
though.

4
3�

4
2�

8
3� >>

>

>

>

>

>

> :
>

>

>>

>

>

>

>

>

> :� 8
3

>� 4
2

>� 4
3

‘preset-extent.ly’:

Grob extents may be hard coded using grob properties. This requires Grob::preset extent ()
function.

The lyrics in this example have extent (-10,10) which is why they are spaced so widely.

bazbarfoo

‘repeat-manual.ly’:

You can manually control repeat signs and numbers to produce unusual output.

�� ===:: ====:: =====� �
1. 2. 93

‘repeat-shorter-bracket.ly’:

By setting voltaSpannerDuration the length of a volta bracket can be shortened.

�� >>>::
five

>>>>

verse

verse

verse

verse

>>>>

four

three

two

one

>>>>::

chorus

chorus

chorus

chorus

>>>>
intro

>� �
1.--4. 5.

‘repeat.ly’:

You can use alternate lyrics as well as alternate notes for repeats.

��
aan

>
ter

>
ach-

>::
er

>
dit

>
nog

>
dan

>
en

>
keer

>

plet

twee

>

koe-

dan

>::

een

en

>
maat

>
ste

>
eer-

>
De

>� �
1. 2.

‘rest-dot-positions.ly’:

This file tests dotted rests.

1
6� !'

1
3' :' :& :'&� 1

6

�55� 4
3
4
3" :" :! :"!

2
3! :! :' :

� 4
3

1010

4
3� 32

3
32
3+ :+ :* :+*

16
3* :* :(:*(

8
3(:(:" :("

� 32
3

1919

32
3� 1

6
1
6. :. :- :.-

128
3- :- :, :-,

64
3, :, :+ :,+

� 1
6

2828

1
6� !#''1

3' :' :' :' :& :&
:''&&

�3232� 4
3
4
3" :" :" :" :! :# :""!#2

3! :# :! :# :' :' :

� 4
3

3737

4
3� 32

3
32
3+ :+

:+ :+
:* :*

:++**16
3* :*

:* :*
:(:(

:**((8
3(:(

:(:(
:" :" :((""

� 32
3

4646

32
3� . :.

:
. :.
:

- :-
:

..--128
3- :-

:
- :-
:

, :,
:

--,,64
3, :,

:
, :,
:

+ :+
:,,++

‘rests.ly’:

Rests in various styles.

�� ..-,0/.-,+*Rest style = #’mensural)� �

�� ..-,('&%$#"Rest style = #’neo mensural!

�� ..-,+*)"!'&Rest style = #’classical%

�� ..-,+*("!'&Rest style = #’default%
‘reverse-music.ly’:

Simple customised music apply.

�� >>>>>>>>� �
‘rhythm-excercise.ly’:

This example shows a way to generate rhythm exercises with LilyPond (e.g. no staff but
retaining the barlines).

� ==>>>>�
‘scales-greek.ly’:

Show different scales.

�� >>>>>>>
phrygian
>>>>>>>>

dorian
>>>>>>>>

ionian
>>>>>>>>

major
>� �

�55� 33>>>>>>>
locrian
>>>>>>>>

aeolian
>>>>>>>>

minor
>>>>>>>>

mixolydian
>>>>>>>>

lydian
>

� 31010 3� 33>>>>>>>
lydian
>3>>>>>>>

phrygian
>3>>>>>>>

dorian
>3>>>>>>>

ionian
>3>>>>>>>

major
>

� 31515 3� >>>>>>>
locrian
>3>>>>>>>

minor
>3>>>>>>>

aeolian
>3>>>>>>>

mixolydian
>

‘scheme-interactions.ly’:

With ly:export, you can pass of the result of Scheme expressions as lilypond input. Within
a Scheme expression, you can use, define or change lilypond variables.

In this example, the E-s and D-s are generated using scheme functions, and woven together
with manually entered C-s.

�� >>>WW>>W>W>W>� �
‘script-abbreviations.ly’:

Some scripts may be entered using an abbreviation.

��
c

>[
c^

>]
c->

>V
c-|

>X
c-+

>̀
c--

>Z
c-.

>W� �
‘script-chart.ly’:

A chart showing all feta scripts.

��
downbow

>b
upbow

>a
portato

>[
tenuto

>Z
staccato

>W
staccatissimo

>X
marcato

>]
accent

>V� �

��
reverseturn

>c
turn

>d
stopped

>̀
open

>_
rtoe

>i

ltoe

>h
rheel

>g
lheel

>f
thumb

>U
flageolet

>j

��
upmordent

>}
downprall

>|
upprall

>{
prallmordent

>z
prallprall

>y
mordent

>x
prall

>w
trill

>e

��
shortfermata

>O
signumcongruentiae

>Ô
lineprall

>Ä
prallup

>�
pralldown

>�
downmordent

>~

��
varcoda

>m

coda

>l

segno

>k

verylongfermata

>S
longfermata

>Q
fermata

>M

‘script-priority.ly’:

Relative placements of different script types can be controlled by overriding script-priority.

��
0>w0>w� �

‘script-stack.ly’:

You can stack text and articulations.

��
up
down

=
XW]

jij gaat onder
geen gedonder
=� �

‘separate-staccato.ly’:

You can enter notes and articulations separately, and merge them into one thread. Here is
an example to add repeated staccato dots.

�� >>>W>W>W>>>W>W>W� �
‘slur-attachment-override.ly’:

In some cases you may want to set slur attachments by hand.

��
�> :>�>

�> ::>�>� �
‘slur-beautiful.ly’:

Similarly, the curvature of a slur is adjusted to stay clear of note heads and stems. When that
would increase the curvature too much, the slur is reverted to its default shape. The threshold
for this decision is in Slur’s object property beautiful. It is loosely related to the enclosed area
between the slur and the notes. Usually, the default setting works well, but in some cases you
may prefer a curved slur when LilyPond decides for a vertically moved one. You can indicate
this preference by increasing the beautiful value.

�� >>>
>>>>>>>>

>>>>>>>
>>>>>>� �

‘slur-dash.ly’:

You can print different kinds of slurs (dotted, dashed, etc).

��
>>>>>>>>>>>>>>>>>>>>

� �

‘slur-manual.ly’:

In extreme cases, you can resort to setting slur control-points manually. This involves a lot
of trial and error, though. Be sure to force line breaks at both sides, since different horizontal
spacing will require rearrangement of the slur.

��

��

>>3>>>>>>3>>>3>>�
>3>>>>>>3>�>*(� �

� �³
‘slur-minimum-length.ly’:

You can set the minimum length of a slur.

4
2� >>>>� 4
2

‘slur-shape.ly’:

Slurs become flatter as they grow longer.

��
>>>>>>>>>>>>>>>>>>>>>>>>>>>

>>>>>>>>>>>>>>>>>>>>>>>>>>>� �

‘slur-ugly.ly’:

You can get ugly slurs, if you want.

4
6�

4
6� >>>>

>>>
>>>>>�

4
6

� 4
6³

‘smart-transpose.ly’:

Here’s a copy of my feature request :

Your task, if you accept it is to implement a \smarttranspose

command>> that would translate such oddities into more natural

notations. Double accidentals should be removed, as well as E-sharp

(-> F), bC (-> B), bF (-> E), B-sharp (-> C).

You mean like this. (Sorry ’bout the nuked indentation.)

Modified to use the standard transpose mechanism. The question is

how useful these enharmonic modifications are. Mats B.

�� />>>>/>>>/>/>7>7>/>/>7>/>/>� �
‘spacing-2.ly’:

1. Upon stretching every note should stretch according to duration.

2. 8th notes should be spaced equidistantly.

�////�
�////� >>>>>

==

>

>
>
>>

>>
>

>>� //// �

>>� //// �³
‘spanner-after-break-tweak.ly’:

To selectively tweak spanners after the linebreaking process, Scheme code must be used. In
this simple example, the tie after the line break is moved around.

�� <� �

2� =� =2

‘staff-bracket.ly’:

Here’s an example of staff brackets.

��
��
�� <� �

<� �

<� �

³
‘staff-container.ly’:

Container By splitting the grouping (Axis group engraver) and creation functionality into
separate contexts, you can override interesting things.

Notation like this is used in modern scores. Note that LilyPond is not especially prepared
for it: the clefs and time-signatures don’t do what you would expect.

��
��

>
>
>

>>
>

� �
>� �

‘staff-lines.ly’:

Staff symbol property set workaround.

��
��

x

x

<

<

x

x

<

<

x

x

<

<

x

x

<� �

<� �¯
‘staff-size.ly’:

Setting staff sizes is a little clumsy. There are two options: using StaffContainer and
override/revert, or \applyoutput. Both methods are shown in this example.

��

��

��

�

>

>ff�

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>� �

>
ff

� �
>� �

‘staff-space.ly’:

Setting staff space on a staff.

�
�

�
�

>
>>

>>
>>

>

>
�

�

>
�

�¼
‘stem-centered.ly’:

Mensural note heads.

�� �>>=<;:9� �
‘stem-cross-staff.ly’:

There is no support for putting chords across staves. You can get this result by increasing
the length of the stem in the lower stave so it reaches the stem in the upper stave, or vice versa.

��
�� �>

>
>� �
>� �³

‘stem-extend.ly’:

You can stop LilyPond from extending stems to the center line.

�� >
>

>
>

>
>

>
>

=
=

>
>

>
>

>
>

>
>

=
=� �

‘stem-length.ly’:

You can alter the length of stems.

��
>

>>>� �
‘tablature-hammer.ly’:

You can fake a hammer in tablature with slurs.

�� 8
P

10101010
H

8� �
‘tablature.ly’:

A sample tablature, with both normal staff and tab.

Tablature is done by overriding the note-head formatting function, and putting it on a 6-line
staff. A special engraver takes care of going from string-number + pitch to number.

�////�
8

�� 5

>

8

>

6

>

9

>

7

>

6

>

9

>

7

>
0

>

4

>
2

>
0

>

2

>
1

>

4

>

2

>
14

>

13

>

11

>

9

>

7

>

6

>

4

>

2

>

19

>

18

>

16

>

14

>

12

>

11

>

9

>

7

� �
>

8

� //// �

‘text-spanner.ly’:

You can make LilyPond print text spanners.

�� >>>>
blubla>>>> blubla>>>> blubla>>>> blubla� �

‘textscript.ly’:

Test font selection and scm text markup.

�� ABCD<k
Dal<ABCD<ma sosten.p<� �

‘tie-cross-voice.ly’:

Cross voice ties can be faked by blanking noteheads.

�� �>>>>� �
‘tie-sparse.ly’:

Setting sparseTies causes only one tie to be generated per chord pair.

�� >>>>>>>� �
‘time-signature-double.ly’:

Double time signatures are not supported explicitly, but can be faked with markups and
overriding formatting routines.

2
3`

4
6� ===� 2

3`
4
6

‘time.ly’:

Old time signatures. For further information, consult the file.

1
1� 1

1
1
1= := := :

4
9;

4
8= :<

4
7< :

2
3< :

4
6== :

4
5<�= :

4
3=

8
4=

4
2<�TimeSignature style = #’default<� 1

1

� 1
1

1313

1
1� 1

1
1
1> :> :> :¾= :½= := := :»;

4
8= :<

4
7< :¹< :º== :

4
5<·= :¼=¿=Á<¸TimeSignature style = #’mensural<

� 1
1

2727

1
1� 1

1
1
1> :> :> :É= :È= := := :Æ;

4
8= :<

4
7< :Ä< :Å== :

4
5<Â= :Ç=Ê=Ì<ÃTimeSignature style = #’neo mensural<

� 1
1

4141

1
1� 11

= := := :
4
9;

4
8= :<

4
7< :

2
3< :

4
6== :

4
5<

4
4= :

4
3=

8
4=

4
2<

2
2

TimeSignature style = #’numbered<

� 1

5353

1� = := := :
9

;
8

= :<
7

< :
3

< :
6

== :
5

<
4

= :
3

=
4

=
2

<
2

TimeSignature style = #’1xxx<
‘timing.ly’:

You can alter the length of bars by setting measureLength or by resetting measurePosition.

��
<>>>�>>>><><>>>>>>>>>>>>>>>><=>>>� �

‘title.ly’:

This test ly2dvi titling. process with ly2dvi, not lilypond-book.

�� >>>>>>>>� �

�33� >>>>>>>>>>>>>>>>

�77� >>>>>>>>>>>>>>>>

�1111� >>>>>>>>>>>>>>>>

�1515� >>>>>>>>>>>>>>>>

�1919� >>>>>>>>>>>>>>>>

�2323� >>>>>>>>>>>>>>>>

�2727� >>>>>>>>>>>>>>>>

�3131� >>>>>>>>>>>>>>>>

�3535� >>>>>>>>>>>>>>>>

�3939� >>>>>>>>
‘to-xml.ly’:

The input representation is very generic. It should not be hard to convert it to XML or a
similar format:

<music

type="score">

<music

type="SequentialMusic">

<music

type="SimultaneousMusic">

<music

type="EventChord">

<music

type="NoteEvent">

<duration

log="2"

dots="0"

numer="1"

denom="1">

</duration>

<pitch

octave="1"

notename="0"

alteration="0">

</pitch>

</music>

</music>

<music

type="VoiceSeparator">

</music>

<music

type="EventChord">

<music

type="NoteEvent">

<duration

log="2"

dots="0"

numer="1"

denom="1">

</duration>

<pitch

octave="0"

notename="4"

alteration="0">

</pitch>

</music>

</music>

</music>

</music>

</music>

��
�� >� �

>� �

‘transposition.ly’:

Transposition test file.

4
2

//�

4
2

////�

4
2

00�

4
2

00� /
/2
>
>

>
>

/
/
>2 000044
>2 000044
>2222222 3

>222222 333

>
>

>
>

/
/
>2 440

>2 440

>2 //////7

>//////

>
>

>
>

>� 00
4
2

>� 00
4
2

>� ////
4
2

>� //
4
2

‘trill.ly’:

Show trill line type.

� >>>> sssssssse>>>>bla�
‘trills.ly’:

Document trills, pralls and turns.

4
1�

4
1� >>>>>>>>>>>

cadence

>

> :{

>>>>
Double

>
8
5

>d
8
5

>>>>>>>>>>>
autre

>

> :{

>>>>>>>>>>>
Cadence

>

> :|

>>>>>>>>�
appuyé

Tremblement

>
8
3

> :Ä
8
3

>>>>>>>
simple

Tremblement

>� 4
1

>w� 4
1©

�66� >=�
4
3======�>d>4

1>>d>
4
3> :|>d

‘unfold-all-repeats.ly’:

The standard function unfold-repeats will recursively unfold all repeats for correct MIDI
output. Thanks to Rune Zedeler.

�� >>>:: >>>>>>>>:: >>>==� �
1. 2.

�55� >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
‘vaticana.ly’:

Ancient Vaticana Vaticana ligature test.

_ ?
ia.

?GN
lu-

?CCG?GNGECCGE
le-

?QN
Al-

?_

‘version-output.ly’:

By putting the output of lilypond-version into a lyric, we can print the version number
in a score, or a lilypond-book document.

Processed with LilyPond version 2.0.1Processed with LilyPond version 2.0.1

‘vertical-extent.ly’:

Vertical extents may be overriden by minimumVerticalExtent, extraVerticalExtent, and ver-
ticalExtent. These are normal property values, and are written into the grob when the associated
context finishes, so using it in \property works.

��

�� <� �

<� �

