
GNU LilyPond
The music typesetter

Han-Wen Nienhuys
Jan Nieuwenhuizen
Jürgen Reuter
Rune Zedeler
Copyright c© 1999–2003 by the authors

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.1 or any later version published by the Free
Software Foundation; with no Invariant Sections. A copy of the license is included in the section
entitled “GNU Free Documentation License”.

(For LilyPond version 2.0.1)(For LilyPond version 2.0.1)

i

Table of Contents

Preface . 1
Preface to version 2.0 . 1
Preface to version 1.8 . 1
Preface to version 1.6 . 1

1 Introduction . 3
1.1 Notation in LilyPond . 3
1.2 Engraving in LilyPond . 4
1.3 Typography and program architecture . 5
1.4 Music representation. 7
1.5 Example applications . 7
1.6 About this manual . 8

2 Tutorial . 11
2.1 First steps . 11
2.2 Running LilyPond . 13
2.3 More about pitches . 14
2.4 Octave entry . 16
2.5 Combining music into compound expressions . 17
2.6 Adding articulation marks to notes . 19
2.7 Combining notes into chords . 20

2.7.1 Basic rhythmical commands . 21
2.7.2 Commenting input files. 21

2.8 Printing lyrics . 22
2.9 A lead sheet . 23
2.10 Listening to output . 24
2.11 Titling . 24
2.12 Single staff polyphony . 25
2.13 Piano staves . 25
2.14 Setting variables . 26
2.15 Fine tuning layout . 27
2.16 Organizing larger pieces . 28
2.17 An orchestral part . 29
2.18 Integrating text and music . 30

3 Notation manual . 33
3.1 Note entry . 33

3.1.1 Notes . 33
3.1.2 Pitches . 33
3.1.3 Chromatic alterations . 34
3.1.4 Chords . 34
3.1.5 Rests . 35
3.1.6 Skips . 35
3.1.7 Durations . 36
3.1.8 Stems . 36
3.1.9 Ties . 37
3.1.10 Tuplets . 37

ii

3.1.11 Easy Notation note heads . 38
3.2 Easier music entry . 39

3.2.1 Relative octaves . 39
3.2.2 Octave check . 40
3.2.3 Bar check . 40
3.2.4 Skipping corrected music . 41
3.2.5 Automatic note splitting . 41

3.3 Staff notation . 42
3.3.1 Staff symbol . 42
3.3.2 Key signature . 42
3.3.3 Clef . 42
3.3.4 Ottava brackets . 43
3.3.5 Time signature . 44
3.3.6 Partial measures . 45
3.3.7 Unmetered music . 45
3.3.8 Bar lines . 45

3.4 Polyphony . 47
3.5 Beaming . 49

3.5.1 Manual beams . 49
3.5.2 Setting automatic beam behavior . 50

3.6 Accidentals . 51
3.6.1 Using the predefined accidental variables . 51
3.6.2 Customized accidental rules . 53

3.7 Expressive marks . 54
3.7.1 Slurs . 54
3.7.2 Phrasing slurs . 55
3.7.3 Breath marks . 56
3.7.4 Metronome marks . 56
3.7.5 Text spanners . 57
3.7.6 Analysis brackets . 57
3.7.7 Articulations . 58
3.7.8 Fingering instructions . 59
3.7.9 Text scripts . 60
3.7.10 Grace notes . 60
3.7.11 Glissando . 62
3.7.12 Dynamics . 63

3.8 Repeats . 64
3.8.1 Repeat syntax . 64
3.8.2 Repeats and MIDI . 65
3.8.3 Manual repeat commands . 65
3.8.4 Tremolo repeats . 66
3.8.5 Tremolo subdivisions . 67
3.8.6 Measure repeats . 67

3.9 Rhythmic music . 67
3.9.1 Percussion staves . 67
3.9.2 Percussion MIDI output . 70

3.10 Piano music . 70
3.10.1 Automatic staff changes . 71
3.10.2 Manual staff switches . 71
3.10.3 Pedals . 72
3.10.4 Arpeggio . 73
3.10.5 Staff switch lines . 74

3.11 Vocal music . 74
3.11.1 Entering lyrics . 75

iii

3.11.2 The Lyrics context . 75
3.11.3 More stanzas . 76
3.11.4 Ambitus . 77

3.12 Tablatures . 78
3.12.1 Tablatures basic . 78
3.12.2 Non-guitar tablatures . 79

3.13 Chord names . 80
3.13.1 Chords mode . 80
3.13.2 Printing chord names . 82

3.14 Orchestral music . 84
3.14.1 Multiple staff contexts . 84
3.14.2 Rehearsal marks . 84
3.14.3 Bar numbers . 85
3.14.4 Instrument names . 86
3.14.5 Transpose . 86
3.14.6 Multi measure rests . 87
3.14.7 Automatic part combining . 88
3.14.8 Hiding staves . 89
3.14.9 Different editions from one source . 90
3.14.10 Sound output for transposing instruments . 91

3.15 Ancient notation . 91
3.15.1 Ancient note heads . 92
3.15.2 Ancient accidentals . 93
3.15.3 Ancient rests . 93
3.15.4 Ancient clefs . 94
3.15.5 Ancient flags . 95
3.15.6 Ancient time signatures . 96
3.15.7 Custodes . 97
3.15.8 Divisiones . 98
3.15.9 Ligatures . 99

3.15.9.1 White mensural ligatures . 99
3.15.9.2 Gregorian square neumes ligatures. 100

3.15.10 Figured bass . 104
3.15.11 Vaticana style contexts . 105

3.16 Contemporary notation . 106
3.16.1 Clusters. 106
3.16.2 Fermatas . 107

3.17 Tuning output . 107
3.17.1 Tuning objects . 108
3.17.2 Constructing a tweak . 109
3.17.3 Applyoutput . 111
3.17.4 Font selection . 112
3.17.5 Text markup . 113

3.18 Global layout . 115
3.18.1 Vertical spacing . 116
3.18.2 Horizontal Spacing . 116
3.18.3 Font size . 118
3.18.4 Line breaking . 118
3.18.5 Page layout . 118

3.19 Sound . 119
3.19.1 MIDI block . 120
3.19.2 MIDI instrument names . 120

4 Literature list . 121

iv

5 Technical manual. 123
5.1 Interpretation context . 123

5.1.1 Creating contexts . 123
5.1.2 Default contexts . 124
5.1.3 Context properties . 124
5.1.4 Context evaluation . 125
5.1.5 Defining contexts . 125
5.1.6 Engravers and performers . 126
5.1.7 Defining new contexts . 126

5.2 Scheme integration . 127
5.2.1 Inline Scheme . 127
5.2.2 Input variables and Scheme . 127
5.2.3 Scheme datatypes . 128
5.2.4 Assignments . 129

5.3 Music storage format . 129
5.3.1 Music expressions . 129
5.3.2 Internal music representation . 130
5.3.3 Manipulating music expressions . 130

5.4 Lexical details . 132
5.5 Output details . 132

6 Invoking LilyPond. 134
6.1 Invoking lilypond . 134

6.1.1 Titling layout . 135
6.1.2 Additional parameters . 135

6.2 Invoking the lilypond binary . 136
6.3 Command line options . 136
6.4 Environment variables . 137
6.5 Error messages . 138
6.6 Reporting bugs. 138
6.7 Point and click . 139

7 lilypond-book manual . 141
7.1 Integrating Texinfo and music . 141
7.2 Integrating LaTeX and music . 141
7.3 Integrating HTML and music . 142
7.4 Music fragment options . 143
7.5 Invoking lilypond-book . 144
7.6 Bugs . 146

8 Converting from other formats . 147
8.1 Invoking convert-ly . 147
8.2 Invoking midi2ly . 147
8.3 Invoking etf2ly . 148
8.4 Invoking abc2ly . 149
8.5 Invoking pmx2ly . 149
8.6 Invoking musedata2ly . 150
8.7 Invoking mup2ly . 150

Unified index . 152

v

Appendix A Reference manual details 160
A.1 Chord name chart . 160
A.2 MIDI instruments. 161
A.3 The Feta font . 162

Appendix B Cheat sheet . 167

Appendix C GNU Free Documentation License 170
C.0.1 ADDENDUM: How to use this License for your documents 175

Preface 1

Preface

Preface to version 2.0

Due to personal circumstances, Han-Wen was able to do a lot more on LilyPond during the
past months. A testament to that is the quick release of version 2.0, less than two months
after 1.8. We have taken the opportunity to make a few radical changes to the syntax: note
attributes, like articulation, dynamics and fingerings are now post-fix exclusively. This makes
entering scores easier: you never have to think about the order of the attributes. With version
2.0, we have a new and improved platform for working on notation and typography features for
coming versions,

Due to other personal circumstances, Jan was not able to do more than packaging for Cygwin.
The good news is that we now have a nearly fool-proof installation for Windows. He will be
back for serious hacking in 2.1.

Han-Wen and Jan

Utrecht/Eindhoven, The Netherlands, September 2003.

Preface to version 1.8

If you are familiar with LilyPond version 1.6, then version 1.8 will no offer no big surprises.
The only conspicuous change is in the way that formatted text is entered. There is now a
new syntax that is more friendly, more versatile and extensible. We hope you like it. In
general, development on version 1.8 has been focused on improving the design of various internal
mechanisms. This includes chord name formatting and entry code, music expression storage,
and integration between LilyPond and Scheme. These changes may not be evident directly, but
they make the program more robust and more flexible, which translates into fewer bugs and
more adjustment options.

Special thanks for version 1.8 go out to Juergen Reuter for lots of work on the ancient notation
engine, and to Amy Zapf for pushing us to rewrite the chord name support.

Han-Wen and Jan,

Utrecht/Eindhoven, The Netherlands, April/May 2003.

Preface to version 1.6

It must have been during a rehearsal of the EJE (Eindhoven Youth Orchestra), somewhere
in 1995 that Jan, one of the cranked violists told Han-Wen, one of the distorted French horn
players, about the grand new project he was working on. It was an automated system for
printing music (to be precise, it was MPP, a preprocessor for MusiXTeX). As it happened,
Han-Wen accidentally wanted to print out some parts from a score, so he started looking at the
software, and he quickly got hooked. It was decided that MPP was a dead end. After lots of
philosophizing and heated e-mail exchanges Han-Wen started LilyPond in 1996. This time, Jan
got sucked into Han-Wen’s new project.

In some ways, developing a computer program is like learning to play an instrument. In the
beginning, discovering how it works is fun, and the things you cannot do are challenging. After
the initial excitement, you have to practice and practice. Scales and studies can be dull, and
if you are not motivated by others—teachers, conductors or audience—it is very tempting to
give up. You continue, and gradually playing becomes a part of your life. Some days it comes

Preface 2

naturally, and it is wonderful, and on some days it just does not work, but you keep playing,
day after day.

Like making music, working on LilyPond is can be dull work, and on some days it feels like
plodding through a morass of bugs. Nevertheless, it has become a part of our life, and we keep
doing it. Probably the most important motivation is that our program actually does something
useful for people. When we browse around the net we find many people that use LilyPond, and
produce impressive pieces of sheet music. Seeing that still feels unreal, but in a very pleasant
way.

Our users not only give us good vibes by using our program, many of them also help us by
giving suggestions and sending bugreports. So first and foremost, we would like to thank all
users that sent us bugreports, gave suggestions or contributed in any other way to LilyPond.

We would also like to thank the following people: Mats Bengtsson for the incountable number
of questions he answered on the mailing list, and Rune Zedeler for his energy in finding and
fixing bugs. Nicola Bernardini for inviting us to his workshop on music publishing, which was
truly a masterclass, and Heinz Stolba and James Ingram for teaching us there.

Playing and printing music is more than nice analogy. Programming together is a lot of fun,
and helping people is deeply satisfying, but ultimately, working on LilyPond is a way to express
our deep love for music. May it help you create lots of beautiful music!

Han-Wen and Jan

Utrecht/Eindhoven, The Netherlands, July 2002.

Chapter 1: Introduction 3

1 Introduction

There are a lot of programs that let you print sheet music with a computer, but most of them
do not do good job. Most computer printouts have a bland, mechanical look, and are unpleasant
to play from. If you agree with us on that, then you will like LilyPond: we have tried to capture
the original look of hand-engraved music. We have tuned our algorithms, font-designs, and
program settings to make the program produce prints that match the quality of the old editions
we love to see and love to play from.

1.1 Notation in LilyPond

Printing sheet music consists of two non-trivial tasks. First, one has to master music nota-
tion: the science of knowing which symbols to use for what. Second, one has to master music
engraving: the art of placing symbols such that the result looks pleasing.

Common music notation is a system of recording music that has evolved over the past 1000
years. The form that is now in common use, dates from the early renaissance. Although, the
basic form (note heads on a 5-line staff) has not changed, the details still change to express
the innovations of contemporary notation. Hence, it encompasses some 500 years of music. Its
applications range from monophonic melodies to monstruous counterpoint for large orchestras.

How can we get a grip on such a many-headed beast, and force it into the confines of a
computer program? Our solution is to make a strict distinction between notation, what symbols
to use, and engraving, where to put them. Anything related to the second question is considered
“engraving” (i.e. typography).

For tackling the first problem, notation, we have broken up the problem into digestible (and
programmable) chunks: every type of symbol is handled by a separate program module, a so-
called plug-in. Each plug-in are completely modular and independent, so each can be developed
and improved separately. When put together, the plug-ins can solve the music notation program
in cooperation. People that put graphics to musical ideas are called copyists or engravers, so by
analogy, each plug-in is also engraver.

In the following example, we see how we start out with a note head engraver.

>>>>>>>>>>
Then a Staff_symbol_engraver adds the staff:

>>>>>>>>>>
The Clef_engraver defines a reference point for the staff:

� >>>>>>>>>>�
And the Stem_engraver adds stems:

� >�>�>�>�>>�>�>�>�>�
The Stem_engraver is notified of any note head coming along. Every time one (or more, for

a chord) note heads is seen, a stem object is created, and attached to the note head.

Chapter 1: Introduction 4

By adding engravers for beams, slurs, accents, accidentals, bar lines, time signature, and key
signature, we get a complete piece of notation.

�//� >V>W>W>W>W>>>>3>� // �
This system works well for monophonic music, but what about polyphony? In polyphonic

notation, many voices can share a staff.

�//� >V>
V

>W
>W>W

>W>W
>W>W

>W>>/>>>>2 >>2 3>>� // �
In this situation, the accidentals and staff are shared, but the stems, slurs, beams, etc. are

private to each voice. Hence, engravers should be grouped. The engravers for note head, stems,
slurs, etc. go into a group called “Voice context,” while the engravers for key, accidental, bar,
etc. go into a group called “Staff context.” In the case of polyphony, a single Staff context
contains more than one Voice context. In polyphonic notation, many voices can share a staff:
Similarly, more Staff contexts can be put into a single Score context.

�//�
�//� >V

>V�

>V>
V

>W
>W

*
>W
>W

�>W
>W
>W

(+
>W
>W

�
*>
W

�>W
*
>>/>>

((
>>

�
2
*>
W
>>

�

2 3

>W
*� // �
>>� // �

1.2 Engraving in LilyPond

The term music engraving derives from the traditional process of music printing. Only a
few decades ago, sheet music was made by cutting and stamping the music into zinc or pewter
plates, in mirror image. The plate would be inked, and the depressions caused by the cutting
and stamping would hold ink. An image was formed by pressing paper to the plate. The
stamping and cutting was completely done by hand. Making corrections was cumbersome, so
engraving had to be done correctly in one go. Of course, this was a highly specialized skill,
much more so than the traditional process of printing books. In the traditional German system
of craftsmanship six years of full-time training, more than any other craft, were required before
a student could call himself a master of the art. After that many more years of practical
experience were needed to become an established music engraver. Even today, with the use of
high-speed computers and advanced software, music requires lots of manual fine tuning before
it is acceptable for publication.

Sheet music is performance material: everything is done to aid the musician in letting him
perform better. Music often is far away from its reader—it might be on a music stand. To make
it clearly readable, traditionally printed sheet music always uses bold symbols, on heavy staff
lines, and is printed on large sheets of paper. This “strong” look is also present in the horizontal
spacing. To minimize the number of page breaks, (hand-engraved) sheet music is spaced very
tightly. Yet, by a careful distribution of white space, the feeling of balance is retained, and a
clutter of symbols is avoided.

We have used these observations in designing LilyPond. The images below show the flat
symbol. On the left, a scan from a Henle edition, which was made by a computer, and in the
center is the flat from a hand engraved Bärenreiter edition of the same music. The left scan

Chapter 1: Introduction 5

illustrates typical flaws of computer print: the symbol is much lighter, the staff lines are thinner,
and the glyph has a straight layout with sharp corners. By contrast, the Bärenreiter has a bold
and almost voluptuous rounded look. Our flat symbol is designed after, among others, this one.
It is tuned it to harmonize with the thickness of our staff lines, which are also much thicker than
Henle’s lines.

Henle (2000) Bärenreiter (1950) LilyPond Feta font (2003)

In spacing, the distribution of space should reflect the durations between notes. However,
adhering with mathematical precision to the duration will lead to a poor result. Shown here is
an example of a motive, printed twice. It is printed using exact mathematical spacing, and with
some corrections. Can you spot which fragment is which?

�� >>>>>>>>>>>>>>>>� �
The fragment only uses quarter notes: notes that are played in a constant rhythm. The

spacing should reflect that. Unfortunately, the eye deceives us a little: not only does it notice
the distance between note heads, it also takes into account the distance between consecutive
stems. As a result, the notes of an up-stem/down-stem combination should be put farther apart,
and the notes of a down-up combination should be put closer together, all depending on the
combined vertical positions of the notes. The first two measures are printed with this correction,
the last two measures without. The notes in the last two measures form down-stem/up-stems
clumps of notes.

1.3 Typography and program architecture

Producing good engraving requires skill and knowledge. As the previous examples show,
there is a lot of subtlety involved in music engraving, and unfortunately, only a small fraction
of these details are documented. Master engravers must learn all these details from experience
or from other engravers, which is why it takes so long to become a master. As an engraver gets
older and wiser, he will be able to produce better and more complex pieces. A similar situation
is present when putting typographical knowledge into a computer program. It is not possible
to come up with a definitive solution for a problem at the first try. Instead, we start out with
simple solution that might cover 75% of the cases, and gradually refine that solution over the
course of months or years, so 90 or 95 % of the cases are handled.

This has an important implication for the design of the program: at any time, almost every
piece of formatting code must be considered as temporary. When the need arises, it is to be
replaced a solution that will cover even more cases. A “plug-in” architecture is a clean way to

Chapter 1: Introduction 6

accomplish this. This is an architecture where new pieces of code can be inserted in the program
dynamically. In such a program, a new solution can be developed along-side the existing code.
For testing, it is plugged in, but for production use, the old solution is used. The new module
can be perfected separately until it is better than the existing solution, at which point it replaces
the old one.

Until that time, users must have a way to deal with imperfections: these 25%, 10% or 5%
of the cases that are not handled automatically. In these cases, a user must be able to override
formatting decisions. To accomplish this we store decisions in generic variables, and let the user
manipulate thosed. For example, consider the following fragment of notation:

�� �
>>

f

� �
The position of the forte symbol is slightly awkward, because it is next to the low note, whereas
dynamics should be below notes in general. This may be remedied by inserting extra space
between the high note and the ‘f’, as shown in this example:

�� �
>>

f

� �
This was achieved with the following input statement:

\once \property Voice. DynamicLineSpanner \override #’padding = #4.0

It increases the amount of space (padding) between the note and the dynamic symbol to
4.0 (which is measured in staff space, so 4.0 equals the height of a staff). The keyword \once

indicates that this is a tweak: it is only done one time.

Both design aspects, a plug-in architecture, and formatting variables, are built on top of
GUILE, an interpreter for the programming language Scheme, which is a member of the LISP
family. Variables are stored as Scheme objects, and attached to graphical objects such as note
heads and stems. The variables are a means to adjust formatting details in individual cases, but
they are used in a more general manner.

Consider the case of a publisher that is not satisfied with the in the default layout, and wants
heavier stems. Normally, they are 1.3 times the thickness of staff lines, but suppose that their
editions require them to be twice the thickness of the staff lines. The same mechanism can be
used to adjust a setting globally. By issuing the following command, the entire piece is now
formatted with thicker stems:

\property Score.Stem \override #’thickness = #2.0

�� �
>>

f

� �
In effect, by setting these variables, users can define their own layout styles.

“Plug-ins” are also implemented using Scheme. A formatting “plug-in” takes the form of a
function written in Scheme (or a C++ function made available as a Scheme function), and it is
also stored in a variable. For example, the placement of the forte symbol in the example above
is calculated by the function Side_position_interface::aligned_side. If we want to replace
this function by a more advanced one, we could issue

\property Voice.DynamicLineSpanner \override #’Y-offset-callbacks

= #‘(,gee-whiz-gadget)

Chapter 1: Introduction 7

Now, the formatting process will trigger a call to our new gee-whiz-gadget function when the
position of the f symbol has to be determined.

The full scope of this functionality certainly is intimidating, but there is no need to fear:
normally, it is not necessary to define style-sheets or rewrite formatting functions. In fact,
LilyPond gets a lot of formatting right automatically, so adjusting individual layout situations
is not needed often at all.

1.4 Music representation

Our premise is that LilyPond is a system that does music formatting completely automat-
ically. Under this assumption, the output does not have to be touched up. Consequently, an
interactive display of the output, where it is possible to reposition notation elements, is super-
fluous. This implies that the program should be a batch program: the input is entered in a file,
which then is compiled, i.e. put through the program. The final output is produced as a file
ready to view or print. The compiler fills in all the details of the notation, those details should
be left out of the input file. In other words, the input should mirror the content as closely as
possible. In the case of music notation the content is the music itself, so that is what the input
should consist of.

On paper this theory sounds very good. In practice, it opens a can of worms. What really is
music? Many philosophical treatises must have been written on the subject. Instead of losing
ourselves in philosophical arguments over the essence of music, we have reversed the question
to yield a more practical approach. Our assumption is that the printed score contains all of the
music of piece. We build a program that uses some input format to produce such a score. Over
the course of time, the program evolves. While this happens, we can remove more and more
elements of the input format: as the program improves, it can fill in irrelevant details of the
input by itself. At some (hypothetical) point, the program is finished: there is no possibility
to remove any more elements from the syntax. What we have left is by definition exactly the
musical meaning of the score.

There are also more practical concerns. Our users have to key in the music into the file
directly, so the input format should have a friendly syntax: a quarter note C is entered as c4,
the code r8. signifies a dotted eighth rest.

Notes and rests form the simplest musical expressions in the input syntax. More complex
constructs are produced by combining them into compound structures. This is done in much
the same way that complex mathematical formulas are built from simple expressions such as
numbers and operators.

In effect, the input format is a language, and the rules of that language can be specified
succinctly with a so-called context-free grammar. The grammar formally specificies what types
of input form valid ‘sentences’. Reading such languages, and splitting them into grammatical
structures is a problem with standard solutions. Moreover, rigid definitions make the format
easier to understand: a concise formal definition permits a simple informal description.

The user-interface of LilyPond is its syntax. That part is what users see most. As a results,
some users think that music representation is a very important or interesting problem. In
reality, less than 10% of the source code of the program handles reading and representing the
input, and they form the easy bits of the program. In our opinion, producing music notation,
and formatting it prettily are much more interesting and important than music representation:
solving these problems takes up most of the bulk of the code, and they are the most difficult
things to get right.

Chapter 1: Introduction 8

1.5 Example applications

We have written LilyPond as an experiment of how to condense the art of music engraving
into a computer program. Thanks to all that hard work, the program can now be used to
perform useful tasks. The simplest application is printing notes:

4
2� =>>>>>>� 4
2

By adding chord names and lyrics we obtain a lead sheet:

4
2� =

star
C

>
tle

>
lit
F

>
kle

>
twin
C

>
kle

>� 4
2

twin
C

Polyphonic notation and piano music can also be printed. The following example combines
some more exotic constructs:

8
4333�

8
4333�

2 �>>>2>/ >>>2>>>
2>

/2/ 2/

�

>>>>>trrr

>>> ::>
>>

>

/>>

>

2>>> :� 333 8
4

� 333
8
4³

3

The fragments shown above have all been written by hand, but that is not a requirement.
Since the formatting engine is mostly automatic, it can serve as an output means for other
programs that manipulate music. For example, it can also be used to convert databases of
musical fragments to images for use on websites and multimedia presentations.

This manual also shows an application: the input format is plain text, and can therefore
be easily embedded in other text-based formats, such as LaTEX, HTML or in the case of this
manual, Texinfo. By means of a special program, the input fragments can be replaced by music
images in the resulting PostScript or HTML output files. This makes it easy to mix music and
text in documents.

1.6 About this manual

The manual is divided into the following chapters:

• Chapter 2 [Tutorial], page 11 gives a gentle introduction to typesetting music. First time
users should start here.

• Chapter 3 [Notation manual], page 33 discusses topics grouped by notation construct. Once
you master the basics, this is the place to look up details.

• Chapter 4 [Literature list], page 121 contains a set of useful reference books, for those who
wish to know more on notation and engraving.

• Chapter 5 [Technical manual], page 123 discusses the general design of the program, and
how to extend its functionality.

• Chapter 6 [Invoking LilyPond], page 134 explains how to run LilyPond and its helper
programs.

Chapter 1: Introduction 9

• Chapter 7 [lilypond-book manual], page 141 explains the details behind creating documents
with in-line music examples (like this manual).

• Chapter 8 [Converting from other formats], page 147 explains how to run the conversion
programs. These programs are supplied with the LilyPond package, and convert a variety
of music formats to the .ly format. In addition, this section explains how to upgrade input
files from previous versions of LilyPond.

Once you are an experienced user, you can use the manual as reference: there is an extensive
index1, but the document is also available in a big HTML page, which can be searched easily
using the search facility of a web browser.

If you are not familiar with music notation or music terminology (especially if you are a
non-native English speaker), then it is advisable to consult the glossary as well. The glossary
explains musical terms, and includes translations to various languages. It is a separate document,
available in HTML and PDF.

This manual is not complete without a number of other documents. They are not available
in print, but should be included with the documentation package for your platform:

• Program reference

The program reference is a set of heavily crosslinked HTML pages, which documents the
nit-gritty details of each and every LilyPond class, object and function. It is produced
directly from the formatting definitions used.

Almost all formatting functionality that is used internally, is available directly to the user.
For example, all variables that control thicknesses, distances, etc, can be changed in input
files. There are a huge number of formatting options, and all of them are described in the
generated documentation. Each section of the notation manual has a See also subsection,
which refers to the the generated documentation. In the HTML document, these subsections
have clickable links.

• Templates

After you have gone through the tutorial, you should be able to write input files. In practice,
writing files from scratch turns out to be intimidating. To give you a headstart, we have
collected a number of often-used formats in example files. These files can be used as a start:
simply copy the template, and add notes in the appropriate places.

• Various input examples

These small files show various tips and tricks, and are available as a big HTML document,
with pictures and explanatory texts included.

• The regression tests

This collection of files tests each notation and engraving feature of LilyPond in one file.
The collection is primarily there to help us debug problems, but it can be instructive to see
how we excercise the program. The format is like the tips and tricks document.

In all HTML documents that have music fragments embedded, the LilyPond input that was
used to produce that image can be viewed by clicking the image.

The location of the documentation files that are mentioned here can vary from system to
system. On occasion, this manual refers to initialization and example files. Throughout this
manual, we refer to input files relative to the top-directory of the source archive. For example,
‘input/test/bla.ly’ may refer to the file ‘lilypond-1.7.19/input/test/bla.ly’. On binary
packages for the Unix platform, the documentation and examples can typically be found some-
where below ‘/usr/share/doc/lilypond/’. Initialization files, for example ‘scm/lily.scm’, or
‘ly/engraver-init.ly’, are usually found in the directory ‘/usr/share/lilypond/’.

1 If you are looking for something, and you cannot find it by using the index, that is considered a bug. In that

case, please file a bug report.

Chapter 1: Introduction 10

Finally, this and all other manuals, are available online both as PDF files and HTML from
the web site, which can be found at http://www.lilypond.org/.

Chapter 2: Tutorial 11

2 Tutorial

Using LilyPond comes down to encoding music in an input file. After entering the music, the
program is run on the file producing output which can be viewed or printed. In this tutorial,
we will show step by step how to enter such files, and illustrate the process with fragments of
input and the corresponding output. At the end of every section, a paragraph will list where to
find further information on the topics discussed.

Many people learn programs by trying and fiddling around with the program. This is also
possible with LilyPond. If you click on a picture in the HTML version of this manual, you will
see the exact LilyPond input that was used to generate that image. By cutting and pasting the
full input into a test file, you have a starting template for experiments. If you like learning in
this way, you will probably want to print out or bookmark Appendix B [Cheat sheet], page 167,
which is a table listing all commands for quick reference.

This tutorial starts with a short introduction to the LilyPond music language. After this
first contact, we will show you how to to produce printed output. You should then be able to
create and print your first sheets of music.

2.1 First steps

We start off by showing how very simple music is entered in LilyPond: you get a note simply
by typing its note name, from ‘a’ through ‘g’. So if you enter

c d e f g a b

then the result looks like this:

� >>>>>>>�
The length of a note is specified by adding a number, ‘1’ for a whole note, ‘2’ for a half note,

and so on:

a1 a2 a4 a16 a32

�
�>�>>=<�

If you do not specify a duration, the previous one is used:

a4 a a2 a

� ==>>�
Rests are entered just like notes, but with the name “r”:

r2 r4 r8 r16

+*("
Add a dot ‘.’ after the duration to get a dotted note:

a2. a4 a8. a16

Chapter 2: Tutorial 12

� >> :>= :�
The meter (or time signature) can be set with the \time command:

\time 3/4

\time 6/8

\time 4/4

4
3 �

8
6

4
3

The clef can be set using the \clef command:

\clef treble

\clef bass

\clef alto

\clef tenor

� ����
Notes and commands like \clef and \time , are enclosed in \notes {...}. This indicates

that music (as opposed to lyrics) follows:

\notes {

\time 3/4

\clef bass

c2 e4 g2.

f4 e d c2 r4

}

Now the piece of music is almost ready to be printed. The final step is to combine the music
with a printing command.

The printing command is the so-called \paper block:

\paper { }

The \paper block is used to customize printing specifics. The customization commands go
between { and }, but for now, we accept the defaults. The music and the \paper block are
combined by enclosing them in \score { ... }, so the following is a complete and valid input
file:

\score {

\notes {

\time 3/4

\clef bass

c2 e4 g2.

f4 e d c2 r4

}

\paper { }

}

4
3� (=>>>= :>=�
4
3

In the rest of the tutorial we will often leave out \score and \paper for clarity. However,
both must be present when feeding the file to LilyPond.

Chapter 2: Tutorial 13

For more elaborate information on

entering pitches and durations
see Section 3.1.2 [Pitches], page 33 and Section 3.1.7 [Durations], page 36.

Clefs see Section 3.3.3 [Clef], page 43

Time signatures and other timing commands
see Section 3.3.5 [Time signature], page 44.

2.2 Running LilyPond

In the last section we explained what kind of things you could enter in a LilyPond file. In this
section we explain what commands to run and how to view or print the output. If you have not
used LilyPond before, want to test your setup, or want to run an example file yourself, read this
section. The instructions that follow are for Unix-like systems. Some additional instructions for
Microsoft Windows are given at the end of this section.

Begin by opening a terminal window and starting a text editor. For example, you could open
an xterm and execute joe.1. In your text editor, enter the following input and save the file as
‘test.ly’:

\score {

\notes { c’4 e’ g’ }

}

To process ‘test.ly’, proceed as follows:

lilypond test.ly

You will see something resembling:

GNU LilyPond 1.8.0

Now processing: ‘/home/fred/ly/test.ly’

Parsing...

Interpreting music...[1]

... more interesting stuff ...

PDF output to ‘test.pdf’...

DVI output to ‘test.dvi’...

The result is the file ‘test.pdf’.2 One of the following commands should put the PDF on
your screen:

gv test.pdf

ghostview test.pdf

ggv test.pdf

kghostview test.pdf

xpdf test.pdf

gpdf test.pdf

acroread test.pdf

gsview32 test.pdf

If the music on your screen looks good, you can print it by clicking File/Print inside your viewing
program.

1 There are macro files for VIM addicts, and there is a LilyPond-mode for Emacs addicts. If it has not been

installed already, then refer to the file ‘INSTALL.txt’
2 For TEX afficionados: there is also a ‘test.dvi’ file. It can be viewed with xdvi. The DVI uses a lot of

PostScript specials, which do not show up in the magnifying glass. The specials also mean that the DVI file

cannot be processed with dvilj. Use dvips for printing.

Chapter 2: Tutorial 14

On Windows, the same procedure should work, the terminal is started by clicking on the
LilyPond or Cygwin icon. Any text editor (such as NotePad, Emacs or Vim) may be used to
edit the LilyPond file.

To view the PDF file, try the following:

If your system has a PDF viewer installed, open ‘C:\Cygwin\home\your-name ’ in the ex-
plorer and double-click ‘test.pdf’.

If you prefer the keyboard, you can try to enter one of the commands from the list shown
before in the terminal. If none work, go to http://www.cs.wisc.edu/~ghost/ to install
the proper software.

The commands for formatting and printing music on all platforms are detailed in Chapter 6
[Invoking LilyPond], page 134.

2.3 More about pitches

A sharp (]) pitch is made by adding ‘is’ to the name, a flat ([) pitch by adding ‘es’. As you
might expect, a double sharp or double flat is made by adding ‘isis’ or ‘eses’:3

cis1 ees fisis aeses

� 5<7<3</<�
The key signature is set with the command “\key”, followed by a pitch and \major or \minor:

\key d \major

g1

\key c \minor

g

//� <22 333<� //
Key signatures together with the pitch (including alterations) are used together to determine

when to print accidentals. This is a feature that often causes confusion to newcomers, so let us
explain it in more detail:

LilyPond has a sharp distinction between musical content and layout. The alteration (flat,
natural or sharp) of a note is part of the pitch, and is therefore musical content. Whether an
accidental (a flat, natural or sharp sign) is a printed in front of the corresponding note is a ques-
tion of layout. Layout is something that follows rules, so accidentals are printed automatically
according to those rules. The pitches in your music are works of art, so they will not be added
automatically, and you must enter what you want to hear.

For example, in this example:
//� >>>� //

no note gets an explicit accidental, but still you enter

\key d \major

d cis fis

The code d does not mean “print a black dot just below the staff.” Rather, it means: “a
note with pitch D-natural.” In the key of A-flat, it gets an accidental:

3 This syntax derived from note naming conventions in Nordic and Germanic languages, like German and Dutch.

Chapter 2: Tutorial 15

3333� 2>� 3333
\key as \major

d

Adding all alterations explicitly might require some more effort when typing, but the advan-
tage is that transposing is easier, and music can be printed according to different conventions.
See Section 3.6 [Accidentals], page 51 for some examples how accidentals can be printed accord-
ing to different rules.

A tie is created by adding a tilde “~” to the first note being tied:

g4~ g a2~ a4

�� >=>>� �
This example shows the key signature, accidentals and ties in action:

\score {

\notes {

\time 4/4

\key g \minor

\clef violin

r4 r8 a8 gis4 b

g8 d4.~ d e’8

fis4 fis8 fis8 eis4 a8 gis~

gis2 r2

}

\paper { }

}

�33� 2 �>> :> :
�>2>/>�>*(� 33 �

� 3333 33� "=/>>/2 >>>/>
There are some interesting points to note in this example. Bar lines and beams are drawn

automatically. Line breaks are calculated automatically; it does not matter where the lines
breaks are in the source file. Finally, the order of time, key and clef changes is not relevant: in
the printout, these are ordered according to standard notation conventions.

Beams are drawn automatically, but if you do not like where they are put, they can be entered
by hand. Mark the first note to be beamed with [and the last one with]:

a8[ais] d[es r d]

�� >*3>>/>>� �
For more information on

Rests see Section 3.1.5 [Rests], page 35.

Chapter 2: Tutorial 16

Ties see Section 3.1.9 [Ties], page 37.

Accidentals
see Section 3.6 [Accidentals], page 51

Key signature
see Section 3.3.2 [Key signature], page 42

Beams see Section 3.5 [Beaming], page 49

2.4 Octave entry

To raise a note by an octave, add a high quote ’ (apostrophe) to the note name, to lower a
note one octave, add a “low quote” , (a comma). Middle C is c’:

c’4 c’’ c’’’ \clef bass c c,

� >>�>>>�
An example of the use of quotes is in the following Mozart fragment:

\key a \major

\time 6/8

cis’’8. d’’16 cis’’8 e’’4 e’’8

b’8. cis’’16 b’8 d’’4 d’’8

8
6

///� �>>>>> :�>>>>> :� ///
8
6

This example shows that music in a high register needs lots of quotes. This makes the input
less readable, and it is a source of errors. The solution is to use “relative octave” mode. In
practice, this is the most convenient way to copy existing music. To use relative mode, add
\relative before the piece of music. You must also give a note from which relative starts, in
this case c’’. If you do not use octavation quotes (i.e. do not add ’ or , after a note), relative
mode chooses the note that is closest to the previous one. For example, c f goes up while c g

goes down:

\relative c’’ {

c f c g c

}

� >>>>>�
Since most music has small intervals, pieces can be written almost without octavation quotes

in relative mode. The previous example is entered as

\relative c’’ {

\key a \major

\time 6/8

cis8. d16 cis8 e4 e8

b8. cis16 b8 d4 d8

}

8
6

///� �>>>>> :�>>>>> :� ///
8
6

Chapter 2: Tutorial 17

Larger intervals are made by adding octavation quotes.

\relative c’’ {

c f, f c’ c g’ c,

}

� >>>>>>>�
Quotes or commas do not determine the absolute height of a note; the height of a note is

relative to the previous one. For example: c f, goes down; f, f are both the same; c’ c are
the same; and c g’ goes up:

Here is an example of the difference between relative mode and “normal” (non-relative) mode:

\relative a {

\clef bass

a d a e d c’ d’

}

�
>>>>>>>�

\clef bass

a d a e d c’ d’

� >>>>>>>�
For more information on Relative octaves see Section 3.2.1 [Relative octaves], page 39 and

Section 3.2.2 [Octave check], page 40.

2.5 Combining music into compound expressions

To print more than one staff, each piece of music that makes up a staff is marked by adding
\context Staff before it. These Staff’s are then grouped inside \simultaneous { and }, as
is demonstrated here:

\simultaneous {

\new Staff { \clef violin c’’ }

\new Staff { \clef bass c }

}

��
�� >� �

>� �

In this example, \simultaneous indicates that both music fragments happen at the same
time, and must be printed stacked vertically. The notation << .. >> can also be used as a
shorthand for \simultaneous { .. }.

The command \new introduces a “notation context”. To understand this concept, imagine
that you are performing a piece of music. When you are playing, you combine the symbols printed

Chapter 2: Tutorial 18

at a certain point with contextual information. For example, without knowing the current clef,
and the accidentals in the last measure, it would be impossible to determine the pitch of a
note. In other words, this information forms context that helps you decipher a score. LilyPond
produces notation from music, so in effect, it does the inverse of reading scores. Therefore, it
also needs to keep track of contextual information. This information is maintained in “notation
contexts.” There are several types of contexts, e.g. Staff, Voice and Score, but also Lyrics

and ChordNames. Prepending \new to a chunk of music indicates what kind of context to use for
interpreting it, and ensures that the argument is interpreted with a fresh instance of the context
indicated.

We can now typeset a melody with two staves:

\score {

\notes

<< \new Staff {

\time 3/4

\clef violin

\relative c’’ {

e2(d4 c2 b4 a8[a]

b[b] g[g] a2.) }

}

\new Staff {

\clef bass

c2 e4 g2.

f4 e d c2.

}

>>

\paper {}

}

4
3�

4
3� = :

= :>
>
>>

>
>>

>
>>

= :
=

>

>

=�
4
3

=� 4
3

The example shows how small chunks of music, for example, the notes c2, e4, etc. of the
second staff, are combined to form a larger chunk by enclosing it in braces. Again, a larger chunk
is formed by prefix \new Staff to it, and that chunk is combined with << >>. This mechanism
is similar with mathematical formulas: a big formula is created by composing small formulas.
Such formulas are called expressions, and their definition is recursive, so you can make arbitrarily
complex and large expressions. For example,

1

1 + 2

(1 + 2) * 3

((1 + 2) * 3) / (4 * 5)

This example shows a sequence of expressions, where each expression is contained in the
next one. The simplest expressions are numbers and operators (like +, * and /). Parentheses are
used to group expressions. In LilyPond input, a similar mechanism is used. Here, the simplest
expressions are notes and rests. By enclosing expressions in << >> and { }, more complex music
is formed. The \new command also forms new expressions; prepending it to a music expression
yields a new expression.

Chapter 2: Tutorial 19

Like mathematical expressions, music expressions can be nested arbitrarily deep, e.g.

{ c <<c e>>

<< { e f } { c <<b d>> }

>>

}

�� >>>>>>>>� �
When spreading expressions over multiple lines, it is customary to use an indent that indicates

the nesting level. Formatting music like this eases reading, and helps you insert the right amount
of closing braces at the end of an expression. For example,

\score {

\notes <<

{

...

}

{

...

}

>>

}

For more information on context see the Technical manual description in Section 5.1 [Inter-
pretation context], page 123.

2.6 Adding articulation marks to notes

Common accents can be added to a note using a dash (‘-’) and a single character:

c-. c-- c-> c-^ c-+ c-_

�� >[>̀>]>V>Z>W� �
Similarly, fingering indications can be added to a note using a dash (‘-’) and the digit to be

printed:

c-3 e-5 b-2 a-1

�� >1>2>5>3� �
Dynamic signs are made by adding the markings to the note:

c\ff c\mf

�� >
mf

>
ff

� �
Crescendi and decrescendi are started with the commands \< and \>. The command \!

finishes a crescendo on the note it is attached to:

Chapter 2: Tutorial 20

c2\< c2\!\ff\> c2 c2\!

�� ===
ff

=� �
A slur is drawn across many notes, and indicates bound articulation (legato). The starting

note and ending note are marked with a “(” and a “)” respectively:

d4(c16)(cis d e c cis d e)(d4)

�� >>>/>2>>>/>>>� �
A slur looks like a tie, but it has a different meaning. A tie simply makes the first note

sound longer, and can only be used on pairs of notes with the same pitch. Slurs indicate the
articulations of notes, and can be used on larger groups of notes. Slurs and ties are also nested

in practice: �� ==>/>>=� �
If you need two slurs at the same time (one for articulation, one for phrasing), you can also

make a phrasing slur with \(and \).

a8(\(ais b c) cis2 b’2 a4 cis, c\)

�� >/>>=/=>>/>>� �
For more information on

fingering see Section 3.7.8 [Fingering instructions], page 59

articulations
see Section 3.7.7 [Articulations], page 58

slurs see Section 3.7.1 [Slurs], page 54

phrasing slurs
see Section 3.7.2 [Phrasing slurs], page 56

dynamics see Section 3.7.12 [Dynamics], page 63

fingering

2.7 Combining notes into chords

Chords can be made by surrounding pitches with < and >:

r4 <c e g>4 <c f a>8

�� �>>>>>>(� �
You can combine beams and ties with chords. Beam and tie markings must be placed outside

the chord markers:

Chapter 2: Tutorial 21

r4 <c e g>8[<c f a>]~ <c f a>

�� �>>>>>>>>>(� �
r4 <c e g>8\>(<c e g> <c e g> <c f a>8\!)

�� �>>>
�>>>>>>>>>(� �

2.7.1 Basic rhythmical commands

A pickup (or upstep) is entered with the keyword \partial. It is followed by a duration:
\partial 4 is a quarter note upstep and \partial 8 an eighth note:

\partial 8

f8 c2 d e

�� ===�>� �
Tuplets are made with the \times keyword. It takes two arguments: a fraction and a piece

of music. The duration of the piece of music is multiplied by the fraction. Triplets make notes
occupy 2/3 of their notated duration, so a triplet has 2/3 as its fraction:

\times 2/3 { f8 g a }

\times 2/3 { c r c }

�� �>*�
3

>>>3>� �
Grace notes are also made by prefixing a note, or a set of notes with a keyword. In this case,

the keywords are \appoggiatura and \acciaccatura

c4 \appoggiatura b16 c4

c4 \acciaccatura b16 c4

�� >��>>>�>>� �
For more information on

grace notes
see Section 3.7.10 [Grace notes], page 60,

tuplets see Section 3.1.10 [Tuplets], page 38,

upsteps see Section 3.3.6 [Partial measures], page 45.

2.7.2 Commenting input files

Comments are pieces of the input that are ignored. There are two types of comments. A line
comments is introduced by %: after that, the rest of that line is ignored. Block comments span
larger sections of input. Anything that is enclosed in %{ and %} is ignored too. The following
fragment shows possible uses for comments:

Chapter 2: Tutorial 22

% notes for twinkle twinkle follow:

c4 c g’ g a a

%{

This line, and the notes below

are ignored, since they are in a

block comment.

g g f f e e d d c2

%}

2.8 Printing lyrics

Lyrics are entered by separating each syllable with a space, and surrounding them with
\lyrics { ... }, for example,

\lyrics { I want to break free }

Like notes, lyrics are also a form of music, but they must not be printed on a staff, which
is the default way to print music. To print them as lyrics, they must be marked with \new

Lyrics:

\new Lyrics \lyrics { I want to break free }

The melody for this song is as follows:

�� =3>>>3>�>� �
The lyrics can be set to these notes, combining both with the \addlyrics keyword:

\addlyrics

\notes { ... }

\new Lyrics ...

The final result is

\score {

\notes {

\addlyrics

\relative c’ {

\partial 8

c8

\times 2/3 { f g g } \times 2/3 { g4(a2) }

}

\new Lyrics \lyrics { I want to break free }

}

\paper{ }

}

�� =3>
free

>
break

>
to

3>
want

�>� �
I

This melody ends on a melisma, a single syllable (“free”) sung to more than one note. This
is indicated with an extender line. It is entered as two underscores, i.e.

Chapter 2: Tutorial 23

\lyrics { I want to break free __ }

�� =3>
free

>
break

>
to

3>
want

�>� �
I

Similarly, hyphens between words can be entered as two dashes, resulting in a centered
hyphen between two syllables:

Twin -- kle twin -- kle

4
2�

>kle

>
twin

>
kle

>� 4
2

Twin

More options, like putting multiple lines of lyrics below a melody are discussed in Section 3.11
[Vocal music], page 75.

2.9 A lead sheet

In popular music, it is common to denote accompaniment as chord-names. Using them in
LilyPond has two parts, just like lyrics: entering the chords (with \chords), and printing them
(with \new ChordNames).

Chord names are entered by starting chords mode (with \chords). In chords mode, you can
enter chords with a letter (indicating the root of the chord), and a durations following that:

\chords { c2 f4. g8 }

�� �
>>>> :> :> :===� �

The result of \chords is a list of chords, and is equivalent to entering chords with <...>.

Other chords can be created by adding modifiers, after a colon. The following example shows
a few common modifiers:

\chords { c2 f4:m g4:maj7 gis1:dim7 }

�� /<<<</>>>>3>>>===� �
Printing chords is done by adding \context ChordNames before the chords thus entered:

\context ChordNames \chords { c2 f4.:m g4.:maj7 gis8:dim7 }

o7/GMGmFC

When put together, chord names, lyrics and a melody form a lead sheet, for example,

\score {

<<

\context ChordNames \chords { chords }

\addlyrics

\notes the melody

\context Lyrics \lyrics { the text }

>>

\paper { }

Chapter 2: Tutorial 24

}

��
F

=3>
free

>
break

>
to

3>
want

4susC

�>� �
I

A complete list of modifiers, and other options for layout are in the reference manual section
Section 3.1.4 [Chords], page 35.

2.10 Listening to output

MIDI (Musical Instrument Digital Interface) is a standard for connecting and recording digital
instruments. A MIDI file is like a tape recording of a MIDI instrument. The \midi block makes
the music go to a MIDI file, so you can listen to the music you entered. It is great for checking
the music: octaves that are off, or accidentals that were mistyped, stand out very much when
listening to the musical transcription.

\midi can be used in similarly to \paper { }, for example,

\score {

..music..

\midi { \tempo 4=72 }

\paper { }

}

Here, the tempo is specified using the \tempo command. In this case the tempo of quarter
notes is set to 72 beats per minute. More information on auditory output is in the Section 3.19
[Sound], page 119 section in the notation manual.

2.11 Titling

Bibliographic information is entered in a separate block, the \header block. The name of the
piece, its composer, etc. are entered as an assignment, within \header { ... }. For example,

\header {

title = "Eight miniatures"

composer = "Igor Stravinsky"

tagline = "small is beautiful"

}

\score { ... }

When the file is processed by the lilypond wrapper script, then the title and composer
specified are printed above the music. The ‘tagline’ is a short line printed at bottom of the last
page, which normally says “Engraved by LilyPond, version . . . ”. In the example above, it is
replaced by the line “small is beautiful.”4

Normally, the \header is put at the top of the file. However, for a document that contains
multiple pieces (e.g. an etude book, or an orchestral part with multiple movements), then the
header can be put into the \score block as follows; in this case, the name of each piece will be
printed before each movement:

4 Nicely printed parts are good PR for us, so do us a favor, and leave the tagline if you can.

Chapter 2: Tutorial 25

\header {

title = "Eight miniatures"

composer = "Igor Stravinsky"

tagline = "small is beautiful"

}

\score { ...

\header { piece = "Adagio" }

}

\score { ...

\header { piece = "Menuetto" }

}

More information on titling can be found in Section 6.1 [Invoking lilypond], page 134.

2.12 Single staff polyphony

When different melodic lines are combined on a single staff, these are printed as polyphonic
voices: each voice has its own stems, slurs and beams, and the top voice has the stems up, while
the bottom voice has them down.

Entering such parts is done by entering each voice as a sequence (with { .. }), and combining
those simultaneously, separating the voices with \\:

<< { a4 g2 f4~ f4 } \\

{ r4 g4 f2 f4 } >>

�� >>>=>=(>� �
For polyphonic music typesetting, spacer rests can also be convenient: these are rests that

do not print. It is useful for filling up voices that temporarily do not play:

<< { a4 g2 f4~ f4 } \\

{ s4 g4 f2 f4 } >>

�� >>>=>=>� �
Again, these expressions can be nested arbitrarily:

��
�� >>>

>>>
=
=

>
>=

><<� �
>� �

More features of polyphonic typesetting are in the notation manual in Section 3.4 [Polyphony],
page 47.

Chapter 2: Tutorial 26

2.13 Piano staves

Piano music is always typeset in two staves connected by a brace. Printing such a staff is done
similar to the polyphonic example in Section 2.5 [Combining music into compound expressions],
page 17:

<< \new Staff { ... }

\new Staff { ... }

>>

but now this entire expression must be interpreted as a PianoStaff:

\new PianoStaff << \new Staff ... >>

Here is a full-fledged example:

4
2�

4
2� >

>
>
>

>
>

>�
4
2

>� 4
2³

More information on formatting piano music is in Section 3.10 [Piano music], page 70.

2.14 Setting variables

When the music is converted from notes to print, it is interpreted from left-to-right order,
similar to what happens when we read music. During this step, context-sensitive information,
such as the accidentals to print, and where barlines must be placed, are stored in variables.
These variables are called context properties. The properties can also be manipulated from
input files. Consider this input:

\property Staff.autoBeaming = ##f

It sets the property named autoBeaming in the current staff at this point in the music to ##f,
which means ‘false’. This property controls whether beams are printed automatically:

c8 c c c

\property Staff.autoBeaming = ##f

c8 c c c

�� �>�>�>�>>>>>� �
LilyPond includes a built-in programming language, namely, a dialect of Scheme. The argument
to \property, ##f, is an expression in that language. The first hash-mark signals that a piece of
Scheme code follows. The second hash character is part of the boolean value true (#t). Values
of other types may be entered as follows:

• a string, enclosed in double quotes, for example,

\property Staff.instrument = #"French Horn"

• a boolean: either #t or #f, for true and false respectively, e.g.

\property Voice.autoBeaming = ##f

\property Score.skipBars = ##t

• a number, such as

\property Score.currentBarNumber = #20

Chapter 2: Tutorial 27

• a symbol, which is introduced by a quote character, as in

\property Staff.crescendoSpanner = #’dashed-line

• a pair, which is also introduced by a quote character, like in the following statements, which
set properties to the pairs (-7.5, 6) and (3, 4) respectively:

\property Staff.minimumVerticalExtent = #’(-7.5 . 6)

\property Staff.timeSignatureFraction = #’(3 . 4)

• a list, which is also introduced by a quote character. In the following example, the
breakAlignOrder property is set to a list of symbols:

\property Score.breakAlignOrder =

#’(left-edge time-signature key-signatures)

There are many different properties, and not all of them are listed in this manual. However,
the program reference lists them all in the section Context-properties, and most properties
are demonstrated in one of the tips-and-tricks examples.

2.15 Fine tuning layout

Sometimes it is necessary to change music layout by hand. When music is formatted, layout
objects are created for each symbol. For example, every clef and every note head is represented
by a layout object. These layout objects also carry variables, which we call layout properties.
By changing these variables from their values, we can alter the look of a formatted score:

c4

\property Voice.Stem \override #’thickness = #3.0

c4 c4 c4

�� >>>>� �
In the example shown here, the layout property thickness (a symbol) is set to 3 in the Stem

layout objects of the current Voice. As a result, the notes following \property have thicker
stems.

In most cases of manual overrides, only a single object must be changed. This can be achieved
by prefixing \once to the \property statement, i.e.

\once \property Voice.Stem \set #’thickness = #3.0

�� >>>>� �
Some overrides are so common that predefined commands are provided as a short cut. For
example, \slurUp and \stemDown. These commands are described in Chapter 3 [Notation
manual], page 33, under the sections for slurs and stems respectively.

The exact tuning possibilities for each type of layout object are documented in the program
reference of the respective object. However, many layout objects share properties, which can be
used to apply generic tweaks. We mention a couple of these:

• The extra-offset property, which has a pair of numbers as value, moves around objects
in the printout. The first number controls left-right movement; a positive number will move
the object to the right. The second number controls up-down movement; a positive number
will move it higher. The unit of these offsets are staff-spaces. The extra-offset property
is a low-level feature: the formatting engine is completely oblivious to these offsets.

Chapter 2: Tutorial 28

In the following example example, the second fingering is moved a little to the left, and 1.8
staff space downwards:

\stemUp

f-5

\once \property Voice.Fingering

\set #’extra-offset = #’(-0.3 . -1.8)

f-5

�� >5>5� �
• Setting the transparent property will make an object be printed in ‘invisible ink’: the

object is not printed, but all its other behavior is retained. The object still takes space, it
takes part in collisions, and slurs, ties and beams can be attached to it.

The following example demonstrates how to connect different voices using ties. Normally
ties only happen between notes of the same voice. By introducing a tie in a different voice,
and blanking a stem in that voice, the tie appears to cross voices:

c4 << {

\once \property Voice.Stem \set #’transparent = ##t

b8~ b8

} \\ {

b[g8]

} >>

�� >>>>>� �
• The padding property for objects with side-position-interface can be set to increase

distance between symbols that are printed above or below notes. We only give an example;
a more elaborate explanation is in Section 3.17.2 [Constructing a tweak], page 110:

c2\fermata

\property Voice.Script \set #’padding = #3

b2\fermata

�� =
M=M� �

More specific overrides are also possible. The notation manual discusses in depth how to
figure out these statements for yourself, in Section 3.17 [Tuning output], page 107.

2.16 Organizing larger pieces

When all of the elements discussed earlier are combined to produce larger files, the \score

blocks get a lot bigger, because the music expressions are longer, and, in the case of polyphonic
and/or orchestral pieces, more deeply nested. Such large expressions can become unwieldy.

By using variables, also known as identifiers, it is possible to break up complex music expres-
sions. An identifier is assigned as follows:

namedMusic = \notes { ...

The contents of the music expression namedMusic, can be used later by preceding the name
with a backslash, i.e. \namedMusic. In the next example, a two note motive is repeated two
times by using variable substitution:

Chapter 2: Tutorial 29

seufzer = \notes {

dis’8 e’8

}

\score { \notes {

\seufzer \seufzer

} }

�� >>>/>� �
The name of an identifier should have alphabetic characters only, and no numbers, under-

scores or dashes. The assignment should be outside of the \score block.

It is possible to use variables for many other types of objects in the input. For example,

width = 4.5\cm

name = "Wendy"

aFivePaper = \paper { paperheight = 21.0 \cm }

Depending on its contents, the identifier can be used in different places. The following
example uses the above variables:

\score {

\notes { c4^\name }

\paper {

\aFivePaper

linewidth = \width

}

}

More information on the possible uses of identifiers is in the technical manual, in Section 5.2.3
[Scheme datatypes], page 128.

2.17 An orchestral part

In orchestral music, all notes are printed twice: both in a part for the musicians, and in a
full score for the conductor. Identifiers can be used to avoid double work: the music is entered
once, and stored in variable. The contents of that variable is then used to generate both the
part and the score.

It is convenient to define the notes in a special file, for example, suppose that the
‘horn-music.ly’ contains the following part of a horn/bassoon duo.

hornNotes = \notes \relative c {

\time 2/4

r4 f8 a cis4 f e d

}

Then, an individual part is made by putting the following in a file:

\include "horn-music.lyinc"

\header {

instrument = "Horn in F"

}

\score {

\notes \transpose f c’ \hornNotes

}

The \include command substitutes the contents of the file at this position in the file, so that
hornNotes is defined afterwards. The code \transpose f c’ indicates that the argument, being

Chapter 2: Tutorial 30

\hornNotes, should be transposed by a fifth downwards: sounding f is denoted by notated c’,
which corresponds with tuning of a normal French Horn in F. The transposition can be seen in
the following output:

4
2� >>>/>>>(� 4
2

In ensemble pieces, one of the voices often does not play for many measures. This is denoted
by a special rest, the multi-measure rest. It is entered with a capital R, and followed by a
duration (1 for a whole note, 2 for a half note, etc.) By multiplying the duration, longer rests
can be constructed. For example, the next rest takes 3 measures in 2/4 time:

R2*3

When printing the part, the following skipBars property must be set to false, to prevent the
rest from being expanded in three one bar rests:

\property Score.skipBars = ##t

Prepending the rest and the property setting above, leads to the following result:

4
2� >>>/>>>(' !3� 4
2

The score is made by combining all of the music in a \score block, assuming that the other
voice is in bassoonNotes, in the file ‘bassoon-music.ly’:

\include "bassoon-music.lyinc"

\include "horn-music.lyinc"

\score {

\simultaneous {

\new Staff \hornNotes

\new Staff \bassoonNotes

} }

This would lead to the simple score depicted below:

4
2�

4
2� >

>
/>
>

>
>/

>
>>

>
>

>>
(

3>>>/>>>(�
4
2

� 4
2 ! ! !

More in-depth information on preparing parts and scores is in the notation manual, in Sec-
tion 3.14 [Orchestral music], page 84.

2.18 Integrating text and music

Sometimes you might want to use music examples in a text that you are writing (for example,
a musicological treatise, a songbook, or (like us) the LilyPond manual). You can make such texts
by hand, simply by importing a PostScript figure into your word processor. However, there is
an automated procedure to reduce the amount of work.

If you use HTML, LaTEX, or Texinfo, you can mix text and LilyPond code. A script called
lilypond-book will extract the music fragments, run LilyPond on them, and put back the re-
sulting notation. This program is fully described in Chapter 7 [lilypond-book manual], page 141.

Chapter 2: Tutorial 31

Here we show a small example; since the example contains also explanatory text, we will not
comment it further:

\documentclass[a4paper]{article}

\begin{document}

In a lilypond-book document, you can freely mix music and text. For

example:

\begin{lilypond}

\score { \notes \relative c’ {

c2 g’2 \times 2/3 { f8 e d } c’2 g4

} }

\end{lilypond}

If you have no \verb+\score+ block in the fragment,

\texttt{lilypond-book} will supply one:

\begin{lilypond}

c’4

\end{lilypond}

In the example you see here, two things happened: a

\verb+\score+ block was added, and the line width was set to natural

length. You can specify options by putting them in brackets:

\begin[26pt,verbatim]{lilypond}

c’4 f16

\end{lilypond}

If you want to include large examples into the text, it is more

convenient to put it in a separate file:

\lilypondfile{screech-boink.ly}

\end{document}

Under Unix, you can view the results as follows:

$ cd input/tutorial

$ mkdir -p out/

$ lilypond-book --outdir=out/ lilbook.tex

lilypond-book (GNU LilyPond) 1.7.23

Reading ‘input/tutorial/lilbook.tex’

Reading ‘input/screech-boink6.ly’

lots of stuff deleted

Writing ‘out/lilbook.latex’

$ cd out

$ latex lilbook.latex

lots of stuff deleted

$ xdvi lilbook

Running lilypond-book and running latex creates a lot of temporary files, and you would not
want those to clutter up your working directory. The outdir option to lilypond-book creates
the temporary files in a separate subdirectory ‘out’.

The result looks more or less like this:

Chapter 2: Tutorial 32

In a lilypond-book document, you can freely mix music and text. For example:

�� >=>>3>==� �
If you have no \score block in the fragment, lilypond-book will supply one:

�� >� �
In the example you see here, two things happened: a score block was added, and the line

width was set to natural length. You can specify options by putting them in brackets:

c’4 f16

�� �
>>� �

If you want to include large examples into the text, it is more convenient to put it in a
separate file:

8
4333�

8
4333�

2 �>>>2>/ >>>2>>>
2>

/2/ 2/

�

>>>>>trrr

>>> ::>
>>

>

/>>

>

2>>> :� 333 8
4

� 333
8
4³

3

Chapter 3: Notation manual 33

3 Notation manual

This chapter describes all the different types of notation supported by LilyPond. It is intended
as a reference for users that are already somewhat familiar with using LilyPond.

3.1 Note entry

The basic elements of any piece of music are the notes. This section is about basic notation
elements notes, rests and related constructs, such as stems, tuplets and ties.

3.1.1 Notes

A note is printed by specifying its pitch and then its duration:1

cis’4 d’8 e’16 c’16

�� 2>>>/>� �
3.1.2 Pitches

The most common syntax for pitch entry is used in \chords and \notes mode. In Note
and Chord mode, pitches may be designated by names. The notes are specified by the letters a
through g, while the octave is formed with notes ranging from c to b. The pitch c is an octave
below middle C and the letters span the octave above that C:

\clef bass

a,4 b, c d e f g a b c’ d’ e’ \clef treble f’ g’ a’ b’ c’’

�� >>>>>�
>>>>>>>>>>>>� �

A sharp is formed by adding -is to the end of a pitch name and a flat is formed by adding
-es. Double sharps and double flats are obtained by adding -isis or -eses. These names
are the Dutch note names. In Dutch, aes is contracted to as, but both forms are accepted.
Similarly, both es and ees are accepted.

Half-flats and half-sharps are formed by adding -eh and -ih; the following is a series of Cs
with increasing pitches:

ceses4

ceseh

ces

ceh

c

cih

cis

cisih

cisis

1 Notes constitute the most basic elements of LilyPond input, but they do not form valid input on their own

without a \score block. However, for the sake of brevity and simplicity we will generally omit \score blocks

and \paper declarations in this manual.

Chapter 3: Notation manual 34

��
7>1>/>0>>42 >32 >62 >5>

� �
There are predefined sets of note names for various other languages. To use them, include

the language specific init file. For example: \include "english.ly". The available language
files and the note names they define are:

Note Names sharp flat

nederlands.ly c d e f g a bes b -is -es

english.ly c d e f g a bf b -s/-sharp -f/-flat

-x (double)

deutsch.ly c d e f g a b h -is -es

norsk.ly c d e f g a b h -iss/-is -ess/-es

svenska.ly c d e f g a b h -iss -ess

italiano.ly do re mi fa sol la sib si -d -b

catalan.ly do re mi fa sol la sib si -d/-s -b

espanol.ly do re mi fa sol la sib si -s -b

The optional octave specification takes the form of a series of single quote (‘’’) characters
or a series of comma (‘,’) characters. Each ’ raises the pitch by one octave; each , lowers the
pitch by an octave:

c’ c’’ es’ g’ as’ gisis’ ais’

�� /2 >7>3>>3>>>� �

Predefined commands

Notes can be hidden and unhidden with the following commands:

\hideNotes, \unHideNotes.

See also

bla

NoteEvent, and NoteHead.

3.1.3 Chromatic alterations

Normally accidentals are printed automatically, but you may also print them manually. A
reminder accidental can be forced by adding an exclamation mark ! after the pitch. A cautionary
accidental (an accidental within parentheses) can be obtained by adding the question mark ‘?’
after the pitch:

cis’ cis’ cis’! cis’?

�� 89/ >/>>/>� �
The automatic production of accidentals can be tuned in many ways. For more information,

refer to Section 3.6 [Accidentals], page 51.

Chapter 3: Notation manual 35

3.1.4 Chords

A chord is formed by a enclosing a set of pitches in < and >. A chord may be followed by a
duration, and a set of articulations, just like simple notes.

3.1.5 Rests

Rests are entered like notes, with the note name r:

r1 r2 r4 r8

�� *("!� �
Whole bar rests, centered in middle of the bar, must be done with multi measure rests. They

are discussed in Section 3.14.6 [Multi measure rests], page 87.

A rest’s vertical position may be explicitly specified by entering a note with the \rest

keyword appended. This makes manual formatting in polyphonic music easier. Rest collision
testing will leave these rests alone:

a’4\rest d’4\rest

�� ((� �
See also

RestEvent, and Rest.

3.1.6 Skips

An invisible rest (also called a ‘skip’) can be entered like a note with note name ‘s’ or with
\skip duration :

a2 s4 a4 \skip 1 a4

�� >>=� �
The s syntax is only available in Note mode and Chord mode. In other situations, you should

use the \skip command:

\score {

\new Staff <<

{ \time 4/8 \skip 2 \time 4/4 }

\notes\relative c’’ { a2 a1 }

>>

}

8
4� <�=� 8
4

The skip command is merely an empty musical placeholder. It does not produce any output,
not even transparent output.

Chapter 3: Notation manual 36

See also

SkipEvent.

3.1.7 Durations

In Note, Chord, and Lyrics mode, durations are designated by numbers and dots: durations
are entered as their reciprocal values. For example, a quarter note is entered using a 4 (since it
is a 1/4 note), while a half note is entered using a 2 (since it is a 1/2 note). For notes longer
than a whole you must use variables:

c’\breve

c’1 c’2 c’4 c’8 c’16 c’32 c’64 c’64

r\longa r\breve

r1 r2 r4 r8 r16 r32 r64 r64

--,+*($#'&
�>�>�>�>�>>=<;

If the duration is omitted then it is set to the previously entered duration. The default for
the first note is a quarter note. The duration can be followed by dots (‘.’) in order to obtain
dotted note lengths:

a’ b’ c’’8 b’ a’4 a’4. b’4.. c’8.

�� �> :> ::> :>>>>>� �
You can alter the length of duration by a fraction N/M appending ‘*N/M ’ (or ‘*N ’ if M=1).

This will not affect the appearance of the notes or rests produced. In the following example, the
first three notes take up exactly two beats:

\time 2/4

a4*2/3 gis4*2/3 a4*2/3

a4

4
2� >>/>>� 4
2

Predefined commands

Dots are normally moved up to avoid staff lines, except in polyphonic situations. The fol-
lowing commands may be used to force a particular direction manually:

\dotsUp, \dotsDown, \dotsBoth.

See also

Dots, and DotColumn.

Chapter 3: Notation manual 37

Bugs

In dense chords, dots can overlap.

3.1.8 Stems

Whenever a note is found, a Stem object is created automatically. For whole notes and rests,
they are also created but made invisible.

Predefined commands

\stemUp, \stemDown, \stemBoth.

3.1.9 Ties

A tie connects two adjacent note heads of the same pitch. The tie in effect extends the length
of a note. Ties should not be confused with slurs, which indicate articulation, or phrasing slurs,
which indicate musical phrasing. A tie is entered using the tilde symbol ‘~’:

e’ ~ e’ <c’ e’ g’> ~ <c’ e’ g’>

�� >>>>>>>>� �
When a tie is applied to a chord, all note heads whose pitches match are connected. When

no note heads match, no ties will be created.

In its meaning a tie is just a way of extending a note duration, similar to the augmentation
dot; in the following example there are two ways of notating exactly the same concept:

4
3� >== :� 4
3

If you need to tie a lot of notes over bars, it may be easier to use automatic note splitting
(See Section 3.2.5 [Automatic note splitting], page 41).

Predefined commands

\tieUp, \tieDown, \tieBoth, \tieDotted, \tieSolid.

See also

TieEvent, NewTieEvent, Tie, and Section 3.2.5 [Automatic note splitting], page 41.

If you want less ties created for a chord, see ‘input/test/tie-sparse.ly’.

For tieing only a subset of the note heads of a pair of chords, see
‘input/regression/tie-chord-partial.ly’.

Chapter 3: Notation manual 38

Bugs

Switching staves when a tie is active will not produce a slanted tie.

Formatting of ties is a difficult subject. The results are often not optimal.

3.1.10 Tuplets

Tuplets are made out of a music expression by multiplying all durations with a fraction:

\times fraction musicexpr

The duration of musicexpr will be multiplied by the fraction. The fraction’s denominator will
be printed over the notes, optionally with a bracket. The most common tuplet is the triplet in
which 3 notes have the length of 2, so the notes are 2/3 of their written length:

g’4 \times 2/3 {c’4 c’ c’} d’4 d’4

�� >>>>3>>� �
The property tupletSpannerDuration specifies how long each bracket should last. With

this, you can make lots of tuplets while typing \times only once, saving lots of typing. In the
next example, there are two triplets shown, while \times was only used once:

\property Voice.tupletSpannerDuration = #(ly:make-moment 1 4)

\times 2/3 { c’8 c c c c c }

�� >>
3

>>>
3

>� �
The format of the number is determined by the property tupletNumberFormatFunction.

The default prints only the denominator, but if it is set to the Scheme function fraction-

tuplet-formatter, num:den will be printed instead.

Predefined commands

\tupletUp, \tupletDown, \tupletBoth.

See also

TupletBracket, and TimeScaledMusic.

Bugs

Nested tuplets are not formatted automatically. In this case, outer tuplet brackets should be
moved manually.

3.1.11 Easy Notation note heads

The ‘easy play’ note head includes a note name inside the head. It is used in music aimed at
beginners:

Chapter 3: Notation manual 39

\score {

\notes { c’2 e’4 f’ | g’1 }

\paper { \translator { \EasyNotation } }

}

�� G
F

E
C

� �
The EasyNotation variable overrides a Score context. You probably will want to print it

with magnification or a large font size to make it more readable. To print with magnification,
you must create a DVI file (with ‘lilypond’) and then enlarge it with something like ‘dvips -x

2000 file.dvi’. See the dvips documentation for more details. To print with a larger font, see
Section 3.18.3 [Font Size], page 118.

If you view the result with Xdvi, then staff lines will show through the letters. Printing the
PostScript file obtained does produce the correct result.

3.2 Easier music entry

When entering music it is easy to introduce errors. This section deals with tricks and features
of the input language that were added solely to help entering music, and find and correct
mistakes.

It is also possible to use external programs, for example GUI interfaces, or MIDI transcription
programs, to enter or edit music. Refer to the website for more information. Finally, there are
tools make debugging easier, by linking the input file and the output shown on screen. See
Section 6.7 [Point and click], page 139 for more information.

3.2.1 Relative octaves

Octaves are specified by adding ’ and , to pitch names. When you copy existing music, it is
easy to accidentally put a pitch in the wrong octave and hard to find such an error. The relative
octave mode prevents these errors: a single error puts the rest of the piece off by one octave:

\relative startpitch musicexpr

The octave of notes that appear in musicexpr are calculated as follows: If no octave changing
marks are used, the basic interval between this and the last note is always taken to be a fourth
or less (; this distance is determined without regarding alterations: a fisis following a ceses

will be put above the ceses).

The octave changing marks ’ and , can be added to raise or lower the pitch by an extra
octave. Upon entering relative mode, an absolute starting pitch must be specified that will act
as the predecessor of the first note of musicexpr.

Here is the relative mode shown in action:

\relative c’’ {

b c d c b c bes a

}

�� >3>>>>>>>� �
Octave changing marks are used for intervals greater than a fourth:

Chapter 3: Notation manual 40

\relative c’’ {

c g c f, c’ a, e’’ }

�� >
>>>>>>� �

If the preceding item is a chord, the first note of the chord is used to determine the first note
of the next chord:

\relative c’ {

c <c e g>

<c’ e g>

<c, e’ g>

}

�� >>>
>>>>>>>� �

The pitch after the \relative contains a note name. To parse the pitch as a note name, you
have to be in note mode, so there must be a surrounding \notes keyword (which is not shown
here).

The relative conversion will not affect \transpose, \chords or \relative sections in its
argument. If you want to use relative within transposed music, you must place an additional
\relative inside the \transpose.

3.2.2 Octave check

Octave checks make octave errors easier to correct. The syntax is

\octave pitch

This checks that pitch (without octave) yields pitch (with octave) in \relative mode. If not, a
warning is printed, and the octave is corrected, for example, the first check is passed successfully.
The second check fails with an error message. The octave is adjusted so the following notes are
in the correct octave once again.

\relative c’ {

e

\octave a’

\octave b’

}

The octave of a note following an octave check is determined with respect to the note pre-
ceding it. In the next fragment, the last note is a a’, above central C. Hence, the \octave check
may be deleted without changing the meaning of the piece.

\relative c’ {

e

\octave b

a

}

�� >>� �

Chapter 3: Notation manual 41

3.2.3 Bar check

Bar checks help detect errors in the durations. A bar check is entered using the bar symbol,
‘|’. Whenever it is encountered during interpretation, it should fall on a measure boundary. If it
does not, a warning is printed. Depending on the value of barCheckSynchronize, the beginning
of the measure will be relocated.

In the next example, the second bar check will signal an error:

\time 3/4 c2 e4 | g2 |

Failed bar checks are caused by entering incorrect durations. Incorrect durations often com-
pletely garble up the score, especially if it is polyphonic, so you should start correcting the score
by scanning for failed bar checks and incorrect durations. To speed up this process, you can use
skipTypesetting, described in the next section.

3.2.4 Skipping corrected music

The property Score.skipTypesetting can be used to switch on and off typesetting com-
pletely during the interpretation phase. When typesetting is switched off, the music is processed
much more quickly. This can be used to skip over the parts of a score that have already been
checked for errors:

\relative c’’ { c8 d

\property Score.skipTypesetting = ##t

e f g a g c, f e d

\property Score.skipTypesetting = ##f

c d b bes a g c2 }

�� =�>>3>>>�>�>�>� �
3.2.5 Automatic note splitting

Long notes can be converted automatically to tied notes. This is done by replacing the
Note_heads_engraver by the Completion_heads_engraver:

\paper { \translator {

\ThreadContext

\remove "Note_heads_engraver"

\consists "Completion_heads_engraver"

} }

which will make long notes tied in the following example:

\time 2/4

c2. c8 d4 e f g a b c8 c2 b4 a g16 f4 e d c8. c2

4
2� =�> :>�>�> :>�>>>=�>>�>�>>�>�>>�>>>>=� 4
2

This engraver splits all running notes at the bar line, and inserts ties. One of its uses is to
debug complex scores: if the measures are not entirely filled, then the ties exactly show how
much each measure is off.

Chapter 3: Notation manual 42

Bugs

Not all durations (especially those containing tuplets) can be represented exactly; the en-
graver will not insert tuplets.

3.3 Staff notation

This section describes music notation that occurs on staff level, such as keys, clefs and time
signatures.

3.3.1 Staff symbol

Notes, dynamic signs, etc. are grouped with a set of horizontal lines, into a staff (plural
‘staves’). In our system, these lines are drawn using a separate layout object called staff symbol.

This object is created whenever a Staff context is created. The appearance of the staff
symbol cannot be changed by using \override or \set. At the moment that \property Staff

is interpreted, a Staff context is made, and the StaffSymbol is created before any \override

is effective. Properties can be changed in a \translator definition, or by using \applyoutput.

Bugs

If a staff is ended halfway a piece, the staff symbol may not end exactly on the barline.

3.3.2 Key signature

The key signature indicates the scale in which a piece is played. It is denoted by a set of
alterations (flats or sharps) at the start of the staff.

Syntax

Setting or changing the key signature is done with the \key command:

\key pitch type

Here, type should be \major or \minor to get pitch-major or pitch-minor, respectively. The
standard mode names \ionian, \locrian, \aeolian, \mixolydian, \lydian, \phrygian, and
\dorian are also defined.

This command sets the context property Staff.keySignature. Non-standard key signatures
can be specified by setting this property directly.

Accidentals and key signatures often confuse new users, because unaltered notes get natural
signs depending on the keysignature. The tutorial explains why this is so in Section 2.3 [More
about pitches], page 14.

Bugs

The ordering of a key cancellation is wrong when it is combined with repeat bar lines. The
cancellation is also printed after a line break.

Chapter 3: Notation manual 43

See also

KeyChangeEvent, and KeySignature.

3.3.3 Clef

The clef indicates which lines of the staff correspond to which pitches.

Syntax

The clef can be set or changed with the \clef command:

\key f\major c’’2 \clef alto g’2

�3� =�=� 3 �
Supported clef-names include:

treble, violin, G, G2

G clef on 2nd line

alto, C C clef on 3rd line

tenor C clef on 4th line.

bass, F F clef on 4th line

french G clef on 1st line, so-called French violin clef

soprano C clef on 1st line

mezzosoprano

C clef on 2nd line

baritone C clef on 5th line

varbaritone

F clef on 3rd line

subbass F clef on 5th line

percussion

percussion clef

By adding _8 or ^8 to the clef name, the clef is transposed one octave down or up, respectively,
and _15 and ^15 transposes by two octaves. The argument clefname must be enclosed in quotes
when it contains underscores or digits. For example,

\clef "G_8" c4

��
8

>
8

� �
This command is equivalent to setting clefGlyph, clefPosition (which controls the Y

position of the clef), centralCPosition and clefOctavation. A clef is printed when any of
these properties are changed.

Chapter 3: Notation manual 44

See also

The object for this symbol is Clef.

3.3.4 Ottava brackets

“Ottava” brackets introduce an extra transposition of an octave for the staff. They are
created by invoking the function set-octavation:

\relative c’’’ {

a2 b

#(set-octavation 1)

a b

#(set-octavation 0)

a b }

�� ====8va==� �
Internally the set-octavation function sets the properties ottavation (eg. to "8va") and

centralCPosition. The function also takes arguments -1 (for 8va bassa) and 2 (for 15ma).

OttavaSpanner.

Bugs

set-octavation will get confused when clef changes happen during an octavation bracket.

3.3.5 Time signature

Time signature indicates the metrum of a piece: a regular pattern of strong and weak beats.
It is denoted by a fraction at the start of the staff.

Syntax

The time signature is set or changed by the \time command:

\time 2/4 c’2 \time 3/4 c’2.

4
2� = :4

3=� 4
2

The symbol that is printed can be customized with the style property. Setting it to #’()

uses fraction style for 4/4 and 2/2 time. There are many more options for its layout. See
‘input/test/time.ly’ for more examples.

This command sets the property timeSignatureFraction, beatLength and measureLength

in the Timing context, which is normally aliased to Score. The property measureLength de-
termines where bar lines should be inserted, and how automatic beams should be generated.
Changing the value of timeSignatureFraction also causes the symbol to be printed.

More options are available through the Scheme function set-time-signature. In combina-
tion with the Measure_grouping_engraver, it will create MeasureGrouping signs. Such signs
ease reading rhythmically complex modern music. In the following example, the 9/8 measure is

Chapter 3: Notation manual 45

subdivided in 2, 2, 2 and 3. This is passed to set-time-signature as the third argument (2 2

2 3):

\score { \notes \relative c’’ {

#(set-time-signature 9 8 ’(2 2 2 3))

g8[g] d[d] g[g] a8[(bes g]) |

#(set-time-signature 5 8 ’(3 2))

a4. g4

}

\paper {

raggedright = ##t

\translator { \StaffContext

\consists "Measure_grouping_engraver"

}}}

8
9� >> :

8
5>3>>>>>>>>� 8

9

See also

TimeSignature, and Timing_engraver.

Bugs

Automatic beaming does not use measure grouping specified with set-time-signature.

3.3.6 Partial measures

Partial measures, for example in upsteps, are entered using the \partial command:

\partial 16*5 c16 cis d dis e | a2. c,4 | b2

�� =>= :>/>>/>�>� �
The syntax for this command is

\partial duration

This is internally translated into

\property Timing.measurePosition = -length of duration

The property measurePosition contains a rational number indicating how much of the
measure has passed at this point.

3.3.7 Unmetered music

Bar lines and bar numbers are calculated automatically. For unmetered music (e.g. cadenzas),
this is not desirable. By setting Score.timing to false, this automatic timing can be switched
off.

Chapter 3: Notation manual 46

Predefined commands

\cadenzaOn, \cadenzaOff.

3.3.8 Bar lines

Bar lines delimit measures, but are also used to indicate repeats. Normally, they are inserted
automatically. Line breaks may only happen on barlines.

Syntax

Special types of barlines can be forced with the \bar command:

c4 \bar "|:" c4

�� :: >>� �
The following bar types are available:

c4

\bar "|" c

\bar "" c

\bar "|:" c

\bar "||" c

\bar ":|" c

\bar ".|" c

\bar ".|." c

\bar "|."

�� >>:: >>:: >>>>� � For allowing linebreaks, there is a special com-

mand,

\bar "empty"

This will insert an invisible barline, and allow linebreaks at this point.

In scores with many staves, a \bar command in one staff is automatically applied to all
staves. The resulting bar lines are connected between different staves of a StaffGroup:

<< \context StaffGroup <<

\new Staff { e’4 d’

\bar "||"

f’ e’ }

\new Staff { \clef bass c4 g e g } >>

\new Staff { \clef bass c2 c2 } >>

Chapter 3: Notation manual 47

��
��

��

>
>

=

>
>

>
>

=� �
>� �
>� �

The command \bar bartype is a short cut for doing \property Score.whichBar = bartype

Whenever whichBar is set to a string, a bar line of that type is created. At the start of a
measure it is set to defaultBarType. The contents of repeatCommands are used to override
default measure bars.

Property whichBar can also be set directly, using \property or \bar. These settings take
precedence over the automatic whichBar settings.

You are encouraged to use \repeat for repetitions. See Section 3.8 [Repeats], page 64.

See also

Section 3.8 [Repeats], page 64.

The bar line objects that are created at Staff level are called BarLine, the bar lines that
span staves are SpanBars.

The barlines at the start of each system are SystemStartBar, SystemStartBrace,
and SystemStartBracket. They are spanner objects and typically must be tuned from a
\translator block.

3.4 Polyphony

The easiest way to enter fragments with more than one voice on a staff is to split chords
using the separator \\. You can use it for small, short-lived voices or for single chords:

\context Staff \relative c’’ {

c4 << { f d e } \\ { b c2 } >>

c4 << g’ \\ b, \\ f’ \\ d >>

}

�� > >>>>>=>>>>� �
The separator causes Voice contexts2 to be instantiated. They bear the names "1", "2",

etc. In each of these contexts, vertical direction of slurs, stems, etc. is set appropriately.

This can also be done by instantiating Voice contexts by hand, and using \voiceOne, up to
\voiceFour to assign a stem directions and horizontal shift for each part:

\relative c’’

\context Staff << \new Voice { \voiceOne cis2 b }

\new Voice { \voiceThree b4 ais ~ ais4 gis4 }

\new Voice { \voiceTwo fis4~ fis4 f ~ f } >>

2 Polyphonic voices are sometimes called "layers" other notation packages

Chapter 3: Notation manual 48

�� / >>2>>=/>>//>>=� �
Normally, note heads with a different number of dots are not merged, but when the object

property merge-differently-dotted is set in the NoteCollision object, they are merged:

\relative c’’ \context Voice << {

g8 g8

\property Staff.NoteCollision \override

#’merge-differently-dotted = ##t

g8 g8

} \\ { g8.[f16] g8.[f16] }

>>

�� >>> :>>>> :>� �
Similarly, you can merge half note heads with eighth notes, by setting merge-differently-

headed:

\context Voice << {

c8 c4.

\property Staff.NoteCollision

\override #’merge-differently-headed = ##t

c8 c4. } \\ { c2 c2 } >>

�� > :�=> :�=>� �
LilyPond also vertically shifts rests that are opposite of a stem:

\context Voice << c’’4 \\ r4 >>

�� (>� �

Predefined commands

\oneVoice, \voiceOne, \voiceTwo, \voiceThree, \voiceFour.

The following commands specify in what chords of the current voice should be shifted: the
outer voice has \shiftOff, and the inner voices have \shiftOn, \shiftOnn, etc.

\shiftOn, \shiftOnn, \shiftOnnn, \shiftOff.

See also

The objects responsible for resolving collisions are NoteCollision and
RestCollision. See also example files ‘input/regression/collision-dots.ly’,
‘input/regression/collision-head-chords.ly’, ‘input/regression/collision-heads.ly’,
‘input/regression/collision-mesh.ly’, and ‘input/regression/collisions.ly’.

Chapter 3: Notation manual 49

Bugs

Resolving collisions is a intricate subject, and only a few situations are handled. When
LilyPond cannot cope, the force-hshift property of the NoteColumn object and pitched rests
can be used to override typesetting decisions.

When using merge-differently-headed with an upstem 8th or a shorter note, and a down-
stem half note, the 8th note gets the wrong offset.

3.5 Beaming

Beams are used to group short notes into chunks that are aligned with the metrum. They
are inserted automatically in most cases:

\time 2/4 c8 c c c \time 6/8 c c c c8. c16 c8

4
2� >>> :>>>8

6>>>>� 4
2

When these automatic decisions are not good enough, beaming can be entered explicitly. It
is also possible to define beaming patterns that differ from the defaults.

See also

Beam.

3.5.1 Manual beams

In some cases it may be necessary to override the automatic beaming algorithm. For example,
the auto beamer will not put beams over rests or bar lines. Such beams are specified by manually:
the begin and end point are marked with [and]:

\context Staff {

r4 r8[g’ a r8] r8 g[| a] r8

}

�� *>>**>>*(� �
Normally, beaming patterns within a beam are determined automatically. When this mecha-

nism fouls up, the properties Voice.stemLeftBeamCount and Voice.stemRightBeamCount can
be used to control the beam subdivision on a stem. If either property is set, its value will be
used only once, and then it is erased.

\context Staff {

f8[r16 f g a]

f8[r16 \property Voice.stemLeftBeamCount = #1 f g a]

}

�� >>>+>>>>+>� �
The property subdivideBeams can be set in order to subdivide all 16th or shorter beams at

beat positions, as defined by the beatLength property . This accomplishes the same effect as
twiddling with stemLeftBeamCount and stemRightBeamCount, but it take less typing:

Chapter 3: Notation manual 50

c16[c c c c c c c]

\property Voice.subdivideBeams = ##t

c16[c c c c c c c]

\property Score.beatLength = #(ly:make-moment 1 8)

c16[c c c c c c c]

�� >>>>>>>>>>>>>>>>>>>>>>>>� �
Kneed beams are inserted automatically, when a large gap is detected between the note

heads. This behavior can be tuned through the object property auto-knee-gap.

Normally, line breaks are forbidden when beams cross bar lines. This behavior can be changed
by setting allowBeamBreak.

Bugs

Automatically kneed beams cannot be used together with hidden staves.

3.5.2 Setting automatic beam behavior

In normal time signatures, automatic beams can start on any note but can only end in a
few positions within the measure: beams can end on a beat, or at durations specified by the
properties in Voice.autoBeamSettings. The defaults for autoBeamSettings are defined in
‘scm/auto-beam.scm’.

The value of autoBeamSettings is changed using \override and restored with \revert:

\property Voice.autoBeamSettings \override #’(BE P Q N M) = dur

\property Voice.autoBeamSettings \revert #’(BE P Q N M)

Here, BE is the symbol begin or end. It determines whether the rule applies to begin or end-
points. The quantity P/Q refers to the length of the beamed notes (and ‘* *’ designates notes
of any length), N/M refers to a time signature (wildcards, ‘* *’ may be entered to designate all
time signatures).

For example, if automatic beams should end on every quarter note, use the following:

\property Voice.autoBeamSettings \override

#’(end * * * *) = #(ly:make-moment 1 4)

Since the duration of a quarter note is 1/4 of a whole note, it is entered as (ly:make-moment
1 4).

The same syntax can be used to specify beam starting points. In this example, automatic
beams can only end on a dotted quarter note:

\property Voice.autoBeamSettings \override

#’(end * * * *) = #(ly:make-moment 3 8)

In 4/4 time signature, this means that automatic beams could end only on 3/8 and on the
fourth beat of the measure (after 3/4, that is 2 times 3/8 has passed within the measure).

Rules can also be restricted to specific time signatures. A rule that should only be applied
in N/M time signature is formed by replacing the second asterisks by N and M. For example,
a rule for 6/8 time exclusively looks like

\property Voice.autoBeamSettings \override

#’(begin * * 6 8) = ...

Chapter 3: Notation manual 51

If a rule should be to applied only to certain types of beams, use the first pair of asterisks.
Beams are classified according to the shortest note they contain. For a beam ending rule that
only applies to beams with 32nd notes (and no shorter notes), use (end 1 32 * *).

If a score ends while an automatic beam has not been ended and is still accepting notes, this
last beam will not be typeset at all.

For melodies that have lyrics, you may want to switch off automatic beaming. This is done
by setting Voice.autoBeaming to #f.

Predefined commands

\autoBeamOff, \autoBeamOn.

Bugs

The rules for ending a beam depend on the shortest note in a beam. So, while it is possible
to have different ending rules for eight beams and sixteenth beams, a beam that contains both
eight and sixteenth notes will use the rules for the sixteenth beam.

In the example below, the autobeamer makes eight beams and sixteenth end at 3 eights; the
third beam can only be corrected by specifying manual beaming.

8
12� >�>>>>>>>>>>>>>>>� 8
12

It is not possible to specify beaming parameters that act differently in different parts of a
measure. This means that it is not possible to use automatic beaming in irregular meters such
as 5/8.

3.6 Accidentals

This section describes how to change the way that accidentals are inserted automatically
before the running notes.

3.6.1 Using the predefined accidental variables

The constructs for describing the accidental typesetting rules are quite hairy, so non-experts
should stick to the variables defined in ‘ly/property-init.ly’.

The variables set properties in the “Current” context (see Section 5.1.3 [Context properties],
page 124). This means that the variables should normally be added right after the creation of
the context in which the accidental typesetting described by the variable is to take effect. For
example, if you want to use piano-accidentals in a piano staff then issue \pianoAccidentals

first thing after the creation of the piano staff:

\score {

\notes \relative c’’ <<

\new Staff { cis4 d e2 }

\context GrandStaff <<

\pianoAccidentals

\new Staff { cis4 d e2 }

\new Staff { es2 c }

>>

Chapter 3: Notation manual 52

\new Staff { es2 c }

>>

}

��
��
��
��

2
2

=
=
=
=

>
>

3
3
/
/

=� �
=� �
>� �
>� �

%

The variables are:

\defaultAccidentals

This is the default typesetting behaviour. It should correspond to 18th century
common practice: Accidentals are remembered to the end of the measure in which
they occur and only on their own octave.

\voiceAccidentals

The normal behaviour is to remember the accidentals on Staff-level. This variable,
however, typesets accidentals individually for each voice. Apart from that the rule
is similar to \defaultAccidentals.

This leads to some weird and often unwanted results because accidentals from one
voice do not get cancelled in other voices:

\context Staff <<

\voiceAccidentals

<<

{ es g } \\

{ c, e }

>> >>

�� >>3>>� �
Hence you should only use \voiceAccidentals if the voices are to be read solely by
individual musicians. If the staff is to be used by one musician (e.g. a conductor)
then you use \modernVoiceAccidentals or \modernVoiceCautionaries instead.

\modernAccidentals

This rule corresponds to the common practice in the 20th century. The rule is
more complex than \defaultAccidentals. You get all the same accidentals, but
temporary accidentals also get cancelled in other octaves. Furthermore, in the same
octave, they also get cancelled in the following measure:

\modernAccidentals

cis’ c’’ cis’2 | c’’ c’

�� 2==/=2>/>� �

Chapter 3: Notation manual 53

\modernCautionaries

This rule is similar to \modernAccidentals, but the “extra” accidentals (the ones
not typeset by \defaultAccidentals) are typeset as cautionary accidentals. They
are printed in reduced size or with parentheses:

\modernCautionaries

cis’ c’’ cis’2 | c’’ c’

�� 892 ==89/ =892 >/>� �
\modernVoiceAccidentals

is used for multivoice accidentals to be read both by musicians playing one voice
and musicians playing all voices. Accidentals are typeset for each voice, but they
are cancelled across voices in the same Staff.

\modernVoiceCautionaries

is the same as \modernVoiceAccidentals, but with the extra accidentals (the ones
not typeset by \voiceAccidentals) typeset as cautionaries. Even though all acci-
dentals typeset by \defaultAccidentals are typeset by this variable then some of
them are typeset as cautionaries.

\pianoAccidentals

20th century practice for piano notation. Very similar to \modernAccidentals

but accidentals also get cancelled across the staves in the same GrandStaff or
PianoStaff.

\pianoCautionaries

As \pianoAccidentals but with the extra accidentals typeset as cautionaries.

\noResetKey

Same as \defaultAccidentals but with accidentals lasting “forever” and not only
until the next measure:

\noResetKey

c1 cis cis c

�� 2<</<<� �
\forgetAccidentals

This is sort of the opposite of \noResetKey: Accidentals are not remembered at
all—and hence all accidentals are typeset relative to the key signature, regardless of
what was before in the music:

\forgetAccidentals

\key d\major c4 c cis cis d d dis dis

�//� />/>>>>>2>2>� // �
3.6.2 Customized accidental rules

For determining when to print an accidental, several different rules are tried. The rule that
gives the highest number of accidentals is used. Each rule consists of

Chapter 3: Notation manual 54

context: In which context is the rule applied. For example, if context is Score then all staves
share accidentals, and if context is Staff then all voices in the same staff share
accidentals, but staves do not.

octavation:
Whether the accidental changes all octaves or only the current octave.

lazyness: Over how many barlines the accidental lasts. If lazyness is -1 then the accidental
is forget immediately, and if lazyness is #t then the accidental lasts forever.

Predefined commands

\defaultAccidentals, \voiceAccidentals, \modernAccidentals, \modernCautionaries,
\modernVoiceAccidentals, \modernVoiceCautionaries, \pianoAccidentals,
\pianoCautionaries, \noResetKey, \forgetAccidentals.

See also

Accidental_engraver, Accidental, and AccidentalPlacement.

Bugs

Currently the simultaneous notes are considered to be entered in sequential mode. This
means that in a chord the accidentals are typeset as if the notes in the chord happened once at
a time - in the order in which they appear in the input file.

This is only a problem when there are simultaneous notes whose accidentals depend on each
other. The problem only occurs when using non-default accidentals. In the default scheme,
accidentals only depend on other accidentals with the same pitch on the same staff, so no
conflicts possible.

This example shows two examples of the same music giving different accidentals depending
on the order in which the notes occur in the input file:

\property Staff.autoAccidentals = #’(Staff (any-octave . 0))

cis’4 <c’’ c’> r2 | cis’4 <c’ c’’> r2

| <cis’ c’’> r | <c’’ cis’> r |

�� "/=="2/=="2>>/>"2>>/>� �
This problem can be solved by manually inserting ! and ? for the problematic notes.

3.7 Expressive marks

3.7.1 Slurs

A slur indicates that notes are to be played bound or legato.

Chapter 3: Notation manual 55

Syntax

They are entered using parentheses:

f(g)(a) a8 b(a4 g2 f4)

<c e>2(<b d>2)

�� ====>=>>>>>>� �
Slurs avoid crossing stems, and are generally attached to note heads. However, in some

situations with beams, slurs may be attached to stem ends. If you want to override this layout
you can do this through the object property attachment of Slur in Voice context. Its value is
a pair of symbols, specifying the attachment type of the left and right end points:

\slurUp

\property Voice.Stem \set #’length = #5.5

g’8(g g4)

\property Voice.Slur \set #’attachment = #’(stem . stem)

g8(g g4)

�� >>>>>>� �
If a slur would strike through a stem or beam, the slur will be moved away upward or

downward. If this happens, attaching the slur to the stems might look better:

\stemUp \slurUp

d32(d’4 d8..)

\property Voice.Slur \set #’attachment = #’(stem . stem)

d,32(d’4 d8..)

��
�> ::>�>

�> ::>�>� �

Predefined commands

\slurUp, \slurDown, \slurBoth, \slurDotted, \slurSolid.

See also

internals document, Slur, and SlurEvent.

Bugs

Producing nice slurs is a difficult problem, and LilyPond currently uses a simple, empiric
method to produce slurs. In some cases, its results are ugly.

Chapter 3: Notation manual 56

3.7.2 Phrasing slurs

A phrasing slur (or phrasing mark) connects chords and is used to indicate a musical sentence.
It is started using \(and \) respectively:

\time 6/4 c’\(d(e) f(e) d\)

4
6� >>>>>>� 4
6

Typographically, the phrasing slur behaves almost exactly like a normal slur. However, they
are treated as different objects. A \slurUp will have no effect on a phrasing slur; instead, you
should use \phrasingSlurUp, \phrasingSlurDown, and \phrasingSlurBoth.

The commands \slurUp, \slurDown, and \slurBoth will only affect normal slurs and not
phrasing slurs.

Predefined commands

\phrasingSlurUp, \phrasingSlurDown, \phrasingSlurBoth,

See also

See also PhrasingSlur, and PhrasingSlurEvent.

Bugs

Phrasing slurs have the same limitations in their formatting as normal slurs. Putting phrasing
slurs over rests leads to spurious warnings.

3.7.3 Breath marks

Breath marks are entered using \breathe:

c’4 \breathe d4

�� n >>� �
The glyph of the breath mark can be tweaked by overriding the text property of the

BreathingSign layout object with any markup text. For example,

c’4

\property Voice.BreathingSign \override #’text

= #(make-musicglyph-markup "scripts-rvarcomma")

\breathe

d4

�� p >>� �

Chapter 3: Notation manual 57

See also

BreathingSign, BreathingSignEvent, and ‘input/regression/breathing-sign.ly’.

3.7.4 Metronome marks

Metronome settings can be entered as follows:

\tempo duration = perminute

In the MIDI output, they are interpreted as a tempo change, and in the paper output, a
metronome marking is printed:

\tempo 8.=120 c’’1

120=>� :�� <� � 120=>� :

See also

MetronomeChangeEvent.

3.7.5 Text spanners

Some performance indications, e.g. rallentando or accelerando, are written as texts, and
extended over many measures with dotted lines. You can create such texts using text spanners:
attach \startTextSpan and \stopTextSpan to the start and ending note of the spanner.

The string to be printed, as well as the style, is set through object properties:

\relative c’ { c1

\property Voice.TextSpanner \set #’direction = #-1

\property Voice.TextSpanner \set #’edge-text = #’("rall " . "")

c2\startTextSpan b c\stopTextSpan a }

�� ====
rall

<� �
See also

TextSpanEvent, TextSpanner, and ‘input/regression/text-spanner.ly’.

3.7.6 Analysis brackets

Brackets are used in musical analysis to indicate structure in musical pieces. LilyPond sup-
ports a simple form of nested horizontal brackets. To use this, add the Horizontal_bracket_

engraver to Staff context. A bracket is started with \startGroup and closed with \stopGroup:

\score { \notes \relative c’’ {

c4\startGroup\startGroup

c4\stopGroup

c4\startGroup

c4\stopGroup\stopGroup

Chapter 3: Notation manual 58

}

\paper { \translator {

\StaffContext \consists "Horizontal_bracket_engraver"

}}}

�� >>>>� �

See also

HorizontalBracket, NoteGroupingEvent, and ‘input/regression/note-group-bracket.ly’.

3.7.7 Articulations

A variety of symbols can appear above and below notes to indicate different characteristics
of the performance. They are added to a note by adding a dash and the character signifying the
articulation. They are demonstrated here:

��
c

>[
c

>̂]
c->

>V
c-|

>X
c-+

>̀
c--

>Z
c-.

>W� �
The meanings of these shorthands can be changed: see ‘ly/script-init.ly’ for examples.

The script is automatically placed, but if you need to force directions, you can use _ to force
them down, or ^ to put them up:

c’’4^^ c’’4_^

�� >̂>]� �
Other symbols can be added using the syntax note\name, e.g. c4\fermata. Again, they can

be forced up or down using ^ and _, eg.

c\fermata c^\fermata c_\fermata

��
>
N

>M>M
� �

��
downbow

>b
upbow

>a
portato

>[
tenuto

>Z
staccato

>W
staccatissimo

>X
marcato

>]
accent

>V� �

��
reverseturn

>c
turn

>d
stopped

>̀
open

>_
rtoe

>i
ltoe

>h
rheel

>g
lheel

>f
thumb

>U
flageolet

>j

Chapter 3: Notation manual 59

��
upmordent

>}
downprall

>|
upprall

>{
prallmordent

>z
prallprall

>y
mordent

>x
prall

>w
trill

>e

��
shortfermata

>O
signumcongruentiae

>Ô
lineprall

>Ä
prallup

>�
pralldown

>�
downmordent

>~

��
varcoda

>m
coda

>l
segno

>k
verylongfermata

>S
longfermata

>Q
fermata

>M

Predefined commands

\scriptUp, \scriptDown, \scriptBoth.

See also

ScriptEvent, and Script.

Bugs

These note ornaments appear in the printed output but have no effect on the MIDI rendering
of the music.

3.7.8 Fingering instructions

Fingering instructions can be entered using

note-digit

For finger changes, use markup texts:

c’4-1 c’4-2 c’4-3 c’4-4

c’^\markup { \fontsize #-3 \number "2-3" }

�� 2-3

>>
4

>
3

>
2

>
1� �

You can use the thumb-script to indicate that a note should be played with your thumb (used
in cello music):

<a’ a’’-3>8(_\thumb <b’ b’’-3>)_\thumb

<c’’ c’’’-3>(_\thumb <d’’ d’’’-3>)_\thumb

��
3>>U

3>>U
3>>U

3>>U� �
Fingerings for chords can also be added to individual notes of the chord by adding them after

the pitches:

Chapter 3: Notation manual 60

< c-1 e-2 g-3 b-5 > 4

��
5

3

2

1

>>>>� �
Setting fingeringOrientations will put fingerings next to note heads:

\property Voice.fingeringOrientations = #’(left down)

<c-1 es-2 g-4 bes-5 > 4

\property Voice.fingeringOrientations = #’(up right down)

<c-1 es-2 g-4 bes-5 > 4

�� 5

4
2

1

>>>>335
4
2

1

>>>>� �
See also

FingerEvent, and Fingering.

3.7.9 Text scripts

It is possible to place arbitrary strings of text or markup text (see Section 3.17.5 [Text
markup], page 113) above or below notes by using a string: c^"text". By default, these
indications do not influence the note spacing, but by using the command \fatText, the widths
will be taken into account:

\relative c’ {

c4^"longtext" \fatText c4_"longlongtext" c4 }

�� >
longlongtext
>

longtext

>� �
It is possible to use TEX commands in the strings, but this should be avoided because the

exact dimensions of the string can then no longer be computed.

See also

TextScriptEvent, TextScript, and Section 3.17.5 [Text markup], page 113.

3.7.10 Grace notes

Grace notes are ornaments that are written out. The most common ones are acciaccatura,
which should be played as very short. It is denoted by a slurred small note with a slashed
stem. The appoggiatura is a grace note that takes a fixed fraction of the main note, is and
denoted as a slurred note in small print without a slash. They are entered with the commands
\acciaccatura and \appoggiatura, as demonstrated in the following example:

b4 \acciaccatura d8 c4 \appoggiatura e8 d4

\acciaccatura { g16[f] } e4

�� >>>>�>>��>>� �

Chapter 3: Notation manual 61

Both are special forms of the \grace command. By prefixing this keyword to a music
expression, a new one is formed, which will be printed in a smaller font and takes up no logical
time in a measure.

c4 \grace c16 c4

\grace { c16[d16] } c2 c4

�� >=>>>�>>� �
Unlike \acciaccatura and \appoggiatura, the \grace command does not start a slur.

Internally, timing for grace notes is done using a second, ‘grace’ time. Every point in time
consists of two rational numbers: one denotes the logical time, one denotes the grace timing.
The above example is shown here with timing tuples:

�� >
)0,4

2
(

=
)16

-1
,4

2
(

>

)8
-1

,4
2

(

>

)0,4
1

(

>�

)16
-1

,4
1

(

>

(0,0)

>� �

The placement of grace notes is synchronized between different staves. In the following
example, there are two sixteenth graces notes for every eighth grace note:

<< \new Staff { e4 \grace { c16[d e f] } e4 }

\new Staff { c’4 \grace { g8[b] } c4 } >>

��
�� >

>>
>

>>

>

>
>� �
>� �

If you want to end a note with a grace, then the standard trick is to put the grace notes after
a “space note”, e.g.

\context Voice {

<< { d1^\trill (}

{ s2 \grace { c16[d] } } >>

c4)

}

�� >>><e� �
By adjusting the duration of the skip note (here it is a half-note), the space between the main-
note and the grace is adjusted.

A \grace section will introduce special typesetting settings, for example, to produce smaller
type, and set directions. Hence, when introducing layout tweaks, they should be inside the grace
section, for example,

\new Voice {

\acciaccatura {

\property Voice.Stem \override #’direction = #-1

f16->

Chapter 3: Notation manual 62

\property Voice.Stem \revert #’direction

}

g4

}

�� >��>V� �
The overrides should also be reverted inside the grace section.

If the layout of grace sections must be changed throughout the music, then this can be
accomplished through the function add-grace-property. The following example undefines the
Stem direction grace section, so stems do not always point up.

\new Staff {

#(add-grace-property "Voice" Stem direction ’())

...

}

Another option is to change the variables startGraceMusic, stopGraceMusic,
startAccacciaturaMusic, stopAccacciaturaMusic, startAppoggiaturaMusic,
stopAppoggiaturaMstuic. More information is in the file ‘ly/grace-init.ly’

See also

GraceMusic.

Bugs

Grace notes cannot be used in the smallest size (‘paper11.ly’).

A score that starts with an \grace section needs an explicit \context Voice declaration,
otherwise the main note and grace note end up on different staves.

Grace note synchronization can also lead to surprises. Staff notation, such as key signatures,
barlines, etc. are also synchronized. Take care when you mix staves with grace notes and staves
without, for example,

<< \new Staff { e4 \bar "|:" \grace c16 d4 }

\new Staff { c4 \bar "|:" d4 } >>

��
�� ::

::

>
>

::
:: �>

>� �
>� �

Grace sections should only be used within sequential music expressions. Nesting or juxta-
posing grace sections is not supported, and might produce crashes or other errors.

Overriding settings cannot be done in separate styles for appoggiatura and acciaccatura.

3.7.11 Glissando

A glissando is a smooth change in pitch. It is denoted by a line or a wavy line between two
notes.

Chapter 3: Notation manual 63

Syntax

A glissando line can be requested by attaching a \glissando to a note:

c’\glissando c’

��
>>� �

See also

Glissando, and GlissandoEvent.

Bugs

Adding additional texts (such as gliss.) is not supported.

3.7.12 Dynamics

Absolute dynamic marks are specified using an variable after a note: c4\ff. The available
dynamic marks are \ppp, \pp, \p, \mp, \mf, \f, \ff, \fff, \fff, \fp, \sf, \sff, \sp, \spp,
\sfz, and \rfz:

c’\ppp c\pp c \p c\mp c\mf c\f c\ff c\fff

c2\sf c\rfz

�� =
rfz

=
sf

>
fff

>
ff

>
f

>
mf

>
mp

>
p

>
pp

>
ppp

� �
A crescendo mark is started with \< and terminated with \!. A decrescendo is started with

\> and also terminated with \!. Because these marks are bound to notes, if you must use spacer
notes if multiple marks during one note are needed:

c’’\< c’’\! d’’\decr e’’\rced

<< f’’1 { s4 s4\< s4\! \> s4\! } >>

�� <>>>>� �
This may give rise to very short hairpins. Use minimum-length in Voice.Hairpin to lengthen

them, for example:

\property Staff.Hairpin \override #’minimum-length = #5

You can also use a text saying cresc. instead of hairpins. Here is an example how to do it:

c4 \cresc c4 c c c \endcresc c4

�� >>>>>
cresc.

>� �
You can also supply your own texts:

Chapter 3: Notation manual 64

\context Voice {

\property Voice.crescendoText = \markup { \italic "cresc. poco" }

\property Voice.crescendoSpanner = #’dashed-line

a’2\< a a a\!\mf

}

�� =
mf

===
cresc. poco

� �

Predefined commands

\dynamicUp, \dynamicDown, \dynamicBoth.

See also

CrescendoEvent, DecrescendoEvent, and AbsoluteDynamicEvent.

Dynamics are objects of DynamicText and Hairpin. Vertical positioning of these symbols is
handled by the DynamicLineSpanner object.

If you want to adjust padding or vertical direction of the dynamics, you must set properties
for the DynamicLineSpanner object.

3.8 Repeats

Repetition is a central concept in music, and multiple notations exist for repetitions. In
LilyPond, most of these notations can be captured in a uniform syntax. One of the advantages
is that they can be rendered in MIDI accurately.

The following types of repetition are supported:

unfold Repeated music is fully written (played) out. Useful for MIDI output, and entering
repetitive music.

volta This is the normal notation: Repeats are not written out, but alternative endings
(voltas) are printed, left to right.

tremolo Make tremolo beams.

percent Make beat or measure repeats. These look like percent signs.

3.8.1 Repeat syntax

Syntax

LilyPond has one syntactic construct for specifying different types of repeats. The syntax is

\repeat variant repeatcount repeatbody

If you have alternative endings, you may add

\alternative { alternative1

alternative2

alternative3 ... }

Chapter 3: Notation manual 65

where each alternative is a music expression. If you do not give enough alternatives for all
of the repeats, then the first alternative is assumed to be played more than once.

Normal notation repeats are used like this:

c1

\repeat volta 2 { c4 d e f }

\repeat volta 2 { f e d c }

�� ::::>>>:::: >>>>:: ><� �
With alternative endings:

c1

\repeat volta 2 {c4 d e f}

\alternative { {d2 d} {f f,} }

�� =:: =2.==1.>>>:: ><� �
\context Staff {

\partial 4

\repeat volta 4 { e | c2 d2 | e2 f2 | }

\alternative { { g4 g g } { a | a a a a | b2. } }

}

�� = :>>>>:: >>>>====>� �
1.--3. 4.

Bugs

If you do a nested repeat like

\repeat ...

\repeat ...

\alternative

then it is ambiguous to which \repeat the \alternative belongs. This ambiguity is resolved
by always having the \alternative belong to the inner \repeat. For clarity, it is advisable to
use braces in such situations.

3.8.2 Repeats and MIDI

For instructions on how to unfold repeats for MIDI output, see the example file
‘input/test/unfold-all-repeats.ly’.

Bugs

Timing information is not remembered at the start of an alternative, so after a repeat timing
information must be reset by hand, for example by setting Score.measurePosition or entering
\partial. Similarly, slurs or ties are also not repeated.

Chapter 3: Notation manual 66

3.8.3 Manual repeat commands

The property repeatCommands can be used to control the layout of repeats. Its value is a
Scheme list of repeat commands, where each repeat command can be

the symbol start-repeat,
which prints a |: bar line,

the symbol end-repeat,
which prints a :| bar line,

the list (volta text),
which prints a volta bracket saying text: The text can be specified as a text string
or as a markup text, see Section 3.17.5 [Text markup], page 113. Do not forget to
change the font, as the default number font does not contain alphabetic characters.
Or,

the list (volta #f), which
stops a running volta bracket:

c4

\property Score.repeatCommands = #’((volta "93") end-repeat)

c4 c4

\property Score.repeatCommands = #’((volta #f))

c4 c4

��
>>>:: >93>

� �
See also

VoltaBracket, RepeatedMusic, VoltaRepeatedMusic, UnfoldedRepeatedMusic, and
FoldedRepeatedMusic.

3.8.4 Tremolo repeats

To place tremolo marks between notes, use \repeat with tremolo style:

\score {

\context Voice \notes\relative c’ {

\repeat "tremolo" 8 { c16 d16 }

\repeat "tremolo" 4 { c16 d16 }

\repeat "tremolo" 2 { c16 d16 }

\repeat "tremolo" 4 c16

}

}

�� >>>==<<� �
See also

Tremolo beams are Beam objects. Single stem tremolos are StemTremolos. The music ex-
pression is TremoloEvent.

Chapter 3: Notation manual 67

Bugs

The single stem tremolo must be entered without { and }.

3.8.5 Tremolo subdivisions

Tremolo marks can be printed on a single note by adding ‘:[length]’ after the note. The
length must be at least 8. A length value of 8 gives one line across the note stem. If the length
is omitted, then then the last value (stored in Voice.tremoloFlags) is used:

c’2:8 c’:32 | c’: c’: |

�� ====� �

Bugs

Tremolos in this style do not carry over into the MIDI output.

3.8.6 Measure repeats

In the percent style, a note pattern can be repeated. It is printed once, and then the pattern
is replaced with a special sign. Patterns of a one and two measures are replaced by percent-like
signs, patterns that divide the measure length are replaced by slashes:

\context Voice { \repeat "percent" 4 { c’4 }

\repeat "percent" 2 { c’2 es’2 f’4 fis’4 g’4 c’’4 }

}

�� ::>>/>>3==>� �

See also

RepeatSlash, PercentRepeat, PercentRepeatedMusic, and DoublePercentRepeat.

3.9 Rhythmic music

Sometimes you might want to show only the rhythm of a melody. This can be done with the
rhythmic staff. All pitches of notes on such a staff are squashed, and the staff itself has a single
line:

\context RhythmicStaff {

\time 4/4

c4 e8 f g2 | r4 g r2 | g1:32 | r1 |

}

� !<">(=>>>�

Chapter 3: Notation manual 68

3.9.1 Percussion staves

A percussion part for more than one instrument typically uses a multiline staff where each
position in the staff refers to one piece of percussion.

Syntax

Percussion staves are typeset with help of a set of Scheme functions. The system is based
on the general MIDI drum-pitches. Include ‘drumpitch-init.ly’ to use drum pitches. This file
defines the pitches from the Scheme variable drum-pitch-names, the definition of which can be
read in ‘scm/drums.scm’. Each piece of percussion has a full name and an abbreviated name,
and either the full name or the abbreviation may be used in input files.

To typeset the music on a staff apply the function drums->paper to the percussion music.
This function takes a list of percussion instrument names, notehead scripts and staff positions
(that is: pitches relative to the C-clef) and transforms the input music by moving the pitch,
changing the notehead and (optionally) adding a script:

\include "drumpitch-init.ly"

up = \notes { crashcymbal4 hihat8 halfopenhihat hh hh hh openhihat }

down = \notes { bassdrum4 snare8 bd r bd sn4 }

\score {

\apply #(drums->paper ’drums) \context Staff <<

\clef percussion

\new Voice { \voiceOne \up }

\new Voice { \voiceTwo \down }

>>

}

�� J_>J
�>
J*J>K>J>K� �

In the above example the music was transformed using the list ’drums. The following lists
are defined in ‘scm/drums.scm’:

’drums to typeset a typical drum kit on a five-line staff:

�
hc

D
cb

D
hhp

J
hhho

K
hho

J_
hhc

J̀
hh

J
cymr

J
cyms

A
cymc

K�

tomfl

>
tomfh

>
toml

>
tomml

>
tommh

>
tomh

>
ss

J
sn

>
bd

>
The drum scheme supports six different toms. When there fewer toms, simply select
the toms that produce the desired result, i.e. to get toms on the three middle lines
you use tommh, tomml and tomfh.

Because general MIDI does not contain rimshots the sidestick is used for this purpose
instead.

’timbales

to typeset timbales on a two line staff:

Chapter 3: Notation manual 69

�
cb

D
ssl

J
timl

>
ssh

J
timh

>�
’congas to typeset congas on a two line staff:

�
ssl

J
cglm

>̀
cglo

>_
cgl

>
ssh

J
cghm

>̀
cgho

>_
cgh

>�
’bongos to typeset bongos on a two line staff:

�
ssl

J
bolm

>̀
bolo

>_
bol

>
ssh

J
bohm

>̀
boho

>_
boh

>�
’percussion

to typeset all kinds of simple percussion on one line staves:�
hc

>
mar

>
cab

J
tamb

>
cl

>
cb

D
guil

>Z
guis

>W
gui

>
trim

J̀
trio

J_
tri

J�
If you do not like any of the predefined lists you can define your own list at the top of your

file:

#(set-drum-kit ’mydrums ‘(

(bassdrum default #f ,(ly:make-pitch -1 2 0))

(snare default #f ,(ly:make-pitch 0 1 0))

(hihat cross #f ,(ly:make-pitch 0 5 0))

(pedalhihat xcircle "stopped" ,(ly:make-pitch 0 5 0))

(lowtom diamond #f ,(ly:make-pitch -1 6 0))

))

\include "drumpitch-init.ly"

up = \notes { hh8 hh hh hh hhp4 hhp }

down = \notes { bd4 sn bd toml8 toml }

\score {

\apply #(drums->paper ’mydrums) \context Staff <<

\clef percussion

\new Voice { \voiceOne \up }

\new Voice { \voiceTwo \down }

>>

}

�� AAK̀>
K̀J>JJ

>
J� �

To use a modified existing list, one can prepend modifications to the the existing list:

#(set-drum-kit ’mydrums (append ‘(

(bassdrum default #f ,(ly:make-pitch -1 2 0))

(lowtom diamond #f ,(ly:make-pitch -1 6 0))

) (get-drum-kit ’drums)))

You can easily combine percussion notation with pitched notation. Indeed, the file
‘drumpitch-init.ly’ replaces the normal pitch names, so you will have to reinclude
‘nederlands.ly’ after the drum-pattern-definitions to enter normal notes:

\include "drumpitch-init.ly"

up = \notes { crashcymbal4 hihat8 halfopenhihat hh hh hh openhihat }

down = \notes { bassdrum4 snare8 bd r bd sn4 }

Chapter 3: Notation manual 70

\include "nederlands.ly"

bass = \notes \transpose c c,, { a4. e8 r e g e }

\score {

<<

\apply #(drums->paper ’drums) \new Staff <<

\clef percussion

\new Voice { \voiceOne \up }

\new Voice { \voiceTwo \down }

>>

\new Staff { \clef "F_8" \bass }

>>

}

��
��

8 >

J_

>

>J
�
>

>J

*
*J

�>

>K>J

> :
8

� �
>K� �

3.9.2 Percussion MIDI output

In order to produce correct MIDI output you need to produce two score blocks—one for
the paper and one for the MIDI output. To use the percussion channel you set the property
instrument to ’drums. Because the drum-pitches themselves are similar to the general MIDI
pitches all you have to do is to insert the voices with none of the scheme functions to get the
correct MIDI output:

\score {

\apply #(drums->paper ’mydrums) \context Staff <<

\clef percussion

{ \up } \\

{ \down }

>>

\paper{}

}

\score {

\context Staff <<

\property Staff.instrument = #’drums

\up \down

>>

\midi{}

}

Bugs

Chords entered with < ... > do not work. This scheme is a temporary implementation.

3.10 Piano music

Piano staves are two normal staves coupled with a brace. The staves are largely independent,
but sometimes voices can cross between the two staves. The same notation is also used for harps

Chapter 3: Notation manual 71

and other key instruments. The PianoStaff is especially built to handle this cross-staffing
behavior. In this section we discuss the PianoStaff and some other pianistic peculiarities.

Bugs

There is no support for putting chords across staves. You can get this result by increasing
the length of the stem in the lower stave so it reaches the stem in the upper stave, or vice versa.
An example is included with the distribution as ‘input/test/stem-cross-staff.ly’.

Dynamics are not centered, but kludges do exist. See ‘input/template/piano-dynamics.ly’.

3.10.1 Automatic staff changes

Voices can switch automatically between the top and the bottom staff. The syntax for this
is

\autochange Staff \context Voice { ...music... }

The two staffs of the piano staff must be named up and down.

The autochanger switches on basis of pitch (central C is the turning point), and it looks
ahead skipping over rests to switch in advance. Here is a practical example:

\score { \notes \context PianoStaff <<

\context Staff = "up" {

\autochange Staff \context Voice = VA << \relative c’ {

g4 a b c d r4 a g } >> }

\context Staff = "down" {

\clef bass

s1*2

} >> }

��
�� >>(

>
>>>>� �

� �³
In this example, spacer rests are used to prevent the bottom staff from terminating too soon.

See also

AutoChangeMusic.

Bugs

The staff switches often do not end up in optimal places. For high quality output, staff
switches should be specified manually.

3.10.2 Manual staff switches

Voices can be switched between staves manually, using the following command:

Chapter 3: Notation manual 72

\translator Staff = staffname music

The string staffname is the name of the staff. It switches the current voice from its current staff
to the Staff called staffname. Typically staffname is "up" or "down".

3.10.3 Pedals

Pianos have pedals that alter the way sound are produced. Generally, a piano has three
pedals, sustain, una corda, and sostenuto.

Syntax

Piano pedal instruction can be expressed by attaching \sustainDown, \sustainUp,
\unaCorda, \treCorde, \sostenutoDown and \sostenutoUp to a note or chord:

c’4\sustainDown c’4\sustainUp

�� >�>� �
�¡

What is printed can be modified by setting pedalXStrings, where X is one of the pedal types:
Sustain, Sostenuto or UnaCorda. Refer to the generated documentation of SustainPedal for
more information.

Pedals can also be indicated by a sequence of brackets, by setting the pedalSustainStyle

property to bracket objects:

\property Staff.pedalSustainStyle = #’bracket

c’’4\sustainDown d’’4 e’’4

a’4\sustainUp\sustainDown

f’4 g’4 a’4\sustainUp

�� >>>>>>>� �
A third style of pedal notation is a mixture of text and brackets, obtained by setting pedal-

type to mixed:

\property Staff.pedalSustainStyle = #’mixed

c’’4\sustainDown d’’4 e’’4

c’4\sustainUp\sustainDown

f’4 g’4 a’4\sustainUp

�� >>>>>>>� �
�¡

The default ‘*Ped’ style for sustain and damper pedals corresponds to \pedal-type =

#’text. However, mixed is the default style for a sostenuto pedal:

c’’4\sostenutoDown d’’4 e’’4 c’4 f’4 g’4 a’4\sostenutoUp

�� >>>>>>>� �
Sost. Ped.

Chapter 3: Notation manual 73

For fine-tuning of the appearance of a pedal bracket, the properties edge-width, edge-

height, and shorten-pair of PianoPedalBracket objects (see PianoPedalBracket in the
Program reference) can be modified. For example, the bracket may be extended to the end
of the note head:

\property Staff.PianoPedalBracket \override

#’shorten-pair = #’(0 . -1.0)

c’’4\sostenutoDown d’’4 e’’4 c’4

f’4 g’4 a’4\sostenutoUp

�� >>>>>>>� �
Sost. Ped.

3.10.4 Arpeggio

You can specify an arpeggio sign on a chord by attaching an \arpeggio to a chord:

<c e g c>\arpeggio

�� >>>>rrrr� �
When an arpeggio crosses staves, you attach an arpeggio to the chords in both staves, and

set PianoStaff.connectArpeggios:

\context PianoStaff <<

\property PianoStaff.connectArpeggios = ##t

\new Staff { <c’ e g c>\arpeggio }

\new Staff { \clef bass <c,, e g>\arpeggio }

>>

��
��

rrrrrrrrrrrrrrrrr >>>� �

>>>>� �³
The direction of the arpeggio is sometimes denoted by adding an arrowhead to the wiggly

line. This can be typeset by setting arpeggio-direction:

\context Voice {

\property Voice.Arpeggio \set #’arpeggio-direction = #1

<c e g c>\arpeggio

\property Voice.Arpeggio \set #’arpeggio-direction = #-1

<c e g c>\arpeggio

}

�� >>>>trrr>>>>urrr� �
A square bracket on the left indicates that the player should not arpeggiate the

chord. To draw these brackets, set the molecule-callback property of Arpeggio or
PianoStaff.Arpeggio objects to \arpeggioBracket, and use \arpeggio statements within
the chords as before:

Chapter 3: Notation manual 74

\property PianoStaff.Arpeggio \override

#’molecule-callback = \arpeggioBracket

<c’ e g c>\arpeggio

��
>>>>� �

Predefined commands

\arpeggioBracket, \arpeggio.

See also

ArpeggioEvent music expressions lead to Arpeggio objects. Cross staff arpeggios are
PianoStaff.Arpeggio.

Bugs

It is not possible to mix connected arpeggios and unconnected arpeggios in one PianoStaff

at the same time.

3.10.5 Staff switch lines

Whenever a voice switches to another staff a line connecting the notes can be printed auto-
matically. This is enabled if the property PianoStaff.followVoice is set to true:

\context PianoStaff <<

\property PianoStaff.followVoice = ##t

\context Staff \context Voice {

c1

\translator Staff=two

b2 a

}

\context Staff=two { \clef bass \skip 1*2 }

>>

��
�� ==� �

<� �³
The associated object is VoiceFollower.

Predefined commands

\showStaffSwitch, \hideStaffSwitch.

Chapter 3: Notation manual 75

3.11 Vocal music

This section discusses how to enter and print lyrics.

3.11.1 Entering lyrics

Lyrics are entered in a special input mode. This mode is is introduced by the keyword
\lyrics. In this mode you can enter lyrics, with punctuation and accents without any hassle.
Syllables are entered like notes, but with pitches replaced by text. For example,

\lyrics { Twin-4 kle4 twin- kle litt- le star2 }

A word in Lyrics mode begins with: an alphabetic character, _, ?, !, :, ’, the control
characters ^A through ^F, ^Q through ^W, ^Y, ^^, any 8-bit character with ASCII code over 127,
or a two-character combination of a backslash followed by one of ‘, ’, ", or ^.

Subsequent characters of a word can be any character that is not a digit and not white space.
One important consequence of this is that a word can end with }. The following example is
usually a bug. The syllable includes a }, and hence the opening brace is not balanced:

\lyrics { twinkle}

Similarly, a period following a alphabetic sequence, is included in the resulting string. As a
consequence, spaces must be inserted around \property commands:

\property Lyrics . LyricText \set #’font-shape = #’italic

Any _ character which appears in an unquoted word is converted to a space. This provides
a mechanism for introducing spaces into words without using quotes. Quoted words can also be
used in Lyrics mode to specify words that cannot be written with the above rules:

\lyrics { He said: "\"Let" my peo ple "go\"" }

Hyphens can be entered as ordinary hyphens at the end of a syllable, i.e.

soft- ware

These will be attached to the end of the first syllable.

Centered hyphens are entered using the special ‘--’ lyric as a separate word between syllables.
The hyphen will have variable length depending on the space between the syllables and it will
be centered between the syllables.

When a lyric is sung over many notes (this is called a melisma), this is indicated with a
horizontal line centered between a syllable and the next one. Such a line is called an extender
line, and it is entered as __.

See also

LyricEvent, HyphenEvent, and ExtenderEvent.

Bugs

The definition of lyrics mode is too complex.

3.11.2 The Lyrics context

Lyrics are printed by interpreting them in Lyrics context:

Chapter 3: Notation manual 76

\context Lyrics \lyrics ...

This will place the lyrics according to the durations that were entered. The lyrics can also
be aligned under a given melody automatically. In this case, it is no longer necessary to enter
the correct duration for each syllable. This is achieved by combining the melody and the lyrics
with the \addlyrics expression:

\addlyrics

\notes ...

\context Lyrics ...

Normally, this will put the lyrics below the staff. For different or more complex orderings,
the best way is to setup the hierarchy of staves and lyrics first, e.g.

\context ChoirStaff \notes <<

\context Lyrics = sopr { s1 }

\context Staff = soprStaff { s1 }

\context Lyrics = tenor { s1 }

\context Staff = tenorStaff { s1 }

>>

and then combine the appropriate melodies and lyric lines:

\addlyrics

\context Staff = soprStaff the music

\context Lyrics = sopr the lyrics

putting both together, you would get

\context ChoirStaff \notes <<

\context Lyrics = ...

\context Staff = ...

\addlyrics ...

>>

A complete example of a SATB score setup is in the file ‘input/template/satb.ly’.

See also

LyricCombineMusic, Lyrics, and ‘input/template/satb.ly’.

Bugs

\addlyrics is not automatic enough: melismata are not detected automatically, and melis-
mata are not stopped when they hit a rest. A melisma on the last note in a melody is not
printed.

3.11.3 More stanzas

When multiple stanzas are printed underneath each other, the vertical groups of syllables
should be aligned around punctuation. This can be done automatically when corresponding
lyric lines and melodies are marked.

To this end, give the Voice context an identity:

\context Voice = duet {

\time 3/4

g2 e4 a2 f4 g2. }

Chapter 3: Notation manual 77

Then set the LyricsVoice contexts to names starting with that identity followed by a dash.
In the preceding example, the Voice identity is duet, so the identities of the LyricsVoices are
marked duet-1 and duet-2:

\context LyricsVoice = "duet-1" {

Hi, my name is bert. }

\context LyricsVoice = "duet-2" {

Ooooo, ch\’e -- ri, je t’aime. }

The convention for naming LyricsVoice and Voice must also be used to get melismata
correct in conjunction with rests.

The complete example is shown here:

\score {

\addlyrics

\notes \relative c’’ \context Voice = duet { \time 3/4

g2 e4 a2 f4 g2. }

\lyrics \context Lyrics <<

\context LyricsVoice = "duet-1" {

\property LyricsVoice . stanza = "Bert"

Hi, my name is bert. }

\context LyricsVoice = "duet-2" {

\property LyricsVoice . stanza = "Ernie"

Ooooo, ch\’e -- ri, je t’aime. }

>>

}

4
3�

Bert

Ernie t’aime.

bert.

= :
je

is

>
ri,

name

=
ché

my

>
Ooooo,Ernie

Hi,Bert

=� 4
3

Stanza numbers, or the names of the singers can be added by setting LyricsVoice.Stanza

(for the first system) and LyricsVoice.stz for the following systems. Notice how dots are
surrounded with spaces in \lyrics mode:

\property LyricsVoice . stanza = "Bert"

...

\property LyricsVoice . stanza = "Ernie"

To make empty spaces in lyrics, use \skip.

Bugs

Input for lyrics introduces a syntactical ambiguity:

foo = bar

is interpreted as assigning a string identifier \foo such that it contains "bar". However, it could
also be interpreted as making or a music identifier \foo containing the syllable ‘bar’. The force
the latter interpretation, use

foo = \lyrics bar4

3.11.4 Ambitus

The term ambitus (plural: ambituses) denotes a range of pitches for a given voice in a part
of music. It also may denote the pitch range that a musical instrument is capable of playing.

Chapter 3: Notation manual 78

Most musical instruments have their ambitus standardized (or at least there is agreement upon
the minimal ambitus of a particular type of instrument), such that a composer or arranger of
a piece of music can easily meet the ambitus constraints of the targeted instrument. However,
the ambitus of the human voice depends on individual physiological state, including education
and training of the voice. Therefore, a singer potentially has to check for each piece of music if
the ambitus of that piece meets his individual capabilities. This is why the ambitus of a piece
may be of particular value to vocal performers.

The ambitus is typically notated on a per-voice basis at the very beginning of a piece, e.g.
nearby the initial clef or time signature of each staff. The range is graphically specified by
two noteheads, that represent the minimum and maximum pitch. Some publishers use a textual
notation: they put the range in words in front of the corresponding staff. LilyPond only supports
the graphical ambitus notation.

To apply, add the Ambitus_engraver to the Voice context, i.e.

\paper {

\translator {

\VoiceContext

\consists Ambitus_engraver

}

}

This results in the following output:

>/> �333�
/>> �////� 2=

=

>2>
=

2
2
>
>

>
>

>
/
>
=

>>
=

3>2>

=

>2

2

>

=

>

>

>� //// �/>>

>� 333 �>/>

If you have multiple voices in a single staff, and you want a single ambitus per staff rather
than per each voice, then add the Ambitus_engraver to the Staff context rather than to the
Voice context.

It is possible to tune individual ambituses for multiple voices on a single staff, for example
by erasing or shifting them horizontally. An example is in ‘input/test/ambitus-mixed.ly’

See also

Ambitus, ‘input/regression/ambitus.ly’, ‘input/test/ambitus-mixed.ly’.

Bugs

There is no collision handling in the case of multiple per-voice ambitus.

3.12 Tablatures

Tablature notation is used for notating music for plucked string instruments. It notates
pitches not by using note heads, but by indicating on which string and fret a note must be
played. LilyPond offers limited support for tablature.

Chapter 3: Notation manual 79

3.12.1 Tablatures basic

The string number associated to a note is given as a backslash followed by a number, e.g.
c4\3 for a C quarter on the third string. By default, string 1 is the highest one, and the tuning
defaults to the standard guitar tuning (with 6 strings). The notes are printed as tablature, by
using TabStaff and TabVoice contexts:

\notes \context TabStaff {

a,4\5 c’\2 a\3 e’\1

e\4 c’\2 a\3 e’\1

}

�� 0

2
1

2

0

2
1

0

� �
When no string is specified, the first string that does not give a fret number less than

minimumFret is selected. The default value for minimumFret is 0:

e8 fis gis a b cis’ dis’ e’

\property TabStaff.minimumFret = #8

e8 fis gis a b cis’ dis’ e’

�////�
8

�� 9

>

8

>

11

>

9

>

12

>

11

>

9

>

12

>
0

>
4

>
2

>
0

>
2

>
1

>
4

>
2

� �
>

8

� //// �

See also

TabStaff, TabVoice, and StringNumberEvent.

Bugs

Chords are not handled in a special way, and hence the automatic string selector may easily
select the same string to two notes in a chord.

3.12.2 Non-guitar tablatures

You can change the number of strings, by setting the number of lines in the TabStaff

(the line-count property of TabStaff can only be changed using \applyoutput, for more
information, see Section 3.17.1 [Tuning objects], page 108).

You can change the tuning of the strings. A string tuning is given as a Scheme list with
one integer number for each string, the number being the pitch (measured in semitones relative
to central C) of an open string. The numbers specified for stringTuning are the numbers of
semitones to subtract or add, starting the specified pitch by default middle C, in string order.
Thus, the notes are e, a, d, and g:

\context TabStaff <<

\applyoutput #(outputproperty-compatibility (make-type-checker ’staff-symbol-interface)

Chapter 3: Notation manual 80

’line-count 4)

\property TabStaff.stringTunings = #’(-5 -10 -15 -20)

\notes {

a,4 c’ a e’ e c’ a e’

}

>>

�� 925
2

925

0
� �

It is possible to change the Scheme function to format the tablature note text. The default
is fret-number-tablature-format, which uses the fret number. For instruments that do not
use this notation, you can create a special tablature formatting function. This function takes
three argument: string number, string tuning and note pitch.

Bugs

No guitar special effects have been implemented.

3.13 Chord names

LilyPond has support for both printing chord names. Chords may be entered in musical
chord notation, i.e. < .. >, but they can also be entered by name. Internally, the chords are
represented as a set of pitches, so they can be transposed:

twoWays = \notes \transpose c c’ {

\chords {

c1 f:sus4 bes/f

}

<c e g>

<f bes c’>

<f bes d’>

}

\score {

<< \context ChordNames \twoWays

\context Voice \twoWays >> }

�� 3<<<
4sus/6F

3 <<<
4susF

<<<
C3<<< F/3B3 <<<

4susF<<<� �
C

This example also shows that the chord printing routines do not try to be intelligent. The
last chord (f bes d) is not interpreted as an inversion.

3.13.1 Chords mode

Chord mode is a mode where you can input sets of pitches using common names. It is
introduced by the keyword \chords. In chords mode, a chord is entered by the root, which is
entered like a common pitch:

Chapter 3: Notation manual 81

\chords { es4. d8 c2 }

�� 2===/ �>>>33 > :> :> :� �
Other chords may be entered by suffixing a colon, and introducing a modifier, and optionally,

a number:

\chords { e1:m e1:7 e1:m7 }

�� <<<</<<<<<<<� �
The first number following the root is taken to be the ‘type’ of the chord, thirds are added

to the root until it reaches the specified number:

\chords { c:3 c:5 c:6 c:7 c:8 c:9 c:10 c:11 }

�� >>>>>>>>>>>>>>>>>3 >>>>>3>>>>>>>>>>>>>� �
More complex chords may also be constructed adding separate steps to a chord. Additions

are added after the number following the colon, and are separated by dots:

\chords { c:5.6 c:3.7.8 c:3.6.13 }

�� >>>>3 >>>>>>>>� �
Chord steps can be altered by suffixing a - or + sign to the number:

\chords { c:7+ c:5+.3- c:3-.5-.7- }

�� 532 >>>>/3 >>>>>>>� �
Removals are specified similarly, and are introduced by a caret. They must come after the

additions:

\chords { c^3 c:7^5 c:9^3.5 }

�� >>>3>>>>>� �
Modifiers can be used to change pitches. The following modifiers are supported:

m is the minor chord. This modifier lowers the 3rd and (if present) the 7th step.

dim is the diminished chord. This modifier lowers the 3rd, 5th and (if present) the 7th
step.

aug is the augmented chord. This modifier raises the 5th step.

maj is the major 7th chord. This modifier raises the 7th step if present.

sus is the suspended 4th or 2nd. This modifier removes the 3rd step. Append either 2
or 4 to add the 2nd or 4th step to the chord.

Modifiers can be mixed with additions:

Chapter 3: Notation manual 82

\chords { c:sus4 c:7sus4 c:dim7 c:m6 }

�� 2 >>>>53 3 >>>>3>>>>>>>� �
Since an unaltered 11 does not sound good when combined with an unaltered 13, the 11 is

removed in this case (unless it is added explicitly):

\chords { c:13 c:13.11 c:m13 }

�� 3
>>>>>>>

>>>>>>>3>>>>>>� �
An inversion (putting one pitch of the chord on the bottom), as well as bass notes, can be

specified by appending /pitch to the chord:

\chords { c1 c/g c/f }

�� <<<<<<<<<<� �
A bass note can be added instead of transposed out of the chord, by using /+pitch.

\chords { c1 c/+g c/+f }

�� <<<<<<<<<<<� �
Chords is a mode similar to \lyrics, \notes etc. Most of the commands continue to work,

for example, r and \skip can be used to insert rests and spaces, and \property may be used
to change various settings.

Bugs

Each step can only be present in a chord once. The following simply produces the augmented
chord, since 5+ is interpreted last:

\chords { c:5.5-.5+ }

�� />>>� �
3.13.2 Printing chord names

For displaying printed chord names, use the ChordNames context. The chords may be entered
either using the notation described above, or directly using < and >:

scheme = \notes {

\chords {a1 b c} <d’ f’ a’> <e’ g’ b’>

}

\score {

\notes<<

\context ChordNames \scheme

\context Staff \scheme

Chapter 3: Notation manual 83

>>

}

�� <<<
mE

<<<
mD

<<<
C// <<<

B

/<<<� �
A

You can make the chord changes stand out by setting ChordNames.chordChanges to true.
This will only display chord names when there is a change in the chords scheme and at the start
of a new line:

scheme = \chords {

c1:m c:m \break c:m c:m d

}

\score {

\notes <<

\context ChordNames {

\property ChordNames.chordChanges = ##t

\scheme }

\context Staff \transpose c c’ \scheme

>>

}

�� 3<<<3<<<� �
mC

3� /<<<
D3<<<3� <<<

mC

3

The default chord name layout is a system for Jazz music, proposed by Klaus Ignatzek (see
Chapter 4 [Literature list], page 121). It can be tuned through the following properties:

chordNameExceptions

This is a list that contains the chords that have special formatting. For an example,
see ‘input/regression/chord-name-exceptions.ly’.

majorSevenSymbol

This property contains the markup object used for the 7th step, when it is ma-
jor. Predefined options are whiteTriangleMarkup and blackTriangleMarkup. See
‘input/regression/chord-name-major7.ly’ for an example.

chordNameSeparator

Different parts of a chord name are normally separated by a slash. By setting
chordNameSeparator, you can specify other separators, e.g.

\context ChordNames \chords {

c:7sus4

\property ChordNames.chordNameSeparator

= \markup { \typewriter "|" }

c:7sus4 }

4sus|7C4sus/7C

Chapter 3: Notation manual 84

chordRootNamer

The root of a chord is usually printed as a letter with an optional alteration. The
transformation from pitch to letter is done by this function. Special note names (for
example, the German “H” for a B-chord) can be produced by storing a new function
in this property.

The pre-defined variables \germanChords, \semiGermanChords set these variables.

chordNoteNamer

The default is to print single pitch, e.g. the bass note, using the chordRootNamer.
The chordNoteNamer property can be set to a specialized function to change this
behavior. For example, the base can be printed in lower case.

There are also two other chord name schemes implemented: an alternate Jazz chord notation,
and a systematic scheme called Banter chords. The alternate jazz notation is also shown on the
chart in Section A.1 [Chord name chart], page 160. Turning on these styles is described in the
input file ‘input/test/chord-names-jazz.ly’.

Predefined commands

\germanChords, \semiGermanChords.

See also

‘input/regression/chord-name-major7.ly’, ‘input/regression/chord-name-exceptions.ly’,
‘input/test/chord-names-jazz.ly’, ‘input/test/chord-names-german.ly’,
‘scm/chords-ignatzek.scm’, and ‘scm/chord-entry.scm’.

Bugs

Chord names are determined solely from the list of pitches. Chord inversions are not iden-
tified, and neither are added bass notes. This may result in strange chord names when chords
are entered with the < .. > syntax.

3.14 Orchestral music

Orchestral music involves some special notation, both in the full score and the individual
parts. This section explains how to tackle some common problems in orchestral music.

3.14.1 Multiple staff contexts

Polyphonic scores consist of many staves. These staves can be constructed in three different
ways:

• The group is started with a brace at the left. This is done with the GrandStaff context.

• The group is started with a bracket. This is done with the StaffGroup context

• The group is started with a vertical line. This is the default for the score.

Chapter 3: Notation manual 85

3.14.2 Rehearsal marks

To print a rehearsal mark, use the \mark command:

\relative c’’ {

c1 \mark "A"

c1 \mark "B"

c1 \mark "12"

c1 \mark "13"

c1

}

�� <13<12<B<A<� �
The mark is incremented automatically if you use \mark \default. The value to use is stored

in the property rehearsalMark is used and automatically incremented.

The \mark command can also be used to put signs like coda, segno and fermatas on a barline.
Use \markup to to access the appropriate symbol:

c1 \mark \markup { \musicglyph #"scripts-ufermata" }

c1

�� <
M

<� �
In this case, during line breaks, marks must also be printed at the end of the line, and not

at the beginning. Use the following to force that behavior:

\property Score.RehearsalMark \override

#’break-visibility = #begin-of-line-invisible

See ‘input/test/boxed-molecule.ly’ for putting boxes around the marks.

See also

MarkEvent, RehearsalMark, and ‘input/test/boxed-molecule.ly’.

3.14.3 Bar numbers

Bar numbers are printed by default at the start of the line. The number itself is stored in
the currentBarNumber property, which is normally updated automatically for every measure.

Bar numbers can be typeset at regular intervals instead of at the beginning of
each line. This is illustrated in the following example, whose source is available as
‘input/test/bar-number-regular-interval.ly’:

�� <<
8

<<<<
4

<<<� �
See also

BarNumber, ‘input/test/bar-number-every-five-reset.ly’, and
‘input/test/bar-number-regular-interval.ly’.

Chapter 3: Notation manual 86

Bugs

Bar numbers can collide with the StaffGroup bracket, if there is one at the top. To solve
this, the padding property of BarNumber can be used to position the number correctly.

3.14.4 Instrument names

In an orchestral score, instrument names are printed left side of the staves.

This can be achieved by setting Staff.instrument and Staff.instr. This will print a string
before the start of the staff. For the first start, instrument is used, for the next ones instr is
used:

\property Staff.instrument = "ploink " { c’’4 }

ploink �� >� �ploink

You can also use markup texts to construct more complicated instrument names:

\notes {

\property Staff.instrument = \markup {

\column < "Clarinetti"

{ "in B"

\smaller \musicglyph #"accidentals--1"

}

>

}

{ c’’1 }

}

4in B
Clarinetti �� <� �4in B
Clarinetti

See also

InstrumentName.

Bugs

When you put a name on a grand staff or piano staff the width of the brace is not taken into
account. You must add extra spaces to the end of the name to avoid a collision.

3.14.5 Transpose

A music expression can be transposed with \transpose. The syntax is

\transpose from to musicexpr

This means that musicexpr is transposed by the interval between from and to.

\transpose distinguishes between enharmonic pitches: both \transpose c cis or
\transpose c des will transpose up half a tone. The first version will print sharps and the
second version will print flats:

Chapter 3: Notation manual 87

mus =\notes { \key d \major cis d fis g }

\score { \notes \context Staff {

\clef "F" \mus

\clef "G"

\transpose c g’ \mus

\transpose c f’ \mus

}}

�//� >>>>22 />>>>� ///>>>>� // �

See also

TransposedMusic, and UntransposableMusic.

Bugs

If you want to use both \transpose and \relative, then you must put \transpose outside
of \relative, since \relative will have no effect music that appears inside a \transpose.

3.14.6 Multi measure rests

Multi measure rests are entered using ‘R’. It is specifically meant for full bar rests and for
entering parts: the rest can expand to fill a score with rests, or it can be printed as a single
multimeasure rest. This expansion is controlled by the property Score.skipBars. If this is set to
true, empty measures will not be expanded, and the appropriate number is added automatically:

\time 4/4 r1 | R1 | R1*2

\property Score.skipBars = ##t R1*17 R1*4

�� &417!!!!� �
The 1 in R1 is similar to the duration notation used for notes. Hence, for time signatures

other than 4/4, you must enter other durations. This can be done with augmentation dots or
fractions:

\property Score.skipBars = ##t

\time 3/4

R2. | R2.*2

\time 13/8

R1*13/8

R1*13/8*12

4
3� 12!

8
13'2!� 4

3

An R spanning a single measure is printed as either a whole rest or a breve, centered in the
measure regardless of the time signature.

Texts can be added to multi-measure rests by using the note-markup syntax (see Section 3.17.5
[Text markup], page 113). In this case, the number is replaced. If you need both texts and the

Chapter 3: Notation manual 88

number, you must add the number by hand. A variable (\fermataMarkup) is provided for adding
fermatas:

\time 3/4

R2._\markup { "Ad lib" }

R2.^\fermataMarkup

4
3� !M!
Ad lib

� 4
3

If you want to have a text on the left end of a multi-measure rest, attach the text to a
zero-length skip note, i.e.

s1*0^"Allegro"

R1*4

See also

MultiMeasureRestEvent, MultiMeasureTextEvent, MultiMeasureRestMusicGroup, and
MultiMeasureRest.

The layout object MultiMeasureRestNumber is for the default number, and
MultiMeasureRestText for user specified texts.

Bugs

It is not possible to use fingerings (e.g. R1-4) to put numbers over multi-measure rests.

There is no way to automatically condense multiple rests into a single multimeasure rest.
Multi measure rests do not take part in rest collisions.

Be careful when entering multimeasure rests followed by whole notes. The following will
enter two notes lasting four measures each:

R1*4 cis cis

When skipBars is set, then the result will look OK, but the bar numbering will be off.

3.14.7 Automatic part combining

Automatic part combining is used to merge two parts of music onto a staff. It is aimed at
typesetting orchestral scores. When the two parts are identical for a period of time, only one
is shown. In places where the two parts differ, they are typeset as separate voices, and stem
directions are set automatically. Also, solo and a due parts are identified and can be marked.

Syntax

The syntax for part combining is

\partcombine context musicexpr1 musicexpr2

where the pieces of music musicexpr1 and musicexpr2 will be combined into one context of
type context. The music expressions must be interpreted by contexts whose names should start
with one and two.

The following example demonstrates the basic functionality of the part combiner: putting
parts on one staff, and setting stem directions and polyphony:

Chapter 3: Notation manual 89

\context Staff <<

\context Voice=one \partcombine Voice

\context Thread=one \relative c’’ {

g a(b) r

}

\context Thread=two \relative c’’ {

g r4 r f

}

>>

��
Solo II
>>Solo>a2>� �

The first g appears only once, although it was specified twice (once in each part). Stem, slur
and tie directions are set automatically, depending whether there is a solo or unisono. The first
part (with context called one) always gets up stems, and ‘solo’, while the second (called two)
always gets down stems and ‘Solo II’.

If you just want the merging parts, and not the textual markings, you may set the property
soloADue to false:

\context Staff <<

\property Staff.soloADue = ##f

\context Voice=one \partcombine Voice

\context Thread=one \relative c’’ {

b4 a c g

}

\context Thread=two \relative c’’ {

d,2 a4 g’

}

>>

�� >>>>>=>� �

See also

PartCombineMusic, Thread_devnull_engraver, and Voice_devnull_engraver and A2_

engraver.

Bugs

The syntax for naming contexts in inconsistent with the syntax for combining stanzas.

In soloADue mode, when the two voices play the same notes on and off, the part combiner
may typeset a2 more than once in a measure:

�� a2>>>
a2>>>a2>>>a2>>>� �

The part combiner is rather buggy, and it will be replaced by a better mechanism in the near
future.

Chapter 3: Notation manual 90

3.14.8 Hiding staves

In orchestral scores, staff lines that only have rests are usually removed. This saves some
space. This style is called ‘French Score’. For Lyrics, LyricsVoice, ChordNames and
FiguredBass, this is switched on by default. When these line of these contexts turn out empty
after the line-breaking process, they are removed.

For normal staves, a specialized Staff context is available, which does the same: staves
containing nothing (or only multi measure rests) are removed. The context definition is stored in
\RemoveEmptyStaffContext variable. Observe how the second staff in this example disappears
in the second line:

\score {

\notes \relative c’ <<

\new Staff { e4 f g a \break c1 }

\new Staff { c4 d e f \break R1 }

>>

\paper {

linewidth = 6.\cm

\translator { \RemoveEmptyStaffContext }

}

}

��
�� >

>
>
>

>
>

>� �
>� �

2�� <2

The first page shows all staffs in full. If they should be removed from the first page too, set
remove-first to false in RemoveEmptyVerticalGroup.

3.14.9 Different editions from one source

The \tag command marks music expressions with a name. These tagged expressions can
be filtered out later. With this mechanism it is possible to make different versions of the same
music source.

In the following example, we see two versions of a piece of music, one for the full score, and
one with cue notes for the instrumental part:

c1

\relative c’ <<

\tag #’part <<

R1 \\

{

\property Voice.fontSize = #-1

c4_"cue" f2 g4 }

>>

Chapter 3: Notation manual 91

\tag #’score R1

>>

c1

The same can be applied to articulations, texts, etc.: they are made by prepending

-\tag #your-tag

to an articulation, for example,

c1-\tag #’part ^4

This defines a note with a conditional fingering indication.

By applying the remove-tag function, tagged expressions can be filtered. For example,

\simultaneous {

the music

\apply #(remove-tag ’score) the music

\apply #(remove-tag ’part) the music

}

would yield

both ��
part ��
score �� <

<4
<4

>

>

=

=

cue

cue

>

>

<� �score

<� �part

<� �both
!!

!

!
The argument of the \tag command should be a symbol, or a list of symbols, for example,

\tag #’(original-part transposed-part) ...

See also

‘input/regression/tag-filter.ly’

3.14.10 Sound output for transposing instruments

When you want to make a MIDI file from a score containing transposed and untransposed
instruments, you have to instruct LilyPond the pitch offset (in semitones) for the transposed
instruments. This is done using the transposing property. It does not affect printed output:

\property Staff.instrument = #"Cl. in B-flat"

\property Staff.transposing = #-2

3.15 Ancient notation

Support for ancient notation is still under heavy development. Regardless of all of the current
limitations (see the bugs section below for details), it includes features for mensural notation
and Gregorian Chant notation. There is also limited support for figured bass notation.

Many graphical objects provide a style property, see Section 3.15.1 [Ancient note heads],
page 92, Section 3.15.2 [Ancient accidentals], page 93, Section 3.15.3 [Ancient rests], page 93,

Chapter 3: Notation manual 92

Section 3.15.4 [Ancient clefs], page 94, Section 3.15.5 [Ancient flags], page 95 and Section 3.15.6
[Ancient time signatures], page 96. By manipulating such a grob property, the typographical
appearance of the affected graphical objects can be accomodated for a specific notation flavour
without need for introducing any new notational concept.

Other aspects of ancient notation can not that easily be expressed as in terms of just changing
a style property of a graphical object. Therefore, some notational concepts are introduced specif-
ically for ancient notation, see Section 3.15.7 [Custodes], page 97, Section 3.15.8 [Divisiones],
page 98, Section 3.15.9 [Ligatures], page 99, and Section 3.15.10 [Figured bass], page 104.

If this all is way too much of documentation for you, and you just want to dive into typesetting
without worrying too much about the details on how to customize a context, then you may have
a look at the predefined contexts (see Section 3.15.11 [Vaticana style contexts], page 105). Use
them to set up predefined style-specific voice and staff contexts, and directly go ahead with the
note entry.

Bugs

Ligatures need special spacing that has not yet been implemented. As a result, there is too
much space between ligatures most of the time, and line breaking often is unsatisfactory. Also,
lyrics do not correctly align with ligatures.

Accidentals must not be printed within a ligature, but instead need to be collected and
printed in front of it.

Augmentum dots within ligatures are not handled correctly.

3.15.1 Ancient note heads

Syntax

For ancient notation, a note head style other than the default style may be chosen. This
is accomplished by setting the style property of the NoteHead object to the desired value
(baroque, neo_mensural or mensural). The baroque style differs from the default style only
in using a square shape for \breve note heads. The neo_mensural style differs from the baroque
style in that it uses rhomboidal heads for whole notes and all smaller durations. Stems are
centered on the note heads. This style is in particular useful when transcribing mensural music,
e.g. for the incipit. The mensural style finally produces note heads that mimick the look of
note heads in historic printings of the 16th century.

The following example demonstrates the neo_mensural style:

\property Voice.NoteHead \set #’style = #’neo_mensural

a’\longa a’\breve a’1 a’2 a’4 a’8 a’16

�� �7�776543� �
When typesetting a piece in Gregorian Chant notation, a Gregorian ligature engraver will

automatically select the proper note heads, such there is no need to explicitly set the note head
style. Still, the note head style can be set e.g. to vaticana_punctum to produce punctum
neumes. Similarly, a mensural ligature engraver is used to automatically assemble mensural
ligatures. See Section 3.15.9 [Ligatures], page 99 for how ligature engravers work.

Chapter 3: Notation manual 93

See also

‘input/regression/note-head-style.ly’ gives an overview over all available note head
styles.

Section 3.9.1 [Percussion staves], page 68 use note head styles of their own that are frequently
used in contemporary music notation.

3.15.2 Ancient accidentals

Syntax

Use the style property of grob Accidental to select ancient accidentals. Supported styles
are mensural, vaticana, hufnagel and medicaea.

��
mensural

�
hufnagel

�
medicaea

��
vaticana

As shown, not all accidentals are supported by each style. When trying to access
an unsupported accidental, LilyPond will switch to a different style, as demonstrated in
‘input/test/ancient-accidentals.ly’.

Similarly to local accidentals, the style of the key signature can be controlled by the style

property of the KeySignature grob.

See also

Section 3.1.2 [Pitches], page 33, Section 3.1.3 [Chromatic alterations], page 34 and Section 3.6
[Accidentals], page 51 give a general introduction into the use of accidentals. Section 3.3.2 [Key
signature], page 42 gives a general introduction into the use of key signatures.

3.15.3 Ancient rests

Syntax

Use the style property of grob Rest to select ancient accidentals. Supported styles are
classical, neo_mensural and mensural. classical differs from the default style only in
that the quarter rest looks like a horizontally mirrored 8th rest. The neo_mensural style suits
well for e.g. the incipit of a transcribed mensural piece of music. The mensural style finally
mimicks the appearance of rests as in historic prints of the 16th century.

The following example demonstrates the neo_mensural style:

\property Voice.Rest \set #’style = #’neo_mensural

r\longa r\breve r1 r2 r4 r8 r16

�� ('&%$#"� �
There are no 32th and 64th rests specifically for the mensural or neo-mensural style. Instead,

the rests from the default style will be taken. See ‘input/test/rests.ly’ for a chart of all
rests.

There are no rests in Gregorian Chant notation; instead, it uses Section 3.15.8 [Divisiones],
page 98.

Chapter 3: Notation manual 94

See also

Section 3.1.5 [Rests], page 35 gives a general introduction into the use of rests.

3.15.4 Ancient clefs

Syntax

LilyPond supports a variety of clefs, many of them ancient.

The following table shows all ancient clefs that are supported via the \clef command. Some
of the clefs use the same glyph, but differ only with respect to the line they are printed on.
In such cases, a trailing number in the name is used to enumerate these clefs. Still, you can
manually force a clef glyph to be typeset on an arbitrary line, as described in Section 3.3.3 [Clef],
page 43. The note printed to the right side of each clef in the example column denotes the c’

with respect to that clef.

Glyph Name Description Supported Clefs Example

clefs-neo_mensural_c modern style mensural C
clef

neo_mensural_c1,
neo_mensural_c2,
neo_mensural_c3,
neo_mensural_c4

e >e

clefs-petrucci_c1

clefs-petrucci_c2

clefs-petrucci_c3

clefs-petrucci_c4

clefs-petrucci_c5

petrucci style mensural C
clefs, for use on different
stafflines (the examples
shows the 2nd staffline C
clef).

petrucci_c1 petrucci_

c2 petrucci_c3

petrucci_c4

petrucci_c5

i >i

clefs-petrucci_f petrucci style mensural F
clef

petrucci_f s >s

clefs-petrucci_g petrucci style mensural G
clef

petrucci_g y >y

clefs-mensural_c historic style mensural C
clef

mensural_c1, mensural_

c2, mensural_c3,
mensural_c4

q >q

clefs-mensural_f historic style mensural F
clef

mensural_f u >u

clefs-mensural_g historic style mensural G
clef

mensural_g w >w

Chapter 3: Notation manual 95

clefs-vaticana_do Editio Vaticana style do
clef

vaticana_do1,
vaticana_do2,
vaticana_do3

] >]

clefs-vaticana_fa Editio Vaticana style fa
clef

vaticana_fa1,
vaticana_fa2

_ >_

clefs-medicaea_do Editio Medicaea style do
clef

medicaea_do1,
medicaea_do2,
medicaea_do3

a >a

clefs-medicaea_fa Editio Medicaea style fa
clef

medicaea_fa1,
medicaea_fa2

c >c

clefs-hufnagel_do historic style hufnagel do
clef

hufnagel_do1,
hufnagel_do2,
hufnagel_do3

{ >{

clefs-hufnagel_fa historic style hufnagel fa
clef

hufnagel_fa1,
hufnagel_fa2

} >}

clefs-hufnagel_do_fa historic style hufnagel
combined do/fa clef

hufnagel_do_fa
� >�

Modern style means “as is typeset in contemporary editions of transcribed mensural music”.

Petrucci style means “inspired by printings published by the famous engraver Petrucci (1466-
1539)”.

Historic style means “as was typeset or written in historic editions (other than those of
Petrucci)”.

Editio XXX style means “as is/was printed in Editio XXX”.

Petrucci used C clefs with differently balanced left-side vertical beams, depending on which
staffline it is printed.

See also

For modern clefs, see Section 3.3.3 [Clef], page 43. For the percussion clef, see Section 3.9.1
[Percussion staves], page 68. For the TAB clef, see Section 3.12 [Tablatures], page 78.

3.15.5 Ancient flags

Syntax

Use the flag-style property of grob Stem to select ancient flags. Besides the default flag
style, only mensural style is supported:

Chapter 3: Notation manual 96

\property Voice.Stem \set #’flag-style = #’mensural

\property Voice.Stem \set #’thickness = #1.0

\property Voice.NoteHead \set #’style = #’mensural

\autoBeamOff

c’8 d’8 e’8 f’8 c’16 d’16 e’16 f’16 c’32 d’32 e’32 f’32 s8

c’’8 d’’8 e’’8 f’’8 c’’16 d’’16 e’’16 f’’16 c’’32 d’’32 e’’32 f’’32

�� >̄
®>>̄®>©

>>̈©>>̈£>¢>£>¢>
«>¬>«>¬>

¥>¦>¥>¦>
�> >�> >� �

Note that the innermost flare of each mensural flag always is vertically aligned with a staff
line. If you do not like this behaviour, you can set the adjust-if-on-staffline property of
grob Stem to ##f. Then, the vertical position of the end of each flare is different between notes
on staff lines and notes between staff lines:

�� °>°>°>°>ª
>ª>ª>ª>¤>¤>¤>¤>

­>­>­>­>
§>§>§>§>

¡>¡>¡>¡>� �
There is no particular flag style for neo-mensural notation. Hence, when typesetting e.g. the

incipit of a transcibed piece of mensural music, the default flag style should be used. There are
no flags in Gregorian Chant notation.

3.15.6 Ancient time signatures

Syntax

There is limited support for mensural time signatures. The glyphs are hard-wired to partic-
ular time fractions. In other words, to get a particular mensural signature glyph with the \time
n/m command, n and m have to be chosen according to the following table:

È
\time 6/8

Å
\time 6/4

Ã
\time 2/2

Â
\time 4/4

É
\time 9/8

Æ
\time 9/4

Ç
\time 3/4

Ä
\time 3/2

Ì
\time 2/4

Ê
\time 4/8

Use the style property of grob TimeSignature to select ancient time signatures. Supported
styles are neo_mensural and mensural. The above table uses the neo_mensural style. This
style is appropriate e.g. for the incipit of transcriptions of mensural pieces. The mensural style
mimicks the look of historical printings of the 16th century.

‘input/test/time.ly’ gives an overview over all available ancient and modern styles.

Chapter 3: Notation manual 97

See also

Section 3.3.5 [Time signature], page 44 gives a general introduction into the use of time
signatures.

Bugs

Mensural signature glyphs are mapped to time fractions in a hard-wired way. This mapping
is sensible, but still arbitrary: given a mensural time signature, the time fraction represents a
modern meter that usually will be a good choice when transcribing a mensural piece of music.
For a particular piece of mensural music, however, the mapping may be unsatisfactory. In
particular, the mapping assumes a fixed transcription of durations (e.g. brevis = half note in
2/2, i.e. 4:1). Some glyphs (such as the alternate glyph for 6/8 meter) are not at all accessible
through the \time command.

Mensural time signatures are supported typographically, but not yet musically. The internal
representation of durations is based on a purely binary system; a ternary division such as 1
brevis = 3 semibrevis (tempus perfectum) or 1 semibrevis = 3 minima (cum prolatione maiori)
is not correctly handled: event times in ternary modes will be badly computed, resulting e.g. in
horizontally misaligned note heads, and bar checks are likely to erroneously fail.

The syntax and semantics of the \time command for mensural music is subject to change.

3.15.7 Custodes

A custos (plural: custodes; latin word for ‘guard’) is a symbol that appears at the end of a
staff. It anticipates the pitch of the first note(s) of the following line and thus helps the player
or singer to manage line breaks during performance, thus enhancing readability of a score.

Custodes were frequently used in music notation until the 17th century. Nowadays, they
have survived only in a few particular forms of musical notation such as contemporary editions
of Gregorian chant like the editio vaticana. There are different custos glyphs used in different
flavours of notational style.

Syntax

For typesetting custodes, just put a Custos_engraver into the Staff context when declaring
the \paper block, as shown in the following example:

\paper {

\translator {

\StaffContext

\consists Custos_engraver

Custos \override #’style = #’mensural

}

}

The result looks like this:

�� ��<� �

Chapter 3: Notation manual 98

2�� <2

The custos glyph is selected by the style property. The styles supported are vaticana,
medicaea, hufnagel and mensural. They are demonstrated in the following fragment:

�mensural�hufnagel�medicaea�vaticana

If the boolean property adjust-if-on-staffline is set to #t (which it is by default), lily
typesets slightly different variants of the custos glyph, depending on whether the custos, is type-
set on or between stafflines. The glyph will optically fit well into the staff, with the appendage
on the right of the custos always ending at the same vertical position between two stafflines
regardless of the pitch. If you set adjust-if-on-staffline to #f, then a compromise between
both forms is used.

Just like stems can be attached to noteheads in two directions up and down, each custos glyph
is available with its appendage pointing either up or down. If the pitch of a custos is above a
selectable position, the appendage will point downwards; if the pitch is below this position, the
appendage will point upwards. Use property neutral-position to select this position. By
default, it is set to 0, such that the neutral position is the center of the staff. Use property
neutral-direction to control what happens if a custos is typeset on the neutral position itself.
By default, this property is set to -1, such that the appendage will point downwards. If set to
1, the appendage will point upwards. Other values such as 0 are reserved for future extensions
and should not be used.

See also

Custos and ‘input/regression/custos.ly’.

3.15.8 Divisiones

A divisio (plural: divisiones; latin word for ‘division’) is a staff context symbol that is
used to structure Gregorian music into phrases and sections. The musical meaning of divisio
minima, divisio maior and divisio maxima can be characterized as short, medium and long
pause, somewhat like Section 3.7.3 [Breath marks], page 56. The finalis sign not only marks
the end of a chant, but is also frequently used within a single antiphonal/responsorial chant to
mark the end of each section.

Syntax

To use divisiones, include the file gregorian-init.ly. It contains definitions that you can
apply by just inserting \divisioMinima, \divisioMaior, \divisioMaxima, and \finalis at
proper places in the input. Some editions use virgula or caesura instead of divisio minima.
Therefore, gregorian-init.ly also defines \virgula and \caesura:

��
Blah

>
divisio maxima

blam.

>>
blah

>
blub,

>>
Blah

>
divisio maior

blam.

>>
blah

>
blub,

>>
Blah

>
divisio minima

blam.

>>
blah

>
blub,

>>
Blah

>� �

Chapter 3: Notation manual 99

��
blam.

>>
blah

>
blub,

>>p

Blah

>
caesura

blam.

>>
blah

>
blub,

>>n

Blah

>
virgula

blam.

>>
blah

>
blub,

>>
Blah

>
finalis

blam.

>>
blah

>
blub,

>>

Predefined commands

\virgula, \caesura, \divisioMinima, \divisioMaior, \divisioMaxima, \finalis.

See also

BreathingSign, BreathingSignEvent, ‘input/test/divisiones.ly’, and Section 3.7.3
[Breath marks], page 56.

3.15.9 Ligatures

In musical terminology, a ligature is a coherent graphical symbol that represents at least two
distinct notes. Ligatures originally appeared in the manuscripts of Gregorian chant notation
roughly since the 9th century as an allusion to the accent symbols of greek lyric poetry to
denote ascending or descending sequences of notes. Both, the shape and the exact meaning
of ligatures changed tremendously during the following centuries: In early notation, ligatures
were used for monophonic tunes (Gregorian chant) and very soon denoted also the way of
performance in the sense of articulation. With upcoming multiphony, the need for a metric
system arised, since multiple voices of a piece have to be synchronized some way. New notation
systems were invented that used the manifold shapes of ligatures to now denote rhythmical
patterns (e.g. black mensural notation, mannered notation, ars nova). With the invention of
the metric system of the white mensural notation, the need for ligatures to denote such patterns
disappeared. Nevertheless, ligatures were still in use in the mensural system for a couple of
decades until they finally disappeared during the late 16th / early 17th century. Still, ligatures
have survived in contemporary editions of Gregorian chant such as the Editio Vaticana from
1905/08.

Syntax

Syntactically, ligatures are simply enclosed by \[and \]. Some ligature styles (such as
Editio Vaticana) may need additional input syntax specific for this particular type of ligature.
By default, the LigatureBracket engraver just puts a square bracket above the ligature:

\score {

\notes \transpose c c’ {

\[g c a f d’ \]

a g f

\[e f a g \]

}

}

�� >>>>>>>>>>>>� �
To select a specific style of ligatures, a proper ligature engraver has to be added to the Voice

context, as explained in the following subsections. Only white mensural ligatures are supported
with certain limitations. Support for Editio Vaticana will be added in the future.

Chapter 3: Notation manual 100

3.15.9.1 White mensural ligatures

There is limited support for white mensural ligatures. The implementation is still experi-
mental; it may output strange warnings or even crash in some cases or produce weird results on
more complex ligatures.

Syntax

To engrave white mensural ligatures, in the paper block the Mensural_ligature_engraver

has to be put into the Voice context, and remove the Ligature_bracket_engraver:

\paper {

\translator {

\VoiceContext

\remove Ligature_bracket_engraver

\consists Mensural_ligature_engraver

}

}

There is no additional input language to describe the shape of a white mensural ligature.
The shape is rather determined solely from the pitch and duration of the enclosed notes. While
this approach may take a new user a while to get accustomed, it has the great advantage that
the full musical information of the ligature is known internally. This is not only required for
correct MIDI output, but also allows for automatic transcription of the ligatures.

For example,

\property Score.timing = ##f

\property Score.defaultBarType = "empty"

\property Voice.NoteHead \set #’style = #’neo_mensural

\property Staff.TimeSignature \set #’style = #’neo_mensural

\clef "petrucci_g"

\[g\longa c\breve a\breve f\breve d’\longa \]

s4

\[e1 f1 a\breve g\longa \]

Ây ;8:y Â
Without replacing Ligature_bracket_engraver with Mensural_ligature_engraver, the

same music transcribes to the following:

Ây 345534443y Â
3.15.9.2 Gregorian square neumes ligatures

Gregorian square neumes notation (following the style of the Editio Vaticana) is under heavy
development, but not yet really usable for production purposes. Core ligatures can already be
typeset, but essential issues for serious typesetting are still under development, such as (among
others) horizontal alignment of multiple ligatures, lyrics alignment and proper accidentals han-
dling. Still, this section gives a sneak preview of what Gregorian chant may look like once it
will work.

Chapter 3: Notation manual 101

The following table contains the extended neumes table of the 2nd volume of the Antiphonale
Romanum (Liber Hymnarius), published 1983 by the monks of Solesmes.

Neuma aut

Neumarum Elementa

Figurae

Rectae

Figurae

Liquescentes

Auctae

Figurae

Liquescentes

Deminutae

1. Punctum

b

C
a

?
e

R
d

Q
c

P
f

O

2. Virga

g

?

3. Apostropha vel Stropha

h

S
i

T

4. Oriscus

j

U

5. Clivis vel Flexa

k

??
m

P?
l

Q?
n

KM

6. Podatus vel Pes

o

FD
q

P?
p

Q?
r

HI

7. Pes Quassus

s

?U
t

QU

8. Quilisma Pes

u

FN
v

QN

9. Podatus Initio Debilis

w

?K
x

QK

10. Torculus

y

???
z

Q??
A

KL?

11. Torculus Initio Debilis

B

??K
C

Q?K
D

KLK

12. Porrectus

E

F
F

Q
G

H

Chapter 3: Notation manual 102

13. Climacus

H

CC?
I

RC?
J

OC?

14. Scandicus

K

?GE
L

Q??
M

HJ?

15. Salicus

N

?U?
O

QU?

16. Trigonus

P

SSS

Syntax

Unlike most other neumes notation systems, the input language for neumes does not neces-
sarily reflect directly the typographical appearance, but is designed to solely focuse on musical
meaning. For example, \[a \pes b \flexa g \] produces a Torculus consisting of three Punc-
tum heads, while \[a \flexa g \pes b \] produces a Porrectus with a curved flexa shape and
only a single Punctum head. There is no command to explicitly typeset the curved flexa shape;
the decision of when to typeset a curved flexa shape is purely taken from the musical input. The
idea of this approach is to separate the musical aspects of the input from the notation style of the
output. This way, the same input can be reused to typeset the same music in a different style of
Gregorian chant notation such as Hufnagel (also known as German gothic neumes) or Medicaea
(kind of a very simple forerunner of the Editio Vaticana). As soon as Hufnagel ligature engraver
and Medicaea ligature engraver will have been implemented, it will be as simple as replacing the
ligature engraver in the Voice context to get the desired notation style from the same input.

The following table shows the code fragments that produce the ligatures in the above neumes
table. The letter in the first column in each line of the below table indicates to which ligature in
the above table it refers. The second column gives the name of the ligature. The third column
shows the code fragment that produces this ligature, using g, a and b as example pitches.

Name Input Language

a Punctum \[b \]

b Punctum Inclinatum \[\inclinatum b \]

c Punctum Auctum Ascendens \[\auctum \ascendens b \]

d Punctum Auctum Descendens \[\auctum \descendens b \]

e Punctum Inclinatum Auctum \[\inclinatum \auctum b \]

f Punctum Inclinatum Parvum \[\inclinatum \deminutum b \]

g Virga \[\virga b \]

h Stropha \[\stropha b \]

i Stropha Aucta \[\stropha \auctum b \]

j Oriscus \[\oriscus b \]

Chapter 3: Notation manual 103

k Clivis vel Flexa \[b \flexa g \]

l Clivis Aucta Descendens \[b \flexa \auctum \descendens g \]

m Clivis Aucta Ascendens \[b \flexa \auctum \ascendens g \]

n Cephalicus \[b \flexa \deminutum g \]

o Podatus vel Pes \[g \pes b \]

p Pes Auctus Descendens \[g \pes \auctum \descendens b \]

q Pes Auctus Ascendens \[g \pes \auctum \ascendens b \]

r Epiphonus \[g \pes \deminutum b \]

s Pes Quassus \[\oriscus g \pes \virga b \]

t Pes Quassus Auctus Descendens \[\oriscus g \pes \auctum \descendens

b \]

u Quilisma Pes \[\quilisma g \pes b \]

v Quilisma Pes Auctus Descendens \[\quilisma g \pes \auctum \descendens

b \]

w Pes Initio Debilis \[\deminutum g \pes b \]

x Pes Auctus Descendens Initio
Debilis

\[\deminutum g \pes \auctum

\descendens b \]

y Torculus \[a \pes b \flexa g \]

z Torculus Auctus Descendens \[a \pes b \flexa \auctum \descendens g

\]

A Torculus Deminutus \[a \pes b \flexa \deminutum g \]

B Torculus Initio Debilis \[\deminutum a \pes b \flexa g \]

C Torculus Auctus Descendens Initio
Debilis

\[\deminutum a \pes b \flexa \auctum

\descendens g \]

D Torculus Deminutus Initio Debilis \[\deminutum a \pes b \flexa

\deminutum g \]

E Porrectus \[a \flexa g \pes b \]

F Porrectus Auctus Descendens \[a \flexa g \pes \auctum \descendens b

\]

G Porrectus Deminutus \[a \flexa g \pes \deminutum b \]

H Climacus \[\virga b \inclinatum a \inclinatum g

\]

I Climacus Auctus \[\virga b \inclinatum a \inclinatum

\auctum g \]

J Climacus Deminutus \[\virga b \inclinatum a \inclinatum

\deminutum g \]

Chapter 3: Notation manual 104

K Scandicus \[g \pes a \virga b \]

L Scandicus Auctus Descendens \[g \pes a \pes \auctum \descendens b

\]

M Scandicus Deminutus \[g \pes a \pes \deminutum b \]

N Salicus \[g \oriscus a \pes \virga b \]

O Salicus Auctus Descendens \[g \oriscus a \pes \auctum

\descendens b \]

P Trigonus \[\stropha b \stropha b \stropha a \]

Predefined commands

The following head prefixes are supported:

\virga, \stropha, \inclinatum, \auctum, \descendens, \ascendens, \oriscus,
\quilisma, \deminutum.

Head prefixes can be accumulated, though restrictions apply. For example, either
\descendens or \ascendens can be applied to a head, but not both to the same head.

Two adjacent heads can be tied together with the \pes and \flexa infix commands for a
rising and falling line of melody, respectively.

Bugs

Trigonus: apply equal spacing, regardless of pitch.

3.15.10 Figured bass

Syntax

LilyPond has limited support for figured bass:

<<

\context Voice \notes { \clef bass dis4 c d ais}

\context FiguredBass

\figures {

< 6 >4 < 7 >8 < 6+ [_!] >

< 6 >4 <6 5 [3+] >

}

>>

�� /
/3

5

6

>2
6

>
2 /67

>/
6

>� �

The support for figured bass consists of two parts: there is an input mode, introduced
by \figures, where you can enter bass figures as numbers, and there is a context called
FiguredBass that takes care of making BassFigure objects.

Chapter 3: Notation manual 105

In figures input mode, a group of bass figures is delimited by < and >. The duration is entered
after the >>:

<4 6>

6

4

Accidentals are added when you append -, ! and + to the numbers:

<4- 6+ 7!>
27 /6 34

Spaces or dashes may be inserted by using _. Brackets are introduced with [and]:

< [4 6] 8 [_! 12]>
122
8
6

4

Although the support for figured bass may superficially resemble chord support, it works
much simpler. The \figures mode simply stores the numbers , and FiguredBass context
prints them as entered. There is no conversion to pitches, and no realizations of the bass are
played in the MIDI file.

Internally, the code produces markup texts. You can use any of the markup text properties to
override formatting. For example, the vertical spacing of the figures may be set with baseline-

skip.

See also

BassFigureEvent music, BassFigure object, and FiguredBass context.

Bugs

Slash notation for alterations is not supported.

3.15.11 Vaticana style contexts

The predefined VaticanaVoiceContext and VaticanaStaffContext can be used to easily
engrave a piece of Gregorian Chant in the style of the Editio Vaticana. These contexts initialize
all relevant context properties and grob properties to proper values. With these contexts, you
can immediately go ahead entering the chant, as the following short excerpt demonstrates:

\include "gregorian-init.ly"

\score {

\addlyrics

\context VaticanaVoice {

\property Score.BarNumber \set #’transparent = ##t

\notes {

\[c’(c’ \flexa a \] \[a \flexa \deminutum g) \] f \divisioMinima

\[f(\pes a c’ c’ \pes d’) \] c’ \divisioMinima \break

\[c’(c’ \flexa a \] \[a \flexa \deminutum g) \] f \divisioMinima

}

}

\context Lyrics \lyrics {

San- ctus, San- ctus, San- ctus

}

Chapter 3: Notation manual 106

}

] ��
ctus,

?GE?F
San-

D
ctus,

?KM??
San-

?]

]]
ctus

?KM??
San-

?

3.16 Contemporary notation

In the 20th century, composers have greatly expanded the musical vocabulary. With this
expansion, many innovations in musical notation have been tried. The book by Stone (1980)
gives a comprehensive overview (see Chapter 4 [Literature list], page 121). In general, the use
of new, innovative notation makes a piece harder to understand and perform and its use should
therefore be avoided if possible. For this reason, support for contemporary notation in LilyPond
is limited.

3.16.1 Clusters

In musical terminology, a cluster denotes a range of simultaneously sounding pitches that
may change over time. The set of available pitches to apply usually depends on the accoustic
source. Thus, in piano music, a cluster typically consists of a continous range of the semitones
as provided by the piano’s fixed set of a chromatic scale. In choral music, each singer of the
choir typically may sing an arbitrary pitch within the cluster’s range that is not bound to any
diatonic, chromatic or other scale. In electronic music, a cluster (theoretically) may even cover
a continuous range of pitches, thus resulting in coloured noise, such as pink noise.

Clusters can be denoted in the context of ordinary staff notation by engraving simple geomet-
rical shapes that replace ordinary notation of notes. Ordinary notes as musical events specify
starting time and duration of pitches; however, the duration of a note is expressed by the shape
of the note head rather than by the horizontal graphical extent of the note symbol. In contrast,
the shape of a cluster geometrically describes the development of a range of pitches (vertical
extent) over time (horizontal extent). Still, the geometrical shape of a cluster covers the area in
wich any single pitch contained in the cluster would be notated as an ordinary note. From this
point of view, it is reasonable to specify a cluster as the envelope of a set of notes.

Syntax

A cluster is engraved as the envelope of a set of cluster-notes. Cluster notes are created by
applying the function notes-to-clusters to a sequence of chords, e.g.

\apply #notes-to-clusters { <c e > <b f’> }

��� �
The following example (from ‘input/regression/cluster.ly’) shows what the result looks

like:

Chapter 3: Notation manual 107

��
��

>>>>=>>>>>>>>
� �

>� �

By default, Cluster_spanner_engraver is in the Voice context. This allows putting or-
dinary notes and clusters together in the same staff, even simultaneously. In such a case no
attempt is made to automatically avoid collisions between ordinary notes and clusters.

See also

ClusterSpanner, ClusterSpannerBeacon, ‘input/regression/cluster.ly’,
Cluster_spanner_engraver, and ClusterNoteEvent.

Bugs

Music expressions like << { g8 e8 } a4 >> are not printed accurately. Use <g a>8 <e a>8

instead.

3.16.2 Fermatas

Contemporary music notation frequently uses special fermata symbols to indicate fermatas
of differing lengths.

Syntax

The following are supported

�� (
verylongfermata

>T
S(

longfermata

>R
Q(

fermata

>N
M(

shortfermata

>P
O� �

See Section 3.7.7 [Articulations], page 58 for general instructions how to apply scripts such
as fermatas to a \notes{} block.

3.17 Tuning output

There are situations where default layout decisions are not sufficient. In this section we
discuss ways to override these defaults.

Formatting is internally done by manipulating so called objects (graphic objects). Each
object carries with it a set of properties (object or layout properties) specific to that object. For
example, a stem object has properties that specify its direction, length and thickness.

The most direct way of tuning the output is by altering the values of these properties. There
are two ways of doing that: first, you can temporarily change the definition of one type of object,
thus affecting a whole set of objects. Second, you can select one specific object, and set a layout
property in that object.

Do not confuse layout properties with translation properties. Translation properties always
use a mixed caps style naming, and are manipulated using \property:

Chapter 3: Notation manual 108

\property Context.propertyName = value

Layout properties are use Scheme style variable naming, i.e. lower case words separated with
dashes. They are symbols, and should always be quoted using #’. For example, this could be
an imaginary layout property name:

#’layout-property-name

3.17.1 Tuning objects

The definition of an object is a list of default object properties. For example, the definition
of the Stem object (available in ‘scm/define-grobs.scm’), includes the following definitions for
Stem:

(thickness . 1.3)

(beamed-lengths . (0.0 2.5 2.0 1.5))

(Y-extent-callback . ,Stem::height)

...

Adding variables on top of this existing definition overrides the system default, and alters
the resulting appearance of the layout object.

Syntax

Changing a variable for only one object is commonly achieved with \once:

\once \property context.objectname

\override symbol = value

Here symbol is a Scheme expression of symbol type, context and objectname is a string and
value is a Scheme expression. This command applies a setting only during one moment in the
score.

In the following example, only one Stem object is changed from its original setting:

c4

\once \property Voice.Stem \set #’thickness = #4

c4

c4

�� >>>� �
For changing more objects, the same command, without \once can be used:

\property context.objectname \override symbol = value

This command adds symbol = value to the definition of objectname in the context context,
and this definition stays in place until it is removed.

An existing definition may be removed by the following command:

\property context.objectname \revert symbol

All \override and \revert commands should be balanced. The \set shorthand performs
a revert followed by an override, and is often more convenient to use

\property context.objectname \set symbol = value

Some examples:

c’4 \property Voice.Stem \override #’thickness = #4.0

c’4

c’4 \property Voice.Stem \revert #’thickness

Chapter 3: Notation manual 109

c’4

�� >>>>� �
The following example gives exactly the same result as the previous one (assuming the system

default for stem thickness is 1.3):

c’4 \property Voice.Stem \set #’thickness = #4.0

c’4

c’4 \property Voice.Stem \set #’thickness = #1.3

c’4

�� >>>>� �
Reverting a setting which was not set in the first place has no effect. However, if the setting

was set as a system default, this may remove the default value, and this may give surprising
results, including crashes. In other words, \override and \revert must be carefully balanced.
The following are examples of correct nesting of \override, \set, \revert:

• a clumsy but correct form:

\override \revert \override \revert \override \revert

• shorter version of the same:

\override \set \set \revert

• a short form, using only \set. This requires you to know the default value:

\set \set \set \set to default value

• if there is no default (i.e. by default, the object property is unset), then you can use

\set \set \set \revert

The object description is an Scheme association list. Since a Scheme list is a singly linked
list, we can treat it as a stack, and \override and \revert are push and pop operations. The
association list is stored in a normal context property, hence

\property Voice.NoteHead = #’()

will effectively erase NoteHeads from the current Voice. Typically, this will blank the object.
However, this mechanism should not be used: it may cause crashes or other anomalous behavior.

See also

OverrideProperty, RevertProperty, PropertySet, All-backend-properties, and All-

layout-objects.

Bugs

The backend is not very strict in type-checking object properties. Cyclic references in Scheme
values for properties cause hangs and/or crashes. Reverting properties that are system defaults
may also lead to crashes.

Chapter 3: Notation manual 110

3.17.2 Constructing a tweak

Three pieces of information are required to use \override and \set: the name of the layout
object, the context and the name of the property. We demonstrate how to glean this information
from the notation manual and the generated documentation.

The generated documentation is a set of HTML pages which should be included if you
installed a binary distribution, typically in ‘/usr/share/doc/lilypond’. They are also available
on the web: go to the LilyPond website (http://lilypond.org), click “Documentation”, select
the correct version, and click then “Program reference.” It is advisable to bookmark the local
HTML files. They will load faster than the ones on the web. If you use the version from the
web, you must check whether the documentation matches the program version: it is generated
from the definitions that the program uses, and therefore it is strongly tied to the LilyPond
version.

Suppose we want to move the fingering indication in the fragment below:

c-2

\stemUp

f

�� >>
2� �

If you visit the documentation of Fingering (in Section 3.7.8 [Fingering instructions],
page 59), you will notice that there is written:

See also

FingerEvent and Fingering.

In other words, the fingerings once entered, are internally stored as FingerEvent music objects.
When printed, a Fingering layout object is created for every FingerEvent.

The Fingering object has a number of different functions, and each of those is captured in
an interface. The interfaces are listed under Fingering in the program reference.

The Fingering object has a fixed size (item-interface), the symbol is a piece of text (
text-interface), whose font can be set (font-interface). It is centered horizontally (self-
alignment-interface), it is placed next to other objects (side-position-interface) verti-
cally, and its placement is coordinated with other scripts (text-script-interface). It also
has the standard grob-interface (grob stands for Graphical object) with all the variables that
come with it. Finally, it denotes a fingering instruction, so it has finger-interface.

For the vertical placement, we have to look under side-position-interface:

side-position-interface

Position a victim object (this one) next to other objects (the support). In this
case, the property direction signifies where to put the victim object relative to the
support (left or right, up or down?)

below this description, the variable padding is described as

padding (dimension, in staff space)

add this much extra space between objects that are next to each other.
Default value: 0.6

By increasing the value of padding, we can move away the fingering. The following command
inserts 3 staff spaces of white between the note and the fingering:

Chapter 3: Notation manual 111

\once \property Voice.Fingering \set #’padding = #3

Inserting this command before the Fingering object is created, i.e. before c2, yields the
following result:

\once \property Voice.Fingering

\set #’padding = #3

c-2

\stemUp

f

�� >>
2

� �
The context name Voice in the example above can be determined as follows. In the docu-

mentation for Fingering, it says

Fingering grobs are created by: Fingering_engraver

Clicking Fingering_engraver shows the documentation of the module responsible for inter-
preting the fingering instructions and translating them to a Fingering object. Such a module
is called an engraver. The documentation of the Fingering_engraver says

Fingering_engraver is part of contexts: Voice

so tuning the settings for Fingering should be done with

\property Voice.Fingering \set ...

Of course, the tweak may also done in a larger context than Voice, for example, Staff or
Score.

See also

The program reference also contains alphabetical lists of Contexts, All-layout-objects
and Music-expressions, so you can also find which objects to tweak by browsing the internals
document.

3.17.3 Applyoutput

The most versatile way of tuning an object is \applyoutput. Its syntax is

\applyoutput proc

where proc is a Scheme function, taking three arguments.

When interpreted, the function proc is called for every layout object found in the context,
with the following arguments:

• the layout object itself,

• the context where the layout object was created, and

• the context where \applyoutput is processed.

In addition, the cause of the layout object, i.e. the music expression or object that was
responsible for creating it, is in the object property cause. For example, for a note head, this
is a NoteHead event, and for a Stem object, this is a NoteHead object.

Here is a simple example of \applyoutput; it blanks note-heads on the center-line:

(define (blanker grob grob-origin context)

(if (and (memq (ly:get-grob-property grob ’interfaces)

note-head-interface)

Chapter 3: Notation manual 112

(eq? (ly:get-grob-property grob ’staff-position) 0))

(ly:set-grob-property! grob ’transparent #t)))

3.17.4 Font selection

The most common thing to change about the appearance of fonts is their size. The font
size of any context can be easily changed by setting the fontSize property for that context.
Its value is an integer: negative numbers make the font smaller, positive numbers larger. An
example is given below:

c4 c4 \property Voice.fontSize = #-1

f4 g4

�� >>>>� �
This command will set font-relative-size (see below), and does not change the size of

variable symbols, such as beams or slurs.

One of the uses of fontSize is to get smaller symbol for cue notes. An elaborate example of
those is in ‘input/test/cue-notes.ly’.

The size of the font may be scaled with the object property font-magnification. For
example, 2.0 blows up all letters by a factor 2 in both directions.

The font used for printing a object can be selected by setting font-name, e.g.

\property Staff.TimeSignature

\set #’font-name = #"cmr17"

Any font can be used, as long as it is available to TEX. Possible fonts include foreign fonts or
fonts that do not belong to the Computer Modern font family.

Font selection for the standard fonts, TEX’s Computer Modern fonts, can also be adjusted
with a more fine-grained mechanism. By setting the object properties described below, you can
select a different font; all three mechanisms work for every object that supports font-interface:

font-family

is a symbol indicating the general class of the typeface. Supported are roman (Com-
puter Modern), braces (for piano staff braces), music (the standard music font,
including ancient glyphs), dynamic (for dynamic signs) and typewriter.

font-shape

is a symbol indicating the shape of the font, there are typically several font shapes
available for each font family. Choices are italic, caps and upright.

font-series

is a symbol indicating the series of the font. There are typically several font series
for each font family and shape. Choices are medium and bold.

font-relative-size

is a number indicating the size relative the standard size. For example, with 20pt
staff height, relative size -1 corresponds to 16pt staff height, and relative size +1
corresponds to 23 pt staff height.

There are small differences in design between fonts designed for different sizes, hence
font-relative-size is preferred over font-magnification for changing font sizes.

Chapter 3: Notation manual 113

font-design-size

is a number indicating the design size of the font.

This is a feature of the Computer Modern Font: each point size has a slightly dif-
ferent design. Smaller design sizes are relatively wider, which enhances readability.

For any of these properties, the value * (i.e. the symbol *, entered as #’*), acts as a wildcard.
This can be used to override default setting, which are always present. For example:

\property Lyrics . LyricText \override #’font-series = #’bold

\property Lyrics . LyricText \override #’font-family = #’typewriter

\property Lyrics . LyricText \override #’font-shape = #’*

Predefined commands

The following commands set fontSize for the current voice.

\tiny, \small, \normalsize,

Bugs

Relative size is not linked to any real size.

There is no style sheet provided for other fonts besides the TEX family, and the style sheet
cannot be modified easily.

3.17.5 Text markup

LilyPond has an internal mechanism to typeset texts. You can access it with the keyword
\markup. Within markup mode, you can enter texts similar to lyrics: simply enter them,
surrounded by spaces:

c1^\markup { hello }

c1_\markup { hi there }

c1^\markup { hi \bold there, is \italic anyone home? }

�� home?anyoneisthere,hi

<
therehi

<
hello

<� �
The markup in the example demonstrates font switching commands. The command \bold

and \italic only apply to the first following word; enclose a set of texts with braces to apply
a command to more words:

\markup { \bold { hi there } }

For clarity, you can also do this for single arguments, e.g.

\markup { is \italic { anyone } home }

The following size commands set absolute sizes:

\teeny

\tiny

\small

\large

\huge

Chapter 3: Notation manual 114

You can also make letter larger or smaller relative to their neighbors, with the commands
\larger and \smaller.

The following font change commands are defined:

\dynamic changes to the font used in dynamic signs. This font does not contain all characters
of the alphabet, so when producing “piu f”, the “piu” should be done in a different
font.

\number changes to the font used in time signatures. It only contains numbers and a few
punctuation marks.

\italic changes font-shape to italic.

\bold changes font-series to bold.

Raising and lowering texts can be done with \super and \sub:

c1^\markup { E "=" mc \super "2" }

�� 2
mc=E

<� �
If you want to give an explicit amount for lowering or raising, use \raise. This command

takes a Scheme valued first argument, and a markup object as second argument:

c1^\markup { C \small \raise #1.0 \bold { "9/7+" }}

�� 9/7+
C

<� �
The argument to \raise is the vertical displacement amount, measured in (global) staff

spaces. \raise and \super raise objects in relation to their surrounding markups. They cannot
be used to move a single text up or down, when it is above or below a note, since the mechanism
that positions it next to the note cancels any vertical shift. For vertical positioning, use the
padding and/or extra-offset properties.

Other commands taking single arguments include

\bracket, \hbracket

Bracket the argument markup with normal and horizontal brackets respectively.

\musicglyph

This is converted to a musical symbol, e.g. \musicglyph #"accidentals-0" will
select the natural sign from the music font. See Section A.3 [The Feta font], page 162
for a complete listing of the possible glyphs.

\char This produces a single character, e.g. \char #65 produces the letter ’A’.

\note log dots dir

This produces a note with a stem pointing in dir direction, with duration log log
and dots augmentation dots. The duration log is the negative 2-logarithm of the
duration denominator. For example, a quarter note has log 2, an eighth note 3 and
a breve has log -1.

\hspace #amount

This produces a invisible object taking horizontal space.

\markup { A \hspace #2.0 B }

will put extra space between A and B, on top of the space that is normally inserted
before elements on a line.

Chapter 3: Notation manual 115

\fontsize #size

This sets the relative font size, eg.

A \fontsize #2 { B C } D

This will enlarge the B and the C by two steps.

\translate #(cons x y)

This translates an object. Its first argument is a cons of numbers

A \translate #(cons 2 -3) { B C } D

This moves ‘B C’ 2 spaces to the right, and 3 down.

\magnify #mag

This sets the font magnification for the its argument. In the following example, the
middle A will be 10% larger:

A \magnify #1.1 { A } A

\override #(key . value)

This overrides a formatting property for its argument. The argument should be a
key/value pair, e.g.

m \override #’(font-family . math) m m

In markup mode you can compose expressions, similar to mathematical expressions, XML
documents and music expressions. The braces group notes into horizontal lines. Other types of
lists also exist: you can stack expressions grouped with <, and > vertically with the command
\column. Similarly, \center aligns texts by their center lines:

c1^\markup { \column < a bbbb c > }

c1^\markup { \center < a bbbb c > }

c1^\markup { \line < a b c > }

�� cba

<
c

bbbb
a

<
c
bbbb
a

<� �
The markup mechanism is extensible. Refer to ‘scm/new-markup.scm’ for more information.

See also

Markup-functions, and ‘scm/new-markup.scm’.

Bugs

Text layout is ultimately done by TEX, which does kerning of letters. LilyPond does not
account for kerning, so texts will be spaced slightly too wide.

Syntax errors for markup mode are confusing.

Markup texts cannot be used in the titling of the \header field. Titles are made by LaTEX,
so LaTEX commands should be used for formatting.

3.18 Global layout

The global layout determined by three factors: the page layout, the line breaks and the
spacing. These all influence each other. The choice of spacing determines how densely each
system of music is set, which influences where line breaks breaks are chosen, and thus ultimately

Chapter 3: Notation manual 116

how many pages a piece of music takes. This section explains how to tune the algorithm for
spacing.

Globally spoken, this procedure happens in three steps: first, flexible distances (“springs”)
are chosen, based on durations. All possible line breaking combination are tried, and the one
with the best results—a layout that has uniform density and requires as little stretching or
cramping as possible—is chosen. When the score is processed by TEX, each page is filled with
systems, and page breaks are chosen whenever the page gets full.

3.18.1 Vertical spacing

The height of each system is determined automatically by LilyPond, to keep systems from
bumping into each other, some minimum distances are set. By changing these, you can put
staves closer together, and thus put more systems onto one page.

Normally staves are stacked vertically. To make staves maintain a distance, their vertical size
is padded. This is done with the property minimumVerticalExtent. It takes a pair of numbers,
so if you want to make it smaller from its, then you could set

\property Staff.minimumVerticalExtent = #’(-4 . 4)

This sets the vertical size of the current staff to 4 staff spaces on either side of the center
staff line. The argument of minimumVerticalExtent is interpreted as an interval, where the
center line is the 0, so the first number is generally negative. The staff can be made larger at
the bottom by setting it to (-6 . 4).

The piano staves are handled a little differently: to make cross-staff beaming work correctly,
it is necessary that the distance between staves is fixed beforehand. This is also done with a
VerticalAlignment object, created in PianoStaff. In this object the distance between the
staves is fixed by setting forced-distance. If you want to override this, use a \translator

block as follows:

\translator {

\PianoStaffContext

VerticalAlignment \override #’forced-distance = #9

}

This would bring the staves together at a distance of 9 staff spaces, measured from the center
line of each staff.

See also

Vertical alignment of staves is handled by the VerticalAlignment object.

3.18.2 Horizontal Spacing

The spacing engine translates differences in durations into stretchable distances (“springs”)
of differing lengths. Longer durations get more space, shorter durations get less. The shortest
durations get a fixed amount of space (which is controlled by shortest-duration-space in the
SpacingSpanner object). /The longer the duration, the more space it gets: doubling a duration
adds a fixed amount (this amount is controlled by spacing-increment) of space to the note.

For example, the following piece contains lots of half, quarter and 8th notes, the eighth note
is followed by 1 note head width (NHW). The quarter note is followed by 2 NHW, the half by
3 NHW, etc.

Chapter 3: Notation manual 117

c2 c4. c8 c4. c8 c4. c8 c8

c8 c4 c4 c4

�� >>>>>�>> :�>> :�>> :=� �
Normally, shortest-duration-space is set to 1.2, which is the width of a note head, and

shortest-duration-space is set to 2.0, meaning that the shortest note gets 2 NHW (2 times
shortest-duration-space) of space. For normal notes, this space is always counted from the
left edge of the symbol, so the shortest notes are generally followed by one NHW of space.

If one would follow the above procedure exactly, then adding a single 32th note to a score that
uses 8th and 16th notes, would widen up the entire score a lot. The shortest note is no longer a
16th, but a 32nd, thus adding 1 NHW to every note. To prevent this, the shortest duration for
spacing is not the shortest note in the score, but the most commonly found shortest note. Notes
that are even shorter this are followed by a space that is proportional to their duration relative
to the common shortest note. So if we were to add only a few 16th notes to the example above,
they would be followed by half a NHW:

c2 c4. c8 c4. c16[c] c4. c8 c8 c8 c4 c4 c4

�� >>>>>�>> :>>> :�>> :=� �
The most common shortest duration is determined as follows: in every measure, the shortest

duration is determined. The most common short duration, is taken as the basis for the spacing,
with the stipulation that this shortest duration should always be equal to or shorter than 1/8th
note. The shortest duration is printed when you run lilypond with --verbose. These durations
may also be customized. If you set the common-shortest-duration in SpacingSpanner, then
this sets the base duration for spacing. The maximum duration for this base (normally 1/8th),
is set through base-shortest-duration.

In the introduction it was explained that stem directions influence spacing. This is controlled
with stem-spacing-correction property in NoteSpacing, which are generated for every Voice

context. The StaffSpacing object (generated at Staff context) contains the same property
for controlling the stem/barline spacing. The following example shows these corrections, once
with default settings, and once with exaggerated corrections:

�� >>>>>>>>>>>>>>>>� �
Properties of the SpacingSpanner must be overridden from the \paper block, since the

SpacingSpanner is created before any \property statements are interpreted.

\paper { \translator {

\ScoreContext

SpacingSpanner \override #’spacing-increment = #3.0

} }

See also

SpacingSpanner, NoteSpacing, StaffSpacing, SeparationItem, and
SeparatingGroupSpanner.

Chapter 3: Notation manual 118

Bugs

Spacing is determined on a score wide basis. If you have a score that changes its character
(measured in durations) halfway during the score, the part containing the longer durations will
be spaced too widely.

There is no convenient mechanism to manually override spacing.

3.18.3 Font size

The Feta font provides musical symbols at seven different sizes. These fonts are 11 point, 13
point, 16 point, 20 point, 23 point, and 26 point. The point size of a font is the height of the
corresponding staff (excluding line thicknesses).

Definitions for these sizes are the files ‘paperSZ.ly’, where SZ is one of 11, 13, 16, 20, 23 and
26. If you include any of these files, the variables paperEleven, paperThirteen, paperSixteen,
paperTwenty, paperTwentythree, and paperTwentysix are defined respectively. The default
\paper block is also set. These files should be imported at toplevel, i.e.

\include "paper26.ly"

\score { ... }

The default font size settings for each staff heights are generated from the 20pt style sheet.
For more details, see the file ‘scm/font.scm’.

3.18.4 Line breaking

Line breaks are normally computed automatically. They are chosen such that lines look
neither cramped nor loose, and that consecutive lines have similar density.

Occasionally you might want to override the automatic breaks; you can do this by specifying
\break. This will force a line break at this point. Line breaks can only occur at places where
there are bar lines. If you want to have a line break where there is no bar line, you can force an
invisible bar line by entering \bar "". Similarly, \noBreak forbids a line break at a point.

For linebreaks at regular intervals use \break separated by skips and repeated with \repeat:

<< \repeat unfold 7 { s1 * 4 \break }

the real music

>>

This makes the following 28 measures (assuming 4/4 time) be broken every 4 measures.

See also

BreakEvent.

3.18.5 Page layout

The most basic settings influencing the spacing are indent and linewidth. They are set in
the \paper block. They control the indentation of the first line of music, and the lengths of the
lines.

If raggedright is set to true in the \paper block, then the lines are justified at their natural
length. This useful for short fragments, and for checking how tight the natural spacing is.

The page layout process happens outside the LilyPond formatting engine: variables control-
ling page layout are passed to the output, and are further interpreted by lilypond wrapper

Chapter 3: Notation manual 119

program. It responds to the following variables in the \paper block. The variable textheight

sets the total height of the music on each page. The spacing between systems is controlled with
interscoreline, its default is 16pt. The distance between the score lines will stretch in order to
fill the full page interscorelinefill is set to a positive number. In that case interscoreline
specifies the minimum spacing.

If the variable lastpagefill is defined, systems are evenly distributed vertically on the last
page. This might produce ugly results in case there are not enough systems on the last page.
The lilypond-book command ignores lastpagefill. See Chapter 7 [lilypond-book manual],
page 141 for more information.

Page breaks are normally computed by TEX, so they are not under direct control of LilyPond.
However, you can insert a commands into the ‘.tex’ output to instruct TEX where to break pages.
This is done by setting the between-systems-strings on the NonMusicalPaperColumn where
the system is broken. An example is shown in ‘input/regression/between-systems.ly’. The
predefined command \newpage also does this.

To change the paper size, you must first set the papersize paper variable variable as in the
example below. Set it to the strings a4, letter, or legal. After this specification, you must
set the font as described above. If you want the default font, then use the 20 point font.

\paper{ papersize = "a4" }

\include "paper16.ly"

The file paper16.ly will now include a file named ‘a4.ly’, which will set the paper variables
hsize and vsize (used by lilypond-book and lilypond).

Predefined commands

\newpage.

See also

Section 6.1 [Invoking lilypond], page 134, ‘input/regression/between-systems.ly’, and
NonMusicalPaperColumn.

Bugs

LilyPond has no concept of page layout, which makes it difficult to reliably choose page
breaks in longer pieces.

3.19 Sound

Entered music can also be converted to MIDI output. The performance is good enough for
proof-hearing the music for errors.

Ties, dynamics and tempo changes are interpreted. Dynamic marks, crescendi and de-
crescendi translate into MIDI volume levels. Dynamic marks translate to a fixed fraction of the
available MIDI volume range, crescendi and decrescendi make the volume vary linearly between
their two extremities. The fractions can be adjusted by dynamicAbsoluteVolumeFunction in
Voice context. For each type of MIDI instrument, a volume range can be defined. This gives
a basic equalizer control, which can enhance the quality of the MIDI output remarkably. The
equalizer can be controlled by setting instrumentEqualizer.

Chapter 3: Notation manual 120

Bugs

Many musically interesting effects, such as swing, articulation, slurring, etc., are not trans-
lated to MIDI.

3.19.1 MIDI block

The MIDI block is analogous to the paper block, but it is somewhat simpler. The \midi

block can contain:

• a \tempo definition, and

• context definitions.

Assignments in the \midi block are not allowed.

A number followed by a period is interpreted as a real number, so for setting the tempo for
dotted notes, an extra space should be inserted, for example:

\midi { \tempo 4 . = 120 }

Context definitions follow precisely the same syntax as within the \paper block. Transla-
tion modules for sound are called performers. The contexts for MIDI output are defined in
‘ly/performer-init.ly’.

3.19.2 MIDI instrument names

The MIDI instrument name is set by the Staff.midiInstrument property. The instrument
name should be chosen from the list in Section A.2 [MIDI instruments], page 161.

Bugs

If the selected string does not exactly match, then the default is used, which is the Grand
Piano.

Chapter 4: Literature list 121

4 Literature list

If you need to know more about music notation, here are some interesting titles to read.
The source archive includes a more elaborate BibTEX bibliography of over 100 entries in
‘Documentation/bibliography/’. It is also available online from the website.

Banter 1987
Harald Banter, Akkord Lexikon. Schott’s Söhne 1987. Mainz, Germany ISBN 3-
7957-2095-8.

This book is a comprehensive overview of commonly used chords and suggests a
unification for all different kinds of chord names.

Ignatzek 1995
Klaus Ignatzek, Die Jazzmethode für Klavier. Schott’s Söhne 1995. Mainz, Ger-
many ISBN 3-7957-5140-3.

A tutorial introduction to playing Jazz on the piano. One of the first chapters
contains an overview of chords in common use for Jazz music.

Gerou 1996
Tom Gerou and Linda Lusk, Essential Dictionary of Music Notation. Alfred Pub-
lishing, Van Nuys CA ISBN 0-88284-768-6.

A concise, alphabetically ordered list of typesetting and music (notation) issues
which covers most of the normal cases.

Hader 1948
Karl Hader, Aus der Werkstatt eines Notenstechers. Waldheim–Eberle Verlag, Vi-
enna 1948.

Hader was the chief-engraver of an Austrian engraving firm. This beautiful booklet
was intended as an introduction for laymen on the art of engraving. It contains a
step by step, in-depth explanation of how to cut and stamp music into zinc plates. It
also contains a few compactly formulated rules on musical orthography. This book
is out of print.

Read 1968
Gardner Read, Music Notation: a Manual of Modern Practice. Taplinger Publish-
ing, New York (2nd edition).

A standard work on music notation.

Ross 1987 Ted Ross, Teach yourself the art of music engraving and processing. Hansen House,
Miami, Florida 1987.

This book is about music engraving, i.e. professional typesetting. It contains di-
rections on stamping, use of pens and notational conventions. The sections on
reproduction technicalities and history are also interesting.

Schirmer 2001
The G.Schirmer/AMP Manual of Style and Usage. G.Schirmer/AMP, NY, 2001.
(This book can be ordered from the rental department.)

This manual specifically focuses on preparing print for publication by Schirmer. It
discusses many details that are not in other, normal notation books. It als gives a
good idea of what is necessary to bring printouts to publication quality.

Stone 1980
Kurt Stone, Music Notation in the Twentieth Century Norton, New York 1980.

This book describes music notation for modern serious music, but starts out with a
thorough overview of existing traditional notation practices.

Chapter 4: Literature list 122

Wanske 1988
Helene Wanske, Musiknotation — Von der Syntax des Notenstichs zum EDV-
gesteuerten Notensatz. Schott-Verlag, Mainz 1988. ISBN 3-7957-2886-x.

A book in two parts: 1. A very thorough overview of engraving practices of various
craftsmen. It includes detailed specs of characters, dimensions etc. 2. a thorough
overview of a anonymous automated system, which must be antiquated by now.
EDV means E(lektronischen) D(aten)v(erarbeitung), electronic data processing.

Chapter 5: Technical manual 123

5 Technical manual

When LilyPond is run, it reads an input file which is parsed. During parsing, Music objects
are created. This music is interpreted, which is done by contexts, that produce graphical objects.
This section discusses details of these three concepts, and how they are glued together with the
embedded Scheme interpreter.

5.1 Interpretation context

Interpretation contexts are objects that only exist during program run. During the interpreta-
tion phase (when interpreting music is printed on the standard output), the music expression
in a \score block is interpreted in time order, the same order in which we hear and play the
music. During this phase, the interpretation context holds the state for the current point within
the music, for example:

• What notes are playing at this point?

• What symbols will be printed at this point?

• What is the current key signature, time signature, point within the measure, etc.?

Contexts are grouped hierarchically: A Voice context is contained in a Staff context (be-
cause a staff can contain multiple voices at any point), a Staff context is contained in Score,
StaffGroup, or ChoirStaff context.

Contexts associated with sheet music output are called notation contexts, those for sound
output are called performance contexts. The default definitions of the standard notation and
performance contexts can be found in ‘ly/engraver-init.ly’ and ‘ly/performer-init.ly’,
respectively.

5.1.1 Creating contexts

Contexts for a music expression can be selected manually, using one of the following music
expressions:

\new contexttype musicexpr

\context contexttype [= contextname] musicexpr

This means that musicexpr should be interpreted within a context of type contexttype (with
name contextname if specified). If no such context exists, it will be created:

\score {

\notes \relative c’’ {

c4 <<d4 \context Staff = "another" e4>> f

}

}

�� >

>� �

>>� �

In this example, the c and d are printed on the default staff. For the e, a context Staff called
another is specified; since that does not exist, a new context is created. Within another, a
(default) Voice context is created for the e4. A context is ended when when all music referring
it has finished, so after the third quarter, another is removed.

Chapter 5: Technical manual 124

The \new construction creates a context with a generated, unique contextname. An expres-
sion with \new always leads to a new context. This is convenient for creating multiple staffs,
multiple lyric lines, etc.

When using automatic staff changes, automatic phrasing, etc., the context names have special
meanings, so \new cannot be used.

5.1.2 Default contexts

Every top level music is interpreted by the Score context; in other words, you may think of
\score working like

\score {

\context Score music

}

Music expressions inherit their context from the enclosing music expression. Hence, it is not
necessary to explicitly specify \context for most expressions. In the following example, only
the sequential expression has an explicit context. The notes contained therein inherit the goUp

context from the enclosing music expression.

\notes \context Voice = goUp { c’4 d’ e’ }

�� >>>� �
Second, contexts are created automatically to be able to interpret the music expressions.

Consider the following example:

\score { \notes { c’4-(d’ e’-) } }

�� >>>� �
The sequential music is interpreted by the Score context initially, but when a note is encountered,
contexts are setup to accept that note. In this case, a Thread, Voice, and Staff context are
created. The rest of the sequential music is also interpreted with the same Thread, Voice, and
Staff context, putting the notes on the same staff, in the same voice.

5.1.3 Context properties

Contexts have properties. These properties are set from the ‘.ly’ file using the following
expression:

\property contextname.propname = value

Sets the propname property of the context contextname to the specified Scheme expression
value. Both propname and contextname are strings, which can often be written unquoted.

Properties that are set in one context are inherited by all of the contained contexts. This
means that a property valid for the Voice context can be set in the Score context (for example)
and thus take effect in all Voice contexts.

If you do not wish to specify the name of the context in the \property-expression itself,
you can refer to the abstract context name, Current. The Current context is the latest used
context. This will typically mean the Thread context, but you can force another context with
the \property-command. Hence the expressions

Chapter 5: Technical manual 125

\property contextname.propname = value

and

\context contextname

\property Current.propname = value

do the same thing. The main use for this is in predefined variables. This construction allows
the specification of a property-setting without restriction to a specific context.

Properties can be unset using the following statement.

\property contextname.propname \unset

This removes the definition of propname in contextname. If propname was not defined in
contextname (but was inherited from a higher context), then this has no effect.

Bugs

The syntax of \unset is asymmetric: \property \unset is not the inverse of \property

\set.

5.1.4 Context evaluation

Contexts can be modified during interpretation with Scheme code. The syntax for this is

\applycontext function

function should be a Scheme function taking a single argument, being the context to apply
it to. The following code will print the current bar number on the standard output during the
compile:

\applycontext

#(lambda (x)

(format #t "\nWe were called in barnumber ~a.\n"

(ly:get-context-property x ’currentBarNumber)))

5.1.5 Defining contexts

The most common way to create a new context definition is by extending an existing one.
An existing context from the paper block is copied by referencing a context identifier:

\paper {

\translator {

context-identifier

}

}

Every predefined context has a standard identifier. For example, the Staff context can be
referred to as \StaffContext.

The context can then be modified by setting or changing properties, e.g.

\translator {

\StaffContext

Stem \set #’thickness = #2.0

defaultBarType = #"||"

}

These assignments happen before interpretation starts, so a \property command will over-
ride any predefined settings.

Chapter 5: Technical manual 126

Bugs

It is not possible to collect multiple property assignments in a variable, and apply to one
\translator definition by referencing that variable.

5.1.6 Engravers and performers

Each context is composed of a number of building blocks, or plug-ins called engravers. An
engraver is a specialized C++ class that is compiled into the executable. Typically, an engraver
is responsible for one function: the Slur_engraver creates only Slur objects, and the Skip_

event_swallow_translator only swallows (silently gobbles) SkipEvents.

An existing context definition can be changed by adding or removing an engraver. The syntax
for these operations is

\consists engravername

\remove engravername

Here engravername is a string, the name of an engraver in the system. In the following example,
the Clef_engraver is removed from the Staff context. The result is a staff without a clef, where
the central C is at its default position, the center line:

\score {

\notes {

c’4 f’4

}

\paper {

\translator {

\StaffContext

\remove Clef_engraver

}

}

}

� >>�
A list of all engravers is in the internal documentation, see All engravers.

5.1.7 Defining new contexts

It is also possible to define new contexts from scratch. To do this, you must define give the
new context a name. In the following example, a very simple Staff context is created: one that
will put note heads on a staff symbol.

\translator {

\type "Engraver_group_engraver"

\name "SimpleStaff"

\alias "Staff"

\consists "Staff_symbol_engraver"

\consists "Note_head_engraver"

\consistsend "Axis_group_engraver"

}

The argument of \type is the name for a special engraver that handles cooperation between
simple engravers such as Note_head_engraver and Staff_symbol_engraver. This should al-

Chapter 5: Technical manual 127

ways be Engraver_group_engraver (unless you are defining a Score context from scratch, in
which case Score_engraver must be used).

The complete list of context modifiers is the following:

• \alias alternate-name: This specifies a different name. In the above example, \property
Staff.X = Y will also work on SimpleStaffs.

• \consistsend engravername: Analogous to \consists, but makes sure that engravername
is always added to the end of the list of engravers.

Engravers that group context objects into axis groups or alignments need to be at the end
of the list. \consistsend insures that engravers stay at the end even if a user adds or
removes engravers.

• \accepts contextname: This context can contains contextname contexts. The first
\accepts is created as a default context when events (e.g. notes or rests) are encoun-
tered.

• \denies: The opposite of \accepts.

• \name contextname: This sets the type name of the context, e.g. Staff, Voice. If the
name is not specified, the translator will not do anything.

5.2 Scheme integration

LilyPond internally uses GUILE, a Scheme-interpreter, to represent data throughout the
whole program, and glue together different program modules. For advanced usage, it is some-
times necessary to access and program the Scheme interpreter.

Scheme is a full-blown programming language, from the LISP family. and a full discus-
sion is outside the scope of this document. Interested readers are referred to the website
http://www.schemers.org/ for more information on Scheme.

The GUILE library for extension is documented at http://www.gnu.org/software/guile.

5.2.1 Inline Scheme

Scheme expressions can be entered in the input file by entering a hash-sign (#). The expression
following the hash-sign is evaluated as Scheme. For example, the boolean value true is #t in
Scheme, so for LilyPond true looks like ##t, and can be used in property assignments:

\property Staff.autoBeaming = ##f

5.2.2 Input variables and Scheme

The input format supports the notion of variable: in the following example, a music expression
is assigned to a variable with the name traLaLa.

traLaLa = \notes { c’4 d’4 }

There is also a form of scoping: in the following example, the \paper block also contains a
traLaLa variable, which is independent of the outer \traLaLa.

traLaLa = \notes { c’4 d’4 }

\paper { traLaLa = 1.0 }

In effect, each input file is a scope, and all \header, \midi and \paper blocks are scopes
nested inside that toplevel scope.

Both variables and scoping are implemented in the GUILE module system. An anonymous
Scheme module is attached to each scope. An assignment of the form

Chapter 5: Technical manual 128

traLaLa = \notes { c’4 d’4 }

is internally converted to a Scheme definition

(define traLaLa Scheme value of ‘‘\notes ... ’’)

This means that input variables and Scheme variables may be freely mixed. In the following
example, a music fragment is stored in the variable traLaLa, and duplicated using Scheme. The
result is imported in a \score by means of a second variable twice:

traLaLa = \notes { c’4 d’4 }

#(define newLa (map ly:music-deep-copy

(list traLaLa traLaLa)))

#(define twice

(make-sequential-music newLa))

\score { \twice }

In the above example, music expressions can be ‘exported’ from the input to the Scheme inter-
preter. The opposite is also possible. By wrapping a Scheme value in the function ly:export, a
Scheme value is interpreted as if it were entered in LilyPond syntax: instead of defining \twice,
the example above could also have been written as

...

\score { #(ly:export (make-sequential-music newLa)) }

5.2.3 Scheme datatypes

Scheme is used to glue together different program modules. To aid this glue function, many
LilyPond specific object types can be passed as Scheme value.

The following list are all LilyPond specific types, that can exist during parsing:

Duration

Input

Moment

Music

Event In C++ terms, an Event is a subtype of Music. However, both have different func-
tions in the syntax.

Music_output_def

Pitch

Score

Translator_def

During a run, transient objects are also created and destroyed.

Grob: short for ‘Graphical object’.

Scheme_hash_table

Music_iterator

Molecule: Device-independent page output object,

including dimensions.

Syllable_group

Spring_smob

Translator: An object that produces audio objects or Grobs.

It may be accessed with \applyoutput.

Chapter 5: Technical manual 129

Font_metric: An object representing a font.

Many functions are defined to manipulate these data structures. They are all listed and
documented in the internals manual, see All scheme functions.

5.2.4 Assignments

Variables allow objects to be assigned to names during the parse stage. To assign a variable,
use

name=value

To refer to a variable, precede its name with a backslash: ‘\name’. value is any valid Scheme
value or any of the input-types listed above. Variable assignments can appear at top level in
the LilyPond file, but also in \paper blocks.

A variable can be created with any string for its name, but for accessing it in the LilyPond
syntax, its name must consist of alphabetic characters only, and may not be a keyword of the
syntax. There are no restrictions for naming and accessing variables in the Scheme interpreter,

The right hand side of a variable assignment is parsed completely before the assignment is
done, so variables may be redefined in terms of its old value, e.g.

foo = \foo * 2.0

When a variable is referenced in LilyPond syntax, the information it points to is copied. For
this reason, an variable reference must always be the first item in a block.

\paper {

foo = 1.0

\paperIdent % wrong and invalid

}

\paper {

\paperIdent % correct

foo = 1.0

}

5.3 Music storage format

Music in LilyPond is entered as music expressions. This section discusses different types
of music expressions, and explains how information is stored internally. This internal storage
is accessible through the Scheme interpreter, so music expressions may be manipulated using
Scheme functions.

5.3.1 Music expressions

Notes, rests, lyric syllables are music expressions. Small music expressions may be combined
to form larger ones, for example, by enclosing a list of expressions in \sequential { } or <<

>>. In the following example, a compound expression is formed out of the quarter note c and a
quarter note d:

\sequential { c4 d4 }

The two basic compound music expressions are simultaneous and sequential music:

\sequential { musicexprlist }

\simultaneous { musicexprlist }

For both, there is a shorthand:

Chapter 5: Technical manual 130

{ musicexprlist }

for sequential and

<< musicexprlist >>

for simultaneous music. In principle, the way in which you nest sequential and simultaneous
to produce music is not relevant. In the following example, three chords are expressed in two
different ways:

\notes \context Voice {

<<a c’>> <<b d’>> <<c’ e’>>

<< { a b c’ } { c’ d’ e’ } >>

}

�� >>>>>>>>>>>>� �
However, using << and >> for entering chords leads to various peculiarities. For this reason,

a special syntax for chords was introduced in version 1.7: < >.

Other compound music expressions include:

\repeat expr

\transpose from to expr

\apply func expr

\context type = id expr

\times fraction expr

5.3.2 Internal music representation

When a music expression is parsed, it is converted into a set of Scheme music objects. The
defining property of a music object is that it takes up time. Time is a rational number that
measures the length of a piece of music, in whole notes.

A music object has three kinds of types:

• music name: Each music expression has a name, for example, a note leads to a NoteEvent,
and \simultaneous leads to a SimultaneousMusic. A list of all expressions available is in
the internals manual, under Music expressions.

• ‘type’ or interface: Each music name has several ‘types’ or interface, for example, a note is
an event, but it is also a note-event, a rhythmic-event and a melodic-event.

All classes of music are listed in the internals manual, under Music classes.

• C++ object: Each music object is represented by a C++ object. For technical reasons,
different music objects may be represented by different C++ object types. For example, a
note is Event object, while \grace creates a Grace_music object.

We expect that distinctions between different C++ types will disappear in the future.

The actual information of a music expression is stored in properties. For example, a
NoteEvent has pitch and duration properties that store the pitch and duration of that note.
A list of all properties available is in the internals manual, under Music properties.

A compound music expression is a music object that contains other music objects in its
properties. A list of objects can be stored in the elements property of a music object, or
a single ‘child’ music object in the element object. For example, SequentialMusic has its
children in elements, and GraceMusic has its single argument in element. The body of a
repeat is in element property of RepeatedMusic, and the alternatives in elements.

Chapter 5: Technical manual 131

5.3.3 Manipulating music expressions

Music objects and their properties can be accessed and manipulated directly, through the
\apply mechanism. The syntax for \apply is

\apply #func music

This means that the scheme function func is called with music as its argument. The return
value of func is the result of the entire expression. func may read and write music properties
using the functions ly:get-mus-property and ly:set-mus-property!.

An example is a function that reverses the order of elements in its argument:

#(define (rev-music-1 m)

(ly:set-mus-property! m ’elements (reverse

(ly:get-mus-property m ’elements)))

m)

\score { \notes \apply #rev-music-1 { c4 d4 } }

��
>>

� �
The use of such a function is very limited. The effect of this function is void when applied to

an argument which is does not have multiple children. The following function application has
no effect:

\apply #rev-music-1 \grace { c4 d4 }

In this case, \grace is stored as GraceMusic, which has no elements, only a single element.
Every generally applicable function for \apply must – like music expressions themselves – be
recursive.

The following example is such a recursive function: It first extracts the elements of an
expression, reverses them and puts them back. Then it recurses, both on elements and element

children.

#(define (reverse-music music)

(let* ((elements (ly:get-mus-property music ’elements))

(child (ly:get-mus-property music ’element))

(reversed (reverse elements)))

; set children

(ly:set-mus-property! music ’elements reversed)

; recurse

(if (ly:music? child) (reverse-music child))

(map reverse-music reversed)

music))

A slightly more elaborate example is in ‘input/test/reverse-music.ly’.

Some of the input syntax is also implemented as recursive music functions. For example, the
syntax for polyphony

<<a \\ b>>

is actually implemented as a recursive function that replaces the above by the internal equivalent
of

Chapter 5: Technical manual 132

<< \context Voice = "1" { \voiceOne a }

\context Voice = "2" { \voiceTwo b } >>

Other applications of \apply are writing out repeats automatically
(‘input/test/unfold-all-repeats.ly’), saving keystrokes (‘input/test/music-box.ly’)
and exporting LilyPond input to other formats (‘input/test/to-xml.ly’)

See also

‘scm/music-functions.scm’, ‘scm/music-types.scm’, ‘input/test/add-staccato.ly’,
‘input/test/unfold-all-repeats.ly’, and ‘input/test/music-box.ly’.

5.4 Lexical details

Begins and ends with the " character. To include a " character in a string write \". Various
other backslash sequences have special interpretations as in the C language. A string that
contains no spaces can be written without the quotes. Strings can be concatenated with the +

operator.

5.5 Output details

LilyPond’s default output format is TEX. Using the option ‘-f’ (or ‘--format’) other output
formats can be selected also, but currently none of them work reliably.

At the beginning of the output file, various global parameters are defined. It also contains
a large \special call to define PostScript routines to draw items not representable with TEX,
mainly slurs and ties. A DVI driver must be able to understand such embedded PostScript, or
the output will be rendered incompletely.

Then the file ‘lilyponddefs.tex’ is loaded to define the macros used in the code which
follows. ‘lilyponddefs.tex’ includes various other files, partially depending on the global
parameters.

Now the music is output system by system (a ‘system’ consists of all staves belonging to-
gether). From TEX’s point of view, a system is an \hbox which contains a lowered \vbox so
that it is centered vertically on the baseline of the text. Between systems, \interscoreline is
inserted vertically to have stretchable space. The horizontal dimension of the \hbox is given by
the linewidth parameter from LilyPond’s \paper block.

After the last system LilyPond emits a stronger variant of \interscoreline only if the macro
\lilypondpaperlastpagefill is not defined (flushing the systems to the top of the page). You
can avoid that by setting the variable lastpagefill in LilyPond’s \paper block.

It is possible to fine-tune the vertical offset further by defining the macro
\lilypondscoreshift:

\def\lilypondscoreshift{0.25\baselineskip}

where \baselineskip is the distance from one text line to the next.

The code produced by LilyPond should be run through LaTEX, not plain TEX.

Here an example how to embed a small LilyPond file foo.ly into running LaTEX text without
using the lilypond-book script (see Chapter 7 [lilypond-book manual], page 141):

\documentclass{article}

\def\lilypondpaperlastpagefill{}

\lineskip 5pt

Chapter 5: Technical manual 133

\def\lilypondscoreshift{0.25\baselineskip}

\begin{document}

This is running text which includes an example music file

\input{foo.tex}

right here.

\end{document}

The file ‘foo.tex’ has been simply produced with

lilypond foo.ly

It is important to set the indent parameter to zero in the \paper block of ‘foo.ly’.

The call to \lineskip assures that there is enough vertical space between the LilyPond box
and the surrounding text lines.

Chapter 6: Invoking LilyPond 134

6 Invoking LilyPond

This chapter details the technicalities of running LilyPond.

6.1 Invoking lilypond

Nicely titled output is created through a separate program: ‘lilypond’ is a script that uses
the LilyPond formatting engine (which is in a separate program) and LaTEX to create a nicely
titled piece of sheet music, in PDF (Portable Document Format) format.

lilypond [option]... file...

To have lilypond read from stdin, use a dash - for file.

The lilypond program supports the following options:

-k,--keep

Keep the temporary directory with all output files. The temporary directory is
created in the current directory as lilypond.dir.

-d,--dependencies

Write Makefile dependencies for every input file.

-h,--help

Print usage help.

-I,--include=dir

Add dir to LilyPond’s include path.

-m,--no-paper

Produce MIDI output only.

--no-lily

Do not run ‘lilypond-bin’. Useful for debugging lilypond.

-o,--output=file

Generate output to file. The extension of file is ignored.

--no-pdf Do not generate (PDF) or PS.

If you use lilypond-book or your own wrapper files, do not use
\usepackage[[T1]{fontenc} in the file header but do not forget
\usepackage[latin1]{inputenc} if you use any other non-anglosaxian
characters.

--png Also generate pictures of each page, in PNG format.

--psgz Gzip the postscript file.

--html Make a .HTML file with links to all output files.

--preview

Also generate a picture of the first system of the score.

-s,--set=key=val

Add key= val to the settings, overriding those specified in the files. Possi-
ble keys: language, latexheaders, latexpackages, latexoptions, papersize,
pagenumber, linewidth, orientation, textheight.

-v,--version

Show version information.

Chapter 6: Invoking LilyPond 135

-V,--verbose

Be verbose.

--debug Print even more information. This is useful when generating bugreports.

-w,--warranty

Show the warranty with which GNU LilyPond comes. (It comes with NO WAR-

RANTY!)

6.1.1 Titling layout

lilypond extracts the following header fields from the LY files to generate titling; an example
demonstrating all these fields is in ‘input/test/ly2dvi-testpage.ly’:

title The title of the music. Centered on top of the first page.

subtitle Subtitle, centered below the title.

poet Name of the poet, left flushed below the subtitle.

composer Name of the composer, right flushed below the subtitle.

meter Meter string, left flushed below the poet.

opus Name of the opus, right flushed below the composer.

arranger Name of the arranger, right flushed below the opus.

instrument

Name of the instrument, centered below the arranger.

dedication

To whom the piece is dedicated.

piece Name of the piece, left flushed below the instrument.

head A text to print in the header of all pages. It is not called header, because \header

is a reserved word in LilyPond.

copyright

A text to print in the footer of the first page. Default is to print the standard footer
also on the first page.

footer A text to print in the footer of all but the last page.

tagline Line to print at the bottom of last page. The default text is “Lily was here, version-
number”.

6.1.2 Additional parameters

The lilypond program responds to several parameters specified in a \paper section of the
input file. They can be overridden by supplying a --set command line option.

language Specify LaTEX language: the babel package will be included. Default: unset.

Read from the \header block.

latexheaders

Specify additional LaTEX headers file.

Normally read from the \header block. Default value: empty.

Chapter 6: Invoking LilyPond 136

latexpackages

Specify additional LaTEX packages file. This works cumulative, so you can add
multiple packages using multiple -s=latexpackages options. Normally read from
the \header block. Default value: geometry.

latexoptions

Specify additional options for the LaTEX \documentclass. You can put any valid
value here. This was designed to allow lilypond to produce output for double-sided
paper, with balanced margins and pagenumbers on alternating sides. To achieve this
specify twoside.

orientation

Set orientation. Choices are portrait or landscape. Is read from the \paper block,
if set.

textheight

The vertical extension of the music on the page. It is normally calculated automat-
ically, based on the paper size.

linewidth

The music line width. It is normally read from the \paper block.

papersize

The paper size (as a name, e.g. a4). It is normally read from the \paper block.

pagenumber

If set to no, no page numbers will be printed. If set to a positive integer, start with
this value as the first page number.

fontenc The font encoding, should be set identical to the font-encoding property in the
score.

6.2 Invoking the lilypond binary

The LilyPond system consists of two parts: a binary executable, which is responsible for
the formatting functionality, and support scripts, which post-process the resulting output. Nor-
mally, the support scripts are called, which in turn invoke the lilypond-bin binary. However,
lilypond-bin may be called directly as follows.

lilypond-bin [option]... file...

When invoked with a filename that has no extension, the ‘.ly’ extension is tried first. To
read input from stdin, use a dash - for file.

When ‘filename.ly’ is processed it will produce ‘filename.tex’ as output (or ‘filename.ps’
for PostScript output). If ‘filename.ly’ contains more than one \score block, then the rest of
the scores will be output in numbered files, starting with ‘filename-1.tex’. Several files can
be specified; they will each be processed independently.1

6.3 Command line options

The following options are supported:

1 The status of GUILE is not reset across invocations, so be careful not to change any system defaults from

within Scheme.

Chapter 6: Invoking LilyPond 137

-e,--evaluate=expr

Evaluate the Scheme expr before parsing any ‘.ly’ files. Multiple -e options may
be given, they will be evaluated sequentially. The function ly:set-option allows
for access to some internal variables. Use -e ’(ly:option-usage’) for more infor-
mation.

-f,--format=format

Output format for sheet music. Choices are tex (for TEX output, to be pro-
cessed with plain TEX, or through lilypond), pdftex for PDFTEX input, ps (for
PostScript), scm (for a Scheme dump), sk (for Sketch) and as (for ASCII-art).

This option is only for developers. Only the TEX output of these is usable for real
work.

-h,--help

Show a summary of usage.

--include, -I=directory

Add directory to the search path for input files.

-i,--init=file

Set init file to file (default: ‘init.ly’).

-m,--no-paper

Disable TEX output. If you have a \midi definition MIDI output will be generated.

-M,--dependencies

Output rules to be included in Makefile.

-o,--output=FILE

Set the default output file to FILE.

-v,--version

Show version information.

-V,--verbose

Be verbose: show full paths of all files read, and give timing information.

-w,--warranty

Show the warranty with which GNU LilyPond comes. (It comes with NO WAR-

RANTY!)

6.4 Environment variables

For processing both the TEX and the PostScript output, the appropriate environment vari-
ables must be set. The following scripts do this:

• ‘buildscripts/out/lilypond-profile’ (for SH shells)

• ‘buildscripts/out/lilypond-login’ (for C-shells)

They should normally be sourced as part of the login process. If these scripts are not run
from the system wide login process, then you must run it yourself.

If you use sh, bash, or a similar shell, then add the following to your ‘.profile’:

. /the/path/to/lilypond-profile

If you use csh, tcsh or a similar shell, then add the following to your ‘~/.login’:

source /the/path/to/lilypond-login

Of course, in both cases, you should substitute the proper location of either script.

These scripts set the following variables:

Chapter 6: Invoking LilyPond 138

TEXMF To make sure that TEX and lilypond find data files (among others ‘.tex’, ‘.mf’ and
‘.tfm’), you have to set TEXMF to point to the lilypond data file tree. A typical
setting would be

{/usr/share/lilypond/1.6.0,{!!/usr/share/texmf}}

GS_LIB For processing PostScript output (obtained with -f ps) with Ghostscript you have
to set GS_LIB to point to the directory containing library PS files.

GS_FONTPATH

For processing PostScript output (obtained with -f ps) with Ghostscript you have
to set GS_FONTPATH to point to the directory containing PFA files.

When you print direct PS output, remember to send the PFA files to the printer as
well.

The binary itself recognizes the following environment variables:

LILYPONDPREFIX

This specifies a directory where locale messages and data files will be looked up by
default. The directory should contain subdirectories called ‘ly/’, ‘ps/’, ‘tex/’, etc.

LANG This selects the language for the warning messages.

6.5 Error messages

Different error messages can appear while compiling a file:

Warning Something looks suspect. If you are requesting something out of the ordinary then
you will understand the message, and can ignore it. However, warnings usually
indicate that something is wrong with the input file.

Error Something is definitely wrong. The current processing step (parsing, interpreting,
or formatting) will be finished, but the next step will be skipped.

Fatal error
Something is definitely wrong, and LilyPond cannot continue. This happens rarely.
The most usual cause is misinstalled fonts.

Scheme error
Errors that occur while executing Scheme code are caught by the Scheme interpreter.
If running with the verbose option (-V or --verbose) then a call trace is printed of
the offending function call.

Programming error
There was some internal inconsistency. These error messages are intended to help
the programmers and debuggers. Usually, they can be ignored. Sometimes, they
come in such big quantities that they obscure other output. In this case, a bug-report
should be filed.

If warnings and errors can be linked to some part of the input file, then error messages have
the following form

filename:lineno:columnno: message

offending input line

A line-break is inserted in offending line to indicate the column where the error was found.
For example,

test.ly:2:19: error: not a duration: 5:

\notes { c’4 e’5

g’ }

Chapter 6: Invoking LilyPond 139

6.6 Reporting bugs

If you have input that results in a crash or an erroneous output, then that is a bug. We
try respond to bug-reports promptly, and fix them as soon as possible. For this, we need to
reproduce and isolate the problem. Help us by sending a defective input file, so we can reproduce
the problem. Make it small, so we can easily debug the problem. Don’t forget to tell which
version you use, and on which platform you run it. Send the report to bug-lilypond@gnu.org.

6.7 Point and click

Point and click lets you find notes in the input by clicking on them in the Xdvi window. This
makes it easier to find input that causes some error in the sheet music.

To use it, you need the following software:

• a dvi viewer that supports src specials:

• Xdvi, version 22.36 or newer. Available from ftp.math.berkeley.edu
(ftp://ftp.math.berkeley.edu/pub/Software/TeX/xdvi.tar.gz).

Most TEX distributions ship with xdvik, which is always a few versions behind the
official Xdvi. To find out which Xdvi you are running, try xdvi -version or xdvi.bin
-version.

• KDVI. A dvi viewer for KDE. You need KDVI from KDE 3.0 or newer. Enable option
Inverse search in the menu Settings.

Apparently, KDVI does not process PostScript specials correctly. Beams and slurs will
not be visible in KDVI.

• an editor with a client/server interface (or a lightweight GUI editor):

• Emacs. Emacs is an extensible text-editor. It is available from
http://www.gnu.org/software/emacs/. You need version 21 to use col-
umn location.

There is also support for Emacs: lilypond-mode for Emacs provides keyword auto-
completion, indentation, LilyPond specific parenthesis matching and syntax coloring,
handy compile short-cuts and reading LilyPond manuals using Info. If lilypond-mode
is not installed on your platform, then refer to the installation instructions for more
information.

• XEmacs. XEmacs is very similar to Emacs.

• NEdit. NEdit runs under Windows, and Unix. It is available from
http://www.nedit.org.

• GVim. GVim is a GUI variant of VIM, the popular VI clone. It is available from
http://www.vim.org.

Xdvi must be configured to find the TEX fonts and music fonts. Refer to the Xdvi documen-
tation for more information.

To use point-and-click, add one of these lines to the top of your .ly file:

#(ly:set-point-and-click ’line)

When viewing, Control-Mousebutton 1 will take you to the originating spot in the ‘.ly’ file.
Control-Mousebutton 2 will show all clickable boxes.

If you correct large files with point-and-click, be sure to start correcting at the end of the
file. When you start at the top, and insert one line, all following locations will be off by a line.

For using point-and-click with Emacs, add the following In your Emacs startup file (usually
‘~/.emacs’):

Chapter 6: Invoking LilyPond 140

(server-start)

Make sure that the environment variable XEDITOR is set to

emacsclient --no-wait +%l %f

If you use XEmacs instead of Emacs, you use (gnuserve-start) in your ‘.emacs’, and set
XEDITOR to gnuclient -q +%l %f.

For using Vim, set XEDITOR to gvim --remote +%l %f, or use this argument with Xdvi’s
-editor option.

For using NEdit, set XEDITOR to nc -noask +%l %f, or use this argument with Xdvi’s -editor
option.

If can also make your editor jump to the exact location of the note you clicked. This
is only supported on Emacs and VIM. Users of Emacs version 20 must apply the patch
‘emacsclient.patch’. Users of version 21 must apply ‘server.el.patch’ (version 21.2 and
earlier). At the top of the ly file, replace the set-point-and-click line with the following line:

#(ly:set-point-and-click ’line-column)

and set XEDITOR to emacsclient --no-wait +%l:%c %f. Vim users can set XEDITOR to
gvim --remote +:%l:norm%c| %f.

Bugs

When you convert the TEX file to PostScript using dvips, it will complain about not finding
src:X:Y files. These complaints are harmless, and can be ignored.

Chapter 7: lilypond-book manual 141

7 lilypond-book manual

If you want to add pictures of music to a document, you can simply do it the way you would
do with other types of pictures. The pictures are created separately, yielding PostScript pictures
or PNG images, and those are included into a LaTEX or HTML document.

lilypond-book provides a way to automate this process: this program extracts snippets of
music from your document, runs LilyPond on them, and outputs the document with pictures
substituted for the music. The line width and font size definitions for the music are adjusted to
match the layout of your document.

This procedure may be applied to LaTEX, html or Texinfo documents. A tuto-
rial on using lilypond-book is in Section 2.18 [Integrating text and music], page 30.
For more information about LaTEX The not so Short Introduction to LaTeX
(http://www.ctan.org/tex-archive/info/lshort/english/) provides a introction to using
LaTEX.

7.1 Integrating Texinfo and music

Music is specified like this:

@lilypond[options, go, here]

YOUR LILYPOND CODE

@end lilypond

@lilypond[options, go, here]{ YOUR LILYPOND CODE }

@lilypondfile[options, go, here]{filename}

When lilypond-book is run on it, this results in a texinfo file. We show two simple examples
here. First a complete block:

@lilypond[26pt]

c’ d’ e’ f’ g’2 g’

@end lilypond

produces

�� ==>>>>� �
Then the short version:

@lilypond[11pt]{<c’ e’ g’>}

produces

�� >>>� �

lilypond-book knows the default margins and a few paper sizes. One of these commands
should be in the beginning of the document:

• @afourpaper

• @afourlatex

• @afourwide

• @smallbook

@pagesizes are not yet supported.

When producing texinfo, lilypond-book also generates bitmaps of the music, so you can make
a HTML document with embedded music.

Chapter 7: lilypond-book manual 142

7.2 Integrating LaTeX and music

For LaTEX, music is entered using

\begin[options, go, here]{lilypond}

YOUR LILYPOND CODE

\end{lilypond}

\lilypondfile[options, go,here]{filename}

or

\lilypond{ YOUR LILYPOND CODE }

Running lilypond-book yields a file that can be processed with LaTEX. We show some exam-
ples here:

\begin[26pt]{lilypond}

c’ d’ e’ f’ g’2 g’2

\end{lilypond}

produces

�� ==>>>>� �
Then the short version:

\lilypond[11pt]{<c’ e’ g’>}

produces

�� >>>� �

The linewidth of the music will be adjust by examining the commands in the document
preamble, the part of the document before \begin{document}: lilypond-book sends these to
LaTEX to find out how wide the text is. The line width variable for the music fragments are
adjusted to the text width.

After \begin{document}, the column changing commands \onecolumn , \twocolumn com-
mands and the multicols environment from the multicol package are also interpreted.

The titling from the \header section of the fragments can be imported by adding the following
to the top of the LaTEX file:

\input titledefs.tex

\def\preLilyPondExample{\def\mustmakelilypondtitle{}}

The music will be surrounded by \preLilyPondExample and \postLilyPondExample, which
are defined to be empty by default.

7.3 Integrating HTML and music

Music is entered using

<lilypond relative1 verbatim>

\key c \minor r8 c16 b c8 g as c16 b c8 d | g,4

</lilypond>

of which lilypond-book will produce a HTML with appropriate image tags for the music frag-
ments:

Chapter 7: lilypond-book manual 143

<lilypond relative1 verbatim>

\key c \minor r8 c16 b c8 g as c16 b c8 d | g,4

</lilypond>

�333� >>>>>>>>2>>*� 333 �
For inline pictures, use <lilypond ... /> syntax, eg.

Some music in <lilypond a b c/> a line of text.

A special feature not (yet) available in other output formats, is the <ly2dvifile> tag, for
example,

<ly2dvifile>trip.ly</ly2dvifile>

This runs ‘trip.ly’ through lilypond (see also Section 6.1 [Invoking lilypond], page 134),
and substitutes a preview image in the output. The image links to a separate HTML file, so
clicking it will take the viewer to a menu, with links to images, midi and printouts.

7.4 Music fragment options

The commands for lilypond-book have room to specify one or more of the following options:

verbatim CONTENTS is copied into the source enclosed in a verbatim block, followed by
any text given with the intertext option, then the actual music is displayed. This
option does not work with the short version of the music blocks:

@lilypond{ CONTENTS } and \lilypond{ CONTENTS }

smallverbatim

works like verbatim, but in a smaller font.

intertext="text"

is used in conjunction with verbatim option: This puts text between the code and
the music (without indentation).

filename="filename"

saves the LilyPond code to filename. By default, a hash value of the code is used.

11pt �� >>w>>>>>>>>>>>>w>>>>>>>>>+� �

13pt �� >>w>>>>>>>>>>>>w>>>>>>>>>+� �

16pt �� >>w>>>>>>>>>+� �

20pt �� >>w>>>>>>>>>+� �

Chapter 7: lilypond-book manual 144

26pt �� >>w>>>>>>>>>+� �
raggedright

produces naturally spaced lines (i.e., raggedright = ##t); this works well for small
music fragments.

multiline

is the opposite of singleline: it justifies and breaks lines.

linewidth=sizeunit

sets linewidth to size, where unit = cm, mm, in, or pt. This option affects LilyPond
output, not the text layout.

notime prevents printing time signature.

fragment

nofragment

overrides lilypond-book auto detection of what type of code is in the LilyPond
block, voice contents or complete code.

indent=sizeunit

sets indentation of the first music system to size, where unit = cm, mm, in, or
pt. This option affects LilyPond, not the text layout. For single-line fragments the
default is to use no indentation.

For example

\begin[indent=5cm,raggedright]{lilypond}

...

\end{lilypond}

noindent sets indentation of the first music system to zero. This option affects LilyPond, not
the text layout.

notexidoc

prevents including texidoc. This is only for Texinfo output.

In Texinfo, the music fragment is normally preceded by the texidoc field from the
\header. The LilyPond test documents are composed from small ‘.ly’ files in this
way:

\header {

texidoc = "this file demonstrates a single note"

}

\score { \notes { c’4 } }

quote instructs lilypond-book to put LaTEX and Texinfo output into a quotation block.

printfilename

prints the file name before the music example. Useful in conjunction with
\lilypondfile.

relative, relative N

uses relative octave mode. By default, notes are specified relative central C. The
optional integer argument specifies the octave of the starting note, where the default
1 is central C.

Chapter 7: lilypond-book manual 145

7.5 Invoking lilypond-book

Running lilypond-book generates lots of small files that LilyPond will process. To avoid all
that garbage in the source directory, it is advisable to change to a temporary directory first:

cd out && lilypond-book ../yourfile.tex

or to use the ‘--outdir’ command line option, and change to that director before running LaTEX
or ‘makeinfo’:

lilypond-book --outdir=out yourfile.tex

cd out && latex yourfile.latex

For LaTEX input, the file to give to LaTEX has extension ‘.latex’. Texinfo input will be
written to a file with extension ‘.texi’.

To add titling from the \header section of the files, add the following to the top of the LaTEX
file:

\input titledefs.tex

\def\preLilyPondExample{\def\mustmakelilypondtitle{}}

For printing the LaTeX document, you will need to use dvips. For producing PS with scalable
fonts, add the following options to the dvips command line:

-Ppdf -u +lilypond.map

lilypond-book accepts the following command line options:

‘-f format’, ‘--format=format’

Specify the document type to process: html, latex or texi (the default). lilypond-
book usually figures this out automatically.

The texi document type produces a texinfo file with music fragments in the DVI
output only. For getting images in the HTML version, the format texi-html must
be used.

‘--default-music-fontsize=szpt’

Set the music font size to use if no fontsize is given as option.

‘--force-music-fontsize=szpt’

Force all music to use this fontsize, overriding options given to \begin{lilypond}.

‘-I dir’, ‘--include=dir’

Add DIR to the include path.

‘-M’, ‘--dependencies’

Write dependencies to ‘filename.dep’.

‘--dep-prefix=pref’

Prepend pref before each ‘-M’ dependency.

‘-n’, ‘--no-lily’

Generate the .ly files, but do not process them.

‘--no-music’

Strip all music from the input file.

‘--no-pictures’

Do not generate pictures when processing Texinfo.

‘--outname=file’

The name of LaTEX file to output. If this option is not given, the output name is
derived from the input name.

Chapter 7: lilypond-book manual 146

‘--outdir=dir’

Place generated files in dir.

‘--version’

Print version information.

‘--help’ Print a short help message.

7.6 Bugs

The LaTEX \includeonly{...} command is ignored.

The Texinfo command pagesize is not interpreted. Almost all LaTEX commands that change
margins and line widths are ignored.

Only the first \score of a LilyPond block is processed.

The size of a music block is limited to 1.5 kb, due to technical problems with the Python
regular expression engine. For longer files, use \lilypondfile. Using \lilypondfile also
makes upgrading files (through convert-ly, see Section 8.1 [Invoking convert-ly], page 147) easier.

lilypond-book processes all music fragments in one big run. The state of the GUILE
interpreter is not reset between fragments; this means that changes made to global GUILE
definitions, e.g. done with set! or set-cdr!, can leak from one fragment into the next fragment.

Chapter 8: Converting from other formats 147

8 Converting from other formats

Music can be entered also by importing it from other formats. This chapter documents the
tools included in the distribution to do so. There are other tools that produce LilyPond input,
for example GUI sequencers and XML converters. Refer to the website (http://lilypond.org)
for more details.

8.1 Invoking convert-ly

Convert-ly sequentially applies different conversions to upgrade a LilyPond input file. It uses
\version statements in the file to detect the old version number. For example, to upgrade all
LilyPond files in the current directory and its subdirectories, use

convert-ly -e --to=1.3.150 ‘find . -name ’*.ly’ -print‘

The program is invoked as follows:

convert-ly [option]... file...

The following options can be given:

-e,--edit

Do an inline edit of the input file. Overrides --output.

-f,--from=from-patchlevel

Set the level to convert from. If this is not set, convert-ly will guess this, on the
basis of \version strings in the file.

-o,--output=file

Set the output file to write.

-n,--no-version

Normally, convert-ly adds a \version indicator to the output. Specifying this option
suppresses this.

-s, --show-rules

Show all known conversions and exit.

--to=to-patchlevel

Set the goal version of the conversion. It defaults to the latest available version.

-h, --help

Print usage help.

Bugs

Not all language changes are handled. Only one output option can be specified.

8.2 Invoking midi2ly

Midi2ly translates a MIDI input file to a LilyPond source file. MIDI (Music Instrument
Digital Interface) is a standard for digital instruments: it specifies cabling, a serial protocol and
a file format.

The MIDI file format is a de facto standard format for exporting music from other programs,
so this capability may come in useful when you want to import files from a program that has
no converter for its native format.

Chapter 8: Converting from other formats 148

‘midi2ly’ will convert tracks into Staff and channels into Voice contexts. Relative mode is
used for pitches, durations are only written when necessary.

It is possible to record a MIDI file using a digital keyboard, and then convert it to ‘.ly’.
However, human players are not rhythmically exact enough to make a MIDI to LY conversion
trivial. midi2ly tries to compensate for these timing errors, but is not very good at this. It is
therefore not recommended to use midi2ly for human-generated midi files.

Hackers who know about signal processing are invited to write a more robust midi2ly. midi2ly
is written in Python, using a module written in C to parse the MIDI files.

It is invoked as follows:

midi2ly [option]... midi-file

The following options are supported by midi2ly:

-a, --absolute-pitches

Print absolute pitches.

-d, --duration-quant=DUR

Quantise note durations on DUR.

-e, --explicit-durations

Print explicit durations.

-h,--help

Show summary of usage.

-k, --key=acc[:minor]

Set default key. acc > 0 sets number of sharps; acc < 0 sets number of flats. A minor
key is indicated by ":1".

-o, --output=file

Write output to file.

-s, --start-quant=DUR

Quantise note starts on DUR.

-t, --allow-tuplet=DUR*NUM/DEN

Allow tuplet durations DUR*NUM/DEN.

-V, --verbose

Be verbose.

-v, --version

Print version number.

-w, --warranty

Show warranty and copyright.

-x, --text-lyrics

Treat every text as a lyric.

8.3 Invoking etf2ly

ETF (Enigma Transport Format) is a format used by Coda Music Technology’s Finale prod-
uct. etf2ly will convert part of an ETF file to a ready-to-use LilyPond file.

It is invoked as follows:

etf2ly [option]... etf-file

The following options are supported by etf2ly:

Chapter 8: Converting from other formats 149

-h,--help

this help

-o,--output=FILE

set output filename to FILE

-v,--version

version information

Bugs

The list of articulation scripts is incomplete. Empty measures confuse etf2ly. Sequences of
grace notes are ended improperly sometimes.

8.4 Invoking abc2ly

ABC is a fairly simple ASCII based format. It is described at the abc site:

http://www.gre.ac.uk/~c.walshaw/abc2mtex/abc.txt.

abc2ly translates from ABC to LilyPond. It is invoked as follows:

abc2ly [option]... abc-file

The following options are supported by abc2ly:

-h,--help

this help

-o,--output=file

set output filename to file.

-v,--version

print version information.

There is a rudimentary facility for adding LilyPond code to the ABC source file. If you say:

%%LY voices \property Voice.autoBeaming=##f

This will cause the text following the keyword “voices” to be inserted into the current voice
of the LilyPond output file.

Similarly,

%%LY slyrics more words

will cause the text following the “slyrics” keyword to be inserted into the current line of
lyrics.

Bugs

The ABC standard is not very “standard”. For extended features (eg. polyphonic music)
different conventions exist.

Multiple tunes in one file cannot be converted.

ABC synchronizes words and notes at the beginning of a line; abc2ly does not.

abc2ly ignores the ABC beaming.

Chapter 8: Converting from other formats 150

8.5 Invoking pmx2ly

PMX is a MusiXTeX preprocessor written by Don Simons. More information on PMX is
available from the following site:

http://icking-music-archive.org/Misc/Music/musixtex/software/pmx/.

pmx2ly converts from PMX to LilyPond input. The program is invoked as follows:

pmx2ly [option]... pmx-file

The following options are supported by pmx2ly:

-h,--help

this help

-o,--output=FILE

set output filename to FILE

-v,--version

version information

Bugs

This script was updated last in September 2000, and then successfully converted the
‘barsant.pmx’ example from the PMX distribution. pmx2ly cannot parse more recent PMX
files.

8.6 Invoking musedata2ly

Musedata (http://www.musedata.org/) is an electronic library of classical music scores,
currently comprising about 800 composition dating from 1700 to 1825. The music is encoded in
so-called Musedata format. musedata2ly converts a set of musedata files to one .ly file, and will
include a \header field if a ‘.ref’ file is supplied. It is invoked as follows:

musedata2ly [option]... musedata-files

The following options are supported by musedata2ly:

-h,--help

print help

-o,--output=file

set output filename to file

-v,--version

version information

-r,--ref=reffile

read background information from ref-file reffile

Bugs

‘musedata2ly’ converts only a small subset of musedata.

Chapter 8: Converting from other formats 151

8.7 Invoking mup2ly

MUP (Music Publisher) is a shareware music notation program by Arkkra Enterprises.
Mup2ly will convert part of a Mup file to LilyPond format. It is invoked as follows:

mup2ly [option]... mup-file

The following options are supported by mup2ly:

-d,--debug

show what constructs are not converted, but skipped.

-D, --define=name[=exp]

define macro name with opt expansion exp

-E,--pre-process

only run the pre-processor

-h,--help

print help

-o,--output=file

write output to file

-v,--version

version information

-w,--warranty

print warranty and copyright.

Bugs

Only plain notes (pitches, durations), voices, and staves are converted.

Unified index 152

Unified index

’
’ . 34

(
(begin * * * *) . 50

(end * * * *) . 50

,
, . 34

.

. 36

/
/ . 82

/+ . 82

<

<< . 129

>

>> . 129

?
? . 34

[
[. 49

]
] . 49

_ . 75

\

\"! . 63

\< . 63

\> . 63

\addlyrics . 76

\aeolian . 42

\alternative . 64

\arpeggio . 73, 74

\arpeggioBracket . 74

\ascendens . 104

\auctum . 104

\autoBeamOff . 51

\autoBeamOn . 51

\bar . 46

\bold . 114

\cadenzaOff . 46

\cadenzaOn . 46

\caesura . 99

\clef . 43

\consists . 126

\context . 123

\cr . 63

\decr . 63

\defaultAccidentals . 52, 54

\deminutum . 104

\descendens . 104

\divisioMaior. 99

\divisioMaxima . 99

\divisioMinima . 99

\dorian . 42

\dotsBoth . 36

\dotsDown . 36

\dotsUp . 36

\dynamic . 114

\dynamicBoth . 64

\dynamicDown . 64

\dynamicUp . 64

\f . 63

\ff . 63

\fff . 63

\ffff . 63

\finalis . 99

\flexa . 104

\fontsize . 115

\forgetAccidentals . 53, 54

\fp . 63

\germanChords. 84

\glissando . 62

\grace . 60

\header in LaTEX documents 145

\hideNotes . 34

\hideStaffSwitch . 74

\hspace . 114

\huge . 113

\inclinatum . 104

\ionian . 42

\italic . 114

\key . 42

\large . 113

\locrian . 42

\lydian . 42

\lyrics . 75

\magnify . 115

\major . 42

\mark . 85

\mf . 63

\minor . 42

\mixolydian . 42

\modernAccidentals . 52, 54

\modernCautionaries . 53, 54

\modernVoiceAccidentals 53, 54

\modernVoiceCautionaries 53, 54

\mp . 63

\musicglyph . 114

\newpage . 119

Unified index 153

\noResetKey . 53, 54

\normalsize . 113

\note . 114

\notes . 40

\number . 114

\once . 108

\oneVoice . 48

\oriscus . 104

\override . 110, 115

\p . 63

\partial . 45

\pes . 104

\phrasingSlurBoth . 56

\phrasingSlurDown . 56

\phrasingSlurUp . 56

\phrygian . 42

\pianoAccidentals . 53, 54

\pianoCautionaries . 53, 54

\pp . 63

\ppp . 63

\property . 124

\property, in \lyrics. 75

\quilisma . 104

\raise . 114

\rc . 63

\rced . 63

\relative . 39

\remove . 126

\repeat . 64

\rfz . 63

\scriptBoth . 59

\scriptDown . 59

\scriptUp . 59

\semiGermanChords . 84

\sequential . 129

\set . 110

\sf . 63

\sff . 63

\sfz . 63

\shiftOff . 48

\shiftOn . 48

\shiftOnn . 48

\shiftOnnn . 48

\showStaffSwitch . 74

\simultaneous . 129

\slurBoth . 55

\slurDotted . 55

\slurDown . 55

\slurSolid . 55

\slurUp . 55

\small . 113

\sp . 63

\spp . 63

\stemBoth . 37

\stemDown . 37

\stemUp . 37

\stropha . 104

\sub . 114

\super . 114

\teeny . 113

\tempo . 57

\tieBoth . 37

\tieDotted . 37

\tieDown . 37

\tieSolid . 37

\tieUp . 37

\time . 44

\times . 38

\tiny . 113

\translate . 115

\translator . 26

\transpose . 86

\tupletBoth . 38

\tupletDown . 38

\tupletUp . 38

\unHideNotes . 34

\unset . 125

\virga . 104

\virgula . 99

\voiceAccidentals . 52, 54

\voiceFour . 48

\voiceOne . 48

\voiceThree . 48

\voiceTwo . 48

|

| . 41, 45

~

~ . 37

1
15ma . 44

A
A2_engraver . 89

ABC . 149

AbsoluteDynamicEvent . 64

accacciatura . 21

accent . 58

accents . 19

accessing Scheme . 127

acciaccatura . 21, 60

Accidental . 54, 93

Accidental engraver . 54

AccidentalPlacement . 54

accidentals . 15, 93

Accidentals . 51

additions, in chords . 81

adjusting output . 9

Adjusting slurs. 55

adjusting staff symbol . 42

All engravers . 126

All scheme functions . 129

All-backend-properties . 109

All-layout-objects . 109, 111

allowBeamBreak . 50

alto clef . 43

ambiguity . 65, 77

ambitus . 77

Ambitus . 78

Ambitus engraver . 78

anacruse . 21

anacrusis . 45

appoggiatura . 21, 60

Unified index 154

Arkkra . 151

Arpeggio . 73

Arpeggio . 74

ArpeggioEvent . 74

articulation . 19

articulations . 58

Articulations . 58

ASCII-art output . 137

Assignments . 129

aug . 82

auto-knee-gap . 50

autobeam . 51

autoBeamSettings . 50

AutoChangeMusic. 71

automatic beam generation . 51

Automatic beams . 49

automatic beams, tuning . 50

automatic part combining. 88

Automatic staff changes . 71

automatic syllable durations . 76

B
balance . 5

Banter . 84

bar check . 41

Bar check . 41

Bar lines . 46

bar lines at start of system . 47

bar numbers . 85

barCheckSynchronize . 41

baritone clef . 43

BarLine . 47

barlines, putting symbols on . 85

BarNumber . 85, 86

base-shortest-duration . 117

bass clef . 43

BassFigure . 104, 105

BassFigureEvent . 105

Basso continuo . 104

Beam . 49, 66

beams and line breaks . 50

beams, by hand . 15

beams, kneed . 50

beams, manual . 49

beats per minute . 57

between staves, distance . 116

bibliographic information . 24

bitmap . 134

blackness . 5

block comment . 21

brace, vertical . 84

bracket, vertical . 84

brackets . 57

BreakEvent . 118

breaking lines . 118

breaking pages . 118

BreathingSign . 57

BreathingSign . 99

BreathingSignEvent . 57

BreathingSignEvent . 99

broken arpeggio . 73

bugreport . 9

bugs . 139

C

call trace . 138

cautionary accidental . 34

CCARH . 150

ChoirStaff . 123

choral score . 76

choral tenor clef . 43

chord entry . 81

chord mode . 81

chord names . 23, 82

chordNameExceptions . 83

ChordNames . 82, 83, 90

chordNameSeparator . 83

chordNoteNamer . 84

chordRootNamer . 83

chords . 20, 23, 82

Chords . 80

Chords mode . 80

chords, jazz . 84

Clef . 44

clefs . 94

cluster . 106

Cluster spanner engraver . 107

ClusterNoteEvent . 107

clusters . 82

ClusterSpanner . 107

ClusterSpannerBeacon . 107

coda . 58, 85

Coda Technology. 148

command line options . 136

comments . 21

common-shortest-duration . 117

Completion heads engraver . 41

composer . 24

concatenate . 132

condensing rests . 88

context definition . 120, 125

context properties . 124

context selection . 123

Context-properties . 27

Contexts . 111

craftsmanship . 4

crescendo . 19, 63

CrescendoEvent . 64

cross staff . 74

cross staff stem . 71

cross staff voice, manual . 26

cue notes . 112

Current . 124

currentBarNumber . 85

custodes . 97

custos . 97

Custos . 98

Custos engraver . 97

Unified index 155

D
decrescendo . 19, 63

DecrescendoEvent . 64

defaultBarType . 47

dim . 82

diminuendo . 64

direction, of dynamics . 64

distance between staves . 116

divisio . 98

divisiones . 98

documents, adding music to . 141

DotColumn . 36

Dots . 36

DoublePercentRepeat . 67

downbow . 58

drums . 68

duration . 36

DVI driver. 13

DVI file . 13

dvilj . 13

dvips . 13, 145

DynamicLineSpanner . 64

dynamics . 19

Dynamics . 63

DynamicText . 64

E
easy notation . 38

editor . 139

Emacs . 139

Emacs mode . 139

Engraved by LilyPond . 24

engraver . 125, 126

engraving . 3

enigma . 148

entering notes . 33

error . 138

error messages . 138

errors, message format . 138

ETF . 148

evaluating Scheme . 127

exceptions, chord names. 83

expanding repeats . 65

expression . 18

extender . 75

extender line . 22

ExtenderEvent . 75

extending lilypond . 9

extra-offset . 27

F
fatal error . 138

FDL, GNU Free Documentation License 170

fermata . 58

fermata on multi-measure rest 87

fermatas . 85, 107

FiguredBass . 90, 104, 105

file searching . 137

Finale . 148

finalis . 98

finding graphical objects . 110

finger change . 59

finger-interface . 110

FingerEvent . 60, 110

fingering . 19, 59

Fingering . 60, 110, 111

Fingering engraver . 111

flageolet . 58

flags . 95

FoldedRepeatedMusic . 66

follow voice . 74

followVoice . 74

font . 5

font magnification . 113

font selection . 113

font size . 112

font size, setting . 118

font size, texts . 113

font style, for texts . 114

font switching . 113

font-interface . 110

font-interface . 113

font-style . 113

foot marks . 58

footer . 135

foreign languages . 9

four bar music. 118

french clef . 43

Frenched scores . 90

Frenched staves . 50

G
ghostscript . 39, 138

Ghostscript . 13

Glissando . 62

Glissando . 63

GlissandoEvent . 63

glyph size . 112

grace notes . 21, 60

GraceMusic . 62, 130

GraceMusic . 131

grand staff . 84

GrandStaff . 53, 84

graphical object . 110

graphical object descriptions 110

Gregorian square neumes ligatures. 100

grob . 110

grob-interface . 110

GS FONTPATH . 138

GS LIB . 138

GUILE . 127

GVim . 139

H
Hairpin . 63, 64

Hal Leonard . 38

header . 135

Hiding staves . 90

Horizontal bracket engraver . 57

HorizontalBracket . 58

html . 141

HTML, music in . 30

hufnagel . 91

HyphenEvent . 75

hyphens . 75

Unified index 156

I
idiom . 9

indent . 19

indent . 118

index . 9

inheriting . 124

installing LilyPond . 137

instrument names . 120

InstrumentName . 86

internal documentation . 9, 110

interscoreline . 119

interscorelinefill . 119

invisible objects . 28

Invisible rest . 35

invoking dvips . 145

Invoking LilyPond . 136

item-interface . 110

J
jargon . 9

jazz chords . 84

K
KDE . 139

KDVI . 139

kerning . 115

Key signature . 42

key signature, setting . 14

KeyChangeEvent . 43

keySignature . 43

KeySignature . 43, 93

kneed beams . 50

L
LANG . 138

language . 9

larger . 114

lastpagefill. 119

latex . 141

LaTEX, music in . 30

layers . 47

layout object . 110

lead sheet . 23

Lead sheets . 23

Ligature bracket engraver . 100

LigatureBracket . 99

Ligatures . 99

Lily was here . 24

lilypond-book and titling . 145

lilypond-internals . 9

lilypond-mode for Emacs . 139

LILYPONDPREFIX . 138

line breaks . 118

line comment . 21

line-colomn-location . 140

line-location . 139

linewidth . 118

LISP . 127

lowering text . 114

lpr . 13

LyricCombineMusic . 76

LyricEvent . 75

lyrics . 22, 51, 75

Lyrics . 22

Lyrics . 75, 76, 90

lyrics and melodies . 76

LyricsVoice . 77, 90

M
m . 82

magnification . 112

maj . 82

majorSevenSymbol . 83

manual staff switches . 71

marcato . 58

mark . 85

MarkEvent . 85

markup . 113

markup text . 113

Markup-functions . 115

master . 4

measure lines . 46

measure numbers . 85

measure repeats . 67

measure, partial . 45

Measure grouping engraver . 44

MeasureGrouping . 44

Medicaea, Editio . 91

melisma . 22, 75

mensural . 91

Mensural ligatures . 100

Mensural ligature engraver . 100

meter . 44

metronome marking . 57

MetronomeChangeEvent . 57

mezzosoprano clef . 43

MIDI . 24, 137, 147

MIDI block . 120

modifiers, in chords. 82

mordent . 58

moving text . 114

multi measure rests . 87

MultiMeasureRest . 88

MultiMeasureRestEvent . 88

MultiMeasureRestMusicGroup 88

MultiMeasureRestNumber . 88

MultiMeasureRestText . 88

MultiMeasureTextEvent . 88

multiple voices . 25

MUP. 151

Musedata . 150

Music classes . 130

Music entry . 39

music expression . 18

music expressions . 129

Music expressions . 130

Music properties . 130

Music Publisher . 151

Music-expressions . 111

musical symbols . 5

musicological analysis . 57

MusiXTeX . 150

Unified index 157

N
NEdit . 139, 140

NewTieEvent . 37

Non-guitar tablatures . 79

NonMusicalPaperColumn . 119

Note entry . 33

note grouping bracket . 57

note heads . 92

note names, Dutch . 33

Note specification . 33

Note heads engraver . 41

NoteCollision . 48

NoteColumn . 49

NoteEvent . 34, 130

NoteGroupingEvent . 58

NoteHead . 34, 109, 111

NoteSpacing . 117

number of staff lines, setting . 42

O
object description . 108

object, layout . 110

octavation . 44

open . 58

optical spacing . 5

options, command line . 136

organ pedal marks . 58

ornaments . 58, 60

ottava . 44

OttavaSpanner . 44

outline fonts . 145

output format, setting . 137

OverrideProperty . 109

P
padding . 28

padding . 110

page breaks . 118

page layout . 118, 135

page size . 119

paper file . 118

paper size . 119

papersize . 119

parenthesized accidental . 34

part combiner . 88

PartCombineMusic . 89

Partial . 45

partial measure . 21, 45

PDF . 13, 134

PDFTeX output . 137

Pedals . 72

percent repeats . 67

PercentRepeat . 67

PercentRepeatedMusic . 67

percussion . 68

Petrucci . 91

phrasing brackets . 57

phrasing marks . 56

phrasing slurs . 20, 56

phrasing, in lyrics . 76

PhrasingSlur . 56

PhrasingSlurEvent . 56

PianoPedalBracket . 73

PianoStaff . 53, 71, 73, 74, 116

pickup . 21

picture . 134

Pitch names . 33

pitches . 33

pixmap . 134

plug-in . 126

PMX. 150

poind and click . 139

polyphony. 25, 47

portato . 58

PostScript . 13, 138

PostScript output . 137

prall . 58

prall, down . 58

prall, up . 58

prallmordent . 58

prallprall . 58

preview . 134

preview image . 143

printing chord names . 82

Printing output . 13

printing postscript . 138

Programming error . 138

properties . 9

properties, context . 124

properties, unsetting . 125

‘property-init.ly’ . 51

PropertySet . 109

punctuation . 75

Q
quarter tones . 33

quotes, in lyrics . 75

R
r . 36

R . 87

raising text . 114

regular line breaks . 118

regular rhythms . 5

regular spacing . 5

Rehearsal marks . 85

RehearsalMark . 85

Relative . 39

relative octave specification . 39

reminder accidental . 34

removals, in chords . 81

RemoveEmptyVerticalGroup . 90

removing objects . 28

repeat bars . 46

repeatCommands . 47

repeatCommands . 66

RepeatedMusic . 66, 130

repeats . 64

RepeatSlash . 67

reporting bugs . 139

Rest . 35, 93

RestCollision . 48

RestEvent . 35

rests . 11, 93

Unified index 158

Rests . 35

Rests, multi measure . 87

reverseturn . 58

RevertProperty . 109

root of chord . 81

S
s . 36

SATB . 76

Scalable fonts . 134

Scheme . 9, 127

Scheme dump . 137

Scheme error . 138

Scheme, in-line code . 127

Score . 39, 44, 54, 111, 123, 124

screenshot . 134

Script . 59

script on multi-measure rest . 87

ScriptEvent . 59

scripts . 58, 59

search in manual . 9

search path . 137

segno . 58, 85

self-alignment-interface . 110

semi-flats, semi-sharps . 33

SeparatingGroupSpanner . 117

SeparationItem . 117

sequential music . 129

Sequential music . 129

SequentialMusic. 130

setting object properties . 28

shorten measures . 45

side-position-interface . 110

signature line . 24

Simons, Don . 150

Simultaneous music . 129

SimultaneousMusic . 130

size . 112

Sketch output. 137

Skip . 35

SkipEvent . 36

skipTypesetting . 41

slur . 20

Slur . 55

SlurEvent . 55

Slurs . 54

slurs versus ties . 20

smaller . 114

snippets . 9

Songs . 22

soprano clef . 43

sound . 24

Sound . 119

space between staves . 116

Space note . 35

spaces, in lyrics . 75

spacing . 117

SpacingSpanner . 116, 117

SpacingSpanner, overriding properties 117

SpanBar . 47

Square neumes ligatures . 100

staccatissimo . 58

staccato . 19, 58

Staff . 42

Staff 47, 53, 54, 57, 78, 86, 90, 97, 111, 117, 123,

148

staff distance . 116

staff group . 84

staff lines, setting number of . 42

staff lines, setting thickness of 42

Staff notation . 42

staff order, with \addlyrics . 76

staff size, setting . 118

staff switch, manual . 26, 71

staff switching . 74

Staff, multiple . 84

Staff.midiInstrument . 120

StaffGroup . 46, 84, 86, 123

staffs per page . 116

StaffSpacing . 117

StaffSymbol . 42

StaffSymbol, using \property . 42

start of system . 47

Stem . 37, 95

Stem . 96

Stem . 108, 111

stem, cross staff . 71

stem-spacing-correction . 117

stemLeftBeamCount . 49

stemRightBeamCount . 49

StemTremolo . 66

stopped . 58

string . 132

StringNumberEvent . 79

subbass clef . 43

subdivideBeams . 50

subscript . 59

superscript . 59

sus . 82

SustainPedal . 72

switches . 136

symbol size . 112

syntax coloring . 139

SystemStartBar . 47

SystemStartBrace . 47

SystemStartBracket . 47

T
Tablatures basic . 79

TabStaff . 79

TabVoice . 79

tag line . 24

Tempo . 57

tenor clef . 43

tenuto . 58

terminology . 9

texi . 141

texinfo . 141

Texinfo, music in . 30

TEXMF . 138

text markup . 113

text on multi-measure rest . 87

Text scripts . 60

Text spanners . 57

text-interface . 110

text-script-interface . 110

textheight . 119

Unified index 159

TextScript . 60

TextScriptEvent . 60

TextSpanEvent . 57

TextSpanner . 57

thickness of staff lines, setting 42

Thread . 124

Thread_devnull_engraver . 89

thumb marking . 58

thumbnail . 134, 143

tie . 15

Tie . 37

TieEvent . 37

ties . 37

Time signature . 44

time signatures . 96

TimeScaledMusic . 38

TimeSignature. 45, 96

Timing engraver . 45

titles . 24, 135

titling and lilypond-book . 145

titling in THML . 143

translating text . 114

translator definition . 125

transparent objects . 28

Transpose . 86

TransposedMusic . 87

transposing . 91

transposition of pitches . 86

treble clef . 43

tremolo beams . 66

tremolo marks . 67

TremoloEvent . 66

tremoloFlags . 67

trill . 58

triplets . 21, 38

tuning automatic beaming . 50

tuplet formatting. 38

TupletBracket . 38

tupletNumberFormatFunction 38

tuplets . 21, 38

turn . 58

tweaking . 110

type1 fonts . 145

typeset text . 113

typography . 3

U
UnfoldedRepeatedMusic . 66

UntransposableMusic . 87

upbow . 58

upstep . 21

URL . 10

using the manual . 9

V
varbaritone clef . 43

varcoda . 58

variables . 9

Vaticana, Editio . 91

VaticanaStaffContext . 105

VaticanaVoiceContext . 105

vertical spacing . 116, 118

VerticalAlignment . 116

Viewing music . 13

Vim . 139

violin clef . 43

Voice . 47, 55, 63, 76, 77, 78

Voice . 99

Voice 100, 102, 107, 109, 117, 119, 123, 124, 148

Voice.autoBeaming . 51

Voice devnull engraver . 89

Voice_engraver . 89

VoiceFollower . 74

voices, more – on a staff . 25

VoltaBracket. 66

VoltaRepeatedMusic . 66

W
warning . 138

website . 10

whichBar . 47

White mensural ligatures . 100

whole rests for a full measure 88

Writing parts . 84

X
xdvi . 13

Xdvi . 39, 139

XEDITOR . 140

XEmacs . 139

Appendix A: Reference manual details 160

Appendix A Reference manual details

A.1 Chord name chart

Ignatzek (default)

Alternative

�� 33 <<<
5333C

oC

/<<<
5/C

+C

3<<<
33C

mC

<<<� �
CAlternative

CIgnatzek (default)

�
Alt

Def

55

Def

Alt

� 33 <<<<
7/5333C

53/MmC

53 3 <<<<
735333C

o7C

<<<<
7/C

MC

33 <<<<
337C

7mC

3<<<<
7C

7C

�
Alt

Def

1010

Def

Alt

� 33 3 <<<<
53337C

/oC

/<<<<
7/5/C

5//MC

3<<<<
7/33C

MmC

3/ <<<<
5/7C

5//7C

�
Alt

Def

1414

Def

Alt

� 33 <<<<<
339C

9mC

3<<<<<
9C

9C

3 <<<<
633C

6mC

<<<<
6C

6C

�
Alt

Def

1818

Def

Alt

� 33 <<<<<
937C

93/7C

33 3 <<<<<
53339C

9/53/7mC

33 <<<<<<
3311C

11mC

33
<<<<<<<

3313C

13mC

�
Alt

Def

2222

Def

Alt

� 3<<<<<<<
13C

13C

/3 <<<<<<
11/9C

11//7C

3<<<<<<
11C

11C

/3 <<<<<
9/7C

9//7C

�
Alt

Def

2626

Def

Alt

� 33<<<<<<<
13311C

133/7C

// 3 <<<<<<
11/9/7C

11//9//7C

/3/ <<<<<
9/5/7C

9//5//7C

3/ 3<<<<<<<
13311/9C

133/11//7C

Appendix A: Reference manual details 161

�
Alt

Def

3030

Def

Alt

� 33<<<<<<<
13311C

133/7C

<<<<<
7/9C

9/MC

/3 <<<<<<
11/9C

11//7C

33 3<<<<<<<
1339311C

133/93/7C

�
Alt

Def

3434

Def

Alt

� <<<<<<<
7/13C

13/MC

<<<<<
7/9C

9/MC

33 <<<<<<<
9313C

13/93/7C

33 3<<<<<<<
1339311C

133/93/7C

�
Alt

Def

3838

Def

Alt

� 3<<<<
754addC

4sus/7C

<<<
54addC

4susC

33 <<<<<<<
9313C

13/93/7C

/<<<<<<
11/7/9C

11//MC

�
Alt

Def

4242

Def

Alt

� 3<<<<
11add33C

11addmC

<<<<
9addC

9addC

3<<<<<
9754addC

4sus/9C

A.2 MIDI instruments

"acoustic grand" "contrabass" "lead 7 (fifths)"

"bright acoustic" "tremolo strings" "lead 8 (bass+lead)"

"electric grand" "pizzicato strings" "pad 1 (new age)"

"honky-tonk" "orchestral strings" "pad 2 (warm)"

"electric piano 1" "timpani" "pad 3 (polysynth)"

"electric piano 2" "string ensemble 1" "pad 4 (choir)"

"harpsichord" "string ensemble 2" "pad 5 (bowed)"

"clav" "synthstrings 1" "pad 6 (metallic)"

"celesta" "synthstrings 2" "pad 7 (halo)"

"glockenspiel" "choir aahs" "pad 8 (sweep)"

"music box" "voice oohs" "fx 1 (rain)"

"vibraphone" "synth voice" "fx 2 (soundtrack)"

"marimba" "orchestra hit" "fx 3 (crystal)"

"xylophone" "trumpet" "fx 4 (atmosphere)"

"tubular bells" "trombone" "fx 5 (brightness)"

"dulcimer" "tuba" "fx 6 (goblins)"

"drawbar organ" "muted trumpet" "fx 7 (echoes)"

"percussive organ" "french horn" "fx 8 (sci-fi)"

"rock organ" "brass section" "sitar"

"church organ" "synthbrass 1" "banjo"

"reed organ" "synthbrass 2" "shamisen"

"accordion" "soprano sax" "koto"

"harmonica" "alto sax" "kalimba"

"concertina" "tenor sax" "bagpipe"

Appendix A: Reference manual details 162

"acoustic guitar (nylon)" "baritone sax" "fiddle"

"acoustic guitar (steel)" "oboe" "shanai"

"electric guitar (jazz)" "english horn" "tinkle bell"

"electric guitar (clean)" "bassoon" "agogo"

"electric guitar (muted)" "clarinet" "steel drums"

"overdriven guitar" "piccolo" "woodblock"

"distorted guitar" "flute" "taiko drum"

"guitar harmonics" "recorder" "melodic tom"

"acoustic bass" "pan flute" "synth drum"

"electric bass (finger)" "blown bottle" "reverse cymbal"

"electric bass (pick)" "skakuhachi" "guitar fret noise"

"fretless bass" "whistle" "breath noise"

"slap bass 1" "ocarina" "seashore"

"slap bass 2" "lead 1 (square)" "bird tweet"

"synth bass 1" "lead 2 (sawtooth)" "telephone ring"

"synth bass 2" "lead 3 (calliope)" "helicopter"

"violin" "lead 4 (chiff)" "applause"

"viola" "lead 5 (charang)" "gunshot"

"cello" "lead 6 (voice)"

A.3 The Feta font

The following symbols are available in the Feta font and may be accessed directly using
text markup such as g^\markup { \musicglyph #"scripts-segno" }, see Section 3.17.5 [Text
markup], page 113.

rests-0o#rests-1"rests-0!
rests--2&rests--3%rests-1o$
rests-2classical)rests-2(

rests--1'
rests-5,rests-4+

rests-3*
accidentals-2/rests-7.rests-6-
accidentals-02accidentals-31accidentals-10
accidentals--45accidentals--14accidentals--23

accidentals-rightparen8accidentals-47accidentals--36
noteheads--1;dots-dot:accidentals-leftparen9
noteheads-2>noteheads-1=noteheads-0<
noteheads-2diamondAnoteheads-1diamond@noteheads-0diamond?
noteheads-2triangleDnoteheads-1triangleCnoteheads-0triangleB
noteheads-2slashGnoteheads-1slashFnoteheads-0slashE
noteheads-2crossJnoteheads-1crossInoteheads-0crossH
scripts-ufermataMnoteheads-ledgerendingLnoteheads-2xcircleK
scripts-dshortfermataP

scripts-ushortfermataOscripts-dfermataN
scripts-uverylongfermataSscripts-dlongfermataR

scripts-ulongfermataQ

Appendix A: Reference manual details 163

scripts-sforzatoVscripts-thumbUscripts-dverylongfermataT
scripts-dstaccatissimoYscripts-ustaccatissimoXscripts-staccatoW
scripts-dportato\scripts-uportato[scripts-tenutoZ
scripts-open_scripts-dmarcato^scripts-umarcato]
scripts-downbowbscripts-upbowascripts-stopped`
scripts-trillescripts-turndscripts-reverseturnc
scripts-upedaltoehscripts-dpedalheelgscripts-upedalheelf
scripts-segnokscripts-flageoletjscripts-dpedaltoei
scripts-rcommanscripts-varcodamscripts-codal
scripts-lvarcommaqscripts-rvarcommapscripts-lcommao
scripts-arpeggio-arrow--1tscripts-trill-elementsscripts-arpeggior
scripts-prallwscripts-trilelementvscripts-arpeggio-arrow-1u
scripts-prallmordentzscripts-prallprallyscripts-mordentx
scripts-upmordent}scripts-downprall|scripts-upprall{
scripts-pralldown�scripts-lineprallÄscripts-downmordent~
flags-u3�

scripts-caesura�scripts-prallup�
flags-u6�

flags-u5�flags-u4�
flags-dgrace�flags-ugrace�

flags-d3�
flags-d6�flags-d5�flags-d4�

clefs-C�flags-dstem�
flags-stem�

clefs-F change�clefs-F�clefs-C change�
clefs-percussion�clefs-G change�clefs-G�
clefs-tab change�clefs-tab�

clefs-percussion change�
pedal-*�timesig-C2/2�timesig-C4/4�
pedal-P�pedal-.�pedal--�

pedal-Ped¡pedal-e pedal-d�
accordion-accFreebase¤accordion-accDot£accordion-accDiscant¢
accordion-accSB§accordion-accBayanbase¦accordion-accStdbase¥
accordion-accOldEESªaccordion-accOldEE©accordion-accBB¨
solfa-2do­solfa-1do¬solfa-0do«
solfa-2ro°solfa-1re¯solfa-0re®

Appendix A: Reference manual details 164

solfa-2me³solfa-1me²solfa-0me±
solfa-2fau¶solfa-1fauµsolfa-0fa´
solfa-0la¹solfa-2fad¸solfa-1fad·
solfa-0te¼solfa-2la»solfa-1laº

solfa-2te¾solfa-1te½
rests--1neo mensural#rests--2neo mensural"rests--3neo mensural!
rests-2neo mensural&rests-1neo mensural%rests-0neo mensural$
rests--3mensural)

rests-4neo mensural(rests-3neo mensural'
rests-0mensural,rests--1mensural+rests--2mensural*
rests-3mensural/rests-2mensural.rests-1mensural-

noteheads--3neo mensural2noteheads-lneo mensural1rests-4mensural0
noteheads-0neo mensural5noteheads--1neo mensural4noteheads--2neo mensural3
noteheads-lmensural8noteheads-2neo mensural7noteheads-1neo mensural6
noteheads--1mensural;noteheads--2mensural:noteheads--3mensural9
noteheads-2mensural>noteheads-1mensural=noteheads-0mensural<
noteheads-vaticana linea punctumAnoteheads-vaticana punctum cavum@noteheads-vaticana punctum?

noteheads-vaticana lpesDnoteheads-vaticana inclinatumCnoteheads-vaticana linea punctum cavumB
noteheads-vaticana vupesGnoteheads-vaticana upesFnoteheads-vaticana vlpesE
noteheads-vaticana vepiphonusJnoteheads-vaticana epiphonusInoteheads-vaticana plicaH
noteheads-vaticana cephalicusMnoteheads-vaticana inner cephalicusLnoteheads-vaticana reverse plicaK
noteheads-solesmes auct ascPnoteheads-solesmes incl parvumOnoteheads-vaticana quilismaN
noteheads-solesmes strophaSnoteheads-solesmes incl auctumRnoteheads-solesmes auct descQ
noteheads-medicaea inclinatumVnoteheads-solesmes oriscusUnoteheads-solesmes stropha auctaT
noteheads-medicaea virgaY

noteheads-medicaea rvirgaXnoteheads-medicaea punctumW
noteheads-hufnagel lpes\noteheads-hufnagel virga[

noteheads-hufnagel punctumZ
clefs-vaticana fa_clefs-vaticana do change^clefs-vaticana do]
clefs-medicaea do changebclefs-medicaea doaclefs-vaticana fa change`

clefs-neo mensural ceclefs-medicaea fa changedclefs-medicaea fac
clefs-petrucci c1 changehclefs-petrucci c1gclefs-neo mensural c changef
clefs-petrucci c3k

clefs-petrucci c2 changejclefs-petrucci c2i
clefs-petrucci c4 changenclefs-petrucci c4mclefs-petrucci c3 changel
clefs-mensural cqclefs-petrucci c5 changepclefs-petrucci c5o

Appendix A: Reference manual details 165

clefs-petrucci f changetclefs-petrucci fs
clefs-mensural c changer

clefs-mensural gwclefs-mensural f changevclefs-mensural fu
clefs-petrucci g changezclefs-petrucci gyclefs-mensural g changex
clefs-hufnagel fa}clefs-hufnagel do change|clefs-hufnagel do{
clefs-hufnagel do fa change�clefs-hufnagel do fa�

clefs-hufnagel fa change~
custodes-hufnagel-u2�custodes-hufnagel-u1�custodes-hufnagel-u0�
custodes-hufnagel-d2�custodes-hufnagel-d1�custodes-hufnagel-d0�
custodes-medicaea-u2�custodes-medicaea-u1�custodes-medicaea-u0�
custodes-medicaea-d2�custodes-medicaea-d1�custodes-medicaea-d0�
custodes-vaticana-u2�custodes-vaticana-u1�custodes-vaticana-u0�
custodes-vaticana-d2�custodes-vaticana-d1�custodes-vaticana-d0�
custodes-mensural-u2�custodes-mensural-u1�custodes-mensural-u0�
custodes-mensural-d2�custodes-mensural-d1�custodes-mensural-d0�

accidentals-vaticana0�accidentals-vaticana-1�accidentals-medicaea-1�
accidentals-hufnagel-1�accidentals-mensural-1�accidentals-mensural1�
flags-mensuralu23¡flags-mensuralu13 flags-mensuralu03�
flags-mensurald23¤flags-mensurald13£flags-mensurald03¢
flags-mensuralu24§flags-mensuralu14¦flags-mensuralu04¥
flags-mensurald24ªflags-mensurald14©flags-mensurald04¨
flags-mensuralu25­flags-mensuralu15¬flags-mensuralu05«
flags-mensurald25°flags-mensurald15¯flags-mensurald05®
flags-mensuralu26³flags-mensuralu16²flags-mensuralu06±
flags-mensurald26¶flags-mensurald16µflags-mensurald06´

timesig-mensural3/2¹timesig-mensural2/2¸timesig-mensural4/4·
timesig-mensural3/4¼timesig-mensural9/4»timesig-mensural6/4º
timesig-mensural4/8¿timesig-mensural9/8¾timesig-mensural6/8½
timesig-neo mensural4/4Âtimesig-mensural2/4Átimesig-mensural6/8altÀ
timesig-neo mensural6/4Åtimesig-neo mensural3/2Ätimesig-neo mensural2/2Ã
timesig-neo mensural6/8Ètimesig-neo mensural3/4Çtimesig-neo mensural9/4Æ
timesig-neo mensural6/8altËtimesig-neo mensural4/8Êtimesig-neo mensural9/8É

scripts-uaccentusÎscripts-ictusÍtimesig-neo mensural2/4Ì
scripts-dsemicirculusÑscripts-usemicirculusÐscripts-daccentusÏ

Appendix A: Reference manual details 166

scripts-usignumcongruentiaeÔscripts-augmentumÓscripts-circulusÒ
scripts-dsignumcongruentiaeÕ

Appendix B: Cheat sheet 167

Appendix B Cheat sheet

Syntax Description Example

1 2 8 16 durations �>�>=<

c4. c4.. augmentation dots > ::> :

c d e f g a b scale � >>>>>>>�

fis bes alteration � 3>/>�

\clef treble \clef bass clefs � ��

\time 3/4 \time 4/4 time signature
4
3 �
4
3

r4 r8 rest *(

d ~ d tie � >>�

\key es \major key signature 333�� 333

note’ raise octave � >>�

note, lower octave � >>�

Appendix B: Cheat sheet 168

c(d e) slur � >>>�

c\(c(d) e\) phrasing slur � >>>>�

a8[b] beam � >>�

<< \new Staff ... >> more staves

��
�� <� �

<� �

c-> c-. articulations � >W>V�

c\mf c\sfz dynamics � >
sfz

>
mf

�

a\< b\! crescendo � >>>�

a\> b\! decrescendo � >>>�

< > chord �� >>� �

\partial 8 upstep �� ===�>� �

\times 2/3 {f g a} triplets �� >>
3

>� �

Appendix B: Cheat sheet 169

\grace grace notes �� >�>� �
\lyrics { ... } entering lyrics
\context Lyrics printing lyrics

twin -- kle lyric hyphen
��

kle

>
twin

>� �

\chords { c:dim f:maj7 } chords �� >>>>33 >>>� �
\context ChordNames printing chord names MFoC

<<{e f} \\{c d}>> polyphony ��
>>>>

� �
s4 s8 s16 spacer rests

Appendix C: GNU Free Documentation License 170

Appendix C GNU Free Documentation License

Version 1.1, March 2000

Copyright c© 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document free
in the sense of freedom: to assure everyone the effective freedom to copy and redistribute
it, with or without modifying it, either commercially or noncommercially. Secondarily, this
License preserves for the author and publisher a way to get credit for their work, while not
being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by the copy-
right holder saying it can be distributed under the terms of this License. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and is
addressed as “you”.

A “Modified Version” of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document to
the Document’s overall subject (or to related matters) and contains nothing that could fall
directly within that overall subject. (For example, if the Document is in part a textbook
of mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.

A “Transparent” copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, whose contents can be viewed
and edited directly and straightforwardly with generic text editors or (for images composed
of pixels) generic paint programs or (for drawings) some widely available drawing editor,
and that is suitable for input to text formatters or for automatic translation to a variety of
formats suitable for input to text formatters. A copy made in an otherwise Transparent file

Appendix C: GNU Free Documentation License 171

format whose markup has been designed to thwart or discourage subsequent modification
by readers is not Transparent. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without markup,
Texinfo input format, LaTEX input format, sgml or xml using a publicly available dtd,
and standard-conforming simple html designed for human modification. Opaque formats
include PostScript, pdf, proprietary formats that can be read and edited only by proprietary
word processors, sgml or xml for which the dtd and/or processing tools are not generally
available, and the machine-generated html produced by some word processors for output
purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title page.
For works in formats which do not have any title page as such, “Title Page” means the
text near the most prominent appearance of the work’s title, preceding the beginning of the
body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use technical measures
to obstruct or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the Docu-
ment’s license notice requires Cover Texts, you must enclose the copies in covers that carry,
clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-
Cover Texts on the back cover. Both covers must also clearly and legibly identify you as
the publisher of these copies. The front cover must present the full title with all words
of the title equally prominent and visible. You may add other material on the covers in
addition. Copying with changes limited to the covers, as long as they preserve the title of
the Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a publicly-accessible computer-network location
containing a complete Transparent copy of the Document, free of added material, which
the general network-using public has access to download anonymously at no charge using
public-standard network protocols. If you use the latter option, you must take reasonably
prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at the stated location until at least one
year after the last time you distribute an Opaque copy (directly or through your agents or
retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

Appendix C: GNU Free Documentation License 172

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has less than
five).

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copy-
right notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section entitled “History”, and its title, and add to it an item stating at
least the title, year, new authors, and publisher of the Modified Version as given on the
Title Page. If there is no section entitled “History” in the Document, create one stating
the title, year, authors, and publisher of the Document as given on its Title Page, then
add an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the “History”
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

K. In any section entitled “Acknowledgments” or “Dedications”, preserve the section’s
title, and preserve in the section all the substance and tone of each of the contributor
acknowledgments and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section entitled “Endorsements”. Such a section may not be included in the
Modified Version.

N. Do not retitle any existing section as “Endorsements” or to conflict in title with any
Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to

Appendix C: GNU Free Documentation License 173

the list of Invariant Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section entitled “Endorsements”, provided it contains nothing but endorse-
ments of your Modified Version by various parties—for example, statements of peer review
or that the text has been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace the
old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to
use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled “History” in the various original
documents, forming one section entitled “History”; likewise combine any sections entitled
“Acknowledgments”, and any sections entitled “Dedications”. You must delete all sections
entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with
a single copy that is included in the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, does not as a
whole count as a Modified Version of the Document, provided no compilation copyright is
claimed for the compilation. Such a compilation is called an “aggregate”, and this License
does not apply to the other self-contained works thus compiled with the Document, on
account of their being thus compiled, if they are not themselves derivative works of the
Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then
if the Document is less than one quarter of the entire aggregate, the Document’s Cover Texts
may be placed on covers that surround only the Document within the aggregate. Otherwise
they must appear on covers around the whole aggregate.

Appendix C: GNU Free Documentation License 174

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License provided that you also include the
original English version of this License. In case of a disagreement between the translation
and the original English version of this License, the original English version will prevail.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or distribute
the Document is void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under this License will not
have their licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation.

Appendix C: GNU Free Documentation License 175

C.0.1 ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.1

or any later version published by the Free Software Foundation;

with the Invariant Sections being list their titles, with the

Front-Cover Texts being list, and with the Back-Cover Texts being list.

A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have no Invariant Sections, write “with no Invariant Sections” instead of saying which
ones are invariant. If you have no Front-Cover Texts, write “no Front-Cover Texts” instead of
“Front-Cover Texts being list”; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU General
Public License, to permit their use in free software.

