Using the GNU Compiler Collection (GCC)

Using the GNU Compiler Collection

by Richard M. Stallman and the GCC Developer Community

For GCC Version 4.0.2

Published by:

GNU Press Website: www.gnupress.org
a division of the General: pressQgnu.org
Free Software Foundation Orders: sales@gnu.org

59 Temple Place Suite 330 Tel 617-542-5942

Boston, MA 02111-1307 USA Fax 617-542-2652

Last printed October 2003 for GCC 3.3.1.
Printed copies are available for $45 each.

Copyright (© 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
2004, 2005 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.2 or any later version published by the Free
Software Foundation; with the Invariant Sections being “GNU General Public License” and
“Funding Free Software”, the Front-Cover texts being (a) (see below), and with the Back-Cover
Texts being (b) (see below). A copy of the license is included in the section entitled “GNU Free
Documentation License”.

(a) The FSF’s Front-Cover Text is:

A GNU Manual

(b) The FSF’s Back-Cover Text is:

You have freedom to copy and modify this GNU Manual, like GNU software. Copies published
by the Free Software Foundation raise funds for GNU development.

Short Contents

Introduction « v v v v v v oottt oot i e et e soesssocssseasssoecsssossss 1
1 Programming Languages Supported by GCC . ..o v v i v i i it i i e i 3
2 Language Standards Supported by GCC . v v v v vttt v v v v vt vveeeoonosnss 5
3 GCC Command OptionNS e e e oo oo oo oo oo eessssssssssssscssssssss 7
4 C Implementation-defined behavior « v v v v v v v v v v v vt v v oveeessseens 171
5 Extensions to the C Language Familyc0c0io.. 177
6 Extensions tothe C++ Language . « v v o v v v v v vt v v eteveeeeoeesenns 297
7 GNU Objective-C runtime features « o v v v v v v oo vt v v e i v vvveeeeesns 307
8 Binary Compatibility « oo v v v v v et it e et inneeieneeeeneeoenneesns 313
9 gcov—a Test Coverage Programovveveiienneieeneeennnens 315
10 Known Causes of Trouble with GCC . .. vt v v i ittt i it iiiennenn. 321
11 Reporting Bugs « v v v v v v v e et ettt ieeennnneeeeeoosooonnns 337
12 How To Get Help with GCC ..o v v i i ittt i i i ittt e eenns 339
13 Contributing to GCC Development « v v v v v v oo v v v ittt vvnnesesnns 341
Funding Free Software . . o v v oo i i ittt ittt it ittt 343
The GNU Project and GNU/LINUX « ¢ e v v v v vt ettt ineneeneenennennsns 345
GNU GENERAL PUBLIC LICENSE .+ v vttt ittt s i e et e seeeenoennssens 347
GNU Free Documentation License . . . o v v v v v v v e eeeeeeeeenonnnnns 353
Contributors to GCC . v v v it ittt et ettt e eeeeennnnooossss 361
Option INdexX v v v v v v v v e ettt ittt ii e eeeeoesssssonnnaosssss 373

Keyword IndexX o o v v v v v v v v e ettt i iiiiennnnneeeeeoosoossnnnnes 385

11

Using the GNU Compiler Collection (GCC)

iii

Table of Contents

Introductionot 1
1 Programming Languages Supported by GCC............. 3
2 Language Standards Supported by GCC................. 5
3 GCC Command Options..........ovviiiieeeeeeeennnnnn. 7
3.1 Option SUMIMATY . .o oottt et e e e e e e e e e e e et e e et 7
3.2 Options Controlling the Kind of Output.......... 16
3.3 Compiling C++ Programsuuuuit et 18
3.4 Options Controlling C Dialect 19
3.5 Options Controlling C++ Dialect 22
3.6 Options Controlling Objective-C and Objective-C++ Dialects 28
3.7 Options to Control Diagnostic Messages Formatting............................. 31
3.8 Options to Request or Suppress Warnings 31
3.9 Options for Debugging Your Program or GCC......... 44
3.10 Options That Control Optimization............. 54
3.11 Options Controlling the Preprocessor 7
3.12 Passing Options to the Assembler 86
3.13 Options for Linking. 86
3.14 Options for Directory Search 88
3.15 Specifying subprocesses and the switches to pass tothem....................... 90
3.16 Specifying Target Machine and Compiler Version 95
3.17 Hardware Models and Configurations 95
3171 ARC Options. . .o oottt e e e e e 96
3.07.2 ARM OPUONS . . oottt e e e e 96
3173 AVR Options. . ..o e 100
3.17.4 Blackfin Options. ... 100
3.17.5 CRIS OPtions . .o ve ettt e e e e e e e e e e 101
3.17.6 Darwin Optionsottt 103
3.17.7 DEC Alpha Options e 106
3.17.8 DEC Alpha/VMS Options.uuuie et 109
3179 FRV OpHiOnS . ..ottt e 110
3.17.10 HS8/300 OPLIONSvvvt ettt e e e 113
3.17.11 HPPA Options . ..ot e e e e e 113
3.17.12 Intel 386 and AMD x86-64 Options, 116
31713 TA-64 OPLIONS . . .ottt e e e e e e 122
3.17.14 M32R/D Optionst 124
3.17.15 MO8OX0 OPtiOnS . ..ottt e et e e e e e 125
3.17.16 MO8hclx OptiOonS . . . oottt et e e e e e e 127
31717 MCore OPtionsottt e e e e 128
31718 MIPS Optionsottt e 129
31719 MMIX Optionsottt e e e e 134
3.17.20 MNI0300 OPtIONS . ..o vve ettt e e e e e e e e e e e e e 135
3.17.21 NS32K OptionS. ..ottt e e e e e e e e e e e et 135
3.17.22 PDP-11 Options . . . oo vttt et e e e e e e e 137

3.17.23 PowerPC Options.o 138

iv

Using the GNU Compiler Collection (GCC)

3.17.24 IBM RS/6000 and PowerPC Options.............., 138
3.17.25 S/390 and zSeries Options.t 146
3.17.26 SH OpPtions . ..ot 149
3.17.27 SPARC OpPtionsttt e e e 150
3.17.28 Options for System V... . 153
3.17.29 TMS320C3x/CAX OPLIONS . .. v v ottt e et e 154
3.17.30 V850 OPIONS . . o v vttt e et e e e e e e e e 155
3.07.31 VAX OpPtions. . o oottt et e e e e e e 157
3.17.32 x86-64 OPLIONS . . oottt 157
3.17.33 Xstormyl6 Optionst 157
3.17.34 Xtensa Options. 157
3.17.35 zSeries OptionSot 158
3.18 Options for Code Generation Conventions.uviineirnernnenn... 158
3.19 Environment Variables Affecting GCC 164
3.20 Using Precompiled Headers 166
3.21 Running Protoize 168
C Implementation-defined behavior 171
4.1 Translation 171
4.2 EnvIrOnment 171
4.3 Tdentifiers. 171
4.4 CRATACLETS . o o ottt et e e e e e e e e e 171
A5 INEEZETS . oo 172
4.6 Floating point. 173
4.7 Arrays and pOINLETs 174
4.8 HINES . oottt 174
4.9 Structures, unions, enumerations, and bit-fields................ 174
410 Qualifierso 175
411 DecClaratorsttt 175
412 SEAtemEntso 175
4.13 Preprocessing directives. 175
4.14 Library functions.t 176
4.15 Architecture 176
4.16 Locale-specific behavior. 176
Extensions to the C Language Family 177
5.1 Statements and Declarations in Expressions 177
5.2 Locally Declared Labels....... ... 178
5.3 Labels as Valueso 179
5.4 Nested Functions. 180
5.5 Constructing Function Calls. 181
5.6 Referring to a Type with typeof o 182
5.7 Conditionals with Omitted Operands 183
5.8 Double-Word Integers 183
5.9 Complex NUMDETS.o 184
5.10 Hex Floats. . ..o 184
511 Arrays of Length Zeroo 185
5.12 Structures With No Members e 186
5.13 Arrays of Variable Length...... 186
5.14 Macros with a Variable Number of Arguments. 187
5.15 Slightly Looser Rules for Escaped Newlines................ 187
5.16 Non-Lvalue Arrays May Have Subscripts.............. .. 188

5.17

Arithmetic on void- and Function-Pointers........... 188

5.18 Non-Constant Initializers 188
5.19 Compound Literals. 188
5.20 Designated Initializers 189
5.21 Case Rangeso 190
5.22 Cast toa Union Typeon i e 190
5.23 Mixed Declarations and Codeo 191
5.24 Declaring Attributes of Functions............ 191
5.25 Attribute Syntax 201
5.26 Prototypes and Old-Style Function Definitions................. 204
5.27 C++ Style Commentst 204
5.28 Dollar Signs in Identifier Names 204
5.29 The Character in ConstantS.ounie e 205
5.30 Inquiring on Alignment of Types or Variables................................. 205
5.31 Specifying Attributes of Variables 205
5.31.1 M32R/D Variable Attributesc i 209
5.31.2 1386 Variable Attributes.o 209
5.31.3 Xstormyl6 Variable Attributes.......... 209
5.32 Specifying Attributes of Types 209
5.32.1 ARM Type Attributes 213
5.32.2 1386 Type Attributes. 213
5.33 An Inline Function is As Fast Asa Macro................o .. 213
5.34 Assembler Instructions with C Expression Operands 215
5.34.1 Size of an @smttt 219
5.34.2 1386 floating point asm operands.......... 219
5.35 Constraints for asm Operands 220
5.35.1 Simple Constraints.ttt e 220
5.35.2 Multiple Alternative Constraints................ ... 222
5.35.3 Constraint Modifier Characters 223
5.35.4 Constraints for Particular Machines 223
5.36 Controlling Names Used in Assembler Code 234
5.37 Variables in Specified Registers............ ... i 235
5.37.1 Defining Global Register Variables 235
5.37.2 Specifying Registers for Local Variables 236
5.38 Alternate Keywords 237
5.39 Incomplete enum Typest 237
5.40 Function Names as Stringsttt 237
5.41 Getting the Return or Frame Address of a Function........................... 238
5.42 Using vector instructions through built-in functions........................... 239
5.43 Offsetof. ... 240
5.44 Object Size Checking Builtins 240
5.45 Other built-in functions provided by GCC....... 242
5.46 Built-in Functions Specific to Particular Target Machines...................... 248
5.46.1 Alpha Built-in Functions 248
5.46.2 ARM Built-in Functions. 249
5.46.3 Blackfin Built-in Functions 251
5.46.4 FR-V Built-in Functions 251
5.46.4.1 Argument Typest 251
5.46.4.2 Directly-mapped Integer Functions 252
5.46.4.3 Directly-mapped Media Functions 252
5.46.4.4 Other Built-in Functions. 254
5.46.5 X86 Built-in Functions............. . 254
5.46.6 MIPS Paired-Single Support 258
5.46.6.1 Paired-Single Arithmetic......... 258

5.46.6.2 Paired-Single Built-in Functions.......... 258

vi

Using the GNU Compiler Collection (GCC)

5.46.6.3 MIPS-3D Built-in Functions i 259
5.46.7 PowerPC AltiVec Built-in Functions. 261
5.46.8 SPARC VIS Built-in Functions 290

5.47 Format Checks Specific to Particular Target Machines......................... 291
5.47.1 Solaris Format Checks 291
5.48 Pragmas Accepted by GCC 291
548.1 ARM Pragmas 291
5.48.2 RS/6000 and PowerPC Pragmas 291
5.48.3 Darwin Pragmas. 291
5.48.4 Solaris Pragmaso 292
5.48.5 Symbol-Renaming Pragmas.................. ... 292
5.48.6 Structure-Packing Pragmas............. 293
5.48.7 Weak Pragmast 293
5.49 Unnamed struct/union fields within structs/unions............................ 293
5.50 Thread-Local Storage. 294
5.50.1 ISO/IEC 9899:1999 Edits for Thread-Local Storage....................... 295
5.50.2 ISO/IEC 14882:1998 Edits for Thread-Local Storage 295
Extensions to the C++ Language 297
6.1 When is a Volatile Object Accessed? 297
6.2 Restricting Pointer Alasing 298
6.3 Vague Linkage 298
6.4 #pragma interface and implementation 299
6.5 Where’s the Template? 300
6.6 Extracting the function pointer from a bound pointer to member function 302
6.7 C++-Specific Variable, Function, and Type Attributes 302
6.8 Strong USIgottt et e et e e e 303
6.9 Java ExXceptionso 303
6.10 Deprecated Features. 304
6.11 Backwards Compatibility 305
GNU Objective-C runtime features.................... 307
7.1 +load: Executing code before main............ 307
7.1.1 What you can and what you cannot do in +load 308
7.2 Type encoding 308
7.3 Garbage Collection 310
7.4 Constant string objects 311
7.5 compatibility_alias 311
Binary Compatibility.............. 313
gcov—a Test Coverage Program....................... 315
9.1 Introduction to gcov 315
9.2 InvoKING GCOV . ..ttt 315
9.3 Using gcov with GCC Optimization i, 319

9.4 Brief description of gcovdatafiles.......... 320

10 Known Causes of Trouble with GCC................. 321
10.1 Actual Bugs We Haven’t Fixed Yet 321
10.2 Cross-Compiler Problems 321
10.3 Interoperation 321
10.4 Incompatibilities of GCC 323
10.5 Fixed Header Files e e 325
10.6 Standard Libraries ottt e 326
10.7 Disappointments and Misunderstandings 326
10.8 Common Misunderstandings with GNU C++................ 327

10.8.1 Declare and Define Static Members 327
10.8.2 Name lookup, templates, and accessing members of base classes 328
10.8.3 Temporaries May Vanish Before You Expect.......... 329
10.8.4 TImplicit Copy-Assignment for Virtual Bases.............................. 330
10.9 Caveats of USING Protoizeottt 331
10.10 Certain Changes We Don’t Want to Make............. 332
10.11 Warning Messages and Error Messages. 334

11 Reporting Bugs.........coiiiiiiiiiiiiiiiiinnnnnn. 337
11.1 Have You Found a Bug? 337
11.2 How and where to Report Bugs 337

12 How To Get Help with GCC......................... 339

13 Contributing to GCC Development 341

Funding Free Software............... i, 343

The GNU Project and GNU/Linux....................... 345

GNU GENERAL PUBLIC LICENSE 347
Preamble 347
TERMS AND CONDITIONS FOR COPYING,

DISTRIBUTION AND MODIFICATIONo 347
How to Apply These Terms to Your New Programs................................. 351

GNU Free Documentation License........................ 353
ADDENDUM: How to use this License for your documents.......................... 359

Contributors to GCC............ 361

Option IndexX. ..ottt iiiiiienennn. 373

Keyword Index.........cooiiiiiiiiiiiiiiiiienenn. 385

viii Using the GNU Compiler Collection (GCC)

Introduction

This manual documents how to use the GNU compilers, as well as their features and incompati-
bilities, and how to report bugs. It corresponds to GCC version 4.0.2. The internals of the GNU
compilers, including how to port them to new targets and some information about how to write
front ends for new languages, are documented in a separate manual. See section “Introduction”
in GNU Compiler Collection (GCC) Internals.

Using the GNU Compiler Collection (GCC)

Chapter 1: Programming Languages Supported by GCC 3

1 Programming Languages Supported by GCC

GCC stands for “GNU Compiler Collection”. GCC is an integrated distribution of compilers for
several major programming languages. These languages currently include C, C++, Objective-C,
Objective-C++, Java, Fortran, and Ada.

The abbreviation GCC has multiple meanings in common use. The current official meaning is
“GNU Compiler Collection”, which refers generically to the complete suite of tools. The name
historically stood for “GNU C Compiler”, and this usage is still common when the emphasis
is on compiling C programs. Finally, the name is also used when speaking of the language-
independent component of GCC: code shared among the compilers for all supported languages.

The language-independent component of GCC includes the majority of the optimizers, as well
as the “back ends” that generate machine code for various processors.

The part of a compiler that is specific to a particular language is called the “front end”. In
addition to the front ends that are integrated components of GCC, there are several other front
ends that are maintained separately. These support languages such as Pascal, Mercury, and
COBOL. To use these, they must be built together with GCC proper.

Most of the compilers for languages other than C have their own names. The C++ compiler
is G++, the Ada compiler is GNAT, and so on. When we talk about compiling one of those
languages, we might refer to that compiler by its own name, or as GCC. Either is correct.

Historically, compilers for many languages, including C++ and Fortran, have been implemented
as “preprocessors” which emit another high level language such as C. None of the compilers
included in GCC are implemented this way; they all generate machine code directly. This sort
of preprocessor should not be confused with the C preprocessor, which is an integral feature of
the C, C++, Objective-C and Objective-C++ languages.

Using the GNU Compiler Collection (GCC)

Chapter 2: Language Standards Supported by GCC 5

2 Language Standards Supported by GCC

For each language compiled by GCC for which there is a standard, GCC attempts to follow
one or more versions of that standard, possibly with some exceptions, and possibly with some
extensions.

GCC supports three versions of the C standard, although support for the most recent version
is not yet complete.

The original ANSI C standard (X3.159-1989) was ratified in 1989 and published in 1990.
This standard was ratified as an ISO standard (ISO/IEC 9899:1990) later in 1990. There
were no technical differences between these publications, although the sections of the ANSI
standard were renumbered and became clauses in the ISO standard. This standard, in both its
forms, is commonly known as C89, or occasionally as C90, from the dates of ratification. The
ANSI standard, but not the ISO standard, also came with a Rationale document. To select
this standard in GCC, use one of the options ‘-ansi’, ‘-std=c89’ or ‘-std=is09899:1990’; to
obtain all the diagnostics required by the standard, you should also specify ‘-pedantic’ (or
‘-pedantic-errors’ if you want them to be errors rather than warnings). See Section 3.4
[Options Controlling C Dialect], page 19.

Errors in the 1990 ISO C standard were corrected in two Technical Corrigenda published in
1994 and 1996. GCC does not support the uncorrected version.

An amendment to the 1990 standard was published in 1995. This amendment added digraphs
and __STDC_VERSION__ to the language, but otherwise concerned the library. This amendment
is commonly known as AMDI; the amended standard is sometimes known as C94 or C95. To
select this standard in GCC, use the option ‘~std=1s09899:199409’ (with, as for other standard
versions, ‘-pedantic’ to receive all required diagnostics).

A new edition of the ISO C standard was published in 1999 as ISO/IEC 9899:1999,
and is commonly known as C99. GCC has incomplete support for this standard version;
see http://gcc.gnu.org/gcc-4.0/c99status.html for details. To select this standard, use
‘-std=c99’ or ‘-std=is09899:1999’. (While in development, drafts of this standard version
were referred to as C9X.)

Errors in the 1999 ISO C standard were corrected in two Technical Corrigenda published in
2001 and 2004. GCC does not support the uncorrected version.

By default, GCC provides some extensions to the C language that on rare occasions conflict
with the C standard. See Chapter 5 [Extensions to the C Language Family], page 177. Use of the
‘-std’ options listed above will disable these extensions where they conflict with the C standard
version selected. You may also select an extended version of the C language explicitly with
‘~std=gnu89’ (for C89 with GNU extensions) or ‘-std=gnu99’ (for C99 with GNU extensions).
The default, if no C language dialect options are given, is ‘~std=gnu89’; this will change to
‘-std=gnu99’ in some future release when the C99 support is complete. Some features that are
part of the C99 standard are accepted as extensions in C89 mode.

The ISO C standard defines (in clause 4) two classes of conforming implementation. A con-
forming hosted implementation supports the whole standard including all the library facilities;
a conforming freestanding implementation is only required to provide certain library facilities:
those in <float.h>, <limits.h>, <stdarg.h>, and <stddef.h>; since AMDI, also those in
<is0646.h>; and in C99, also those in <stdbool.h> and <stdint.h>. In addition, complex
types, added in C99, are not required for freestanding implementations. The standard also
defines two environments for programs, a freestanding environment, required of all implementa-
tions and which may not have library facilities beyond those required of freestanding implemen-
tations, where the handling of program startup and termination are implementation-defined,
and a hosted environment, which is not required, in which all the library facilities are provided

http://gcc.gnu.org/gcc-4.0/c99status.html

6 Using the GNU Compiler Collection (GCC)

and startup is through a function int main (void) or int main (int, char *[]). An OS ker-
nel would be a freestanding environment; a program using the facilities of an operating system
would normally be in a hosted implementation.

GCC aims towards being usable as a conforming freestanding implementation, or as the
compiler for a conforming hosted implementation. By default, it will act as the compiler for a
hosted implementation, defining __STDC_HOSTED__ as 1 and presuming that when the names
of ISO C functions are used, they have the semantics defined in the standard. To make it act
as a conforming freestanding implementation for a freestanding environment, use the option
‘~ffreestanding’; it will then define __STDC_HOSTED__ to O and not make assumptions about
the meanings of function names from the standard library, with exceptions noted below. To
build an OS kernel, you may well still need to make your own arrangements for linking and
startup. See Section 3.4 [Options Controlling C Dialect], page 19.

GCC does not provide the library facilities required only of hosted implementations, nor yet
all the facilities required by C99 of freestanding implementations; to use the facilities of a hosted
environment, you will need to find them elsewhere (for example, in the GNU C library). See
Section 10.6 [Standard Libraries], page 326.

Most of the compiler support routines used by GCC are present in ‘libgcc’, but there are a
few exceptions. GCC requires the freestanding environment provide memcpy, memmove, memset
and memcmp. Finally, if __builtin_trap is used, and the target does not implement the trap
pattern, then GCC will emit a call to abort.

For references to Technical Corrigenda, Rationale documents and information concerning the
history of C that is available online, see http://gcc.gnu.org/readings.html

There is no formal written standard for Objective-C or Objective-C++. The most authorita-
tive manual is “Object-Oriented Programming and the Objective-C Language”, available at a
number of web sites:

e http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC/ is a re-

cent (and periodically updated) version;

e http://www.toodarkpark.org/computers/objc/ is an older example;
e http://www.gnustep.org and http://gcc.gnu.org/readings.html have additional use-

ful information.

There is no standard for treelang, which is a sample language front end for GCC. Its only
purpose is as a sample for people wishing to write a new language for GCC. The language is
documented in ‘gcc/treelang/treelang.texi’ which can be turned into info or HI'ML format.

See section “About This Guide” in GNAT Reference Manual, for information on standard
conformance and compatibility of the Ada compiler.

See section “Standards” in The GNU Fortran 95 Compiler, for details of standards supported
by gfortran.

See section “Compatibility with the Java Platform” in GNU gcj, for details of compatibility
between gcj and the Java Platform.

http://gcc.gnu.org/readings.html
http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC/
http://www.toodarkpark.org/computers/objc/
http://www.gnustep.org
http://gcc.gnu.org/readings.html

Chapter 3: GCC Command Options 7

3 GCC Command Options

When you invoke GCC, it normally does preprocessing, compilation, assembly and linking. The
“overall options” allow you to stop this process at an intermediate stage. For example, the
‘~c’ option says not to run the linker. Then the output consists of object files output by the
assembler.

Other options are passed on to one stage of processing. Some options control the preprocessor
and others the compiler itself. Yet other options control the assembler and linker; most of these
are not documented here, since you rarely need to use any of them.

Most of the command line options that you can use with GCC are useful for C programs;
when an option is only useful with another language (usually C++), the explanation says so
explicitly. If the description for a particular option does not mention a source language, you can
use that option with all supported languages.

See Section 3.3 [Compiling C++ Programs]|, page 18, for a summary of special options for
compiling C++ programs.

The gcc program accepts options and file names as operands. Many options have multi-letter
names; therefore multiple single-letter options may not be grouped: ‘-dr’ is very different from
‘-d -r’.

You can mix options and other arguments. For the most part, the order you use doesn’t
matter. Order does matter when you use several options of the same kind; for example, if you
specify ‘=L’ more than once, the directories are searched in the order specified.

Many options have long names starting with ‘-=f’ or with ‘-W—for example, ‘~fforce-mem’,
‘~fstrength-reduce’, ‘-Wformat’ and so on. Most of these have both positive and negative
forms; the negative form of ‘~ffoo’ would be ‘-fno-foo’. This manual documents only one of
these two forms, whichever one is not the default.

See [Option Index]|, page 373, for an index to GCC’s options.

3.1 Option Summary
Here is a summary of all the options, grouped by type. Explanations are in the following sections.

Qverall Options
See Section 3.2 [Options Controlling the Kind of Output|, page 16.

-c -S -E -o file -combine -pipe -pass-exit-codes
-x language -v -### --help --target-help --version

C Language Options
See Section 3.4 [Options Controlling C Dialect], page 19.
-ansi -std=standard -aux-info filename
-fno-asm -fno-builtin -fno-builtin-function
-fhosted -ffreestanding -fms-extensions
-trigraphs -no-integrated-cpp -traditional -traditional-cpp
-fallow-single-precision -fcond-mismatch
-fsigned-bitfields -fsigned-char
-funsigned-bitfields -funsigned-char

C++ Language Options
See Section 3.5 [Options Controlling C++ Dialect|, page 22.

-fabi-version=n -fno-access-control -fcheck-new
-fconserve-space -fno-const-strings
-fno-elide-constructors
-fno-enforce-eh-specs
-ffor-scope -fno-for-scope -fno-gnu-keywords
-fno-implicit-templates
-fno-implicit-inline-templates
-fno-implement-inlines -fms-extensions

8 Using the GNU Compiler Collection (GCC)

-fno-nonansi-builtins -fno-operator-names
-fno-optional-diags -fpermissive

-frepo -fno-rtti -fstats -ftemplate-depth-n
-fno-threadsafe-statics -fuse-cxa-atexit -fno-weak -nostdinc++
-fno-default-inline -fvisibility-inlines-hidden
-Wabi -Wctor-dtor-privacy

-Wnon-virtual-dtor -Wreorder

-Weffc++ -Wno-deprecated -Wstrict-null-sentinel
-Wno-non-template-friend -Wold-style-cast
-Woverloaded-virtual -Wno-pmf-conversions
-Wsign-promo

Objective-C' and Objective-C++ Language Options
See Section 3.6 [Options Controlling Objective-C and Objective-C++ Dialects],
page 28.

-fconstant-string-class=class—-name
-fgnu-runtime -fnext-runtime
-fno-nil-receivers
-fobjc-exceptions
-freplace-objc-classes
-fzero-link
-gen-decls
-Wno-protocol -Wselector -Wundeclared-selector

Language Independent Options
See Section 3.7 [Options to Control Diagnostic Messages Formatting], page 31.
-fmessage-length=n
-fdiagnostics-show-location=[once|every-line]

Warning Options
See Section 3.8 [Options to Request or Suppress Warnings|, page 31.

-fsyntax-only -pedantic -pedantic-errors
-w -Wextra -Wall -Waggregate-return
-Wcast-align -Wcast-qual -Wchar-subscripts -Wcomment
-Wconversion -Wno-deprecated-declarations
-Wdisabled-optimization -Wno-div-by-zero -Wno-endif-labels
-Werror -Werror-implicit-function-declaration
-Wfatal-errors -Wfloat-equal -Wformat -Wformat=2
-Wno-format-extra-args -Wformat-nonliteral
-Wformat-security -Wformat-y2k
-Wimplicit -Wimplicit-function-declaration -Wimplicit-int
-Wimport -Wno-import -Winit-self -Winline
-Wno-invalid-offsetof -Winvalid-pch
-Wlarger-than-len -Wlong-long
-Wmain -Wmissing-braces -Wmissing-field-initializers
-Wmissing-format-attribute -Wmissing-include-dirs
-Wmissing-noreturn
-Wno-multichar -Wnonnull -Wpacked -Wpadded
-Wparentheses -Wpointer-arith -Wredundant-decls
-Wreturn-type -Wsequence-point -Wshadow
-Wsign-compare -Wstrict-aliasing -Wstrict-aliasing=2
-Wswitch -Wswitch-default -Wswitch-enum
-Wsystem-headers -Wtrigraphs -Wundef -Wuninitialized
-Wunknown-pragmas -Wunreachable-code
-Wunused -Wunused-function -Wunused-label -Wunused-parameter
-Wunused-value -Wunused-variable -Wwrite-strings
-Wvariadic-macros

C-only Warning Options
-Wbad-function-cast -Wmissing-declarations
-Wmissing-prototypes -Wnested-externs -Wold-style-definition
-Wstrict-prototypes -Wtraditional
-Wdeclaration-after-statement -Wno-pointer-sign

Debugging Options
See Section 3.9 [Options for Debugging Your Program or GCC], page 44.

Chapter 3: GCC Command Options 9

-dletters -dumpspecs -dumpmachine -dumpversion
-fdump-unnumbered -fdump-translation-unit|[-n]
-fdump-class-hierarchy[-n]

-fdump-ipa-all -fdump-ipa-cgraph

-fdump-tree-all

-fdump-tree-original[-n]|

-fdump-tree-optimized[-n]

-fdump-tree-inlined[-n]

-fdump-tree-cfg -fdump-tree-vcg -fdump-tree-alias
-fdump-tree-ch

-fdump-tree-ssal-n] -fdump-tree-pre[-n]
-fdump-tree-ccp[-n] -fdump-tree-dce[-n]
-fdump-tree-gimple[-raw] -fdump-tree-mudflap|-n]
-fdump-tree-dom[-n]

-fdump-tree-dse[-n]

-fdump-tree-phiopt|[-n]

-fdump-tree-forwprop|-n]
-fdump-tree-copyrename[-n|

-fdump-tree-nrv -fdump-tree-vect
-fdump-tree-sra[-n]

-fdump-tree-fre[-n]

-ftree-vectorizer-verbose=n
-feliminate-dwarf2-dups -feliminate-unused-debug-types
-feliminate-unused-debug-symbols -fmem-report -fprofile-arcs -ftree-based-profiling
-frandom-seed=string -fsched-verbose=n
-ftest-coverage -ftime-report -fvar-tracking

-g -glevel -gcoff -gdwarf-2

-ggdb -gstabs -gstabs+ -gvms -gxcoff -gxcoff+

-p -pg -print-file-name=Ilibrary -print-libgcc-file-name
-print-multi-directory -print-multi-1lib
-print-prog-name=program -print-search-dirs -Q
-save-temps -time

Optimization Options
See Section 3.10 [Options that Control Optimization], page 54.

-falign-functions=n -falign-jumps=n
-falign-labels=n -falign-loops=n
-fbounds-check -fmudflap -fmudflapth -fmudflapir
-fbranch-probabilities -fprofile-values -fvpt -fbranch-target-load-optimize
-fbranch-target-load-optimize2 -fbtr-bb-exclusive
-fcaller-saves -fcprop-registers -fcse-follow-jumps
-fcse-skip-blocks -fcx-limited-range -fdata-sections
-fdelayed-branch -fdelete-null-pointer-checks
-fexpensive-optimizations -ffast-math -ffloat-store
-fforce-addr -fforce-mem -ffunction-sections
-fgcse -fgcse-1m -fgcse-sm -fgese-las -fgcse-after-reload
-floop-optimize -fcrossjumping -fif-conversion -fif-conversion2
-finline-functions -finline-limit=n -fkeep-inline-functions
-fkeep-static-consts -fmerge-constants -fmerge-all-constants
-fmodulo-sched -fno-branch-count-reg
-fno-default-inline -fno-defer-pop -floop-optimize2 -fmove-loop-invariants
-fno-function-cse -fno-guess-branch-probability
-fno-inline -fno-math-errno -fno-peephole -fno-peephole2
-funsafe-math-optimizations -ffinite-math-only
-fno-trapping-math -fno-zero-initialized-in-bss
-fomit-frame-pointer -foptimize-register-move
-foptimize-sibling-calls -fprefetch-loop-arrays
-fprofile-generate -fprofile-use
-fregmove -frename-registers
-freorder-blocks -freorder-blocks-and-partition -freorder-functions
-frerun-cse-after-loop -frerun-loop-opt
-frounding-math -fschedule-insns -fschedule-insns2
-fno-sched-interblock -fno-sched-spec -fsched-spec-load
-fsched-spec-load-dangerous
-fsched-stalled-insns=n -sched-stalled-insns-dep=n

10 Using the GNU Compiler Collection (GCC)

-fsched2-use-superblocks

-fsched2-use-traces -freschedule-modulo-scheduled-loops
-fsignaling-nans -fsingle-precision-constant -fspeculative-prefetching
-fstrength-reduce -fstrict-aliasing -ftracer -fthread-jumps
-funroll-all-loops -funroll-loops -fpeel-loops

-fsplit-ivs-in-unroller -funswitch-loops
-fvariable-expansion-in-unroller

-ftree-pre -ftree-ccp -ftree-dce -ftree-loop-optimize
-ftree-loop-linear -ftree-loop-im -ftree-loop-ivcanon -fivopts
-ftree-dominator-opts -ftree-dse -ftree-copyrename

-ftree-ch -ftree-sra -ftree-ter -ftree-lrs -ftree-fre -ftree-vectorize
-fweb

--param name=value -0 -00 -01 -02 -03 -0s

Preprocessor Options
See Section 3.11 [Options Controlling the Preprocessor|, page 77.

-Aquestion=answer
-A-question|=answer]|

-C -dD -dI -dM -dN

-Dmacro|=defn] -E -H

-idirafter dir

-include file -imacros file
-iprefix file -iwithprefix dir
-iwithprefixbefore dir -isystem dir
-M -MM -MF -MG -MP -MQ -MT -nostdinc
-P -fworking-directory -remap
-trigraphs -undef -Umacro -Wp,option
-Xpreprocessor option

Assembler Option
See Section 3.12 [Passing Options to the Assembler|, page 86.

-Wa,option -Xassembler option

Linker Options
See Section 3.13 [Options for Linking], page 86.
object-file-name -llibrary
-nostartfiles -nodefaultlibs -nostdlib -pie
-s -static -static-libgcc -shared -shared-libgcc -symbolic
-Wl,option -Xlinker option
-u symbol

Directory Options
See Section 3.14 [Options for Directory Search|, page 88.

-Bprefix -Idir -iquotedir -Ldir -specs=file -I-

Target Options
See Section 3.16 [Target Options|, page 95.

-V version -b machine

Machine Dependent Options
See Section 3.17 [Hardware Models and Configurations|, page 95.
ARC Options
-EB -EL
-mmangle-cpu -mcpu=cpu -mtext=text-section
-mdata=data-section -mrodata=readonly-data-section

ARM Options

-mapcs-frame -mno-apcs-frame

-mabi=name

-mapcs-stack-check -mno-apcs-stack-check
-mapcs-float -mno-apcs-float

-mapcs-reentrant -mno-apcs-reentrant
-msched-prolog -mno-sched-prolog

-mlittle-endian -mbig-endian -mwords-little-endian

Chapter 3: GCC Command Options

-mfloat-abi=name -msoft-float -mhard-float -mfpe
-mthumb-interwork -mno-thumb-interwork

-mcpu=name -march=name -mfpu=name
-mstructure-size-boundary=n

-mabort-on-noreturn

-mlong-calls -mno-long-calls

-msingle-pic-base -mno-single-pic-base
-mpic-register=reg

-mnop-fun-dllimport

-mcirrus-fix-invalid-insns -mno-cirrus-fix-invalid-insns
-mpoke-function-name

-mthumb -marm

-mtpcs-frame -mtpcs-leaf-frame
-mcaller-super-interworking -mcallee-super-interworking

AVR Options

-mmcu=mcu -msize -minit-stack=n -mno-interrupts
-mcall-prologues -mno-tablejump -mtiny-stack -mint8

Blackfin Options

-momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer
-mspecld-anomaly -mno-specld-anomaly -mcsync-anomaly -mno-csync-anomaly
-mlow-64k -mno-low64k -mid-shared-library
-mno-id-shared-library -mshared-library-id=n
-mlong-calls -mno-long-calls

CRIS Options
-mcpu=cpu -march=cpu -mtune=cpu
-mmax-stack-frame=n -melinux-stacksize=n
-metrax4 -metraxl100 -mpdebug -mcc-init -mno-side-effects
-mstack-align -mdata-align -mconst-align
-m32-bit -m16-bit -m8-bit -mno-prologue-epilogue -mno-gotplt
-melf -maout -melinux -mlinux -sim -sim2
-mmul-bug-workaround -mno-mul-bug-workaround

Darwin Options

-all_load -allowable_client -arch -arch_errors_fatal
-arch_only -bind_at_load -bundle -bundle_loader
-client_name -compatibility_version -current_version
-dead_strip
-dependency-file -dylib_file -dylinker_install_name
-dynamic -dynamiclib -exported_symbols_list
-filelist -flat_namespace -force_cpusubtype_ALL
-force_flat_namespace -headerpad_max_install_names
-image_base -init -install_name -keep_private_externs
-multi_module -multiply_defined -multiply_defined_unused
-noall_load -no_dead_strip_inits_and_terms
-nofixprebinding -nomultidefs -noprebind -noseglinkedit
-pagezero_size -prebind -prebind_all_twolevel_modules
-private_bundle -read_only_relocs -sectalign
-sectobjectsymbols -whyload -segladdr
-sectcreate -sectobjectsymbols -sectorder
-segaddr -segs_read_only_addr -segs_read_write_addr
-seg_addr_table -seg_addr_table_filename -seglinkedit
-segprot -segs_read_only_addr -segs_read_write_addr
-single_module -static -sub_library -sub_umbrella
-twolevel_namespace -umbrella -undefined
-unexported_symbols_list -weak_reference_mismatches
-whatsloaded -F -gused -gfull -mone-byte-bool

DEC Alpha Options
-mno-fp-regs -msoft-float -malpha-as -mgas
-mieee -mieee-with-inexact -mieee-conformant
-mfp-trap-mode=mode -mfp-rounding-mode=mode
-mtrap-precision=mode -mbuild-constants
-mcpu=cpu-type -mtune=cpu-type
-mbwx -mmax -mfix -mcix

11

Using the GNU Compiler Collection (GCC)

-mfloat-vax -mfloat-ieee

-mexplicit-relocs -msmall-data -mlarge-data
-msmall-text -mlarge-text
-mmemory-latency=time

DEC Alpha/VMS Options
-mvms-return-codes

FRV Options

-mgpr-32 -mgpr-64 -mfpr-32 -mfpr-64

-mhard-float -msoft-float

-malloc-cc -mfixed-cc -mdword -mno-dword

-mdouble -mno-double

-mmedia -mno-media -mmuladd -mno-muladd

-mfdpic -minline-plt -mgprel-ro -multilib-library-pic
-mlinked-fp -mlong-calls -malign-labels

-mlibrary-pic -macc-4 -macc-8

-mpack -mno-pack -mno-eflags -mcond-move -mno-cond-move
-mscc -mno-scc -mcond-exec —mno-cond-exec

-mvliw-branch -mno-vliw-branch

-mmulti-cond-exec -mno-multi-cond-exec -mnested-cond-exec
-mno-nested-cond-exec -mtomcat-stats

-mTLS -mtls

-mcpu=cpu

H8/300 Options
-mrelax -mh -ms -mn -mint32 -malign-300
HPPA Options

-march=architecture-type

-mbig-switch -mdisable-fpregs -mdisable-indexing
-mfast-indirect-calls -mgas -mgnu-1ld -mhp-1d
-mfixed-range=register-range

-mjump-in-delay -mlinker-opt -mlong-calls
-mlong-load-store -mno-big-switch -mno-disable-fpregs
-mno-disable-indexing -mno-fast-indirect-calls -mno-gas
-mno-jump-in-delay -mno-long-load-store
-mno-portable-runtime -mno-soft-float

-mno-space-regs -msoft-float -mpa-risc-1-0
-mpa-risc-1-1 -mpa-risc-2-0 -mportable-runtime
-mschedule=cpu-type -mspace-regs -msio -mwsio
-munix=unix-std -nolibdld -static -threads

1386 and x86-64 Options

-mtune=cpu-type -march=cpu-type
-mfpmath=unit
-masm=dialect -mno-fancy-math-387
-mno-fp-ret-in-387 -msoft-float -msvr3-shlib
-mno-wide-multiply -mrtd -malign-double
-mpreferred-stack-boundary=num
-mmmx -msse -msse2 -msse3 -m3dnow
-mthreads -mno-align-stringops -minline-all-stringops
-mpush-args -maccumulate-outgoing-args -m128bit-long-double
-m96bit-long-double -mregparm=num -momit-leaf-frame-pointer
-mno-red-zone -mno-tls-direct-seg-refs
-mcmodel=code-model
-m32 -m64

1A-64 Options
-mbig-endian -mlittle-endian -mgnu-as -mgnu-1ld -mno-pic
-mvolatile-asm-stop -mregister-names -mno-sdata
-mconstant-gp -mauto-pic -minline-float-divide-min-latency
-minline-float-divide-max-throughput
-minline-int-divide-min-latency
-minline-int-divide-max-throughput
-minline-sqrt-min-latency -minline-sqrt-max-throughput
-mno-dwarf2-asm -mearly-stop-bits

Chapter 3: GCC Command Options

-mfixed-range=register-range -mtls-size=tls-size
-mtune=cpu-type -mt -pthread -milp32 -mlp64
MS32R/D Options

-m32r2 -m32rx -m32r

-mdebug

-malign-loops -mno-align-loops
-missue-rate=number
-mbranch-cost=number
-mmodel=code-size-model-type
-msdata=sdata-type

-mno-flush-func -mflush-func=name
-mno-flush-trap -mflush-trap=number
-G num

M680x0 Options

-m68000 -m68020 -m68020-40 -m68020-60 -m68030 -m68040

-m68060 -mcpu32 -m5200 -m68881 -mbitfield -mc68000 -mc68020

-mnobitfield -mrtd -mshort -msoft-float -mpcrel

-malign-int -mstrict-align -msep-data -mno-sep-data

-mshared-library-id=n -mid-shared-library -mno-id-shared-library
M68hclx Options

-m6811 -m6812 -m68hcll -m68hcl12 -m68hcsl2
-mauto-incdec -minmax -mlong-calls -mshort
-msoft-reg-count=count

MCore Options

-mhardlit -mno-hardlit -mdiv -mno-div -mrelax-immediates
-mno-relax-immediates -mwide-bitfields -mno-wide-bitfields
-m4byte-functions -mno-4byte-functions -mcallgraph-data
-mno-callgraph-data -mslow-bytes -mno-slow-bytes -mno-lsim
-mlittle-endian -mbig-endian -m210 -m340 -mstack-increment

MIPS Options

-EL -EB -march=arch -mtune=arch
-mipsl -mips2 -mips3 -mips4 -mips32 -mips32r2 -mips64
-mips16 -mno-mips16 -mabi=abi -mabicalls -mno-abicalls
-mxgot -mno-xgot -mgp32 -mgp64 -mfp32 -mfp64
-mhard-float -msoft-float -msingle-float -mdouble-float
-mpaired-single -mips3d
-mint64 -mlong64 -mlong32 -msym32 -mno-sym32
-Gnum -membedded-data -mno-embedded-data
-muninit-const-in-rodata -mno-uninit-const-in-rodata
-msplit-addresses -mno-split-addresses
-mexplicit-relocs -mno-explicit-relocs
-mcheck-zero-division -mno-check-zero-division
-mdivide-traps -mdivide-breaks
-mmemcpy -mno-memcpy -mlong-calls -mno-long-calls
-mmad -mno-mad -mfused-madd -mno-fused-madd -nocpp
-mfix-r4000 -mno-fix-r4000 -mfix-r4400 -mno-fix-r4400
-mfix-vr4120 -mno-fix-vr4120 -mfix-vr4130
-mfix-sbl -mno-fix-sbl
-mflush-func=func -mno-flush-func
-mbranch-likely -mno-branch-likely
-mfp-exceptions -mno-fp-exceptions
-mvr4130-align -mno-vr4130-align
MMIX Options
-mlibfuncs -mno-libfuncs -mepsilon -mno-epsilon -mabi=gnu
-mabi=mmixware -mzero-extend -mknuthdiv -mtoplevel-symbols
-melf -mbranch-predict -mno-branch-predict -mbase-addresses
-mno-base-addresses -msingle-exit -mno-single-exit
MN10300 Options
-mmult-bug -mno-mult-bug
-mam33 -mno-am33
-mam33-2 -mno-am33-2
-mno-crt0 -mrelax

13

14

Using the GNU Compiler Collection (GCC)

NS32K Options

-m32032 -m32332 -m32532 -m32081 -m32381

-mmult-add -mnomult-add -msoft-float -mrtd -mnortd
-mregparam -mnoregparam -msb -mnosb

-mbitfield -mnobitfield -mhimem -mnohimem

PDP-11 Options

-mfpu -msoft-float -macO -mno-acO -m40 -m45 -m10
-mbcopy -mbcopy-builtin -mint32 -mno-inti16
-mint16 -mno-int32 -mfloat32 -mno-float64
-mfloat64 -mno-float32 -mabshi -mno-abshi
-mbranch-expensive -mbranch-cheap

-msplit -mno-split -munix-asm -mdec-asm

PowerPC Options See RS/6000 and PowerPC Options.

RS/6000 and PowerPC Options
-mcpu=cpu-type
-mtune=cpu-type
-mpower -mno-power -mpower2 -mno-power2
-mpowerpc -mpowerpc64 -mno-powerpc
-maltivec -mno-altivec
-mpowerpc-gpopt -mno-powerpc-gpopt
-mpowerpc-gfxopt -mno-powerpc-gfxopt
-mnew-mnemonics -mold-mnemonics
-mfull-toc -mminimal-toc -mno-fp-in-toc -mno-sum-in-toc
-m64 -m32 -mxl-compat -mno-xl-compat -mpe
-malign-power -malign-natural
-msoft-float -mhard-float -mmultiple -mno-multiple
-mstring -mno-string -mupdate -mno-update
-mfused-madd -mno-fused-madd -mbit-align -mno-bit-align
-mstrict-align -mno-strict-align -mrelocatable
-mno-relocatable -mrelocatable-lib -mno-relocatable-1ib
-mtoc -mno-toc -mlittle -mlittle-endian -mbig -mbig-endian
-mdynamic-no-pic
-mprioritize-restricted-insns=priority
-msched-costly-dep=dependence_type
-minsert-sched-nops=scheme
-mcall-sysv -mcall-netbsd
-maix-struct-return -msvr4-struct-return
-mabi=altivec -mabi=no-altivec
-mabi=spe -mabi=no-spe
-misel=yes -misel=no
-mspe=yes -mspe=no
-mfloat-gprs=yes -mfloat-gprs=no -mfloat-gprs=single -mfloat-gprs=double
-mprototype -mno-prototype
-msim -mmvme -mads -myellowknife -memb -msdata
-msdata=opt -mvxworks -mwindiss -G num -pthread

S5/890 and zSeries Options

-mtune=cpu-type -march=cpu-type

-mhard-float -msoft-float -mbackchain -mno-backchain

-mpacked-stack -mno-packed-stack

-msmall-exec -mno-small-exec -mmvcle -mno-mvcle

-m64 -m31 -mdebug -mno-debug -mesa -mzarch

-mtpf-trace -mno-tpf-trace -mfused-madd -mno-fused-madd

-mwarn-framesize -mwarn-dynamicstack -mstack-size -mstack-guard
SH Options

-ml -m2 -m2e -m3 -m3e

-m4-nofpu -m4-single-only -mé4-single -m4

-m4a-nofpu -mé4a-single-only -m4a-single -mda -m4al

-mb-64media -mb5-64media-nofpu

-m5-32media -m5-32media-nofpu

-m5-compact -mb5-compact-nofpu

-mb -ml -mdalign -mrelax

-mbigtable -mfmovd -mhitachi -mrenesas -mno-renesas -mnomacsave

Chapter 3: GCC Command Options

-mieee -misize -mpadstruct -mspace
-mprefergot -musermode
SPARC Options
-mcpu=cpu-type
-mtune=cpu-type
-mcmodel=code-model
-m32 -m64 -mapp-regs -mno-app-regs
-mfaster-structs -mno-faster-structs
-mfpu -mno-fpu -mhard-float -msoft-float
-mhard-quad-float -msoft-quad-float
-mimpure-text -mno-impure-text -mlittle-endian
-mstack-bias -mno-stack-bias
-munaligned-doubles -mno-unaligned-doubles
-mv8plus -mno-v8plus -mvis -mno-vis -threads -pthreads
System V' Options
-Qy -Qn -YP,paths -Ym,dir
TMS320C3z/Chx Options
-mcpu=cpu -mbig -msmall -mregparm -—mmemparm
-mfast-fix -mmpyi -mbk -mti -mdp-isr-reload
-mrpts=count -mrptb -mdb -mloop-unsigned
-mparallel-insns -mparallel-mpy -mpreserve-float
V850 Options
-mlong-calls -mno-long-calls -mep -mno-ep
-mprolog-function -mno-prolog-function -mspace
-mtda=n -msda=n -mzda=n
-mapp-regs -mno-app-regs
-mdisable-callt -mno-disable-callt
-mv850e1l
-mv850e
-mv850 -mbig-switch

VAX Options
-mg -mgnu -munix
286-64 Options See 1386 and x86-64 Options.
Xstormyl6 Options
-msim
Xtensa Options

-mconstl1l6 -mno-constl6

-mfused-madd -mno-fused-madd
-mtext-section-literals -mno-text-section-literals
-mtarget-align -mno-target-align

-mlongcalls -mno-longcalls

zSeries Options See S/390 and zSeries Options.

Code Generation Options
See Section 3.18 [Options for Code Generation Conventions|, page 158.

-fcall-saved-reg -fcall-used-reg

-ffixed-reg -fexceptions

-fnon-call-exceptions -funwind-tables
-fasynchronous-unwind-tables
-finhibit-size-directive -finstrument-functions
-fno-common -fno-ident

-fpcc-struct-return -fpic -fPIC -fpie -fPIE
-freg-struct-return -fshared-data -fshort-enums
-fshort-double -fshort-wchar

-fverbose-asm -fpack-struct[=n] -fstack-check
-fstack-limit-register=reg -fstack-limit-symbol=sym
-fargument-alias -fargument-noalias
-fargument-noalias-global -fleading-underscore
-ftls-model=model

-ftrapv -fwrapv -fbounds-check

-fvisibility

15

16

Using the GNU Compiler Collection (GCC)

3.2 Options Controlling the Kind of Output

Compilation can involve up to four stages: preprocessing, compilation proper, assembly and
linking, always in that order. GCC is capable of preprocessing and compiling several files either
into several assembler input files, or into one assembler input file; then each assembler input
file produces an object file, and linking combines all the object files (those newly compiled, and
those specified as input) into an executable file.

For any given input file, the file name suffix determines what kind of compilation is done:

file.
file.d
file.
file.

file.

file.
file.

file.
file.

file.
file.
file.
file.
file.
file.
file.

file.
file.

file.
file.
file.

file.
file.
file.

file.

file.

file.
file.

file.

c
i
ii

m

mi

mii

cC

cp
CXX

cpp
CPP
cH++

hh

for
FOR

fpp
FPP

£90
£95

ads

adb

C source code which must be preprocessed.
C source code which should not be preprocessed.
C++ source code which should not be preprocessed.

Objective-C source code. Note that you must link with the ‘libobjc’ library to
make an Objective-C program work.

Objective-C source code which should not be preprocessed.

Objective-C++ source code. Note that you must link with the ‘libobjc’ library to
make an Objective-C++ program work. Note that ‘.M’ refers to a literal capital M.

Objective-C++ source code which should not be preprocessed.

C, C++, Objective-C or Objective-C++ header file to be turned into a precompiled
header.

3

C++ source code which must be preprocessed. Note that in ‘.cxx’, the last two
letters must both be literally ‘x’. Likewise, ‘.C’ refers to a literal capital C.

C++ header file to be turned into a precompiled header.

Fortran source code which should not be preprocessed.

Fortran source code which must be preprocessed (with the traditional preprocessor).

Fortran source code which must be preprocessed with a RATFOR preprocessor (not
included with GCC).

Fortran 90/95 source code which should not be preprocessed.

Ada source code file which contains a library unit declaration (a declaration of
a package, subprogram, or generic, or a generic instantiation), or a library unit
renaming declaration (a package, generic, or subprogram renaming declaration).
Such files are also called specs.

Ada source code file containing a library unit body (a subprogram or package body).
Such files are also called bodies.

Chapter 3: GCC Command Options 17

file.s Assembler code.
file.S Assembler code which must be preprocessed.
other An object file to be fed straight into linking. Any file name with no recognized suffix

is treated this way.
You can specify the input language explicitly with the ‘-x’ option:

-x language
Specify explicitly the language for the following input files (rather than letting the

compiler choose a default based on the file name suffix). This option applies to all
following input files until the next ‘-x’ option. Possible values for language are:

c c-header c-cpp-output
c++ c++-header c++-cpp-output
objective-c objective-c-header objective-c-cpp-output
objective-c++ objective-c++-header objective-c++-cpp-output
assembler assembler-with-cpp
ada
£77 £77-cpp-input ratfor
£95
java
treelang
-X none Turn off any specification of a language, so that subsequent files are handled accord-

ing to their file name suffixes (as they are if ‘-x’ has not been used at all).

-pass-exit-codes
Normally the gcc program will exit with the code of 1 if any phase of the compiler
returns a non-success return code. If you specify ‘-pass-exit-codes’, the gcc
program will instead return with numerically highest error produced by any phase
that returned an error indication.

If you only want some of the stages of compilation, you can use ‘-x’ (or filename suffixes) to
tell gcc where to start, and one of the options ‘-c’, ‘-S’, or ‘-E’ to say where gcc is to stop.
Note that some combinations (for example, ‘~x cpp-output -E’) instruct gcc to do nothing at
all.

-c Compile or assemble the source files, but do not link. The linking stage simply is
not done. The ultimate output is in the form of an object file for each source file.

By default, the object file name for a source file is made by replacing the suffix ‘. c’,

.17, ‘.8, etc., with ‘.o’
Unrecognized input files, not requiring compilation or assembly, are ignored.
-S Stop after the stage of compilation proper; do not assemble. The output is in the
form of an assembler code file for each non-assembler input file specified.

By default, the assembler file name for a source file is made by replacing the suffix

3 A

.c¢’, ‘.17 etc., with ‘. s’
Input files that don’t require compilation are ignored.
-E Stop after the preprocessing stage; do not run the compiler proper. The output is
in the form of preprocessed source code, which is sent to the standard output.
Input files which don’t require preprocessing are ignored.
-o file Place output in file file. This applies regardless to whatever sort of output is be-

ing produced, whether it be an executable file, an object file, an assembler file or
preprocessed C code.

If ‘=0’ is not specified, the default is to put an executable file in ‘a.out’, the object file
for ‘source.suffix’ in ‘source.o’, its assembler file in ‘source.s’, a precompiled

18 Using the GNU Compiler Collection (GCC)

header file in ‘source.suffix.gch’, and all preprocessed C source on standard
output.

-v Print (on standard error output) the commands executed to run the stages of com-
pilation. Also print the version number of the compiler driver program and of the
preprocessor and the compiler proper.

— i Like ‘-v’ except the commands are not executed and all command arguments are
quoted. This is useful for shell scripts to capture the driver-generated command
lines.

-pipe Use pipes rather than temporary files for communication between the various stages

of compilation. This fails to work on some systems where the assembler is unable
to read from a pipe; but the GNU assembler has no trouble.

-combine If you are compiling multiple source files, this option tells the driver to pass all
the source files to the compiler at once (for those languages for which the compiler
can handle this). This will allow intermodule analysis (IMA) to be performed by
the compiler. Currently the only language for which this is supported is C. If you
pass source files for multiple languages to the driver, using this option, the driver
will invoke the compiler(s) that support IMA once each, passing each compiler all
the source files appropriate for it. For those languages that do not support IMA
this option will be ignored, and the compiler will be invoked once for each source
file in that language. If you use this option in conjunction with ‘-save-temps’, the
compiler will generate multiple pre-processed files (one for each source file), but only
one (combined) ‘.o’ or ‘.s’ file.

--help Print (on the standard output) a description of the command line options understood
by gcc. If the ‘=v’ option is also specified then ‘--help’ will also be passed on to
the various processes invoked by gcc, so that they can display the command line
options they accept. If the ‘-Wextra’ option is also specified then command line
options which have no documentation associated with them will also be displayed.

--target-help
Print (on the standard output) a description of target specific command line options
for each tool.

--version
Display the version number and copyrights of the invoked GCC.

3.3 Compiling C++ Programs

C++ source files conventionally use one of the suffixes ‘.C’, ‘.cc’, ‘.cpp’, ‘*.CPP’, ‘.c++’, ‘.cp’, or
‘.cxx’; C++ header files often use ‘.hh’ or ‘.H’; and preprocessed C++ files use the suffix ‘.ii’.
GCC recognizes files with these names and compiles them as C++ programs even if you call the
compiler the same way as for compiling C programs (usually with the name gcc).

However, C++ programs often require class libraries as well as a compiler that understands the
C++ language—and under some circumstances, you might want to compile programs or header
files from standard input, or otherwise without a suffix that flags them as C++ programs. You
might also like to precompile a C header file with a ‘.h’ extension to be used in C++ compilations.
g++is a program that calls GCC with the default language set to C++, and automatically specifies
linking against the C++ library. On many systems, g++ is also installed with the name c++.

When you compile C++ programs, you may specify many of the same command-line options
that you use for compiling programs in any language; or command-line options meaningful for
C and related languages; or options that are meaningful only for C++ programs. See Section 3.4
[Options Controlling C Dialect], page 19, for explanations of options for languages related to C.

Chapter 3: GCC Command Options 19

See Section 3.5 [Options Controlling C++ Dialect], page 22, for explanations of options that are
meaningful only for C++ programs.

3.4 Options Controlling C Dialect

The following options control the dialect of C (or languages derived from C, such as C++,
Objective-C and Objective-C++) that the compiler accepts:

—ansi

-std=

In C mode, support all ISO C90 programs. In C++ mode, remove GNU extensions
that conflict with ISO C++.

This turns off certain features of GCC that are incompatible with ISO C90 (when
compiling C code), or of standard C++ (when compiling C++ code), such as the asm
and typeof keywords, and predefined macros such as unix and vax that identify
the type of system you are using. It also enables the undesirable and rarely used
ISO trigraph feature. For the C compiler, it disables recognition of C++ style ‘//’
comments as well as the inline keyword.

The alternate keywords __asm__, __extension
continue to work despite ‘—ansi’. You would not want to use them in an ISO C
program, of course, but it is useful to put them in header files that might be included
in compilations done with ‘—ansi’. Alternate predefined macros such as __unix_
and __vax__ are also available, with or without ‘-ansi’.

inline__ and __typeof

_) == R pp—

The ‘-ansi’ option does not cause non-ISO programs to be rejected gratuitously.
For that, ‘-pedantic’ is required in addition to ‘-ansi’. See Section 3.8 [Warning
Options|, page 31.

The macro __STRICT_ANSI__ is predefined when the ‘-~ansi’ option is used. Some
header files may notice this macro and refrain from declaring certain functions or
defining certain macros that the ISO standard doesn’t call for; this is to avoid
interfering with any programs that might use these names for other things.

Functions which would normally be built in but do not have semantics defined by
ISO C (such as alloca and £fs) are not built-in functions with ‘-ansi’ is used. See
Section 5.45 [Other built-in functions provided by GCC], page 242, for details of the
functions affected.

Determine the language standard. This option is currently only supported when
compiling C or C++. A value for this option must be provided; possible values are

‘c89’
‘1509899:1990°
ISO C90 (same as ‘-ansi’).

‘1509899:199409’
ISO C90 as modified in amendment 1.

‘c99’
‘c9x
‘1809899:1999’
‘1809899:199x’
ISO C99. Note that this standard is not yet fully supported; see
http://gcc.gnu.org/gecc—4.0/c99status.html for more information.
The names ‘c9x’ and ‘1s09899:199x’ are deprecated.

‘gnu89’ Default, ISO C90 plus GNU extensions (including some C99 features).

)

‘gnu99’
‘gnu9x’ ISO C99 plus GNU extensions. When ISO C99 is fully implemented in
GCC, this will become the default. The name ‘gnu9x’ is deprecated.

http://gcc.gnu.org/gcc-4.0/c99status.html

20

Using the GNU Compiler Collection (GCC)

‘c++98’ The 1998 ISO C++ standard plus amendments.

‘gnu++98’ The same as ‘-std=c++98’ plus GNU extensions. This is the default for
C++ code.

Even when this option is not specified, you can still use some of the features of newer
standards in so far as they do not conflict with previous C standards. For example,
you may use __restrict__ even when ‘-std=c99’ is not specified.

The ‘-std’ options specifying some version of ISO C have the same effects as ‘-ansi’,
except that features that were not in ISO C90 but are in the specified version (for
example, ‘//’ comments and the inline keyword in ISO C99) are not disabled.

See Chapter 2 [Language Standards Supported by GCC], page 5, for details of these
standard versions.

—aux-info filename

-fno-asm

Output to the given filename prototyped declarations for all functions declared
and/or defined in a translation unit, including those in header files. This option
is silently ignored in any language other than C.

Besides declarations, the file indicates, in comments, the origin of each declaration
(source file and line), whether the declaration was implicit, prototyped or unproto-
typed (‘I’, ‘N’ for new or ‘0’ for old, respectively, in the first character after the line
number and the colon), and whether it came from a declaration or a definition (‘C’
or ‘F’, respectively, in the following character). In the case of function definitions,
a K&R-style list of arguments followed by their declarations is also provided, inside
comments, after the declaration.

Do not recognize asm, inline or typeof as a keyword, so that code can use these
words as identifiers. You can use the keywords __asm__, __inline__ and __typeof_
_ instead. ‘-ansi’ implies ‘-fno-asm’.

In C++, this switch only affects the typeof keyword, since asm and inline are
standard keywords. You may want to use the ‘-fno-gnu-keywords’ flag instead,
which has the same effect. In C99 mode (‘-std=c99’ or ‘-std=gnu99’), this switch
only affects the asm and typeof keywords, since inline is a standard keyword in
ISO €99.

—-fno-builtin
—fno-builtin-function

Don’t recognize built-in functions that do not begin with ‘__builtin_’ as prefix.
See Section 5.45 [Other built-in functions provided by GCC], page 242, for details of
the functions affected, including those which are not built-in functions when ‘-ansi’

or ‘=std’ options for strict ISO C conformance are used because they do not have
an [SO standard meaning.

GCC normally generates special code to handle certain built-in functions more ef-
ficiently; for instance, calls to alloca may become single instructions that adjust
the stack directly, and calls to memcpy may become inline copy loops. The resulting
code is often both smaller and faster, but since the function calls no longer appear
as such, you cannot set a breakpoint on those calls, nor can you change the behavior
of the functions by linking with a different library. In addition, when a function is
recognized as a built-in function, GCC may use information about that function
to warn about problems with calls to that function, or to generate more efficient
code, even if the resulting code still contains calls to that function. For example,
warnings are given with ‘~Wformat’ for bad calls to printf, when printf is built
in, and strlen is known not to modify global memory.

Chapter 3: GCC Command Options 21

With the ‘~fno-builtin-function’ option only the built-in function function is
disabled. function must not begin with ‘__builtin_’. If a function is named this is
not built-in in this version of GCC, this option is ignored. There is no corresponding
‘~fbuiltin-function’ option; if you wish to enable built-in functions selectively
when using ‘~fno-builtin’ or ‘~ffreestanding’, you may define macros such as:

#define abs(n) __builtin_abs ((n))
#define strcpy(d, s) __builtin_strcpy ((d), (s))
—-fhosted
Assert that compilation takes place in a hosted environment. This implies
‘~fbuiltin’. A hosted environment is one in which the entire standard library
is available, and in which main has a return type of int. Examples are nearly
everything except a kernel. This is equivalent to ‘-fno-freestanding’.
-ffreestanding

Assert that compilation takes place in a freestanding environment. This implies
‘~fno-builtin’. A freestanding environment is one in which the standard library
may not exist, and program startup may not necessarily be at main. The most
obvious example is an OS kernel. This is equivalent to ‘~fno-hosted’.

See Chapter 2 [Language Standards Supported by GCC], page 5, for details of
freestanding and hosted environments.

-fms-extensions
Accept some non-standard constructs used in Microsoft header files.

Some cases of unnamed fields in structures and unions are only accepted with
this option. See Section 5.49 [Unnamed struct/union fields within structs/unions|,
page 293, for details.

-trigraphs
Support ISO C trigraphs. The ‘-ansi’ option (and ‘-std’ options for strict ISO C
conformance) implies ‘~trigraphs’.

-no-integrated-cpp
Performs a compilation in two passes: preprocessing and compiling. This option
allows a user supplied "ccl", "cclplus", or "cclobj" via the ‘-B’ option. The user
supplied compilation step can then add in an additional preprocessing step after
normal preprocessing but before compiling. The default is to use the integrated cpp
(internal cpp)

The semantics of this option will change if "ccl", "cclplus", and "cclobj" are
merged.

-traditional

-traditional-cpp
Formerly, these options caused GCC to attempt to emulate a pre-standard C com-
piler. They are now only supported with the ‘-E’ switch. The preprocessor continues
to support a pre-standard mode. See the GNU CPP manual for details.

-fcond-mismatch
Allow conditional expressions with mismatched types in the second and third argu-

ments. The value of such an expression is void. This option is not supported for
C++.

-funsigned-char
Let the type char be unsigned, like unsigned char.

Each kind of machine has a default for what char should be. It is either like
unsigned char by default or like signed char by default.

22 Using the GNU Compiler Collection (GCC)

Ideally, a portable program should always use signed char or unsigned char when
it depends on the signedness of an object. But many programs have been written
to use plain char and expect it to be signed, or expect it to be unsigned, depending
on the machines they were written for. This option, and its inverse, let you make
such a program work with the opposite default.

The type char is always a distinct type from each of signed char or unsigned
char, even though its behavior is always just like one of those two.

-fsigned-char
Let the type char be signed, like signed char.
Note that this is equivalent to ‘~fno-unsigned-char’, which is the negative form
of ‘~funsigned-char’. Likewise, the option ‘~fno-signed-char’ is equivalent to
‘~funsigned-char’.

-fsigned-bitfields

-funsigned-bitfields

-fno-signed-bitfields

-fno-unsigned-bitfields
These options control whether a bit-field is signed or unsigned, when the declaration
does not use either signed or unsigned. By default, such a bit-field is signed,
because this is consistent: the basic integer types such as int are signed types.

3.5 Options Controlling C++ Dialect

This section describes the command-line options that are only meaningful for C++ programs; but
you can also use most of the GNU compiler options regardless of what language your program
is in. For example, you might compile a file firstClass.C like this:
gt++ -g —frepo -0 -c firstClass.C
In this example, only ‘~frepo’ is an option meant only for C++ programs; you can use the other
options with any language supported by GCC.
Here is a list of options that are only for compiling C++ programs:

-fabi-version=n
Use version n of the C++ ABI. Version 2 is the version of the C++ ABI that first
appeared in G++ 3.4. Version 1 is the version of the C++ ABI that first appeared
in G++ 3.2. Version 0 will always be the version that conforms most closely to the
C++ ABI specification. Therefore, the ABI obtained using version 0 will change as
ABI bugs are fixed.

The default is version 2.

-fno-access-control
Turn off all access checking. This switch is mainly useful for working around bugs
in the access control code.

-fcheck-new

Check that the pointer returned by operator new is non-null before attempting to
modify the storage allocated. This check is normally unnecessary because the C++
standard specifies that operator new will only return 0 if it is declared ‘throw()’,
in which case the compiler will always check the return value even without this
option. In all other cases, when operator new has a non-empty exception specifi-
cation, memory exhaustion is signalled by throwing std: :bad_alloc. See also ‘new
(nothrow)’.

-fconserve-space
Put uninitialized or runtime-initialized global variables into the common segment, as
C does. This saves space in the executable at the cost of not diagnosing duplicate

Chapter 3: GCC Command Options 23

definitions. If you compile with this flag and your program mysteriously crashes
after main() has completed, you may have an object that is being destroyed twice
because two definitions were merged.

This option is no longer useful on most targets, now that support has been added
for putting variables into BSS without making them common.

-fno-const-strings
Give string constants type char * instead of type const char *. By default,
G++ uses type const char * as required by the standard. Even if you use
‘~fno-const-strings’, you cannot actually modify the value of a string constant.

This option might be removed in a future release of G++. For maximum portability,
you should structure your code so that it works with string constants that have type
const char *.

-fno-elide-constructors
The C++ standard allows an implementation to omit creating a temporary which
is only used to initialize another object of the same type. Specifying this option
disables that optimization, and forces G++ to call the copy constructor in all cases.

-fno-enforce-eh-specs
Don’t check for violation of exception specifications at runtime. This option violates
the C++ standard, but may be useful for reducing code size in production builds,
much like defining ‘NDEBUG’. The compiler will still optimize based on the exception
specifications.

—-ffor-scope

-fno-for-scope
If ‘~ffor-scope’ is specified, the scope of variables declared in a for-init-statement is
limited to the ‘for’ loop itself, as specified by the C++ standard. If ‘~fno-for-scope’
is specified, the scope of variables declared in a for-init-statement extends to the end
of the enclosing scope, as was the case in old versions of G++, and other (traditional)
implementations of C++.

The default if neither flag is given to follow the standard, but to allow and give a
warning for old-style code that would otherwise be invalid, or have different behavior.

—-fno-gnu-keywords
Do not recognize typeof as a keyword, so that code can use this word as
an identifier. You can use the keyword __typeof__ instead. ‘-ansi’ implies
‘~fno-gnu-keywords’.

-fno-implicit-templates
Never emit code for non-inline templates which are instantiated implicitly (i.e. by
use); only emit code for explicit instantiations. See Section 6.5 [Template Instanti-
ation|, page 300, for more information.

-fno-implicit-inline-templates
Don’t emit code for implicit instantiations of inline templates, either. The default
is to handle inlines differently so that compiles with and without optimization will
need the same set of explicit instantiations.

-fno-implement-inlines
To save space, do not emit out-of-line copies of inline functions controlled by
‘#pragma implementation’. This will cause linker errors if these functions are not
inlined everywhere they are called.

24 Using the GNU Compiler Collection (GCC)

-fms-extensions
Disable pedantic warnings about constructs used in MFC, such as implicit int and
getting a pointer to member function via non-standard syntax.

-fno-nonansi-builtins
Disable built-in declarations of functions that are not mandated by ANSI/ISO C.
These include £fs, alloca, _exit, index, bzero, conjf, and other related functions.

-fno-operator-names
Do not treat the operator name keywords and, bitand, bitor, compl, not, or and
xor as synonyms as keywords.

-fno-optional-diags
Disable diagnostics that the standard says a compiler does not need to issue. Cur-
rently, the only such diagnostic issued by G++ is the one for a name having multiple
meanings within a class.

-fpermissive
Downgrade some diagnostics about nonconformant code from errors to warnings.
Thus, using ‘~fpermissive’ will allow some nonconforming code to compile.

-frepo Enable automatic template instantiation at link time. This option also implies
‘~fno-implicit-templates’. See Section 6.5 [Template Instantiation], page 300,
for more information.

-fno-rtti
Disable generation of information about every class with virtual functions for use
by the C++ runtime type identification features (‘dynamic_cast’ and ‘typeid’). If
you don’t use those parts of the language, you can save some space by using this
flag. Note that exception handling uses the same information, but it will generate
it as needed.

-fstats Emit statistics about front-end processing at the end of the compilation. This
information is generally only useful to the G++ development team.

-ftemplate-depth-n
Set the maximum instantiation depth for template classes to n. A limit on the tem-
plate instantiation depth is needed to detect endless recursions during template class
instantiation. ANSI/ISO C++ conforming programs must not rely on a maximum
depth greater than 17.

-fno-threadsafe-statics
Do not emit the extra code to use the routines specified in the C++ ABI for thread-
safe initialization of local statics. You can use this option to reduce code size slightly
in code that doesn’t need to be thread-safe.

-fuse-cxa-atexit
Register destructors for objects with static storage duration with the __cxa_atexit
function rather than the atexit function. This option is required for fully standards-
compliant handling of static destructors, but will only work if your C library supports
__cxa_atexit.

-fvisibility-inlines-hidden
Causes all inlined methods to be marked with __attribute__ ((visibility
("hidden"))) so that they do not appear in the export table of a DSO and do
not require a PLT indirection when used within the DSO. Enabling this option can
have a dramatic effect on load and link times of a DSO as it massively reduces the
size of the dynamic export table when the library makes heavy use of templates.

Chapter 3: GCC Command Options 25

While it can cause bloating through duplication of code within each DSO where it is
used, often the wastage is less than the considerable space occupied by a long symbol
name in the export table which is typical when using templates and namespaces.
For even more savings, combine with the ‘~fvisibility=hidden’ switch.

-fno-weak
Do not use weak symbol support, even if it is provided by the linker. By default, G++
will use weak symbols if they are available. This option exists only for testing, and
should not be used by end-users; it will result in inferior code and has no benefits.
This option may be removed in a future release of G++.

-nostdinc++
Do not search for header files in the standard directories specific to C++, but do still
search the other standard directories. (This option is used when building the C++
library.)

In addition, these optimization, warning, and code generation options have meanings only for
C++ programs:

-fno-default-inline
Do not assume ‘inline’ for functions defined inside a class scope. See Section 3.10
[Options That Control Optimization], page 54. Note that these functions will have
linkage like inline functions; they just won’t be inlined by default.

-Wabi (C++ only)
Warn when G++ generates code that is probably not compatible with the vendor-
neutral C++ ABI. Although an effort has been made to warn about all such cases,
there are probably some cases that are not warned about, even though G++ is
generating incompatible code. There may also be cases where warnings are emitted
even though the code that is generated will be compatible.

You should rewrite your code to avoid these warnings if you are concerned about the
fact that code generated by G++ may not be binary compatible with code generated
by other compilers.

The known incompatibilities at this point include:

e Incorrect handling of tail-padding for bit-fields. G++ may attempt to pack data

into the same byte as a base class. For example:

struct A { virtual void £(); int f1 : 1; };

struct B : public A { int £2 : 1; };
In this case, G++ will place B: : 2 into the same byte asA: :f1; other compilers
will not. You can avoid this problem by explicitly padding A so that its size
is a multiple of the byte size on your platform; that will cause G++ and other
compilers to layout B identically.

e Incorrect handling of tail-padding for virtual bases. G++ does not use tail

padding when laying out virtual bases. For example:

struct A { virtual void f(); char ci; };

struct B { B(); char c2; };

struct C : public A, public virtual B {};
In this case, G++ will not place B into the tail-padding for A; other compilers
will. You can avoid this problem by explicitly padding A so that its size is a
multiple of its alignment (ignoring virtual base classes); that will cause G++
and other compilers to layout C identically.

e Incorrect handling of bit-fields with declared widths greater than that of their
underlying types, when the bit-fields appear in a union. For example:

26 Using the GNU Compiler Collection (GCC)

union U { int i : 4096; };

Assuming that an int does not have 4096 bits, G++ will make the union too
small by the number of bits in an int.

e Empty classes can be placed at incorrect offsets. For example:
struct A {};

struct B {
A a;
virtual void £ ();

};

struct C : public B, public A {};

G++ will place the A base class of C at a nonzero offset; it should be placed at
offset zero. G++ mistakenly believes that the A data member of B is already at
offset zero.

e Names of template functions whose types involve typename or template tem-
plate parameters can be mangled incorrectly.

template <typename Q>
void f(typename Q::X) {3}

template <template <typename> class Q>
void f(typename Q<int>::X) {}

Instantiations of these templates may be mangled incorrectly.

-Wctor-dtor-privacy (C++ only)
Warn when a class seems unusable because all the constructors or destructors in
that class are private, and it has neither friends nor public static member functions.

-Wnon-virtual-dtor (C++ only)
Warn when a class appears to be polymorphic, thereby requiring a virtual destructor,
yet it declares a non-virtual one. This warning is enabled by ‘-Wall’.

-Wreorder (C++ only)
Warn when the order of member initializers given in the code does not match the
order in which they must be executed. For instance:

struct A {

int i;

int j;

AQO: j (), i (1) {3
};

The compiler will rearrange the member initializers for ‘i’ and ‘j’ to match the
declaration order of the members, emitting a warning to that effect. This warning
is enabled by ‘-Wall’.

The following ‘-W. ..’ options are not affected by ‘-Wall’.

-Weffc++ (C++ only)
Warn about violations of the following style guidelines from Scott Meyers’ Effective
C++ book:

e Item 11: Define a copy constructor and an assignment operator for classes with
dynamically allocated memory.

e Item 12: Prefer initialization to assignment in constructors.
e Item 14: Make destructors virtual in base classes.
e Item 15: Have operator= return a reference to *this.

e [tem 23: Don’t try to return a reference when you must return an object.

Chapter 3: GCC Command Options 27

Also warn about violations of the following style guidelines from Scott Meyers’ More
Effective C++ book:

e Item 6: Distinguish between prefix and postfix forms of increment and decre-
ment operators.

e Item 7: Never overload &&, ||, or ,.

When selecting this option, be aware that the standard library headers do not obey
all of these guidelines; use ‘grep -v’ to filter out those warnings.

-Wno-deprecated (C++ only)
Do not warn about usage of deprecated features. See Section 6.10 [Deprecated
Features|, page 304.

-Wstrict-null-sentinel (C++ only)
Warn also about the use of an uncasted NULL as sentinel. When compiling only with
GCC this is a valid sentinel, as NULL is defined to __null. Although it is a null
pointer constant not a null pointer, it is guaranteed to of the same size as a pointer.
But this use is not portable across different compilers.

-Wno-non-template-friend (C++ only)
Disable warnings when non-templatized friend functions are declared within a tem-
plate. Since the advent of explicit template specification support in G++, if the name
of the friend is an unqualified-id (i.e., ‘friend foo(int)’), the C++ language spec-
ification demands that the friend declare or define an ordinary, nontemplate func-
tion. (Section 14.5.3). Before G++ implemented explicit specification, unqualified-
ids could be interpreted as a particular specialization of a templatized function.
Because this non-conforming behavior is no longer the default behavior for G++,
‘~Wnon-template-friend’ allows the compiler to check existing code for potential
trouble spots and is on by default. This new compiler behavior can be turned off
with ‘-Wno-non-template-friend’ which keeps the conformant compiler code but
disables the helpful warning.

-Wold-style-cast (C++ only)
Warn if an old-style (C-style) cast to a non-void type is used within a C++ program.
The new-style casts (‘static_cast’, ‘reinterpret_cast’, and ‘const_cast’) are
less vulnerable to unintended effects and much easier to search for.

-Woverloaded-virtual (C++ only)
Warn when a function declaration hides virtual functions from a base class. For
example, in:
struct A {

virtual void f£();

};

struct B: public A {
void f(int);
};
the A class version of f is hidden in B, and code like:
B* b;
b->f(0);

will fail to compile.
-Wno-pmf-conversions (C++ only)

Disable the diagnostic for converting a bound pointer to member function to a plain
pointer.

28 Using the GNU Compiler Collection (GCC)

-Wsign-promo (C++ only)
Warn when overload resolution chooses a promotion from unsigned or enumerated
type to a signed type, over a conversion to an unsigned type of the same size.
Previous versions of G++ would try to preserve unsignedness, but the standard
mandates the current behavior.

struct A {
operator int ();
A% operator = (int);

};
main ()
{
A a,b;
a =b;
¥

In this example, G++ will synthesize a default ‘A& operator = (const A&);’, while
cfront will use the user-defined ‘operator =.

3.6 Options Controlling Objective-C and Objective-C++
Dialects

(NOTE: This manual does not describe the Objective-C and Objective-C++ languages them-
selves. See See Chapter 2 [Language Standards Supported by GCC], page 5, for references.)

This section describes the command-line options that are only meaningful for Objective-C and
Objective-C++ programs, but you can also use most of the language-independent GNU compiler
options. For example, you might compile a file some_class.m like this:

gcc -g —-fgnu-runtime -0 -c some_class.m

In this example, ‘~fgnu-runtime’ is an option meant only for Objective-C and Objective-C++
programs; you can use the other options with any language supported by GCC.

Note that since Objective-C is an extension of the C language, Objective-C compilations may
also use options specific to the C front-end (e.g., ‘-Wtraditional’). Similarly, Objective-C++
compilations may use C++-specific options (e.g., ‘-Wabi’).

Here is a list of options that are only for compiling Objective-C and Objective-C++ programs:

-fconstant-string-class=class-name
Use class-name as the name of the class to instantiate for each literal string specified
with the syntax @"...". The default class name is NXConstantString if the GNU
runtime is being used, and NSConstantString if the NeXT runtime is being used
(see below). The ‘~fconstant-cfstrings’ option, if also present, will override the
‘~fconstant-string-class’ setting and cause @"..." literals to be laid out as
constant CoreFoundation strings.

-fgnu-runtime
Generate object code compatible with the standard GNU Objective-C runtime. This
is the default for most types of systems.

-fnext-runtime
Generate output compatible with the NeXT runtime. This is the default for NeXT-
based systems, including Darwin and Mac OS X. The macro __NEXT_RUNTIME__ is
predefined if (and only if) this option is used.

-fno-nil-receivers
Assume that all Objective-C message dispatches (e.g., [receiver message:arg]) in
this translation unit ensure that the receiver is not nil. This allows for more efficient
entry points in the runtime to be used. Currently, this option is only available in
conjunction with the NeXT runtime on Mac OS X 10.3 and later.

Chapter 3: GCC Command Options 29

-fobjc-exceptions
Enable syntactic support for structured exception handling in Objective-C, similar
to what is offered by C++ and Java. Currently, this option is only available in
conjunction with the NeXT runtime on Mac OS X 10.3 and later.
try {

Q@throw expr;

}
Q@catch (AnObjCClass *exc) {

Q@throw expr;

Qthrow;

}
Q@catch (AnotherClass *exc) {
}
@catch (id allOthers) {
}
@finally {
@throw expr;
}

The @throw statement may appear anywhere in an Objective-C or Objective-C++
program; when used inside of a @catch block, the @throw may appear without an
argument (as shown above), in which case the object caught by the @catch will be
rethrown.

Note that only (pointers to) Objective-C objects may be thrown and caught using
this scheme. When an object is thrown, it will be caught by the nearest @catch
clause capable of handling objects of that type, analogously to how catch blocks
work in C++ and Java. A @catch(id ...) clause (as shown above) may also be
provided to catch any and all Objective-C exceptions not caught by previous @catch
clauses (if any).

The @finally clause, if present, will be executed upon exit from the immediately
preceding @try ... @catch section. This will happen regardless of whether any ex-
ceptions are thrown, caught or rethrown inside the @try ... @catch section, anal-
ogously to the behavior of the finally clause in Java.

There are several caveats to using the new exception mechanism:

e Although currently designed to be binary compatible with NS_HANDLER-style
idioms provided by the NSException class, the new exceptions can only be used
on Mac OS X 10.3 (Panther) and later systems, due to additional functionality
needed in the (NeXT) Objective-C runtime.

e As mentioned above, the new exceptions do not support handling types other
than Objective-C objects. Furthermore, when used from Objective-C++, the
Objective-C exception model does not interoperate with C++ exceptions at this
time. This means you cannot @throw an exception from Objective-C and catch
it in C++, or vice versa (i.e., throw ... @catch).

The ‘~fobjc-exceptions’ switch also enables the use of synchronization blocks for
thread-safe execution:
@synchronized (0bjCClass *guard) {

30

Using the GNU Compiler Collection (GCC)

}

Upon entering the @synchronized block, a thread of execution shall first check
whether a lock has been placed on the corresponding guard object by another thread.
If it has, the current thread shall wait until the other thread relinquishes its lock.
Once guard becomes available, the current thread will place its own lock on it,
execute the code contained in the @synchronized block, and finally relinquish the
lock (thereby making guard available to other threads).

Unlike Java, Objective-C does not allow for entire methods to be marked
@synchronized. Note that throwing exceptions out of @synchronized blocks is
allowed, and will cause the guarding object to be unlocked properly.

-freplace-objc-classes

Emit a special marker instructing 1d (1) not to statically link in the resulting object
file, and allow dyld (1) to load it in at run time instead. This is used in conjunction
with the Fix-and-Continue debugging mode, where the object file in question may
be recompiled and dynamically reloaded in the course of program execution, without
the need to restart the program itself. Currently, Fix-and-Continue functionality is
only available in conjunction with the NeXT runtime on Mac OS X 10.3 and later.

—-fzero-link

-gen-decls

When compiling for the NeXT runtime, the compiler ordinarily replaces calls to
objc_getClass("...") (when the name of the class is known at compile time)
with static class references that get initialized at load time, which improves run-
time performance. Specifying the ‘~fzero-1link’ flag suppresses this behavior and
causes calls to objc_getClass("...") to be retained. This is useful in Zero-Link
debugging mode, since it allows for individual class implementations to be modified
during program execution.

Dump interface declarations for all classes seen in the source file to a file named
‘sourcename.decl’.

-Wno-protocol

-Wselector

If a class is declared to implement a protocol, a warning is issued for every method in
the protocol that is not implemented by the class. The default behavior is to issue a
warning for every method not explicitly implemented in the class, even if a method
implementation is inherited from the superclass. If you use the ‘~Wno-protocol’ op-
tion, then methods inherited from the superclass are considered to be implemented,
and no warning is issued for them.

Warn if multiple methods of different types for the same selector are found during
compilation. The check is performed on the list of methods in the final stage of
compilation. Additionally, a check is performed for each selector appearing in a
@selector(...) expression, and a corresponding method for that selector has been
found during compilation. Because these checks scan the method table only at the
end of compilation, these warnings are not produced if the final stage of compilation
is not reached, for example because an error is found during compilation, or because
the ‘~fsyntax-only’ option is being used.

-Wundeclared-selector

Warn if a @selector(...) expression referring to an undeclared selector is found.
A selector is considered undeclared if no method with that name has been de-
clared before the @selector(...) expression, either explicitly in an @interface or
@protocol declaration, or implicitly in an @implementation section. This option

Chapter 3: GCC Command Options 31

always performs its checks as soon as a @selector(...) expression is found, while
‘-Wselector’ only performs its checks in the final stage of compilation. This also
enforces the coding style convention that methods and selectors must be declared
before being used.

-print-objc-runtime-info
Generate C header describing the largest structure that is passed by value, if any.

3.7 Options to Control Diagnostic Messages Formatting

Traditionally, diagnostic messages have been formatted irrespective of the output device’s aspect
(e.g. its width, . ..). The options described below can be used to control the diagnostic messages
formatting algorithm, e.g. how many characters per line, how often source location information
should be reported. Right now, only the C++ front end can honor these options. However it
is expected, in the near future, that the remaining front ends would be able to digest them
correctly.

-fmessage-length=n
Try to format error messages so that they fit on lines of about n characters. The
default is 72 characters for g++ and 0 for the rest of the front ends supported by
GCC. If n is zero, then no line-wrapping will be done; each error message will
appear on a single line.

-fdiagnostics—-show-location=once
Only meaningful in line-wrapping mode. Instructs the diagnostic messages reporter
to emit once source location information; that is, in case the message is too long
to fit on a single physical line and has to be wrapped, the source location won’t be
emitted (as prefix) again, over and over, in subsequent continuation lines. This is
the default behavior.

-fdiagnostics-show-location=every-line
Only meaningful in line-wrapping mode. Instructs the diagnostic messages reporter
to emit the same source location information (as prefix) for physical lines that result
from the process of breaking a message which is too long to fit on a single line.

3.8 Options to Request or Suppress Warnings

Warnings are diagnostic messages that report constructions which are not inherently erroneous
but which are risky or suggest there may have been an error.

You can request many specific warnings with options beginning ‘-W’, for example ‘~-Wimplicit’
to request warnings on implicit declarations. Each of these specific warning options also has
a negative form beginning ‘-Wno-’ to turn off warnings; for example, ‘~Wno-implicit’. This
manual lists only one of the two forms, whichever is not the default.

The following options control the amount and kinds of warnings produced by GCC; for further,
language-specific options also refer to Section 3.5 [C++ Dialect Options], page 22 and Section 3.6
[Objective-C and Objective-C++ Dialect Options], page 28.

-fsyntax-only
Check the code for syntax errors, but don’t do anything beyond that.

-pedantic
Issue all the warnings demanded by strict ISO C and ISO C++; reject all programs
that use forbidden extensions, and some other programs that do not follow ISO C
and ISO C++. For ISO C, follows the version of the ISO C standard specified by
any ‘-std’ option used.

32 Using the GNU Compiler Collection (GCC)

Valid ISO C and ISO C++ programs should compile properly with or without this
option (though a rare few will require ‘-ansi’ or a ‘-std’ option specifying the
required version of ISO C). However, without this option, certain GNU extensions
and traditional C and C++ features are supported as well. With this option, they
are rejected.

‘-pedantic’ does not cause warning messages for use of the alternate keywords
whose names begin and end with ‘__’. Pedantic warnings are also disabled in the
expression that follows __extension__. However, only system header files should
use these escape routes; application programs should avoid them. See Section 5.38
[Alternate Keywords|, page 237.

Some users try to use ‘-pedantic’ to check programs for strict ISO C conformance.
They soon find that it does not do quite what they want: it finds some non-ISO
practices, but not all—only those for which ISO C requires a diagnostic, and some
others for which diagnostics have been added.

A feature to report any failure to conform to ISO C might be useful in some instances,
but would require considerable additional work and would be quite different from
‘-pedantic’. We don’t have plans to support such a feature in the near future.

Where the standard specified with ‘-std’ represents a GNU extended dialect of C,
such as ‘gnu89’ or ‘gnu99’, there is a corresponding base standard, the version of
ISO C on which the GNU extended dialect is based. Warnings from ‘-pedantic’
are given where they are required by the base standard. (It would not make sense
for such warnings to be given only for features not in the specified GNU C dialect,
since by definition the GNU dialects of C include all features the compiler supports
with the given option, and there would be nothing to warn about.)

-pedantic-errors
Like ‘-pedantic’, except that errors are produced rather than warnings.

-w Inhibit all warning messages.

-Wno-import
Inhibit warning messages about the use of ‘#import’.

-Wchar-subscripts
Warn if an array subscript has type char. This is a common cause of error, as
programmers often forget that this type is signed on some machines. This warning
is enabled by ‘-Wall’.

-Wcomment
Warn whenever a comment-start sequence ‘/*’ appears in a ‘/*’ comment, or when-
ever a Backslash-Newline appears in a ‘//’ comment. This warning is enabled by
[4)
-Wall’.

-Wfatal-errors
This option causes the compiler to abort compilation on the first error occurred
rather than trying to keep going and printing further error messages.

-Wformat Check calls to printf and scanf, etc., to make sure that the arguments supplied
have types appropriate to the format string specified, and that the conversions spec-
ified in the format string make sense. This includes standard functions, and others
specified by format attributes (see Section 5.24 [Function Attributes], page 191),
in the printf, scanf, strftime and strfmon (an X/Open extension, not in the C
standard) families (or other target-specific families). Which functions are checked
without format attributes having been specified depends on the standard version

Chapter 3: GCC Command Options 33

selected, and such checks of functions without the attribute specified are disabled
by ‘~ffreestanding’ or ‘-fno-builtin’.

The formats are checked against the format features supported by GNU libc version
2.2. These include all ISO C90 and C99 features, as well as features from the Single
Unix Specification and some BSD and GNU extensions. Other library implemen-
tations may not support all these features; GCC does not support warning about
features that go beyond a particular library’s limitations. However, if ‘-pedantic’
is used with ‘-Wformat’, warnings will be given about format features not in the
selected standard version (but not for strfmon formats, since those are not in any
version of the C standard). See Section 3.4 [Options Controlling C Dialect], page 19.

Since ‘-Wformat’ also checks for null format arguments for several functions,
‘~Wformat’ also implies ‘~-Wnonnull’.

‘~Wformat’ is included in ‘-Wall’. For more control over some aspects of
format checking, the options ‘-Wformat-y2k’, ‘-Wno-format-extra-args’,
‘-Wno-format-zero-length’, ‘~-Wformat-nonliteral’, ‘-Wformat-security’, and
‘~-Wformat=2’ are available, but are not included in ‘-Wall’.

-Wformat-y2k
If ‘-Wformat’ is specified, also warn about strftime formats which may yield only
a two-digit year.

-Wno-format-extra-args
If ‘~Wformat’ is specified, do not warn about excess arguments to a printf or scanf
format function. The C standard specifies that such arguments are ignored.

Where the unused arguments lie between used arguments that are specified with ‘$’
operand number specifications, normally warnings are still given, since the imple-
mentation could not know what type to pass to va_arg to skip the unused argu-
ments. However, in the case of scanf formats, this option will suppress the warning
if the unused arguments are all pointers, since the Single Unix Specification says
that such unused arguments are allowed.

-Wno-format-zero-length
If ‘“-Wformat’ is specified, do not warn about zero-length formats. The C standard
specifies that zero-length formats are allowed.

-Wformat-nonliteral
If ‘~Wformat’ is specified, also warn if the format string is not a string literal and
so cannot be checked, unless the format function takes its format arguments as a
va_list.

-Wformat-security

If ‘“~Wformat’ is specified, also warn about uses of format functions that repre-
sent possible security problems. At present, this warns about calls to printf and
scanf functions where the format string is not a string literal and there are no
format arguments, as in printf (foo);. This may be a security hole if the format
string came from untrusted input and contains ‘%n’. (This is currently a subset of
what ‘-Wformat-nonliteral’ warns about, but in future warnings may be added
to ‘~-Wformat-security’ that are not included in ‘~-Wformat-nonliteral’.)

-Wformat=2
Enable ‘-Wformat’ plus format checks not included in ‘-Wformat’. Currently equiv-
alent to ‘~Wformat -Wformat-nonliteral -Wformat-security -Wformat-y2k’.

-Wnonnull
Warn about passing a null pointer for arguments marked as requiring a non-null
value by the nonnull function attribute.

34 Using the GNU Compiler Collection (GCC)

‘~Wnonnull’ is included in ‘-Wall’ and ‘-Wformat’. It can be disabled with the
‘~Wno-nonnull’ option.

-Winit-self (C, C++, Objective-C and Objective-C++ only)
Warn about uninitialized variables which are initialized with themselves. Note this
option can only be used with the ‘-Wuninitialized’ option, which in turn only
works with ‘=01’ and above.

For example, GCC will warn about i being uninitialized in the following snippet
only when ‘~Winit-self’ has been specified:

int £Q)

{
int i = i;
return i;

}

-Wimplicit-int
Warn when a declaration does not specify a type. This warning is enabled by
‘~Wall’.

-Wimplicit-function-declaration

-Werror-implicit-function-declaration
Give a warning (or error) whenever a function is used before being declared. The
form ‘~Wno-error-implicit-function-declaration’is not supported. This warn-
ing is enabled by ‘-Wall’ (as a warning, not an error).

-Wimplicit
Same as ‘-Wimplicit-int’ and ‘-Wimplicit-function-declaration’. This warn-
ing is enabled by ‘-Wall’.

-Wmain Warn if the type of ‘main’ is suspicious. ‘main’ should be a function with external
linkage, returning int, taking either zero arguments, two, or three arguments of
appropriate types. This warning is enabled by ‘-Wall’.

-Wmissing-braces
Warn if an aggregate or union initializer is not fully bracketed. In the following
example, the initializer for ‘a’ is not fully bracketed, but that for ‘b’ is fully bracketed.

int af2][2] = {0, 1, 2, 3 };
int b[2][2] ={ {0, 13}, {2,31}};

This warning is enabled by ‘-Wall’.

-Wmissing-include-dirs (C, C++, Objective-C and Objective-C++ only)
Warn if a user-supplied include directory does not exist.

-Wparentheses
Warn if parentheses are omitted in certain contexts, such as when there is an as-
signment in a context where a truth value is expected, or when operators are nested
whose precedence people often get confused about. Only the warning for an assign-
ment used as a truth value is supported when compiling C++; the other warnings
are only supported when compiling C.

Also warn if a comparison like ‘x<=y<=z’ appears; this is equivalent to ‘(x<=y 7 1
: 0) <= z’, which is a different interpretation from that of ordinary mathematical
notation.

Also warn about constructions where there may be confusion to which if statement
an else branch belongs. Here is an example of such a case:

Chapter 3:

GCC Command Options 35

{
if (a)
if (o)
foo O
else
bar O;
}
In C, every else branch belongs to the innermost possible if statement, which in
this example is if (b). This is often not what the programmer expected, as illus-
trated in the above example by indentation the programmer chose. When there is
the potential for this confusion, GCC will issue a warning when this flag is specified.
To eliminate the warning, add explicit braces around the innermost if statement
so there is no way the else could belong to the enclosing if. The resulting code
would look like this:

{
if (a)
{
if (b)
foo ();
else
bar O;
}
}

This warning is enabled by ‘-Wall’.

-Wsequence-point

Warn about code that may have undefined semantics because of violations of se-
quence point rules in the C standard.

The C standard defines the order in which expressions in a C program are evaluated
in terms of sequence points, which represent a partial ordering between the execu-
tion of parts of the program: those executed before the sequence point, and those
executed after it. These occur after the evaluation of a full expression (one which is
not part of a larger expression), after the evaluation of the first operand of a &&, | |,
? : or , (comma) operator, before a function is called (but after the evaluation of
its arguments and the expression denoting the called function), and in certain other
places. Other than as expressed by the sequence point rules, the order of evaluation
of subexpressions of an expression is not specified. All these rules describe only a
partial order rather than a total order, since, for example, if two functions are called
within one expression with no sequence point between them, the order in which the
functions are called is not specified. However, the standards committee have ruled
that function calls do not overlap.

It is not specified when between sequence points modifications to the values of ob-
jects take effect. Programs whose behavior depends on this have undefined behav-
ior; the C standard specifies that “Between the previous and next sequence point
an object shall have its stored value modified at most once by the evaluation of
an expression. Furthermore, the prior value shall be read only to determine the
value to be stored.”. If a program breaks these rules, the results on any particular
implementation are entirely unpredictable.

Examples of code with undefined behavior are a = a++;, a[n] = b[n++] and a[i++]
= i;. Some more complicated cases are not diagnosed by this option, and it may give
an occasional false positive result, but in general it has been found fairly effective
at detecting this sort of problem in programs.

The present implementation of this option only works for C programs. A future
implementation may also work for C++ programs.

36 Using the GNU Compiler Collection (GCC)

The C standard is worded confusingly, therefore there is some debate over the precise
meaning of the sequence point rules in subtle cases. Links to discussions of the
problem, including proposed formal definitions, may be found on the GCC readings
page, at http://gcc.gnu.org/readings.html.

This warning is enabled by ‘-Wall’.

-Wreturn-type
Warn whenever a function is defined with a return-type that defaults to int. Also
warn about any return statement with no return-value in a function whose return-
type is not void.

For C, also warn if the return type of a function has a type qualifier such as const.
Such a type qualifier has no effect, since the value returned by a function is not an
Ivalue. ISO C prohibits qualified void return types on function definitions, so such
return types always receive a warning even without this option.

For C++, a function without return type always produces a diagnostic message, even
when ‘~Wno-return-type’ is specified. The only exceptions are ‘main’ and functions
defined in system headers.

This warning is enabled by ‘-Wall’.

-Wswitch Warn whenever a switch statement has an index of enumerated type and lacks a
case for one or more of the named codes of that enumeration. (The presence of a
default label prevents this warning.) case labels outside the enumeration range
also provoke warnings when this option is used. This warning is enabled by ‘-Wall’.

-Wswitch-default
Warn whenever a switch statement does not have a default case.

-Wswitch-enum
Warn whenever a switch statement has an index of enumerated type and lacks a
case for one or more of the named codes of that enumeration. case labels outside
the enumeration range also provoke warnings when this option is used.

-Wtrigraphs
Warn if any trigraphs are encountered that might change the meaning of the program
(trigraphs within comments are not warned about). This warning is enabled by
‘~Wall’.

-Wunused-function
Warn whenever a static function is declared but not defined or a non\-inline static
function is unused. This warning is enabled by ‘-Wall’.

-Wunused-label
Warn whenever a label is declared but not used. This warning is enabled by ‘-Wall’.

To suppress this warning use the ‘unused’ attribute (see Section 5.31 [Variable
Attributes], page 205).

-Wunused-parameter
Warn whenever a function parameter is unused aside from its declaration.

To suppress this warning use the ‘unused’ attribute (see Section 5.31 [Variable
Attributes], page 205).

-Wunused-variable
Warn whenever a local variable or non-constant static variable is unused aside from
its declaration This warning is enabled by ‘-Wall’.

To suppress this warning use the ‘unused’ attribute (see Section 5.31 [Variable
Attributes], page 205).

http://gcc.gnu.org/readings.html

Chapter 3: GCC Command Options 37

-Wunused-value

Warn whenever a statement computes a result that is explicitly not used. This
warning is enabled by ‘-Wall’.

To suppress this warning cast the expression to ‘void’.

-Wunused All the above ‘-Wunused’ options combined.
In order to get a warning about an unused function parameter, you must either
specify ‘-Wextra -Wunused’ (note that ‘-Wall’ implies ‘-Wunused’), or separately
specify ‘~Wunused-parameter’.

-Wuninitialized

Warn if an automatic variable is used without first being initialized or if a variable
may be clobbered by a setjmp call.

These warnings are possible only in optimizing compilation, because they require
data flow information that is computed only when optimizing. If you don’t specify
‘-0’, you simply won’t get these warnings.

If you want to warn about code which uses the uninitialized value of the variable in
its own initializer, use the ‘-Winit-self’ option.

These warnings occur for individual uninitialized or clobbered elements of structure,
union or array variables as well as for variables which are uninitialized or clobbered
as a whole. They do not occur for variables or elements declared volatile. Because
these warnings depend on optimization, the exact variables or elements for which
there are warnings will depend on the precise optimization options and version of
GCC used.

Note that there may be no warning about a variable that is used only to compute
a value that itself is never used, because such computations may be deleted by data
flow analysis before the warnings are printed.

These warnings are made optional because GCC is not smart enough to see all the
reasons why the code might be correct despite appearing to have an error. Here is
one example of how this can happen:

{

int x;
switch (y)
{
case 1: x
break;
case 2: x
break;
case 3: x
}
foo (x);
}

If the value of y is always 1, 2 or 3, then x is always initialized, but GCC doesn’t
know this. Here is another common case:
{

int save_y;
if (change_y) save_y = y, y = new_y;

]
-

]
S

1]
]

if (change_y) y = save_y;
}

This has no bug because save_y is used only if it is set.

This option also warns when a non-volatile automatic variable might be changed by a
call to longjmp. These warnings as well are possible only in optimizing compilation.

38 Using the GNU Compiler Collection (GCC)

The compiler sees only the calls to setjmp. It cannot know where longjmp will be
called; in fact, a signal handler could call it at any point in the code. As a result, you
may get a warning even when there is in fact no problem because longjmp cannot
in fact be called at the place which would cause a problem.

Some spurious warnings can be avoided if you declare all the functions you use that
never return as noreturn. See Section 5.24 [Function Attributes|, page 191.

This warning is enabled by ‘~-Wall’.

-Wunknown-pragmas
Warn when a #pragma directive is encountered which is not understood by GCC. If
this command line option is used, warnings will even be issued for unknown pragmas
in system header files. This is not the case if the warnings were only enabled by the
‘-Wall’ command line option.

-Wstrict-aliasing
This option is only active when ‘-fstrict-aliasing’ is active. It warns about code
which might break the strict aliasing rules that the compiler is using for optimization.
The warning does not catch all cases, but does attempt to catch the more common
pitfalls. It is included in ‘-Wall’.

-Wstrict-aliasing=2
This option is only active when ‘-fstrict-aliasing’ is active. It warns about code
which might break the strict aliasing rules that the compiler is using for optimization.
This warning catches more cases than ‘~Wstrict-aliasing’, but it will also give a
warning for some ambiguous cases that are safe.

-Wall All of the above ‘=W’ options combined. This enables all the warnings about construc-
tions that some users consider questionable, and that are easy to avoid (or modify
to prevent the warning), even in conjunction with macros. This also enables some
language-specific warnings described in Section 3.5 [C++ Dialect Options|, page 22
and Section 3.6 [Objective-C and Objective-C++ Dialect Options|, page 28.

The following ‘=W. . .” options are not implied by ‘-Wall’. Some of them warn about construc-
tions that users generally do not consider questionable, but which occasionally you might wish
to check for; others warn about constructions that are necessary or hard to avoid in some cases,
and there is no simple way to modify the code to suppress the warning.

-Wextra (This option used to be called ‘-W’. The older name is still supported, but the newer
name is more descriptive.) Print extra warning messages for these events:

e A function can return either with or without a value. (Falling off the end of
the function body is considered returning without a value.) For example, this
function would evoke such a warning:

foo (a)
{
if (a > 0)
return a;
}

e An expression-statement or the left-hand side of a comma expression contains no
side effects. To suppress the warning, cast the unused expression to void. For ex-
ample, an expression such as ‘x[i,j]’ will cause a warning, but ‘x[(void)i,jl’
will not.

e An unsigned value is compared against zero with ‘<’ or ‘>=".

e Storage-class specifiers like static are not the first things in a declaration.
According to the C Standard, this usage is obsolescent.

e If ‘-Wall’ or ‘-~Wunused’ is also specified, warn about unused arguments.

Chapter 3: GCC Command Options 39

e A comparison between signed and unsigned values could produce an incorrect
result when the signed value is converted to unsigned. (But don’t warn if
‘~Wno-sign-compare’ is also specified.)

e An aggregate has an initializer which does not initialize all members. This warn-
ing can be independently controlled by ‘~Wmissing-field-initializers’.

e A function parameter is declared without a type specifier in K&R-style func-
tions:
void foo(bar) { }

e An empty body occurs in an ‘if’ or ‘else’ statement.
e A pointer is compared against integer zero with ‘<’, ‘<=’ >’ or >=".
e A variable might be changed by ‘longjmp’ or ‘vfork’.

e Any of several floating-point events that often indicate errors, such as overflow,
underflow, loss of precision, etc.

e (C++ only) An enumerator and a non-enumerator both appear in a conditional
expression.

e (C++ only) A non-static reference or non-static ‘const’ member appears in a
class without constructors.

o (C++ only) Ambiguous virtual bases.
e (C++ only) Subscripting an array which has been declared ‘register’.
e (C++ only) Taking the address of a variable which has been declared ‘register’.

e (C++ only) A base class is not initialized in a derived class’ copy constructor.

-Wno-div-by-zero
Do not warn about compile-time integer division by zero. Floating point division by
zero is not warned about, as it can be a legitimate way of obtaining infinities and
NaNs.

-Wsystem-headers

Print warning messages for constructs found in system header files. Warnings from
system headers are normally suppressed, on the assumption that they usually do
not indicate real problems and would only make the compiler output harder to read.
Using this command line option tells GCC to emit warnings from system headers
as if they occurred in user code. However, note that using ‘-Wall’ in conjunction
with this option will not warn about unknown pragmas in system headers—for that,
‘~Wunknown-pragmas’ must also be used.

-Wfloat-equal
Warn if floating point values are used in equality comparisons.

The idea behind this is that sometimes it is convenient (for the programmer) to
consider floating-point values as approximations to infinitely precise real numbers.
If you are doing this, then you need to compute (by analyzing the code, or in some
other way) the maximum or likely maximum error that the computation introduces,
and allow for it when performing comparisons (and when producing output, but
that’s a different problem). In particular, instead of testing for equality, you would
check to see whether the two values have ranges that overlap; and this is done with
the relational operators, so equality comparisons are probably mistaken.

-Wtraditional (C only)
Warn about certain constructs that behave differently in traditional and ISO C.
Also warn about ISO C constructs that have no traditional C equivalent, and/or
problematic constructs which should be avoided.

40

Using the GNU Compiler Collection (GCC)

Macro parameters that appear within string literals in the macro body. In
traditional C macro replacement takes place within string literals, but does not
in ISO C.

In traditional C, some preprocessor directives did not exist. Traditional pre-
processors would only consider a line to be a directive if the ‘#’ appeared in
column 1 on the line. Therefore ‘-Wtraditional’ warns about directives that
traditional C understands but would ignore because the ‘#” does not appear as
the first character on the line. It also suggests you hide directives like ‘#pragma’
not understood by traditional C by indenting them. Some traditional imple-
mentations would not recognize ‘#elif’, so it suggests avoiding it altogether.

A function-like macro that appears without arguments.
The unary plus operator.

The ‘U’ integer constant suffix, or the ‘F’ or ‘L’ floating point constant suffixes.
(Traditional C does support the ‘L’ suffix on integer constants.) Note, these
suffixes appear in macros defined in the system headers of most modern sys-
tems, e.g. the ‘_MIN’/‘_MAX’ macros in <limits.h>. Use of these macros in
user code might normally lead to spurious warnings, however GCC’s integrated
preprocessor has enough context to avoid warning in these cases.

A function declared external in one block and then used after the end of the
block.

A switch statement has an operand of type long.

A non-static function declaration follows a static one. This construct is not
accepted by some traditional C compilers.

The ISO type of an integer constant has a different width or signedness from
its traditional type. This warning is only issued if the base of the constant is
ten. I.e. hexadecimal or octal values, which typically represent bit patterns, are
not warned about.

Usage of ISO string concatenation is detected.
Initialization of automatic aggregates.

Identifier conflicts with labels. Traditional C lacks a separate namespace for
labels.

Initialization of unions. If the initializer is zero, the warning is omitted. This
is done under the assumption that the zero initializer in user code appears
conditioned on e.g. __STDC__ to avoid missing initializer warnings and relies on
default initialization to zero in the traditional C case.

Conversions by prototypes between fixed /floating point values and vice versa.
The absence of these prototypes when compiling with traditional C would cause
serious problems. This is a subset of the possible conversion warnings, for the
full set use ‘~Wconversion’.

Use of ISO C style function definitions. This warning intentionally is not issued
for prototype declarations or variadic functions because these ISO C features
will appear in your code when using libiberty’s traditional C compatibility
macros, PARAMS and VPARAMS. This warning is also bypassed for nested func-
tions because that feature is already a GCC extension and thus not relevant to
traditional C compatibility.

-Wdeclaration-after-statement (C only)

Warn when a declaration is found after a statement in a block. This construct,
known from C++, was introduced with ISO C99 and is by default allowed in GCC.

Chapter 3: GCC Command Options 41

It is not supported by ISO C90 and was not supported by GCC versions before GCC
3.0. See Section 5.23 [Mixed Declarations|, page 191.

-Wundef Warn if an undefined identifier is evaluated in an ‘#if’ directive.

-Wno-endif-labels
Do not warn whenever an ‘#else’ or an ‘#endif’ are followed by text.

-Wshadow Warn whenever a local variable shadows another local variable, parameter or global
variable or whenever a built-in function is shadowed.

-Wlarger-than-len
Warn whenever an object of larger than len bytes is defined.

-Wpointer-arith
Warn about anything that depends on the “size of” a function type or of void.
GNU C assigns these types a size of 1, for convenience in calculations with void *
pointers and pointers to functions.

-Wbad-function-cast (C only)
Warn whenever a function call is cast to a non-matching type. For example, warn
if int malloc() is cast to anything *.

-Wcast-qual
Warn whenever a pointer is cast so as to remove a type qualifier from the target
type. For example, warn if a const char * is cast to an ordinary char *.

-Wcast-align
Warn whenever a pointer is cast such that the required alignment of the target is
increased. For example, warn if a char * is cast to an int * on machines where
integers can only be accessed at two- or four-byte boundaries.

-Wwrite-strings

When compiling C, give string constants the type const char[length] so that
copying the address of one into a non-const char * pointer will get a warning;
when compiling C++, warn about the deprecated conversion from string constants
to char *. These warnings will help you find at compile time code that can try
to write into a string constant, but only if you have been very careful about using
const in declarations and prototypes. Otherwise, it will just be a nuisance; this is
why we did not make ‘-Wall’ request these warnings.

-Wconversion
Warn if a prototype causes a type conversion that is different from what would
happen to the same argument in the absence of a prototype. This includes conver-
sions of fixed point to floating and vice versa, and conversions changing the width or
signedness of a fixed point argument except when the same as the default promotion.

Also, warn if a negative integer constant expression is implicitly converted to an
unsigned type. For example, warn about the assignment x = -1 if x is unsigned.
But do not warn about explicit casts like (unsigned) -1.

-Wsign-compare
Warn when a comparison between signed and unsigned values could produce an
incorrect result when the signed value is converted to unsigned. This warning is
also enabled by ‘-Wextra’; to get the other warnings of ‘-Wextra’ without this
warning, use ‘-Wextra -Wno-sign-compare’.

-Waggregate-return
Warn if any functions that return structures or unions are defined or called. (In
languages where you can return an array, this also elicits a warning.)

42 Using the GNU Compiler Collection (GCC)

-Wstrict-prototypes (C only)
Warn if a function is declared or defined without specifying the argument types.
(An old-style function definition is permitted without a warning if preceded by a
declaration which specifies the argument types.)

-Wold-style-definition (C only)
Warn if an old-style function definition is used. A warning is given even if there is
a previous prototype.

-Wmissing-prototypes (C only)
Warn if a global function is defined without a previous prototype declaration. This
warning is issued even if the definition itself provides a prototype. The aim is to
detect global functions that fail to be declared in header files.

-Wmissing-declarations (C only)
Warn if a global function is defined without a previous declaration. Do so even if
the definition itself provides a prototype. Use this option to detect global functions
that are not declared in header files.

-Wmissing-field-initializers

Warn if a structure’s initializer has some fields missing. For example, the following
code would cause such a warning, because x.h is implicitly zero:

struct s { int £, g, h; };

struct s x = { 3, 4 };
This option does not warn about designated initializers, so the following modification
would not trigger a warning:

struct s { int £, g, h; };

struct s x = { .f =3, .g=41};
This warning is included in ‘-Wextra’. To get other ‘-Wextra’ warnings without
this one, use ‘-Wextra -Wno-missing-field-initializers’.

-Wmissing-noreturn
Warn about functions which might be candidates for attribute noreturn. Note
these are only possible candidates, not absolute ones. Care should be taken to
manually verify functions actually do not ever return before adding the noreturn
attribute, otherwise subtle code generation bugs could be introduced. You will not
get a warning for main in hosted C environments.

-Wmissing-format-attribute
If ‘~Wformat’ is enabled, also warn about functions which might be candidates for
format attributes. Note these are only possible candidates, not absolute ones. GCC
will guess that format attributes might be appropriate for any function that calls a
function like vprintf or vscanf, but this might not always be the case, and some
functions for which format attributes are appropriate may not be detected. This
option has no effect unless ‘~Wformat’ is enabled (possibly by ‘-Wall’).

-Wno-multichar
Do not warn if a multicharacter constant (‘’FO0F’’) is used. Usually they indicate
a typo in the user’s code, as they have implementation-defined values, and should
not be used in portable code.

-Wno-deprecated-declarations
Do not warn about uses of functions, variables, and types marked as deprecated by
using the deprecated attribute. (see Section 5.24 [Function Attributes|, page 191,
see Section 5.31 [Variable Attributes|, page 205, see Section 5.32 [Type Attributes],
page 209.)

Chapter 3: GCC Command Options 43

-Wpacked

-Wpadded

Warn if a structure is given the packed attribute, but the packed attribute has no
effect on the layout or size of the structure. Such structures may be mis-aligned
for little benefit. For instance, in this code, the variable f.x in struct bar will be
misaligned even though struct bar does not itself have the packed attribute:

struct foo {

int x;

char a, b, c, d;
} __attribute__((packed));
struct bar {

char z;

struct foo f;

};
Warn if padding is included in a structure, either to align an element of the structure
or to align the whole structure. Sometimes when this happens it is possible to

rearrange the fields of the structure to reduce the padding and so make the structure
smaller.

-Wredundant-decls

Warn if anything is declared more than once in the same scope, even in cases where
multiple declaration is valid and changes nothing.

-Wnested-externs (C only)

Warn if an extern declaration is encountered within a function.

-Wunreachable-code

-Winline

Warn if the compiler detects that code will never be executed.

This option is intended to warn when the compiler detects that at least a whole line
of source code will never be executed, because some condition is never satisfied or
because it is after a procedure that never returns.

It is possible for this option to produce a warning even though there are circum-
stances under which part of the affected line can be executed, so care should be
taken when removing apparently-unreachable code.

For instance, when a function is inlined, a warning may mean that the line is un-
reachable in only one inlined copy of the function.

This option is not made part of ‘~-Wall’ because in a debugging version of a program
there is often substantial code which checks correct functioning of the program and
is, hopefully, unreachable because the program does work. Another common use of
unreachable code is to provide behavior which is selectable at compile-time.

Warn if a function can not be inlined and it was declared as inline. Even with
this option, the compiler will not warn about failures to inline functions declared in
system headers.

The compiler uses a variety of heuristics to determine whether or not to inline a
function. For example, the compiler takes into account the size of the function
being inlined and the amount of inlining that has already been done in the current
function. Therefore, seemingly insignificant changes in the source program can cause
the warnings produced by ‘-Winline’ to appear or disappear.

-Wno-invalid-offsetof (C++ only)

Suppress warnings from applying the ‘offsetof’ macro to a non-POD type. Ac-
cording to the 1998 ISO C++ standard, applying ‘offsetof’ to a non-POD type
is undefined. In existing C++ implementations, however, ‘offsetof’ typically gives
meaningful results even when applied to certain kinds of non-POD types. (Such as a
simple ‘struct’ that fails to be a POD type only by virtue of having a constructor.)

44 Using the GNU Compiler Collection (GCC)

This flag is for users who are aware that they are writing nonportable code and who
have deliberately chosen to ignore the warning about it.

The restrictions on ‘offsetof’ may be relaxed in a future version of the C++ stan-
dard.

-Winvalid-pch
Warn if a precompiled header (see Section 3.20 [Precompiled Headers|, page 166) is
found in the search path but can’t be used.

-Wlong-long
Warn if ‘long long’ type is used. This is default. To inhibit the warning messages,
use ‘-Wno-long-long’. Flags ‘-Wlong-long’ and ‘-Wno-long-long’ are taken into
account only when ‘-pedantic’ flag is used.

-Wvariadic-macros
Warn if variadic macros are used in pedantic ISO C90 mode, or the GNU alternate
syntax when in pedantic ISO C99 mode. This is default. To inhibit the warning
messages, use ‘-Wno-variadic-macros’.

-Wdisabled-optimization
Warn if a requested optimization pass is disabled. This warning does not generally
indicate that there is anything wrong with your code; it merely indicates that GCC’s
optimizers were unable to handle the code effectively. Often, the problem is that
your code is too big or too complex; GCC will refuse to optimize programs when
the optimization itself is likely to take inordinate amounts of time.

-Wno-pointer-sign
Don’t warn for pointer argument passing or assignment with different signedness.
Only useful in the negative form since this warning is enabled by default. This
option is only supported for C and Objective-C.

-Werror Make all warnings into errors.

3.9 Options for Debugging Your Program or GCC
GCC has various special options that are used for debugging either your program or GCC:

-g Produce debugging information in the operating system’s native format (stabs,
COFF, XCOFF, or DWARF 2). GDB can work with this debugging information.

On most systems that use stabs format, ‘-g’ enables use of extra debugging informa-
tion that only GDB can use; this extra information makes debugging work better in
GDB but will probably make other debuggers crash or refuse to read the program.
If you want to control for certain whether to generate the extra information, use
‘-gstabs+’, ‘-gstabs’, ‘-gxcoff+’, ‘-gxcoff’, or ‘-gvms’ (see below).

GCC allows you to use ‘-g’ with ‘-=0’. The shortcuts taken by optimized code may
occasionally produce surprising results: some variables you declared may not exist at
all; flow of control may briefly move where you did not expect it; some statements
may not be executed because they compute constant results or their values were
already at hand; some statements may execute in different places because they were
moved out of loops.

Nevertheless it proves possible to debug optimized output. This makes it reasonable
to use the optimizer for programs that might have bugs.

The following options are useful when GCC is generated with the capability for
more than one debugging format.

Chapter 3: GCC Command Options 45

-ggdb Produce debugging information for use by GDB. This means to use the most ex-
pressive format available (DWARF 2, stabs, or the native format if neither of those
are supported), including GDB extensions if at all possible.

-gstabs Produce debugging information in stabs format (if that is supported), without GDB
extensions. This is the format used by DBX on most BSD systems. On MIPS, Alpha
and System V Release 4 systems this option produces stabs debugging output which
is not understood by DBX or SDB. On System V Release 4 systems this option
requires the GNU assembler.

-feliminate-unused-debug-symbols
Produce debugging information in stabs format (if that is supported), for only sym-
bols that are actually used.

-gstabs+ Produce debugging information in stabs format (if that is supported), using GNU
extensions understood only by the GNU debugger (GDB). The use of these exten-
sions is likely to make other debuggers crash or refuse to read the program.

-gcoff Produce debugging information in COFF format (if that is supported). This is the
format used by SDB on most System V systems prior to System V Release 4.

-gxcoff Produce debugging information in XCOFF format (if that is supported). This is
the format used by the DBX debugger on IBM RS/6000 systems.

-gxcoff+ Produce debugging information in XCOFF format (if that is supported), using GNU
extensions understood only by the GNU debugger (GDB). The use of these exten-
sions is likely to make other debuggers crash or refuse to read the program, and may
cause assemblers other than the GNU assembler (GAS) to fail with an error.

-gdwarf-2
Produce debugging information in DWARF version 2 format (if that is supported).
This is the format used by DBX on IRIX 6. With this option, GCC uses features
of DWARF version 3 when they are useful; version 3 is upward compatible with
version 2, but may still cause problems for older debuggers.

-gvms Produce debugging information in VMS debug format (if that is supported). This
is the format used by DEBUG on VMS systems.

-glevel

-ggdblevel

-gstabslevel

-gcofflevel

-gxcofflevel

-gvmslevel
Request debugging information and also use level to specify how much information.
The default level is 2.

Level 1 produces minimal information, enough for making backtraces in parts of the
program that you don’t plan to debug. This includes descriptions of functions and
external variables, but no information about local variables and no line numbers.

Level 3 includes extra information, such as all the macro definitions present in the
program. Some debuggers support macro expansion when you use ‘-g3’.

‘~gdwarf-2’ does not accept a concatenated debug level, because GCC used to
support an option ‘-gdwarf’ that meant to generate debug information in version 1
of the DWARF format (which is very different from version 2), and it would have
been too confusing. That debug format is long obsolete, but the option cannot be
changed now. Instead use an additional ‘-glevel’ option to change the debug level
for DWARF2.

46

Using the GNU Compiler Collection (GCC)

-feliminate-dwarf2-dups

P

-Q

Compress DWARF2 debugging information by eliminating duplicated information
about each symbol. This option only makes sense when generating DWARF2 de-
bugging information with ‘-~gdwarf-2’.

Generate extra code to write profile information suitable for the analysis program
prof. You must use this option when compiling the source files you want data
about, and you must also use it when linking.

Generate extra code to write profile information suitable for the analysis program
gprof. You must use this option when compiling the source files you want data
about, and you must also use it when linking.

Makes the compiler print out each function name as it is compiled, and print some
statistics about each pass when it finishes.

-ftime-report

Makes the compiler print some statistics about the time consumed by each pass
when it finishes.

-fmem-report

Makes the compiler print some statistics about permanent memory allocation when
it finishes.

—-fprofile-arcs

Add code so that program flow arcs are instrumented. During execution the program
records how many times each branch and call is executed and how many times
it is taken or returns. When the compiled program exits it saves this data to a
file called ‘auxname.gcda’ for each source file. The data may be used for profile-
directed optimizations (‘-fbranch-probabilities’), or for test coverage analysis
(‘-ftest-coverage’). Each object file’s auxname is generated from the name of
the output file, if explicitly specified and it is not the final executable, otherwise
it is the basename of the source file. In both cases any suffix is removed (e.g.
‘foo.gcda’ for input file ‘dir/foo.c’, or ‘dir/foo.gcda’ for output file specified as
‘-0 dir/foo0.0’).

e Compile the source files with ‘-fprofile-arcs’ plus optimization and
code generation options. For test coverage analysis, use the additional
‘~-ftest-coverage’ option. You do not need to profile every source file in a
program.

e Link your object files with ‘~-1gcov’ or ‘~fprofile-arcs’ (the latter implies the
former).

e Run the program on a representative workload to generate the arc profile infor-
mation. This may be repeated any number of times. You can run concurrent
instances of your program, and provided that the file system supports lock-
ing, the data files will be correctly updated. Also fork calls are detected and
correctly handled (double counting will not happen).

e For profile-directed optimizations, compile the source files again with the same
optimization and code generation options plus ‘-fbranch-probabilities’ (see
Section 3.10 [Options that Control Optimization|, page 54).

e For test coverage analysis, use gcov to produce human readable information
from the ‘. gcno’” and ‘. gcda’ files. Refer to the gcov documentation for further
information.

With ‘~fprofile-arcs’, for each function of your program GCC creates a program
flow graph, then finds a spanning tree for the graph. Only arcs that are not on the

Chapter 3: GCC Command Options 47

spanning tree have to be instrumented: the compiler adds code to count the number
of times that these arcs are executed. When an arc is the only exit or only entrance
to a block, the instrumentation code can be added to the block; otherwise, a new
basic block must be created to hold the instrumentation code.

—-ftree-based-profiling
This option is used in addition to ‘~-fprofile-arcs’ or ‘~fbranch-probabilities’
to control whether those optimizations are performed on a tree-based or rtl-based in-
ternal representation. If you use this option when compiling with ‘-fprofile-arcs’,
you must also use it when compiling later with ‘-fbranch-probabilities’. Cur-
rently the tree-based optimization is in an early stage of development, and this
option is recommended only for those people working on improving it.

-ftest-coverage
Produce a notes file that the gcov code-coverage utility (see Chapter 9 [gcov—a
Test Coverage Program]|, page 315) can use to show program coverage. Each source
file’s note file is called ‘auxname.gcno’. Refer to the ‘~-fprofile-arcs’ option above
for a description of auxname and instructions on how to generate test coverage data.
Coverage data will match the source files more closely, if you do not optimize.

-dletters

—-fdump-rtl-pass
Says to make debugging dumps during compilation at times specified by letters.
This is used for debugging the RTL-based passes of the compiler. The file names
for most of the dumps are made by appending a pass number and a word to the
dumpname. dumpname is generated from the name of the output file, if explicitly
specified and it is not an executable, otherwise it is the basename of the source file.

Most debug dumps can be enabled either passing a letter to the ‘-d’ option, or with
a long ‘~fdump-rtl’ switch; here are the possible letters for use in letters and pass,
and their meanings:

-dA Annotate the assembler output with miscellaneous debugging informa-
tion.

-db
-fdump-rtl-bp
Dump after computing branch probabilities, to ‘file.09.bp’.

-dB
—-fdump-rtl-bbro
Dump after block reordering, to ‘file.30.bbro’.

-dc
—-fdump-rtl-combine
Dump after instruction combination, to the file ‘file.17.combine’.

-dC

-fdump-rtl-cel

-fdump-rtl-ce2
‘-dC’ and ‘-fdump-rtl-cel’ enable dumping after the first if conversion,
to the file ‘file.11.cel’. ‘-dC’ and ‘~fdump-rtl-ce2’ enable dumping
after the second if conversion, to the file ‘file.18.ce2’.

48

Using the GNU Compiler Collection (GCC)

-dd

-fdump-rtl-btl

-fdump-rtl-dbr
‘-dd’ and ‘-fdump-rtl-btl’ enable dumping after branch target load
optimization, to ‘file.31.btl’. ‘-dd’ and ‘-fdump-rtl-dbr’ enable
dumping after delayed branch scheduling, to ‘file.36.dbr’ .

-dD Dump all macro definitions, at the end of preprocessing, in addition to
normal output.

-dE
—fdump-rtl-ce3
Dump after the third if conversion, to ‘file.28.ce3’.

-df

-fdump-rtl-cfg

-fdump-rtl-life
‘=df’ and ‘~fdump-rtl-cfg’ enable dumping after control and data flow
analysis, to ‘file.08.cfg’. ‘-df’ and ‘-fdump-rtl-cfg’ enable dump-
ing dump after life analysis, to ‘file.16.1life’.

_dg
-fdump-rtl-greg
Dump after global register allocation, to ‘file.23.greg’.

-dG

-fdump-rtl-gcse

-fdump-rtl-bypass
‘-dG’ and ‘-fdump-rtl-gcse’ enable dumping after GCSE, to
‘file.05.gcse’. ‘=dG’ and ‘~fdump-rtl-bypass’ enable dumping after
jump bypassing and control flow optimizations, to ‘file.07.bypass’.

-dh
—-fdump-rtl-eh
Dump after finalization of EH handling code, to ‘file.02.eh’.

-di
-fdump-rtl-sibling
Dump after sibling call optimizations, to ‘file.01.sibling’ .

_dJ
-fdump-rtl-jump
Dump after the first jump optimization, to ‘file.03. jump’.

-dk
—fdump-rtl-stack
Dump after conversion from registers to stack, to ‘file.33.stack’.

-dl
-fdump-rtl-lreg
Dump after local register allocation, to ‘file.22.1lreg’.

-dL

—-fdump-rtl-loop

—fdump-rtl-loop2
‘=dL’ and ‘~fdump-rtl-loop’ enable dumping after the first loop opti-
mization pass, to ‘file.06.loop’. ‘-dL’ and ‘-fdump-rtl-loop2’ en-
able dumping after the second pass, to ‘file.13.loop2’.

Chapter 3:

GCC Command Options 49

—-dm
-fdump-rtl-sms
Dump after modulo scheduling, to ‘file.20.sms’.

-dM

-fdump-rtl-mach
Dump after performing the machine dependent reorganization pass, to
‘file.35.mach’.

—-dn
-fdump-rtl-rnreg
Dump after register renumbering, to ‘file.29.rnreg’.

—-dN
—fdump-rtl-regmove
Dump after the register move pass, to ‘file.19.regmove’.

-do
-fdump-rtl-postreload
Dump after post-reload optimizations, to ‘file.24.postreload’.

-dr
-fdump-rtl-expand
Dump after RTL generation, to ‘file.00.expand’.

-dR
-fdump-rtl-sched2
Dump after the second scheduling pass, to ‘file.32.sched?2’.

-ds

-fdump-rtl-cse
Dump after CSE (including the jump optimization that sometimes fol-
lows CSE), to ‘file.04.cse’.

-ds
—fdump-rtl-sched
Dump after the first scheduling pass, to ‘file.21.sched’.

-dt

-fdump-rtl-cse2
Dump after the second CSE pass (including the jump optimization that
sometimes follows CSE), to ‘file.15.cse2’.

-dT
-fdump-rtl-tracer
Dump after running tracer, to ‘file.12.tracer’.

-dv

-fdump-rtl-vpt

—fdump-rtl-vartrack
‘-dV’ and ‘-fdump-rtl-vpt’ enable dumping after the value profile
transformations, to ‘file.10.vpt’. ‘-dV’ and ‘-fdump-rtl-vartrack’
enable dumping after variable tracking, to ‘file.34.vartrack’.

-dw
—fdump-rtl-flow2
Dump after the second flow pass, to ‘file.26.flow2’.

50 Using the GNU Compiler Collection (GCC)

-dz
—fdump-rtl-peephole2
Dump after the peephole pass, to ‘file.27.peephole2’.

-dZ
-fdump-rtl-web
Dump after live range splitting, to ‘file.14.web’.
-da
-fdump-rtl-all
Produce all the dumps listed above.

-dH Produce a core dump whenever an error occurs.

—dm Print statistics on memory usage, at the end of the run, to standard
error.

-dp Annotate the assembler output with a comment indicating which pat-
tern and alternative was used. The length of each instruction is also
printed.

-dpP Dump the RTL in the assembler output as a comment before each in-

struction. Also turns on ‘-dp’ annotation.

-dv For each of the other indicated dump files (either with ‘-d’ or
‘~fdump-rtl-pass’), dump a representation of the control flow graph
suitable for viewing with VCG to ‘file.pass.vcg'.

-dx Just generate RTL for a function instead of compiling it. Usually used
with ‘r’ (‘~-fdump-rtl-expand’).

-dy Dump debugging information during parsing, to standard error.

—-fdump-unnumbered
When doing debugging dumps (see ‘-d’ option above), suppress instruction numbers
and line number note output. This makes it more feasible to use diff on debugging
dumps for compiler invocations with different options, in particular with and without

c_ga‘

-fdump-translation-unit (C and C++ only)

-fdump-translation-unit-options (C and C++ only)
Dump a representation of the tree structure for the entire translation unit to a
file. The file name is made by appending ‘.tu’ to the source file name. If the
‘~options’ form is used, options controls the details of the dump as described for
the ‘~fdump-tree’ options.

-fdump-class-hierarchy (C++ only)

-fdump-class-hierarchy-options (C++ only)
Dump a representation of each class’s hierarchy and virtual function table layout to
a file. The file name is made by appending ‘.class’ to the source file name. If the
‘~options’ form is used, options controls the details of the dump as described for
the ‘~fdump-tree’ options.

-fdump-ipa-switch
Control the dumping at various stages of inter-procedural analysis language tree to
a file. The file name is generated by appending a switch specific suffix to the source
file name. The following dumps are possible:

‘all’ Enables all inter-procedural analysis dumps; currently the only pro-
duced dump is the ‘cgraph’ dump.

Chapter 3: GCC Command Options 51

‘cgraph’ Dumps information about call-graph optimization, unused function re-
moval, and inlining decisions.

-fdump-tree-switch (C and C++ only)

-fdump-tree-switch-options (C and C++ only)
Control the dumping at various stages of processing the intermediate language tree
to a file. The file name is generated by appending a switch specific suffix to the
source file name. If the ‘~options’ form is used, options is a list of ‘-’ separated
options that control the details of the dump. Not all options are applicable to all
dumps, those which are not meaningful will be ignored. The following options are

available

‘address’ Print the address of each node. Usually this is not meaningful as it
changes according to the environment and source file. Its primary use
is for tying up a dump file with a debug environment.

‘slim’ Inhibit dumping of members of a scope or body of a function merely be-
cause that scope has been reached. Only dump such items when they are
directly reachable by some other path. When dumping pretty-printed
trees, this option inhibits dumping the bodies of control structures.

‘raw’ Print a raw representation of the tree. By default, trees are pretty-

printed into a C-like representation.

‘details’ Enable more detailed dumps (not honored by every dump option).

‘stats’ Enable dumping various statistics about the pass (not honored by every
dump option).

‘blocks’ Enable showing basic block boundaries (disabled in raw dumps).

‘vops’ Enable showing virtual operands for every statement.

‘lineno’ Enable showing line numbers for statements.

‘uid’ Enable showing the unique ID (DECL_UID) for each variable.

‘all’ Turn on all options, except ‘raw’, ‘slim’ and ‘lineno’.

The following tree dumps are possible:
‘original’

Dump before any tree based optimization, to ‘file.original’.
‘optimized’

Dump after all tree based optimization, to ‘file.optimized’.
‘inlined’ Dump after function inlining, to ‘file.inlined’.
‘gimple’ Dump each function before and after the gimplification pass to a file.

The file name is made by appending ‘.gimple’ to the source file name.

’ Dump the control flow graph of each function to a file. The file name

is made by appending ‘.cfg’ to the source file name.

‘cfg

veg Dump the control flow graph of each function to a file in VCG format.
The file name is made by appending ‘.vcg’ to the source file name.
Note that if the file contains more than one function, the generated file
cannot be used directly by VCG. You will need to cut and paste each
function’s graph into its own separate file first.

‘ch’ Dump each function after copying loop headers. The file name is made
by appending ‘.ch’ to the source file name.

52

Using the GNU Compiler Collection (GCC)

ssa Dump SSA related information to a file. The file name is made by
appending ‘.ssa’ to the source file name.

‘alias’ Dump aliasing information for each function. The file name is made by
appending ‘.alias’ to the source file name.

‘cep’ Dump each function after CCP. The file name is made by appending
‘.ccp’ to the source file name.

‘pre’ Dump trees after partial redundancy elimination. The file name is made
by appending ‘.pre’ to the source file name.

‘fre’ Dump trees after full redundancy elimination. The file name is made
by appending ‘.fre’ to the source file name.

‘dce’ Dump each function after dead code elimination. The file name is made
by appending ‘.dce’ to the source file name.

‘mudflap’ Dump each function after adding mudflap instrumentation. The file
name is made by appending ‘.mudflap’ to the source file name.

‘sra’ Dump each function after performing scalar replacement of aggregates.
The file name is made by appending ‘.sra’ to the source file name.

‘dom’ Dump each function after applying dominator tree optimizations. The
file name is made by appending ‘.dom’ to the source file name.

‘dse’ Dump each function after applying dead store elimination. The file
name is made by appending ‘.dse’ to the source file name.

‘phiopt’ Dump each function after optimizing PHI nodes into straightline code.
The file name is made by appending ‘.phiopt’ to the source file name.

‘forwprop’
Dump each function after forward propagating single use variables. The
file name is made by appending ‘.forwprop’ to the source file name.

‘copyrename’
Dump each function after applying the copy rename optimization. The
file name is made by appending ‘. copyrename’ to the source file name.

‘nrv’ Dump each function after applying the named return value optimization
on generic trees. The file name is made by appending ‘.nrv’ to the
source file name.

‘vect’ Dump each function after applying vectorization of loops. The file name
is made by appending ‘.vect’ to the source file name.

‘all’ Enable all the available tree dumps with the flags provided in this op-

tion.

-ftree-vectorizer-verbose=n
This option controls the amount of debugging output the vectorizer prints.
This information is written to standard error, unless ‘-fdump-tree-all’ or
‘~fdump-tree-vect’ is specified, in which case it is output to the usual dump

listing file,

‘.vect’.

-frandom-seed=string
This option provides a seed that GCC uses when it would otherwise use random
numbers. It is used to generate certain symbol names that have to be different in
every compiled file. It is also used to place unique stamps in coverage data files

Chapter 3: GCC Command Options 53

and the object files that produce them. You can use the ‘~frandom-seed’ option to
produce reproducibly identical object files.

The string should be different for every file you compile.

—-fsched-verbose=n

On targets that use instruction scheduling, this option controls the amount of de-
bugging output the scheduler prints. This information is written to standard error,
unless ‘-dS’ or ‘-dR’ is specified, in which case it is output to the usual dump listing
file, ‘. sched’ or ‘.sched2’ respectively. However for n greater than nine, the output
is always printed to standard error.

For n greater than zero, ‘~fsched-verbose’ outputs the same information as ‘~dRS’.
For n greater than one, it also output basic block probabilities, detailed ready list
information and unit/insn info. For n greater than two, it includes RTL at abort
point, control-flow and regions info. And for n over four, ‘-fsched-verbose’ also
includes dependence info.

-save-temps

—-time

Store the usual “temporary” intermediate files permanently; place them in the cur-
rent directory and name them based on the source file. Thus, compiling ‘foo.c’ with
‘~c —save-temps’ would produce files ‘foo.i’ and ‘foo.s’, as well as ‘foo.o’. This
creates a preprocessed ‘foo.i’ output file even though the compiler now normally
uses an integrated preprocessor.

When used in combination with the ‘-x’ command line option, ‘-save-temps’ is

sensible enough to avoid over writing an input source file with the same extension
as an intermediate file. The corresponding intermediate file may be obtained by
renaming the source file before using ‘-save-temps’.

Report the CPU time taken by each subprocess in the compilation sequence. For C
source files, this is the compiler proper and assembler (plus the linker if linking is
done). The output looks like this:

ccl 0.12 0.01

as 0.00 0.01
The first number on each line is the “user time”, that is time spent executing the
program itself. The second number is “system time”, time spent executing operating
system routines on behalf of the program. Both numbers are in seconds.

-fvar-tracking

Run variable tracking pass. It computes where variables are stored at each po-
sition in code. Better debugging information is then generated (if the debugging
information format supports this information).

It is enabled by default when compiling with optimization (‘-0s’, ‘-0, ‘-02’; ...),
debugging information (‘-g’) and the debug info format supports it.

-print-file-name=library

Print the full absolute name of the library file library that would be used when
linking—and don’t do anything else. With this option, GCC does not compile or
link anything; it just prints the file name.

-print-multi-directory

Print the directory name corresponding to the multilib selected by any other switches
present in the command line. This directory is supposed to exist in GCC_EXEC_
PREFIX.

-print-multi-1ib

Print the mapping from multilib directory names to compiler switches that enable

¢

them. The directory name is separated from the switches by ‘;’, and each switch

54 Using the GNU Compiler Collection (GCC)

starts with an ‘@ instead of the ‘~’, without spaces between multiple switches. This
is supposed to ease shell-processing.

-print-prog-name=program
Like ‘-print-file-name’, but searches for a program such as ‘cpp’.

-print-libgcc-file-name
Same as ‘-print-file-name=libgcc.a’.

¢

This is useful when you use ‘-nostdlib’ or ‘-nodefaultlibs’ but you do want to
link with ‘libgcc.a’. You can do

gcc -nostdlib files... ‘gcc -print-libgcc-file-name®

-print-search-dirs
Print the name of the configured installation directory and a list of program and
library directories gcc will search—and don’t do anything else.

This is useful when gcc prints the error message ‘installation problem, cannot
exec cpp0: No such file or directory’. To resolve this you either need to put
‘cpp0’ and the other compiler components where gcc expects to find them, or you
can set the environment variable GCC_EXEC_PREFIX to the directory where you in-
stalled them. Don’t forget the trailing ‘/’. See Section 3.19 [Environment Variables],
page 164.

—dumpmachine
Print the compiler’s target machine (for example, ‘1686-pc-linux-gnu’)—and don’t
do anything else.

—dumpversion
Print the compiler version (for example, ‘3.0’)—and don’t do anything else.

—dumpspecs
Print the compiler’s built-in specs—and don’t do anything else. (This is used when
GCC itself is being built.) See Section 3.15 [Spec Files|, page 90.

-feliminate-unused-debug-types

Normally, when producing DWARF2 output, GCC will emit debugging information
for all types declared in a compilation unit, regardless of whether or not they are
actually used in that compilation unit. Sometimes this is useful, such as if, in the
debugger, you want to cast a value to a type that is not actually used in your
program (but is declared). More often, however, this results in a significant amount
of wasted space. With this option, GCC will avoid producing debug symbol output
for types that are nowhere used in the source file being compiled.

3.10 Options That Control Optimization

These options control various sorts of optimizations.

Without any optimization option, the compiler’s goal is to reduce the cost of compilation and
to make debugging produce the expected results. Statements are independent: if you stop the
program with a breakpoint between statements, you can then assign a new value to any variable
or change the program counter to any other statement in the function and get exactly the results
you would expect from the source code.

Turning on optimization flags makes the compiler attempt to improve the performance and/or
code size at the expense of compilation time and possibly the ability to debug the program.

The compiler performs optimization based on the knowledge it has of the program. Optimiza-
tion levels ‘=02’ and above, in particular, enable unit-at-a-time mode, which allows the compiler

Chapter 3: GCC Command Options 55

to consider information gained from later functions in the file when compiling a function. Com-
piling multiple files at once to a single output file in unit-at-a-time mode allows the compiler to
use information gained from all of the files when compiling each of them.

Not all optimizations are controlled directly by a flag. Only optimizations that have a flag
are listed.

-0
-01 Optimize. Optimizing compilation takes somewhat more time, and a lot more mem-
ory for a large function.

With ‘-0’, the compiler tries to reduce code size and execution time, without per-
forming any optimizations that take a great deal of compilation time.
‘-0’ turns on the following optimization flags:

-fdefer-pop
-fdelayed-branch
-fguess-branch-probability
-fcprop-registers
-floop-optimize
-fif-conversion
-fif-conversion2
-ftree-ccp

-ftree-dce
-ftree-dominator-opts
-ftree-dse

-ftree-ter

-ftree-1rs

-ftree-sra
-ftree-copyrename
-ftree-fre

-ftree-ch
-fmerge-constants

‘-0’ also turns on ‘~fomit-frame-pointer’ on machines where doing so does not
interfere with debugging.

‘-0’ doesn’t turn on ‘~ftree-sra’ for the Ada compiler. This option must be ex-
plicitly specified on the command line to be enabled for the Ada compiler.

-02 Optimize even more. GCC performs nearly all supported optimizations that do not
involve a space-speed tradeoff. The compiler does not perform loop unrolling or
function inlining when you specify ‘-02’. As compared to ‘=0’, this option increases
both compilation time and the performance of the generated code.

‘-02’ turns on all optimization flags specified by ‘~0’. It also turns on the following

optimization flags:
-fthread-jumps
-fcrossjumping
-foptimize-sibling-calls
-fcse-follow-jumps -fcse-skip-blocks
-fgcse -fgese-1m
-fexpensive-optimizations
-fstrength-reduce
-frerun-cse-after-loop -frerun-loop-opt
-fcaller-saves
-fforce-mem
-fpeephole2
-fschedule-insns -fschedule-insns2
-fsched-interblock -fsched-spec
-fregmove
-fstrict-aliasing
-fdelete-null-pointer-checks
-freorder-blocks -freorder-functions
-funit-at-a-time

56 Using the GNU Compiler Collection (GCC)

-falign-functions -falign-jumps

-falign-loops -falign-labels

-ftree-pre
Please note the warning under ‘-fgcse’ about invoking ‘-~02’ on programs that use
computed gotos.

-03 Optimize yet more. ‘=03’ turns on all optimizations specified by ‘-02’ and also turns
on the ‘-finline-functions’, ‘~funswitch-loops’ and ‘-fgcse-after-reload’
options.

-00 Do not optimize. This is the default.

-0s Optimize for size. ‘-0s’ enables all ‘=02’ optimizations that do not typically increase

code size. It also performs further optimizations designed to reduce code size.
‘-0s’ disables the following optimization flags:
-falign-functions -falign-jumps -falign-loops
-falign-labels -freorder-blocks -freorder-blocks-and-partition -fprefetch-loop-
arrays
If you use multiple ‘-0’ options, with or without level numbers, the last such option
is the one that is effective.

Options of the form ‘~fflag’ specify machine-independent flags. Most flags have both positive
and negative forms; the negative form of ‘~ffoo’ would be ‘~fno-foo’. In the table below, only
one of the forms is listed—the one you typically will use. You can figure out the other form by
either removing ‘no-’ or adding it.

The following options control specific optimizations. They are either activated by ‘-0’ options
or are related to ones that are. You can use the following flags in the rare cases when “fine-
tuning” of optimizations to be performed is desired.

-fno-default-inline
Do not make member functions inline by default merely because they are defined
inside the class scope (C++ only). Otherwise, when you specify ‘-0’, member func-
tions defined inside class scope are compiled inline by default; i.e., you don’t need
to add ‘inline’ in front of the member function name.

-fno-defer-pop
Always pop the arguments to each function call as soon as that function returns.
For machines which must pop arguments after a function call, the compiler normally
lets arguments accumulate on the stack for several function calls and pops them all
at once.

Disabled at levels ‘-0’, ‘-02’, ‘-03’, ‘-0s’.

—-fforce-mem
Force memory operands to be copied into registers before doing arithmetic on them.
This produces better code by making all memory references potential common
subexpressions. When they are not common subexpressions, instruction combi-
nation should eliminate the separate register-load.

Enabled at levels ‘-02’, ‘~-03’, ‘-0s’.

-fforce-addr
Force memory address constants to be copied into registers before doing arithmetic
on them. This may produce better code just as ‘~-fforce-mem’ may.

-fomit-frame-pointer
Don’t keep the frame pointer in a register for functions that don’t need one. This
avoids the instructions to save, set up and restore frame pointers; it also makes an

Chapter 3: GCC Command Options 57

extra register available in many functions. It also makes debugging impossible on
some machines.

On some machines, such as the VAX, this flag has no effect, because the stan-
dard calling sequence automatically handles the frame pointer and nothing is saved
by pretending it doesn’t exist. The machine-description macro FRAME_POINTER_
REQUIRED controls whether a target machine supports this flag. See section “Register
Usage” in GNU Compiler Collection (GCC) Internals.

Enabled at levels ‘-0°, ‘~-=02’, ‘-03’, ‘-0s’.

-foptimize-sibling-calls
Optimize sibling and tail recursive calls.
Enabled at levels ‘-02’, ‘~-03’, ‘-0s’.

-fno-inline
Don’t pay attention to the inline keyword. Normally this option is used to keep the
compiler from expanding any functions inline. Note that if you are not optimizing,
no functions can be expanded inline.

-finline-functions
Integrate all simple functions into their callers. The compiler heuristically decides
which functions are simple enough to be worth integrating in this way.

If all calls to a given function are integrated, and the function is declared static,
then the function is normally not output as assembler code in its own right.

Enabled at level ‘-03’.

-finline-limit=n

By default, GCC limits the size of functions that can be inlined. This flag allows the
control of this limit for functions that are explicitly marked as inline (i.e., marked
with the inline keyword or defined within the class definition in c++). n is the size
of functions that can be inlined in number of pseudo instructions (not counting
parameter handling). The default value of n is 600. Increasing this value can result
in more inlined code at the cost of compilation time and memory consumption.
Decreasing usually makes the compilation faster and less code will be inlined (which
presumably means slower programs). This option is particularly useful for programs
that use inlining heavily such as those based on recursive templates with C++.

Inlining is actually controlled by a number of parameters, which may be specified
individually by using ‘--param name=value’. The ‘-finline-limit=n’ option sets
some of these parameters as follows:
max-inline-insns-single
is set to n/2.
max-inline-insns-auto
is set to n/2.
min-inline-insns
is set to 130 or n/4, whichever is smaller.
max-inline-insns-rtl
is set to n.

See below for a documentation of the individual parameters controlling inlining.

Note: pseudo instruction represents, in this particular context, an abstract measure-
ment of function’s size. In no way, it represents a count of assembly instructions
and as such its exact meaning might change from one release to an another.

58 Using the GNU Compiler Collection (GCC)

-fkeep-inline-functions
In C, emit static functions that are declared inline into the object file, even if the
function has been inlined into all of its callers. This switch does not affect functions
using the extern inline extension in GNU C. In C++, emit any and all inline
functions into the object file.

-fkeep-static-consts
Emit variables declared static const when optimization isn’t turned on, even if
the variables aren’t referenced.

GCC enables this option by default. If you want to force the compiler to check if
the variable was referenced, regardless of whether or not optimization is turned on,
use the ‘-fno-keep-static-consts’ option.

-fmerge-constants
Attempt to merge identical constants (string constants and floating point constants)
across compilation units.

This option is the default for optimized compilation if the assembler and linker
support it. Use ‘-fno-merge-constants’ to inhibit this behavior.

Enabled at levels ‘-0’ ‘-02’, ‘-03’, ‘-0s’.

-fmerge-all-constants
Attempt to merge identical constants and identical variables.

This option implies ‘~fmerge-constants’. In addition to ‘~fmerge-constants’ this
considers e.g. even constant initialized arrays or initialized constant variables with
integral or floating point types. Languages like C or C++ require each non-automatic
variable to have distinct location, so using this option will result in non-conforming
behavior.

-fmodulo-sched
Perform swing modulo scheduling immediately before the first scheduling pass. This
pass looks at innermost loops and reorders their instructions by overlapping different
iterations.

-fno-branch-count-reg
Do not use “decrement and branch” instructions on a count register, but instead
generate a sequence of instructions that decrement a register, compare it against
zero, then branch based upon the result. This option is only meaningful on archi-
tectures that support such instructions, which include x86, PowerPC, IA-64 and
S/390.

The default is ‘-fbranch-count-reg’, enabled when ‘-fstrength-reduce’ is en-
abled.

-fno-function-cse
Do not put function addresses in registers; make each instruction that calls a con-
stant function contain the function’s address explicitly.

This option results in less efficient code, but some strange hacks that alter the
assembler output may be confused by the optimizations performed when this option
is not used.

The default is ‘~ffunction-cse’

-fno-zero-initialized-in-bss
If the target supports a BSS section, GCC by default puts variables that are initial-
ized to zero into BSS. This can save space in the resulting code.

Chapter 3: GCC Command Options 59

This option turns off this behavior because some programs explicitly rely on vari-
ables going to the data section. E.g., so that the resulting executable can find the
beginning of that section and/or make assumptions based on that.

The default is ‘-fzero-initialized-in-bss’.

-fbounds-check
For front-ends that support it, generate additional code to check that indices used
to access arrays are within the declared range. This is currently only supported
by the Java and Fortran front-ends, where this option defaults to true and false
respectively.

-fmudflap -fmudflapth -fmudflapir

For front-ends that support it (C and C++), instrument all risky pointer/array
dereferencing operations, some standard library string/heap functions, and some
other associated constructs with range/validity tests. Modules so instrumented
should be immune to buffer overflows, invalid heap use, and some other classes of
C/C++ programming errors. The instrumentation relies on a separate runtime li-
brary (‘libmudflap’), which will be linked into a program if ‘~fmudflap’ is given
at link time. Run-time behavior of the instrumented program is controlled by the
MUDFLAP_QOPTIONS environment variable. See env MUDFLAP_OPTIONS=-help a.out
for its options.

Use ‘-fmudflapth’ instead of ‘-~fmudflap’ to compile and to link if your program is
multi-threaded. Use ‘-fmudflapir’, in addition to ‘-fmudflap’ or ‘-fmudflapth’,
if instrumentation should ignore pointer reads. This produces less instrumentation
(and therefore faster execution) and still provides some protection against outright
memory corrupting writes, but allows erroneously read data to propagate within a
program.

-fstrength-reduce
Perform the optimizations of loop strength reduction and elimination of iteration
variables.

Enabled at levels ‘~-02’, ‘-03’, ‘-0s’.

-fthread-jumps
Perform optimizations where we check to see if a jump branches to a location where
another comparison subsumed by the first is found. If so, the first branch is redi-
rected to either the destination of the second branch or a point immediately following
it, depending on whether the condition is known to be true or false.

Enabled at levels ‘-02’, ‘~-03’, ‘-0s’.

-fcse-follow-jumps
In common subexpression elimination, scan through jump instructions when the
target of the jump is not reached by any other path. For example, when CSE
encounters an if statement with an else clause, CSE will follow the jump when
the condition tested is false.

Enabled at levels ‘-02’, ‘~-03’, ‘-0s’.

-fcse-skip-blocks
This is similar to ‘-fcse-follow-jumps’, but causes CSE to follow jumps which
conditionally skip over blocks. When CSE encounters a simple if statement with
no else clause, ‘~fcse-skip-blocks’ causes CSE to follow the jump around the
body of the if.

Enabled at levels ‘-02’, ‘~-03’, ‘-0s’.

60 Using the GNU Compiler Collection (GCC)

-frerun-cse-after-loop
Re-run common subexpression elimination after loop optimizations has been per-
formed.

Enabled at levels ‘-02’, ‘~-03’, ‘-0s’.

—-frerun-loop-opt
Run the loop optimizer twice.
Enabled at levels ‘~-02’, ‘-03’, ‘-0s’.

-fgcse Perform a global common subexpression elimination pass. This pass also performs
global constant and copy propagation.

Note: When compiling a program using computed gotos, a GCC extension, you
may get better runtime performance if you disable the global common subexpression
elimination pass by adding ‘-fno-gcse’ to the command line.

Enabled at levels ‘-02’, ‘~-03’, ‘-0s’.

-fgcse-1m
When ‘-fgcse-1m’ is enabled, global common subexpression elimination will at-
tempt to move loads which are only killed by stores into themselves. This allows a
loop containing a load/store sequence to be changed to a load outside the loop, and
a copy/store within the loop.

Enabled by default when gcse is enabled.

-fgcse-sm
When ‘-fgcse-sm’ is enabled, a store motion pass is run after global common subex-
pression elimination. This pass will attempt to move stores out of loops. When
used in conjunction with ‘-fgcse-1m’, loops containing a load/store sequence can
be changed to a load before the loop and a store after the loop.

Not enabled at any optimization level.

-fgcse-las
When ‘-fgcse-las’ is enabled, the global common subexpression elimination pass
eliminates redundant loads that come after stores to the same memory location
(both partial and full redundancies).

Not enabled at any optimization level.

-fgcse-after-reload
When ‘-fgcse-after-reload’ is enabled, a redundant load elimination pass is per-
formed after reload. The purpose of this pass is to cleanup redundant spilling.

—-floop-optimize
Perform loop optimizations: move constant expressions out of loops, simplify exit
test conditions and optionally do strength-reduction as well.

Enabled at levels ‘-0’, ~-02’, ‘-03’, ‘-0s’.

—-floop-optimize?2
Perform loop optimizations using the new loop optimizer. The optimizations (loop
unrolling, peeling and unswitching, loop invariant motion) are enabled by separate
flags.

-fcrossjumping
Perform cross-jumping transformation. This transformation unifies equivalent code
and save code size. The resulting code may or may not perform better than without
cross-jumping.
Enabled at levels ‘-02’, ‘~-03’, ‘-0s’.

Chapter 3: GCC Command Options 61

-fif-conversion
Attempt to transform conditional jumps into branch-less equivalents. This include
use of conditional moves, min, max, set flags and abs instructions, and some tricks
doable by standard arithmetics. The use of conditional execution on chips where it
is available is controlled by if-conversion2.

Enabled at levels ‘-0’, ‘~-=02°, ‘-03’, ‘-0s’.

-fif-conversion2
Use conditional execution (where available) to transform conditional jumps into
branch-less equivalents.

Enabled at levels ‘-0’, ‘~-02’, ‘-03’, ‘-0s’.

-fdelete-null-pointer-checks
Use global dataflow analysis to identify and eliminate useless checks for null point-
ers. The compiler assumes that dereferencing a null pointer would have halted the
program. If a pointer is checked after it has already been dereferenced, it cannot be
null.

In some environments, this assumption is not true, and programs can safely deref-
erence null pointers. Use ‘~fno-delete-null-pointer-checks’ to disable this op-
timization for programs which depend on that behavior.

Enabled at levels ‘-02’, ‘~-03’, ‘-0s’.

-fexpensive-optimizations
Perform a number of minor optimizations that are relatively expensive.

Enabled at levels ‘-02’, ‘~-03’, ‘-0s’.

-foptimize-register-move

-fregmove
Attempt to reassign register numbers in move instructions and as operands of other
simple instructions in order to maximize the amount of register tying. This is
especially helpful on machines with two-operand instructions.

Note ‘-fregmove’ and ‘-foptimize-register-move’ are the same optimization.

Enabled at levels ‘-02’, ‘~-03’, ‘-0s’.

-fdelayed-branch
If supported for the target machine, attempt to reorder instructions to exploit in-
struction slots available after delayed branch instructions.

Enabled at levels ‘-0°, ‘~-02’, ‘-03’, ‘-0s’.

-fschedule-insns
If supported for the target machine, attempt to reorder instructions to eliminate
execution stalls due to required data being unavailable. This helps machines that
have slow floating point or memory load instructions by allowing other instructions
to be issued until the result of the load or floating point instruction is required.

Enabled at levels ‘~-02’, ‘-03’, ‘-0s’.

-fschedule-insns2
Similar to ‘-fschedule-insns’, but requests an additional pass of instruction
scheduling after register allocation has been done. This is especially useful on
machines with a relatively small number of registers and where memory load in-
structions take more than one cycle.

Enabled at levels ‘-02’, ‘~-03’, ‘-0s’.

62 Using the GNU Compiler Collection (GCC)

—-fno-sched-interblock
Don’t schedule instructions across basic blocks. This is normally enabled by default
when scheduling before register allocation, i.e. with ‘~fschedule-insns’ or at ‘-02’
or higher.

-fno-sched-spec
Don’t allow speculative motion of non-load instructions. This is normally enabled
by default when scheduling before register allocation, i.e. with ‘~fschedule-insns’
or at ‘=02’ or higher.

-fsched-spec-load
Allow speculative motion of some load instructions. This only makes sense when
scheduling before register allocation, i.e. with ‘~fschedule-insns’ or at ‘=02’ or
higher.

-fsched-spec-load-dangerous
Allow speculative motion of more load instructions. This only makes sense when
scheduling before register allocation, i.e. with ‘~fschedule-insns’ or at ‘=02’ or
higher.

-fsched-stalled-insns=n
Define how many insns (if any) can be moved prematurely from the queue of stalled
insns into the ready list, during the second scheduling pass.

-fsched-stalled-insns-dep=n
Define how many insn groups (cycles) will be examined for a dependency on a stalled
insn that is candidate for premature removal from the queue of stalled insns. Has an
effect only during the second scheduling pass, and only if ‘~-fsched-stalled-insns’
is used and its value is not zero.

-fsched2-use-superblocks
When scheduling after register allocation, do use superblock scheduling algorithm.
Superblock scheduling allows motion across basic block boundaries resulting on
faster schedules. This option is experimental, as not all machine descriptions used by
GCC model the CPU closely enough to avoid unreliable results from the algorithm.

This only makes sense when scheduling after register allocation, i.e. with
‘~fschedule-insns2’ or at ‘=02’ or higher.

-fsched2-use-traces
Use ‘-fsched2-use-superblocks’ algorithm when scheduling after register allo-
cation and additionally perform code duplication in order to increase the size of
superblocks using tracer pass. See ‘-ftracer’ for details on trace formation.

This mode should produce faster but significantly longer programs. Also without
‘~fbranch-probabilities’ the traces constructed may not match the reality and
hurt the performance. This only makes sense when scheduling after register alloca-
tion, i.e. with ‘~fschedule-insns2’ or at ‘-02’ or higher.

-freschedule-modulo-scheduled-loops
The modulo scheduling comes before the traditional scheduling, if a loop was modulo
scheduled we may want to prevent the later scheduling passes from changing its
schedule, we use this option to control that.

-fcaller-saves
Enable values to be allocated in registers that will be clobbered by function calls, by
emitting extra instructions to save and restore the registers around such calls. Such
allocation is done only when it seems to result in better code than would otherwise
be produced.

Chapter 3: GCC Command Options 63

This option is always enabled by default on certain machines, usually those which
have no call-preserved registers to use instead.

Enabled at levels ‘-02’, ‘-03’, ‘-0s’.

-ftree-pre
Perform Partial Redundancy Elimination (PRE) on trees. This flag is enabled by
default at ‘-02’ and ‘-03’.

-ftree-fre
Perform Full Redundancy Elimination (FRE) on trees. The difference between FRE
and PRE is that FRE only considers expressions that are computed on all paths
leading to the redundant computation. This analysis faster than PRE, though it
exposes fewer redundancies. This flag is enabled by default at ‘-0’ and higher.

-ftree-ccp
Perform sparse conditional constant propagation (CCP) on trees. This flag is en-
abled by default at ‘=0’ and higher.

-ftree-dce
Perform dead code elimination (DCE) on trees. This flag is enabled by default at
‘-0’ and higher.

—-ftree-dominator-opts
Perform a variety of simple scalar cleanups (constant/copy propagation, redundancy
elimination, range propagation and expression simplification) based on a dominator
tree traversal. This also performs jump threading (to reduce jumps to jumps). This
flag is enabled by default at ‘-0’ and higher.

-ftree-ch
Perform loop header copying on trees. This is beneficial since it increases effective-
ness of code motion optimizations. It also saves one jump. This flag is enabled by
default at ‘-0’ and higher. It is not enabled for ‘-0s’, since it usually increases code
size.

-ftree-loop-optimize
Perform loop optimizations on trees. This flag is enabled by default at ‘-0
higher.

7 and

-ftree-loop-linear
Perform linear loop transformations on tree. This flag can improve cache perfor-
mance and allow further loop optimizations to take place.

-ftree-loop-im
Perform loop invariant motion on trees. This pass moves only invariants that would
be hard to handle at RTL level (function calls, operations that expand to nontrivial
sequences of insns). With ‘~funswitch-loops’ it also moves operands of conditions
that are invariant out of the loop, so that we can use just trivial invariantness
analysis in loop unswitching. The pass also includes store motion.

—-ftree-loop-ivcanon
Create a canonical counter for number of iterations in the loop for that determining
number of iterations requires complicated analysis. Later optimizations then may
determine the number easily. Useful especially in connection with unrolling.

-fivopts Perform induction variable optimizations (strength reduction, induction variable
merging and induction variable elimination) on trees.

64 Using the GNU Compiler Collection (GCC)

-ftree-sra
Perform scalar replacement of aggregates. This pass replaces structure references
with scalars to prevent committing structures to memory too early. This flag is
enabled by default at ‘=0’ and higher.

-ftree-copyrename
Perform copy renaming on trees. This pass attempts to rename compiler temporaries
to other variables at copy locations, usually resulting in variable names which more
closely resemble the original variables. This flag is enabled by default at ‘-0’ and
higher.

—-ftree-ter
Perform temporary expression replacement during the SSA->normal phase. Single
use/single def temporaries are replaced at their use location with their defining
expression. This results in non-GIMPLE code, but gives the expanders much more
complex trees to work on resulting in better RTL generation. This is enabled by
default at ‘-0’ and higher.

-ftree-lrs
Perform live range splitting during the SSA->normal phase. Distinct live ranges of a
variable are split into unique variables, allowing for better optimization later. This
is enabled by default at ‘-0’ and higher.

-ftree-vectorize
Perform loop vectorization on trees.

-ftracer Perform tail duplication to enlarge superblock size. This transformation simplifies
the control flow of the function allowing other optimizations to do better job.

-funroll-loops
Unroll loops whose number of iterations can be determined at compile time or
upon entry to the loop. ‘~funroll-loops’ implies both ‘~fstrength-reduce’ and
‘~frerun-cse-after-loop’. This option makes code larger, and may or may not
make it run faster.

-funroll-all-loops
Unroll all loops, even if their number of iterations is uncertain when the loop is
entered. This usually makes programs run more slowly. ‘-funroll-all-loops’
implies the same options as ‘~funroll-loops’,

-fsplit-ivs-in-unroller
Enables expressing of values of induction variables in later iterations of the unrolled
loop using the value in the first iteration. This breaks long dependency chains, thus
improving efficiency of the scheduling passes (for best results, ‘~fweb’ should be
used as well).

Combination of ‘-fweb’ and CSE is often sufficient to obtain the same effect. How-
ever in cases the loop body is more complicated than a single basic block, this is not
reliable. It also does not work at all on some of the architectures due to restrictions
in the CSE pass.

This optimization is enabled by default.

-fvariable-expansion-in-unroller
With this option, the compiler will create multiple copies of some local variables
when unrolling a loop which can result in superior code.

-fprefetch-loop-arrays
If supported by the target machine, generate instructions to prefetch memory to
improve the performance of loops that access large arrays.

Chapter 3: GCC Command Options 65

These options may generate better or worse code; results are highly dependent on
the structure of loops within the source code.

-fno-peephole

-fno-peephole2
Disable any machine-specific peephole optimizations. The difference between
‘~fno-peephole’ and ‘~fno-peephole2’ is in how they are implemented in the com-
piler; some targets use one, some use the other, a few use both.

‘~fpeephole’ is enabled by default. ‘-fpeephole2’ enabled at levels ‘-02’, ‘-03’,
‘-0s’.

-fno-guess-branch-probability
Do not guess branch probabilities using heuristics.

GCC will use heuristics to guess branch probabilities if they are not provided by
profiling feedback (‘-fprofile-arcs’). These heuristics are based on the control
flow graph. If some branch probabilities are specified by ‘__builtin_expect’, then
the heuristics will be used to guess branch probabilities for the rest of the control flow
graph, taking the ‘__builtin_expect’ info into account. The interactions between
the heuristics and ‘__builtin_expect’ can be complex, and in some cases, it may
be useful to disable the heuristics so that the effects of ‘__builtin_expect’ are
easier to understand.

The default is ‘~fguess-branch-probability’ at levels ‘-0’, ‘-02’, ‘-03’, ‘-0s’.

—-freorder-blocks
Reorder basic blocks in the compiled function in order to reduce number of taken
branches and improve code locality.

Enabled at levels ‘=027, ‘~-03’.

-freorder-blocks-and-partition
In addition to reordering basic blocks in the compiled function, in order to reduce
number of taken branches, partitions hot and cold basic blocks into separate sections
of the assembly and .o files, to improve paging and cache locality performance.

This optimization is automatically turned off in the presence of exception handling,
for linkonce sections, for functions with a user-defined section attribute and on any
architecture that does not support named sections.

-freorder-functions
Reorder functions in the object file in order to improve code locality. This is im-
plemented by using special subsections .text.hot for most frequently executed
functions and .text.unlikely for unlikely executed functions. Reordering is done
by the linker so object file format must support named sections and linker must
place them in a reasonable way.

Also profile feedback must be available in to make this option effective. See
‘~fprofile-arcs’ for details.

Enabled at levels ‘-02’, ‘-03’, ‘-0s’.

-fstrict-aliasing

Allows the compiler to assume the strictest aliasing rules applicable to the language
being compiled. For C (and C++), this activates optimizations based on the type of
expressions. In particular, an object of one type is assumed never to reside at the
same address as an object of a different type, unless the types are almost the same.
For example, an unsigned int can alias an int, but not a void* or a double. A
character type may alias any other type.

Pay special attention to code like this:

66

Using the GNU Compiler Collection (GCC)

union a_union {
int i;

double d;

};

int £ {
a_union t;
t.d = 3.0;
return t.i;

}

The practice of reading from a different union member than the one most recently
written to (called “type-punning”) is common. Even with ‘~fstrict-aliasing’,
type-punning is allowed, provided the memory is accessed through the union type.
So, the code above will work as expected. However, this code might not:

int £O {
a_union t;
int* ip;
t.d = 3.0;
ip = &t.1i;
return *ip;

}

Every language that wishes to perform language-specific alias analysis should define
a function that computes, given an tree node, an alias set for the node. Nodes in
different alias sets are not allowed to alias. For an example, see the C front-end
function c_get_alias_set.

Enabled at levels ‘-02’, ‘~-03’, ‘-0s’.

-falign-functions
-falign-functions=n

Align the start of functions to the next power-of-two greater than n, skipping up to
n bytes. For instance, ‘-falign-functions=32’ aligns functions to the next 32-byte
boundary, but ‘-falign-functions=24’ would align to the next 32-byte boundary
only if this can be done by skipping 23 bytes or less.

‘~fno-align-functions’ and ‘-falign-functions=1" are equivalent and mean that
functions will not be aligned.

Some assemblers only support this flag when n is a power of two; in that case, it is
rounded up.

If n is not specified or is zero, use a machine-dependent default.
Enabled at levels ‘-02’, ‘~-03’.

-falign-labels
-falign-labels=n

Align all branch targets to a power-of-two boundary, skipping up to n bytes like
‘~falign-functions’. This option can easily make code slower, because it must
insert dummy operations for when the branch target is reached in the usual flow of
the code.

‘-fno-align-labels’ and ‘-falign-labels=1" are equivalent and mean that labels
will not be aligned.

If ‘~falign-loops’ or ‘-falign-jumps’ are applicable and are greater than this
value, then their values are used instead.

If n is not specified or is zero, use a machine-dependent default which is very likely
to be ‘1’, meaning no alignment.

Enabled at levels ‘-02’, ‘~-03’.

Chapter 3: GCC Command Options 67

-falign-loops
-falign-loops=n

Align loops to a power-of-two boundary, skipping up to n bytes like
‘~falign-functions’. The hope is that the loop will be executed many times,
which will make up for any execution of the dummy operations.

‘~fno-align-loops’ and ‘-falign-loops=1’ are equivalent and mean that loops
will not be aligned.

If n is not specified or is zero, use a machine-dependent default.

Enabled at levels ‘-02’, ‘-03’.

-falign-jumps
-falign-jumps=n

Align branch targets to a power-of-two boundary, for branch targets where
the targets can only be reached by jumping, skipping up to n bytes like
‘~falign-functions’. In this case, no dummy operations need be executed.

‘~fno-align-jumps’ and ‘-falign-jumps=1’ are equivalent and mean that loops
will not be aligned.

If n is not specified or is zero, use a machine-dependent default.

Enabled at levels ‘-02’, ‘-03’.

—funit-at-a-time

-fweb

Parse the whole compilation unit before starting to produce code. This allows some
extra optimizations to take place but consumes more memory (in general). There
are some compatibility issues with unit-at-at-time mode:

e enabling unit-at-a-time mode may change the order in which functions, vari-
ables, and top-level asm statements are emitted, and will likely break code rely-
ing on some particular ordering. The majority of such top-level asm statements,
though, can be replaced by section attributes.

e unit-at-a-time mode removes unreferenced static variables and functions are
removed. This may result in undefined references when an asm statement refers
directly to variables or functions that are otherwise unused. In that case either
the variable/function shall be listed as an operand of the asm statement operand
or, in the case of top-level asm statements the attribute used shall be used on
the declaration.

e Static functions now can use non-standard passing conventions that may break
asm statements calling functions directly. Again, attribute used will prevent
this behavior.

As a temporary workaround, ‘-fno-unit-at-a-time’ can be used, but this scheme
may not be supported by future releases of GCC.

Enabled at levels ‘-02’, ‘-03’.

Constructs webs as commonly used for register allocation purposes and assign each
web individual pseudo register. This allows the register allocation pass to operate
on pseudos directly, but also strengthens several other optimization passes, such as
CSE, loop optimizer and trivial dead code remover. It can, however, make debugging
impossible, since variables will no longer stay in a “home register”.

Enabled at levels ‘-02’, ‘-03’, ‘-0s’, on targets where the default format for debug-
ging information supports variable tracking.

68 Using the GNU Compiler Collection (GCC)

-fno-cprop-registers
After register allocation and post-register allocation instruction splitting, we perform
a copy-propagation pass to try to reduce scheduling dependencies and occasionally
eliminate the copy.

Disabled at levels ‘-0’, ‘-=02°, ‘-03’, ‘-0s’.

-fprofile-generate
Enable options usually used for instrumenting application to produce profile useful
for later recompilation with profile feedback based optimization. You must use
‘~fprofile-generate’ both when compiling and when linking your program.

The following options are enabled: -fprofile-arcs, -fprofile-values, -fvpt.

-fprofile-use
Enable profile feedback directed optimizations, and optimizations generally prof-
itable only with profile feedback available.

The following options are enabled: -fbranch-probabilities, -fvpt, -funroll-
loops, -fpeel-loops, -ftracer.

The following options control compiler behavior regarding floating point arithmetic. These
options trade off between speed and correctness. All must be specifically enabled.

-ffloat-store
Do not store floating point variables in registers, and inhibit other options that
might change whether a floating point value is taken from a register or memory.

This option prevents undesirable excess precision on machines such as the 68000
where the floating registers (of the 68881) keep more precision than a double is
supposed to have. Similarly for the x86 architecture. For most programs, the excess
precision does only good, but a few programs rely on the precise definition of IEEE
floating point. Use ‘-ffloat-store’ for such programs, after modifying them to
store all pertinent intermediate computations into variables.

-ffast-math
Sets ‘-fno-math-errno’, ‘-funsafe-math-optimizations’,
‘~fno-trapping-math’, ‘~ffinite-math-only’, ‘~fno-rounding-math’,
‘~fno-signaling-nans’ and ‘fcx-limited-range’.
This option causes the preprocessor macro __FAST_MATH__ to be defined.

This option should never be turned on by any ‘-0’ option since it can result in
incorrect output for programs which depend on an exact implementation of IEEE
or ISO rules/specifications for math functions.

-fno-math-errno

Do not set ERRNO after calling math functions that are executed with a single
instruction, e.g., sqrt. A program that relies on IEEE exceptions for math error
handling may want to use this flag for speed while maintaining IEEE arithmetic
compatibility.

This option should never be turned on by any ‘-0’ option since it can result in
incorrect output for programs which depend on an exact implementation of IEEE
or ISO rules/specifications for math functions.

The default is ‘~fmath-errno’.
-funsafe-math-optimizations

Allow optimizations for floating-point arithmetic that (a) assume that arguments
and results are valid and (b) may violate IEEE or ANSI standards. When used

Chapter 3: GCC Command Options 69

at link-time, it may include libraries or startup files that change the default FPU
control word or other similar optimizations.

This option should never be turned on by any ‘-0’ option since it can result in
incorrect output for programs which depend on an exact implementation of IEEE
or ISO rules/specifications for math functions.

The default is ‘~fno-unsafe-math-optimizations’.

-ffinite-math-only
Allow optimizations for floating-point arithmetic that assume that arguments and
results are not NaNs or +-Infs.

This option should never be turned on by any ‘-0’ option since it can result in
incorrect output for programs which depend on an exact implementation of IEEE
or ISO rules/specifications.

The default is ‘~fno-finite-math-only’.

-fno-trapping-math

Compile code assuming that floating-point operations cannot generate user-visible
traps. These traps include division by zero, overflow, underflow, inexact result and
invalid operation. This option implies ‘~fno-signaling-nans’. Setting this option
may allow faster code if one relies on “non-stop” IEEE arithmetic, for example.
This option should never be turned on by any ‘-0’ option since it can result in
incorrect output for programs which depend on an exact implementation of IEEE
or ISO rules/specifications for math functions.

The default is ‘~ftrapping-math’.

—-frounding-math

Disable transformations and optimizations that assume default floating point round-
ing behavior. This is round-to-zero for all floating point to integer conversions, and
round-to-nearest for all other arithmetic truncations. This option should be speci-
fied for programs that change the FP rounding mode dynamically, or that may be
executed with a non-default rounding mode. This option disables constant folding of
floating point expressions at compile-time (which may be affected by rounding mode)
and arithmetic transformations that are unsafe in the presence of sign-dependent
rounding modes.

The default is ‘~fno-rounding-math’.

This option is experimental and does not currently guarantee to disable all GCC
optimizations that are affected by rounding mode. Future versions of GCC may pro-
vide finer control of this setting using C99’s FENV_ACCESS pragma. This command
line option will be used to specify the default state for FENV_ACCESS.

-fsignaling-nans
Compile code assuming that IEEE signaling NaNs may generate user-visible traps
during floating-point operations. Setting this option disables optimizations that may
change the number of exceptions visible with signaling NaNs. This option implies
‘-ftrapping-math’.
This option causes the preprocessor macro __SUPPORT_SNAN__ to be defined.
The default is ‘~fno-signaling-nans’.

This option is experimental and does not currently guarantee to disable all GCC
optimizations that affect signaling NaN behavior.

-fsingle-precision-constant
Treat floating point constant as single precision constant instead of implicitly con-
verting it to double precision constant.

70

Using the GNU Compiler Collection (GCC)

-fcx-limited-range
-fno-cx-limited-range

When enabled, this option states that a range reduction step is not needed when per-
forming complex division. The default is ‘-fno-cx-limited-range’, but is enabled
by ‘-ffast-math’.

This option controls the default setting of the ISO C99 CX_LIMITED_RANGE pragma.
Nevertheless, the option applies to all languages.

The following options control optimizations that may improve performance, but are not en-
abled by any ‘-0’ options. This section includes experimental options that may produce broken

code.

-fbranch-probabilities

After running a program compiled with ‘~fprofile-arcs’ (see Section 3.9 [Options
for Debugging Your Program or gcc|, page 44), you can compile it a second time
using ‘-fbranch-probabilities’, to improve optimizations based on the number of
times each branch was taken. When the program compiled with ‘~fprofile-arcs’
exits it saves arc execution counts to a file called ‘sourcename.gcda’ for each source
file The information in this data file is very dependent on the structure of the
generated code, so you must use the same source code and the same optimization
options for both compilations.

With ‘-fbranch-probabilities’, GCC puts a ‘REG_BR_PROB’ note on each
‘JUMP_INSN’ and ‘CALL_INSN’. These can be used to improve optimization.
Currently, they are only used in one place: in ‘reorg.c’, instead of guessing which
path a branch is mostly to take, the ‘REG_BR_PROB’ values are used to exactly
determine which path is taken more often.

-fprofile-values

-fvpt

If combined with ‘-fprofile-arcs’, it adds code so that some data about values of
expressions in the program is gathered.

With ‘-fbranch-probabilities’, it reads back the data gathered from profiling
values of expressions and adds ‘REG_VALUE_PROFILE’ notes to instructions for their
later usage in optimizations.

Enabled with ‘~fprofile-generate’ and ‘~fprofile-use’.

If combined with ‘~fprofile-arcs’, it instructs the compiler to add a code to gather
information about values of expressions.

With ‘-fbranch-probabilities’, it reads back the data gathered and actually
performs the optimizations based on them. Currently the optimizations include
specialization of division operation using the knowledge about the value of the de-
nominator.

-fspeculative-prefetching

If combined with ‘~fprofile-arcs’, it instructs the compiler to add a code to gather
information about addresses of memory references in the program.

With ‘-fbranch-probabilities’, it reads back the data gathered and issues
prefetch instructions according to them. In addition to the opportunities noticed
by ‘-fprefetch-loop-arrays’, it also notices more complicated memory access
patterns—for example accesses to the data stored in linked list whose elements are
usually allocated sequentially.

In order to prevent issuing double prefetches, usage of
‘~fspeculative-prefetching’ implies ‘~fno-prefetch-loop-arrays’.

Enabled with ‘-fprofile-generate’ and ‘-fprofile-use’.

Chapter 3: GCC Command Options 71

-frename-registers
Attempt to avoid false dependencies in scheduled code by making use of registers
left over after register allocation. This optimization will most benefit processors
with lots of registers. Depending on the debug information format adopted by the
target, however, it can make debugging impossible, since variables will no longer
stay in a “home register”.

Not enabled by default at any level because it has known bugs.

-ftracer Perform tail duplication to enlarge superblock size. This transformation simplifies
the control flow of the function allowing other optimizations to do better job.

Enabled with ‘-fprofile-use’.

-funroll-loops
Unroll loops whose number of iterations can be determined at compile time or upon
entry to the loop. ‘-funroll-loops’ implies ‘~frerun-cse-after-loop’. It also
turns on complete loop peeling (i.e. complete removal of loops with small constant
number of iterations). This option makes code larger, and may or may not make it
run faster.

Enabled with ‘~-fprofile-use’.

—-funroll-all-loops
Unroll all loops, even if their number of iterations is uncertain when the loop is
entered. This usually makes programs run more slowly. ‘-funroll-all-loops’
implies the same options as ‘-funroll-loops’.

—-fpeel-loops
Peels the loops for that there is enough information that they do not roll much (from
profile feedback). It also turns on complete loop peeling (i.e. complete removal of
loops with small constant number of iterations).

Enabled with ‘-fprofile-use’.

-fmove-loop-invariants
Enables the loop invariant motion pass in the new loop optimizer. Enabled at level
4_017

-funswitch-loops
Move branches with loop invariant conditions out of the loop, with duplicates of the
loop on both branches (modified according to result of the condition).

-fprefetch-loop-arrays
If supported by the target machine, generate instructions to prefetch memory to
improve the performance of loops that access large arrays.

Disabled at level ‘-0s’.

—-ffunction-sections

-fdata-sections
Place each function or data item into its own section in the output file if the target
supports arbitrary sections. The name of the function or the name of the data item
determines the section’s name in the output file.

Use these options on systems where the linker can perform optimizations to improve
locality of reference in the instruction space. Most systems using the ELF object for-
mat and SPARC processors running Solaris 2 have linkers with such optimizations.
AIX may have these optimizations in the future.

Only use these options when there are significant benefits from doing so. When
you specify these options, the assembler and linker will create larger object and

72 Using the GNU Compiler Collection (GCC)

executable files and will also be slower. You will not be able to use gprof on all
systems if you specify this option and you may have problems with debugging if you
specify both this option and ‘-g’.

-fbranch-target-load-optimize
Perform branch target register load optimization before prologue / epilogue thread-
ing. The use of target registers can typically be exposed only during reload, thus
hoisting loads out of loops and doing inter-block scheduling needs a separate opti-
mization pass.

-fbranch-target-load-optimize2
Perform branch target register load optimization after prologue / epilogue threading.

-fbtr-bb-exclusive
When performing branch target register load optimization, don’t reuse branch target
registers in within any basic block.

—--param name=value
In some places, GCC uses various constants to control the amount of optimization
that is done. For example, GCC will not inline functions that contain more that
a certain number of instructions. You can control some of these constants on the
command-line using the ‘--param’ option.
The names of specific parameters, and the meaning of the values, are tied to the
internals of the compiler, and are subject to change without notice in future releases.

In each case, the value is an integer. The allowable choices for name are given in
the following table:

sra-max-structure-size
The maximum structure size, in bytes, at which the scalar replacement
of aggregates (SRA) optimization will perform block copies. The default
value, 0, implies that GCC will select the most appropriate size itself.

sra-field-structure-ratio
The threshold ratio (as a percentage) between instantiated fields and
the complete structure size. We say that if the ratio of the number
of bytes in instantiated fields to the number of bytes in the complete
structure exceeds this parameter, then block copies are not used. The

default is 75.

max-crossjump-edges
The maximum number of incoming edges to consider for crossjumping.
The algorithm used by ‘-fcrossjumping’ is O(N?) in the number of
edges incoming to each block. Increasing values mean more aggressive
optimization, making the compile time increase with probably small
improvement in executable size.

min-crossjump-insns
The minimum number of instructions which must be matched at the
end of two blocks before crossjumping will be performed on them. This
value is ignored in the case where all instructions in the block being
crossjumped from are matched. The default value is 5.

max-goto-duplication-insns
The maximum number of instructions to duplicate to a block that jumps
to a computed goto. To avoid O(N?) behavior in a number of passes,
GCC factors computed gotos early in the compilation process, and un-
factors them as late as possible. Only computed jumps at the end of a

Chapter 3: GCC Command Options 73

basic blocks with no more than max-goto-duplication-insns are unfac-
tored. The default value is 8.

max—-delay-slot-insn-search
The maximum number of instructions to consider when looking for an
instruction to fill a delay slot. If more than this arbitrary number of
instructions is searched, the time savings from filling the delay slot will
be minimal so stop searching. Increasing values mean more aggressive
optimization, making the compile time increase with probably small
improvement in executable run time.

max—-delay-slot-live-search
When trying to fill delay slots, the maximum number of instructions to
consider when searching for a block with valid live register information.
Increasing this arbitrarily chosen value means more aggressive optimiza-
tion, increasing the compile time. This parameter should be removed
when the delay slot code is rewritten to maintain the control-flow graph.

max-gcse-memory
The approximate maximum amount of memory that will be allocated
in order to perform the global common subexpression elimination opti-
mization. If more memory than specified is required, the optimization
will not be done.

max-gcse-passes
The maximum number of passes of GCSE to run. The default is 1.

max-pending-list-length
The maximum number of pending dependencies scheduling will allow
before flushing the current state and starting over. Large functions with
few branches or calls can create excessively large lists which needlessly
consume memory and resources.

max-inline-insns-single
Several parameters control the tree inliner used in gcc. This number
sets the maximum number of instructions (counted in GCC’s internal
representation) in a single function that the tree inliner will consider
for inlining. This only affects functions declared inline and methods
implemented in a class declaration (C++). The default value is 450.
max-inline-insns-auto
When you use ‘~finline-functions’ (included in ‘-03’), a lot of func-
tions that would otherwise not be considered for inlining by the compiler
will be investigated. To those functions, a different (more restrictive)
limit compared to functions declared inline can be applied. The default
value is 90.

large-function-insns
The limit specifying really large functions. For functions larger
than this limit after inlining inlining is constrained by ‘--param
large-function-growth’. This parameter is useful primarily to avoid
extreme compilation time caused by non-linear algorithms used by the
backend. This parameter is ignored when ‘~funit-at-a-time’ is not

used. The default value is 2700.

large-function-growth
Specifies maximal growth of large function caused by inlining in per-
cents. This parameter is ignored when ‘~funit-at-a-time’ is not used.

74 Using the GNU Compiler Collection (GCC)

The default value is 100 which limits large function growth to 2.0 times
the original size.

inline-unit-growth
Specifies maximal overall growth of the compilation unit caused by in-
lining. This parameter is ignored when ‘~funit-at-a-time’ is not used.
The default value is 50 which limits unit growth to 1.5 times the original
size.

max-inline-insns-recursive

max-inline-insns-recursive-auto
Specifies maximum number of instructions out-of-line copy of self recur-
sive inline function can grow into by performing recursive inlining.

For functions declared inline ‘~-param max-inline-insns-recursive’
is taken into acount. For function not declared inline, recursive inlining
happens only when ‘-finline-functions’ (included in ‘-03’) is en-
abled and ‘--param max-inline-insns-recursive-auto’ is used. The
default value is 450.

max-inline-recursive-depth
max-inline-recursive-depth-auto
Specifies maximum recursion depth used by the recursive inlining.

For functions declared inline ‘~-param max-inline-recursive-depth’
is taken into acount. For function not declared inline, recursive inlining
happens only when ‘~finline-functions’ (included in ‘-03’) is en-
abled and ‘--param max-inline-recursive-depth-auto’ is used. The
default value is 450.

inline-call-cost

Specify cost of call instruction relative to simple arithmetics operations
(having cost of 1). Increasing this cost disqualify inlinining of non-leaf
functions and at same time increase size of leaf function that is believed
to reduce function size by being inlined. In effect it increase amount of
inlining for code having large abstraction penalty (many functions that
just pass the argumetns to other functions) and decrease inlining for
code with low abstraction penalty. Default value is 16.

max-unrolled-insns
The maximum number of instructions that a loop should have if that
loop is unrolled, and if the loop is unrolled, it determines how many
times the loop code is unrolled.

max-average-unrolled-insns
The maximum number of instructions biased by probabilities of their
execution that a loop should have if that loop is unrolled, and if the loop
is unrolled, it determines how many times the loop code is unrolled.

max-unroll-times
The maximum number of unrollings of a single loop.

max-peeled-insns
The maximum number of instructions that a loop should have if that
loop is peeled, and if the loop is peeled, it determines how many times
the loop code is peeled.

max-peel-times
The maximum number of peelings of a single loop.

Chapter 3: GCC Command Options 75

max-completely-peeled-insns
The maximum number of insns of a completely peeled loop.

max-completely-peel-times
The maximum number of iterations of a loop to be suitable for complete
peeling.

max-unswitch-insns
The maximum number of insns of an unswitched loop.

max-unswitch-level
The maximum number of branches unswitched in a single loop.

lim-expensive
The minimum cost of an expensive expression in the loop invariant
motion.

iv-consider-all-candidates-bound
Bound on number of candidates for induction variables below that all
candidates are considered for each use in induction variable optimiza-
tions. Only the most relevant candidates are considered if there are
more candidates, to avoid quadratic time complexity.

iv-max-considered-uses
The induction variable optimizations give up on loops that contain more
induction variable uses.

iv-always-prune-cand-set-bound
If number of candidates in the set is smaller than this value, we always
try to remove unnecessary ivs from the set during its optimization when
a new iv is added to the set.

scev-max—expr-size
Bound on size of expressions used in the scalar evolutions analyzer.
Large expressions slow the analyzer.

max-iterations-to-track
The maximum number of iterations of a loop the brute force algorithm
for analysis of # of iterations of the loop tries to evaluate.

hot-bb-count-fraction
Select fraction of the maximal count of repetitions of basic block in
program given basic block needs to have to be considered hot.

hot-bb-frequency-fraction
Select fraction of the maximal frequency of executions of basic block in
function given basic block needs to have to be considered hot

tracer-dynamic-coverage

tracer-dynamic-coverage-feedback
This value is used to limit superblock formation once the given percent-
age of executed instructions is covered. This limits unnecessary code
size expansion.

The ‘tracer-dynamic-coverage-feedback’ is used only when profile
feedback is available. The real profiles (as opposed to statically esti-
mated ones) are much less balanced allowing the threshold to be larger
value.

76

Using the GNU Compiler Collection (GCC)

tracer-max-code-growth
Stop tail duplication once code growth has reached given percentage.
This is rather hokey argument, as most of the duplicates will be elim-
inated later in cross jumping, so it may be set to much higher values
than is the desired code growth.

tracer-min-branch-ratio
Stop reverse growth when the reverse probability of best edge is less
than this threshold (in percent).

tracer-min-branch-ratio

tracer-min-branch-ratio-feedback
Stop forward growth if the best edge do have probability lower than this
threshold.

Similarly to ‘tracer-dynamic-coverage’ two values are present, one for
compilation for profile feedback and one for compilation without. The
value for compilation with profile feedback needs to be more conservative
(higher) in order to make tracer effective.

max-cse-path-length
Maximum number of basic blocks on path that cse considers. The de-
fault is 10.

global-var-threshold
Counts the number of function calls (n) and the number of call-clobbered
variables (v). If nxv is larger than this limit, a single artificial variable
will be created to represent all the call-clobbered variables at function
call sites. This artificial variable will then be made to alias every call-
clobbered variable. (done as int * size_t on the host machine; beware
overflow).

max-aliased-vops
Maximum number of virtual operands allowed to represent aliases before
triggering the alias grouping heuristic. Alias grouping reduces compile
times and memory consumption needed for aliasing at the expense of
precision loss in alias information.

ggc-min-expand
GCC uses a garbage collector to manage its own memory allocation.
This parameter specifies the minimum percentage by which the garbage
collector’s heap should be allowed to expand between collections. Tun-
ing this may improve compilation speed; it has no effect on code gener-
ation.

The default is 30% + 70% * (RAM/1GB) with an upper bound of 100%
when RAM >= 1GB. If getrlimit is available, the notion of "RAM"
is the smallest of actual RAM and RLIMIT_DATA or RLIMIT_AS. If GCC
is not able to calculate RAM on a particular platform, the lower bound
of 30% is used. Setting this parameter and ‘ggc-min-heapsize’ to zero
causes a full collection to occur at every opportunity. This is extremely
slow, but can be useful for debugging.

ggc-min-heapsize
Minimum size of the garbage collector’s heap before it begins bothering
to collect garbage. The first collection occurs after the heap expands by
‘ggc-min-expand’% beyond ‘ggc-min-heapsize’. Again, tuning this
may improve compilation speed, and has no effect on code generation.

Chapter 3: GCC Command Options 7

The default is the smaller of RAM/8, RLIMIT_RSS, or a limit which
tries to ensure that RLIMIT_DATA or RLIMIT_AS are not exceeded,
but with a lower bound of 4096 (four megabytes) and an upper bound
of 131072 (128 megabytes). If GCC is not able to calculate RAM on
a particular platform, the lower bound is used. Setting this parameter
very large effectively disables garbage collection. Setting this parameter
and ‘ggc-min-expand’ to zero causes a full collection to occur at every
opportunity.

max-reload-search-insns
The maximum number of instruction reload should look backward for
equivalent register. Increasing values mean more aggressive optimiza-
tion, making the compile time increase with probably slightly better
performance. The default value is 100.

max-cselib-memory-location
The maximum number of memory locations cselib should take into
acount. Increasing values mean more aggressive optimization, making
the compile time increase with probably slightly better performance.
The default value is 500.

reorder-blocks—-duplicate

reorder-blocks—-duplicate-feedback
Used by basic block reordering pass to decide whether to use uncondi-
tional branch or duplicate the code on its destination. Code is dupli-
cated when its estimated size is smaller than this value multiplied by the
estimated size of unconditional jump in the hot spots of the program.

The ‘reorder-block-duplicate-feedback’ is wused only when
profile feedback is available and may be set to higher values than
‘reorder-block-duplicate’ since information about the hot spots is
more accurate.

max-sched-region-blocks
The maximum number of blocks in a region to be considered for in-
terblock scheduling. The default value is 10.

max-sched-region-insns
The maximum number of insns in a region to be considered for in-
terblock scheduling. The default value is 100.

max-last-value-rtl
The maximum size measured as number of RTLs that can be recorded
in an expression in combiner for a pseudo register as last known value
of that register. The default is 10000.

integer-share-1imit
Small integer constants can use a shared data structure, reducing the
compiler’s memory usage and increasing its speed. This sets the maxi-
mum value of a shared integer constant’s. The default value is 256.

3.11 Options Controlling the Preprocessor

These options control the C preprocessor, which is run on each C source file before actual
compilation.

If you use the ‘-E’ option, nothing is done except preprocessing. Some of these options make
sense only together with ‘-E’ because they cause the preprocessor output to be unsuitable for
actual compilation.

78

Using the GNU Compiler Collection (GCC)

You can use ‘-Wp,option’ to bypass the compiler driver and pass option directly
through to the preprocessor. If option contains commas, it is split into multiple
options at the commas. However, many options are modified, translated or inter-
preted by the compiler driver before being passed to the preprocessor, and ‘-Wp’
forcibly bypasses this phase. The preprocessor’s direct interface is undocumented
and subject to change, so whenever possible you should avoid using ‘-Wp’ and let
the driver handle the options instead.

-Xpreprocessor option

-D name

Pass option as an option to the preprocessor. You can use this to supply system-
specific preprocessor options which GCC does not know how to recognize.

If you want to pass an option that takes an argument, you must use
‘~Xpreprocessor’ twice, once for the option and once for the argument.

Predefine name as a macro, with definition 1.

-D name=definition

-U name

—undef

-1 dir

-o file

-Wall

-Wcomment
-Wcomments

The contents of definition are tokenized and processed as if they appeared during
translation phase three in a ‘#define’ directive. In particular, the definition will be
truncated by embedded newline characters.

If you are invoking the preprocessor from a shell or shell-like program you may need
to use the shell’s quoting syntax to protect characters such as spaces that have a
meaning in the shell syntax.

If you wish to define a function-like macro on the command line, write its argument
list with surrounding parentheses before the equals sign (if any). Parentheses are
meaningful to most shells, so you will need to quote the option. With sh and csh,
‘-D’name (args...)=definition’’ works.

‘-D” and ‘-U’ options are processed in the order they are given on the command line.
All ‘-imacros file’ and ‘-include file’ options are processed after all ‘-D’ and
‘U’ options.

Cancel any previous definition of name, either built in or provided with a ‘~D’ option.

Do not predefine any system-specific or GCC-specific macros. The standard prede-
fined macros remain defined.

Add the directory dir to the list of directories to be searched for header files. Di-
rectories named by ‘-1’ are searched before the standard system include directories.
If the directory dir is a standard system include directory, the option is ignored to
ensure that the default search order for system directories and the special treatment
of system headers are not defeated .

Write output to file. This is the same as specifying file as the second non-option
argument to cpp. gcc has a different interpretation of a second non-option argument,
so you must use ‘-0’ to specify the output file.

Turns on all optional warnings which are desirable for normal code. At present this is
‘~Wcomment’, ‘-Wtrigraphs’, ‘-Wmultichar’ and a warning about integer promotion
causing a change of sign in #if expressions. Note that many of the preprocessor’s
warnings are on by default and have no options to control them.

Warn whenever a comment-start sequence ‘/*’ appears in a ‘/*’ comment, or when-
ever a backslash-newline appears in a ‘//’ comment. (Both forms have the same
effect.)

Chapter 3: GCC Command Options 79

-Wtrigraphs

Most trigraphs in comments cannot affect the meaning of the program. However,
a trigraph that would form an escaped newline (‘??7/’ at the end of a line) can, by
changing where the comment begins or ends. Therefore, only trigraphs that would
form escaped newlines produce warnings inside a comment.

This option is implied by ‘-Wall’. If ‘-Wall’ is not given, this option is still enabled
unless trigraphs are enabled. To get trigraph conversion without warnings, but get
the other ‘-Wall’ warnings, use ‘-trigraphs -Wall -Wno-trigraphs’.

-Wtraditional

-Wimport
-Wundef

Warn about certain constructs that behave differently in traditional and ISO C. Also
warn about ISO C constructs that have no traditional C equivalent, and problematic
constructs which should be avoided.

Warn the first time ‘#import’ is used.

Warn whenever an identifier which is not a macro is encountered in an ‘#if’ directive,
outside of ‘defined’. Such identifiers are replaced with zero.

-Wunused-macros

Warn about macros defined in the main file that are unused. A macro is used if it
is expanded or tested for existence at least once. The preprocessor will also warn if
the macro has not been used at the time it is redefined or undefined.

Built-in macros, macros defined on the command line, and macros defined in include
files are not warned about.

Note: If a macro is actually used, but only used in skipped conditional blocks, then
CPP will report it as unused. To avoid the warning in such a case, you might
improve the scope of the macro’s definition by, for example, moving it into the first
skipped block. Alternatively, you could provide a dummy use with something like:

#if defined the_macro_causing_the_warning
#endif

-Wendif-labels

-Werror

Warn whenever an ‘#else’ or an ‘#endif’ are followed by text. This usually happens
in code of the form

#if FOO

#éise FOO0

#endif FOO
The second and third FOO should be in comments, but often are not in older pro-

grams. This warning is on by default.

Make all warnings into hard errors. Source code which triggers warnings will be
rejected.

-Wsystem-headers

-w

-pedantic

Issue warnings for code in system headers. These are normally unhelpful in finding
bugs in your own code, therefore suppressed. If you are responsible for the system
library, you may want to see them.

Suppress all warnings, including those which GNU CPP issues by default.

Issue all the mandatory diagnostics listed in the C standard. Some of them are left
out by default, since they trigger frequently on harmless code.

80

Using the GNU Compiler Collection (GCC)

-pedantic-errors

-MF file

-MP

-MT target

Issue all the mandatory diagnostics, and make all mandatory diagnostics into er-
rors. This includes mandatory diagnostics that GCC issues without ‘-pedantic’
but treats as warnings.

Instead of outputting the result of preprocessing, output a rule suitable for make
describing the dependencies of the main source file. The preprocessor outputs one
make rule containing the object file name for that source file, a colon, and the
names of all the included files, including those coming from ‘~include’ or ‘~imacros’
command line options.

Unless specified explicitly (with ‘-MT’ or ‘-MQ’), the object file name consists of the
basename of the source file with any suffix replaced with object file suffix. If there
are many included files then the rule is split into several lines using ‘\’-newline. The
rule has no commands.

This option does not suppress the preprocessor’s debug output, such as ‘-dM’. To
avoid mixing such debug output with the dependency rules you should explicitly
specify the dependency output file with ‘-MF’, or use an environment variable like
DEPENDENCIES_OUTPUT (see Section 3.19 [Environment Variables], page 164). Debug
output will still be sent to the regular output stream as normal.

Passing ‘-M’ to the driver implies ‘~E’, and suppresses warnings with an implicit

—wl.

Like ‘-M’ but do not mention header files that are found in system header directories,
nor header files that are included, directly or indirectly, from such a header.

This implies that the choice of angle brackets or double quotes in an ‘#include’
directive does not in itself determine whether that header will appear in ‘-MM’ de-
pendency output. This is a slight change in semantics from GCC versions 3.0 and
earlier.

When used with ‘=M’ or ‘-MM’, specifies a file to write the dependencies to. If no
‘-MF’ switch is given the preprocessor sends the rules to the same place it would
have sent preprocessed output.

When used with the driver options ‘~MD’ or ‘-MMD’, ‘-MF’ overrides the default de-
pendency output file.

In conjunction with an option such as ‘-M’ requesting dependency generation, ‘-MG’
assumes missing header files are generated files and adds them to the dependency
list without raising an error. The dependency filename is taken directly from the
#include directive without prepending any path. ‘-MG’ also suppresses preprocessed
output, as a missing header file renders this useless.

This feature is used in automatic updating of makefiles.

This option instructs CPP to add a phony target for each dependency other than
the main file, causing each to depend on nothing. These dummy rules work around
errors make gives if you remove header files without updating the ‘Makefile’ to
match.
This is typical output:

test.o: test.c test.h

test.h:

Change the target of the rule emitted by dependency generation. By default CPP
takes the name of the main input file, including any path, deletes any file suffix such
as ‘.c’, and appends the platform’s usual object suffix. The result is the target.

Chapter 3: GCC Command Options 81

-MQ target

-MD

-MMD

-fpch-deps

An ‘-MT’ option will set the target to be exactly the string you specify. If you want
multiple targets, you can specify them as a single argument to ‘-MT’, or use multiple
‘~MT’ options.
For example, ‘-MT ’>$(objpfx)foo.o’’ might give

$(objpfx)foo.o: foo.c

Same as ‘-MT’, but it quotes any characters which are special to Make.
‘-MQ >$(objpfx)foo.0’’ gives
$$(objpfx)foo.o0: foo.c

The default target is automatically quoted, as if it were given with ‘-MQ’.

‘-MD’ is equivalent to ‘-M -MF file’, except that ‘-E’ is not implied. The driver
determines file based on whether an ‘-0’ option is given. If it is, the driver uses its
argument but with a suffix of *.d’, otherwise it take the basename of the input file
and applies a ‘.d’ suffix.

If *=MD’ is used in conjunction with ‘-E’, any ‘-0’ switch is understood to specify the
dependency output file (but see [-MF], page 80), but if used without ‘~E’, each ‘-0’
is understood to specify a target object file.

Since ‘=E’ is not implied, ‘-MD’ can be used to generate a dependency output file as
a side-effect of the compilation process.

Like ‘-MD’ except mention only user header files, not system header files.

When using precompiled headers (see Section 3.20 [Precompiled Headers|, page 166),
this flag will cause the dependency-output flags to also list the files from the pre-
compiled header’s dependencies. If not specified only the precompiled header would
be listed and not the files that were used to create it because those files are not
consulted when a precompiled header is used.

-fpch-preprocess

-X C
-X c++

This option allows use of a precompiled header (see Section 3.20 [Precompiled Head-
ers], page 166) together with ‘-E’. It inserts a special #pragma, #pragma GCC pch_
preprocess "<filename>" in the output to mark the place where the precompiled
header was found, and its filename. When ‘-fpreprocessed’ is in use, GCC recog-
nizes this #pragma and loads the PCH.

This option is off by default, because the resulting preprocessed output is only really
suitable as input to GCC. It is switched on by ‘-save-temps’.

You should not write this #pragma in your own code, but it is safe to edit the
filename if the PCH file is available in a different location. The filename may be
absolute or it may be relative to GCC’s current directory.

-X objective-c
-X assembler-with-cpp

Specify the source language: C, C++, Objective-C, or assembly. This has nothing to
do with standards conformance or extensions; it merely selects which base syntax
to expect. If you give none of these options, cpp will deduce the language from the
extension of the source file: ‘.c’, ‘.cc’, *.m’, or ‘. 8’. Some other common extensions
for C++ and assembly are also recognized. If cpp does not recognize the extension,

it will treat the file as C; this is the most generic mode.

82

Using the GNU Compiler Collection (GCC)

Note: Previous versions of cpp accepted a ‘-~lang’ option which selected both the
language and the standards conformance level. This option has been removed,
because it conflicts with the ‘-1’ option.

-std=standard

-ansi Specify the standard to which the code should conform. Currently CPP knows
about C and C++ standards; others may be added in the future.
standard may be one of:
1s09899:1990
c89 The ISO C standard from 1990. ‘c89’ is the customary shorthand for
this version of the standard.
The ‘-ansi’ option is equivalent to ‘-std=c89’.

1s09899:199409
The 1990 C standard, as amended in 1994.

1i509899:1999

c99

1509899:199x

c9x The revised ISO C standard, published in December 1999. Before pub-
lication, this was known as C9X.

gnu89 The 1990 C standard plus GNU extensions. This is the default.

gnu99

gnu9x The 1999 C standard plus GNU extensions.

c++98 The 1998 ISO C++ standard plus amendments.

gnu++98 The same as ‘-std=c++98’ plus GNU extensions. This is the default for
C++ code.

-I- Split the include path. Any directories specified with ‘-I’ options before ‘-~I-’ are
searched only for headers requested with #include "file"; they are not searched
for #include <file>. If additional directories are specified with ‘-I’ options after
the ‘-I-’, those directories are searched for all ‘#include’ directives.

In addition, ‘-~I-’ inhibits the use of the directory of the current file directory as the
first search directory for #include "file". This option has been deprecated.

-nostdinc
Do not search the standard system directories for header files. Only the directo-
ries you have specified with ‘-1’ options (and the directory of the current file, if
appropriate) are searched.

-nostdinc++

Do not search for header files in the C++-specific standard directories, but do still
search the other standard directories. (This option is used when building the C++
library.)

—-include file

Process file as if #include "file" appeared as the first line of the primary source
file. However, the first directory searched for file is the preprocessor’s working
directory instead of the directory containing the main source file. If not found
there, it is searched for in the remainder of the #include "..." search chain as
normal.

3

If multiple ‘-~include’ options are given, the files are included in the order they
appear on the command line.

Chapter 3: GCC Command Options 83

—-imacros file
Exactly like ‘-include’, except that any output produced by scanning file is thrown
away. Macros it defines remain defined. This allows you to acquire all the macros
from a header without also processing its declarations.

All files specified by ‘-imacros’ are processed before all files specified by ‘-include’.

-idirafter dir
Search dir for header files, but do it after all directories specified with ‘-1’ and the
standard system directories have been exhausted. dir is treated as a system include
directory.

-iprefix prefix
Specify prefix as the prefix for subsequent ‘-iwithprefix’ options. If the prefix
represents a directory, you should include the final /.

-iwithprefix dir

-iwithprefixbefore dir
Append dir to the prefix specified previously with ‘~iprefix’, and add the resulting
directory to the include search path. ‘-iwithprefixbefore’ puts it in the same
place ‘-1’ would; ‘~iwithprefix’ puts it where ‘~idirafter’ would.

-isystem dir
Search dir for header files, after all directories specified by ‘~I’ but before the stan-
dard system directories. Mark it as a system directory, so that it gets the same
special treatment as is applied to the standard system directories.

-iquote dir
Search dir only for header files requested with #include "file"; they are not
searched for #include <file>, before all directories specified by ‘-1’ and before
the standard system directories.

-fdollars-in-identifiers
Accept ‘$’ in identifiers.

—-fpreprocessed

Indicate to the preprocessor that the input file has already been preprocessed. This
suppresses things like macro expansion, trigraph conversion, escaped newline splic-
ing, and processing of most directives. The preprocessor still recognizes and removes
comments, so that you can pass a file preprocessed with ‘-C’ to the compiler without
problems. In this mode the integrated preprocessor is little more than a tokenizer
for the front ends.

‘~fpreprocessed’ is implicit if the input file has one of the extensions ‘.1’, ‘.ii’
or ‘.mi’. These are the extensions that GCC uses for preprocessed files created by
‘-save-temps’.

-ftabstop=width
Set the distance between tab stops. This helps the preprocessor report correct
column numbers in warnings or errors, even if tabs appear on the line. If the value
is less than 1 or greater than 100, the option is ignored. The default is 8.

-fexec-charset=charset
Set the execution character set, used for string and character constants. The default
is UTF-8. charset can be any encoding supported by the system’s iconv library
routine.

-fwide-exec-charset=charset
Set the wide execution character set, used for wide string and character constants.
The default is UTF-32 or UTF-16, whichever corresponds to the width of wchar_t.

84

Using the GNU Compiler Collection (GCC)

As with ‘-fexec-charset’, charset can be any encoding supported by the system’s
iconv library routine; however, you will have problems with encodings that do not
fit exactly in wchar_t.

-finput-charset=charset

Set the input character set, used for translation from the character set of the input
file to the source character set used by GCC. If the locale does not specify, or
GCC cannot get this information from the locale, the default is UTF-8. This can
be overridden by either the locale or this command line option. Currently the
command line option takes precedence if there’s a conflict. charset can be any
encoding supported by the system’s iconv library routine.

-fworking-directory

Enable generation of linemarkers in the preprocessor output that will let the compiler
know the current working directory at the time of preprocessing. When this option is
enabled, the preprocessor will emit, after the initial linemarker, a second linemarker
with the current working directory followed by two slashes. GCC will use this
directory, when it’s present in the preprocessed input, as the directory emitted as
the current working directory in some debugging information formats. This option
is implicitly enabled if debugging information is enabled, but this can be inhibited
with the negated form ‘-fno-working-directory’. If the ‘-P’ flag is present in
the command line, this option has no effect, since no #line directives are emitted
whatsoever.

—-fno-show-column

Do not print column numbers in diagnostics. This may be necessary if diagnostics
are being scanned by a program that does not understand the column numbers,
such as dejagnu.

-A predicate=answer

Make an assertion with the predicate predicate and answer answer. This form
is preferred to the older form ‘-A predicate (answer)’, which is still supported,
because it does not use shell special characters.

-A -predicate=answer

—-dCHARS

Cancel an assertion with the predicate predicate and answer answer.

CHARS is a sequence of one or more of the following characters, and must not
be preceded by a space. Other characters are interpreted by the compiler proper,
or reserved for future versions of GCC, and so are silently ignored. If you specify
characters whose behavior conflicts, the result is undefined.

‘M Instead of the normal output, generate a list of ‘#define’ directives
for all the macros defined during the execution of the preprocessor,
including predefined macros. This gives you a way of finding out what
is predefined in your version of the preprocessor. Assuming you have
no file ‘foo.h’; the command

touch foo.h; cpp -dM foo.h

will show all the predefined macros.

‘D’ Like ‘M’ except in two respects: it does mot include the predefined
macros, and it outputs both the ‘#define’ directives and the result of
preprocessing. Both kinds of output go to the standard output file.

‘N’ Like ‘D’, but emit only the macro names, not their expansions.

‘T Output ‘#include’ directives in addition to the result of preprocessing.

Chapter 3: GCC Command Options 85

-CC

Inhibit generation of linemarkers in the output from the preprocessor. This might
be useful when running the preprocessor on something that is not C code, and will
be sent to a program which might be confused by the linemarkers.

Do not discard comments. All comments are passed through to the output file,
except for comments in processed directives, which are deleted along with the di-
rective.

You should be prepared for side effects when using ‘-C’; it causes the preprocessor
to treat comments as tokens in their own right. For example, comments appearing
at the start of what would be a directive line have the effect of turning that line
into an ordinary source line, since the first token on the line is no longer a ‘#’.

Do not discard comments, including during macro expansion. This is like ‘-C’, except
that comments contained within macros are also passed through to the output file
where the macro is expanded.

In addition to the side-effects of the ‘~C’ option, the ‘~CC’ option causes all C++-style
comments inside a macro to be converted to C-style comments. This is to prevent
later use of that macro from inadvertently commenting out the remainder of the
source line.

The ‘-CC’ option is generally used to support lint comments.

-traditional-cpp

-trigraphs

-remap

—--help

Try to imitate the behavior of old-fashioned C preprocessors, as opposed to ISO C
preprocessors.

Process trigraph sequences. These are three-character sequences, all starting with
“?7’, that are defined by ISO C to stand for single characters. For example, ‘7?7/’
stands for ‘\’, so ’??/n’’ is a character constant for a newline. By default, GCC
ignores trigraphs, but in standard-conforming modes it converts them. See the
‘-std’ and ‘-ansi’ options.

The nine trigraphs and their replacements are
Trigraph: ?7(?7) ?T<??> ?7= 7?7/ 777 770 77—
Replacement: [1 { } # \ - | -

Enable special code to work around file systems which only permit very short file
names, such as MS-DOS.

--target-help

-version
—--version

Print text describing all the command line options instead of preprocessing anything.

Verbose mode. Print out GNU CPP’s version number at the beginning of execution,
and report the final form of the include path.

Print the name of each header file used, in addition to other normal activities. Each
name is indented to show how deep in the ‘#include’ stack it is. Precompiled header
files are also printed, even if they are found to be invalid; an invalid precompiled
header file is printed with ‘. ..x" and a valid one with ‘...!" .

Print out GNU CPP’s version number. With one dash, proceed to preprocess as
normal. With two dashes, exit immediately.

86 Using the GNU Compiler Collection (GCC)

3.12 Passing Options to the Assembler

You can pass options to the assembler.

-Wa,option
Pass option as an option to the assembler. If option contains commas, it is split
into multiple options at the commas.

-Xassembler option
Pass option as an option to the assembler. You can use this to supply system-specific
assembler options which GCC does not know how to recognize.

If you want to pass an option that takes an argument, you must use ‘-~-Xassembler’
twice, once for the option and once for the argument.

3.13 Options for Linking

These options come into play when the compiler links object files into an executable output file.

They are meaningless if the compiler is not doing a link step.

object-file-name
A file name that does not end in a special recognized suffix is considered to name
an object file or library. (Object files are distinguished from libraries by the linker
according to the file contents.) If linking is done, these object files are used as input
to the linker.

-E If any of these options is used, then the linker is not run, and object file names
should not be used as arguments. See Section 3.2 [Overall Options]|, page 16.

-llibrary

-1 library
Search the library named library when linking. (The second alternative with the
library as a separate argument is only for POSIX compliance and is not recom-
mended.)
It makes a difference where in the command you write this option; the linker searches
and processes libraries and object files in the order they are specified. Thus, ‘foo.o0
-1z bar.o’ searches library ‘z’ after file ‘foo.0o’ but before ‘bar.o’. If ‘bar.o’ refers
to functions in ‘z’, those functions may not be loaded.

The linker searches a standard list of directories for the library, which is actually a
file named ‘liblibrary.a’. The linker then uses this file as if it had been specified
precisely by name.

The directories searched include several standard system directories plus any that
you specify with ‘-L’.

Normally the files found this way are library files—archive files whose members are
object files. The linker handles an archive file by scanning through it for members
which define symbols that have so far been referenced but not defined. But if the
file that is found is an ordinary object file, it is linked in the usual fashion. The
only difference between using an ‘-1’ option and specifying a file name is that ‘=1’
surrounds library with ‘1ib’ and ‘.a’ and searches several directories.

-lobjc You need this special case of the ‘-1’ option in order to link an Objective-C or
Objective-C++ program.

-nostartfiles
Do not use the standard system startup files when linking. The standard system
libraries are used normally, unless ‘-nostdlib’ or ‘-nodefaultlibs’ is used.

Chapter 3: GCC Command Options 87

-nodefaultlibs

-nostdlib

-pie

-S

-static

—-shared

Do not use the standard system libraries when linking. Only the libraries you specify
will be passed to the linker. The standard startup files are used normally, unless
‘-nostartfiles’ is used. The compiler may generate calls to memcmp, memset,
memcpy and memmove. These entries are usually resolved by entries in libc. These
entry points should be supplied through some other mechanism when this option is
specified.

Do not use the standard system startup files or libraries when linking. No startup
files and only the libraries you specify will be passed to the linker. The compiler may
generate calls to memcmp, memset, memcpy and memmove. These entries are usually
resolved by entries in libc. These entry points should be supplied through some
other mechanism when this option is specified.

One of the standard libraries bypassed by ‘-nostdlib’ and ‘-nodefaultlibs’ is
‘libgcc.a’, a library of internal subroutines that GCC uses to overcome shortcom-
ings of particular machines, or special needs for some languages. (See section “In-
terfacing to GCC Output” in GNU Compiler Collection (GCC) Internals, for more
discussion of ‘libgcc.a’.) In most cases, you need ‘libgcc.a’ even when you want
to avoid other standard libraries. In other words, when you specify ‘-nostdlib’ or
‘-nodefaultlibs’ you should usually specify ‘-1gcc’ as well. This ensures that you
have no unresolved references to internal GCC library subroutines. (For example,
‘__main’, used to ensure C++ constructors will be called; see section “collect2” in
GNU Compiler Collection (GCC) Internals.)

Produce a position independent executable on targets which support it. For pre-
dictable results, you must also specify the same set of options that were used to
generate code (‘-fpie’, ‘~fPIE’, or model suboptions) when you specify this option.

Remove all symbol table and relocation information from the executable.

On systems that support dynamic linking, this prevents linking with the shared
libraries. On other systems, this option has no effect.

Produce a shared object which can then be linked with other objects to form an
executable. Not all systems support this option. For predictable results, you must
also specify the same set of options that were used to generate code (‘-fpic’, ‘~fPIC’,
or model suboptions) when you specify this option.!

-shared-libgcc
-static-libgcc

On systems that provide ‘libgcc’ as a shared library, these options force the use of
either the shared or static version respectively. If no shared version of ‘libgcc’ was
built when the compiler was configured, these options have no effect.

There are several situations in which an application should use the shared ‘1ibgcc’
instead of the static version. The most common of these is when the application
wishes to throw and catch exceptions across different shared libraries. In that case,
each of the libraries as well as the application itself should use the shared ‘libgcc’.

Therefore, the G++ and GCJ drivers automatically add ‘~shared-libgcc’ whenever
you build a shared library or a main executable, because C++ and Java programs
typically use exceptions, so this is the right thing to do.

1 On some systems, ‘gcc -shared’ needs to build supplementary stub code for constructors to work. On multi-
libbed systems, ‘gcc -shared’ must select the correct support libraries to link against. Failing to supply the
correct flags may lead to subtle defects. Supplying them in cases where they are not necessary is innocuous.

88

-symbolic

Using the GNU Compiler Collection (GCC)

If, instead, you use the GCC driver to create shared libraries, you may find that they
will not always be linked with the shared ‘1ibgcc’. If GCC finds, at its configuration
time, that you have a non-GNU linker or a GNU linker that does not support option
‘-—eh-frame-hdr’, it will link the shared version of ‘1libgcc’ into shared libraries
by default. Otherwise, it will take advantage of the linker and optimize away the
linking with the shared version of ‘1libgcc’, linking with the static version of libgcc by
default. This allows exceptions to propagate through such shared libraries, without
incurring relocation costs at library load time.

However, if a library or main executable is supposed to throw or catch exceptions,
you must link it using the G++ or GCJ driver, as appropriate for the languages used
in the program, or using the option ‘-shared-libgcc’, such that it is linked with
the shared ‘libgcc’.

Bind references to global symbols when building a shared object. Warn about
any unresolved references (unless overridden by the link editor option ‘-Xlinker -z
-Xlinker defs’). Only a few systems support this option.

-Xlinker option

-W1l,option

-u symbol

Pass option as an option to the linker. You can use this to supply system-specific
linker options which GCC does not know how to recognize.

If you want to pass an option that takes an argument, you must use ‘-Xlinker’
twice, once for the option and once for the argument. For example, to pass ‘-assert
definitions’, you must write ‘~-Xlinker -assert -Xlinker definitions’. It does
not work to write ‘-Xlinker "-assert definitions"’, because this passes the en-
tire string as a single argument, which is not what the linker expects.

Pass option as an option to the linker. If option contains commas, it is split into
multiple options at the commas.

Pretend the symbol symbol is undefined, to force linking of library modules to
define it. You can use ‘-u’ multiple times with different symbols to force loading of
additional library modules.

3.14 Options for Directory Search

These options specify directories to search for header files, for libraries and for parts of the

compiler:

-Idir

Add the directory dir to the head of the list of directories to be searched for header
files. This can be used to override a system header file, substituting your own
version, since these directories are searched before the system header file directories.
However, you should not use this option to add directories that contain vendor-
supplied system header files (use ‘~isystem’ for that). If you use more than one
‘=TI’ option, the directories are scanned in left-to-right order; the standard system
directories come after.

If a standard system include directory, or a directory specified with ‘~isystem’,
is also specified with ‘-I’, the ‘-I’ option will be ignored. The directory will still
be searched but as a system directory at its normal position in the system include
chain. This is to ensure that GCC’s procedure to fix buggy system headers and the
ordering for the include_next directive are not inadvertently changed. If you really
need to change the search order for system directories, use the ‘-nostdinc’ and/or
‘-isystem’ options.

Chapter 3: GCC Command Options 89

-iquotedir

-Ldir
-Bprefix

Add the directory dir to the head of the list of directories to be searched for header
files only for the case of ‘#include "file"’; they are not searched for ‘#include
<file>’, otherwise just like ‘=1’

Add directory dir to the list of directories to be searched for ‘-1’

This option specifies where to find the executables, libraries, include files, and data
files of the compiler itself.

The compiler driver program runs one or more of the subprograms ‘cpp’, ‘ccl’, ‘as’
and ‘1d’. It tries prefix as a prefix for each program it tries to run, both with and
without ‘machine/version/’ (see Section 3.16 [Target Options|, page 95).

For each subprogram to be run, the compiler driver first tries the ‘-B’ prefix, if any.
If that name is not found, or if ‘-B’ was not specified, the driver tries two standard
prefixes, which are ‘/usr/1ib/gcc/’ and ‘/usr/local/lib/gcc/’. If neither of those
results in a file name that is found, the unmodified program name is searched for
using the directories specified in your PATH environment variable.

The compiler will check to see if the path provided by the ‘-B’ refers to a directory,
and if necessary it will add a directory separator character at the end of the path.

‘B’ prefixes that effectively specify directory names also apply to libraries in the
linker, because the compiler translates these options into ‘-L’ options for the linker.
They also apply to includes files in the preprocessor, because the compiler translates
these options into ‘~isystem’ options for the preprocessor. In this case, the compiler
appends ‘include’ to the prefix.

The run-time support file ‘libgcc.a’ can also be searched for using the ‘-B’ prefix,
if needed. If it is not found there, the two standard prefixes above are tried, and
that is all. The file is left out of the link if it is not found by those means.
Another way to specify a prefix much like the ‘-B’ prefix is to use the environment
variable GCC_EXEC_PREFIX. See Section 3.19 [Environment Variables|, page 164.
As a special kludge, if the path provided by ‘-B’ is ‘[dir/]stageN/’, where N is a
number in the range 0 to 9, then it will be replaced by ‘[dir/]include’. This is to
help with boot-strapping the compiler.

-specs=file

Process file after the compiler reads in the standard ‘specs’ file, in order to override
the defaults that the ‘gcc’ driver program uses when determining what switches
to pass to ‘ccl’, ‘cclplus’, ‘as’, ‘1ld’, etc. More than one ‘-specs=file’ can be
specified on the command line, and they are processed in order, from left to right.

¢

¢ 3

This option has been deprecated. Please use ‘-iquote’ instead for ‘-I’ directories
before the ‘-I-’ and remove the ‘-I-’. Any directories you specify with ‘-I’ options
before the ‘~I-" option are searched only for the case of ‘#include "file"’; they
are not searched for ‘#include <file>’.

¢

If additional directories are specified with ‘-=I’ options after the ‘~I-’, these direc-
tories are searched for all ‘#include’ directives. (Ordinarily all ‘-1’ directories are
used this way.)

In addition, the ‘-I-’ option inhibits the use of the current directory (where the
current input file came from) as the first search directory for ‘#include "file"’.
There is no way to override this effect of ‘~I-’. With ‘-I.” you can specify searching
the directory which was current when the compiler was invoked. That is not exactly
the same as what the preprocessor does by default, but it is often satisfactory.
‘-I-" does not inhibit the use of the standard system directories for header files.
Thus, ‘-I-" and ‘-nostdinc’ are independent.

90 Using the GNU Compiler Collection (GCC)

3.15 Specifying subprocesses and the switches to pass to them

gcc is a driver program. It performs its job by invoking a sequence of other programs to do the
work of compiling, assembling and linking. GCC interprets its command-line parameters and
uses these to deduce which programs it should invoke, and which command-line options it ought
to place on their command lines. This behavior is controlled by spec strings. In most cases there
is one spec string for each program that GCC can invoke, but a few programs have multiple
spec strings to control their behavior. The spec strings built into GCC can be overridden by
using the ‘-specs=" command-line switch to specify a spec file.

Spec files are plaintext files that are used to construct spec strings. They consist of a sequence
of directives separated by blank lines. The type of directive is determined by the first non-
whitespace character on the line and it can be one of the following:

%hcommand Issues a command to the spec file processor. The commands that can appear here
are:

%include <file>
Search for file and insert its text at the current point in the specs file.

%include_noerr <file>
Just like ‘%include’, but do not generate an error message if the include
file cannot be found.

%rename old_name new_name
Rename the spec string old_name to new_name.

* [spec_name] :

This tells the compiler to create, override or delete the named spec string. All lines
after this directive up to the next directive or blank line are considered to be the text
for the spec string. If this results in an empty string then the spec will be deleted.
(Or, if the spec did not exist, then nothing will happened.) Otherwise, if the spec
does not currently exist a new spec will be created. If the spec does exist then its
contents will be overridden by the text of this directive, unless the first character of
that text is the ‘+’ character, in which case the text will be appended to the spec.

[suffix]:
Creates a new ‘[suffix] spec’ pair. All lines after this directive and up to the next
directive or blank line are considered to make up the spec string for the indicated
suffix. When the compiler encounters an input file with the named suffix, it will
processes the spec string in order to work out how to compile that file. For example:
A
z-compile -input %i
This says that any input file whose name ends in ‘.ZZ’ should be passed to the pro-
gram ‘z-compile’, which should be invoked with the command-line switch ‘-input’
and with the result of performing the ‘%i’ substitution. (See below.)

As an alternative to providing a spec string, the text that follows a suffix directive
can be one of the following:

Q@language
This says that the suffix is an alias for a known language. This is similar
to using the ‘-x’ command-line switch to GCC to specify a language
explicitly. For example:
LZZ:
Qc++

Says that .ZZ files are, in fact, C++ source files.

#name This causes an error messages saying:

Chapter 3: GCC Command Options 91

GCC has

name compiler not installed on this system.

GCC already has an extensive list of suffixes built into it. This directive will add
an entry to the end of the list of suffixes, but since the list is searched from the end
backwards, it is effectively possible to override earlier entries using this technique.

the following spec strings built into it. Spec files can override these strings or create

their own. Note that individual targets can also add their own spec strings to this list.

asm
asm_fi
CPP
ccl
cclplu
endfil
link
lib
libgcc
linker
predef
signed

startf

Here is a

Yirenam

*1ib:
--star

Options to pass to the assembler

nal Options to pass to the assembler post-processor
Options to pass to the C preprocessor
Options to pass to the C compiler

s Options to pass to the C++ compiler

e Object files to include at the end of the link
Options to pass to the linker
Libraries to include on the command line to the linker
Decides which GCC support library to pass to the linker
Sets the name of the linker

ines Defines to be passed to the C preprocessor

_char Defines to pass to CPP to say whether char is signed
by default

ile Object files to include at the start of the link

small example of a spec file:
e 1lib 0ld_lib

t-group -lgcc -lc -levall --end-group %(old_lib)

This example renames the spec called ‘1ib’ to ‘old_1ib’ and then overrides the previous
definition of ‘1ib’ with a new one. The new definition adds in some extra command-line options
before including the text of the old definition.

Spec strings are a list of command-line options to be passed to their corresponding program.

In addition,

the spec strings can contain ‘%;’-prefixed sequences to substitute variable text or to

conditionally insert text into the command line. Using these constructs it is possible to generate
quite complex command lines.

Here is a table of all defined ‘%’-sequences for spec strings. Note that spaces are not generated
automatically around the results of expanding these sequences. Therefore you can concatenate
them together or combine them with constant text in a single argument.

yAA
hi

%b

%B
%d

hgsuffix

Substitute one ‘%’ into the program name or argument.
Substitute the name of the input file being processed.

Substitute the basename of the input file being processed. This is the substring up
to (and not including) the last period and not including the directory.

This is the same as ‘%b’, but include the file suffix (text after the last period).

Marks the argument containing or following the ‘%d’ as a temporary file name, so
that that file will be deleted if GCC exits successfully. Unlike ‘%g’, this contributes
no text to the argument.

Substitute a file name that has suffix suffix and is chosen once per compilation, and
mark the argument in the same way as ‘%d’. To reduce exposure to denial-of-service
attacks, the file name is now chosen in a way that is hard to predict even when
previously chosen file names are known. For example, ‘%g.s ... %g.o ... %g.s’
might turn into ‘ccUVUUAU.s ccXYAXZ12.0 ccUVUUAU.s’. suffix matches the regexp
‘[.A-Za-z]*’ or the special string ‘%0’, which is treated exactly as if ‘%0" had been
preprocessed. Previously, ‘%g’ was simply substituted with a file name chosen once
per compilation, without regard to any appended suffix (which was therefore treated
just like ordinary text), making such attacks more likely to succeed.

92

Y%usuffix

%Usuffix

hjsuffix

%|suffix
Ymsuffix

%.SUFFIX

Yow

%o

%0

hp

%P

%I

%s

%estr

% (name)

Using the GNU Compiler Collection (GCC)

Like ‘%g’, but generates a new temporary file name even if ‘fusuffix’ was already
seen.

Substitutes the last file name generated with ‘4usuffix’, generating a new one if
there is no such last file name. In the absence of any ‘%usuffix’, this is just like
‘hgsuffix’, except they don’t share the same suffix space, so ‘%ig.s ... %U.s ...
%hg-s ... %U.s’ would involve the generation of two distinct file names, one for each
‘%g.s’ and another for each ‘%U.s’. Previously, ‘%U’" was simply substituted with a
file name chosen for the previous ‘%u’, without regard to any appended suffix.

Substitutes the name of the HOST_BIT_BUCKET, if any, and if it is writable, and if
save-temps is off; otherwise, substitute the name of a temporary file, just like ‘%u’.
This temporary file is not meant for communication between processes, but rather
as a junk disposal mechanism.

Like ‘%g’, except if ‘-pipe’ is in effect. In that case ‘% |’ substitutes a single dash and
“%m’ substitutes nothing at all. These are the two most common ways to instruct
a program that it should read from standard input or write to standard output. If
you need something more elaborate you can use an ‘%{pipe:X}’ construct: see for
example ‘f/lang-specs.h’.

Substitutes .SUFFIX for the suffixes of a matched switch’s args when it is subse-
quently output with ‘%*’. SUFFIX is terminated by the next space or %.

Marks the argument containing or following the ‘%4w’ as the designated output file of
this compilation. This puts the argument into the sequence of arguments that ‘%o’
will substitute later.

Substitutes the names of all the output files, with spaces automatically placed
around them. You should write spaces around the ‘%o’ as well or the results are
undefined. ‘%o’ is for use in the specs for running the linker. Input files whose names
have no recognized suffix are not compiled at all, but they are included among the
output files, so they will be linked.

Substitutes the suffix for object files. Note that this is handled specially when it
immediately follows ‘%g, %u, or %U’, because of the need for those to form complete
file names. The handling is such that ‘%0’ is treated exactly as if it had already been
substituted, except that ‘%g, %u, and %U’ do not currently support additional suffix

3)

characters following ‘%0’ as they would following, for example, ‘.o’

Substitutes the standard macro predefinitions for the current target machine. Use
this when running cpp.

Like ‘%p’, but puts ‘__" before and after the name of each predefined macro, except
for macros that start with ‘__’ or with ‘_L’, where L is an uppercase letter. This is
for ISO C.

Substitute any of ‘-iprefix’ (made from GCC_EXEC_PREFIX), ‘-isysroot’ (made
from TARGET_SYSTEM_ROOT), and ‘-isystem’ (made from COMPILER_PATH and ‘-B’
options) as necessary.

Current argument is the name of a library or startup file of some sort. Search for
that file in a standard list of directories and substitute the full name found.

Print str as an error message. str is terminated by a newline. Use this when
inconsistent options are detected.

Substitute the contents of spec string name at this point.

Chapter 3: GCC Command Options 93

%[namel Like ‘%(...)" but put ‘__" around ‘-D’ arguments.
%x{option}
Accumulate an option for ‘%X’.

WX Output the accumulated linker options specified by ‘W1’ or a ‘%x’ spec string.

VA Output the accumulated assembler options specified by ‘-Wa’.

hZ Output the accumulated preprocessor options specified by ‘~Wp’.

%ha Process the asm spec. This is used to compute the switches to be passed to the
assembler.

%A Process the asm_final spec. This is a spec string for passing switches to an assem-
bler post-processor, if such a program is needed.

yAn Process the 1ink spec. This is the spec for computing the command line passed to
the linker. Typically it will make use of the ‘%L %G %S %D and %E’ sequences.

%D Dump out a ‘-L’ option for each directory that GCC believes might contain startup
files. If the target supports multilibs then the current multilib directory will be
prepended to each of these paths.

%L Process the 1ib spec. This is a spec string for deciding which libraries should be
included on the command line to the linker.

%G Process the 1ibgcc spec. This is a spec string for deciding which GCC support
library should be included on the command line to the linker.

%S Process the startfile spec. This is a spec for deciding which object files should be
the first ones passed to the linker. Typically this might be a file named ‘crt0.0’.

HE Process the endfile spec. This is a spec string that specifies the last object files
that will be passed to the linker.

A Process the cpp spec. This is used to construct the arguments to be passed to the
C preprocessor.

%1 Process the ccl spec. This is used to construct the options to be passed to the
actual C compiler (‘ccl’).

%2 Process the cclplus spec. This is used to construct the options to be passed to the
actual C++ compiler (‘cciplus’).

A Substitute the variable part of a matched option. See below. Note that each comma
in the substituted string is replaced by a single space.

%h<S Remove all occurrences of -8 from the command line. Note—this command is

position dependent. ‘%’ commands in the spec string before this one will see =S, ‘%’
commands in the spec string after this one will not.

%:function (args)

Call the named function function, passing it args. args is first processed as a nested
spec string, then split into an argument vector in the usual fashion. The function
returns a string which is processed as if it had appeared literally as part of the
current spec.

The following built-in spec functions are provided:
if-exists
The if-exists spec function takes one argument, an absolute path-

name to a file. If the file exists, if-exists returns the pathname. Here
is a small example of its usage:

94

h{s}

W{s}
%{S*}

%{S*&T*}

%{S:X}
%{1S:X}
%{S*:X}

%{.S:X}
%{!.S:X}
%{S|P:X}

Using the GNU Compiler Collection (GCC)

*startfile:
crt0%0%s %:if-exists(crtil0%s) crtbegin’0l%s

if-exists-else
The if-exists-else spec function is similar to the if-exists spec
function, except that it takes two arguments. The first argument is an
absolute pathname to a file. If the file exists, if-exists-else returns
the pathname. If it does not exist, it returns the second argument. This
way, if-exists-else can be used to select one file or another, based
on the existence of the first. Here is a small example of its usage:

*startfile:
crt0%0%s %:if-exists(crti%0%s) \
%:if-exists-else(crtbeginT%0%s crtbegin0%s)

replace-outfile
The replace-outfile spec function takes two arguments. It looks for
the first argument in the outfiles array and replaces it with the second
argument. Here is a small example of its usage:
%{fgnu-runtime:’:replace-outfile(-lobjc -lobjc-gnu)}

Substitutes the -S switch, if that switch was given to GCC. If that switch was not
specified, this substitutes nothing. Note that the leading dash is omitted when spec-
ifying this option, and it is automatically inserted if the substitution is performed.
Thus the spec string ‘%{foo}’ would match the command-line option ‘-foo’ and
would output the command line option ‘~-foo’.

Like %{S} but mark last argument supplied within as a file to be deleted on failure.

Substitutes all the switches specified to GCC whose names start with -3, but which
also take an argument. This is used for switches like ‘-0’, ‘-D’, ‘-I’, etc. GCC
considers ‘—o foo’ as being one switch whose names starts with ‘o’. %{0*} would
substitute this text, including the space. Thus two arguments would be generated.

Like %{S*}, but preserve order of S and T options (the order of S and T in the spec
is not significant). There can be any number of ampersand-separated variables; for
each the wild card is optional. Useful for CPP as ‘%{D*&Ux*&A*}’.

Substitutes X, if the ‘=8’ switch was given to GCC.
Substitutes X, if the ‘=8’ switch was not given to GCC.

Substitutes X if one or more switches whose names start with -S are specified to
GCC. Normally X is substituted only once, no matter how many such switches
appeared. However, if %* appears somewhere in X, then X will be substituted once
for each matching switch, with the %* replaced by the part of that switch that
matched the *.

Substitutes X, if processing a file with suffix S.
Substitutes X, if not processing a file with suffix S.

Substitutes X if either =S or -P was given to GCC. This may be combined with ‘!’
.7, and * sequences as well, although they have a stronger binding than the ‘|’. If
%* appears in X, all of the alternatives must be starred, and only the first matching
alternative is substituted.

For example, a spec string like this:

%{.c:-foo} %{!.c:-bar} %{.cld:-baz} %{!.cld:-boggle}
will output the following command-line options from the following input command-
line options:

Chapter 3: GCC Command Options 95

fred.c -foo -baz

jim.d -bar -boggle

-d fred.c -foo -baz -boggle
-d jim.d -bar -baz -boggle

%{S:X; T:Y; :D}
If S was given to GCC, substitutes X; else if T was given to GCC, substitutes Y; else
substitutes D. There can be as many clauses as you need. This may be combined
with ., !, |, and * as needed.

The conditional text X in a %{S:X} or similar construct may contain other nested ‘)’ constructs
or spaces, or even newlines. They are processed as usual, as described above. Trailing white
space in X is ignored. White space may also appear anywhere on the left side of the colon in
these constructs, except between . or * and the corresponding word.

The ‘-0, ‘~=f’, ‘-m’, and ‘-W’ switches are handled specifically in these constructs. If another
value of ‘-0’ or the negated form of a ‘-f’, ‘-m’, or ‘W’ switch is found later in the command
line, the earlier switch value is ignored, except with {S*} where S is just one letter, which passes
all matching options.

The character ‘|’ at the beginning of the predicate text is used to indicate that a command
should be piped to the following command, but only if ‘-pipe’ is specified.

It is built into GCC which switches take arguments and which do not. (You might think
it would be useful to generalize this to allow each compiler’s spec to say which switches take
arguments. But this cannot be done in a consistent fashion. GCC cannot even decide which
input files have been specified without knowing which switches take arguments, and it must
know which input files to compile in order to tell which compilers to run).

GCC also knows implicitly that arguments starting in ‘=1’ are to be treated as compiler output
files, and passed to the linker in their proper position among the other output files.

3.16 Specifying Target Machine and Compiler Version

The usual way to run GCC is to run the executable called ‘gcc’, or ‘<machine>-gcc’ when
cross-compiling, or ‘<machine>-gcc-<version>’ to run a version other than the one that was
installed last. Sometimes this is inconvenient, so GCC provides options that will switch to
another cross-compiler or version.

-b machine
The argument machine specifies the target machine for compilation.

The value to use for machine is the same as was specified as the machine type when
configuring GCC as a cross-compiler. For example, if a cross-compiler was configured
with ‘configure i386v’, meaning to compile for an 80386 running System V, then
you would specify ‘-b 1i386v’ to run that cross compiler.

-V version
The argument version specifies which version of GCC to run. This is useful when
multiple versions are installed. For example, version might be ‘2.0’, meaning to run

GCC version 2.0.
The =V’ and ‘-b’ options work by running the ‘<machine>-gcc-<version>’ executable, so

there’s no real reason to use them if you can just run that directly.

3.17 Hardware Models and Configurations

Earlier we discussed the standard option ‘-b’ which chooses among different installed compilers
for completely different target machines, such as VAX vs. 68000 vs. 80386.

96 Using the GNU Compiler Collection (GCC)

In addition, each of these target machine types can have its own special options, starting
with ‘-m’, to choose among various hardware models or configurations—for example, 68010 vs
68020, floating coprocessor or none. A single installed version of the compiler can compile for
any model or configuration, according to the options specified.

Some configurations of the compiler also support additional special options, usually for com-
patibility with other compilers on the same platform.

These options are defined by the macro TARGET_SWITCHES in the machine description. The
default for the options is also defined by that macro, which enables you to change the defaults.

3.17.1 ARC Options

These options are defined for ARC implementations:
-EL Compile code for little endian mode. This is the default.
-EB Compile code for big endian mode.

-mmangle-cpu
Prepend the name of the cpu to all public symbol names. In multiple-processor
systems, there are many ARC variants with different instruction and register set
characteristics. This flag prevents code compiled for one cpu to be linked with
code compiled for another. No facility exists for handling variants that are “almost
identical”. This is an all or nothing option.

-mcpu=cpu
Compile code for ARC variant cpu. Which variants are supported depend on the
configuration. All variants support ‘-mcpu=base’, this is the default.

-mtext=text-section

-mdata=data-section

-mrodata=readonly-data-section
Put functions, data, and readonly data in text-section, data-section, and readonly-
data-section respectively by default. This can be overridden with the section at-
tribute. See Section 5.31 [Variable Attributes], page 205.

3.17.2 ARM Options
These ‘-m’ options are defined for Advanced RISC Machines (ARM) architectures:

-mabi=name
Generate code for the specified ABI. Permissible values are: ‘apcs-gnu’, ‘atpcs’,
‘aapcs’ and ‘iwmmxt’.

-mapcs-frame
Generate a stack frame that is compliant with the ARM Procedure Call Standard for
all functions, even if this is not strictly necessary for correct execution of the code.
Specifying ‘~fomit-frame-pointer’ with this option will cause the stack frames not
to be generated for leaf functions. The default is ‘-mno-apcs-frame’.

-mapcs This is a synonym for ‘-mapcs-frame’.

-mthumb-interwork
Generate code which supports calling between the ARM and Thumb instruction
sets. Without this option the two instruction sets cannot be reliably used inside
one program. The default is ‘-mno-thumb-interwork’, since slightly larger code is
generated when ‘-mthumb-interwork’ is specified.

-mno-sched-prolog
Prevent the reordering of instructions in the function prolog, or the merging of
those instruction with the instructions in the function’s body. This means that all

Chapter 3: GCC Command Options 97

functions will start with a recognizable set of instructions (or in fact one of a choice
from a small set of different function prologues), and this information can be used
to locate the start if functions inside an executable piece of code. The default is
‘-msched-prolog’.

-mhard-float
Generate output containing floating point instructions. This is the default.

-msoft-float
Generate output containing library calls for floating point. Warning: the requi-
site libraries are not available for all ARM targets. Normally the facilities of the
machine’s usual C compiler are used, but this cannot be done directly in cross-
compilation. You must make your own arrangements to provide suitable library
functions for cross-compilation.

‘-msoft-float’ changes the calling convention in the output file; therefore, it is
only useful if you compile all of a program with this option. In particular, you need
to compile ‘1ibgcc.a’, the library that comes with GCC, with ‘-msoft-float’ in
order for this to work.

-mfloat-abi=name
Specifies which ABI to use for floating point values. Permissible values are: ‘soft’,
‘softfp’ and ‘hard’.

‘soft’ and ‘hard’ are equivalent to ‘-msoft-float’ and ‘-mhard-float’ respectively.
‘softfp’ allows the generation of floating point instructions, but still uses the soft-
float calling conventions.

-mlittle-endian
Generate code for a processor running in little-endian mode. This is the default for
all standard configurations.

-mbig-endian
Generate code for a processor running in big-endian mode; the default is to compile
code for a little-endian processor.

-mwords-little-endian
This option only applies when generating code for big-endian processors. Generate
code for a little-endian word order but a big-endian byte order. That is, a byte
order of the form ‘32107654’. Note: this option should only be used if you require
compatibility with code for big-endian ARM processors generated by versions of the
compiler prior to 2.8.

-mcpu=name
This specifies the name of the target ARM processor. GCC uses this name
to determine what kind of instructions it can emit when generating assembly
code. Permissible names are: ‘arm2’, ‘arm250’, ‘arm3’, ‘arm6’, ‘arm60’, ‘arm600’,
‘arm610’, ‘arm620’, ‘arm7’, ‘arm7m’, ‘arm7d’, ‘arm7dm’, ‘arm7di’, ‘arm7dmi’, ‘arm70’,
‘arm700’, ‘arm700i’, ‘arm710’, ‘arm710c’, ‘arm7100’, ‘arm7500’, ‘arm7500fe’,
‘arm7tdmi’, ‘arm7tdmi-s’, ‘arm8’, ‘strongarm’, ‘strongarm110’, ‘strongarm1100’,
‘arm8’, ‘arm810’, ‘arm9’, ‘arm9e’, ‘arm920’, ‘arm920t’, ‘arm922t’, ‘arm946e-s’,
‘arm966e-s’, ‘arm968e-s’, ‘arm926ej-s’, ‘arm940t’, ‘arm9tdmi’, ‘arm10tdmi’,
‘arm1020t’, ‘arm1026ej-s’, ‘armlOe’, ‘arm1020e’, ‘arm1022e’, ‘arml136j-s’,
‘arm1136jf-s’, ‘mpcore’, ‘mpcorenovfp’, ‘armll76jz-s’, ‘arml1l176jzf-s’,
‘xscale’, ‘iwmmxt’, ‘ep9312’.

-mtune=name
This option is very similar to the ‘-mcpu=’ option, except that instead of specifying
the actual target processor type, and hence restricting which instructions can be

98

Using the GNU Compiler Collection (GCC)

used, it specifies that GCC should tune the performance of the code as if the target
were of the type specified in this option, but still choosing the instructions that

it will generate based on the cpu specified by a ‘-mcpu=" option. For some ARM
implementations better performance can be obtained by using this option.

-march=name

-mfpu=name

This specifies the name of the target ARM architecture. GCC uses this name to
determine what kind of instructions it can emit when generating assembly code.
This option can be used in conjunction with or instead of the ‘-mcpu=" option. Per-
missible names are: ‘armv2’, ‘armv2a’, ‘armv3’, ‘armv3m’, ‘armv4’, ‘armv4t’, ‘armvb’,
‘armvbt’, ‘armvbte’, ‘armvé’, ‘armv6j’, ‘iwmmxt’, ‘ep9312’.

-mfpe=number
-mfp=number

This specifies what floating point hardware (or hardware emulation) is available on
the target. Permissible names are: ‘fpa’, ‘fpe2’, ‘fpe3’, ‘maverick’, ‘vfp’. ‘-mfp’
and ‘-mfpe’ are synonyms for ‘-mfpu’=‘fpe’number, for compatibility with older

versions of GCC.

If ‘-msoft-float’ is specified this specifies the format of floating point values.

-mstructure-size-boundary=n

The size of all structures and unions will be rounded up to a multiple of the number
of bits set by this option. Permissible values are 8, 32 and 64. The default value
varies for different toolchains. For the COFF targeted toolchain the default value
is 8. A value of 64 is only allowed if the underlying ABI supports it.

Specifying the larger number can produce faster, more efficient code, but can also
increase the size of the program. Different values are potentially incompatible.
Code compiled with one value cannot necessarily expect to work with code or li-
braries compiled with another value, if they exchange information using structures
or unions.

-mabort-on-noreturn

Generate a call to the function abort at the end of a noreturn function. It will be
executed if the function tries to return.

-mlong-calls
-mno-long-calls

Tells the compiler to perform function calls by first loading the address of the func-
tion into a register and then performing a subroutine call on this register. This
switch is needed if the target function will lie outside of the 64 megabyte addressing
range of the offset based version of subroutine call instruction.

Even if this switch is enabled, not all function calls will be turned into long calls.
The heuristic is that static functions, functions which have the ‘short-call’ at-
tribute, functions that are inside the scope of a ‘#pragma no_long_calls’ directive
and functions whose definitions have already been compiled within the current com-
pilation unit, will not be turned into long calls. The exception to this rule is that
weak function definitions, functions with the ‘long-call’ attribute or the ‘section’
attribute, and functions that are within the scope of a ‘#pragma long_calls’ direc-
tive, will always be turned into long calls.

This feature is not enabled by default. Specifying ‘-mno-long-calls’ will restore
the default behavior, as will placing the function calls within the scope of a ‘#pragma
long_calls_off’ directive. Note these switches have no effect on how the compiler
generates code to handle function calls via function pointers.

Chapter 3: GCC Command Options 99

-mnop-fun-dllimport
Disable support for the d1limport attribute.

-msingle-pic-base
Treat the register used for PIC addressing as read-only, rather than loading it in
the prologue for each function. The run-time system is responsible for initializing
this register with an appropriate value before execution begins.

-mpic-register=reg
Specify the register to be used for PIC addressing. The default is R10 unless stack-
checking is enabled, when R9 is used.

-mcirrus-fix-invalid-insns
Insert NOPs into the instruction stream to in order to work around problems
with invalid Maverick instruction combinations. This option is only valid if the
‘-mcpu=ep9312’ option has been used to enable generation of instructions for the
Cirrus Maverick floating point co-processor. This option is not enabled by default,
since the problem is only present in older Maverick implementations. The default
can be re-enabled by use of the ‘-mno-cirrus-fix-invalid-insns’ switch.

-mpoke-function-name
Write the name of each function into the text section, directly preceding the function
prologue. The generated code is similar to this:
t0
.ascii "arm_poke_function_name", O
.align
t1
.word 0xff000000 + (t1 - tO)
arm_poke_function_name

mov ip, sp
stmfd sp!, {fp, ip, lr, pc}
sub fp, ip, #4

When performing a stack backtrace, code can inspect the value of pc stored at fp
+ 0. If the trace function then looks at location pc - 12 and the top 8 bits are set,
then we know that there is a function name embedded immediately preceding this
location and has length ((pc[-3]) & 0x£f£000000).

-mthumb Generate code for the 16-bit Thumb instruction set. The default is to use the 32-bit
ARM instruction set.

-mtpcs-frame
Generate a stack frame that is compliant with the Thumb Procedure Call Standard
for all non-leaf functions. (A leaf function is one that does not call any other
functions.) The default is ‘-mno-tpcs-frame’.

-mtpcs-leaf-frame
Generate a stack frame that is compliant with the Thumb Procedure Call Standard
for all leaf functions. (A leaf function is one that does not call any other functions.)
The default is ‘-mno-apcs-leaf-frame’.

-mcallee-super-interworking
Gives all externally visible functions in the file being compiled an ARM instruction
set header which switches to Thumb mode before executing the rest of the function.
This allows these functions to be called from non-interworking code.

-mcaller-super-interworking
Allows calls via function pointers (including virtual functions) to execute correctly
regardless of whether the target code has been compiled for interworking or not.

100 Using the GNU Compiler Collection (GCC)

There is a small overhead in the cost of executing a function pointer if this option
is enabled.

3.17.3 AVR Options

These options are defined for AVR implementations:

-mmcu=mcu
Specify ATMEL AVR instruction set or MCU type.

Instruction set avrl is for the minimal AVR core, not supported by the C compiler,
only for assembler programs (MCU types: at90s1200, attinyl10, attinyll, attiny12,
attiny15, attiny28).

Instruction set avr2 (default) is for the classic AVR core with up to 8K program
memory space (MCU types: at90s2313, at90s2323, attiny22, at90s2333, at90s2343,
at90s4414, at90s4433, at90s4434, at90s8515, at90c8534, at90s8535).

Instruction set avr3 is for the classic AVR core with up to 128K program memory
space (MCU types: atmegal03, atmega603, at43usb320, at76¢711).

Instruction set avr4 is for the enhanced AVR core with up to 8K program memory
space (MCU types: atmega8, atmega83, atmega85).

Instruction set avrb is for the enhanced AVR core with up to 128K program mem-
ory space (MCU types: atmegal6, atmegal6l, atmegal63, atmega32, atmega323,
atmega64, atmegal28, at43usb355, at94k).

-msize Output instruction sizes to the asm file.

-minit-stack=N
Specify the initial stack address, which may be a symbol or numeric value, ‘__stack’
is the default.

-mno-interrupts
Generated code is not compatible with hardware interrupts. Code size will be
smaller.

-mcall-prologues
Functions prologues/epilogues expanded as call to appropriate subroutines. Code
size will be smaller.

-mno-tablejump
Do not generate tablejump insns which sometimes increase code size.

-mtiny-stack
Change only the low 8 bits of the stack pointer.

-mint8 Assume int to be 8 bit integer. This affects the sizes of all types: A char will be 1
byte, an int will be 1 byte, an long will be 2 bytes and long long will be 4 bytes.
Please note that this option does not comply to the C standards, but it will provide
you with smaller code size.

3.17.4 Blackfin Options

-momit-leaf-frame-pointer
Don’t keep the frame pointer in a register for leaf functions. This avoids the in-
structions to save, set up and restore frame pointers and makes an extra register
available in leaf functions. The option ‘~fomit-frame-pointer’ removes the frame
pointer for all functions which might make debugging harder.

Chapter 3: GCC Command Options 101

-mspecld-anomaly
When enabled, the compiler will ensure that the generated code does not contain
speculative loads after jump instructions. This option is enabled by default.

-mno-specld-anomaly
Don’t generate extra code to prevent speculative loads from occurring.

-mcsync-anomaly
When enabled, the compiler will ensure that the generated code does not contain
CSYNC or SSYNC instructions too soon after conditional branches. This option is
enabled by default.

-mno-csync-anomaly
Don’t generate extra code to prevent CSYNC or SSYNC instructions from occurring
too soon after a conditional branch.

-mlow-64k
When enabled, the compiler is free to take advantage of the knowledge that the
entire program fits into the low 64k of memory.

-mno—low—-64k
Assume that the program is arbitrarily large. This is the default.

-mid-shared-library
Generate code that supports shared libraries via the library ID method. This allows
for execute in place and shared libraries in an environment without virtual memory
management. This option implies ‘-fPIC’.

-mno-id-shared-library
Generate code that doesn’t assume ID based shared libraries are being used. This
is the default.

-mshared-library-id=n
Specified the identification number of the ID based shared library being compiled.
Specifying a value of 0 will generate more compact code, specifying other values will
force the allocation of that number to the current library but is no more space or
time efficient than omitting this option.

-mlong-calls

-mno-long-calls
Tells the compiler to perform function calls by first loading the address of the func-
tion into a register and then performing a subroutine call on this register. This
switch is needed if the target function will lie outside of the 24 bit addressing range
of the offset based version of subroutine call instruction.

This feature is not enabled by default. Specifying ‘-mno-long-calls’ will restore the

default behavior. Note these switches have no effect on how the compiler generates
code to handle function calls via function pointers.

3.17.5 CRIS Options
These options are defined specifically for the CRIS ports.

-march=architecture-type

-mcpu=architecture-type
Generate code for the specified architecture. The choices for architecture-type are
‘v3’, ‘v8” and ‘v10’ for respectively ETRAX 4, ETRAX 100, and ETRAX 100 LX.
Default is ‘vO’ except for cris-axis-linux-gnu, where the default is ‘v10’.

102 Using the GNU Compiler Collection (GCC)

-mtune=architecture-type
Tune to architecture-type everything applicable about the generated code, except
for the ABI and the set of available instructions. The choices for architecture-type
are the same as for ‘-march=architecture-type’.

-mmax-stack-frame=n
Warn when the stack frame of a function exceeds n bytes.

-melinux-stacksize=n
Only available with the ‘cris-axis-aout’ target. Arranges for indications in the
program to the kernel loader that the stack of the program should be set to n bytes.

-metrax4

-metrax100
The options ‘-metrax4’ and ‘-metrax100’ are synonyms for ‘-march=v3’ and
‘-march=v8’ respectively.

-mmul-bug-workaround

-mno-mul-bug-workaround
Work around a bug in the muls and mulu instructions for CPU models where it
applies. This option is active by default.

-mpdebug Enable CRIS-specific verbose debug-related information in the assembly code. This
option also has the effect to turn off the ‘#NO_APP’ formatted-code indicator to the
assembler at the beginning of the assembly file.

-mcc-init
Do not use condition-code results from previous instruction; always emit compare
and test instructions before use of condition codes.

-mno-side-effects
Do not emit instructions with side-effects in addressing modes other than post-
increment.

-mstack-align

-mno-stack-align

-mdata-align

-mno-data-align

-mconst-align

-mno-const-align
These options (no-options) arranges (eliminate arrangements) for the stack-frame,
individual data and constants to be aligned for the maximum single data access size
for the chosen CPU model. The default is to arrange for 32-bit alignment. ABI
details such as structure layout are not affected by these options.

-m32-bit

-m16-bit

-m8-bit Similar to the stack- data- and const-align options above, these options arrange for
stack-frame, writable data and constants to all be 32-bit, 16-bit or 8-bit aligned.
The default is 32-bit alignment.

-mno-prologue-epilogue

-mprologue-epilogue
With ‘-mno-prologue-epilogue’, the normal function prologue and epilogue that
sets up the stack-frame are omitted and no return instructions or return sequences
are generated in the code. Use this option only together with visual inspection of
the compiled code: no warnings or errors are generated when call-saved registers
must be saved, or storage for local variable needs to be allocated.

Chapter 3: GCC Command Options 103

-mno-gotplt

-mgotplt With ‘~fpic’ and ‘-fPIC’, don’t generate (do generate) instruction sequences that
load addresses for functions from the PLT part of the GOT rather than (traditional
on other architectures) calls to the PLT. The default is ‘-mgotplt’.

-maout Legacy no-op option only recognized with the cris-axis-aout target.
-melf Legacy no-op option only recognized with the cris-axis-elf and cris-axis-linux-gnu
targets.

-melinux Only recognized with the cris-axis-aout target, where it selects a GNU /linux-like
multilib, include files and instruction set for ‘-march=v8’.

-mlinux Legacy no-op option only recognized with the cris-axis-linux-gnu target.

-sim This option, recognized for the cris-axis-aout and cris-axis-elf arranges to link with
input-output functions from a simulator library. Code, initialized data and zero-
initialized data are allocated consecutively.

-sim2 Like ‘-sim’, but pass linker options to locate initialized data at 0x40000000 and
zero-initialized data at 0x80000000.

3.17.6 Darwin Options

These options are defined for all architectures running the Darwin operating system.

FSF GCC on Darwin does not create “fat” object files; it will create an object file for the
single architecture that it was built to target. Apple’s GCC on Darwin does create “fat” files
if multiple ‘-arch’ options are used; it does so by running the compiler or linker multiple times
and joining the results together with ‘lipo’.

The subtype of the file created (like ‘ppc7400’ or ‘ppc970’ or ‘i686’) is determined by
the flags that specify the ISA that GCC is targetting, like ‘-mcpu’ or ‘-march’. The
‘~force_cpusubtype_ALL’ option can be used to override this.

The Darwin tools vary in their behavior when presented with an ISA mismatch. The assem-
bler, ‘as’, will only permit instructions to be used that are valid for the subtype of the file it is
generating, so you cannot put 64-bit instructions in an ‘ppc750’ object file. The linker for shared
libraries, ‘/usr/bin/libtool’, will fail and print an error if asked to create a shared library with
a less restrictive subtype than its input files (for instance, trying to put a ‘ppc970’ object file in
a ‘ppc7400’ library). The linker for executables, ‘1d’, will quietly give the executable the most
restrictive subtype of any of its input files.

-Fdir Add the framework directory dir to the head of the list of directories to be searched
for header files. These directories are interleaved with those specified by ‘~I’ options
and are scanned in a left-to-right order.

A framework directory is a directory with frameworks in it. A framework is a direc-
tory with a ‘"Headers"’ and/or ‘"PrivateHeaders"’ directory contained directly
in it that ends in ‘".framework"’. The name of a framework is the name of this
directory excluding the ‘".framework"’. Headers associated with the framework
are found in one of those two directories, with ‘"Headers"’ being searched first.
A subframework is a framework directory that is in a framework’s ‘"Frameworks"’
directory. Includes of subframework headers can only appear in a header of a frame-
work that contains the subframework, or in a sibling subframework header. Two
subframeworks are siblings if they occur in the same framework. A subframework
should not have the same name as a framework, a warning will be issued if this is
violated. Currently a subframework cannot have subframeworks, in the future, the
mechanism may be extended to support this. The standard frameworks can be found
in ‘"/System/Library/Frameworks"’ and ‘"/Library/Frameworks"’. An example

104 Using the GNU Compiler Collection (GCC)

include looks like #include <Framework/header.h>, where ‘Framework’ denotes
the name of the framework and header.h is found in the ‘"PrivateHeaders"’ or
‘"Headers"’ directory.

-gused Emit debugging information for symbols that are used. For STABS debugging
format, this enables ‘-feliminate-unused-debug-symbols’. This is by default
ON.

-gfull Emit debugging information for all symbols and types.

-mone-byte-bool
Override the defaults for ‘bool’ so that ‘sizeof(bool)==1". By default
‘sizeof (bool)’ is ‘4’ when compiling for Darwin/PowerPC and ‘1’ when compiling
for Darwin/x86, so this option has no effect on x86.

Warning: The ‘-mone-byte-bool’ switch causes GCC to generate code that is not
binary compatible with code generated without that switch. Using this switch may
require recompiling all other modules in a program, including system libraries. Use
this switch to conform to a non-default data model.

-mfix-and-continue

-ffix-and-continue

-findirect-data
Generate code suitable for fast turn around development. Needed to enable gdb to
dynamically load .o files into already running programs. ‘-findirect-data’ and
‘~ffix-and-continue’ are provided for backwards compatibility

-all_load
Loads all members of static archive libraries. See man 1d(1) for more information.

—arch_errors_fatal
Cause the errors having to do with files that have the wrong architecture to be fatal.

-bind_at_load
Causes the output file to be marked such that the dynamic linker will bind all
undefined references when the file is loaded or launched.

-bundle Produce a Mach-o bundle format file. See man 1d(1) for more information.

-bundle_loader executable
This option specifies the executable that will be loading the build output file being
linked. See man 1d(1) for more information.

—dynamiclib
When passed this option, GCC will produce a dynamic library instead of an exe-
cutable when linking, using the Darwin ‘1libtool’ command.

-force_cpusubtype_ALL
This causes GCC’s output file to have the ALL subtype, instead of one controlled
by the ‘-mcpu’ or ‘-march’ option.

Chapter 3: GCC Command Options

-allowable_client client_name
—-client_name
—-compatibility_version
-current_version
—-dead_strip
—-dependency-file
-dylib_file
—dylinker_install_name
—dynamic
—exported_symbols_list
-filelist
-flat_namespace
-force_flat_namespace
-headerpad_max_install_names
-image_base

-init

—-install_name
-keep_private_externs
-multi_module
-multiply_defined
-multiply_defined_unused
-noall_load
-no_dead_strip_inits_and_terms
-nofixprebinding
-nomultidefs

-noprebind
-noseglinkedit
-pagezero_size

-prebind
-prebind_all_twolevel_modules
-private_bundle
-read_only_relocs
-sectalign
-sectobjectsymbols
-whyload

-segladdr

-sectcreate
-sectobjectsymbols
-sectorder

-segaddr
-segs_read_only_addr
-segs_read_write_addr
-seg_addr_table
-seg_addr_table_filename
-seglinkedit

-segprot
-segs_read_only_addr
-segs_read_write_addr
-single_module

-static

-sub_library
-sub_umbrella
-twolevel_namespace
-umbrella

-undefined
—unexported_symbols_list

105

106

Using the GNU Compiler Collection (GCC)

3.17.7 DEC Alpha Options
These ‘-m’ options are defined for the DEC Alpha implementations:

-mno-soft-float
-msoft-float

-mfp-reg

Use (do not use) the hardware floating-point instructions for floating-point opera-
tions. When ‘-msoft-float’ is specified, functions in ‘libgcc.a’ will be used to
perform floating-point operations. Unless they are replaced by routines that emulate
the floating-point operations, or compiled in such a way as to call such emulations
routines, these routines will issue floating-point operations. If you are compiling
for an Alpha without floating-point operations, you must ensure that the library is
built so as not to call them.

Note that Alpha implementations without floating-point operations are required to
have floating-point registers.

-mno-fp-regs

-mieee

Generate code that uses (does mnot use) the floating-point register set.
‘-mno-fp-regs’ implies ‘-msoft-float’. If the floating-point register set is not
used, floating point operands are passed in integer registers as if they were integers
and floating-point results are passed in $0 instead of $£0. This is a non-standard
calling sequence, so any function with a floating-point argument or return value
called by code compiled with ‘-mno-fp-regs’ must also be compiled with that
option.

A typical use of this option is building a kernel that does not use, and hence need
not save and restore, any floating-point registers.

The Alpha architecture implements floating-point hardware optimized for maximum
performance. It is mostly compliant with the IEEE floating point standard. How-
ever, for full compliance, software assistance is required. This option generates code
fully IEEE compliant code except that the inexact-flag is not maintained (see be-
low). If this option is turned on, the preprocessor macro _IEEE_FP is defined during
compilation. The resulting code is less efficient but is able to correctly support denor-
malized numbers and exceptional IEEE values such as not-a-number and plus/minus
infinity. Other Alpha compilers call this option ‘~ieee_with_no_inexact’.

-mieee-with-inexact

This is like ‘-mieee’ except the generated code also maintains the IEEE inexact-flag.
Turning on this option causes the generated code to implement fully-compliant IEEE
math. In addition to _IEEE_FP, _IEEE_FP_EXACT is defined as a preprocessor macro.
On some Alpha implementations the resulting code may execute significantly slower
than the code generated by default. Since there is very little code that depends on
the inexact-flag, you should normally not specify this option. Other Alpha compilers
call this option ‘~ieee_with_inexact’.

-mfp-trap-mode=trap-mode

This option controls what floating-point related traps are enabled. Other Alpha
compilers call this option ‘~fptm trap-mode’. The trap mode can be set to one of
four values:

‘n’ This is the default (normal) setting. The only traps that are enabled
are the ones that cannot be disabled in software (e.g., division by zero
trap).

‘u’ In addition to the traps enabled by ‘n’, underflow traps are enabled as

well.

Chapter 3: GCC Command Options 107

su Like ‘su’, but the instructions are marked to be safe for software com-
pletion (see Alpha architecture manual for details).

‘sui’ Like ‘su’, but inexact traps are enabled as well.

-mfp-rounding-mode=rounding-mode
Selects the IEEE rounding mode. Other Alpha compilers call this option ‘-fprm
rounding-mode’. The rounding-mode can be one of:

n Normal IEEE rounding mode. Floating point numbers are rounded to-
wards the nearest machine number or towards the even machine number
in case of a tie.

‘m’ Round towards minus infinity.

‘c’ Chopped rounding mode. Floating point numbers are rounded towards
Zero.

‘d’ Dynamic rounding mode. A field in the floating point control register

(fpcr, see Alpha architecture reference manual) controls the rounding
mode in effect. The C library initializes this register for rounding to-
wards plus infinity. Thus, unless your program modifies the fpcr, ‘d’
corresponds to round towards plus infinity.

-mtrap-precision=trap-precision
In the Alpha architecture, floating point traps are imprecise. This means without
software assistance it is impossible to recover from a floating trap and program
execution normally needs to be terminated. GCC can generate code that can assist
operating system trap handlers in determining the exact location that caused a
floating point trap. Depending on the requirements of an application, different
levels of precisions can be selected:

) Program precision. This option is the default and means a trap handler
can only identify which program caused a floating point exception.

‘£ Function precision. The trap handler can determine the function that
caused a floating point exception.

i Instruction precision. The trap handler can determine the exact in-
struction that caused a floating point exception.

Other Alpha compilers provide the equivalent options called ‘-scope_safe’ and
‘-resumption_safe’.

-mieee-conformant
This option marks the generated code as IEEE conformant. You must not
use this option unless you also specify ‘-mtrap-precision=i’ and either
‘-mfp-trap-mode=su’ or ‘-mfp-trap-mode=sui’. Its only effect is to emit the line
‘.eflag 48’ in the function prologue of the generated assembly file. Under DEC
Unix, this has the effect that IEEE-conformant math library routines will be linked
in.

-mbuild-constants
Normally GCC examines a 32- or 64-bit integer constant to see if it can construct it
from smaller constants in two or three instructions. If it cannot, it will output the
constant as a literal and generate code to load it from the data segment at runtime.

Use this option to require GCC to construct all integer constants using code, even
if it takes more instructions (the maximum is six).

108 Using the GNU Compiler Collection (GCC)

You would typically use this option to build a shared library dynamic loader. Itself
a shared library, it must relocate itself in memory before it can find the variables
and constants in its own data segment.

-malpha-as
-mgas Select whether to generate code to be assembled by the vendor-supplied assembler
(‘-malpha-as’) or by the GNU assembler ‘-mgas’.

-mbwx

-mno-bwx

-mcix

-mno-cix

-mfix

-mno-fix

-mmax

-mno-max Indicate whether GCC should generate code to use the optional BWX, CIX, FIX
and MAX instruction sets. The default is to use the instruction sets supported by
the CPU type specified via ‘-mcpu=’ option or that of the CPU on which GCC was
built if none was specified.

-mfloat-vax

-mfloat-ieee
Generate code that uses (does not use) VAX F and G floating point arithmetic
instead of IEEE single and double precision.

-mexplicit-relocs

-mno-explicit-relocs
Older Alpha assemblers provided no way to generate symbol relocations except via
assembler macros. Use of these macros does not allow optimal instruction schedul-
ing. GNU binutils as of version 2.12 supports a new syntax that allows the compiler
to explicitly mark which relocations should apply to which instructions. This op-
tion is mostly useful for debugging, as GCC detects the capabilities of the assembler
when it is built and sets the default accordingly.

-msmall-data

-mlarge—-data
When ‘-mexplicit-relocs’ is in effect, static data is accessed via gp-relative relo-
cations. When ‘-msmall-data’ is used, objects 8 bytes long or smaller are placed
in a small data area (the .sdata and .sbss sections) and are accessed via 16-bit
relocations off of the $gp register. This limits the size of the small data area to
64KB, but allows the variables to be directly accessed via a single instruction.

The default is ‘-mlarge-data’. With this option the data area is limited to just
below 2GB. Programs that require more than 2GB of data must use malloc or mmap
to allocate the data in the heap instead of in the program’s data segment.

4

When generating code for shared libraries, ‘-fpic’ implies ‘-msmall-data’ and

‘~fPIC’ implies ‘-mlarge-data’.

-msmall-text

-mlarge-text
When ‘-msmall-text’ is used, the compiler assumes that the code of the entire
program (or shared library) fits in 4MB, and is thus reachable with a branch in-
struction. When ‘-msmall-data’ is used, the compiler can assume that all local
symbols share the same $gp value, and thus reduce the number of instructions re-
quired for a function call from 4 to 1.

The default is ‘-mlarge-text’.

Chapter 3: GCC Command Options 109

-mcpu=cpu_type
Set the instruction set and instruction scheduling parameters for machine type
cpu_type. You can specify either the ‘EV’ style name or the corresponding chip
number. GCC supports scheduling parameters for the EV4, EV5 and EV6 family
of processors and will choose the default values for the instruction set from the pro-
cessor you specify. If you do not specify a processor type, GCC will default to the
processor on which the compiler was built.

Supported values for cpu_type are

‘evd’
‘evab’
‘21064’ Schedules as an EV4 and has no instruction set extensions.

‘evb’
‘21164’ Schedules as an EV5 and has no instruction set extensions.

‘evb6’
‘21164a’ Schedules as an EV5 and supports the BWX extension.

‘pcab6’
‘21164pc’
‘21164PC’ Schedules as an EV5 and supports the BWX and MAX extensions.

‘eve’
‘21264’ Schedules as an EV6 and supports the BWX, FIX, and MAX extensions.

‘ev6T’
‘21264a’ Schedules as an EV6 and supports the BWX, CIX, FIX, and MAX
extensions.

-mtune=cpu_type
Set only the instruction scheduling parameters for machine type cpu_type. The
instruction set is not changed.

-mmemory-latency=time
Sets the latency the scheduler should assume for typical memory references as seen
by the application. This number is highly dependent on the memory access patterns
used by the application and the size of the external cache on the machine.

Valid options for time are

‘number’ A decimal number representing clock cycles.

4L17

CL27

LL37

‘main’ The compiler contains estimates of the number of clock cycles for “typ-
ical” EV4 & EV5 hardware for the Level 1, 2 & 3 caches (also called

Dcache, Scache, and Bceache), as well as to main memory. Note that L3
is only valid for EV5.

3.17.8 DEC Alpha/VMS Options
These ‘-m’ options are defined for the DEC Alpha/VMS implementations:
-mvms-return-codes

Return VMS condition codes from main. The default is to return POSIX style
condition (e.g. error) codes.

110 Using the GNU Compiler Collection (GCC)

3.17.9 FRV Options

-mgpr-32

Only use the first 32 general purpose registers.
-mgpr-64

Use all 64 general purpose registers.
-mfpr-32

Use only the first 32 floating point registers.
-mfpr-64

Use all 64 floating point registers

-mhard-float
Use hardware instructions for floating point operations.

-msoft-float
Use library routines for floating point operations.

-malloc-cc
Dynamically allocate condition code registers.
-mfixed-cc
Do not try to dynamically allocate condition code registers, only use iccO and fccO.
-mdword
Change ABI to use double word insns.
-mno-dword
Do not use double word instructions.
-mdouble
Use floating point double instructions.
-mno-double
Do not use floating point double instructions.
-mmedia
Use media instructions.
-mno-media
Do not use media instructions.
-mmuladd
Use multiply and add/subtract instructions.
-mno-muladd
Do not use multiply and add/subtract instructions.
-mfdpic
Select the FDPIC ABI, that uses function descriptors to represent pointers to func-
tions. Without any PIC/PIE-related options, it implies ‘~fPIE’. With ‘~fpic’ or
‘~fpie’, it assumes GOT entries and small data are within a 12-bit range from the
GOT base address; with ‘~fPIC’ or ‘~fPIE’, GOT offsets are computed with 32 bits.
-minline-plt
Enable inlining of PLT entries in function calls to functions that are not known to
bind locally. It has no effect without ‘-mfdpic’. It’s enabled by default if optimizing

for speed and compiling for shared libraries (i.e., ‘~fPIC’ or ‘-fpic’), or when an
optimization option such as ‘-03” or above is present in the command line.

Chapter 3: GCC Command Options 111

-mTLS

Assume a large TLS segment when generating thread-local code.
-mtls

Do not assume a large TLS segment when generating thread-local code.
-mgprel-ro

Enable the use of GPREL relocations in the FDPIC ABI for data that is known to be
in read-only sections. It’s enabled by default, except for ‘-fpic’ or ‘-fpie’: even
though it may help make the global offset table smaller, it trades 1 instruction for 4.
With ‘-=fPIC’ or ‘~fPIE’, it trades 3 instructions for 4, one of which may be shared
by multiple symbols, and it avoids the need for a GOT entry for the referenced
symbol, so it’s more likely to be a win. If it is not, ‘-mno-gprel-ro’ can be used to
disable it.

-multilib-library-pic
Link with the (library, not FD) pic libraries. It’s implied by ‘-mlibrary-pic’, as
well as by ‘~fPIC’ and ‘-fpic’ without ‘-mfdpic’. You should never have to use it
explicitly.

-mlinked-fp
Follow the EABI requirement of always creating a frame pointer whenever a stack
frame is allocated. This option is enabled by default and can be disabled with
‘-mno-linked-fp’.

-mlong-calls
Use indirect addressing to call functions outside the current compilation unit. This
allows the functions to be placed anywhere within the 32-bit address space.

-malign-labels
Try to align labels to an 8-byte boundary by inserting nops into the previous packet.
This option only has an effect when VLIW packing is enabled. It doesn’t create new
packets; it merely adds nops to existing ones.

-mlibrary-pic
Generate position-independent EABI code.

-macc-4
Use only the first four media accumulator registers.
-macc-8
Use all eight media accumulator registers.
-mpack
Pack VLIW instructions.
-mno-pack

Do not pack VLIW instructions.

-mno-eflags
Do not mark ABI switches in e_flags.

-mcond-move
Enable the use of conditional-move instructions (default).

This switch is mainly for debugging the compiler and will likely be removed in a
future version.

112

-mno-cond-move
Disable the use of conditional-move instructions.

This switch is mainly for debugging the compiler and will likely be
future version.

-mscc
Enable the use of conditional set instructions (default).
This switch is mainly for debugging the compiler and will likely be
future version.

-mno-scc

Disable the use of conditional set instructions.
This switch is mainly for debugging the compiler and will likely be
future version.

-mcond-exec
Enable the use of conditional execution (default).
This switch is mainly for debugging the compiler and will likely be
future version.

-mno-cond-exec
Disable the use of conditional execution.
This switch is mainly for debugging the compiler and will likely be
future version.

-mvliw-branch
Run a pass to pack branches into VLIW instructions (default).
This switch is mainly for debugging the compiler and will likely be
future version.

-mno-vliw-branch
Do not run a pass to pack branches into VLIW instructions.
This switch is mainly for debugging the compiler and will likely be
future version.

-mmulti-cond-exec
Enable optimization of && and || in conditional execution (default).
This switch is mainly for debugging the compiler and will likely be
future version.

-mno-multi-cond-exec
Disable optimization of && and || in conditional execution.
This switch is mainly for debugging the compiler and will likely be
future version.

-mnested-cond-exec
Enable nested conditional execution optimizations (default).
This switch is mainly for debugging the compiler and will likely be
future version.

-mno-nested-cond-exec
Disable nested conditional execution optimizations.

This switch is mainly for debugging the compiler and will likely be
future version.

Using the GNU Compiler Collection (GCC)

removed in

removed in

removed in

removed in

removed in

removed in

removed in

removed in

removed in

removed in

removed in

Chapter 3: GCC Command Options 113

-mtomcat-stats
Cause gas to print out tomcat statistics.

-mcpu=cpu
Select the processor type for which to generate code. Possible values are ‘frv’,
‘fr550’, ‘tomcat’, ‘fr500’, ‘fr450’, ‘fr405’, ‘fr400’, ‘fr300’ and ‘simple’.

3.17.10 H8/300 Options

These ‘-m’ options are defined for the H8/300 implementations:

-mrelax Shorten some address references at link time, when possible; uses the linker option
‘-relax’. See section “ld and the H8/300” in Using Id, for a fuller description.

-mh Generate code for the H8/300H.
-ms Generate code for the HS8S.
-mn Generate code for the H8S and H8/300H in the normal mode. This switch must be

used either with ‘-mh’ or ‘-ms’.
-ms2600 Generate code for the H8S/2600. This switch must be used with ‘-ms’.
-mint32 Make int data 32 bits by default.

-malign-300
On the H8/300H and HS8S, use the same alignment rules as for the H8/300. The
default for the H8/300H and HSS is to align longs and floats on 4 byte boundaries.
‘-malign-300’ causes them to be aligned on 2 byte boundaries. This option has no
effect on the H8/300.

3.17.11 HPPA Options
These ‘-m’ options are defined for the HPPA family of computers:

-march=architecture-type
Generate code for the specified architecture. The choices for architecture-type
are ‘1.0’ for PA 1.0, ‘1.1’ for PA 1.1, and ‘2.0’ for PA 2.0 processors. Refer to
‘/usr/lib/sched.models’ on an HP-UX system to determine the proper architec-
ture option for your machine. Code compiled for lower numbered architectures will
run on higher numbered architectures, but not the other way around.

-mpa-risc-1-0
-mpa-risc-1-1
-mpa-risc-2-0
Synonyms for ‘-march=1.0’, ‘-march=1.1’, and ‘-march=2.0’ respectively.

-mbig-switch
Generate code suitable for big switch tables. Use this option only if the assem-
bler/linker complain about out of range branches within a switch table.

-mjump-in-delay
Fill delay slots of function calls with unconditional jump instructions by modifying
the return pointer for the function call to be the target of the conditional jump.

-mdisable-fpregs
Prevent floating point registers from being used in any manner. This is necessary for
compiling kernels which perform lazy context switching of floating point registers. If
you use this option and attempt to perform floating point operations, the compiler
will abort.

114 Using the GNU Compiler Collection (GCC)

-mdisable-indexing
Prevent the compiler from using indexing address modes. This avoids some rather
obscure problems when compiling MIG generated code under MACH.

-mno-space-regs
Generate code that assumes the target has no space registers. This allows GCC to
generate faster indirect calls and use unscaled index address modes.

Such code is suitable for level 0 PA systems and kernels.

-mfast-indirect-calls
Generate code that assumes calls never cross space boundaries. This allows GCC
to emit code which performs faster indirect calls.

This option will not work in the presence of shared libraries or nested functions.

-mfixed-range=register-range
Generate code treating the given register range as fixed registers. A fixed register
is one that the register allocator can not use. This is useful when compiling kernel
code. A register range is specified as two registers separated by a dash. Multiple
register ranges can be specified separated by a comma.

-mlong-load-store
Generate 3-instruction load and store sequences as sometimes required by the HP-
UX 10 linker. This is equivalent to the ‘+k’ option to the HP compilers.

-mportable-runtime
Use the portable calling conventions proposed by HP for ELF systems.

-mgas Enable the use of assembler directives only GAS understands.

-mschedule=cpu-type
Schedule code according to the constraints for the machine type cpu-type. The
choices for cpu-type are ‘700’ ‘7100°, ‘7100LC’, ‘7200°, ‘7300’ and ‘8000°. Refer to
‘/usr/1ib/sched.models’ on an HP-UX system to determine the proper scheduling
option for your machine. The default scheduling is ‘8000°.

-mlinker-opt
Enable the optimization pass in the HP-UX linker. Note this makes symbolic de-
bugging impossible. It also triggers a bug in the HP-UX 8 and HP-UX 9 linkers in
which they give bogus error messages when linking some programs.

-msoft-float
Generate output containing library calls for floating point. Warning: the requi-
site libraries are not available for all HPPA targets. Normally the facilities of the
machine’s usual C compiler are used, but this cannot be done directly in cross-
compilation. You must make your own arrangements to provide suitable library
functions for cross-compilation. The embedded target ‘hppal.l-*-pro’ does pro-
vide software floating point support.

‘-msoft-float’ changes the calling convention in the output file; therefore, it is
only useful if you compile all of a program with this option. In particular, you need
to compile ‘libgcc.a’, the library that comes with GCC, with ‘-msoft-float’ in
order for this to work.

-msio Generate the predefine, _SI0, for server 10. The default is ‘-mwsio’. This generates
the predefines, __hp9000s700 hp9000s700__ and _WSIO, for workstation IO.
These options are available under HP-UX and HI-UX.

[J—— —_

3

-mgnu-1d Use GNU Id specific options. This passes ‘-shared’ to ld when building a shared
library. It is the default when GCC is configured, explicitly or implicitly, with

Chapter 3: GCC Command Options 115

-mhp-1d

the GNU linker. This option does not have any affect on which 1d is called, it
only changes what parameters are passed to that ld. The ld that is called is de-
termined by the ‘--with-1d’ configure option, GCC’s program search path, and
finally by the user’s PATH. The linker used by GCC can be printed using ‘which
‘gcc -print-prog-name=1d‘’. This option is only available on the 64 bit HP-UX
GCC, i.e. configured with ‘hppa*64*-*-hpux*’.

Use HP 1d specific options. This passes ‘b’ to 1d when building a shared library
and passes ‘+Accept TypeMismatch’ to Id on all links. It is the default when GCC
is configured, explicitly or implicitly, with the HP linker. This option does not have
any affect on which 1d is called, it only changes what parameters are passed to that
Id. The 1d that is called is determined by the ‘--with-1d’ configure option, GCC’s
program search path, and finally by the user’s PATH. The linker used by GCC can be
printed using ‘which ‘gcc -print-prog-name=1d‘’. This option is only available
on the 64 bit HP-UX GCC, i.e. configured with ‘hppa*64*—*-hpux*’.

-mlong-calls

Generate code that uses long call sequences. This ensures that a call is always able
to reach linker generated stubs. The default is to generate long calls only when the
distance from the call site to the beginning of the function or translation unit, as
the case may be, exceeds a predefined limit set by the branch type being used. The
limits for normal calls are 7,600,000 and 240,000 bytes, respectively for the PA 2.0
and PA 1.X architectures. Sibcalls are always limited at 240,000 bytes.

Distances are measured from the beginning of functions when using
the ‘-ffunction-sections’ option, or when using the ‘-mgas’ and
‘-mno-portable-runtime’ options together under HP-UX with the SOM linker.

It is normally not desirable to use this option as it will degrade performance. How-
ever, it may be useful in large applications, particularly when partial linking is used
to build the application.

The types of long calls used depends on the capabilities of the assembler and linker,
and the type of code being generated. The impact on systems that support long
absolute calls, and long pic symbol-difference or pc-relative calls should be relatively
small. However, an indirect call is used on 32-bit ELF systems in pic code and it is
quite long.

-munix=unix-std

Generate compiler predefines and select a startfile for the specified UNIX standard.
The choices for unix-std are ‘93’, ‘95’ and ‘98’. ‘93’ is supported on all HP-UX
versions. ‘95’ is available on HP-UX 10.10 and later. ‘98’ is available on HP-UX
11.11 and later. The default values are ‘93’ for HP-UX 10.00, ‘95’ for HP-UX 10.10
though to 11.00, and ‘98’ for HP-UX 11.11 and later.

‘-munix=93’ provides the same predefines as GCC 3.3 and 3.4. ‘-munix=95’
provides additional predefines for XOPEN_UNIX and _XOPEN_SQURCE_EXTENDED,
and the startfile ‘unix95.0’. ‘-munix=98’ provides additional predefines for
_XOPEN_UNIX, _XOPEN_SOURCE_EXTENDED, _INCLUDE__STDC_A1_SOURCE and
_INCLUDE_XOPEN_SOURCE_500, and the startfile ‘unix98.0’.

It is important to note that this option changes the interfaces for various library
routines. It also affects the operational behavior of the C library. Thus, extreme
care is needed in using this option.

Library code that is intended to operate with more than one UNIX standard must
test, set and restore the variable __xpg4_extended_mask as appropriate. Most GNU
software doesn’t provide this capability.

116

-nolibdld

-static

—threads

Using the GNU Compiler Collection (GCC)

Suppress the generation of link options to search libdld.sl when the ‘-static’ option
is specified on HP-UX 10 and later.

The HP-UX implementation of setlocale in libc has a dependency on libdld.sl. There
isn’t an archive version of libdld.sl. Thus, when the ‘-static’ option is specified,
special link options are needed to resolve this dependency.

On HP-UX 10 and later, the GCC driver adds the necessary options to link with
libdld.sl when the ‘-static’ option is specified. This causes the resulting binary to
be dynamic. On the 64-bit port, the linkers generate dynamic binaries by default
in any case. The ‘-nolibdld’ option can be used to prevent the GCC driver from
adding these link options.

Add support for multithreading with the dce thread library under HP-UX. This
option sets flags for both the preprocessor and linker.

3.17.12 Intel 386 and AMD x86-64 Options
These ‘-m’ options are defined for the i386 and x86-64 family of computers:

-mtune=cpu-type

Tune to cpu-type everything applicable about the generated code, except for the
ABI and the set of available instructions. The choices for cpu-type are:

1386 Original Intel’s 1386 CPU.
486 Intel’s 1486 CPU. (No scheduling is implemented for this chip.)

1586, pentium
Intel Pentium CPU with no MMX support.

pentium-mmex
Intel PentiumMMX CPU based on Pentium core with MMX instruction
set support.

1680, pentiumpro
Intel PentiumPro CPU.

pentium2 Intel Pentium2 CPU based on PentiumPro core with MMX instruction
set support.

pentium3, pentium3m
Intel Pentium3 CPU based on PentiumPro core with MMX and SSE
instruction set support.

pentium-m
Low power version of Intel Pentium3 CPU with MMX, SSE and SSE2
instruction set support. Used by Centrino notebooks.

pentium4, pentium4m
Intel Pentium4 CPU with MMX, SSE and SSE2 instruction set support.

prescott Improved version of Intel Pentium4 CPU with MMX, SSE, SSE2 and
SSE3 instruction set support.

nocona Improved version of Intel Pentium4 CPU with 64-bit extensions, MMX,
SSE, SSE2 and SSE3 instruction set support.

k6 AMD K6 CPU with MMX instruction set support.

k6-2, k6-3 Improved versions of AMD K6 CPU with MMX and 3dNOW! instruc-
tion set support.

Chapter 3: GCC Command Options 117

athlon, athlon-tbird
AMD Athlon CPU with MMX, 3dNOW!, enhanced 3dNOW! and SSE

prefetch instructions support.

athlon-/, athlon-xp, athlon-mp
Improved AMD Athlon CPU with MMX, 3dNOW!, enhanced 3dNOW!
and full SSE instruction set support.

k8, opteron, athlon6/, athlon-fr
AMD K8 core based CPUs with x86-64 instruction set support. (This
supersets MMX, SSE, SSE2, 3dNOW!, enhanced 3dNOW! and 64-bit
instruction set extensions.)

winchip-c6
IDT Winchip C6 CPU, dealt in same way as 1486 with additional MMX
instruction set support.

winchip2 IDT Winchip2 CPU, dealt in same way as 1486 with additional MMX
and 3dNOW! instruction set support.

c3 Via C3 CPU with MMX and 3dNOW! instruction set support. (No
scheduling is implemented for this chip.)
c3-2 Via C3-2 CPU with MMX and SSE instruction set support. (No

scheduling is implemented for this chip.)

While picking a specific cpu-type will schedule things appropriately for that par-
ticular chip, the compiler will not generate any code that does not run on the i386
without the ‘-march=cpu-type’ option being used.

-march=cpu-type
Generate instructions for the machine type cpu-type. The choices for cpu-type
are the same as for ‘-mtune’. Moreover, specifying ‘-march=cpu-type’ implies
‘-mtune=cpu-type’.

-mcpu=cpu-type
A deprecated synonym for ‘-mtune’.

-m386

-m486

-mpentium

-mpentiumpro
These options are synonyms for ‘-mtune=1386’, ‘-mtune=1i486’, ‘-mtune=pentium’,
and ‘-mtune=pentiumpro’ respectively. These synonyms are deprecated.

-mfpmath=unit
Generate floating point arithmetics for selected unit unit. The choices for unit are:

‘387’ Use the standard 387 floating point coprocessor present majority of
chips and emulated otherwise. Code compiled with this option will
run almost everywhere. The temporary results are computed in 80bit
precision instead of precision specified by the type resulting in slightly
different results compared to most of other chips. See ‘-ffloat-store’
for more detailed description.

This is the default choice for 1386 compiler.
‘sse’ Use scalar floating point instructions present in the SSE instruction

set. This instruction set is supported by Pentium3 and newer chips, in
the AMD line by Athlon-4, Athlon-xp and Athlon-mp chips. The earlier

118

Using the GNU Compiler Collection (GCC)

version of SSE instruction set supports only single precision arithmetics,
thus the double and extended precision arithmetics is still done using
387. Later version, present only in Pentium4 and the future AMD x86-
64 chips supports double precision arithmetics too.

For the i386 compiler, you need to use ‘-march=cpu-type’, ‘-msse’ or
‘-msse2’ switches to enable SSE extensions and make this option effec-
tive. For the x86-64 compiler, these extensions are enabled by default.

The resulting code should be considerably faster in the majority of cases
and avoid the numerical instability problems of 387 code, but may break
some existing code that expects temporaries to be 80bit.

This is the default choice for the x86-64 compiler.

‘sse,387’ Attempt to utilize both instruction sets at once. This effectively double
the amount of available registers and on chips with separate execution
units for 387 and SSE the execution resources too. Use this option
with care, as it is still experimental, because the GCC register alloca-
tor does not model separate functional units well resulting in instable
performance.

-masm=dialect

-mieee-fp

Output asm instructions using selected dialect. Supported choices are ‘intel’ or
‘att’ (the default one).

-mno-ieee-fp

Control whether or not the compiler uses IEEE floating point comparisons. These
handle correctly the case where the result of a comparison is unordered.

-msoft-float

Generate output containing library calls for floating point. Warning: the requisite
libraries are not part of GCC. Normally the facilities of the machine’s usual C com-
piler are used, but this can’t be done directly in cross-compilation. You must make
your own arrangements to provide suitable library functions for cross-compilation.

On machines where a function returns floating point results in the 80387 register
stack, some floating point opcodes may be emitted even if ‘-msoft-float’ is used.

-mno-fp-ret-in-387

Do not use the FPU registers for return values of functions.

The usual calling convention has functions return values of types float and double
in an FPU register, even if there is no FPU. The idea is that the operating system
should emulate an FPU.

4

The option ‘-mno-fp-ret-in-387’ causes such values to be returned in ordinary
CPU registers instead.

-mno—-fancy-math-387

Some 387 emulators do not support the sin, cos and sqrt instructions for the 387.
Specify this option to avoid generating those instructions. This option is the default
on FreeBSD, OpenBSD and NetBSD. This option is overridden when ‘-march’
indicates that the target cpu will always have an FPU and so the instruction will
not need emulation. As of revision 2.6.1, these instructions are not generated unless
you also use the ‘-funsafe-math-optimizations’ switch.

Chapter 3: GCC Command Options 119

-malign-double
-mno-align-double

Control whether GCC aligns double, long double, and long long variables on a
two word boundary or a one word boundary. Aligning double variables on a two
word boundary will produce code that runs somewhat faster on a ‘Pentium’ at the
expense of more memory.

Warning: if you use the ‘-malign-double’ switch, structures containing the above
types will be aligned differently than the published application binary interface
specifications for the 386 and will not be binary compatible with structures in code
compiled without that switch.

-m96bit-long-double
-m128bit-long-double

These switches control the size of long double type. The i386 application binary
interface specifies the size to be 96 bits, so ‘-m96bit-long-double’ is the default in
32 bit mode.

Modern architectures (Pentium and newer) would prefer long double to be aligned
to an 8 or 16 byte boundary. In arrays or structures conforming to the ABI, this
would not be possible. So specifying a ‘-m128bit-long-double’ will align long
double to a 16 byte boundary by padding the long double with an additional 32
bit zero.

In the x86-64 compiler, ‘-m128bit-long-double’ is the default choice as its ABI
specifies that long double is to be aligned on 16 byte boundary.

Notice that neither of these options enable any extra precision over the x87 standard
of 80 bits for a long double.

Warning: if you override the default value for your target ABI, the structures and
arrays containing long double variables will change their size as well as function
calling convention for function taking long double will be modified. Hence they
will not be binary compatible with arrays or structures in code compiled without
that switch.

-msvr3-shlib
-mno-svr3-shlib

-mrtd

Control whether GCC places uninitialized local variables into the bss or data seg-
ments. ‘-msvr3-shlib’ places them into bss. These options are meaningful only
on System V Release 3.

Use a different function-calling convention, in which functions that take a fixed num-
ber of arguments return with the ret num instruction, which pops their arguments
while returning. This saves one instruction in the caller since there is no need to
pop the arguments there.

You can specify that an individual function is called with this calling sequence with
the function attribute ‘stdcall’. You can also override the ‘-mrtd’ option by using
the function attribute ‘cdecl’. See Section 5.24 [Function Attributes|, page 191.

Warning: this calling convention is incompatible with the one normally used on
Unix, so you cannot use it if you need to call libraries compiled with the Unix
compiler.

Also, you must provide function prototypes for all functions that take variable num-
bers of arguments (including printf); otherwise incorrect code will be generated
for calls to those functions.

In addition, seriously incorrect code will result if you call a function with too many
arguments. (Normally, extra arguments are harmlessly ignored.)

120

Using the GNU Compiler Collection (GCC)

—-mregparm=num

Control how many registers are used to pass integer arguments. By default, no
registers are used to pass arguments, and at most 3 registers can be used. You
can control this behavior for a specific function by using the function attribute
‘regparm’. See Section 5.24 [Function Attributes], page 191.

Warning: if you use this switch, and num is nonzero, then you must build all modules
with the same value, including any libraries. This includes the system libraries and
startup modules.

-mpreferred-stack-boundary=num

—mmmx
—mno-—mmx

-msse
—mno-sse

-msse?2

-mno-sse2

-mssed

-mno-sse3

-m3dnow

-mno-3dnow

Attempt to keep the stack boundary aligned to a 2 raised to num byte boundary.
If ‘-mpreferred-stack-boundary’ is not specified, the default is 4 (16 bytes or 128
bits), except when optimizing for code size (‘-0s’), in which case the default is the
minimum correct alignment (4 bytes for x86, and 8 bytes for x86-64).

On Pentium and PentiumPro, double and long double values should be aligned
to an 8 byte boundary (see ‘-malign-double’) or suffer significant run time perfor-
mance penalties. On Pentium III, the Streaming SIMD Extension (SSE) data type
__m128 suffers similar penalties if it is not 16 byte aligned.

To ensure proper alignment of this values on the stack, the stack boundary must
be as aligned as that required by any value stored on the stack. Further, every
function must be generated such that it keeps the stack aligned. Thus calling a
function compiled with a higher preferred stack boundary from a function compiled
with a lower preferred stack boundary will most likely misalign the stack. It is
recommended that libraries that use callbacks always use the default setting.

This extra alignment does consume extra stack space, and generally increases
code size. Code that is sensitive to stack space usage, such as embedded sys-
tems and operating system kernels, may want to reduce the preferred alignment
to ‘-mpreferred-stack-boundary=2’.

These switches enable or disable the use of built-in functions that allow direct access
to the MMX, SSE, SSE2, SSE3 and 3Dnow extensions of the instruction set.

See Section 5.46.5 [X86 Built-in Functions|, page 254, for details of the functions
enabled and disabled by these switches.

To have SSE/SSE2 instructions generated automatically from floating-point code,
see ‘-mfpmath=sse’.

-mpush-args
-mno-push-args

Use PUSH operations to store outgoing parameters. This method is shorter and
usually equally fast as method using SUB/MOV operations and is enabled by de-
fault. In some cases disabling it may improve performance because of improved
scheduling and reduced dependencies.

Chapter 3: GCC Command Options 121

-maccumulate-outgoing-args
If enabled, the maximum amount of space required for outgoing arguments will be
computed in the function prologue. This is faster on most modern CPUs because of
reduced dependencies, improved scheduling and reduced stack usage when preferred
stack boundary is not equal to 2. The drawback is a notable increase in code size.
This switch implies ‘-mno-push-args’.

-mthreads
Support thread-safe exception handling on ‘Mingw32’. Code that relies on thread-
safe exception handling must compile and link all code with the ‘-mthreads’ option.
When compiling, ‘-mthreads’ defines ‘-D_MT’; when linking, it links in a special
thread helper library ‘-1mingwthrd’ which cleans up per thread exception handling
data.

-mno-align-stringops
Do not align destination of inlined string operations. This switch reduces code
size and improves performance in case the destination is already aligned, but GCC
doesn’t know about it.

-minline-all-stringops
By default GCC inlines string operations only when destination is known to be
aligned at least to 4 byte boundary. This enables more inlining, increase code size,
but may improve performance of code that depends on fast memcpy, strlen and
memset for short lengths.

-momit-leaf-frame-pointer
Don’t keep the frame pointer in a register for leaf functions. This avoids the in-
structions to save, set up and restore frame pointers and makes an extra register
available in leaf functions. The option ‘~fomit-frame-pointer’ removes the frame
pointer for all functions which might make debugging harder.

-mtls-direct-seg-refs

-mno-tls-direct-seg-refs
Controls whether TLS variables may be accessed with offsets from the TLS segment
register (%gs for 32-bit, %fs for 64-bit), or whether the thread base pointer must be
added. Whether or not this is legal depends on the operating system, and whether
it maps the segment to cover the entire TLS area.

For systems that use GNU libc, the default is on.

These ‘-m’ switches are supported in addition to the above on AMD x86-64 processors in
64-bit environments.

-m32

-m64 Generate code for a 32-bit or 64-bit environment. The 32-bit environment sets int,
long and pointer to 32 bits and generates code that runs on any i386 system. The
64-bit environment sets int to 32 bits and long and pointer to 64 bits and generates
code for AMD’s x86-64 architecture.

-mno-red-zone
Do not use a so called red zone for x86-64 code. The red zone is mandated by
the x86-64 ABI, it is a 128-byte area beyond the location of the stack pointer that
will not be modified by signal or interrupt handlers and therefore can be used for
temporary data without adjusting the stack pointer. The flag ‘-mno-red-zone’
disables this red zone.

122 Using the GNU Compiler Collection (GCC)

-mcmodel=small
Generate code for the small code model: the program and its symbols must be
linked in the lower 2 GB of the address space. Pointers are 64 bits. Programs can
be statically or dynamically linked. This is the default code model.

-mcmodel=kernel
Generate code for the kernel code model. The kernel runs in the negative 2 GB of
the address space. This model has to be used for Linux kernel code.

-mcmodel=medium
Generate code for the medium model: The program is linked in the lower 2 GB
of the address space but symbols can be located anywhere in the address space.
Programs can be statically or dynamically linked, but building of shared libraries
are not supported with the medium model.

-mcmodel=large
Generate code for the large model: This model makes no assumptions about ad-
dresses and sizes of sections. Currently GCC does not implement this model.

3.17.13 TA-64 Options
These are the ‘-m’ options defined for the Intel IA-64 architecture.

-mbig-endian
Generate code for a big endian target. This is the default for HP-UX.

-mlittle-endian
Generate code for a little endian target. This is the default for AIX5 and
GNU/Linux.

-mgnu-as
-mno-gnu-as
Generate (or don’t) code for the GNU assembler. This is the default.

-mgnu-1d
-mno-gnu-1d
Generate (or don’t) code for the GNU linker. This is the default.

-mno-pic Generate code that does not use a global pointer register. The result is not position
independent code, and violates the TA-64 ABI.

-mvolatile—-asm-stop
-mno-volatile-asm-stop
Generate (or don’t) a stop bit immediately before and after volatile asm statements.

-mregister—-names

-mno-register-names
Generate (or don’t) ‘in’, ‘loc’, and ‘out’ register names for the stacked registers.
This may make assembler output more readable.

-mno-sdata
-msdata Disable (or enable) optimizations that use the small data section. This may be
useful for working around optimizer bugs.

-mconstant-gp
Generate code that uses a single constant global pointer value. This is useful when
compiling kernel code.

-mauto-pic
Generate code that is self-relocatable. This implies ‘-mconstant-gp’. This is useful
when compiling firmware code.

Chapter 3: GCC Command Options 123

-minline-float-divide-min-latency
Generate code for inline divides of floating point values using the minimum latency
algorithm.

-minline-float-divide-max—-throughput
Generate code for inline divides of floating point values using the maximum through-
put algorithm.

-minline-int-divide-min-latency
Generate code for inline divides of integer values using the minimum latency algo-
rithm.

-minline-int-divide-max-throughput
Generate code for inline divides of integer values using the maximum throughput
algorithm.

-minline-sqrt-min-latency
Generate code for inline square roots using the minimum latency algorithm.

-minline-sqrt-max-throughput
Generate code for inline square roots using the maximum throughput algorithm.

-mno-dwarf2-asm

-mdwarf2-asm
Don’t (or do) generate assembler code for the DWARF2 line number debugging info.
This may be useful when not using the GNU assembler.

-mearly-stop-bits

-mno-early-stop-bits
Allow stop bits to be placed earlier than immediately preceding the instruction that
triggered the stop bit. This can improve instruction scheduling, but does not always
do so.

-mfixed-range=register-range
Generate code treating the given register range as fixed registers. A fixed register
is one that the register allocator can not use. This is useful when compiling kernel
code. A register range is specified as two registers separated by a dash. Multiple
register ranges can be specified separated by a comma.

-mtls-size=tls-size
Specify bit size of immediate TLS offsets. Valid values are 14, 22, and 64.

-mtune-arch=cpu-type
Tune the instruction scheduling for a particular CPU, Valid values are itanium,
itanium1, merced, itanium2, and mckinley.

-mt

-pthread Add support for multithreading using the POSIX threads library. This option sets
flags for both the preprocessor and linker. It does not affect the thread safety of
object code produced by the compiler or that of libraries supplied with it. These
are HP-UX specific flags.

-milp32

-mlp64 Generate code for a 32-bit or 64-bit environment. The 32-bit environment sets int,
long and pointer to 32 bits. The 64-bit environment sets int to 32 bits and long and
pointer to 64 bits. These are HP-UX specific flags.

124 Using the GNU Compiler Collection (GCC)

3.17.14 M32R /D Options
These ‘-m’ options are defined for Renesas M32R /D architectures:

-m32r2 Generate code for the M32R/2.
-m32rx Generate code for the M32R /X.
-m32r Generate code for the M32R. This is the default.

-mmodel=small
Assume all objects live in the lower 16MB of memory (so that their addresses can
be loaded with the 1d24 instruction), and assume all subroutines are reachable with
the bl instruction. This is the default.

The addressability of a particular object can be set with the model attribute.

-mmodel=medium
Assume objects may be anywhere in the 32-bit address space (the compiler will
generate seth/add3 instructions to load their addresses), and assume all subroutines
are reachable with the bl instruction.

-mmodel=large
Assume objects may be anywhere in the 32-bit address space (the compiler will
generate seth/add3 instructions to load their addresses), and assume subroutines
may not be reachable with the bl instruction (the compiler will generate the much
slower seth/add3/j1 instruction sequence).

-msdata=none
Disable use of the small data area. Variables will be put into one of ‘.data’, ‘bss’,
or ‘.rodata’ (unless the section attribute has been specified). This is the default.

3

The small data area consists of sections ‘.sdata’ and ‘.sbss’. Objects may be
explicitly put in the small data area with the section attribute using one of these
sections.

-msdata=sdata
Put small global and static data in the small data area, but do not generate special
code to reference them.

-msdata=use
Put small global and static data in the small data area, and generate special in-
structions to reference them.

-G num Put global and static objects less than or equal to num bytes into the small data or
bss sections instead of the normal data or bss sections. The default value of num
is 8. The ‘-msdata’ option must be set to one of ‘sdata’ or ‘use’ for this option to
have any effect.

All modules should be compiled with the same ‘-G num’ value. Compiling with
different values of num may or may not work; if it doesn’t the linker will give an
error message—incorrect code will not be generated.

-mdebug Makes the M32R specific code in the compiler display some statistics that might
help in debugging programs.

-malign-loops
Align all loops to a 32-byte boundary.

-mno-align-loops
Do not enforce a 32-byte alignment for loops. This is the default.

Chapter 3: GCC Command Options 125

-missue-rate=number
Issue number instructions per cycle. number can only be 1 or 2.

-mbranch-cost=number
number can only be 1 or 2. If it is 1 then branches will be preferred over conditional
code, if it is 2, then the opposite will apply.

-mflush-trap=number
Specifies the trap number to use to flush the cache. The default is 12. Valid numbers
are between 0 and 15 inclusive.

-mno-flush-trap
Specifies that the cache cannot be flushed by using a trap.

-mflush-func=name
Specifies the name of the operating system function to call to flush the cache. The
default is _flush_cache, but a function call will only be used if a trap is not available.

-mno-flush-func
Indicates that there is no OS function for flushing the cache.

3.17.15 M680x0 Options

These are the ‘-m’ options defined for the 68000 series. The default values for these options
depends on which style of 68000 was selected when the compiler was configured; the defaults for
the most common choices are given below.

-m68000

-mc68000 Generate output for a 68000. This is the default when the compiler is configured
for 68000-based systems.
Use this option for microcontrollers with a 68000 or EC000 core, including the 68008,
68302, 68306, 68307, 68322, 68328 and 68356.

-m68020
-mc68020 Generate output for a 68020. This is the default when the compiler is configured
for 68020-based systems.

-m68881 Generate output containing 68881 instructions for floating point. This is the de-
fault for most 68020 systems unless ‘--nfp’ was specified when the compiler was
configured.

-m68030 Generate output for a 68030. This is the default when the compiler is configured
for 68030-based systems.

-m68040 Generate output for a 68040. This is the default when the compiler is configured
for 68040-based systems.

This option inhibits the use of 68881/68882 instructions that have to be emulated by
software on the 68040. Use this option if your 68040 does not have code to emulate
those instructions.

-m68060 Generate output for a 68060. This is the default when the compiler is configured
for 68060-based systems.

This option inhibits the use of 68020 and 68881/68882 instructions that have to be
emulated by software on the 68060. Use this option if your 68060 does not have
code to emulate those instructions.

-mcpu3d2 Generate output for a CPU32. This is the default when the compiler is configured
for CPU32-based systems.

Use this option for microcontrollers with a CPU32 or CPU32+ core, including the
68330, 68331, 68332, 68333, 68334, 68336, 68340, 68341, 68349 and 68360.

126 Using the GNU Compiler Collection (GCC)

-m5200 Generate output for a 520X “coldfire” family cpu. This is the default when the
compiler is configured for 520X-based systems.

Use this option for microcontroller with a 5200 core, including the MCF5202,
MCF5203, MCF5204 and MCF5202.

-m68020-40
Generate output for a 68040, without using any of the new instructions. This results
in code which can run relatively efficiently on either a 68020/68881 or a 68030 or
a 68040. The generated code does use the 68881 instructions that are emulated on
the 68040.

-m68020-60
Generate output for a 68060, without using any of the new instructions. This results
in code which can run relatively efficiently on either a 68020/68881 or a 68030 or
a 68040. The generated code does use the 68881 instructions that are emulated on
the 68060.

-msoft-float
Generate output containing library calls for floating point. Warning: the requisite li-
braries are not available for all m68k targets. Normally the facilities of the machine’s
usual C compiler are used, but this can’t be done directly in cross-compilation. You
must make your own arrangements to provide suitable library functions for cross-
compilation. The embedded targets ‘m68k-*-aout’ and ‘m68k-*-coff’ do provide
software floating point support.

-mshort Consider type int to be 16 bits wide, like short int. Additionally, parameters
passed on the stack are also aligned to a 16-bit boundary even on targets whose
API mandates promotion to 32-bit.

-mnobitfield
Do not use the bit-field instructions. The ‘-m68000’, ‘-mcpu32’ and ‘-m5200° options
imply ‘-mnobitfield’.

-mbitfield
Do use the bit-field instructions. The ‘-m68020’ option implies ‘-mbitfield’. This
is the default if you use a configuration designed for a 68020.

-mrtd Use a different function-calling convention, in which functions that take a fixed
number of arguments return with the rtd instruction, which pops their arguments
while returning. This saves one instruction in the caller since there is no need to
pop the arguments there.

This calling convention is incompatible with the one normally used on Unix, so you
cannot use it if you need to call libraries compiled with the Unix compiler.

Also, you must provide function prototypes for all functions that take variable num-
bers of arguments (including printf); otherwise incorrect code will be generated
for calls to those functions.

In addition, seriously incorrect code will result if you call a function with too many
arguments. (Normally, extra arguments are harmlessly ignored.)

The rtd instruction is supported by the 68010, 68020, 68030, 68040, 68060 and
CPU32 processors, but not by the 68000 or 5200.

-malign-int

-mno-align-int
Control whether GCC aligns int, long, long long, float, double, and long
double variables on a 32-bit boundary (‘-malign-int’) or a 16-bit boundary

Chapter 3: GCC Command Options 127

(‘-mno-align-int’). Aligning variables on 32-bit boundaries produces code that
runs somewhat faster on processors with 32-bit busses at the expense of more mem-
ory.

Warning: if you use the ‘-malign-int’ switch, GCC will align structures contain-
ing the above types differently than most published application binary interface
specifications for the m68k.

-mpcrel Use the pc-relative addressing mode of the 68000 directly, instead of using a global
offset table. At present, this option implies ‘-fpic’, allowing at most a 16-bit offset
for pc-relative addressing. ‘-fPIC’ is not presently supported with ‘-mpcrel’, though
this could be supported for 68020 and higher processors.

-mno-strict-align
-mstrict-align
Do not (do) assume that unaligned memory references will be handled by the system.

-msep-data
Generate code that allows the data segment to be located in a different area of
memory from the text segment. This allows for execute in place in an environment
without virtual memory management. This option implies ‘~fPIC’.

-mno-sep-data
Generate code that assumes that the data segment follows the text segment. This
is the default.

-mid-shared-library
Generate code that supports shared libraries via the library ID method. This allows
for execute in place and shared libraries in an environment without virtual memory
management. This option implies ‘-fPIC’.

-mno-id-shared-library
Generate code that doesn’t assume ID based shared libraries are being used. This
is the default.

-mshared-library-id=n
Specified the identification number of the ID based shared library being compiled.
Specifying a value of 0 will generate more compact code, specifying other values will
force the allocation of that number to the current library but is no more space or
time efficient than omitting this option.

3.17.16 M68hclx Options

These are the ‘-m’ options defined for the 68hc11 and 68hc12 microcontrollers. The default values
for these options depends on which style of microcontroller was selected when the compiler was
configured; the defaults for the most common choices are given below.

-m6811
-m68hcll Generate output for a 68HC11. This is the default when the compiler is configured
for 68HC11-based systems.

-m6812
-m68hc12 Generate output for a 68HC12. This is the default when the compiler is configured
for 68HC12-based systems.

-m68S12
-m68hcs12
Generate output for a 68HCS12.

128 Using the GNU Compiler Collection (GCC)

-mauto-incdec
Enable the use of 68HC12 pre and post auto-increment and auto-decrement address-
ing modes.

-minmax
-nominmax
Enable the use of 68HC12 min and max instructions.

-mlong-calls

-mno-long-calls
Treat all calls as being far away (near). If calls are assumed to be far away, the
compiler will use the call instruction to call a function and the rtc instruction for
returning.

-mshort Consider type int to be 16 bits wide, like short int.

-msoft-reg-count=count
Specify the number of pseudo-soft registers which are used for the code generation.
The maximum number is 32. Using more pseudo-soft register may or may not result
in better code depending on the program. The default is 4 for 68HC11 and 2 for
68HC12.

3.17.17 MCore Options

These are the ‘-m’ options defined for the Motorola M*Core processors.

-mhardlit
-mno-hardlit
Inline constants into the code stream if it can be done in two instructions or less.

-mdiv
-mno-div Use the divide instruction. (Enabled by default).

-mrelax-immediate
-mno-relax-immediate
Allow arbitrary sized immediates in bit operations.

-mwide-bitfields
-mno-wide-bitfields
Always treat bit-fields as int-sized.

-m4byte-functions
-mno-4byte-functions
Force all functions to be aligned to a four byte boundary.

-mcallgraph-data
-mno-callgraph-data
Emit callgraph information.

-mslow-bytes
-mno-slow-bytes
Prefer word access when reading byte quantities.

-mlittle-endian
-mbig-endian
Generate code for a little endian target.

-m210
-m340 Generate code for the 210 processor.

Chapter 3: GCC Command Options 129

3.17.18 MIPS Options

-EB

-EL

Generate big-endian code.

Generate little-endian code. This is the default for ‘mips*el-*-*’ configurations.

-march=arch

Generate code that will run on arch, which can be the name of a generic MIPS ISA,
or the name of a particular processor. The ISA names are: ‘mipsl’, ‘mips2’, ‘mips3’,
‘mipsd’, ‘mips32’, ‘mips32r2’, and ‘mips64’. The processor names are: ‘4kc’, ‘dkp’,
‘Bkc’, ‘20kc’, ‘mdk’, ‘r2000°, ‘r3000’, ‘r3900’°, ‘r4000’, ‘r4400’, ‘T4600’, ‘T4650’,
‘r6000’, ‘r8000’, ‘rm7000’, ‘rm9000’, ‘orion’, ‘sbl’, ‘vr4100’, ‘vr4111’, ‘vr4120’,
‘vr4130’, ‘vr4300’, ‘vr5000’, ‘vr5400’ and ‘vr5500’. The special value ‘from-abi’
selects the most compatible architecture for the selected ABI (that is, ‘mips1’ for
32-bit ABIs and ‘mips3’ for 64-bit ABISs).

In processor names, a final ‘000’ can be abbreviated as ‘k’ (for example,
‘-march=r2k’). Prefixes are optional, and ‘vr’ may be written ‘r’.

GCC defines two macros based on the value of this option. The first is ‘_MIPS_ARCH’,
which gives the name of target architecture, as a string. The second has the form
‘_MIPS_ARCH_foo’, where foo is the capitalized value of ‘_MIPS_ARCH’. For ex-
ample, ‘-march=r2000’ will set ‘_MIPS_ARCH to ‘"r2000"’ and define the macro
‘_MIPS_ARCH_R2000’.

Note that the ‘_MIPS_ARCH’ macro uses the processor names given above. In other
words, it will have the full prefix and will not abbreviate ‘000’ as ‘k’. In the
case of ‘from-abi’, the macro names the resolved architecture (either ‘"mipsi"’
or ‘"mips3"’). It names the default architecture when no ‘-march’ option is given.

-mtune=arch

-mipsl
-mips2
-mips3
-mips4
-mips32

-mips32r2

-mips64
-mipsi16

Optimize for arch. Among other things, this option controls the way instructions are
scheduled, and the perceived cost of arithmetic operations. The list of arch values
is the same as for ‘-march’.

When this option is not used, GCC will optimize for the processor specified by
‘-march’. By using ‘-march’ and ‘-mtune’ together, it is possible to generate code
that will run on a family of processors, but optimize the code for one particular
member of that family.

‘-mtune’ defines the macros ‘_MIPS_TUNE’ and ‘_MIPS_TUNE_foo’, which work in
the same way as the ‘-march’ ones described above.

Equivalent to ‘-march=mips1’.
Equivalent to ‘-march=mips2’.
Equivalent to ‘-march=mips3’.
Equivalent to ‘-march=mips4’.

Equivalent to ‘-march=mips32’.

Equivalent to ‘-march=mips32r2’.

Equivalent to ‘-march=mips64’.

-mno-mips16

Use (do not use) the MIPS16 ISA.

130 Using the GNU Compiler Collection (GCC)

-mabi=32
-mabi=o064
-mabi=n32
-mabi=64
-mabi=eabi
Generate code for the given ABI.

Note that the EABI has a 32-bit and a 64-bit variant. GCC normally generates
64-bit code when you select a 64-bit architecture, but you can use ‘-mgp32’ to get
32-bit code instead.

For information about the O64 ABI, see http://gcc.gnu.org/projects/mipso64-abi.html.

-mabicalls

-mno-abicalls
Generate (do not generate) SVR4-style position-independent code. ‘-mabicalls’ is
the default for SVR4-based systems.

-mxgot
-mno-xgot
Lift (do not lift) the usual restrictions on the size of the global offset table.
GCC normally uses a single instruction to load values from the GOT. While this is
relatively efficient, it will only work if the GOT is smaller than about 64k. Anything
larger will cause the linker to report an error such as:
relocation truncated to fit: R_MIPS_GOT16 foobar
If this happens, you should recompile your code with ‘-mxgot’. It should then work
with very large GOTs, although it will also be less efficient, since it will take three
instructions to fetch the value of a global symbol.
Note that some linkers can create multiple GOTs. If you have such a linker, you
should only need to use ‘-mxgot’ when a single object file accesses more than 64k’s
worth of GOT entries. Very few do.
These options have no effect unless GCC is generating position independent code.
-mgp32 Assume that general-purpose registers are 32 bits wide.
-mgp64 Assume that general-purpose registers are 64 bits wide.

-mfp32 Assume that floating-point registers are 32 bits wide.
-mfp64 Assume that floating-point registers are 64 bits wide.

-mhard-float
Use floating-point coprocessor instructions.

-msoft-float
Do not use floating-point coprocessor instructions. Implement floating-point calcu-
lations using library calls instead.

http://gcc.gnu.org/projects/mipso64-abi.html

Chapter 3: GCC Command Options 131

-msingle-float
Assume that the floating-point coprocessor only supports single-precision opera-
tions.

-mdouble-float

Assume that the floating-point coprocessor supports double-precision operations.
This is the default.

-mpaired-single

-mno-paired-single
Use (do not use) paired-single floating-point instructions. See Section 5.46.6 [MIPS
Paired-Single Support], page 258. This option can only be used when generating
64-bit code and requires hardware floating-point support to be enabled.

-mips3d

-mno-mips3d
Use (do not use) the MIPS-3D ASE. See Section 5.46.6.3 [MIPS-3D Built-in Func-
tions], page 259. The option ‘-mips3d’ implies ‘-mpaired-single’.

-mint64 Force int and long types to be 64 bits wide. See ‘-mlong32’ for an explanation of
the default and the way that the pointer size is determined.

This option has been deprecated and will be removed in a future release.

-mlong64 Force long types to be 64 bits wide. See ‘-mlong32’ for an explanation of the default
and the way that the pointer size is determined.

-mlong32 Force long, int, and pointer types to be 32 bits wide.

The default size of ints, longs and pointers depends on the ABI. All the supported
ABIs use 32-bit ints. The n64 ABI uses 64-bit longs, as does the 64-bit EABI; the
others use 32-bit longs. Pointers are the same size as longs, or the same size as
integer registers, whichever is smaller.

-msym32

-mno-sym32
Assume (do not assume) that all symbols have 32-bit values, regardless of
the selected ABI. This option is useful in combination with ‘-mabi=64’ and
‘-mno-abicalls’ because it allows GCC to generate shorter and faster references
to symbolic addresses.

-G num Put global and static items less than or equal to num bytes into the small data or
bss section instead of the normal data or bss section. This allows the data to be
accessed using a single instruction.

All modules should be compiled with the same ‘-G num’ value.

-membedded-data

-mno-embedded-data
Allocate variables to the read-only data section first if possible, then next in the
small data section if possible, otherwise in data. This gives slightly slower code
than the default, but reduces the amount of RAM required when executing, and
thus may be preferred for some embedded systems.

-muninit-const-in-rodata

-mno-uninit-const-in-rodata
Put uninitialized const variables in the read-only data section. This option is only
meaningful in conjunction with ‘-membedded-data’.

132 Using the GNU Compiler Collection (GCC)

-msplit-addresses

-mno-split-addresses
Enable (disable) use of the %hi() and %1lo() assembler relocation operators. This
option has been superseded by ‘-mexplicit-relocs’ but is retained for backwards
compatibility.

-mexplicit-relocs

-mno-explicit-relocs
Use (do not use) assembler relocation operators when dealing with symbolic ad-
dresses. The alternative, selected by ‘-mno-explicit-relocs’, is to use assembler
macros instead.

‘-mexplicit-relocs’ is the default if GCC was configured to use an assembler that
supports relocation operators.

-mcheck-zero-division

-mno-check-zero-division
Trap (do mnot trap) on integer division by zero. The default is
‘-mcheck-zero-division’.

-mdivide-traps

-mdivide-breaks
MIPS systems check for division by zero by generating either a conditional trap or
a break instruction. Using traps results in smaller code, but is only supported on
MIPS II and later. Also, some versions of the Linux kernel have a bug that prevents
trap from generating the proper signal (SIGFPE). Use ‘-mdivide-traps’ to allow
conditional traps on architectures that support them and ‘-mdivide-breaks’ to
force the use of breaks.

The default is usually ‘-mdivide-traps’, but this can be overridden at configure
time using ‘--with-divide=breaks’. Divide-by-zero checks can be completely dis-
abled using ‘-mno-check-zero-division’.

-mmemcpy
-mno-memcpy
Force (do not force) the use of memcpy () for non-trivial block moves. The default
is ‘-mno-memcpy’, which allows GCC to inline most constant-sized copies.

-mlong-calls

-mno-long-calls
Disable (do not disable) use of the jal instruction. Calling functions using jal is
more efficient but requires the caller and callee to be in the same 256 megabyte
segment.

This option has no effect on abicalls code. The default is ‘-mno-long-calls’.

-mmad
-mno-mad Enable (disable) use of the mad, madu and mul instructions, as provided by the R4650
ISA.

-mfused-madd

-mno-fused-madd
Enable (disable) use of the floating point multiply-accumulate instructions, when
they are available. The default is ‘-mfused-madd’.

When multiply-accumulate instructions are used, the intermediate product is cal-
culated to infinite precision and is not subject to the FCSR Flush to Zero bit. This
may be undesirable in some circumstances.

Chapter 3: GCC Command Options 133

-nocpp Tell the MIPS assembler to not run its preprocessor over user assembler files (with
a ‘.s’ suffix) when assembling them.

-mfix-r4000
-mno-fix-r4000
Work around certain R4000 CPU errata:

— A double-word or a variable shift may give an incorrect result if executed im-
mediately after starting an integer division.

— A double-word or a variable shift may give an incorrect result if executed while
an integer multiplication is in progress.

— An integer division may give an incorrect result if started in a delay slot of a
taken branch or a jump.

-mfix-r4400
-mno-fix-r4400
Work around certain R4400 CPU erratas:
— A double-word or a variable shift may give an incorrect result if executed im-
mediately after starting an integer division.

-mfix-vr4120
-mno-fix-vr4120
Work around certain VR4120 errata:

— dmultu does not always produce the correct result.

— div and ddiv do not always produce the correct result if one of the operands
is negative.

The workarounds for the division errata rely on special functions in ‘libgcc.a’. At
present, these functions are only provided by the mips64vr*-elf configurations.

Other VR4120 errata require a nop to be inserted between certain pairs of instruc-
tions. These errata are handled by the assembler, not by GCC itself.

-mfix-vr4130
Work around the VR4130 mflo/mfhi errata. The workarounds are implemented by
the assembler rather than by GCC, although GCC will avoid using mflo and mfhi
if the VR4130 macc, macchi, dmacc and dmacchi instructions are available instead.

-mfix-sbl

-mno-fix-sbl
Work around certain SB-1 CPU core errata. (This flag currently works around the
SB-1 revision 2 “F1” and “F2” floating point errata.)

-mflush-func=func

-mno-flush-func
Specifies the function to call to flush the I and D caches, or to not call any such
function. If called, the function must take the same arguments as the common _
flush_func(), that is, the address of the memory range for which the cache is being
flushed, the size of the memory range, and the number 3 (to flush both caches).
The default depends on the target GCC was configured for, but commonly is either
‘_flush_func’ or ‘__cpu_flush’.

-mbranch-likely

-mno-branch-likely
Enable or disable use of Branch Likely instructions, regardless of the default for the
selected architecture. By default, Branch Likely instructions may be generated if
they are supported by the selected architecture. An exception is for the MIPS32 and

134 Using the GNU Compiler Collection (GCC)

MIPS64 architectures and processors which implement those architectures; for those,
Branch Likely instructions will not be generated by default because the MIPS32 and
MIPS64 architectures specifically deprecate their use.

-mfp-exceptions

-mno-fp-exceptions
Specifies whether FP exceptions are enabled. This affects how we schedule FP
instructions for some processors. The default is that FP exceptions are enabled.

For instance, on the SB-1, if FP exceptions are disabled, and we are emitting 64-bit
code, then we can use both FP pipes. Otherwise, we can only use one FP pipe.

-mvr4130-align

-mno-vr4130-align
The VRA4130 pipeline is two-way superscalar, but can only issue two instructions
together if the first one is 8-byte aligned. When this option is enabled, GCC will
align pairs of instructions that it thinks should execute in parallel.

This option only has an effect when optimizing for the VR4130. It normally makes
code faster, but at the expense of making it bigger. It is enabled by default at
optimization level ‘-03’.

3.17.19 MMIX Options
These options are defined for the MMIX:

-mlibfuncs

-mno-libfuncs
Specify that intrinsic library functions are being compiled, passing all values in
registers, no matter the size.

-mepsilon

-mno-epsilon
Generate floating-point comparison instructions that compare with respect to the
rE epsilon register.

-mabi=mmixware

-mabi=gnu
Generate code that passes function parameters and return values that (in the called
function) are seen as registers $0 and up, as opposed to the GNU ABI which uses
global registers $231 and up.

-mzero-extend

-mno-zero-extend
When reading data from memory in sizes shorter than 64 bits, use (do not use)
zero-extending load instructions by default, rather than sign-extending ones.

-mknuthdiv

-mno-knuthdiv
Make the result of a division yielding a remainder have the same sign as the divisor.
With the default, ‘-mno-knuthdiv’, the sign of the remainder follows the sign of the
dividend. Both methods are arithmetically valid, the latter being almost exclusively
used.

-mtoplevel-symbols

-mno-toplevel-symbols
Prepend (do not prepend) a ‘:’ to all global symbols, so the assembly code can be
used with the PREFIX assembly directive.

Chapter 3: GCC Command Options 135

-melf Generate an executable in the ELF format, rather than the default ‘mmo’ format
used by the mmix simulator.

-mbranch-predict

-mno-branch-predict
Use (do not use) the probable-branch instructions, when static branch prediction
indicates a probable branch.

-mbase-addresses

-mno-base-addresses
Generate (do not generate) code that uses base addresses. Using a base address
automatically generates a request (handled by the assembler and the linker) for a
constant to be set up in a global register. The register is used for one or more base
address requests within the range 0 to 255 from the value held in the register. The
generally leads to short and fast code, but the number of different data items that
can be addressed is limited. This means that a program that uses lots of static data
may require ‘-mno-base-addresses’.

-msingle-exit
-mno-single-exit
Force (do not force) generated code to have a single exit point in each function.

3.17.20 MIN10300 Options
These ‘-m’ options are defined for Matsushita MN10300 architectures:

-mmult-bug
Generate code to avoid bugs in the multiply instructions for the MN10300 processors.
This is the default.

-mno-mult-bug
Do not generate code to avoid bugs in the multiply instructions for the MN10300
Processors.

-mam33 Generate code which uses features specific to the AM33 processor.

-mno-am33
Do not generate code which uses features specific to the AM33 processor. This is
the default.

-mno-crt0
Do not link in the C run-time initialization object file.

-mrelax Indicate to the linker that it should perform a relaxation optimization pass to shorten

branches, calls and absolute memory addresses. This option only has an effect when
used on the command line for the final link step.

This option makes symbolic debugging impossible.

3.17.21 NS32K Options

These are the ‘-m’ options defined for the 32000 series. The default values for these options
depends on which style of 32000 was selected when the compiler was configured; the defaults for
the most common choices are given below.

-m32032
-m32032 Generate output for a 32032. This is the default when the compiler is configured
for 32032 and 32016 based systems.

-m32332
-m32332 Generate output for a 32332. This is the default when the compiler is configured
for 32332-based systems.

136 Using the GNU Compiler Collection (GCC)

-m32532
-m32532 Generate output for a 32532. This is the default when the compiler is configured
for 32532-based systems.

-m32081 Generate output containing 32081 instructions for floating point. This is the default
for all systems.

-m32381 Generate output containing 32381 instructions for floating point. This also implies
‘-m32081’. The 32381 is only compatible with the 32332 and 32532 cpus. This is
the default for the pch32-netbsd configuration.

-mmulti-add
Try and generate multiply-add floating point instructions polyF and dotF. This
option is only available if the ‘-m32381’ option is in effect. Using these instructions
requires changes to register allocation which generally has a negative impact on
performance. This option should only be enabled when compiling code particularly
likely to make heavy use of multiply-add instructions.

-mnomulti-add
Do not try and generate multiply-add floating point instructions polyF and dotF.
This is the default on all platforms.

-msoft-float
Generate output containing library calls for floating point. Warning: the requisite
libraries may not be available.

-mieee-compare

-mno-ieee-compare
Control whether or not the compiler uses IEEE floating point comparisons. These
handle correctly the case where the result of a comparison is unordered. Warning:
the requisite kernel support may not be available.

-mnobitfield
Do not use the bit-field instructions. On some machines it is faster to use shifting
and masking operations. This is the default for the pc532.

-mbitfield
Do use the bit-field instructions. This is the default for all platforms except the
pcoH32.

-mrtd Use a different function-calling convention, in which functions that take a fixed

number of arguments return pop their arguments on return with the ret instruction.

This calling convention is incompatible with the one normally used on Unix, so you
cannot use it if you need to call libraries compiled with the Unix compiler.

Also, you must provide function prototypes for all functions that take variable num-
bers of arguments (including printf); otherwise incorrect code will be generated
for calls to those functions.

In addition, seriously incorrect code will result if you call a function with too many
arguments. (Normally, extra arguments are harmlessly ignored.)

This option takes its name from the 680x0 rtd instruction.
-mregparam

Use a different function-calling convention where the first two arguments are passed
in registers.

This calling convention is incompatible with the one normally used on Unix, so you
cannot use it if you need to call libraries compiled with the Unix compiler.

Chapter 3: GCC Command Options 137

-mnoregparam

-msb

-mnosb

-mhimem

-mnohimem

Do not pass any arguments in registers. This is the default for all targets.

It is OK to use the sb as an index register which is always loaded with zero. This
is the default for the pcb532-netbsd target.

The sb register is not available for use or has not been initialized to zero by the run
time system. This is the default for all targets except the pcb532-netbsd. It is also
implied whenever ‘-mhimem’ or ‘-fpic’ is set.

Many ns32000 series addressing modes use displacements of up to 512MB. If an
address is above 512MB then displacements from zero can not be used. This option
causes code to be generated which can be loaded above 512MB. This may be useful
for operating systems or ROM code.

Assume code will be loaded in the first 512MB of virtual address space. This is the
default for all platforms.

3.17.22 PDP-11 Options
These options are defined for the PDP-11:

-mfpu

Use hardware FPP floating point. This is the default. (FIS floating point on the
PDP-11/40 is not supported.)

-msoft-float

-macO
-mno-ac0
-m40
-m45
-m10

Do not use hardware floating point.

Return floating-point results in acO (fr0 in Unix assembler syntax).
Return floating-point results in memory. This is the default.
Generate code for a PDP-11/40.

Generate code for a PDP-11/45. This is the default.

Generate code for a PDP-11/10.

-mbcopy-builtin

-mbcopy
-mint16

-mno-int32

-mint32

-mno-int16

-mfloat64

Use inline movmemhi patterns for copying memory. This is the default.

Do not use inline movmemhi patterns for copying memory.

Use 16-bit int. This is the default.

Use 32-bit int.

-mno-float32

-mfloat32

Use 64-bit float. This is the default.

-mno-float64

-mabshi

-mno-abshi

Use 32-bit float.
Use abshi2 pattern. This is the default.

Do not use abshi2 pattern.

138 Using the GNU Compiler Collection (GCC)

-mbranch-expensive
Pretend that branches are expensive. This is for experimenting with code generation
only.

-mbranch-cheap
Do not pretend that branches are expensive. This is the default.

-msplit Generate code for a system with split 1&D.

-mno-split
Generate code for a system without split 1&D. This is the default.

-munix-asm
Use Unix assembler syntax. This is the default when configured for ‘pdp11-*-bsd’.

-mdec-asm
Use DEC assembler syntax. This is the default when configured for any PDP-11
target other than ‘pdpl11-*-bsd’.

3.17.23 PowerPC Options
These are listed under See Section 3.17.24 [RS/6000 and PowerPC Options|, page 138.

3.17.24 IBM RS/6000 and PowerPC Options
These ‘-m’ options are defined for the IBM RS/6000 and PowerPC:

-mpower

-mno-power

-mpower?2

-mno-power2

-mpowerpc

—~mno-powerpc

-mpowerpc-gpopt

-mno-powerpc-gpopt

-mpowerpc-gfxopt

-mno-powerpc-gfxopt

-mpowerpc64

-mno-powerpc64
GCC supports two related instruction set architectures for the RS/6000 and Pow-
erPC. The POWER instruction set are those instructions supported by the ‘rios’
chip set used in the original RS/6000 systems and the PowerPC instruction set is
the architecture of the Motorola MPCbhxx, MPC6xx, MPC8xx microprocessors, and
the IBM 4xx microprocessors.

Neither architecture is a subset of the other. However there is a large common
subset of instructions supported by both. An MQ register is included in processors
supporting the POWER architecture.

You use these options to specify which instructions are available on the processor
you are using. The default value of these options is determined when configuring
GCC. Specifying the ‘-mcpu=cpu_type’ overrides the specification of these options.
We recommend you use the ‘-mcpu=cpu_type’ option rather than the options listed
above.

The ‘-mpower’ option allows GCC to generate instructions that are found only
in the POWER architecture and to use the MQ register. Specifying ‘-mpower2’
implies ‘-power’ and also allows GCC to generate instructions that are present in
the POWER2 architecture but not the original POWER architecture.

Chapter 3: GCC Command Options 139

The ‘-mpowerpc’ option allows GCC to generate instructions that are found only
in the 32-bit subset of the PowerPC architecture. Specifying ‘-mpowerpc-gpopt’
implies ‘-mpowerpc’ and also allows GCC to use the optional PowerPC architecture
instructions in the General Purpose group, including floating-point square root.
Specifying ‘-mpowerpc-gfxopt’ implies ‘-mpowerpc’ and also allows GCC to use
the optional PowerPC architecture instructions in the Graphics group, including
floating-point select.

The ‘-mpowerpc64’ option allows GCC to generate the additional 64-bit instructions
that are found in the full PowerPC64 architecture and to treat GPRs as 64-bit,
doubleword quantities. GCC defaults to ‘-mno-powerpc64’.

If you specify both ‘-mno-power’ and ‘-mno-powerpc’, GCC will use only the instruc-
tions in the common subset of both architectures plus some special AIX common-
mode calls, and will not use the MQ register. Specifying both ‘-mpower’ and
‘-mpowerpc’ permits GCC to use any instruction from either architecture and to
allow use of the MQ register; specify this for the Motorola MPC601.

-mnew-mnemonics

-mold-mnemonics
Select which mnemonics to use in the generated assembler code. With
‘-mnew-mnemonics’, GCC uses the assembler mnemonics defined for the PowerPC
architecture. With ‘-mold-mnemonics’ it uses the assembler mnemonics defined for
the POWER architecture. Instructions defined in only one architecture have only
one mnemonic; GCC uses that mnemonic irrespective of which of these options is
specified.

GCC defaults to the mnemonics appropriate for the architecture in use. Specifying
‘-mcpu=cpu_type’ sometimes overrides the value of these option. Unless you are
building a cross-compiler, you should normally not specify either ‘-mnew-mnemonics’
or ‘-mold-mnemonics’, but should instead accept the default.

-mcpu=cpu_type
Set architecture type, register usage, choice of mnemonics, and instruction schedul-
ing parameters for machine type cpu_type. Supported values for cpu_type are ‘401,
‘403’, ‘405, ‘405£p’, ‘440’, ‘440fp’, ‘505, ‘601’, ‘602’, ‘603", ‘603e’, ‘604", ‘604e’,
‘6207, ‘6307, ‘740°, “7400°, ‘7450°, ‘750°, ‘8017, ‘821, ‘823", ‘860’, ‘970, ‘8540,
‘common’, ‘ec603e’, ‘G3’, ‘G4’, ‘G5’, ‘power’, ‘power2’, ‘power3’, ‘powerd’, ‘powers’,
‘powerpc’, ‘powerpc64’, ‘rios’, ‘riosl’, ‘rios2’, ‘rsc’, and ‘rs64a’.
‘-mcpu=common’ selects a completely generic processor. Code generated under this
option will run on any POWER or PowerPC processor. GCC will use only the
instructions in the common subset of both architectures, and will not use the MQ
register. GCC assumes a generic processor model for scheduling purposes.
‘-mcpu=power’, ‘-mcpu=power2’, ‘-mcpu=powerpc’, and ‘-mcpu=powerpc64’ specify
generic POWER, POWER2, pure 32-bit PowerPC (i.e., not MPC601), and 64-bit
PowerPC architecture machine types, with an appropriate, generic processor model
assumed for scheduling purposes.

The other options specify a specific processor. Code generated under those options
will run best on that processor, and may not run at all on others.

The ‘-mcpu’ options automatically enable or disable the following options:
‘-maltivec’, ‘-mhard-float’, ‘-mmfcrf’, ‘-mmultiple’, ‘-mnew-mnemonics’,
‘-mpower’, ‘-mpower2’, ‘-mpowerpc64’, ‘-mpowerpc-gpopt’, ‘-mpowerpc-gfxopt’,
‘-mstring’. The particular options set for any particular CPU will vary between
compiler versions, depending on what setting seems to produce optimal code for
that CPU; it doesn’t necessarily reflect the actual hardware’s capabilities. If you

140 Using the GNU Compiler Collection (GCC)

wish to set an individual option to a particular value, you may specify it after the
‘-mcpu’ option, like ‘-mcpu=970 -mno-altivec’.

On AIX, the ‘-maltivec’ and ‘-mpowerpc64’ options are not enabled or disabled
by the ‘-mcpu’ option at present, since AIX does not have full support for these
options. You may still enable or disable them individually if you're sure it’ll work
in your environment.

-mtune=cpu_type
Set the instruction scheduling parameters for machine type cpu-type, but do not set
the architecture type, register usage, or choice of mnemonics, as ‘-mcpu=cpu_type’
would. The same values for cpu_type are used for ‘-mtune’ as for ‘-mcpu’. If both
are specified, the code generated will use the architecture, registers, and mnemonics
set by ‘-mcpu’, but the scheduling parameters set by ‘-mtune’.

-maltivec

-mno-altivec
Generate code that uses (does not use) AltiVec instructions, and also enable the
use of built-in functions that allow more direct access to the AltiVec instruction set.
You may also need to set ‘-mabi=altivec’ to adjust the current ABI with AltiVec
ABI enhancements.

-mabi=spe
Extend the current ABI with SPE ABI extensions. This does not change the default
ABI, instead it adds the SPE ABI extensions to the current ABI.

-mabi=no-spe
Disable Booke SPE ABI extensions for the current ABI.

-misel=yes/no
-misel This switch enables or disables the generation of ISEL instructions.

-mspe=yes/no
-mspe This switch enables or disables the generation of SPE simd instructions.

-mfloat-gprs=yes/single/double/no

-mfloat-gprs
This switch enables or disables the generation of floating point operations on the
general purpose registers for architectures that support it.

The argument yes or single enables the use of single-precision floating point opera-
tions.

The argument double enables the use of single and double-precision floating point
operations.

The argument no disables floating point operations on the general purpose registers.

This option is currently only available on the MPC854x.

-m32

-m64 Generate code for 32-bit or 64-bit environments of Darwin and SVR4 targets (in-
cluding GNU /Linux). The 32-bit environment sets int, long and pointer to 32 bits
and generates code that runs on any PowerPC variant. The 64-bit environment sets
int to 32 bits and long and pointer to 64 bits, and generates code for PowerPC64,
as for ‘-mpowerpc64’.

Chapter 3: GCC Command Options 141

-mfull-toc

-mno-fp-in-toc

-mno-sum-i
-mminimal-

-maix64
-maix32

n-toc

toc

Modify generation of the TOC (Table Of Contents), which is created for every
executable file. The ‘-mfull-toc’ option is selected by default. In that case, GCC
will allocate at least one TOC entry for each unique non-automatic variable reference
in your program. GCC will also place floating-point constants in the TOC. However,
only 16,384 entries are available in the TOC.

If you receive a linker error message that saying you have overflowed the avail-
able TOC space, you can reduce the amount of TOC space used with the
‘-mno-fp-in-toc’ and ‘-mno-sum-in-toc’ options. ‘-mno-fp-in-toc’ prevents
GCC from putting floating-point constants in the TOC and ‘-mno-sum-in-toc’
forces GCC to generate code to calculate the sum of an address and a constant at
run-time instead of putting that sum into the TOC. You may specify one or both
of these options. Each causes GCC to produce very slightly slower and larger code
at the expense of conserving TOC space.

If you still run out of space in the TOC even when you specify both of these options,
specify ‘-mminimal-toc’ instead. This option causes GCC to make only one TOC
entry for every file. When you specify this option, GCC will produce code that is
slower and larger but which uses extremely little TOC space. You may wish to use
this option only on files that contain less frequently executed code.

Enable 64-bit AIX ABI and calling convention: 64-bit pointers, 64-bit long type,
and the infrastructure needed to support them. Specifying ‘-maix64’ implies
‘-mpowerpc64’ and ‘-mpowerpc’, while ‘-maix32’ disables the 64-bit ABI and implies
‘-mno-powerpc64’. GCC defaults to ‘-maix32’.

-mxl-compat
-mno-xl-compat

-mpe

Produce code that conforms more closely to IBM XLC semantics when using AIX-
compatible ABI. Pass floating-point arguments to prototyped functions beyond the
register save area (RSA) on the stack in addition to argument FPRs. Do not assume
that most significant double in 128 bit long double value is properly rounded when
comparing values.

The AIX calling convention was extended but not initially documented to handle an
obscure K&R C case of calling a function that takes the address of its arguments with
fewer arguments than declared. AIX XL compilers access floating point arguments
which do not fit in the RSA from the stack when a subroutine is compiled without
optimization. Because always storing floating-point arguments on the stack is inef-
ficient and rarely needed, this option is not enabled by default and only is necessary
when calling subroutines compiled by AIX XL compilers without optimization.

Support IBM RS/6000 SP Parallel Environment (PE). Link an application written
to use message passing with special startup code to enable the application to run.
The system must have PE installed in the standard location (‘/usr/1lpp/ppe.poe/’),
or the ‘specs’ file must be overridden with the ‘-specs=’ option to specify the
appropriate directory location. The Parallel Environment does not support threads,

so the ‘-mpe’ option and the ‘-pthread’ option are incompatible.

142 Using the GNU Compiler Collection (GCC)

-malign-natural

-malign-power
On AIX, 32-bit Darwin, and 64-bit PowerPC GNU/Linux, the option
‘-malign-natural’ overrides the ABI-defined alignment of larger types, such
as floating-point doubles, on their natural size-based boundary. The option
‘-malign-power’ instructs GCC to follow the ABI-specified alignment rules. GCC
defaults to the standard alignment defined in the ABI.

On 64-bit Darwin, natural alignment is the default, and ‘-malign-power’ is not
supported.

-msoft-float

-mhard-float
Generate code that does not use (uses) the floating-point register set. Software
floating point emulation is provided if you use the ‘-msoft-float’ option, and pass
the option to GCC when linking.

-mmultiple

-mno-multiple
Generate code that uses (does not use) the load multiple word instructions and
the store multiple word instructions. These instructions are generated by default on
POWER systems, and not generated on PowerPC systems. Do not use ‘-mmultiple’
on little endian PowerPC systems, since those instructions do not work when the
processor is in little endian mode. The exceptions are PPC740 and PPC750 which
permit the instructions usage in little endian mode.

-mstring

-mno-string
Generate code that uses (does not use) the load string instructions and the store
string word instructions to save multiple registers and do small block moves. These
instructions are generated by default on POWER systems, and not generated on
PowerPC systems. Do not use ‘-mstring’ on little endian PowerPC systems, since
those instructions do not work when the processor is in little endian mode. The
exceptions are PPC740 and PPC750 which permit the instructions usage in little
endian mode.

-mupdate

-mno-update
Generate code that uses (does not use) the load or store instructions that update the
base register to the address of the calculated memory location. These instructions
are generated by default. If you use ‘-mno-update’, there is a small window between
the time that the stack pointer is updated and the address of the previous frame
is stored, which means code that walks the stack frame across interrupts or signals
may get corrupted data.

-mfused-madd

-mno-fused-madd
Generate code that uses (does not use) the floating point multiply and accumulate
instructions. These instructions are generated by default if hardware floating is
used.

-mno-bit-align

-mbit-align
On System V.4 and embedded PowerPC systems do not (do) force structures and
unions that contain bit-fields to be aligned to the base type of the bit-field.

Chapter 3: GCC Command Options 143

For example, by default a structure containing nothing but 8 unsigned bit-fields of
length 1 would be aligned to a 4 byte boundary and have a size of 4 bytes. By using
‘-mno-bit-align’, the structure would be aligned to a 1 byte boundary and be one
byte in size.

-mno-strict-align

-mstrict-align
On System V.4 and embedded PowerPC systems do not (do) assume that unaligned
memory references will be handled by the system.

-mrelocatable

-mno-relocatable
On embedded PowerPC systems generate code that allows (does not allow) the pro-
gram to be relocated to a different address at runtime. If you use ‘-mrelocatable’
on any module, all objects linked together must be compiled with ‘-mrelocatable’
or ‘-mrelocatable-1ib’.

-mrelocatable-1ib

-mno-relocatable-1ib
On embedded PowerPC systems generate code that allows (does not allow) the
program to be relocated to a different address at runtime. Modules compiled
with ‘-mrelocatable-1ib’ can be linked with either modules compiled without
‘-mrelocatable’ and ‘-mrelocatable-1lib’ or with modules compiled with the
‘-mrelocatable’ options.

-mno-toc

-mtoc On System V.4 and embedded PowerPC systems do not (do) assume that register
2 contains a pointer to a global area pointing to the addresses used in the program.

-mlittle

-mlittle-endian
On System V.4 and embedded PowerPC systems compile code for the processor in
little endian mode. The ‘-mlittle-endian’ option is the same as ‘-mlittle’.

-mbig

-mbig-endian
On System V.4 and embedded PowerPC systems compile code for the processor in
big endian mode. The ‘-mbig-endian’ option is the same as ‘-mbig’.

-mdynamic-no-pic
On Darwin and Mac OS X systems, compile code so that it is not relocatable,
but that its external references are relocatable. The resulting code is suitable for
applications, but not shared libraries.

-mprioritize-restricted-insns=priority
This option controls the priority that is assigned to dispatch-slot restricted instruc-
tions during the second scheduling pass. The argument priority takes the value
0/1/2 to assign no/highest/second-highest priority to dispatch slot restricted in-
structions.

-msched-costly-dep=dependence_type
This option controls which dependences are considered costly by the target during in-
struction scheduling. The argument dependence_type takes one of the following val-
ues: no: no dependence is costly, all: all dependences are costly, true_store_to_load:
a true dependence from store to load is costly, store_to_load: any dependence from
store to load is costly, number: any dependence which latency >= number is costly.

144 Using the GNU Compiler Collection (GCC)

-minsert-sched-nops=scheme

This option controls which nop insertion scheme will be used during the second
scheduling pass. The argument scheme takes one of the following values: no: Don’t
insert nops. pad: Pad with nops any dispatch group which has vacant issue slots,
according to the scheduler’s grouping. regroup_exact: Insert nops to force costly
dependent insns into separate groups. Insert exactly as many nops as needed to force
an insn to a new group, according to the estimated processor grouping. number:
Insert nops to force costly dependent insns into separate groups. Insert number
nops to force an insn to a new group.

-mcall-sysv
On System V.4 and embedded PowerPC systems compile code using calling con-
ventions that adheres to the March 1995 draft of the System V Application Binary
Interface, PowerPC processor supplement. This is the default unless you configured
GCC using ‘powerpc-*-eabiaix’.

-mcall-sysv-eabi
Specify both ‘-mcall-sysv’ and ‘-meabi’ options.

-mcall-sysv-noeabi
Specify both ‘-mcall-sysv’ and ‘-mno-eabi’ options.

-mcall-solaris
On System V.4 and embedded PowerPC systems compile code for the Solaris oper-
ating system.

-mcall-linux
On System V.4 and embedded PowerPC systems compile code for the Linux-based
GNU system.

-mcall-gnu
On System V.4 and embedded PowerPC systems compile code for the Hurd-based
GNU system.

-mcall-netbsd
On System V.4 and embedded PowerPC systems compile code for the NetBSD
operating system.

-maix-struct-return
Return all structures in memory (as specified by the AIX ABI).

-msvr4-struct-return
Return structures smaller than 8 bytes in registers (as specified by the SVR4 ABI).

-mabi=altivec
Extend the current ABI with AltiVec ABI extensions. This does not change the
default ABI, instead it adds the AltiVec ABI extensions to the current ABI.

-mabi=no-altivec
Disable AltiVec ABI extensions for the current ABI.

-mprototype

—-mno-prototype
On System V.4 and embedded PowerPC systems assume that all calls to variable
argument functions are properly prototyped. Otherwise, the compiler must insert an
instruction before every non prototyped call to set or clear bit 6 of the condition code
register (CR) to indicate whether floating point values were passed in the floating
point registers in case the function takes a variable arguments. With ‘-mprototype’,
only calls to prototyped variable argument functions will set or clear the bit.

Chapter 3: GCC Command Options 145

-msim On embedded PowerPC systems, assume that the startup module is called
‘sim-crt0.0’ and that the standard C libraries are ‘libsim.a’ and ‘libc.a’. This
is the default for ‘powerpc-*-eabisim’. configurations.

-mmvme On embedded PowerPC systems, assume that the startup module is called ‘crt0.0o’
and the standard C libraries are ‘libmvme.a’ and ‘libc.a’.

-mads On embedded PowerPC systems, assume that the startup module is called ‘crt0.0o’
and the standard C libraries are ‘libads.a’ and ‘libc.a’.

-myellowknife
On embedded PowerPC systems, assume that the startup module is called ‘crt0.0’
and the standard C libraries are ‘1libyk.a’ and ‘libc.a’.

-mvXworks
On System V.4 and embedded PowerPC systems, specify that you are compiling for
a VxWorks system.

-mwindiss
Specify that you are compiling for the WindISS simulation environment.

-memb On embedded PowerPC systems, set the PPC_EMB bit in the ELF flags header to
indicate that ‘eabi’ extended relocations are used.

-meabi

-mno-eabi

On System V.4 and embedded PowerPC systems do (do not) adhere to the Em-
bedded Applications Binary Interface (eabi) which is a set of modifications to the
System V.4 specifications. Selecting ‘-meabi’ means that the stack is aligned to an
8 byte boundary, a function __eabi is called to from main to set up the eabi envi-
ronment, and the ‘-msdata’ option can use both r2 and r13 to point to two separate
small data areas. Selecting ‘-mno-eabi’ means that the stack is aligned to a 16 byte
boundary, do not call an initialization function from main, and the ‘-msdata’ option
will only use r13 to point to a single small data area. The ‘-meabi’ option is on by
default if you configured GCC using one of the ‘powerpc*—*-eabi*’ options.

-msdata=eabi

On System V.4 and embedded PowerPC systems, put small initialized const global
and static data in the ‘. sdata2’ section, which is pointed to by register r2. Put small
initialized non-const global and static data in the ‘. sdata’ section, which is pointed
to by register r13. Put small uninitialized global and static data in the ‘.sbss’
section, which is adjacent to the ‘.sdata’ section. The ‘-msdata=eabi’ option is
incompatible with the ‘-mrelocatable’ option. The ‘-msdata=eabi’ option also
sets the ‘-memb’ option.

¢

-msdata=sysv

On System V.4 and embedded PowerPC systems, put small global and static data
in the ‘.sdata’ section, which is pointed to by register r13. Put small uninitialized
global and static data in the ‘.sbss’ section, which is adjacent to the ‘.sdata’ sec-
tion. The ‘-msdata=sysv’ option is incompatible with the ‘-mrelocatable’ option.

-msdata=default

-msdata

On System V.4 and embedded PowerPC systems, if ‘-meabi’ is used, compile code
the same as ‘-msdata=eabi’, otherwise compile code the same as ‘-msdata=sysv’.

-msdata-data

On System V.4 and embedded PowerPC systems, put small global and static data
in the ‘. sdata’ section. Put small uninitialized global and static data in the ‘. sbss’

146 Using the GNU Compiler Collection (GCC)

section. Do not use register r13 to address small data however. This is the default
behavior unless other ‘-msdata’ options are used.

-msdata=none

-mno-sdata
On embedded PowerPC systems, put all initialized global and static data in the
‘.data’ section, and all uninitialized data in the ‘.bss’ section.

-G num On embedded PowerPC systems, put global and static items less than or equal to
num bytes into the small data or bss sections instead of the normal data or bss
section. By default, num is 8. The ‘-G num’ switch is also passed to the linker. All
modules should be compiled with the same ‘-G num’ value.

-mregnames
-mno-regnames
On System V.4 and embedded PowerPC systems do (do not) emit register names
in the assembly language output using symbolic forms.

-mlongcall

-mno-longcall
Default to making all function calls indirectly, using a register, so that functions
which reside further than 32 megabytes (33,554,432 bytes) from the current location
can be called. This setting can be overridden by the shortcall function attribute,
or by #pragma longcall(0).

Some linkers are capable of detecting out-of-range calls and generating glue code on
the fly. On these systems, long calls are unnecessary and generate slower code. As
of this writing, the AIX linker can do this, as can the GNU linker for PowerPC/64.
It is planned to add this feature to the GNU linker for 32-bit PowerPC systems as
well.

On Darwin/PPC systems, #pragma longcall will generate “jbsr callee, L42”, plus
a “branch island” (glue code). The two target addresses represent the callee and the
“branch island”. The Darwin/PPC linker will prefer the first address and generate
a “bl callee” if the PPC “bl” instruction will reach the callee directly; otherwise,
the linker will generate “bl L42” to call the “branch island”. The “branch island”
is appended to the body of the calling function; it computes the full 32-bit address
of the callee and jumps to it.

On Mach-O (Darwin) systems, this option directs the compiler emit to the glue for
every direct call, and the Darwin linker decides whether to use or discard it.

In the future, we may cause GCC to ignore all longcall specifications when the linker
is known to generate glue.

-pthread Adds support for multithreading with the pthreads library. This option sets flags
for both the preprocessor and linker.

3.17.25 S/390 and zSeries Options
These are the ‘-m’ options defined for the S/390 and zSeries architecture.

-mhard-float

-msoft-float
Use (do not use) the hardware floating-point instructions and registers for floating-
point operations. When ‘-msoft-float’ is specified, functions in ‘libgcc.a’ will be
used to perform floating-point operations. When ‘-mhard-float’ is specified, the
compiler generates IEEE floating-point instructions. This is the default.

Chapter 3: GCC Command Options 147

-mbackchain
-mno-backchain

Store (do not store) the address of the caller’s frame as backchain pointer into the
callee’s stack frame. A backchain may be needed to allow debugging using tools that
do not understand DWARF-2 call frame information. When ‘-mno-packed-stack’
is in effect, the backchain pointer is stored at the bottom of the stack frame; when
‘-mpacked-stack’ is in effect, the backchain is placed into the topmost word of the
96/160 byte register save area.

In general, code compiled with ‘-mbackchain’ is call-compatible with code com-
piled with ‘-mmo-backchain’; however, use of the backchain for debugging purposes
usually requires that the whole binary is built with ‘-mbackchain’. Note that the
combination of ‘-mbackchain’, ‘-mpacked-stack’ and ‘-mhard-float’ is not sup-
ported. In order to build a linux kernel use ‘-msoft-float’.

The default is to not maintain the backchain.

-mpacked-stack
-mno-packed-stack

Use (do not use) the packed stack layout. When ‘-mno-packed-stack’ is specified,
the compiler uses the all fields of the 96/160 byte register save area only for their
default purpose; unused fields still take up stack space. When ‘-mpacked-stack’ is
specified, register save slots are densely packed at the top of the register save area;
unused space is reused for other purposes, allowing for more efficient use of the
available stack space. However, when ‘-mbackchain’ is also in effect, the topmost
word of the save area is always used to store the backchain, and the return address
register is always saved two words below the backchain.

As long as the stack frame backchain is mnot wused, code generated
with ‘-mpacked-stack’ is call-compatible with code generated with
‘-mno-packed-stack’. Note that some non-FSF releases of GCC 2.95 for S/390
or zSeries generated code that uses the stack frame backchain at run time, not
just for debugging purposes. Such code is not call-compatible with code compiled
with ‘-mpacked-stack’. Also, note that the combination of ‘-mbackchain’,
‘-mpacked-stack’ and ‘-mhard-float’ is not supported. In order to build a linux
kernel use ‘-msoft-float’.

The default is to not use the packed stack layout.

-msmall-exec
-mno-small-exec

-m64
-m31

-mzarch
-mesa

Generate (or do not generate) code using the bras instruction to do subroutine
calls. This only works reliably if the total executable size does not exceed 64k. The
default is to use the basr instruction instead, which does not have this limitation.

When ‘-m31’ is specified, generate code compliant to the GNU /Linux for S/390
ABI. When ‘-m64’ is specified, generate code compliant to the GNU/Linux for
zSeries ABI. This allows GCC in particular to generate 64-bit instructions. For the
‘s390’ targets, the default is ‘-m31’°, while the ‘s390x’ targets default to ‘-m64’.

When ‘-mzarch’ is specified, generate code using the instructions available on
z/Architecture. When ‘-mesa’ is specified, generate code using the instructions
available on ESA/390. Note that ‘-mesa’ is not possible with ‘-m64’. When gen-
erating code compliant to the GNU/Linux for S/390 ABI, the default is ‘-mesa’.
When generating code compliant to the GNU/Linux for zSeries ABI, the default is
‘-mzarch’.

148 Using the GNU Compiler Collection (GCC)

-mmvcle

-mno-mvcle
Generate (or do not generate) code using the mvcle instruction to perform block
moves. When ‘-mno-mvcle’ is specified, use a mvc loop instead. This is the default.

-mdebug

-mno-debug
Print (or do not print) additional debug information when compiling. The default
is to not print debug information.

-march=cpu-type
Generate code that will run on cpu-type, which is the name of a system representing
a certain processor type. Possible values for cpu-type are ‘gh’, ‘g6’, ‘z900’, and
‘z990’. When generating code using the instructions available on z/Architecture,
the default is ‘-march=z900’. Otherwise, the default is ‘-march=g5’.

-mtune=cpu-type
Tune to cpu-type everything applicable about the generated code, except for the
ABI and the set of available instructions. The list of cpu-type values is the same as
for ‘-march’. The default is the value used for ‘-march’.

-mtpf-trace

-mno-tpf-trace
Generate code that adds (does not add) in TPF OS specific branches to trace rou-
tines in the operating system. This option is off by default, even when compiling
for the TPF OS.

-mfused-madd

-mno-fused-madd
Generate code that uses (does not use) the floating point multiply and accumulate
instructions. These instructions are generated by default if hardware floating point
is used.

-mwarn-framesize=framesize
Emit a warning if the current function exceeds the given frame size. Because this is
a compile time check it doesn’t need to be a real problem when the program runs.
It is intended to identify functions which most probably cause a stack overflow. It
is useful to be used in an environment with limited stack size e.g. the linux kernel.

-mwarn-dynamicstack
Emit a warning if the function calls alloca or uses dynamically sized arrays. This is
generally a bad idea with a limited stack size.

-mstack-guard=stack-guard

-mstack-size=stack-size
These arguments always have to be used in conjunction. If they are present the
$390 back end emits additional instructions in the function prologue which trigger
a trap if the stack size is stack-guard bytes above the stack-size (remember that
the stack on s390 grows downward). These options are intended to be used to help
debugging stack overflow problems. The additionally emitted code cause only little
overhead and hence can also be used in production like systems without greater
performance degradation. The given values have to be exact powers of 2 and stack-
size has to be greater than stack-guard. In order to be efficient the extra code
makes the assumption that the stack starts at an address aligned to the value given
by stack-size.

Chapter 3: GCC Command Options 149

3.17.26 SH Options

These ‘-m’ options are defined for the SH implementations:

-m1 Generate code for the SHI1.
-m2 Generate code for the SH2.
-m2e Generate code for the SH2e.
-m3 Generate code for the SH3.
-m3e Generate code for the SH3e.
-m4-nofpu

Generate code for the SH4 without a floating-point unit.

-m4-single-only
Generate code for the SH4 with a floating-point unit that only supports single-
precision arithmetic.

-m4-single
Generate code for the SH4 assuming the floating-point unit is in single-precision
mode by default.

-m4 Generate code for the SH4.

-m4a-nofpu
Generate code for the SH4al-dsp, or for a SH4a in such a way that the floating-point
unit is not used.

-m4a-single-only
Generate code for the SH4a, in such a way that no double-precision floating point
operations are used.

-m4a-single
Generate code for the SH4a assuming the floating-point unit is in single-precision
mode by default.

-méa Generate code for the SH4a.

-m4al Same as ‘-m4a-nofpu’, except that it implicitly passes ‘~dsp’ to the assembler. GCC
doesn’t generate any DSP instructions at the moment.

-mb Compile code for the processor in big endian mode.

-ml Compile code for the processor in little endian mode.

-mdalign Align doubles at 64-bit boundaries. Note that this changes the calling conventions,
and thus some functions from the standard C library will not work unless you
recompile it first with ‘-mdalign’.

-mrelax Shorten some address references at link time, when possible; uses the linker option
‘-relax’.

-mbigtable
Use 32-bit offsets in switch tables. The default is to use 16-bit offsets.

-mfmovd Enable the use of the instruction fmovd.

-mhitachi
Comply with the calling conventions defined by Renesas.

-mrenesas
Comply with the calling conventions defined by Renesas.

150 Using the GNU Compiler Collection (GCC)

-mno-renesas
Comply with the calling conventions defined for GCC before the Renesas conventions
were available. This option is the default for all targets of the SH toolchain except
for ‘sh-symbianelf’.

-mnomacsave
Mark the MAC register as call-clobbered, even if ‘-mhitachi’ is given.

-mieee Increase IEEE-compliance of floating-point code.
-misize Dump instruction size and location in the assembly code.

-mpadstruct
This option is deprecated. It pads structures to multiple of 4 bytes, which is incom-

patible with the SH ABI.
-mspace Optimize for space instead of speed. Implied by ‘-0s’.

-mprefergot
When generating position-independent code, emit function calls using the Global
Offset Table instead of the Procedure Linkage Table.

-musermode
Generate a library function call to invalidate instruction cache entries, after fixing
up a trampoline. This library function call doesn’t assume it can write to the whole
memory address space. This is the default when the target is sh-*-1linux*.

3.17.27 SPARC Options
These ‘-m’ options are supported on the SPARC:

-mno-app-regs

-mapp-regs
Specify ‘-mapp-regs’ to generate output using the global registers 2 through 4,
which the SPARC SVR4 ABI reserves for applications. This is the default.

To be fully SVR4 ABI compliant at the cost of some performance loss, specify
‘-mno-app-regs’. You should compile libraries and system software with this option.

-mfpu
-mhard-float
Generate output containing floating point instructions. This is the default.

-mno-fpu

-msoft-float
Generate output containing library calls for floating point. Warning: the req-
uisite libraries are not available for all SPARC targets. Normally the facilities
of the machine’s usual C compiler are used, but this cannot be done directly in
cross-compilation. You must make your own arrangements to provide suitable li-
brary functions for cross-compilation. The embedded targets ‘sparc-*-aout’ and
‘sparclite-*-*" do provide software floating point support.

‘-msoft-float’ changes the calling convention in the output file; therefore, it is
only useful if you compile all of a program with this option. In particular, you need
to compile ‘1ibgcc.a’, the library that comes with GCC, with ‘-msoft-float’ in
order for this to work.

-mhard-quad-float
Generate output containing quad-word (long double) floating point instructions.

Chapter 3: GCC Command Options 151

-msoft-quad-float
Generate output containing library calls for quad-word (long double) floating point
instructions. The functions called are those specified in the SPARC ABI. This is
the default.

As of this writing, there are no SPARC implementations that have hardware support
for the quad-word floating point instructions. They all invoke a trap handler for one
of these instructions, and then the trap handler emulates the effect of the instruction.
Because of the trap handler overhead, this is much slower than calling the ABI
library routines. Thus the ‘-msoft-quad-float’ option is the default.

-mno-unaligned-doubles
-munaligned-doubles
Assume that doubles have 8 byte alignment. This is the default.

With ‘-munaligned-doubles’, GCC assumes that doubles have 8 byte alignment
only if they are contained in another type, or if they have an absolute address.
Otherwise, it assumes they have 4 byte alignment. Specifying this option avoids
some rare compatibility problems with code generated by other compilers. It is
not the default because it results in a performance loss, especially for floating point
code.

-mno-faster-structs

-mfaster-structs
With ‘-mfaster-structs’, the compiler assumes that structures should have 8 byte
alignment. This enables the use of pairs of 1dd and std instructions for copies in
structure assignment, in place of twice as many 1d and st pairs. However, the use
of this changed alignment directly violates the SPARC ABI. Thus, it’s intended
only for use on targets where the developer acknowledges that their resulting code
will not be directly in line with the rules of the ABI.

-mimpure-text
¢ ¢

‘-mimpure-text’, used in addition to ‘-shared’, tells the compiler to not pass ‘-z
text’ to the linker when linking a shared object. Using this option, you can link
position-dependent code into a shared object.

‘-mimpure-text’ suppresses the “relocations remain against allocatable but non-
writable sections” linker error message. However, the necessary relocations will
trigger copy-on-write, and the shared object is not actually shared across processes.
Instead of using ‘-mimpure-text’, you should compile all source code with ‘~fpic’
or ‘-fPIC’.

This option is only available on SunOS and Solaris.

-mcpu=cpu_type
Set the instruction set, register set, and instruction scheduling parameters for
machine type cpu_type. Supported values for cpu_type are ‘v7’, ‘cypress’,
‘v8’, ‘supersparc’, ‘sparclite’, ‘£930’, ‘f934’, ‘hypersparc’, ‘sparclite86x’,
‘sparclet’, ‘tsc701’, ‘v9’, ‘ultrasparc’, and ‘ultrasparc3’.
Default instruction scheduling parameters are used for values that select an archi-
tecture and not an implementation. These are ‘v7’, ‘v8’, ‘sparclite’, ‘sparclet’,

‘v9’.
Here is a list of each supported architecture and their supported implementations.
v7: cypress
v8: supersparc, hypersparc
sparclite: £930, £934, sparclite86x
sparclet: tsc701

v9: ultrasparc, ultrasparc3d

152 Using the GNU Compiler Collection (GCC)

By default (unless configured otherwise), GCC generates code for the V7 variant
of the SPARC architecture. With ‘-mcpu=cypress’, the compiler additionally opti-
mizes it for the Cypress CY7C602 chip, as used in the SPARCStation/SPARCServer
3xx series. This is also appropriate for the older SPARCStation 1, 2, IPX etc.

With ‘-mcpu=v8’, GCC generates code for the V8 variant of the SPARC architecture.
The only difference from V7 code is that the compiler emits the integer multiply and
integer divide instructions which exist in SPARC-V8 but not in SPARC-V7. With
‘-mcpu=supersparc’, the compiler additionally optimizes it for the SuperSPARC
chip, as used in the SPARCStation 10, 1000 and 2000 series.

With ‘-mcpu=sparclite’, GCC generates code for the SPARClite variant of the
SPARC architecture. This adds the integer multiply, integer divide step and
scan (ffs) instructions which exist in SPARClite but not in SPARC-V7. With
‘-mcpu=£930’, the compiler additionally optimizes it for the Fujitsu MB86930 chip,
which is the original SPARClite, with no FPU. With ‘-mcpu=£934’, the compiler
additionally optimizes it for the Fujitsu MB86934 chip, which is the more recent
SPARClite with FPU.

With ‘-mcpu=sparclet’, GCC generates code for the SPARClet variant of the
SPARC architecture. This adds the integer multiply, multiply /accumulate, inte-
ger divide step and scan (ffs) instructions which exist in SPARClet but not in
SPARC-V7. With ‘-mcpu=tsc701’, the compiler additionally optimizes it for the
TEMIC SPARClet chip.

With ‘-mcpu=v9’, GCC generates code for the V9 variant of the SPARC architec-
ture. This adds 64-bit integer and floating-point move instructions, 3 additional
floating-point condition code registers and conditional move instructions. With
‘-mcpu=ultrasparc’, the compiler additionally optimizes it for the Sun UltraSPARC
I/II chips. With ‘-mcpu=ultrasparc3’, the compiler additionally optimizes it for
the Sun UltraSPARC III chip.

-mtune=cpu_type
Set the instruction scheduling parameters for machine type cpu_type, but do not
set the instruction set or register set that the option ‘-mcpu=cpu_type’ would.

The same values for ‘-mcpu=cpu_type’ can be used for ‘-mtune=cpu_type’, but the
only useful values are those that select a particular cpu implementation. Those are
‘cypress’, ‘supersparc’, ‘hypersparc’, ‘£930°, ‘f934’, ‘sparclite86x’, ‘tsc701’,
‘ultrasparc’, and ‘ultrasparc3’.

-mv8plus

-mno-v8plus
With ‘-mv8plus’, GCC generates code for the SPARC-V8+ ABI. The difference
from the V8 ABI is that the global and out registers are considered 64-bit wide.
This is enabled by default on Solaris in 32-bit mode for all SPARC-V9 processors.

-mvis
-mno-vis With ‘-mvis’, GCC generates code that takes advantage of the UltraSPARC Visual
Instruction Set extensions. The default is ‘-mno-vis’.

These ‘-m’ options are supported in addition to the above on SPARC-V9 processors in 64-bit
environments:

-mlittle-endian
Generate code for a processor running in little-endian mode. It is only available for
a few configurations and most notably not on Solaris and Linux.

Chapter 3: GCC Command Options 153

-m32

-m64 Generate code for a 32-bit or 64-bit environment. The 32-bit environment sets int,
long and pointer to 32 bits. The 64-bit environment sets int to 32 bits and long and
pointer to 64 bits.

-mcmodel=medlow
Generate code for the Medium/Low code model: 64-bit addresses, programs must
be linked in the low 32 bits of memory. Programs can be statically or dynamically
linked.

-mcmodel=medmid
Generate code for the Medium/Middle code model: 64-bit addresses, programs must
be linked in the low 44 bits of memory, the text and data segments must be less
than 2GB in size and the data segment must be located within 2GB of the text
segment.

-mcmodel=medany
Generate code for the Medium/Anywhere code model: 64-bit addresses, programs
may be linked anywhere in memory, the text and data segments must be less than
2GB in size and the data segment must be located within 2GB of the text segment.

-mcmodel=embmedany
Generate code for the Medium/Anywhere code model for embedded systems: 64-bit
addresses, the text and data segments must be less than 2GB in size, both starting
anywhere in memory (determined at link time). The global register %g4 points
to the base of the data segment. Programs are statically linked and PIC is not
supported.

-mstack-bias

-mno-stack-bias
With ‘-mstack-bias’, GCC assumes that the stack pointer, and frame pointer if
present, are offset by —2047 which must be added back when making stack frame
references. This is the default in 64-bit mode. Otherwise, assume no such offset is
present.

These switches are supported in addition to the above on Solaris:

-threads Add support for multithreading using the Solaris threads library. This option sets
flags for both the preprocessor and linker. This option does not affect the thread
safety of object code produced by the compiler or that of libraries supplied with it.

-pthreads
Add support for multithreading using the POSIX threads library. This option sets
flags for both the preprocessor and linker. This option does not affect the thread
safety of object code produced by the compiler or that of libraries supplied with it.

3.17.28 Options for System V

These additional options are available on System V Release 4 for compatibility with other
compilers on those systems:

-G Create a shared object. It is recommended that ‘-symbolic’ or ‘~shared’ be used
instead.
-Qy Identify the versions of each tool used by the compiler, in a .ident assembler di-

rective in the output.
-Qn Refrain from adding .ident directives to the output file (this is the default).

-YP,dirs Search the directories dirs, and no others, for libraries specified with ‘-1’.

154 Using the GNU Compiler Collection (GCC)

-Ym,dir Look in the directory dir to find the M4 preprocessor. The assembler uses this
option.

3.17.29 TMS320C3x/C4x Options
These ‘-m’ options are defined for TMS320C3x/C4x implementations:

-mcpu=cpu_type
Set the instruction set, register set, and instruction scheduling parameters for ma-
chine type cpu_type. Supported values for cpu_type are ‘c30’, ‘c31’, ‘c32’, ‘c40’,
and ‘c44’. The default is ‘c40’ to generate code for the TMS320C40.

-mbig-memory

-mbig

-msmall-memory

-msmall Generates code for the big or small memory model. The small memory model
assumed that all data fits into one 64K word page. At run-time the data page (DP)
register must be set to point to the 64K page containing the .bss and .data program
sections. The big memory model is the default and requires reloading of the DP
register for every direct memory access.

-mbk

-mno-bk Allow (disallow) allocation of general integer operands into the block count register
BK.

-mdb

-mno-db Enable (disable) generation of code using decrement and branch, DBcond (D), in-
structions. This is enabled by default for the C4x. To be on the safe side, this is
disabled for the C3x, since the maximum iteration count on the C3x is 22 + 1 (but
who iterates loops more than 22 times on the C3x?). Note that GCC will try to
reverse a loop so that it can utilize the decrement and branch instruction, but will
give up if there is more than one memory reference in the loop. Thus a loop where
the loop counter is decremented can generate slightly more efficient code, in cases
where the RPTB instruction cannot be utilized.

-mdp-isr-reload

-mparanoid
Force the DP register to be saved on entry to an interrupt service routine (ISR),
reloaded to point to the data section, and restored on exit from the ISR. This should
not be required unless someone has violated the small memory model by modifying
the DP register, say within an object library.

-mmpyi

—mno-mpyi
For the C3x use the 24-bit MP YT instruction for integer multiplies instead of a library
call to guarantee 32-bit results. Note that if one of the operands is a constant, then
the multiplication will be performed using shifts and adds. If the ‘-mmpyi’ option is
not specified for the C3x, then squaring operations are performed inline instead of
a library call.

-mfast-fix

-mno-fast-fix
The C3x/C4x FIX instruction to convert a floating point value to an integer value
chooses the nearest integer less than or equal to the floating point value rather than
to the nearest integer. Thus if the floating point number is negative, the result will
be incorrectly truncated an additional code is necessary to detect and correct this

Chapter 3: GCC Command Options 155

-mrptb
-mno-rptb

case. This option can be used to disable generation of the additional code required
to correct the result.

Enable (disable) generation of repeat block sequences using the RPTB instruction
for zero overhead looping. The RPTB construct is only used for innermost loops
that do not call functions or jump across the loop boundaries. There is no advantage
having nested RPTB loops due to the overhead required to save and restore the RC,
RS, and RE registers. This is enabled by default with ‘-02’.

-mrpts=count

-mno-rpts

Enable (disable) the use of the single instruction repeat instruction RPTS. If a
repeat block contains a single instruction, and the loop count can be guaranteed to
be less than the value count, GCC will emit a RPTS instruction instead of a RPTB.
If no value is specified, then a RPTS will be emitted even if the loop count cannot
be determined at compile time. Note that the repeated instruction following RPTS
does not have to be reloaded from memory each iteration, thus freeing up the CPU
buses for operands. However, since interrupts are blocked by this instruction, it is
disabled by default.

-mloop-unsigned
-mno-loop-unsigned

-mti

-mregparm
—mmemparm

The maximum iteration count when using RPTS and RPTB (and DB on the C40)
is 231 41 since these instructions test if the iteration count is negative to terminate
the loop. If the iteration count is unsigned there is a possibility than the 23 + 1
maximum iteration count may be exceeded. This switch allows an unsigned iteration
count.

Try to emit an assembler syntax that the TT assembler (asm30) is happy with. This
also enforces compatibility with the API employed by the TT C3x C compiler. For
example, long doubles are passed as structures rather than in floating point registers.

Generate code that uses registers (stack) for passing arguments to functions. By
default, arguments are passed in registers where possible rather than by pushing
arguments on to the stack.

-mparallel-insns
-mno-parallel-insns

Allow the generation of parallel instructions. This is enabled by default with ‘-=02’.

-mparallel-mpy
-mno-parallel-mpy

Allow the generation of MPY | |ADD and MPY | |SUB parallel instructions, pro-
vided ‘-mparallel-insns’ is also specified. These instructions have tight register
constraints which can pessimize the code generation of large functions.

3.17.30 V850 Options

These ‘-m’ options are defined for V850 implementations:

156 Using the GNU Compiler Collection (GCC)

-mlong-calls

-mno-long-calls
Treat all calls as being far away (near). If calls are assumed to be far away, the
compiler will always load the functions address up into a register, and call indirect
through the pointer.

-mno-ep

-mep Do not optimize (do optimize) basic blocks that use the same index pointer 4 or
more times to copy pointer into the ep register, and use the shorter s1d and sst
instructions. The ‘-mep’ option is on by default if you optimize.

-mno-prolog-function

-mprolog-function
Do not use (do use) external functions to save and restore registers at the pro-
logue and epilogue of a function. The external functions are slower, but use less
code space if more than one function saves the same number of registers. The
‘-mprolog-function’ option is on by default if you optimize.

-mspace Try to make the code as small as possible. At present, this just turns on the ‘-mep’
and ‘-mprolog-function’ options.

-mtda=n Put static or global variables whose size is n bytes or less into the tiny data area
that register ep points to. The tiny data area can hold up to 256 bytes in total (128
bytes for byte references).

-msda=n Put static or global variables whose size is n bytes or less into the small data area
that register gp points to. The small data area can hold up to 64 kilobytes.

-mzda=n Put static or global variables whose size is n bytes or less into the first 32 kilobytes
of memory.

-mv850 Specify that the target processor is the V850.

-mbig-switch
Generate code suitable for big switch tables. Use this option only if the assem-
bler/linker complain about out of range branches within a switch table.

-mapp-regs
This option will cause r2 and r5 to be used in the code generated by the compiler.
This setting is the default.

-mno-app-regs
This option will cause r2 and rb to be treated as fixed registers.

-mv850el Specify that the target processor is the V850E1. The preprocessor constants
‘__v850el__’ and ‘__v850e__’ will be defined if this option is used.

-mv850e Specify that the target processor is the V850E. The preprocessor constant
‘__v850e__" will be defined if this option is used.

If neither ‘-mv850’ nor ‘-mv850e’ nor ‘-mv850e1’ are defined then a default target
processor will be chosen and the relevant ‘__v850%__" preprocessor constant will be

defined.
The preprocessor constants ‘__v850’ and ‘__v851__" are always defined, regardless

of which processor variant is the target.

-mdisable-callt
This option will suppress generation of the CALLT instruction for the v850e and
v850e1 flavors of the v850 architecture. The default is ‘-mno-disable-callt’ which
allows the CALLT instruction to be used.

Chapter 3: GCC Command Options 157

3.17.31 VAX Options
These ‘-m’ options are defined for the VAX:

-munix

-mgnu

-mg

Do not output certain jump instructions (aobleq and so on) that the Unix assembler
for the VAX cannot handle across long ranges.

Do output those jump instructions, on the assumption that you will assemble with
the GNU assembler.

Output code for g-format floating point numbers instead of d-format.

3.17.32 x86-64 Options
These are listed under See Section 3.17.12 [i386 and x86-64 Options|, page 116.

3.17.33 Xstormy16 Options
These options are defined for Xstormy16:

-msim

Choose startup files and linker script suitable for the simulator.

3.17.34 Xtensa Options

These options are supported for Xtensa targets:

-mconstl16

-mno-const16

Enable or disable use of CONST16 instructions for loading constant values. The
CONST16 instruction is currently not a standard option from Tensilica. When en-
abled, CONST16 instructions are always used in place of the standard L32R instruc-
tions. The use of CONST16 is enabled by default only if the L32R instruction is not
available.

-mfused-madd
-mno-fused-madd

Enable or disable use of fused multiply/add and multiply/subtract instructions in
the floating-point option. This has no effect if the floating-point option is not also
enabled. Disabling fused multiply/add and multiply /subtract instructions forces the
compiler to use separate instructions for the multiply and add/subtract operations.
This may be desirable in some cases where strict IEEE 754-compliant results are
required: the fused multiply add/subtract instructions do not round the interme-
diate result, thereby producing results with more bits of precision than specified
by the IEEE standard. Disabling fused multiply add/subtract instructions also en-
sures that the program output is not sensitive to the compiler’s ability to combine
multiply and add/subtract operations.

-mtext-section-literals

-mno-text-

section-literals

Control the treatment of literal pools. The default is
‘-mno-text-section-literals’, which places literals in a separate sec-
tion in the output file. This allows the literal pool to be placed in a data
RAM/ROM, and it also allows the linker to combine literal pools from
separate object files to remove redundant literals and improve code size. With
‘-mtext-section-literals’, the literals are interspersed in the text section in
order to keep them as close as possible to their references. This may be necessary
for large assembly files.

158

Using the GNU Compiler Collection (GCC)

-mtarget-align
-mno-target-align

When this option is enabled, GCC instructs the assembler to automatically align
instructions to reduce branch penalties at the expense of some code density. The
assembler attempts to widen density instructions to align branch targets and the
instructions following call instructions. If there are not enough preceding safe den-
sity instructions to align a target, no widening will be performed. The default
is ‘-mtarget-align’. These options do not affect the treatment of auto-aligned
instructions like LOOP, which the assembler will always align, either by widening
density instructions or by inserting no-op instructions.

-mlongcalls
-mno-longcalls

When this option is enabled, GCC instructs the assembler to translate direct calls
to indirect calls unless it can determine that the target of a direct call is in the range
allowed by the call instruction. This translation typically occurs for calls to functions
in other source files. Specifically, the assembler translates a direct CALL instruction
into an L32R followed by a CALLX instruction. The default is ‘-mno-longcalls’.
This option should be used in programs where the call target can potentially be
out of range. This option is implemented in the assembler, not the compiler, so the
assembly code generated by GCC will still show direct call instructions—look at the
disassembled object code to see the actual instructions. Note that the assembler
will use an indirect call for every cross-file call, not just those that really will be out
of range.

3.17.35 zSeries Options
These are listed under See Section 3.17.25 [S/390 and zSeries Options|, page 146.

3.18 Options for Code Generation Conventions

These machine-independent options control the interface conventions used in code generation.

Most of them have both positive and negative forms; the negative form of ‘-ffoo’ would be
‘~fno-foo’. In the table below, only one of the forms is listed—the one which is not the default.
You can figure out the other form by either removing ‘no-’ or adding it.

—-fbounds-check

-ftrapv

-fwrapv

For front-ends that support it, generate additional code to check that indices used
to access arrays are within the declared range. This is currently only supported
by the Java and Fortran 77 front-ends, where this option defaults to true and false
respectively.

This option generates traps for signed overflow on addition, subtraction, multipli-
cation operations.

This option instructs the compiler to assume that signed arithmetic overflow of
addition, subtraction and multiplication wraps around using twos-complement rep-
resentation. This flag enables some optimizations and disables other. This option
is enabled by default for the Java front-end, as required by the Java language spec-
ification.

-fexceptions

Enable exception handling. Generates extra code needed to propagate exceptions.
For some targets, this implies GCC will generate frame unwind information for all
functions, which can produce significant data size overhead, although it does not
affect execution. If you do not specify this option, GCC will enable it by default

Chapter 3: GCC Command Options 159

for languages like C++ which normally require exception handling, and disable it
for languages like C that do not normally require it. However, you may need to
enable this option when compiling C code that needs to interoperate properly with
exception handlers written in C++. You may also wish to disable this option if you
are compiling older C++ programs that don’t use exception handling.

-fnon-call-exceptions
Generate code that allows trapping instructions to throw exceptions. Note that this
requires platform-specific runtime support that does not exist everywhere. More-
over, it only allows trapping instructions to throw exceptions, i.e. memory references
or floating point instructions. It does not allow exceptions to be thrown from arbi-
trary signal handlers such as SIGALRM.

-funwind-tables
Similar to ‘~-fexceptions’, except that it will just generate any needed static data,
but will not affect the generated code in any other way. You will normally not enable
this option; instead, a language processor that needs this handling would enable it
on your behalf.

-fasynchronous-unwind-tables
Generate unwind table in dwarf2 format, if supported by target machine. The table
is exact at each instruction boundary, so it can be used for stack unwinding from
asynchronous events (such as debugger or garbage collector).

-fpcc-struct-return
Return “short” struct and union values in memory like longer ones, rather than
in registers. This convention is less efficient, but it has the advantage of allowing
intercallability between GCC-compiled files and files compiled with other compilers,
particularly the Portable C Compiler (pcc).

The precise convention for returning structures in memory depends on the target
configuration macros.

Short structures and unions are those whose size and alignment match that of some
integer type.

Warning: code compiled with the ‘~fpcc-struct-return’ switch is not binary com-
patible with code compiled with the ‘~freg-struct-return’ switch. Use it to con-
form to a non-default application binary interface.

-freg-struct-return
Return struct and union values in registers when possible. This is more efficient
for small structures than ‘~fpcc-struct-return’.

3

If you specify neither ‘-fpcc-struct-return’ nor ‘-freg-struct-return’, GCC
defaults to whichever convention is standard for the target. If there is no standard
convention, GCC defaults to ‘-fpcc-struct-return’, except on targets where GCC
is the principal compiler. In those cases, we can choose the standard, and we chose
the more efficient register return alternative.

Warning: code compiled with the ‘~freg-struct-return’ switch is not binary com-
patible with code compiled with the ‘~fpcc-struct-return’ switch. Use it to con-
form to a non-default application binary interface.

-fshort-enums
Allocate to an enum type only as many bytes as it needs for the declared range of
possible values. Specifically, the enum type will be equivalent to the smallest integer
type which has enough room.

160 Using the GNU Compiler Collection (GCC)

Warning: the ‘-fshort-enums’ switch causes GCC to generate code that is not
binary compatible with code generated without that switch. Use it to conform to a
non-default application binary interface.

—fshort-double
Use the same size for double as for float.

Warning: the ‘-fshort-double’ switch causes GCC to generate code that is not
binary compatible with code generated without that switch. Use it to conform to a
non-default application binary interface.

—-fshort-wchar
Override the underlying type for ‘wchar_t’ to be ‘short unsigned int’ instead of
the default for the target. This option is useful for building programs to run under
WINE.

Warning: the ‘-fshort-wchar’ switch causes GCC to generate code that is not
binary compatible with code generated without that switch. Use it to conform to a
non-default application binary interface.

-fshared-data
Requests that the data and non-const variables of this compilation be shared data
rather than private data. The distinction makes sense only on certain operating
systems, where shared data is shared between processes running the same program,
while private data exists in one copy per process.

—-fno-common
In C, allocate even uninitialized global variables in the data section of the object
file, rather than generating them as common blocks. This has the effect that if the
same variable is declared (without extern) in two different compilations, you will
get an error when you link them. The only reason this might be useful is if you wish
to verify that the program will work on other systems which always work this way.

—-fno-ident
Ignore the ‘#ident’ directive.

—-finhibit-size-directive
Don’t output a .size assembler directive, or anything else that would cause trouble
if the function is split in the middle, and the two halves are placed at locations far
apart in memory. This option is used when compiling ‘crtstuff.c’; you should not
need to use it for anything else.

-fverbose-asm
Put extra commentary information in the generated assembly code to make it more
readable. This option is generally only of use to those who actually need to read
the generated assembly code (perhaps while debugging the compiler itself).

‘~-fno-verbose-asm’, the default, causes the extra information to be omitted and is
useful when comparing two assembler files.

-fpic Generate position-independent code (PIC) suitable for use in a shared library, if sup-
ported for the target machine. Such code accesses all constant addresses through a
global offset table (GOT). The dynamic loader resolves the GOT entries when the
program starts (the dynamic loader is not part of GCC; it is part of the operating
system). If the GOT size for the linked executable exceeds a machine-specific maxi-
mum size, you get an error message from the linker indicating that ‘~fpic’ does not
work; in that case, recompile with ‘~fPIC’ instead. (These maximums are 8k on the
SPARC and 32k on the m68k and RS/6000. The 386 has no such limit.)

Chapter 3: GCC Command Options 161

Position-independent code requires special support, and therefore works only on
certain machines. For the 386, GCC supports PIC for System V but not for the
Sun 386i. Code generated for the IBM RS/6000 is always position-independent.

-fPIC If supported for the target machine, emit position-independent code, suitable for
dynamic linking and avoiding any limit on the size of the global offset table. This
option makes a difference on the m68k, PowerPC and SPARC.
Position-independent code requires special support, and therefore works only on
certain machines.

-fpie

-fPIE These options are similar to ‘~fpic’ and ‘~fPIC’, but generated position independent
code can be only linked into executables. Usually these options are used when ‘-pie’
GCC option will be used during linking.

-ffixed-reg

Treat the register named reg as a fixed register; generated code should never refer
to it (except perhaps as a stack pointer, frame pointer or in some other fixed role).

reg must be the name of a register. The register names accepted are machine-specific
and are defined in the REGISTER_NAMES macro in the machine description macro file.

This flag does not have a negative form, because it specifies a three-way choice.

-fcall-used-reg

Treat the register named reg as an allocable register that is clobbered by function
calls. It may be allocated for temporaries or variables that do not live across a call.
Functions compiled this way will not save and restore the register reg.

It is an error to used this flag with the frame pointer or stack pointer. Use of this
flag for other registers that have fixed pervasive roles in the machine’s execution
model will produce disastrous results.

This flag does not have a negative form, because it specifies a three-way choice.

-fcall-saved-reg

Treat the register named reg as an allocable register saved by functions. It may
be allocated even for temporaries or variables that live across a call. Functions
compiled this way will save and restore the register reg if they use it.

It is an error to used this flag with the frame pointer or stack pointer. Use of this
flag for other registers that have fixed pervasive roles in the machine’s execution
model will produce disastrous results.

A different sort of disaster will result from the use of this flag for a register in which
function values may be returned.

This flag does not have a negative form, because it specifies a three-way choice.

-fpack-struct [=n]

Without a value specified, pack all structure members together without holes. When
a value is specified (which must be a small power of two), pack structure members
according to this value, representing the maximum alignment (that is, objects with
default alignment requirements larger than this will be output potentially unaligned
at the next fitting location.

Warning: the ‘-fpack-struct’ switch causes GCC to generate code that is not
binary compatible with code generated without that switch. Additionally, it makes
the code suboptimal. Use it to conform to a non-default application binary interface.

—-finstrument-functions

Generate instrumentation calls for entry and exit to functions. Just after function
entry and just before function exit, the following profiling functions will be called

162

Using the GNU Compiler Collection (GCC)

with the address of the current function and its call site. (On some platforms, __
builtin_return_address does not work beyond the current function, so the call
site information may not be available to the profiling functions otherwise.)
void __cyg_profile_func_enter (void *this_fn,
void *call_site);
void __cyg_profile_func_exit (void *this_fn,
void *call_site);
The first argument is the address of the start of the current function, which may be
looked up exactly in the symbol table.

This instrumentation is also done for functions expanded inline in other functions.
The profiling calls will indicate where, conceptually, the inline function is entered and
exited. This means that addressable versions of such functions must be available.
If all your uses of a function are expanded inline, this may mean an additional
expansion of code size. If you use ‘extern inline’ in your C code, an addressable
version of such functions must be provided. (This is normally the case anyways, but
if you get lucky and the optimizer always expands the functions inline, you might
have gotten away without providing static copies.)

A function may be given the attribute no_instrument_function, in which case
this instrumentation will not be done. This can be used, for example, for the
profiling functions listed above, high-priority interrupt routines, and any functions
from which the profiling functions cannot safely be called (perhaps signal handlers,
if the profiling routines generate output or allocate memory).

-fstack-check

Generate code to verify that you do not go beyond the boundary of the stack.
You should specify this flag if you are running in an environment with multiple
threads, but only rarely need to specify it in a single-threaded environment since
stack overflow is automatically detected on nearly all systems if there is only one
stack.

Note that this switch does not actually cause checking to be done; the operating
system must do that. The switch causes generation of code to ensure that the
operating system sees the stack being extended.

-fstack-limit-register=reg
-fstack-limit-symbol=sym
-fno-stack-limit

Generate code to ensure that the stack does not grow beyond a certain value, either
the value of a register or the address of a symbol. If the stack would grow beyond
the value, a signal is raised. For most targets, the signal is raised before the stack
overruns the boundary, so it is possible to catch the signal without taking special
precautions.

For instance, if the stack starts at absolute address ‘0x80000000° and grows
downwards, you can use the flags ‘~fstack-limit-symbol=__stack_limit’ and
‘-Wl,--defsym,__stack_1limit=0x7ffe0000’ to enforce a stack limit of 128KB.
Note that this may only work with the GNU linker.

-fargument-alias
—-fargument-noalias
-fargument-noalias—-global

Specify the possible relationships among parameters and between parameters and
global data.

‘~fargument-alias’ specifies that arguments (parameters) may alias each other and
may alias global storage.

Chapter 3: GCC Command Options 163

‘~fargument-noalias’ specifies that arguments do not alias each other, but may
alias global storage.

‘~fargument-noalias-global’ specifies that arguments do not alias each other and
do not alias global storage.

Each language will automatically use whatever option is required by the language
standard. You should not need to use these options yourself.

-fleading-underscore
This option and its counterpart, ‘~fno-leading-underscore’, forcibly change the
way C symbols are represented in the object file. One use is to help link with legacy
assembly code.

Warning: the ‘-fleading-underscore’ switch causes GCC to generate code that is
not binary compatible with code generated without that switch. Use it to conform to
a non-default application binary interface. Not all targets provide complete support
for this switch.

-ftls-model=model
Alter the thread-local storage model to be used (see Section 5.50 [Thread-Locall,
page 294). The model argument should be one of global-dynamic, local-dynamic,
initial-exec or local-exec.
The default without ‘~fpic’ is initial-exec; with ‘~fpic’ the default is global-
dynamic.

-fvisibility=default|internallhidden|protected
Set the default ELF image symbol visibility to the specified option—all symbols
will be marked with this unless overridden within the code. Using this feature can
very substantially improve linking and load times of shared object libraries, produce
more optimized code, provide near-perfect API export and prevent symbol clashes.
It is strongly recommended that you use this in any shared objects you distribute.

Despite the nomenclature, default always means public ie; available to be linked
against from outside the shared object. protected and internal are pretty useless
in real-world usage so the only other commonly used option will be hidden. The
default if ‘-fvisibility’ isn’t specified is default, i.e., make every symbol public—
this causes the same behavior as previous versions of GCC.

A good explanation of the benefits offered by ensuring ELF symbols have the correct
visibility is given by “How To Write Shared Libraries” by Ulrich Drepper (which
can be found at http://people.redhat.com/ drepper/)—however a superior so-
lution made possible by this option to marking things hidden when the default is
public is to make the default hidden and mark things public. This is the norm
with DLL’s on Windows and with ‘-fvisibility=hidden’ and __attribute__
((visibility("default"))) instead of __declspec(dllexport) you get almost
identical semantics with identical syntax. This is a great boon to those working
with cross-platform projects.

For those adding visibility support to existing code, you may find ‘#pragma GCC
visibility’ of use. This works by you enclosing the declarations you wish to
set visibility for with (for example) ‘#pragma GCC visibility push(hidden)’ and
‘#pragma GCC visibility pop’. Bear in mind that symbol visibility should be
viewed as part of the API interface contract and thus all new code should al-
ways specify visibility when it is not the default ie; declarations only for use within
the local DSO should always be marked explicitly as hidden as so to avoid PLT
indirection overheads—making this abundantly clear also aids readability and self-
documentation of the code. Note that due to ISO C++ specification requirements,
operator new and operator delete must always be of default visibility.

http://people.redhat.com/~drepper/

164 Using the GNU Compiler Collection (GCC)

An overview of these techniques, their benefits and how to use them is at
http://www.nedprod.com/programs/gccvisibility.html.

3.19 Environment Variables Affecting GCC

This section describes several environment variables that affect how GCC operates. Some of
them work by specifying directories or prefixes to use when searching for various kinds of files.
Some are used to specify other aspects of the compilation environment.

Note that you can also specify places to search using options such as ‘-B’, ‘I’ and ‘-L’ (see
Section 3.14 [Directory Options|, page 88). These take precedence over places specified using
environment variables, which in turn take precedence over those specified by the configuration
of GCC. See section “Controlling the Compilation Driver ‘gcc’™ in GNU Compiler Collection
(GCC) Internals.

LANG

LC_CTYPE

LC_MESSAGES

LC_ALL These environment variables control the way that GCC uses localization information

that allow GCC to work with different national conventions. GCC inspects the locale
categories LC_CTYPE and LC_MESSAGES if it has been configured to do so. These
locale categories can be set to any value supported by your installation. A typical
value is ‘en_GB.UTF-8’ for English in the United Kingdom encoded in UTF-8.

The LC_CTYPE environment variable specifies character classification. GCC uses it
to determine the character boundaries in a string; this is needed for some multi-
byte encodings that contain quote and escape characters that would otherwise be
interpreted as a string end or escape.

The LC_MESSAGES environment variable specifies the language to use in diagnostic
messages.

If the LC_ALL environment variable is set, it overrides the value of LC_CTYPE and LC_
MESSAGES; otherwise, LC_CTYPE and LC_MESSAGES default to the value of the LANG

environment variable. If none of these variables are set, GCC defaults to traditional
C English behavior.

TMPDIR If TMPDIR is set, it specifies the directory to use for temporary files. GCC uses
temporary files to hold the output of one stage of compilation which is to be used
as input to the next stage: for example, the output of the preprocessor, which is the
input to the compiler proper.

GCC_EXEC_PREFIX
If GCC_EXEC_PREFIX is set, it specifies a prefix to use in the names of the subprograms
executed by the compiler. No slash is added when this prefix is combined with the
name of a subprogram, but you can specify a prefix that ends with a slash if you
wish.

If GCC_EXEC_PREFIX is not set, GCC will attempt to figure out an appropriate prefix
to use based on the pathname it was invoked with.

If GCC cannot find the subprogram using the specified prefix, it tries looking in the
usual places for the subprogram.

The default value of GCC_EXEC_PREFIX is ‘prefix/lib/gcc/’ where prefix is the
value of prefix when you ran the ‘configure’ script.

Other prefixes specified with ‘-B’ take precedence over this prefix.

This prefix is also used for finding files such as ‘crt0.0’ that are used for linking.

http://www.nedprod.com/programs/gccvisibility.html

Chapter 3: GCC Command Options 165

In addition, the prefix is used in an unusual way in finding the directories to search
for header files. For each of the standard directories whose name normally begins
with ‘/usr/local/lib/gcc’ (more precisely, with the value of GCC_INCLUDE_DIR),
GCC tries replacing that beginning with the specified prefix to produce an alternate
directory name. Thus, with ‘-Bfoo/’, GCC will search ‘foo/bar’ where it would
normally search ‘/usr/local/lib/bar’. These alternate directories are searched
first; the standard directories come next.

COMPILER_PATH

The value of COMPILER_PATH is a colon-separated list of directories, much like PATH.
GCC tries the directories thus specified when searching for subprograms, if it can’t
find the subprograms using GCC_EXEC_PREFIX.

LIBRARY_PATH

LANG

The value of LIBRARY_PATH is a colon-separated list of directories, much like PATH.
When configured as a native compiler, GCC tries the directories thus specified when
searching for special linker files, if it can’t find them using GCC_EXEC_PREFIX. Link-
ing using GCC also uses these directories when searching for ordinary libraries for
the ‘-1’ option (but directories specified with ‘~L’ come first).

This variable is used to pass locale information to the compiler. One way in which
this information is used is to determine the character set to be used when character
literals, string literals and comments are parsed in C and C++. When the com-
piler is configured to allow multibyte characters, the following values for LANG are
recognized:

‘C-JIS’ Recognize JIS characters.
‘C-SJIS’ Recognize SJIS characters.
‘C-EUCJP’ Recognize EUCJP characters.

If LANG is not defined, or if it has some other value, then the compiler will use mblen
and mbtowc as defined by the default locale to recognize and translate multibyte
characters.

Some additional environments variables affect the behavior of the preprocessor.

CPATH

C_INCLUDE_PATH
CPLUS_INCLUDE_PATH
OBJC_INCLUDE_PATH

Each variable’s value is a list of directories separated by a special character, much
like PATH, in which to look for header files. The special character, PATH_SEPARATOR,
is target-dependent and determined at GCC build time. For Microsoft Windows-
based targets it is a semicolon, and for almost all other targets it is a colon.

CPATH specifies a list of directories to be searched as if specified with ‘-I’, but after
any paths given with ‘-I’ options on the command line. This environment variable
is used regardless of which language is being preprocessed.

The remaining environment variables apply only when preprocessing the particular
language indicated. Each specifies a list of directories to be searched as if specified
with ‘~isystem’, but after any paths given with ‘~isystem’ options on the command
line.

In all these variables, an empty element instructs the compiler to search its current
working directory. Empty elements can appear at the beginning or end of a path.
For instance, if the value of CPATH is :/special/include, that has the same effect
as ‘-I. -I/special/include’.

166 Using the GNU Compiler Collection (GCC)

DEPENDENCIES_QUTPUT
If this variable is set, its value specifies how to output dependencies for Make based
on the non-system header files processed by the compiler. System header files are
ignored in the dependency output.

The value of DEPENDENCIES_OUTPUT can be just a file name, in which case the Make
rules are written to that file, guessing the target name from the source file name.
Or the value can have the form ‘file target’, in which case the rules are written
to file file using target as the target name.

In other words, this environment variable is equivalent to combining the options
‘MM’ and ‘-MF’ (see Section 3.11 [Preprocessor Options|, page 77), with an optional
‘~MT’ switch too.

SUNPRO_DEPENDENCIES
This variable is the same as DEPENDENCIES_QUTPUT (see above), except that system
header files are not ignored, so it implies ‘-M’ rather than ‘-MM’. However, the de-
pendence on the main input file is omitted. See Section 3.11 [Preprocessor Options],
page 77.

3.20 Using Precompiled Headers

Often large projects have many header files that are included in every source file. The time the
compiler takes to process these header files over and over again can account for nearly all of the
time required to build the project. To make builds faster, GCC allows users to ‘precompile’ a
header file; then, if builds can use the precompiled header file they will be much faster.

Caution: There are a few known situations where GCC will crash when trying to use a
precompiled header. If you have trouble with a precompiled header, you should remove the
precompiled header and compile without it. In addition, please use GCC’s on-line defect-tracking
system to report any problems you encounter with precompiled headers. See Chapter 11 [Bugs],
page 337.

To create a precompiled header file, simply compile it as you would any other file, if necessary
using the ‘-x’ option to make the driver treat it as a C or C++ header file. You will probably
want to use a tool like make to keep the precompiled header up-to-date when the headers it
contains change.

A precompiled header file will be searched for when #include is seen in the compilation. As
it searches for the included file (see section “Search Path” in The C Preprocessor) the compiler
looks for a precompiled header in each directory just before it looks for the include file in that
directory. The name searched for is the name specified in the #include with ‘. gch’ appended.
If the precompiled header file can’t be used, it is ignored.

For instance, if you have #include "all.h", and you have ‘all.h.gch’ in the same directory
as ‘all.h’; then the precompiled header file will be used if possible, and the original header will
be used otherwise.

Alternatively, you might decide to put the precompiled header file in a directory and use ‘-1’
to ensure that directory is searched before (or instead of) the directory containing the original
header. Then, if you want to check that the precompiled header file is always used, you can put
a file of the same name as the original header in this directory containing an #error command.

This also works with ‘-include’. So yet another way to use precompiled headers, good for
projects not designed with precompiled header files in mind, is to simply take most of the header
files used by a project, include them from another header file, precompile that header file, and
‘~include’ the precompiled header. If the header files have guards against multiple inclusion,
they will be skipped because they’ve already been included (in the precompiled header).

Chapter 3: GCC Command Options 167

If you need to precompile the same header file for different languages, targets, or compiler
options, you can instead make a directory named like ‘all.h.gch’, and put each precompiled
header in the directory, perhaps using ‘-o’. It doesn’t matter what you call the files in the
directory, every precompiled header in the directory will be considered. The first precompiled
header encountered in the directory that is valid for this compilation will be used; they’re
searched in no particular order.

There are many other possibilities, limited only by your imagination, good sense, and the
constraints of your build system.

A precompiled header file can be used only when these conditions apply:
e Only one precompiled header can be used in a particular compilation.

e A precompiled header can’t be used once the first C token is seen. You can have preprocessor
directives before a precompiled header; you can even include a precompiled header from
inside another header, so long as there are no C tokens before the #include.

e The precompiled header file must be produced for the same language as the current com-
pilation. You can’t use a C precompiled header for a C++ compilation.

e The precompiled header file must be produced by the same compiler version and configu-
ration as the current compilation is using. The easiest way to guarantee this is to use the
same compiler binary for creating and using precompiled headers.

e Any macros defined before the precompiled header is included must either be defined in the
same way as when the precompiled header was generated, or must not affect the precompiled
header, which usually means that they don’t appear in the precompiled header at all.

The ‘-D’ option is one way to define a macro before a precompiled header is included; using
a #define can also do it. There are also some options that define macros implicitly, like
‘-0’ and ‘-Wdeprecated’; the same rule applies to macros defined this way.

e If debugging information is output when using the precompiled header, using ‘-g’ or similar,
the same kind of debugging information must have been output when building the precom-
piled header. However, a precompiled header built using ‘-g’ can be used in a compilation
when no debugging information is being output.

e The same ‘-m’ options must generally be used when building and using the precompiled
header. See Section 3.17 [Submodel Options], page 95, for any cases where this rule is
relaxed.

e Each of the following options must be the same when building and using the precompiled

header:
-fexceptions -funit-at-a-time

e Some other command-line options starting with ‘~=f’, ‘-p’, or ‘-0’ must be defined in the
same way as when the precompiled header was generated. At present, it’s not clear which
options are safe to change and which are not; the safest choice is to use exactly the same
options when generating and using the precompiled header. The following are known to be
safe:

-fpreprocessed -pedantic-errors

For all of these except the last, the compiler will automatically ignore the precompiled header
if the conditions aren’t met. If you find an option combination that doesn’t work and doesn’t
cause the precompiled header to be ignored, please consider filing a bug report, see Chapter 11
[Bugs|, page 337.

If you do use differing options when generating and using the precompiled header, the actual
behavior will be a mixture of the behavior for the options. For instance, if you use ‘-g’ to
generate the precompiled header but not when using it, you may or may not get debugging
information for routines in the precompiled header.

168 Using the GNU Compiler Collection (GCC)

3.21 Running Protoize

The program protoize is an optional part of GCC. You can use it to add prototypes to
a program, thus converting the program to ISO C in one respect. The companion program
unprotoize does the reverse: it removes argument types from any prototypes that are found.

When you run these programs, you must specify a set of source files as command line argu-
ments. The conversion programs start out by compiling these files to see what functions they
define. The information gathered about a file foo is saved in a file named ‘foo.X’.

After scanning comes actual conversion. The specified files are all eligible to be converted;
any files they include (whether sources or just headers) are eligible as well.

But not all the eligible files are converted. By default, protoize and unprotoize convert only
source and header files in the current directory. You can specify additional directories whose
files should be converted with the ‘-d directory’ option. You can also specify particular files to
exclude with the ‘-x file’ option. A file is converted if it is eligible, its directory name matches
one of the specified directory names, and its name within the directory has not been excluded.

Basic conversion with protoize consists of rewriting most function definitions and function
declarations to specify the types of the arguments. The only ones not rewritten are those for
varargs functions.

protoize optionally inserts prototype declarations at the beginning of the source file, to make
them available for any calls that precede the function’s definition. Or it can insert prototype
declarations with block scope in the blocks where undeclared functions are called.

Basic conversion with unprotoize consists of rewriting most function declarations to remove
any argument types, and rewriting function definitions to the old-style pre-ISO form.

Both conversion programs print a warning for any function declaration or definition that they
can’t convert. You can suppress these warnings with ‘-q’.

The output from protoize or unprotoize replaces the original source file. The original file
is renamed to a name ending with ‘.save’ (for DOS, the saved filename ends in ‘.sav’ without
the original ‘. c’ suffix). If the ‘.save’ (‘.sav’ for DOS) file already exists, then the source file
is simply discarded.

protoize and unprotoize both depend on GCC itself to scan the program and collect in-
formation about the functions it uses. So neither of these programs will work until GCC is
installed.

Here is a table of the options you can use with protoize and unprotoize. Each option works
with both programs unless otherwise stated.

-B directory
Look for the file ‘SYSCALLS.c.X’ in directory, instead of the usual directory (nor-
mally ‘/usr/local/1ib’). This file contains prototype information about standard
system functions. This option applies only to protoize.

—-c compilation—-options
Use compilation-options as the options when running gcc to produce the ‘. X’ files.
The special option ‘—aux-info’ is always passed in addition, to tell gcc to write a
$.X file.

Note that the compilation options must be given as a single argument to protoize
or unprotoize. If you want to specify several gcc options, you must quote the
entire set of compilation options to make them a single word in the shell.

There are certain gcc arguments that you cannot use, because they would produce
the wrong kind of output. These include ‘~-g’, ‘-0’, ‘~=c’, ‘=8’, and ‘-0’ If you include
these in the compilation-options, they are ignored.

Chapter 3: GCC Command Options 169

-C Rename files to end in “.C’ (‘. cc’ for DOS-based file systems) instead of ‘.c’. This
is convenient if you are converting a C program to C++. This option applies only to
protoize.

-g Add explicit global declarations. This means inserting explicit declarations at the

beginning of each source file for each function that is called in the file and was not
declared. These declarations precede the first function definition that contains a
call to an undeclared function. This option applies only to protoize.

-i string
Indent old-style parameter declarations with the string string. This option applies
only to protoize.

unprotoize converts prototyped function definitions to old-style function defini-
tions, where the arguments are declared between the argument list and the initial
‘{’. By default, unprotoize uses five spaces as the indentation. If you want to
indent with just one space instead, use ‘-1 " "’.

-k Keep the ‘.X’ files. Normally, they are deleted after conversion is finished.

-1 Add explicit local declarations. protoize with ‘-1’ inserts a prototype declaration
for each function in each block which calls the function without any declaration.
This option applies only to protoize.

-n Make no real changes. This mode just prints information about the conversions that
would have been done without ‘-n’.

-N Make no ‘.save’ files. The original files are simply deleted. Use this option with
caution.

-p program
Use the program program as the compiler. Normally, the name ‘gcc’ is used.

-q Work quietly. Most warnings are suppressed.
-V Print the version number, just like ‘-v’ for gcc.

If you need special compiler options to compile one of your program’s source files, then you
should generate that file’s <. X’ file specially, by running gcc on that source file with the ap-
propriate options and the option ‘~aux-info’. Then run protoize on the entire set of files.
protoize will use the existing ‘.X’ file because it is newer than the source file. For example:

gcc -Dfoo=bar filel.c -aux-info filel.X

protoize *.c
You need to include the special files along with the rest in the protoize command, even though
their ‘. X’ files already exist, because otherwise they won’t get converted.

See Section 10.9 [Protoize Caveats|, page 331, for more information on how to use protoize
successfully.

170 Using the GNU Compiler Collection (GCC)

Chapter 4: C Implementation-defined behavior 171

4 C Implementation-defined behavior

A conforming implementation of ISO C is required to document its choice of behavior in each
of the areas that are designated “implementation defined”. The following lists all such areas,
along with the section numbers from the ISO/IEC 9899:1990 and ISO/IEC 9899:1999 standards.
Some areas are only implementation-defined in one version of the standard.

Some choices depend on the externally determined ABI for the platform (including standard
character encodings) which GCC follows; these are listed as “determined by ABI” below. See
Chapter 8 [Binary Compatibility], page 313, and http://gcc.gnu.org/readings.html. Some
choices are documented in the preprocessor manual. See section “Implementation-defined be-
havior” in The C Preprocessor. Some choices are made by the library and operating system (or
other environment when compiling for a freestanding environment); refer to their documentation
for details.

4.1 Translation

e How a diagnostic is identified (C90 3.7, C99 3.10, C90 and C99 5.1.1.3).
Diagnostics consist of all the output sent to stderr by GCC.

e Whether each nonempty sequence of white-space characters other than new-line is retained
or replaced by one space character in translation phase 3 (C90 and C99 5.1.1.2).

See section “Implementation-defined behavior” in The C Preprocessor.

4.2 Environment
The behavior of most of these points are dependent on the implementation of the C library, and
are not defined by GCC itself.

e The mapping between physical source file multibyte characters and the source character set
in translation phase 1 (C90 and C99 5.1.1.2).

See section “Implementation-defined behavior” in The C Preprocessor.

4.3 Identifiers

e Which additional multibyte characters may appear in identifiers and their correspondence
to universal character names (C99 6.4.2).

See section “Implementation-defined behavior” in The C Preprocessor.

e The number of significant initial characters in an identifier (C90 6.1.2, C90 and C99 5.2.4.1,
C99 6.4.2).

For internal names, all characters are significant. For external names, the number of signifi-
cant characters are defined by the linker; for almost all targets, all characters are significant.

e Whether case distinctions are significant in an identifier with external linkage (C90 6.1.2).

This is a property of the linker. C99 requires that case distinctions are always significant
in identifiers with external linkage and systems without this property are not supported by

GCC.

4.4 Characters

e The number of bits in a byte (C90 3.4, C99 3.6).
Determined by ABI.

e The values of the members of the execution character set (C90 and C99 5.2.1).
Determined by ABI.

http://gcc.gnu.org/readings.html

172

Using the GNU Compiler Collection (GCC)

The unique value of the member of the execution character set produced for each of the
standard alphabetic escape sequences (C90 and C99 5.2.2).

Determined by ABI.

The value of a char object into which has been stored any character other than a member
of the basic execution character set (C90 6.1.2.5, C99 6.2.5).

Determined by ABI.

Which of signed char or unsigned char has the same range, representation, and behavior
as “plain” char (C90 6.1.2.5, C90 6.2.1.1, C99 6.2.5, C99 6.3.1.1).

Determined by ABI. The options ‘-funsigned-char’ and ‘-fsigned-char’ change the
default. See Section 3.4 [Options Controlling C Dialect], page 19.

The mapping of members of the source character set (in character constants and string
literals) to members of the execution character set (C90 6.1.3.4, C99 6.4.4.4, C90 and C99
5.1.1.2).

Determined by ABI.

The value of an integer character constant containing more than one character or containing
a character or escape sequence that does not map to a single-byte execution character (C90
6.1.3.4, C99 6.4.4.4).

See section “Implementation-defined behavior” in The C Preprocessor.

The value of a wide character constant containing more than one multibyte character,
or containing a multibyte character or escape sequence not represented in the extended
execution character set (C90 6.1.3.4, C99 6.4.4.4).

See section “Implementation-defined behavior” in The C Preprocessor.

The current locale used to convert a wide character constant consisting of a single multibyte
character that maps to a member of the extended execution character set into a correspond-
ing wide character code (C90 6.1.3.4, C99 6.4.4.4).

See section “Implementation-defined behavior” in The C Preprocessor.

The current locale used to convert a wide string literal into corresponding wide character
codes (C90 6.1.4, C99 6.4.5).

See section “Implementation-defined behavior” in The C Preprocessor.

The value of a string literal containing a multibyte character or escape sequence not repre-
sented in the execution character set (C90 6.1.4, C99 6.4.5).

See section “Implementation-defined behavior” in The C Preprocessor.

4.5 Integers

Any extended integer types that exist in the implementation (C99 6.2.5).
GCC does not support any extended integer types.

Whether signed integer types are represented using sign and magnitude, two’s complement,
or one’s complement, and whether the extraordinary value is a trap representation or an
ordinary value (C99 6.2.6.2).

GCC supports only two’s complement integer types, and all bit patterns are ordinary values.

The rank of any extended integer type relative to another extended integer type with the
same precision (C99 6.3.1.1).

GCC does not support any extended integer types.

The result of, or the signal raised by, converting an integer to a signed integer type when
the value cannot be represented in an object of that type (C90 6.2.1.2, C99 6.3.1.3).

For conversion to a type of width N, the value is reduced modulo 2V to be within range of
the type; no signal is raised.

Chapter 4: C Implementation-defined behavior 173

The results of some bitwise operations on signed integers (C90 6.3, C99 6.5).

Bitwise operators act on the representation of the value including both the sign and value
bits, where the sign bit is considered immediately above the highest-value value bit. Signed
*>>’ acts on negative numbers by sign extension.

GCC does not use the latitude given in C99 only to treat certain aspects of signed ‘<<’ as
undefined, but this is subject to change.

The sign of the remainder on integer division (C90 6.3.5).

GCC always follows the C99 requirement that the result of division is truncated towards
Zero.

4.6 Floating point

The accuracy of the floating-point operations and of the library functions in <math.h> and
<complex.h> that return floating-point results (C90 and C99 5.2.4.2.2).

The accuracy is unknown.

The rounding behaviors characterized by non-standard values of FLT_ROUNDS
(C90 and C99 5.2.4.2.2).

GCC does not use such values.

The evaluation methods characterized by non-standard negative values of FLT_EVAL_METHOD
(C99 5.2.4.2.2).

GCC does not use such values.

The direction of rounding when an integer is converted to a floating-point number that
cannot exactly represent the original value (C90 6.2.1.3, C99 6.3.1.4).

C99 Annex F is followed.

The direction of rounding when a floating-point number is converted to a narrower floating-
point number (C90 6.2.1.4, C99 6.3.1.5).

C99 Annex F is followed.

How the nearest representable value or the larger or smaller representable value immediately
adjacent to the nearest representable value is chosen for certain floating constants (C90
6.1.3.1, C99 6.4.4.2).

C99 Annex F is followed.

Whether and how floating expressions are contracted when not disallowed by the FP_
CONTRACT pragma (C99 6.5).

Expressions are currently only contracted if ‘-funsafe-math-optimizations’ or
‘~ffast-math’ are used. This is subject to change.

The default state for the FENV_ACCESS pragma (C99 7.6.1).

This pragma is not implemented, but the default is to “off” unless ‘~frounding-math’ is
used in which case it is “on”.

Additional floating-point exceptions, rounding modes, environments, and classifications,
and their macro names (C99 7.6, C99 7.12).

This is dependent on the implementation of the C library, and is not defined by GCC itself.
The default state for the FP_CONTRACT pragma (C99 7.12.2).

This pragma is not implemented. Expressions are currently only contracted if
‘~funsafe-math-optimizations’ or ‘~ffast-math’ are used. This is subject to change.
Whether the “inexact” floating-point exception can be raised when the rounded result
actually does equal the mathematical result in an IEC 60559 conformant implementation
(C99 F.9).

This is dependent on the implementation of the C library, and is not defined by GCC itself.

174 Using the GNU Compiler Collection (GCC)

e Whether the “underflow” (and “inexact”) floating-point exception can be raised when a
result is tiny but not inexact in an IEC 60559 conformant implementation (C99 F.9).

This is dependent on the implementation of the C library, and is not defined by GCC itself.

4.7 Arrays and pointers

e The result of converting a pointer to an integer or vice versa (C90 6.3.4, C99 6.3.2.3).
A cast from pointer to integer discards most-significant bits if the pointer representation is
larger than the integer type, sign-extends! if the pointer representation is smaller than the
integer type, otherwise the bits are unchanged.
A cast from integer to pointer discards most-significant bits if the pointer representation is
smaller than the integer type, extends according to the signedness of the integer type if the
pointer representation is larger than the integer type, otherwise the bits are unchanged.
When casting from pointer to integer and back again, the resulting pointer must reference
the same object as the original pointer, otherwise the behavior is undefined. That is, one
may not use integer arithmetic to avoid the undefined behavior of pointer arithmetic as
proscribed in C99 6.5.6/8.

e The size of the result of subtracting two pointers to elements of the same array (C90 6.3.6,
C99 6.5.6).

The value is as specified in the standard and the type is determined by the ABI.

4.8 Hints

e The extent to which suggestions made by using the register storage-class specifier are
effective (C90 6.5.1, C99 6.7.1).

The register specifier affects code generation only in these ways:
e When used as part of the register variable extension, see Section 5.37 [Explicit Reg
Vars|, page 235.

e When ‘-00’ is in use, the compiler allocates distinct stack memory for all variables that
do not have the register storage-class specifier; if register is specified, the variable
may have a shorter lifespan than the code would indicate and may never be placed in
memory.

e On some rare x86 targets, setjmp doesn’t save the registers in all circumstances. In
those cases, GCC doesn’t allocate any variables in registers unless they are marked
register.

e The extent to which suggestions made by using the inline function specifier are effective
(C99 6.7.4).

GCC will not inline any functions if the ‘-fno-inline’ option is used or if ‘=00’ is used.
Otherwise, GCC may still be unable to inline a function for many reasons; the ‘-Winline’
option may be used to determine if a function has not been inlined and why not.

4.9 Structures, unions, enumerations, and bit-fields

e A member of a union object is accessed using a member of a different type (C90 6.3.2.3).
The relevant bytes of the representation of the object are treated as an object of the type
used for the access. This may be a trap representation.

e Whether a “plain” int bit-field is treated as a signed int bit-field or as an unsigned int
bit-field (C90 6.5.2, C90 6.5.2.1, C99 6.7.2, C99 6.7.2.1).

I Future versions of GCC may zero-extend, or use a target-defined ptr_extend pattern. Do not rely on sign
extension.

Chapter 4: C Implementation-defined behavior 175

By default it is treated as signed int but this may be changed by the
‘~funsigned-bitfields’ option.

e Allowable bit-field types other than _Bool, signed int, and unsigned int (C99 6.7.2.1).
No other types are permitted in strictly conforming mode.

e Whether a bit-field can straddle a storage-unit boundary (C90 6.5.2.1, C99 6.7.2.1).
Determined by ABI.

e The order of allocation of bit-fields within a unit (C90 6.5.2.1, C99 6.7.2.1).
Determined by ABI.

e The alignment of non-bit-field members of structures (C90 6.5.2.1, C99 6.7.2.1).
Determined by ABI.

e The integer type compatible with each enumerated type (C90 6.5.2.2, C99 6.7.2.2).

Normally, the type is unsigned int if there are no negative values in the enumeration,
otherwise int. If ‘~-fshort-enums’ is specified, then if there are negative values it is the
first of signed char, short and int that can represent all the values, otherwise it is the first
of unsigned char, unsigned short and unsigned int that can represent all the values.

On some targets, ‘~fshort-enums’ is the default; this is determined by the ABI.

4.10 Qualifiers
e What constitutes an access to an object that has volatile-qualified type (C90 6.5.3, C99
6.7.3).
See Section 6.1 [When is a Volatile Object Accessed?], page 297.

4.11 Declarators
e The maximum number of declarators that may modify an arithmetic, structure or union
type (C90 6.5.4).
GCC is only limited by available memory.

4.12 Statements

e The maximum number of case values in a switch statement (C90 6.6.4.2).

GCC is only limited by available memory.

4.13 Preprocessing directives

See section “Implementation-defined behavior” in The C Preprocessor, for details of these as-
pects of implementation-defined behavior.

e How sequences in both forms of header names are mapped to headers or external source
file names (C90 6.1.7, C99 6.4.7).

e Whether the value of a character constant in a constant expression that controls conditional
inclusion matches the value of the same character constant in the execution character set
(C90 6.8.1, C99 6.10.1).

o Whether the value of a single-character character constant in a constant expression that
controls conditional inclusion may have a negative value (C90 6.8.1, C99 6.10.1).

e The places that are searched for an included ‘<>’ delimited header, and how the places are
specified or the header is identified (C90 6.8.2, C99 6.10.2).

e How the named source file is searched for in an included "’ delimited header (C90 6.8.2,
C99 6.10.2).

176

Using the GNU Compiler Collection (GCC)

The method by which preprocessing tokens (possibly resulting from macro expansion) in a
#include directive are combined into a header name (C90 6.8.2, C99 6.10.2).

The nesting limit for #include processing (C90 6.8.2, C99 6.10.2).

Whether the ‘4’ operator inserts a ‘\’ character before the \’ character that begins a
universal character name in a character constant or string literal (C99 6.10.3.2).

The behavior on each recognized non-STDC #pragma directive (C90 6.8.6, C99 6.10.6).

See section “Pragmas” in The C Preprocessor, for details of pragmas accepted by GCC on
all targets. See Section 5.48 [Pragmas Accepted by GCC], page 291, for details of target-
specific pragmas.

The definitions for __DATE__ and __TIME__ when respectively, the date and time of trans-
lation are not available (C90 6.8.8, C99 6.10.8).

4.14 Library functions

The behavior of most of these points are dependent on the implementation of the C library, and
are not defined by GCC itself.

The null pointer constant to which the macro NULL expands (C90 7.1.6, C99 7.17).

In <stddef.h>, NULL expands to ((void *)0). GCC does not provide the other headers
which define NULL and some library implementations may use other definitions in those
headers.

4.15 Architecture

The values or expressions assigned to the macros specified in the headers <float.h>,
<limits.h>, and <stdint.h> (C90 and C99 5.2.4.2, C99 7.18.2, C99 7.18.3).

Determined by ABI.

The number, order, and encoding of bytes in any object (when not explicitly specified in
this International Standard) (C99 6.2.6.1).

Determined by ABI.
The value of the result of the sizeof operator (C90 6.3.3.4, C99 6.5.3.4).
Determined by ABI.

4.16 Locale-specific behavior

The behavior of these points are dependent on the implementation of the C library, and are not
defined by GCC itself.

Chapter 5: Extensions to the C Language Family 177

5 Extensions to the C Language Family

GNU C provides several language features not found in ISO standard C. (The ‘-pedantic’
option directs GCC to print a warning message if any of these features is used.) To test for the
availability of these features in conditional compilation, check for a predefined macro __GNUC__,
which is always defined under GCC.

These extensions are available in C and Objective-C. Most of them are also available in C++.
See Chapter 6 [Extensions to the C++ Language|, page 297, for extensions that apply only to
C++.

Some features that are in ISO C99 but not C89 or C++ are also, as extensions, accepted by
GCC in C89 mode and in C++.

5.1 Statements and Declarations in Expressions

A compound statement enclosed in parentheses may appear as an expression in GNU C. This
allows you to use loops, switches, and local variables within an expression.

Recall that a compound statement is a sequence of statements surrounded by braces; in this
construct, parentheses go around the braces. For example:
({ int y = foo (); int z;

if (y >0) z =y;

else z = - y;

z; 1)
is a valid (though slightly more complex than necessary) expression for the absolute value of
foo Q.

The last thing in the compound statement should be an expression followed by a semicolon;
the value of this subexpression serves as the value of the entire construct. (If you use some other
kind of statement last within the braces, the construct has type void, and thus effectively no
value.)

This feature is especially useful in making macro definitions “safe” (so that they evaluate each
operand exactly once). For example, the “maximum” function is commonly defined as a macro
in standard C as follows:

#tdefine max(a,b) ((a) > (b) ? (a) : (b))

But this definition computes either a or b twice, with bad results if the operand has side effects.
In GNU C, if you know the type of the operands (here taken as int), you can define the macro
safely as follows:
#define maxint(a,b) \
({int _.a=(a), .b=(b); _a> _b? _a: _b; })
Embedded statements are not allowed in constant expressions, such as the value of an enu-
meration constant, the width of a bit-field, or the initial value of a static variable.

If you don’t know the type of the operand, you can still do this, but you must use typeof
(see Section 5.6 [Typeof], page 182).
In G++, the result value of a statement expression undergoes array and function pointer decay,
and is returned by value to the enclosing expression. For instance, if A is a class, then
A a;

({a;}) .Foo O
will construct a temporary A object to hold the result of the statement expression, and that will
be used to invoke Foo. Therefore the this pointer observed by Foo will not be the address of a.
Any temporaries created within a statement within a statement expression will be destroyed
at the statement’s end. This makes statement expressions inside macros slightly different from
function calls. In the latter case temporaries introduced during argument evaluation will be

178 Using the GNU Compiler Collection (GCC)

destroyed at the end of the statement that includes the function call. In the statement expression
case they will be destroyed during the statement expression. For instance,

#define macro(a) ({__typeof__(a) b = (a); b + 3; })
template<typename T> T function(T a) { T b = a; return b + 3; }

void foo ()
{
macro (X ());
function (X ());
}
will have different places where temporaries are destroyed. For the macro case, the temporary
X will be destroyed just after the initialization of b. In the function case that temporary will

be destroyed when the function returns.

These considerations mean that it is probably a bad idea to use statement-expressions of this
form in header files that are designed to work with C++. (Note that some versions of the GNU
C Library contained header files using statement-expression that lead to precisely this bug.)

Jumping into a statement expression with goto or using a switch statement outside the state-
ment expression with a case or default label inside the statement expression is not permitted.
Jumping into a statement expression with a computed goto (see Section 5.3 [Labels as Val-
ues|, page 179) yields undefined behavior. Jumping out of a statement expression is permitted,
but if the statement expression is part of a larger expression then it is unspecified which other
subexpressions of that expression have been evaluated except where the language definition re-
quires certain subexpressions to be evaluated before or after the statement expression. In any
case, as with a function call the evaluation of a statement expression is not interleaved with the
evaluation of other parts of the containing expression. For example,

foo (), (({ barl (); goto a; 0; }) + bar2 (), baz();

will call foo and barl and will not call baz but may or may not call bar2. If bar2 is called, it
will be called after foo and before bar1

5.2 Locally Declared Labels

GCC allows you to declare Iocal labels in any nested block scope. A local label is just like an
ordinary label, but you can only reference it (with a goto statement, or by taking its address)
within the block in which it was declared.

A local label declaration looks like this:
__label__ label;

or

__label__ labell, label2, /* ... */;

Local label declarations must come at the beginning of the block, before any ordinary decla-
rations or statements.

The label declaration defines the label name, but does not define the label itself. You must
do this in the usual way, with label :, within the statements of the statement expression.

The local label feature is useful for complex macros. If a macro contains nested loops, a goto
can be useful for breaking out of them. However, an ordinary label whose scope is the whole
function cannot be used: if the macro can be expanded several times in one function, the label
will be multiply defined in that function. A local label avoids this problem. For example:

#define SEARCH(value, array, target)
do {
__label__ found;
typeof (target) _SEARCH_target =
typeof (*(array)) *_SEARCH_ array
int i, j;
int value;

(target);
= (array);

P

Chapter 5: Extensions to the C Language Family 179

for (i = 0; i < max; i++) \

for (j = 0; j < max; j++) \

if (_SEARCH_array[i][j] == _SEARCH_target) \

{ (value) = i; goto found; } \

(value) = -1; \

found: ; \
} while (0)

This could also be written using a statement-expression:

#define SEARCH(array, target)
H
__label__ found;
typeof (target) _SEARCH_ target = (target);
typeof (*(array)) *_SEARCH_array = (array);
int i, j;
int value;
for (i = 0; i < max; i++)
for (j = 0; j < max; j++)
if (_SEARCH_array[il[j] == _SEARCH_target)
{ value = i; goto found; }
value = -1;
found:
value;

b

Local label declarations also make the labels they declare visible to nested functions, if there
are any. See Section 5.4 [Nested Functions], page 180, for details.

P A A A A A

5.3 Labels as Values

You can get the address of a label defined in the current function (or a containing function) with
the unary operator ‘&&’. The value has type void *. This value is a constant and can be used
wherever a constant of that type is valid. For example:

void *ptr;

VAT Y

ptr = &&foo;

To use these values, you need to be able to jump to one. This is done with the computed goto

statement!, goto *xexp;. For example,

goto *ptr;
Any expression of type void * is allowed.

One way of using these constants is in initializing a static array that will serve as a jump
table:
static void *array[] = { &&foo, &&bar, &&hack };
Then you can select a label with indexing, like this:
goto *array[il;
Note that this does not check whether the subscript is in bounds—array indexing in C never
does that.

Such an array of label values serves a purpose much like that of the switch statement. The
switch statement is cleaner, so use that rather than an array unless the problem does not fit a
switch statement very well.

Another use of label values is in an interpreter for threaded code. The labels within the
interpreter function can be stored in the threaded code for super-fast dispatching.

You may not use this mechanism to jump to code in a different function. If you do that,
totally unpredictable things will happen. The best way to avoid this is to store the label address
only in automatic variables and never pass it as an argument.

I The analogous feature in Fortran is called an assigned goto, but that name seems inappropriate in C, where
one can do more than simply store label addresses in label variables.

180 Using the GNU Compiler Collection (GCC)

An alternate way to write the above example is

static const int array[] = { &&foo - &&foo, &&bar - &&foo,
&&hack - &&foo };
goto *(&&foo + arrayl[il);
This is more friendly to code living in shared libraries, as it reduces the number of dynamic
relocations that are needed, and by consequence, allows the data to be read-only.

5.4 Nested Functions

A nested function is a function defined inside another function. (Nested functions are not
supported for GNU C++.) The nested function’s name is local to the block where it is defined.
For example, here we define a nested function named square, and call it twice:

foo (double a, double b)
{

double square (double z) { return z * z; }

return square (a) + square (b);
}
The nested function can access all the variables of the containing function that are visible at
the point of its definition. This is called lexical scoping. For example, here we show a nested
function which uses an inherited variable named offset:

bar (int *array, int offset, int size)
{
int access (int *array, int index)
{ return arrayl[index + offset]; }

int i;
VAT V4
for (i = 0; i < size; i++)
/* ... x/ access (array, i) /* ... */
}

Nested function definitions are permitted within functions in the places where variable defi-
nitions are allowed; that is, in any block, mixed with the other declarations and statements in
the block.

It is possible to call the nested function from outside the scope of its name by storing its
address or passing the address to another function:

hack (int *array, int size)
{
void store (int index, int value)
{ arraylindex] = value; }

intermediate (store, size);
}

Here, the function intermediate receives the address of store as an argument. If
intermediate calls store, the arguments given to store are used to store into array. But
this technique works only so long as the containing function (hack, in this example) does not
exit.

If you try to call the nested function through its address after the containing function has
exited, all hell will break loose. If you try to call it after a containing scope level has exited, and
if it refers to some of the variables that are no longer in scope, you may be lucky, but it’s not
wise to take the risk. If, however, the nested function does not refer to anything that has gone
out of scope, you should be safe.

GCC implements taking the address of a nested function using a technique called trampolines.
A paper describing them is available as

http://people.debian.org/~aaronl/Usenix88-lexic.pdf.

http://people.debian.org/~aaronl/Usenix88-lexic.pdf

Chapter 5: Extensions to the C Language Family 181

A nested function can jump to a label inherited from a containing function, provided the label
was explicitly declared in the containing function (see Section 5.2 [Local Labels], page 178). Such
a jump returns instantly to the containing function, exiting the nested function which did the
goto and any intermediate functions as well. Here is an example:

bar (int *array, int offset, int size)
{
__label__ failure;
int access (int *array, int index)
{
if (index > size)
goto failure;
return array[index + offset];

}
int i;
/*x ... */
for (i = 0; i < size; i++)
/* ... x/ access (array, i) /* ... x/
/* ... %/
return 0;

/* Control comes here from access
if it detects an error. */

failure:

return -1;

}
A nested function always has no linkage. Declaring one with extern or static is erroneous.
If you need to declare the nested function before its definition, use auto (which is otherwise
meaningless for function declarations).

bar (int *array, int offset, int size)
{

__label__ failure;

auto int access (int *, int);

/x ... x/

int access (int *array, int index)

{
if (index > size)
goto failure;
return array[index + offset];

}
/* ... %/

5.5 Constructing Function Calls

Using the built-in functions described below, you can record the arguments a function received,
and call another function with the same arguments, without knowing the number or types of
the arguments.

You can also record the return value of that function call, and later return that value, without
knowing what data type the function tried to return (as long as your caller expects that data

type).
However, these built-in functions may interact badly with some sophisticated features or other

extensions of the language. It is, therefore, not recommended to use them outside very simple
functions acting as mere forwarders for their arguments.

void * __builtin_apply_args () [Built-in Function]
This built-in function returns a pointer to data describing how to perform a call with the
same arguments as were passed to the current function.

182 Using the GNU Compiler Collection (GCC)

The function saves the arg pointer register, structure value address, and all registers that
might be used to pass arguments to a function into a block of memory allocated on the stack.
Then it returns the address of that block.

void * __builtin_apply (void (*function)(), void *arguments, [Built-in Function]
size_t size)
This built-in function invokes function with a copy of the parameters described by arguments
and size.

The value of arguments should be the value returned by __builtin_apply_args. The argu-
ment size specifies the size of the stack argument data, in bytes.

This function returns a pointer to data describing how to return whatever value was returned
by function. The data is saved in a block of memory allocated on the stack.

It is not always simple to compute the proper value for size. The value is used by __builtin_
apply to compute the amount of data that should be pushed on the stack and copied from
the incoming argument area.

void __builtin_return (void *result) [Built-in Function]
This built-in function returns the value described by result from the containing function. You
should specify, for result, a value returned by __builtin_apply.

5.6 Referring to a Type with typeof

Another way to refer to the type of an expression is with typeof. The syntax of using of this
keyword looks like sizeof, but the construct acts semantically like a type name defined with
typedef.

There are two ways of writing the argument to typeof: with an expression or with a type.
Here is an example with an expression:
typeof (x[0](1))
This assumes that x is an array of pointers to functions; the type described is that of the values
of the functions.

Here is an example with a typename as the argument:
typeof (int *)

Here the type described is that of pointers to int.

If you are writing a header file that must work when included in ISO C programs, write
__typeof__ instead of typeof. See Section 5.38 [Alternate Keywords|, page 237.

A typeof-construct can be used anywhere a typedef name could be used. For example, you
can use it in a declaration, in a cast, or inside of sizeof or typeof.

typeof is often useful in conjunction with the statements-within-expressions feature. Here
is how the two together can be used to define a safe “maximum” macro that operates on any
arithmetic type and evaluates each of its arguments exactly once:

#define max(a,b) \
({ typeof (a) _a = (a); \
typeof (b) _b = (b); \
_,a> _b? _a: _b;})

The reason for using names that start with underscores for the local variables is to avoid
conflicts with variable names that occur within the expressions that are substituted for a and
b. Eventually we hope to design a new form of declaration syntax that allows you to declare
variables whose scopes start only after their initializers; this will be a more reliable way to
prevent such conflicts.

Some more examples of the use of typeof:

e This declares y with the type of what x points to.

Chapter 5: Extensions to the C Language Family 183

typeof (*x) y;
e This declares y as an array of such values.
typeof (*x) y[4];
e This declares y as an array of pointers to characters:
typeof (typeof (char x)[4]) y;
It is equivalent to the following traditional C declaration:
char *y[4];
To see the meaning of the declaration using typeof, and why it might be a useful way to
write, rewrite it with these macros:
#define pointer(T) typeof(T *)
#define array(T, N) typeof(T [N])
Now the declaration can be rewritten this way:
array (pointer (char), 4) y;

Thus, array (pointer (char), 4) is the type of arrays of 4 pointers to char.

Compatibility Note: In addition to typeof, GCC 2 supported a more limited extension which
permitted one to write
typedef T = expr;
with the effect of declaring T to have the type of the expression expr. This extension does not
work with GCC 3 (versions between 3.0 and 3.2 will crash; 3.2.1 and later give an error). Code
which relies on it should be rewritten to use typeof:
typedef typeof (expr) T;

This will work with all versions of GCC.

5.7 Conditionals with Omitted Operands

The middle operand in a conditional expression may be omitted. Then if the first operand is
nonzero, its value is the value of the conditional expression.

Therefore, the expression

xX?:y
has the value of x if that is nonzero; otherwise, the value of y.

This example is perfectly equivalent to
X?7x:5
In this simple case, the ability to omit the middle operand is not especially useful. When it
becomes useful is when the first operand does, or may (if it is a macro argument), contain
a side effect. Then repeating the operand in the middle would perform the side effect twice.
Omitting the middle operand uses the value already computed without the undesirable effects
of recomputing it.

5.8 Double-Word Integers

ISO C99 supports data types for integers that are at least 64 bits wide, and as an extension
GCC supports them in C89 mode and in C++. Simply write long long int for a signed integer,
or unsigned long long int for an unsigned integer. To make an integer constant of type long
long int, add the suffix ‘LL’ to the integer. To make an integer constant of type unsigned long
long int, add the suffix ‘ULL’ to the integer.

You can use these types in arithmetic like any other integer types. Addition, subtraction,
and bitwise boolean operations on these types are open-coded on all types of machines. Mul-
tiplication is open-coded if the machine supports fullword-to-doubleword a widening multiply
instruction. Division and shifts are open-coded only on machines that provide special support.
The operations that are not open-coded use special library routines that come with GCC.

184 Using the GNU Compiler Collection (GCC)

There may be pitfalls when you use long long types for function arguments, unless you declare
function prototypes. If a function expects type int for its argument, and you pass a value of
type long long int, confusion will result because the caller and the subroutine will disagree
about the number of bytes for the argument. Likewise, if the function expects long long int
and you pass int. The best way to avoid such problems is to use prototypes.

5.9 Complex Numbers

ISO C99 supports complex floating data types, and as an extension GCC supports them in C89
mode and in C++, and supports complex integer data types which are not part of ISO C99.
You can declare complex types using the keyword _Complex. As an extension, the older GNU
keyword __complex__ is also supported.

For example, ‘_Complex double x;’ declares x as a variable whose real part and imaginary
part are both of type double. ‘_Complex short int y;’ declares y to have real and imaginary
parts of type short int; this is not likely to be useful, but it shows that the set of complex
types is complete.

To write a constant with a complex data type, use the suffix ‘i’ or ‘j’ (either one; they are
equivalent). For example, 2.5fi has type _Complex float and 3i has type _Complex int. Such
a constant always has a pure imaginary value, but you can form any complex value you like by
adding one to a real constant. This is a GNU extension; if you have an ISO C99 conforming
C library (such as GNU libc), and want to construct complex constants of floating type, you
should include <complex.h> and use the macros I or _Complex_I instead.

To extract the real part of a complex-valued expression exp, write __real__ exp. Likewise,
use __imag__ to extract the imaginary part. This is a GNU extension; for values of floating
type, you should use the ISO C99 functions crealf, creal, creall, cimagf, cimag and cimagl,
declared in <complex.h> and also provided as built-in functions by GCC.

(~)

The operator performs complex conjugation when used on a value with a complex type.
This is a GNU extension; for values of floating type, you should use the ISO C99 functions
conjf, conj and conjl, declared in <complex.h> and also provided as built-in functions by

GCC.

GCC can allocate complex automatic variables in a noncontiguous fashion; it’s even possible
for the real part to be in a register while the imaginary part is on the stack (or vice-versa).
Only the DWARF2 debug info format can represent this, so use of DWARF2 is recommended.
If you are using the stabs debug info format, GCC describes a noncontiguous complex variable
as if it were two separate variables of noncomplex type. If the variable’s actual name is foo, the
two fictitious variables are named foo$real and foo$imag. You can examine and set these two
fictitious variables with your debugger.

5.10 Hex Floats

ISO C99 supports floating-point numbers written not only in the usual decimal notation, such as
1.55e1, but also numbers such as 0x1.fp3 written in hexadecimal format. As a GNU extension,
GCC supports this in C89 mode (except in some cases when strictly conforming) and in C++.
In that format the ‘0x’ hex introducer and the ‘p’ or ‘P’ exponent field are mandatory. The
exponent is a decimal number that indicates the power of 2 by which the significant part will
be multiplied. Thus ‘0x1.£f’ is 1%, ‘p3’ multiplies it by 8, and the value of 0x1.£p3 is the same
as 1.5bel.

Unlike for floating-point numbers in the decimal notation the exponent is always required in
the hexadecimal notation. Otherwise the compiler would not be able to resolve the ambiguity
of, e.g., 0x1.f. This could mean 1.0f or 1.9375 since ‘f’ is also the extension for floating-point
constants of type float.

Chapter 5: Extensions to the C Language Family 185

5.11 Arrays of Length Zero

Zero-length arrays are allowed in GNU C. They are very useful as the last element of a structure
which is really a header for a variable-length object:

struct line {
int length;
char contents[0];

};

struct line *thisline = (struct line *)
malloc (sizeof (struct line) + this_length);
thisline->length = this_length;
In ISO C90, you would have to give contents a length of 1, which means either you waste
space or complicate the argument to malloc.

In ISO C99, you would use a flexible array member, which is slightly different in syntax and
semantics:

e Flexible array members are written as contents[] without the 0.

e Flexible array members have incomplete type, and so the sizeof operator may not be
applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates
to zero.

e Flexible array members may only appear as the last member of a struct that is otherwise
non-empty.

e A structure containing a flexible array member, or a union containing such a structure
(possibly recursively), may not be a member of a structure or an element of an array.
(However, these uses are permitted by GCC as extensions.)

GCC versions before 3.0 allowed zero-length arrays to be statically initialized, as if they were
flexible arrays. In addition to those cases that were useful, it also allowed initializations in
situations that would corrupt later data. Non-empty initialization of zero-length arrays is now
treated like any case where there are more initializer elements than the array holds, in that a
suitable warning about "excess elements in array" is given, and the excess elements (all of them,
in this case) are ignored.

Instead GCC allows static initialization of flexible array members. This is equivalent to
defining a new structure containing the original structure followed by an array of sufficient size
to contain the data. L.e. in the following, £1 is constructed as if it were declared like £2.

struct f1 {
int x; int y[];
Yf1={1, {2, 3,41} 3}

struct £2 {
struct f1 f1; int datal3];
rf2={{13} {2,838, 41} 1}
The convenience of this extension is that f1 has the desired type, eliminating the need to
consistently refer to £2.f1.

This has symmetry with normal static arrays, in that an array of unknown size is also written

with [].

Of course, this extension only makes sense if the extra data comes at the end of a top-
level object, as otherwise we would be overwriting data at subsequent offsets. To avoid undue
complication and confusion with initialization of deeply nested arrays, we simply disallow any
non-empty initialization except when the structure is the top-level object. For example:

struct foo { int x; int y[1; };
struct bar { struct foo z; };

struct fooa={1, {2, 3, 4} }; // Valid.

186 Using the GNU Compiler Collection (GCC)

struct bar b
struct bar c

) , 3,4k // Invalid.
struct foo d[1] = { %

Y ¥ /7 Valid.
2, 3,4} %} 3} // Invalid.

{{1
{{1

5.12 Structures With No Members

GCC permits a C structure to have no members:
struct empty {
};
The structure will have size zero. In C++, empty structures are part of the language. G++
treats empty structures as if they had a single member of type char.

5.13 Arrays of Variable Length

Variable-length automatic arrays are allowed in ISO C99, and as an extension GCC accepts
them in C89 mode and in C++. (However, GCC’s implementation of variable-length arrays does
not yet conform in detail to the ISO C99 standard.) These arrays are declared like any other
automatic arrays, but with a length that is not a constant expression. The storage is allocated
at the point of declaration and deallocated when the brace-level is exited. For example:

FILE x*
concat_fopen (char *sl, char *s2, char *mode)
{
char str[strlen (sl1) + strlen (s2) + 1];
strcpy (str, si);
strcat (str, s2);
return fopen (str, mode);

}
Jumping or breaking out of the scope of the array name deallocates the storage. Jumping
into the scope is not allowed; you get an error message for it.

You can use the function alloca to get an effect much like variable-length arrays. The
function alloca is available in many other C implementations (but not in all). On the other
hand, variable-length arrays are more elegant.

There are other differences between these two methods. Space allocated with alloca exists
until the containing function returns. The space for a variable-length array is deallocated as
soon as the array name’s scope ends. (If you use both variable-length arrays and alloca in the
same function, deallocation of a variable-length array will also deallocate anything more recently
allocated with alloca.)

You can also use variable-length arrays as arguments to functions:

struct entry
tester (int len, char datallen][len])
{
VA B Y
}
The length of an array is computed once when the storage is allocated and is remembered for

the scope of the array in case you access it with sizeof.

If you want to pass the array first and the length afterward, you can use a forward declaration
in the parameter list—another GNU extension.

struct entry
tester (int len; char datal[len] [len], int len)
{
/x ... %/
}

The ‘int len’ before the semicolon is a parameter forward declaration, and it serves the
purpose of making the name len known when the declaration of data is parsed.

Chapter 5: Extensions to the C Language Family 187

You can write any number of such parameter forward declarations in the parameter list. They
can be separated by commas or semicolons, but the last one must end with a semicolon, which
is followed by the “real” parameter declarations. Each forward declaration must match a “real”
declaration in parameter name and data type. ISO C99 does not support parameter forward
declarations.

5.14 Macros with a Variable Number of Arguments.

In the ISO C standard of 1999, a macro can be declared to accept a variable number of arguments
much as a function can. The syntax for defining the macro is similar to that of a function. Here
is an example:

VA_ARGS__)

J—

#define debug(format, ...) fprintf (stderr, format

Here ‘...’ is a variable argument. In the invocation of such a macro, it represents the zero or
more tokens until the closing parenthesis that ends the invocation, including any commas. This
set of tokens replaces the identifier __VA_ARGS__ in the macro body wherever it appears. See
the CPP manual for more information.

GCC has long supported variadic macros, and used a different syntax that allowed you to give
a name to the variable arguments just like any other argument. Here is an example:

#define debug(format, args...) fprintf (stderr, format, args)

This is in all ways equivalent to the ISO C example above, but arguably more readable and
descriptive.

GNU CPP has two further variadic macro extensions, and permits them to be used with either
of the above forms of macro definition.

In standard C, you are not allowed to leave the variable argument out entirely; but you are
allowed to pass an empty argument. For example, this invocation is invalid in ISO C, because
there is no comma after the string:

debug ("A message")

GNU CPP permits you to completely omit the variable arguments in this way. In the above
examples, the compiler would complain, though since the expansion of the macro still has the
extra comma after the format string.

To help solve this problem, CPP behaves specially for variable arguments used with the token
paste operator, ‘##’. If instead you write

#define debug(format, ...) fprintf (stderr, format, ## __VA_ARGS__)

and if the variable arguments are omitted or empty, the ‘##’ operator causes the preprocessor
to remove the comma before it. If you do provide some variable arguments in your macro invo-
cation, GNU CPP does not complain about the paste operation and instead places the variable
arguments after the comma. Just like any other pasted macro argument, these arguments are
not macro expanded.

5.15 Slightly Looser Rules for Escaped Newlines

Recently, the preprocessor has relaxed its treatment of escaped newlines. Previously, the newline
had to immediately follow a backslash. The current implementation allows whitespace in the
form of spaces, horizontal and vertical tabs, and form feeds between the backslash and the
subsequent newline. The preprocessor issues a warning, but treats it as a valid escaped newline
and combines the two lines to form a single logical line. This works within comments and tokens,
as well as between tokens. Comments are not treated as whitespace for the purposes of this
relaxation, since they have not yet been replaced with spaces.

188 Using the GNU Compiler Collection (GCC)

5.16 Non-Lvalue Arrays May Have Subscripts

In ISO C99, arrays that are not lvalues still decay to pointers, and may be subscripted, although
they may not be modified or used after the next sequence point and the unary ‘&’ operator may
not be applied to them. As an extension, GCC allows such arrays to be subscripted in C89
mode, though otherwise they do not decay to pointers outside C99 mode. For example, this is
valid in GNU C though not valid in C89:

struct foo {int a[4];};
struct foo f();

bar (int index)
{

return f().alindex];

}

5.17 Arithmetic on void- and Function-Pointers

In GNU C, addition and subtraction operations are supported on pointers to void and on
pointers to functions. This is done by treating the size of a void or of a function as 1.

A consequence of this is that sizeof is also allowed on void and on function types, and
returns 1.

The option ‘~Wpointer-arith’ requests a warning if these extensions are used.

5.18 Non-Constant Initializers

As in standard C++ and ISO C99, the elements of an aggregate initializer for an automatic
variable are not required to be constant expressions in GNU C. Here is an example of an
initializer with run-time varying elements:

foo (float f, float g)

{
float beat_freqs[2] = { f-g, f+g };
VA B Y

}

5.19 Compound Literals

ISO C99 supports compound literals. A compound literal looks like a cast containing an initial-
izer. Its value is an object of the type specified in the cast, containing the elements specified in
the initializer; it is an lvalue. As an extension, GCC supports compound literals in C89 mode
and in C++,

Usually, the specified type is a structure. Assume that struct foo and structure are declared
as shown:

struct foo {int a; char b[2];} structure;

Here is an example of constructing a struct foo with a compound literal:

structure = ((struct foo) {x + y, ’a’, 0});

This is equivalent to writing the following;:

¢ struct foo temp = {x + y, ’a’, 0};
structure = temp;
}

You can also construct an array. If all the elements of the compound literal are (made up of)
simple constant expressions, suitable for use in initializers of objects of static storage duration,
then the compound literal can be coerced to a pointer to its first element and used in such an
initializer, as shown here:

Chapter 5: Extensions to the C Language Family 189

char x*foo = (char *[]) { "x", "y", "z" };

Compound literals for scalar types and union types are is also allowed, but then the compound
literal is equivalent to a cast.

As a GNU extension, GCC allows initialization of objects with static storage duration by
compound literals (which is not possible in ISO C99, because the initializer is not a constant).
It is handled as if the object was initialized only with the bracket enclosed list if compound
literal’s and object types match. The initializer list of the compound literal must be constant. If
the object being initialized has array type of unknown size, the size is determined by compound
literal size.

static struct foo x = (struct foo) {1, ’a’, ’b’};
static int y[] (int [1) {1, 2, 3};
static int z[] (int [3]1) {1};

The above lines are equivalent to the following:

static struct foo x = {1, ’a’, ’b’};
static int y[1 = {1, 2, 3};
static int z[] = {1, 0, 0};

5.20 Designated Initializers

Standard C89 requires the elements of an initializer to appear in a fixed order, the same as the
order of the elements in the array or structure being initialized.

In ISO C99 you can give the elements in any order, specifying the array indices or structure
field names they apply to, and GNU C allows this as an extension in C89 mode as well. This
extension is not implemented in GNU C++.

To specify an array index, write ‘[index] =" before the element value. For example,

int a[6] = { [4] = 29, [2] = 15 };
is equivalent to
int a[6] = { 0, 0, 15, 0, 29, 0 };
The index values must be constant expressions, even if the array being initialized is automatic.

An alternative syntax for this which has been obsolete since GCC 2.5 but GCC still accepts

is to write ‘[index]’ before the element value, with no ‘=’.

To initialize a range of elements to the same value, write ‘[first ... last] = value’. This
is a GNU extension. For example,
int widths[] = { [0 ... 9] =1, [10 ... 99] = 2, [100] = 3 };

If the value in it has side-effects, the side-effects will happen only once, not for each initialized
field by the range initializer.
Note that the length of the array is the highest value specified plus one.
In a structure initializer, specify the name of a field to initialize with ‘. fieldname =" before
the element value. For example, given the following structure,
struct point { int x, y; };
the following initialization
struct point p = { .y = yvalue, .x = xvalue };
is equivalent to
struct point p = { xvalue, yvalue };
Another syntax which has the same meaning, obsolete since GCC 2.5, is ‘fieldname:’, as
shown here:
struct point p = { y: yvalue, x: xvalue };
The ‘[index]’ or ‘.fieldname’ is known as a designator. You can also use a designator (or
the obsolete colon syntax) when initializing a union, to specify which element of the union should
be used. For example,

190 Using the GNU Compiler Collection (GCC)

union foo { int i; double d; };

union foo f = { .d =4 };
will convert 4 to a double to store it in the union using the second element. By contrast, casting

4 to type union foo would store it into the union as the integer i, since it is an integer. (See
Section 5.22 [Cast to Union], page 190.)

You can combine this technique of naming elements with ordinary C initialization of successive
elements. Each initializer element that does not have a designator applies to the next consecutive
element of the array or structure. For example,

int a[6] = { [1] = v1, v2, [4] = v4 };
is equivalent to
int a[6] = { 0, v1, v2, 0, v4, 0 };
Labeling the elements of an array initializer is especially useful when the indices are characters
or belong to an enum type. For example:
int whitespace[256]
={[°1=1, ’\t’1 =1, [’\h’] =1,
D\£°] =1, [’\n?] =1, [’\r’] =1 };

You can also write a series of ‘. fieldname’ and ‘[index]’ designators before an ‘=" to specify
a nested subobject to initialize; the list is taken relative to the subobject corresponding to the
closest surrounding brace pair. For example, with the ‘struct point’ declaration above:

struct point ptarray[10] = { [2].y = yv2, [2].x = xv2, [0].x = xvO };
If the same field is initialized multiple times, it will have value from the last initialization. If any
such overridden initialization has side-effect, it is unspecified whether the side-effect happens or
not. Currently, GCC will discard them and issue a warning.

5.21 Case Ranges

You can specify a range of consecutive values in a single case label, like this:

case low ... high:

This has the same effect as the proper number of individual case labels, one for each integer
value from low to high, inclusive.

This feature is especially useful for ranges of ASCII character codes:

case A’ ... ’Z’:
Be careful: Write spaces around the . . ., for otherwise it may be parsed wrong when you use
it with integer values. For example, write this:
case 1 ... b5:

rather than this:

case 1...5:

5.22 Cast to a Union Type

A cast to union type is similar to other casts, except that the type specified is a union type.
You can specify the type either with union tag or with a typedef name. A cast to union is
actually a constructor though, not a cast, and hence does not yield an lvalue like normal casts.
(See Section 5.19 [Compound Literals|, page 188.)

The types that may be cast to the union type are those of the members of the union. Thus,
given the following union and variables:

union foo { int i; double d; };
int x;
double y;

both x and y can be cast to type union foo.

Chapter 5: Extensions to the C Language Family 191

Using the cast as the right-hand side of an assignment to a variable of union type is equivalent
to storing in a member of the union:
union foo u;
VA B Y
u = (union foo) x
u (union foo) y

X

y
You can also use the union cast as a function argument:

i
d

u.
u.

void hack (union foo);
/* ... %/

hack ((union foo) x);

5.23 Mixed Declarations and Code

ISO C99 and ISO C++ allow declarations and code to be freely mixed within compound state-
ments. As an extension, GCC also allows this in C89 mode. For example, you could do:

int i;

/x .. %/

it++;

int j = i + 2;

Each identifier is visible from where it is declared until the end of the enclosing block.

5.24 Declaring Attributes of Functions

In GNU C, you declare certain things about functions called in your program which help the
compiler optimize function calls and check your code more carefully.

The keyword __attribute__ allows you to specify special attributes when making a declara-
tion. This keyword is followed by an attribute specification inside double parentheses. The fol-
lowing attributes are currently defined for functions on all targets: noreturn, noinline, always_
inline, pure, const, nothrow, sentinel, format, format_arg, no_instrument_function,
section, constructor, destructor, used, unused, deprecated, weak, malloc, alias, warn_
unused_result and nonnull. Several other attributes are defined for functions on particular
target systems. Other attributes, including section are supported for variables declarations (see
Section 5.31 [Variable Attributes], page 205) and for types (see Section 5.32 [Type Attributes],
page 209).

You may also specify attributes with ‘__’ preceding and following each keyword. This allows
you to use them in header files without being concerned about a possible macro of the same
name. For example, you may use __noreturn__ instead of noreturn.

See Section 5.25 [Attribute Syntax|, page 201, for details of the exact syntax for using at-
tributes.

alias ("target")
The alias attribute causes the declaration to be emitted as an alias for another
symbol, which must be specified. For instance,

void __f () { /* Do something. */; }
void f () __attribute__ ((weak, alias ("__£f")));

3

declares ‘f’ to be a weak alias for ‘__f’. In C++, the mangled name for the target
must be used. It is an error if ‘__f’ is not defined in the same translation unit.

Not all target machines support this attribute.

always_inline
Generally, functions are not inlined unless optimization is specified. For functions
declared inline, this attribute inlines the function even if no optimization level was
specified.

192

cdecl

const

Using the GNU Compiler Collection (GCC)

On the Intel 386, the cdecl attribute causes the compiler to assume that the calling
function will pop off the stack space used to pass arguments. This is useful to
override the effects of the ‘-mrtd’ switch.

Many functions do not examine any values except their arguments, and have no
effects except the return value. Basically this is just slightly more strict class than
the pure attribute below, since function is not allowed to read global memory.
Note that a function that has pointer arguments and examines the data pointed to
must not be declared const. Likewise, a function that calls a non-const function
usually must not be const. It does not make sense for a const function to return
void.
The attribute const is not implemented in GCC versions earlier than 2.5. An
alternative way to declare that a function has no side effects, which works in the
current version and in some older versions, is as follows:

typedef int intfn ();

extern const intfn square;

This approach does not work in GNU C++ from 2.6.0 on, since the language specifies
that the ‘const’ must be attached to the return value.

constructor

destructor

deprecated

dllexport

The constructor attribute causes the function to be called automatically before
execution enters main (). Similarly, the destructor attribute causes the function
to be called automatically after main () has completed or exit () has been called.
Functions with these attributes are useful for initializing data that will be used
implicitly during the execution of the program.

These attributes are not currently implemented for Objective-C.

The deprecated attribute results in a warning if the function is used anywhere in
the source file. This is useful when identifying functions that are expected to be
removed in a future version of a program. The warning also includes the location
of the declaration of the deprecated function, to enable users to easily find further
information about why the function is deprecated, or what they should do instead.
Note that the warnings only occurs for uses:

int old_fn () attribute ((deprecated));

int old_fn ();
int (*fn_ptr)() = old_fn;

results in a warning on line 3 but not line 2.

The deprecated attribute can also be used for variables and types (see Section 5.31
[Variable Attributes], page 205, see Section 5.32 [Type Attributes], page 209.)

On Microsoft Windows targets and Symbian OS targets the dllexport attribute
causes the compiler to provide a global pointer to a pointer in a DLL, so that it can
be referenced with the dllimport attribute. On Microsoft Windows targets, the
pointer name is formed by combining _imp__ and the function or variable name.
You can wuse __declspec(dllexport) as a synonym for __attribute__
((dllexport)) for compatibility with other compilers.

On systems that support the visibility attribute, this attribute also implies “de-
fault” visibility, unless a visibility attribute is explicitly specified. You should
avoid the use of d1lexport with “hidden” or “internal” visibility; in the future GCC
may issue an error for those cases.

Chapter 5: Extensions to the C Language Family 193

dllimport

Currently, the dllexport attribute is ignored for inlined functions, unless the
‘~fkeep-inline-functions’ flag has been used. The attribute is also ignored for
undefined symbols.

When applied to C++ classes, the attribute marks defined non-inlined member func-
tions and static data members as exports. Static consts initialized in-class are not
marked unless they are also defined out-of-class.

For Microsoft Windows targets there are alternative methods for including the sym-
bol in the DLL’s export table such as using a ‘.def’ file with an EXPORTS section
or, with GNU 1d, using the ‘--export-all’ linker flag.

On Microsoft Windows and Symbian OS targets, the d11limport attribute causes
the compiler to reference a function or variable via a global pointer to a pointer that
is set up by the DLL exporting the symbol. The attribute implies extern storage.
On Microsoft Windows targets, the pointer name is formed by combining _imp__
and the function or variable name.

attribute

You can use __declspec(dllimport) as a synonym for
((dllimport)) for compatibility with other compilers.

Currently, the attribute is ignored for inlined functions. If the attribute is applied to
a symbol definition, an error is reported. If a symbol previously declared d11limport
is later defined, the attribute is ignored in subsequent references, and a warning is
emitted. The attribute is also overridden by a subsequent declaration as d11lexport.

When applied to C++ classes, the attribute marks non-inlined member functions
and static data members as imports. However, the attribute is ignored for virtual
methods to allow creation of vtables using thunks.

On the SH Symbian OS target the dllimport attribute also has another affect—
it can cause the vtable and run-time type information for a class to be exported.
This happens when the class has a dllimport’ed constructor or a non-inline, non-
pure virtual function and, for either of those two conditions, the class also has a
inline constructor or destructor and has a key function that is defined in the current
translation unit.

For Microsoft Windows based targets the use of the d1limport attribute on func-
tions is not necessary, but provides a small performance benefit by eliminating a
thunk in the DLL. The use of the d11limport attribute on imported variables was
required on older versions of the GNU linker, but can now be avoided by passing
the ‘-—enable-auto-import’ switch to the GNU linker. As with functions, using
the attribute for a variable eliminates a thunk in the DLL.

One drawback to using this attribute is that a pointer to a function or vari-
able marked as dllimport cannot be used as a constant address. On Mi-
crosoft Windows targets, the attribute can be disabled for functions by setting the
‘-mnop-fun-dllimport’ flag.

eightbit_data

Use this attribute on the H8/300, H8/300H, and H8S to indicate that the specified
variable should be placed into the eight bit data section. The compiler will generate
more efficient code for certain operations on data in the eight bit data area. Note
the eight bit data area is limited to 256 bytes of data.

You must use GAS and GLD from GNU binutils version 2.7 or later for this attribute
to work correctly.

194

Using the GNU Compiler Collection (GCC)

exception_handler

far

fastcall

Use this attribute on the Blackfin to indicate that the specified function is an excep-
tion handler. The compiler will generate function entry and exit sequences suitable
for use in an exception handler when this attribute is present.

On 68HC11 and 68HC12 the far attribute causes the compiler to use a calling
convention that takes care of switching memory banks when entering and leaving a
function. This calling convention is also the default when using the ‘-mlong-calls’
option.

On 68HC12 the compiler will use the call and rtc instructions to call and return
from a function.

On 68HC11 the compiler will generate a sequence of instructions to invoke a board-
specific routine to switch the memory bank and call the real function. The board-
specific routine simulates a call. At the end of a function, it will jump to a board-
specific routine instead of using rts. The board-specific return routine simulates
the rte.

On the Intel 386, the fastcall attribute causes the compiler to pass the first two
arguments in the registers ECX and EDX. Subsequent arguments are passed on the
stack. The called function will pop the arguments off the stack. If the number of
arguments is variable all arguments are pushed on the stack.

format (archetype, string-index, first-to-check)

The format attribute specifies that a function takes printf, scanf, strftime or
strfmon style arguments which should be type-checked against a format string. For
example, the declaration:

extern int
my_printf (void *my_object, const char *my_format, ...)
__attribute ((format (printf, 2, 3)));

causes the compiler to check the arguments in calls to my_printf for consistency
with the printf style format string argument my_format.

The parameter archetype determines how the format string is interpreted, and
should be printf, scanf, strftime or strfmon. (You can also use __printf__
, __scanf strftime__ or __strfmon__.) The parameter string-index specifies
which argument is the format string argument (starting from 1), while first-to-check
is the number of the first argument to check against the format string. For functions
where the arguments are not available to be checked (such as vprintf), specify the
third parameter as zero. In this case the compiler only checks the format string
for consistency. For strftime formats, the third parameter is required to be zero.
Since non-static C++ methods have an implicit this argument, the arguments of
such methods should be counted from two, not one, when giving values for string-
index and first-to-check.

—_— ——

In the example above, the format string (my_format) is the second argument of the
function my_print, and the arguments to check start with the third argument, so
the correct parameters for the format attribute are 2 and 3.

The format attribute allows you to identify your own functions which take for-
mat strings as arguments, so that GCC can check the calls to these functions for
errors. The compiler always (unless ‘~ffreestanding’ or ‘~fno-builtin’ is used)
checks formats for the standard library functions printf, fprintf, sprintf, scanf,
fscanf, sscanf, strftime, vprintf, vfprintf and vsprintf whenever such warn-
ings are requested (using ‘-Wformat’), so there is no need to modify the header file
‘stdio.h’. In C99 mode, the functions snprintf, vsnprintf, vscanf, vfscanf
and vsscanf are also checked. Except in strictly conforming C standard modes, the

Chapter 5: Extensions to the C Language Family 195

X/Open function strfmon is also checked as are printf_unlocked and fprintf_
unlocked. See Section 3.4 [Options Controlling C Dialect], page 19.

The target may provide additional types of format checks. See Section 5.47 [Format
Checks Specific to Particular Target Machines], page 291.

format_arg (string-index)

The format_arg attribute specifies that a function takes a format string for a
printf, scanf, strftime or strfmon style function and modifies it (for example, to
translate it into another language), so the result can be passed to a printf, scanf,
strftime or strfmon style function (with the remaining arguments to the format
function the same as they would have been for the unmodified string). For example,
the declaration:

extern char *
my_dgettext (char *my_domain, const char *my_format)
__attribute ((format_arg (2)));

causes the compiler to check the arguments in calls to a printf, scanf, strftime or
strfmon type function, whose format string argument is a call to the my_dgettext
function, for consistency with the format string argument my_format. If the format_
arg attribute had not been specified, all the compiler could tell in such calls to
format functions would be that the format string argument is not constant; this
would generate a warning when ‘-Wformat-nonliteral’ is used, but the calls could
not be checked without the attribute.

The parameter string-index specifies which argument is the format string argument
(starting from one). Since non-static C++ methods have an implicit this argument,
the arguments of such methods should be counted from two.

The format-arg attribute allows you to identify your own functions which modify
format strings, so that GCC can check the calls to printf, scanf, strftime or
strfmon type function whose operands are a call to one of your own function. The
compiler always treats gettext, dgettext, and dcgettext in this manner except
when strict ISO C support is requested by ‘~ansi’ or an appropriate ‘-std’ option, or
‘~ffreestanding’ or ‘~fno-builtin’ is used. See Section 3.4 [Options Controlling
C Dialect], page 19.

function_vector

interrupt

Use this attribute on the H8/300, H8/300H, and HS8S to indicate that the specified
function should be called through the function vector. Calling a function through
the function vector will reduce code size, however; the function vector has a limited
size (maximum 128 entries on the H8/300 and 64 entries on the H8/300H and HS8S)
and shares space with the interrupt vector.

You must use GAS and GLD from GNU binutils version 2.7 or later for this attribute
to work correctly.

Use this attribute on the ARM, AVR, C4x, M32R/D and Xstormy16 ports to indi-
cate that the specified function is an interrupt handler. The compiler will generate
function entry and exit sequences suitable for use in an interrupt handler when this
attribute is present.

Note, interrupt handlers for the Blackfin, m68k, H8/300, H8/300H, H8S, and SH
processors can be specified via the interrupt_handler attribute.

Note, on the AVR, interrupts will be enabled inside the function.

Note, for the ARM, you can specify the kind of interrupt to be handled by adding
an optional parameter to the interrupt attribute like this:

196

Using the GNU Compiler Collection (GCC)

void £ () __attribute__ ((interrupt ("IRQ")));
Permissible values for this parameter are: IRQ, FIQ, SWI, ABORT and UNDEF.

interrupt_handler

kspisusp

Use this attribute on the Blackfin, m68k, H8/300, H8/300H, H8S, and SH to indicate
that the specified function is an interrupt handler. The compiler will generate
function entry and exit sequences suitable for use in an interrupt handler when this
attribute is present.

When wused together with interrupt_handler, exception_handler or
nmi_handler, code will be generated to load the stack pointer from the USP
register in the function prologue.

long_call/short_call

This attribute specifies how a particular function is called on ARM. Both attributes
override the ‘-mlong-calls’ (see Section 3.17.2 [ARM Options|, page 96) command
line switch and #pragma long_calls settings. The long_call attribute causes the
compiler to always call the function by first loading its address into a register and
then using the contents of that register. The short_call attribute always places
the offset to the function from the call site into the ‘BL’ instruction directly.

longcall/shortcall

malloc

On the Blackfin, RS/6000 and PowerPC, the longcall attribute causes the compiler
to always call this function via a pointer, just as it would if the ‘-mlongcall’ option
had been specified. The shortcall attribute causes the compiler not to do this.
These attributes override both the ‘-mlongcall’ switch and, on the RS/6000 and
PowerPC, the #pragma longcall setting.

See Section 3.17.24 [RS/6000 and PowerPC Options], page 138, for more information
on whether long calls are necessary.

The malloc attribute is used to tell the compiler that a function may be treated
as if any non-NULL pointer it returns cannot alias any other pointer valid when
the function returns. This will often improve optimization. Standard functions
with this property include malloc and calloc. realloc-like functions have this
property as long as the old pointer is never referred to (including comparing it to
the new pointer) after the function returns a non-NULL value.

model (model-name)

On the M32R/D, use this attribute to set the addressability of an object, and of the
code generated for a function. The identifier model-name is one of small, medium,
or large, representing each of the code models.

Small model objects live in the lower 16MB of memory (so that their addresses can
be loaded with the 1d24 instruction), and are callable with the bl instruction.

Medium model objects may live anywhere in the 32-bit address space (the compiler
will generate seth/add3 instructions to load their addresses), and are callable with
the bl instruction.

Large model objects may live anywhere in the 32-bit address space (the compiler will
generate seth/add3 instructions to load their addresses), and may not be reachable
with the bl instruction (the compiler will generate the much slower seth/add3/j1
instruction sequence).

On TA-64, use this attribute to set the addressability of an object. At present,
the only supported identifier for model-name is small, indicating addressability via
“small” (22-bit) addresses (so that their addresses can be loaded with the addl
instruction). Caveat: such addressing is by definition not position independent and
hence this attribute must not be used for objects defined by shared libraries.

Chapter 5: Extensions to the C Language Family 197

naked

near

nesting

Use this attribute on the ARM, AVR, C4x and IP2K ports to indicate that the spec-
ified function does not need prologue/epilogue sequences generated by the compiler.
It is up to the programmer to provide these sequences.

On 68HC11 and 68HC12 the near attribute causes the compiler to use the normal
calling convention based on jsr and rts. This attribute can be used to cancel the
effect of the ‘-mlong-calls’ option.

Use this attribute together with interrupt_handler, exception_handler or nmi_
handler to indicate that the function entry code should enable nested interrupts or
exceptions.

nmi_handler

Use this attribute on the Blackfin to indicate that the specified function is an NMI
handler. The compiler will generate function entry and exit sequences suitable for
use in an NMI handler when this attribute is present.

no_instrument_function

If ‘~finstrument-functions’ is given, profiling function calls will be generated at
entry and exit of most user-compiled functions. Functions with this attribute will
not be so instrumented.

noinline This function attribute prevents a function from being considered for inlining.
nonnull (arg-index, ...)
The nonnull attribute specifies that some function parameters should be non-null
pointers. For instance, the declaration:
extern void *
my_memcpy (void *dest, const void *src, size_t len)
__attribute__((nonnull (1, 2)));
causes the compiler to check that, in calls to my_memcpy, arguments dest and src are
non-null. If the compiler determines that a null pointer is passed in an argument
slot marked as non-null, and the ‘-Wnonnull’ option is enabled, a warning is issued.
The compiler may also choose to make optimizations based on the knowledge that
certain function arguments will not be null.
If no argument index list is given to the nonnull attribute, all pointer arguments
are marked as non-null. To illustrate, the following declaration is equivalent to the
previous example:
extern void *
my_memcpy (void *dest, const void *src, size_t len)
__attribute__((nonnull));
noreturn A few standard library functions, such as abort and exit, cannot return. GCC

knows this automatically. Some programs define their own functions that never
return. You can declare them noreturn to tell the compiler this fact. For example,

void fatal () __attribute__ ((noreturn));

void

fatal (/* ... *x/)

{
/* ... %/ /* Print error message. */ /* ... *x/
exit (1);

}

The noreturn keyword tells the compiler to assume that fatal cannot return. It
can then optimize without regard to what would happen if fatal ever did return.
This makes slightly better code. More importantly, it helps avoid spurious warnings
of uninitialized variables.

198

nothrow

pure

Using the GNU Compiler Collection (GCC)

The noreturn keyword does not affect the exceptional path when that applies: a
noreturn-marked function may still return to the caller by throwing an exception
or calling longjmp.

Do not assume that registers saved by the calling function are restored before calling
the noreturn function.

It does not make sense for a noreturn function to have a return type other than
void.

The attribute noreturn is not implemented in GCC versions earlier than 2.5. An
alternative way to declare that a function does not return, which works in the current
version and in some older versions, is as follows:

typedef void voidfn ();

volatile voidfn fatal;

This approach does not work in GNU C++.

The nothrow attribute is used to inform the compiler that a function cannot throw
an exception. For example, most functions in the standard C library can be guaran-
teed not to throw an exception with the notable exceptions of gsort and bsearch
that take function pointer arguments. The nothrow attribute is not implemented
in GCC versions earlier than 3.3.

Many functions have no effects except the return value and their return value de-
pends only on the parameters and/or global variables. Such a function can be sub-
ject to common subexpression elimination and loop optimization just as an arith-
metic operator would be. These functions should be declared with the attribute
pure. For example,

int square (int) attribute__ ((pure));

says that the hypothetical function square is safe to call fewer times than the
program says.

Some of common examples of pure functions are strlen or memcmp. Interesting
non-pure functions are functions with infinite loops or those depending on volatile
memory or other system resource, that may change between two consecutive calls
(such as feof in a multithreading environment).

The attribute pure is not implemented in GCC versions earlier than 2.96.

regparm (number)

saveall

On the Intel 386, the regparm attribute causes the compiler to pass up to number
integer arguments in registers EAX, EDX, and ECX instead of on the stack. Func-
tions that take a variable number of arguments will continue to be passed all of their
arguments on the stack.

Beware that on some ELF systems this attribute is unsuitable for global functions
in shared libraries with lazy binding (which is the default). Lazy binding will send
the first call via resolving code in the loader, which might assume EAX, EDX and
ECX can be clobbered, as per the standard calling conventions. Solaris 8 is affected
by this. GNU systems with GLIBC 2.1 or higher, and FreeBSD, are believed to be
safe since the loaders there save all registers. (Lazy binding can be disabled with
the linker or the loader if desired, to avoid the problem.)

Use this attribute on the Blackfin, H8/300, H8/300H, and HS8S to indicate that
all registers except the stack pointer should be saved in the prologue regardless of
whether they are used or not.

Chapter 5: Extensions to the C Language Family 199

section ("section-name")
Normally, the compiler places the code it generates in the text section. Sometimes,
however, you need additional sections, or you need certain particular functions to
appear in special sections. The section attribute specifies that a function lives in
a particular section. For example, the declaration:

extern void foobar (void) attribute ((section ("bar")));

puts the function foobar in the bar section.

Some file formats do not support arbitrary sections so the section attribute is not
available on all platforms. If you need to map the entire contents of a module to a
particular section, consider using the facilities of the linker instead.

sentinel This function attribute ensures that a parameter in a function call is an explicit

NULL. The attribute is only valid on variadic functions. By default, the sentinel
is located at position zero, the last parameter of the function call. If an optional
integer position argument P is supplied to the attribute, the sentinel must be located
at position P counting backwards from the end of the argument list.

__attribute__ ((sentinel))

is equivalent to

__attribute__ ((sentinel(0)))
The attribute is automatically set with a position of 0 for the built-in functions execl
and execlp. The built-in function execle has the attribute set with a position of
1.

A valid NULL in this context is defined as zero with any pointer type. If your system
defines the NULL macro with an integer type then you need to add an explicit cast.
GCC replaces stddef .h with a copy that redefines NULL appropriately.

The warnings for missing or incorrect sentinels are enabled with ‘~Wformat’.

short_call
See long_call/short_call.

shortcall
See longcall /shortcall.

signal Use this attribute on the AVR to indicate that the specified function is a signal
handler. The compiler will generate function entry and exit sequences suitable for
use in a signal handler when this attribute is present. Interrupts will be disabled
inside the function.

sp_switch
Use this attribute on the SH to indicate an interrupt_handler function should
switch to an alternate stack. It expects a string argument that names a global
variable holding the address of the alternate stack.

void *alt_stack;
void £ () __attribute__ ((interrupt_handler,
sp_switch ("alt_stack")));

stdcall On the Intel 386, the stdcall attribute causes the compiler to assume that the
called function will pop off the stack space used to pass arguments, unless it takes
a variable number of arguments.

tiny_data
Use this attribute on the H8/300H and HS8S to indicate that the specified variable
should be placed into the tiny data section. The compiler will generate more efficient
code for loads and stores on data in the tiny data section. Note the tiny data area
is limited to slightly under 32kbytes of data.

200

trap_exit

unused

used

Using the GNU Compiler Collection (GCC)

Use this attribute on the SH for an interrupt_handler to return using trapa
instead of rte. This attribute expects an integer argument specifying the trap
number to be used.

This attribute, attached to a function, means that the function is meant to be
possibly unused. GCC will not produce a warning for this function.

This attribute, attached to a function, means that code must be emitted for the
function even if it appears that the function is not referenced. This is useful, for
example, when the function is referenced only in inline assembly.

visibility ("visibility_type")

The visibility attribute on ELF targets causes the declaration to be emitted with
default, hidden, protected or internal visibility.

void __attribute__ ((visibility ("protected")))
£f (O { /* Do something. */; }
int i __attribute__ ((visibility ("hidden")));

See the ELF gABI for complete details, but the short story is:

default Default visibility is the normal case for ELF. This value is available for
the visibility attribute to override other options that may change the
assumed visibility of symbols.

hidden Hidden visibility indicates that the symbol will not be placed into the
dynamic symbol table, so no other module (executable or shared library)
can reference it directly.

internal Internal visibility is like hidden visibility, but with additional processor
specific semantics. Unless otherwise specified by the psABI, GCC de-
fines internal visibility to mean that the function is never called from
another module. Note that hidden symbols, while they cannot be refer-
enced directly by other modules, can be referenced indirectly via func-
tion pointers. By indicating that a symbol cannot be called from outside
the module, GCC may for instance omit the load of a PIC register since
it is known that the calling function loaded the correct value.

protected Protected visibility indicates that the symbol will be placed in the dy-
namic symbol table, but that references within the defining module will
bind to the local symbol. That is, the symbol cannot be overridden by
another module.

Not all ELF targets support this attribute.

warn_unused_result

The warn_unused_result attribute causes a warning to be emitted if a caller of the
function with this attribute does not use its return value. This is useful for functions
where not checking the result is either a security problem or always a bug, such as
realloc.
int fn () __attribute__ ((warn_unused_result));
int foo ()
{
if (fn () < 0) return -1;
fn ();
return O;

}

results in warning on line 5.

Chapter 5: Extensions to the C Language Family 201

weak The weak attribute causes the declaration to be emitted as a weak symbol rather
than a global. This is primarily useful in defining library functions which can be
overridden in user code, though it can also be used with non-function declarations.
Weak symbols are supported for ELF targets, and also for a.out targets when using
the GNU assembler and linker.

You can specify multiple attributes in a declaration by separating them by commas within the
double parentheses or by immediately following an attribute declaration with another attribute
declaration.

Some people object to the __attribute__ feature, suggesting that ISO C’s #pragma should
be used instead. At the time __attribute__ was designed, there were two reasons for not doing
this.

1. It is impossible to generate #pragma commands from a macro.

2. There is no telling what the same #pragma might mean in another compiler.

These two reasons applied to almost any application that might have been proposed for
#pragma. It was basically a mistake to use #pragma for anything.

The ISO C99 standard includes _Pragma, which now allows pragmas to be generated from
macros. In addition, a #pragma GCC namespace is now in use for GCC-specific pragmas. How-
ever, it has been found convenient to use __attribute__ to achieve a natural attachment of
attributes to their corresponding declarations, whereas #pragma GCC is of use for constructs that
do not naturally form part of the grammar. See section “Miscellaneous Preprocessing Directives”
in The GNU C Preprocessor.

5.25 Attribute Syntax

This section describes the syntax with which __attribute__ may be used, and the constructs
to which attribute specifiers bind, for the C language. Some details may vary for C++ and
Objective-C. Because of infelicities in the grammar for attributes, some forms described here
may not be successfully parsed in all cases.

There are some problems with the semantics of attributes in C++. For example, there are no
manglings for attributes, although they may affect code generation, so problems may arise when
attributed types are used in conjunction with templates or overloading. Similarly, typeid does
not distinguish between types with different attributes. Support for attributes in C++ may be
restricted in future to attributes on declarations only, but not on nested declarators.

See Section 5.24 [Function Attributes|, page 191, for details of the semantics of attributes ap-
plying to functions. See Section 5.31 [Variable Attributes|, page 205, for details of the semantics
of attributes applying to variables. See Section 5.32 [Type Attributes|, page 209, for details of
the semantics of attributes applying to structure, union and enumerated types.

An attribute specifier is of the form __attribute__ ((attribute-list)). An attribute list
is a possibly empty comma-separated sequence of attributes, where each attribute is one of the
following;:

e Empty. Empty attributes are ignored.
e A word (which may be an identifier such as unused, or a reserved word such as const).

e A word, followed by, in parentheses, parameters for the attribute. These parameters take
one of the following forms:

e An identifier. For example, mode attributes use this form.

e An identifier followed by a comma and a non-empty comma-separated list of expres-
sions. For example, format attributes use this form.

202 Using the GNU Compiler Collection (GCC)

e A possibly empty comma-separated list of expressions. For example, format_arg at-
tributes use this form with the list being a single integer constant expression, and alias
attributes use this form with the list being a single string constant.

An attribute specifier list is a sequence of one or more attribute specifiers, not separated by
any other tokens.

In GNU C, an attribute specifier list may appear after the colon following a label, other than
a case or default label. The only attribute it makes sense to use after a label is unused. This
feature is intended for code generated by programs which contains labels that may be unused but
which is compiled with ‘-Wall’. It would not normally be appropriate to use in it human-written
code, though it could be useful in cases where the code that jumps to the label is contained
within an #ifdef conditional. GNU C++ does not permit such placement of attribute lists, as it
is permissible for a declaration, which could begin with an attribute list, to be labelled in C++.
Declarations cannot be labelled in C90 or C99, so the ambiguity does not arise there.

An attribute specifier list may appear as part of a struct, union or enum specifier. It may
go either immediately after the struct, union or enum keyword, or after the closing brace. It is
ignored if the content of the structure, union or enumerated type is not defined in the specifier
in which the attribute specifier list is used—that is, in usages such as struct __attribute_
_((£00)) bar with no following opening brace. Where attribute specifiers follow the closing
brace, they are considered to relate to the structure, union or enumerated type defined, not to
any enclosing declaration the type specifier appears in, and the type defined is not complete
until after the attribute specifiers.

Otherwise, an attribute specifier appears as part of a declaration, counting declarations of
unnamed parameters and type names, and relates to that declaration (which may be nested
in another declaration, for example in the case of a parameter declaration), or to a particular
declarator within a declaration. Where an attribute specifier is applied to a parameter declared
as a function or an array, it should apply to the function or array rather than the pointer to
which the parameter is implicitly converted, but this is not yet correctly implemented.

Any list of specifiers and qualifiers at the start of a declaration may contain attribute specifiers,
whether or not such a list may in that context contain storage class specifiers. (Some attributes,
however, are essentially in the nature of storage class specifiers, and only make sense where
storage class specifiers may be used; for example, section.) There is one necessary limitation
to this syntax: the first old-style parameter declaration in a function definition cannot begin
with an attribute specifier, because such an attribute applies to the function instead by syntax
described below (which, however, is not yet implemented in this case). In some other cases,
attribute specifiers are permitted by this grammar but not yet supported by the compiler. All
attribute specifiers in this place relate to the declaration as a whole. In the obsolescent usage
where a type of int is implied by the absence of type specifiers, such a list of specifiers and
qualifiers may be an attribute specifier list with no other specifiers or qualifiers.

At present, the first parameter in a function prototype must have some type specifier which
is not an attribute specifier; this resolves an ambiguity in the interpretation of void f(int (__
attribute__((fo0)) x)), but is subject to change. At present, if the parentheses of a function
declarator contain only attributes then those attributes are ignored, rather than yielding an
error or warning or implying a single parameter of type int, but this is subject to change.

An attribute specifier list may appear immediately before a declarator (other than the first)
in a comma-separated list of declarators in a declaration of more than one identifier using a
single list of specifiers and qualifiers. Such attribute specifiers apply only to the identifier before
whose declarator they appear. For example, in

__attribute__((noreturn)) void d0 (void),
__attribute__((format (printf, 1, 2))) di (const char *, ...),
d2 (void)

Chapter 5: Extensions to the C Language Family 203

the noreturn attribute applies to all the functions declared; the format attribute only applies
to di.

An attribute specifier list may appear immediately before the comma, = or semicolon ter-
minating the declaration of an identifier other than a function definition. At present, such
attribute specifiers apply to the declared object or function, but in future they may attach to
the outermost adjacent declarator. In simple cases there is no difference, but, for example, in

void (***x*f) (void) __attribute__((noreturn));

at present the noreturn attribute applies to £, which causes a warning since £ is not a function,
but in future it may apply to the function ***xf. The precise semantics of what attributes in
such cases will apply to are not yet specified. Where an assembler name for an object or function
is specified (see Section 5.36 [Asm Labels], page 234), at present the attribute must follow the
asm specification; in future, attributes before the asm specification may apply to the adjacent
declarator, and those after it to the declared object or function.

An attribute specifier list may, in future, be permitted to appear after the declarator in a
function definition (before any old-style parameter declarations or the function body).

Attribute specifiers may be mixed with type qualifiers appearing inside the [] of a parameter
array declarator, in the C99 construct by which such qualifiers are applied to the pointer to
which the array is implicitly converted. Such attribute specifiers apply to the pointer, not to
the array, but at present this is not implemented and they are ignored.

An attribute specifier list may appear at the start of a nested declarator. At present, there
are some limitations in this usage: the attributes correctly apply to the declarator, but for most
individual attributes the semantics this implies are not implemented. When attribute specifiers
follow the * of a pointer declarator, they may be mixed with any type qualifiers present. The
following describes the formal semantics of this syntax. It will make the most sense if you are
familiar with the formal specification of declarators in the ISO C standard.

Consider (as in C99 subclause 6.7.5 paragraph 4) a declaration T D1, where T contains decla-
ration specifiers that specify a type Type (such as int) and D1 is a declarator that contains an
identifier ident. The type specified for ident for derived declarators whose type does not include
an attribute specifier is as in the ISO C standard.

If D1 has the form (attribute-specifier-list D), and the declaration T D specifies
the type “derived-declarator-type-list Type” for ident, then T D1 specifies the type “derived-
declarator-type-list attribute-specifier-list Type” for ident.

If D1 has the form * type-qualifier-and-attribute-specifier-list D, and the declara-
tion T D specifies the type “derived-declarator-type-list Type” for ident, then T D1 specifies the
type “derived-declarator-type-list type-qualifier-and-attribute-specifier-list Type” for ident.

For example,

void (__attribute__((noreturn)) ***xf) (void);

specifies the type “pointer to pointer to pointer to pointer to non-returning function returning
void”. As another example,
char *__attribute__((aligned(8))) *f;

specifies the type “pointer to 8-byte-aligned pointer to char”. Note again that this does not
work with most attributes; for example, the usage of ‘aligned’ and ‘noreturn’ attributes given
above is not yet supported.

For compatibility with existing code written for compiler versions that did not implement
attributes on nested declarators, some laxity is allowed in the placing of attributes. If an
attribute that only applies to types is applied to a declaration, it will be treated as applying to
the type of that declaration. If an attribute that only applies to declarations is applied to the
type of a declaration, it will be treated as applying to that declaration; and, for compatibility
with code placing the attributes immediately before the identifier declared, such an attribute

204 Using the GNU Compiler Collection (GCC)

applied to a function return type will be treated as applying to the function type, and such an
attribute applied to an array element type will be treated as applying to the array type. If an
attribute that only applies to function types is applied to a pointer-to-function type, it will be
treated as applying to the pointer target type; if such an attribute is applied to a function return
type that is not a pointer-to-function type, it will be treated as applying to the function type.

5.26 Prototypes and Old-Style Function Definitions

GNU C extends ISO C to allow a function prototype to override a later old-style non-prototype
definition. Consider the following example:

/* Use prototypes unless the compiler is old-fashioned. */
#ifdef __STDC__

#define P(x) x

#else

#define P(x) QO

#endif

/* Prototype function declaration. */
int isroot P((uid_t));

/* Old-style function definition. */

int
isroot (x) /* 777 lossage here 777 */
uid_t x;
{
return x == 0;
}

Suppose the type uid_t happens to be short. ISO C does not allow this example, because
subword arguments in old-style non-prototype definitions are promoted. Therefore in this ex-
ample the function definition’s argument is really an int, which does not match the prototype
argument type of short.

This restriction of ISO C makes it hard to write code that is portable to traditional C com-
pilers, because the programmer does not know whether the uid_t type is short, int, or long.
Therefore, in cases like these GNU C allows a prototype to override a later old-style definition.
More precisely, in GNU C, a function prototype argument type overrides the argument type
specified by a later old-style definition if the former type is the same as the latter type before
promotion. Thus in GNU C the above example is equivalent to the following:

int isroot (uid_t);

int
isroot (uid_t x)
{

return x == 0;
}

GNU C++ does not support old-style function definitions, so this extension is irrelevant.

5.27 C++ Style Comments

In GNU C, you may use C++ style comments, which start with ‘//’ and continue until the end
of the line. Many other C implementations allow such comments, and they are included in the
1999 C standard. However, C++ style comments are not recognized if you specify an ‘-std’
option specifying a version of ISO C before C99, or ‘~ansi’ (equivalent to ‘-std=c89’).

Chapter 5: Extensions to the C Language Family 205

5.28 Dollar Signs in Identifier Names

In GNU C, you may normally use dollar signs in identifier names. This is because many tra-
ditional C implementations allow such identifiers. However, dollar signs in identifiers are not
supported on a few target machines, typically because the target assembler does not allow them.

5.29 The Character in Constants

You can use the sequence ‘\e’ in a string or character constant to stand for the ASCII character
ESC).

5.30 Inquiring on Alignment of Types or Variables

The keyword __alignof__ allows you to inquire about how an object is aligned, or the minimum
alignment usually required by a type. Its syntax is just like sizeof.

For example, if the target machine requires a double value to be aligned on an 8-byte bound-
ary, then __alignof__ (double) is 8. This is true on many RISC machines. On more traditional
machine designs, __alignof__ (double) is 4 or even 2.

[p——

Some machines never actually require alignment; they allow reference to any data type even
at an odd address. For these machines, __alignof__ reports the recommended alignment of a
type.

If the operand of __alignof__ is an lvalue rather than a type, its value is the required
alignment for its type, taking into account any minimum alignment specified with GCC’s __
attribute__ extension (see Section 5.31 [Variable Attributes|, page 205). For example, after
this declaration:

[——

struct foo { int x; char y; } fool;

the value of __alignof__ (fool.y) is 1, even though its actual alignment is probably 2 or 4,
the same as __alignof__ (int).

It is an error to ask for the alignment of an incomplete type.

5.31 Specifying Attributes of Variables

The keyword __attribute__ allows you to specify special attributes of variables or structure
fields. This keyword is followed by an attribute specification inside double parentheses. Some
attributes are currently defined generically for variables. Other attributes are defined for vari-
ables on particular target systems. Other attributes are available for functions (see Section 5.24
[Function Attributes|, page 191) and for types (see Section 5.32 [Type Attributes], page 209).
Other front ends might define more attributes (see Chapter 6 [Extensions to the C++ Language],
page 297).

You may also specify attributes with ‘__" preceding and following each keyword. This allows
you to use them in header files without being concerned about a possible macro of the same
name. For example, you may use __aligned__ instead of aligned.

See Section 5.25 [Attribute Syntax|, page 201, for details of the exact syntax for using at-
tributes.

aligned (alignment)
This attribute specifies a minimum alignment for the variable or structure field,
measured in bytes. For example, the declaration:
int x __attribute__ ((aligned (16))) = 0;
causes the compiler to allocate the global variable x on a 16-byte boundary. On
a 68040, this could be used in conjunction with an asm expression to access the

movel6 instruction which requires 16-byte aligned operands.

206

Using the GNU Compiler Collection (GCC)

You can also specify the alignment of structure fields. For example, to create a
double-word aligned int pair, you could write:
struct foo { int x[2] __attribute__ ((aligned (8))); };

This is an alternative to creating a union with a double member that forces the
union to be double-word aligned.

As in the preceding examples, you can explicitly specify the alignment (in bytes) that
you wish the compiler to use for a given variable or structure field. Alternatively,
you can leave out the alignment factor and just ask the compiler to align a variable
or field to the maximum useful alignment for the target machine you are compiling
for. For example, you could write:

short array[3] __attribute__ ((aligned));

Whenever you leave out the alignment factor in an aligned attribute specification,
the compiler automatically sets the alignment for the declared variable or field to
the largest alignment which is ever used for any data type on the target machine you
are compiling for. Doing this can often make copy operations more efficient, because
the compiler can use whatever instructions copy the biggest chunks of memory when
performing copies to or from the variables or fields that you have aligned this way.

The aligned attribute can only increase the alignment; but you can decrease it by
specifying packed as well. See below.

Note that the effectiveness of aligned attributes may be limited by inherent limita-
tions in your linker. On many systems, the linker is only able to arrange for variables
to be aligned up to a certain maximum alignment. (For some linkers, the maximum
supported alignment may be very very small.) If your linker is only able to align
variables up to a maximum of 8 byte alignment, then specifying aligned(16) in an
__attribute__ will still only provide you with 8 byte alignment. See your linker
documentation for further information.

cleanup (cleanup_function)

The cleanup attribute runs a function when the variable goes out of scope. This
attribute can only be applied to auto function scope variables; it may not be applied
to parameters or variables with static storage duration. The function must take one
parameter, a pointer to a type compatible with the variable. The return value of
the function (if any) is ignored.

If ‘~fexceptions’ is enabled, then cleanup_function will be run during the stack
unwinding that happens during the processing of the exception. Note that the
cleanup attribute does not allow the exception to be caught, only to perform an
action. It is undefined what happens if cleanup_function does not return normally.

common

nocommon The common attribute requests GCC to place a variable in “common” storage. The
nocommon attribute requests the opposite—to allocate space for it directly.
These attributes override the default chosen by the ‘~fno-common’ and ‘-fcommon’
flags respectively.

deprecated

The deprecated attribute results in a warning if the variable is used anywhere in
the source file. This is useful when identifying variables that are expected to be
removed in a future version of a program. The warning also includes the location
of the declaration of the deprecated variable, to enable users to easily find further
information about why the variable is deprecated, or what they should do instead.
Note that the warning only occurs for uses:

extern int old_var __attribute ((deprecated));

Chapter 5: Extensions to the C Language Family 207

extern int old_var;
int new_fn () { return old_var; }

results in a warning on line 3 but not line 2.

The deprecated attribute can also be used for functions and types (see Section 5.24
[Function Attributes], page 191, see Section 5.32 [Type Attributes|, page 209.)

mode (mode)
This attribute specifies the data type for the declaration—whichever type corre-
sponds to the mode mode. This in effect lets you request an integer or floating
point type according to its width.

You may also specify a mode of ‘byte’ or ‘__byte__’ to indicate the mode corre-
sponding to a one-byte integer, ‘word’ or ‘__word__’ for the mode of a one-word

integer, and ‘pointer’ or ‘__pointer__’ for the mode used to represent pointers.

packed The packed attribute specifies that a variable or structure field should have the
smallest possible alignment—one byte for a variable, and one bit for a field, unless
you specify a larger value with the aligned attribute.

Here is a structure in which the field x is packed, so that it immediately follows a:

struct foo

{

char a;

int x[2] __attribute__ ((packed));
};

section ("section-name")

Normally, the compiler places the objects it generates in sections like data and bss.
Sometimes, however, you need additional sections, or you need certain particular
variables to appear in special sections, for example to map to special hardware. The
section attribute specifies that a variable (or function) lives in a particular section.
For example, this small program uses several specific section names:

struct duart a __attribute__ ((section ("DUART_A"))) {03}

struct duart b __attribute__ ((section ("DUART_B"))) = { 0 };

char stack[10000] __attribute__ ((section ("STACK"))) = { 0 };
int init_data __attribute__ ((section ("INITDATA"))) = O;

main()

{
/* Initialize stack pointer */
init_sp (stack + sizeof (stack));

/* Initialize initialized data */
memcpy (&init_data, &data, &edata - &data);

/* Turn on the serial ports */
init_duart (&a);
init_duart (&b);
}
Use the section attribute with an initialized definition of a global variable, as shown
in the example. GCC issues a warning and otherwise ignores the section attribute
in uninitialized variable declarations.

You may only use the section attribute with a fully initialized global definition
because of the way linkers work. The linker requires each object be defined once,
with the exception that uninitialized variables tentatively go in the common (or bss)
section and can be multiply “defined”. You can force a variable to be initialized
with the ‘~fno-common’ flag or the nocommon attribute.

208

shared

Using the GNU Compiler Collection (GCC)

Some file formats do not support arbitrary sections so the section attribute is not
available on all platforms. If you need to map the entire contents of a module to a
particular section, consider using the facilities of the linker instead.

On Microsoft Windows, in addition to putting variable definitions in a named sec-
tion, the section can also be shared among all running copies of an executable or
DLL. For example, this small program defines shared data by putting it in a named
section shared and marking the section shareable:

int foo __attribute__((section ("shared"), shared)) = 0;

int
main()
{
/* Read and write foo. All running
copies see the same value. */
return O;

}

You may only use the shared attribute along with section attribute with a fully
initialized global definition because of the way linkers work. See section attribute
for more information.

The shared attribute is only available on Microsoft Windows.

tls_model ("tls_model")

The t1s_model attribute sets thread-local storage model (see Section 5.50 [Thread-
Local], page 294) of a particular __thread variable, overriding ‘~ft1s-model=" com-
mand line switch on a per-variable basis. The tls_model argument should be one of
global-dynamic, local-dynamic, initial-exec or local-exec.

Not all targets support this attribute.

transparent_union

unused

This attribute, attached to a function parameter which is a union, means that the
corresponding argument may have the type of any union member, but the argument
is passed as if its type were that of the first union member. For more details see
See Section 5.32 [Type Attributes], page 209. You can also use this attribute on a
typedef for a union data type; then it applies to all function parameters with that

type.

This attribute, attached to a variable, means that the variable is meant to be possibly
unused. GCC will not produce a warning for this variable.

vector_size (bytes)

weak

This attribute specifies the vector size for the variable, measured in bytes. For
example, the declaration:

int foo __attribute

_ ((vector_size (16)));

causes the compiler to set the mode for foo, to be 16 bytes, divided into int sized
units. Assuming a 32-bit int (a vector of 4 units of 4 bytes), the corresponding mode
of foo will be V4SI.

This attribute is only applicable to integral and float scalars, although arrays, point-
ers, and function return values are allowed in conjunction with this construct.
Aggregates with this attribute are invalid, even if they are of the same size as a
corresponding scalar. For example, the declaration:

struct S { int a; };
struct S __attribute__ ((vector_size (16))) foo;

is invalid even if the size of the structure is the same as the size of the int.

The weak attribute is described in See Section 5.24 [Function Attributes], page 191.

Chapter 5: Extensions to the C Language Family 209

dllimport
The dllimport attribute is described in See Section 5.24 [Function Attributes],
page 191.

dlexport The dllexport attribute is described in See Section 5.24 [Function Attributes],
page 191.

5.31.1 M32R/D Variable Attributes
One attribute is currently defined for the M32R/D.

model (model-name)
Use this attribute on the M32R/D to set the addressability of an object. The
identifier model-name is one of small, medium, or large, representing each of the
code models.

Small model objects live in the lower 16MB of memory (so that their addresses can
be loaded with the 1d24 instruction).

Medium and large model objects may live anywhere in the 32-bit address space (the
compiler will generate seth/add3 instructions to load their addresses).

5.31.2 1386 Variable Attributes

Two attributes are currently defined for i386 configurations: ms_struct and gcc_struct

ms_struct

gcc_struct
If packed is used on a structure, or if bit-fields are used it may be that the Microsoft
ABI packs them differently than GCC would normally pack them. Particularly when
moving packed data between functions compiled with GCC and the native Microsoft
compiler (either via function call or as data in a file), it may be necessary to access
either format.

Currently ‘-m[no-Jms-bitfields’ is provided for the Microsoft Windows X86 com-
pilers to match the native Microsoft compiler.

5.31.3 Xstormy16 Variable Attributes

One attribute is currently defined for xstormy16 configurations: below100

below100

If a variable has the below100 attribute (BELOW100 is allowed also), GCC will place
the variable in the first 0x100 bytes of memory and use special opcodes to access
it. Such variables will be placed in either the .bss_below100 section or the .data_
belowl00 section.

5.32 Specifying Attributes of Types

The keyword __attribute__ allows you to specify special attributes of struct and union types
when you define such types. This keyword is followed by an attribute specification inside double
parentheses. Six attributes are currently defined for types: aligned, packed, transparent_
union, unused, deprecated and may_alias. Other attributes are defined for functions (see
Section 5.24 [Function Attributes], page 191) and for variables (see Section 5.31 [Variable At-
tributes|, page 205).

You may also specify any one of these attributes with ‘__’ preceding and following its keyword.
This allows you to use these attributes in header files without being concerned about a possible
macro of the same name. For example, you may use __aligned__ instead of aligned.

210 Using the GNU Compiler Collection (GCC)

You may specify the aligned and transparent_union attributes either in a typedef decla-
ration or just past the closing curly brace of a complete enum, struct or union type definition
and the packed attribute only past the closing brace of a definition.

You may also specify attributes between the enum, struct or union tag and the name of the
type rather than after the closing brace.

See Section 5.25 [Attribute Syntax|, page 201, for details of the exact syntax for using at-
tributes.

aligned (alignment)

This attribute specifies a minimum alignment (in bytes) for variables of the specified
type. For example, the declarations:

struct S { short £[3]; } __attribute__ ((aligned (8)));

typedef int more_aligned_int __attribute__ ((aligned (8)));
force the compiler to insure (as far as it can) that each variable whose type is struct
S or more_aligned_int will be allocated and aligned at least on a 8-byte boundary.
On a SPARC, having all variables of type struct S aligned to 8-byte boundaries
allows the compiler to use the 1dd and std (doubleword load and store) instructions
when copying one variable of type struct S to another, thus improving run-time
efficiency.

Note that the alignment of any given struct or union type is required by the ISO
C standard to be at least a perfect multiple of the lowest common multiple of the
alignments of all of the members of the struct or union in question. This means
that you can effectively adjust the alignment of a struct or union type by attaching
an aligned attribute to any one of the members of such a type, but the notation
illustrated in the example above is a more obvious, intuitive, and readable way to
request the compiler to adjust the alignment of an entire struct or union type.

As in the preceding example, you can explicitly specify the alignment (in bytes)
that you wish the compiler to use for a given struct or union type. Alternatively,
you can leave out the alignment factor and just ask the compiler to align a type to
the maximum useful alignment for the target machine you are compiling for. For
example, you could write:

struct S { short f[3]; } attribute ((aligned));

Whenever you leave out the alignment factor in an aligned attribute specification,
the compiler automatically sets the alignment for the type to the largest alignment
which is ever used for any data type on the target machine you are compiling for.
Doing this can often make copy operations more efficient, because the compiler
can use whatever instructions copy the biggest chunks of memory when performing
copies to or from the variables which have types that you have aligned this way.

In the example above, if the size of each short is 2 bytes, then the size of the entire
struct S type is 6 bytes. The smallest power of two which is greater than or equal
to that is 8, so the compiler sets the alignment for the entire struct S type to 8
bytes.

Note that although you can ask the compiler to select a time-efficient alignment
for a given type and then declare only individual stand-alone objects of that type,
the compiler’s ability to select a time-efficient alignment is primarily useful only
when you plan to create arrays of variables having the relevant (efficiently aligned)
type. If you declare or use arrays of variables of an efficiently-aligned type, then it
is likely that your program will also be doing pointer arithmetic (or subscripting,
which amounts to the same thing) on pointers to the relevant type, and the code
that the compiler generates for these pointer arithmetic operations will often be
more efficient for efficiently-aligned types than for other types.

Chapter 5: Extensions to the C Language Family 211

packed

The aligned attribute can only increase the alignment; but you can decrease it by
specifying packed as well. See below.

Note that the effectiveness of aligned attributes may be limited by inherent limita-
tions in your linker. On many systems, the linker is only able to arrange for variables
to be aligned up to a certain maximum alignment. (For some linkers, the maximum
supported alignment may be very very small.) If your linker is only able to align
variables up to a maximum of 8 byte alignment, then specifying aligned(16) in an
__attribute__ will still only provide you with 8 byte alignment. See your linker
documentation for further information.

This attribute, attached to struct or union type definition, specifies that each
member of the structure or union is placed to minimize the memory required. When
attached to an enum definition, it indicates that the smallest integral type should be
used.

Specifying this attribute for struct and union types is equivalent to specifying
the packed attribute on each of the structure or union members. Specifying the
‘~fshort-enums’ flag on the line is equivalent to specifying the packed attribute on
all enum definitions.

In the following example struct my_packed_struct’s members are packed closely
together, but the internal layout of its s member is not packed—to do that, struct
my_unpacked_struct would need to be packed too.
struct my_unpacked_struct
¢ char c;
int i;

};

struct __attribute

- ((__packed__)) my_packed_struct
{

char c;
int 1i;
struct my_unpacked_struct s;
};
You may only specify this attribute on the definition of a enum, struct or union,
not on a typedef which does not also define the enumerated type, structure or
union.

transparent_union

This attribute, attached to a union type definition, indicates that any function
parameter having that union type causes calls to that function to be treated in a
special way.

First, the argument corresponding to a transparent union type can be of any type
in the union; no cast is required. Also, if the union contains a pointer type, the
corresponding argument can be a null pointer constant or a void pointer expression;
and if the union contains a void pointer type, the corresponding argument can be
any pointer expression. If the union member type is a pointer, qualifiers like const
on the referenced type must be respected, just as with normal pointer conversions.

Second, the argument is passed to the function using the calling conventions of
the first member of the transparent union, not the calling conventions of the union
itself. All members of the union must have the same machine representation; this
is necessary for this argument passing to work properly.

Transparent unions are designed for library functions that have multiple interfaces
for compatibility reasons. For example, suppose the wait function must accept
either a value of type int * to comply with Posix, or a value of type union wait *

212

unused

Using the GNU Compiler Collection (GCC)

to comply with the 4.1BSD interface. If wait’s parameter were void *, wait would
accept both kinds of arguments, but it would also accept any other pointer type and
this would make argument type checking less useful. Instead, <sys/wait.h> might
define the interface as follows:

typedef union
{
int *__ip;
union wait *__up;
} wait_status_ptr_t __attribute__ ((__transparent_union__));

pid_t wait (wait_status_ptr_t);

This interface allows either int * or union wait * arguments to be passed, using
the int * calling convention. The program can call wait with arguments of either
type:

int w1 () { int w; return wait (&w); }

int w2 () { union wait w; return wait (&w); }
With this interface, wait’s implementation might look like this:

pid_t wait (wait_status_ptr_t p)
{

return waitpid (-1, p.__ip, 0);
}

When attached to a type (including a union or a struct), this attribute means that
variables of that type are meant to appear possibly unused. GCC will not produce
a warning for any variables of that type, even if the variable appears to do nothing.
This is often the case with lock or thread classes, which are usually defined and
then not referenced, but contain constructors and destructors that have nontrivial
bookkeeping functions.

deprecated

may_alias

The deprecated attribute results in a warning if the type is used anywhere in the
source file. This is useful when identifying types that are expected to be removed in a
future version of a program. If possible, the warning also includes the location of the
declaration of the deprecated type, to enable users to easily find further information
about why the type is deprecated, or what they should do instead. Note that the
warnings only occur for uses and then only if the type is being applied to an identifier
that itself is not being declared as deprecated.

typedef int T1 __attribute__ ((deprecated));
Tl x;

typedef T1 T2;

T2 y;

typedef T1 T3 __attribute__ ((deprecated));
T3 z __attribute ((deprecated)) ;

results in a warning on line 2 and 3 but not lines 4, 5, or 6. No warning is issued
for line 4 because T2 is not explicitly deprecated. Line 5 has no warning because
T3 is explicitly deprecated. Similarly for line 6.

The deprecated attribute can also be used for functions and variables (see Sec-
tion 5.24 [Function Attributes], page 191, see Section 5.31 [Variable Attributes],
page 205.)

Accesses to objects with types with this attribute are not subjected to type-based
alias analysis, but are instead assumed to be able to alias any other type of objects,
just like the char type. See ‘-fstrict-aliasing’ for more information on aliasing
issues.

Example of use:

Chapter 5:

ms_struct
gcc_struct

Extensions to the C Language Family 213

typedef short __attribute__((__may_alias__)) short_a;

int
main (void)

{
int a = 0x12345678;
short_a *b = (short_a *) &a;

b[1] = 0;

if (a == 0x12345678)
abort();

exit (0);
}
If you replaced short_a with short in the variable declaration, the above program
would abort when compiled with ‘~fstrict-aliasing’, which is on by default at
‘-02’ or above in recent GCC versions.

5.32.1 ARM Type Attributes

On those ARM targets that support dllimport (such as Symbian OS), you can use
the notshared attribute to indicate that the virtual table and other similar data
for a class should not be exported from a DLL. For example:

class __declspec(notshared) C {

public:
__declspec(dllimport) CQ);
virtual void f(Q);

}

__declspec(dllexport)

c::cO {3
In this code, C: :C is exported from the current DLL, but the virtual table for C is
not exported. (You can use __attribute__ instead of __declspec if you prefer,
but most Symbian OS code uses __declspec.)

5.32.2 1386 Type Attributes

Two attributes are currently defined for i386 configurations: ms_struct and gcc_
struct

If packed is used on a structure, or if bit-fields are used it may be that the Microsoft
ABI packs them differently than GCC would normally pack them. Particularly when
moving packed data between functions compiled with GCC and the native Microsoft
compiler (either via function call or as data in a file), it may be necessary to access
either format.

Currently ‘-m[no-Jms-bitfields’ is provided for the Microsoft Windows X86 com-
pilers to match the native Microsoft compiler.

To specify multiple attributes, separate them by commas within the double parentheses: for

example,

, ‘__attribute__ ((aligned (16), packed))’.

5.33 An Inline Function is As Fast As a Macro

By declaring a function inline, you can direct GCC to integrate that function’s code into the

code for its
addition, if

callers. This makes execution faster by eliminating the function-call overhead; in
any of the actual argument values are constant, their known values may permit

214 Using the GNU Compiler Collection (GCC)

simplifications at compile time so that not all of the inline function’s code needs to be included.
The effect on code size is less predictable; object code may be larger or smaller with function
inlining, depending on the particular case. Inlining of functions is an optimization and it really
“works” only in optimizing compilation. If you don’t use ‘-0’, no function is really inline.

Inline functions are included in the ISO C99 standard, but there are currently substantial
differences between what GCC implements and what the ISO C99 standard requires.

To declare a function inline, use the inline keyword in its declaration, like this:
inline int
inc (int *a)
{
(*xa)++;
}
(If you are writing a header file to be included in ISO C programs, write __inline__ instead
of inline. See Section 5.38 [Alternate Keywords], page 237.) You can also make all “simple
enough” functions inline with the option ‘-finline-functions’.

Note that certain usages in a function definition can make it unsuitable for inline substitution.
Among these usages are: use of varargs, use of alloca, use of variable sized data types (see
Section 5.13 [Variable Length|, page 186), use of computed goto (see Section 5.3 [Labels as
Values|, page 179), use of nonlocal goto, and nested functions (see Section 5.4 [Nested Functions],
page 180). Using ‘-Winline’ will warn when a function marked inline could not be substituted,
and will give the reason for the failure.

Note that in C and Objective-C, unlike C++, the inline keyword does not affect the linkage
of the function.

GCC automatically inlines member functions defined within the class body of C++
programs even if they are not explicitly declared inline. (You can override this with
‘~fno-default-inline’; see Section 3.5 [Options Controlling C++ Dialect], page 22.)

When a function is both inline and static, if all calls to the function are integrated into
the caller, and the function’s address is never used, then the function’s own assembler code is
never referenced. In this case, GCC does not actually output assembler code for the function,
unless you specify the option ‘~fkeep-inline-functions’. Some calls cannot be integrated for
various reasons (in particular, calls that precede the function’s definition cannot be integrated,
and neither can recursive calls within the definition). If there is a nonintegrated call, then the
function is compiled to assembler code as usual. The function must also be compiled as usual if
the program refers to its address, because that can’t be inlined.

When an inline function is not static, then the compiler must assume that there may be
calls from other source files; since a global symbol can be defined only once in any program, the
function must not be defined in the other source files, so the calls therein cannot be integrated.
Therefore, a non-static inline function is always compiled on its own in the usual fashion.

If you specify both inline and extern in the function definition, then the definition is used
only for inlining. In no case is the function compiled on its own, not even if you refer to its
address explicitly. Such an address becomes an external reference, as if you had only declared
the function, and had not defined it.

This combination of inline and extern has almost the effect of a macro. The way to use it
is to put a function definition in a header file with these keywords, and put another copy of the
definition (lacking inline and extern) in a library file. The definition in the header file will
cause most calls to the function to be inlined. If any uses of the function remain, they will refer
to the single copy in the library.

Since GCC eventually will implement ISO C99 semantics for inline functions, it is best to use
static inline only to guarantee compatibility. (The existing semantics will remain available

Chapter 5: Extensions to the C Language Family 215

when ‘-std=gnu89’ is specified, but eventually the default will be ‘-std=gnu99’ and that will
implement the C99 semantics, though it does not do so yet.)

GCC does not inline any functions when not optimizing unless you specify the
‘always_inline’ attribute for the function, like this:

/* Prototype. */
inline void foo (const char) __attribute__((always_inline));

5.34 Assembler Instructions with C Expression Operands

In an assembler instruction using asm, you can specify the operands of the instruction using C
expressions. This means you need not guess which registers or memory locations will contain
the data you want to use.

You must specify an assembler instruction template much like what appears in a machine
description, plus an operand constraint string for each operand.

For example, here is how to use the 68881’s fsinx instruction:
asm ("fsinx %1,%0" : "=f" (result) : "f" (angle));

Here angle is the C expression for the input operand while result is that of the output operand.
Each has ‘"f"’ as its operand constraint, saying that a floating point register is required. The
‘=" in ‘=f’ indicates that the operand is an output; all output operands’ constraints must use
. The constraints use the same language used in the machine description (see Section 5.35
[Constraints], page 220).

[

Each operand is described by an operand-constraint string followed by the C expression in
parentheses. A colon separates the assembler template from the first output operand and another
separates the last output operand from the first input, if any. Commas separate the operands
within each group. The total number of operands is currently limited to 30; this limitation may
be lifted in some future version of GCC.

If there are no output operands but there are input operands, you must place two consecutive
colons surrounding the place where the output operands would go.

As of GCC version 3.1, it is also possible to specify input and output operands using symbolic
names which can be referenced within the assembler code. These names are specified inside
square brackets preceding the constraint string, and can be referenced inside the assembler code
using %[name] instead of a percentage sign followed by the operand number. Using named
operands the above example could look like:

asm ("fsinx %[anglel,’ [output]"
: [output] "=f" (result)
: [angle] "f" (angle));
Note that the symbolic operand names have no relation whatsoever to other C identifiers. You
may use any name you like, even those of existing C symbols, but you must ensure that no two
operands within the same assembler construct use the same symbolic name.

Output operand expressions must be lvalues; the compiler can check this. The input operands
need not be lvalues. The compiler cannot check whether the operands have data types that
are reasonable for the instruction being executed. It does not parse the assembler instruction
template and does not know what it means or even whether it is valid assembler input. The
extended asm feature is most often used for machine instructions the compiler itself does not
know exist. If the output expression cannot be directly addressed (for example, it is a bit-field),
your constraint must allow a register. In that case, GCC will use the register as the output of
the asm, and then store that register into the output.

The ordinary output operands must be write-only; GCC will assume that the values in these
operands before the instruction are dead and need not be generated. Extended asm supports
input-output or read-write operands. Use the constraint character ‘+’ to indicate such an operand

216 Using the GNU Compiler Collection (GCC)

and list it with the output operands. You should only use read-write operands when the con-
straints for the operand (or the operand in which only some of the bits are to be changed) allow
a register.

You may, as an alternative, logically split its function into two separate operands, one input
operand and one write-only output operand. The connection between them is expressed by
constraints which say they need to be in the same location when the instruction executes. You
can use the same C expression for both operands, or different expressions. For example, here
we write the (fictitious) ‘combine’ instruction with bar as its read-only source operand and foo
as its read-write destination:

asm ("combine %2,%0" : "=r" (foo) : "0" (foo), "g" (bar));

The constraint ‘"0"’ for operand 1 says that it must occupy the same location as operand 0. A
number in constraint is allowed only in an input operand and it must refer to an output operand.

Only a number in the constraint can guarantee that one operand will be in the same place as
another. The mere fact that foo is the value of both operands is not enough to guarantee that
they will be in the same place in the generated assembler code. The following would not work
reliably:

asm ("combine %2,%0" : "=r" (foo) : "r" (foo), "g" (bar));

Various optimizations or reloading could cause operands 0 and 1 to be in different registers;
GCC knows no reason not to do so. For example, the compiler might find a copy of the value
of foo in one register and use it for operand 1, but generate the output operand 0 in a different
register (copying it afterward to foo’s own address). Of course, since the register for operand 1
is not even mentioned in the assembler code, the result will not work, but GCC can’t tell that.

As of GCC version 3.1, one may write [name] instead of the operand number for a matching
constraint. For example:
asm ("cmoveq %1,%2,%[result]"
¢ [result] "=r"(result)
: "r" (test), "r"(new), "[result]"(old));

Sometimes you need to make an asm operand be a specific register, but there’s no matching
constraint letter for that register by itself. To force the operand into that register, use a local
variable for the operand and specify the register in the variable declaration. See Section 5.37
[Explicit Reg Vars|, page 235. Then for the asm operand, use any register constraint letter that
matches the register:

register int *pl asm ("r0") cees
register int *p2 asm ("ri1") = ..
register int *result asm ("r0");
asm ("sysint" : "=r" (result) : "O" (p1), "r" (p2));

Ll

In the above example, beware that a register that is call-clobbered by the target ABI will be
overwritten by any function call in the assignment, including library calls for arithmetic opera-
tors. Assuming it is a call-clobbered register, this may happen to r0 above by the assignment
to p2. If you have to use such a register, use temporary variables for expressions between the
register assignment and use:

int t1 = ...;

register int *pl asm ("rO") = ...;

register int *p2 asm ("rl") = ti;

register int *result asm ("r0");

asm ("sysint" : "=r" (result) : "O" (p1), "r" (p2));

Some instructions clobber specific hard registers. To describe this, write a third colon after
the input operands, followed by the names of the clobbered hard registers (given as strings).
Here is a realistic example for the VAX:

asm volatile ("movc3 %0,%1,%2"
: /* no outputs */
. ugu (from), Ilgll (tO), ugn (count)

Chapter 5: Extensions to the C Language Family 217

: "I‘O", "r1", "r2", "I‘S", "I'4", "r5");

You may not write a clobber description in a way that overlaps with an input or output
operand. For example, you may not have an operand describing a register class with one member
if you mention that register in the clobber list. Variables declared to live in specific registers
(see Section 5.37 [Explicit Reg Vars], page 235), and used as asm input or output operands must
have no part mentioned in the clobber description. There is no way for you to specify that an
input operand is modified without also specifying it as an output operand. Note that if all the
output operands you specify are for this purpose (and hence unused), you will then also need to
specify volatile for the asm construct, as described below, to prevent GCC from deleting the
asm statement as unused.

If you refer to a particular hardware register from the assembler code, you will probably have
to list the register after the third colon to tell the compiler the register’s value is modified. In
some assemblers, the register names begin with ‘%’; to produce one ‘7’ in the assembler code,
you must write ‘%%’ in the input.

If your assembler instruction can alter the condition code register, add ‘cc’ to the list of
clobbered registers. GCC on some machines represents the condition codes as a specific hardware
register; ‘cc’ serves to name this register. On other machines, the condition code is handled
differently, and specifying ‘cc’ has no effect. But it is valid no matter what the machine.

If your assembler instructions access memory in an unpredictable fashion, add ‘memory’ to the
list of clobbered registers. This will cause GCC to not keep memory values cached in registers
across the assembler instruction and not optimize stores or loads to that memory. You will also
want to add the volatile keyword if the memory affected is not listed in the inputs or outputs
of the asm, as the ‘memory’ clobber does not count as a side-effect of the asm. If you know how
large the accessed memory is, you can add it as input or output but if this is not known, you
should add ‘memory’. As an example, if you access ten bytes of a string, you can use a memory
input like:

{"m"(({ struct { char x[10]; } *p = (void *)ptr ; *p; }))I}.

Note that in the following example the memory input is necessary, otherwise GCC might
optimize the store to x away:

int foo ()
{
int x = 42;
int *y = &x;
int result;
asm ("magic stuff accessing an ’int’ pointed to by ’%1’"
Il=&dll (r) . llall (y) . Ilmll (*y)) ;
return result;
}

You can put multiple assembler instructions together in a single asm template, separated by
the characters normally used in assembly code for the system. A combination that works in
most places is a newline to break the line, plus a tab character to move to the instruction field
(written as ‘\n\t’). Sometimes semicolons can be used, if the assembler allows semicolons as a
line-breaking character. Note that some assembler dialects use semicolons to start a comment.
The input operands are guaranteed not to use any of the clobbered registers, and neither will
the output operands’ addresses, so you can read and write the clobbered registers as many times
as you like. Here is an example of multiple instructions in a template; it assumes the subroutine
_foo accepts arguments in registers 9 and 10:

asm ("movl %0,r9\n\tmovl %1,r10\n\tcall _foo"
: /* no outputs */
: llgll (from) , llgll (to)
. Ilrgll’ "r10");

Unless an output operand has the ‘&’ constraint modifier, GCC may allocate it in the same
register as an unrelated input operand, on the assumption the inputs are consumed before the

218 Using the GNU Compiler Collection (GCC)

outputs are produced. This assumption may be false if the assembler code actually consists of
more than one instruction. In such a case, use ‘&’ for each output operand that may not overlap
an input. See Section 5.35.3 [Modifiers|, page 223.

If you want to test the condition code produced by an assembler instruction, you must include
a branch and a label in the asm construct, as follows:
asm ("clr %0\n\tfrob %1\n\tbeq Of\n\tmov #1,%0\n0:"
: "g" (result)
: "g" (input));
This assumes your assembler supports local labels, as the GNU assembler and most Unix as-
semblers do.

Speaking of labels, jumps from one asm to another are not supported. The compiler’s opti-
mizers do not know about these jumps, and therefore they cannot take account of them when
deciding how to optimize.

Usually the most convenient way to use these asm instructions is to encapsulate them in
macros that look like functions. For example,

#define sin(x) \

({ double __value, __arg = (x); \
asm ("fsinx %1,%0": "=f" (__value): "f" (__arg)); \
__value; })

Here the variable __arg is used to make sure that the instruction operates on a proper double
value, and to accept only those arguments x which can convert automatically to a double.

Another way to make sure the instruction operates on the correct data type is to use a cast in
the asm. This is different from using a variable __arg in that it converts more different types.
For example, if the desired type were int, casting the argument to int would accept a pointer
with no complaint, while assigning the argument to an int variable named __arg would warn
about using a pointer unless the caller explicitly casts it.

If an asm has output operands, GCC assumes for optimization purposes the instruction has
no side effects except to change the output operands. This does not mean instructions with
a side effect cannot be used, but you must be careful, because the compiler may eliminate
them if the output operands aren’t u