Ruby  2.0.0p648(2015-12-16revision53162)
ancdata.c
Go to the documentation of this file.
1 #include "rubysocket.h"
2 
3 #include <time.h>
4 
5 #if defined(HAVE_ST_MSG_CONTROL)
6 static VALUE rb_cAncillaryData;
7 
8 static VALUE
9 constant_to_sym(int constant, ID (*intern_const)(int))
10 {
11  ID name = intern_const(constant);
12  if (name) {
13  return ID2SYM(name);
14  }
15 
16  return INT2NUM(constant);
17 }
18 
19 static VALUE
20 ip_cmsg_type_to_sym(int level, int cmsg_type)
21 {
22  switch (level) {
23  case SOL_SOCKET:
24  return constant_to_sym(cmsg_type, rsock_intern_scm_optname);
25  case IPPROTO_IP:
26  return constant_to_sym(cmsg_type, rsock_intern_ip_optname);
27 #ifdef IPPROTO_IPV6
28  case IPPROTO_IPV6:
29  return constant_to_sym(cmsg_type, rsock_intern_ipv6_optname);
30 #endif
31  case IPPROTO_TCP:
32  return constant_to_sym(cmsg_type, rsock_intern_tcp_optname);
33  case IPPROTO_UDP:
34  return constant_to_sym(cmsg_type, rsock_intern_udp_optname);
35  default:
36  return INT2NUM(cmsg_type);
37  }
38 }
39 
40 /*
41  * call-seq:
42  * Socket::AncillaryData.new(family, cmsg_level, cmsg_type, cmsg_data) -> ancillarydata
43  *
44  * _family_ should be an integer, a string or a symbol.
45  * - Socket::AF_INET, "AF_INET", "INET", :AF_INET, :INET
46  * - Socket::AF_UNIX, "AF_UNIX", "UNIX", :AF_UNIX, :UNIX
47  * - etc.
48  *
49  * _cmsg_level_ should be an integer, a string or a symbol.
50  * - Socket::SOL_SOCKET, "SOL_SOCKET", "SOCKET", :SOL_SOCKET and :SOCKET
51  * - Socket::IPPROTO_IP, "IP" and :IP
52  * - Socket::IPPROTO_IPV6, "IPV6" and :IPV6
53  * - Socket::IPPROTO_TCP, "TCP" and :TCP
54  * - etc.
55  *
56  * _cmsg_type_ should be an integer, a string or a symbol.
57  * If a string/symbol is specified, it is interpreted depend on _cmsg_level_.
58  * - Socket::SCM_RIGHTS, "SCM_RIGHTS", "RIGHTS", :SCM_RIGHTS, :RIGHTS for SOL_SOCKET
59  * - Socket::IP_RECVTTL, "RECVTTL" and :RECVTTL for IPPROTO_IP
60  * - Socket::IPV6_PKTINFO, "PKTINFO" and :PKTINFO for IPPROTO_IPV6
61  * - etc.
62  *
63  * _cmsg_data_ should be a string.
64  *
65  * p Socket::AncillaryData.new(:INET, :TCP, :NODELAY, "")
66  * #=> #<Socket::AncillaryData: INET TCP NODELAY "">
67  *
68  * p Socket::AncillaryData.new(:INET6, :IPV6, :PKTINFO, "")
69  * #=> #<Socket::AncillaryData: INET6 IPV6 PKTINFO "">
70  *
71  */
72 static VALUE
73 ancillary_initialize(VALUE self, VALUE vfamily, VALUE vlevel, VALUE vtype, VALUE data)
74 {
75  int family = rsock_family_arg(vfamily);
76  int level = rsock_level_arg(family, vlevel);
77  int type = rsock_cmsg_type_arg(family, level, vtype);
78  StringValue(data);
79  rb_ivar_set(self, rb_intern("family"), INT2NUM(family));
80  rb_ivar_set(self, rb_intern("level"), INT2NUM(level));
81  rb_ivar_set(self, rb_intern("type"), INT2NUM(type));
82  rb_ivar_set(self, rb_intern("data"), data);
83  return self;
84 }
85 
86 static VALUE
87 ancdata_new(int family, int level, int type, VALUE data)
88 {
89  NEWOBJ_OF(obj, struct RObject, rb_cAncillaryData, T_OBJECT);
90  StringValue(data);
91  ancillary_initialize((VALUE)obj, INT2NUM(family), INT2NUM(level), INT2NUM(type), data);
92  return (VALUE)obj;
93 }
94 
95 static int
96 ancillary_family(VALUE self)
97 {
98  VALUE v = rb_attr_get(self, rb_intern("family"));
99  return NUM2INT(v);
100 }
101 
102 /*
103  * call-seq:
104  * ancillarydata.family => integer
105  *
106  * returns the socket family as an integer.
107  *
108  * p Socket::AncillaryData.new(:INET6, :IPV6, :PKTINFO, "").family
109  * #=> 10
110  */
111 static VALUE
112 ancillary_family_m(VALUE self)
113 {
114  return INT2NUM(ancillary_family(self));
115 }
116 
117 static int
118 ancillary_level(VALUE self)
119 {
120  VALUE v = rb_attr_get(self, rb_intern("level"));
121  return NUM2INT(v);
122 }
123 
124 /*
125  * call-seq:
126  * ancillarydata.level => integer
127  *
128  * returns the cmsg level as an integer.
129  *
130  * p Socket::AncillaryData.new(:INET6, :IPV6, :PKTINFO, "").level
131  * #=> 41
132  */
133 static VALUE
134 ancillary_level_m(VALUE self)
135 {
136  return INT2NUM(ancillary_level(self));
137 }
138 
139 static int
140 ancillary_type(VALUE self)
141 {
142  VALUE v = rb_attr_get(self, rb_intern("type"));
143  return NUM2INT(v);
144 }
145 
146 /*
147  * call-seq:
148  * ancillarydata.type => integer
149  *
150  * returns the cmsg type as an integer.
151  *
152  * p Socket::AncillaryData.new(:INET6, :IPV6, :PKTINFO, "").type
153  * #=> 2
154  */
155 static VALUE
156 ancillary_type_m(VALUE self)
157 {
158  return INT2NUM(ancillary_type(self));
159 }
160 
161 /*
162  * call-seq:
163  * ancillarydata.data => string
164  *
165  * returns the cmsg data as a string.
166  *
167  * p Socket::AncillaryData.new(:INET6, :IPV6, :PKTINFO, "").data
168  * #=> ""
169  */
170 static VALUE
171 ancillary_data(VALUE self)
172 {
173  VALUE v = rb_attr_get(self, rb_intern("data"));
174  StringValue(v);
175  return v;
176 }
177 
178 #ifdef SCM_RIGHTS
179 /*
180  * call-seq:
181  * Socket::AncillaryData.unix_rights(io1, io2, ...) => ancillarydata
182  *
183  * Creates a new Socket::AncillaryData object which contains file descriptors as data.
184  *
185  * p Socket::AncillaryData.unix_rights(STDERR)
186  * #=> #<Socket::AncillaryData: UNIX SOCKET RIGHTS 2>
187  */
188 static VALUE
189 ancillary_s_unix_rights(int argc, VALUE *argv, VALUE klass)
190 {
191  VALUE result, str, ary;
192  int i;
193 
194  ary = rb_ary_new();
195 
196  for (i = 0 ; i < argc; i++) {
197  VALUE obj = argv[i];
198  if (!RB_TYPE_P(obj, T_FILE)) {
199  rb_raise(rb_eTypeError, "IO expected");
200  }
201  rb_ary_push(ary, obj);
202  }
203 
204  str = rb_str_buf_new(sizeof(int) * argc);
205 
206  for (i = 0 ; i < argc; i++) {
207  VALUE obj = RARRAY_PTR(ary)[i];
208  rb_io_t *fptr;
209  int fd;
210  GetOpenFile(obj, fptr);
211  fd = fptr->fd;
212  rb_str_buf_cat(str, (char *)&fd, sizeof(int));
213  }
214 
215  result = ancdata_new(AF_UNIX, SOL_SOCKET, SCM_RIGHTS, str);
216  rb_ivar_set(result, rb_intern("unix_rights"), ary);
217  return result;
218 }
219 #else
220 #define ancillary_s_unix_rights rb_f_notimplement
221 #endif
222 
223 #ifdef SCM_RIGHTS
224 /*
225  * call-seq:
226  * ancillarydata.unix_rights => array-of-IOs or nil
227  *
228  * returns the array of IO objects for SCM_RIGHTS control message in UNIX domain socket.
229  *
230  * The class of the IO objects in the array is IO or Socket.
231  *
232  * The array is attached to _ancillarydata_ when it is instantiated.
233  * For example, BasicSocket#recvmsg attach the array when
234  * receives a SCM_RIGHTS control message and :scm_rights=>true option is given.
235  *
236  * # recvmsg needs :scm_rights=>true for unix_rights
237  * s1, s2 = UNIXSocket.pair
238  * p s1 #=> #<UNIXSocket:fd 3>
239  * s1.sendmsg "stdin and a socket", 0, nil, Socket::AncillaryData.unix_rights(STDIN, s1)
240  * _, _, _, ctl = s2.recvmsg(:scm_rights=>true)
241  * p ctl #=> #<Socket::AncillaryData: UNIX SOCKET RIGHTS 6 7>
242  * p ctl.unix_rights #=> [#<IO:fd 6>, #<Socket:fd 7>]
243  * p File.identical?(STDIN, ctl.unix_rights[0]) #=> true
244  * p File.identical?(s1, ctl.unix_rights[1]) #=> true
245  *
246  * # If :scm_rights=>true is not given, unix_rights returns nil
247  * s1, s2 = UNIXSocket.pair
248  * s1.sendmsg "stdin and a socket", 0, nil, Socket::AncillaryData.unix_rights(STDIN, s1)
249  * _, _, _, ctl = s2.recvmsg
250  * p ctl #=> #<Socket::AncillaryData: UNIX SOCKET RIGHTS 6 7>
251  * p ctl.unix_rights #=> nil
252  *
253  */
254 static VALUE
255 ancillary_unix_rights(VALUE self)
256 {
257  int level, type;
258 
259  level = ancillary_level(self);
260  type = ancillary_type(self);
261 
262  if (level != SOL_SOCKET || type != SCM_RIGHTS)
263  rb_raise(rb_eTypeError, "SCM_RIGHTS ancillary data expected");
264 
265  return rb_attr_get(self, rb_intern("unix_rights"));
266 }
267 #else
268 #define ancillary_unix_rights rb_f_notimplement
269 #endif
270 
271 #if defined(SCM_TIMESTAMP) || defined(SCM_TIMESTAMPNS) || defined(SCM_BINTIME)
272 /*
273  * call-seq:
274  * ancillarydata.timestamp => time
275  *
276  * returns the timestamp as a time object.
277  *
278  * _ancillarydata_ should be one of following type:
279  * - SOL_SOCKET/SCM_TIMESTAMP (micro second) GNU/Linux, FreeBSD, NetBSD, OpenBSD, Solaris, MacOS X
280  * - SOL_SOCKET/SCM_TIMESTAMPNS (nano second) GNU/Linux
281  * - SOL_SOCKET/SCM_BINTIME (2**(-64) second) FreeBSD
282  *
283  * Addrinfo.udp("127.0.0.1", 0).bind {|s1|
284  * Addrinfo.udp("127.0.0.1", 0).bind {|s2|
285  * s1.setsockopt(:SOCKET, :TIMESTAMP, true)
286  * s2.send "a", 0, s1.local_address
287  * ctl = s1.recvmsg.last
288  * p ctl #=> #<Socket::AncillaryData: INET SOCKET TIMESTAMP 2009-02-24 17:35:46.775581>
289  * t = ctl.timestamp
290  * p t #=> 2009-02-24 17:35:46 +0900
291  * p t.usec #=> 775581
292  * p t.nsec #=> 775581000
293  * }
294  * }
295  *
296  */
297 static VALUE
298 ancillary_timestamp(VALUE self)
299 {
300  int level, type;
301  VALUE data;
302  VALUE result = Qnil;
303 
304  level = ancillary_level(self);
305  type = ancillary_type(self);
306  data = ancillary_data(self);
307 
308 # ifdef SCM_TIMESTAMP
309  if (level == SOL_SOCKET && type == SCM_TIMESTAMP &&
310  RSTRING_LEN(data) == sizeof(struct timeval)) {
311  struct timeval tv;
312  memcpy((char*)&tv, RSTRING_PTR(data), sizeof(tv));
313  result = rb_time_new(tv.tv_sec, tv.tv_usec);
314  }
315 # endif
316 
317 # ifdef SCM_TIMESTAMPNS
318  if (level == SOL_SOCKET && type == SCM_TIMESTAMPNS &&
319  RSTRING_LEN(data) == sizeof(struct timespec)) {
320  struct timespec ts;
321  memcpy((char*)&ts, RSTRING_PTR(data), sizeof(ts));
322  result = rb_time_nano_new(ts.tv_sec, ts.tv_nsec);
323  }
324 # endif
325 
326 #define add(x,y) (rb_funcall((x), '+', 1, (y)))
327 #define mul(x,y) (rb_funcall((x), '*', 1, (y)))
328 #define quo(x,y) (rb_funcall((x), rb_intern("quo"), 1, (y)))
329 
330 # ifdef SCM_BINTIME
331  if (level == SOL_SOCKET && type == SCM_BINTIME &&
332  RSTRING_LEN(data) == sizeof(struct bintime)) {
333  struct bintime bt;
334  VALUE d, timev;
335  memcpy((char*)&bt, RSTRING_PTR(data), sizeof(bt));
336  d = ULL2NUM(0x100000000ULL);
337  d = mul(d,d);
338  timev = add(TIMET2NUM(bt.sec), quo(ULL2NUM(bt.frac), d));
339  result = rb_time_num_new(timev, Qnil);
340  }
341 # endif
342 
343  if (result == Qnil)
344  rb_raise(rb_eTypeError, "timestamp ancillary data expected");
345 
346  return result;
347 }
348 #else
349 #define ancillary_timestamp rb_f_notimplement
350 #endif
351 
352 /*
353  * call-seq:
354  * Socket::AncillaryData.int(family, cmsg_level, cmsg_type, integer) => ancillarydata
355  *
356  * Creates a new Socket::AncillaryData object which contains a int as data.
357  *
358  * The size and endian is dependent on the host.
359  *
360  * p Socket::AncillaryData.int(:UNIX, :SOCKET, :RIGHTS, STDERR.fileno)
361  * #=> #<Socket::AncillaryData: UNIX SOCKET RIGHTS 2>
362  */
363 static VALUE
364 ancillary_s_int(VALUE klass, VALUE vfamily, VALUE vlevel, VALUE vtype, VALUE integer)
365 {
366  int family = rsock_family_arg(vfamily);
367  int level = rsock_level_arg(family, vlevel);
368  int type = rsock_cmsg_type_arg(family, level, vtype);
369  int i = NUM2INT(integer);
370  return ancdata_new(family, level, type, rb_str_new((char*)&i, sizeof(i)));
371 }
372 
373 /*
374  * call-seq:
375  * ancillarydata.int => integer
376  *
377  * Returns the data in _ancillarydata_ as an int.
378  *
379  * The size and endian is dependent on the host.
380  *
381  * ancdata = Socket::AncillaryData.int(:UNIX, :SOCKET, :RIGHTS, STDERR.fileno)
382  * p ancdata.int #=> 2
383  */
384 static VALUE
385 ancillary_int(VALUE self)
386 {
387  VALUE data;
388  int i;
389  data = ancillary_data(self);
390  if (RSTRING_LEN(data) != sizeof(int))
391  rb_raise(rb_eTypeError, "size differ. expected as sizeof(int)=%d but %ld", (int)sizeof(int), (long)RSTRING_LEN(data));
392  memcpy((char*)&i, RSTRING_PTR(data), sizeof(int));
393  return INT2NUM(i);
394 }
395 
396 #if defined(IPPROTO_IP) && defined(IP_PKTINFO) && defined(HAVE_STRUCT_IN_PKTINFO_IPI_SPEC_DST) /* GNU/Linux */
397 /*
398  * call-seq:
399  * Socket::AncillaryData.ip_pktinfo(addr, ifindex) => ancdata
400  * Socket::AncillaryData.ip_pktinfo(addr, ifindex, spec_dst) => ancdata
401  *
402  * Returns new ancillary data for IP_PKTINFO.
403  *
404  * If spec_dst is not given, addr is used.
405  *
406  * IP_PKTINFO is not standard.
407  *
408  * Supported platform: GNU/Linux
409  *
410  * addr = Addrinfo.ip("127.0.0.1")
411  * ifindex = 0
412  * spec_dst = Addrinfo.ip("127.0.0.1")
413  * p Socket::AncillaryData.ip_pktinfo(addr, ifindex, spec_dst)
414  * #=> #<Socket::AncillaryData: INET IP PKTINFO 127.0.0.1 ifindex:0 spec_dst:127.0.0.1>
415  *
416  */
417 static VALUE
418 ancillary_s_ip_pktinfo(int argc, VALUE *argv, VALUE self)
419 {
420  VALUE v_addr, v_ifindex, v_spec_dst;
421  unsigned int ifindex;
422  struct sockaddr_in sa;
423  struct in_pktinfo pktinfo;
424 
425  rb_scan_args(argc, argv, "21", &v_addr, &v_ifindex, &v_spec_dst);
426 
427  SockAddrStringValue(v_addr);
428  ifindex = NUM2UINT(v_ifindex);
429  if (NIL_P(v_spec_dst))
430  v_spec_dst = v_addr;
431  else
432  SockAddrStringValue(v_spec_dst);
433 
434  memset(&pktinfo, 0, sizeof(pktinfo));
435 
436  memset(&sa, 0, sizeof(sa));
437  if (RSTRING_LEN(v_addr) != sizeof(sa))
438  rb_raise(rb_eArgError, "addr size different to AF_INET sockaddr");
439  memcpy(&sa, RSTRING_PTR(v_addr), sizeof(sa));
440  if (sa.sin_family != AF_INET)
441  rb_raise(rb_eArgError, "addr is not AF_INET sockaddr");
442  memcpy(&pktinfo.ipi_addr, &sa.sin_addr, sizeof(pktinfo.ipi_addr));
443 
444  pktinfo.ipi_ifindex = ifindex;
445 
446  memset(&sa, 0, sizeof(sa));
447  if (RSTRING_LEN(v_spec_dst) != sizeof(sa))
448  rb_raise(rb_eArgError, "spec_dat size different to AF_INET sockaddr");
449  memcpy(&sa, RSTRING_PTR(v_spec_dst), sizeof(sa));
450  if (sa.sin_family != AF_INET)
451  rb_raise(rb_eArgError, "spec_dst is not AF_INET sockaddr");
452  memcpy(&pktinfo.ipi_spec_dst, &sa.sin_addr, sizeof(pktinfo.ipi_spec_dst));
453 
454  return ancdata_new(AF_INET, IPPROTO_IP, IP_PKTINFO, rb_str_new((char *)&pktinfo, sizeof(pktinfo)));
455 }
456 #else
457 #define ancillary_s_ip_pktinfo rb_f_notimplement
458 #endif
459 
460 #if defined(IPPROTO_IP) && defined(IP_PKTINFO) && defined(HAVE_STRUCT_IN_PKTINFO_IPI_SPEC_DST) /* GNU/Linux */
461 /*
462  * call-seq:
463  * ancdata.ip_pktinfo => [addr, ifindex, spec_dst]
464  *
465  * Extracts addr, ifindex and spec_dst from IP_PKTINFO ancillary data.
466  *
467  * IP_PKTINFO is not standard.
468  *
469  * Supported platform: GNU/Linux
470  *
471  * addr = Addrinfo.ip("127.0.0.1")
472  * ifindex = 0
473  * spec_dest = Addrinfo.ip("127.0.0.1")
474  * ancdata = Socket::AncillaryData.ip_pktinfo(addr, ifindex, spec_dest)
475  * p ancdata.ip_pktinfo
476  * #=> [#<Addrinfo: 127.0.0.1>, 0, #<Addrinfo: 127.0.0.1>]
477  *
478  *
479  */
480 static VALUE
481 ancillary_ip_pktinfo(VALUE self)
482 {
483  int level, type;
484  VALUE data;
485  struct in_pktinfo pktinfo;
486  struct sockaddr_in sa;
487  VALUE v_spec_dst, v_addr;
488 
489  level = ancillary_level(self);
490  type = ancillary_type(self);
491  data = ancillary_data(self);
492 
493  if (level != IPPROTO_IP || type != IP_PKTINFO ||
494  RSTRING_LEN(data) != sizeof(struct in_pktinfo)) {
495  rb_raise(rb_eTypeError, "IP_PKTINFO ancillary data expected");
496  }
497 
498  memcpy(&pktinfo, RSTRING_PTR(data), sizeof(struct in_pktinfo));
499  memset(&sa, 0, sizeof(sa));
500 
501  sa.sin_family = AF_INET;
502  memcpy(&sa.sin_addr, &pktinfo.ipi_addr, sizeof(sa.sin_addr));
503  v_addr = rsock_addrinfo_new((struct sockaddr *)&sa, sizeof(sa), PF_INET, 0, 0, Qnil, Qnil);
504 
505  sa.sin_family = AF_INET;
506  memcpy(&sa.sin_addr, &pktinfo.ipi_spec_dst, sizeof(sa.sin_addr));
507  v_spec_dst = rsock_addrinfo_new((struct sockaddr *)&sa, sizeof(sa), PF_INET, 0, 0, Qnil, Qnil);
508 
509  return rb_ary_new3(3, v_addr, UINT2NUM(pktinfo.ipi_ifindex), v_spec_dst);
510 }
511 #else
512 #define ancillary_ip_pktinfo rb_f_notimplement
513 #endif
514 
515 #if defined(IPPROTO_IPV6) && defined(IPV6_PKTINFO) /* IPv6 RFC3542 */
516 /*
517  * call-seq:
518  * Socket::AncillaryData.ipv6_pktinfo(addr, ifindex) => ancdata
519  *
520  * Returns new ancillary data for IPV6_PKTINFO.
521  *
522  * IPV6_PKTINFO is defined by RFC 3542.
523  *
524  * addr = Addrinfo.ip("::1")
525  * ifindex = 0
526  * p Socket::AncillaryData.ipv6_pktinfo(addr, ifindex)
527  * #=> #<Socket::AncillaryData: INET6 IPV6 PKTINFO ::1 ifindex:0>
528  *
529  */
530 static VALUE
531 ancillary_s_ipv6_pktinfo(VALUE self, VALUE v_addr, VALUE v_ifindex)
532 {
533  unsigned int ifindex;
534  struct sockaddr_in6 sa;
535  struct in6_pktinfo pktinfo;
536 
537  SockAddrStringValue(v_addr);
538  ifindex = NUM2UINT(v_ifindex);
539 
540  memset(&pktinfo, 0, sizeof(pktinfo));
541 
542  memset(&sa, 0, sizeof(sa));
543  if (RSTRING_LEN(v_addr) != sizeof(sa))
544  rb_raise(rb_eArgError, "addr size different to AF_INET6 sockaddr");
545  memcpy(&sa, RSTRING_PTR(v_addr), sizeof(sa));
546  if (sa.sin6_family != AF_INET6)
547  rb_raise(rb_eArgError, "addr is not AF_INET6 sockaddr");
548  memcpy(&pktinfo.ipi6_addr, &sa.sin6_addr, sizeof(pktinfo.ipi6_addr));
549 
550  pktinfo.ipi6_ifindex = ifindex;
551 
552  return ancdata_new(AF_INET6, IPPROTO_IPV6, IPV6_PKTINFO, rb_str_new((char *)&pktinfo, sizeof(pktinfo)));
553 }
554 #else
555 #define ancillary_s_ipv6_pktinfo rb_f_notimplement
556 #endif
557 
558 #if defined(IPPROTO_IPV6) && defined(IPV6_PKTINFO) /* IPv6 RFC3542 */
559 static void
560 extract_ipv6_pktinfo(VALUE self, struct in6_pktinfo *pktinfo_ptr, struct sockaddr_in6 *sa_ptr)
561 {
562  int level, type;
563  VALUE data;
564 
565  level = ancillary_level(self);
566  type = ancillary_type(self);
567  data = ancillary_data(self);
568 
569  if (level != IPPROTO_IPV6 || type != IPV6_PKTINFO ||
570  RSTRING_LEN(data) != sizeof(struct in6_pktinfo)) {
571  rb_raise(rb_eTypeError, "IPV6_PKTINFO ancillary data expected");
572  }
573 
574  memcpy(pktinfo_ptr, RSTRING_PTR(data), sizeof(*pktinfo_ptr));
575 
576  memset(sa_ptr, 0, sizeof(*sa_ptr));
577  SET_SA_LEN((struct sockaddr *)sa_ptr, sizeof(struct sockaddr_in6));
578  sa_ptr->sin6_family = AF_INET6;
579  memcpy(&sa_ptr->sin6_addr, &pktinfo_ptr->ipi6_addr, sizeof(sa_ptr->sin6_addr));
580  if (IN6_IS_ADDR_LINKLOCAL(&sa_ptr->sin6_addr))
581  sa_ptr->sin6_scope_id = pktinfo_ptr->ipi6_ifindex;
582 }
583 #endif
584 
585 #if defined(IPPROTO_IPV6) && defined(IPV6_PKTINFO) /* IPv6 RFC3542 */
586 /*
587  * call-seq:
588  * ancdata.ipv6_pktinfo => [addr, ifindex]
589  *
590  * Extracts addr and ifindex from IPV6_PKTINFO ancillary data.
591  *
592  * IPV6_PKTINFO is defined by RFC 3542.
593  *
594  * addr = Addrinfo.ip("::1")
595  * ifindex = 0
596  * ancdata = Socket::AncillaryData.ipv6_pktinfo(addr, ifindex)
597  * p ancdata.ipv6_pktinfo #=> [#<Addrinfo: ::1>, 0]
598  *
599  */
600 static VALUE
601 ancillary_ipv6_pktinfo(VALUE self)
602 {
603  struct in6_pktinfo pktinfo;
604  struct sockaddr_in6 sa;
605  VALUE v_addr;
606 
607  extract_ipv6_pktinfo(self, &pktinfo, &sa);
608  v_addr = rsock_addrinfo_new((struct sockaddr *)&sa, (socklen_t)sizeof(sa), PF_INET6, 0, 0, Qnil, Qnil);
609  return rb_ary_new3(2, v_addr, UINT2NUM(pktinfo.ipi6_ifindex));
610 }
611 #else
612 #define ancillary_ipv6_pktinfo rb_f_notimplement
613 #endif
614 
615 #if defined(IPPROTO_IPV6) && defined(IPV6_PKTINFO) /* IPv6 RFC3542 */
616 /*
617  * call-seq:
618  * ancdata.ipv6_pktinfo_addr => addr
619  *
620  * Extracts addr from IPV6_PKTINFO ancillary data.
621  *
622  * IPV6_PKTINFO is defined by RFC 3542.
623  *
624  * addr = Addrinfo.ip("::1")
625  * ifindex = 0
626  * ancdata = Socket::AncillaryData.ipv6_pktinfo(addr, ifindex)
627  * p ancdata.ipv6_pktinfo_addr #=> #<Addrinfo: ::1>
628  *
629  */
630 static VALUE
631 ancillary_ipv6_pktinfo_addr(VALUE self)
632 {
633  struct in6_pktinfo pktinfo;
634  struct sockaddr_in6 sa;
635  extract_ipv6_pktinfo(self, &pktinfo, &sa);
636  return rsock_addrinfo_new((struct sockaddr *)&sa, (socklen_t)sizeof(sa), PF_INET6, 0, 0, Qnil, Qnil);
637 }
638 #else
639 #define ancillary_ipv6_pktinfo_addr rb_f_notimplement
640 #endif
641 
642 #if defined(IPPROTO_IPV6) && defined(IPV6_PKTINFO) /* IPv6 RFC3542 */
643 /*
644  * call-seq:
645  * ancdata.ipv6_pktinfo_ifindex => addr
646  *
647  * Extracts ifindex from IPV6_PKTINFO ancillary data.
648  *
649  * IPV6_PKTINFO is defined by RFC 3542.
650  *
651  * addr = Addrinfo.ip("::1")
652  * ifindex = 0
653  * ancdata = Socket::AncillaryData.ipv6_pktinfo(addr, ifindex)
654  * p ancdata.ipv6_pktinfo_ifindex #=> 0
655  *
656  */
657 static VALUE
658 ancillary_ipv6_pktinfo_ifindex(VALUE self)
659 {
660  struct in6_pktinfo pktinfo;
661  struct sockaddr_in6 sa;
662  extract_ipv6_pktinfo(self, &pktinfo, &sa);
663  return UINT2NUM(pktinfo.ipi6_ifindex);
664 }
665 #else
666 #define ancillary_ipv6_pktinfo_ifindex rb_f_notimplement
667 #endif
668 
669 #if defined(SOL_SOCKET) && defined(SCM_RIGHTS) /* 4.4BSD */
670 static int
671 anc_inspect_socket_rights(int level, int type, VALUE data, VALUE ret)
672 {
673  if (level == SOL_SOCKET && type == SCM_RIGHTS &&
674  0 < RSTRING_LEN(data) && (RSTRING_LEN(data) % sizeof(int) == 0)) {
675  long off;
676  for (off = 0; off < RSTRING_LEN(data); off += sizeof(int)) {
677  int fd;
678  memcpy((char*)&fd, RSTRING_PTR(data)+off, sizeof(int));
679  rb_str_catf(ret, " %d", fd);
680  }
681  return 1;
682  }
683  else {
684  return 0;
685  }
686 }
687 #endif
688 
689 #if defined(SCM_CREDENTIALS) /* GNU/Linux */
690 static int
691 anc_inspect_passcred_credentials(int level, int type, VALUE data, VALUE ret)
692 {
693  if (level == SOL_SOCKET && type == SCM_CREDENTIALS &&
694  RSTRING_LEN(data) == sizeof(struct ucred)) {
695  struct ucred cred;
696  memcpy(&cred, RSTRING_PTR(data), sizeof(struct ucred));
697  rb_str_catf(ret, " pid=%u uid=%u gid=%u", cred.pid, cred.uid, cred.gid);
698  rb_str_cat2(ret, " (ucred)");
699  return 1;
700  }
701  else {
702  return 0;
703  }
704 }
705 #endif
706 
707 #if defined(SCM_CREDS)
708 #define INSPECT_SCM_CREDS
709 static int
710 anc_inspect_socket_creds(int level, int type, VALUE data, VALUE ret)
711 {
712  if (level != SOL_SOCKET && type != SCM_CREDS)
713  return 0;
714 
715  /*
716  * FreeBSD has struct cmsgcred and struct sockcred.
717  * They use both SOL_SOCKET/SCM_CREDS in the ancillary message.
718  * They are not ambiguous from the view of the caller
719  * because struct sockcred is sent if and only if the caller sets LOCAL_CREDS socket option.
720  * But inspect method doesn't know it.
721  * So they are ambiguous from the view of inspect.
722  * This function distinguish them by the size of the ancillary message.
723  * This heuristics works well except when sc_ngroups == CMGROUP_MAX.
724  */
725 
726 #if defined(HAVE_TYPE_STRUCT_CMSGCRED) /* FreeBSD */
727  if (RSTRING_LEN(data) == sizeof(struct cmsgcred)) {
728  struct cmsgcred cred;
729  memcpy(&cred, RSTRING_PTR(data), sizeof(struct cmsgcred));
730  rb_str_catf(ret, " pid=%u", cred.cmcred_pid);
731  rb_str_catf(ret, " uid=%u", cred.cmcred_uid);
732  rb_str_catf(ret, " euid=%u", cred.cmcred_euid);
733  rb_str_catf(ret, " gid=%u", cred.cmcred_gid);
734  if (cred.cmcred_ngroups) {
735  int i;
736  const char *sep = " groups=";
737  for (i = 0; i < cred.cmcred_ngroups; i++) {
738  rb_str_catf(ret, "%s%u", sep, cred.cmcred_groups[i]);
739  sep = ",";
740  }
741  }
742  rb_str_cat2(ret, " (cmsgcred)");
743  return 1;
744  }
745 #endif
746 #if defined(HAVE_TYPE_STRUCT_SOCKCRED) /* FreeBSD, NetBSD */
747  if ((size_t)RSTRING_LEN(data) >= SOCKCREDSIZE(0)) {
748  struct sockcred cred0, *cred;
749  memcpy(&cred0, RSTRING_PTR(data), SOCKCREDSIZE(0));
750  if ((size_t)RSTRING_LEN(data) == SOCKCREDSIZE(cred0.sc_ngroups)) {
751  cred = (struct sockcred *)ALLOCA_N(char, SOCKCREDSIZE(cred0.sc_ngroups));
752  memcpy(cred, RSTRING_PTR(data), SOCKCREDSIZE(cred0.sc_ngroups));
753  rb_str_catf(ret, " uid=%u", cred->sc_uid);
754  rb_str_catf(ret, " euid=%u", cred->sc_euid);
755  rb_str_catf(ret, " gid=%u", cred->sc_gid);
756  rb_str_catf(ret, " egid=%u", cred->sc_egid);
757  if (cred0.sc_ngroups) {
758  int i;
759  const char *sep = " groups=";
760  for (i = 0; i < cred0.sc_ngroups; i++) {
761  rb_str_catf(ret, "%s%u", sep, cred->sc_groups[i]);
762  sep = ",";
763  }
764  }
765  rb_str_cat2(ret, " (sockcred)");
766  return 1;
767  }
768  }
769 #endif
770  return 0;
771 }
772 #endif
773 
774 #if defined(IPPROTO_IP) && defined(IP_RECVDSTADDR) /* 4.4BSD */
775 static int
776 anc_inspect_ip_recvdstaddr(int level, int type, VALUE data, VALUE ret)
777 {
778  if (level == IPPROTO_IP && type == IP_RECVDSTADDR &&
779  RSTRING_LEN(data) == sizeof(struct in_addr)) {
780  struct in_addr addr;
781  char addrbuf[INET_ADDRSTRLEN];
782  memcpy(&addr, RSTRING_PTR(data), sizeof(addr));
783  if (inet_ntop(AF_INET, &addr, addrbuf, (socklen_t)sizeof(addrbuf)) == NULL)
784  rb_str_cat2(ret, " invalid-address");
785  else
786  rb_str_catf(ret, " %s", addrbuf);
787  return 1;
788  }
789  else {
790  return 0;
791  }
792 }
793 #endif
794 
795 #if defined(IPPROTO_IP) && defined(IP_PKTINFO) && defined(HAVE_STRUCT_IN_PKTINFO_IPI_SPEC_DST) /* GNU/Linux */
796 static int
797 anc_inspect_ip_pktinfo(int level, int type, VALUE data, VALUE ret)
798 {
799  if (level == IPPROTO_IP && type == IP_PKTINFO &&
800  RSTRING_LEN(data) == sizeof(struct in_pktinfo)) {
801  struct in_pktinfo pktinfo;
802  char buf[INET_ADDRSTRLEN > IFNAMSIZ ? INET_ADDRSTRLEN : IFNAMSIZ];
803  memcpy(&pktinfo, RSTRING_PTR(data), sizeof(pktinfo));
804  if (inet_ntop(AF_INET, &pktinfo.ipi_addr, buf, sizeof(buf)) == NULL)
805  rb_str_cat2(ret, " invalid-address");
806  else
807  rb_str_catf(ret, " %s", buf);
808  if (if_indextoname(pktinfo.ipi_ifindex, buf) == NULL)
809  rb_str_catf(ret, " ifindex:%d", pktinfo.ipi_ifindex);
810  else
811  rb_str_catf(ret, " %s", buf);
812  if (inet_ntop(AF_INET, &pktinfo.ipi_spec_dst, buf, sizeof(buf)) == NULL)
813  rb_str_cat2(ret, " spec_dst:invalid-address");
814  else
815  rb_str_catf(ret, " spec_dst:%s", buf);
816  return 1;
817  }
818  else {
819  return 0;
820  }
821 }
822 #endif
823 
824 #if defined(IPPROTO_IPV6) && defined(IPV6_PKTINFO) && defined(HAVE_TYPE_STRUCT_IN6_PKTINFO) /* IPv6 RFC3542 */
825 static int
826 anc_inspect_ipv6_pktinfo(int level, int type, VALUE data, VALUE ret)
827 {
828  if (level == IPPROTO_IPV6 && type == IPV6_PKTINFO &&
829  RSTRING_LEN(data) == sizeof(struct in6_pktinfo)) {
830  struct in6_pktinfo *pktinfo = (struct in6_pktinfo *)RSTRING_PTR(data);
831  struct in6_addr addr;
832  unsigned int ifindex;
833  char addrbuf[INET6_ADDRSTRLEN], ifbuf[IFNAMSIZ];
834  memcpy(&addr, &pktinfo->ipi6_addr, sizeof(addr));
835  memcpy(&ifindex, &pktinfo->ipi6_ifindex, sizeof(ifindex));
836  if (inet_ntop(AF_INET6, &addr, addrbuf, (socklen_t)sizeof(addrbuf)) == NULL)
837  rb_str_cat2(ret, " invalid-address");
838  else
839  rb_str_catf(ret, " %s", addrbuf);
840  if (if_indextoname(ifindex, ifbuf) == NULL)
841  rb_str_catf(ret, " ifindex:%d", ifindex);
842  else
843  rb_str_catf(ret, " %s", ifbuf);
844  return 1;
845  }
846  else {
847  return 0;
848  }
849 }
850 #endif
851 
852 #if defined(SCM_TIMESTAMP) /* GNU/Linux, FreeBSD, NetBSD, OpenBSD, MacOS X, Solaris */
853 static int
854 inspect_timeval_as_abstime(int level, int optname, VALUE data, VALUE ret)
855 {
856  if (RSTRING_LEN(data) == sizeof(struct timeval)) {
857  struct timeval tv;
858  time_t time;
859  struct tm tm;
860  char buf[32];
861  memcpy((char*)&tv, RSTRING_PTR(data), sizeof(tv));
862  time = tv.tv_sec;
863  tm = *localtime(&time);
864  strftime(buf, sizeof(buf), "%Y-%m-%d %H:%M:%S", &tm);
865  rb_str_catf(ret, " %s.%06ld", buf, (long)tv.tv_usec);
866  return 1;
867  }
868  else {
869  return 0;
870  }
871 }
872 #endif
873 
874 #if defined(SCM_TIMESTAMPNS) /* GNU/Linux */
875 static int
876 inspect_timespec_as_abstime(int level, int optname, VALUE data, VALUE ret)
877 {
878  if (RSTRING_LEN(data) == sizeof(struct timespec)) {
879  struct timespec ts;
880  struct tm tm;
881  char buf[32];
882  memcpy((char*)&ts, RSTRING_PTR(data), sizeof(ts));
883  tm = *localtime(&ts.tv_sec);
884  strftime(buf, sizeof(buf), "%Y-%m-%d %H:%M:%S", &tm);
885  rb_str_catf(ret, " %s.%09ld", buf, (long)ts.tv_nsec);
886  return 1;
887  }
888  else {
889  return 0;
890  }
891 }
892 #endif
893 
894 #if defined(SCM_BINTIME) /* FreeBSD */
895 static int
896 inspect_bintime_as_abstime(int level, int optname, VALUE data, VALUE ret)
897 {
898  if (RSTRING_LEN(data) == sizeof(struct bintime)) {
899  struct bintime bt;
900  struct tm tm;
901  uint64_t frac_h, frac_l;
902  uint64_t scale_h, scale_l;
903  uint64_t tmp1, tmp2;
904  uint64_t res_h, res_l;
905  char buf[32];
906  memcpy((char*)&bt, RSTRING_PTR(data), sizeof(bt));
907  tm = *localtime(&bt.sec);
908  strftime(buf, sizeof(buf), "%Y-%m-%d %H:%M:%S", &tm);
909 
910  /* res_h = frac * 10**19 / 2**64 */
911 
912  frac_h = bt.frac >> 32;
913  frac_l = bt.frac & 0xffffffff;
914 
915  scale_h = 0x8ac72304; /* 0x8ac7230489e80000 == 10**19 */
916  scale_l = 0x89e80000;
917 
918  res_h = frac_h * scale_h;
919  res_l = frac_l * scale_l;
920 
921  tmp1 = frac_h * scale_l;
922  res_h += tmp1 >> 32;
923  tmp2 = res_l;
924  res_l += tmp1 & 0xffffffff;
925  if (res_l < tmp2) res_h++;
926 
927  tmp1 = frac_l * scale_h;
928  res_h += tmp1 >> 32;
929  tmp2 = res_l;
930  res_l += tmp1 & 0xffffffff;
931  if (res_l < tmp2) res_h++;
932 
933  rb_str_catf(ret, " %s.%019"PRIu64, buf, res_h);
934  return 1;
935  }
936  else {
937  return 0;
938  }
939 }
940 #endif
941 
942 /*
943  * call-seq:
944  * ancillarydata.inspect => string
945  *
946  * returns a string which shows ancillarydata in human-readable form.
947  *
948  * p Socket::AncillaryData.new(:INET6, :IPV6, :PKTINFO, "").inspect
949  * #=> "#<Socket::AncillaryData: INET6 IPV6 PKTINFO \"\">"
950  */
951 static VALUE
952 ancillary_inspect(VALUE self)
953 {
954  VALUE ret;
955  int family, level, type;
956  VALUE data;
957  ID family_id, level_id, type_id;
958  VALUE vtype;
959  int inspected;
960 
961  family = ancillary_family(self);
962  level = ancillary_level(self);
963  type = ancillary_type(self);
964  data = ancillary_data(self);
965 
966  ret = rb_sprintf("#<%s:", rb_obj_classname(self));
967 
968  family_id = rsock_intern_family_noprefix(family);
969  if (family_id)
970  rb_str_catf(ret, " %s", rb_id2name(family_id));
971  else
972  rb_str_catf(ret, " family:%d", family);
973 
974  if (level == SOL_SOCKET) {
975  rb_str_cat2(ret, " SOCKET");
976 
977  type_id = rsock_intern_scm_optname(type);
978  if (type_id)
979  rb_str_catf(ret, " %s", rb_id2name(type_id));
980  else
981  rb_str_catf(ret, " cmsg_type:%d", type);
982  }
983  else if (IS_IP_FAMILY(family)) {
984  level_id = rsock_intern_iplevel(level);
985  if (level_id)
986  rb_str_catf(ret, " %s", rb_id2name(level_id));
987  else
988  rb_str_catf(ret, " cmsg_level:%d", level);
989 
990  vtype = ip_cmsg_type_to_sym(level, type);
991  if (SYMBOL_P(vtype))
992  rb_str_catf(ret, " %s", rb_id2name(SYM2ID(vtype)));
993  else
994  rb_str_catf(ret, " cmsg_type:%d", type);
995  }
996  else {
997  rb_str_catf(ret, " cmsg_level:%d", level);
998  rb_str_catf(ret, " cmsg_type:%d", type);
999  }
1000 
1001  inspected = 0;
1002 
1003  if (level == SOL_SOCKET)
1004  family = AF_UNSPEC;
1005 
1006  switch (family) {
1007  case AF_UNSPEC:
1008  switch (level) {
1009 # if defined(SOL_SOCKET)
1010  case SOL_SOCKET:
1011  switch (type) {
1012 # if defined(SCM_TIMESTAMP) /* GNU/Linux, FreeBSD, NetBSD, OpenBSD, MacOS X, Solaris */
1013  case SCM_TIMESTAMP: inspected = inspect_timeval_as_abstime(level, type, data, ret); break;
1014 # endif
1015 # if defined(SCM_TIMESTAMPNS) /* GNU/Linux */
1016  case SCM_TIMESTAMPNS: inspected = inspect_timespec_as_abstime(level, type, data, ret); break;
1017 # endif
1018 # if defined(SCM_BINTIME) /* FreeBSD */
1019  case SCM_BINTIME: inspected = inspect_bintime_as_abstime(level, type, data, ret); break;
1020 # endif
1021 # if defined(SCM_RIGHTS) /* 4.4BSD */
1022  case SCM_RIGHTS: inspected = anc_inspect_socket_rights(level, type, data, ret); break;
1023 # endif
1024 # if defined(SCM_CREDENTIALS) /* GNU/Linux */
1025  case SCM_CREDENTIALS: inspected = anc_inspect_passcred_credentials(level, type, data, ret); break;
1026 # endif
1027 # if defined(INSPECT_SCM_CREDS) /* NetBSD */
1028  case SCM_CREDS: inspected = anc_inspect_socket_creds(level, type, data, ret); break;
1029 # endif
1030  }
1031  break;
1032 # endif
1033  }
1034  break;
1035 
1036  case AF_INET:
1037 #ifdef INET6
1038  case AF_INET6:
1039 #endif
1040  switch (level) {
1041 # if defined(IPPROTO_IP)
1042  case IPPROTO_IP:
1043  switch (type) {
1044 # if defined(IP_RECVDSTADDR) /* 4.4BSD */
1045  case IP_RECVDSTADDR: inspected = anc_inspect_ip_recvdstaddr(level, type, data, ret); break;
1046 # endif
1047 # if defined(IP_PKTINFO) && defined(HAVE_STRUCT_IN_PKTINFO_IPI_SPEC_DST) /* GNU/Linux */
1048  case IP_PKTINFO: inspected = anc_inspect_ip_pktinfo(level, type, data, ret); break;
1049 # endif
1050  }
1051  break;
1052 # endif
1053 
1054 # if defined(IPPROTO_IPV6)
1055  case IPPROTO_IPV6:
1056  switch (type) {
1057 # if defined(IPV6_PKTINFO) /* RFC 3542 */
1058  case IPV6_PKTINFO: inspected = anc_inspect_ipv6_pktinfo(level, type, data, ret); break;
1059 # endif
1060  }
1061  break;
1062 # endif
1063  }
1064  break;
1065  }
1066 
1067  if (!inspected) {
1068  rb_str_cat2(ret, " ");
1069  rb_str_append(ret, rb_str_dump(data));
1070  }
1071 
1072  rb_str_cat2(ret, ">");
1073 
1074  return ret;
1075 }
1076 
1077 /*
1078  * call-seq:
1079  * ancillarydata.cmsg_is?(level, type) => true or false
1080  *
1081  * tests the level and type of _ancillarydata_.
1082  *
1083  * ancdata = Socket::AncillaryData.new(:INET6, :IPV6, :PKTINFO, "")
1084  * ancdata.cmsg_is?(Socket::IPPROTO_IPV6, Socket::IPV6_PKTINFO) #=> true
1085  * ancdata.cmsg_is?(:IPV6, :PKTINFO) #=> true
1086  * ancdata.cmsg_is?(:IP, :PKTINFO) #=> false
1087  * ancdata.cmsg_is?(:SOCKET, :RIGHTS) #=> false
1088  */
1089 static VALUE
1090 ancillary_cmsg_is_p(VALUE self, VALUE vlevel, VALUE vtype)
1091 {
1092  int family = ancillary_family(self);
1093  int level = rsock_level_arg(family, vlevel);
1094  int type = rsock_cmsg_type_arg(family, level, vtype);
1095 
1096  if (ancillary_level(self) == level &&
1097  ancillary_type(self) == type)
1098  return Qtrue;
1099  else
1100  return Qfalse;
1101 }
1102 
1103 #endif
1104 
1105 #if defined(HAVE_SENDMSG)
1106 struct sendmsg_args_struct {
1107  int fd;
1108  const struct msghdr *msg;
1109  int flags;
1110 };
1111 
1112 static void *
1113 nogvl_sendmsg_func(void *ptr)
1114 {
1115  struct sendmsg_args_struct *args = ptr;
1116  return (void *)(VALUE)sendmsg(args->fd, args->msg, args->flags);
1117 }
1118 
1119 static ssize_t
1120 rb_sendmsg(int fd, const struct msghdr *msg, int flags)
1121 {
1122  struct sendmsg_args_struct args;
1123  args.fd = fd;
1124  args.msg = msg;
1125  args.flags = flags;
1126  return (ssize_t)rb_thread_call_without_gvl(nogvl_sendmsg_func, &args, RUBY_UBF_IO, 0);
1127 }
1128 
1129 static VALUE
1130 bsock_sendmsg_internal(int argc, VALUE *argv, VALUE sock, int nonblock)
1131 {
1132  rb_io_t *fptr;
1133  VALUE data, vflags, dest_sockaddr;
1134  VALUE *controls_ptr;
1135  int controls_num;
1136  struct msghdr mh;
1137  struct iovec iov;
1138 #if defined(HAVE_ST_MSG_CONTROL)
1139  volatile VALUE controls_str = 0;
1140 #endif
1141  int flags;
1142  ssize_t ss;
1143  int family;
1144 
1145  rb_secure(4);
1146  GetOpenFile(sock, fptr);
1147  family = rsock_getfamily(fptr->fd);
1148 
1149  data = vflags = dest_sockaddr = Qnil;
1150  controls_ptr = NULL;
1151  controls_num = 0;
1152 
1153  if (argc == 0)
1154  rb_raise(rb_eArgError, "mesg argument required");
1155  data = argv[0];
1156  if (1 < argc) vflags = argv[1];
1157  if (2 < argc) dest_sockaddr = argv[2];
1158  if (3 < argc) { controls_ptr = &argv[3]; controls_num = argc - 3; }
1159 
1160  StringValue(data);
1161 
1162  if (controls_num) {
1163 #if defined(HAVE_ST_MSG_CONTROL)
1164  int i;
1165  size_t last_pad = 0;
1166 #if defined(__NetBSD__)
1167  int last_level = 0;
1168  int last_type = 0;
1169 #endif
1170  controls_str = rb_str_tmp_new(0);
1171  for (i = 0; i < controls_num; i++) {
1172  VALUE elt = controls_ptr[i], v;
1173  VALUE vlevel, vtype;
1174  int level, type;
1175  VALUE cdata;
1176  long oldlen;
1177  struct cmsghdr cmh;
1178  char *cmsg;
1179  size_t cspace;
1180  v = rb_check_convert_type(elt, T_ARRAY, "Array", "to_ary");
1181  if (!NIL_P(v)) {
1182  elt = v;
1183  if (RARRAY_LEN(elt) != 3)
1184  rb_raise(rb_eArgError, "an element of controls should be 3-elements array");
1185  vlevel = rb_ary_entry(elt, 0);
1186  vtype = rb_ary_entry(elt, 1);
1187  cdata = rb_ary_entry(elt, 2);
1188  }
1189  else {
1190  vlevel = rb_funcall(elt, rb_intern("level"), 0);
1191  vtype = rb_funcall(elt, rb_intern("type"), 0);
1192  cdata = rb_funcall(elt, rb_intern("data"), 0);
1193  }
1194  level = rsock_level_arg(family, vlevel);
1195  type = rsock_cmsg_type_arg(family, level, vtype);
1196  StringValue(cdata);
1197  oldlen = RSTRING_LEN(controls_str);
1198  cspace = CMSG_SPACE(RSTRING_LEN(cdata));
1199  rb_str_resize(controls_str, oldlen + cspace);
1200  cmsg = RSTRING_PTR(controls_str)+oldlen;
1201  memset((char *)cmsg, 0, cspace);
1202  memset((char *)&cmh, 0, sizeof(cmh));
1203  cmh.cmsg_level = level;
1204  cmh.cmsg_type = type;
1205  cmh.cmsg_len = (socklen_t)CMSG_LEN(RSTRING_LEN(cdata));
1206  MEMCPY(cmsg, &cmh, char, sizeof(cmh));
1207  MEMCPY(cmsg+((char*)CMSG_DATA(&cmh)-(char*)&cmh), RSTRING_PTR(cdata), char, RSTRING_LEN(cdata));
1208 #if defined(__NetBSD__)
1209  last_level = cmh.cmsg_level;
1210  last_type = cmh.cmsg_type;
1211 #endif
1212  last_pad = cspace - cmh.cmsg_len;
1213  }
1214  if (last_pad) {
1215  /*
1216  * This code removes the last padding from msg_controllen.
1217  *
1218  * 4.3BSD-Reno reject the padding for SCM_RIGHTS. (There was no 64bit environments in those days?)
1219  * RFC 2292 require the padding.
1220  * RFC 3542 relaxes the condition - implementation must accept both as valid.
1221  *
1222  * Actual problems:
1223  *
1224  * - NetBSD 4.0.1
1225  * SCM_RIGHTS with padding causes EINVAL
1226  * IPV6_PKTINFO without padding causes "page fault trap"
1227  * http://www.netbsd.org/cgi-bin/query-pr-single.pl?number=40661
1228  *
1229  * - OpenBSD 4.4
1230  * IPV6_PKTINFO without padding causes EINVAL
1231  *
1232  * Basically, msg_controllen should contains the padding.
1233  * So the padding is removed only if a problem really exists.
1234  */
1235 #if defined(__NetBSD__)
1236  if (last_level == SOL_SOCKET && last_type == SCM_RIGHTS)
1237  rb_str_set_len(controls_str, RSTRING_LEN(controls_str)-last_pad);
1238 #endif
1239  }
1240 #else
1241  rb_raise(rb_eNotImpError, "control message for sendmsg is unimplemented");
1242 #endif
1243  }
1244 
1245  flags = NIL_P(vflags) ? 0 : NUM2INT(vflags);
1246 #ifdef MSG_DONTWAIT
1247  if (nonblock)
1248  flags |= MSG_DONTWAIT;
1249 #endif
1250 
1251  if (!NIL_P(dest_sockaddr))
1252  SockAddrStringValue(dest_sockaddr);
1253 
1254  rb_io_check_closed(fptr);
1255 
1256  retry:
1257  memset(&mh, 0, sizeof(mh));
1258  if (!NIL_P(dest_sockaddr)) {
1259  mh.msg_name = RSTRING_PTR(dest_sockaddr);
1260  mh.msg_namelen = RSTRING_LENINT(dest_sockaddr);
1261  }
1262  mh.msg_iovlen = 1;
1263  mh.msg_iov = &iov;
1264  iov.iov_base = RSTRING_PTR(data);
1265  iov.iov_len = RSTRING_LEN(data);
1266 #if defined(HAVE_ST_MSG_CONTROL)
1267  if (controls_str) {
1268  mh.msg_control = RSTRING_PTR(controls_str);
1269  mh.msg_controllen = RSTRING_LENINT(controls_str);
1270  }
1271  else {
1272  mh.msg_control = NULL;
1273  mh.msg_controllen = 0;
1274  }
1275 #endif
1276 
1277  rb_io_check_closed(fptr);
1278  if (nonblock)
1279  rb_io_set_nonblock(fptr);
1280 
1281  ss = rb_sendmsg(fptr->fd, &mh, flags);
1282 
1283  if (ss == -1) {
1284  if (!nonblock && rb_io_wait_writable(fptr->fd)) {
1285  rb_io_check_closed(fptr);
1286  goto retry;
1287  }
1288  if (nonblock && (errno == EWOULDBLOCK || errno == EAGAIN))
1289  rb_mod_sys_fail(rb_mWaitWritable, "sendmsg(2) would block");
1290  rb_sys_fail("sendmsg(2)");
1291  }
1292 
1293  return SSIZET2NUM(ss);
1294 }
1295 #endif
1296 
1297 #if defined(HAVE_SENDMSG)
1298 /*
1299  * call-seq:
1300  * basicsocket.sendmsg(mesg, flags=0, dest_sockaddr=nil, *controls) => numbytes_sent
1301  *
1302  * sendmsg sends a message using sendmsg(2) system call in blocking manner.
1303  *
1304  * _mesg_ is a string to send.
1305  *
1306  * _flags_ is bitwise OR of MSG_* constants such as Socket::MSG_OOB.
1307  *
1308  * _dest_sockaddr_ is a destination socket address for connection-less socket.
1309  * It should be a sockaddr such as a result of Socket.sockaddr_in.
1310  * An Addrinfo object can be used too.
1311  *
1312  * _controls_ is a list of ancillary data.
1313  * The element of _controls_ should be Socket::AncillaryData or
1314  * 3-elements array.
1315  * The 3-element array should contains cmsg_level, cmsg_type and data.
1316  *
1317  * The return value, _numbytes_sent_ is an integer which is the number of bytes sent.
1318  *
1319  * sendmsg can be used to implement send_io as follows:
1320  *
1321  * # use Socket::AncillaryData.
1322  * ancdata = Socket::AncillaryData.int(:UNIX, :SOCKET, :RIGHTS, io.fileno)
1323  * sock.sendmsg("a", 0, nil, ancdata)
1324  *
1325  * # use 3-element array.
1326  * ancdata = [:SOCKET, :RIGHTS, [io.fileno].pack("i!")]
1327  * sock.sendmsg("\0", 0, nil, ancdata)
1328  *
1329  */
1330 VALUE
1331 rsock_bsock_sendmsg(int argc, VALUE *argv, VALUE sock)
1332 {
1333  return bsock_sendmsg_internal(argc, argv, sock, 0);
1334 }
1335 #endif
1336 
1337 #if defined(HAVE_SENDMSG)
1338 /*
1339  * call-seq:
1340  * basicsocket.sendmsg_nonblock(mesg, flags=0, dest_sockaddr=nil, *controls) => numbytes_sent
1341  *
1342  * sendmsg_nonblock sends a message using sendmsg(2) system call in non-blocking manner.
1343  *
1344  * It is similar to BasicSocket#sendmsg
1345  * but the non-blocking flag is set before the system call
1346  * and it doesn't retry the system call.
1347  *
1348  */
1349 VALUE
1350 rsock_bsock_sendmsg_nonblock(int argc, VALUE *argv, VALUE sock)
1351 {
1352  return bsock_sendmsg_internal(argc, argv, sock, 1);
1353 }
1354 #endif
1355 
1356 #if defined(HAVE_RECVMSG)
1357 struct recvmsg_args_struct {
1358  int fd;
1359  struct msghdr *msg;
1360  int flags;
1361 };
1362 
1363 ssize_t
1364 rsock_recvmsg(int socket, struct msghdr *message, int flags)
1365 {
1366 #ifdef MSG_CMSG_CLOEXEC
1367  /* MSG_CMSG_CLOEXEC is available since Linux 2.6.23. Linux 2.6.18 silently ignore it. */
1368  flags |= MSG_CMSG_CLOEXEC;
1369 #endif
1370  return recvmsg(socket, message, flags);
1371 }
1372 
1373 static void *
1374 nogvl_recvmsg_func(void *ptr)
1375 {
1376  struct recvmsg_args_struct *args = ptr;
1377  int flags = args->flags;
1378  return (void *)rsock_recvmsg(args->fd, args->msg, flags);
1379 }
1380 
1381 static ssize_t
1382 rb_recvmsg(int fd, struct msghdr *msg, int flags)
1383 {
1384  struct recvmsg_args_struct args;
1385  args.fd = fd;
1386  args.msg = msg;
1387  args.flags = flags;
1388  return (ssize_t)rb_thread_call_without_gvl(nogvl_recvmsg_func, &args, RUBY_UBF_IO, 0);
1389 }
1390 
1391 #if defined(HAVE_ST_MSG_CONTROL)
1392 static void
1393 discard_cmsg(struct cmsghdr *cmh, char *msg_end, int msg_peek_p)
1394 {
1395 # if !defined(FD_PASSING_WORK_WITH_RECVMSG_MSG_PEEK)
1396  /*
1397  * FreeBSD 8.2.0, NetBSD 5 and MacOS X Snow Leopard doesn't
1398  * allocate fds by recvmsg with MSG_PEEK.
1399  * [ruby-dev:44189]
1400  * http://bugs.ruby-lang.org/issues/5075
1401  *
1402  * Linux 2.6.38 allocate fds by recvmsg with MSG_PEEK.
1403  */
1404  if (msg_peek_p)
1405  return;
1406 # endif
1407  if (cmh->cmsg_level == SOL_SOCKET && cmh->cmsg_type == SCM_RIGHTS) {
1408  int *fdp = (int *)CMSG_DATA(cmh);
1409  int *end = (int *)((char *)cmh + cmh->cmsg_len);
1410  while ((char *)fdp + sizeof(int) <= (char *)end &&
1411  (char *)fdp + sizeof(int) <= msg_end) {
1412  rb_fd_fix_cloexec(*fdp);
1413  close(*fdp);
1414  fdp++;
1415  }
1416  }
1417 }
1418 #endif
1419 
1420 void
1421 rsock_discard_cmsg_resource(struct msghdr *mh, int msg_peek_p)
1422 {
1423 #if defined(HAVE_ST_MSG_CONTROL)
1424  struct cmsghdr *cmh;
1425  char *msg_end;
1426 
1427  if (mh->msg_controllen == 0)
1428  return;
1429 
1430  msg_end = (char *)mh->msg_control + mh->msg_controllen;
1431 
1432  for (cmh = CMSG_FIRSTHDR(mh); cmh != NULL; cmh = CMSG_NXTHDR(mh, cmh)) {
1433  discard_cmsg(cmh, msg_end, msg_peek_p);
1434  }
1435 #endif
1436 }
1437 
1438 #if defined(HAVE_ST_MSG_CONTROL)
1439 static void
1440 make_io_for_unix_rights(VALUE ctl, struct cmsghdr *cmh, char *msg_end)
1441 {
1442  if (cmh->cmsg_level == SOL_SOCKET && cmh->cmsg_type == SCM_RIGHTS) {
1443  int *fdp, *end;
1444  VALUE ary = rb_ary_new();
1445  rb_ivar_set(ctl, rb_intern("unix_rights"), ary);
1446  fdp = (int *)CMSG_DATA(cmh);
1447  end = (int *)((char *)cmh + cmh->cmsg_len);
1448  while ((char *)fdp + sizeof(int) <= (char *)end &&
1449  (char *)fdp + sizeof(int) <= msg_end) {
1450  int fd = *fdp;
1451  struct stat stbuf;
1452  VALUE io;
1453  if (fstat(fd, &stbuf) == -1)
1454  rb_raise(rb_eSocket, "invalid fd in SCM_RIGHTS");
1455  rb_fd_fix_cloexec(fd);
1456  if (S_ISSOCK(stbuf.st_mode))
1458  else
1459  io = rb_io_fdopen(fd, O_RDWR, NULL);
1460  ary = rb_attr_get(ctl, rb_intern("unix_rights"));
1461  rb_ary_push(ary, io);
1462  fdp++;
1463  }
1464  OBJ_FREEZE(ary);
1465  }
1466 }
1467 #endif
1468 
1469 static VALUE
1470 bsock_recvmsg_internal(int argc, VALUE *argv, VALUE sock, int nonblock)
1471 {
1472  rb_io_t *fptr;
1473  VALUE vmaxdatlen, vmaxctllen, vflags, vopts;
1474  int grow_buffer;
1475  size_t maxdatlen;
1476  int flags, orig_flags;
1477  int request_scm_rights;
1478  struct msghdr mh;
1479  struct iovec iov;
1480  struct sockaddr_storage namebuf;
1481  char datbuf0[4096], *datbuf;
1482  VALUE dat_str = Qnil;
1483  VALUE ret;
1484  ssize_t ss;
1485 #if defined(HAVE_ST_MSG_CONTROL)
1486  struct cmsghdr *cmh;
1487  size_t maxctllen;
1488  union {
1489  char bytes[4096];
1490  struct cmsghdr align;
1491  } ctlbuf0;
1492  char *ctlbuf;
1493  VALUE ctl_str = Qnil;
1494  int family;
1495  int gc_done = 0;
1496 #endif
1497 
1498  rb_secure(4);
1499 
1500  vopts = Qnil;
1501  if (0 < argc && RB_TYPE_P(argv[argc-1], T_HASH))
1502  vopts = argv[--argc];
1503 
1504  rb_scan_args(argc, argv, "03", &vmaxdatlen, &vflags, &vmaxctllen);
1505 
1506  maxdatlen = NIL_P(vmaxdatlen) ? sizeof(datbuf0) : NUM2SIZET(vmaxdatlen);
1507 #if defined(HAVE_ST_MSG_CONTROL)
1508  maxctllen = NIL_P(vmaxctllen) ? sizeof(ctlbuf0) : NUM2SIZET(vmaxctllen);
1509 #else
1510  if (!NIL_P(vmaxctllen))
1511  rb_raise(rb_eArgError, "control message not supported");
1512 #endif
1513  flags = NIL_P(vflags) ? 0 : NUM2INT(vflags);
1514 #ifdef MSG_DONTWAIT
1515  if (nonblock)
1516  flags |= MSG_DONTWAIT;
1517 #endif
1518  orig_flags = flags;
1519 
1520  grow_buffer = NIL_P(vmaxdatlen) || NIL_P(vmaxctllen);
1521 
1522  request_scm_rights = 0;
1523  if (!NIL_P(vopts) && RTEST(rb_hash_aref(vopts, ID2SYM(rb_intern("scm_rights")))))
1524  request_scm_rights = 1;
1525 
1526  GetOpenFile(sock, fptr);
1527  if (rb_io_read_pending(fptr)) {
1528  rb_raise(rb_eIOError, "recvmsg for buffered IO");
1529  }
1530 
1531 #if !defined(HAVE_ST_MSG_CONTROL)
1532  if (grow_buffer) {
1533  int socktype;
1534  socklen_t optlen = (socklen_t)sizeof(socktype);
1535  if (getsockopt(fptr->fd, SOL_SOCKET, SO_TYPE, (void*)&socktype, &optlen) == -1) {
1536  rb_sys_fail("getsockopt(SO_TYPE)");
1537  }
1538  if (socktype == SOCK_STREAM)
1539  grow_buffer = 0;
1540  }
1541 #endif
1542 
1543  retry:
1544  if (maxdatlen <= sizeof(datbuf0))
1545  datbuf = datbuf0;
1546  else {
1547  if (NIL_P(dat_str))
1548  dat_str = rb_str_tmp_new(maxdatlen);
1549  else
1550  rb_str_resize(dat_str, maxdatlen);
1551  datbuf = RSTRING_PTR(dat_str);
1552  }
1553 
1554 #if defined(HAVE_ST_MSG_CONTROL)
1555  if (maxctllen <= sizeof(ctlbuf0))
1556  ctlbuf = ctlbuf0.bytes;
1557  else {
1558  if (NIL_P(ctl_str))
1559  ctl_str = rb_str_tmp_new(maxctllen);
1560  else
1561  rb_str_resize(ctl_str, maxctllen);
1562  ctlbuf = RSTRING_PTR(ctl_str);
1563  }
1564 #endif
1565 
1566  memset(&mh, 0, sizeof(mh));
1567 
1568  memset(&namebuf, 0, sizeof(namebuf));
1569  mh.msg_name = (struct sockaddr *)&namebuf;
1570  mh.msg_namelen = (socklen_t)sizeof(namebuf);
1571 
1572  mh.msg_iov = &iov;
1573  mh.msg_iovlen = 1;
1574  iov.iov_base = datbuf;
1575  iov.iov_len = maxdatlen;
1576 
1577 #if defined(HAVE_ST_MSG_CONTROL)
1578  mh.msg_control = ctlbuf;
1579  mh.msg_controllen = (socklen_t)maxctllen;
1580 #endif
1581 
1582  if (grow_buffer)
1583  flags |= MSG_PEEK;
1584 
1585  rb_io_check_closed(fptr);
1586  if (nonblock)
1587  rb_io_set_nonblock(fptr);
1588 
1589  ss = rb_recvmsg(fptr->fd, &mh, flags);
1590 
1591  if (ss == -1) {
1592  if (!nonblock && rb_io_wait_readable(fptr->fd)) {
1593  rb_io_check_closed(fptr);
1594  goto retry;
1595  }
1596  if (nonblock && (errno == EWOULDBLOCK || errno == EAGAIN))
1597  rb_mod_sys_fail(rb_mWaitReadable, "recvmsg(2) would block");
1598 #if defined(HAVE_ST_MSG_CONTROL)
1599  if (!gc_done && (errno == EMFILE || errno == EMSGSIZE)) {
1600  /*
1601  * When SCM_RIGHTS hit the file descriptors limit:
1602  * - Linux 2.6.18 causes success with MSG_CTRUNC
1603  * - MacOS X 10.4 causes EMSGSIZE (and lost file descriptors?)
1604  * - Solaris 11 causes EMFILE
1605  */
1606  gc_and_retry:
1607  rb_gc();
1608  gc_done = 1;
1609  goto retry;
1610  }
1611 #endif
1612  rb_sys_fail("recvmsg(2)");
1613  }
1614 
1615  if (grow_buffer) {
1616  int grown = 0;
1617 #if defined(HAVE_ST_MSG_CONTROL)
1618  if (NIL_P(vmaxdatlen) && (mh.msg_flags & MSG_TRUNC)) {
1619  if (SIZE_MAX/2 < maxdatlen)
1620  rb_raise(rb_eArgError, "max data length too big");
1621  maxdatlen *= 2;
1622  grown = 1;
1623  }
1624  if (NIL_P(vmaxctllen) && (mh.msg_flags & MSG_CTRUNC)) {
1625 #define BIG_ENOUGH_SPACE 65536
1626  if (BIG_ENOUGH_SPACE < maxctllen &&
1627  mh.msg_controllen < (socklen_t)(maxctllen - BIG_ENOUGH_SPACE)) {
1628  /* there are big space bug truncated.
1629  * file descriptors limit? */
1630  if (!gc_done) {
1631  rsock_discard_cmsg_resource(&mh, (flags & MSG_PEEK) != 0);
1632  goto gc_and_retry;
1633  }
1634  }
1635  else {
1636  if (SIZE_MAX/2 < maxctllen)
1637  rb_raise(rb_eArgError, "max control message length too big");
1638  maxctllen *= 2;
1639  grown = 1;
1640  }
1641 #undef BIG_ENOUGH_SPACE
1642  }
1643 #else
1644  if (NIL_P(vmaxdatlen) && ss != -1 && ss == (ssize_t)iov.iov_len) {
1645  if (SIZE_MAX/2 < maxdatlen)
1646  rb_raise(rb_eArgError, "max data length too big");
1647  maxdatlen *= 2;
1648  grown = 1;
1649  }
1650 #endif
1651  if (grown) {
1652  rsock_discard_cmsg_resource(&mh, (flags & MSG_PEEK) != 0);
1653  goto retry;
1654  }
1655  else {
1656  grow_buffer = 0;
1657  if (flags != orig_flags) {
1658  rsock_discard_cmsg_resource(&mh, (flags & MSG_PEEK) != 0);
1659  flags = orig_flags;
1660  goto retry;
1661  }
1662  }
1663  }
1664 
1665  if (NIL_P(dat_str))
1666  dat_str = rb_tainted_str_new(datbuf, ss);
1667  else {
1668  rb_str_resize(dat_str, ss);
1669  OBJ_TAINT(dat_str);
1670  RBASIC(dat_str)->klass = rb_cString;
1671  }
1672 
1673  ret = rb_ary_new3(3, dat_str,
1675 #if defined(HAVE_ST_MSG_CONTROL)
1676  INT2NUM(mh.msg_flags)
1677 #else
1678  Qnil
1679 #endif
1680  );
1681 
1682 #if defined(HAVE_ST_MSG_CONTROL)
1683  family = rsock_getfamily(fptr->fd);
1684  if (mh.msg_controllen) {
1685  char *msg_end = (char *)mh.msg_control + mh.msg_controllen;
1686  for (cmh = CMSG_FIRSTHDR(&mh); cmh != NULL; cmh = CMSG_NXTHDR(&mh, cmh)) {
1687  VALUE ctl;
1688  char *ctl_end;
1689  size_t clen;
1690  if (cmh->cmsg_len == 0) {
1691  rb_raise(rb_eTypeError, "invalid control message (cmsg_len == 0)");
1692  }
1693  ctl_end = (char*)cmh + cmh->cmsg_len;
1694  clen = (ctl_end <= msg_end ? ctl_end : msg_end) - (char*)CMSG_DATA(cmh);
1695  ctl = ancdata_new(family, cmh->cmsg_level, cmh->cmsg_type, rb_tainted_str_new((char*)CMSG_DATA(cmh), clen));
1696  if (request_scm_rights)
1697  make_io_for_unix_rights(ctl, cmh, msg_end);
1698  else
1699  discard_cmsg(cmh, msg_end, (flags & MSG_PEEK) != 0);
1700  rb_ary_push(ret, ctl);
1701  }
1702  }
1703 #endif
1704 
1705  return ret;
1706 }
1707 #endif
1708 
1709 #if defined(HAVE_RECVMSG)
1710 /*
1711  * call-seq:
1712  * basicsocket.recvmsg(maxmesglen=nil, flags=0, maxcontrollen=nil, opts={}) => [mesg, sender_addrinfo, rflags, *controls]
1713  *
1714  * recvmsg receives a message using recvmsg(2) system call in blocking manner.
1715  *
1716  * _maxmesglen_ is the maximum length of mesg to receive.
1717  *
1718  * _flags_ is bitwise OR of MSG_* constants such as Socket::MSG_PEEK.
1719  *
1720  * _maxcontrollen_ is the maximum length of controls (ancillary data) to receive.
1721  *
1722  * _opts_ is option hash.
1723  * Currently :scm_rights=>bool is the only option.
1724  *
1725  * :scm_rights option specifies that application expects SCM_RIGHTS control message.
1726  * If the value is nil or false, application don't expects SCM_RIGHTS control message.
1727  * In this case, recvmsg closes the passed file descriptors immediately.
1728  * This is the default behavior.
1729  *
1730  * If :scm_rights value is neither nil nor false, application expects SCM_RIGHTS control message.
1731  * In this case, recvmsg creates IO objects for each file descriptors for
1732  * Socket::AncillaryData#unix_rights method.
1733  *
1734  * The return value is 4-elements array.
1735  *
1736  * _mesg_ is a string of the received message.
1737  *
1738  * _sender_addrinfo_ is a sender socket address for connection-less socket.
1739  * It is an Addrinfo object.
1740  * For connection-oriented socket such as TCP, sender_addrinfo is platform dependent.
1741  *
1742  * _rflags_ is a flags on the received message which is bitwise OR of MSG_* constants such as Socket::MSG_TRUNC.
1743  * It will be nil if the system uses 4.3BSD style old recvmsg system call.
1744  *
1745  * _controls_ is ancillary data which is an array of Socket::AncillaryData objects such as:
1746  *
1747  * #<Socket::AncillaryData: AF_UNIX SOCKET RIGHTS 7>
1748  *
1749  * _maxmesglen_ and _maxcontrollen_ can be nil.
1750  * In that case, the buffer will be grown until the message is not truncated.
1751  * Internally, MSG_PEEK is used and MSG_TRUNC/MSG_CTRUNC are checked.
1752  *
1753  * recvmsg can be used to implement recv_io as follows:
1754  *
1755  * mesg, sender_sockaddr, rflags, *controls = sock.recvmsg(:scm_rights=>true)
1756  * controls.each {|ancdata|
1757  * if ancdata.cmsg_is?(:SOCKET, :RIGHTS)
1758  * return ancdata.unix_rights[0]
1759  * end
1760  * }
1761  *
1762  */
1763 VALUE
1764 rsock_bsock_recvmsg(int argc, VALUE *argv, VALUE sock)
1765 {
1766  return bsock_recvmsg_internal(argc, argv, sock, 0);
1767 }
1768 #endif
1769 
1770 #if defined(HAVE_RECVMSG)
1771 /*
1772  * call-seq:
1773  * basicsocket.recvmsg_nonblock(maxdatalen=nil, flags=0, maxcontrollen=nil, opts={}) => [data, sender_addrinfo, rflags, *controls]
1774  *
1775  * recvmsg receives a message using recvmsg(2) system call in non-blocking manner.
1776  *
1777  * It is similar to BasicSocket#recvmsg
1778  * but non-blocking flag is set before the system call
1779  * and it doesn't retry the system call.
1780  *
1781  */
1782 VALUE
1783 rsock_bsock_recvmsg_nonblock(int argc, VALUE *argv, VALUE sock)
1784 {
1785  return bsock_recvmsg_internal(argc, argv, sock, 1);
1786 }
1787 #endif
1788 
1789 void
1791 {
1792 #if defined(HAVE_ST_MSG_CONTROL)
1793  /*
1794  * Document-class: Socket::AncillaryData
1795  *
1796  * Socket::AncillaryData represents the ancillary data (control information)
1797  * used by sendmsg and recvmsg system call. It contains socket #family,
1798  * control message (cmsg) #level, cmsg #type and cmsg #data.
1799  */
1800  rb_cAncillaryData = rb_define_class_under(rb_cSocket, "AncillaryData", rb_cObject);
1801  rb_define_method(rb_cAncillaryData, "initialize", ancillary_initialize, 4);
1802  rb_define_method(rb_cAncillaryData, "inspect", ancillary_inspect, 0);
1803  rb_define_method(rb_cAncillaryData, "family", ancillary_family_m, 0);
1804  rb_define_method(rb_cAncillaryData, "level", ancillary_level_m, 0);
1805  rb_define_method(rb_cAncillaryData, "type", ancillary_type_m, 0);
1806  rb_define_method(rb_cAncillaryData, "data", ancillary_data, 0);
1807 
1808  rb_define_method(rb_cAncillaryData, "cmsg_is?", ancillary_cmsg_is_p, 2);
1809 
1810  rb_define_singleton_method(rb_cAncillaryData, "int", ancillary_s_int, 4);
1811  rb_define_method(rb_cAncillaryData, "int", ancillary_int, 0);
1812 
1813  rb_define_singleton_method(rb_cAncillaryData, "unix_rights", ancillary_s_unix_rights, -1);
1814  rb_define_method(rb_cAncillaryData, "unix_rights", ancillary_unix_rights, 0);
1815 
1816  rb_define_method(rb_cAncillaryData, "timestamp", ancillary_timestamp, 0);
1817 
1818  rb_define_singleton_method(rb_cAncillaryData, "ip_pktinfo", ancillary_s_ip_pktinfo, -1);
1819  rb_define_method(rb_cAncillaryData, "ip_pktinfo", ancillary_ip_pktinfo, 0);
1820 
1821  rb_define_singleton_method(rb_cAncillaryData, "ipv6_pktinfo", ancillary_s_ipv6_pktinfo, 2);
1822  rb_define_method(rb_cAncillaryData, "ipv6_pktinfo", ancillary_ipv6_pktinfo, 0);
1823  rb_define_method(rb_cAncillaryData, "ipv6_pktinfo_addr", ancillary_ipv6_pktinfo_addr, 0);
1824  rb_define_method(rb_cAncillaryData, "ipv6_pktinfo_ifindex", ancillary_ipv6_pktinfo_ifindex, 0);
1825 #endif
1826 }
RUBY_EXTERN VALUE rb_cString
Definition: ruby.h:1456
void rb_gc(void)
Definition: gc.c:3110
#define T_OBJECT
Definition: ruby.h:485
VALUE rb_ary_entry(VALUE ary, long offset)
Definition: array.c:1088
for(i=0;i< args;i++)
Definition: win32ole.c:788
#define RARRAY_LEN(a)
Definition: ruby.h:899
#define INT2NUM(x)
Definition: ruby.h:1178
int msg_iovlen
Definition: win32.h:219
void rb_io_set_nonblock(rb_io_t *fptr)
Definition: io.c:2347
int i
Definition: win32ole.c:784
void * msg_control
Definition: win32.h:220
VALUE rb_time_nano_new(time_t, long)
Definition: time.c:2390
#define PF_INET
Definition: sockport.h:77
#define SockAddrStringValue(v)
Definition: rubysocket.h:208
#define NUM2INT(x)
Definition: ruby.h:622
#define NUM2UINT(x)
Definition: ruby.h:623
void rb_define_singleton_method(VALUE obj, const char *name, VALUE(*func)(ANYARGS), int argc)
Defines a singleton method for obj.
Definition: class.c:1497
int sendmsg(int, const struct msghdr *, int)
Definition: win32.c:3344
int msg_namelen
Definition: win32.h:217
#define Qtrue
Definition: ruby.h:434
Definition: io.h:63
Definition: win32.h:215
void * msg_name
Definition: win32.h:216
VALUE rb_eTypeError
Definition: error.c:516
#define SET_SA_LEN(sa, len)
Definition: sockport.h:39
VALUE rb_ary_push(VALUE ary, VALUE item)
Definition: array.c:822
VALUE rsock_init_sock(VALUE sock, int fd)
Definition: init.c:43
#define SYM2ID(x)
Definition: ruby.h:364
VALUE rb_funcall(VALUE, ID, int,...)
Calls a method.
Definition: vm_eval.c:773
void rb_str_set_len(VALUE, long)
Definition: string.c:1838
VALUE rb_define_class_under(VALUE outer, const char *name, VALUE super)
Defines a class under the namespace of outer.
Definition: class.c:534
void rb_raise(VALUE exc, const char *fmt,...)
Definition: error.c:1788
#define rsock_bsock_sendmsg
Definition: rubysocket.h:285
#define T_HASH
Definition: ruby.h:493
VALUE rb_ary_new3(long n,...)
Definition: array.c:432
struct iovec * msg_iov
Definition: win32.h:218
#define T_ARRAY
Definition: ruby.h:492
int rsock_getfamily(int sockfd)
Definition: init.c:596
#define SSIZET2NUM(v)
Definition: ruby.h:271
int recvmsg(int, struct msghdr *, int)
Definition: win32.c:3286
VALUE rb_str_tmp_new(long)
int msg_flags
Definition: win32.h:222
#define GetOpenFile(obj, fp)
Definition: io.h:120
VALUE rsock_io_socket_addrinfo(VALUE io, struct sockaddr *addr, socklen_t len)
Definition: raddrinfo.c:2184
const char * rb_obj_classname(VALUE)
Definition: variable.c:396
VALUE rb_str_buf_cat(VALUE, const char *, long)
Definition: string.c:1951
#define NEWOBJ_OF(obj, type, klass, flags)
Definition: ruby.h:683
int args
Definition: win32ole.c:785
#define RB_TYPE_P(obj, type)
Definition: ruby.h:1537
VALUE rsock_addrinfo_new(struct sockaddr *addr, socklen_t len, int family, int socktype, int protocol, VALUE canonname, VALUE inspectname)
Definition: raddrinfo.c:630
RUBY_EXTERN VALUE rb_mWaitReadable
Definition: ruby.h:1422
unsigned long long uint64_t
Definition: sha2.h:102
int rsock_family_arg(VALUE domain)
Definition: constants.c:43
#define level
#define rsock_bsock_sendmsg_nonblock
Definition: rubysocket.h:286
RUBY_EXTERN VALUE rb_cObject
Definition: ruby.h:1426
VALUE rb_str_cat2(VALUE, const char *)
Definition: string.c:1986
VALUE rb_ary_new(void)
Definition: array.c:424
#define UINT2NUM(x)
Definition: ruby.h:1188
#define NIL_P(v)
Definition: ruby.h:446
#define add(x, y)
Definition: date_strftime.c:23
static char msg[50]
Definition: strerror.c:8
int rsock_level_arg(int family, VALUE level)
Definition: constants.c:57
int fd
Definition: io.h:64
int rb_io_wait_writable(int)
Definition: io.c:1098
static const char * inet_ntop(int af, const void *addr, char *numaddr, size_t numaddr_len)
Definition: getnameinfo.c:119
int argc
Definition: ruby.c:130
#define Qfalse
Definition: ruby.h:433
void rsock_init_ancdata(void)
Definition: ancdata.c:1790
#define ALLOCA_N(type, n)
Definition: ruby.h:1227
#define MEMCPY(p1, p2, type, n)
Definition: ruby.h:1242
#define rsock_bsock_recvmsg_nonblock
Definition: rubysocket.h:294
VALUE rb_obj_alloc(VALUE)
Definition: object.c:1740
#define OBJ_FREEZE(x)
Definition: ruby.h:1164
void * rb_thread_call_without_gvl(void *(*func)(void *), void *data1, rb_unblock_function_t *ubf, void *data2)
VALUE rb_time_new(time_t, long)
Definition: time.c:2364
VALUE rb_cSocket
Definition: init.c:22
VALUE rb_str_resize(VALUE, long)
Definition: string.c:1854
static VALUE constant_to_sym(int constant, ID(*intern_const)(int))
Definition: option.c:6
#define IS_IP_FAMILY(af)
Definition: rubysocket.h:117
#define RSTRING_LEN(str)
Definition: ruby.h:862
VALUE rb_io_fdopen(int, int, const char *)
Definition: io.c:7161
int errno
VALUE rb_sprintf(const char *format,...)
Definition: sprintf.c:1275
RUBY_EXTERN VALUE rb_mWaitWritable
Definition: ruby.h:1423
int rb_scan_args(int argc, const VALUE *argv, const char *fmt,...)
Definition: class.c:1570
VALUE rb_ivar_set(VALUE, ID, VALUE)
Definition: variable.c:1128
unsigned char buf[MIME_BUF_SIZE]
Definition: nkf.c:4308
unsigned long ID
Definition: ruby.h:105
#define Qnil
Definition: ruby.h:435
int type
Definition: tcltklib.c:111
#define OBJ_TAINT(x)
Definition: ruby.h:1154
unsigned long VALUE
Definition: ruby.h:104
static VALUE result
Definition: nkf.c:40
#define RBASIC(obj)
Definition: ruby.h:1094
Definition: win32.h:211
VALUE rb_str_dump(VALUE)
Definition: string.c:4634
void rb_sys_fail(const char *mesg)
Definition: error.c:1907
#define RSTRING_PTR(str)
Definition: ruby.h:866
VALUE rb_eSocket
Definition: init.c:25
int rb_io_read_pending(rb_io_t *)
Definition: io.c:825
#define quo(x, y)
Definition: date_strftime.c:26
VALUE rb_check_convert_type(VALUE, int, const char *, const char *)
Definition: object.c:2438
#define sizeof(x)
Definition: zlib.c:58
#define mul(x, y)
Definition: date_strftime.c:25
#define SIZE_MAX
Definition: ruby.h:282
void rb_mod_sys_fail(VALUE mod, const char *mesg)
Definition: error.c:1919
void rb_fd_fix_cloexec(int fd)
Definition: io.c:202
#define NUM2SIZET(x)
Definition: ruby.h:670
VALUE rb_hash_aref(VALUE hash, VALUE key)
Definition: hash.c:570
#define RARRAY_PTR(a)
Definition: ruby.h:904
VALUE rb_str_catf(VALUE str, const char *format,...)
Definition: sprintf.c:1315
#define RTEST(v)
Definition: ruby.h:445
#define AF_UNSPEC
Definition: sockport.h:69
#define EMSGSIZE
Definition: win32.h:489
v
Definition: win32ole.c:798
#define EWOULDBLOCK
Definition: rubysocket.h:90
#define T_FILE
Definition: ruby.h:496
VALUE rb_eNotImpError
Definition: error.c:526
const char * name
Definition: nkf.c:208
RUBY_EXTERN VALUE rb_eIOError
Definition: ruby.h:1476
#define ID2SYM(x)
Definition: ruby.h:363
const char * rb_id2name(ID id)
Definition: ripper.c:17012
Definition: ruby.h:709
#define IFNAMSIZ
int msg_controllen
Definition: win32.h:221
#define RSTRING_LENINT(str)
Definition: ruby.h:874
void rb_secure(int)
Definition: safe.c:79
#define rsock_bsock_recvmsg
Definition: rubysocket.h:293
VALUE rb_tainted_str_new(const char *, long)
#define rb_intern(str)
VALUE rb_str_buf_new(long)
Definition: string.c:777
#define fstat(fd, st)
Definition: win32.h:194
#define SYMBOL_P(x)
Definition: ruby.h:362
#define stat(path, st)
Definition: win32.h:193
#define NULL
Definition: _sdbm.c:102
int rb_io_wait_readable(int)
Definition: io.c:1072
void rb_define_method(VALUE klass, const char *name, VALUE(*func)(ANYARGS), int argc)
Definition: class.c:1344
VALUE rb_str_append(VALUE, VALUE)
Definition: string.c:2125
void rb_io_check_closed(rb_io_t *)
Definition: io.c:612
VALUE rb_time_num_new(VALUE, VALUE)
Definition: time.c:2396
VALUE rb_eArgError
Definition: error.c:517
int rsock_cmsg_type_arg(int family, int level, VALUE type)
Definition: constants.c:100
VALUE rb_attr_get(VALUE, ID)
Definition: variable.c:1122
char ** argv
Definition: ruby.c:131
#define StringValue(v)
Definition: ruby.h:546
#define RUBY_UBF_IO
Definition: intern.h:843
VALUE rb_str_new(const char *, long)
Definition: string.c:425