Ruby  2.0.0p648(2015-12-16revision53162)
ossl.c
Go to the documentation of this file.
1 /*
2  * $Id: ossl.c 47627 2014-09-18 15:26:17Z usa $
3  * 'OpenSSL for Ruby' project
4  * Copyright (C) 2001-2002 Michal Rokos <m.rokos@sh.cvut.cz>
5  * All rights reserved.
6  */
7 /*
8  * This program is licenced under the same licence as Ruby.
9  * (See the file 'LICENCE'.)
10  */
11 #include "ossl.h"
12 #include <stdarg.h> /* for ossl_raise */
13 
14 /*
15  * String to HEXString conversion
16  */
17 int
18 string2hex(const unsigned char *buf, int buf_len, char **hexbuf, int *hexbuf_len)
19 {
20  static const char hex[]="0123456789abcdef";
21  int i, len = 2 * buf_len;
22 
23  if (buf_len < 0 || len < buf_len) { /* PARANOIA? */
24  return -1;
25  }
26  if (!hexbuf) { /* if no buf, return calculated len */
27  if (hexbuf_len) {
28  *hexbuf_len = len;
29  }
30  return len;
31  }
32  if (!(*hexbuf = OPENSSL_malloc(len + 1))) {
33  return -1;
34  }
35  for (i = 0; i < buf_len; i++) {
36  (*hexbuf)[2 * i] = hex[((unsigned char)buf[i]) >> 4];
37  (*hexbuf)[2 * i + 1] = hex[buf[i] & 0x0f];
38  }
39  (*hexbuf)[2 * i] = '\0';
40 
41  if (hexbuf_len) {
42  *hexbuf_len = len;
43  }
44  return len;
45 }
46 
47 /*
48  * Data Conversion
49  */
50 #define OSSL_IMPL_ARY2SK(name, type, expected_class, dup) \
51 STACK_OF(type) * \
52 ossl_##name##_ary2sk0(VALUE ary) \
53 { \
54  STACK_OF(type) *sk; \
55  VALUE val; \
56  type *x; \
57  int i; \
58  \
59  Check_Type(ary, T_ARRAY); \
60  sk = sk_##type##_new_null(); \
61  if (!sk) ossl_raise(eOSSLError, NULL); \
62  \
63  for (i = 0; i < RARRAY_LEN(ary); i++) { \
64  val = rb_ary_entry(ary, i); \
65  if (!rb_obj_is_kind_of(val, expected_class)) { \
66  sk_##type##_pop_free(sk, type##_free); \
67  ossl_raise(eOSSLError, "object in array not" \
68  " of class ##type##"); \
69  } \
70  x = dup(val); /* NEED TO DUP */ \
71  sk_##type##_push(sk, x); \
72  } \
73  return sk; \
74 } \
75  \
76 STACK_OF(type) * \
77 ossl_protect_##name##_ary2sk(VALUE ary, int *status) \
78 { \
79  return (STACK_OF(type)*)rb_protect( \
80  (VALUE(*)_((VALUE)))ossl_##name##_ary2sk0, \
81  ary, \
82  status); \
83 } \
84  \
85 STACK_OF(type) * \
86 ossl_##name##_ary2sk(VALUE ary) \
87 { \
88  STACK_OF(type) *sk; \
89  int status = 0; \
90  \
91  sk = ossl_protect_##name##_ary2sk(ary, &status); \
92  if (status) rb_jump_tag(status); \
93  \
94  return sk; \
95 }
97 
98 #define OSSL_IMPL_SK2ARY(name, type) \
99 VALUE \
100 ossl_##name##_sk2ary(STACK_OF(type) *sk) \
101 { \
102  type *t; \
103  int i, num; \
104  VALUE ary; \
105  \
106  if (!sk) { \
107  OSSL_Debug("empty sk!"); \
108  return Qnil; \
109  } \
110  num = sk_##type##_num(sk); \
111  if (num < 0) { \
112  OSSL_Debug("items in sk < -1???"); \
113  return rb_ary_new(); \
114  } \
115  ary = rb_ary_new2(num); \
116  \
117  for (i=0; i<num; i++) { \
118  t = sk_##type##_value(sk, i); \
119  rb_ary_push(ary, ossl_##name##_new(t)); \
120  } \
121  return ary; \
122 }
123 OSSL_IMPL_SK2ARY(x509, X509)
124 OSSL_IMPL_SK2ARY(x509crl, X509_CRL)
125 OSSL_IMPL_SK2ARY(x509name, X509_NAME)
126 
127 static VALUE
129 {
130  return rb_str_new(0, size);
131 }
132 
133 VALUE
134 ossl_buf2str(char *buf, int len)
135 {
136  VALUE str;
137  int status = 0;
138 
139  str = rb_protect((VALUE(*)_((VALUE)))ossl_str_new, len, &status);
140  if(!NIL_P(str)) memcpy(RSTRING_PTR(str), buf, len);
141  OPENSSL_free(buf);
142  if(status) rb_jump_tag(status);
143 
144  return str;
145 }
146 
147 /*
148  * our default PEM callback
149  */
150 static VALUE
152 {
153  VALUE pass;
154 
155  pass = rb_yield(flag);
156  SafeStringValue(pass);
157 
158  return pass;
159 }
160 
161 int
162 ossl_pem_passwd_cb(char *buf, int max_len, int flag, void *pwd)
163 {
164  int len, status = 0;
165  VALUE rflag, pass;
166 
167  if (pwd || !rb_block_given_p())
168  return PEM_def_callback(buf, max_len, flag, pwd);
169 
170  while (1) {
171  /*
172  * when the flag is nonzero, this passphrase
173  * will be used to perform encryption; otherwise it will
174  * be used to perform decryption.
175  */
176  rflag = flag ? Qtrue : Qfalse;
177  pass = rb_protect(ossl_pem_passwd_cb0, rflag, &status);
178  if (status) {
179  /* ignore an exception raised. */
181  return -1;
182  }
183  len = RSTRING_LENINT(pass);
184  if (len < 4) { /* 4 is OpenSSL hardcoded limit */
185  rb_warning("password must be longer than 4 bytes");
186  continue;
187  }
188  if (len > max_len) {
189  rb_warning("password must be shorter then %d bytes", max_len-1);
190  continue;
191  }
192  memcpy(buf, RSTRING_PTR(pass), len);
193  break;
194  }
195  return len;
196 }
197 
198 /*
199  * Verify callback
200  */
202 
203 VALUE
205 {
206  return rb_funcall(args->proc, rb_intern("call"), 2,
207  args->preverify_ok, args->store_ctx);
208 }
209 
210 int
211 ossl_verify_cb(int ok, X509_STORE_CTX *ctx)
212 {
213  VALUE proc, rctx, ret;
214  struct ossl_verify_cb_args args;
215  int state = 0;
216 
217  proc = (VALUE)X509_STORE_CTX_get_ex_data(ctx, ossl_verify_cb_idx);
218  if ((void*)proc == 0)
219  proc = (VALUE)X509_STORE_get_ex_data(ctx->ctx, ossl_verify_cb_idx);
220  if ((void*)proc == 0)
221  return ok;
222  if (!NIL_P(proc)) {
223  ret = Qfalse;
225  (VALUE)ctx, &state);
226  if (state) {
228  rb_warn("StoreContext initialization failure");
229  }
230  else {
231  args.proc = proc;
232  args.preverify_ok = ok ? Qtrue : Qfalse;
233  args.store_ctx = rctx;
234  ret = rb_protect((VALUE(*)(VALUE))ossl_call_verify_cb_proc, (VALUE)&args, &state);
235  if (state) {
237  rb_warn("exception in verify_callback is ignored");
238  }
240  }
241  if (ret == Qtrue) {
242  X509_STORE_CTX_set_error(ctx, X509_V_OK);
243  ok = 1;
244  }
245  else{
246  if (X509_STORE_CTX_get_error(ctx) == X509_V_OK) {
247  X509_STORE_CTX_set_error(ctx, X509_V_ERR_CERT_REJECTED);
248  }
249  ok = 0;
250  }
251  }
252 
253  return ok;
254 }
255 
256 /*
257  * main module
258  */
260 
261 /*
262  * OpenSSLError < StandardError
263  */
265 
266 /*
267  * Convert to DER string
268  */
270 
271 VALUE
273 {
274  VALUE tmp;
275 
276  tmp = rb_funcall(obj, ossl_s_to_der, 0);
277  StringValue(tmp);
278 
279  return tmp;
280 }
281 
282 VALUE
284 {
285  if(rb_respond_to(obj, ossl_s_to_der))
286  return ossl_to_der(obj);
287  return obj;
288 }
289 
290 /*
291  * Errors
292  */
293 static VALUE
294 ossl_make_error(VALUE exc, const char *fmt, va_list args)
295 {
296  VALUE str = Qnil;
297  const char *msg;
298  long e;
299 
300 #ifdef HAVE_ERR_PEEK_LAST_ERROR
301  e = ERR_peek_last_error();
302 #else
303  e = ERR_peek_error();
304 #endif
305  if (fmt) {
306  str = rb_vsprintf(fmt, args);
307  }
308  if (e) {
309  if (dOSSL == Qtrue) /* FULL INFO */
310  msg = ERR_error_string(e, NULL);
311  else
312  msg = ERR_reason_error_string(e);
313  if (NIL_P(str)) {
314  if (msg) str = rb_str_new_cstr(msg);
315  }
316  else {
317  if (RSTRING_LEN(str)) rb_str_cat2(str, ": ");
318  rb_str_cat2(str, msg ? msg : "(null)");
319  }
320  }
321  if (dOSSL == Qtrue){ /* show all errors on the stack */
322  while ((e = ERR_get_error()) != 0){
323  rb_warn("error on stack: %s", ERR_error_string(e, NULL));
324  }
325  }
326  ERR_clear_error();
327 
328  if (NIL_P(str)) str = rb_str_new(0, 0);
329  return rb_exc_new3(exc, str);
330 }
331 
332 void
333 ossl_raise(VALUE exc, const char *fmt, ...)
334 {
335  va_list args;
336  VALUE err;
337  va_start(args, fmt);
338  err = ossl_make_error(exc, fmt, args);
339  va_end(args);
340  rb_exc_raise(err);
341 }
342 
343 VALUE
344 ossl_exc_new(VALUE exc, const char *fmt, ...)
345 {
346  va_list args;
347  VALUE err;
348  va_start(args, fmt);
349  err = ossl_make_error(exc, fmt, args);
350  va_end(args);
351  return err;
352 }
353 
354 /*
355  * call-seq:
356  * OpenSSL.errors -> [String...]
357  *
358  * See any remaining errors held in queue.
359  *
360  * Any errors you see here are probably due to a bug in ruby's OpenSSL implementation.
361  */
362 VALUE
364 {
365  VALUE ary;
366  long e;
367 
368  ary = rb_ary_new();
369  while ((e = ERR_get_error()) != 0){
370  rb_ary_push(ary, rb_str_new2(ERR_error_string(e, NULL)));
371  }
372 
373  return ary;
374 }
375 
376 /*
377  * Debug
378  */
380 
381 #if !defined(HAVE_VA_ARGS_MACRO)
382 void
383 ossl_debug(const char *fmt, ...)
384 {
385  va_list args;
386 
387  if (dOSSL == Qtrue) {
388  fprintf(stderr, "OSSL_DEBUG: ");
389  va_start(args, fmt);
390  vfprintf(stderr, fmt, args);
391  va_end(args);
392  fprintf(stderr, " [CONTEXT N/A]\n");
393  }
394 }
395 #endif
396 
397 /*
398  * call-seq:
399  * OpenSSL.debug -> true | false
400  */
401 static VALUE
403 {
404  return dOSSL;
405 }
406 
407 /*
408  * call-seq:
409  * OpenSSL.debug = boolean -> boolean
410  *
411  * Turns on or off CRYPTO_MEM_CHECK.
412  * Also shows some debugging message on stderr.
413  */
414 static VALUE
416 {
417  VALUE old = dOSSL;
418  dOSSL = val;
419 
420  if (old != dOSSL) {
421  if (dOSSL == Qtrue) {
422  CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ON);
423  fprintf(stderr, "OSSL_DEBUG: IS NOW ON!\n");
424  } else if (old == Qtrue) {
425  CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_OFF);
426  fprintf(stderr, "OSSL_DEBUG: IS NOW OFF!\n");
427  }
428  }
429  return val;
430 }
431 
432 /*
433  * call-seq:
434  * OpenSSL.fips_mode = boolean -> boolean
435  *
436  * Turns FIPS mode on or off. Turning on FIPS mode will obviously only have an
437  * effect for FIPS-capable installations of the OpenSSL library. Trying to do
438  * so otherwise will result in an error.
439  *
440  * === Examples
441  *
442  * OpenSSL.fips_mode = true # turn FIPS mode on
443  * OpenSSL.fips_mode = false # and off again
444  */
445 static VALUE
447 {
448 
449 #ifdef HAVE_OPENSSL_FIPS
450  if (RTEST(enabled)) {
451  int mode = FIPS_mode();
452  if(!mode && !FIPS_mode_set(1)) /* turning on twice leads to an error */
453  ossl_raise(eOSSLError, "Turning on FIPS mode failed");
454  } else {
455  if(!FIPS_mode_set(0)) /* turning off twice is OK */
456  ossl_raise(eOSSLError, "Turning off FIPS mode failed");
457  }
458  return enabled;
459 #else
460  if (RTEST(enabled))
461  ossl_raise(eOSSLError, "This version of OpenSSL does not support FIPS mode");
462  return enabled;
463 #endif
464 }
465 
466 /*
467  * OpenSSL provides SSL, TLS and general purpose cryptography. It wraps the
468  * OpenSSL[http://www.openssl.org/] library.
469  *
470  * = Examples
471  *
472  * All examples assume you have loaded OpenSSL with:
473  *
474  * require 'openssl'
475  *
476  * These examples build atop each other. For example the key created in the
477  * next is used in throughout these examples.
478  *
479  * == Keys
480  *
481  * === Creating a Key
482  *
483  * This example creates a 2048 bit RSA keypair and writes it to the current
484  * directory.
485  *
486  * key = OpenSSL::PKey::RSA.new 2048
487  *
488  * open 'private_key.pem', 'w' do |io| io.write key.to_pem end
489  * open 'public_key.pem', 'w' do |io| io.write key.public_key.to_pem end
490  *
491  * === Exporting a Key
492  *
493  * Keys saved to disk without encryption are not secure as anyone who gets
494  * ahold of the key may use it unless it is encrypted. In order to securely
495  * export a key you may export it with a pass phrase.
496  *
497  * cipher = OpenSSL::Cipher.new 'AES-128-CBC'
498  * pass_phrase = 'my secure pass phrase goes here'
499  *
500  * key_secure = key.export cipher, pass_phrase
501  *
502  * open 'private.secure.pem', 'w' do |io|
503  * io.write key_secure
504  * end
505  *
506  * OpenSSL::Cipher.ciphers returns a list of available ciphers.
507  *
508  * === Loading a Key
509  *
510  * A key can also be loaded from a file.
511  *
512  * key2 = OpenSSL::PKey::RSA.new File.read 'private_key.pem'
513  * key2.public? # => true
514  *
515  * or
516  *
517  * key3 = OpenSSL::PKey::RSA.new File.read 'public_key.pem'
518  * key3.private? # => false
519  *
520  * === Loading an Encrypted Key
521  *
522  * OpenSSL will prompt you for your pass phrase when loading an encrypted key.
523  * If you will not be able to type in the pass phrase you may provide it when
524  * loading the key:
525  *
526  * key4_pem = File.read 'private.secure.pem'
527  * key4 = OpenSSL::PKey::RSA.new key4_pem, pass_phrase
528  *
529  * == RSA Encryption
530  *
531  * RSA provides encryption and decryption using the public and private keys.
532  * You can use a variety of padding methods depending upon the intended use of
533  * encrypted data.
534  *
535  * === Encryption & Decryption
536  *
537  * Asymmetric public/private key encryption is slow and victim to attack in
538  * cases where it is used without padding or directly to encrypt larger chunks
539  * of data. Typical use cases for RSA encryption involve "wrapping" a symmetric
540  * key with the public key of the recipient who would "unwrap" that symmetric
541  * key again using their private key.
542  * The following illustrates a simplified example of such a key transport
543  * scheme. It shouldn't be used in practice, though, standardized protocols
544  * should always be preferred.
545  *
546  * wrapped_key = key.public_encrypt key
547  *
548  * A symmetric key encrypted with the public key can only be decrypted with
549  * the corresponding private key of the recipient.
550  *
551  * original_key = key.private_decrypt wrapped_key
552  *
553  * By default PKCS#1 padding will be used, but it is also possible to use
554  * other forms of padding, see PKey::RSA for further details.
555  *
556  * === Signatures
557  *
558  * Using "private_encrypt" to encrypt some data with the private key is
559  * equivalent to applying a digital signature to the data. A verifying
560  * party may validate the signature by comparing the result of decrypting
561  * the signature with "public_decrypt" to the original data. However,
562  * OpenSSL::PKey already has methods "sign" and "verify" that handle
563  * digital signatures in a standardized way - "private_encrypt" and
564  * "public_decrypt" shouldn't be used in practice.
565  *
566  * To sign a document, a cryptographically secure hash of the document is
567  * computed first, which is then signed using the private key.
568  *
569  * digest = OpenSSL::Digest::SHA256.new
570  * signature = key.sign digest, document
571  *
572  * To validate the signature, again a hash of the document is computed and
573  * the signature is decrypted using the public key. The result is then
574  * compared to the hash just computed, if they are equal the signature was
575  * valid.
576  *
577  * digest = OpenSSL::Digest::SHA256.new
578  * if key.verify digest, signature, document
579  * puts 'Valid'
580  * else
581  * puts 'Invalid'
582  * end
583  *
584  * == PBKDF2 Password-based Encryption
585  *
586  * If supported by the underlying OpenSSL version used, Password-based
587  * Encryption should use the features of PKCS5. If not supported or if
588  * required by legacy applications, the older, less secure methods specified
589  * in RFC 2898 are also supported (see below).
590  *
591  * PKCS5 supports PBKDF2 as it was specified in PKCS#5
592  * v2.0[http://www.rsa.com/rsalabs/node.asp?id=2127]. It still uses a
593  * password, a salt, and additionally a number of iterations that will
594  * slow the key derivation process down. The slower this is, the more work
595  * it requires being able to brute-force the resulting key.
596  *
597  * === Encryption
598  *
599  * The strategy is to first instantiate a Cipher for encryption, and
600  * then to generate a random IV plus a key derived from the password
601  * using PBKDF2. PKCS #5 v2.0 recommends at least 8 bytes for the salt,
602  * the number of iterations largely depends on the hardware being used.
603  *
604  * cipher = OpenSSL::Cipher.new 'AES-128-CBC'
605  * cipher.encrypt
606  * iv = cipher.random_iv
607  *
608  * pwd = 'some hopefully not to easily guessable password'
609  * salt = OpenSSL::Random.random_bytes 16
610  * iter = 20000
611  * key_len = cipher.key_len
612  * digest = OpenSSL::Digest::SHA256.new
613  *
614  * key = OpenSSL::PKCS5.pbkdf2_hmac(pwd, salt, iter, key_len, digest)
615  * cipher.key = key
616  *
617  * Now encrypt the data:
618  *
619  * encrypted = cipher.update document
620  * encrypted << cipher.final
621  *
622  * === Decryption
623  *
624  * Use the same steps as before to derive the symmetric AES key, this time
625  * setting the Cipher up for decryption.
626  *
627  * cipher = OpenSSL::Cipher.new 'AES-128-CBC'
628  * cipher.decrypt
629  * cipher.iv = iv # the one generated with #random_iv
630  *
631  * pwd = 'some hopefully not to easily guessable password'
632  * salt = ... # the one generated above
633  * iter = 20000
634  * key_len = cipher.key_len
635  * digest = OpenSSL::Digest::SHA256.new
636  *
637  * key = OpenSSL::PKCS5.pbkdf2_hmac(pwd, salt, iter, key_len, digest)
638  * cipher.key = key
639  *
640  * Now decrypt the data:
641  *
642  * decrypted = cipher.update encrypted
643  * decrypted << cipher.final
644  *
645  * == PKCS #5 Password-based Encryption
646  *
647  * PKCS #5 is a password-based encryption standard documented at
648  * RFC2898[http://www.ietf.org/rfc/rfc2898.txt]. It allows a short password or
649  * passphrase to be used to create a secure encryption key. If possible, PBKDF2
650  * as described above should be used if the circumstances allow it.
651  *
652  * PKCS #5 uses a Cipher, a pass phrase and a salt to generate an encryption
653  * key.
654  *
655  * pass_phrase = 'my secure pass phrase goes here'
656  * salt = '8 octets'
657  *
658  * === Encryption
659  *
660  * First set up the cipher for encryption
661  *
662  * encrypter = OpenSSL::Cipher.new 'AES-128-CBC'
663  * encrypter.encrypt
664  * encrypter.pkcs5_keyivgen pass_phrase, salt
665  *
666  * Then pass the data you want to encrypt through
667  *
668  * encrypted = encrypter.update 'top secret document'
669  * encrypted << encrypter.final
670  *
671  * === Decryption
672  *
673  * Use a new Cipher instance set up for decryption
674  *
675  * decrypter = OpenSSL::Cipher.new 'AES-128-CBC'
676  * decrypter.decrypt
677  * decrypter.pkcs5_keyivgen pass_phrase, salt
678  *
679  * Then pass the data you want to decrypt through
680  *
681  * plain = decrypter.update encrypted
682  * plain << decrypter.final
683  *
684  * == X509 Certificates
685  *
686  * === Creating a Certificate
687  *
688  * This example creates a self-signed certificate using an RSA key and a SHA1
689  * signature.
690  *
691  * name = OpenSSL::X509::Name.parse 'CN=nobody/DC=example'
692  *
693  * cert = OpenSSL::X509::Certificate.new
694  * cert.version = 2
695  * cert.serial = 0
696  * cert.not_before = Time.now
697  * cert.not_after = Time.now + 3600
698  *
699  * cert.public_key = key.public_key
700  * cert.subject = name
701  *
702  * === Certificate Extensions
703  *
704  * You can add extensions to the certificate with
705  * OpenSSL::SSL::ExtensionFactory to indicate the purpose of the certificate.
706  *
707  * extension_factory = OpenSSL::X509::ExtensionFactory.new nil, cert
708  *
709  * cert.add_extension \
710  * extension_factory.create_extension('basicConstraints', 'CA:FALSE', true)
711  *
712  * cert.add_extension \
713  * extension_factory.create_extension(
714  * 'keyUsage', 'keyEncipherment,dataEncipherment,digitalSignature')
715  *
716  * cert.add_extension \
717  * extension_factory.create_extension('subjectKeyIdentifier', 'hash')
718  *
719  * The list of supported extensions (and in some cases their possible values)
720  * can be derived from the "objects.h" file in the OpenSSL source code.
721  *
722  * === Signing a Certificate
723  *
724  * To sign a certificate set the issuer and use OpenSSL::X509::Certificate#sign
725  * with a digest algorithm. This creates a self-signed cert because we're using
726  * the same name and key to sign the certificate as was used to create the
727  * certificate.
728  *
729  * cert.issuer = name
730  * cert.sign key, OpenSSL::Digest::SHA1.new
731  *
732  * open 'certificate.pem', 'w' do |io| io.write cert.to_pem end
733  *
734  * === Loading a Certificate
735  *
736  * Like a key, a cert can also be loaded from a file.
737  *
738  * cert2 = OpenSSL::X509::Certificate.new File.read 'certificate.pem'
739  *
740  * === Verifying a Certificate
741  *
742  * Certificate#verify will return true when a certificate was signed with the
743  * given public key.
744  *
745  * raise 'certificate can not be verified' unless cert2.verify key
746  *
747  * == Certificate Authority
748  *
749  * A certificate authority (CA) is a trusted third party that allows you to
750  * verify the ownership of unknown certificates. The CA issues key signatures
751  * that indicate it trusts the user of that key. A user encountering the key
752  * can verify the signature by using the CA's public key.
753  *
754  * === CA Key
755  *
756  * CA keys are valuable, so we encrypt and save it to disk and make sure it is
757  * not readable by other users.
758  *
759  * ca_key = OpenSSL::PKey::RSA.new 2048
760  *
761  * cipher = OpenSSL::Cipher::Cipher.new 'AES-128-CBC'
762  *
763  * open 'ca_key.pem', 'w', 0400 do |io|
764  * io.write key.export(cipher, pass_phrase)
765  * end
766  *
767  * === CA Certificate
768  *
769  * A CA certificate is created the same way we created a certificate above, but
770  * with different extensions.
771  *
772  * ca_name = OpenSSL::X509::Name.parse 'CN=ca/DC=example'
773  *
774  * ca_cert = OpenSSL::X509::Certificate.new
775  * ca_cert.serial = 0
776  * ca_cert.version = 2
777  * ca_cert.not_before = Time.now
778  * ca_cert.not_after = Time.now + 86400
779  *
780  * ca_cert.public_key = ca_key.public_key
781  * ca_cert.subject = ca_name
782  * ca_cert.issuer = ca_name
783  *
784  * extension_factory = OpenSSL::X509::ExtensionFactory.new
785  * extension_factory.subject_certificate = ca_cert
786  * extension_factory.issuer_certificate = ca_cert
787  *
788  * ca_cert.add_extension \
789  * extension_factory.create_extension('subjectKeyIdentifier', 'hash')
790  *
791  * This extension indicates the CA's key may be used as a CA.
792  *
793  * ca_cert.add_extension \
794  * extension_factory.create_extension('basicConstraints', 'CA:TRUE', true)
795  *
796  * This extension indicates the CA's key may be used to verify signatures on
797  * both certificates and certificate revocations.
798  *
799  * ca_cert.add_extension \
800  * extension_factory.create_extension(
801  * 'keyUsage', 'cRLSign,keyCertSign', true)
802  *
803  * Root CA certificates are self-signed.
804  *
805  * ca_cert.sign ca_key, OpenSSL::Digest::SHA1.new
806  *
807  * The CA certificate is saved to disk so it may be distributed to all the
808  * users of the keys this CA will sign.
809  *
810  * open 'ca_cert.pem', 'w' do |io|
811  * io.write ca_cert.to_pem
812  * end
813  *
814  * === Certificate Signing Request
815  *
816  * The CA signs keys through a Certificate Signing Request (CSR). The CSR
817  * contains the information necessary to identify the key.
818  *
819  * csr = OpenSSL::X509::Request.new
820  * csr.version = 0
821  * csr.subject = name
822  * csr.public_key = key.public_key
823  * csr.sign key, OpenSSL::Digest::SHA1.new
824  *
825  * A CSR is saved to disk and sent to the CA for signing.
826  *
827  * open 'csr.pem', 'w' do |io|
828  * io.write csr.to_pem
829  * end
830  *
831  * === Creating a Certificate from a CSR
832  *
833  * Upon receiving a CSR the CA will verify it before signing it. A minimal
834  * verification would be to check the CSR's signature.
835  *
836  * csr = OpenSSL::X509::Request.new File.read 'csr.pem'
837  *
838  * raise 'CSR can not be verified' unless csr.verify csr.public_key
839  *
840  * After verification a certificate is created, marked for various usages,
841  * signed with the CA key and returned to the requester.
842  *
843  * csr_cert = OpenSSL::X509::Certificate.new
844  * csr_cert.serial = 0
845  * csr_cert.version = 2
846  * csr_cert.not_before = Time.now
847  * csr_cert.not_after = Time.now + 600
848  *
849  * csr_cert.subject = csr.subject
850  * csr_cert.public_key = csr.public_key
851  * csr_cert.issuer = ca_cert.subject
852  *
853  * extension_factory = OpenSSL::X509::ExtensionFactory.new
854  * extension_factory.subject_certificate = csr_cert
855  * extension_factory.issuer_certificate = ca_cert
856  *
857  * csr_cert.add_extension \
858  * extension_factory.create_extension('basicConstraints', 'CA:FALSE')
859  *
860  * csr_cert.add_extension \
861  * extension_factory.create_extension(
862  * 'keyUsage', 'keyEncipherment,dataEncipherment,digitalSignature')
863  *
864  * csr_cert.add_extension \
865  * extension_factory.create_extension('subjectKeyIdentifier', 'hash')
866  *
867  * csr_cert.sign ca_key, OpenSSL::Digest::SHA1.new
868  *
869  * open 'csr_cert.pem', 'w' do |io|
870  * io.write csr_cert.to_pem
871  * end
872  *
873  * == SSL and TLS Connections
874  *
875  * Using our created key and certificate we can create an SSL or TLS connection.
876  * An SSLContext is used to set up an SSL session.
877  *
878  * context = OpenSSL::SSL::SSLContext.new
879  *
880  * === SSL Server
881  *
882  * An SSL server requires the certificate and private key to communicate
883  * securely with its clients:
884  *
885  * context.cert = cert
886  * context.key = key
887  *
888  * Then create an SSLServer with a TCP server socket and the context. Use the
889  * SSLServer like an ordinary TCP server.
890  *
891  * require 'socket'
892  *
893  * tcp_server = TCPServer.new 5000
894  * ssl_server = OpenSSL::SSL::SSLServer.new tcp_server, context
895  *
896  * loop do
897  * ssl_connection = ssl_server.accept
898  *
899  * data = connection.gets
900  *
901  * response = "I got #{data.dump}"
902  * puts response
903  *
904  * connection.puts "I got #{data.dump}"
905  * connection.close
906  * end
907  *
908  * === SSL client
909  *
910  * An SSL client is created with a TCP socket and the context.
911  * SSLSocket#connect must be called to initiate the SSL handshake and start
912  * encryption. A key and certificate are not required for the client socket.
913  *
914  * require 'socket'
915  *
916  * tcp_client = TCPSocket.new 'localhost', 5000
917  * ssl_client = OpenSSL::SSL::SSLSocket.new client_socket, context
918  * ssl_client.connect
919  *
920  * ssl_client.puts "hello server!"
921  * puts ssl_client.gets
922  *
923  * === Peer Verification
924  *
925  * An unverified SSL connection does not provide much security. For enhanced
926  * security the client or server can verify the certificate of its peer.
927  *
928  * The client can be modified to verify the server's certificate against the
929  * certificate authority's certificate:
930  *
931  * context.ca_file = 'ca_cert.pem'
932  * context.verify_mode = OpenSSL::SSL::VERIFY_PEER
933  *
934  * require 'socket'
935  *
936  * tcp_client = TCPSocket.new 'localhost', 5000
937  * ssl_client = OpenSSL::SSL::SSLSocket.new client_socket, context
938  * ssl_client.connect
939  *
940  * ssl_client.puts "hello server!"
941  * puts ssl_client.gets
942  *
943  * If the server certificate is invalid or <tt>context.ca_file</tt> is not set
944  * when verifying peers an OpenSSL::SSL::SSLError will be raised.
945  *
946  */
947 void
949 {
950  /*
951  * Init timezone info
952  */
953 #if 0
954  tzset();
955 #endif
956 
957  /*
958  * Init all digests, ciphers
959  */
960  /* CRYPTO_malloc_init(); */
961  /* ENGINE_load_builtin_engines(); */
962  OpenSSL_add_ssl_algorithms();
963  OpenSSL_add_all_algorithms();
964  ERR_load_crypto_strings();
965  SSL_load_error_strings();
966 
967  /*
968  * FIXME:
969  * On unload do:
970  */
971 #if 0
972  CONF_modules_unload(1);
973  destroy_ui_method();
974  EVP_cleanup();
975  ENGINE_cleanup();
976  CRYPTO_cleanup_all_ex_data();
977  ERR_remove_state(0);
978  ERR_free_strings();
979 #endif
980 
981  /*
982  * Init main module
983  */
984  mOSSL = rb_define_module("OpenSSL");
985 
986  /*
987  * OpenSSL ruby extension version
988  */
989  rb_define_const(mOSSL, "VERSION", rb_str_new2(OSSL_VERSION));
990 
991  /*
992  * Version of OpenSSL the ruby OpenSSL extension was built with
993  */
994  rb_define_const(mOSSL, "OPENSSL_VERSION", rb_str_new2(OPENSSL_VERSION_TEXT));
995 
996  /*
997  * Version of OpenSSL the ruby OpenSSL extension is running with
998  */
999  rb_define_const(mOSSL, "OPENSSL_LIBRARY_VERSION", rb_str_new2(SSLeay_version(SSLEAY_VERSION)));
1000 
1001  /*
1002  * Version number of OpenSSL the ruby OpenSSL extension was built with
1003  * (base 16)
1004  */
1005  rb_define_const(mOSSL, "OPENSSL_VERSION_NUMBER", INT2NUM(OPENSSL_VERSION_NUMBER));
1006 
1007  /*
1008  * Boolean indicating whether OpenSSL is FIPS-enabled or not
1009  */
1010 #ifdef HAVE_OPENSSL_FIPS
1011  rb_define_const(mOSSL, "OPENSSL_FIPS", Qtrue);
1012 #else
1013  rb_define_const(mOSSL, "OPENSSL_FIPS", Qfalse);
1014 #endif
1015  rb_define_module_function(mOSSL, "fips_mode=", ossl_fips_mode_set, 1);
1016 
1017  /*
1018  * Generic error,
1019  * common for all classes under OpenSSL module
1020  */
1021  eOSSLError = rb_define_class_under(mOSSL,"OpenSSLError",rb_eStandardError);
1022 
1023  /*
1024  * Verify callback Proc index for ext-data
1025  */
1026  if ((ossl_verify_cb_idx = X509_STORE_CTX_get_ex_new_index(0, (void *)"ossl_verify_cb_idx", 0, 0, 0)) < 0)
1027  ossl_raise(eOSSLError, "X509_STORE_CTX_get_ex_new_index");
1028 
1029  /*
1030  * Init debug core
1031  */
1032  dOSSL = Qfalse;
1033  rb_define_module_function(mOSSL, "debug", ossl_debug_get, 0);
1034  rb_define_module_function(mOSSL, "debug=", ossl_debug_set, 1);
1035  rb_define_module_function(mOSSL, "errors", ossl_get_errors, 0);
1036 
1037  /*
1038  * Get ID of to_der
1039  */
1040  ossl_s_to_der = rb_intern("to_der");
1041 
1042  /*
1043  * Init components
1044  */
1045  Init_ossl_bn();
1046  Init_ossl_cipher();
1047  Init_ossl_config();
1048  Init_ossl_digest();
1049  Init_ossl_hmac();
1051  Init_ossl_pkcs12();
1052  Init_ossl_pkcs7();
1053  Init_ossl_pkcs5();
1054  Init_ossl_pkey();
1055  Init_ossl_rand();
1056  Init_ossl_ssl();
1057  Init_ossl_x509();
1058  Init_ossl_ocsp();
1059  Init_ossl_engine();
1060  Init_ossl_asn1();
1061 }
1062 
1063 #if defined(OSSL_DEBUG)
1064 /*
1065  * Check if all symbols are OK with 'make LDSHARED=gcc all'
1066  */
1067 int
1068 main(int argc, char *argv[])
1069 {
1070  return 0;
1071 }
1072 #endif /* OSSL_DEBUG */
1073 
VALUE rb_eStandardError
Definition: error.c:514
VALUE mOSSL
Definition: ossl.c:259
static VALUE ossl_str_new(int size)
Definition: ossl.c:128
VALUE dOSSL
Definition: ossl.c:379
#define INT2NUM(x)
Definition: ruby.h:1178
ID ossl_s_to_der
Definition: ossl.c:269
int i
Definition: win32ole.c:784
void Init_ossl_config()
Definition: ossl_config.c:63
#define Qtrue
Definition: ruby.h:434
VALUE rb_ary_push(VALUE ary, VALUE item)
Definition: array.c:822
void Init_ossl_bn()
Definition: ossl_bn.c:736
#define OSSL_IMPL_SK2ARY(name, type)
Definition: ossl.c:98
VALUE rb_funcall(VALUE, ID, int,...)
Calls a method.
Definition: vm_eval.c:773
VALUE rb_protect(VALUE(*proc)(VALUE), VALUE data, int *state)
Definition: eval.c:771
VALUE rb_define_class_under(VALUE outer, const char *name, VALUE super)
Defines a class under the namespace of outer.
Definition: class.c:534
#define OSSL_VERSION
Definition: ossl_version.h:14
void * X509_STORE_get_ex_data(X509_STORE *str, int idx)
void Init_ossl_pkcs5()
Definition: ossl_pkcs5.c:90
void Init_ossl_pkey()
Definition: ossl_pkey.c:345
static VALUE ossl_make_error(VALUE exc, const char *fmt, va_list args)
Definition: ossl.c:294
void Init_ossl_pkcs12()
Definition: ossl_pkcs12.c:195
int ossl_verify_cb_idx
Definition: ossl.c:201
VALUE ossl_get_errors()
Definition: ossl.c:363
void ossl_debug(const char *fmt,...)
Definition: ossl.c:383
void Init_ossl_pkcs7()
Definition: ossl_pkcs7.c:981
void Init_ossl_hmac()
Definition: ossl_hmac.c:237
VALUE ossl_exc_new(VALUE exc, const char *fmt,...)
Definition: ossl.c:344
void Init_openssl()
Definition: ossl.c:948
void rb_exc_raise(VALUE mesg)
Definition: eval.c:527
static VALUE ossl_pem_passwd_cb0(VALUE flag)
Definition: ossl.c:151
int args
Definition: win32ole.c:785
static VALUE ossl_fips_mode_set(VALUE self, VALUE enabled)
Definition: ossl.c:446
VALUE ossl_x509stctx_clear_ptr(VALUE)
VALUE ossl_to_der_if_possible(VALUE obj)
Definition: ossl.c:283
VALUE store_ctx
Definition: ossl.h:173
int rb_block_given_p(void)
Definition: eval.c:672
VALUE preverify_ok
Definition: ossl.h:172
VALUE cX509Cert
Definition: ossl_x509cert.c:33
void Init_ossl_ssl()
Definition: ossl_ssl.c:1823
void Init_ossl_ocsp()
Definition: ossl_ocsp.c:783
#define val
VALUE ossl_x509stctx_new(X509_STORE_CTX *)
void Init_ossl_asn1()
Definition: ossl_asn1.c:1443
VALUE rb_str_cat2(VALUE, const char *)
Definition: string.c:1986
VALUE rb_ary_new(void)
Definition: array.c:424
#define NIL_P(v)
Definition: ruby.h:446
static char msg[50]
Definition: strerror.c:8
void rb_define_const(VALUE, const char *, VALUE)
Definition: variable.c:2204
VALUE eOSSLError
Definition: ossl.c:264
int argc
Definition: ruby.c:130
#define Qfalse
Definition: ruby.h:433
void Init_ossl_rand()
Definition: ossl_rand.c:182
int err
Definition: win32.c:87
void Init_ossl_engine()
Definition: ossl_engine.c:423
int PEM_def_callback(char *buf, int num, int w, void *key)
static VALUE ossl_debug_get(VALUE self)
Definition: ossl.c:402
#define RSTRING_LEN(str)
Definition: ruby.h:862
void rb_define_module_function(VALUE module, const char *name, VALUE(*func)(ANYARGS), int argc)
Defines a module function for module.
Definition: class.c:1512
VALUE rb_yield(VALUE)
Definition: vm_eval.c:933
unsigned char buf[MIME_BUF_SIZE]
Definition: nkf.c:4308
unsigned long ID
Definition: ruby.h:105
#define Qnil
Definition: ruby.h:435
unsigned long VALUE
Definition: ruby.h:104
#define OSSL_IMPL_ARY2SK(name, type, expected_class, dup)
Definition: ossl.c:50
VALUE rb_str_new_cstr(const char *)
Definition: string.c:447
void rb_jump_tag(int tag)
Definition: eval.c:666
static VALUE ossl_debug_set(VALUE self, VALUE val)
Definition: ossl.c:415
#define _(args)
Definition: dln.h:28
int rb_respond_to(VALUE, ID)
Definition: vm_method.c:1598
void Init_ossl_digest()
Definition: ossl_digest.c:297
#define RSTRING_PTR(str)
Definition: ruby.h:866
int size
Definition: encoding.c:52
VALUE rb_exc_new3(VALUE etype, VALUE str)
Definition: error.c:553
void rb_set_errinfo(VALUE err)
Definition: eval.c:1442
#define RTEST(v)
Definition: ruby.h:445
VALUE ossl_buf2str(char *buf, int len)
Definition: ossl.c:134
void ossl_raise(VALUE exc, const char *fmt,...)
Definition: ossl.c:333
void Init_ossl_ns_spki()
Definition: ossl_ns_spki.c:363
#define SafeStringValue(v)
Definition: ruby.h:552
X509 * DupX509CertPtr(VALUE)
int main(int argc, char **argv)
Definition: nkf.c:6918
void Init_ossl_cipher(void)
Definition: ossl_cipher.c:770
int ossl_pem_passwd_cb(char *buf, int max_len, int flag, void *pwd)
Definition: ossl.c:162
void rb_warning(const char *fmt,...)
Definition: error.c:234
#define RSTRING_LENINT(str)
Definition: ruby.h:874
VALUE ossl_call_verify_cb_proc(struct ossl_verify_cb_args *args)
Definition: ossl.c:204
VALUE rb_define_module(const char *name)
Definition: class.c:606
#define rb_intern(str)
void Init_ossl_x509()
Definition: ossl_x509.c:20
VALUE rb_vsprintf(const char *, va_list)
Definition: sprintf.c:1266
#define NULL
Definition: _sdbm.c:102
VALUE rb_str_new2(const char *)
void rb_warn(const char *fmt,...)
Definition: error.c:221
int string2hex(const unsigned char *buf, int buf_len, char **hexbuf, int *hexbuf_len)
Definition: ossl.c:18
int ossl_verify_cb(int ok, X509_STORE_CTX *ctx)
Definition: ossl.c:211
VALUE ossl_to_der(VALUE obj)
Definition: ossl.c:272
char ** argv
Definition: ruby.c:131
#define StringValue(v)
Definition: ruby.h:546
VALUE rb_str_new(const char *, long)
Definition: string.c:425