Module Lacaml_C.Mat

module Mat: sig .. end


Matrix operations


Creation of matrices

val random : ?rnd_state:Random.State.t ->
?re_from:float ->
?re_range:float ->
?im_from:float -> ?im_range:float -> int -> int -> Lacaml_complex32.mat
random ?rnd_state ?re_from ?re_range ?im_from ?im_range m n
Returns an mxn matrix initialized with random elements sampled uniformly from re_range and im_range starting at re_from and im_from for real and imaginary numbers respectively. A random state rnd_state can be passed.
rnd_state : default = Random.get_state ()
re_from : default = -1.0
re_range : default = 2.0
im_from : default = -1.0
im_range : default = 2.0

Creation of matrices and accessors

val create : int -> int -> Lacaml_complex32.mat
create m n
Returns a matrix containing m rows and n columns.
val make : int -> int -> Lacaml_complex32.num_type -> Lacaml_complex32.mat
make m n x
Returns a matrix containing m rows and n columns initialized with value x.
val make0 : int -> int -> Lacaml_complex32.mat
make0 m n x
Returns a matrix containing m rows and n columns initialized with the zero element.
val of_array : Lacaml_complex32.num_type array array -> Lacaml_complex32.mat
of_array ar
Returns a matrix initialized from the array of arrays ar. It is assumed that the OCaml matrix is in row major order (standard).
val to_array : Lacaml_complex32.mat -> Lacaml_complex32.num_type array array
to_array mat
Returns an array of arrays initialized from matrix mat.
val of_col_vecs : Lacaml_complex32.vec array -> Lacaml_complex32.mat
of_col_vecs ar
Returns a matrix whose columns are initialized from the array of vectors ar. The vectors must be of same length.
val to_col_vecs : Lacaml_complex32.mat -> Lacaml_complex32.vec array
to_col_vecs mat
Returns an array of column vectors initialized from matrix mat.
val as_vec : Lacaml_complex32.mat -> Lacaml_complex32.vec
as_vec mat
Returns a vector containing all elements of the matrix in column-major order. The data is shared.
val init_rows : int ->
int -> (int -> int -> Lacaml_complex32.num_type) -> Lacaml_complex32.mat
init_cols m n f
Returns a matrix containing m rows and n columns, where each element at row and col is initialized by the result of calling f row col. The elements are passed row-wise.
val init_cols : int ->
int -> (int -> int -> Lacaml_complex32.num_type) -> Lacaml_complex32.mat
init_cols m n f
Returns a matrix containing m rows and n columns, where each element at row and col is initialized by the result of calling f row col. The elements are passed column-wise.
val create_mvec : int -> Lacaml_complex32.mat
create_mvec m
Returns a matrix with one column containing m rows.
val make_mvec : int -> Lacaml_complex32.num_type -> Lacaml_complex32.mat
make_mvec m x
Returns a matrix with one column containing m rows initialized with value x.
val mvec_of_array : Lacaml_complex32.num_type array -> Lacaml_complex32.mat
mvec_of_array ar
Returns a matrix with one column initialized with values from array ar.
val mvec_to_array : Lacaml_complex32.mat -> Lacaml_complex32.num_type array
mvec_to_array mat
Returns an array initialized with values from the first (not necessarily only) column vector of matrix mat.
val from_col_vec : Lacaml_complex32.vec -> Lacaml_complex32.mat
from_col_vec v
Returns a matrix with one column representing vector v. The data is shared.
val from_row_vec : Lacaml_complex32.vec -> Lacaml_complex32.mat
from_row_vec v
Returns a matrix with one row representing vector v. The data is shared.
val empty : Lacaml_complex32.mat
empty, the empty matrix.
val identity : int -> Lacaml_complex32.mat
identity n
Returns the nxn identity matrix.
val of_diag : Lacaml_complex32.vec -> Lacaml_complex32.mat
of_diag v
Returns the diagonal matrix with diagonals elements from v.
val dim1 : Lacaml_complex32.mat -> int
dim1 m
Returns the first dimension of matrix m (number of rows).
val dim2 : Lacaml_complex32.mat -> int
dim2 m
Returns the second dimension of matrix m (number of columns).
val col : Lacaml_complex32.mat -> int -> Lacaml_complex32.vec
col m n
Returns the nth column of matrix m as a vector. The data is shared.
val copy_row : ?vec:Lacaml_complex32.vec ->
Lacaml_complex32.mat -> int -> Lacaml_complex32.vec
copy_row ?vec mat int
Returns a copy of the nth row of matrix m in vector vec.
vec : default = fresh vector of length dim2 mat

Matrix transformations

val transpose_copy : ?m:int ->
?n:int ->
?ar:int ->
?ac:int ->
Lacaml_complex32.mat -> ?br:int -> ?bc:int -> Lacaml_complex32.mat -> unit
transpose_copy ?m ?n ?ar ?ac a ?br ?bc b copy the transpose of (sub-)matrix a into (sub-)matrix b.
m : default = Mat.dim1 a
n : default = Mat.dim2 a
ar : default = 1
ac : default = 1
br : default = 1
bc : default = 1
val transpose : ?m:int ->
?n:int -> ?ar:int -> ?ac:int -> Lacaml_complex32.mat -> Lacaml_complex32.mat
transpose ?m ?n ?ar ?ac aa
Returns the transpose of (sub-)matrix a.
m : default = Mat.dim1 a
n : default = Mat.dim2 a
ar : default = 1
ac : default = 1
val detri : ?up:bool -> ?n:int -> ?ar:int -> ?ac:int -> Lacaml_complex32.mat -> unit
detri ?up ?n ?ar ?ac a takes a triangular (sub-)matrix a, i.e. one where only the upper (iff up is true) or lower triangle is defined, and makes it a symmetric matrix by mirroring the defined triangle along the diagonal.
up : default = true
n : default = Mat.dim1 a
ar : default = 1
ac : default = 1
val packed : ?up:bool ->
?n:int -> ?ar:int -> ?ac:int -> Lacaml_complex32.mat -> Lacaml_complex32.vec
packed ?up ?n ?ar ?ac a
Returns (sub-)matrix a in packed storage format.
up : default = true
n : default = Mat.dim2 a
ar : default = 1
ac : default = 1
val unpacked : ?up:bool -> ?n:int -> Lacaml_complex32.vec -> Lacaml_complex32.mat
unpacked ?up x
Returns an upper or lower (depending on up) triangular matrix from packed representation vec. The other triangle of the matrix will be filled with zeros.
up : default = true
n : default = Vec.dim x

Arithmetic and other matrix operations

val add_const : Lacaml_complex32.num_type ->
?m:int ->
?n:int ->
?br:int ->
?bc:int ->
?b:Lacaml_complex32.mat ->
?ar:int -> ?ac:int -> Lacaml_complex32.mat -> Lacaml_complex32.mat
add_const c ?m ?n ?br ?bc ?b ?ar ?ac a adds constant c to the designated m by n submatrix in a and stores the result in the designated submatrix in b.
m : default = Mat.dim1 a
n : default = Mat.dim2 a
br : default = 1
bc : default = 1
b : default = fresh matrix of size m by n
ar : default = 1
ac : default = 1
val sum : ?m:int ->
?n:int ->
?ar:int -> ?ac:int -> Lacaml_complex32.mat -> Lacaml_complex32.num_type
sum ?m ?n ?ar ?ac a computes the sum of all elements in the m-by-n submatrix starting at row ar and column ac.
val fill : ?m:int ->
?n:int ->
?ar:int ->
?ac:int -> Lacaml_complex32.mat -> Lacaml_complex32.num_type -> unit
fill ?m ?n ?ar ?ac a x fills the specified sub-matrix in a with value x.
val copy_diag : Lacaml_complex32.mat -> Lacaml_complex32.vec
copy_diag m
Returns the diagonal of matrix m as a vector. If m is not a square matrix, the longest possible sequence of diagonal elements will be returned.
val trace : Lacaml_complex32.mat -> Lacaml_complex32.num_type
trace m
Returns the trace of matrix m. If m is not a square matrix, the sum of the longest possible sequence of diagonal elements will be returned.
val scal : ?m:int ->
?n:int ->
Lacaml_complex32.num_type ->
?ar:int -> ?ac:int -> Lacaml_complex32.mat -> unit
scal ?m ?n alpha ?ar ?ac a BLAS scal function for (sub-)matrices.
val scal_cols : ?m:int ->
?n:int ->
?ar:int ->
?ac:int -> Lacaml_complex32.mat -> ?ofs:int -> Lacaml_complex32.vec -> unit
scal_cols ?m ?n ?ar ?ac a ?ofs alphas column-wise scal function for matrices.
val scal_rows : ?m:int ->
?n:int ->
?ofs:int ->
Lacaml_complex32.vec -> ?ar:int -> ?ac:int -> Lacaml_complex32.mat -> unit
scal_rows ?m ?n ?ofs alphas ?ar ?ac a row-wise scal function for matrices.
val axpy : ?m:int ->
?n:int ->
?alpha:Lacaml_complex32.num_type ->
?xr:int ->
?xc:int ->
x:Lacaml_complex32.mat -> ?yr:int -> ?yc:int -> Lacaml_complex32.mat -> unit
axpy ?m ?n ?alpha ?xr ?xc ~x ?yr ?yc y BLAS axpy function for matrices.
val gemm_diag : ?n:int ->
?k:int ->
?beta:Lacaml_complex32.num_type ->
?ofsy:int ->
?y:Lacaml_complex32.vec ->
?transa:Lacaml_complex32.trans3 ->
?alpha:Lacaml_complex32.num_type ->
?ar:int ->
?ac:int ->
Lacaml_complex32.mat ->
?transb:Lacaml_complex32.trans3 ->
?br:int -> ?bc:int -> Lacaml_complex32.mat -> Lacaml_complex32.vec
gemm_diag ?n ?k ?beta ?ofsy ?y ?transa ?transb ?alpha ?ar ?ac a ?br ?bc b computes the diagonal of the product of the (sub-)matrices a and b (taking into account potential transposing), multiplying it with alpha and adding beta times y, storing the result in y starting at the specified offset. n elements of the diagonal will be computed, and k elements of the matrices will be part of the dot product associated with each diagonal element.
n : default = number of rows of a (or tr a) and number of columns of b (or tr b)
k : default = number of columns of a (or tr a) and number of rows of b (or tr b)
beta : default = 0
ofsy : default = 1
y : default = fresh vector of size n + ofsy - 1
transa : default = `N
alpha : default = 1
ar : default = 1
ac : default = 1
transb : default = `N
br : default = 1
bc : default = 1
val syrk_diag : ?n:int ->
?k:int ->
?beta:Lacaml_complex32.num_type ->
?ofsy:int ->
?y:Lacaml_complex32.vec ->
?trans:Lacaml_common.trans2 ->
?alpha:Lacaml_complex32.num_type ->
?ar:int -> ?ac:int -> Lacaml_complex32.mat -> Lacaml_complex32.vec
syrk_diag ?n ?k ?beta ?ofsy ?y ?trans ?alpha ?ar ?ac a computes the diagonal of the symmetric rank-k product of the (sub-)matrix a, multiplying it with alpha and adding beta times y, storing the result in y starting at the specified offset. n elements of the diagonal will be computed, and k elements of the matrix will be part of the dot product associated with each diagonal element.
n : default = number of rows of a (or tra)
k : default = number of columns of a (or tra)
beta : default = 0
ofsy : default = 1
y : default = fresh vector of size n + ofsy - 1
trans : default = `N
alpha : default = 1
ar : default = 1
ac : default = 1
val gemm_trace : ?n:int ->
?k:int ->
?transa:Lacaml_complex32.trans3 ->
?ar:int ->
?ac:int ->
Lacaml_complex32.mat ->
?transb:Lacaml_complex32.trans3 ->
?br:int -> ?bc:int -> Lacaml_complex32.mat -> Lacaml_complex32.num_type
gemm_trace ?n ?k ?transa ?ar ?ac a ?transb ?br ?bc b computes the trace of the product of the (sub-)matrices a and b (taking into account potential transposing). This is also sometimes referred to as the Frobenius product. n is the number of rows (columns) to consider in a, and k the number of columns (rows) in b.
n : default = number of rows of a (or tr a) and number of columns of b (or tr b)
k : default = number of columns of a (or tr a) and number of rows of b (or tr b)
transa : default = `N
ar : default = 1
ac : default = 1
transb : default = `N
br : default = 1
bc : default = 1
val syrk_trace : ?n:int ->
?k:int ->
?ar:int -> ?ac:int -> Lacaml_complex32.mat -> Lacaml_complex32.num_type
syrk_trace ?n ?k ?ar ?ac a computes the trace of either a' * a or a * a', whichever is more efficient (results are identical), of the (sub-)matrix a multiplied by its own transpose. This is the same as the square of the Frobenius norm of a matrix. n is the number of rows to consider in a, and k the number of columns to consider.
n : default = number of rows of a
k : default = number of columns of a
ar : default = 1
ac : default = 1
val symm2_trace : ?n:int ->
?upa:bool ->
?ar:int ->
?ac:int ->
Lacaml_complex32.mat ->
?upb:bool ->
?br:int -> ?bc:int -> Lacaml_complex32.mat -> Lacaml_complex32.num_type
symm2_trace ?n ?upa ?ar ?ac a ?upb ?br ?bc b computes the trace of the product of the symmetric (sub-)matrices a and b. n is the number of rows and columns to consider in a and b.
n : default = dimensions of a and b
upa : default = true (upper triangular portion of a is accessed)
ar : default = 1
ac : default = 1
upb : default = true (upper triangular portion of b is accessed)
br : default = 1
bc : default = 1

Iterators over matrices

val map : (Lacaml_complex32.num_type -> Lacaml_complex32.num_type) ->
?m:int ->
?n:int ->
?br:int ->
?bc:int ->
?b:Lacaml_complex32.mat ->
?ar:int -> ?ac:int -> Lacaml_complex32.mat -> Lacaml_complex32.mat
map f ?m ?n ?br ?bc ?b ?ar ?ac a
Returns matrix with f applied to each element of a.
m : default = number of rows of a
n : default = number of columns of a
b : default = fresh matrix of size m by n
val fold_cols : ('a -> Lacaml_complex32.vec -> 'a) ->
?n:int -> ?ac:int -> 'a -> Lacaml_complex32.mat -> 'a
fold_cols f ?n ?ac acc a
Returns accumulator resulting from folding over each column vector.
n : default = number of columns of a
ac : default = 1