Index of values


A
a_str [Lacaml_utils]
ab_str [Lacaml_utils]
add [Lacaml_complex64]
add [Lacaml_complex32]
add [Lacaml_float64]
add [Lacaml_float32]
add [Lacaml_Z.Vec]
add ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y adds n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively.
add [Lacaml_C.Vec]
add ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y adds n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively.
add [Lacaml_D.Vec]
add ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y adds n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively.
add [Lacaml_S.Vec]
add ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y adds n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively.
add_const [Lacaml_Z.Mat]
add_const c ?m ?n ?br ?bc ?b ?ar ?ac a adds constant c to the designated m by n submatrix in a and stores the result in the designated submatrix in b.
add_const [Lacaml_Z.Vec]
add_const c ?n ?ofsy ?incy ?y ?ofsx ?incx x adds constant c to the n elements of vector x and stores the result in y, using incx and incy as incremental steps respectively.
add_const [Lacaml_C.Mat]
add_const c ?m ?n ?br ?bc ?b ?ar ?ac a adds constant c to the designated m by n submatrix in a and stores the result in the designated submatrix in b.
add_const [Lacaml_C.Vec]
add_const c ?n ?ofsy ?incy ?y ?ofsx ?incx x adds constant c to the n elements of vector x and stores the result in y, using incx and incy as incremental steps respectively.
add_const [Lacaml_D.Mat]
add_const c ?m ?n ?br ?bc ?b ?ar ?ac a adds constant c to the designated m by n submatrix in a and stores the result in the designated submatrix in b.
add_const [Lacaml_D.Vec]
add_const c ?n ?ofsy ?incy ?y ?ofsx ?incx x adds constant c to the n elements of vector x and stores the result in y, using incx and incy as incremental steps respectively.
add_const [Lacaml_S.Mat]
add_const c ?m ?n ?br ?bc ?b ?ar ?ac a adds constant c to the designated m by n submatrix in a and stores the result in the designated submatrix in b.
add_const [Lacaml_S.Vec]
add_const c ?n ?ofsy ?incy ?y ?ofsx ?incx x adds constant c to the n elements of vector x and stores the result in y, using incx and incy as incremental steps respectively.
alphas_str [Lacaml_utils]
amax [Lacaml_Z]
amax ?n ?ofsx ?incx x
amax [Lacaml_C]
amax ?n ?ofsx ?incx x
amax [Lacaml_D]
amax ?n ?ofsx ?incx x
amax [Lacaml_S]
amax ?n ?ofsx ?incx x
ap_str [Lacaml_utils]
append [Lacaml_Z.Vec]
append v1 v2
append [Lacaml_C.Vec]
append v1 v2
append [Lacaml_D.Vec]
append v1 v2
append [Lacaml_S.Vec]
append v1 v2
as_vec [Lacaml_Z.Mat]
as_vec mat
as_vec [Lacaml_C.Mat]
as_vec mat
as_vec [Lacaml_D.Mat]
as_vec mat
as_vec [Lacaml_S.Mat]
as_vec mat
asum [Lacaml_D]
asum ?n ?ofsx ?incx x see BLAS documentation!
asum [Lacaml_S]
asum ?n ?ofsx ?incx x see BLAS documentation!
axpy [Lacaml_Z.Mat]
axpy ?m ?n ?alpha ?xr ?xc ~x ?yr ?yc y BLAS axpy function for matrices.
axpy [Lacaml_Z]
axpy ?n ?alpha ?ofsx ?incx ~x ?ofsy ?incy y see BLAS documentation!
axpy [Lacaml_C.Mat]
axpy ?m ?n ?alpha ?xr ?xc ~x ?yr ?yc y BLAS axpy function for matrices.
axpy [Lacaml_C]
axpy ?n ?alpha ?ofsx ?incx ~x ?ofsy ?incy y see BLAS documentation!
axpy [Lacaml_D.Mat]
axpy ?m ?n ?alpha ?xr ?xc ~x ?yr ?yc y BLAS axpy function for matrices.
axpy [Lacaml_D]
axpy ?n ?alpha ?ofsx ?incx ~x ?ofsy ?incy y see BLAS documentation!
axpy [Lacaml_S.Mat]
axpy ?m ?n ?alpha ?xr ?xc ~x ?yr ?yc y BLAS axpy function for matrices.
axpy [Lacaml_S]
axpy ?n ?alpha ?ofsx ?incx ~x ?ofsy ?incy y see BLAS documentation!

B
b_str [Lacaml_utils]

C
c_str [Lacaml_utils]
calc_unpacked_dim [Lacaml_utils]
check_dim1_mat [Lacaml_utils]
check_dim2_mat [Lacaml_utils]
check_dim_mat [Lacaml_utils]
check_mat_square [Lacaml_utils]
check_var_ltz [Lacaml_utils]
check_vec [Lacaml_utils]
col [Lacaml_Z.Mat]
col m n
col [Lacaml_C.Mat]
col m n
col [Lacaml_D.Mat]
col m n
col [Lacaml_S.Mat]
col m n
concat [Lacaml_Z.Vec]
concat vs
concat [Lacaml_C.Vec]
concat vs
concat [Lacaml_D.Vec]
concat vs
concat [Lacaml_S.Vec]
concat vs
copy [Lacaml_Z]
copy ?n ?ofsy ?incy ?y ?ofsx ?incx x see BLAS documentation!
copy [Lacaml_C]
copy ?n ?ofsy ?incy ?y ?ofsx ?incx x see BLAS documentation!
copy [Lacaml_D]
copy ?n ?ofsy ?incy ?y ?ofsx ?incx x see BLAS documentation!
copy [Lacaml_S]
copy ?n ?ofsy ?incy ?y ?ofsx ?incx x see BLAS documentation!
copy_diag [Lacaml_Z.Mat]
copy_diag m
copy_diag [Lacaml_C.Mat]
copy_diag m
copy_diag [Lacaml_D.Mat]
copy_diag m
copy_diag [Lacaml_S.Mat]
copy_diag m
copy_row [Lacaml_Z.Mat]
copy_row ?vec mat int
copy_row [Lacaml_C.Mat]
copy_row ?vec mat int
copy_row [Lacaml_D.Mat]
copy_row ?vec mat int
copy_row [Lacaml_S.Mat]
copy_row ?vec mat int
cos [Lacaml_D.Vec]
cos ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the cosine of n elements of the vector x using incx as incremental steps.
cos [Lacaml_S.Vec]
cos ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the cosine of n elements of the vector x using incx as incremental steps.
create [Lacaml_Z.Mat]
create m n
create [Lacaml_Z.Vec]
create n
create [Lacaml_C.Mat]
create m n
create [Lacaml_C.Vec]
create n
create [Lacaml_D.Mat]
create m n
create [Lacaml_D.Vec]
create n
create [Lacaml_S.Mat]
create m n
create [Lacaml_S.Vec]
create n
create [Lacaml_io.Context]
create_int32_vec [Lacaml_common]
create_int32_vec n
create_int_vec [Lacaml_common]
create_int_vec n
create_mvec [Lacaml_Z.Mat]
create_mvec m
create_mvec [Lacaml_C.Mat]
create_mvec m
create_mvec [Lacaml_D.Mat]
create_mvec m
create_mvec [Lacaml_S.Mat]
create_mvec m

D
d_str [Lacaml_utils]
detri [Lacaml_Z.Mat]
detri ?up ?n ?ar ?ac a takes a triangular (sub-)matrix a, i.e.
detri [Lacaml_C.Mat]
detri ?up ?n ?ar ?ac a takes a triangular (sub-)matrix a, i.e.
detri [Lacaml_D.Mat]
detri ?up ?n ?ar ?ac a takes a triangular (sub-)matrix a, i.e.
detri [Lacaml_S.Mat]
detri ?up ?n ?ar ?ac a takes a triangular (sub-)matrix a, i.e.
dim [Lacaml_Z.Vec]
dim x
dim [Lacaml_C.Vec]
dim x
dim [Lacaml_D.Vec]
dim x
dim [Lacaml_S.Vec]
dim x
dim1 [Lacaml_Z.Mat]
dim1 m
dim1 [Lacaml_C.Mat]
dim1 m
dim1 [Lacaml_D.Mat]
dim1 m
dim1 [Lacaml_S.Mat]
dim1 m
dim2 [Lacaml_Z.Mat]
dim2 m
dim2 [Lacaml_C.Mat]
dim2 m
dim2 [Lacaml_D.Mat]
dim2 m
dim2 [Lacaml_S.Mat]
dim2 m
div [Lacaml_Z.Vec]
div ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y divides n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively.
div [Lacaml_C.Vec]
div ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y divides n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively.
div [Lacaml_D.Vec]
div ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y divides n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively.
div [Lacaml_S.Vec]
div ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y divides n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively.
dl_str [Lacaml_utils]
dot [Lacaml_D]
dot ?n ?ofsy ?incy y ?ofsx ?incx x see BLAS documentation!
dot [Lacaml_S]
dot ?n ?ofsy ?incy y ?ofsx ?incx x see BLAS documentation!
dotc [Lacaml_Z]
dotc ?n ?ofsy ?incy y ?ofsx ?incx x see BLAS documentation!
dotc [Lacaml_C]
dotc ?n ?ofsy ?incy y ?ofsx ?incx x see BLAS documentation!
dotu [Lacaml_Z]
dotu ?n ?ofsy ?incy y ?ofsx ?incx x see BLAS documentation!
dotu [Lacaml_C]
dotu ?n ?ofsy ?incy y ?ofsx ?incx x see BLAS documentation!
du_str [Lacaml_utils]

E
e_str [Lacaml_utils]
ellipsis_default [Lacaml_io.Context]
empty [Lacaml_Z.Mat]
empty, the empty matrix.
empty [Lacaml_Z.Vec]
empty, the empty vector.
empty [Lacaml_C.Mat]
empty, the empty matrix.
empty [Lacaml_C.Vec]
empty, the empty vector.
empty [Lacaml_D.Mat]
empty, the empty matrix.
empty [Lacaml_D.Vec]
empty, the empty vector.
empty [Lacaml_S.Mat]
empty, the empty matrix.
empty [Lacaml_S.Vec]
empty, the empty vector.
empty_int32_vec [Lacaml_utils]
exp [Lacaml_D.Vec]
exp ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the exponential of n elements of the vector x using incx as incremental steps.
exp [Lacaml_S.Vec]
exp ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the exponential of n elements of the vector x using incx as incremental steps.

F
fill [Lacaml_Z.Mat]
fill ?m ?n ?ar ?ac a x fills the specified sub-matrix in a with value x.
fill [Lacaml_Z.Vec]
fill ?n ?ofsx ?incx x a fills vector x with value a in the designated range.
fill [Lacaml_C.Mat]
fill ?m ?n ?ar ?ac a x fills the specified sub-matrix in a with value x.
fill [Lacaml_C.Vec]
fill ?n ?ofsx ?incx x a fills vector x with value a in the designated range.
fill [Lacaml_D.Mat]
fill ?m ?n ?ar ?ac a x fills the specified sub-matrix in a with value x.
fill [Lacaml_D.Vec]
fill ?n ?ofsx ?incx x a fills vector x with value a in the designated range.
fill [Lacaml_S.Mat]
fill ?m ?n ?ar ?ac a x fills the specified sub-matrix in a with value x.
fill [Lacaml_S.Vec]
fill ?n ?ofsx ?incx x a fills vector x with value a in the designated range.
fold [Lacaml_Z.Vec]
fold f a ?n ?ofsx ?incx x is f (... (f (f a x.{ofsx}) x.{ofsx + incx}) ...) x.{ofsx + (n-1)*incx} if incx > 0 and the same in the reverse order of appearance of the x values if incx < 0.
fold [Lacaml_C.Vec]
fold f a ?n ?ofsx ?incx x is f (... (f (f a x.{ofsx}) x.{ofsx + incx}) ...) x.{ofsx + (n-1)*incx} if incx > 0 and the same in the reverse order of appearance of the x values if incx < 0.
fold [Lacaml_D.Vec]
fold f a ?n ?ofsx ?incx x is f (... (f (f a x.{ofsx}) x.{ofsx + incx}) ...) x.{ofsx + (n-1)*incx} if incx > 0 and the same in the reverse order of appearance of the x values if incx < 0.
fold [Lacaml_S.Vec]
fold f a ?n ?ofsx ?incx x is f (... (f (f a x.{ofsx}) x.{ofsx + incx}) ...) x.{ofsx + (n-1)*incx} if incx > 0 and the same in the reverse order of appearance of the x values if incx < 0.
fold_cols [Lacaml_Z.Mat]
fold_cols f ?n ?ac acc a
fold_cols [Lacaml_C.Mat]
fold_cols f ?n ?ac acc a
fold_cols [Lacaml_D.Mat]
fold_cols f ?n ?ac acc a
fold_cols [Lacaml_S.Mat]
fold_cols f ?n ?ac acc a
from_col_vec [Lacaml_Z.Mat]
from_col_vec v
from_col_vec [Lacaml_C.Mat]
from_col_vec v
from_col_vec [Lacaml_D.Mat]
from_col_vec v
from_col_vec [Lacaml_S.Mat]
from_col_vec v
from_row_vec [Lacaml_Z.Mat]
from_row_vec v
from_row_vec [Lacaml_C.Mat]
from_row_vec v
from_row_vec [Lacaml_D.Mat]
from_row_vec v
from_row_vec [Lacaml_S.Mat]
from_row_vec v

G
gXmv_get_params [Lacaml_utils]
gbmv [Lacaml_Z]
gbmv ?m ?n ?beta ?ofsy ?incy ?y ?trans ?alpha ?ar ?ac a kl ku ?ofsx ?incx x see BLAS documentation!
gbmv [Lacaml_C]
gbmv ?m ?n ?beta ?ofsy ?incy ?y ?trans ?alpha ?ar ?ac a kl ku ?ofsx ?incx x see BLAS documentation!
gbmv [Lacaml_D]
gbmv ?m ?n ?beta ?ofsy ?incy ?y ?trans ?alpha ?ar ?ac a kl ku ?ofsx ?incx x see BLAS documentation!
gbmv [Lacaml_S]
gbmv ?m ?n ?beta ?ofsy ?incy ?y ?trans ?alpha ?ar ?ac a kl ku ?ofsx ?incx x see BLAS documentation!
gbsv [Lacaml_Z]
gbsv ?n ?ipiv ?abr ?abc ab kl ku ?nrhs ?br ?bc b computes the solution to a real system of linear equations a * X = b, where a is a band matrix of order n with kl subdiagonals and ku superdiagonals, and X and b are n-by-nrhs matrices.
gbsv [Lacaml_C]
gbsv ?n ?ipiv ?abr ?abc ab kl ku ?nrhs ?br ?bc b computes the solution to a real system of linear equations a * X = b, where a is a band matrix of order n with kl subdiagonals and ku superdiagonals, and X and b are n-by-nrhs matrices.
gbsv [Lacaml_D]
gbsv ?n ?ipiv ?abr ?abc ab kl ku ?nrhs ?br ?bc b computes the solution to a real system of linear equations a * X = b, where a is a band matrix of order n with kl subdiagonals and ku superdiagonals, and X and b are n-by-nrhs matrices.
gbsv [Lacaml_S]
gbsv ?n ?ipiv ?abr ?abc ab kl ku ?nrhs ?br ?bc b computes the solution to a real system of linear equations a * X = b, where a is a band matrix of order n with kl subdiagonals and ku superdiagonals, and X and b are n-by-nrhs matrices.
geXrf_get_params [Lacaml_utils]
gecon [Lacaml_Z]
gecon ?n ?norm ?anorm ?work ?rwork ?ar ?ac a
gecon [Lacaml_C]
gecon ?n ?norm ?anorm ?work ?rwork ?ar ?ac a
gecon [Lacaml_D]
gecon ?n ?norm ?anorm ?work ?rwork ?ar ?ac a
gecon [Lacaml_S]
gecon ?n ?norm ?anorm ?work ?rwork ?ar ?ac a
gecon_err [Lacaml_utils]
gecon_min_liwork [Lacaml_D]
gecon_min_liwork n
gecon_min_liwork [Lacaml_S]
gecon_min_liwork n
gecon_min_lrwork [Lacaml_Z]
gecon_min_lrwork n
gecon_min_lrwork [Lacaml_C]
gecon_min_lrwork n
gecon_min_lwork [Lacaml_Z]
gecon_min_lwork n
gecon_min_lwork [Lacaml_C]
gecon_min_lwork n
gecon_min_lwork [Lacaml_D]
gecon_min_lwork n
gecon_min_lwork [Lacaml_S]
gecon_min_lwork n
geev [Lacaml_Z]
geev ?work ?rwork ?n ?vlr ?vlc ?vl ?vrr ?vrc ?vr ?ofsw w ?ar ?ac a
geev [Lacaml_C]
geev ?work ?rwork ?n ?vlr ?vlc ?vl ?vrr ?vrc ?vr ?ofsw w ?ar ?ac a
geev [Lacaml_D]
geev ?work ?n ?vlr ?vlc ?vl ?vrr ?vrc ?vr ?ofswr wr ?ofswi wi ?ar ?ac a
geev [Lacaml_S]
geev ?work ?n ?vlr ?vlc ?vl ?vrr ?vrc ?vr ?ofswr wr ?ofswi wi ?ar ?ac a
geev_gen_get_params [Lacaml_utils]
geev_get_job_side [Lacaml_utils]
geev_min_lrwork [Lacaml_Z]
geev_min_lrwork n
geev_min_lrwork [Lacaml_C]
geev_min_lrwork n
geev_min_lwork [Lacaml_Z]
geev_min_lwork n
geev_min_lwork [Lacaml_C]
geev_min_lwork n
geev_min_lwork [Lacaml_D]
geev_min_lwork vectors n
geev_min_lwork [Lacaml_S]
geev_min_lwork vectors n
geev_opt_lwork [Lacaml_Z]
geev ?work ?rwork ?n ?vlr ?vlc ?vl ?vrr ?vrc ?vr ?ofsw w ?ar ?ac a See geev-function for details about arguments.
geev_opt_lwork [Lacaml_C]
geev ?work ?rwork ?n ?vlr ?vlc ?vl ?vrr ?vrc ?vr ?ofsw w ?ar ?ac a See geev-function for details about arguments.
geev_opt_lwork [Lacaml_D]
geev_opt_lwork ?n ?vlr ?vlc ?vl ?vrr ?vrc ?vr ?ofswr wr ?ofswi wi ?ar ?ac a See geev-function for details about arguments.
geev_opt_lwork [Lacaml_S]
geev_opt_lwork ?n ?vlr ?vlc ?vl ?vrr ?vrc ?vr ?ofswr wr ?ofswi wi ?ar ?ac a See geev-function for details about arguments.
gels [Lacaml_Z]
gels ?m ?n ?work ?trans ?ar ?ac a ?nrhs ?br ?bc b see LAPACK documentation!
gels [Lacaml_C]
gels ?m ?n ?work ?trans ?ar ?ac a ?nrhs ?br ?bc b see LAPACK documentation!
gels [Lacaml_D]
gels ?m ?n ?work ?trans ?ar ?ac a ?nrhs ?br ?bc b see LAPACK documentation!
gels [Lacaml_S]
gels ?m ?n ?work ?trans ?ar ?ac a ?nrhs ?br ?bc b see LAPACK documentation!
gelsX_err [Lacaml_utils]
gelsX_get_params [Lacaml_utils]
gelsX_get_s [Lacaml_utils]
gels_min_lwork [Lacaml_Z]
gels_min_lwork ~m ~n ~nrhs
gels_min_lwork [Lacaml_C]
gels_min_lwork ~m ~n ~nrhs
gels_min_lwork [Lacaml_D]
gels_min_lwork ~m ~n ~nrhs
gels_min_lwork [Lacaml_S]
gels_min_lwork ~m ~n ~nrhs
gels_opt_lwork [Lacaml_Z]
gels_opt_lwork ?m ?n ?trans ?ar ?ac a ?nrhs ?br ?bc b
gels_opt_lwork [Lacaml_C]
gels_opt_lwork ?m ?n ?trans ?ar ?ac a ?nrhs ?br ?bc b
gels_opt_lwork [Lacaml_D]
gels_opt_lwork ?m ?n ?trans ?ar ?ac a ?nrhs ?br ?bc b
gels_opt_lwork [Lacaml_S]
gels_opt_lwork ?m ?n ?trans ?ar ?ac a ?nrhs ?br ?bc b
gelsd [Lacaml_D]
gelsd ?m ?n ?rcond ?ofss ?s ?ofswork ?work ?ar ?ac a ?nrhs b see LAPACK documentation!
gelsd [Lacaml_S]
gelsd ?m ?n ?rcond ?ofss ?s ?ofswork ?work ?ar ?ac a ?nrhs b see LAPACK documentation!
gelsd_min_iwork [Lacaml_D]
gelsd_min_iwork m n
gelsd_min_iwork [Lacaml_S]
gelsd_min_iwork m n
gelsd_min_lwork [Lacaml_D]
gelsd_min_lwork ~m ~n ~nrhs
gelsd_min_lwork [Lacaml_S]
gelsd_min_lwork ~m ~n ~nrhs
gelsd_opt_lwork [Lacaml_D]
gelsd_opt_lwork ?m ?n ?ar ?ac a ?nrhs b
gelsd_opt_lwork [Lacaml_S]
gelsd_opt_lwork ?m ?n ?ar ?ac a ?nrhs b
gelss [Lacaml_D]
gelss ?m ?n ?rcond ?ofss ?s ?ofswork ?work ?ar ?ac a ?nrhs ?br ?bc b see LAPACK documentation!
gelss [Lacaml_S]
gelss ?m ?n ?rcond ?ofss ?s ?ofswork ?work ?ar ?ac a ?nrhs ?br ?bc b see LAPACK documentation!
gelss_min_lwork [Lacaml_D]
gelss_min_lwork ~m ~n ~nrhs
gelss_min_lwork [Lacaml_S]
gelss_min_lwork ~m ~n ~nrhs
gelss_opt_lwork [Lacaml_D]
gelss_opt_lwork ?ar ?ac a ?m ?n ?nrhs ?br ?bc b
gelss_opt_lwork [Lacaml_S]
gelss_opt_lwork ?ar ?ac a ?m ?n ?nrhs ?br ?bc b
gelsy [Lacaml_D]
gelsy ?m ?n ?ar ?ac a ?rcond ?jpvt ?ofswork ?work ?nrhs b see LAPACK documentation!
gelsy [Lacaml_S]
gelsy ?m ?n ?ar ?ac a ?rcond ?jpvt ?ofswork ?work ?nrhs b see LAPACK documentation!
gelsy_min_lwork [Lacaml_D]
gelsy_min_lwork ~m ~n ~nrhs
gelsy_min_lwork [Lacaml_S]
gelsy_min_lwork ~m ~n ~nrhs
gelsy_opt_lwork [Lacaml_D]
gelsy_opt_lwork ?m ?n ?ar ?ac a ?nrhs ?br ?bc b
gelsy_opt_lwork [Lacaml_S]
gelsy_opt_lwork ?m ?n ?ar ?ac a ?nrhs ?br ?bc b
gemm [Lacaml_Z]
gemm ?m ?n ?k ?beta ?cr ?cc ?c ?transa ?alpha ?ar ?ac a ?transb ?br ?bc b see BLAS documentation!
gemm [Lacaml_C]
gemm ?m ?n ?k ?beta ?cr ?cc ?c ?transa ?alpha ?ar ?ac a ?transb ?br ?bc b see BLAS documentation!
gemm [Lacaml_D]
gemm ?m ?n ?k ?beta ?cr ?cc ?c ?transa ?alpha ?ar ?ac a ?transb ?br ?bc b see BLAS documentation!
gemm [Lacaml_S]
gemm ?m ?n ?k ?beta ?cr ?cc ?c ?transa ?alpha ?ar ?ac a ?transb ?br ?bc b see BLAS documentation!
gemm_diag [Lacaml_Z.Mat]
gemm_diag ?n ?k ?beta ?ofsy ?y ?transa ?transb ?alpha ?ar ?ac a ?br ?bc b computes the diagonal of the product of the (sub-)matrices a and b (taking into account potential transposing), multiplying it with alpha and adding beta times y, storing the result in y starting at the specified offset.
gemm_diag [Lacaml_C.Mat]
gemm_diag ?n ?k ?beta ?ofsy ?y ?transa ?transb ?alpha ?ar ?ac a ?br ?bc b computes the diagonal of the product of the (sub-)matrices a and b (taking into account potential transposing), multiplying it with alpha and adding beta times y, storing the result in y starting at the specified offset.
gemm_diag [Lacaml_D.Mat]
gemm_diag ?n ?k ?beta ?ofsy ?y ?transa ?transb ?alpha ?ar ?ac a ?br ?bc b computes the diagonal of the product of the (sub-)matrices a and b (taking into account potential transposing), multiplying it with alpha and adding beta times y, storing the result in y starting at the specified offset.
gemm_diag [Lacaml_S.Mat]
gemm_diag ?n ?k ?beta ?ofsy ?y ?transa ?transb ?alpha ?ar ?ac a ?br ?bc b computes the diagonal of the product of the (sub-)matrices a and b (taking into account potential transposing), multiplying it with alpha and adding beta times y, storing the result in y starting at the specified offset.
gemm_get_params [Lacaml_utils]
gemm_trace [Lacaml_Z.Mat]
gemm_trace ?n ?k ?transa ?ar ?ac a ?transb ?br ?bc b computes the trace of the product of the (sub-)matrices a and b (taking into account potential transposing).
gemm_trace [Lacaml_C.Mat]
gemm_trace ?n ?k ?transa ?ar ?ac a ?transb ?br ?bc b computes the trace of the product of the (sub-)matrices a and b (taking into account potential transposing).
gemm_trace [Lacaml_D.Mat]
gemm_trace ?n ?k ?transa ?ar ?ac a ?transb ?br ?bc b computes the trace of the product of the (sub-)matrices a and b (taking into account potential transposing).
gemm_trace [Lacaml_S.Mat]
gemm_trace ?n ?k ?transa ?ar ?ac a ?transb ?br ?bc b computes the trace of the product of the (sub-)matrices a and b (taking into account potential transposing).
gemv [Lacaml_Z]
gemv ?m ?n ?beta ?ofsy ?incy ?y ?trans ?alpha ?ar ?ac a ?ofsx ?incx x see BLAS documentation! BEWARE that the 1988 BLAS-2 specification mandates that this function has no effect when n=0 while the mathematically expected behabior is y ← beta * y.
gemv [Lacaml_C]
gemv ?m ?n ?beta ?ofsy ?incy ?y ?trans ?alpha ?ar ?ac a ?ofsx ?incx x see BLAS documentation! BEWARE that the 1988 BLAS-2 specification mandates that this function has no effect when n=0 while the mathematically expected behabior is y ← beta * y.
gemv [Lacaml_D]
gemv ?m ?n ?beta ?ofsy ?incy ?y ?trans ?alpha ?ar ?ac a ?ofsx ?incx x see BLAS documentation! BEWARE that the 1988 BLAS-2 specification mandates that this function has no effect when n=0 while the mathematically expected behabior is y ← beta * y.
gemv [Lacaml_S]
gemv ?m ?n ?beta ?ofsy ?incy ?y ?trans ?alpha ?ar ?ac a ?ofsx ?incx x see BLAS documentation! BEWARE that the 1988 BLAS-2 specification mandates that this function has no effect when n=0 while the mathematically expected behabior is y ← beta * y.
geqrf [Lacaml_Z]
geqrf ?m ?n ?work ?tau ?ar ?ac a computes a QR factorization of a real m-by-n matrix a.
geqrf [Lacaml_C]
geqrf ?m ?n ?work ?tau ?ar ?ac a computes a QR factorization of a real m-by-n matrix a.
geqrf [Lacaml_D]
geqrf ?m ?n ?work ?tau ?ar ?ac a computes a QR factorization of a real m-by-n matrix a.
geqrf [Lacaml_S]
geqrf ?m ?n ?work ?tau ?ar ?ac a computes a QR factorization of a real m-by-n matrix a.
geqrf_min_lwork [Lacaml_Z]
geqrf_min_lwork ~n
geqrf_min_lwork [Lacaml_C]
geqrf_min_lwork ~n
geqrf_min_lwork [Lacaml_D]
geqrf_min_lwork ~n
geqrf_min_lwork [Lacaml_S]
geqrf_min_lwork ~n
geqrf_opt_lwork [Lacaml_Z]
geqrf_opt_lwork ?m ?n ?ar ?ac a
geqrf_opt_lwork [Lacaml_C]
geqrf_opt_lwork ?m ?n ?ar ?ac a
geqrf_opt_lwork [Lacaml_D]
geqrf_opt_lwork ?m ?n ?ar ?ac a
geqrf_opt_lwork [Lacaml_S]
geqrf_opt_lwork ?m ?n ?ar ?ac a
ger [Lacaml_D]
ger ?m ?n ?alpha ?ofsx ?incx x ?ofsy ?incy y n ?ar ?ac a see BLAS documentation!
ger [Lacaml_S]
ger ?m ?n ?alpha ?ofsx ?incx x ?ofsy ?incy y n ?ar ?ac a see BLAS documentation!
gesdd [Lacaml_D]
gesdd [Lacaml_S]
gesdd_err [Lacaml_utils]
gesdd_get_params [Lacaml_utils]
gesdd_liwork [Lacaml_D]
gesdd_liwork [Lacaml_S]
gesdd_min_lwork [Lacaml_D]
gesdd_min_lwork ?jobz ~m ~n
gesdd_min_lwork [Lacaml_S]
gesdd_min_lwork ?jobz ~m ~n
gesdd_opt_lwork [Lacaml_D]
gesdd_opt_lwork [Lacaml_S]
gesv [Lacaml_Z]
gesv ?n ?ipiv ?ar ?ac a ?nrhs ?br ?bc b computes the solution to a real system of linear equations a * X = b, where a is an n-by-n matrix and X and b are n-by-nrhs matrices.
gesv [Lacaml_C]
gesv ?n ?ipiv ?ar ?ac a ?nrhs ?br ?bc b computes the solution to a real system of linear equations a * X = b, where a is an n-by-n matrix and X and b are n-by-nrhs matrices.
gesv [Lacaml_D]
gesv ?n ?ipiv ?ar ?ac a ?nrhs ?br ?bc b computes the solution to a real system of linear equations a * X = b, where a is an n-by-n matrix and X and b are n-by-nrhs matrices.
gesv [Lacaml_S]
gesv ?n ?ipiv ?ar ?ac a ?nrhs ?br ?bc b computes the solution to a real system of linear equations a * X = b, where a is an n-by-n matrix and X and b are n-by-nrhs matrices.
gesvd [Lacaml_Z]
gesvd [Lacaml_C]
gesvd [Lacaml_D]
gesvd [Lacaml_S]
gesvd_err [Lacaml_utils]
gesvd_get_params [Lacaml_utils]
gesvd_lrwork [Lacaml_Z]
gesvd_lrwork m n
gesvd_lrwork [Lacaml_C]
gesvd_lrwork m n
gesvd_min_lwork [Lacaml_Z]
gesvd_min_lwork ~m ~n
gesvd_min_lwork [Lacaml_C]
gesvd_min_lwork ~m ~n
gesvd_min_lwork [Lacaml_D]
gesvd_min_lwork ~m ~n
gesvd_min_lwork [Lacaml_S]
gesvd_min_lwork ~m ~n
gesvd_opt_lwork [Lacaml_Z]
gesvd_opt_lwork [Lacaml_C]
gesvd_opt_lwork [Lacaml_D]
gesvd_opt_lwork [Lacaml_S]
get_c [Lacaml_utils]
get_cols_mat_tr [Lacaml_utils]
get_diag_char [Lacaml_utils]
get_dim1_mat [Lacaml_utils]
get_dim2_mat [Lacaml_utils]
get_dim_mat_packed [Lacaml_utils]
get_dim_vec [Lacaml_utils]
get_inc [Lacaml_utils]
get_inner_dim [Lacaml_utils]
get_job_char [Lacaml_utils]
get_k_mat_sb [Lacaml_utils]
get_mat [Lacaml_utils]
get_n_of_a [Lacaml_utils]
get_n_of_square [Lacaml_utils]
get_norm_char [Lacaml_utils]
get_nrhs_of_b [Lacaml_utils]
get_ofs [Lacaml_utils]
get_rows_mat_tr [Lacaml_utils]
get_s_d_job_char [Lacaml_utils]
get_side_char [Lacaml_utils]
get_trans_char [Lacaml_utils]
get_unpacked_dim [Lacaml_utils]
get_uplo_char [Lacaml_utils]
get_vec [Lacaml_utils]
get_vec_geom [Lacaml_utils]
get_work [Lacaml_utils]
getrf [Lacaml_Z]
getrf ?m ?n ?ipiv ?ar ?ac a computes an LU factorization of a general m-by-n matrix a using partial pivoting with row interchanges.
getrf [Lacaml_C]
getrf ?m ?n ?ipiv ?ar ?ac a computes an LU factorization of a general m-by-n matrix a using partial pivoting with row interchanges.
getrf [Lacaml_D]
getrf ?m ?n ?ipiv ?ar ?ac a computes an LU factorization of a general m-by-n matrix a using partial pivoting with row interchanges.
getrf [Lacaml_S]
getrf ?m ?n ?ipiv ?ar ?ac a computes an LU factorization of a general m-by-n matrix a using partial pivoting with row interchanges.
getrf_err [Lacaml_utils]
getrf_get_ipiv [Lacaml_utils]
getrf_lu_err [Lacaml_utils]
getri [Lacaml_Z]
getri ?n ?ipiv ?work ?ar ?ac a computes the inverse of a matrix using the LU factorization computed by Lacaml_Z.getrf.
getri [Lacaml_C]
getri ?n ?ipiv ?work ?ar ?ac a computes the inverse of a matrix using the LU factorization computed by Lacaml_C.getrf.
getri [Lacaml_D]
getri ?n ?ipiv ?work ?ar ?ac a computes the inverse of a matrix using the LU factorization computed by Lacaml_D.getrf.
getri [Lacaml_S]
getri ?n ?ipiv ?work ?ar ?ac a computes the inverse of a matrix using the LU factorization computed by Lacaml_S.getrf.
getri_err [Lacaml_utils]
getri_min_lwork [Lacaml_Z]
getri_min_lwork n
getri_min_lwork [Lacaml_C]
getri_min_lwork n
getri_min_lwork [Lacaml_D]
getri_min_lwork n
getri_min_lwork [Lacaml_S]
getri_min_lwork n
getri_opt_lwork [Lacaml_Z]
getri_opt_lwork ?n ?ar ?ac a
getri_opt_lwork [Lacaml_C]
getri_opt_lwork ?n ?ar ?ac a
getri_opt_lwork [Lacaml_D]
getri_opt_lwork ?n ?ar ?ac a
getri_opt_lwork [Lacaml_S]
getri_opt_lwork ?n ?ar ?ac a
getrs [Lacaml_Z]
getrs ?n ?ipiv ?trans ?ar ?ac a ?nrhs ?br ?bc b solves a system of linear equations a * X = b or a' * X = b with a general n-by-n matrix a using the LU factorization computed by Lacaml_Z.getrf.
getrs [Lacaml_C]
getrs ?n ?ipiv ?trans ?ar ?ac a ?nrhs ?br ?bc b solves a system of linear equations a * X = b or a' * X = b with a general n-by-n matrix a using the LU factorization computed by Lacaml_C.getrf.
getrs [Lacaml_D]
getrs ?n ?ipiv ?trans ?ar ?ac a ?nrhs ?br ?bc b solves a system of linear equations a * X = b or a' * X = b with a general n-by-n matrix a using the LU factorization computed by Lacaml_D.getrf.
getrs [Lacaml_S]
getrs ?n ?ipiv ?trans ?ar ?ac a ?nrhs ?br ?bc b solves a system of linear equations a * X = b or a' * X = b with a general n-by-n matrix a using the LU factorization computed by Lacaml_S.getrf.
gtsv [Lacaml_Z]
gtsv ?n ?ofsdl dl ?ofsd d ?ofsdu du ?nrhs ?br ?bc b solves the equation a * X = b where a is an n-by-n tridiagonal matrix, by Gaussian elimination with partial pivoting.
gtsv [Lacaml_C]
gtsv ?n ?ofsdl dl ?ofsd d ?ofsdu du ?nrhs ?br ?bc b solves the equation a * X = b where a is an n-by-n tridiagonal matrix, by Gaussian elimination with partial pivoting.
gtsv [Lacaml_D]
gtsv ?n ?ofsdl dl ?ofsd d ?ofsdu du ?nrhs ?br ?bc b solves the equation a * X = b where a is an n-by-n tridiagonal matrix, by Gaussian elimination with partial pivoting.
gtsv [Lacaml_S]
gtsv ?n ?ofsdl dl ?ofsd d ?ofsdu du ?nrhs ?br ?bc b solves the equation a * X = b where a is an n-by-n tridiagonal matrix, by Gaussian elimination with partial pivoting.

H
hankel [Lacaml_D.Mat]
hankel n
hankel [Lacaml_S.Mat]
hankel n
hilbert [Lacaml_D.Mat]
hilbert n
hilbert [Lacaml_S.Mat]
hilbert n
horizontal_default [Lacaml_io.Context]

I
iamax [Lacaml_Z]
iamax ?n ?ofsx ?incx x see BLAS documentation!
iamax [Lacaml_C]
iamax ?n ?ofsx ?incx x see BLAS documentation!
iamax [Lacaml_D]
iamax ?n ?ofsx ?incx x see BLAS documentation!
iamax [Lacaml_S]
iamax ?n ?ofsx ?incx x see BLAS documentation!
identity [Lacaml_Z.Mat]
identity n
identity [Lacaml_C.Mat]
identity n
identity [Lacaml_D.Mat]
identity n
identity [Lacaml_S.Mat]
identity n
ilaenv [Lacaml_utils]
init [Lacaml_Z.Vec]
init n f
init [Lacaml_C.Vec]
init n f
init [Lacaml_D.Vec]
init n f
init [Lacaml_S.Vec]
init n f
init_cols [Lacaml_Z.Mat]
init_cols m n f
init_cols [Lacaml_C.Mat]
init_cols m n f
init_cols [Lacaml_D.Mat]
init_cols m n f
init_cols [Lacaml_S.Mat]
init_cols m n f
init_rows [Lacaml_Z.Mat]
init_cols m n f
init_rows [Lacaml_C.Mat]
init_cols m n f
init_rows [Lacaml_D.Mat]
init_cols m n f
init_rows [Lacaml_S.Mat]
init_cols m n f
int_of_complex32 [Lacaml_complex32]
int_of_complex64 [Lacaml_complex64]
int_of_float32 [Lacaml_float32]
int_of_float64 [Lacaml_float64]
ipiv_str [Lacaml_utils]
iseed_str [Lacaml_utils]
iter [Lacaml_Z.Vec]
iter ?n ?ofsx ?incx f x applies function f in turn to all elements of vector x.
iter [Lacaml_C.Vec]
iter ?n ?ofsx ?incx f x applies function f in turn to all elements of vector x.
iter [Lacaml_D.Vec]
iter ?n ?ofsx ?incx f x applies function f in turn to all elements of vector x.
iter [Lacaml_S.Vec]
iter ?n ?ofsx ?incx f x applies function f in turn to all elements of vector x.
iteri [Lacaml_Z.Vec]
iteri ?n ?ofsx ?incx f x same as iter but additionally passes the index of the element as first argument and the element itself as second argument.
iteri [Lacaml_C.Vec]
iteri ?n ?ofsx ?incx f x same as iter but additionally passes the index of the element as first argument and the element itself as second argument.
iteri [Lacaml_D.Vec]
iteri ?n ?ofsx ?incx f x same as iter but additionally passes the index of the element as first argument and the element itself as second argument.
iteri [Lacaml_S.Vec]
iteri ?n ?ofsx ?incx f x same as iter but additionally passes the index of the element as first argument and the element itself as second argument.

J
job_char_false [Lacaml_utils]
job_char_true [Lacaml_utils]

K
k_str [Lacaml_utils]
ka_str [Lacaml_utils]
kb_str [Lacaml_utils]
kd_str [Lacaml_utils]
kl_str [Lacaml_utils]
ku_str [Lacaml_utils]

L
lacpy [Lacaml_Z]
lacpy ?uplo ?m ?n ?br ?bc ?b ?ar ?ac a copy a (triangular) (sub-)matrix a (to an optional (sub-)matrix b).
lacpy [Lacaml_C]
lacpy ?uplo ?m ?n ?br ?bc ?b ?ar ?ac a copy a (triangular) (sub-)matrix a (to an optional (sub-)matrix b).
lacpy [Lacaml_D]
lacpy ?uplo ?m ?n ?br ?bc ?b ?ar ?ac a copy a (triangular) (sub-)matrix a (to an optional (sub-)matrix b).
lacpy [Lacaml_S]
lacpy ?uplo ?m ?n ?br ?bc ?b ?ar ?ac a copy a (triangular) (sub-)matrix a (to an optional (sub-)matrix b).
lamch [Lacaml_D]
lamch cmach see LAPACK documentation!
lamch [Lacaml_S]
lamch cmach see LAPACK documentation!
lange [Lacaml_Z]
lange ?m ?n ?norm ?work ?ar ?ac a
lange [Lacaml_C]
lange ?m ?n ?norm ?work ?ar ?ac a
lange [Lacaml_D]
lange ?m ?n ?norm ?work ?ar ?ac a
lange [Lacaml_S]
lange ?m ?n ?norm ?work ?ar ?ac a
lange_min_lwork [Lacaml_Z]
lange_min_lwork m norm
lange_min_lwork [Lacaml_C]
lange_min_lwork m norm
lange_min_lwork [Lacaml_D]
lange_min_lwork m norm
lange_min_lwork [Lacaml_S]
lange_min_lwork m norm
lansy [Lacaml_Z]
lansy ?n ?up ?norm ?work ?ar ?ac a see LAPACK documentation!
lansy [Lacaml_C]
lansy ?n ?up ?norm ?work ?ar ?ac a see LAPACK documentation!
lansy [Lacaml_D]
lansy ?norm ?up ?n ?ar ?ac ?work a see LAPACK documentation!
lansy [Lacaml_S]
lansy ?norm ?up ?n ?ar ?ac ?work a see LAPACK documentation!
lansy_min_lwork [Lacaml_Z]
lansy_min_lwork m norm
lansy_min_lwork [Lacaml_C]
lansy_min_lwork m norm
lansy_min_lwork [Lacaml_D]
lansy_min_lwork m norm
lansy_min_lwork [Lacaml_S]
lansy_min_lwork m norm
larnv [Lacaml_Z]
larnv ?idist ?iseed ?n ?ofsx ?x ()
larnv [Lacaml_C]
larnv ?idist ?iseed ?n ?ofsx ?x ()
larnv [Lacaml_D]
larnv ?idist ?iseed ?n ?ofsx ?x ()
larnv [Lacaml_S]
larnv ?idist ?iseed ?n ?ofsx ?x ()
lassq [Lacaml_Z]
lassq ?n ?ofsx ?incx ?scale ?sumsq
lassq [Lacaml_C]
lassq ?n ?ofsx ?incx ?scale ?sumsq
lassq [Lacaml_D]
lassq ?n ?ofsx ?incx ?scale ?sumsq
lassq [Lacaml_S]
lassq ?n ?ofsx ?incx ?scale ?sumsq
lauum [Lacaml_Z]
lauum ?up ?n ?ar ?ac a computes the product U * U**T or L**T * L, where the triangular factor U or L is stored in the upper or lower triangular part of the array a.
lauum [Lacaml_C]
lauum ?up ?n ?ar ?ac a computes the product U * U**T or L**T * L, where the triangular factor U or L is stored in the upper or lower triangular part of the array a.
lauum [Lacaml_D]
lauum ?up ?n ?ar ?ac a computes the product U * U**T or L**T * L, where the triangular factor U or L is stored in the upper or lower triangular part of the array a.
lauum [Lacaml_S]
lauum ?up ?n ?ar ?ac a computes the product U * U**T or L**T * L, where the triangular factor U or L is stored in the upper or lower triangular part of the array a.
linspace [Lacaml_Z.Vec]
linspace ?z a b n
linspace [Lacaml_C.Vec]
linspace ?z a b n
linspace [Lacaml_D.Vec]
linspace ?z a b n
linspace [Lacaml_S.Vec]
linspace ?z a b n
liwork_str [Lacaml_utils]
log [Lacaml_D.Vec]
log ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the logarithm of n elements of the vector x using incx as incremental steps.
log [Lacaml_S.Vec]
log ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the logarithm of n elements of the vector x using incx as incremental steps.
logspace [Lacaml_Z.Vec]
logspace ?z a b base n
logspace [Lacaml_C.Vec]
logspace ?z a b base n
logspace [Lacaml_D.Vec]
logspace ?z a b base n
logspace [Lacaml_S.Vec]
logspace ?z a b base n
lsc [Lacaml_io.Toplevel]
lwork_str [Lacaml_utils]

M
m_str [Lacaml_utils]
make [Lacaml_Z.Mat]
make m n x
make [Lacaml_Z.Vec]
make n x
make [Lacaml_C.Mat]
make m n x
make [Lacaml_C.Vec]
make n x
make [Lacaml_D.Mat]
make m n x
make [Lacaml_D.Vec]
make n x
make [Lacaml_S.Mat]
make m n x
make [Lacaml_S.Vec]
make n x
make0 [Lacaml_Z.Mat]
make0 m n x
make0 [Lacaml_Z.Vec]
make0 n x
make0 [Lacaml_C.Mat]
make0 m n x
make0 [Lacaml_C.Vec]
make0 n x
make0 [Lacaml_D.Mat]
make0 m n x
make0 [Lacaml_D.Vec]
make0 n x
make0 [Lacaml_S.Mat]
make0 m n x
make0 [Lacaml_S.Vec]
make0 n x
make_mvec [Lacaml_Z.Mat]
make_mvec m x
make_mvec [Lacaml_C.Mat]
make_mvec m x
make_mvec [Lacaml_D.Mat]
make_mvec m x
make_mvec [Lacaml_S.Mat]
make_mvec m x
map [Lacaml_Z.Mat]
map f ?m ?n ?br ?bc ?b ?ar ?ac a
map [Lacaml_Z.Vec]
map f ?n ?ofsx ?incx x
map [Lacaml_C.Mat]
map f ?m ?n ?br ?bc ?b ?ar ?ac a
map [Lacaml_C.Vec]
map f ?n ?ofsx ?incx x
map [Lacaml_D.Mat]
map f ?m ?n ?br ?bc ?b ?ar ?ac a
map [Lacaml_D.Vec]
map f ?n ?ofsx ?incx x
map [Lacaml_S.Mat]
map f ?m ?n ?br ?bc ?b ?ar ?ac a
map [Lacaml_S.Vec]
map f ?n ?ofsx ?incx x
mat_from_vec [Lacaml_common]
mat_from_vec a converts the vector a into a matrix with Array1.dim a rows and 1 column.
max [Lacaml_Z.Vec]
max ?n ?ofsx ?incx x computes the greater of the n elements in vector x (2-norm), separated by incx incremental steps.
max [Lacaml_C.Vec]
max ?n ?ofsx ?incx x computes the greater of the n elements in vector x (2-norm), separated by incx incremental steps.
max [Lacaml_D.Vec]
max ?n ?ofsx ?incx x computes the greater of the n elements in vector x (2-norm), separated by incx incremental steps.
max [Lacaml_S.Vec]
max ?n ?ofsx ?incx x computes the greater of the n elements in vector x (2-norm), separated by incx incremental steps.
min [Lacaml_Z.Vec]
min ?n ?ofsx ?incx x computes the smaller of the n elements in vector x (2-norm), separated by incx incremental steps.
min [Lacaml_C.Vec]
min ?n ?ofsx ?incx x computes the smaller of the n elements in vector x (2-norm), separated by incx incremental steps.
min [Lacaml_D.Vec]
min ?n ?ofsx ?incx x computes the smaller of the n elements in vector x (2-norm), separated by incx incremental steps.
min [Lacaml_S.Vec]
min ?n ?ofsx ?incx x computes the smaller of the n elements in vector x (2-norm), separated by incx incremental steps.
mul [Lacaml_Z.Vec]
mul ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y multiplies n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively.
mul [Lacaml_C.Vec]
mul ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y multiplies n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively.
mul [Lacaml_D.Vec]
mul ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y multiplies n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively.
mul [Lacaml_S.Vec]
mul ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y multiplies n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively.
mvec_of_array [Lacaml_Z.Mat]
mvec_of_array ar
mvec_of_array [Lacaml_C.Mat]
mvec_of_array ar
mvec_of_array [Lacaml_D.Mat]
mvec_of_array ar
mvec_of_array [Lacaml_S.Mat]
mvec_of_array ar
mvec_to_array [Lacaml_Z.Mat]
mvec_to_array mat
mvec_to_array [Lacaml_C.Mat]
mvec_to_array mat
mvec_to_array [Lacaml_D.Mat]
mvec_to_array mat
mvec_to_array [Lacaml_S.Mat]
mvec_to_array mat

N
n_str [Lacaml_utils]
neg [Lacaml_Z.Vec]
neg ?n ?ofsy ?incy ?y ?ofsx ?incx x negates n elements of the vector x using incx as incremental steps.
neg [Lacaml_C.Vec]
neg ?n ?ofsy ?incy ?y ?ofsx ?incx x negates n elements of the vector x using incx as incremental steps.
neg [Lacaml_D.Vec]
neg ?n ?ofsy ?incy ?y ?ofsx ?incx x negates n elements of the vector x using incx as incremental steps.
neg [Lacaml_S.Vec]
neg ?n ?ofsy ?incy ?y ?ofsx ?incx x negates n elements of the vector x using incx as incremental steps.
nrhs_str [Lacaml_utils]
nrm2 [Lacaml_Z]
nrm2 ?n ?ofsx ?incx x see BLAS documentation!
nrm2 [Lacaml_C]
nrm2 ?n ?ofsx ?incx x see BLAS documentation!
nrm2 [Lacaml_D]
nrm2 ?n ?ofsx ?incx x see BLAS documentation!
nrm2 [Lacaml_S]
nrm2 ?n ?ofsx ?incx x see BLAS documentation!

O
of_array [Lacaml_Z.Mat]
of_array ar
of_array [Lacaml_Z.Vec]
of_array ar
of_array [Lacaml_C.Mat]
of_array ar
of_array [Lacaml_C.Vec]
of_array ar
of_array [Lacaml_D.Mat]
of_array ar
of_array [Lacaml_D.Vec]
of_array ar
of_array [Lacaml_S.Mat]
of_array ar
of_array [Lacaml_S.Vec]
of_array ar
of_col_vecs [Lacaml_Z.Mat]
of_col_vecs ar
of_col_vecs [Lacaml_C.Mat]
of_col_vecs ar
of_col_vecs [Lacaml_D.Mat]
of_col_vecs ar
of_col_vecs [Lacaml_S.Mat]
of_col_vecs ar
of_diag [Lacaml_Z.Mat]
of_diag v
of_diag [Lacaml_C.Mat]
of_diag v
of_diag [Lacaml_D.Mat]
of_diag v
of_diag [Lacaml_S.Mat]
of_diag v
of_list [Lacaml_Z.Vec]
of_list l
of_list [Lacaml_C.Vec]
of_list l
of_list [Lacaml_D.Vec]
of_list l
of_list [Lacaml_S.Vec]
of_list l
one [Lacaml_complex64]
one [Lacaml_complex32]
one [Lacaml_float64]
one [Lacaml_float32]
orgqr [Lacaml_D]
orgqr ?m ?n ?k ?work ~tau ?ar ?ac a see LAPACK documentation!
orgqr [Lacaml_S]
orgqr ?m ?n ?k ?work ~tau ?ar ?ac a see LAPACK documentation!
orgqr_err [Lacaml_utils]
orgqr_get_params [Lacaml_utils]
orgqr_min_lwork [Lacaml_D]
orgqr_min_lwork ~n
orgqr_min_lwork [Lacaml_S]
orgqr_min_lwork ~n
orgqr_opt_lwork [Lacaml_D]
orgqr_opt_lwork ?m ?n ?k ~tau ?ar ?ac a
orgqr_opt_lwork [Lacaml_S]
orgqr_opt_lwork ?m ?n ?k ~tau ?ar ?ac a
ormqr [Lacaml_D]
ormqr ?side ?trans ?m ?n ?k ?work ~tau ?ar ?ac a ?cr ?cc c see LAPACK documentation!
ormqr [Lacaml_S]
ormqr ?side ?trans ?m ?n ?k ?work ~tau ?ar ?ac a ?cr ?cc c see LAPACK documentation!
ormqr_err [Lacaml_utils]
ormqr_get_params [Lacaml_utils]
ormqr_opt_lwork [Lacaml_D]
ormqr_opt_lwork ?side ?trans ?m ?n ?k ~tau ?ar ?ac a ?cr ?cc c
ormqr_opt_lwork [Lacaml_S]
ormqr_opt_lwork ?side ?trans ?m ?n ?k ~tau ?ar ?ac a ?cr ?cc c

P
packed [Lacaml_Z.Mat]
packed ?up ?n ?ar ?ac a
packed [Lacaml_C.Mat]
packed ?up ?n ?ar ?ac a
packed [Lacaml_D.Mat]
packed ?up ?n ?ar ?ac a
packed [Lacaml_S.Mat]
packed ?up ?n ?ar ?ac a
pascal [Lacaml_D.Mat]
pascal n
pascal [Lacaml_S.Mat]
pascal n
pbsv [Lacaml_Z]
pbsv ?n ?up ?kd ?abr ?abc ab ?nrhs ?br ?bc b computes the solution to a real system of linear equations a * X = b, where a is an n-by-n symmetric positive definite band matrix and X and b are n-by-nrhs matrices.
pbsv [Lacaml_C]
pbsv ?n ?up ?kd ?abr ?abc ab ?nrhs ?br ?bc b computes the solution to a real system of linear equations a * X = b, where a is an n-by-n symmetric positive definite band matrix and X and b are n-by-nrhs matrices.
pbsv [Lacaml_D]
pbsv ?n ?up ?kd ?abr ?abc ab ?nrhs ?br ?bc b computes the solution to a real system of linear equations a * X = b, where a is an n-by-n symmetric positive definite band matrix and X and b are n-by-nrhs matrices.
pbsv [Lacaml_S]
pbsv ?n ?up ?kd ?abr ?abc ab ?nrhs ?br ?bc b computes the solution to a real system of linear equations a * X = b, where a is an n-by-n symmetric positive definite band matrix and X and b are n-by-nrhs matrices.
pocon [Lacaml_Z]
pocon ?n ?up ?anorm ?work ?rwork ?ar ?ac a
pocon [Lacaml_C]
pocon ?n ?up ?anorm ?work ?rwork ?ar ?ac a
pocon [Lacaml_D]
pocon ?n ?up ?anorm ?work ?iwork ?ar ?ac a
pocon [Lacaml_S]
pocon ?n ?up ?anorm ?work ?iwork ?ar ?ac a
pocon_min_liwork [Lacaml_D]
pocon_min_liwork n
pocon_min_liwork [Lacaml_S]
pocon_min_liwork n
pocon_min_lrwork [Lacaml_Z]
pocon_min_lrwork n
pocon_min_lrwork [Lacaml_C]
pocon_min_lrwork n
pocon_min_lwork [Lacaml_Z]
pocon_min_lwork n
pocon_min_lwork [Lacaml_C]
pocon_min_lwork n
pocon_min_lwork [Lacaml_D]
pocon_min_lwork n
pocon_min_lwork [Lacaml_S]
pocon_min_lwork n
posv [Lacaml_Z]
posv ?n ?up ?ar ?ac a ?nrhs ?br ?bc b computes the solution to a real system of linear equations a * X = b, where a is an n-by-n symmetric positive definite matrix and X and b are n-by-nrhs matrices.
posv [Lacaml_C]
posv ?n ?up ?ar ?ac a ?nrhs ?br ?bc b computes the solution to a real system of linear equations a * X = b, where a is an n-by-n symmetric positive definite matrix and X and b are n-by-nrhs matrices.
posv [Lacaml_D]
posv ?n ?up ?ar ?ac a ?nrhs ?br ?bc b computes the solution to a real system of linear equations a * X = b, where a is an n-by-n symmetric positive definite matrix and X and b are n-by-nrhs matrices.
posv [Lacaml_S]
posv ?n ?up ?ar ?ac a ?nrhs ?br ?bc b computes the solution to a real system of linear equations a * X = b, where a is an n-by-n symmetric positive definite matrix and X and b are n-by-nrhs matrices.
potrf [Lacaml_Z]
potrf ?n ?up ?ar ?ac ?jitter a factorizes symmetric positive definite matrix a (or the designated submatrix) using Cholesky factorization.
potrf [Lacaml_C]
potrf ?n ?up ?ar ?ac ?jitter a factorizes symmetric positive definite matrix a (or the designated submatrix) using Cholesky factorization.
potrf [Lacaml_D]
potrf ?n ?up ?ar ?ac ?jitter a factorizes symmetric positive definite matrix a (or the designated submatrix) using Cholesky factorization.
potrf [Lacaml_S]
potrf ?n ?up ?ar ?ac ?jitter a factorizes symmetric positive definite matrix a (or the designated submatrix) using Cholesky factorization.
potrf_chol_err [Lacaml_utils]
potrf_err [Lacaml_utils]
potri [Lacaml_Z]
potri ?n ?up ?ar ?ac ?factorize ?jitter a computes the inverse of the real symmetric positive definite matrix a using the Cholesky factorization a = U**T*U or a = L*L**T computed by Lacaml_Z.potrf.
potri [Lacaml_C]
potri ?n ?up ?ar ?ac ?factorize ?jitter a computes the inverse of the real symmetric positive definite matrix a using the Cholesky factorization a = U**T*U or a = L*L**T computed by Lacaml_C.potrf.
potri [Lacaml_D]
potri ?n ?up ?ar ?ac ?factorize ?jitter a computes the inverse of the real symmetric positive definite matrix a using the Cholesky factorization a = U**T*U or a = L*L**T computed by Lacaml_D.potrf.
potri [Lacaml_S]
potri ?n ?up ?ar ?ac ?factorize ?jitter a computes the inverse of the real symmetric positive definite matrix a using the Cholesky factorization a = U**T*U or a = L*L**T computed by Lacaml_S.potrf.
potrs [Lacaml_Z]
potrs ?n ?up ?ar ?ac a ?nrhs ?br ?bc ?factorize ?jitter b solves a system of linear equations a*X = b, where a is symmetric positive definite matrix, using the Cholesky factorization a = U**T*U or a = L*L**T computed by Lacaml_Z.potrf.
potrs [Lacaml_C]
potrs ?n ?up ?ar ?ac a ?nrhs ?br ?bc ?factorize ?jitter b solves a system of linear equations a*X = b, where a is symmetric positive definite matrix, using the Cholesky factorization a = U**T*U or a = L*L**T computed by Lacaml_C.potrf.
potrs [Lacaml_D]
potrs ?n ?up ?ar ?ac a ?nrhs ?br ?bc ?factorize ?jitter b solves a system of linear equations a*X = b, where a is symmetric positive definite matrix, using the Cholesky factorization a = U**T*U or a = L*L**T computed by Lacaml_D.potrf.
potrs [Lacaml_S]
potrs ?n ?up ?ar ?ac a ?nrhs ?br ?bc ?factorize ?jitter b solves a system of linear equations a*X = b, where a is symmetric positive definite matrix, using the Cholesky factorization a = U**T*U or a = L*L**T computed by Lacaml_S.potrf.
potrs_err [Lacaml_utils]
pp_cmat [Lacaml_io.Toplevel]
pp_cmat [Lacaml_io]
pp_complex_el_default [Lacaml_io]
fprintf ppf "(%G, %Gi)" el.re el.im
pp_cvec [Lacaml_io.Toplevel]
pp_cvec [Lacaml_io]
pp_float_el_default [Lacaml_io]
fprintf ppf "%G" el
pp_fmat [Lacaml_io.Toplevel]
pp_fmat [Lacaml_io]
pp_fvec [Lacaml_io.Toplevel]
pp_fvec [Lacaml_io]
pp_imat [Lacaml_io.Toplevel]
pp_imat [Lacaml_io]
pp_int32_el [Lacaml_io]
fprintf ppf "%ld" el
pp_ivec [Lacaml_io.Toplevel]
pp_ivec [Lacaml_io]
pp_labeled_cmat [Lacaml_io]
pp_labeled_cvec [Lacaml_io]
pp_labeled_fmat [Lacaml_io]
pp_labeled_fvec [Lacaml_io]
pp_labeled_imat [Lacaml_io]
pp_labeled_ivec [Lacaml_io]
pp_labeled_rcvec [Lacaml_io]
pp_labeled_rfvec [Lacaml_io]
pp_labeled_rivec [Lacaml_io]
pp_lcmat [Lacaml_io]
pp_lcvec [Lacaml_io]
pp_lfmat [Lacaml_io]
pp_lfvec [Lacaml_io]
pp_limat [Lacaml_io]
pp_livec [Lacaml_io]
pp_mat [Lacaml_Z]
Pretty-printer for matrices.
pp_mat [Lacaml_C]
Pretty-printer for matrices.
pp_mat [Lacaml_D]
Pretty-printer for matrices.
pp_mat [Lacaml_S]
Pretty-printer for matrices.
pp_mat_gen [Lacaml_io]
pp_mat_gen ?pp_open ?pp_close ?pp_head ?pp_foot ?pp_end_row ?pp_end_col ?pp_left ?pp_right ?pad pp_el ppf mat
pp_num [Lacaml_Z]
pp_num ppf el is equivalent to fprintf ppf "(%G, %Gi)" el.re el.im.
pp_num [Lacaml_C]
pp_num ppf el is equivalent to fprintf ppf "(%G, %Gi)" el.re el.im.
pp_num [Lacaml_D]
pp_num ppf el is equivalent to fprintf ppf "%G" el.
pp_num [Lacaml_S]
pp_num ppf el is equivalent to fprintf ppf "%G" el.
pp_ocmat [Lacaml_io]
pp_ocvec [Lacaml_io]
pp_ofmat [Lacaml_io]
pp_ofvec [Lacaml_io]
pp_oimat [Lacaml_io]
pp_oivec [Lacaml_io]
pp_omat [Lacaml_io]
pp_omat ppf pp_el mat prints matrix mat to formatter ppf in OCaml-style using the element printer pp_el.
pp_ovec [Lacaml_io]
pp_ovec ppf pp_el vec prints the column vector vec to formatter ppf in OCaml-style using the element printer pp_el.
pp_rcvec [Lacaml_io.Toplevel]
pp_rcvec [Lacaml_io]
pp_rfvec [Lacaml_io.Toplevel]
pp_rfvec [Lacaml_io]
pp_rivec [Lacaml_io.Toplevel]
pp_rivec [Lacaml_io]
pp_rlcvec [Lacaml_io]
pp_rlfvec [Lacaml_io]
pp_rlivec [Lacaml_io]
pp_rocvec [Lacaml_io]
pp_rofvec [Lacaml_io]
pp_roivec [Lacaml_io]
pp_rovec [Lacaml_io]
pp_rovec ppf pp_el vec prints the row vector vec to formatter ppf in OCaml-style using the element printer pp_el.
pp_vec [Lacaml_Z]
Pretty-printer for column vectors.
pp_vec [Lacaml_C]
Pretty-printer for column vectors.
pp_vec [Lacaml_D]
Pretty-printer for column vectors.
pp_vec [Lacaml_S]
Pretty-printer for column vectors.
ppsv [Lacaml_Z]
ppsv ?n ?up ?ofsap ap ?nrhs ?br ?bc b computes the solution to the real system of linear equations a * X = b, where a is an n-by-n symmetric positive definite matrix stored in packed format and X and b are n-by-nrhs matrices.
ppsv [Lacaml_C]
ppsv ?n ?up ?ofsap ap ?nrhs ?br ?bc b computes the solution to the real system of linear equations a * X = b, where a is an n-by-n symmetric positive definite matrix stored in packed format and X and b are n-by-nrhs matrices.
ppsv [Lacaml_D]
ppsv ?n ?up ?ofsap ap ?nrhs ?br ?bc b computes the solution to the real system of linear equations a * X = b, where a is an n-by-n symmetric positive definite matrix stored in packed format and X and b are n-by-nrhs matrices.
ppsv [Lacaml_S]
ppsv ?n ?up ?ofsap ap ?nrhs ?br ?bc b computes the solution to the real system of linear equations a * X = b, where a is an n-by-n symmetric positive definite matrix stored in packed format and X and b are n-by-nrhs matrices.
prec [Lacaml_complex64]
prec [Lacaml_complex32]
prec [Lacaml_float64]
prec [Lacaml_float32]
prec [Lacaml_Z]
Precision for this submodule Z.
prec [Lacaml_C]
Precision for this submodule C.
prec [Lacaml_D]
Precision for this submodule D.
prec [Lacaml_S]
Precision for this submodule S.
prod [Lacaml_Z.Vec]
prod ?n ?ofsx ?incx x computes the product of the n elements in vector x, separated by incx incremental steps.
prod [Lacaml_C.Vec]
prod ?n ?ofsx ?incx x computes the product of the n elements in vector x, separated by incx incremental steps.
prod [Lacaml_D.Vec]
prod ?n ?ofsx ?incx x computes the product of the n elements in vector x, separated by incx incremental steps.
prod [Lacaml_S.Vec]
prod ?n ?ofsx ?incx x computes the product of the n elements in vector x, separated by incx incremental steps.
ptsv [Lacaml_Z]
ptsv ?n ?ofsd d ?ofse e ?nrhs ?br ?bc b computes the solution to the real system of linear equations a*X = b, where a is an n-by-n symmetric positive definite tridiagonal matrix, and X and b are n-by-nrhs matrices.
ptsv [Lacaml_C]
ptsv ?n ?ofsd d ?ofse e ?nrhs ?br ?bc b computes the solution to the real system of linear equations a*X = b, where a is an n-by-n symmetric positive definite tridiagonal matrix, and X and b are n-by-nrhs matrices.
ptsv [Lacaml_D]
ptsv ?n ?ofsd d ?ofse e ?nrhs ?br ?bc b computes the solution to the real system of linear equations a*X = b, where a is an n-by-n symmetric positive definite tridiagonal matrix, and X and b are n-by-nrhs matrices.
ptsv [Lacaml_S]
ptsv ?n ?ofsd d ?ofse e ?nrhs ?br ?bc b computes the solution to the real system of linear equations a*X = b, where a is an n-by-n symmetric positive definite tridiagonal matrix, and X and b are n-by-nrhs matrices.

R
random [Lacaml_Z.Mat]
random ?rnd_state ?re_from ?re_range ?im_from ?im_range m n
random [Lacaml_Z.Vec]
random ?rnd_state ?re_from ?re_range ?im_from ?im_range n
random [Lacaml_C.Mat]
random ?rnd_state ?re_from ?re_range ?im_from ?im_range m n
random [Lacaml_C.Vec]
random ?rnd_state ?re_from ?re_range ?im_from ?im_range n
random [Lacaml_D.Mat]
random ?rnd_state ?from ?range m n
random [Lacaml_D.Vec]
random ?rnd_state ?from ?range n
random [Lacaml_S.Mat]
random ?rnd_state ?from ?range m n
random [Lacaml_S.Vec]
random ?rnd_state ?from ?range n
reci [Lacaml_Z.Vec]
reci ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the reciprocal value of n elements of the vector x using incx as incremental steps.
reci [Lacaml_C.Vec]
reci ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the reciprocal value of n elements of the vector x using incx as incremental steps.
reci [Lacaml_D.Vec]
reci ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the reciprocal value of n elements of the vector x using incx as incremental steps.
reci [Lacaml_S.Vec]
reci ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the reciprocal value of n elements of the vector x using incx as incremental steps.
rev [Lacaml_Z.Vec]
rev x reverses vector x (non-destructive).
rev [Lacaml_C.Vec]
rev x reverses vector x (non-destructive).
rev [Lacaml_D.Vec]
rev x reverses vector x (non-destructive).
rev [Lacaml_S.Vec]
rev x reverses vector x (non-destructive).
rosser [Lacaml_D.Mat]
rosser n
rosser [Lacaml_S.Mat]
rosser n

S
s_str [Lacaml_utils]
sbev [Lacaml_D]
sbev ?n ?vectors ?zr ?zc ?z ?up ?ofswork ?work ?ofsw ?w ?abr ?abc ab computes all the eigenvalues and, optionally, eigenvectors of the real symmetric band matrix ab.
sbev [Lacaml_S]
sbev ?n ?vectors ?zr ?zc ?z ?up ?ofswork ?work ?ofsw ?w ?abr ?abc ab computes all the eigenvalues and, optionally, eigenvectors of the real symmetric band matrix ab.
sbev_min_lwork [Lacaml_D]
sbev_min_lwork n
sbev_min_lwork [Lacaml_S]
sbev_min_lwork n
sbgv [Lacaml_D]
sbgv ?n ?ka ?kb ?zr ?zc ?z ?up ?work ?ofsw ?w ?ar ?ac a ?br ?bc b computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite banded eigenproblem, of the form a*x=(lambda)*b*x.
sbgv [Lacaml_S]
sbgv ?n ?ka ?kb ?zr ?zc ?z ?up ?work ?ofsw ?w ?ar ?ac a ?br ?bc b computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite banded eigenproblem, of the form a*x=(lambda)*b*x.
sbmv [Lacaml_D]
sbmv ?n ?k ?ofsy ?incy ?y ?ar ?ac a ?up ?alpha ?beta ?ofsx ?incx x see BLAS documentation!
sbmv [Lacaml_S]
sbmv ?n ?k ?ofsy ?incy ?y ?ar ?ac a ?up ?alpha ?beta ?ofsx ?incx x see BLAS documentation!
scal [Lacaml_Z.Mat]
scal ?m ?n alpha ?ar ?ac a BLAS scal function for (sub-)matrices.
scal [Lacaml_Z]
scal ?n alpha ?ofsx ?incx x see BLAS documentation!
scal [Lacaml_C.Mat]
scal ?m ?n alpha ?ar ?ac a BLAS scal function for (sub-)matrices.
scal [Lacaml_C]
scal ?n alpha ?ofsx ?incx x see BLAS documentation!
scal [Lacaml_D.Mat]
scal ?m ?n alpha ?ar ?ac a BLAS scal function for (sub-)matrices.
scal [Lacaml_D]
scal ?n alpha ?ofsx ?incx x see BLAS documentation!
scal [Lacaml_S.Mat]
scal ?m ?n alpha ?ar ?ac a BLAS scal function for (sub-)matrices.
scal [Lacaml_S]
scal ?n alpha ?ofsx ?incx x see BLAS documentation!
scal_cols [Lacaml_Z.Mat]
scal_cols ?m ?n ?ar ?ac a ?ofs alphas column-wise scal function for matrices.
scal_cols [Lacaml_C.Mat]
scal_cols ?m ?n ?ar ?ac a ?ofs alphas column-wise scal function for matrices.
scal_cols [Lacaml_D.Mat]
scal_cols ?m ?n ?ar ?ac a ?ofs alphas column-wise scal function for matrices.
scal_cols [Lacaml_S.Mat]
scal_cols ?m ?n ?ar ?ac a ?ofs alphas column-wise scal function for matrices.
scal_rows [Lacaml_Z.Mat]
scal_rows ?m ?n ?ofs alphas ?ar ?ac a row-wise scal function for matrices.
scal_rows [Lacaml_C.Mat]
scal_rows ?m ?n ?ofs alphas ?ar ?ac a row-wise scal function for matrices.
scal_rows [Lacaml_D.Mat]
scal_rows ?m ?n ?ofs alphas ?ar ?ac a row-wise scal function for matrices.
scal_rows [Lacaml_S.Mat]
scal_rows ?m ?n ?ofs alphas ?ar ?ac a row-wise scal function for matrices.
set_dim_defaults [Lacaml_io.Context]
sin [Lacaml_D.Vec]
sin ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the sine of n elements of the vector x using incx as incremental steps.
sin [Lacaml_S.Vec]
sin ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the sine of n elements of the vector x using incx as incremental steps.
sort [Lacaml_Z.Vec]
sort ?cmp ?n ?ofsx ?incx x sorts the array x in increasing order according to the comparison function cmp.
sort [Lacaml_C.Vec]
sort ?cmp ?n ?ofsx ?incx x sorts the array x in increasing order according to the comparison function cmp.
sort [Lacaml_D.Vec]
sort ?cmp ?n ?ofsx ?incx x sorts the array x in increasing order according to the comparison function cmp.
sort [Lacaml_S.Vec]
sort ?cmp ?n ?ofsx ?incx x sorts the array x in increasing order according to the comparison function cmp.
spsv [Lacaml_Z]
spsv ?n ?up ?ipiv ?ofsap ap ?nrhs ?br ?bc b computes the solution to the real system of linear equations a * X = b, where a is an n-by-n symmetric matrix stored in packed format and X and b are n-by-nrhs matrices.
spsv [Lacaml_C]
spsv ?n ?up ?ipiv ?ofsap ap ?nrhs ?br ?bc b computes the solution to the real system of linear equations a * X = b, where a is an n-by-n symmetric matrix stored in packed format and X and b are n-by-nrhs matrices.
spsv [Lacaml_D]
spsv ?n ?up ?ipiv ?ofsap ap ?nrhs ?br ?bc b computes the solution to the real system of linear equations a * X = b, where a is an n-by-n symmetric matrix stored in packed format and X and b are n-by-nrhs matrices.
spsv [Lacaml_S]
spsv ?n ?up ?ipiv ?ofsap ap ?nrhs ?br ?bc b computes the solution to the real system of linear equations a * X = b, where a is an n-by-n symmetric matrix stored in packed format and X and b are n-by-nrhs matrices.
sqr [Lacaml_D.Vec]
sqr ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the square of n elements of the vector x using incx as incremental steps.
sqr [Lacaml_S.Vec]
sqr ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the square of n elements of the vector x using incx as incremental steps.
sqr_nrm2 [Lacaml_Z.Vec]
sqr_nrm2 ?stable ?n ?c ?ofsx ?incx x computes the square of the 2-norm (Euclidean norm) of vector x separated by incx incremental steps.
sqr_nrm2 [Lacaml_C.Vec]
sqr_nrm2 ?stable ?n ?c ?ofsx ?incx x computes the square of the 2-norm (Euclidean norm) of vector x separated by incx incremental steps.
sqr_nrm2 [Lacaml_D.Vec]
sqr_nrm2 ?stable ?n ?c ?ofsx ?incx x computes the square of the 2-norm (Euclidean norm) of vector x separated by incx incremental steps.
sqr_nrm2 [Lacaml_S.Vec]
sqr_nrm2 ?stable ?n ?c ?ofsx ?incx x computes the square of the 2-norm (Euclidean norm) of vector x separated by incx incremental steps.
sqrt [Lacaml_D.Vec]
sqrt ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the square root of n elements of the vector x using incx as incremental steps.
sqrt [Lacaml_S.Vec]
sqrt ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the square root of n elements of the vector x using incx as incremental steps.
ssqr [Lacaml_Z.Vec]
ssqr ?n ?c ?ofsx ?incx x computes the sum of squared differences of the n elements in vector x from constant c, separated by incx incremental steps.
ssqr [Lacaml_C.Vec]
ssqr ?n ?c ?ofsx ?incx x computes the sum of squared differences of the n elements in vector x from constant c, separated by incx incremental steps.
ssqr [Lacaml_D.Vec]
ssqr ?n ?c ?ofsx ?incx x computes the sum of squared differences of the n elements in vector x from constant c, separated by incx incremental steps.
ssqr [Lacaml_S.Vec]
ssqr ?n ?c ?ofsx ?incx x computes the sum of squared differences of the n elements in vector x from constant c, separated by incx incremental steps.
ssqr_diff [Lacaml_Z.Vec]
ssqr_diff ?n ?ofsx ?incx x ?ofsy ?incy y returns the sum of squared differences of n elements of vectors x and y, using incx and incy as incremental steps respectively.
ssqr_diff [Lacaml_C.Vec]
ssqr_diff ?n ?ofsx ?incx x ?ofsy ?incy y returns the sum of squared differences of n elements of vectors x and y, using incx and incy as incremental steps respectively.
ssqr_diff [Lacaml_D.Vec]
ssqr_diff ?n ?ofsx ?incx x ?ofsy ?incy y returns the sum of squared differences of n elements of vectors x and y, using incx and incy as incremental steps respectively.
ssqr_diff [Lacaml_S.Vec]
ssqr_diff ?n ?ofsx ?incx x ?ofsy ?incy y returns the sum of squared differences of n elements of vectors x and y, using incx and incy as incremental steps respectively.
sub [Lacaml_Z.Vec]
sub ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y subtracts n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively.
sub [Lacaml_C.Vec]
sub ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y subtracts n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively.
sub [Lacaml_D.Vec]
sub ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y subtracts n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively.
sub [Lacaml_S.Vec]
sub ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y subtracts n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively.
sum [Lacaml_Z.Mat]
sum ?m ?n ?ar ?ac a computes the sum of all elements in the m-by-n submatrix starting at row ar and column ac.
sum [Lacaml_Z.Vec]
sum ?n ?ofsx ?incx x computes the sum of the n elements in vector x, separated by incx incremental steps.
sum [Lacaml_C.Mat]
sum ?m ?n ?ar ?ac a computes the sum of all elements in the m-by-n submatrix starting at row ar and column ac.
sum [Lacaml_C.Vec]
sum ?n ?ofsx ?incx x computes the sum of the n elements in vector x, separated by incx incremental steps.
sum [Lacaml_D.Mat]
sum ?m ?n ?ar ?ac a computes the sum of all elements in the m-by-n submatrix starting at row ar and column ac.
sum [Lacaml_D.Vec]
sum ?n ?ofsx ?incx x computes the sum of the n elements in vector x, separated by incx incremental steps.
sum [Lacaml_S.Mat]
sum ?m ?n ?ar ?ac a computes the sum of all elements in the m-by-n submatrix starting at row ar and column ac.
sum [Lacaml_S.Vec]
sum ?n ?ofsx ?incx x computes the sum of the n elements in vector x, separated by incx incremental steps.
swap [Lacaml_Z]
swap ?n ?ofsx ?incx ~x ?ofsy ?incy y see BLAS documentation!
swap [Lacaml_C]
swap ?n ?ofsx ?incx ~x ?ofsy ?incy y see BLAS documentation!
swap [Lacaml_D]
swap ?n ?ofsx ?incx ~x ?ofsy ?incy y see BLAS documentation!
swap [Lacaml_S]
swap ?n ?ofsx ?incx ~x ?ofsy ?incy y see BLAS documentation!
sycon [Lacaml_Z]
sycon ?n ?up ?ipiv ?anorm ?work ?ar ?ac a
sycon [Lacaml_C]
sycon ?n ?up ?ipiv ?anorm ?work ?ar ?ac a
sycon [Lacaml_D]
sycon ?n ?up ?ipiv ?anorm ?work ?iwork ?ar ?ac a
sycon [Lacaml_S]
sycon ?n ?up ?ipiv ?anorm ?work ?iwork ?ar ?ac a
sycon_min_liwork [Lacaml_D]
sycon_min_liwork n
sycon_min_liwork [Lacaml_S]
sycon_min_liwork n
sycon_min_lwork [Lacaml_Z]
sycon_min_lwork n
sycon_min_lwork [Lacaml_C]
sycon_min_lwork n
sycon_min_lwork [Lacaml_D]
sycon_min_lwork n
sycon_min_lwork [Lacaml_S]
sycon_min_lwork n
syev [Lacaml_D]
syev ?n ?vectors ?up ?ofswork ?work ?ofsw ?w ?ar ?ac a computes all eigenvalues and, optionally, eigenvectors of the real symmetric matrix a.
syev [Lacaml_S]
syev ?n ?vectors ?up ?ofswork ?work ?ofsw ?w ?ar ?ac a computes all eigenvalues and, optionally, eigenvectors of the real symmetric matrix a.
syev_min_lwork [Lacaml_D]
syev_min_lwork n
syev_min_lwork [Lacaml_S]
syev_min_lwork n
syev_opt_lwork [Lacaml_D]
syev_opt_lwork ?n ?vectors ?up ?ar ?ac a
syev_opt_lwork [Lacaml_S]
syev_opt_lwork ?n ?vectors ?up ?ar ?ac a
syevd [Lacaml_D]
syevd ?n ?vectors ?up ?ofswork ?work ?iwork ?ofsw ?w ?ar ?ac a computes all eigenvalues and, optionally, eigenvectors of the real symmetric matrix a.
syevd [Lacaml_S]
syevd ?n ?vectors ?up ?ofswork ?work ?iwork ?ofsw ?w ?ar ?ac a computes all eigenvalues and, optionally, eigenvectors of the real symmetric matrix a.
syevd_min_liwork [Lacaml_D]
syevd_min_liwork vectors n
syevd_min_liwork [Lacaml_S]
syevd_min_liwork vectors n
syevd_min_lwork [Lacaml_D]
syevd_min_lwork vectors n
syevd_min_lwork [Lacaml_S]
syevd_min_lwork vectors n
syevd_opt_l_li_work [Lacaml_D]
syevd_opt_l_li_iwork ?n ?vectors ?up ?ar ?ac a
syevd_opt_l_li_work [Lacaml_S]
syevd_opt_l_li_iwork ?n ?vectors ?up ?ar ?ac a
syevd_opt_liwork [Lacaml_D]
syevd_opt_liwork ?n ?vectors ?up ?ar ?ac a
syevd_opt_liwork [Lacaml_S]
syevd_opt_liwork ?n ?vectors ?up ?ar ?ac a
syevd_opt_lwork [Lacaml_D]
syevd_opt_lwork ?n ?vectors ?up ?ar ?ac a
syevd_opt_lwork [Lacaml_S]
syevd_opt_lwork ?n ?vectors ?up ?ar ?ac a
syevr [Lacaml_D]
syevr ?n ?vectors ?range ?up ?abstol ?work ?iwork ?ofsw ?w ?zr ?zc ?z ?isuppz ?ar ?ac a range is either `A for computing all eigenpairs, `V (vl, vu) defines the lower and upper range of computed eigenvalues, `I (il, iu) defines the indexes of the computed eigenpairs, which are sorted in ascending order.
syevr [Lacaml_S]
syevr ?n ?vectors ?range ?up ?abstol ?work ?iwork ?ofsw ?w ?zr ?zc ?z ?isuppz ?ar ?ac a range is either `A for computing all eigenpairs, `V (vl, vu) defines the lower and upper range of computed eigenvalues, `I (il, iu) defines the indexes of the computed eigenpairs, which are sorted in ascending order.
syevr_min_liwork [Lacaml_D]
syevr_min_liwork n
syevr_min_liwork [Lacaml_S]
syevr_min_liwork n
syevr_min_lwork [Lacaml_D]
syevr_min_lwork n
syevr_min_lwork [Lacaml_S]
syevr_min_lwork n
syevr_opt_l_li_work [Lacaml_D]
syevr_opt_l_li_iwork ?n ?vectors ?range ?up ?abstol ?ar ?ac a
syevr_opt_l_li_work [Lacaml_S]
syevr_opt_l_li_iwork ?n ?vectors ?range ?up ?abstol ?ar ?ac a
syevr_opt_liwork [Lacaml_D]
syevr_opt_liwork ?n ?vectors ?range ?up ?abstol ?ar ?ac a
syevr_opt_liwork [Lacaml_S]
syevr_opt_liwork ?n ?vectors ?range ?up ?abstol ?ar ?ac a
syevr_opt_lwork [Lacaml_D]
syevr_opt_lwork ?n ?vectors ?range ?up ?abstol ?ar ?ac a
syevr_opt_lwork [Lacaml_S]
syevr_opt_lwork ?n ?vectors ?range ?up ?abstol ?ar ?ac a
sygv [Lacaml_D]
sygv ?n ?vectors ?up ?ofswork ?work ?ofsw ?w ?ar ?ac a computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, of the form a*x=(lambda)*b*x, a*b*x=(lambda)*x, or b*a*x=(lambda)*x.
sygv [Lacaml_S]
sygv ?n ?vectors ?up ?ofswork ?work ?ofsw ?w ?ar ?ac a computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, of the form a*x=(lambda)*b*x, a*b*x=(lambda)*x, or b*a*x=(lambda)*x.
sygv_opt_lwork [Lacaml_D]
sygv_opt_lwork ?n ?vectors ?up ?ar ?ac a ?br ?bc b
sygv_opt_lwork [Lacaml_S]
sygv_opt_lwork ?n ?vectors ?up ?ar ?ac a ?br ?bc b
symm [Lacaml_Z]
symm ?m ?n ?side ?up ?beta ?cr ?cc ?c ?alpha ?ar ?ac a ?br ?bc b see BLAS documentation!
symm [Lacaml_C]
symm ?m ?n ?side ?up ?beta ?cr ?cc ?c ?alpha ?ar ?ac a ?br ?bc b see BLAS documentation!
symm [Lacaml_D]
symm ?m ?n ?side ?up ?beta ?cr ?cc ?c ?alpha ?ar ?ac a ?br ?bc b see BLAS documentation!
symm [Lacaml_S]
symm ?m ?n ?side ?up ?beta ?cr ?cc ?c ?alpha ?ar ?ac a ?br ?bc b see BLAS documentation!
symm2_trace [Lacaml_Z.Mat]
symm2_trace ?n ?upa ?ar ?ac a ?upb ?br ?bc b computes the trace of the product of the symmetric (sub-)matrices a and b.
symm2_trace [Lacaml_C.Mat]
symm2_trace ?n ?upa ?ar ?ac a ?upb ?br ?bc b computes the trace of the product of the symmetric (sub-)matrices a and b.
symm2_trace [Lacaml_D.Mat]
symm2_trace ?n ?upa ?ar ?ac a ?upb ?br ?bc b computes the trace of the product of the symmetric (sub-)matrices a and b.
symm2_trace [Lacaml_S.Mat]
symm2_trace ?n ?upa ?ar ?ac a ?upb ?br ?bc b computes the trace of the product of the symmetric (sub-)matrices a and b.
symm_get_params [Lacaml_utils]
symv [Lacaml_Z]
symv ?n ?beta ?ofsy ?incy ?y ?up ?alpha ?ar ?ac a ?ofsx ?incx x see BLAS documentation!
symv [Lacaml_C]
symv ?n ?beta ?ofsy ?incy ?y ?up ?alpha ?ar ?ac a ?ofsx ?incx x see BLAS documentation!
symv [Lacaml_D]
symv ?n ?beta ?ofsy ?incy ?y ?up ?alpha ?ar ?ac a ?ofsx ?incx x see BLAS documentation!
symv [Lacaml_S]
symv ?n ?beta ?ofsy ?incy ?y ?up ?alpha ?ar ?ac a ?ofsx ?incx x see BLAS documentation!
symv_get_params [Lacaml_utils]
syr [Lacaml_D]
syr ?n ?alpha ?up ?ofsx ?incx x ?ar ?ac a see BLAS documentation!
syr [Lacaml_S]
syr ?n ?alpha ?up ?ofsx ?incx x ?ar ?ac a see BLAS documentation!
syr2k [Lacaml_Z]
syr2k ?n ?k ?up ?beta ?cr ?cc ?c ?trans ?alpha ?ar ?ac a ?br ?bc b see BLAS documentation!
syr2k [Lacaml_C]
syr2k ?n ?k ?up ?beta ?cr ?cc ?c ?trans ?alpha ?ar ?ac a ?br ?bc b see BLAS documentation!
syr2k [Lacaml_D]
syr2k ?n ?k ?up ?beta ?cr ?cc ?c ?trans ?alpha ?ar ?ac a ?br ?bc b see BLAS documentation!
syr2k [Lacaml_S]
syr2k ?n ?k ?up ?beta ?cr ?cc ?c ?trans ?alpha ?ar ?ac a ?br ?bc b see BLAS documentation!
syr2k_get_params [Lacaml_utils]
syrk [Lacaml_Z]
syrk ?n ?k ?up ?beta ?cr ?cc ?c ?trans ?alpha ?ar ?ac a see BLAS documentation!
syrk [Lacaml_C]
syrk ?n ?k ?up ?beta ?cr ?cc ?c ?trans ?alpha ?ar ?ac a see BLAS documentation!
syrk [Lacaml_D]
syrk ?n ?k ?up ?beta ?cr ?cc ?c ?trans ?alpha ?ar ?ac a see BLAS documentation!
syrk [Lacaml_S]
syrk ?n ?k ?up ?beta ?cr ?cc ?c ?trans ?alpha ?ar ?ac a see BLAS documentation!
syrk_diag [Lacaml_Z.Mat]
syrk_diag ?n ?k ?beta ?ofsy ?y ?trans ?alpha ?ar ?ac a computes the diagonal of the symmetric rank-k product of the (sub-)matrix a, multiplying it with alpha and adding beta times y, storing the result in y starting at the specified offset.
syrk_diag [Lacaml_C.Mat]
syrk_diag ?n ?k ?beta ?ofsy ?y ?trans ?alpha ?ar ?ac a computes the diagonal of the symmetric rank-k product of the (sub-)matrix a, multiplying it with alpha and adding beta times y, storing the result in y starting at the specified offset.
syrk_diag [Lacaml_D.Mat]
syrk_diag ?n ?k ?beta ?ofsy ?y ?trans ?alpha ?ar ?ac a computes the diagonal of the symmetric rank-k product of the (sub-)matrix a, multiplying it with alpha and adding beta times y, storing the result in y starting at the specified offset.
syrk_diag [Lacaml_S.Mat]
syrk_diag ?n ?k ?beta ?ofsy ?y ?trans ?alpha ?ar ?ac a computes the diagonal of the symmetric rank-k product of the (sub-)matrix a, multiplying it with alpha and adding beta times y, storing the result in y starting at the specified offset.
syrk_get_params [Lacaml_utils]
syrk_trace [Lacaml_Z.Mat]
syrk_trace ?n ?k ?ar ?ac a computes the trace of either a' * a or a * a', whichever is more efficient (results are identical), of the (sub-)matrix a multiplied by its own transpose.
syrk_trace [Lacaml_C.Mat]
syrk_trace ?n ?k ?ar ?ac a computes the trace of either a' * a or a * a', whichever is more efficient (results are identical), of the (sub-)matrix a multiplied by its own transpose.
syrk_trace [Lacaml_D.Mat]
syrk_trace ?n ?k ?ar ?ac a computes the trace of either a' * a or a * a', whichever is more efficient (results are identical), of the (sub-)matrix a multiplied by its own transpose.
syrk_trace [Lacaml_S.Mat]
syrk_trace ?n ?k ?ar ?ac a computes the trace of either a' * a or a * a', whichever is more efficient (results are identical), of the (sub-)matrix a multiplied by its own transpose.
sysv [Lacaml_Z]
sysv ?n ?up ?ipiv ?work ?ar ?ac a ?nrhs ?br ?bc b computes the solution to a real system of linear equations a * X = b, where a is an N-by-N symmetric matrix and X and b are n-by-nrhs matrices.
sysv [Lacaml_C]
sysv ?n ?up ?ipiv ?work ?ar ?ac a ?nrhs ?br ?bc b computes the solution to a real system of linear equations a * X = b, where a is an N-by-N symmetric matrix and X and b are n-by-nrhs matrices.
sysv [Lacaml_D]
sysv ?n ?up ?ipiv ?work ?ar ?ac a ?nrhs ?br ?bc b computes the solution to a real system of linear equations a * X = b, where a is an N-by-N symmetric matrix and X and b are n-by-nrhs matrices.
sysv [Lacaml_S]
sysv ?n ?up ?ipiv ?work ?ar ?ac a ?nrhs ?br ?bc b computes the solution to a real system of linear equations a * X = b, where a is an N-by-N symmetric matrix and X and b are n-by-nrhs matrices.
sysv_opt_lwork [Lacaml_Z]
sysv_opt_lwork ?n ?up ?ar ?ac a ?nrhs ?br ?bc b
sysv_opt_lwork [Lacaml_C]
sysv_opt_lwork ?n ?up ?ar ?ac a ?nrhs ?br ?bc b
sysv_opt_lwork [Lacaml_D]
sysv_opt_lwork ?n ?up ?ar ?ac a ?nrhs ?br ?bc b
sysv_opt_lwork [Lacaml_S]
sysv_opt_lwork ?n ?up ?ar ?ac a ?nrhs ?br ?bc b
sytrf [Lacaml_Z]
sytrf ?n ?up ?ipiv ?work ?ar ?ac a computes the factorization of the real symmetric matrix a using the Bunch-Kaufman diagonal pivoting method.
sytrf [Lacaml_C]
sytrf ?n ?up ?ipiv ?work ?ar ?ac a computes the factorization of the real symmetric matrix a using the Bunch-Kaufman diagonal pivoting method.
sytrf [Lacaml_D]
sytrf ?n ?up ?ipiv ?work ?ar ?ac a computes the factorization of the real symmetric matrix a using the Bunch-Kaufman diagonal pivoting method.
sytrf [Lacaml_S]
sytrf ?n ?up ?ipiv ?work ?ar ?ac a computes the factorization of the real symmetric matrix a using the Bunch-Kaufman diagonal pivoting method.
sytrf_err [Lacaml_utils]
sytrf_fact_err [Lacaml_utils]
sytrf_get_ipiv [Lacaml_utils]
sytrf_min_lwork [Lacaml_Z]
sytrf_min_lwork ()
sytrf_min_lwork [Lacaml_C]
sytrf_min_lwork ()
sytrf_min_lwork [Lacaml_D]
sytrf_min_lwork ()
sytrf_min_lwork [Lacaml_S]
sytrf_min_lwork ()
sytrf_opt_lwork [Lacaml_Z]
sytrf_opt_lwork ?n ?up ?ar ?ac a
sytrf_opt_lwork [Lacaml_C]
sytrf_opt_lwork ?n ?up ?ar ?ac a
sytrf_opt_lwork [Lacaml_D]
sytrf_opt_lwork ?n ?up ?ar ?ac a
sytrf_opt_lwork [Lacaml_S]
sytrf_opt_lwork ?n ?up ?ar ?ac a
sytri [Lacaml_Z]
sytri ?n ?up ?ipiv ?work ?ar ?ac a computes the inverse of the real symmetric indefinite matrix a using the factorization a = U*D*U**T or a = L*D*L**T computed by Lacaml_Z.sytrf.
sytri [Lacaml_C]
sytri ?n ?up ?ipiv ?work ?ar ?ac a computes the inverse of the real symmetric indefinite matrix a using the factorization a = U*D*U**T or a = L*D*L**T computed by Lacaml_C.sytrf.
sytri [Lacaml_D]
sytri ?n ?up ?ipiv ?work ?ar ?ac a computes the inverse of the real symmetric indefinite matrix a using the factorization a = U*D*U**T or a = L*D*L**T computed by Lacaml_D.sytrf.
sytri [Lacaml_S]
sytri ?n ?up ?ipiv ?work ?ar ?ac a computes the inverse of the real symmetric indefinite matrix a using the factorization a = U*D*U**T or a = L*D*L**T computed by Lacaml_S.sytrf.
sytri_min_lwork [Lacaml_Z]
sytri_min_lwork n
sytri_min_lwork [Lacaml_C]
sytri_min_lwork n
sytri_min_lwork [Lacaml_D]
sytri_min_lwork n
sytri_min_lwork [Lacaml_S]
sytri_min_lwork n
sytrs [Lacaml_Z]
sytrs ?n ?up ?ipiv ?ar ?ac a ?nrhs ?br ?bc b solves a system of linear equations a*X = b with a real symmetric matrix a using the factorization a = U*D*U**T or a = L*D*L**T computed by Lacaml_Z.sytrf.
sytrs [Lacaml_C]
sytrs ?n ?up ?ipiv ?ar ?ac a ?nrhs ?br ?bc b solves a system of linear equations a*X = b with a real symmetric matrix a using the factorization a = U*D*U**T or a = L*D*L**T computed by Lacaml_C.sytrf.
sytrs [Lacaml_D]
sytrs ?n ?up ?ipiv ?ar ?ac a ?nrhs ?br ?bc b solves a system of linear equations a*X = b with a real symmetric matrix a using the factorization a = U*D*U**T or a = L*D*L**T computed by Lacaml_D.sytrf.
sytrs [Lacaml_S]
sytrs ?n ?up ?ipiv ?ar ?ac a ?nrhs ?br ?bc b solves a system of linear equations a*X = b with a real symmetric matrix a using the factorization a = U*D*U**T or a = L*D*L**T computed by Lacaml_S.sytrf.

T
tau_str [Lacaml_utils]
tbtrs [Lacaml_Z]
tbtrs ?n ?kd ?up ?trans ?diag ?abr ?abc ab ?nrhs ?br ?bc b solves a triangular system of the form a * X = b or a**T * X = b, where a is a triangular band matrix of order n, and b is an n-by-nrhs matrix.
tbtrs [Lacaml_C]
tbtrs ?n ?kd ?up ?trans ?diag ?abr ?abc ab ?nrhs ?br ?bc b solves a triangular system of the form a * X = b or a**T * X = b, where a is a triangular band matrix of order n, and b is an n-by-nrhs matrix.
tbtrs [Lacaml_D]
tbtrs ?n ?kd ?up ?trans ?diag ?abr ?abc ab ?nrhs ?br ?bc b solves a triangular system of the form a * X = b or a**T * X = b, where a is a triangular band matrix of order n, and b is an n-by-nrhs matrix.
tbtrs [Lacaml_S]
tbtrs ?n ?kd ?up ?trans ?diag ?abr ?abc ab ?nrhs ?br ?bc b solves a triangular system of the form a * X = b or a**T * X = b, where a is a triangular band matrix of order n, and b is an n-by-nrhs matrix.
tbtrs_err [Lacaml_utils]
to_array [Lacaml_Z.Mat]
to_array mat
to_array [Lacaml_Z.Vec]
to_array v
to_array [Lacaml_C.Mat]
to_array mat
to_array [Lacaml_C.Vec]
to_array v
to_array [Lacaml_D.Mat]
to_array mat
to_array [Lacaml_D.Vec]
to_array v
to_array [Lacaml_S.Mat]
to_array mat
to_array [Lacaml_S.Vec]
to_array v
to_col_vecs [Lacaml_Z.Mat]
to_col_vecs mat
to_col_vecs [Lacaml_C.Mat]
to_col_vecs mat
to_col_vecs [Lacaml_D.Mat]
to_col_vecs mat
to_col_vecs [Lacaml_S.Mat]
to_col_vecs mat
to_list [Lacaml_Z.Vec]
to_list v
to_list [Lacaml_C.Vec]
to_list v
to_list [Lacaml_D.Vec]
to_list v
to_list [Lacaml_S.Vec]
to_list v
toeplitz [Lacaml_D.Mat]
toeplitz v
toeplitz [Lacaml_S.Mat]
toeplitz v
tpXv_get_params [Lacaml_utils]
tpmv [Lacaml_Z]
tpmv ?n ?trans ?diag ?up ?ofsap ap ?ofsx ?incx x see BLAS documentation!
tpmv [Lacaml_C]
tpmv ?n ?trans ?diag ?up ?ofsap ap ?ofsx ?incx x see BLAS documentation!
tpmv [Lacaml_D]
tpmv ?n ?trans ?diag ?up ?ofsap ap ?ofsx ?incx x see BLAS documentation!
tpmv [Lacaml_S]
tpmv ?n ?trans ?diag ?up ?ofsap ap ?ofsx ?incx x see BLAS documentation!
tpsv [Lacaml_Z]
tpsv ?n ?trans ?diag ?up ?ofsap ap ?ofsx ?incx x see BLAS documentation!
tpsv [Lacaml_C]
tpsv ?n ?trans ?diag ?up ?ofsap ap ?ofsx ?incx x see BLAS documentation!
tpsv [Lacaml_D]
tpsv ?n ?trans ?diag ?up ?ofsap ap ?ofsx ?incx x see BLAS documentation!
tpsv [Lacaml_S]
tpsv ?n ?trans ?diag ?up ?ofsap ap ?ofsx ?incx x see BLAS documentation!
trXm_get_params [Lacaml_utils]
trXv_get_params [Lacaml_utils]
trace [Lacaml_Z.Mat]
trace m
trace [Lacaml_C.Mat]
trace m
trace [Lacaml_D.Mat]
trace m
trace [Lacaml_S.Mat]
trace m
transpose [Lacaml_Z.Mat]
transpose ?m ?n ?ar ?ac aa
transpose [Lacaml_C.Mat]
transpose ?m ?n ?ar ?ac aa
transpose [Lacaml_D.Mat]
transpose ?m ?n ?ar ?ac aa
transpose [Lacaml_S.Mat]
transpose ?m ?n ?ar ?ac aa
transpose_copy [Lacaml_Z.Mat]
transpose_copy ?m ?n ?ar ?ac a ?br ?bc b copy the transpose of (sub-)matrix a into (sub-)matrix b.
transpose_copy [Lacaml_C.Mat]
transpose_copy ?m ?n ?ar ?ac a ?br ?bc b copy the transpose of (sub-)matrix a into (sub-)matrix b.
transpose_copy [Lacaml_D.Mat]
transpose_copy ?m ?n ?ar ?ac a ?br ?bc b copy the transpose of (sub-)matrix a into (sub-)matrix b.
transpose_copy [Lacaml_S.Mat]
transpose_copy ?m ?n ?ar ?ac a ?br ?bc b copy the transpose of (sub-)matrix a into (sub-)matrix b.
trmm [Lacaml_Z]
trmm ?m ?n ?side ?up ?transa ?diag ?alpha ?ar ?ac ~a ?br ?bc b see BLAS documentation!
trmm [Lacaml_C]
trmm ?m ?n ?side ?up ?transa ?diag ?alpha ?ar ?ac ~a ?br ?bc b see BLAS documentation!
trmm [Lacaml_D]
trmm ?m ?n ?side ?up ?transa ?diag ?alpha ?ar ?ac ~a ?br ?bc b see BLAS documentation!
trmm [Lacaml_S]
trmm ?m ?n ?side ?up ?transa ?diag ?alpha ?ar ?ac ~a ?br ?bc b see BLAS documentation!
trmv [Lacaml_Z]
trmv ?n ?trans ?diag ?up ?ar ?ac a ?ofsx ?incx x see BLAS documentation!
trmv [Lacaml_C]
trmv ?n ?trans ?diag ?up ?ar ?ac a ?ofsx ?incx x see BLAS documentation!
trmv [Lacaml_D]
trmv ?n ?trans ?diag ?up ?ar ?ac a ?ofsx ?incx x see BLAS documentation!
trmv [Lacaml_S]
trmv ?n ?trans ?diag ?up ?ar ?ac a ?ofsx ?incx x see BLAS documentation!
trsm [Lacaml_Z]
trsm ?m ?n ?side ?up ?transa ?diag ?alpha ?ar ?ac ~a ?br ?bc b see BLAS documentation!
trsm [Lacaml_C]
trsm ?m ?n ?side ?up ?transa ?diag ?alpha ?ar ?ac ~a ?br ?bc b see BLAS documentation!
trsm [Lacaml_D]
trsm ?m ?n ?side ?up ?transa ?diag ?alpha ?ar ?ac ~a ?br ?bc b see BLAS documentation!
trsm [Lacaml_S]
trsm ?m ?n ?side ?up ?transa ?diag ?alpha ?ar ?ac ~a ?br ?bc b see BLAS documentation!
trsv [Lacaml_Z]
trsv ?n ?trans ?diag ?up ?ar ?ac a ?ofsx ?incx x see BLAS documentation!
trsv [Lacaml_C]
trsv ?n ?trans ?diag ?up ?ar ?ac a ?ofsx ?incx x see BLAS documentation!
trsv [Lacaml_D]
trsv ?n ?trans ?diag ?up ?ar ?ac a ?ofsx ?incx x see BLAS documentation!
trsv [Lacaml_S]
trsv ?n ?trans ?diag ?up ?ar ?ac a ?ofsx ?incx x see BLAS documentation!
trtri [Lacaml_Z]
trtri ?n ?up ?diag ?ar ?ac a computes the inverse of a real upper or lower triangular matrix a.
trtri [Lacaml_C]
trtri ?n ?up ?diag ?ar ?ac a computes the inverse of a real upper or lower triangular matrix a.
trtri [Lacaml_D]
trtri ?n ?up ?diag ?ar ?ac a computes the inverse of a real upper or lower triangular matrix a.
trtri [Lacaml_S]
trtri ?n ?up ?diag ?ar ?ac a computes the inverse of a real upper or lower triangular matrix a.
trtri_err [Lacaml_utils]
trtrs [Lacaml_Z]
trtrs ?n ?up ?trans ?diag ?ar ?ac a ?nrhs ?br ?bc b solves a triangular system of the form a * X = b or a**T * X = n, where a is a triangular matrix of order n, and b is an n-by-nrhs matrix.
trtrs [Lacaml_C]
trtrs ?n ?up ?trans ?diag ?ar ?ac a ?nrhs ?br ?bc b solves a triangular system of the form a * X = b or a**T * X = n, where a is a triangular matrix of order n, and b is an n-by-nrhs matrix.
trtrs [Lacaml_D]
trtrs ?n ?up ?trans ?diag ?ar ?ac a ?nrhs ?br ?bc b solves a triangular system of the form a * X = b or a**T * X = n, where a is a triangular matrix of order n, and b is an n-by-nrhs matrix.
trtrs [Lacaml_S]
trtrs ?n ?up ?trans ?diag ?ar ?ac a ?nrhs ?br ?bc b solves a triangular system of the form a * X = b or a**T * X = n, where a is a triangular matrix of order n, and b is an n-by-nrhs matrix.
trtrs_err [Lacaml_utils]

U
u_str [Lacaml_utils]
um_str [Lacaml_utils]
un_str [Lacaml_utils]
unpacked [Lacaml_Z.Mat]
unpacked ?up x
unpacked [Lacaml_C.Mat]
unpacked ?up x
unpacked [Lacaml_D.Mat]
unpacked ?up x
unpacked [Lacaml_S.Mat]
unpacked ?up x

V
vandermonde [Lacaml_D.Mat]
vandermonde v
vandermonde [Lacaml_S.Mat]
vandermonde v
version [Lacaml_version]
vertical_default [Lacaml_io.Context]
vm_str [Lacaml_utils]
vn_str [Lacaml_utils]
vt_str [Lacaml_utils]

W
w_str [Lacaml_utils]
wi_str [Lacaml_utils]
wilkinson [Lacaml_D.Mat]
wilkinson n
wilkinson [Lacaml_S.Mat]
wilkinson n
work_str [Lacaml_utils]
wr_str [Lacaml_utils]

X
x_str [Lacaml_utils]
xlange_get_params [Lacaml_utils]
xxcon_err [Lacaml_utils]
xxev_get_params [Lacaml_utils]
xxev_get_wx [Lacaml_utils]
xxsv_a_err [Lacaml_utils]
xxsv_err [Lacaml_utils]
xxsv_get_ipiv [Lacaml_utils]
xxsv_get_params [Lacaml_utils]
xxsv_ind_err [Lacaml_utils]
xxsv_lu_err [Lacaml_utils]
xxsv_pos_err [Lacaml_utils]
xxsv_work_err [Lacaml_utils]
xxtri_err [Lacaml_utils]
xxtri_singular_err [Lacaml_utils]
xxtrs_err [Lacaml_utils]
xxtrs_get_params [Lacaml_utils]

Y
y_str [Lacaml_utils]

Z
z_str [Lacaml_utils]
zero [Lacaml_complex64]
zero [Lacaml_complex32]
zero [Lacaml_float64]
zero [Lacaml_float32]
zmxy [Lacaml_Z.Vec]
zmxy ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y multiplies n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively, and substracts the result from and stores it in the specified range in z if provided.
zmxy [Lacaml_C.Vec]
zmxy ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y multiplies n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively, and substracts the result from and stores it in the specified range in z if provided.
zmxy [Lacaml_D.Vec]
zmxy ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y multiplies n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively, and substracts the result from and stores it in the specified range in z if provided.
zmxy [Lacaml_S.Vec]
zmxy ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y multiplies n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively, and substracts the result from and stores it in the specified range in z if provided.
zpxy [Lacaml_Z.Vec]
zpxy ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y multiplies n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively, and adds the result to and stores it in the specified range in z if provided.
zpxy [Lacaml_C.Vec]
zpxy ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y multiplies n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively, and adds the result to and stores it in the specified range in z if provided.
zpxy [Lacaml_D.Vec]
zpxy ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y multiplies n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively, and adds the result to and stores it in the specified range in z if provided.
zpxy [Lacaml_S.Vec]
zpxy ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y multiplies n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively, and adds the result to and stores it in the specified range in z if provided.