
LibTomCrypt

Developer Manual

Tom St Denis

LibTom Proje
ts

This do
ument is part of the LibTomCrypt pa
kage and is hereby released into the publi

domain.

Open Sour
e. Open A
ademia. Open Minds.

Tom St Denis

Ottawa, Ontario

Canada

Contents

1 Introdu
tion 1

1.1 What is the LibTomCrypt? . 1

1.1.1 What the library IS for? . 1

1.2 Why did I write it? . 1

1.2.1 Modular . 2

1.3 Li
ense . 2

1.4 Patent Dis
losure . 3

1.5 Thanks . 3

2 The Appli
ation Programming Interfa
e (API) 5

2.1 Introdu
tion . 5

2.2 Ma
ros . 6

2.3 Fun
tions with Variable Length Output . 7

2.4 Fun
tions that need a PRNG . 8

2.5 Fun
tions that use Arrays of O
tets . 9

3 Symmetri
 Blo
k Ciphers 11

3.1 Core Fun
tions . 11

3.1.1 Key S
heduling . 11

3.1.2 ECB En
ryption and De
ryption . 12

3.1.3 Self{Testing . 12

3.1.4 Key Sizing . 12

3.1.5 Cipher Termination . 13

3.1.6 Simple En
ryption Demonstration . 13

3.2 Key Sizes and Number of Rounds . 14

3.3 The Cipher Des
riptors . 14

3.3.1 Notes . 16

3.4 Symmetri
 Modes of Operations . 18

3.4.1 Ba
kground . 18

3.4.2 Choi
e of Mode . 19

3.4.3 Ciphertext Stealing . 19

3.4.4 Initialization . 19

3.4.5 En
ryption and De
ryption . 21

3.4.6 IV Manipulation . 21

3.4.7 Stream Termination . 22

iii

3.4.8 Examples . 23

3.4.9 LRW Mode . 24

3.4.10 XTS Mode . 25

3.4.11 F8 Mode . 26

3.5 En
rypt and Authenti
ate Modes . 28

3.5.1 EAX Mode . 28

3.5.2 OCB Mode . 31

3.5.3 CCM Mode . 33

3.5.4 GCM Mode . 35

4 One-Way Cryptographi
 Hash Fun
tions 41

4.1 Core Fun
tions . 41

4.2 Hash Des
riptors . 42

4.2.1 Hash Registration . 45

4.3 Cipher Hash Constru
tion . 46

4.4 Noti
e . 47

5 Message Authenti
ation Codes 49

5.1 HMAC Proto
ol . 49

5.2 OMAC Support . 51

5.3 PMAC Support . 54

5.4 Peli
an MAC . 55

5.4.1 Example . 56

5.5 XCBC-MAC . 57

5.6 F9{MAC . 58

5.6.1 Usage Noti
e . 58

5.6.2 F9{MAC Fun
tions . 58

6 Pseudo-Random Number Generators 61

6.1 Core Fun
tions . 61

6.1.1 Remarks . 62

6.1.2 Example . 63

6.2 PRNG Des
riptors . 63

6.2.1 PRNGs Provided . 64

6.3 The Se
ure RNG . 66

6.3.1 The Se
ure PRNG Interfa
e . 68

7 RSA Publi
 Key Cryptography 69

7.1 Introdu
tion . 69

7.2 PKCS #1 Padding . 69

7.2.1 PKCS #1 v1.5 En
oding . 69

7.2.2 PKCS #1 v1.5 De
oding . 70

7.3 PKCS #1 v2.1 En
ryption . 70

7.3.1 OAEP En
oding . 70

7.3.2 OAEP De
oding . 71

7.4 PKCS #1 Digital Signatures . 71

7.4.1 PSS En
oding . 71

7.4.2 PSS De
oding . 72

7.5 RSA Key Operations . 72

7.5.1 Ba
kground . 72

7.5.2 RSA Key Generation . 73

7.5.3 RSA Exponentiation . 74

7.6 RSA Key En
ryption . 74

7.6.1 Extended En
ryption . 74

7.7 RSA Key De
ryption . 75

7.7.1 Extended De
ryption . 75

7.8 RSA Signature Generation . 76

7.8.1 Extended Signatures . 76

7.9 RSA Signature Veri�
ation . 77

7.9.1 Extended Veri�
ation . 77

7.10 RSA En
ryption Example . 78

7.11 RSA Key Format . 79

7.11.1 RSA Key Export . 79

7.11.2 RSA Key Import . 80

8 Ellipti
 Curve Cryptography 81

8.1 Ba
kground . 81

8.2 Fixed Point Optimizations . 81

8.3 Key Format . 82

8.4 ECC Curve Parameters . 83

8.5 Core Fun
tions . 83

8.5.1 ECC Key Generation . 83

8.5.2 Extended Key Generation . 84

8.5.3 ECC Key Free . 84

8.5.4 ECC Key Export . 84

8.5.5 ECC Key Import . 84

8.5.6 Extended Key Import . 84

8.5.7 ANSI X9.63 Export . 85

8.5.8 ANSI X9.63 Import . 85

8.5.9 Extended ANSI X9.63 Import . 85

8.5.10 ECC Shared Se
ret . 86

8.6 ECC DiÆe-Hellman En
ryption . 86

8.6.1 ECC-DH En
ryption . 86

8.6.2 ECC-DH De
ryption . 86

8.6.3 ECC En
ryption Format . 87

8.7 EC DSA Signatures . 87

8.7.1 EC-DSA Signature Generation . 87

8.7.2 EC-DSA Signature Veri�
ation . 87

8.7.3 Signature Format . 88

8.8 ECC Keysizes . 88

9 Digital Signature Algorithm 89

9.1 Introdu
tion . 89

9.2 Key Format . 89

9.3 Key Generation . 90

9.4 Key Veri�
ation . 90

9.5 Signatures . 91

9.5.1 Signature Generation . 91

9.5.2 Signature Veri�
ation . 92

9.6 DSA En
rypt and De
rypt . 92

9.6.1 DSA En
ryption . 92

9.6.2 DSA De
ryption . 93

9.7 DSA Key Import and Export . 93

9.7.1 DSA Key Export . 93

9.7.2 DSA Key Import . 93

10 Standards Support 95

10.1 ASN.1 Formats . 95

10.1.1 SEQUENCE Type . 96

10.1.2 SET and SET OF . 98

10.1.3 ASN.1 INTEGER . 100

10.1.4 ASN.1 BIT STRING . 100

10.1.5 ASN.1 OCTET STRING . 101

10.1.6 ASN.1 OBJECT IDENTIFIER . 101

10.1.7 ASN.1 IA5 STRING . 102

10.1.8 ASN.1 PRINTABLE STRING . 102

10.1.9 ASN.1 UTF8 STRING . 103

10.1.10ASN.1 UTCTIME . 103

10.1.11ASN.1 CHOICE . 104

10.1.12ASN.1 Flexi De
oder . 104

10.2 Password Based Cryptography . 106

10.2.1 PKCS #5 . 106

10.2.2 Algorithm One . 106

10.2.3 Algorithm Two . 107

11 Mis
ellaneous 109

11.1 Base64 En
oding and De
oding . 109

11.2 Primality Testing . 110

12 Programming Guidelines 111

12.1 Se
ure Pseudo Random Number Generators . 111

12.2 Preventing Trivial Errors . 111

12.3 Registering Your Algorithms . 111

12.4 Key Sizes . 112

12.4.1 Symmetri
 Ciphers . 112

12.4.2 Asymmetri
 Ciphers . 112

12.5 Thread Safety . 113

13 Con�guring and Building the Library 115

13.1 Introdu
tion . 115

13.2 Make�le variables . 115

13.2.1 MAKE, CC and AR . 115

13.2.2 IGNORE SPEED . 116

13.2.3 LIBNAME and LIBNAME S . 116

13.2.4 Installation Dire
tories . 116

13.3 Extra libraries . 117

13.4 Building a Stati
 Library . 117

13.5 Building a Shared Library . 118

13.6 Header Con�guration . 118

13.7 The Con�gure S
ript . 119

13.7.1 X memory routines . 119

13.7.2 X
lo
k routines . 119

13.7.3 LTC NO FILE . 119

13.7.4 LTC CLEAN STACK . 119

13.7.5 LTC TEST . 119

13.7.6 LTC NO FAST . 120

13.7.7 LTC FAST . 120

13.7.8 LTC NO ASM . 120

13.7.9 Symmetri
 Ciphers, One-way Hashes, PRNGS and Publi
 Key Fun
tions . . 120

13.7.10LTC EASY . 121

13.7.11TWOFISH SMALL and TWOFISH TABLES 121

13.7.12GCM TABLES . 121

13.7.13GCM TABLES SSE2 . 121

13.7.14LTC SMALL CODE . 121

13.7.15LTC PTHREAD . 121

13.7.16LTC ECC TIMING RESISTANT . 122

13.7.17Math Des
riptors . 122

14 Optimizations 123

14.1 Introdu
tion . 123

14.2 Ciphers . 123

14.2.1 Name . 129

14.2.2 Internal ID . 129

14.2.3 Key Lengths . 129

14.2.4 Blo
k Length . 129

14.2.5 Rounds . 129

14.2.6 Setup . 129

14.2.7 Single blo
k ECB . 129

14.2.8 Testing . 130

14.2.9 Key Sizing . 130

14.2.10A

eleration . 130

14.3 One{Way Hashes . 132

14.3.1 Name . 133

14.3.2 Internal ID . 133

14.3.3 Digest Size . 133

14.3.4 Blo
k Size . 133

14.3.5 OID Identi�er . 133

14.3.6 Initialization . 134

14.3.7 Pro
ess . 134

14.3.8 Done . 134

14.3.9 A

eleration . 134

14.3.10HMAC A

eleration . 134

14.4 Pseudo{Random Number Generators . 134

14.4.1 Name . 136

14.4.2 Export Size . 136

14.4.3 Start . 136

14.4.4 Entropy Addition . 136

14.4.5 Ready . 136

14.4.6 Read . 136

14.4.7 Done . 136

14.4.8 Exporting and Importing . 136

14.5 BigNum Math Des
riptors . 136

14.5.1 Conventions . 145

14.5.2 ECC Fun
tions . 145

14.5.3 RSA Fun
tions . 146

List of Figures

2.1 Load And Store Ma
ros . 7

2.2 Rotate Ma
ros . 7

3.1 Built{In Software Ciphers . 15

3.2 Two�sh Build Options . 16

4.1 Built{In Software Hashes . 46

6.1 List of Provided PRNGs . 64

9.1 DSA Key Sizes . 90

10.1 List of ASN.1 Supported Types . 96

12.1 RSA/DH Key Strength . 112

12.2 ECC Key Strength . 113

ix

x

C h a p t e r 1

Introdu
tion

1.1 What is the LibTomCrypt?

LibTomCrypt is a portable ISO C
ryptographi
 library meant to be a tool set for
ryptographers

who are designing
ryptosystems. It supports symmetri

iphers, one-way hashes, pseudo-random

number generators, publi
 key
ryptography (via PKCS #1 RSA, DH or ECCDH), and a plethora

of support routines.

The library was designed su
h that new
iphers/hashes/PRNGs
an be added at run-time and

the existing API (and helper API fun
tions) are able to use the new designs automati
ally. There

exists self-
he
k fun
tions for ea
h blo
k
ipher and hash fun
tion to ensure that they
ompile and

exe
ute to the published design spe
i�
ations. The library also performs extensive parameter error

he
king to prevent any number of run-time exploits or errors.

1.1.1 What the library IS for?

The library serves as a toolkit for developers who have to solve
ryptographi
 problems. Out of the

box LibTomCrypt does not pro
ess SSL or OpenPGP messages, it doesn't read X.509
erti�
ates,

or write PEM en
oded data. It does, however, provide all of the tools required to build su
h

fun
tionality. LibTomCrypt was designed to be a
exible library that was not tied to any parti
ular

ryptographi
 problem.

1.2 Why did I write it?

You may be wondering, Tom, why did you write a
rypto library. I already have one. Well the

reason falls into two
ategories:

1. I am too lazy to �gure out someone else's API. I'd rather invent my own simpler API and use

that.

2. It was (still is) good
oding pra
ti
e.

The idea is that I am not striving to repla
e OpenSSL or Crypto++ or Cryptlib or et
. I'm

trying to write my own
rypto library and hopefully along the way others will appre
iate the work.

1

2 www.libtom.org

With this library all
ore fun
tions (
iphers, hashes, prngs, and bignum) have the same prototype

de�nition. They all load and store data in a format independent of the platform. This means if you

en
rypt with Blow�sh on a PPC it should de
rypt on an x86 with zero problems. The
onsistent

API also means that if you learn how to use Blow�sh with the library you know how to use Safer+,

RC6, or Serpent as well. With all of the
ore fun
tions there are
entral des
riptor tables that
an

be used to make a program automati
ally pi
k between
iphers, hashes and PRNGs at run-time.

That means your appli
ation
an support all
iphers/hashes/prngs/bignum without
hanging the

sour
e
ode.

Not only did I strive to make a
onsistent and simple API to work with but I also attempted

to make the library
on�gurable in terms of its build options. Out of the box the library will build

with any modern version of GCC without having to use
on�gure s
ripts. This means that the

library will work with platforms where development tools may be limited (e.g. no auto
onf).

On top of making the build simple and the API approa
hable I've also attempted for a reasonably

high level of robustness and eÆ
ien
y. LibTomCrypt traps and returns a series of errors ranging

from invalid arguments to bu�er over
ows/overruns. It is mostly thread safe and has been
lo
ked

on various platforms with
y
les per byte timings that are
omparable (and often favourable) to

other libraries su
h as OpenSSL and Crypto++.

1.2.1 Modular

The LibTomCrypt pa
kage has also been written to be very modular. The blo
k
iphers, one{way

hashes, pseudo{random number generators (PRNG), and bignum math routines are all used within

the API through des
riptor tables whi
h are essentially stru
tures with pointers to fun
tions. While

you
an still
all parti
ular fun
tions dire
tly (e.g. sha256 pro
ess()) this des
riptor interfa
e allows

the developer to
ustomize their usage of the library.

For example,
onsider a hardware platform with a spe
ialized RNG devi
e. Obviously one would

like to tap that for the PRNG needs within the library (e.g. making a RSA key). All the developer

has to do is write a des
riptor and the few support routines required for the devi
e. After that

the rest of the API
an make use of it without
hange. Similarly imagine a few years down the

road when AES2 (or whatever they
all it) has been invented. It
an be added to the library and

used within appli
ations with zero modi�
ations to the end appli
ations provided they are written

properly.

This
exibility within the library means it
an be used with any
ombination of primitive

algorithms and unlike libraries like OpenSSL is not tied to dire
t routines. For instan
e, in OpenSSL

there are CBC blo
k mode routines for every single
ipher. That means every time you add or

remove a
ipher from the library you have to update the asso
iated support
ode as well. In

LibTomCrypt the asso
iated
ode (
haining modes in this
ase) are not dire
tly tied to the
iphers.

That is a new
ipher
an be added to the library by simply providing the key setup, ECB de
rypt

and en
rypt and test ve
tor routines. After that all �ve
haining mode routines
an make use of

the
ipher right away.

1.3 Li
ense

The proje
t is hereby released as publi
 domain.

1.4 Patent Dis
losure 3

1.4 Patent Dis
losure

The author (Tom St Denis) is not a patent lawyer so this se
tion is not to be treated as legal advi
e.

To the best of the author's knowledge the only patent related issues within the library are the RC5

and RC6 symmetri
 blo
k
iphers. They
an be removed from a build by simply
ommenting out

the two appropriate lines in tom
rypt
ustom.h. The rest of the
iphers and hashes are patent free

or under patents that have sin
e expired.

The RC2 and RC4 symmetri

iphers are not under patents but are under trademark regulations.

This means you
an use the
iphers you just
an't advertise that you are doing so.

1.5 Thanks

I would like to give thanks to the following people (in no parti
ular order) for helping me develop

this proje
t from early on:

1. Ri
hard van de Laars
hot

2. Ri
hard Heath�eld

3. Ajay K. Agrawal

4. Brian Gladman

5. Svante Seleborg

6. Clay Culver

7. Jason Klapste

8. Dobes Vandermeer

9. Daniel Ri
hards

10. Wayne S
ott

11. Andrew Tyler

12. Sky S
hulz

13. Christopher Imes

There have been quite a few other people as well. Please
he
k the
hange log to see who else

has
ontributed from time to time.

4 www.libtom.org

C h a p t e r 2

The Appli
ation Programming

Interfa
e (API)

2.1 Introdu
tion

In general the API is very simple to memorize and use. Most of the fun
tions return either void

or int. Fun
tions that return int will return CRYPT OK if the fun
tion was su

essful, or one

of the many error
odes if it failed. Certain fun
tions that return int will return �1 to indi
ate an

error. These fun
tions will be expli
itly
ommented upon. When a fun
tion does return a CRYPT

error
ode it
an be translated into a string with

onst
har *error_to_string(int err);

An example of handling an error is:

void somefun
(void)

{

int err;

/*
all a
ryptographi
 fun
tion */

if ((err = some_
rypto_fun
tion(...)) != CRYPT_OK) {

printf("A
rypto error o

urred, %s\n", error_to_string(err));

/* perform error handling */

}

/*
ontinue on if no error o

urred */

}

There is no initialization routine for the library and for the most part the
ode is thread safe.

The only thread related issue is if you use the same symmetri

ipher, hash or publi
 key state data

in multiple threads. Normally that is not an issue.

To in
lude the prototypes for LibTomCrypt.a into your own program simply in
lude tom
rypt.h

like so:

#in
lude <tom
rypt.h>

int main(void) {

5

6 www.libtom.org

return 0;

}

The header �le tom
rypt.h also in
ludes stdio.h, string.h, stdlib.h, time.h and
type.h.

2.2 Ma
ros

There are a few helper ma
ros to make the
oding pro
ess a bit easier. The �rst set are related to

loading and storing 32/64-bit words in little/big endian format. The ma
ros are:

2.3 Fun
tions with Variable Length Output 7

STORE32L(x, y) unsigned long x, unsigned
har *y x! y[0 : : : 3℄

STORE64L(x, y) unsigned long long x, unsigned
har *y x! y[0 : : : 7℄

LOAD32L(x, y) unsigned long x, unsigned
har *y y[0 : : : 3℄! x

LOAD64L(x, y) unsigned long long x, unsigned
har *y y[0 : : : 7℄! x

STORE32H(x, y) unsigned long x, unsigned
har *y x! y[3 : : : 0℄

STORE64H(x, y) unsigned long long x, unsigned
har *y x! y[7 : : : 0℄

LOAD32H(x, y) unsigned long x, unsigned
har *y y[3 : : : 0℄! x

LOAD64H(x, y) unsigned long long x, unsigned
har *y y[7 : : : 0℄! x

BSWAP(x) unsigned long x Swap bytes

Figure 2.1: Load And Store Ma
ros

There are 32 and 64-bit
y
li
 rotations as well:

ROL(x, y) unsigned long x, unsigned long y x << y; 0 � y � 31

ROL
(x, y) unsigned long x,
onst unsigned long y x << y; 0 � y � 31

ROR(x, y) unsigned long x, unsigned long y x >> y; 0 � y � 31

ROR
(x, y) unsigned long x,
onst unsigned long y x >> y; 0 � y � 31

ROL64(x, y) unsigned long x, unsigned long y x << y; 0 � y � 63

ROL64
(x, y) unsigned long x,
onst unsigned long y x << y; 0 � y � 63

ROR64(x, y) unsigned long x, unsigned long y x >> y; 0 � y � 63

ROR64
(x, y) unsigned long x,
onst unsigned long y x >> y; 0 � y � 63

Figure 2.2: Rotate Ma
ros

2.3 Fun
tions with Variable Length Output

Certain fun
tions su
h as (for example) rsa export() give an output that is variable length. To

prevent bu�er over
ows you must pass it the length of the bu�er where the output will be stored.

For example:

#in
lude <tom
rypt.h>

int main(void) {

rsa_key key;

unsigned
har buffer[1024℄;

unsigned long x;

int err;

/* ... Make up the RSA key somehow ... */

/* lets export the key, set x to the size of the

* output buffer */

x = sizeof(buffer);

if ((err = rsa_export(buffer, &x, PK_PUBLIC, &key)) != CRYPT_OK) {

printf("Export error: %s\n", error_to_string(err));

return -1;

8 www.libtom.org

}

/* if rsa_export() was su

essful then x will have

* the size of the output */

printf("RSA exported key takes %d bytes\n", x);

/* ... do something with the buffer */

return 0;

}

In the above example if the size of the RSA publi
 key was more than 1024 bytes this fun
tion would

return an error
ode indi
ating a bu�er over
ow would have o

urred. If the fun
tion su

eeds,

it stores the length of the output ba
k into x so that the
alling appli
ation will know how many

bytes were used.

As of v1.13, most fun
tions will update your length on failure to indi
ate the size required by

the fun
tion. Not all fun
tions support this so please
he
k the sour
e before you rely on it doing

that.

2.4 Fun
tions that need a PRNG

Certain fun
tions su
h as rsa make key() require a Pseudo Random Number Generator (PRNG).

These fun
tions do not setup the PRNG themselves so it is the responsibility of the
alling fun
tion

to initialize the PRNG before
alling them.

Certain PRNG algorithms do not require a prng state argument (sprng for example). The

prng state argument may be passed as NULL in su
h situations.

#in
lude <tom
rypt.h>

int main(void) {

rsa_key key;

int err;

/* register the system RNG */

register_prng(&sprng_des
)

/* make a 1024-bit RSA key with the system RNG */

if ((err = rsa_make_key(NULL, find_prng("sprng"), 1024/8, 65537, &key))

!= CRYPT_OK) {

printf("make_key error: %s\n", error_to_string(err));

return -1;

}

/* use the key ... */

return 0;

}

2.5 Fun
tions that use Arrays of O
tets 9

2.5 Fun
tions that use Arrays of O
tets

Most fun
tions require inputs that are arrays of the data type unsigned
har. Whether it is a

symmetri
 key, IV for a
haining mode or publi
 key pa
ket it is assumed that regardless of the

a
tual size of unsigned
har only the lower eight bits
ontain data. For example, if you want to

pass a 256 bit key to a symmetri

iphers setup routine, you must pass in (a pointer to) an array of

32 unsigned
har variables. Certain routines (su
h as SAFER+) take spe
ial
are to work properly

on platforms where an unsigned
har is not eight bits.

For the purposes of this library, the term byte will refer to an o
tet or eight bit word. Typi
ally

an array of type byte will be synonymous with an array of type unsigned
har.

10 www.libtom.org

C h a p t e r 3

Symmetri
 Blo
k Ciphers

3.1 Core Fun
tions

LibTomCrypt provides several blo
k
iphers with an ECB blo
k mode interfa
e. It is important to

�rst note that you should never use the ECB modes dire
tly to en
rypt data. Instead you should

use the ECB fun
tions to make a
haining mode, or use one of the provided
haining modes. All of

the
iphers are written as ECB interfa
es sin
e it allows the rest of the API to grow in a modular

fashion.

3.1.1 Key S
heduling

All
iphers store their s
heduled keys in a single data type
alled symmetri
 key. This allows all

iphers to have the same prototype and store their keys as naturally as possible. This also removes

the need for dynami
 memory allo
ation, and allows you to allo
ate a �xed sized bu�er for storing

s
heduled keys. All
iphers must provide six visible fun
tions whi
h are (given that XXX is the

name of the
ipher) the following:

int XXX_setup(
onst unsigned
har *key,

int keylen,

int rounds,

symmetri
_key *skey);

The XXX setup() routine will setup the
ipher to be used with a given number of rounds and

a given key length (in bytes). The number of rounds
an be set to zero to use the default, whi
h is

generally a good idea.

If the fun
tion returns su

essfully the variable skey will have a s
heduled key stored in it. It's

important to note that you should only used this s
heduled key with the intended
ipher. For

example, if you
all blow�sh setup() do not pass the s
heduled key onto r
5 e
b en
rypt(). All

built{in setup fun
tions do not allo
ate memory o� the heap so when you are done with a key you

an simply dis
ard it (e.g. they
an be on the sta
k). However, to maintain proper
oding pra
ti
es

you should always
all the respe
tive XXX done() fun
tion. This allows for qui
ker porting to

appli
ations with externally supplied plugins.

11

12 www.libtom.org

3.1.2 ECB En
ryption and De
ryption

To en
rypt or de
rypt a blo
k in ECB mode there are these two fun
tions per
ipher:

int XXX_e
b_en
rypt(
onst unsigned
har *pt,

unsigned
har *
t,

symmetri
_key *skey);

int XXX_e
b_de
rypt(
onst unsigned
har *
t,

unsigned
har *pt,

symmetri
_key *skey);

These two fun
tions will en
rypt or de
rypt (respe
tively) a single blo
k of text

1

, storing the result

in the
t bu�er (pt resp.). It is possible that the input and output bu�er are the same bu�er.

For the en
rypt fun
tion pt

2

is the input and
t

3

is the output. For the de
ryption fun
tion it's

the opposite. They both return CRYPT OK on su

ess. To test a parti
ular
ipher against test

ve
tors

4

all the following self-test fun
tion.

3.1.3 Self{Testing

int XXX_test(void);

This fun
tion will return CRYPT OK if the
ipher mat
hes the test ve
tors from the design

publi
ation it is based upon.

3.1.4 Key Sizing

For ea
h
ipher there is a fun
tion whi
h will help �nd a desired key size. It is spe
i�ed as follows:

int XXX_keysize(int *keysize);

Essentially, it will round the input keysize in keysize down to the next appropriate key size. This

fun
tion will return CRYPT OK if the key size spe
i�ed is a

eptable. For example:

#in
lude <tom
rypt.h>

int main(void)

{

int keysize, err;

/* now given a 20 byte key what keysize does Twofish want to use? */

keysize = 20;

if ((err = twofish_keysize(&keysize)) != CRYPT_OK) {

printf("Error getting key size: %s\n", error_to_string(err));

return -1;

}

printf("Twofish suggested a key size of %d\n", keysize);

return 0;

}

1

The size of whi
h depends on whi
h
ipher you are using.

2

pt stands for plaintext.

3

t stands for
iphertext.

4

As published in their design papers.

3.1 Core Fun
tions 13

This should indi
ate a keysize of sixteen bytes is suggested by storing 16 in keysize.

3.1.5 Cipher Termination

When you are �nished with a
ipher you
an de{initialize it with the done fun
tion.

void XXX_done(symmetri
_key *skey);

For the software based
iphers within LibTomCrypt, these fun
tions will not do anything. However,

user supplied
ipher des
riptors may require to be
alled for resour
e management purposes. To be

ompliant, all fun
tions whi
h
all a
ipher setup fun
tion must also
all the respe
tive
ipher done

fun
tion when �nished.

3.1.6 Simple En
ryption Demonstration

An example snippet that en
odes a blo
k with Blow�sh in ECB mode.

#in
lude <tom
rypt.h>

int main(void)

{

unsigned
har pt[8℄,
t[8℄, key[8℄;

symmetri
_key skey;

int err;

/* ... key is loaded appropriately in key ... */

/* ... load a blo
k of plaintext in pt ... */

/* s
hedule the key */

if ((err = blowfish_setup(key, /* the key we will use */

8, /* key is 8 bytes (64-bits) long */

0, /* 0 == use default # of rounds */

&skey) /* where to put the s
heduled key */

) != CRYPT_OK) {

printf("Setup error: %s\n", error_to_string(err));

return -1;

}

/* en
rypt the blo
k */

blowfish_e
b_en
rypt(pt, /* en
rypt this 8-byte array */

t, /* store en
rypted data here */

&skey); /* our previously s
heduled key */

/* now
t holds the en
rypted version of pt */

/* de
rypt the blo
k */

blowfish_e
b_de
rypt(
t, /* de
rypt this 8-byte array */

pt, /* store de
rypted data here */

&skey); /* our previously s
heduled key */

/* now we have de
rypted
t to the original plaintext in pt */

14 www.libtom.org

/* Terminate the
ipher
ontext */

blowfish_done(&skey);

return 0;

}

3.2 Key Sizes and Number of Rounds

As a general rule of thumb, do not use symmetri
 keys under 80 bits if you
an help it. Only a few of

the
iphers support smaller keys (mainly for test ve
tors anyways). Ideally, your appli
ation should

be making at least 256 bit keys. This is not be
ause you are to be paranoid. It is be
ause if your

PRNG has a bias of any sort the more bits the better. For example, if you have Pr [X = 1℄ =

1

2

�

where j
j > 0 then the total amount of entropy in N bits is N � �log

2

�

1

2

+ j
j

�

. So if
 were 0:25 (a

severe bias) a 256-bit string would have about 106 bits of entropy whereas a 128-bit string would

have only 53 bits of entropy.

The number of rounds of most
iphers is not an option you
an
hange. Only RC5 allows you

to
hange the number of rounds. By passing zero as the number of rounds all
iphers will use their

default number of rounds. Generally the
iphers are
on�gured su
h that the default number of

rounds provide adequate se
urity for the given blo
k and key size.

3.3 The Cipher Des
riptors

To fa
ilitate automati
 routines an array of
ipher des
riptors is provided in the array
ipher des
riptor.

An element of this array has the following (partial) format (See Se
tion 14.2):

stru
t _
ipher_des
riptor {

/** name of
ipher */

har *name;

/** internal ID */

unsigned
har ID;

/** min keysize (o
tets) */

int min_key_length,

/** max keysize (o
tets) */

max_key_length,

/** blo
k size (o
tets) */

blo
k_length,

/** default number of rounds */

default_rounds;

...<snip>...

};

3.3 The Cipher Des
riptors 15

Where name is the lower
ase ASCII version of the name. The �elds min key length and

max key length are the minimum and maximum key sizes in bytes. The blo
k length member is the

blo
k size of the
ipher in bytes. As a good rule of thumb it is assumed that the
ipher supports

the min and max key lengths but not always everything in between. The default rounds �eld is the

default number of rounds that will be used.

For a plugin to be
ompliant it must provide at least ea
h fun
tion listed before the a

elerators

begin. A

elerators are optional, and if missing will be emulated in software.

The remaining �elds are all pointers to the
ore fun
tions for ea
h
ipher. The end of the

ipher des
riptor array is marked when name equals NULL.

As of this release the
urrent
ipher des
riptors elements are the following:

Name Des
riptor Name Blo
k Size Key Range Rounds

Blow�sh blow�sh des
 8 8 : : : 56 16

X-Tea xtea des
 8 16 32

RC2 r
2 des
 8 8 : : : 128 16

RC5-32/12/b r
5 des
 8 8 : : : 128 12 : : : 24

RC6-32/20/b r
6 des
 16 8 : : : 128 20

SAFER+ saferp des
 16 16, 24, 32 8, 12, 16

AES aes des
 16 16, 24, 32 10, 12, 14

aes en
 des
 16 16, 24, 32 10, 12, 14

Two�sh two�sh des
 16 16, 24, 32 16

DES des des
 8 8 16

3DES (EDE mode) des3 des
 8 24 16

CAST5 (CAST-128)
ast5 des
 8 5 : : : 16 12, 16

Noekeon noekeon des
 16 16 16

Skipja
k skipja
k des
 8 10 32

Anubis anubis des
 16 16 : : : 40 12 : : : 18

Khazad khazad des
 8 16 8

SEED kseed des
 16 16 16

KASUMI kasumi des
 8 16 8

Figure 3.1: Built{In Software Ciphers

16 www.libtom.org

3.3.1 Notes

1. For AES, (also known as Rijndael) there are four des
riptors whi
h
ompli
ate issues a little. The

des
riptors rijndael des
 and rijndael en
 des
 provide the
ipher named rijndael. The des
riptors

aes des
 and aes en
 des
 provide the
ipher name aes. Fun
tionally both rijndael and aes are the

same
ipher. The only di�eren
e is when you
all �nd
ipher() you have to pass the
orre
t name. The

ipher des
riptors with en
 in the middle (e.g. rijndael en
 des
) are related to an implementation of

Rijndael with only the en
ryption routine and tables. The de
ryption and self{test fun
tion pointers

of both en
rypt only des
riptors are set to NULL and should not be
alled.

The en
rypt only des
riptors are useful for appli
ations that only use the en
ryption fun
tion of the

ipher. Algorithms su
h as EAX, PMAC and OMAC only require the en
ryption fun
tion. So far

this en
rypt only fun
tionality has only been implemented for Rijndael as it makes the most sense

for this
ipher.

2. Note that for DES and 3DES they use 8 and 24 byte keys but only 7 and 21 [respe
tively℄ bytes of

the keys are in fa
t used for the purposes of en
ryption. My suggestion is just to use random 8/24

byte keys instead of trying to make a 8/24 byte string from the real 7/21 byte key.

3. Note that Two�sh has additional
on�guration options (Figure 3.2) that take pla
e at build time.

These options are found in the �le tom
rypt
fg.h. The �rst option is TWOFISH SMALL whi
h when

de�ned will for
e the Two�sh
ode to not pre-
ompute the Two�sh g(X) fun
tion as a set of four

8� 32 s-boxes. This means that a s
heduled key will require less ram but the resulting
ipher will be

slower. The se
ond option is TWOFISH TABLES whi
h when de�ned will for
e the Two�sh
ode to

use pre-
omputed tables for the two s-boxes q

0

; q

1

as well as the multipli
ation by the polynomials 5B

and EF used in the MDS multipli
ation. As a result the
ode is faster and slightly larger. The speed

in
rease is useful when TWOFISH SMALL is de�ned sin
e the s-boxes and MDS multiply form the

heart of the Two�sh round fun
tion.

TWOFISH SMALL TWOFISH TABLES Speed and Memory (per key)

unde�ned unde�ned Very fast, 4.2KB of ram.

unde�ned de�ned Faster key setup, larger
ode.

de�ned unde�ned Very slow, 0.2KB of ram.

de�ned de�ned Faster, 0.2KB of ram, larger
ode.

Figure 3.2: Two�sh Build Options

To work with the
ipher des
riptor array there is a fun
tion:

int find_
ipher(
har *name)

Whi
h will sear
h for a given name in the array. It returns �1 if the
ipher is not found, otherwise

it returns the lo
ation in the array where the
ipher was found. For example, to indire
tly setup

Blow�sh you
an also use:

#in
lude <tom
rypt.h>

int main(void)

{

unsigned
har key[8℄;

symmetri
_key skey;

int err;

/* you must register a
ipher before you use it */

3.3 The Cipher Des
riptors 17

if (register_
ipher(&blowfish_des
)) == -1) {

printf("Unable to register Blowfish
ipher.");

return -1;

}

/* generi

all to fun
tion (assuming the key

* in key[℄ was already setup) */

if ((err =

ipher_des
riptor[find_
ipher("blowfish")℄.

setup(key, 8, 0, &skey)) != CRYPT_OK) {

printf("Error setting up Blowfish: %s\n", error_to_string(err));

return -1;

}

/* ... use
ipher ... */

}

A good safety would be to
he
k the return value of �nd
ipher() before a

essing the desired

fun
tion. In order to use a
ipher with the des
riptor table you must register it �rst using:

int register_
ipher(
onst stru
t _
ipher_des
riptor *
ipher);

Whi
h a

epts a pointer to a des
riptor and returns the index into the global des
riptor table. If

an error o

urs su
h as there is no more room (it
an have 32
iphers at most) it will return -1. If

you try to add the same
ipher more than on
e it will just return the index of the �rst
opy. To

remove a
ipher
all:

int unregister_
ipher(
onst stru
t _
ipher_des
riptor *
ipher);

Whi
h returns CRYPT OK if it removes the
ipher, otherwise it returns CRYPT ERROR.

#in
lude <tom
rypt.h>

int main(void)

{

int err;

/* register the
ipher */

if (register_
ipher(&rijndael_des
) == -1) {

printf("Error registering Rijndael\n");

return -1;

}

/* use Rijndael */

/* remove it */

if ((err = unregister_
ipher(&rijndael_des
)) != CRYPT_OK) {

printf("Error removing Rijndael: %s\n", error_to_string(err));

return -1;

}

return 0;

}

This snippet is a small program that registers Rijndael.

18 www.libtom.org

3.4 Symmetri
 Modes of Operations

3.4.1 Ba
kground

A typi
al symmetri
 blo
k
ipher
an be used in
haining modes to e�e
tively en
rypt messages

larger than the blo
k size of the
ipher. Given a key k, a plaintext P and a
ipher E we shall

denote the en
ryption of the blo
k P under the key k as E

k

(P). In some modes there exists an

initial ve
tor denoted as C

�1

.

ECB Mode

ECB or Ele
troni
 Codebook Mode is the simplest method to use. It is given as:

C

i

= E

k

(P

i

) (3.1)

This mode is very weak sin
e it allows people to swap blo
ks and perform replay atta
ks if the same

key is used more than on
e.

CBC Mode

CBC or Cipher Blo
k Chaining mode is a simple mode designed to prevent trivial forms of replay

and swap atta
ks on
iphers. It is given as:

C

i

= E

k

(P

i

� C

i�1

) (3.2)

It is important that the initial ve
tor be unique and preferably random for ea
h message en
rypted

under the same key.

CTR Mode

CTR or Counter Mode is a mode whi
h only uses the en
ryption fun
tion of the
ipher. Given a

initial ve
tor whi
h is treated as a large binary
ounter the CTR mode is given as:

C

�1

= C

�1

+ 1 (mod 2

W

)

C

i

= P

i

� E

k

(C

�1

) (3.3)

Where W is the size of a blo
k in bits (e.g. 64 for Blow�sh). As long as the initial ve
tor is random

for ea
h message en
rypted under the same key replay and swap atta
ks are infeasible. CTR mode

may look simple but it is as se
ure as the blo
k
ipher is under a
hosen plaintext atta
k (provided

the initial ve
tor is unique).

CFB Mode

CFB or Ciphertext Feedba
k Mode is a mode akin to CBC. It is given as:

C

i

= P

i

� C

�1

C

�1

= E

k

(C

i

) (3.4)

Note that in this library the output feedba
k width is equal to the size of the blo
k
ipher. That is

this mode is used to en
rypt whole blo
ks at a time. However, the library will bu�er data allowing

the user to en
rypt or de
rypt partial blo
ks without a delay. When this mode is �rst setup it will

initially en
rypt the initial ve
tor as required.

3.4 Symmetri
 Modes of Operations 19

OFB Mode

OFB or Output Feedba
k Mode is a mode akin to CBC as well. It is given as:

C

�1

= E

k

(C

�1

)

C

i

= P

i

� C

�1

(3.5)

Like the CFB mode the output width in CFB mode is the same as the width of the blo
k
ipher.

OFB mode will also bu�er the output whi
h will allow you to en
rypt or de
rypt partial blo
ks

without delay.

3.4.2 Choi
e of Mode

My personal preferen
e is for the CTR mode sin
e it has several key bene�ts:

1. No short
y
les whi
h is possible in the OFB and CFB modes.

2. Provably as se
ure as the blo
k
ipher being used under a
hosen plaintext atta
k.

3. Te
hni
ally does not require the de
ryption routine of the
ipher.

4. Allows random a

ess to the plaintext.

5. Allows the en
ryption of blo
k sizes that are not equal to the size of the blo
k
ipher.

The CTR, CFB and OFB routines provided allow you to en
rypt blo
k sizes that di�er from the

iphers blo
k size. They a

omplish this by bu�ering the data required to
omplete a blo
k. This

allows you to en
rypt or de
rypt any size blo
k of memory with either of the three modes.

The ECB and CBC modes pro
ess blo
ks of the same size as the
ipher at a time. Therefore,

they are less
exible than the other modes.

3.4.3 Ciphertext Stealing

Ciphertext stealing is a method of dealing with messages in CBC mode whi
h are not a multiple

of the blo
k length. This is a

omplished by en
rypting the last
iphertext blo
k in ECB mode,

and XOR'ing the output against the last partial blo
k of plaintext. LibTomCrypt does not support

this mode dire
tly but it is fairly easy to emulate with a
all to the
ipher's e
b en
rypt()
allba
k

fun
tion.

The more sane way to deal with partial blo
ks is to pad them with zeroes, and then use CBC

normally.

3.4.4 Initialization

The library provides simple support routines for handling CBC, CTR, CFB, OFB and ECB en
oded

messages. Assuming the mode you want is XXX there is a stru
ture
alled symmetri
 XXX that

will
ontain the information required to use that mode. They have identi
al setup routines (ex
ept

CTR and ECB mode):

20 www.libtom.org

int XXX_start(int
ipher,

onst unsigned
har *IV,

onst unsigned
har *key,

int keylen,

int num_rounds,

symmetri
_XXX *XXX);

int
tr_start(int
ipher,

onst unsigned
har *IV,

onst unsigned
har *key,

int keylen,

int num_rounds,

int
tr_mode,

symmetri
_CTR *
tr);

int e
b_start(int
ipher,

onst unsigned
har *key,

int keylen,

int num_rounds,

symmetri
_ECB *e
b);

In ea
h
ase,
ipher is the index into the
ipher des
riptor array of the
ipher you want to

use. The IV value is the initialization ve
tor to be used with the
ipher. You must �ll the IV

yourself and it is assumed they are the same length as the blo
k size

5

of the
ipher you
hoose. It

is important that the IV be random for ea
h unique message you want to en
rypt. The parameters

key, keylen and num rounds are the same as in the XXX setup() fun
tion
all. The �nal parameter

is a pointer to the stru
ture you want to hold the information for the mode of operation.

The routines return CRYPT OK if the
ipher initialized
orre
tly, otherwise, they return an

error
ode.

CTR Mode

In the
ase of CTR mode there is an additional parameter
tr mode whi
h spe
i�es the mode that

the
ounter is to be used in. If CTR COUNTER LITTLE ENDIAN was spe
i�ed then the

ounter will be treated as a little endian value. Otherwise, if CTR COUNTER BIG ENDIAN

was spe
i�ed the
ounter will be treated as a big endian value. As of v1.15 the RFC 3686 style of

in
rement then en
rypt is also supported. By OR'ing LTC CTR RFC3686 with the CTR mode

value,
tr start() will in
rement the
ounter before en
rypting it for the �rst time.

As of V1.17, the library supports variable length
ounters for CTR mode. The (optional)
ounter

length is spe
i�ed by OR'ing the o
tet length of the
ounter against the
tr mode parameter. The

default, zero, indi
ates that a full blo
k length
ounter will be used. This also ensures ba
kwards

ompatibility with software that uses older versions of the library.

symmetri
_CTR
tr;

int err;

unsigned
har IV[16℄, key[16℄;

5

In other words the size of a blo
k of plaintext for the
ipher, e.g. 8 for DES, 16 for AES, et
.

3.4 Symmetri
 Modes of Operations 21

/* use a 32-bit little endian
ounter */

if ((err =
tr_start(find_
ipher("aes"),

IV, key, 16, 0,

CTR_COUNTER_LITTLE_ENDIAN | 4,

&
tr)) != CRYPT_OK) {

handle_error(err);

}

Changing the
ounter size has little (really no) e�e
t on the performan
e of the CTR
haining

mode. It is provided for
ompatibility with other software (and hardware) whi
h have smaller �xed

sized
ounters.

3.4.5 En
ryption and De
ryption

To a
tually en
rypt or de
rypt the following routines are provided:

int XXX_en
rypt(
onst unsigned
har *pt,

unsigned
har *
t,

unsigned long len,

symmetri
_YYY *YYY);

int XXX_de
rypt(
onst unsigned
har *
t,

unsigned
har *pt,

unsigned long len,

symmetri
_YYY *YYY);

Where XXX is one of fe
b;
b
;
tr;
fb; ofbg.

In all
ases, len is the size of the bu�er (as number of o
tets) to en
rypt or de
rypt. The

CTR, OFB and CFB modes are order sensitive but not
hunk sensitive. That is you
an en
rypt

ABCDEF in three
alls like AB, CD, EF or two like ABCDE and F and end up with the same

iphertext. However, en
rypting ABC and DABC will result in di�erent
iphertexts. All �ve of

the modes will return CRYPT OK on su

ess from the en
rypt or de
rypt fun
tions.

In the ECB and CBC
ases, len must be a multiple of the
iphers blo
k size. In the CBC
ase,

you must manually pad the end of your message (either with zeroes or with whatever your proto
ol

requires).

To de
rypt in either mode, perform the setup like before (re
all you have to fet
h the IV value

you used), and use the de
rypt routine on all of the blo
ks.

3.4.6 IV Manipulation

To
hange or read the IV of a previously initialized
haining mode use the following two fun
tions.

int XXX_getiv(unsigned
har *IV,

unsigned long *len,

symmetri
_XXX *XXX);

22 www.libtom.org

int XXX_setiv(
onst unsigned
har *IV,

unsigned long len,

symmetri
_XXX *XXX);

The XXX getiv() fun
tions will read the IV out of the
haining mode and store it into IV along

with the length of the IV stored in len. The XXX setiv will initialize the
haining mode state as if

the original IV were the new IV spe
i�ed. The length of the IV passed in must be the size of the

iphers blo
k size.

The XXX setiv() fun
tions are handy if you wish to
hange the IV without re{keying the
ipher.

What the setiv fun
tion will do depends on the mode being
hanged. In CBC mode, the new IV

repla
es the existing IV as if it were the last
iphertext blo
k. In CFB mode, the IV is en
rypted

as if it were the prior en
rypted pad. In CTR mode, the IV is en
rypted without �rst in
rementing

it (regardless of the LTC RFC 3686
ag presen
e). In F8 mode, the IV is en
rypted and be
omes

the new pad. It does not
hange the salted IV, and is only meant to allow seeking within a session.

In LRW, it
hanges the tweak, for
ing a
omputation of the tweak pad, allowing for seeking within

the session. In OFB mode, the IV is en
rypted and be
omes the new pad.

3.4.7 Stream Termination

To terminate an open stream
all the done fun
tion.

int XXX_done(symmetri
_XXX *XXX);

This will terminate the stream (by terminating the
ipher) and return CRYPT OK if su

ess-

ful.

3.4 Symmetri
 Modes of Operations 23

3.4.8 Examples

#in
lude <tom
rypt.h>

int main(void)

{

unsigned
har key[16℄, IV[16℄, buffer[512℄;

symmetri
_CTR
tr;

int x, err;

/* register twofish first */

if (register_
ipher(&twofish_des
) == -1) {

printf("Error registering
ipher.\n");

return -1;

}

/* somehow fill out key and IV */

/* start up CTR mode */

if ((err =
tr_start(

find_
ipher("twofish"), /* index of desired
ipher */

IV, /* the initial ve
tor */

key, /* the se
ret key */

16, /* length of se
ret key (16 bytes) */

0, /* 0 == default # of rounds */

CTR_COUNTER_LITTLE_ENDIAN, /* Little endian
ounter */

&
tr) /* where to store the CTR state */

) != CRYPT_OK) {

printf("
tr_start error: %s\n", error_to_string(err));

return -1;

}

/* somehow fill buffer than en
rypt it */

if ((err =
tr_en
rypt(buffer, /* plaintext */

buffer, /*
iphertext */

sizeof(buffer), /* length of plaintext pt */

&
tr) /* CTR state */

) != CRYPT_OK) {

printf("
tr_en
rypt error: %s\n", error_to_string(err));

return -1;

}

/* make use of
iphertext... */

/* now we want to de
rypt so let's use
tr_setiv */

if ((err =
tr_setiv(IV, /* the initial IV we gave to
tr_start */

16, /* the IV is 16 bytes long */

&
tr) /* the
tr state we wish to modify */

) != CRYPT_OK) {

printf("
tr_setiv error: %s\n", error_to_string(err));

return -1;

}

24 www.libtom.org

if ((err =
tr_de
rypt(buffer, /*
iphertext */

buffer, /* plaintext */

sizeof(buffer), /* length of plaintext */

&
tr) /* CTR state */

) != CRYPT_OK) {

printf("
tr_de
rypt error: %s\n", error_to_string(err));

return -1;

}

/* terminate the stream */

if ((err =
tr_done(&
tr)) != CRYPT_OK) {

printf("
tr_done error: %s\n", error_to_string(err));

return -1;

}

/*
lear up and return */

zeromem(key, sizeof(key));

zeromem(&
tr, sizeof(
tr));

return 0;

}

3.4.9 LRW Mode

LRW mode is a
ipher mode whi
h is meant for indexed en
ryption like used to handle storage

media. It is meant to have eÆ
ient seeking and over
ome the se
urity problems of ECB mode while

not in
reasing the storage requirements. It is used mu
h like any other
haining mode ex
ept with

two key di�eren
es.

The key is spe
i�ed as two strings the �rst key K

1

is the (normally AES) key and
an be any

length (typi
ally 16, 24 or 32 o
tets long). The se
ond key K

2

is the tweak key and is always 16

o
tets long. The tweak value is NOT a non
e or IV value it must be random and se
ret.

To initialize LRW mode use:

int lrw_start(int
ipher,

onst unsigned
har *IV,

onst unsigned
har *key,

int keylen,

onst unsigned
har *tweak,

int num_rounds,

symmetri
_LRW *lrw);

This will initialize the LRW
ontext with the given (16 o
tet) IV,
ipher K

1

key of length

keylen o
tets and the (16 o
tet) K

2

tweak. While LRW was spe
i�ed to be used only with AES,

LibTomCrypt will allow any 128{bit blo
k
ipher to be spe
i�ed as indexed by
ipher. The number

of rounds for the blo
k
ipher num rounds
an be 0 to use the default number of rounds for the

given
ipher.

To pro
ess data use the following fun
tions:

3.4 Symmetri
 Modes of Operations 25

int lrw_en
rypt(
onst unsigned
har *pt,

unsigned
har *
t,

unsigned long len,

symmetri
_LRW *lrw);

int lrw_de
rypt(
onst unsigned
har *
t,

unsigned
har *pt,

unsigned long len,

symmetri
_LRW *lrw);

These will en
rypt (or de
rypt) the plaintext to the
iphertext bu�er (or vi
e versa). The length

is spe
i�ed by len in o
tets but must be a multiple of 16. The LRW
ode uses a fast tweak update

su
h that
onse
utive blo
ks are en
rypted faster than if random seeking where used.

To manipulate the IV use the following fun
tions:

int lrw_getiv(unsigned
har *IV,

unsigned long *len,

symmetri
_LRW *lrw);

int lrw_setiv(
onst unsigned
har *IV,

unsigned long len,

symmetri
_LRW *lrw);

These will get or set the 16{o
tet IV. Note that setting the IV is the same as seeking and unlike

other modes is not a free operation. It requires updating the entire tweak whi
h is slower than

sequential use. Avoid seeking ex
essively in performan
e
onstrained
ode.

To terminate the LRW state use the following:

int lrw_done(symmetri
_LRW *lrw);

3.4.10 XTS Mode

As of v1.17, LibTomCrypt supports XTS mode with
ode donated by Ellipti
 Semi
ondu
tor In
.

6

.

XTS is a
haining mode for 128{bit blo
k
iphers, re
ommended by IEEE (P1619) for disk en-

ryption. It is meant to be an en
ryption mode with random a

ess to the message data without

ompromising priva
y. It requires two private keys (of equal length) to perform the en
ryption

pro
ess. Ea
h en
ryption invo
ation in
ludes a se
tor number or unique identi�er spe
i�ed as a

128{bit string.

To initialize XTS mode use the following fun
tion
all:

int xts_start(int
ipher,

onst unsigned
har *key1,

onst unsigned
har *key2,

unsigned long keylen,

int num_rounds,

symmetri
_xts *xts)

6

www.ellipti
semi.
om

26 www.libtom.org

This will start the XTS mode with the two keys pointed to by key1 and key2 of length keylen o
tets

ea
h.

To en
rypt or de
rypt a se
tor use the following
alls:

int xts_en
rypt(

onst unsigned
har *pt, unsigned long ptlen,

unsigned
har *
t,

onst unsigned
har *tweak,

symmetri
_xts *xts);

int xts_de
rypt(

onst unsigned
har *
t, unsigned long ptlen,

unsigned
har *pt,

onst unsigned
har *tweak,

symmetri
_xts *xts);

The �rst will en
rypt the plaintext pointed to by pt of length ptlen o
tets, and store the
iphertext

in the array pointed to by
t. It uses the 128{bit tweak pointed to by tweak to en
rypt the blo
k.

The de
rypt fun
tion performs the opposite operation. Both fun
tions support
iphertext stealing

(blo
ks that are not multiples of 16 bytes).

The P1619 spe
i�
ation states the tweak for se
tor number shall be represented as a 128{bit

little endian string.

To terminate the XTS state
all the following fun
tion:

void xts_done(symmetri
_xts *xts);

3.4.11 F8 Mode

The F8 Chaining mode (see RFC 3711 for instan
e) is yet another
haining mode for blo
k
iphers.

It behaves mu
h like CTR mode in that it XORs a keystream against the plaintext to en
rypt. F8

mode
omes with the additional twist that the
ounter value is se
ret, en
rypted by a salt key. We

initialize F8 mode with the following fun
tion
all:

int f8_start(int
ipher,

onst unsigned
har *IV,

onst unsigned
har *key,

int keylen,

onst unsigned
har *salt_key,

int skeylen,

int num_rounds,

symmetri
_F8 *f8);

This will start the F8 mode state using key as the se
ret key, IV as the
ounter. It uses the salt key

as IV en
ryption key (m in the RFC 3711). The salt key
an be shorter than the se
ret key but it

should not be longer.

To en
rypt or de
rypt data we use the following two fun
tions:

3.4 Symmetri
 Modes of Operations 27

int f8_en
rypt(
onst unsigned
har *pt,

unsigned
har *
t,

unsigned long len,

symmetri
_F8 *f8);

int f8_de
rypt(
onst unsigned
har *
t,

unsigned
har *pt,

unsigned long len,

symmetri
_F8 *f8);

These will en
rypt or de
rypt a variable length array of bytes using the F8 mode state spe
i�ed.

The length is spe
i�ed in bytes and does not have to be a multiple of the
iphers blo
k size.

To
hange or retrieve the
urrent
ounter IV value use the following fun
tions:

int f8_getiv(unsigned
har *IV,

unsigned long *len,

symmetri
_F8 *f8);

int f8_setiv(
onst unsigned
har *IV,

unsigned long len,

symmetri
_F8 *f8);

These work with the
urrent IV value only and not the en
rypted IV value spe
i�ed during the
all

to f8 start(). The purpose of these two fun
tions is to be able to seek within a
urrent session only.

If you want to
hange the session IV you will have to
all f8 done() and then start a new state with

f8 start().

To terminate an F8 state
all the following fun
tion:

int f8_done(symmetri
_F8 *f8);

28 www.libtom.org

3.5 En
rypt and Authenti
ate Modes

3.5.1 EAX Mode

LibTomCrypt provides support for a mode
alled EAX

7

in a manner similar to the way it was

intended to be used by the designers. First, a short des
ription of what EAX mode is before we

explain how to use it. EAX is a mode that requires a
ipher, CTR and OMAC support and provides

en
ryption and authenti
ation

8

. It is initialized with a random non
e that
an be shared publi
ly,

a header whi
h
an be �xed and publi
, and a random se
ret symmetri
 key.

The header data is meant to be meta{data asso
iated with a stream that isn't private (e.g.,

proto
ol messages). It
an be added at anytime during an EAX stream, and is part of the au-

thenti
ation tag. That is,
hanges in the meta-data
an be dete
ted by
hanges in the output

tag.

The mode
an then pro
ess plaintext produ
ing
iphertext as well as
ompute a partial
he
ksum.

The a
tual
he
ksum
alled a tag is only emitted when the message is �nished. In the interim, the

user
an pro
ess any arbitrary sized message blo
k to send to the re
ipient as
iphertext. This

makes the EAX mode espe
ially suited for streaming modes of operation.

The mode is initialized with the following fun
tion.

int eax_init(eax_state *eax,

int
ipher,

onst unsigned
har *key,

unsigned long keylen,

onst unsigned
har *non
e,

unsigned long non
elen,

onst unsigned
har *header,

unsigned long headerlen);

Where eax is the EAX state. The
ipher parameter is the index of the desired
ipher in the

des
riptor table. The key parameter is the shared se
ret symmetri
 key of length keylen o
tets.

The non
e parameter is the random publi
 string of length non
elen o
tets. The header parameter

is the random (or �xed or NULL) header for the message of length headerlen o
tets.

When this fun
tion
ompletes, the eax state will be initialized su
h that you
an now either

have data de
rypted or en
rypted in EAX mode. Note: if headerlen is zero you may pass header

as NULL to indi
ate there is no initial header data.

To en
rypt or de
rypt data in a streaming mode use the following.

int eax_en
rypt(eax_state *eax,

onst unsigned
har *pt,

unsigned
har *
t,

unsigned long length);

int eax_de
rypt(eax_state *eax,

onst unsigned
har *
t,

unsigned
har *pt,

unsigned long length);

7

See M. Bellare, P. Rogaway, D. Wagner, A Conventional Authenti
ated-En
ryption Mode.

8

Note that sin
e EAX only requires OMAC and CTR you may use en
rypt only
ipher des
riptors with this mode.

3.5 En
rypt and Authenti
ate Modes 29

The fun
tion eax en
rypt will en
rypt the bytes in pt of length o
tets, and store the
iphertext in

t. Note:
t and pt may be the same region in memory. This fun
tion will also send the
iphertext

through the OMAC fun
tion. The fun
tion eax de
rypt de
rypts
t, and stores it in pt. This also

allows pt and
t to be the same region in memory.

You
annot both en
rypt or de
rypt with the same eax
ontext. For bi{dire
tional
ommuni
a-

tion you will need to initialize two EAX
ontexts (preferably with di�erent headers and non
es).

Note: both of these fun
tions allow you to send the data in any granularity but the order is

important. While the eax init() fun
tion allows you to add initial header data to the stream you

an also add header data during the EAX stream with the following.

int eax_addheader(eax_state *eax,

onst unsigned
har *header,

unsigned long length);

This will add the length o
tet from header to the given eax header. On
e the message is �nished,

the tag (
he
ksum) may be
omputed with the following fun
tion:

int eax_done(eax_state *eax,

unsigned
har *tag,

unsigned long *taglen);

This will terminate the EAX state eax, and store up to taglen bytes of the message tag in tag. The

fun
tion then stores how many bytes of the tag were written out ba
k in to taglen.

The EAX mode
ode
an be tested to ensure it mat
hes the test ve
tors by
alling the following

fun
tion:

int eax_test(void);

This requires that the AES (or Rijndael) blo
k
ipher be registered with the
ipher des
riptor table

�rst.

#in
lude <tom
rypt.h>

int main(void)

{

int err;

eax_state eax;

unsigned
har pt[64℄,
t[64℄, non
e[16℄, key[16℄, tag[16℄;

unsigned long taglen;

if (register_
ipher(&rijndael_des
) == -1) {

printf("Error registering Rijndael");

return EXIT_FAILURE;

}

/* ... make up random non
e and key ... */

/* initialize
ontext */

if ((err = eax_init(&eax, /*
ontext */

30 www.libtom.org

find_
ipher("rijndael"), /*
ipher id */

non
e, /* the non
e */

16, /* non
e is 16 bytes */

"TestApp", /* example header */

7) /* header length */

) != CRYPT_OK) {

printf("Error eax_init: %s", error_to_string(err));

return EXIT_FAILURE;

}

/* now en
rypt data, say in a loop or whatever */

if ((err = eax_en
rypt(&eax, /* eax
ontext */

pt, /* plaintext (sour
e) */

t, /*
iphertext (destination) */

sizeof(pt) /* size of plaintext */

) != CRYPT_OK) {

printf("Error eax_en
rypt: %s", error_to_string(err));

return EXIT_FAILURE;

}

/* finish message and get authenti
ation tag */

taglen = sizeof(tag);

if ((err = eax_done(&eax, /* eax
ontext */

tag, /* where to put tag */

&taglen /* length of tag spa
e */

) != CRYPT_OK) {

printf("Error eax_done: %s", error_to_string(err));

return EXIT_FAILURE;

}

/* now we have the authenti
ation tag in "tag" and

* it's taglen bytes long */

}

You
an also perform an entire EAX state on a blo
k of memory in a single fun
tion
all with

the following fun
tions.

int eax_en
rypt_authenti
ate_memory(

int
ipher,

onst unsigned
har *key, unsigned long keylen,

onst unsigned
har *non
e, unsigned long non
elen,

onst unsigned
har *header, unsigned long headerlen,

onst unsigned
har *pt, unsigned long ptlen,

unsigned
har *
t,

unsigned
har *tag, unsigned long *taglen);

int eax_de
rypt_verify_memory(

3.5 En
rypt and Authenti
ate Modes 31

int
ipher,

onst unsigned
har *key, unsigned long keylen,

onst unsigned
har *non
e, unsigned long non
elen,

onst unsigned
har *header, unsigned long headerlen,

onst unsigned
har *
t, unsigned long
tlen,

unsigned
har *pt,

unsigned
har *tag, unsigned long taglen,

int *res);

Both essentially just
all eax init() followed by eax en
rypt() (or eax de
rypt() respe
tively)

and eax done(). The parameters have the same meaning as with those respe
tive fun
tions.

The only di�eren
e is eax de
rypt verify memory() does not emit a tag. Instead you pass it a

tag as input and it
ompares it against the tag it
omputed while de
rypting the message. If the

tags mat
h then it stores a 1 in res, otherwise it stores a 0.

3.5.2 OCB Mode

LibTomCrypt provides support for a mode
alled OCB

9

. OCB is an en
ryption proto
ol that

simultaneously provides authenti
ation. It is slightly faster to use than EAX mode but is less

exible. Let's review how to initialize an OCB
ontext.

int o
b_init(o
b_state *o
b,

int
ipher,

onst unsigned
har *key,

unsigned long keylen,

onst unsigned
har *non
e);

This will initialize the o
b
ontext using
ipher des
riptor
ipher. It will use a key of length

keylen and the random non
e. Note that non
e must be a random (publi
) string the same length

as the blo
k
iphers blo
k size (e.g. 16 bytes for AES).

This mode has no Asso
iated Data like EAX mode does whi
h means you
annot authenti
ate

metadata along with the stream. To en
rypt or de
rypt data use the following.

int o
b_en
rypt(o
b_state *o
b,

onst unsigned
har *pt,

unsigned
har *
t);

int o
b_de
rypt(o
b_state *o
b,

onst unsigned
har *
t,

unsigned
har *pt);

This will en
rypt (or de
rypt for the latter) a �xed length of data from pt to
t (vi
e versa for

the latter). They assume that pt and
t are the same size as the blo
k
ipher's blo
k size. Note

that you
annot
all both fun
tions given a single o
b state. For bi-dire
tional
ommuni
ation you

will have to initialize two o
b states (with di�erent non
es). Also pt and
t may point to the same

lo
ation in memory.

9

See P. Rogaway, M. Bellare, J. Bla
k, T. Krovetz, OCB: A Blo
k Cipher Mode of Operation for EÆ
ient

Authenti
ated En
ryption.

32 www.libtom.org

State Termination

When you are �nished en
rypting the message you
all the following fun
tion to
ompute the tag.

int o
b_done_en
rypt(o
b_state *o
b,

onst unsigned
har *pt,

unsigned long ptlen,

unsigned
har *
t,

unsigned
har *tag,

unsigned long *taglen);

This will terminate an en
rypt stream o
b. If you have trailing bytes of plaintext that will not

omplete a blo
k you
an pass them here. This will also en
rypt the ptlen bytes in pt and store

them in
t. It will also store up to taglen bytes of the tag into tag.

Note that ptlen must be less than or equal to the blo
k size of blo
k
ipher
hosen. Also note

that if you have an input message equal to the length of the blo
k size then you pass the data here

(not to o
b en
rypt()) only.

To terminate a de
rypt stream and
ompared the tag you
all the following.

int o
b_done_de
rypt(o
b_state *o
b,

onst unsigned
har *
t,

unsigned long
tlen,

unsigned
har *pt,

onst unsigned
har *tag,

unsigned long taglen,

int *res);

Similarly to the previous fun
tion you
an pass trailing message bytes into this fun
tion. This will

ompute the tag of the message (internally) and then
ompare it against the taglen bytes of tag

provided. By default res is set to zero. If all taglen bytes of tag
an be veri�ed then res is set to

one (authenti
ated message).

Pa
ket Fun
tions

To make life simpler the following two fun
tions are provided for memory bound OCB.

int o
b_en
rypt_authenti
ate_memory(

int
ipher,

onst unsigned
har *key, unsigned long keylen,

onst unsigned
har *non
e,

onst unsigned
har *pt, unsigned long ptlen,

unsigned
har *
t,

unsigned
har *tag, unsigned long *taglen);

This will OCB en
rypt the message pt of length ptlen, and store the
iphertext in
t. The length

ptlen
an be any arbitrary length.

3.5 En
rypt and Authenti
ate Modes 33

int o
b_de
rypt_verify_memory(

int
ipher,

onst unsigned
har *key, unsigned long keylen,

onst unsigned
har *non
e,

onst unsigned
har *
t, unsigned long
tlen,

unsigned
har *pt,

onst unsigned
har *tag, unsigned long taglen,

int *res);

Similarly, this will OCB de
rypt, and
ompare the internally
omputed tag against the tag

provided. res is set appropriately.

3.5.3 CCM Mode

CCM is a NIST proposal for en
rypt + authenti
ate that is
entered around using AES (or any

16{byte
ipher) as a primitive. Unlike EAX and OCB mode, it is only meant for pa
ket mode

where the length of the input is known in advan
e. Sin
e it is a pa
ket mode fun
tion, CCM only

has one fun
tion that performs the proto
ol.

int

m_memory(

int
ipher,

onst unsigned
har *key, unsigned long keylen,

symmetri
_key *uskey,

onst unsigned
har *non
e, unsigned long non
elen,

onst unsigned
har *header, unsigned long headerlen,

unsigned
har *pt, unsigned long ptlen,

unsigned
har *
t,

unsigned
har *tag, unsigned long *taglen,

int dire
tion);

This performs the CCM operation on the data. The
ipher variable indi
ates whi
h
ipher in

the des
riptor table to use. It must have a 16{byte blo
k size for CCM.

The key
an be spe
i�ed in one of two fashions. First, it
an be passed as an array of o
tets in

key of length keylen. Alternatively, it
an be passed in as a previously s
heduled key in uskey. The

latter fashion saves time when the same key is used for multiple pa
kets. If uskey is not NULL,

then key may be NULL (and vi
e-versa).

The non
e or salt is non
e of length non
elen o
tets. The header is meta{data you want to send

with the message but not have en
rypted, it is stored in header of length headerlen o
tets. The

header
an be zero o
tets long (if headerlen = 0 then you
an pass header as NULL).

The plaintext is stored in pt, and the
iphertext in
t. The length of both are expe
ted to be

equal and is passed in as ptlen. It is allowable that pt =
t. The dire
tion variable indi
ates whether

en
ryption (dire
tion = CCM ENCRYPT) or de
ryption (dire
tion = CCM DECRYPT) is

to be performed.

As implemented, this version of CCM
annot handle header or plaintext data longer than 2

32

�1

o
tets long.

You
an test the implementation of CCM with the following fun
tion.

int

m_test(void);

34 www.libtom.org

This will return CRYPT OK if the CCM routine passes known test ve
tors. It requires AES

or Rijndael to be registered previously, otherwise it will return CRYPT NOP.

CCM Example

The following is a sample of how to
all CCM.

#in
lude <tom
rypt.h>

int main(void)

{

unsigned
har key[16℄, non
e[12℄, pt[32℄,
t[32℄,

tag[16℄, tag
p[16℄;

unsigned long taglen;

int err;

/* register
ipher */

register_
ipher(&aes_des
);

/* somehow fill key, non
e, pt */

/* en
rypt it */

taglen = sizeof(tag);

if ((err =

m_memory(find_
ipher("aes"),

key, 16, /* 128-bit key */

NULL, /* not pres
heduled */

non
e, 12, /* 96-bit non
e */

NULL, 0, /* no header */

pt, 32, /* 32-byte plaintext */

t, /*
iphertext */

tag, &taglen,

CCM_ENCRYPT)) != CRYPT_OK) {

printf("

m_memory error %s\n", error_to_string(err));

return -1;

}

/*
t[0..31℄ and tag[0..15℄ now hold the output */

/* de
rypt it */

taglen = sizeof(tag
p);

if ((err =

m_memory(find_
ipher("aes"),

key, 16, /* 128-bit key */

NULL, /* not pres
heduled */

non
e, 12, /* 96-bit non
e */

NULL, 0, /* no header */

t, 32, /* 32-byte
iphertext */

pt, /* plaintext */

tag
p, &taglen,

CCM_DECRYPT)) != CRYPT_OK) {

printf("

m_memory error %s\n", error_to_string(err));

3.5 En
rypt and Authenti
ate Modes 35

return -1;

}

/* now pt[0..31℄ should hold the original plaintext,

tag
p[0..15℄ and tag[0..15℄ should have the same
ontents */

}

3.5.4 GCM Mode

Galois
ounter mode is an IEEE proposal for authenti
ated en
ryption (also it is a planned NIST

standard). Like EAX and OCB mode, it
an be used in a streaming
apa
ity however, unlike EAX

it
annot a

ept additional authenti
ation data (meta{data) after plaintext has been pro
essed.

This mode also only works with blo
k
iphers with a 16{byte blo
k.

A GCM stream is meant to be pro
essed in three modes, one after another. First, the initial

ve
tor (per session) data is pro
essed. This should be unique to every session. Next, the the optional

additional authenti
ation data is pro
essed, and �nally the plaintext (or
iphertext depending on

the dire
tion).

Initialization

To initialize the GCM
ontext with a se
ret key
all the following fun
tion.

int g
m_init(g
m_state *g
m,

int
ipher,

onst unsigned
har *key,

int keylen);

This initializes the GCM state g
m for the given
ipher indexed by
ipher, with a se
ret key key of

length keylen o
tets. The
ipher
hosen must have a 16{byte blo
k size (e.g., AES).

Initial Ve
tor

After the state has been initialized (or reset) the next step is to add the session (or pa
ket) initial

ve
tor. It should be unique per pa
ket en
rypted.

int g
m_add_iv(g
m_state *g
m,

onst unsigned
har *IV,

unsigned long IVlen);

This adds the initial ve
tor o
tets from IV of length IVlen to the GCM state g
m. You
an
all

this fun
tion as many times as required to pro
ess the entire IV.

Note: the GCM proto
ols provides a short
ut for 12{byte IVs where no pre-pro
essing is to be

done. If you want to minimize per pa
ket laten
y it is ideal to only use 12{byte IVs. You
an just

in
rement it like a
ounter for ea
h pa
ket.

36 www.libtom.org

Additional Authenti
ation Data

After the entire IV has been pro
essed, the additional authenti
ation data
an be pro
essed. Unlike

the IV, a pa
ket/session does not require additional authenti
ation data (AAD) for se
urity. The

AAD is meant to be used as side{
hannel data you want to be authenti
ated with the pa
ket. Note:

on
e you begin adding AAD to the GCM state you
annot return to adding IV data until the state

has been reset.

int g
m_add_aad(g
m_state *g
m,

onst unsigned
har *adata,

unsigned long adatalen);

This adds the additional authenti
ation data adata of length adatalen to the GCM state g
m.

Plaintext Pro
essing

After the AAD has been pro
essed, the plaintext (or
iphertext depending on the dire
tion)
an be

pro
essed.

int g
m_pro
ess(g
m_state *g
m,

unsigned
har *pt,

unsigned long ptlen,

unsigned
har *
t,

int dire
tion);

This pro
esses message data where pt is the plaintext and
t is the
iphertext. The length of both

are equal and stored in ptlen. Depending on the mode pt is the input and
t is the output (or vi
e

versa). When dire
tion equals GCM ENCRYPT the plaintext is read, en
rypted and stored in

the
iphertext bu�er. When dire
tion equals GCM DECRYPT the opposite o

urs.

State Termination

To terminate a GCM state and retrieve the message authenti
ation tag
all the following fun
tion.

int g
m_done(g
m_state *g
m,

unsigned
har *tag,

unsigned long *taglen);

This terminates the GCM state g
m and stores the tag in tag of length taglen o
tets.

State Reset

The
all to g
m init() will perform
onsiderable pre{
omputation (when GCM TABLES is de-

�ned) and if you're going to be dealing with a lot of pa
kets it is very
ostly to have to
all it

repeatedly. To aid in this endeavour, the reset fun
tion has been provided.

int g
m_reset(g
m_state *g
m);

This will reset the GCM state g
m to the state that g
m init() left it. The user would then
all

g
m add iv(), g
m add aad(), et
.

3.5 En
rypt and Authenti
ate Modes 37

One{Shot Pa
ket

To pro
ess a single pa
ket under any given key the following helper fun
tion
an be used.

int g
m_memory(

int
ipher,

onst unsigned
har *key,

unsigned long keylen,

onst unsigned
har *IV, unsigned long IVlen,

onst unsigned
har *adata, unsigned long adatalen,

unsigned
har *pt, unsigned long ptlen,

unsigned
har *
t,

unsigned
har *tag, unsigned long *taglen,

int dire
tion);

This will initialize the GCM state with the given key, IV and AAD value then pro
eed to en
rypt

or de
rypt the message text and store the �nal message tag. The de�nition of the variables is the

same as it is for all the manual fun
tions.

If you are pro
essing many pa
kets under the same key you shouldn't use this fun
tion as it

invokes the pre{
omputation with ea
h
all.

Example Usage

The following is an example usage of how to use GCM over multiple pa
kets with a shared se
ret

key.

#in
lude <tom
rypt.h>

int send_pa
ket(
onst unsigned
har *pt, unsigned long ptlen,

onst unsigned
har *iv, unsigned long ivlen,

onst unsigned
har *aad, unsigned long aadlen,

g
m_state *g
m)

{

int err;

unsigned long taglen;

unsigned
har tag[16℄;

/* reset the state */

if ((err = g
m_reset(g
m)) != CRYPT_OK) {

return err;

}

/* Add the IV */

if ((err = g
m_add_iv(g
m, iv, ivlen)) != CRYPT_OK) {

return err;

}

/* Add the AAD (note: aad
an be NULL if aadlen == 0) */

if ((err = g
m_add_aad(g
m, aad, aadlen)) != CRYPT_OK) {

return err;

38 www.libtom.org

}

/* pro
ess the plaintext */

if ((err =

g
m_pro
ess(g
m, pt, ptlen, pt, GCM_ENCRYPT)) != CRYPT_OK) {

return err;

}

/* Finish up and get the MAC tag */

taglen = sizeof(tag);

if ((err = g
m_done(g
m, tag, &taglen)) != CRYPT_OK) {

return err;

}

/* ... send a header des
ribing the lengths ... */

/* depending on the proto
ol and how IV is

* generated you may have to send it too... */

send(so
ket, iv, ivlen, 0);

/* send the aad */

send(so
ket, aad, aadlen, 0);

/* send the
iphertext */

send(so
ket, pt, ptlen, 0);

/* send the tag */

send(so
ket, tag, taglen, 0);

return CRYPT_OK;

}

int main(void)

{

g
m_state g
m;

unsigned
har key[16℄, IV[12℄, pt[PACKET_SIZE℄;

int err, x;

unsigned long ptlen;

/* somehow fill key/IV with random values */

/* register AES */

register_
ipher(&aes_des
);

/* init the GCM state */

if ((err =

g
m_init(&g
m, find_
ipher("aes"), key, 16)) != CRYPT_OK) {

whine_and_pout(err);

}

3.5 En
rypt and Authenti
ate Modes 39

/* handle us some pa
kets */

for (;;) {

ptlen = make_pa
ket_we_want_to_send(pt);

/* use IV as
ounter (12 byte
ounter) */

for (x = 11; x >= 0; x--) {

if (++IV[x℄) {

break;

}

}

if ((err = send_pa
ket(pt, ptlen, iv, 12, NULL, 0, &g
m))

!= CRYPT_OK) {

whine_and_pout(err);

}

}

return EXIT_SUCCESS;

}

40 www.libtom.org

C h a p t e r 4

One-Way Cryptographi
 Hash

Fun
tions

4.1 Core Fun
tions

Like the
iphers, there are hash
ore fun
tions and a universal data type to hold the hash state

alled hash state. To initialize hash XXX (where XXX is the name)
all:

void XXX_init(hash_state *md);

This simply sets up the hash to the default state governed by the spe
i�
ations of the hash. To

add data to the message being hashed
all:

int XXX_pro
ess(hash_state *md,

onst unsigned
har *in,

unsigned long inlen);

Essentially all hash messages are virtually in�nitely

1

long message whi
h are bu�ered. The data

an be passed in any sized
hunks as long as the order of the bytes are the same the message digest

(hash output) will be the same. For example, this means that:

md5_pro
ess(&md, "hello ", 6);

md5_pro
ess(&md, "world", 5);

Will produ
e the same message digest as the single
all:

md5_pro
ess(&md, "hello world", 11);

To �nally get the message digest (the hash)
all:

int XXX_done(hash_state *md,

unsigned
har *out);

1

Most hashes are limited to 2

64

bits or 2,305,843,009,213,693,952 bytes.

41

42 www.libtom.org

This fun
tion will �nish up the hash and store the result in the out array. You must ensure

that out is long enough for the hash in question. Often hashes are used to get keys for symmetri

iphers so the XXX done() fun
tions will wipe the md variable before returning automati
ally.

To test a hash fun
tion
all:

int XXX_test(void);

This will return CRYPT OK if the hash mat
hes the test ve
tors, otherwise it returns an error

ode. An example snippet that hashes a message with md5 is given below.

#in
lude <tom
rypt.h>

int main(void)

{

hash_state md;

unsigned
har *in = "hello world", out[16℄;

/* setup the hash */

md5_init(&md);

/* add the message */

md5_pro
ess(&md, in, strlen(in));

/* get the hash in out[0..15℄ */

md5_done(&md, out);

return 0;

}

4.2 Hash Des
riptors

Like the set of
iphers, the set of hashes have des
riptors as well. They are stored in an array
alled

hash des
riptor and are de�ned by:

stru
t _hash_des
riptor {

har *name;

unsigned long hashsize; /* digest output size in bytes */

unsigned long blo
ksize; /* the blo
k size the hash uses */

void (*init) (hash_state *hash);

int (*pro
ess)(hash_state *hash,

onst unsigned
har *in,

unsigned long inlen);

int (*done) (hash_state *hash, unsigned
har *out);

int (*test) (void);

};

4.2 Hash Des
riptors 43

The name member is the name of the hash fun
tion (all lower
ase). The hashsize member is

the size of the digest output in bytes, while blo
ksize is the size of blo
ks the hash expe
ts to the

ompression fun
tion. Te
hni
ally, this detail is not important for high level developers but is useful

to know for performan
e reasons.

The init member initializes the hash, pro
ess passes data through the hash, done terminates the

hash and retrieves the digest. The test member tests the hash against the spe
i�ed test ve
tors.

There is a fun
tion to sear
h the array as well
alled int �nd hash(
har *name). It returns -1 if

the hash is not found, otherwise, the position in the des
riptor table of the hash.

In addition, there is also �nd hash oid() whi
h �nds a hash by the ASN.1 OBJECT IDENTI-

FIER string.

int find_hash_oid(
onst unsigned long *ID, unsigned long IDlen);

You
an use the table to indire
tly
all a hash fun
tion that is
hosen at run-time. For example:

#in
lude <tom
rypt.h>

int main(void)

{

unsigned
har buffer[100℄, hash[MAXBLOCKSIZE℄;

int idx, x;

hash_state md;

/* register hashes */

if (register_hash(&md5_des
) == -1) {

printf("Error registering MD5.\n");

return -1;

}

/* register other hashes ... */

/* prompt for name and strip newline */

printf("Enter hash name: \n");

fgets(buffer, sizeof(buffer), stdin);

buffer[strlen(buffer) - 1℄ = 0;

/* get hash index */

idx = find_hash(buffer);

if (idx == -1) {

printf("Invalid hash name!\n");

return -1;

}

/* hash input until blank line */

hash_des
riptor[idx℄.init(&md);

while (fgets(buffer, sizeof(buffer), stdin) != NULL)

hash_des
riptor[idx℄.pro
ess(&md, buffer, strlen(buffer));

hash_des
riptor[idx℄.done(&md, hash);

/* dump to s
reen */

for (x = 0; x < hash_des
riptor[idx℄.hashsize; x++)

printf("%02x ", hash[x℄);

44 www.libtom.org

printf("\n");

return 0;

}

Note the usage of MAXBLOCKSIZE. In LibTomCrypt, no symmetri
 blo
k, key or hash

digest is larger than MAXBLOCKSIZE in length. This provides a simple size you
an set your

automati
 arrays to that will not get overrun.

There are three helper fun
tions to make working with hashes easier. The �rst is a fun
tion to

hash a bu�er, and produ
e the digest in a single fun
tion
all.

int hash_memory(int hash,

onst unsigned
har *in,

unsigned long inlen,

unsigned
har *out,

unsigned long *outlen);

This will hash the data pointed to by in of length inlen. The hash used is indexed by the hash

parameter. The message digest is stored in out, and the outlen parameter is updated to hold the

message digest size.

The next helper fun
tion allows for the hashing of a �le based on a �le name.

int hash_file(int hash,

onst
har *fname,

unsigned
har *out,

unsigned long *outlen);

This will hash the �le named by fname using the hash indexed by hash. The �le named in

this fun
tion
all must be readable by the user owning the pro
ess performing the request. This

fun
tion
an be omitted by the LTC NO FILE de�ne, whi
h for
es it to return CRYPT NOP

when it is
alled. The message digest is stored in out, and the outlen parameter is updated to hold

the message digest size.

int hash_filehandle(int hash,

FILE *in,

unsigned
har *out,

unsigned long *outlen);

This will hash the �le identi�ed by the handle in using the hash indexed by hash. This will

begin hashing from the
urrent �le pointer position, and will not rewind the �le pointer when

�nished. This fun
tion
an be omitted by the LTC NO FILE de�ne, whi
h for
es it to return

CRYPT NOP when it is
alled. The message digest is stored in out, and the outlen parameter is

updated to hold the message digest size.

To perform the above hash with md5 the following
ode
ould be used:

#in
lude <tom
rypt.h>

int main(void)

{

int idx, err;

unsigned long len;

4.2 Hash Des
riptors 45

unsigned
har out[MAXBLOCKSIZE℄;

/* register the hash */

if (register_hash(&md5_des
) == -1) {

printf("Error registering MD5.\n");

return -1;

}

/* get the index of the hash */

idx = find_hash("md5");

/*
all the hash */

len = sizeof(out);

if ((err =

hash_memory(idx, "hello world", 11, out, &len)) != CRYPT_OK) {

printf("Error hashing data: %s\n", error_to_string(err));

return -1;

}

return 0;

}

4.2.1 Hash Registration

Similar to the
ipher des
riptor table you must register your hash algorithms before you
an use

them. These fun
tions work exa
tly like those of the
ipher registration
ode. The fun
tions are:

int register_hash(
onst stru
t _hash_des
riptor *hash);

int unregister_hash(
onst stru
t _hash_des
riptor *hash);

The following hashes are provided as of this release within the LibTomCrypt library:

46 www.libtom.org

Name Des
riptor Name Size of Message Digest (bytes)

WHIRLPOOL whirlpool des
 64

SHA-512 sha512 des
 64

SHA-384 sha384 des
 48

RIPEMD-320 rmd160 des
 40

SHA-256 sha256 des
 32

RIPEMD-256 rmd160 des
 32

SHA-224 sha224 des
 28

TIGER-192 tiger des
 24

SHA-1 sha1 des
 20

RIPEMD-160 rmd160 des
 20

RIPEMD-128 rmd128 des
 16

MD5 md5 des
 16

MD4 md4 des
 16

MD2 md2 des
 16

Figure 4.1: Built{In Software Hashes

4.3 Cipher Hash Constru
tion

An addition to the suite of hash fun
tions is the Cipher Hash Constru
tion or CHC mode. In this

mode appli
able blo
k
iphers (su
h as AES)
an be turned into hash fun
tions that other LTC

fun
tions
an use. In parti
ular this allows a
ryptosystem to be designed using very few moving

parts.

In order to use the CHC system the developer will have to take a few extra steps. First the

h
 des
 hash des
riptor must be registered with register hash(). At this point the CHC hash

annot be used to hash data. While it is in the hash system you still have to tell the CHC
ode

whi
h
ipher to use. This is a

omplished via the
h
 register() fun
tion.

int
h
_register(int
ipher);

A
ipher has to be registered with CHC (and also in the
ipher des
riptor tables with regis-

ter
ipher()). The
h
 register() fun
tion will bind a
ipher to the CHC system. Only one
ipher

an be bound to the CHC hash at a time. There are additional requirements for the system to

work.

1. The
ipher must have a blo
k size greater than 64{bits.

2. The
ipher must allow an input key the size of the blo
k size.

Example of using CHC with the AES blo
k
ipher.

#in
lude <tom
rypt.h>

int main(void)

{

int err;

4.4 Noti
e 47

/* register
ipher and hash */

if (register_
ipher(&aes_en
_des
) == -1) {

printf("Could not register
ipher\n");

return EXIT_FAILURE;

}

if (register_hash(&
h
_des
) == -1) {

printf("Could not register hash\n");

return EXIT_FAILURE;

}

/* start
h
 with AES */

if ((err =
h
register(find
ipher("aes"))) != CRYPT_OK) {

printf("Error binding AES to CHC: %s\n",

error_to_string(err));

}

/* now you
an use
h
_hash in any LTC fun
tion

* [aside from pk
s...℄ */

}

4.4 Noti
e

It is highly re
ommended that you not use the MD4 or MD5 hashes for the purposes of digital

signatures or authenti
ation
odes. These hashes are provided for
ompleteness and they still
an

be used for the purposes of password hashing or one-way a

umulators (e.g. Yarrow).

The other hashes su
h as the SHA-1, SHA-2 (that in
ludes SHA-512, SHA-384 and SHA-256)

and TIGER-192 are still
onsidered se
ure for all purposes you would normally use a hash for.

48 www.libtom.org

C h a p t e r 5

Message Authenti
ation Codes

5.1 HMAC Proto
ol

Thanks to Dobes Vandermeer, the library now in
ludes support for hash based message authenti-

ation
odes, or HMAC for short. An HMAC of a message is a keyed authenti
ation
ode that only

the owner of a private symmetri
 key will be able to verify. The purpose is to allow an owner of

a private symmetri
 key to produ
e an HMAC on a message then later verify if it is
orre
t. Any

impostor or eavesdropper will not be able to verify the authenti
ity of a message.

The HMAC support works mu
h like the normal hash fun
tions ex
ept that the initialization

routine requires you to pass a key and its length. The key is mu
h like a key you would pass to

a
ipher. That is, it is simply an array of o
tets stored in unsigned
hara
ters. The initialization

routine is:

int hma
_init(hma
_state *hma
,

int hash,

onst unsigned
har *key,

unsigned long keylen);

The hma
 parameter is the state for the HMAC
ode. The hash parameter is the index into the

des
riptor table of the hash you want to use to authenti
ate the message. The key parameter is the

pointer to the array of
hars that make up the key. The keylen parameter is the length (in o
tets)

of the key you want to use to authenti
ate the message. To send o
tets of a message through the

HMAC system you must use the following fun
tion:

int hma
_pro
ess(hma
_state *hma
,

onst unsigned
har *in,

unsigned long inlen);

hma
 is the HMAC state you are working with. in is the array of o
tets to send into the HMAC

pro
ess. inlen is the number of o
tets to pro
ess. Like the hash pro
ess routines, you
an send the

data in arbitrarily sized
hunks. When you are �nished with the HMAC pro
ess you must
all the

following fun
tion to get the HMAC
ode:

int hma
_done(hma
_state *hma
,

49

50 www.libtom.org

unsigned
har *out,

unsigned long *outlen);

The hma
 parameter is the HMAC state you are working with. The out parameter is the array of

o
tets where the HMAC
ode should be stored. You must set outlen to the size of the destination

bu�er before
alling this fun
tion. It is updated with the length of the HMAC
ode produ
ed

(depending on whi
h hash was pi
ked). If outlen is less than the size of the message digest (and

ultimately the HMAC
ode) then the HMAC
ode is trun
ated as per FIPS-198 spe
i�
ations (e.g.

take the �rst outlen bytes).

There are two utility fun
tions provided to make using HMACs easier to do. They a

ept the

key and information about the message (�le pointer, address in memory), and produ
e the HMAC

result in one shot. These are useful if you want to avoid
alling the three step pro
ess yourself.

int hma
_memory(

int hash,

onst unsigned
har *key, unsigned long keylen,

onst unsigned
har *in, unsigned long inlen,

unsigned
har *out, unsigned long *outlen);

This will produ
e an HMAC
ode for the array of o
tets in in of length inlen. The index into

the hash des
riptor table must be provided in hash. It uses the key from key with a key length of

keylen. The result is stored in the array of o
tets out and the length in outlen. The value of outlen

must be set to the size of the destination bu�er before
alling this fun
tion. Similarly for �les there

is the following fun
tion:

int hma
_file(

int hash,

onst
har *fname,

onst unsigned
har *key, unsigned long keylen,

unsigned
har *out, unsigned long *outlen);

hash is the index into the hash des
riptor table of the hash you want to use. fname is the �lename

to pro
ess. key is the array of o
tets to use as the key of length keylen. out is the array of o
tets

where the result should be stored.

To test if the HMAC
ode is working there is the following fun
tion:

int hma
_test(void);

Whi
h returns CRYPT OK if the
ode passes otherwise it returns an error
ode. Some example

ode for using the HMAC system is given below.

#in
lude <tom
rypt.h>

int main(void)

{

int idx, err;

hma
_state hma
;

unsigned
har key[16℄, dst[MAXBLOCKSIZE℄;

unsigned long dstlen;

5.2 OMAC Support 51

/* register SHA-1 */

if (register_hash(&sha1_des
) == -1) {

printf("Error registering SHA1\n");

return -1;

}

/* get index of SHA1 in hash des
riptor table */

idx = find_hash("sha1");

/* we would make up our symmetri
 key in "key[℄" here */

/* start the HMAC */

if ((err = hma
_init(&hma
, idx, key, 16)) != CRYPT_OK) {

printf("Error setting up hma
: %s\n", error_to_string(err));

return -1;

}

/* pro
ess a few o
tets */

if((err = hma
_pro
ess(&hma
, "hello", 5) != CRYPT_OK) {

printf("Error pro
essing hma
: %s\n", error_to_string(err));

return -1;

}

/* get result (presumably to use it somehow...) */

dstlen = sizeof(dst);

if ((err = hma
_done(&hma
, dst, &dstlen)) != CRYPT_OK) {

printf("Error finishing hma
: %s\n", error_to_string(err));

return -1;

}

printf("The hma
 is %lu bytes long\n", dstlen);

/* return */

return 0;

}

5.2 OMAC Support

OMAC

1

, whi
h stands for One-Key CBC MAC is an algorithm whi
h produ
es a Message Authen-

ti
ation Code (MAC) using only a blo
k
ipher su
h as AES. Note: OMAC has been standardized

as CMAC within NIST, for the purposes of this library OMAC and CMAC are synonymous. From

an API standpoint, the OMAC routines work mu
h like the HMAC routines. Instead, in this
ase

a
ipher is used instead of a hash.

To start an OMAC state you
all

int oma
_init(oma
_state *oma
,

int
ipher,

onst unsigned
har *key,

1

http://
rypt.
is.ibaraki.a
.jp/oma
/oma
.html

http://crypt.cis.ibaraki.ac.jp/omac/omac.html

52 www.libtom.org

unsigned long keylen);

The oma
 parameter is the state for the OMAC algorithm. The
ipher parameter is the index into

the
ipher des
riptor table of the
ipher

2

you wish to use. The key and keylen parameters are the

keys used to authenti
ate the data.

To send data through the algorithm
all

int oma
_pro
ess(oma
_state *state,

onst unsigned
har *in,

unsigned long inlen);

This will send inlen bytes from in through the a
tive OMAC state state. Returns CRYPT OK if

the fun
tion su

eeds. The fun
tion is not sensitive to the granularity of the data. For example,

oma
_pro
ess(&mystate, "hello", 5);

oma
_pro
ess(&mystate, " world", 6);

Would produ
e the same result as,

oma
_pro
ess(&mystate, "hello world", 11);

When you are done pro
essing the message you
an
all the following to
ompute the message

tag.

int oma
_done(oma
_state *state,

unsigned
har *out,

unsigned long *outlen);

Whi
h will terminate the OMAC and output the tag (MAC) to out. Note that unlike the HMAC

and other
ode outlen
an be smaller than the default MAC size (for instan
e AES would make a

16-byte tag). Part of the OMAC spe
i�
ation states that the output may be trun
ated. So if you

pass in outlen = 5 and use AES as your
ipher than the output MAC
ode will only be �ve bytes

long. If outlen is larger than the default size it is set to the default size to show how many bytes

were a
tually used.

Similar to the HMAC
ode the �le and memory fun
tions are also provided. To OMAC a bu�er

of memory in one shot use the following fun
tion.

int oma
_memory(

int
ipher,

onst unsigned
har *key, unsigned long keylen,

onst unsigned
har *in, unsigned long inlen,

unsigned
har *out, unsigned long *outlen);

This will
ompute the OMAC of inlen bytes of in using the key key of length keylen bytes and the

ipher spe
i�ed by the
ipher 'th entry in the
ipher des
riptor table. It will store the MAC in out

with the same rules as oma
 done.

To OMAC a �le use

2

The
ipher must have a 64 or 128 bit blo
k size. Su
h as CAST5, Blow�sh, DES, AES, Two�sh, et
.

5.2 OMAC Support 53

int oma
_file(

int
ipher,

onst unsigned
har *key, unsigned long keylen,

onst
har *filename,

unsigned
har *out, unsigned long *outlen);

Whi
h will OMAC the entire
ontents of the �le spe
i�ed by �lename using the key key of

length keylen bytes and the
ipher spe
i�ed by the
ipher 'th entry in the
ipher des
riptor table.

It will store the MAC in out with the same rules as oma
 done.

To test if the OMAC
ode is working there is the following fun
tion:

int oma
_test(void);

Whi
h returns CRYPT OK if the
ode passes otherwise it returns an error
ode. Some example

ode for using the OMAC system is given below.

#in
lude <tom
rypt.h>

int main(void)

{

int idx, err;

oma
_state oma
;

unsigned
har key[16℄, dst[MAXBLOCKSIZE℄;

unsigned long dstlen;

/* register Rijndael */

if (register_
ipher(&rijndael_des
) == -1) {

printf("Error registering Rijndael\n");

return -1;

}

/* get index of Rijndael in
ipher des
riptor table */

idx = find_
ipher("rijndael");

/* we would make up our symmetri
 key in "key[℄" here */

/* start the OMAC */

if ((err = oma
_init(&oma
, idx, key, 16)) != CRYPT_OK) {

printf("Error setting up oma
: %s\n", error_to_string(err));

return -1;

}

/* pro
ess a few o
tets */

if((err = oma
_pro
ess(&oma
, "hello", 5) != CRYPT_OK) {

printf("Error pro
essing oma
: %s\n", error_to_string(err));

return -1;

}

/* get result (presumably to use it somehow...) */

dstlen = sizeof(dst);

if ((err = oma
_done(&oma
, dst, &dstlen)) != CRYPT_OK) {

printf("Error finishing oma
: %s\n", error_to_string(err));

54 www.libtom.org

return -1;

}

printf("The oma
 is %lu bytes long\n", dstlen);

/* return */

return 0;

}

5.3 PMAC Support

The PMAC

3

proto
ol is another MAC algorithm that relies solely on a symmetri
-key blo
k
ipher.

It uses essentially the same API as the provided OMAC
ode.

A PMAC state is initialized with the following.

int pma
_init(pma
_state *pma
,

int
ipher,

onst unsigned
har *key,

unsigned long keylen);

Whi
h initializes the pma
 state with the given
ipher and key of length keylen bytes. The
hosen

ipher must have a 64 or 128 bit blo
k size (e.x. AES).

To MAC data simply send it through the pro
ess fun
tion.

int pma
_pro
ess(pma
_state *state,

onst unsigned
har *in,

unsigned long inlen);

This will pro
ess inlen bytes of in in the given state. The fun
tion is not sensitive to the granularity

of the data. For example,

pma
_pro
ess(&mystate, "hello", 5);

pma
_pro
ess(&mystate, " world", 6);

Would produ
e the same result as,

pma
_pro
ess(&mystate, "hello world", 11);

When a
omplete message has been pro
essed the following fun
tion
an be
alled to
ompute

the message tag.

int pma
_done(pma
_state *state,

unsigned
har *out,

unsigned long *outlen);

This will store up to outlen bytes of the tag for the given state into out. Note that if outlen is larger

than the size of the tag it is set to the amount of bytes stored in out.

Similar to the OMAC
ode the �le and memory fun
tions are also provided. To PMAC a bu�er

of memory in one shot use the following fun
tion.

3

J.Bla
k, P.Rogaway, A Blo
k{Cipher Mode of Operation for Parallelizable Message Authenti
ation

5.4 Peli
an MAC 55

int pma
_memory(

int
ipher,

onst unsigned
har *key, unsigned long keylen,

onst unsigned
har *in, unsigned long inlen,

unsigned
har *out, unsigned long *outlen);

This will
ompute the PMAC of msglen bytes of msg using the key key of length keylen bytes, and

the
ipher spe
i�ed by the
ipher 'th entry in the
ipher des
riptor table. It will store the MAC in

out with the same rules as pma
 done().

To PMAC a �le use

int pma
_file(

int
ipher,

onst unsigned
har *key, unsigned long keylen,

onst
har *filename,

unsigned
har *out, unsigned long *outlen);

Whi
h will PMAC the entire
ontents of the �le spe
i�ed by �lename using the key key of length

keylen bytes, and the
ipher spe
i�ed by the
ipher 'th entry in the
ipher des
riptor table. It will

store the MAC in out with the same rules as pma
 done().

To test if the PMAC
ode is working there is the following fun
tion:

int pma
_test(void);

Whi
h returns CRYPT OK if the
ode passes otherwise it returns an error
ode.

5.4 Peli
an MAC

Peli
an MAC is a new (experimental) MAC by the AES team that uses four rounds of AES as a

mixing fun
tion. It a
hieves a very high rate of pro
essing and is potentially very se
ure. It requires

AES to be enabled to fun
tion. You do not have to register
ipher() AES �rst though as it
alls

AES dire
tly.

int peli
an_init(peli
an_state *pelma
,

onst unsigned
har *key,

unsigned long keylen);

This will initialize the Peli
an state with the given AES key. On
e this has been done you
an

begin pro
essing data.

int peli
an_pro
ess(peli
an_state *pelma
,

onst unsigned
har *in,

unsigned long inlen);

This will pro
ess inlen bytes of in through the Peli
an MAC. It's best that you pass in multiples

of 16 bytes as it makes the routine more eÆ
ient but you may pass in any length of text. You
an

all this fun
tion as many times as required to pro
ess an entire message.

int peli
an_done(peli
an_state *pelma
, unsigned
har *out);

This terminates a Peli
an MAC and writes the 16{o
tet tag to out.

56 www.libtom.org

5.4.1 Example

#in
lude <tom
rypt.h>

int main(void)

{

peli
an_state pelstate;

unsigned
har key[32℄, tag[16℄;

int err;

/* somehow initialize a key */

/* initialize peli
an ma
 */

if ((err = peli
an_init(&pelstate, /* the state */

key, /* user key */

32 /* key length in o
tets */

)) != CRYPT_OK) {

printf("Error initializing Peli
an: %s",

error_to_string(err));

return EXIT_FAILURE;

}

/* MAC some data */

if ((err = peli
an_pro
ess(&pelstate, /* the state */

"hello world", /* data to ma
 */

11 /* length of data */

)) != CRYPT_OK) {

printf("Error pro
essing Peli
an: %s",

error_to_string(err));

return EXIT_FAILURE;

}

/* Terminate the MAC */

if ((err = peli
an_done(&pelstate,/* the state */

tag /* where to store the tag */

)) != CRYPT_OK) {

printf("Error terminating Peli
an: %s",

error_to_string(err));

return EXIT_FAILURE;

}

/* tag[0..15℄ has the MAC output now */

return EXIT_SUCCESS;

}

5.5 XCBC-MAC 57

5.5 XCBC-MAC

As of LibTomCrypt v1.15, XCBC-MAC (RFC 3566) has been provided to support TLS en
ryption

suites. Like OMAC, it
omputes a message authenti
ation
ode by using a
ipher in CBC mode.

It also uses a single key whi
h it expands into the requisite three keys for the MAC fun
tion. A

XCBC{MAC state is initialized with the following fun
tion:

int x
b
_init(x
b
_state *x
b
,

int
ipher,

onst unsigned
har *key,

unsigned long keylen);

This will initialize the XCBC{MAC state x
b
, with the key spe
i�ed in key of length keylen

o
tets. The
ipher indi
ated by the
ipher index
an be either a 64 or 128{bit blo
k
ipher. This

will return CRYPT OK on su

ess.

It is possible to use XCBC in a three key mode by OR'ing the value LTC XCBC PURE

against the keylen parameter. In this mode, the key is interpretted as three keys. If the
ipher

has a blo
k size of n o
tets, the �rst key is then keylen � 2n o
tets and is the en
ryption key.

The next 2n o
tets are the K

1

and K

2

padding keys (used on the last blo
k). For example, to use

AES{192 keylen should be 24 + 2 � 16 = 56 o
tets. The three keys are interpretted as if they were

on
atenated in the key bu�er.

To pro
ess data through XCBC{MAC use the following fun
tion:

int x
b
_pro
ess(x
b
_state *state,

onst unsigned
har *in,

unsigned long inlen);

This will add the message o
tets pointed to by in of length inlen to the XCBC{MAC state

pointed to by state. Like the other MAC fun
tions, the granularity of the input is not important

but the order is. This will return CRYPT OK on su

ess.

To
ompute the MAC tag value use the following fun
tion:

int x
b
_done(x
b
_state *state,

unsigned
har *out,

unsigned long *outlen);

This will retrieve the XCBC{MAC tag from the state pointed to by state, and store it in the

array pointed to by out. The outlen parameter spe
i�es the maximum size of the destination

bu�er, and is updated to hold the �nal size of the tag when the fun
tion returns. This will return

CRYPT OK on su

ess.

Helper fun
tions are provided to make parsing memory bu�ers and �les easier. The following

fun
tions are provided:

int x
b
_memory(

int
ipher,

onst unsigned
har *key, unsigned long keylen,

onst unsigned
har *in, unsigned long inlen,

unsigned
har *out, unsigned long *outlen);

58 www.libtom.org

This will
ompute the XCBC{MAC of msglen bytes of msg, using the key key of length keylen

bytes, and the
ipher spe
i�ed by the
ipher 'th entry in the
ipher des
riptor table. It will store

the MAC in out with the same rules as x
b
 done().

To x
b
 a �le use

int x
b
_file(

int
ipher,

onst unsigned
har *key, unsigned long keylen,

onst
har *filename,

unsigned
har *out, unsigned long *outlen);

Whi
h will XCBC{MAC the entire
ontents of the �le spe
i�ed by �lename using the key key of

length keylen bytes, and the
ipher spe
i�ed by the
ipher 'th entry in the
ipher des
riptor table.

It will store the MAC in out with the same rules as x
b
 done().

To test XCBC{MAC for RFC 3566
omplian
e use the following fun
tion:

int x
b
_test(void);

This will return CRYPT OK on su

ess. This requires the AES or Rijndael des
riptor be

previously registered, otherwise, it will return CRYPT NOP.

5.6 F9{MAC

The F9{MAC is yet another CBC{MAC variant proposed for the 3GPP standard. Originally

spe
i�ed to be used with the KASUMI blo
k
ipher, it
an also be used with other
iphers. For

LibTomCrypt, the F9{MAC
ode
an use any
ipher.

5.6.1 Usage Noti
e

F9{MAC di�ers slightly from the other MAC fun
tions in that it requires the
aller to perform the

�nal message padding. The padding quite simply is a dire
tion bit followed by a 1 bit and enough

zeros to make the message a multiple of the
ipher blo
k size. If the message is byte aligned, the

padding takes on the form of a single 0x40 or 0xC0 byte followed by enough 0x00 bytes to make

the message proper multiple.

If the user simply wants a MAC fun
tion (hint: use OMAC) padding with a single 0x40 byte

should be suÆ
ient for se
urity purposes and still be reasonably
ompatible with F9{MAC.

5.6.2 F9{MAC Fun
tions

A F9{MAC state is initialized with the following fun
tion:

int f9_init(f9_state *f9,

int
ipher,

onst unsigned
har *key,

unsigned long keylen);

5.6 F9{MAC 59

This will initialize the F9{MAC state f9, with the key spe
i�ed in key of length keylen o
tets.

The
ipher indi
ated by the
ipher index
an be either a 64 or 128{bit blo
k
ipher. This will

return CRYPT OK on su

ess.

To pro
ess data through F9{MAC use the following fun
tion:

int f9_pro
ess(f9_state *state,

onst unsigned
har *in,

unsigned long inlen);

This will add the message o
tets pointed to by in of length inlen to the F9{MAC state pointed

to by state. Like the other MAC fun
tions, the granularity of the input is not important but the

order is. This will return CRYPT OK on su

ess.

To
ompute the MAC tag value use the following fun
tion:

int f9_done(f9_state *state,

unsigned
har *out,

unsigned long *outlen);

This will retrieve the F9{MAC tag from the state pointed to by state, and store it in the array

pointed to by out. The outlen parameter spe
i�es the maximum size of the destination bu�er, and is

updated to hold the �nal size of the tag when the fun
tion returns. This will return CRYPT OK

on su

ess.

Helper fun
tions are provided to make parsing memory bu�ers and �les easier. The following

fun
tions are provided:

int f9_memory(

int
ipher,

onst unsigned
har *key, unsigned long keylen,

onst unsigned
har *in, unsigned long inlen,

unsigned
har *out, unsigned long *outlen);

This will
ompute the F9{MAC of msglen bytes of msg, using the key key of length keylen bytes,

and the
ipher spe
i�ed by the
ipher 'th entry in the
ipher des
riptor table. It will store the MAC

in out with the same rules as f9 done().

To F9{MAC a �le use

int f9_file(

int
ipher,

onst unsigned
har *key, unsigned long keylen,

onst
har *filename,

unsigned
har *out, unsigned long *outlen);

Whi
h will F9{MAC the entire
ontents of the �le spe
i�ed by �lename using the key key of

length keylen bytes, and the
ipher spe
i�ed by the
ipher 'th entry in the
ipher des
riptor table.

It will store the MAC in out with the same rules as f9 done().

To test f9{MAC for RFC 3566
omplian
e use the following fun
tion:

int f9_test(void);

This will return CRYPT OK on su

ess. This requires the AES or Rijndael des
riptor be

previously registered, otherwise, it will return CRYPT NOP.

60 www.libtom.org

C h a p t e r 6

Pseudo-Random Number

Generators

6.1 Core Fun
tions

The library provides an array of
ore fun
tions for Pseudo-Random Number Generators (PRNGs)

as well. A
ryptographi
 PRNG is used to expand a shorter bit string into a longer bit string.

PRNGs are used wherever random data is required su
h as Publi
 Key (PK) key generation. There

is a universal stru
ture
alled prng state. To initialize a PRNG
all:

int XXX_start(prng_state *prng);

This will setup the PRNG for future use and not seed it. In order for the PRNG to be
rypto-

graphi
ally useful you must give it entropy. Ideally you'd have some OS level sour
e to tap like in

UNIX. To add entropy to the PRNG
all:

int XXX_add_entropy(
onst unsigned
har *in,

unsigned long inlen,

prng_state *prng);

Whi
h returns CRYPT OK if the entropy was a

epted. On
e you think you have enough entropy

you
all another fun
tion to put the entropy into a
tion.

int XXX_ready(prng_state *prng);

Whi
h returns CRYPT OK if it is ready. Finally to a
tually read bytes
all:

unsigned long XXX_read(unsigned
har *out,

unsigned long outlen,

prng_state *prng);

Whi
h returns the number of bytes read from the PRNG. When you are �nished with a PRNG

state you
all the following.

void XXX_done(prng_state *prng);

61

62 www.libtom.org

This will terminate a PRNG state and free any memory (if any) allo
ated. To export a PRNG

state so that you
an later resume the PRNG
all the following.

int XXX_export(unsigned
har *out,

unsigned long *outlen,

prng_state *prng);

This will write a PRNG state to the bu�er out of length outlen bytes. The idea of the export

is meant to be used as a seed �le. That is, when the program starts up there will not likely be that

mu
h entropy available. To import a state to seed a PRNG
all the following fun
tion.

int XXX_import(
onst unsigned
har *in,

unsigned long inlen,

prng_state *prng);

This will
all the start and add entropy fun
tions of the given PRNG. It will use the state in

in of length inlen as the initial seed. You must pass the same seed length as was exported by the

orresponding export fun
tion.

Note that importing a state will not resume the PRNG from where it left o�. That is, if you

export a state, emit (say) 8 bytes and then import the previously exported state the next 8 bytes

will not spe
i�
ally equal the 8 bytes you generated previously.

When a program is �rst exe
uted the normal
ourse of operation is:

1. Gather entropy from your sour
es for a given period of time or number of events.

2. Start, use your entropy via add entropy and ready the PRNG yourself.

When your program is �nished you simply
all the export fun
tion and save the state to a

medium (disk,
ash memory, et
). The next time your appli
ation starts up you
an dete
t the

state, feed it to the import fun
tion and go on your way. It is ideal that (as soon as possible) after

start up you export a fresh state. This helps in the
ase that the program aborts or the ma
hine is

powered down without being given a
han
e to exit properly.

Note that even if you have a state to import it is important to add new entropy to the state.

However, there is less pressure to do so.

To test a PRNG for operational
onformity
all the following fun
tions.

int XXX_test(void);

This will return CRYPT OK if PRNG is operating properly.

6.1.1 Remarks

It is possible to be adding entropy and reading from a PRNG at the same time. For example, if

you �rst seed the PRNG and
all ready() you
an now read from it. You
an also keep adding new

entropy to it. The new entropy will not be used in the PRNG until ready() is
alled again. This

allows the PRNG to be used and re-seeded at the same time. No real error
he
king is guaranteed

to see if the entropy is suÆ
ient, or if the PRNG is even in a ready state before reading.

6.2 PRNG Des
riptors 63

6.1.2 Example

Below is a simple snippet to read 10 bytes from Yarrow. It is important to note that this snippet

is NOT se
ure sin
e the entropy added is not random.

#in
lude <tom
rypt.h>

int main(void)

{

prng_state prng;

unsigned
har buf[10℄;

int err;

/* start it */

if ((err = yarrow_start(&prng)) != CRYPT_OK) {

printf("Start error: %s\n", error_to_string(err));

}

/* add entropy */

if ((err = yarrow_add_entropy("hello world", 11, &prng))

!= CRYPT_OK) {

printf("Add_entropy error: %s\n", error_to_string(err));

}

/* ready and read */

if ((err = yarrow_ready(&prng)) != CRYPT_OK) {

printf("Ready error: %s\n", error_to_string(err));

}

printf("Read %lu bytes from yarrow\n",

yarrow_read(buf, sizeof(buf), &prng));

return 0;

}

6.2 PRNG Des
riptors

PRNGs have des
riptors that allow plugin driven fun
tions to be
reated using PRNGs. The plugin

des
riptors are stored in the stru
ture prng des
riptor. The format of an element is:

stru
t _prng_des
riptor {

har *name;

int export_size; /* size in bytes of exported state */

int (*start) (prng_state *);

int (*add_entropy)(
onst unsigned
har *, unsigned long,

prng_state *);

int (*ready) (prng_state *);

unsigned long (*read)(unsigned
har *, unsigned long len,

64 www.libtom.org

prng_state *);

void (*done)(prng_state *);

int (*export)(unsigned
har *, unsigned long *, prng_state *);

int (*import)(
onst unsigned
har *, unsigned long, prng_state *);

int (*test)(void);

};

To �nd a PRNG in the des
riptor table the following fun
tion
an be used:

int find_prng(
onst
har *name);

This will sear
h the PRNG des
riptor table for the PRNG named name. It will return -1 if the

PRNG is not found, otherwise, it returns the index into the des
riptor table.

Just like the
iphers and hashes, you must register your prng before you
an use it. The two

fun
tions provided work exa
tly as those for the
ipher registry fun
tions. They are the following:

int register_prng(
onst stru
t _prng_des
riptor *prng);

int unregister_prng(
onst stru
t _prng_des
riptor *prng);

The register fun
tion will register the PRNG, and return the index into the table where it was

pla
ed (or -1 for error). It will avoid registering the same des
riptor twi
e, and will return the

index of the
urrent pla
ement in the table if the
aller attempts to register it more than on
e. The

unregister fun
tion will return CRYPT OK if the PRNG was found and removed. Otherwise, it

returns CRYPT ERROR.

6.2.1 PRNGs Provided

Name Des
riptor Usage

Yarrow yarrow des
 Fast short-term PRNG

Fortuna fortuna des
 Fast long-term PRNG (re
ommended)

RC4 r
4 des
 Stream Cipher

SOBER-128 sober128 des
 Stream Cipher (also very fast PRNG)

Figure 6.1: List of Provided PRNGs

Yarrow

Yarrow is fast PRNG meant to
olle
t an unspe
i�ed amount of entropy from sour
es (keyboard,

mouse, interrupts, et
), and produ
e an unbounded string of random bytes.

Note: This PRNG is still se
ure for most tasks but is no longer re
ommended. Users should

use Fortuna instead.

6.2 PRNG Des
riptors 65

Fortuna

Fortuna is a fast atta
k tolerant and more thoroughly designed PRNG suitable for long term usage.

It is faster than the default implementation of Yarrow

1

while providing more se
urity.

Fortuna is slightly less
exible than Yarrow in the sense that it only works with the AES blo
k

ipher and SHA{256 hash fun
tion. Te
hni
ally, Fortuna will work with any blo
k
ipher that

a

epts a 256{bit key, and any hash that produ
es at least a 256{bit output. However, to make the

implementation simpler it has been �xed to those
hoi
es.

Fortuna is more se
ure than Yarrow in the sense that atta
kers who learn parts of the entropy

being added to the PRNG learn far less about the state than that of Yarrow. Without getting

into to many details Fortuna has the ability to re
over from state determination atta
ks where the

atta
ker starts to learn information from the PRNGs output about the internal state. Yarrow on

the other hand,
annot re
over from that problem until new entropy is added to the pool and put

to use through the ready() fun
tion.

RC4

RC4 is an old stream
ipher that
an also double duty as a PRNG in a pin
h. You key RC4 by

alling add entropy(), and setup the key by
alling ready(). You
an only add up to 256 bytes via

add entropy().

When you read from RC4, the output is XOR'ed against your bu�er you provide. In this

manner, you
an use r
4 read() as an en
rypt (and de
rypt) fun
tion.

You really should not use RC4. This is not be
ause RC4 is weak, (though biases are known to

exist) but simply due to the fa
t that faster alternatives exist.

SOBER-128

SOBER{128 is a stream
ipher designed by the QUALCOMM Australia team. Like RC4, you key it

by
alling add entropy(). There is no need to
all ready() for this PRNG as it does not do anything.

Note: this
ipher has several oddities about how it operates. The �rst
all to add entropy() sets

the
ipher's key. Every other time
all to the add entropy() fun
tion sets the
ipher's IV variable.

The IV me
hanism allows you to en
rypt several messages with the same key, and not re{use the

same key material.

Unlike Yarrow and Fortuna, all of the entropy (and hen
e se
urity) of this algorithm rests in

the data you pass it on the �rst
all to add entropy(). All bu�ers sent to add entropy() must have

a length that is a multiple of four bytes.

Like RC4, the output of SOBER{128 is XOR'ed against the bu�er you provide it. In this

manner, you
an use sober128 read() as an en
rypt (and de
rypt) fun
tion.

Sin
e SOBER-128 has a �xed keying s
heme, and is very fast (faster than RC4) the ideal usage

of SOBER-128 is to key it from the output of Fortuna (or Yarrow), and use it to en
rypt messages.

It is also ideal for simulations whi
h need a high quality (and fast) stream of bytes.

Example Usage

#in
lude <tom
rypt.h>

1

Yarrow has been implemented to work with most
ipher and hash
ombos based on whi
h you have
hosen to

build into the library.

66 www.libtom.org

int main(void)

{

prng_state prng;

unsigned
har buf[32℄;

int err;

if ((err = r
4_start(&prng)) != CRYPT_OK) {

printf("RC4 init error: %s\n", error_to_string(err));

exit(-1);

}

/* use "key" as the key */

if ((err = r
4_add_entropy("key", 3, &prng)) != CRYPT_OK) {

printf("RC4 add entropy error: %s\n", error_to_string(err));

exit(-1);

}

/* setup RC4 for use */

if ((err = r
4_ready(&prng)) != CRYPT_OK) {

printf("RC4 ready error: %s\n", error_to_string(err));

exit(-1);

}

/* en
rypt buffer */

str
py(buf,"hello world");

if (r
4_read(buf, 11, &prng) != 11) {

printf("RC4 read error\n");

exit(-1);

}

return 0;

}

To de
rypt you have to do the exa
t same steps.

6.3 The Se
ure RNG

An RNG is related to a PRNG in many ways, ex
ept that it does not expand a smaller seed to

get the data. They generate their random bits by performing some
omputation on fresh input

bits. Possibly the hardest thing to get
orre
tly in a
ryptosystem is the PRNG. Computers are

deterministi
 that try hard not to stray from pre{determined paths. This makes gathering entropy

needed to seed a PRNG a hard task.

There is one small fun
tion that may help on
ertain platforms:

unsigned long rng_get_bytes(

unsigned
har *buf,

unsigned long len,

void (*
allba
k)(void));

Whi
h will try one of three methods of getting random data. The �rst is to open the popular

6.3 The Se
ure RNG 67

/dev/random devi
e whi
h on most *NIX platforms provides
ryptographi
 random bits

2

. The

se
ond method is to try the Mi
rosoft Cryptographi
 Servi
e Provider, and read the RNG. The

third method is an ANSI C
lo
k drift method that is also somewhat popular but gives bits of lower

entropy. The
allba
k parameter is a pointer to a fun
tion that returns void. It is used when the

slower ANSI C RNG must be used so the
alling appli
ation
an still work. This is useful sin
e

the ANSI C RNG has a throughput of roughly three bytes a se
ond. The
allba
k pointer may be

set to NULL to avoid using it if you do not want to. The fun
tion returns the number of bytes

a
tually read from any RNG sour
e. There is a fun
tion to help setup a PRNG as well:

int rng_make_prng(int bits,

int wprng,

prng_state *prng,

void (*
allba
k)(void));

This will try to initialize the prng with a state of at least bits of entropy. The
allba
k parameter

works mu
h like the
allba
k in rng get bytes(). It is highly re
ommended that you use this fun
tion

to setup your PRNGs unless you have a platform where the RNG does not work well. Example

usage of this fun
tion is given below:

#in
lude <tom
rypt.h>

int main(void)

{

e

_key mykey;

prng_state prng;

int err;

/* register yarrow */

if (register_prng(&yarrow_des
) == -1) {

printf("Error registering Yarrow\n");

return -1;

}

/* setup the PRNG */

if ((err = rng_make_prng(128, find_prng("yarrow"), &prng, NULL))

!= CRYPT_OK) {

printf("Error setting up PRNG, %s\n", error_to_string(err));

return -1;

}

/* make a 192-bit ECC key */

if ((err = e

_make_key(&prng, find_prng("yarrow"), 24, &mykey))

!= CRYPT_OK) {

printf("Error making key: %s\n", error_to_string(err));

return -1;

}

return 0;

}

2

This devi
e is available in Windows through the Cygwin
ompiler suite. It emulates /dev/random via the

Mi
rosoft CSP.

68 www.libtom.org

6.3.1 The Se
ure PRNG Interfa
e

It is possible to a

ess the se
ure RNG through the PRNG interfa
e, and in turn use it within

dependent fun
tions su
h as the PK API. This simpli�es the
ryptosystem on platforms where

the se
ure RNG is fast. The se
ure PRNG never requires to be started, that is you need not
all

the start, add entropy, or ready fun
tions. For example,
onsider the previous example using this

PRNG.

#in
lude <tom
rypt.h>

int main(void)

{

e

_key mykey;

int err;

/* register SPRNG */

if (register_prng(&sprng_des
) == -1) {

printf("Error registering SPRNG\n");

return -1;

}

/* make a 192-bit ECC key */

if ((err = e

_make_key(NULL, find_prng("sprng"), 24, &mykey))

!= CRYPT_OK) {

printf("Error making key: %s\n", error_to_string(err));

return -1;

}

return 0;

}

C h a p t e r 7

RSA Publi
 Key Cryptography

7.1 Introdu
tion

RSA wrote the PKCS #1 spe
i�
ations whi
h detail RSA Publi
 Key Cryptography. In the spe
i�-

ations are padding algorithms for en
ryption and signatures. The standard in
ludes the v1.5 and

v2.1 algorithms. To simplify matters a little the v2.1 en
ryption and signature padding algorithms

are
alled OAEP and PSS respe
tively.

7.2 PKCS #1 Padding

PKCS #1 v1.5 padding is so simple that both signature and en
ryption padding are performed

by the same fun
tion. Note: the signature padding does not in
lude the ASN.1 padding required.

That is performed by the rsa sign hash ex() fun
tion do
umented later on in this
hapter.

7.2.1 PKCS #1 v1.5 En
oding

The following fun
tion performs PKCS #1 v1.5 padding:

int pk
s_1_v1_5_en
ode(

onst unsigned
har *msg,

unsigned long msglen,

int blo
k_type,

unsigned long modulus_bitlen,

prng_state *prng,

int prng_idx,

unsigned
har *out,

unsigned long *outlen);

This will en
ode the message pointed to by msg of length msglen o
tets. The blo
k type pa-

rameter must be set to LTC PKCS 1 EME to perform en
ryption padding. It must be set to

LTC PKCS 1 EMSA to perform signature padding. The modulus bitlen parameter indi
ates the

length of the modulus in bits. The padded data is stored in out with a length of outlen o
tets. The

output will not be longer than the modulus whi
h helps allo
ate the
orre
t output bu�er size.

69

70 www.libtom.org

Only en
ryption padding requires a PRNG. When performing signature padding the prng idx

parameter may be left to zero as it is not
he
ked for validity.

7.2.2 PKCS #1 v1.5 De
oding

The following fun
tion performs PKCS #1 v1.5 de{padding:

int pk
s_1_v1_5_de
ode(

onst unsigned
har *msg,

unsigned long msglen,

int blo
k_type,

unsigned long modulus_bitlen,

unsigned
har *out,

unsigned long *outlen,

int *is_valid);

This will remove the PKCS padding data pointed to by msg of length msglen. The de
oded data is

stored in out of length outlen. If the padding is valid, a 1 is stored in is valid, otherwise, a 0 is stored.

The blo
k type parameter must be set to either LTC PKCS 1 EME or LTC PKCS 1 EMSA

depending on whether en
ryption or signature padding is being removed.

7.3 PKCS #1 v2.1 En
ryption

PKCS #1 RSA En
ryption amounts to OAEP padding of the input message followed by the modular

exponentiation. As far as this portion of the library is
on
erned we are only dealing with th OAEP

padding of the message.

7.3.1 OAEP En
oding

The following fun
tion performs PKCS #1 v2.1 en
ryption padding:

int pk
s_1_oaep_en
ode(

onst unsigned
har *msg,

unsigned long msglen,

onst unsigned
har *lparam,

unsigned long lparamlen,

unsigned long modulus_bitlen,

prng_state *prng,

int prng_idx,

int hash_idx,

unsigned
har *out,

unsigned long *outlen);

This a

epts msg as input of length msglen whi
h will be OAEP padded. The lparam variable

is an additional system spe
i�
 tag that
an be applied to the en
oding. This is useful to identify

whi
h system en
oded the message. If no varian
e is desired then lparam
an be set to NULL.

7.4 PKCS #1 Digital Signatures 71

OAEP en
oding requires the length of the modulus in bits in order to
al
ulate the size of

the output. This is passed as the parameter modulus bitlen. hash idx is the index into the hash

des
riptor table of the hash desired. PKCS #1 allows any hash to be used but both the en
oder

and de
oder must use the same hash in order for this to su

eed. The size of hash output a�e
ts the

maximum sized input message. prng idx and prng are the random number generator arguments

required to randomize the padding pro
ess. The padded message is stored in out along with the

length in outlen.

If h is the length of the hash andm the length of the modulus (both in o
tets) then the maximum

payload for msg is m� 2h� 2. For example, with a 1024{bit RSA key and SHA{1 as the hash the

maximum payload is 86 bytes.

Note that when the message is padded it still has not been RSA en
rypted. You must pass the

output of this fun
tion to rsa exptmod() to en
rypt it.

7.3.2 OAEP De
oding

int pk
s_1_oaep_de
ode(

onst unsigned
har *msg,

unsigned long msglen,

onst unsigned
har *lparam,

unsigned long lparamlen,

unsigned long modulus_bitlen,

int hash_idx,

unsigned
har *out,

unsigned long *outlen,

int *res);

This fun
tion de
odes an OAEP en
oded message and outputs the original message that was

passed to the OAEP en
oder. msg is the output of pk
s 1 oaep en
ode() of length msglen. lparam

is the same system variable passed to the OAEP en
oder. If it does not mat
h what was used

during en
oding this fun
tion will not de
ode the pa
ket. modulus bitlen is the size of the RSA

modulus in bits and must mat
h what was used during en
oding. Similarly the hash idx index into

the hash des
riptor table must mat
h what was used during en
oding.

If the fun
tion su

eeds it de
odes the OAEP en
oded message into out of length outlen and

stores a 1 in res. If the pa
ket is invalid it stores 0 in res and if the fun
tion fails for another reason

it returns an error
ode.

7.4 PKCS #1 Digital Signatures

7.4.1 PSS En
oding

PSS en
oding is the se
ond half of the PKCS #1 standard whi
h is padding to be applied to

messages that are signed.

int pk
s_1_pss_en
ode(

onst unsigned
har *msghash,

unsigned long msghashlen,

unsigned long saltlen,

72 www.libtom.org

prng_state *prng,

int prng_idx,

int hash_idx,

unsigned long modulus_bitlen,

unsigned
har *out,

unsigned long *outlen);

This fun
tion assumes the message to be PSS en
oded has previously been hashed. The input

hash msghash is of length msghashlen. PSS allows a variable length random salt (it
an be zero

length) to be introdu
ed in the signature pro
ess. hash idx is the index into the hash des
riptor

table of the hash to use. prng idx and prng are the random number generator information required

for the salt.

Similar to OAEP en
oding modulus bitlen is the size of the RSA modulus (in bits). It limits

the size of the salt. If m is the length of the modulus h the length of the hash output (in o
tets)

then there
an be m� h� 2 bytes of salt.

This fun
tion does not a
tually sign the data it merely pads the hash of a message so that it

an be pro
essed by rsa exptmod().

7.4.2 PSS De
oding

To de
ode a PSS en
oded signature blo
k you have to use the following.

int pk
s_1_pss_de
ode(

onst unsigned
har *msghash,

unsigned long msghashlen,

onst unsigned
har *sig,

unsigned long siglen,

unsigned long saltlen,

int hash_idx,

unsigned long modulus_bitlen,

int *res);

This will de
ode the PSS en
oded message in sig of length siglen and
ompare it to values in

msghash of length msghashlen. If the blo
k is a valid PSS blo
k and the de
oded hash equals the

hash supplied res is set to non{zero. Otherwise, it is set to zero. The rest of the parameters are as

in the PSS en
ode
all.

It's important to use the same saltlen and hash for both en
oding and de
oding as otherwise

the pro
edure will not work.

7.5 RSA Key Operations

7.5.1 Ba
kground

RSA is a publi
 key algorithm that is based on the inability to �nd the e-th root modulo a
omposite

of unknown fa
torization. Normally the diÆ
ulty of breaking RSA is asso
iated with the integer

fa
toring problem but they are not stri
tly equivalent.

7.5 RSA Key Operations 73

The system begins with with two primes p and q and their produ
t N = pq. The order or Euler

totient of the multipli
ative sub-group formed modulo N is given as '(N) = (p � 1)(q � 1) whi
h

an be redu
ed to l
m(p� 1; q � 1). The publi
 key
onsists of the
omposite N and some integer

e su
h that g
d(e; '(N)) = 1. The private key
onsists of the
omposite N and the inverse of e

modulo '(N) often simply denoted as de � 1 (mod '(N)).

A person who wants to en
rypt with your publi
 key simply forms an integer (the plaintext)

M su
h that 1 < M < N � 2 and
omputes the
iphertext C = M

e

(mod N). Sin
e �nding the

inverse exponent d given only N and e appears to be intra
table only the owner of the private key

an de
rypt the
iphertext and
ompute C

d

� (M

e

)

d

�M

1

�M (mod N). Similarly the owner of

the private key
an sign a message by de
rypting it. Others
an verify it by en
rypting it.

Currently RSA is a diÆ
ult system to
ryptanalyze provided that both primes are large and not

lose to ea
h other. Ideally e should be larger than 100 to prevent dire
t analysis. For example, if e

is three and you do not pad the plaintext to be en
rypted than it is possible that M

3

< N in whi
h

ase �nding the
ube-root would be trivial. The most often suggested value for e is 65537 sin
e

it is large enough to make su
h atta
ks impossible and also well designed for fast exponentiation

(requires 16 squarings and one multipli
ation).

It is important to pad the input to RSA sin
e it has parti
ular mathemati
al stru
ture. For

instan
e M

d

1

M

d

2

= (M

1

M

2

)

d

whi
h
an be used to forge a signature. Suppose M

3

= M

1

M

2

is a

message you want to have a forged signature for. Simply get the signatures for M

1

and M

2

on

their own and multiply the result together. Similar tri
ks
an be used to dedu
e plaintexts from

iphertexts. It is important not only to sign the hash of do
uments only but also to pad the inputs

with data to remove su
h stru
ture.

7.5.2 RSA Key Generation

For RSA routines a single rsa key stru
ture is used. To make a new RSA key
all:

int rsa_make_key(prng_state *prng,

int wprng,

int size,

long e,

rsa_key *key);

Where wprng is the index into the PRNG des
riptor array. The size parameter is the size in

bytes of the RSA modulus desired. The e parameter is the en
ryption exponent desired, typi
al

values are 3, 17, 257 and 65537. Sti
k with 65537 sin
e it is big enough to prevent trivial math

atta
ks, and not super slow. The key parameter is where the
onstru
ted key is pla
ed. All keys

must be at least 128 bytes, and no more than 512 bytes in size (that is from 1024 to 4096 bits).

Note: the rsa make key() fun
tion allo
ates memory at run{time when you make the key. Make

sure to
all rsa free() (see below) when you are �nished with the key. If rsa make key() fails it will

automati
ally free the memory allo
ated.

There are two types of RSA keys. The types are PK PRIVATE and PK PUBLIC. The �rst

type is a private RSA key whi
h in
ludes the CRT parameters

1

in the form of a RSAPrivateKey

(PKCS #1
ompliant). The se
ond type, is a publi
 RSA key whi
h only in
ludes the modulus and

publi
 exponent. It takes the form of a RSAPubli
Key (PKCS #1
ompliant).

1

As of v0.99 the PK PRIVATE OPTIMIZED type has been depre
ated, and has been repla
ed by the

PK PRIVATE type.

74 www.libtom.org

7.5.3 RSA Exponentiation

To do raw work with the RSA fun
tion, that is without padding, use the following fun
tion:

int rsa_exptmod(
onst unsigned
har *in,

unsigned long inlen,

unsigned
har *out,

unsigned long *outlen,

int whi
h,

rsa_key *key);

This will load the bignum from in as a big endian integer in the format PKCS #1 spe
i�es, raises

it to either e or d and stores the result in out and the size of the result in outlen. whi
h is set to

PK PUBLIC to use e (i.e. for en
ryption/verifying) and set to PK PRIVATE to use d as the

exponent (i.e. for de
rypting/signing).

Note: the output of this fun
tion is zero{padded as per PKCS #1 spe
i�
ation. This allows

this routine to work with PKCS #1 padding fun
tions properly.

7.6 RSA Key En
ryption

Normally RSA is used to en
rypt short symmetri
 keys whi
h are then used in blo
k
iphers to

en
rypt a message. To fa
ilitate en
rypting short keys the following fun
tions have been provided.

int rsa_en
rypt_key(

onst unsigned
har *in,

unsigned long inlen,

unsigned
har *out,

unsigned long *outlen,

onst unsigned
har *lparam,

unsigned long lparamlen,

prng_state *prng,

int prng_idx,

int hash_idx,

rsa_key *key);

This fun
tion will OAEP pad in of length inlen bytes, RSA en
rypt it, and store the
iphertext in

out of length outlen o
tets. The lparam and lparamlen are the same parameters you would pass to

pk
s 1 oaep en
ode().

7.6.1 Extended En
ryption

As of v1.15, the library supports both v1.5 and v2.1 PKCS #1 style paddings in these higher level

fun
tions. The following is the extended en
ryption fun
tion:

int rsa_en
rypt_key_ex(

onst unsigned
har *in,

unsigned long inlen,

unsigned
har *out,

7.7 RSA Key De
ryption 75

unsigned long *outlen,

onst unsigned
har *lparam,

unsigned long lparamlen,

prng_state *prng,

int prng_idx,

int hash_idx,

int padding,

rsa_key *key);

The parameters are all the same as for rsa en
rypt key() ex
ept for the addition of the padding

parameter. It must be set to LTC PKCS 1 V1 5 to perform v1.5 en
ryption, or set to LTC PKCS 1 OAEP

to perform v2.1 en
ryption.

When performing v1.5 en
ryption, the hash and lparam parameters are totally ignored and
an

be set to NULL or zero (respe
tively).

7.7 RSA Key De
ryption

int rsa_de
rypt_key(

onst unsigned
har *in,

unsigned long inlen,

unsigned
har *out,

unsigned long *outlen,

onst unsigned
har *lparam,

unsigned long lparamlen,

int hash_idx,

int *stat,

rsa_key *key);

This fun
tion will RSA de
rypt in of length inlen then OAEP de-pad the resulting data and store

it in out of length outlen. The lparam and lparamlen are the same parameters you would pass to

pk
s 1 oaep de
ode().

If the RSA de
rypted data is not a valid OAEP pa
ket then stat is set to 0. Otherwise, it is set

to 1.

7.7.1 Extended De
ryption

As of v1.15, the library supports both v1.5 and v2.1 PKCS #1 style paddings in these higher level

fun
tions. The following is the extended de
ryption fun
tion:

int rsa_de
rypt_key_ex(

onst unsigned
har *in,

unsigned long inlen,

unsigned
har *out,

unsigned long *outlen,

onst unsigned
har *lparam,

unsigned long lparamlen,

76 www.libtom.org

int hash_idx,

int padding,

int *stat,

rsa_key *key);

Similar to the extended en
ryption, the new parameter padding indi
ates whi
h version of the

PKCS #1 standard to use. It must be set to LTC PKCS 1 V1 5 to perform v1.5 de
ryption, or

set to LTC PKCS 1 OAEP to perform v2.1 de
ryption.

When performing v1.5 de
ryption, the hash and lparam parameters are totally ignored and
an

be set to NULL or zero (respe
tively).

7.8 RSA Signature Generation

Similar to RSA key en
ryption RSA is also used to digitally sign message digests (hashes). To

fa
ilitate this pro
ess the following fun
tions have been provided.

int rsa_sign_hash(
onst unsigned
har *in,

unsigned long inlen,

unsigned
har *out,

unsigned long *outlen,

prng_state *prng,

int prng_idx,

int hash_idx,

unsigned long saltlen,

rsa_key *key);

This will PSS en
ode the message digest pointed to by in of length inlen o
tets. Next, the PSS

en
oded hash will be RSA signed and the output stored in the bu�er pointed to by out of length

outlen o
tets.

The hash idx parameter indi
ates whi
h hash will be used to
reate the PSS en
oding. It should

be the same as the hash used to hash the message being signed. The saltlen parameter indi
ates

the length of the desired salt, and should typi
ally be small. A good default value is between 8 and

16 o
tets. Stri
tly, it must be small than modulus len� hLen� 2 where modulus len is the size of

the RSA modulus (in o
tets), and hLen is the length of the message digest produ
ed by the
hosen

hash.

7.8.1 Extended Signatures

As of v1.15, the library supports both v1.5 and v2.1 signatures. The extended signature generation

fun
tion has the following prototype:

int rsa_sign_hash_ex(

onst unsigned
har *in,

unsigned long inlen,

unsigned
har *out,

unsigned long *outlen,

int padding,

7.9 RSA Signature Veri�
ation 77

prng_state *prng,

int prng_idx,

int hash_idx,

unsigned long saltlen,

rsa_key *key);

This will PKCS en
ode the message digest pointed to by in of length inlen o
tets. Next, the

PKCS en
oded hash will be RSA signed and the output stored in the bu�er pointed to by out of

length outlen o
tets. The padding parameter must be set to LTC PKCS 1 V1 5 to produ
e a

v1.5 signature, otherwise, it must be set to LTC PKCS 1 PSS to produ
e a v2.1 signature.

When performing a v1.5 signature the prng, prng idx, and hash idx parameters are not
he
ked

and
an be left to any values su
h as fNULL, 0, 0g.

7.9 RSA Signature Veri�
ation

int rsa_verify_hash(
onst unsigned
har *sig,

unsigned long siglen,

onst unsigned
har *msghash,

unsigned long msghashlen,

int hash_idx,

unsigned long saltlen,

int *stat,

rsa_key *key);

This will RSA verify the signature pointed to by sig of length siglen o
tets. Next, the RSA

de
oded data is PSS de
oded and the extra
ted hash is
ompared against the message digest pointed

to by msghash of length msghashlen o
tets.

If the RSA de
oded data is not a valid PSS message, or if the PSS de
oded hash does not mat
h

the msghash value, res is set to 0. Otherwise, if the fun
tion su

eeds, and signature is valid res is

set to 1.

7.9.1 Extended Veri�
ation

As of v1.15, the library supports both v1.5 and v2.1 signature veri�
ation. The extended signature

veri�
ation fun
tion has the following prototype:

int rsa_verify_hash_ex(

onst unsigned
har *sig,

unsigned long siglen,

onst unsigned
har *hash,

unsigned long hashlen,

int padding,

int hash_idx,

unsigned long saltlen,

int *stat,

rsa_key *key);

78 www.libtom.org

This will RSA verify the signature pointed to by sig of length siglen o
tets. Next, the RSA

de
oded data is PKCS de
oded and the extra
ted hash is
ompared against the message digest

pointed to by msghash of length msghashlen o
tets.

If the RSA de
oded data is not a valid PSS message, or if the PKCS de
oded hash does not

mat
h the msghash value, res is set to 0. Otherwise, if the fun
tion su

eeds, and signature is valid

res is set to 1.

The padding parameter must be set to LTC PKCS 1 V1 5 to perform a v1.5 veri�
ation.

Otherwise, it must be set to LTC PKCS 1 PSS to perform a v2.1 veri�
ation. When performing

a v1.5 veri�
ation the hash idx parameter is ignored.

7.10 RSA En
ryption Example

#in
lude <tom
rypt.h>

int main(void)

{

int err, hash_idx, prng_idx, res;

unsigned long l1, l2;

unsigned
har pt[16℄, pt2[16℄, out[1024℄;

rsa_key key;

/* register prng/hash */

if (register_prng(&sprng_des
) == -1) {

printf("Error registering sprng");

return EXIT_FAILURE;

}

/* register a math library (in this
ase TomsFastMath)

lt
_mp = tfm_des
;

if (register_hash(&sha1_des
) == -1) {

printf("Error registering sha1");

return EXIT_FAILURE;

}

hash_idx = find_hash("sha1");

prng_idx = find_prng("sprng");

/* make an RSA-1024 key */

if ((err = rsa_make_key(NULL, /* PRNG state */

prng_idx, /* PRNG idx */

1024/8, /* 1024-bit key */

65537, /* we like e=65537 */

&key) /* where to store the key */

) != CRYPT_OK) {

printf("rsa_make_key %s", error_to_string(err));

return EXIT_FAILURE;

}

/* fill in pt[℄ with a key we want to send ... */

l1 = sizeof(out);

7.11 RSA Key Format 79

if ((err = rsa_en
rypt_key(pt, /* data we wish to en
rypt */

16, /* data is 16 bytes long */

out, /* where to store
iphertext */

&l1, /* length of
iphertext */

"TestApp", /* our lparam for this program */

7, /* lparam is 7 bytes long */

NULL, /* PRNG state */

prng_idx, /* prng idx */

hash_idx, /* hash idx */

&key) /* our RSA key */

) != CRYPT_OK) {

printf("rsa_en
rypt_key %s", error_to_string(err));

return EXIT_FAILURE;

}

/* now let's de
rypt the en
rypted key */

l2 = sizeof(pt2);

if ((err = rsa_de
rypt_key(out, /* en
rypted data */

l1, /* length of
iphertext */

pt2, /* where to put plaintext */

&l2, /* plaintext length */

"TestApp", /* lparam for this program */

7, /* lparam is 7 bytes long */

hash_idx, /* hash idx */

&res, /* validity of data */

&key) /* our RSA key */

) != CRYPT_OK) {

printf("rsa_de
rypt_key %s", error_to_string(err));

return EXIT_FAILURE;

}

/* if all went well pt == pt2, l2 == 16, res == 1 */

}

7.11 RSA Key Format

The RSA key format adopted for exporting and importing keys is the PKCS #1 format de�ned by

the ASN.1
onstru
ts known as RSAPubli
Key and RSAPrivateKey. Additionally, the OpenSSL

key format is supported by the import fun
tion only.

7.11.1 RSA Key Export

To export a RSA key use the following fun
tion.

int rsa_export(unsigned
har *out,

unsigned long *outlen,

int type,

rsa_key *key);

80 www.libtom.org

This will export the RSA key in either a RSAPubli
Key or RSAPrivateKey (PKCS #1 types)

depending on the value of type. When it is set to PK PRIVATE the export format will be

RSAPrivateKey and otherwise it will be RSAPubli
Key.

7.11.2 RSA Key Import

To import a RSA key use the following fun
tion.

int rsa_import(
onst unsigned
har *in,

unsigned long inlen,

rsa_key *key);

This will import the key stored in inlen and import it to key. If the fun
tion fails it will automati-

ally free any allo
ated memory. This fun
tion
an import both RSAPubli
Key and RSAPrivateKey

formats.

As of v1.06 this fun
tion
an also import OpenSSL DER formatted publi
 RSA keys. They are

essentially en
apsulated RSAPubli
Keys. LibTomCrypt will import the key, strip o� the additional

data (it's the preferred hash) and �ll in the rsa key stru
ture as if it were a native RSAPubli
Key.

Note that there is no fun
tion provided to export in this format.

C h a p t e r 8

Ellipti
 Curve Cryptography

8.1 Ba
kground

The library provides a set of
ore ECC fun
tions as well that are designed to be the Ellipti
 Curve

analogy of all of the DiÆe-Hellman routines in the previous
hapter. Ellipti

urves (of
ertain

forms) have the bene�t that they are harder to atta
k (no sub-exponential atta
ks exist unlike

normal DH
rypto) in fa
t the fastest atta
k requires the square root of the order of the base point

in time. That means if you use a base point of order 2

192

(whi
h would represent a 192-bit key)

then the work fa
tor is 2

96

in order to �nd the se
ret key.

The
urves in this library are taken from the following website:

http://
sr
.nist.gov/
ryptval/dss.htm

As of v1.15 three new
urves from the SECG standards are also in
luded they are the se
p112r1,

se
p128r1, and se
p160r1
urves. These
urves were added to support smaller devi
es whi
h do not

need as large keys for se
urity.

They are all
urves over the integers modulo a prime. The
urves have the basi
 equation that

is:

y

2

= x

3

� 3x+ b (mod p) (8.1)

The variable b is
hosen su
h that the number of points is nearly maximal. In fa
t the order

of the base points � provided are very
lose to p that is jj'(�)jj

�

jjpjj. The
urves range in order

from

�

2

112

points to

�

2

521

. A

ording to the sour
e do
ument any key size greater than or equal

to 256-bits is suÆ
ient for long term se
urity.

8.2 Fixed Point Optimizations

As of v1.12 of LibTomCrypt, support for Fixed Point ECC point multipli
ation has been added.

It is a generi
 optimization that is supported by any
onforming math plugin. It is enabled by

de�ning MECC FP during the build, su
h as

CFLAGS="-DTFM_DESC -DMECC_FP" make

81

82 www.libtom.org

whi
h will build LTC using the TFM math library and enabling this new feature. The feature is

not enabled by default as it is NOT thread safe (by default). It supports the LTC lo
king ma
ros

(su
h as by enabling LTC PTHREAD), but by default is not lo
ked.

The optimization works by using a Fixed Point multiplier on any base point you use twi
e or

more in a short period of time. It has a limited size
a
he (of FP ENTRIES entries) whi
h it uses to

hold re
ent bases passed to lt
 e

 mulmod(). Any base dete
ted to be used twi
e is sent through

the pre{
omputation phase, and then the �xed point algorithm
an be used. For example, if you

use a NIST base point twi
e in a row, the 2

nd

and all subsequent point multipli
ations with that

point will use the faster algorithm.

The optimization uses a window on the multipli
and of FP LUT bits (default: 8, min: 2, max:

12), and this
ontrols the memory/time trade-o�. The larger the value the faster the algorithm

will be but the more memory it will take. The memory usage is 3 � 2

FP LUT

integers whi
h by

default with TFM amounts to about 400kB of memory. Tuning TFM (by
hanging FP SIZE)
an

de
rease the usage by a fair amount. Memory is only used by a
a
he entry if it is a
tive. Both

FP ENTRIES and FP LUT are de�nable on the
ommand line if you wish to override them. For

instan
e,

CFLAGS="-DTFM_DESC -DMECC_FP -DFP_ENTRIES=8 -DFP_LUT=6" make

would de�ne a window of 6 bits and limit the
a
he to 8 entries. Generally, it is better to �rst

tune TFM by adjusting FP SIZE (from tfm.h). It defaults to 4096 bits (512 bytes) whi
h is way

more than what is required by ECC. At most, you need 1152 bits to a

ommodate ECC{521. If

you're only using (say) ECC{256 you will only need 576 bits, whi
h would redu
e the memory

usage by 700%.

8.3 Key Format

LibTomCrypt uses a unique format for ECC publi
 and private keys. While ANSI X9.63 partially

spe
i�es key formats, it does it in a less than ideally simple manner. In the
ase of LibTomCrypt,

it is meant solely for NIST and SECG GF (p)
urves. The format of the keys is as follows:

ECCPubli
Key ::= SEQUENCE {

flags BIT STRING(0), -- publi
/private flag (always zero),

keySize INTEGER, -- Curve size (in bits) divided by eight

-- and rounded down, e.g. 521 => 65

pubkey.x INTEGER, -- The X
o-ordinate of the publi
 key point

pubkey.y INTEGER, -- The Y
o-ordinate of the publi
 key point

}

ECCPrivateKey ::= SEQUENCE {

flags BIT STRING(1), -- publi
/private flag (always one),

keySize INTEGER, -- Curve size (in bits) divided by eight

-- and rounded down, e.g. 521 => 65

pubkey.x INTEGER, -- The X
o-ordinate of the publi
 key point

pubkey.y INTEGER, -- The Y
o-ordinate of the publi
 key point

se
ret.k INTEGER, -- The se
ret key s
alar

}

The �rst
ags bit denotes whether the key is publi
 (zero) or private (one).

8.4 ECC Curve Parameters 83

8.4 ECC Curve Parameters

The library uses the following stru
ture to des
ribe an ellipti

urve. This is used internally, as well

as by the new extended ECC fun
tions whi
h allow the user to spe
ify their own
urves.

/** Stru
ture defines a NIST GF(p)
urve */

typedef stru
t {

/** The size of the
urve in o
tets */

int size;

/** name of
urve */

har *name;

/** The prime that defines the field (en
oded in hex) */

har *prime;

/** The fields B param (hex) */

har *B;

/** The order of the
urve (hex) */

har *order;

/** The x
o-ordinate of the base point on the
urve (hex) */

har *Gx;

/** The y
o-ordinate of the base point on the
urve (hex) */

har *Gy;

} lt
_e

_set_type;

The
urve must be of the form y

2

= x

3

� 3x+ b, and all of the integer parameters are en
oded

in hexade
imal format.

8.5 Core Fun
tions

8.5.1 ECC Key Generation

There is a key stru
ture
alled e

 key used by the ECC fun
tions. There is a fun
tion to make a

key:

int e

_make_key(prng_state *prng,

int wprng,

int keysize,

e

_key *key);

The keysize is the size of the modulus in bytes desired. Currently dire
tly supported values are

12, 16, 20, 24, 28, 32, 48, and 65 bytes whi
h
orrespond to key sizes of 112, 128, 160, 192, 224,

256, 384, and 521 bits respe
tively. If you pass a key size that is between any key size it will round

the keysize up to the next available one.

The fun
tion will free any internally allo
ated resour
es if there is an error.

84 www.libtom.org

8.5.2 Extended Key Generation

As of v1.16, the library supports an extended key generation routine whi
h allows the user to spe
ify

their own
urve. It is spe
i�ed as follows:

int e

_make_key_ex(

prng_state *prng,

int wprng,

e

_key *key,

onst lt
_e

_set_type *dp);

This fun
tion generates a random ECC key over the
urve spe
i�ed by the parameters by dp.

The rest of the parameters are equivalent to those from the original key generation fun
tion.

8.5.3 ECC Key Free

To free the memory allo
ated by a e

 make key(), e

 make key ex(), e

 import(), or e

 import ex()

all use the following fun
tion:

void e

_free(e

_key *key);

8.5.4 ECC Key Export

To export an ECC key using the LibTomCrypt format
all the following fun
tion:

int e

_export(unsigned
har *out,

unsigned long *outlen,

int type,

e

_key *key);

This will export the key with the given type (PK PUBLIC or PK PRIVATE), and store it to

out.

8.5.5 ECC Key Import

The following fun
tion imports a LibTomCrypt format ECC key:

int e

_import(
onst unsigned
har *in,

unsigned long inlen,

e

_key *key);

This will import the ECC key from in, and store it in the e

 key stru
ture pointed to by key. If

the operation fails it will free any allo
ated memory automati
ally.

8.5.6 Extended Key Import

The following fun
tion imports a LibTomCrypt format ECC key using a spe
i�ed set of
urve

parameters:

8.5 Core Fun
tions 85

int e

_import_ex(
onst unsigned
har *in,

unsigned long inlen,

e

_key *key,

onst lt
_e

_set_type *dp);

This will import the key from the array pointed to by in of length inlen o
tets. The key is stored

in the ECC stru
ture pointed to by key. The
urve is spe
i�ed by the parameters pointed to by dp.

The fun
tion will free all internally allo
ated memory upon error.

8.5.7 ANSI X9.63 Export

The following fun
tion exports an ECC publi
 key in the ANSI X9.63 format:

int e

_ansi_x963_export(e

_key *key,

unsigned
har *out,

unsigned long *outlen);

The ECC key pointed to by key is exported in publi
 fashion to the array pointed to by out. The

ANSI X9.63 format used is from se
tion 4.3.6 of the standard. It does not allow for the export of

private keys.

8.5.8 ANSI X9.63 Import

The following fun
tion imports an ANSI X9.63 se
tion 4.3.6 format publi
 ECC key:

int e

_ansi_x963_import(
onst unsigned
har *in,

unsigned long inlen,

e

_key *key);

This will import the key stored in the array pointed to by in of length inlen o
tets. The imported

key is stored in the ECC key pointed to by key. The fun
tion will free any allo
ated memory upon

error.

8.5.9 Extended ANSI X9.63 Import

The following fun
tion allows the importing of an ANSI x9.63 se
tion 4.3.6 format publi
 ECC key

using user spe
i�ed domain parameters:

int e

_ansi_x963_import_ex(
onst unsigned
har *in,

unsigned long inlen,

e

_key *key,

lt
_e

_set_type *dp);

This will import the key stored in the array pointed to by in of length inlen o
tets using the domain

parameters pointed to by dp. The imported key is stored in the ECC key pointed to by key. The

fun
tion will free any allo
ated memory upon error.

86 www.libtom.org

8.5.10 ECC Shared Se
ret

To
onstru
t a DiÆe-Hellman shared se
ret with a private and publi
 ECC key, use the following

fun
tion:

int e

_shared_se
ret(e

_key *private_key,

e

_key *publi
_key,

unsigned
har *out,

unsigned long *outlen);

The private key is typi
ally the lo
al private key, and publi
 key is the key the remote party has

shared. Note: this fun
tion stores only the x
o-ordinate of the shared ellipti
 point as des
ribed

in ANSI X9.63 ECC{DH.

8.6 ECC DiÆe-Hellman En
ryption

ECC{DH En
ryption is performed by produ
ing a random key, hashing it, and XOR'ing the digest

against the plaintext. It is not stri
tly ANSI X9.63
ompliant but it is very similar. It has been

extended by using an ASN.1 sequen
e and hash obje
t identi�ers to allow portable usage. The

following fun
tion en
rypts a short string (no longer than the message digest) using this te
hnique:

8.6.1 ECC-DH En
ryption

int e

_en
rypt_key(
onst unsigned
har *in,

unsigned long inlen,

unsigned
har *out,

unsigned long *outlen,

prng_state *prng,

int wprng,

int hash,

e

_key *key);

As the name implies this fun
tion en
rypts a (symmetri
) key, and is not intended for en
rypting

long messages dire
tly. It will en
rypt the plaintext in the array pointed to by in of length inlen

o
tets. It uses the publi
 ECC key pointed to by key, and hash algorithm indexed by hash to

onstru
t a shared se
ret whi
h may be XOR'ed against the plaintext. The
iphertext is stored in

the output bu�er pointed to by out of length outlen o
tets.

The data is en
rypted to the publi
 ECC key su
h that only the holder of the private key
an

de
rypt the payload. To have multiple re
ipients multiple
all to this fun
tion for ea
h publi
 ECC

key is required.

8.6.2 ECC-DH De
ryption

int e

_de
rypt_key(
onst unsigned
har *in,

unsigned long inlen,

unsigned
har *out,

unsigned long *outlen,

e

_key *key);

8.7 EC DSA Signatures 87

This fun
tion will de
rypt an en
rypted payload. The key provided must be the private key

orresponding to the publi
 key used during en
ryption. If the wrong key is provided the fun
tion

will not spe
i�
ally return an error
ode. It is important to use some form of
hallenge response in

that
ase (e.g.
ompute a MAC of a known string).

8.6.3 ECC En
ryption Format

The pa
ket format for the en
rypted keys is the following ASN.1 SEQUENCE:

ECCEn
rypt ::= SEQUENCE {

hashID OBJECT IDENTIFIER, -- OID of hash used

pubkey OCTET STRING , -- En
apsulated ECCPubli
Key

skey OCTET STRING -- xor of plaintext and

--"hash of shared se
ret"

}

8.7 EC DSA Signatures

There are also fun
tions to sign and verify messages. They use the ANSI X9.62 EC-DSA algorithm

to generate and verify signatures in the ANSI X9.62 format.

8.7.1 EC-DSA Signature Generation

To sign a message digest (hash) use the following fun
tion:

int e

_sign_hash(
onst unsigned
har *in,

unsigned long inlen,

unsigned
har *out,

unsigned long *outlen,

prng_state *prng,

int wprng,

e

_key *key);

This fun
tion will EC{DSA sign the message digest stored in the array pointed to by in of length

inlen o
tets. The signature will be stored in the array pointed to by out of length outlen o
tets.

The fun
tion requires a properly seeded PRNG, and the ECC key provided must be a private key.

8.7.2 EC-DSA Signature Veri�
ation

int e

_verify_hash(
onst unsigned
har *sig,

unsigned long siglen,

onst unsigned
har *hash,

unsigned long hashlen,

int *stat,

e

_key *key);

88 www.libtom.org

This fun
tion will verify the EC-DSA signature in the array pointed to by sig of length siglen

o
tets, against the message digest pointed to by the array hash of length hashlen. It will store a

non{zero value in stat if the signature is valid. Note: the fun
tion will not return an error if the

signature is invalid. It will return an error, if the a
tual signature payload is an invalid format.

The ECC key must be the publi
 (or private) ECC key
orresponding to the key that performed

the signature.

8.7.3 Signature Format

The signature
ode is an implementation of X9.62 EC{DSA, and the output is
ompliant for GF(p)

urves.

8.8 ECC Keysizes

With ECC if you try to sign a hash that is bigger than your ECC key you
an run into problems.

The math will still work, and in e�e
t the signature will still work. With ECC keys the strength

of the signature is limited by the size of the hash, or the size of they key, whi
hever is smaller. For

example, if you sign with SHA256 and an ECC-192 key, you in e�e
t have 96{bits of se
urity.

The library will not warn you if you make this mistake, so it is important to
he
k yourself

before using the signatures.

C h a p t e r 9

Digital Signature Algorithm

9.1 Introdu
tion

The Digital Signature Algorithm (or DSA) is a variant of the ElGamal Signature s
heme whi
h has

been modi�ed to redu
e the bandwidth of the signatures. For example, to have 80-bits of se
urity

with ElGamal, you need a group with an order of at least 1024{bits. With DSA, you need a group

of order at least 160{bits. By
omparison, the ElGamal signature would require at least 256 bytes

of storage, whereas the DSA signature would require only at least 40 bytes.

9.2 Key Format

Sin
e no useful publi
 standard for DSA key storage was presented to me during the
ourse of

this development I made my own ASN.1 SEQUENCE whi
h I do
ument now so that others
an

interoperate with this library.

DSAPubli
Key ::= SEQUENCE {

publi
Flags BIT STRING(0), -- must be 0

g INTEGER , -- base generator

--
he
k that g^q mod p == 1

-- and that 1 < g < p - 1

p INTEGER , -- prime modulus

q INTEGER , -- order of sub-group

-- (must be prime)

y INTEGER , -- publi
 key, spe
ifi
ally,

-- g^x mod p,

--
he
k that y^q mod p == 1

-- and that 1 < y < p - 1

}

DSAPrivateKey ::= SEQUENCE {

publi
Flags BIT STRING(1), -- must be 1

g INTEGER , -- base generator

89

90 www.libtom.org

--
he
k that g^q mod p == 1

-- and that 1 < g < p - 1

p INTEGER , -- prime modulus

q INTEGER , -- order of sub-group

-- (must be prime)

y INTEGER , -- publi
 key, spe
ifi
ally,

-- g^x mod p,

--
he
k that y^q mod p == 1

-- and that 1 < y < p - 1

x INTEGER -- private key

}

The leading BIT STRING has a single bit in it whi
h is zero for publi
 keys and one for private

keys. This makes the stru
ture uniquely de
odable, and easy to work with.

9.3 Key Generation

To make a DSA key you must
all the following fun
tion

int dsa_make_key(prng_state *prng,

int wprng,

int group_size,

int modulus_size,

dsa_key *key);

The variable prng is an a
tive PRNG state and wprng the index to the des
riptor. group size and

modulus size
ontrol the diÆ
ulty of forging a signature. Both parameters are in bytes. The larger

the group size the more diÆ
ult a forgery be
omes upto a limit. The value of group size is limited

by 15 < group size < 1024 and modulus size � group size < 512. Suggested values for the pairs

are as follows.

Bits of Se
urity group size modulus size

80 20 128

120 30 256

140 35 384

160 40 512

Figure 9.1: DSA Key Sizes

When you are �nished with a DSA key you
an
all the following fun
tion to free the memory

used.

void dsa_free(dsa_key *key);

9.4 Key Veri�
ation

Ea
h DSA key is
omposed of the following variables.

9.5 Signatures 91

1. q a small prime of magnitude 256

group size

.

2. p = qr + 1 a large prime of magnitude 256

modulus size

where r is a random even integer.

3. g = h

r

(mod p) a generator of order q modulo p. h
an be any non-trivial random value. For

this library they start at h = 2 and step until g is not 1.

4. x a random se
ret (the se
ret key) in the range 1 < x < q

5. y = g

x

(mod p) the publi
 key.

A DSA key is
onsidered valid if it passes all of the following tests.

1. q must be prime.

2. p must be prime.

3. g
annot be one of f�1; 0; 1g (modulo p).

4. g must be less than p.

5. (p� 1) � 0 (mod q).

6. g

q

� 1 (mod p).

7. 1 < y < p� 1

8. y

q

� 1 (mod p).

Tests one and two ensure that the values will at least form a �eld whi
h is required for the

signatures to fun
tion. Tests three and four ensure that the generator g is not set to a trivial

value whi
h would make signature forgery easier. Test �ve ensures that q divides the order of

multipli
ative sub-group of Z =pZ . Test six ensures that the generator a
tually generates a prime

order group. Tests seven and eight ensure that the publi
 key is within range and belongs to a

group of prime order. Note that test eight does not prove that g generated y only that y belongs

to a multipli
ative sub-group of order q.

The following fun
tion will perform these tests.

int dsa_verify_key(dsa_key *key, int *stat);

This will test key and store the result in stat. If the result is stat = 0 the DSA key failed one

of the tests and should not be used at all. If the result is stat = 1 the DSA key is valid (as far as

valid mathemati
s are
on
erned).

9.5 Signatures

9.5.1 Signature Generation

To generate a DSA signature
all the following fun
tion:

92 www.libtom.org

int dsa_sign_hash(
onst unsigned
har *in,

unsigned long inlen,

unsigned
har *out,

unsigned long *outlen,

prng_state *prng,

int wprng,

dsa_key *key);

Whi
h will sign the data in in of length inlen bytes. The signature is stored in out and the size of

the signature in outlen. If the signature is longer than the size you initially spe
ify in outlen nothing

is stored and the fun
tion returns an error
ode. The DSA key must be of the PK PRIVATE

persuasion.

9.5.2 Signature Veri�
ation

To verify a hash
reated with that fun
tion use the following fun
tion:

int dsa_verify_hash(
onst unsigned
har *sig,

unsigned long siglen,

onst unsigned
har *hash,

unsigned long inlen,

int *stat,

dsa_key *key);

Whi
h will verify the data in hash of length inlen against the signature stored in sig of length

siglen. It will set stat to 1 if the signature is valid, otherwise it sets stat to 0.

9.6 DSA En
rypt and De
rypt

As of version 1.07, the DSA keys
an be used to en
rypt and de
rypt small payloads. It works

similar to the ECC en
ryption where a shared key is
omputed, and the hash of the shared key

XOR'ed against the plaintext forms the
iphertext. The format used is fun
tional port of the ECC

en
ryption format to the DSA algorithm.

9.6.1 DSA En
ryption

This fun
tion will en
rypt a small payload with a re
ipients publi
 DSA key.

int dsa_en
rypt_key(
onst unsigned
har *in,

unsigned long inlen,

unsigned
har *out,

unsigned long *outlen,

prng_state *prng,

int wprng,

int hash,

dsa_key *key);

9.7 DSA Key Import and Export 93

This will en
rypt the payload in in of length inlen and store the
iphertext in the output bu�er

out. The length of the
iphertext outlen must be originally set to the length of the output bu�er.

The DSA key
an be a publi
 key.

9.6.2 DSA De
ryption

int dsa_de
rypt_key(
onst unsigned
har *in,

unsigned long inlen,

unsigned
har *out,

unsigned long *outlen,

dsa_key *key);

This will de
rypt the
iphertext in of length inlen, and store the original payload in out of length

outlen. The DSA key must be a private key.

9.7 DSA Key Import and Export

9.7.1 DSA Key Export

To export a DSA key so that it
an be transported use the following fun
tion:

int dsa_export(unsigned
har *out,

unsigned long *outlen,

int type,

dsa_key *key);

This will export the DSA key to the bu�er out and set the length in outlen (whi
h must have been

previously initialized to the maximum bu�er size). The type variable may be either PK PRIVATE

or PK PUBLIC depending on whether you want to export a private or publi

opy of the DSA

key.

9.7.2 DSA Key Import

To import an exported DSA key use the following fun
tion :

int dsa_import(
onst unsigned
har *in,

unsigned long inlen,

dsa_key *key);

This will import the DSA key from the bu�er in of length inlen to the key. If the pro
ess fails

the fun
tion will automati
ally free all of the heap allo
ated in the pro
ess (you don't have to
all

dsa free()).

94 www.libtom.org

C h a p t e r 1 0

Standards Support

10.1 ASN.1 Formats

LibTomCrypt supports a variety of ASN.1 data types en
oded with the Distinguished En
oding

Rules (DER) suitable for various
ryptographi
 proto
ols. The data types are all provided with

three basi
 fun
tions with similar prototypes. One fun
tion has been dedi
ated to
al
ulate the

length in o
tets of a given format, and two fun
tions have been dedi
ated to en
oding and de
oding

the format.

On top of the basi
 data types are the SEQUENCE and SET data types whi
h are
olle
tions

of other ASN.1 types. They are provided in the same manner as the other data types ex
ept they

use list of obje
ts known as the lt
 asn1 list stru
ture. It is de�ned as the following:

typedef stru
t {

int type;

void *data;

unsigned long size;

int used;

stru
t lt
_asn1_list_ *prev, *next,

*
hild, *parent;

} lt
_asn1_list;

The type �eld is one of the following ASN.1 �eld de�nitions. The data pointer is a void pointer

to the data to be en
oded (or the destination) and the size �eld is spe
i�
 to what you are en
oding

(e.g. number of bits in the BIT STRING data type). The used �eld is primarily for the CHOICE

de
oder and re
e
ts if the parti
ular member of a list was the de
oded data type. To help build

the lists in an orderly fashion the ma
ro LTC SET ASN1(list, index, Type, Data, Size) has been

provided.

It will assign to the index th position in the list the triplet (Type, Data, Size). An example

usage would be:

...

lt
_asn1_list sequen
e[3℄;

unsigned long three=3;

95

96 www.libtom.org

LTC_SET_ASN1(sequen
e, 0, LTC_ASN1_IA5_STRING, "hello", 5);

LTC_SET_ASN1(sequen
e, 1, LTC_ASN1_SHORT_INTEGER, &three, 1);

LTC_SET_ASN1(sequen
e, 2, LTC_ASN1_NULL, NULL, 0);

The ma
ro is relatively safe with respe
t to modifying variables, for instan
e the following
ode

is equivalent.

...

lt
_asn1_list sequen
e[3℄;

unsigned long three=3;

int x=0;

LTC_SET_ASN1(sequen
e, x++, LTC_ASN1_IA5_STRING, "hello", 5);

LTC_SET_ASN1(sequen
e, x++, LTC_ASN1_SHORT_INTEGER, &three, 1);

LTC_SET_ASN1(sequen
e, x++, LTC_ASN1_NULL, NULL, 0);

De�nition ASN.1 Type

LTC ASN1 EOL End of a ASN.1 list stru
ture.

LTC ASN1 BOOLEAN BOOLEAN type

LTC ASN1 INTEGER INTEGER (uses mp int)

LTC ASN1 SHORT INTEGER INTEGER (32{bit using unsigned long)

LTC ASN1 BIT STRING BIT STRING (one bit per
har)

LTC ASN1 OCTET STRING OCTET STRING (one o
tet per
har)

LTC ASN1 NULL NULL

LTC ASN1 OBJECT IDENTIFIER OBJECT IDENTIFIER

LTC ASN1 IA5 STRING IA5 STRING (one o
tet per
har)

LTC ASN1 UTF8 STRING UTF8 STRING (one w
har t per
har)

LTC ASN1 PRINTABLE STRING PRINTABLE STRING (one o
tet per
har)

LTC ASN1 UTCTIME UTCTIME (see lt
 ut
time stru
ture)

LTC ASN1 SEQUENCE SEQUENCE (and SEQUENCE OF)

LTC ASN1 SET SET

LTC ASN1 SETOF SET OF

LTC ASN1 CHOICE CHOICE

Figure 10.1: List of ASN.1 Supported Types

10.1.1 SEQUENCE Type

The SEQUENCE data type is a
olle
tion of other ASN.1 data types en
apsulated with a small

header whi
h is a useful way of sending multiple data types in one pa
ket.

SEQUENCE En
oding

To en
ode a sequen
e a lt
 asn1 list array must be initialized with the members of the sequen
e

and their respe
tive pointers. The en
oding is performed with the following fun
tion.

10.1 ASN.1 Formats 97

int der_en
ode_sequen
e(lt
_asn1_list *list,

unsigned long inlen,

unsigned
har *out,

unsigned long *outlen);

This en
odes a sequen
e of items pointed to by list where the list has inlen items in it. The

SEQUENCE will be en
oded to out and of length outlen. The fun
tion will terminate when it

reads all the items out of the list (upto inlen) or it en
ounters an item in the list with a type of

LTC ASN1 EOL.

The data pointer in the list would be the same pointer you would pass to the respe
tive ASN.1

en
oder (e.g. der en
ode bit string()) and it is simply passed on verbatim to the dependent en
oder.

The list
an
ontain other SEQUENCE or SET types whi
h enables you to have nested SEQUENCE

and SET de�nitions. In these
ases the data pointer is simply a pointer to another lt
 asn1 list.

SEQUENCE De
oding

De
oding a SEQUENCE is similar to en
oding. You set up an array of lt
 asn1 list where in this

ase the size member is the maximum size (in
ertain
ases). For types su
h as IA5 STRING, BIT

STRING, OCTET STRING (et
) the size �eld is updated after su

essful de
oding to re
e
t how

many units of the respe
tive type has been loaded.

int der_de
ode_sequen
e(
onst unsigned
har *in,

unsigned long inlen,

lt
_asn1_list *list,

unsigned long outlen);

This will de
ode upto outlen items from the input bu�er in of length inlen o
tets. The fun
tion

will stop (gra
efully) when it runs out of items to de
ode. It will fail (for among other reasons)

when it runs out of input bytes to read, a data type is invalid or a heap failure o

urred.

For the following types the size �eld will be updated to re
e
t the number of units read of the

given type.

1. BIT STRING

2. OCTET STRING

3. OBJECT IDENTIFIER

4. IA5 STRING

5. PRINTABLE STRING

SEQUENCE Length

The length of a SEQUENCE
an be determined with the following fun
tion.

int der_length_sequen
e(lt
_asn1_list *list,

unsigned long inlen,

unsigned long *outlen);

This will get the en
oding size for the given list of length inlen and store it in outlen.

98 www.libtom.org

SEQUENCE Multiple Argument Lists

For small or simple sequen
es an en
oding or de
oding
an be performed with one of the following

two fun
tions.

int der_en
ode_sequen
e_multi(unsigned
har *out,

unsigned long *outlen, ...);

int der_de
ode_sequen
e_multi(
onst unsigned
har *in,

unsigned long inlen, ...);

These either en
ode or de
ode (respe
tively) a SEQUENCE data type where the items in the

sequen
e are spe
i�ed after the length parameter.

The list of items are spe
i�ed as a triple of the form (type, size, data) where type is an int, size

is a unsigned long and data is void pointer. The list of items must be terminated with an item

with the type LTC ASN1 EOL.

It is ideal that you
ast the size values to unsigned long to ensure that the proper data type is

passed to the fun
tion. Constants su
h as 1 without a
ast or prototype are of type int by default.

Appending UL or pre-pending (unsigned long) is enough to
ast it to the
orre
t type.

unsigned
har buf[MAXBUFSIZE℄;

unsigned long buflen;

int err;

buflen = sizeof(buf);

if ((err =

der_en
ode_sequen
e_multi(buf, &buflen,

LTC_ASN1_IA5_STRING, 5UL, "Hello",

LTC_ASN1_IA5_STRING, 7UL, " World!",

LTC_ASN1_EOL, 0UL, NULL)) != CRYPT_OK) {

// error handling

}

This example en
odes a SEQUENCE with two IA5 STRING types
ontaining \Hello" and \

World!" respe
tively. Note the usage of the UL modi�er on the size parameters. This for
es the

ompiler to pass the numbers as the required unsigned long type that the fun
tion expe
ts.

10.1.2 SET and SET OF

SET and SET OF are related to the SEQUENCE type in that they
an be pretty mu
h be de
oded

with the same
ode. However, they are di�erent, and they should be
arefully noted. The SET

type is an unordered array of ASN.1 types sorted by the TAG (type identi�er), whereas the SET

OF type is an ordered array of a single ASN.1 obje
t sorted in as
ending order by the DER their

respe
tive en
odings.

SET En
oding

SETs use the same array stru
ture of lt
 asn1 list that the SEQUENCE fun
tions use. They are

en
oded with the following fun
tion:

10.1 ASN.1 Formats 99

int der_en
ode_set(lt
_asn1_list *list,

unsigned long inlen,

unsigned
har *out,

unsigned long *outlen);

This will en
ode the list of ASN.1 obje
ts in list of length inlen obje
ts, and store the output

in out of length outlen bytes. The fun
tion will make a
opy of the list provided, and sort it by the

TAG. Obje
ts with identi
al TAGs are additionally sorted on their original pla
ement in the array

(to make the pro
ess deterministi
).

This fun
tion will NOT re
ognize DEFAULT obje
ts, and it is the responsibility of the
aller

to remove them as required.

SET De
oding

The SET type
an be de
oded with the following fun
tion.

int der_de
ode_set(
onst unsigned
har *in,

unsigned long inlen,

lt
_asn1_list *list,

unsigned long outlen);

This will de
ode the SET spe
i�ed by list of length outlen obje
ts from the input bu�er in of

length inlen o
tets.

It handles the fa
t that SETs are not stri
tly ordered and will make multiple passes (as required)

through the list to de
ode all the obje
ts.

SET Length

The length of a SET
an be determined by
alling der length sequen
e() sin
e they have the same

en
oding length.

SET OF En
oding

A SET OF obje
t is an array of identi
al obje
ts (e.g. OCTET STRING) sorted in as
ending order

by the DER en
oding of the obje
t. They are used to store obje
ts deterministi
ally based solely

on their en
oding. It uses the same array stru
ture of lt
 asn1 list that the SEQUENCE fun
tions

use. They are en
oded with the following fun
tion.

int der_en
ode_setof(lt
_asn1_list *list,

unsigned long inlen,

unsigned
har *out,

unsigned long *outlen);

This will en
ode a SET OF
ontaining the list of inlen ASN.1 obje
ts and store the en
oding

in the output bu�er out of length outlen.

The routine will �rst en
ode the SET OF in an unordered fashion (in a temporary bu�er) then

sort using the XQSORT ma
ro and
opy ba
k to the output bu�er. This means you need at least

enough memory to keep an additional
opy of the output on the heap.

100 www.libtom.org

SET OF De
oding

Sin
e the de
oding of a SET OF obje
t is unambiguous it
an be de
oded with der de
ode sequen
e().

SET OF Length

Like the SET type the der length sequen
e() fun
tion
an be used to determine the length of a SET

OF obje
t.

10.1.3 ASN.1 INTEGER

To en
ode or de
ode INTEGER data types use the following fun
tions.

int der_en
ode_integer(void *num,

unsigned
har *out,

unsigned long *outlen);

int der_de
ode_integer(
onst unsigned
har *in,

unsigned long inlen,

void *num);

int der_length_integer(void *num,

unsigned long *len);

These will en
ode or de
ode a signed INTEGER data type using the bignum data type to store

the large INTEGER. To en
ode smaller values without allo
ating a bignum to store the value, the

short INTEGER fun
tions were made available.

int der_en
ode_short_integer(unsigned long num,

unsigned
har *out,

unsigned long *outlen);

int der_de
ode_short_integer(
onst unsigned
har *in,

unsigned long inlen,

unsigned long *num);

int der_length_short_integer(unsigned long num,

unsigned long *outlen);

These will en
ode or de
ode an unsigned unsigned long type (only reads upto 32{bits). For

values in the range 0 : : : 2

32

� 1 the integer and short integer fun
tions
an en
ode and de
ode ea
h

others outputs.

10.1.4 ASN.1 BIT STRING

int der_en
ode_bit_string(
onst unsigned
har *in,

unsigned long inlen,

unsigned
har *out,

10.1 ASN.1 Formats 101

unsigned long *outlen);

int der_de
ode_bit_string(
onst unsigned
har *in,

unsigned long inlen,

unsigned
har *out,

unsigned long *outlen);

int der_length_bit_string(unsigned long nbits,

unsigned long *outlen);

These will en
ode or de
ode a BIT STRING data type. The bits are passed in (or read out)

using one
har per bit. A non{zero value will be interpreted as a one bit, and a zero value a zero

bit.

10.1.5 ASN.1 OCTET STRING

int der_en
ode_o
tet_string(
onst unsigned
har *in,

unsigned long inlen,

unsigned
har *out,

unsigned long *outlen);

int der_de
ode_o
tet_string(
onst unsigned
har *in,

unsigned long inlen,

unsigned
har *out,

unsigned long *outlen);

int der_length_o
tet_string(unsigned long no
tets,

unsigned long *outlen);

These will en
ode or de
ode an OCTET STRING data type. The o
tets are stored using one

unsigned
har ea
h.

10.1.6 ASN.1 OBJECT IDENTIFIER

int der_en
ode_obje
t_identifier(unsigned long *words,

unsigned long nwords,

unsigned
har *out,

unsigned long *outlen);

int der_de
ode_obje
t_identifier(
onst unsigned
har *in,

unsigned long inlen,

unsigned long *words,

unsigned long *outlen);

int der_length_obje
t_identifier(unsigned long *words,

unsigned long nwords,

unsigned long *outlen);

102 www.libtom.org

These will en
ode or de
ode an OBJECT IDENTIFIER obje
t. The words of the OID are

stored in individual unsigned long elements, and must be in the range 0 : : : 2

32

� 1.

10.1.7 ASN.1 IA5 STRING

int der_en
ode_ia5_string(
onst unsigned
har *in,

unsigned long inlen,

unsigned
har *out,

unsigned long *outlen);

int der_de
ode_ia5_string(
onst unsigned
har *in,

unsigned long inlen,

unsigned
har *out,

unsigned long *outlen);

int der_length_ia5_string(
onst unsigned
har *o
tets,

unsigned long no
tets,

unsigned long *outlen);

These will en
ode or de
ode an IA5 STRING. The
hara
ters are read or stored in individual

har elements. These fun
tions performs internal
hara
ter to numeri
al
onversions based on the

onventions of the
ompiler being used. For instan
e, on an x86 32 ma
hine 'A' == 65 but the

same may not be true on say a SPARC ma
hine. Internally, these fun
tions have a table of literal

hara
ters and their numeri
al ASCII values. This provides a stable
onversion provided that the

build platform honours the run{time platforms
hara
ter
onventions.

10.1.8 ASN.1 PRINTABLE STRING

int der_en
ode_printable_string(
onst unsigned
har *in,

unsigned long inlen,

unsigned
har *out,

unsigned long *outlen);

int der_de
ode_printable_string(
onst unsigned
har *in,

unsigned long inlen,

unsigned
har *out,

unsigned long *outlen);

int der_length_printable_string(
onst unsigned
har *o
tets,

unsigned long no
tets,

unsigned long *outlen);

These will en
ode or de
ode an PRINTABLE STRING. The
hara
ters are read or stored in

individual
har elements. These fun
tions performs internal
hara
ter to numeri
al
onversions

based on the
onventions of the
ompiler being used. For instan
e, on an x86 32 ma
hine 'A' ==

65 but the same may not be true on say a SPARC ma
hine. Internally, these fun
tions have a table

of literal
hara
ters and their numeri
al ASCII values. This provides a stable
onversion provided

that the build platform honours the run-time platforms
hara
ter
onventions.

10.1 ASN.1 Formats 103

10.1.9 ASN.1 UTF8 STRING

int der_en
ode_utf8_string(
onst w
har_t *in,

unsigned long inlen,

unsigned
har *out,

unsigned long *outlen);

int der_de
ode_utf8_string(
onst unsigned
har *in,

unsigned long inlen,

w
har_t *out,

unsigned long *outlen);

int der_length_utf8_string(
onst w
har_t *o
tets,

unsigned long no
tets,

unsigned long *outlen);

These will en
ode or de
ode an UTF8 STRING. The
hara
ters are read or stored in individual

w
har t elements. These fun
tion performs no internal mapping and treat the
hara
ters as literals.

These fun
tions use the w
har t type whi
h is not universally available. In those
ases, the

library will typedef it to unsigned long. If you intend to use the ISO C fun
tions for working with

wide{
har arrays, you should make sure that w
har t has been de�ned previously.

10.1.10 ASN.1 UTCTIME

The UTCTIME type is to store a date and time in ASN.1 format. It uses the following stru
ture

to organize the time.

typedef stru
t {

unsigned YY, /* year 00--99 */

MM, /* month 01--12 */

DD, /* day 01--31 */

hh, /* hour 00--23 */

mm, /* minute 00--59 */

ss, /* se
ond 00--59 */

off_dir, /* timezone offset dire
tion 0 == +, 1 == - */

off_hh, /* timezone offset hours */

off_mm; /* timezone offset minutes */

} lt
_ut
time;

The time
an be o�set plus or minus a set amount of hours (o� hh) and minutes (o� mm).

When o� dir is zero, the time will be added otherwise it will be subtra
ted. For instan
e, the array

f5; 6; 20; 22; 4; 00; 0; 5; 0g represents the
urrent time of 2005, June 20th, 22:04:00 with a time o�set

of +05h00.

int der_en
ode_ut
time(lt
_ut
time *ut
time,

unsigned
har *out,

unsigned long *outlen);

104 www.libtom.org

int der_de
ode_ut
time(
onst unsigned
har *in,

unsigned long *inlen,

lt
_ut
time *out);

int der_length_ut
time(lt
_ut
time *ut
time,

unsigned long *outlen);

The en
oder will store time in one of the two ASN.1 formats, either YYMMDDhhmmssZ or

YYMMDDhhmmss�hhmm, and perform minimal error
he
king on the input. The de
oder will

read all valid ASN.1 formats and perform range
he
king on the values (not
omplete but rational)

useful for
at
hing pa
ket errors.

It is suggested that de
oded data be further s
rutinized (e.g. days of month in parti
ular).

10.1.11 ASN.1 CHOICE

The CHOICE ASN.1 type represents a union of ASN.1 types all of whi
h are stored in a lt
 asn1 list.

There is no en
oder for the CHOICE type, only a de
oder. The de
oder will s
an through the

provided list attempting to use the appropriate de
oder on the input pa
ket. The list
an
ontain

any ASN.1 data type

1

ex
ept for other CHOICE types.

There is no en
oder for the CHOICE type as the a
tual DER en
oding is the en
oding of the

hosen type.

int der_de
ode_
hoi
e(
onst unsigned
har *in,

unsigned long *inlen,

lt
_asn1_list *list,

unsigned long outlen);

This will de
ode the input in the in �eld of length inlen. It uses the provided ASN.1 list spe
i�ed

in the list �eld whi
h has outlen elements. The inlen �eld will be updated with the length of the

de
oded data type, as well as the respe
tive entry in the list �eld will have the used
ag set to

non{zero to re
e
t it was the data type de
oded.

10.1.12 ASN.1 Flexi De
oder

The ASN.1
exi de
oder allows the developer to de
ode arbitrary ASN.1 DER pa
kets (provided

they use data types LibTomCrypt supports) without �rst knowing the stru
ture of the data. Where

der de
ode sequen
e() requires the developer to spe
ify the data types to de
ode in advan
e the

exi de
oder is entirely free form.

The
exi de
oder uses the same lt
 asn1 list but instead of being stored in an array it uses the

linked list pointers prev, next, parent and
hild. The list works as a doubly-linked list stru
ture

where de
oded items at the same level are siblings (using next and prev) and items en
oded in a

SEQUENCE are stored as a
hild element.

When a SEQUENCE or SET has been en
ountered a SEQUENCE (or SET resp.) item will be

added as a sibling (e.g. list.type == LTC ASN1 SEQUENCE) and the
hild pointer points to a

new list of items
ontained within the obje
t.

1

Ex
ept it
annot have LTC ASN1 INTEGER and LTC ASN1 SHORT INTEGER simultaneously.

10.1 ASN.1 Formats 105

int der_de
ode_sequen
e_flexi(
onst unsigned
har *in,

unsigned long *inlen,

lt
_asn1_list **out);

This will de
ode items in the in bu�er of max input length inlen and store the newly
reated

pointer to the list in out. This fun
tion allo
ates all required memory for the de
oding. It stores

the number of o
tets read ba
k into inlen.

The fun
tion will terminate when either it hits an invalid ASN.1 tag, or it reads inlen o
tets.

An early termination is a soft error, and returns normally. The de
oded list out will point to the

very �rst element of the list (e.g. both parent and prev pointers will be NULL).

An invalid de
oding will terminate the pro
ess, and free the allo
ated memory automati
ally.

Note: the list de
oded by this fun
tion is NOT in the
orre
t form for der en
ode sequen
e()

to use dire
tly. You will have to �rst have to
onvert the list by �rst storing all of the siblings in

an array then storing all the
hildren as sub-lists of a sequen
e using the .data pointer. Currently

no fun
tion in LibTomCrypt provides this ability.

Sample De
oding

Suppose we de
ode the following stru
ture:

User ::= SEQUENCE {

Name IA5 STRING

LoginToken SEQUENCE {

passwdHash OCTET STRING

pubkey ECCPubli
Key

}

LastOn UTCTIME

}

and we de
oded it with the following
ode:

unsigned
har inbuf[MAXSIZE℄;

unsigned long inbuflen;

lt
_asn1_list *list;

int err;

/* somehow fill inbuf/inbuflen */

if ((err = der_de
ode_sequen
e_flexi(inbuf, inbuflen, &list)) != CRYPT_OK) {

printf("Error de
oding: %s\n", error_to_string(err));

exit(EXIT_FAILURE);

}

At this point list would point to the SEQUENCE identi�ed by User. It would have no sibblings

(prev or next), and only a
hild node. Walking to the
hild node with the following
ode will bring

us to the Name portion of the SEQUENCE:

list = list->
hild;

Now list points to the Name member (with the tag IA5 STRING). The data, size, and type members

of list should re
e
t that of an IA5 STRING. The sibbling will now be the LoginToken SEQUENCE.

The sibbling has a
hild node whi
h points to the passwdHash OCTET STRING. We
an walk to

this node with the following
ode:

106 www.libtom.org

/* list already pointing to 'Name' */

list = list->next->
hild;

At this point, list will point to the passwdHash member of the innermost SEQUENCE. This node

has a sibbling, the pubkey member of the SEQUENCE. The LastOn member of the SEQUENCE

is a sibbling of the LoginToken node, if we wanted to walk there we would have to go up and over

via:

list = list->parent->next;

At this point, we are pointing to the last node of the list. Lists are terminated in all dire
tions by a

NULL pointer. All nodes are doubly linked so that you
an walk up and down the nodes without

keeping pointers lying around.

Free'ing a Flexi List

To free the list use the following fun
tion.

void der_sequen
e_free(lt
_asn1_list *in);

This will free all of the memory allo
ated by der de
ode sequen
e
exi().

10.2 Password Based Cryptography

10.2.1 PKCS #5

In order to se
urely handle user passwords for the purposes of
reating session keys and
haining

IVs the PKCS #5 was drafted. PKCS #5 is made up of two algorithms, Algorithm One and

Algorithm Two. Algorithm One is the older fairly limited algorithm whi
h has been implemented

for
ompleteness. Algorithm Two is a bit more modern and more
exible to work with.

10.2.2 Algorithm One

Algorithm One a

epts as input a password, an 8{byte salt, and an iteration
ounter. The iteration

ounter is meant to a
t as delay for people trying to brute for
e guess the password. The higher the

iteration
ounter the longer the delay. This algorithm also requires a hash algorithm and produ
es

an output no longer than the output of the hash.

int pk
s_5_alg1(
onst unsigned
har *password,

unsigned long password_len,

onst unsigned
har *salt,

int iteration_
ount,

int hash_idx,

unsigned
har *out,

unsigned long *outlen)

Where password is the user's password. Sin
e the algorithm allows binary passwords you must also

spe
ify the length in password len. The salt is a �xed size 8{byte array whi
h should be random

10.2 Password Based Cryptography 107

for ea
h user and session. The iteration
ount is the delay desired on the password. The hash idx

is the index of the hash you wish to use in the des
riptor table.

The output of length up to outlen is stored in out. If outlen is initially larger than the size of

the hash fun
tions output it is set to the number of bytes stored. If it is smaller than not all of the

hash output is stored in out.

10.2.3 Algorithm Two

Algorithm Two is the re
ommended algorithm for this task. It allows variable length salts, and
an

produ
e outputs larger than the hash fun
tions output. As su
h, it
an easily be used to derive

session keys for
iphers and MACs as well initial ve
tors as required from a single password and

invo
ation of this algorithm.

int pk
s_5_alg2(
onst unsigned
har *password,

unsigned long password_len,

onst unsigned
har *salt,

unsigned long salt_len,

int iteration_
ount,

int hash_idx,

unsigned
har *out,

unsigned long *outlen)

Where password is the users password. Sin
e the algorithm allows binary passwords you must also

spe
ify the length in password len. The salt is an array of size salt len. It should be random for

ea
h user and session. The iteration
ount is the delay desired on the password. The hash idx is

the index of the hash you wish to use in the des
riptor table. The output of length up to outlen is

stored in out.

/* demo to show how to make session state material

* from a password */

#in
lude <tom
rypt.h>

int main(void)

{

unsigned
har password[100℄, salt[100℄,

ipher_key[16℄,
ipher_iv[16℄,

ma
_key[16℄, outbuf[48℄;

int err, hash_idx;

unsigned long outlen, password_len, salt_len;

/* register hash and get it's idx */

/* get users password and make up a salt ... */

/*
reate the material (100 iterations in algorithm) */

outlen = sizeof(outbuf);

if ((err = pk
s_5_alg2(password, password_len, salt,

salt_len, 100, hash_idx, outbuf,

108 www.libtom.org

&outlen))

!= CRYPT_OK) {

/* error handle */

}

/* now extra
t it */

mem
py(
ipher_key, outbuf, 16);

mem
py(
ipher_iv, outbuf+16, 16);

mem
py(ma
_key, outbuf+32, 16);

/* use material (re
all to store the salt in the output) */

}

C h a p t e r 1 1

Mis
ellaneous

11.1 Base64 En
oding and De
oding

The library provides fun
tions to en
ode and de
ode a RFC 1521 base{64
oding s
heme. The

hara
ters used in the mappings are:

ABCDEFGHIJKLMNOPQRSTUVWXYZab
defghijklmnopqrstuvwxyz0123456789+/

Those
hara
ters are supported in the 7-bit ASCII map, whi
h means they
an be used for transport

over
ommon e-mail, usenet and HTTP mediums. The format of an en
oded stream is just a literal

sequen
e of ASCII
hara
ters where a group of four represent 24-bits of input. The �rst four
hars

of the en
oders output is the length of the original input. After the �rst four
hara
ters is the rest

of the message.

Often, it is desirable to line wrap the output to �t ni
ely in an e-mail or usenet posting. The

de
oder allows you to put any
hara
ter (that is not in the above sequen
e) in between any
hara
ter

of the en
oders output. You may not however, break up the �rst four
hara
ters.

To en
ode a binary string in base64
all:

int base64_en
ode(
onst unsigned
har *in,

unsigned long len,

unsigned
har *out,

unsigned long *outlen);

Where in is the binary string and out is where the ASCII output is pla
ed. You must set the value

of outlen prior to
alling this fun
tion and it sets the length of the base64 output in outlen when it

is done. To de
ode a base64 string
all:

int base64_de
ode(
onst unsigned
har *in,

unsigned long len,

unsigned
har *out,

unsigned long *outlen);

109

110 www.libtom.org

11.2 Primality Testing

The library in
ludes primality testing and random prime fun
tions as well. The primality tester will

perform the test in two phases. First it will perform trial division by the �rst few primes. Se
ond it

will perform eight rounds of the Rabin-Miller primality testing algorithm. If the
andidate passes

both phases it is de
lared prime otherwise it is de
lared
omposite. No prime number will fail the

two phases but
omposites
an. Ea
h round of the Rabin-Miller algorithm redu
es the probability

of a pseudo-prime by

1

4

therefore after sixteen rounds the probability is no more than

�

1

4

�

8

= 2

�16

.

In pra
ti
e the probability of error is in fa
t mu
h lower than that.

When making random primes the trial division step is in fa
t an optimized implementation of

Implementation of Fast RSA Key Generation on Smart Cards

1

. In essen
e a table of ma
hine-word

sized residues are kept of a
andidate modulo a set of primes. When the
andidate is reje
ted and

ultimately in
remented to test the next number the residues are updated without using multi-word

pre
ision math operations. As a result the routine
an s
an ahead to the next number required for

testing with very little work involved.

In the event that a
omposite did make it through it would most likely
ause the the algorithm

trying to use it to fail. For instan
e, in RSA two primes p and q are required. The order of the

multipli
ative sub-group (modulo pq) is given as '(pq) or (p� 1)(q � 1). The de
ryption exponent

d is found as de � 1 (mod '(pq)). If either p or q is
omposite the value of d will be in
orre
t

and the user will not be able to sign or de
rypt messages at all. Suppose p was prime and q was

omposite this is just a variation of the multi-prime RSA. Suppose q = rs for two primes r and s

then '(pq) = (p� 1)(r � 1)(s� 1) whi
h
learly is not equal to (p� 1)(rs� 1).

These are not te
hni
ally part of the LibTomMath library but this is the best pla
e to do
ument

them. To test if a mp int is prime
all:

int is_prime(mp_int *N, int *result);

This puts a one in result if the number is probably prime, otherwise it pla
es a zero in it. It is

assumed that if it returns an error that the value in result is unde�ned. To make a random prime

all:

int rand_prime(mp_int *N,

unsigned long len,

prng_state *prng,

int wprng);

Where len is the size of the prime in bytes (2 � len � 256). You
an set len to the negative size

you want to get a prime of the form p � 3 (mod 4). So if you want a 1024-bit prime of this sort

pass len = -128 to the fun
tion. Upon su

ess it will return CRYPT OK and N will
ontain an

integer whi
h is very likely prime.

1

Chenghuai Lu, Andre L. M. dos Santos and Fran
is
o R. Pimentel

C h a p t e r 1 2

Programming Guidelines

12.1 Se
ure Pseudo Random Number Generators

Probably the single most vulnerable point of any
ryptosystem is the PRNG. Without one, gen-

erating and prote
ting se
rets would be impossible. The requirement that one be setup
orre
tly

is vitally important, and to address this point the library does provide two RNG sour
es that will

address the largest amount of end users as possible. The sprng PRNG provides an easy to a

ess

sour
e of entropy for any appli
ation on a UNIX (and the like) or Windows
omputer.

However, when the end user is not on one of these platforms, the appli
ation developer must

address the issue of �nding entropy. This manual is not designed to be a text on
ryptography. I

would just like to highlight that when you design a
ryptosystem make sure the �rst problem you

solve is getting a fresh sour
e of entropy.

12.2 Preventing Trivial Errors

Two simple ways to prevent trivial errors is to prevent over
ows, and to
he
k the return values.

All of the fun
tions whi
h output variable length strings will require you to pass the length of the

destination. If the size of your output bu�er is smaller than the output it will report an error.

Therefore, make sure the size you pass is
orre
t!

Also, virtually all of the fun
tions return an error
ode or CRYPT OK. You should dete
t all

errors, as simple typos
an
ause algorithms to fail to work as desired.

12.3 Registering Your Algorithms

To avoid linking and other run{time errors it is important to register the
iphers, hashes and

PRNGs you intend to use before you try to use them. This in
ludes any fun
tion whi
h would use

an algorithm indire
tly through a des
riptor table.

A neat bonus to the registry system is that you
an add external algorithms that are not part of

the library without having to ha
k the library. For example, suppose you have a hardware spe
i�

PRNG on your system. You
ould easily write the few fun
tions required plus a des
riptor. After

111

112 www.libtom.org

registering your PRNG, all of the library fun
tions that need a PRNG
an instantly take advantage

of it. The same applies for
iphers, hashes, and bignum math routines.

12.4 Key Sizes

12.4.1 Symmetri
 Ciphers

For symmetri

iphers, use as large as of a key as possible. For the most part bits are
heap so

using a 256{bit key is not a hard thing to do. As a good rule of thumb do not use a key smaller

than 128 bits.

12.4.2 Asymmetri
 Ciphers

The following
hart gives the work fa
tor for solving a DH/RSA publi
 key using the NFS. The

work fa
tor for a key of order n is estimated to be

e

1:923�ln(n)

1

3

�ln(ln(n))

2

3

(12.1)

Note that n is not the bit-length but the magnitude. For example, for a 1024-bit key n = 2

1024

.

The work required is:

RSA/DH Key Size (bits) Work Fa
tor (log

2

)

512 63.92

768 76.50

1024 86.76

1536 103.37

2048 116.88

2560 128.47

3072 138.73

4096 156.49

Figure 12.1: RSA/DH Key Strength

The work fa
tor for ECC keys is mu
h higher sin
e the best atta
k is still fully exponential.

Given a key of magnitude n it requires

p

n work. The following table summarizes the work required:

Using the above tables the following suggestions for key sizes seems appropriate:

Se
urity Goal RSA/DH Key Size (bits) ECC Key Size (bits)

Near term 1024 160

Short term 1536 192

Long Term 2560 384

12.5 Thread Safety 113

ECC Key Size (bits) Work Fa
tor (log

2

)

112 56

128 64

160 80

192 96

224 112

256 128

384 192

521 260.5

Figure 12.2: ECC Key Strength

12.5 Thread Safety

The library is not fully thread safe but several simple pre
autions
an be taken to avoid any

problems. The registry fun
tions su
h as register
ipher() are not thread safe no matter what you

do. It is best to
all them from your programs initialization
ode before threads are initiated.

The rest of the
ode uses state variables you must pass it su
h as hash state, hma
 state, et
.

This means that if ea
h thread has its own state variables then they will not a�e
t ea
h other, and

are fully thread safe. This is fairly simple with symmetri

iphers and hashes.

The only sti
ky issue is a shared PRNG whi
h
an be alleviated with the
areful use of mutex

devi
es. De�ning LTC PTHREAD for instan
e, enables pthreads based mutex lo
king in vari-

ous routines su
h as the Yarrow and Fortuna PRNGs, the �xed point ECC multiplier, and other

routines.

114 www.libtom.org

C h a p t e r 1 3

Con�guring and Building the

Library

13.1 Introdu
tion

The library is fairly
exible about how it
an be built, used, and generally distributed. Additions

are being made with ea
h new release that will make the library even more
exible. Ea
h of the

lasses of fun
tions
an be disabled during the build pro
ess to make a smaller library. This is

parti
ularly useful for shared libraries.

As of v1.06 of the library, the build pro
ess has been moved to two steps for the typi
al LibTom-

Crypt appli
ation. This is be
ause LibTomCrypt no longer provides a math API on its own and

relies on third party libraries (su
h as LibTomMath, GnuMP, or TomsFastMath).

The build pro
ess now
onsists of installing a math library �rst, and then building and installing

LibTomCrypt with a math library
on�gured. Note that LibTomCrypt
an be built with no internal

math des
riptors. This means that one must be provided at either build, or run time for the

appli
ation. LibTomCrypt
omes with three math des
riptors that provide a standard interfa
e to

math libraries.

13.2 Make�le variables

All GNU driven make�les (in
luding the make�le for ICC) use a set of
ommon variables to
ontrol

the build and install pro
ess. Most of the settings
an be overwritten from the
ommand line whi
h

makes
ustom installation a breeze.

13.2.1 MAKE, CC and AR

The MAKE, CC and AR
ags
an all be overwritten. They default to make, $CC and $AR

respe
tively. Changing MAKE allows you to
hange what program will be invoked to handle sub{

dire
tories. For example, this

MAKE=gmake gmake install

115

116 www.libtom.org

will build and install the libraries with the gmake tool. Similarly,

CC=arm-g

 AR=arm-ar make

will build the library using arm{g

 as the
ompiler and arm{ar as the ar
hiver.

13.2.2 IGNORE SPEED

When IGNORE SPEED has been de�ned the default optimization
ags for CFLAGS will be

disabled whi
h allows the developer to spe
ify new CFLAGS on the
ommand line. E.g. to add

debugging

CFLAGS="-g3" make IGNORE_SPEED=1

This will turn o� optimizations and add -g3 to the CFLAGS whi
h enables debugging.

13.2.3 LIBNAME and LIBNAME S

LIBNAME is the name of the output library (ar
hive) to
reate. It defaults to libtom
rypt.a for

stati
 builds and libtom
rypt.la for shared. The LIBNAME S variable is the stati
 name while

doing shared builds. Ideally they should have the same pre�x but don't have to.

Similarly LIBTEST and LIBTEST S are the names for the pro�ling and testing library. The

default is libtom
rypt prof.a for stati
 and libtom
rypt prof.la for shared.

13.2.4 Installation Dire
tories

DESTDIR is the pre�x for the installation dire
tories. It defaults to an empty string. LIBPATH

is the pre�x for the library dire
tory whi
h defaults to /usr/lib. INCPATH is the pre�x for

the header �le dire
tory whi
h defaults to /usr/in
lude. DATADIR is the pre�x for the data

(do
umentation) dire
tory whi
h defaults to /usr/share/do
/libtom
rypt/pdf.

All four
an be used to
reate
ustom install lo
ations depending on the nature of the OS and

�le system in use.

make LIBPATH=/home/tom/proje
t/lib INCPATH=/home/tom/proje
t/in
lude \

DATAPATH=/home/tom/proje
t/do
s install

This will build the library and install it to the dire
tories under /home/tom/proje
t/. e.g.

/home/tom/proje
t/:

total 1

drwxr-xr-x 2 tom users 80 Jul 30 16:02 do
s

drwxr-xr-x 2 tom users 528 Jul 30 16:02 in
lude

drwxr-xr-x 2 tom users 80 Jul 30 16:02 lib

/home/tom/proje
t/do
s:

total 452

-rwxr-xr-x 1 tom users 459009 Jul 30 16:02
rypt.pdf

/home/tom/proje
t/in
lude:

13.3 Extra libraries 117

total 132

-rwxr-xr-x 1 tom users 2482 Jul 30 16:02 tom
rypt.h

-rwxr-xr-x 1 tom users 702 Jul 30 16:02 tom
rypt_arg
hk.h

-rwxr-xr-x 1 tom users 2945 Jul 30 16:02 tom
rypt_
fg.h

-rwxr-xr-x 1 tom users 22763 Jul 30 16:02 tom
rypt_
ipher.h

-rwxr-xr-x 1 tom users 5174 Jul 30 16:02 tom
rypt_
ustom.h

-rwxr-xr-x 1 tom users 11314 Jul 30 16:02 tom
rypt_hash.h

-rwxr-xr-x 1 tom users 11571 Jul 30 16:02 tom
rypt_ma
.h

-rwxr-xr-x 1 tom users 13614 Jul 30 16:02 tom
rypt_ma
ros.h

-rwxr-xr-x 1 tom users 14714 Jul 30 16:02 tom
rypt_math.h

-rwxr-xr-x 1 tom users 632 Jul 30 16:02 tom
rypt_mis
.h

-rwxr-xr-x 1 tom users 10934 Jul 30 16:02 tom
rypt_pk.h

-rwxr-xr-x 1 tom users 2634 Jul 30 16:02 tom
rypt_pk
s.h

-rwxr-xr-x 1 tom users 7067 Jul 30 16:02 tom
rypt_prng.h

-rwxr-xr-x 1 tom users 1467 Jul 30 16:02 tom
rypt_test.h

/home/tom/proje
t/lib:

total 1073

-rwxr-xr-x 1 tom users 1096284 Jul 30 16:02 libtom
rypt.a

13.3 Extra libraries

EXTRALIBS spe
i�es any extra libraries required to link the test programs and shared libraries.

They are spe
i�ed in the notation that GCC expe
ts for global ar
hives.

CFLAGS="-DTFM_DESC -DUSE_TFM" EXTRALIBS=-ltfm make install \

test timing

This will install the library using the TomsFastMath library and link the libtfm.a library out

of the default library sear
h path. The two de�nes are explained below. You
an spe
ify mul-

tiple ar
hives (say if you want to support two math libraries, or add on additional
ode) to the

EXTRALIBS variable by separating them by a spa
e.

Note that EXTRALIBS is not required if you are only making and installing the stati
 library

but none of the test programs.

13.4 Building a Stati
 Library

Building a stati
 library is fairly trivial as it only requires one invo
ation of the GNU make
om-

mand.

CFLAGS="-DTFM_DESC" make install

That will build LibTomCrypt (in
luding the TomsFastMath des
riptor), and install it in the

default lo
ations indi
ated previously. You
an enable the built{in LibTomMath des
riptor as well

(or in pla
e of the TomsFastMath des
riptor). Similarly, you
an build the library with no built{in

math des
riptors.

make install

118 www.libtom.org

In this
ase, no math des
riptors are present in the library and they will have to be made

available at build or run time before you
an use any of the publi
 key fun
tions.

Note that even if you in
lude the built{in des
riptors you must link against the sour
e library

as well.

g

 -DTFM_DESC myprogram.
 -ltom
rypt -ltfm -o myprogram

This will
ompile myprogram and link it against the LibTomCrypt library as well as Toms-

FastMath (whi
h must have been previously installed). Note that we de�ne TFM DESC for

ompilation. This is so that the TFM des
riptor symbol will be de�ned for the
lient appli
ation

to make use of without giving warnings.

13.5 Building a Shared Library

LibTomCrypt
an also be built as a shared library through the make�le.shared make s
ript. It

is similar to use as the stati
 s
ript ex
ept that you must spe
ify the EXTRALIBS variable at

install time.

CFLAGS="-DTFM_DESC" EXTRALIBS=-ltfm make -f makefile.shared install

This will build and install the library and link the shared obje
t against the TomsFastMath

library (whi
h must be installed as a shared obje
t as well). The shared build pro
ess requires

libtool to be installed.

13.6 Header Con�guration

The �le tom
rypt
fg.h is what lets you
ontrol various high level ma
ros whi
h
ontrol the behaviour

of the library. Build options are also stored in tom
rypt
ustom.h whi
h allow the enabling and

disabling of various algorithms.

ARGTYPE

This lets you
ontrol how the LTC ARGCHK ma
ro will behave. The ma
ro is used to
he
k

pointers inside the fun
tions against NULL. There are four settings for ARGTYPE. When set to

0, it will have the default behaviour of printing a message to stderr and raising a SIGABRT signal.

This is provided so all platforms that use LibTomCrypt
an have an error that fun
tions similarly.

When set to 1, it will simply pass on to the assert() ma
ro. When set to 2, the ma
ro will display

the error to stderr then return exe
ution to the
aller. This
ould lead to a segmentation fault (e.g.

when a pointer is NULL) but is useful if you handle signals on your own. When set to 3, it will

resolve to a empty ma
ro and no error
he
king will be performed. Finally, when set to 4, it will

return CRYPT INVALID ARG to the
aller.

Endianess

There are �ve ma
ros related to endianess issues. For little endian platforms de�ne, ENDIAN LITTLE.

For big endian platforms de�ne ENDIAN BIG. Similarly when the default word size of an un-

signed long is 32-bits de�ne ENDIAN 32BITWORD or de�ne ENDIAN 64BITWORD when

13.7 The Con�gure S
ript 119

its 64-bits. If you do not de�ne any of them the library will automati
ally useENDIAN NEUTRAL

whi
h will work on all platforms.

Currently LibTomCrypt will dete
t x86-32, x86-64, MIPS R5900, SPARC and SPARC64 running

GCC as well as x86-32 running MSVC.

13.7 The Con�gure S
ript

There are also options you
an spe
ify from the tom
rypt
ustom.h header �le.

13.7.1 X memory routines

At the top of tom
rypt
ustom.h are a series of ma
ros denoted as XMALLOC, XCALLOC, XRE-

ALLOC, XFREE, and so on. They resolve to the name of the respe
tive fun
tions from the standard

C library by default. This lets you substitute in your own memory routines. If you substitute in

your own fun
tions they must behave like the standard C library fun
tions in terms of what they

expe
t as input and output.

These ma
ros are handy for working with platforms whi
h do not have a standard C library.

For instan
e, the OLPC

1

bios
ode uses these ma
ros to redire
t to very
ompa
t heap and string

operations.

13.7.2 X
lo
k routines

The rng get bytes() fun
tion
an
all a fun
tion that requires the
lo
k() fun
tion. These ma
ros

let you override the default
lo
k() used with a repla
ement. By default the standard C library

lo
k() fun
tion is used.

13.7.3 LTC NO FILE

During the build if LTC NO FILE is de�ned then any fun
tion in the library that uses �le I/O will

not
all the �le I/O fun
tions and instead simply return CRYPT NOP. This should help resolve

any linker errors stemming from a la
k of �le I/O on embedded platforms.

13.7.4 LTC CLEAN STACK

When this fun
tions is de�ned the fun
tions that store key material on the sta
k will
lean up

afterwards. Assumes that you have no memory paging with the sta
k.

13.7.5 LTC TEST

When this has been de�ned the various self{test fun
tions (for
iphers, hashes, prngs, et
) are

in
luded in the build. This is the default
on�guration. If LTC NO TEST has been de�ned, the

testing routines will be
ompa
ted and only return CRYPT NOP.

1

See http://dev.laptop.org/git?p=bios-
rypto;a=summary

120 www.libtom.org

13.7.6 LTC NO FAST

When this has been de�ned the library will not use faster word oriented operations. By default,

they are only enabled for platforms whi
h
an be auto-dete
ted. This ma
ro ensures that they are

never enabled.

13.7.7 LTC FAST

This mode (auto-dete
ted with x86 32,x86 64 platforms with GCC or MSVC)
on�gures various

routines su
h as
tr en
rypt() or
b
 en
rypt() that it
an safely XOR multiple o
tets in one step

by using a larger data type. This has the bene�t of
utting down the overhead of the respe
tive

fun
tions.

This mode does have one downside. It
an
ause unaligned reads from memory if you are

not
areful with the fun
tions. This is why it has been enabled by default only for the x86
lass

of pro
essors where unaligned a

esses are allowed. Te
hni
ally LTC FAST is not portable sin
e

unaligned a

esses are not
overed by the ISO C spe
i�
ations.

In pra
ti
e however, you
an use it on pretty mu
h any platform (even MIPS) with
are.

By design the fast mode fun
tions won't get unaligned on their own. For instan
e, if you
all

tr en
rypt() right after
alling
tr start() and all the inputs you gave are aligned than
tr en
rypt()

will perform aligned memory operations only. However, if you
all
tr en
rypt() with an odd amount

of plaintext then
all it again the CTR pad (the IV) will be partially used. This will
ause the
tr

routine to �rst use up the remaining pad bytes. Then if there are enough plaintext bytes left it will

use whole word XOR operations. These operations will be unaligned.

The simplest pre
aution is to make sure you pro
ess all data in power of two blo
ks and handle

remainder at the end. e.g. If you are CTR'ing a long stream pro
ess it in blo
ks of (say) four

kilobytes and handle any remaining in
omplete blo
ks at the end of the stream.

If you do plan on using the LTC FAST mode you have to also de�ne a LTC FAST TYPE ma
ro

whi
h resolves to an optimal sized data type you
an perform integer operations with. Ideally it

should be four or eight bytes sin
e it must properly divide the size of your blo
k
ipher (e.g. 16

bytes for AES). This means sadly if you're on a platform with 57{bit words (or something) you

an't use this mode. So sad.

13.7.8 LTC NO ASM

When this has been de�ned the library will not use any inline assembler. Only a few platforms

support assembler inlines but various versions of ICC and GCC
annot handle all of the assembler

fun
tions.

13.7.9 Symmetri
 Ciphers, One-way Hashes, PRNGS and Publi
 Key

Fun
tions

There are a plethora of ma
ros for the
iphers, hashes, PRNGs and publi
 key fun
tions whi
h

are fairly self-explanatory. When they are de�ned the fun
tionality is in
luded otherwise it is not.

There are some dependen
y issues whi
h are noted in the �le. For instan
e, Yarrow requires CTR

haining mode, a blo
k
ipher and a hash fun
tion.

Also see te
hni
al note number �ve for more details.

13.7 The Con�gure S
ript 121

13.7.10 LTC EASY

When de�ned the library is
on�gured to build fewer algorithms and modes. Mostly it sti
ks to

NIST and ANSI approved algorithms. See the header �le tom
rypt
ustom.h for more details. It is

meant to provide literally an easy method of trimming the library build to the most minimum of

useful fun
tionality.

13.7.11 TWOFISH SMALL and TWOFISH TABLES

Two�sh is a 128-bit symmetri
 blo
k
ipher that is provided within the library. The
ipher itself is

exible enough to allow some trade-o�s in the implementation. When TWOFISH SMALL is de�ned

the s
heduled symmetri
 key for Two�sh requires only 200 bytes of memory. This is a
hieved by not

pre-
omputing the substitution boxes. Having this de�ned will also greatly slow down the
ipher.

When this ma
ro is not de�ned Two�sh will pre-
ompute the tables at a
ost of 4KB of memory.

The
ipher will be mu
h faster as a result.

When TWOFISH TABLES is de�ned the
ipher will use pre-
omputed (and �xed in
ode)

tables required to work. This is useful when TWOFISH SMALL is de�ned as the table values are

omputed on the
y. When this is de�ned the
ode size will in
rease by approximately 500 bytes.

If this is de�ned but TWOFISH SMALL is not the
ipher will still work but it will not speed up

the en
ryption or de
ryption fun
tions.

13.7.12 GCM TABLES

When de�ned GCM will use a 64KB table (per GCM state) whi
h will greatly speed up the per{

pa
ket laten
y. It also in
reases the initialization time and is not suitable when you are going to

use a key a few times only.

13.7.13 GCM TABLES SSE2

When de�ned GCM will use the SSE2 instru
tions to perform the GF (2

x

) multiply using 16 128{bit

XOR operations. It shaves a few
y
les per byte of GCM output on both the AMD64 and Intel

Pentium 4 platforms. Requires GCC and an SSE2 equipped platform.

13.7.14 LTC SMALL CODE

When this is de�ned some of the
ode su
h as the Rijndael and SAFER+
iphers are repla
ed with

smaller
ode variants. These variants are slower but
an save quite a bit of
ode spa
e.

13.7.15 LTC PTHREAD

When this is a
tivated all of the des
riptor table fun
tions will use pthread lo
king to ensure thread

safe updates to the tables. Note that it doesn't prevent a thread that is passively using a table

from being messed up by another thread that updates the table.

Generally the rule of thumb is to setup the tables on
e at startup and then leave them be. This

added build
ag simply makes updating the tables safer.

122 www.libtom.org

13.7.16 LTC ECC TIMING RESISTANT

When this has been de�ned the ECC point multiplier (built{in to the library) will use a timing

resistant point multipli
ation algorithm whi
h prevents leaking key bits of the private key (s
alar).

It is a slower algorithm but useful for situations where timing side
hannels pose a signi�
ant threat.

13.7.17 Math Des
riptors

The library
omes with three math des
riptors that allow you to interfa
e the publi
 key
ryptogra-

phy API to freely available math libraries. When GMP DESC, LTM DESC, or TFM DESC

are de�ned des
riptors for the respe
tive library are built and in
luded in the library as gmp des
,

ltm des
, or tfm des
 respe
tively.

In the test demos that use the libraries the additional
ags USE GMP, USE LTM, and

USE TFM
an be de�ned to tell the program whi
h library to use. Only one of the USE
ags
an

be de�ned at on
e.

CFLAGS="-DGMP_DESC -DLTM_DESC -DTFM_DESC -DUSE_TFM" \

EXTRALIBS="-lgmp -ltommath -ltfm" make -f makefile.shared install timing

That will build and install the library with all des
riptors (and link against all), but only use

TomsFastMath in the timing demo.

C h a p t e r 1 4

Optimizations

14.1 Introdu
tion

The entire API was designed with plug and play in mind at the low level. That is you
an swap out

any
ipher, hash, PRNG or bignum library and the dependent API will not require updating. This

has the ni
e bene�t that one
an add
iphers (et
.) not have to re{write portions of the API. For

the most part, LibTomCrypt has also been written to be highly portable and easy to build out of

the box on pretty mu
h any platform. As su
h there are no assembler inlines throughout the
ode,

I make no assumptions about the platform, et
...

That works well for most
ases but there are times where performan
e is of the essen
e. This API

allows optimized routines to be dropped in{pla
e of the existing portable routines. For instan
e,

hand optimized assembler versions of AES
ould be provided. Any existing fun
tion that uses the

ipher
ould automati
ally use the optimized
ode without re{writing. This also paves the way for

hardware drivers that
an a

ess hardware a

elerated
ryptographi
 devi
es.

At the heart of this
exibility is the des
riptor system. A des
riptor is essentially just a C stru
t

whi
h des
ribes the algorithm and provides pointers to fun
tions that do the required work. For a

given
lass of operation (e.g.
ipher, hash, prng, bignum) the fun
tions of a des
riptor have identi
al

prototypes whi
h makes development simple. In most dependent routines all an end developer has

to do is register XXX() the des
riptor and they are set.

14.2 Ciphers

The
iphers in LibTomCrypt are a

essed through the lt

ipher des
riptor stru
ture.

stru
t lt
_
ipher_des
riptor {

/** name of
ipher */

har *name;

/** internal ID */

unsigned
har ID;

/** min keysize (o
tets) */

int min_key_length,

123

124 www.libtom.org

/** max keysize (o
tets) */

max_key_length,

/** blo
k size (o
tets) */

blo
k_length,

/** default number of rounds */

default_rounds;

/** Setup the
ipher

�param key The input symmetri
 key

�param keylen The length of the input key (o
tets)

�param num_rounds The requested number of rounds (0==default)

�param skey [out℄ The destination of the s
heduled key

�return CRYPT_OK if su

essful

*/

int (*setup)(
onst unsigned
har *key,

int keylen,

int num_rounds,

symmetri
_key *skey);

/** En
rypt a blo
k

�param pt The plaintext

�param
t [out℄ The
iphertext

�param skey The s
heduled key

�return CRYPT_OK if su

essful

*/

int (*e
b_en
rypt)(
onst unsigned
har *pt,

unsigned
har *
t,

symmetri
_key *skey);

/** De
rypt a blo
k

�param
t The
iphertext

�param pt [out℄ The plaintext

�param skey The s
heduled key

�return CRYPT_OK if su

essful

*/

int (*e
b_de
rypt)(
onst unsigned
har *
t,

unsigned
har *pt,

symmetri
_key *skey);

/** Test the blo
k
ipher

�return CRYPT_OK if su

essful,

CRYPT_NOP if self-testing has been disabled

*/

int (*test)(void);

/** Terminate the
ontext

�param skey The s
heduled key

14.2 Ciphers 125

*/

void (*done)(symmetri
_key *skey);

/** Determine a key size

�param keysize [in/out℄ The size of the key desired

The suggested size

�return CRYPT_OK if su

essful

*/

int (*keysize)(int *keysize);

/** A

elerators **/

/** A

elerated ECB en
ryption

�param pt Plaintext

�param
t Ciphertext

�param blo
ks The number of
omplete blo
ks to pro
ess

�param skey The s
heduled key
ontext

�return CRYPT_OK if su

essful

*/

int (*a

el_e
b_en
rypt)(
onst unsigned
har *pt,

unsigned
har *
t,

unsigned long blo
ks,

symmetri
_key *skey);

/** A

elerated ECB de
ryption

�param pt Plaintext

�param
t Ciphertext

�param blo
ks The number of
omplete blo
ks to pro
ess

�param skey The s
heduled key
ontext

�return CRYPT_OK if su

essful

*/

int (*a

el_e
b_de
rypt)(
onst unsigned
har *
t,

unsigned
har *pt,

unsigned long blo
ks,

symmetri
_key *skey);

/** A

elerated CBC en
ryption

�param pt Plaintext

�param
t Ciphertext

�param blo
ks The number of
omplete blo
ks to pro
ess

�param IV The initial value (input/output)

�param skey The s
heduled key
ontext

�return CRYPT_OK if su

essful

*/

int (*a

el_
b
_en
rypt)(
onst unsigned
har *pt,

unsigned
har *
t,

unsigned long blo
ks,

unsigned
har *IV,

symmetri
_key *skey);

/** A

elerated CBC de
ryption

126 www.libtom.org

�param pt Plaintext

�param
t Ciphertext

�param blo
ks The number of
omplete blo
ks to pro
ess

�param IV The initial value (input/output)

�param skey The s
heduled key
ontext

�return CRYPT_OK if su

essful

*/

int (*a

el_
b
_de
rypt)(
onst unsigned
har *
t,

unsigned
har *pt,

unsigned long blo
ks,

unsigned
har *IV,

symmetri
_key *skey);

/** A

elerated CTR en
ryption

�param pt Plaintext

�param
t Ciphertext

�param blo
ks The number of
omplete blo
ks to pro
ess

�param IV The initial value (input/output)

�param mode little or big endian
ounter (mode=0 or mode=1)

�param skey The s
heduled key
ontext

�return CRYPT_OK if su

essful

*/

int (*a

el_
tr_en
rypt)(
onst unsigned
har *pt,

unsigned
har *
t,

unsigned long blo
ks,

unsigned
har *IV,

int mode,

symmetri
_key *skey);

/** A

elerated LRW

�param pt Plaintext

�param
t Ciphertext

�param blo
ks The number of
omplete blo
ks to pro
ess

�param IV The initial value (input/output)

�param tweak The LRW tweak

�param skey The s
heduled key
ontext

�return CRYPT_OK if su

essful

*/

int (*a

el_lrw_en
rypt)(
onst unsigned
har *pt,

unsigned
har *
t,

unsigned long blo
ks,

unsigned
har *IV,

onst unsigned
har *tweak,

symmetri
_key *skey);

/** A

elerated LRW

�param
t Ciphertext

�param pt Plaintext

�param blo
ks The number of
omplete blo
ks to pro
ess

�param IV The initial value (input/output)

14.2 Ciphers 127

�param tweak The LRW tweak

�param skey The s
heduled key
ontext

�return CRYPT_OK if su

essful

*/

int (*a

el_lrw_de
rypt)(
onst unsigned
har *
t,

unsigned
har *pt,

unsigned long blo
ks,

unsigned
har *IV,

onst unsigned
har *tweak,

symmetri
_key *skey);

/** A

elerated CCM pa
ket (one-shot)

�param key The se
ret key to use

�param keylen The length of the se
ret key (o
tets)

�param uskey A previously s
heduled key [
an be NULL℄

�param non
e The session non
e [use on
e℄

�param non
elen The length of the non
e

�param header The header for the session

�param headerlen The length of the header (o
tets)

�param pt [out℄ The plaintext

�param ptlen The length of the plaintext (o
tets)

�param
t [out℄ The
iphertext

�param tag [out℄ The destination tag

�param taglen [in/out℄ The max size and resulting size

of the authenti
ation tag

�param dire
tion En
rypt or De
rypt dire
tion (0 or 1)

�return CRYPT_OK if su

essful

*/

int (*a

el_

m_memory)(

onst unsigned
har *key, unsigned long keylen,

symmetri
_key *uskey,

onst unsigned
har *non
e, unsigned long non
elen,

onst unsigned
har *header, unsigned long headerlen,

unsigned
har *pt, unsigned long ptlen,

unsigned
har *
t,

unsigned
har *tag, unsigned long *taglen,

int dire
tion);

/** A

elerated GCM pa
ket (one shot)

�param key The se
ret key

�param keylen The length of the se
ret key

�param IV The initial ve
tor

�param IVlen The length of the initial ve
tor

�param adata The additional authenti
ation data (header)

�param adatalen The length of the adata

�param pt The plaintext

�param ptlen The length of the plaintext/
iphertext

�param
t The
iphertext

�param tag [out℄ The MAC tag

�param taglen [in/out℄ The MAC tag length

128 www.libtom.org

�param dire
tion En
rypt or De
rypt mode (GCM_ENCRYPT or GCM_DECRYPT)

�return CRYPT_OK on su

ess

*/

int (*a

el_g
m_memory)(

onst unsigned
har *key, unsigned long keylen,

onst unsigned
har *IV, unsigned long IVlen,

onst unsigned
har *adata, unsigned long adatalen,

unsigned
har *pt, unsigned long ptlen,

unsigned
har *
t,

unsigned
har *tag, unsigned long *taglen,

int dire
tion);

/** A

elerated one shot OMAC

�param key The se
ret key

�param keylen The key length (o
tets)

�param in The message

�param inlen Length of message (o
tets)

�param out [out℄ Destination for tag

�param outlen [in/out℄ Initial and final size of out

�return CRYPT_OK on su

ess

*/

int (*oma
_memory)(

onst unsigned
har *key, unsigned long keylen,

onst unsigned
har *in, unsigned long inlen,

unsigned
har *out, unsigned long *outlen);

/** A

elerated one shot XCBC

�param key The se
ret key

�param keylen The key length (o
tets)

�param in The message

�param inlen Length of message (o
tets)

�param out [out℄ Destination for tag

�param outlen [in/out℄ Initial and final size of out

�return CRYPT_OK on su

ess

*/

int (*x
b
_memory)(

onst unsigned
har *key, unsigned long keylen,

onst unsigned
har *in, unsigned long inlen,

unsigned
har *out, unsigned long *outlen);

/** A

elerated one shot F9

�param key The se
ret key

�param keylen The key length (o
tets)

�param in The message

�param inlen Length of message (o
tets)

�param out [out℄ Destination for tag

�param outlen [in/out℄ Initial and final size of out

�return CRYPT_OK on su

ess

�remark Requires manual padding

*/

14.2 Ciphers 129

int (*f9_memory)(

onst unsigned
har *key, unsigned long keylen,

onst unsigned
har *in, unsigned long inlen,

unsigned
har *out, unsigned long *outlen);

};

14.2.1 Name

The name parameter spe
i�es the name of the
ipher. This is what a developer would pass to

�nd
ipher() to �nd the
ipher in the des
riptor tables.

14.2.2 Internal ID

This is a single byte Internal ID you
an use to distinguish
iphers from ea
h other.

14.2.3 Key Lengths

The minimum key length is min key length and is measured in o
tets. Similarly the maximum key

length is max key length. They
an be equal and both must valid key sizes for the
ipher. Values

in between are not assumed to be valid though they may be.

14.2.4 Blo
k Length

The size of the
iphers plaintext or
iphertext is blo
k length and is measured in o
tets.

14.2.5 Rounds

Some
iphers allow di�erent number of rounds to be used. Usually you just use the default. The

default round
ount is default rounds.

14.2.6 Setup

To initialize a
ipher (for ECB mode) the fun
tion setup() was provided. It a

epts an array of key

o
tets key of length keylen o
tets. The user
an spe
ify the number of rounds they want through

num rounds where num rounds = 0 means use the default. The destination of a s
heduled key is

stored in skey.

Inside the symmetri
 key union there is a void *data whi
h you
an use to allo
ate data if you

need a data stru
ture that does not �t with the existing ones provided. Just make sure in your

done() fun
tion that you free the allo
ated memory.

14.2.7 Single blo
k ECB

To pro
ess a single blo
k in ECB mode the e
b en
rypt() and e
b de
rypt() fun
tions were provided.

The plaintext and
iphertext bu�ers are allowed to overlap so you must make sure you do not

overwrite the output before you are �nished with the input.

130 www.libtom.org

14.2.8 Testing

The test() fun
tion is used to self{test the devi
e. It takes no arguments and returnsCRYPT OK if

all is working properly. You may return CRYPT NOP to indi
ate that no testing was performed.

14.2.9 Key Sizing

O

asionally, a fun
tion will want to �nd a suitable key size to use sin
e the input is oddly sized.

The keysize() fun
tion is for this
ase. It a

epts a pointer to an integer whi
h represents the desired

size. The fun
tion then has to mat
h it to the exa
t or a lower key size that is valid for the
ipher.

For example, if the input is 25 and 24 is valid then it stores 24 ba
k in the pointed to integer. It

must not round up and must return an error if the keysize
annot be mapped to a valid key size

for the
ipher.

14.2.10 A

eleration

The next set of fun
tions
over the a

elerated fun
tionality of the
ipher des
riptor. Any
ombi-

nation of these fun
tions may be set to NULL to indi
ate it is not supported. In those
ases the

software defaults are used (using the single ECB blo
k routines).

A

elerated ECB

These two fun
tions are meant for
ases where a user wants to en
rypt (in ECB mode no less) an

array of blo
ks. These fun
tions are a

essed through the a

el e
b en
rypt and a

el e
b de
rypt

pointers. The blo
ks
ount is the number of
omplete blo
ks to pro
ess.

A

elerated CBC

These two fun
tions are meant for a

elerated CBC en
ryption. These fun
tions are a

essed

through the a

el
b
 en
rypt and a

el
b
 de
rypt pointers. The blo
ks value is the number of

omplete blo
ks to pro
ess. The IV is the CBC initial ve
tor. It is an input upon
alling this

fun
tion and must be updated by the fun
tion before returning.

A

elerated CTR

This fun
tion is meant for a

elerated CTR en
ryption. It is a

essible through the a

el
tr en
rypt

pointer. The blo
ks value is the number of
omplete blo
ks to pro
ess. The IV is the CTR
ounter

ve
tor. It is an input upon
alling this fun
tion and must be updated by the fun
tion before return-

ing. Themode value indi
ates whether the
ounter is big (mode = CTR COUNTER BIG ENDIAN)

or little (mode = CTR COUNTER LITTLE ENDIAN) endian.

This fun
tion (and the way it's
alled) di�ers from the other two sin
e
tr en
rypt() allows any

size input plaintext. The a

elerator will only be
alled if the following
onditions are met.

1. The a

elerator is present

2. The CTR pad is empty

3. The remaining length of the input to pro
ess is greater than or equal to the blo
k size.

14.2 Ciphers 131

The CTR pad is empty when a multiple (in
luding zero) blo
ks of text have been pro
essed.

That is, if you pass in seven bytes to AES{CTR mode you would have to pass in a minimum of

nine extra bytes before the a

elerator
ould be
alled. The CTR a

elerator must in
rement the

ounter (and store it ba
k into the bu�er provided) before en
rypting it to
reate the pad.

The a

elerator will only be used to en
rypt whole blo
ks. Partial blo
ks are always handled in

software.

A

elerated LRW

These fun
tions are meant for a

elerated LRW. They pro
ess blo
ks of input in lengths of multiples

of 16 o
tets. They must a

ept the IV and tweak state variables and updated them prior to

returning. Note that you may want to disable LRW TABLES in tom
rypt
ustom.h if you intend

to use a

elerators for LRW.

While both en
rypt and de
rypt a

elerators are not required it is suggested as it makes

lrw setiv() more eÆ
ient.

Note that
alling lrw done() will only invoke the
ipher des
riptor[℄.done() fun
tion on the sym-

metri
 key parameter of the LRW state. That means if your devi
e requires any (LRW spe
i�
)

resour
es you should free them in your
iphers() done fun
tion. The simplest way to think of it is

to write the plugin solely to do LRW with the
ipher. That way
ipher des
riptor[℄.setup() means

to init LRW resour
es and
ipher des
riptor[℄.done() means to free them.

A

elerated CCM

This fun
tion is meant for a

elerated CCM en
ryption or de
ryption. It pro
esses the entire pa
ket

in one
all. You
an optimize the work
ow somewhat by allowing the
aller to
all the setup()

fun
tion �rst to s
hedule the key if your a

elerator
annot do the key s
hedule on the
y (for

instan
e). This fun
tion MUST support both key passing methods.

key uskey Sour
e of key

NULL NULL Error, not supported

non-NULL NULL Use key, do a key s
hedule

NULL non-NULL Use uskey, key s
hedule not required

non-NULL non-NULL Use uskey, key s
hedule not required

This fun
tion is
alled when the user
alls

m memory().

A

elerated GCM

This fun
tion is meant for a

elerated GCM en
ryption or de
ryption. It pro
esses the entire pa
ket

in one
all. Note that the setup() fun
tion will not be
alled prior to this. This fun
tion must handle

s
heduling the key provided on its own. It is
alled when the user
alls g
m memory().

A

elerated OMAC

This fun
tion is meant to perform an optimized OMAC1 (CMAC) message authenti
ation
ode

omputation when the user
alls oma
 memory().

132 www.libtom.org

A

elerated XCBC-MAC

This fun
tion is meant to perform an optimized XCBC-MAC message authenti
ation
ode
ompu-

tation when the user
alls x
b
 memory().

A

elerated F9

This fun
tion is meant to perform an optimized F9 message authenti
ation
ode
omputation when

the user
alls f9 memory(). Like f9 memory(), it requires the
aller to perform any 3GPP related

padding before
alling in order to ensure proper
omplian
e with F9.

14.3 One{Way Hashes

The hash fun
tions are a

essed through the lt
 hash des
riptor stru
ture.

stru
t lt
_hash_des
riptor {

/** name of hash */

har *name;

/** internal ID */

unsigned
har ID;

/** Size of digest in o
tets */

unsigned long hashsize;

/** Input blo
k size in o
tets */

unsigned long blo
ksize;

/** ASN.1 OID */

unsigned long OID[16℄;

/** Length of DER en
oding */

unsigned long OIDlen;

/** Init a hash state

�param hash The hash to initialize

�return CRYPT_OK if su

essful

*/

int (*init)(hash_state *hash);

/** Pro
ess a blo
k of data

�param hash The hash state

�param in The data to hash

�param inlen The length of the data (o
tets)

�return CRYPT_OK if su

essful

*/

int (*pro
ess)(hash_state *hash,

onst unsigned
har *in,

unsigned long inlen);

14.3 One{Way Hashes 133

/** Produ
e the digest and store it

�param hash The hash state

�param out [out℄ The destination of the digest

�return CRYPT_OK if su

essful

*/

int (*done)(hash_state *hash,

unsigned
har *out);

/** Self-test

�return CRYPT_OK if su

essful,

CRYPT_NOP if self-tests have been disabled

*/

int (*test)(void);

/* a

elerated hma

allba
k: if you need to-do

multiple pa
kets just use the generi
 hma
_memory

and provide a hash
allba
k

*/

int (*hma
_blo
k)(
onst unsigned
har *key,

unsigned long keylen,

onst unsigned
har *in,

unsigned long inlen,

unsigned
har *out,

unsigned long *outlen);

};

14.3.1 Name

This is the name the hash is known by and what �nd hash() will look for.

14.3.2 Internal ID

This is the internal ID byte used to distinguish the hash from other hashes.

14.3.3 Digest Size

The hashsize variable indi
ates the length of the output in o
tets.

14.3.4 Blo
k Size

The blo
ksize variable indi
ates the length of input (in o
tets) that the hash pro
esses in a given

invo
ation.

14.3.5 OID Identi�er

This is the universal ASN.1 Obje
t Identi�er for the hash.

134 www.libtom.org

14.3.6 Initialization

The init fun
tion initializes the hash and prepares it to pro
ess message bytes.

14.3.7 Pro
ess

This pro
esses message bytes. The algorithm must a

ept any length of input that the hash would

allow. The input is not guaranteed to be a multiple of the blo
k size in length.

14.3.8 Done

The done fun
tion terminates the hash and returns the message digest.

14.3.9 A

eleration

A
ompatible a

elerator must allow pro
essing data in any granularity whi
h may require internal

padding on the driver side.

14.3.10 HMAC A

eleration

The hma
 blo
k()
allba
k is meant for single{shot optimized HMAC implementations. It is
alled

dire
tly by hma
 memory() if present. If you need to be able to pro
ess multiple blo
ks per MAC

then you will have to simply provide a pro
ess()
allba
k and use hma
 memory() as provided in

LibTomCrypt.

14.4 Pseudo{Random Number Generators

The pseudo{random number generators are a

essible through the lt
 prng des
riptor stru
ture.

stru
t lt
_prng_des
riptor {

/** Name of the PRNG */

har *name;

/** size in bytes of exported state */

int export_size;

/** Start a PRNG state

�param prng [out℄ The state to initialize

�return CRYPT_OK if su

essful

*/

int (*start)(prng_state *prng);

/** Add entropy to the PRNG

�param in The entropy

�param inlen Length of the entropy (o
tets)

�param prng The PRNG state

�return CRYPT_OK if su

essful

*/

14.4 Pseudo{Random Number Generators 135

int (*add_entropy)(
onst unsigned
har *in,

unsigned long inlen,

prng_state *prng);

/** Ready a PRNG state to read from

�param prng The PRNG state to ready

�return CRYPT_OK if su

essful

*/

int (*ready)(prng_state *prng);

/** Read from the PRNG

�param out [out℄ Where to store the data

�param outlen Length of data desired (o
tets)

�param prng The PRNG state to read from

�return Number of o
tets read

*/

unsigned long (*read)(unsigned
har *out,

unsigned long outlen,

prng_state *prng);

/** Terminate a PRNG state

�param prng The PRNG state to terminate

�return CRYPT_OK if su

essful

*/

int (*done)(prng_state *prng);

/** Export a PRNG state

�param out [out℄ The destination for the state

�param outlen [in/out℄ The max size and resulting size

�param prng The PRNG to export

�return CRYPT_OK if su

essful

*/

int (*pexport)(unsigned
har *out,

unsigned long *outlen,

prng_state *prng);

/** Import a PRNG state

�param in The data to import

�param inlen The length of the data to import (o
tets)

�param prng The PRNG to initialize/import

�return CRYPT_OK if su

essful

*/

int (*pimport)(
onst unsigned
har *in,

unsigned long inlen,

prng_state *prng);

/** Self-test the PRNG

�return CRYPT_OK if su

essful,

CRYPT_NOP if self-testing has been disabled

*/

136 www.libtom.org

int (*test)(void);

};

14.4.1 Name

The name by whi
h �nd prng() will �nd the PRNG.

14.4.2 Export Size

When an PRNG state is to be exported for future use you spe
ify the spa
e required in this variable.

14.4.3 Start

Initialize the PRNG and make it ready to a

ept entropy.

14.4.4 Entropy Addition

Add entropy to the PRNG state. The exa
t behaviour of this fun
tion depends on the parti
ulars

of the PRNG.

14.4.5 Ready

This fun
tion makes the PRNG ready to read from by pro
essing the entropy added. The behaviour

of this fun
tion depends on the spe
i�
 PRNG used.

14.4.6 Read

Read from the PRNG and return the number of bytes read. This fun
tion does not have to �ll the

bu�er but it is best if it does as many proto
ols do not retry reads and will fail on the �rst try.

14.4.7 Done

Terminate a PRNG state. The behaviour of this fun
tion depends on the parti
ular PRNG used.

14.4.8 Exporting and Importing

An exported PRNG state is data that the PRNG
an later import to resume a
tivity. They're not

meant to resume the same session but should at least maintain the same level of state entropy.

14.5 BigNum Math Des
riptors

The library also makes use of the math des
riptors to a

ess math fun
tions. While bignum math

libraries usually di�er in implementation it hasn't proven hard to write glue to use math libraries

so far. The basi
 des
riptor looks like.

14.5 BigNum Math Des
riptors 137

/** math des
riptor */

typedef stru
t {

/** Name of the math provider */

har *name;

/** Bits per digit, amount of bits must fit in an unsigned long */

int bits_per_digit;

/* ---- init/deinit fun
tions ---- */

/** initialize a bignum

�param a The number to initialize

�return CRYPT_OK on su

ess

*/

int (*init)(void **a);

/** init
opy

�param dst The number to initialize and write to

�param sr
 The number to
opy from

�return CRYPT_OK on su

ess

*/

int (*init_
opy)(void **dst, void *sr
);

/** deinit

�param a The number to free

�return CRYPT_OK on su

ess

*/

void (*deinit)(void *a);

/* ---- data movement ---- */

/**
opy

�param sr
 The number to
opy from

�param dst The number to write to

�return CRYPT_OK on su

ess

*/

int (*
opy)(void *sr
, void *dst);

/* ---- trivial low level fun
tions ---- */

/** set small
onstant

�param a Number to write to

�param n Sour
e upto bits_per_digit (meant for small
onstants)

�return CRYPT_OK on su

ess

*/

int (*set_int)(void *a, unsigned long n);

/** get small
onstant

�param a Small number to read

�return The lower bits_per_digit of the integer (unsigned)

138 www.libtom.org

*/

unsigned long (*get_int)(void *a);

/** get digit n

�param a The number to read from

�param n The number of the digit to fet
h

�return The bits_per_digit sized n'th digit of a

*/

unsigned long (*get_digit)(void *a, int n);

/** Get the number of digits that represent the number

�param a The number to
ount

�return The number of digits used to represent the number

*/

int (*get_digit_
ount)(void *a);

/**
ompare two integers

�param a The left side integer

�param b The right side integer

�return LTC_MP_LT if a < b,

LTC_MP_GT if a > b and

LTC_MP_EQ otherwise. (signed
omparison)

*/

int (*
ompare)(void *a, void *b);

/**
ompare against int

�param a The left side integer

�param b The right side integer (upto bits_per_digit)

�return LTC_MP_LT if a < b,

LTC_MP_GT if a > b and

LTC_MP_EQ otherwise. (signed
omparison)

*/

int (*
ompare_d)(void *a, unsigned long n);

/** Count the number of bits used to represent the integer

�param a The integer to
ount

�return The number of bits required to represent the integer

*/

int (*
ount_bits)(void * a);

/** Count the number of LSB bits whi
h are zero

�param a The integer to
ount

�return The number of
ontiguous zero LSB bits

*/

int (*
ount_lsb_bits)(void *a);

/** Compute a power of two

�param a The integer to store the power in

�param n The power of two you want to store (a = 2^n)

�return CRYPT_OK on su

ess

14.5 BigNum Math Des
riptors 139

*/

int (*twoexpt)(void *a , int n);

/* ---- radix
onversions ---- */

/** read as
ii string

�param a The integer to store into

�param str The string to read

�param radix The radix the integer has been represented in (2-64)

�return CRYPT_OK on su

ess

*/

int (*read_radix)(void *a,
onst
har *str, int radix);

/** write number to string

�param a The integer to store

�param str The destination for the string

�param radix The radix the integer is to be represented in (2-64)

�return CRYPT_OK on su

ess

*/

int (*write_radix)(void *a,
har *str, int radix);

/** get size as unsigned
har string

�param a The integer to get the size

�return The length of the integer in o
tets

*/

unsigned long (*unsigned_size)(void *a);

/** store an integer as an array of o
tets

�param sr
 The integer to store

�param dst The buffer to store the integer in

�return CRYPT_OK on su

ess

*/

int (*unsigned_write)(void *sr
, unsigned
har *dst);

/** read an array of o
tets and store as integer

�param dst The integer to load

�param sr
 The array of o
tets

�param len The number of o
tets

�return CRYPT_OK on su

ess

*/

int (*unsigned_read)(void *dst,

unsigned
har *sr
,

unsigned long len);

/* ---- basi
 math ---- */

/** add two integers

�param a The first sour
e integer

�param b The se
ond sour
e integer

�param
 The destination of "a + b"

140 www.libtom.org

�return CRYPT_OK on su

ess

*/

int (*add)(void *a, void *b, void *
);

/** add two integers

�param a The first sour
e integer

�param b The se
ond sour
e integer

(single digit of upto bits_per_digit in length)

�param
 The destination of "a + b"

�return CRYPT_OK on su

ess

*/

int (*addi)(void *a, unsigned long b, void *
);

/** subtra
t two integers

�param a The first sour
e integer

�param b The se
ond sour
e integer

�param
 The destination of "a - b"

�return CRYPT_OK on su

ess

*/

int (*sub)(void *a, void *b, void *
);

/** subtra
t two integers

�param a The first sour
e integer

�param b The se
ond sour
e integer

(single digit of upto bits_per_digit in length)

�param
 The destination of "a - b"

�return CRYPT_OK on su

ess

*/

int (*subi)(void *a, unsigned long b, void *
);

/** multiply two integers

�param a The first sour
e integer

�param b The se
ond sour
e integer

(single digit of upto bits_per_digit in length)

�param
 The destination of "a * b"

�return CRYPT_OK on su

ess

*/

int (*mul)(void *a, void *b, void *
);

/** multiply two integers

�param a The first sour
e integer

�param b The se
ond sour
e integer

(single digit of upto bits_per_digit in length)

�param
 The destination of "a * b"

�return CRYPT_OK on su

ess

*/

int (*muli)(void *a, unsigned long b, void *
);

/** Square an integer

�param a The integer to square

14.5 BigNum Math Des
riptors 141

�param b The destination

�return CRYPT_OK on su

ess

*/

int (*sqr)(void *a, void *b);

/** Divide an integer

�param a The dividend

�param b The divisor

�param
 The quotient (
an be NULL to signify don't
are)

�param d The remainder (
an be NULL to signify don't
are)

�return CRYPT_OK on su

ess

*/

int (*div)(void *a, void *b, void *
, void *d);

/** divide by two

�param a The integer to divide (shift right)

�param b The destination

�return CRYPT_OK on su

ess

*/

int (*div_2)(void *a, void *b);

/** Get remainder (small value)

�param a The integer to redu
e

�param b The modulus (upto bits_per_digit in length)

�param
 The destination for the residue

�return CRYPT_OK on su

ess

*/

int (*modi)(void *a, unsigned long b, unsigned long *
);

/** g
d

�param a The first integer

�param b The se
ond integer

�param
 The destination for (a, b)

�return CRYPT_OK on su

ess

*/

int (*g
d)(void *a, void *b, void *
);

/** l
m

�param a The first integer

�param b The se
ond integer

�param
 The destination for [a, b℄

�return CRYPT_OK on su

ess

*/

int (*l
m)(void *a, void *b, void *
);

/** Modular multipli
ation

�param a The first sour
e

�param b The se
ond sour
e

�param
 The modulus

�param d The destination (a*b mod
)

142 www.libtom.org

�return CRYPT_OK on su

ess

*/

int (*mulmod)(void *a, void *b, void *
, void *d);

/** Modular squaring

�param a The first sour
e

�param b The modulus

�param
 The destination (a*a mod b)

�return CRYPT_OK on su

ess

*/

int (*sqrmod)(void *a, void *b, void *
);

/** Modular inversion

�param a The value to invert

�param b The modulus

�param
 The destination (1/a mod b)

�return CRYPT_OK on su

ess

*/

int (*invmod)(void *, void *, void *);

/* ---- redu
tion ---- */

/** setup Montgomery

�param a The modulus

�param b The destination for the redu
tion digit

�return CRYPT_OK on su

ess

*/

int (*montgomery_setup)(void *a, void **b);

/** get normalization value

�param a The destination for the normalization value

�param b The modulus

�return CRYPT_OK on su

ess

*/

int (*montgomery_normalization)(void *a, void *b);

/** redu
e a number

�param a The number [and dest℄ to redu
e

�param b The modulus

�param
 The value "b" from montgomery_setup()

�return CRYPT_OK on su

ess

*/

int (*montgomery_redu
e)(void *a, void *b, void *
);

/**
lean up (frees memory)

�param a The value "b" from montgomery_setup()

�return CRYPT_OK on su

ess

*/

void (*montgomery_deinit)(void *a);

14.5 BigNum Math Des
riptors 143

/* ---- exponentiation ---- */

/** Modular exponentiation

�param a The base integer

�param b The power (
an be negative) integer

�param
 The modulus integer

�param d The destination

�return CRYPT_OK on su

ess

*/

int (*exptmod)(void *a, void *b, void *
, void *d);

/** Primality testing

�param a The integer to test

�param b The destination of the result (FP_YES if prime)

�return CRYPT_OK on su

ess

*/

int (*isprime)(void *a, int *b);

/* ---- (optional) e

 point math ---- */

/** ECC GF(p) point multipli
ation (from the NIST
urves)

�param k The integer to multiply the point by

�param G The point to multiply

�param R The destination for kG

�param modulus The modulus for the field

�param map Boolean indi
ated whether to map ba
k to affine or not

(
an be ignored if you work in affine only)

�return CRYPT_OK on su

ess

*/

int (*e

_ptmul)(void *k,

e

_point *G,

e

_point *R,

void *modulus,

int map);

/** ECC GF(p) point addition

�param P The first point

�param Q The se
ond point

�param R The destination of P + Q

�param modulus The modulus

�param mp The "b" value from montgomery_setup()

�return CRYPT_OK on su

ess

*/

int (*e

_ptadd)(e

_point *P,

e

_point *Q,

e

_point *R,

void *modulus,

void *mp);

/** ECC GF(p) point double

144 www.libtom.org

�param P The first point

�param R The destination of 2P

�param modulus The modulus

�param mp The "b" value from montgomery_setup()

�return CRYPT_OK on su

ess

*/

int (*e

_ptdbl)(e

_point *P,

e

_point *R,

void *modulus,

void *mp);

/** ECC mapping from proje
tive to affine,

urrently uses (x,y,z) => (x/z^2, y/z^3, 1)

�param P The point to map

�param modulus The modulus

�param mp The "b" value from montgomery_setup()

�return CRYPT_OK on su

ess

�remark The mapping
an be different but keep in mind a

e

_point only has three integers (x,y,z) so if

you use a different mapping you have to make it fit.

*/

int (*e

_map)(e

_point *P, void *modulus, void *mp);

/** Computes kA*A + kB*B = C using Shamir's Tri
k

�param A First point to multiply

�param kA What to multiple A by

�param B Se
ond point to multiply

�param kB What to multiple B by

�param C [out℄ Destination point (
an overlap with A or B)

�param modulus Modulus for
urve

�return CRYPT_OK on su

ess

*/

int (*e

_mul2add)(e

_point *A, void *kA,

e

_point *B, void *kB,

e

_point *C,

void *modulus);

/* ---- (optional) rsa optimized math (for internal CRT) ---- */

/** RSA Key Generation

�param prng An a
tive PRNG state

�param wprng The index of the PRNG desired

�param size The size of the key in o
tets

�param e The "e" value (publi
 key).

e==65537 is a good
hoi
e

�param key [out℄ Destination of a newly
reated private key pair

�return CRYPT_OK if su

essful, upon error all allo
ated ram is freed

*/

int (*rsa_keygen)(prng_state *prng,

14.5 BigNum Math Des
riptors 145

int wprng,

int size,

long e,

rsa_key *key);

/** RSA exponentiation

�param in The o
tet array representing the base

�param inlen The length of the input

�param out The destination (to be stored in an o
tet array format)

�param outlen The length of the output buffer and the resulting size

(zero padded to the size of the modulus)

�param whi
h PK_PUBLIC for publi
 RSA and PK_PRIVATE for private RSA

�param key The RSA key to use

�return CRYPT_OK on su

ess

*/

int (*rsa_me)(
onst unsigned
har *in, unsigned long inlen,

unsigned
har *out, unsigned long *outlen, int whi
h,

rsa_key *key);

} lt
_math_des
riptor;

Most of the fun
tions are fairly straightforward and do not need do
umentation. We'll
over

the basi

onventions of the API and then explain the a

elerated fun
tions.

14.5.1 Conventions

All bignums are a

essed through an opaque void * data type. You must internally
ast the pointer

if you need to a

ess members of your bignum stru
ture. During the init
alls a void ** will be

passed where you allo
ate your stru
ture and set the pointer then initialize the number to zero.

During the deinit
alls you must free the bignum as well as the stru
ture you allo
ated to pla
e it

in.

All fun
tions ex
ept the Montgomery redu
tions work from left to right with the arguments.

For example, mul(a, b,
)
omputes
 ab.

All fun
tions (ex
ept where noted otherwise) return CRYPT OK to signify a su

essful oper-

ation. All error
odes must be valid LibTomCrypt error
odes.

The digit routines (in
luding fun
tions with the i suÆx) use a unsigned long to represent the

digit. If your internal digit is larger than this you must then partition your digits. Normally this

does not matter as unsigned long will be the same size as your register size. Note that if your digit

is smaller than an unsigned long that is also a

eptable as the bits per digit parameter will spe
ify

this.

14.5.2 ECC Fun
tions

The ECC system in LibTomCrypt is based o� of the NIST re
ommended
urves over GF (p) and is

used to implement EC-DSA and EC-DH. The ECC fun
tions work with the e

 point stru
ture

and assume the points are stored in Ja
obian proje
tive format.

/** A point on a ECC
urve, stored in Ja
obian format su
h

that (x,y,z) => (x/z^2, y/z^3, 1) when interpreted as affine */

146 www.libtom.org

typedef stru
t {

/** The x
o-ordinate */

void *x;

/** The y
o-ordinate */

void *y;

/** The z
o-ordinate */

void *z;

} e

_point;

All ECC fun
tions must use this mapping system. The only ex
eption is when you remap

all ECC
allba
ks whi
h will allow you to have more
ontrol over how the ECC math will be

implemented. Out of the box you only have three parameters per point to use (x; y; z) however,

these are just void pointers. They
ould point to anything you want. The only further ex
eption is

the export fun
tions whi
h expe
ts the values to be in aÆne format.

Point Multiply

This will multiply the point G by the s
alar k and store the result in the point R. The value should

be mapped to aÆne only if map is set to one.

Point Addition

This will add the point P to the point Q and store it in the point R. The mp parameter is the b

value from the montgomery setup()
all. The input points may be in either aÆne (with z = 1) or

proje
tive format and the output point is always proje
tive.

Point Mapping

This will map the point P ba
k from proje
tive to aÆne. The output point P must be of the form

(x; y; 1).

Shamir's Tri
k

To a

elerate EC{DSA veri�
ation the library provides a built{in fun
tion
alled lt
 e

 mul2add().

This performs two point multipli
ations and an addition in roughly the time of one point multipli-

ation. It is
alled from e

 verify hash() if an a

elerator is not present. The a

lerator fun
tion

must allow the points to overlap (e.g., A k

1

A + k

2

B) and must return the �nal point in aÆne

format.

14.5.3 RSA Fun
tions

The RSA Modular Exponentiation (ME) fun
tion is used by the RSA API to perform exponenti-

ations for private and publi
 key operations. In parti
ular for private key operations it uses the

CRT approa
h to lower the time required. It is passed an RSA key with the following format.

/** RSA PKCS style key */

typedef stru
t Rsa_key {

/** Type of key, PK_PRIVATE or PK_PUBLIC */

14.5 BigNum Math Des
riptors 147

int type;

/** The publi
 exponent */

void *e;

/** The private exponent */

void *d;

/** The modulus */

void *N;

/** The p fa
tor of N */

void *p;

/** The q fa
tor of N */

void *q;

/** The 1/q mod p CRT param */

void *qP;

/** The d mod (p - 1) CRT param */

void *dP;

/** The d mod (q - 1) CRT param */

void *dQ;

} rsa_key;

The
all reads the in bu�er as an unsigned
har array in big endian format. Then it performs

the exponentiation and stores the output in big endian format to the out bu�er. The output must

be zero padded (leading bytes) so that the length of the output mat
hes the length of the modulus

(in bytes). For example, for RSA{1024 the output is always 128 bytes regardless of how small the

numeri
al value of the exponentiation is.

Sin
e the fun
tion is given the entire RSA key (for private keys only) CRT is possible as pre-

s
ribed in the PKCS #1 v2.1 spe
i�
ation.

Index

aes des
, 15

anubis des
, 15

AR, 115

base64 de
ode(), 109

base64 en
ode(), 109

blow�sh des
, 15

blow�sh done(), 13

blow�sh e
b de
rypt(), 13

blow�sh e
b en
rypt(), 13

blow�sh setup(), 13

BSWAP, 6

CBC Mode, 19

CBC mode, 18

b
 de
rypt(), 21

b
 done(), 22

b
 en
rypt(), 21

b
 getiv(), 21

b
 setiv(), 21

b
 start(), 19

CC, 115

m memory(), 33, 131

m test(), 33

CFB Mode, 19

CFB mode, 18

fb de
rypt(), 21

fb done(), 22

fb en
rypt(), 21

fb getiv(), 21

fb setiv(), 21

fb start(), 19

h
 register(), 46

Cipher De
rypt, 12

Cipher Des
riptor, 14

Cipher des
riptor table, 15

Cipher En
rypt, 12

Cipher Hash Constru
tion, 46

Cipher Setup, 11

Cipher Testing, 12

Ciphertext stealing, 19

CMAC, 51

CRYPT ERROR, 5

CRYPT OK, 5

CTR Mode, 19

CTR mode, 18

tr de
rypt(), 21

tr done(), 22

tr en
rypt(), 21

tr getiv(), 21

tr setiv(), 21

tr start(), 19

DATADIR, 116

der de
ode bit string(), 100

der de
ode
hoi
e(), 104

der de
ode ia5 string(), 102

der de
ode integer(), 100

der de
ode obje
t identi�er(), 101

der de
ode o
tet string(), 101

der de
ode printable string(), 102

der de
ode sequen
e(), 97

der de
ode sequen
e
exi(), 104

der de
ode sequen
e multi(), 98

der de
ode set(), 99

der de
ode short integer(), 100

der de
ode ut
time(), 103

der de
ode utf8 string(), 103

der en
ode bit string(), 100

der en
ode ia5 string(), 102

der en
ode integer(), 100

der en
ode obje
t identi�er(), 101

der en
ode o
tet string(), 101

der en
ode printable string(), 102

der en
ode sequen
e(), 96

148

Index 149

der en
ode sequen
e multi(), 98

der en
ode set(), 98

der en
ode setof(), 99

der en
ode short integer(), 100

der en
ode ut
time(), 103

der en
ode utf8 string(), 103

der length bit string(), 100

der length ia5 string(), 102

der length integer(), 100

der length obje
t identi�er(), 101

der length o
tet string(), 101

der length printable string(), 102

der length sequen
e(), 97

der length short integer(), 100

der length ut
time(), 103

der length utf8 string(), 103

der sequen
e free(), 106

des3 des
, 15

des des
, 15

DESTDIR, 116

dsa de
rypt key(), 93

dsa en
rypt key(), 92

dsa export(), 93

dsa free(), 90

dsa import(), 93

dsa sign hash(), 91

dsa verify hash(), 92

dsa verify key(), 91

eax addheader(), 29

eax de
rypt(), 28

eax de
rypt verify memory, 30

eax done(), 29

eax en
rypt(), 28

eax en
rypt authenti
ate memory, 30

eax init(), 28

eax test(), 29

ECB mode, 18

e
b de
rypt(), 21

e
b done(), 22

e
b en
rypt(), 21

e
b start(), 19

ECC Key Format, 82

e

 ansi x963 export(), 85

e

 ansi x963 import(), 85

e

 ansi x963 import ex(), 85

e

 de
rypt key(), 86

e

 en
rypt key(), 86

e

 export(), 84

e

 free(), 84

e

 import(), 84

e

 import ex(), 84

e

 make key(), 83

e

 make key ex(), 84

e

 shared se
ret(), 86

e

 sign hash(), 87

e

 verify hash(), 87

error to string(), 5, 7, 16

EXTRALIBS, 117

F8 Mode, 26

f8 de
rypt(), 26

f8 done(), 27

f8 en
rypt(), 26

f8 getiv(), 27

f8 setiv(), 27

f8 start(), 26

f9 done(), 59

f9 �le(), 59

f9 init(), 58

f9 memory(), 59, 132

f9 pro
ess(), 59

f9 test(), 59

�nd
ipher(), 16, 129

�nd hash(), 43

�nd hash oid(), 43

�nd prng(), 64

Fixed Point ECC, 81

FP ENTRIES, 82

FP LUT, 82

FP SIZE, 82

g
m add aad(), 36

g
m add iv(), 35

g
m done(), 36

g
m init(), 35

g
m memory(), 37, 131

g
m pro
ess(), 36

g
m reset(), 36

GMP DESC, 122

Hash des
riptor table, 45

Hash Fun
tions, 41

150 Index

hash �le(), 44

hash �lehandle(), 44

hash memory(), 44

hma
 done(), 49

hma
 �le(), 50

hma
 init(), 49

hma
 memory(), 50

hma
 pro
ess(), 49

hma
 test(), 50

IGNORE SPEED, 116

INCPATH, 116

kasumi des
, 15

Key Sizing, 12

khazad des
, 15

kseed des
, 15

LIBNAME, 116

LIBNAME S, 116

LIBPATH, 116

LIBTEST, 116

LIBTEST S, 116

LOAD32H, 6

LOAD32L, 6

LOAD64H, 6

LOAD64L, 6

lrw de
rypt(), 24

lrw done(), 25

lrw en
rypt(), 24

lrw getiv(), 25

lrw setiv(), 25

lrw start(), 24

lt
 asn1 list stru
ture, 95

lt
 e

 mul2add(), 146

lt
 e

 set type, 83

LTC FAST TYPE, 120

LTC PKCS 1 EME, 70

LTC PKCS 1 EMSA, 70

LTC PKCS 1 OAEP, 75

LTC PKCS 1 V1 5, 75

LTC PTHREAD, 113

LTC SET ASN1 ma
ro, 95

lt
 ut
time stru
ture, 103

LTC XCBC PURE, 57

LTM DESC, 122

MAKE, 115

MECC FP, 81

Message Digest, 41

noekeon des
, 15

o
b de
rypt(), 31

o
b de
rypt verify memory(), 32

o
b done de
rypt(), 32

o
b done en
rypt(), 32

o
b en
rypt(), 31

o
b init(), 31

OFB Mode, 19

OFB mode, 19

ofb de
rypt(), 21

ofb done(), 22

ofb en
rypt(), 21

ofb getiv(), 21

ofb setiv(), 21

ofb start(), 19

OMAC, 51

oma
 done(), 52

oma
 �le(), 52

oma
 init(), 51

oma
 memory(), 52, 131

oma
 pro
ess(), 52

oma
 test(), 53

peli
an done(), 55

peli
an init(), 55

peli
an pro
ess(), 55

PK PRIVATE, 73

PK PUBLIC, 73

PKCS #5, 106

pk
s 1 oaep de
ode(), 71

pk
s 1 oaep en
ode(), 70, 74

pk
s 1 pss de
ode(), 72

pk
s 1 pss en
ode(), 71

pk
s 1 v1 5 de
ode(), 70

pk
s 1 v1 5 en
ode(), 69

pk
s 5 alg1(), 106

pk
s 5 alg2(), 107

pma
 done(), 54

pma
 �le(), 55

pma
 init(), 54

pma
 memory(), 54

pma
 pro
ess(), 54

Index 151

pma
 test(), 55

Primality Testing, 110

PRNG, 8

PRNG add entropy, 61

PRNG Des
riptor, 63

PRNG done, 61

PRNG export, 62

PRNG import, 62

PRNG read, 61

PRNG ready, 61

PRNG start, 61

PRNG test, 62

Pseudo Random Number Generator, 8

r
2 des
, 15

r
5 des
, 15

r
6 des
, 15

register
ipher(), 16, 17

register hash(), 45

register prng(), 8, 64

rng get bytes(), 66

rng make prng(), 67

ROL, 7

ROL64, 7

ROL64
, 7

ROL
, 7

ROR, 7

ROR64, 7

ROR64
, 7

ROR
, 7

rsa de
rypt key(), 75

rsa de
rypt key ex(), 75

rsa en
rypt key(), 74

rsa en
rypt key ex(), 74

rsa export(), 7, 79

rsa exptmod(), 74

rsa free(), 73

rsa import(), 80

rsa make key(), 8, 73

rsa sign hash(), 76

rsa sign hash ex(), 76

rsa verify hash(), 77

rsa verify hash ex(), 77

saferp des
, 15

Se
ure RNG, 66

SET, 98

SET OF, 98

Shamir's Tri
k, 146

skipja
k des
, 15

SSE2, 121

STORE32H, 6

STORE32L, 6

STORE64H, 6

STORE64L, 6

Symmetri
 Keys, 14

TFM, 82

tfm.h, 82

TFM DESC, 122

Two�sh build options, 16

two�sh des
, 15

TWOFISH SMALL, 16

TWOFISH TABLES, 16

unregister
ipher(), 17

unregister hash(), 45

unregister prng(), 64

USE GMP, 122

USE LTM, 122

USE TFM, 122

variable length output, 7

XCALLOC, 119

x
b
 done(), 57

x
b
 �le(), 58

x
b
 init(), 57

x
b
 memory(), 57, 132

x
b
 pro
ess(), 57

x
b
 test(), 58

XFREE, 119

XMALLOC, 119

XREALLOC, 119

xtea des
, 15

xts de
rypt(), 26

xts done(), 26

xts en
rypt(), 26

xts start(), 25

	Introduction
	What is the LibTomCrypt?
	What the library IS for?

	Why did I write it?
	Modular

	License
	Patent Disclosure
	Thanks

	The Application Programming Interface (API)
	Introduction
	Macros
	Functions with Variable Length Output
	Functions that need a PRNG
	Functions that use Arrays of Octets

	Symmetric Block Ciphers
	Core Functions
	Key Scheduling
	ECB Encryption and Decryption
	Self–Testing
	Key Sizing
	Cipher Termination
	Simple Encryption Demonstration

	Key Sizes and Number of Rounds
	The Cipher Descriptors
	Notes

	Symmetric Modes of Operations
	Background
	Choice of Mode
	Ciphertext Stealing
	Initialization
	Encryption and Decryption
	IV Manipulation
	Stream Termination
	Examples
	LRW Mode
	XTS Mode
	F8 Mode

	Encrypt and Authenticate Modes
	EAX Mode
	OCB Mode
	CCM Mode
	GCM Mode

	One-Way Cryptographic Hash Functions
	Core Functions
	Hash Descriptors
	Hash Registration

	Cipher Hash Construction
	Notice

	Message Authentication Codes
	HMAC Protocol
	OMAC Support
	PMAC Support
	Pelican MAC
	Example

	XCBC-MAC
	F9–MAC
	Usage Notice
	F9–MAC Functions

	Pseudo-Random Number Generators
	Core Functions
	Remarks
	Example

	PRNG Descriptors
	PRNGs Provided

	The Secure RNG
	The Secure PRNG Interface

	RSA Public Key Cryptography
	Introduction
	PKCS #1 Padding
	PKCS #1 v1.5 Encoding
	PKCS #1 v1.5 Decoding

	PKCS #1 v2.1 Encryption
	OAEP Encoding
	OAEP Decoding

	PKCS #1 Digital Signatures
	PSS Encoding
	PSS Decoding

	RSA Key Operations
	Background
	RSA Key Generation
	RSA Exponentiation

	RSA Key Encryption
	Extended Encryption

	RSA Key Decryption
	Extended Decryption

	RSA Signature Generation
	Extended Signatures

	RSA Signature Verification
	Extended Verification

	RSA Encryption Example
	RSA Key Format
	RSA Key Export
	RSA Key Import

	Elliptic Curve Cryptography
	Background
	Fixed Point Optimizations
	Key Format
	ECC Curve Parameters
	Core Functions
	ECC Key Generation
	Extended Key Generation
	ECC Key Free
	ECC Key Export
	ECC Key Import
	Extended Key Import
	ANSI X9.63 Export
	ANSI X9.63 Import
	Extended ANSI X9.63 Import
	ECC Shared Secret

	ECC Diffie-Hellman Encryption
	ECC-DH Encryption
	ECC-DH Decryption
	ECC Encryption Format

	EC DSA Signatures
	EC-DSA Signature Generation
	EC-DSA Signature Verification
	Signature Format

	ECC Keysizes

	Digital Signature Algorithm
	Introduction
	Key Format
	Key Generation
	Key Verification
	Signatures
	Signature Generation
	Signature Verification

	DSA Encrypt and Decrypt
	DSA Encryption
	DSA Decryption

	DSA Key Import and Export
	DSA Key Export
	DSA Key Import

	Standards Support
	ASN.1 Formats
	SEQUENCE Type
	SET and SET OF
	ASN.1 INTEGER
	ASN.1 BIT STRING
	ASN.1 OCTET STRING
	ASN.1 OBJECT IDENTIFIER
	ASN.1 IA5 STRING
	ASN.1 PRINTABLE STRING
	ASN.1 UTF8 STRING
	ASN.1 UTCTIME
	ASN.1 CHOICE
	ASN.1 Flexi Decoder

	Password Based Cryptography
	PKCS #5
	Algorithm One
	Algorithm Two

	Miscellaneous
	Base64 Encoding and Decoding
	Primality Testing

	Programming Guidelines
	Secure Pseudo Random Number Generators
	Preventing Trivial Errors
	Registering Your Algorithms
	Key Sizes
	Symmetric Ciphers
	Asymmetric Ciphers

	Thread Safety

	Configuring and Building the Library
	Introduction
	Makefile variables
	MAKE, CC and AR
	IGNORE_SPEED
	LIBNAME and LIBNAME_S
	Installation Directories

	Extra libraries
	Building a Static Library
	Building a Shared Library
	Header Configuration
	The Configure Script
	X memory routines
	X clock routines
	LTC_NO_FILE
	LTC_CLEAN_STACK
	LTC_TEST
	LTC_NO_FAST
	LTC_FAST
	LTC_NO_ASM
	Symmetric Ciphers, One-way Hashes, PRNGS and Public Key Functions
	LTC_EASY
	TWOFISH_SMALL and TWOFISH_TABLES
	GCM_TABLES
	GCM_TABLES_SSE2
	LTC_SMALL_CODE
	LTC_PTHREAD
	LTC_ECC_TIMING_RESISTANT
	Math Descriptors

	Optimizations
	Introduction
	Ciphers
	Name
	Internal ID
	Key Lengths
	Block Length
	Rounds
	Setup
	Single block ECB
	Testing
	Key Sizing
	Acceleration

	One–Way Hashes
	Name
	Internal ID
	Digest Size
	Block Size
	OID Identifier
	Initialization
	Process
	Done
	Acceleration
	HMAC Acceleration

	Pseudo–Random Number Generators
	Name
	Export Size
	Start
	Entropy Addition
	Ready
	Read
	Done
	Exporting and Importing

	BigNum Math Descriptors
	Conventions
	ECC Functions
	RSA Functions

