
Metrics

Frama-C's metrics plug-in

20140301 (Neon)

Richard Bonichon & Boris Yakobowski

CEA LIST, Software Reliability Laboratory, Saclay, F-91191

©2011�2013 CEA LIST

CONTENTS

Contents

1 Quick overview 7

1.1 Description . 7

1.1.1 Command-line options . 7

1.1.2 Metrics and abstract syntax trees . 8

1.2 Metrics on the normalized abstract syntax tree 8

1.2.1 Syntactic metrics . 8

1.2.2 Graphical User interface . 8

1.2.3 Reachability coverage . 9

1.2.4 Value analysis coverage . 10

1.3 Metrics on the original abstract syntax tree 11

2 Practical notes and comments 15

2.1 Cyclomatic complexity . 15

2.1.1 Calculation . 15

2.1.2 Practical notes . 15

2.2 Halstead complexity . 16

2.2.1 Calculation . 16

2.2.2 Practical notes . 17

2.3 Value coverage . 17

5

Chapter 1

Quick overview

The Metrics plug-in computes complexity measures on C source code. It can operate either
on Frama-C's normalized abstract syntax tree (AST) or on the original source code.

1.1 Description

1.1.1 Command-line options

The complete list of command-line options can be obtained by:

% frama -c -metrics -help

Let us now detail some of them:

-metrics is a necessary switch to activate the plug-in. It also triggers the computation of
syntactic metrics (slocs, number of statements of certain types, ...) on the normalized
AST.

-metrics-by-function also computes (and displays) the above metrics, but this time on a
per-function basis.

-metrics-ast is used to choose the AST the metrics should be computed on. It can be either
Frama-C's normalized AST or the original AST. Section 1.1.2 covers this topic in some
more details. How this a�ects the availability of metrics is discussed in Section 1.2 and
1.3.

-metrics-output redirects metrics' calculations to a �le. The selection of the output is
automatically detected from the extension of the output �le. As of now, only .html or
.txt outputs are supported.

-metrics-cover speci�es a set of functions from which to compute a coverage estimate. This
item is detailed in Section 1.2.4.

-metrics-value-cover activates the value coverage estimation. This item is detailed in Sec-
tion 1.2.4.

7

CHAPTER 1. QUICK OVERVIEW

1.1.2 Metrics and abstract syntax trees

Frama-C mostly operates on its own internal normalized abstract syntax tree1. The nor-
malization process adds missing return statements, transforms all loops into while(1) { ... }
statements, introduces some temporary variables... Although this normalization process does
not a�ect the semantic contents of the code, its syntactic counterpart is indeed changed. It
can therefore a�ect metrics computed from the source code.

However, Frama-C also keeps the original abstract syntax tree of the source as is. Even though
Frama-C's analyses are usually centered around the normalized representation, some facilities
do exist to manipulate the other original AST.

Users of the Metrics plug-in can specify the nature of the AST from which the metrics should
be computed. Some metrics are not available for both AST representations.

The default behavior, as enabled by the -metrics switch, is to calculate syntactic metrics on
the normalized AST. Metrics available for each AST are the objects of Sections 1.2 and 1.3.

1.2 Metrics on the normalized abstract syntax tree

1.2.1 Syntactic metrics

Only cyclomatic numbers are available for the normalized AST. These are also available
through Frama-C's graphical user interface (GUI) (see Section 1.2.2).

Let us calculate the cyclomatic complexity of the program of Figure 1.1 using the following
command 2.

% frama -c -metrics -metrics -by-function reach.c

The results are detailed in Figure 1.2. The output contains a summary, for each function, of
the number of assignments, function calls, exit points, declared functions (it should always be
1), goto instructions, if statements, pointer dereferencings and lines of code. The cyclomatic
number of the function is also computed. Per-function results are available only if the option
-metrics-by-function is speci�ed; otherwise only the �Syntactic metrics� part of the output is
shown. Note that these results can be printed to a text or html �le using the -metrics-output

option.

1.2.2 Graphical User interface

Metrics on the normalized AST are also accessible through Frama-C's GUI. Cyclomatic com-
plexity numbers are shown either globally on the left-hand side pane of the GUI, after left-
clicking the Measure button (see Figure 1.3), or for a chosen function (see Figure 1.4). To
access this functionality, you must right-click on the line where the function is de�ned to make
a menu appear, then left-click on Metrics as shown in the �gure.

1Note that the parsing machinery and the production of the abstract syntax trees originally come from
CIL (http://cil.sourceforge.net/).

2frama-c -metrics -metrics-by-function -metrics-ast cil reach.c is also a valid command for this purpose.

8

http://cil.sourceforge.net/

1.2. METRICS ON THE NORMALIZED ABSTRACT SYNTAX TREE

vo i d (*bar) (i n t); vo i d (* t [2])(i n t);

vo i d baz (i n t j) { r e t u r n ; }

vo i d (* t [2])(i n t)= {

baz ,

0};

vo i d f oo (i n t k) {

i n t i = 0;

r e t u r n ;

}

/* foo i s unreachable since j i s always 0; baz i s not called */
i n t main() {

i n t j = 0;

vo i d (*(*pt)[2])(i n t) = & t ;

i f (! j) {

r e t u r n 1;

}

e l s e {

bar = f oo ;

bar (1);

r e t u r n 0;

}

}

Figure 1.1: reach.c

[kernel] warning: cannot load plug -in Wp' (incompatible with Neon-rc4).[kernel]

preprocessing with "gcc -C -E -I. ../../tests/metrics/reach.c"[metrics] Cil ASTStats for function

<../../tests/metrics/reach.c/baz>==Sloc =

1Decision point = 0Global variables = 0If = 0Loop = 0Goto = 0Assignment = 0Exit point = 1Function

= 1Function call = 0Pointer dereferencing = 0Cyclomatic complexity = 1Stats for function

<../../tests/metrics/reach.c/foo>==Sloc =

2Decision point = 0Global variables = 0If = 0Loop = 0Goto = 0Assignment = 1Exit point = 1Function

= 1Function call = 0Pointer dereferencing = 0Cyclomatic complexity = 1Stats for function

<../../tests/metrics/reach.c/main>===Sloc

= 10Decision point = 1Global variables = 0If = 1Loop = 0Goto = 2Assignment = 5Exit point =

1Function = 1Function call = 1Pointer dereferencing = 1Cyclomatic complexity = 2[metrics]

Defined functions (3)=====================baz (address taken) (0 call); foo (address taken)

(0 call); main (0 call);Undefined functions (0)=======================Potential entry points

(1)==========================main;Global metrics==============Sloc = 13Decision point = 1Global

variables = 2If = 1Loop = 0Goto = 2Assignment = 6Exit point = 3Function = 3Function call =

1Pointer dereferencing = 1Cyclomatic complexity = 0

Figure 1.2: Output of syntactic metrics for the normalized AST of reach.c

1.2.3 Reachability coverage

Given a function f, the reachability coverage analysis over-approximates the functions of the
program that can be called from f. On our example, to activate it on the functions main and
foo, one can use:

% frama -c -metrics -metrics -cover main ,foo reach.c

The results are displayed in Figure 1.5. The reachability coverage analysis is conservative.
For example, it considers that all function whose addresses are referenced within a reachable
function may be called. This explains why it considers that baz and foo are reachable from
the main function.

9

CHAPTER 1. QUICK OVERVIEW

Figure 1.3: Metrics GUI: calculate global metrics

1.2.4 Value analysis coverage

The -metrics-value-cover option can be used to compare the code e�ectively analyzed by the
Value Analysis with whatMetrics considers reachable from themain function (wrt. the criterion
described in Section 1.2.3). The results of this option on our example are given in Figure 1.6.
This particular feature is activated by the following command:

% frama -c -metrics -metrics -value -cover reach.c

Syntactic reachability is an over-approximation of what is actually reachable by the value
analysis. Thus, the coverage estimation will always be equal to or less than 100%, especially
if the source code relies a lot on the use of function pointers.

For all functions that are considered syntactically reachable, but that are not analyzed by the
value analysis, the plug-in indicates the locations in the code where a call might have been
analyzed. In our example, this consists in the call to foo at ligne 24. Also, since the address
of baz is contained in the initializer of the array t (itself referenced in main), baz is considered
as callable; thus the plug-in signals the initializer of t as a possible calling point. Finally, the
plug-in displays the percentage of statements analyzed by Value for each function.

1.3 Metrics on the original abstract syntax tree

10

1.3. METRICS ON THE ORIGINAL ABSTRACT SYNTAX TREE

Figure 1.4: Metrics GUI: calculate metrics for a function

Global variables = 2

If = 1

Loop = 0

Goto = 2

Assignment = 6

Exit point = 3

Function = 3

Function call = 1

Pointer dereferencing = 1

Cyclomatic complexity = 0

[metrics] Functions syntactically reachable from foo: 1

<../../ tests/metrics/reach.c>: foo;

Functions syntactically unreachable from foo: 2

<../../ tests/metrics/reach.c>: baz; main;

[metrics] Functions syntactically reachable from main: 3

--

<../../ tests/metrics/reach.c>: baz; foo; main;

Functions syntactically unreachable from main: 0

--

Figure 1.5: Reachability coverage for reach.c

Only syntactic metrics are available on the original AST. Both Halstead and cyclomatic
complexity are computed. Note that this part of the plug-in cannot be used through the GUI.

11

CHAPTER 1. QUICK OVERVIEW

Cyclomatic complexity = 0

[value] Analyzing a complete application starting at main

[value] Computing initial state

[value] Initial state computed

[value] Values of globals at initialization

bar IN {0}

t[0] IN {{ &baz }}

[1] IN {0}

[value] Recording results for main

[value] done for function main

[metrics] Value coverage statistics

=========================

Syntactically reachable functions = 3 (out of 3)

Semantically reached functions = 1

Coverage estimation = 33.3%

Unseen functions (2) =

<../../ tests/metrics/reach.c>: baz; foo;

[metrics] References to non -analyzed functions

Function main references foo (at ../../ tests/metrics/reach.c:26)

Initializer of t references baz (at ../../ tests/metrics/reach.c:10)

[metrics] Statements analyzed by Value

10 stmts in analyzed functions , 6 stmts analyzed (60.0%)

main: 6 stmts out of 10 (60.0%)

Figure 1.6: Value coverage estimate for reach.c

[kernel] warning: cannot load plug -in Wp' (incompatible with Neon-rc4).[kernel]

preprocessing with "gcc -C -E -I. ../../tests/metrics/reach.c"[metrics] Cabs:Stats for function

<../../tests/metrics/reach.c/baz>==Sloc =

1Decision point = 0Global variables = 0If = 0Loop = 0Goto = 0Assignment = 0Exit point = 1Function

= 1Function call = 0Pointer dereferencing = 0Cyclomatic complexity = 1Stats for function

<../../tests/metrics/reach.c/foo>==Sloc =

2Decision point = 0Global variables = 0If = 0Loop = 0Goto = 0Assignment = 0Exit point = 1Function

= 1Function call = 0Pointer dereferencing = 0Cyclomatic complexity = 1Stats for function

<../../tests/metrics/reach.c/main>===Sloc =

9Decision point = 1Global variables = 0If = 1Loop = 0Goto = 0Assignment = 1

Figure 1.7: Cyclomatic metrics on the original AST for reach.c

% frama -c -metrics -metrics -by-function -metrics -ast cabs reach.c

The e�ect is to calculate both cyclomatic and Halstead complexities for the argument �les,
as shown in Figures 1.7 and 1.8 . The results for Halstead measures are only global while
cyclomatic numbers can be done on a per-function basis. Halstead measures also produce a
detailed account of the syntactic elements of the �les.

12

1.3. METRICS ON THE ORIGINAL ABSTRACT SYNTAX TREE

Exit point = 2

Function = 1

Function call = 1

Pointer dereferencing = 0

Cyclomatic complexity = 1

[metrics] Halstead metrics

================

Total operators: 34

Distinct operators: 13

Total_operands: 22

Distinct operands: 12

Program length: 56

Vocabulary size: 25

Program volume: 260.06

Effort: 3099.00

Program level: 0.08

Difficulty level: 11.92

Time to implement: 172.17

Bugs delivered: 0.07

Global statistics (Halstead)

============================

Operators

i f : 1

return: 4

): 1

,: 2

{: 2

(: 1

}: 2

;: 10

=: 1

!: 1

&: 1

int: 2

void: 6

Operands

foo: 1

pt: 1

baz: 1

t: 3

Frama_C_bzero: 1

j: 2

Frama_C_copy_block: 1

bar: 3

i: 1

FC_BUILTIN: 2

1: 2

0: 4

Figure 1.8: Halstead metrics on the original AST for reach.c

13

Chapter 2

Practical notes and comments

2.1 Cyclomatic complexity

Cyclomatic complexity, also called conditional complexity was introduced by Thomas McCabe
[2] in 1976. It is a measure of the number of paths through a source code and represent the
complexity of the control-�ow of the program.

The cyclomatic number of a source code has been shown to be well correlated to its number
of defects.

2.1.1 Calculation

Cyclomatic complexity is a notion de�ned on a directed graph. It can therefore be de�ned on
a program taken as its control-�ow graph. For a directed graph, the cyclomatic complexity
C is de�ned as

C = E −N − 2P

where E is the number of edges of the graph, N the number of nodes and P the number of
(strongly) connected components.

This notion of complexity is extended to deal with programs using the following formula

C = π − s+ 2

where π is the number of decision points in the program and s the number of exit points.

2.1.2 Practical notes

Cyclomatic complexity can computed on all abstract syntax trees in Frama-C. However, the
resulting complexity will be the same in both AST representations, as Frama-C's normalized
AST does not add control-�ow directives to the source code.

Prior to the computation of cyclomatic complexity, the plug-in gathers the following syntactic
information from the source code:

� Number of lines of code (assuming one C statement equals one line of code);

� Number of if statements;

� Number of loops;

15

CHAPTER 2. PRACTICAL NOTES AND COMMENTS

� Number of function calls;

� Number of gotos;

� Number of assignments;

� Numbers of exit points (return statements);

� Number of functions declared;

� Number of pointer derefencings.

� Number of decision points (if statements and ? expressions, switch cases, lazy logical
operators, loops).

These informations are computed for the whole source code, and also on a per-function basis
� except for the number of functions declared.

Cyclomatic complexity is then derived from these informations, both for the whole code and
for each de�ned function.

2.2 Halstead complexity

Halstead complexity is as set of software metrics introduce by Maurice Halstead [1] in 1977.
The goal is to identify measurable properties of the code and to go beyond pure complexity
measures.

2.2.1 Calculation

Halstead complexity measures �rst need the following informations from the source code:

� η1 is the number of distinct operators;

� η2 is the number of distinct operands;

� N1 is the total number of operators;

� N2 is the total number of operands;

From the above informations, Halstead de�nes the following measures:

Program vocabulary η η1 + η2
Program length N N1 +N2

Calculated program length N̂ n1log2η1 + η2log2η2
Volume V N ∗ log2η
Di�culty D η1/2 ∗N2/η2
E�ort E D ∗ V
Time required to program T E/18

Bugs B E2/3/3000

Note that �Time required to program� is an estimate given in seconds.

16

2.3. VALUE COVERAGE

2.2.2 Practical notes

To implement the measures de�ned in Section 2.2.1, it is necessary to de�ne what the operands
and operators of the language are. For Frama-C, the target language is C and we de�ne its
operands and operators as follows:

Distinct operands Identi�ers and constants are operands, as well as type names and type
speci�cation keywords.

Distinct operators Storage class speci�ers, type quali�ers, reserved keywords of C and
other operators (+,++,+ =, ...) are considered as operators.

It is important to note that the measure related to bugs delivered seems to be under-
approximated for programs written in C.

2.3 Value coverage

This part of the Metrics plug-in is thought of as a help for new code exploration with Frama-
C's value analysis plug-in. The �rst steps into a new code can be quite complicated and,
more often than not, the value analysis stops from too much imprecision. This imprecision
can have a lot of di�erent causes (body of library functions missing, imprecisions of reads in
memory, . . .).

The graphical user interface helps visualizing where the value analysis has stopped. The
penetration estimate of Metrics aims to complement that by giving a rough approximate of
the percentage of code that the value analysis has seen. This is especially interesting when
comparing two runs of the value analysis on the same code, after performing some tweaks and
improvements to help the value analysis: one can thusly quantify the added penetration due
to the tweaks.

17

BIBLIOGRAPHY

Bibliography

[1] Maurice H. Halstead. Elements of Software Science. Elsevie North-Holland, 1977.

[2] Thomas J. McCabe. A complexity measure. IEEE Trans. Software Eng., 2(4):308�320,
1976.

19

	Quick overview
	Description
	Command-line options
	Metrics and abstract syntax trees

	Metrics on the normalized abstract syntax tree
	Syntactic metrics
	Graphical User interface
	Reachability coverage
	Value analysis coverage

	Metrics on the original abstract syntax tree

	Practical notes and comments
	Cyclomatic complexity
	Calculation
	Practical notes

	Halstead complexity
	Calculation
	Practical notes

	Value coverage

