Ruby  2.0.0p594(2014-10-27revision48167)
math.c
Go to the documentation of this file.
1 /**********************************************************************
2 
3  math.c -
4 
5  $Author: tadf $
6  created at: Tue Jan 25 14:12:56 JST 1994
7 
8  Copyright (C) 1993-2007 Yukihiro Matsumoto
9 
10 **********************************************************************/
11 
12 #include "ruby/ruby.h"
13 #include "internal.h"
14 #include <math.h>
15 #include <errno.h>
16 
17 #if defined(HAVE_SIGNBIT) && defined(__GNUC__) && defined(__sun) && \
18  !defined(signbit)
19  extern int signbit(double);
20 #endif
21 
22 #define numberof(array) (int)(sizeof(array) / sizeof((array)[0]))
23 
26 
27 #define Need_Float(x) do {if (!RB_TYPE_P(x, T_FLOAT)) {(x) = rb_to_float(x);}} while(0)
28 #define Need_Float2(x,y) do {\
29  Need_Float(x);\
30  Need_Float(y);\
31 } while (0)
32 
33 #define domain_error(msg) \
34  rb_raise(rb_eMathDomainError, "Numerical argument is out of domain - " #msg)
35 
36 /*
37  * call-seq:
38  * Math.atan2(y, x) -> float
39  *
40  * Computes the arc tangent given <i>y</i> and <i>x</i>. Returns
41  * -PI..PI.
42  *
43  * Math.atan2(-0.0, -1.0) #=> -3.141592653589793
44  * Math.atan2(-1.0, -1.0) #=> -2.356194490192345
45  * Math.atan2(-1.0, 0.0) #=> -1.5707963267948966
46  * Math.atan2(-1.0, 1.0) #=> -0.7853981633974483
47  * Math.atan2(-0.0, 1.0) #=> -0.0
48  * Math.atan2(0.0, 1.0) #=> 0.0
49  * Math.atan2(1.0, 1.0) #=> 0.7853981633974483
50  * Math.atan2(1.0, 0.0) #=> 1.5707963267948966
51  * Math.atan2(1.0, -1.0) #=> 2.356194490192345
52  * Math.atan2(0.0, -1.0) #=> 3.141592653589793
53  *
54  */
55 
56 static VALUE
58 {
59 #ifndef M_PI
60 # define M_PI 3.14159265358979323846
61 #endif
62  double dx, dy;
63  Need_Float2(y, x);
64  dx = RFLOAT_VALUE(x);
65  dy = RFLOAT_VALUE(y);
66  if (dx == 0.0 && dy == 0.0) {
67  if (!signbit(dx))
68  return DBL2NUM(dy);
69  if (!signbit(dy))
70  return DBL2NUM(M_PI);
71  return DBL2NUM(-M_PI);
72  }
73  if (isinf(dx) && isinf(dy)) domain_error("atan2");
74  return DBL2NUM(atan2(dy, dx));
75 }
76 
77 
78 /*
79  * call-seq:
80  * Math.cos(x) -> float
81  *
82  * Computes the cosine of <i>x</i> (expressed in radians). Returns
83  * -1..1.
84  */
85 
86 static VALUE
88 {
89  Need_Float(x);
90  return DBL2NUM(cos(RFLOAT_VALUE(x)));
91 }
92 
93 /*
94  * call-seq:
95  * Math.sin(x) -> float
96  *
97  * Computes the sine of <i>x</i> (expressed in radians). Returns
98  * -1..1.
99  */
100 
101 static VALUE
103 {
104  Need_Float(x);
105 
106  return DBL2NUM(sin(RFLOAT_VALUE(x)));
107 }
108 
109 
110 /*
111  * call-seq:
112  * Math.tan(x) -> float
113  *
114  * Returns the tangent of <i>x</i> (expressed in radians).
115  */
116 
117 static VALUE
119 {
120  Need_Float(x);
121 
122  return DBL2NUM(tan(RFLOAT_VALUE(x)));
123 }
124 
125 /*
126  * call-seq:
127  * Math.acos(x) -> float
128  *
129  * Computes the arc cosine of <i>x</i>. Returns 0..PI.
130  */
131 
132 static VALUE
134 {
135  double d0, d;
136 
137  Need_Float(x);
138  d0 = RFLOAT_VALUE(x);
139  /* check for domain error */
140  if (d0 < -1.0 || 1.0 < d0) domain_error("acos");
141  d = acos(d0);
142  return DBL2NUM(d);
143 }
144 
145 /*
146  * call-seq:
147  * Math.asin(x) -> float
148  *
149  * Computes the arc sine of <i>x</i>. Returns -{PI/2} .. {PI/2}.
150  */
151 
152 static VALUE
154 {
155  double d0, d;
156 
157  Need_Float(x);
158  d0 = RFLOAT_VALUE(x);
159  /* check for domain error */
160  if (d0 < -1.0 || 1.0 < d0) domain_error("asin");
161  d = asin(d0);
162  return DBL2NUM(d);
163 }
164 
165 /*
166  * call-seq:
167  * Math.atan(x) -> float
168  *
169  * Computes the arc tangent of <i>x</i>. Returns -{PI/2} .. {PI/2}.
170  */
171 
172 static VALUE
174 {
175  Need_Float(x);
176  return DBL2NUM(atan(RFLOAT_VALUE(x)));
177 }
178 
179 #ifndef HAVE_COSH
180 double
181 cosh(double x)
182 {
183  return (exp(x) + exp(-x)) / 2;
184 }
185 #endif
186 
187 /*
188  * call-seq:
189  * Math.cosh(x) -> float
190  *
191  * Computes the hyperbolic cosine of <i>x</i> (expressed in radians).
192  */
193 
194 static VALUE
196 {
197  Need_Float(x);
198 
199  return DBL2NUM(cosh(RFLOAT_VALUE(x)));
200 }
201 
202 #ifndef HAVE_SINH
203 double
204 sinh(double x)
205 {
206  return (exp(x) - exp(-x)) / 2;
207 }
208 #endif
209 
210 /*
211  * call-seq:
212  * Math.sinh(x) -> float
213  *
214  * Computes the hyperbolic sine of <i>x</i> (expressed in
215  * radians).
216  */
217 
218 static VALUE
220 {
221  Need_Float(x);
222  return DBL2NUM(sinh(RFLOAT_VALUE(x)));
223 }
224 
225 #ifndef HAVE_TANH
226 double
227 tanh(double x)
228 {
229  return sinh(x) / cosh(x);
230 }
231 #endif
232 
233 /*
234  * call-seq:
235  * Math.tanh() -> float
236  *
237  * Computes the hyperbolic tangent of <i>x</i> (expressed in
238  * radians).
239  */
240 
241 static VALUE
243 {
244  Need_Float(x);
245  return DBL2NUM(tanh(RFLOAT_VALUE(x)));
246 }
247 
248 /*
249  * call-seq:
250  * Math.acosh(x) -> float
251  *
252  * Computes the inverse hyperbolic cosine of <i>x</i>.
253  */
254 
255 static VALUE
257 {
258  double d0, d;
259 
260  Need_Float(x);
261  d0 = RFLOAT_VALUE(x);
262  /* check for domain error */
263  if (d0 < 1.0) domain_error("acosh");
264  d = acosh(d0);
265  return DBL2NUM(d);
266 }
267 
268 /*
269  * call-seq:
270  * Math.asinh(x) -> float
271  *
272  * Computes the inverse hyperbolic sine of <i>x</i>.
273  */
274 
275 static VALUE
277 {
278  Need_Float(x);
279  return DBL2NUM(asinh(RFLOAT_VALUE(x)));
280 }
281 
282 /*
283  * call-seq:
284  * Math.atanh(x) -> float
285  *
286  * Computes the inverse hyperbolic tangent of <i>x</i>.
287  */
288 
289 static VALUE
291 {
292  double d0, d;
293 
294  Need_Float(x);
295  d0 = RFLOAT_VALUE(x);
296  /* check for domain error */
297  if (d0 < -1.0 || +1.0 < d0) domain_error("atanh");
298  /* check for pole error */
299  if (d0 == -1.0) return DBL2NUM(-INFINITY);
300  if (d0 == +1.0) return DBL2NUM(+INFINITY);
301  d = atanh(d0);
302  return DBL2NUM(d);
303 }
304 
305 /*
306  * call-seq:
307  * Math.exp(x) -> float
308  *
309  * Returns e**x.
310  *
311  * Math.exp(0) #=> 1.0
312  * Math.exp(1) #=> 2.718281828459045
313  * Math.exp(1.5) #=> 4.4816890703380645
314  *
315  */
316 
317 static VALUE
319 {
320  Need_Float(x);
321  return DBL2NUM(exp(RFLOAT_VALUE(x)));
322 }
323 
324 #if defined __CYGWIN__
325 # include <cygwin/version.h>
326 # if CYGWIN_VERSION_DLL_MAJOR < 1005
327 # define nan(x) nan()
328 # endif
329 # define log(x) ((x) < 0.0 ? nan("") : log(x))
330 # define log10(x) ((x) < 0.0 ? nan("") : log10(x))
331 #endif
332 
333 /*
334  * call-seq:
335  * Math.log(numeric) -> float
336  * Math.log(num,base) -> float
337  *
338  * Returns the natural logarithm of <i>numeric</i>.
339  * If additional second argument is given, it will be the base
340  * of logarithm.
341  *
342  * Math.log(1) #=> 0.0
343  * Math.log(Math::E) #=> 1.0
344  * Math.log(Math::E**3) #=> 3.0
345  * Math.log(12,3) #=> 2.2618595071429146
346  *
347  */
348 
349 static VALUE
351 {
352  VALUE x, base;
353  double d0, d;
354 
355  rb_scan_args(argc, argv, "11", &x, &base);
356  Need_Float(x);
357  d0 = RFLOAT_VALUE(x);
358  /* check for domain error */
359  if (d0 < 0.0) domain_error("log");
360  /* check for pole error */
361  if (d0 == 0.0) return DBL2NUM(-INFINITY);
362  d = log(d0);
363  if (argc == 2) {
364  Need_Float(base);
365  d /= log(RFLOAT_VALUE(base));
366  }
367  return DBL2NUM(d);
368 }
369 
370 #ifndef log2
371 #ifndef HAVE_LOG2
372 double
373 log2(double x)
374 {
375  return log10(x)/log10(2.0);
376 }
377 #else
378 extern double log2(double);
379 #endif
380 #endif
381 
382 /*
383  * call-seq:
384  * Math.log2(numeric) -> float
385  *
386  * Returns the base 2 logarithm of <i>numeric</i>.
387  *
388  * Math.log2(1) #=> 0.0
389  * Math.log2(2) #=> 1.0
390  * Math.log2(32768) #=> 15.0
391  * Math.log2(65536) #=> 16.0
392  *
393  */
394 
395 static VALUE
397 {
398  double d0, d;
399 
400  Need_Float(x);
401  d0 = RFLOAT_VALUE(x);
402  /* check for domain error */
403  if (d0 < 0.0) domain_error("log2");
404  /* check for pole error */
405  if (d0 == 0.0) return DBL2NUM(-INFINITY);
406  d = log2(d0);
407  return DBL2NUM(d);
408 }
409 
410 /*
411  * call-seq:
412  * Math.log10(numeric) -> float
413  *
414  * Returns the base 10 logarithm of <i>numeric</i>.
415  *
416  * Math.log10(1) #=> 0.0
417  * Math.log10(10) #=> 1.0
418  * Math.log10(10**100) #=> 100.0
419  *
420  */
421 
422 static VALUE
424 {
425  double d0, d;
426 
427  Need_Float(x);
428  d0 = RFLOAT_VALUE(x);
429  /* check for domain error */
430  if (d0 < 0.0) domain_error("log10");
431  /* check for pole error */
432  if (d0 == 0.0) return DBL2NUM(-INFINITY);
433  d = log10(d0);
434  return DBL2NUM(d);
435 }
436 
437 /*
438  * call-seq:
439  * Math.sqrt(numeric) -> float
440  *
441  * Returns the non-negative square root of <i>numeric</i>.
442  *
443  * 0.upto(10) {|x|
444  * p [x, Math.sqrt(x), Math.sqrt(x)**2]
445  * }
446  * #=>
447  * [0, 0.0, 0.0]
448  * [1, 1.0, 1.0]
449  * [2, 1.4142135623731, 2.0]
450  * [3, 1.73205080756888, 3.0]
451  * [4, 2.0, 4.0]
452  * [5, 2.23606797749979, 5.0]
453  * [6, 2.44948974278318, 6.0]
454  * [7, 2.64575131106459, 7.0]
455  * [8, 2.82842712474619, 8.0]
456  * [9, 3.0, 9.0]
457  * [10, 3.16227766016838, 10.0]
458  *
459  */
460 
461 static VALUE
463 {
464  double d0, d;
465 
466  Need_Float(x);
467  d0 = RFLOAT_VALUE(x);
468  /* check for domain error */
469  if (d0 < 0.0) domain_error("sqrt");
470  if (d0 == 0.0) return DBL2NUM(0.0);
471  d = sqrt(d0);
472  return DBL2NUM(d);
473 }
474 
475 /*
476  * call-seq:
477  * Math.cbrt(numeric) -> float
478  *
479  * Returns the cube root of <i>numeric</i>.
480  *
481  * -9.upto(9) {|x|
482  * p [x, Math.cbrt(x), Math.cbrt(x)**3]
483  * }
484  * #=>
485  * [-9, -2.0800838230519, -9.0]
486  * [-8, -2.0, -8.0]
487  * [-7, -1.91293118277239, -7.0]
488  * [-6, -1.81712059283214, -6.0]
489  * [-5, -1.7099759466767, -5.0]
490  * [-4, -1.5874010519682, -4.0]
491  * [-3, -1.44224957030741, -3.0]
492  * [-2, -1.25992104989487, -2.0]
493  * [-1, -1.0, -1.0]
494  * [0, 0.0, 0.0]
495  * [1, 1.0, 1.0]
496  * [2, 1.25992104989487, 2.0]
497  * [3, 1.44224957030741, 3.0]
498  * [4, 1.5874010519682, 4.0]
499  * [5, 1.7099759466767, 5.0]
500  * [6, 1.81712059283214, 6.0]
501  * [7, 1.91293118277239, 7.0]
502  * [8, 2.0, 8.0]
503  * [9, 2.0800838230519, 9.0]
504  *
505  */
506 
507 static VALUE
509 {
510  Need_Float(x);
511  return DBL2NUM(cbrt(RFLOAT_VALUE(x)));
512 }
513 
514 /*
515  * call-seq:
516  * Math.frexp(numeric) -> [ fraction, exponent ]
517  *
518  * Returns a two-element array containing the normalized fraction (a
519  * <code>Float</code>) and exponent (a <code>Fixnum</code>) of
520  * <i>numeric</i>.
521  *
522  * fraction, exponent = Math.frexp(1234) #=> [0.6025390625, 11]
523  * fraction * 2**exponent #=> 1234.0
524  */
525 
526 static VALUE
528 {
529  double d;
530  int exp;
531 
532  Need_Float(x);
533 
534  d = frexp(RFLOAT_VALUE(x), &exp);
535  return rb_assoc_new(DBL2NUM(d), INT2NUM(exp));
536 }
537 
538 /*
539  * call-seq:
540  * Math.ldexp(flt, int) -> float
541  *
542  * Returns the value of <i>flt</i>*(2**<i>int</i>).
543  *
544  * fraction, exponent = Math.frexp(1234)
545  * Math.ldexp(fraction, exponent) #=> 1234.0
546  */
547 
548 static VALUE
550 {
551  Need_Float(x);
552  return DBL2NUM(ldexp(RFLOAT_VALUE(x), NUM2INT(n)));
553 }
554 
555 /*
556  * call-seq:
557  * Math.hypot(x, y) -> float
558  *
559  * Returns sqrt(x**2 + y**2), the hypotenuse of a right-angled triangle
560  * with sides <i>x</i> and <i>y</i>.
561  *
562  * Math.hypot(3, 4) #=> 5.0
563  */
564 
565 static VALUE
567 {
568  Need_Float2(x, y);
569  return DBL2NUM(hypot(RFLOAT_VALUE(x), RFLOAT_VALUE(y)));
570 }
571 
572 /*
573  * call-seq:
574  * Math.erf(x) -> float
575  *
576  * Calculates the error function of x.
577  */
578 
579 static VALUE
581 {
582  Need_Float(x);
583  return DBL2NUM(erf(RFLOAT_VALUE(x)));
584 }
585 
586 /*
587  * call-seq:
588  * Math.erfc(x) -> float
589  *
590  * Calculates the complementary error function of x.
591  */
592 
593 static VALUE
595 {
596  Need_Float(x);
597  return DBL2NUM(erfc(RFLOAT_VALUE(x)));
598 }
599 
600 /*
601  * call-seq:
602  * Math.gamma(x) -> float
603  *
604  * Calculates the gamma function of x.
605  *
606  * Note that gamma(n) is same as fact(n-1) for integer n > 0.
607  * However gamma(n) returns float and can be an approximation.
608  *
609  * def fact(n) (1..n).inject(1) {|r,i| r*i } end
610  * 1.upto(26) {|i| p [i, Math.gamma(i), fact(i-1)] }
611  * #=> [1, 1.0, 1]
612  * # [2, 1.0, 1]
613  * # [3, 2.0, 2]
614  * # [4, 6.0, 6]
615  * # [5, 24.0, 24]
616  * # [6, 120.0, 120]
617  * # [7, 720.0, 720]
618  * # [8, 5040.0, 5040]
619  * # [9, 40320.0, 40320]
620  * # [10, 362880.0, 362880]
621  * # [11, 3628800.0, 3628800]
622  * # [12, 39916800.0, 39916800]
623  * # [13, 479001600.0, 479001600]
624  * # [14, 6227020800.0, 6227020800]
625  * # [15, 87178291200.0, 87178291200]
626  * # [16, 1307674368000.0, 1307674368000]
627  * # [17, 20922789888000.0, 20922789888000]
628  * # [18, 355687428096000.0, 355687428096000]
629  * # [19, 6.402373705728e+15, 6402373705728000]
630  * # [20, 1.21645100408832e+17, 121645100408832000]
631  * # [21, 2.43290200817664e+18, 2432902008176640000]
632  * # [22, 5.109094217170944e+19, 51090942171709440000]
633  * # [23, 1.1240007277776077e+21, 1124000727777607680000]
634  * # [24, 2.5852016738885062e+22, 25852016738884976640000]
635  * # [25, 6.204484017332391e+23, 620448401733239439360000]
636  * # [26, 1.5511210043330954e+25, 15511210043330985984000000]
637  *
638  */
639 
640 static VALUE
642 {
643  static const double fact_table[] = {
644  /* fact(0) */ 1.0,
645  /* fact(1) */ 1.0,
646  /* fact(2) */ 2.0,
647  /* fact(3) */ 6.0,
648  /* fact(4) */ 24.0,
649  /* fact(5) */ 120.0,
650  /* fact(6) */ 720.0,
651  /* fact(7) */ 5040.0,
652  /* fact(8) */ 40320.0,
653  /* fact(9) */ 362880.0,
654  /* fact(10) */ 3628800.0,
655  /* fact(11) */ 39916800.0,
656  /* fact(12) */ 479001600.0,
657  /* fact(13) */ 6227020800.0,
658  /* fact(14) */ 87178291200.0,
659  /* fact(15) */ 1307674368000.0,
660  /* fact(16) */ 20922789888000.0,
661  /* fact(17) */ 355687428096000.0,
662  /* fact(18) */ 6402373705728000.0,
663  /* fact(19) */ 121645100408832000.0,
664  /* fact(20) */ 2432902008176640000.0,
665  /* fact(21) */ 51090942171709440000.0,
666  /* fact(22) */ 1124000727777607680000.0,
667  /* fact(23)=25852016738884976640000 needs 56bit mantissa which is
668  * impossible to represent exactly in IEEE 754 double which have
669  * 53bit mantissa. */
670  };
671  double d0, d;
672  double intpart, fracpart;
673  Need_Float(x);
674  d0 = RFLOAT_VALUE(x);
675  /* check for domain error */
676  if (isinf(d0) && signbit(d0)) domain_error("gamma");
677  fracpart = modf(d0, &intpart);
678  if (fracpart == 0.0) {
679  if (intpart < 0) domain_error("gamma");
680  if (0 < intpart &&
681  intpart - 1 < (double)numberof(fact_table)) {
682  return DBL2NUM(fact_table[(int)intpart - 1]);
683  }
684  }
685  d = tgamma(d0);
686  return DBL2NUM(d);
687 }
688 
689 /*
690  * call-seq:
691  * Math.lgamma(x) -> [float, -1 or 1]
692  *
693  * Calculates the logarithmic gamma of x and
694  * the sign of gamma of x.
695  *
696  * Math.lgamma(x) is same as
697  * [Math.log(Math.gamma(x).abs), Math.gamma(x) < 0 ? -1 : 1]
698  * but avoid overflow by Math.gamma(x) for large x.
699  */
700 
701 static VALUE
703 {
704  double d0, d;
705  int sign=1;
706  VALUE v;
707  Need_Float(x);
708  d0 = RFLOAT_VALUE(x);
709  /* check for domain error */
710  if (isinf(d0)) {
711  if (signbit(d0)) domain_error("lgamma");
712  return rb_assoc_new(DBL2NUM(INFINITY), INT2FIX(1));
713  }
714  d = lgamma_r(d0, &sign);
715  v = DBL2NUM(d);
716  return rb_assoc_new(v, INT2FIX(sign));
717 }
718 
719 
720 #define exp1(n) \
721 VALUE \
722 rb_math_##n(VALUE x)\
723 {\
724  return math_##n(rb_mMath, x);\
725 }
726 
727 #define exp2(n) \
728 VALUE \
729 rb_math_##n(VALUE x, VALUE y)\
730 {\
731  return math_##n(rb_mMath, x, y);\
732 }
733 
734 exp2(atan2)
735 exp1(cos)
736 exp1(cosh)
737 exp1(exp)
738 exp2(hypot)
739 
740 VALUE
742 {
743  return math_log(argc, argv);
744 }
745 
746 exp1(sin)
747 exp1(sinh)
748 exp1(sqrt)
749 
750 
751 /*
752  * Document-class: Math::DomainError
753  *
754  * Raised when a mathematical function is evaluated outside of its
755  * domain of definition.
756  *
757  * For example, since +cos+ returns values in the range -1..1,
758  * its inverse function +acos+ is only defined on that interval:
759  *
760  * Math.acos(42)
761  *
762  * <em>produces:</em>
763  *
764  * Math::DomainError: Numerical argument is out of domain - "acos"
765  */
766 
767 /*
768  * Document-class: Math
769  *
770  * The <code>Math</code> module contains module functions for basic
771  * trigonometric and transcendental functions. See class
772  * <code>Float</code> for a list of constants that
773  * define Ruby's floating point accuracy.
774  */
775 
776 
777 void
779 {
780  rb_mMath = rb_define_module("Math");
782 
783 #ifdef M_PI
785 #else
786  rb_define_const(rb_mMath, "PI", DBL2NUM(atan(1.0)*4.0));
787 #endif
788 
789 #ifdef M_E
790  rb_define_const(rb_mMath, "E", DBL2NUM(M_E));
791 #else
792  rb_define_const(rb_mMath, "E", DBL2NUM(exp(1.0)));
793 #endif
794 
799 
803 
807 
811 
818 
821 
823 
826 
829 }
#define d0
RUBY_EXTERN double erfc(double)
Definition: erf.c:81
static VALUE math_asinh(VALUE obj, VALUE x)
Definition: math.c:276
VALUE rb_eStandardError
Definition: error.c:514
#define numberof(array)
Definition: math.c:22
RUBY_EXTERN double erf(double)
Definition: erf.c:71
ssize_t n
Definition: bigdecimal.c:5676
#define exp1(n)
Definition: math.c:720
double sinh(double x)
Definition: math.c:204
RUBY_EXTERN double acosh(double)
Definition: acosh.c:36
double log2(double x)
Definition: math.c:373
static VALUE math_atan2(VALUE obj, VALUE y, VALUE x)
Definition: math.c:57
RUBY_EXTERN int signbit(double x)
Definition: signbit.c:5
static VALUE math_atanh(VALUE obj, VALUE x)
Definition: math.c:290
#define RFLOAT_VALUE(v)
RUBY_EXTERN double asinh(double)
Definition: acosh.c:52
VALUE rb_define_class_under(VALUE outer, const char *name, VALUE super)
Defines a class under the namespace of outer.
Definition: class.c:549
double cosh(double x)
Definition: math.c:181
d
Definition: strlcat.c:58
static VALUE math_ldexp(VALUE obj, VALUE x, VALUE n)
Definition: math.c:549
static VALUE math_exp(VALUE obj, VALUE x)
Definition: math.c:318
RUBY_EXTERN VALUE rb_mMath
Definition: ripper.y:1420
RUBY_EXTERN double atanh(double)
Definition: acosh.c:75
void rb_define_const(VALUE, const char *, VALUE)
Definition: variable.c:2204
static VALUE math_log10(VALUE obj, VALUE x)
Definition: math.c:423
double tanh(double x)
Definition: math.c:227
RUBY_EXTERN double hypot(double, double)
Definition: hypot.c:6
static VALUE VALUE obj
Definition: tcltklib.c:3157
#define INT2FIX(i)
static VALUE math_tanh(VALUE obj, VALUE x)
Definition: math.c:242
#define DBL2NUM(dbl)
VALUE * argv
Definition: tcltklib.c:1970
void rb_define_module_function(VALUE module, const char *name, VALUE(*func)(ANYARGS), int argc)
Defines a module function for module.
Definition: class.c:1516
static VALUE math_sqrt(VALUE obj, VALUE x)
Definition: math.c:462
#define Need_Float2(x, y)
Definition: math.c:28
VALUE rb_math_log(int argc, VALUE *argv)
Definition: math.c:741
int rb_scan_args(int argc, const VALUE *argv, const char *fmt,...)
Definition: class.c:1574
static VALUE math_erf(VALUE obj, VALUE x)
Definition: math.c:580
VALUE rb_assoc_new(VALUE car, VALUE cdr)
Definition: array.c:545
static VALUE math_log(int argc, VALUE *argv)
Definition: math.c:350
#define domain_error(msg)
Definition: math.c:33
int argc
Definition: tcltklib.c:1969
RUBY_EXTERN double lgamma_r(double, int *)
Definition: lgamma_r.c:63
#define INFINITY
Definition: missing.h:138
RUBY_EXTERN VALUE rb_eMathDomainError
Definition: ripper.y:1498
RUBY_EXTERN int isinf(double)
Definition: isinf.c:56
#define M_PI
static VALUE math_cos(VALUE obj, VALUE x)
Definition: math.c:87
static VALUE math_acos(VALUE obj, VALUE x)
Definition: math.c:133
static VALUE math_atan(VALUE obj, VALUE x)
Definition: math.c:173
static VALUE math_erfc(VALUE obj, VALUE x)
Definition: math.c:594
static VALUE math_acosh(VALUE obj, VALUE x)
Definition: math.c:256
static VALUE math_cbrt(VALUE obj, VALUE x)
Definition: math.c:508
static VALUE math_log2(VALUE obj, VALUE x)
Definition: math.c:396
#define INT2NUM(x)
static VALUE math_frexp(VALUE obj, VALUE x)
Definition: math.c:527
RUBY_EXTERN double tgamma(double)
Definition: tgamma.c:72
static VALUE math_sin(VALUE obj, VALUE x)
Definition: math.c:102
#define NUM2INT(x)
unsigned long VALUE
Definition: ripper.y:104
static VALUE math_asin(VALUE obj, VALUE x)
Definition: math.c:153
static VALUE math_tan(VALUE obj, VALUE x)
Definition: math.c:118
VALUE rb_define_module(const char *name)
Definition: class.c:621
RUBY_EXTERN double cbrt(double)
Definition: cbrt.c:4
BDIGIT v
Definition: bigdecimal.c:5677
static VALUE math_gamma(VALUE obj, VALUE x)
Definition: math.c:641
#define exp2(n)
Definition: math.c:727
static VALUE math_hypot(VALUE obj, VALUE x, VALUE y)
Definition: math.c:566
static VALUE math_cosh(VALUE obj, VALUE x)
Definition: math.c:195
void Init_Math(void)
Definition: math.c:778
static VALUE math_lgamma(VALUE obj, VALUE x)
Definition: math.c:702
static VALUE math_sinh(VALUE obj, VALUE x)
Definition: math.c:219
#define Need_Float(x)
Definition: math.c:27