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INTRODUCTION 

This document provides guidance on how to design and develop software that takes 

advantage of the new Dynamic Parallelism capabilities introduced with CUDA 5.0. 

OVERVIEW 

Dynamic Parallelism is an extension to the CUDA programming model enabling a 

CUDA kernel to create and synchronize with new work directly on the GPU. The 

creation of parallelism dynamically at whichever point in a program that it is needed 

offers exciting new capabilities. 

The ability to create work directly from the GPU can reduce the need to transfer 

execution control and data between host and device, as launch configuration decisions 

can now be made at runtime by threads executing on the device. Additionally, data-

dependent parallel work can be generated inline within a kernel at run-time, taking 

advantage of the GPU’s hardware schedulers and load balancers dynamically and 

adapting in response to data-driven decisions or workloads. Algorithms and 

programming patterns that had previously required modifications to eliminate 

recursion, irregular loop structure, or other constructs that do not fit a flat, single-level of 

parallelism may more transparently be expressed. 

This document describes the extended capabilities of CUDA which enable Dynamic 

Parallelism, including the modifications and additions to the CUDA programming 

model necessary to take advantage of these, as well as guidelines and best practices for 

exploiting this added capacity. 

Dynamic Parallelism is only supported by devices of compute capability 3.5 and higher. 
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GLOSSARY 

Definitions for terms used in this guide. 

Grid 

A Grid is a collection of Threads. Threads in a Grid execute a Kernel Function and are 

divided into Thread Blocks. 

Thread Block 

A Thread Block is a group of threads which execute on the same multiprocessor (SMX). 

Threads within a Thread Block have access to shared memory and can be explicitly 

synchronized. 

Kernel Function 

A Kernel Function is an implicitly parallel subroutine that executes under the CUDA 

execution and memory model for every Thread in a Grid. 

Host 

The Host refers to the execution environment that initially invoked CUDA, typically the 

thread running on a system’s CPU processor.  

Parent 

A Parent Thread, Thread Block, or Grid is one that has launched new grid(s), the Child 

Grid(s). The Parent is not considered completed until all of its launched Child Grids 

have also completed. 

Child 

A Child thread, block, or grid is one that has been launched by a Parent grid. A Child 

grid must complete before the Parent Thread, Thread Block, or Grid are considered 

complete. 

Thread Block Scope 

Objects with Thread Block Scope have the lifetime of a single Thread Block. They only 

have defined behavior when operated on by Threads in the Thread Block that created 

the object and are destroyed when the Thread Block that created them is complete. 

Device Runtime 

The Device Runtime refers to the runtime system and APIs available to enable Kernel 

Functions to use Dynamic Parallelism.
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EXECUTION ENVIRONMENT AND MEMORY 
MODEL 

EXECUTION ENVIRONMENT 

The CUDA execution model is based on primitives of threads, thread blocks, and grids, 

with kernel functions defining the program executed by individual threads within a 

thread block and grid. When a kernel function is invoked the grid's properties are 

described by an execution configuration, which has a special syntax in CUDA. Support 

for dynamic parallelism in CUDA extends the ability to configure, launch, and 

synchronize upon new grids to threads that are running on the device. 

 

Parent and Child Grids 

A device thread that configures and launches a new grid belongs to the parent grid, and 

the grid created by the invocation is a child grid. 

The invocation and completion of child grids is properly nested, meaning that the parent 

grid is not considered complete until all child grids created by its threads have 

completed. Even if the invoking threads do not explicitly synchronize on the child grids 

launched, the runtime guarantees an implicit synchronization between the parent and 

child. 
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Scope of CUDA Primitives  

On both host and device, the CUDA runtime offers an API for launching kernels, for 

waiting for launched work to complete, and for tracking dependencies between 

launches via streams and events. On the host system, the state of launches and the 

CUDA primitives referencing streams and events are shared by all threads within a 

process; however processes execute independently and may not share CUDA objects. 

A similar hierarchy exists on the device: launched kernels and CUDA objects are visible 

to all threads in a thread block, but are independent between thread blocks. This means 

for example that a stream may be created by one thread and used by any other thread in 

the same thread block, but may not be shared with threads in any other thread block. 

 

Synchronization  

CUDA runtime operations from any thread, including kernel launches, are visible across 

a thread block. This means that an invoking thread in the parent grid may perform 

synchronization on the grids launched by that thread, by other threads in the thread 

block, or on streams created within the same thread block. Execution of a thread block is 

not considered complete until all launches by all threads in the block have completed. If 

all threads in a block exit before all child launches have completed, a synchronization 

operation will automatically be triggered. 
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Streams & Events 

CUDA Streams and Events allow control over dependencies between grid launches: 

grids launched into the same stream execute in-order, and events may be used to create 

dependencies between streams. Streams and events created on the device serve this 

exact same purpose. 

Streams and events created within a grid exist within thread block scope but have 

undefined behavior when used outside of the thread block where they were created. As 

described above, all work launched by a thread block is implicitly synchronized when 

the block exits; work launched into streams is included in this, with all dependencies 

resolved appropriately. The behavior of operations on a stream that has been modified 

outside of thread block scope is undefined. 

Streams and events created on the host have undefined behavior when used within any 

kernel, just as streams and events created by a parent grid have undefined behavior if 

used within a child grid. 

 

Ordering and Concurrency 

The ordering of kernel launches from the device runtime follows CUDA Stream 

ordering semantics. Within a thread block, all kernel launches into the same stream are 

executed in-order. With multiple threads in the same thread block launching into the 

same stream, the ordering within the stream is dependent on the thread scheduling 

within the block, which may be controlled with synchronization primitives such as 

__syncthreads(). 

Note that because streams are shared by all threads within a thread block, the implicit 

‘NULL’ stream is also shared. If multiple threads in a thread block launch into the 

implicit stream, then these launches will be executed in-order. If concurrency is desired, 

explicit named streams should be used. 

Dynamic Parallelism enables concurrency to be expressed more easily within a program; 

however, the device runtime introduces no new concurrency guarantees within the 

CUDA execution model. There is no guarantee of concurrent execution between any 

number of different thread blocks on a device. 

The lack of concurrency guarantee extends to parent thread blocks and their child grids. 

When a parent thread block launches a child grid, the child is not guaranteed to begin 

execution until the parent thread block reaches an explicit synchronization point (e.g. 

cudaDeviceSynchronize()). 
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While concurrency will often easily be achieved, it may vary as a function of device 

configuration, application workload, and runtime scheduling. It is therefore unsafe to 

depend upon any concurrency between different thread blocks.  

 

Device Management 

There is no multi-GPU support from the device runtime; the device runtime is only 

capable of operating on the device upon which it is currently executing. It is permitted, 

however, to query properties for any CUDA capable device in the system. 

 

MEMORY MODEL 

Parent and child grids share the same global and constant memory storage, but have 

distinct local and shared memory. 

 

Coherence and Consistency 

Global Memory 

Parent and child grids have coherent access to global memory, with weak consistency 

guarantees between child and parent. There are two points in the execution of a child 

grid when its view of memory is fully consistent with the parent thread: when the child 

grid is invoked by the parent, and when the child grid completes as signaled by a 

synchronization API invocation in the parent thread. 

All global memory operations in the parent thread prior to the child grid’s invocation 

are visible to the child grid. All memory operations of the child grid are visible to the 

parent after the parent has synchronized on the child grid’s completion.  

In the following example, the child grid executing child_launch is only guaranteed to 

see the modifications to data made before the child grid was launched. Since thread 0 of 

the parent is performing the launch, the child will be consistent with the memory seen 

by thread 0 of the parent. Due to the first __syncthreads() call, the child will see 

data[0]=0, data[1]=1, ..., data[255]=255 (without the __syncthreads() call, only 

data[0] would be guaranteed to be seen by the child). When the child grid returns, 

thread 0 is guaranteed to see modifications made by the threads in its child grid. Those 
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modifications become available to the other threads of the parent grid only after the 

second __syncthreads() call: 

__global__ void child_launch(int *data) { 

 data[threadIdx.x] = data[threadIdx.x]+1; 

} 

 

__global__ void parent_launch(int *data) { 

 data[threadIdx.x] = threadIdx.x; 

 

 __syncthreads(); 

 

 If (threadIdx.x == 0) { 

  child_launch<<< 1, 256 >>>(data); 

  cudaDeviceSynchronize(); 

 } 

 

__syncthreads(); 

} 

 

void host_launch(int *data) { 

parent_launch<<< 1, 256 >>>(data); 

} 

 

Zero-Copy Memory 

Zero-copy system memory has identical coherence and consistency guarantees to global 

memory, and follows the semantics detailed above. A kernel may not allocate or free 

zero-copy memory, but may use pointers to zero-copy passed in from the host program. 

 

Constant Memory 

Constants are immutable and may not be modified from the device, even between 

parent and child launches. That is to say, the value of all __constant__ variables must be 

set from the host prior to launch. Constant memory is inherited automatically by all 

child kernels from their respective parents.  

Taking the address of a constant memory object from within a kernel thread has the 

same semantics as for all CUDA programs, and passing that pointer from parent to child 

or from a child to parent is naturally supported. 

 

Shared and Local Memory 

Shared and Local memory is private to a thread block or thread, respectively, and is not 

visible or coherent between parent and child. Behavior is undefined when an object in 
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one of these locations is referenced outside of the scope within which it belongs, and 

may cause an error. 

The NVIDIA compiler will attempt to warn if it can detect that a pointer to local or 

shared memory is being passed as an argument to a kernel launch. At runtime, the 

programmer may use the __isGlobal() intrinsic to determine whether a pointer references 

global memory and so may safely be passed to a child launch. 

Note that calls to cudaMemcpy*Async() or cudaMemset*Async() may invoke new child 

kernels on the device in order to preserve stream semantics. As such, passing shared or 

local memory pointers to these APIs is illegal and will return an error. 

Local Memory 

Local memory is private storage for an executing thread, and is not visible outside of 

that thread. It is illegal to pass a pointer to local memory as a launch argument when 

launching a child kernel. The result of dereferencing such a local memory pointer from a 

child will be undefined. 

For example the following is illegal, with undefined behavior if x_array is accessed by 

child_launch: 

int x_array[10];  // Creates x_array in parent’s local memory 

child_launch<<< 1, 1 >>>(x_array); 

It is sometimes difficult for a programmer to be aware of when a variable is placed into 

local memory by the compiler. As a general rule, all storage passed to a child kernel 

should be allocated explicitly from the global-memory heap, either with cudaMalloc(), 

new() or by declaring __device__ storage at global scope. 

For example: 

__device__ int value; 

__device__ void x() { 

    value = 5; 

    child<<< 1, 1 >>>(&value); 

} 

 

__device__ void y() { 

    int value = 5; 

    child<<< 1, 1 >>>(&value); 

} 

 

Correct – “value” is global storage Invalid – “value” is local storage 

 

 

Texture Memory 

Writes to the global memory region over which a texture is mapped are incoherent with 

respect to texture accesses. Coherence for texture memory is enforced at the invocation 

of a child grid and when a child grid completes. This means that writes to memory prior 

to a child kernel launch are reflected in texture memory accesses of the child. Similarly, 
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writes to memory by a child will be reflected in the texture memory accesses by a parent, 

but only after the parent synchronizes on the child's completion. Concurrent accesses by 

parent and child may result in inconsistent data. 
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PROGRAMMING INTERFACE 

CUDA C/C++ REFERENCE 

This section describes changes and additions to the CUDA C/C++ language extensions 

for supporting Dynamic Parallelism. 

The language interface and API available to CUDA kernels using CUDA C/C++ for 

Dynamic Parallelism, referred to as the Device Runtime, is substantially like that of the 

CUDA Runtime API available on the host. Where possible the syntax and semantics of 

the CUDA Runtime API have been retained in order to facilitate ease of code reuse for 

routines that may run in either the host or device environments. 

As with all code in CUDA C/C++, the APIs and code outlined here is per-thread code. 

This enables each thread to make unique, dynamic decisions regarding what kernel or 

operation to execute next. There are no synchronization requirements between threads 

within a block to execute any of the provided device runtime APIs, which enables the 

device runtime API functions to be called in arbitrarily divergent kernel code without 

deadlock. 

 

Device-Side Kernel Launch 
Kernels may be launched from the device using the standard CUDA <<< >>> syntax: 

kernel_name<<< Dg, Db, Ns, S >>>([kernel arguments]); 

 Dg is of type dim3 and specifies the dimensions and size of the grid 

 Db is of type dim3 and specifies the dimensions and size of each thread block 
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 Ns is of type size_t and specifies the number of bytes of shared memory that is 

dynamically allocated per thread block for this call and addition to statically allocated 

memory. Ns is an optional argument that defaults to 0. 

 S is of type cudaStream_t and specifies the stream associated with this call. The 

stream must have been allocated in the same thread block where the call is being 

made. S is an optional argument that defaults to 0. 

 

Launches are Asynchronous 

Identical to host-side launches, all device-side kernel launches are asynchronous with 

respect to the launching thread. That is to say, the <<<>>> launch command will return 

immediately and the launching thread will continue to execute until it hits an explicit 

launch-synchronization point such as cudaDeviceSynchronize(). The grid launch is posted 

to the device and will execute independently of the parent thread. The child grid may 

begin execution at any time after launch, but is not guaranteed to begin execution until 

the launching thread reaches an explicit launch-synchronization point. 

 

Launch Environment Configuration 

All global device configuration settings (e.g. shared memory & L1 cache size as returned 

from cudaDeviceGetCacheConfig(), and device limits returned from cudaDeviceGetLimit()) 

will be inherited from the parent. That is to say if, when the parent is launched, 

execution is configured globally for 16k of shared memory and 48k of L1 cache, then the 

child’s execution state will be configured identically. Likewise, device limits such as 

stack size will remain as-configured. 

For host-launched kernels, per-kernel configurations set from the host will take 

precedence over the global setting. These configurations will be used when the kernel is 

launched from the device as well. It is not possible to reconfigure a kernel’s environment 

from the device. 

 

Launch From __host__ __device__ Functions 

Although the device runtime enables kernel launches from either the host or device, 

kernel launches from __host__ __device__ functions are unsupported. The compiler will 

fail to compile if a __host__ device__ function is used to launch a kernel. 
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Streams 

Both named and unnamed (NULL) streams are available from the device runtime. 

Named streams may be used by any thread within a thread-block, but stream handles 

may not be passed to other blocks or child/parent kernels. In other words, a stream 

should be treated as private to the block in which it is created. Stream handles are not 

guaranteed to be unique between blocks, so using a stream handle within a block that 

did not allocate it will result in undefined behavior. 

Similar to host-side launch, work launched into separate streams may run concurrently, 

but actual concurrency is not guaranteed. Programs that depend upon concurrency 

between child kernels are not supported by the CUDA programming model and will 

have undefined behavior. 

The host-side NULL stream's cross-stream barrier semantic is not supported on the 

device (see below for details). In order to retain semantic compatibility with the host 

runtime, all device streams must be created using the cudaStreamCreateWithFlags() API, 

passing the cudaStreamNonBlocking flag. The cudaStreamCreate() call is a host-runtime-

only API and will fail to compile for the device. 

As cudaStreamSynchronize() and cudaStreamQuery() are unsupported by the device 

runtime, cudaDeviceSynchronize() should be used instead when the application needs to 

know that stream-launched child kernels have completed. 

 

The Implicit (NULL) Stream 

Within a host program, the unnamed (NULL) stream has additional barrier 

synchronization semantics with other streams (see the CUDA Programming Guide for 

details). The device runtime offers a single implicit, unnamed stream shared between all 

threads in a block, but as all named streams must be created with the 

cudaStreamNonBlocking flag, work launched into the NULL stream will not insert an 

implicit dependency on pending work in any other streams. 

 

Events 

Only the inter-stream synchronization capabilities of CUDA events are supported. This 

means that cudaStreamWaitEvent() is supported, but cudaEventSynchronize() 

cudaEventElapsedTime(), and cudaEventQuery() are not. As cudaEventElapsedTime() is not 

supported, cudaEvents must be created via cudaEventCreateWithFlags(), passing the 

cudaEventDisableTiming flag. 
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As for all device runtime objects, event objects may be shared between all threads within 

the thread-block which created them but are local to that block and may not be passed to 

other kernels, or between blocks within the same kernel. Event handles are not 

guaranteed to be unique between blocks, so using an event handle within a block that 

did not create it will result in undefined behavior. 

 

Synchronization 

The cudaDeviceSynchronize() function will synchronize on all work launched by any 

thread in the thread-block up to the point where cudaDeviceSynchronize() was called. 

Note that cudaDeviceSynchronize() may be called from within divergent code (see below). 

It is up to the program to perform sufficient additional inter-thread synchronization, for 

example via a call to __syncthreads(), if the calling thread is intended to synchronize with 

child grids invoked from other threads.  

 

Block-Wide Synchronization 

The cudaDeviceSynchronize() function does not imply intra-block synchronization. In 

particular, without explicit synchronization via a __syncthreads() directive the calling 

thread can make no assumptions about what work has been launched by any thread 

other than itself. For example if multiple threads within a block are each launching work 

and synchronization is desired for all this work at once (perhaps because of event-based 

dependencies), it is up to the program to guarantee that this work is submitted by all 

threads before calling cudaDeviceSynchronize(). 

Because the implementation is permitted to synchronize on launches from any thread in 

the block, it is quite possible that simultaneous calls to cudaDeviceSynchronize() by 

multiple threads will drain all work in the first call and then have no effect for the later 

calls. 

 

Device Management 

Only the device on which a kernel is running will be controllable from that kernel. This 

means that device APIs such as cudaSetDevice() are not supported by the device runtime. 

The active device as seen from the GPU (returned from cudaGetDevice()) will have the 

same device number as seen from the host system. The cudaGetDeviceProperty() call may 

request information about another device as this API allows specification of a device ID 
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as a parameter of the call. Note that the catch-all cudaGetDeviceProperties() API is not 

offered by the device runtime – properties must be queried individually. 

 

Memory Declarations 

Device and Constant Memory 

Memory declared at file scope with __device__ or __constant__ qualifiers behave 

identically when using the device runtime. All kernels may read or write __device__ 

variables, whether the kernel was initially launched by the host or device runtime. 

Equivalently, all kernels will have the same view of __constant__s as declared at the 

module scope. 

 

Textures & Surfaces 

CUDA supports dynamically created texture and surface objects1, where a texture 

reference may be created on the host, passed to a kernel, used by that kernel, and then 

destroyed from the host. The device runtime does not allow creation or destruction of 

texture or surface objects from within device code, but texture and surface objects 

created from the host may be used and passed around freely on the device. Regardless 

of where they are created, dynamically created texture objects are always valid and may 

be passed to child kernels from a parent. 

NOTE: The device runtime does not support legacy module-scope (i.e. Fermi-style) 

textures and surfaces within a kernel launched from the device. Module-scope (legacy) 

textures may be created from the host and used in device code as for any kernel, but 

may only be used by a top-level kernel (i.e. the one which is launched from the host).  

 

Shared Memory Variable Declarations 

In CUDA C/C++ shared memory can be declared either as a statically sized file-scope or 

function-scoped variable, or as an extern variable with the size determined at runtime by 

the kernel’s caller via a launch configuration argument. Both types of declarations are 

valid under the device runtime. 

                                                      

1 Dynamically created texture and surface objects are an addition to the CUDA memory model 

introduced with CUDA 5.0. Please see the CUDA Programming Guide for details. 
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__global__ void permute(int n, int *data) { 

 extern __shared__ int smem[]; 

 if (n <= 1) 

  return; 

 

 smem[threadIdx.x] = data[threadIdx.x]; 

__syncthreads(); 

 

 permute_data(smem, n);  

__syncthreads(); 

 

// Write back to GMEM since we can’t pass SMEM to children. 

 data[threadIdx.x] = smem[threadIdx.x];  

__syncthreads(); 

 

if (threadIdx.x == 0) { 

  permute<<< 1, 256, n/2*sizeof(int) >>>(n/2, data); 

      permute<<< 1, 256, n/2*sizeof(int) >>>(n/2, data+n/2); 

 } 

} 

 

void host_launch(int *data) { 

permute<<< 1, 256, 256*sizeof(int) >>>(256, data); 

} 

 

Symbol Addresses 

Device-side symbols (i.e. those marked __device__) may be referenced from within a 

kernel simply via the ‚&‛ operator, as all global-scope device variables are in the 

kernel’s visible address space. This also applies to __constant__ symbols, although in 

this case the pointer will reference read-only data. 

Given that device-side symbols can be referenced directly, those CUDA runtime APIs 

which reference symbols (e.g. cudaMemcpyToSymbol() or cudaGetSymbolAddress()) are 

redundant and hence not supported by the device runtime. Note this implies that 

__constant__ data cannot be altered from within a running kernel, even ahead of a child 

kernel launch, as references to __constant__ space are read-only. 

 

API Errors and Launch Failures 

As usual for the CUDA runtime, any function may return an error code. The last error 

code returned is recorded and may be retrieved via the cudaGetLastError() call. Errors are 

recorded per-thread, so that each thread can identify the most recent error that it has 

generated. The error code is of type cudaError_t. 

Similar to a host-side launch, device-side launches may fail for many reasons (invalid 

arguments, etc). The user must call cudaGetLastError() to determine if a launch generated 
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an error, however lack of an error after launch does not imply the child kernel 

completed successfully. 

For device-side exceptions, e.g., access to an invalid address, an error in a child grid will 

be returned to the host instead of being returned by the parent’s call to 

cudaDeviceSynchronize(). 

 

Launch Setup APIs 
 

Kernel launch is a system-level mechanism exposed through the device runtime library, 

and as such is available directly from PTX via the underlying cudaGetParameterBuffer() 

and cudaLaunchDevice() APIs. It is permitted for a CUDA application to call these APIs 

itself, with the same requirements as for PTX. In both cases, the user is then responsible 

for correctly populating all necessary data structures in the correct format according to 

specification. Backwards compatibility is guaranteed in these data structures. 

As with host-side launch, the device-side operator <<<>>> maps to underlying kernel 

launch APIs. This is so that users targeting PTX will be able to enact a launch, and so 

that the compiler front-end can translate <<<>>> into these calls. 

 

Runtime API Launch 

Functions 

Description of Difference From Host Runtime Behaviour 

(behaviour is identical if no description) 

cudaGetParameterBuffer Generated automatically from <<<>>>. Note different API to 
host equivalent. 

cudaLaunchDevice Generated automatically from <<<>>>. Note different API to 
host equivalent. 

New Device-only launch implementation functions 

 

The APIs for these launch functions are different to those of the CUDA Runtime API, 

and are defined as follows: 

extern __device__ cudaError_t cudaGetParameterBuffer(void **params); 

extern __device__ cudaError_t cudaLaunchDevice(void *kernel, 

                                        void* params, dim3 gridDim, 

                                        dim3 blockDim, 

                                        unsigned int sharedMemSize = 0, 

                                        cudaStream_t stream = 0); 
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API Reference 

The portions of the CUDA Runtime API supported in the device runtime are detailed 

here. Host and device runtime APIs have identical syntax; semantics are the same except 

where indicated. The table below provides an overview of the API relative to the version 

available from the host.  

 

Runtime API Functions Details 

cudaDeviceSynchronize Synchronizes on work launched from thread’s own block 
only 

cudaDeviceGetCacheConfig  

cudaDeviceGetLimit  

cudaGetLastError Last error is per-thread state, not per-block state 

cudaPeekAtLastError  

cudaGetErrorString  

cudaGetDeviceCount  

cudaGetDeviceProperty Will return properties for any device 

cudaGetDevice Always returns current device ID as would be seen from 
host 

cudaStreamCreateWithFlags Must pass cudaStreamNonBlocking flag 

cudaStreamDestroy  

cudaStreamWaitEvent  

cudaEventCreateWithFlags Must pass cudaEventDisableTiming flag 

cudaEventRecord  

cudaEventDestroy  

cudaFuncGetAttributes  

cudaMemcpyAsync Notes about all memcpy/memset functions: 

cudaMemcpy2DAsync     Only async memcpy/set functions are supported 

cudaMemcpy3DAsync     Only device-to-device memcpy is permitted 

cudaMemsetAsync     May not pass in local or shared memory pointers 

cudaMemset2DAsync  

cudaMemset3DAsync  

cudaRuntimeGetVersion  

cudaMalloc May not call cudaFree on the device on a pointer created 

cudaFree on the host, and vice-versa 

Supported API functions 
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DEVICE-SIDE LAUNCH FROM PTX 

This section is for the programming language and compiler implementers who target 

Parallel Thread Execution (PTX) and plan to support Dynamic Parallelism in their 

language. It provides the low-level details related to supporting kernel launches at the 

PTX level. 

 

Kernel Launch APIs 

Device-side kernel launches can be implemented using the following two APIs 

accessible from PTX: cudaLaunchDevice() and cudaGetParameterBuffer(). 

cudaLaunchDevice() launches the specified kernel with the parameter buffer that is 

obtained by calling cudaGetParameterBuffer() and filled with the parameters to the 

launched kernel. The parameter buffer can be NULL, i.e., no need to invoke 

cudaGetParameterBuffer(), if the launched kernel does not take any parameters. 

 

cudaLaunchDevice 

At the PTX level, cudaLaunchDevice() needs to be declared in one of the two forms shown 

below before it is used. 

// When .address_size is 64 

.extern .func(.param .b32 func_retval0) cudaLaunchDevice 

( 

  .param .b64 func, 

  .param .b64 parameterBuffer, 

  .param .align 4 .b8 gridDimension[12], 

  .param .align 4 .b8 blockDimension[12], 

  .param .b32 sharedMemSize, 

  .param .b64 stream 

) 

; 

PTX-level declaration of cudaLaunchDevice() when .address_size is 64 

 

// When .address_size is 32 

.extern .func(.param .b32 func_retval0) cudaLaunchDevice 

( 

  .param .b32 func, 

  .param .b32 parameterBuffer, 

  .param .align 4 .b8 gridDimension[12], 

  .param .align 4 .b8 blockDimension[12], 

  .param .b32 sharedMemSize, 
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  .param .b32 stream 

) 

; 

PTX-level declaration of cudaLaunchDevice() when .address_size is 32 

 

The CUDA-level declaration below is mapped to one of the aforementioned PTX-level 

declarations and is found in the system header file cuda_device_runtime_api.h. The 

function is defined in the cudadevrt system library, which must be linked with a program 

in order to use device-side kernel launch functionality. 

extern “C” __device__ 

cudaError_t cudaLaunchDevice(void *func, void *parameterBuffer, 

                             dim3 gridDimension, dim3 blockDimension, 

                             unsigned int sharedMemSize, 

                             cudaStream_t stream); 

CUDA-level declaration of cudaLaunchDevice() 

The first parameter is a pointer to the kernel to be is launched, and the second parameter 

is the parameter buffer that holds the actual parameters to the launched kernel. The 

layout of the parameter buffer is explained in ‚Parameter Buffer Layout‛, below. Other 

parameters specify the launch configuration, i.e., as grid dimension, block dimension, 

shared memory size, and the stream associated with the launch (please refer to the 

CUDA Programming Guide for the detailed description of launch configuration, and of 

cudaLaunchDevice() specifically). 

 

cudaGetParameterBuffer 

cudaGetParameterBuffer() needs to be declared at the PTX level before it’s used. The PTX-

level declaration must be in one of the two forms given below, depending on address 

size: 

// When .address_size is 64 

.extern .func(.param .b64 func_retval0) cudaGetParameterBuffer 

( 

  .param .b64 alignment, 

  .param .b64 size 

) 

; 

PTX-level declaration of cudaGetParameterBuffer() when .address_size is 64 

 

 



 

Programming Interface 

 

CUDA Dynamic Parallelism Programming Guide      20 

.extern .func(.param .b32 func_retval0) cudaGetParameterBuffer 

( 

  .param .b32 alignment, 

  .param .b32 size 

) 

; 

PTX-level declaration of cudaGetParameterBuffer() when .address_size is 32 

The following CUDA-level declaration of cudaGetParameterBuffer() is mapped to the 

aforementioned PTX-level declaration: 

 

extern “C” __device__ 

void *cudaGetParameterBuffer(size_t alignment, size_t size); 

CUDA-level declaration of cudaGetParameterBuffer() 

The first parameter specifies the alignment requirement of the parameter buffer and the 

second parameter the size requirement in bytes. In the current implementation, the 

parameter buffer returned by cudaGetParameterBuffer() is always guaranteed to be 64-

byte aligned, and the alignment requirement parameter is ignored. However, it is 

recommended to pass the correct alignment requirement value – which is the largest 

alignment of any parameter to be placed in the parameter buffer – to 

cudaGetParameterBuffer() to ensure portability in the future. 

 

Parameter Buffer Layout 

Parameter reordering in the parameter buffer is prohibited, and each individual 

parameter placed in the parameter buffer is required to be aligned. That is, each 

parameter must be placed at the nth byte in the parameter buffer, where n is the smallest 

multiple of the parameter size that is greater than the offset of the last byte taken by the 

preceding parameter. The maximum size of the parameter buffer is 4KB. 

For a more detailed description of PTX code generated by the CUDA compiler, please 

refer to the PTX-3.5 specification.  
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TOOLKIT SUPPORT FOR DYNAMIC PARALLELISM 

Including device runtime API in CUDA code 

Similar to the host-side runtime API, prototypes for the CUDA device runtime API are 

included automatically during program compilation. There is no need to include 

cuda_device_runtime_api.h explicitly. 

 

Compiling and Linking 

CUDA programs are automatically linked with the host runtime library when compiled 

with nvcc, but the device runtime is shipped as a static library which must explicitly be 

linked with a program which wishes to use it. 

The device runtime is offered as a static library (cudadevrt.lib on Windows, libcudadevrt.a 

under Linux and MacOS), against which a GPU application that uses the device runtime 

must be linked. Linking of device libraries can be accomplished through nvcc and/or 

nvlink. Two simple examples are shown below. 

A device runtime program may be compiled and linked in a single step, if all required 

source files can be specified from the command line: 

$ nvcc -arch=sm_35 -rdc=true hello_world.cu -o hello -lcudadevrt 

It is also possible to compile CUDA .cu source files first to object files, and then link 

these together in a two-stage process: 

$ nvcc -arch=sm_35 -dc hello_world.cu -o hello_world.o 

$ nvcc -arch=sm_35 -rdc=true hello_world.o -o hello -lcudadevrt 

Please see the ‚Using Separate Compilation‛ section of ‚The CUDA Driver Compiler 

NVCC‛ guide for more details. 
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PROGRAMMING GUIDELINES 

BASICS 

The device runtime is a functional subset of the host runtime. API level device 

management, kernel launching, device memcpy, stream management, and event 

management are exposed from the device runtime. 

Programming for the device runtime should be familiar to someone who already has 

experience with CUDA. Device runtime syntax and semantics are largely the same as 

that of the host API, with any exceptions detailed earlier in this document. 
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The following example shows a simple ‚Hello World‛ program incorporating dynamic 

parallelism: 

#include <stdio.h> 

 

__global__ void childKernel()  

{ 

 printf("Hello "); 

} 

 

__global__ void parentKernel() 

{ 

 // launch child 

 childKernel<<<1,1>>>(); 

 if (cudaSuccess != cudaGetLastError()) { 

  return; 

 } 

 

 // wait for child to complete 

 if (cudaSuccess != cudaDeviceSynchronize()) { 

  return; 

 } 

 

 printf("World!\n"); 

} 

 

int main(int argc, char *argv[]) 

{ 

 // launch parent 

 parentKernel<<<1,1>>>(); 

 if (cudaSuccess != cudaGetLastError()) { 

  return 1; 

 } 

 

 // wait for parent to complete 

 if (cudaSuccess != cudaDeviceSynchronize()) { 

  return 2; 

 }  

 

 return 0; 

} 

 

This program may be built in a single step from the command line as follows: 

$ nvcc -arch=sm_35 -rdc=true hello_world.cu -o hello -lcudadevrt 
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PERFORMANCE 

Synchronization 

Synchronization by one thread may impact the performance of other threads in the same 

Thread Block, even when those other threads do not call cudaDeviceSynchronize() 

themselves. This impact will depend upon the underlying implementation. 

 

Dynamic-parallelism-enabled Kernel overhead 

System software which is active when controlling dynamic launches may impose an 

overhead on any kernel which is running at the time, whether or not it invokes kernel 

launches of its own. This overhead arises from the device runtime’s execution tracking 

and management software and may result in decreased performance for e.g. library calls 

when made from the device compared to from the host side. This overhead is, in 

general, incurred for applications that link against the device runtime library. 

 

IMPLEMENTATION RESTRICTIONS & LIMITATIONS 

Dynamic Parallelism guarantees all semantics described in this document, however, 

certain hardware and software resources are implementation-dependent and limit the 

scale, performance and other properties of a program which uses the device runtime.  

Runtime 

Memory Footprint 

The device runtime system software reserves memory for various management 

purposes, in particular one reservation which is used for saving parent-grid state during 

synchronization, and a second reservation for tracking pending grid launches. 

Configuration controls are available to reduce the size of these reservations in exchange 

for certain launch limitations. See Configuration Options, below, for details. 

The majority of reserved memory is allocated as backing-store for parent kernel state, for 

use when synchronizing on a child launch. Conservatively, this memory must support 

storing of state for the maximum number of live threads possible on the device. This 

means that each parent generation at which cudaDeviceSynchronize() is callable may 
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require up to 150MB of device memory, depending on the device configuration, which 

will be unavailable for program use even if it is not all consumed. 

 

Nesting & Synchronization Depth 

Using the device runtime, one kernel may launch another kernel, and that kernel may 

launch another, and so on. Each subordinate launch is considered a new ‚nesting level‛, 

and the total number of levels is the ‚nesting depth‛ of the program. The 

‚synchronization depth‛ is defined as the deepest level at which the program will 

explicitly synchronize on a child launch. Typically this is one less than the nesting depth 

of the program, but if the program does not need to call cudaDeviceSynchronize() at all 

levels then the synchronization depth might be substantially different to the nesting 

depth. 

The overall maximum nesting depth is limited to 24, but practically speaking the real 

limit will be the amount of memory required by the system for each new level (see 

Memory Footprint above). Any launch which would result in a kernel at a deeper level 

than the maximum will fail. Note that this may also apply to cudaMemcpyAsync(), which 

might itself generate a kernel launch. See Configuration Options, below, for details. 

By default, sufficient storage is reserved for two levels of synchronization. This 

maximum synchronization depth (and hence reserved storage) may be controlled by 

calling cudaDeviceSetLimit() and specifying cudaLimitDevRuntimeSyncDepth. The number 

of levels to be supported must be configured before the top-level kernel is launched 

from the host, in order to guarantee successful execution of a nested program. Calling 

cudaDeviceSynchronize() at a depth greater than the specified maximum synchronization 

depth will return an error. 

An optimization is permitted where the system detects that it need not reserve space for 

the parent’s state in cases where the parent kernel never calls cudaDeviceSynchronize(). In 

this case, because explicit parent/child synchronization never occurs, the memory 

footprint required for a program will be much less than the conservative maximum. 

Such a program could specify a shallower maximum synchronization depth to avoid 

over-allocation of backing store. 

 

Pending Kernel Launches 

When a kernel is launched, all associated configuration and parameter data is tracked 

until the kernel completes. This data is stored within a system-managed launch pool. 

The size of the launch pool is configurable by calling cudaDeviceSetLimit() from the host 

and specifying cudaLimitDevRuntimePendingLaunchCount. 
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Configuration Options 

Resource allocation for the device runtime system software is controlled via the 

cudaDeviceSetLimit() API from the host program. Limits must be set before any kernel is 

launched, and may not be changed while the GPU is actively running programs. 

The following named limits may be set: 

 

Limit Behaviour 

cudaLimitDevRuntimeSyncDepth Sets the maximum depth at which 
cudaDeviceSynchronize() may be called. 
Launches may be performed deeper than this, 
but explicit synchronization deeper than this 
limit will return the 
cudaErrorLaunchMaxDepthExceeded. The 
default maximum sync depth is 2. 

cudaLimitDevRuntimePendingLaunchCount Controls the amount of memory set aside for 
buffering kernel launches which have not yet 
begun to execute, due either to unresolved 
dependencies or lack of execution resources. 
When the buffer is full, launches will set the 
thread’s last error to 
cudaErrorLaunchPendingCountExceeded. The 
default pending launch count is 2048 launches. 

 

Memory Allocation and Lifetime 

cudaMalloc() and cudaFree() have distinct semantics between the host and device 

environments. When invoked from the host, cudaMalloc() allocates a new region from 

unused device memory. When invoked from the device runtime these functions map to 

device-side malloc() and free(). This implies that within the device environment the total 

allocatable memory is limited to the device malloc() heap size, which may be smaller 

than the available unused device memory. Also, it is an error to invoke cudaFree() from 

the host program on a pointer which was allocated by cudaMalloc() on the device or vice-

versa.  

 cudaMalloc() on Host cudaMalloc() on Device 

cudaFree() on Host Supported Not Supported 

cudaFree() on Device Not Supported Supported 

Allocation limit Free device memory cudaLimitMallocHeapSize 
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SM Id and Warp Id 

Note that in PTX %smid and %warpid are defined as volatile values. The device runtime 

may reschedule thread blocks onto different SMs in order to more efficiently manage 

resources. As such, it is unsafe to rely upon %smid or %warpid remaining unchanged 

across the lifetime of a thread or thread block. 

 

ECC Errors 

No notification of ECC errors is available to code within a CUDA kernel. ECC errors are 

reported at the host side once the entire launch tree has completed. Any ECC errors 

which arise during execution of a nested program will either generate an exception or 

continue execution (depending upon error and configuration). 
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