
CUDA Toolkit 5.0

CURAND Guide

PG-05328-050_v02 | September 2012

Published by
NVIDIA Corporation
2701 San Tomas Expressway
Santa Clara, CA 95050

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES,
DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND
SEPARATELY, "MATERIALS") ARE BEING PROVIDED "AS IS". NVIDIA MAKES
NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH
RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED
WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS
FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA
Corporation assumes no responsibility for the consequences of use of such information or
for any infringement of patents or other rights of third parties that may result from its use.
No license is granted by implication or otherwise under any patent or patent rights of
NVIDIA Corporation. Speci�cations mentioned in this publication are subject to change
without notice. This publication supersedes and replaces all information previously
supplied. NVIDIA Corporation products are not authorized for use as critical components
in life support devices or systems without express written approval of NVIDIA
Corporation.

Trademarks

NVIDIA, CUDA, and the NVIDIA logo are trademarks or registered trademarks of
NVIDIA Corporation in the United States and other countries. Other company and
product names may be trademarks of the respective companies with which they are
associated.

Copyright

Copyright ©2005-2012 by NVIDIA Corporation. All rights reserved.

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 1

Portions of the MTGP32 (Mersenne Twister for GPU) library routines are subject to the
following copyright:

Copyright ©2009, 2010 Mutsuo Saito, Makoto Matsumoto and Hiroshima University. All
rights reserved. Copyright ©2011 Mutsuo Saito, Makoto Matsumoto, Hiroshima
University and University of Tokyo. All rights reserved.

Redistribution and use in source and binary forms, with or without modi�cation, are
permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

* Neither the name of the Hiroshima University nor the names of its contributors may be
used to endorse or promote products derived from this software without speci�c prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 2

CURAND Library

The CURAND library provides facilities that focus on the simple and e�cient generation
of high-quality pseudorandom and quasirandom numbers. A pseudorandom sequence of
numbers satis�es most of the statistical properties of a truly random sequence but is
generated by a deterministic algorithm. A quasirandom sequence of n-dimensional points
is generated by a deterministic algorithm designed to �ll an n-dimensional space evenly.

CURAND consists of two pieces: a library on the host (CPU) side and a device (GPU)
header �le. The host-side library is treated like any other CPU library: users include the
header �le, /include/curand.h, to get function declarations and then link against the
library. Random numbers can be generated on the device or on the host CPU. For device
generation, calls to the library happen on the host, but the actual work of random number
generation occurs on the device. The resulting random numbers are stored in global
memory on the device. Users can then call their own kernels to use the random numbers,
or they can copy the random numbers back to the host for further processing. For host
CPU generation, all of the work is done on the host, and the random numbers are stored
in host memory.

The second piece of CURAND is the device header �le, /include/curand_kernel.h. This
�le de�nes device functions for setting up random number generator states and generating
sequences of random numbers. User code may include this header �le, and user-written
kernels may then call the device functions de�ned in the header �le. This allows random
numbers to be generated and immediately consumed by user kernels without requiring the
random numbers to be written to and then read from global memory.

Compatibility and Versioning

The host API of CURAND is intended to be backward compatible at the source level with
future releases (unless stated otherwise in the release notes of a speci�c future release). In
other words, if a program uses CURAND, it should continue to compile and work correctly
with newer versions of CURAND without source code changes.

CURAND is not guaranteed to be backward compatible at the binary level. Using
di�erent versions of the curand.h header �le and the shared library is not supported.

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 4

Using di�erent versions of CURAND and the CUDA runtime is not supported.

The device API should be backward compatible at the source level for public functions in
most cases.

Host API Overview

To use the host API, user code should include the library header �le curand.h and
dynamically link against the CURAND library. The library uses the CUDA runtime, so
user code must also use the runtime. The CUDA driver API is not supported by
CURAND.

Random numbers are produced by generators. A generator in CURAND encapsulates all
the internal state necessary to produce a sequence of pseudorandom or quasirandom
numbers. The normal sequence of operations is as follows:

1. Create a new generator of the desired type (see Generator Types) with
curandCreateGenerator().

2. Set the generator options (see Generator Options); for example, use
curandSetPseudoRandomGeneratorSeed() to set the seed.

3. Allocate memory on the device with cudaMalloc().

4. Generate random numbers with curandGenerate() or another generation function.

5. Use the results.

6. If desired, generate more random numbers with more calls to curandGenerate().

7. Clean up with curandDestroyGenerator().

To generate random numbers on the host CPU, in step one above call
curandCreateGeneratorHost(), and in step three, allocate a host memory bu�er to
receive the results. All other calls work identically whether you are generating random
numbers on the device or on the host CPU.

It is legal to create several generators at the same time. Each generator encapsulates a
separate state and is independent of all other generators. The sequence of numbers
produced by each generator is deterministic. Given the same set-up parameters, the same
sequence will be generated with every run of the program. Generating random numbers on
the device will result in the same sequence as generating them on the host CPU.

Note that curandGenerate() in step 4 above launches a kernel and returns
asynchronously. If you launch another kernel in a di�erent stream, and that kernel needs
to use the results of curandGenerate(), you must either call cudaThreadSynchronize() or
use the stream management/event management routines, to ensure that the random
generation kernel has �nished execution before the new kernel is launched.

Note that it is not valid to pass a host memory pointer to a generator that is running on

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 5

the device, and it is not valid to pass a device memory pointer to a generator that is
running on the CPU. Behavior in these cases is unde�ned.

Generator Types

Random number generators are created by passing a type to curandCreateGenerator().
There are seven types of random number generators in CURAND, that fall into two
categories. CURAND_RNG_PSEUDO_XORWOW, CURAND_RNG_PSEUDO_MRG32K3A, and
CURAND_RNG_PSEUDO_MTGP32 are pseudorandom number generators.
CURAND_RNG_PSEUDO_XORWOW is implemented using the XORWOW algorithm, a member of
the xor-shift family of pseudorandom number generators. CURAND_RNG_PSEUDO_MRG32K3A
is a member of the Combined Multiple Recursive family of pseudorandom number
generators. CURAND_RNG_PSEUDO_MTGP32 is a member of the Mersenne Twister family of
pseudorandom number generators, with parameters customized for operation on the GPU.
There are 4 variants of the basic SOBOL' quasi random number generator. All of the
variants generate sequences in up to 20,000 dimensions. CURAND_RNG_QUASI_SOBOL32,
CURAND_RNG_QUASI_SCRAMBLED_SOBOL32, CURAND_RNG_QUASI_SOBOL64, and
CURAND_RNG_QUASI_SCRAMBLED_SOBOL64 are quasirandom number generator types.
CURAND_RNG_QUASI_SOBOL32 is a Sobol' generator of 32-bit sequences.
CURAND_RNG_QUASI_SCRAMBLED_SOBOL32 is a scrambled Sobol' generator of 32-bit
sequences. CURAND_RNG_QUASI_SOBOL64 is a Sobol' generator of 64-bit sequences.
CURAND_RNG_QUASI_SCRAMBLED_SOBOL64 is a scrambled Sobol' generator of 64-bit
sequences.

Generator Options

Once created, random number generators can be de�ned using the general options seed,
o�set, and order.

Seed

The seed parameter is a 64-bit integer that initializes the starting state of a pseudorandom
number generator. The same seed always produces the same sequence of results.

O�set

The o�set parameter is used to skip ahead in the sequence. If o�set = 100, the �rst random
number generated will be the 100th in the sequence. This allows multiple runs of the same
program to continue generating results from the same sequence without overlap. Note that
the skip ahead function is not available for the CURAND_RNG_PSEUDO_MTGP32 generator.

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 6

Order

The order parameter is used to choose how the results are ordered in global memory.
There are three ordering choices for pseudorandom sequences:
CURAND_ORDERING_PSEUDO_DEFAULT, CURAND_ORDERING_PSEUDO_BEST, and
CURAND_ORDERING_PSEUDO_SEEDED. There is one ordering choice for quasirandom numbers,
CURAND_ORDERING_QUASI_DEFAULT. The default ordering for pseudorandom number
generators is CURAND_ORDERING_PSEUDO_DEFAULT, while the default ordering for
quasirandom number generators is CURAND_ORDERING_QUASI_DEFAULT.

Currently, the two pseudorandom orderings CURAND_ORDERING_PSEUDO_DEFAULT and
CURAND_ORDERING_PSEUDO_BEST produce the same output ordering for all pseudo-random
generators. However, future releases of CURAND may change the ordering associated with
CURAND_ORDERING_PSEUDO_BEST to improve either performance or the quality of the
results. It will always be the case that the ordering obtained with
CURAND_ORDERING_PSEUDO_BEST is deterministic and is the same for each run of the
program. The ordering returned by CURAND_ORDERING_PSEUDO_DEFAULT is guaranteed to
remain the same for all CURAND releases. In the current release, only the XORWOW
generator has more than one ordering.

The behavior of the ordering parameters for each generator type is outlined below:

I XORWOW pseudorandom generator

• CURAND_ORDERING_PSEUDO_BEST

The output ordering of CURAND_ORDERING_PSEUDO_BEST is the same as
CURAND_ORDERING_PSEUDO_DEFAULT in the current release.

• CURAND_ORDERING_PSEUDO_DEFAULT

The result at o�set n in global memory is from position

(n mod 4096) · 267 + bn/4096c

in the original XORWOW sequence.

• CURAND_ORDERING_PSEUDO_SEEDED

The result at o�set n in global memory is from position bn/4096c in the
XORWOW sequence seeded with a combination of the user seed and the
number n mod 4096. In other words, each of 4096 threads uses a di�erent seed.
This seeding method reduces state setup time but may result in statistical
weaknesses of the pseudorandom output for some user seed values.

I MRG32k3a pseudorandom generator

• CURAND_ORDERING_PSEUDO_BEST

The output ordering of CURAND_ORDERING_PSEUDO_BEST is the same as
CURAND_ORDERING_PSEUDO_DEFAULT in the current release.

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 7

• CURAND_ORDERING_PSEUDO_DEFAULT

The result at o�set n in global memory is from position

(n mod 4096) · 276 + bn/4096c

in the original MRG32k3a sequence. (Note that the stride between subsequent
samples for MRG32k3a is not the same as for XORWOW)

I MTGP32 pseudorandom generator

• CURAND_ORDERING_PSEUDO_BEST

The output ordering of CURAND_ORDERING_PSEUDO_BEST is the same as
CURAND_ORDERING_PSEUDO_DEFAULT in the current release.

• CURAND_ORDERING_PSEUDO_DEFAULT

The MTGP32 generator actually generates 64 distinct sequences based on
di�erent parameter sets for the basic algorithm. Let S(p) be the sequence for
parmeter set p.

The result at o�set n in global memory is from position (n mod 256) from the
sequence

S(bn/256c mod 64)

In other words 256 samples from S(0) are followed by 256 samples from S(1)
and so-on, up to S(63). This pattern repeats, so the subsequent 256 samples are
from S(0), followed by 256 samples from S(1), ands so on.

I 32 and 64 bit SOBOL and Scrambled SOBOL quasirandom generators

• CURAND_ORDERING_QUASI_DEFAULT

When generating n results in d dimensions, the output will consist of n/d
results from dimension 1, followed by n/d results from dimension 2, and so on
up to dimension d. Only exact multiples of the dimension size may be
generated. The dimension parameter d is set with
curandSetQuasiRandomGeneratorDimensions() and defaults to 1.

Return Values

All CURAND host library calls have a return value of curandStatus_t. Calls that succeed
without errors return CURAND_STATUS_SUCCESS. If errors occur, other values are returned
depending on the error. Because CUDA allows kernels to execute asynchronously from
CPU code, it is possible that errors in a non-CURAND kernel will be detected during a
call to a library function. In this case, CURAND_STATUS_PREEXISTING_ERROR is returned.

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 8

Generation Functions

curandStatus_t

curandGenerate(

curandGenerator_t generator,

unsigned int *outputPtr, size_t num)

The curandGenerate() function is used to generate pseudo- or quasirandom bits of
output. For XORWOW, MRG32k3a, MTGP32, and SOBOL32 generators, each output
element is a 32-bit unsigned int where all bits are random. For SOBOL64 generators, each
output element is a 64-bit unsigned long long where all bits are random.

curandStatus_t

curandGenerateUniform(

curandGenerator_t generator,

float *outputPtr, size_t num)

The curandGenerateUniform() function is used to generate uniformly distributed �oating
point values between 0.0 and 1.0, where 0.0 is excluded and 1.0 is included.

curandStatus_t

curandGenerateNormal(

curandGenerator_t generator,

float *outputPtr, size_t n,

float mean, float stddev)

The curandGenerateNormal() function is used to generate normally distributed �oating
point values with the given mean and standard deviation.

curandStatus_t

curandGenerateLogNormal(

curandGenerator_t generator,

float *outputPtr, size_t n,

float mean, float stddev)

The curandGenerateLogNormal() function is used to generate log-normally distributed
�oating point values based on a normal distribution with the given mean and standard
deviation.

curandStatus_t

curandGeneratePoisson(

curandGenerator_t generator,

unsigned int *outputPtr, size_t n,

double lambda)

The curandGeneratePoisson() function is used to generate Poisson-distributed integer
values based on a Poisson distribution with the given lambda.

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 9

curandStatus_t

curandGenerateUniformDouble(

curandGenerator_t generator,

double *outputPtr, size_t num)

The function curandGenerateUniformDouble() generates uniformly distributed random
numbers in double precision. The function

curandStatus_t

curandGenerateNormalDouble(

curandGenerator_t generator,

double *outputPtr, size_t n,

double mean, double stddev)

curandGenerateNormalDouble() generates normally distributed results in double
precision with the given mean and standard deviation. Double precision results can only
be generated on devices of compute capability 1.3 or above, and the host.

curandStatus_t

curandGenerateLogNormalDouble(

curandGenerator_t generator,

double *outputPtr, size_t n,

double mean, double stddev)

curandGenerateLogNormalDouble() generates log-normally distributed results in double
precision, based on a normal distribution with the given mean and standard deviation.

For quasirandom generation, the number of results returned must be a multiple of the
dimension of the generator.

Generation functions can be called multiple times on the same generator to generate
successive blocks of results. For pseudorandom generators, multiple calls to generation
functions will yield the same result as a single call with a large size. For quasirandom
generators, because of the ordering of dimensions in memory, many shorter calls will not
produce the same results in memory as one larger call; however the generated
n-dimensional vectors will be the same.

Double precision results can only be generated on devices of compute capability 1.3 or
above, and the host.

Host API Example

/*

* This program uses the host CURAND API to generate 100

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 10

* pseudorandom floats.

*/

#include <stdio.h>

#include <stdlib.h>

#include <cuda.h>

#include <curand.h>

#define CUDA_CALL(x) do { if((x)!= cudaSuccess) { \

printf ("Error at %s:%d\n",__FILE__ ,__LINE__);\

return EXIT_FAILURE ;}} while (0)

#define CURAND_CALL(x) do { if((x)!= CURAND_STATUS_SUCCESS) { \

printf ("Error at %s:%d\n",__FILE__ ,__LINE__);\

return EXIT_FAILURE ;}} while (0)

int main(int argc , char *argv [])

{

size_t n = 100;

size_t i;

curandGenerator_t gen;

float *devData , *hostData;

/* Allocate n floats on host */

hostData = (float *) calloc(n, sizeof(float));

/* Allocate n floats on device */

CUDA_CALL(cudaMalloc ((void **)&devData , n*sizeof(float)));

/* Create pseudo -random number generator */

CURAND_CALL(curandCreateGenerator (&gen ,

CURAND_RNG_PSEUDO_DEFAULT));

/* Set seed */

CURAND_CALL(curandSetPseudoRandomGeneratorSeed(gen ,

1234 ULL));

/* Generate n floats on device */

CURAND_CALL(curandGenerateUniform(gen , devData , n));

/* Copy device memory to host */

CUDA_CALL(cudaMemcpy(hostData , devData , n * sizeof(float),

cudaMemcpyDeviceToHost));

/* Show result */

for(i = 0; i < n; i++) {

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 11

printf ("%1.4f ", hostData[i]);

}

printf ("\n");

/* Cleanup */

CURAND_CALL(curandDestroyGenerator(gen));

CUDA_CALL(cudaFree(devData));

free(hostData);

return EXIT_SUCCESS;

}

Performance Notes

In general you will get the best performance from the CURAND library by generating
blocks of random numbers that are as large as possible. Fewer calls to generate many
random numbers is more e�cient than many calls generating only a few random numbers.
The default pseudorandom generator, XORWOW, with the default ordering takes some
time to setup the �rst time it is called. Subsequent generation calls do not require this
setup. To avoid this setup time, use the CURAND_ORDERING_PSEUDO_SEEDED ordering.

The MTGP32 Mersenne Twister algorithm is closely tied to the thread and block count.
The state structure for MTGP32 actually contains the state for 256 consecutive samples
from a given sequence, as determined by a speci�c parameter set. Each of 64 blocks uses a
di�erent parameter set and each of 256 threads generates one sample from the state, and
updates the state. Hence the most e�cient use of MTGP32 is to generate a multiple of
16384 samples.

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 12

Device API Overview

To use the device API, include the �le curand_kernel.h in �les that de�ne kernels that
use CURAND device functions. The device API includes functions for pseudorandom
generation and quasirandom generation.

Pseudorandom Sequences

The functions for pseudorandom sequences support bit generation and generation from
distributions.

Bit Generation with XORWOW and MRG32k3a generators

__device__ unsigned int

curand (curandState_t *state)

Following a call to curand_init(), curand() returns a sequence of pseudorandom
numbers with a period greater than 2190. If curand() is called with the same initial state
each time, and the state is not modi�ed between the calls to curand(), the same sequence
is always generated.

__device__ void

curand_init (

unsigned long long seed, unsigned long long sequence,

unsigned long long offset, curandState_t *state)

The curand_init() function sets up an initial state allocated by the caller using the given
seed, sequence number, and o�set within the sequence. Di�erent seeds are guaranteed to
produce di�erent starting states and di�erent sequences. The same seed always produces
the same state and the same sequence. The state set up will be the state after
267 · sequence+ offset calls to curand() from the seed state.

Sequences generated with di�erent seeds usually do not have statistically correlated values,
but some choices of seeds may give statistically correlated sequences. Sequences generated
with the same seed and di�erent sequence numbers will not have statistically correlated
values.

For the highest quality parallel pseudorandom number generation, each experiment should
be assigned a unique seed. Within an experiment, each thread of computation should be
assigned a unique sequence number. If an experiment spans multiple kernel launches, it is
recommended that threads between kernel launches be given the same seed, and sequence
numbers be assigned in a monotonically increasing way. If the same con�guration of
threads is launched, random state can be preserved in global memory between launches to
avoid state setup time.

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 13

Bit Generation with the MTGP32 generator

The MTGP32 generator is an adaptation of code developed at Hiroshima University
(see [1]). In this algorithm, samples are generated for multiple sequences, each sequence
based on a set of computed parameters. CURAND uses the 200 parameter sets that have
been pre-generated for the 32-bit generator with period 211213. It would be possible to
generate other parameter sets, as described in [1], and use those instead. There is one state
structure for each parameter set (sequence), and the algorithm allows thread-safe
generation and state update for up to 256 concurrent threads (within a single block) for
each of the 200 sequences.

Note that two di�erent blocks can not operate on the same state safely. Also note that,
within a block, at most 256 threads may operate on a given state.

For the MTGP32 generator, two host functions are provided to help set up parameters for
the di�erent sequences in device memory, and to set up the initial state.

__host__ curandStatus_t

curandMakeMTGP32Constants(mtgp32_params_fast_t params[], mtgp32_kernel_params_t * p)

This function re-organizes the paramter set data from the pre-generated format
(mtgp32_params_fast_t) into the format used by the kernel functions
(mtgp32_kernel_params_t), and copies them to device memory.

__host__ curandStatus_t

curandMakeMTGP32KernelState(curandStateMtgp32_t *s,

mtgp32_params_fast_t params[],

mtgp32_kernel_params_t *k,

int n,

unsigned long long seed)

This function initializes n states, based on the speci�ed parameter set and seed, and copies
them to device memory indicated by s. Note that if you are using the pre-generated
states, the maximum value of n is 200.

The CURAND MTGP32 generator provides two kernel functions to generate random bits.

__device__ unsigned int

curand (curandStateMtgp32_t *state)

This function computes a thread index, and for that index generates a result and updates
state. The thread index t is computed as:

t = (blockDim.z * blockDim.y * threadIdx.z) + (blockDim.x * threadIdx.y) +

threadIdx.x

This function may be called repeatedly from a single kernel launch, with the following
constraints:

It may only be called safely from a block that has 256 or fewer threads.

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 14

A given state may not be used by more than one block.

A given block may generate randoms using multiple states.

__device__ unsigned int

curand_mtgp32_specific(curandStateMtgp32_t *state, unsigned char index, unsigned char n)

This function generates a result and updates state for the position speci�ed by a
thread-speci�c index, and advances the o�set in the state by n positions.
curand_mtgp32_specific may be called multiple times within a kernel launch, with the
following constraints:

At most 256 threads may call this function for a given state.

Within a block, for a given state, if n threads are calling the function, the indices must run
from 0...n-1. The indices do not have to match the thread numbers, and may be
distributed among the threads as required by the calling program.

A given state may not be used by more than one block.

A given block may generate randoms using multiple states.

Figure 1 is an illustration of how blocks and threads in MTGP32 operate on the generator
states. Each row represents a circular state array of 32-bit integers s(n). Threads
operating on the array are identi�ed as T(m). The speci�c case shown matches the internal
implementation of the host API, which launches 64 blocks of 256 threads. Each block
operates on a di�erent sequence, determined by a unique set of paramters, P(n). One
complete state of an MTGP32 sequence is de�ned by 351 32-bit integers. Each thread T(m)

operates on one of these integers, s(n+m) combining it with s(n+m+1) and a pickup element
s(n+m+p), where p <= 95. It stores the new state at position s(n+m+351) in the state
array. After thread synchronization, the base index n is advanced by the number of threads
that have updated the state. To avoid being overwritten, the array itself must be at least
256 + 351 integers in length. In fact it is sized at 1024 integers for e�ciency of indexing.

The limitation on the number of threads in a block, which can operate on a given state
array, arises from the need to ensure that state s(n+351) has been updated before it is
needed as a pickup state. If there were a thread T(256), it could use s(n+256+95) i.e.
s(n+351) before thread zero has updated s(n+351). If an application requires that more
than 256 threads in a block invoke an MTGP32 generator function, it must use multiple
MTGP32 states, either by using multiple parameter sets, or by using multiple generators
with di�erent seeds. Also note that the generator functions synchronize threads at the end
of each call, so it is most e�cient for 256 threads in a block to invoke the generator.

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 15

s(n) s(n+351)s(n+2)s(n+1) s(n+352)

T(0) T(1)

s(n+p)

s(n) s(n+351)s(n+2)s(n+1) s(n+352)

T(0) T(1)

s(n+p) . . .

Block(63) using P(63)

Block(2) using P(2)

Block(1) using P(1)

Block(0) using P(0)

. . .

. . .

. . .

Figure 1: MTGP32 Block and Thread Operation

Distributions

__device__ float

curand_uniform (curandState_t *state)

This function returns a sequence of pseudorandom �oats uniformly distributed between 0.0
and 1.0. It may return from 0.0 to 1.0, where 1.0 is included and 0.0 is excluded.
Distribution functions may use any number of unsigned integer values from a basic
generator. The number of values consumed is not guaranteed to be �xed.

__device__ float

curand_normal (curandState_t *state)

This function returns a single normally distributed �oat with mean 0.0 and standard
deviation 1.0. This result can be scaled and shifted to produce normally distributed values
with any mean and standard deviation.

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 16

__device__ float

curand_log_normal (curandState_t *state, float mean, float stddev)

This function returns a single log-normally distributed �oat based on a normal distribution
with the given mean and standard deviation.

__device__ unsigned int

curand_poisson (curandState_t *state, double lambda)

This function returns a single Poisson-distributed unsigned int based on a Poisson
distribution with the given lambda. The algorithm used to derive a Poisson result from a
uniformly distributed result varies depending on the value of lambda and the type of
generator. Some algorithms draw more than one sample for a single output. Also note that
this distribuition requires pre-processing on the host. See the description of
curandCreatePoissonDistribution() below.

__device__ double

curand_uniform_double (curandState_t *state)

__device__ double

curand_normal_double (curandState_t *state)

__device__ double

curand_log_normal_double (curandState_t *state, double mean, double stddev)

The three functions above are the double precision versions of curand_uniform(),
curand_normal(), and curand_log_normal().

For pseudorandom generators, the double precision functions use multiple calls to
curand() to generate 53 random bits.

__device__ float2

curand_normal2 (curandState_t *state)

__device__ float2

curand_log_normal2 (curandState_t *state)

__device__ double2

curand_normal2_double (curandState_t *state)

__device__ double2

curand_log_normal2_double (curandState_t *state)

The above functions generate two normally or log normally distributed pseudorandom
results with each call. Because the underlying implementation uses the Box-Muller
transform, this is generally more e�cient than generating a single result with each call.

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 17

Quasirandom Sequences

Although the default generator type is pseudorandom numbers from XORWOW, Sobol'
sequences based on Sobol' 32-bit integers can be generated using the following functions:

__device__ void

curand_init (

unsigned int *direction_vectors,

unsigned int offset,

curandStateSobol32_t *state)

__device__ void

curand_init (

unsigned int *direction_vectors,

unsigned int scramble_c,

unsigned int offset,

curandStateScrambledSobol32_t *state)

__device__ unsigned int

curand (curandStateSobol32_t *state)

__device__ float

curand_uniform (curandStateSobol32_t *state)

__device__ float

curand_normal (curandStateSobol32_t *state)

__device__ float

curand_log_normal (

curandStateSobol32_t *state,

float mean,

float stddev)

__device__ unsigned int

curand_poisson (curandStateSobol32_t *state, double lambda)

__device__ double

curand_uniform_double (curandStateSobol32_t *state)

__device__ double

curand_normal_double (curandStateSobol32_t *state)

__device__ double

curand_log_normal_double (

curandStateSobol32_t *state,

double mean,

double stddev)

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 18

The curand_init() function initializes the quasirandom number generator state. There is
no seed parameter, only direction vectors and o�set. For scrambled Sobol' generators,
there is an additional parameter scramble_c, which is the initial value of the scrambled
sequence. For the curandStateSobol32_t type and the curandStateScrambledSobol32_t
type the direction vectors are an array of 32 unsigned integer values. For the
curandStateSobol64_t type and the curandStateScrambledSobol64_t type the direction
vectors are an array of 64 unsigned long long values. O�sets and initial constants for the
scrambled sequence are of type unsigned int for 32-bit Sobol' generators. These parameters
are of type unsigned long long for 64-bit Soblol' generators. For the
curandStateSobol32_t type and the curandStateScrambledSobol32_t type the sequence
is exactly 232 elements long where each element is 32 bits. For the curandStateSobol64_t
type and the curandStateScrambledSobol64_t type the sequence is exactly 264 elements
long where each element is 64 bits. Each call to curand() returns the next quasirandom
element. Calls to curand_uniform() return quasirandom �oats or doubles from 0.0 to 1.0,
where 1.0 is included and 0.0 is excluded. Similarly, calls to curand_normal() return
normally distributed �oats or doubles with mean 0.0 and standard deviation 1.0. Calls to
curand_log_normal() return log-normally distributed �oats or doubles, derived from the
normal distribution with the speci�ed mean and standard deviation. All of the generation
functions may be called with any type of Sobol' generator.

As an example, generating quasirandom coordinates that �ll a unit cube requires keeping
track of three quasirandom generators. All three would start at offset = 0 and would
have dimensions 0, 1, and 2, respectively. A single call to curand_uniform() for each
generator state would generate the x, y, and z coordinates. Tables of direction vectors are
accessible on the host through the curandGetDirectionVectors32() and
curandGetDirectionVectors64() functions. The direction vectors needed should be
copied into device memory before use.

The normal distribution functions for quasirandom generation use the inverse cumulative
density function to preserve the dimensionality of the quasirandom sequence. Therefore
there are no functions that generate more than one result at a time as there are with the
pseudorandom generators.

The double precision Sobol32 functions return results in double precision that use 32 bits
of internal precision from the underlying generator.

The double precision Sobol64 functions return results in double precision that use 53 bits
of internal precision from the underlying generator. These bits are taken from the high
order 53 bits of the 64 bit samples.

Skip-Ahead

There are several functions to skip ahead from a generator state.

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 19

__device__ void

skipahead (unsigned long long n, curandState_t *state)

__device__ void

skipahead (unsigned int n, curandStateSobol32_t *state)

Using this function is equivalent to calling curand() n times without using the return
value, but it is much faster.

__device__ void

skipahead_sequence (unsigned long long n, curandState_t *state)

This function is the equivalent of calling curand() n · 267 times without using the return
value and is much faster.

Device API for discrete distributions

Discrete distributions, such as the Poisson distribution, require additional API's that
perform preprocessing on HOST side to generate a histogram for the speci�c distribution.
In the case of the Poisson distribution this historgam is di�erent for di�erent values of
lambda. Best performance for these distributions will be seen on GPUs with at least 48KB
of L1 cache.

curandStatus_t

curandCreatePoissonDistribution(

double lambda,

curandDiscreteDistribution_t *discrete_distribution)

The curandCreatePoissonDistribution() function is used to create a histogram for the
Poisson distribution with the given lambda.

__device__ unsigned int

curand_discrete (

curandState_t *state,

curandDiscreteDistribution_t discrete_distribution)

This function returns a single discrete distributed unsigned int based on a distribution for
the given discrete distribution histogram.

curandStatus_t

curandDestroyDistribution(

curandDiscreteDistribution_t discrete_distribution)

The curandDestroyDistribution() function is used to clean up structures related to the
histogram.

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 20

Performance Notes

Calls to curand_init() are slower than calls to curand() or curand_uniform(). Large
o�sets to curand_init() take more time than smaller o�sets. It is much faster to save and
restore random generator state than to recalculate the starting state repeatedly.

As shown below, generator state can be stored in global memory between kernel launches,
used in local memory for fast generation, and then stored back into global memory.

__global__ void example(curandState *global_state)

{

curandState local_state;

local_state = global_state[threadIdx.x];

for(int i = 0; i < 10000; i++) {

unsigned int x = curand (& local_state);

...

}

global_state[threadIdx.x] = local_state;

}

Initialization of the random generator state generally requires more registers and local
memory than random number generation. It may be bene�cial to separate calls to
curand_init() and curand() into separate kernels for maximum performance.

State setup can be an expensive operation. One way to speed up the setup is to use
di�erent seeds for each thread and a constant sequence number of 0. This can be especially
helpful if many generators need to be created. While faster to set up, this method provides
less guarantees about the mathematical properties of the generated sequences. If there
happens to be a bad interaction between the hash function that initializes the generator
state from the seed and the periodicity of the generators, there might be threads with
highly correlated outputs for some seed values. We do not know of any problem values; if
they do exist they are likely to be rare.

Device API Example

This example uses the CURAND device API to generate pseudorandom numbers using
either the XORWOW or MRG32k3a generators. For integers, it calculates the proportion
that have the low bit set. For uniformly distributed real numbers, it calculates the
proportion that are greater than 0.5. For normally distributed real numbers, it calculates
the proportion that are within one standard deviation of the mean.

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 21

/*

* This program uses the device CURAND API to calculate what

* proportion of pseudo -random ints have low bit set.

* It then generates uniform results to calculate how many

* are greater than .5.

* It then generates normal results to calculate how many

* are within one standard deviation of the mean.

*/

#include <stdio.h>

#include <stdlib.h>

#include <cuda.h>

#include <curand_kernel.h>

#define CUDA_CALL(x) do { if((x) != cudaSuccess) { \

printf ("Error at %s:%d\n",__FILE__ ,__LINE__); \

return EXIT_FAILURE ;}} while (0)

__global__ void setup_kernel(curandState *state)

{

int id = threadIdx.x + blockIdx.x * 64;

/* Each thread gets same seed , a different sequence

number , no offset */

curand_init (1234, id, 0, &state[id]);

}

__global__ void setup_kernel(curandStateMRG32k3a *state)

{

int id = threadIdx.x + blockIdx.x * 64;

/* Each thread gets same seed , a different sequence

number , no offset */

curand_init (0, id, 0, &state[id]);

}

__global__ void generate_kernel(curandState *state ,

unsigned int *result)

{

int id = threadIdx.x + blockIdx.x * 64;

int count = 0;

unsigned int x;

/* Copy state to local memory for efficiency */

curandState localState = state[id];

/* Generate pseudo -random unsigned ints */

for(int n = 0; n < 10000; n++) {

x = curand (& localState);

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 22

/* Check if low bit set */

if(x & 1) {

count ++;

}

}

/* Copy state back to global memory */

state[id] = localState;

/* Store results */

result[id] += count;

}

__global__ void generate_uniform_kernel(curandState *state ,

unsigned int *result)

{

int id = threadIdx.x + blockIdx.x * 64;

unsigned int count = 0;

float x;

/* Copy state to local memory for efficiency */

curandState localState = state[id];

/* Generate pseudo -random uniforms */

for(int n = 0; n < 10000; n++) {

x = curand_uniform (& localState);

/* Check if > .5 */

if(x > .5) {

count ++;

}

}

/* Copy state back to global memory */

state[id] = localState;

/* Store results */

result[id] += count;

}

__global__ void generate_normal_kernel(curandState *state ,

unsigned int *result)

{

int id = threadIdx.x + blockIdx.x * 64;

unsigned int count = 0;

float2 x;

/* Copy state to local memory for efficiency */

curandState localState = state[id];

/* Generate pseudo -random normals */

for(int n = 0; n < 5000; n++) {

x = curand_normal2 (& localState);

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 23

/* Check if within one standard deviaton */

if((x.x > -1.0) && (x.x < 1.0)) {

count ++;

}

if((x.y > -1.0) && (x.y < 1.0)) {

count ++;

}

}

/* Copy state back to global memory */

state[id] = localState;

/* Store results */

result[id] += count;

}

__global__ void generate_kernel(curandStateMRG32k3a *state ,

unsigned int *result)

{

int id = threadIdx.x + blockIdx.x * 64;

unsigned int count = 0;

unsigned int x;

/* Copy state to local memory for efficiency */

curandStateMRG32k3a localState = state[id];

/* Generate pseudo -random unsigned ints */

for(int n = 0; n < 10000; n++) {

x = curand (& localState);

/* Check if low bit set */

if(x & 1) {

count ++;

}

}

/* Copy state back to global memory */

state[id] = localState;

/* Store results */

result[id] += count;

}

__global__ void generate_uniform_kernel(curandStateMRG32k3a *←↩
state ,

unsigned int *result)

{

int id = threadIdx.x + blockIdx.x * 64;

unsigned int count = 0;

double x;

/* Copy state to local memory for efficiency */

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 24

curandStateMRG32k3a localState = state[id];

/* Generate pseudo -random uniforms */

for(int n = 0; n < 10000; n++) {

x = curand_uniform_double (& localState);

/* Check if > .5 */

if(x > .5) {

count ++;

}

}

/* Copy state back to global memory */

state[id] = localState;

/* Store results */

result[id] += count;

}

__global__ void generate_normal_kernel(curandStateMRG32k3a *←↩
state ,

unsigned int *result)

{

int id = threadIdx.x + blockIdx.x * 64;

unsigned int count = 0;

double2 x;

/* Copy state to local memory for efficiency */

curandStateMRG32k3a localState = state[id];

/* Generate pseudo -random normals */

for(int n = 0; n < 5000; n++) {

x = curand_normal2_double (& localState);

/* Check if within one standard deviaton */

if((x.x > -1.0) && (x.x < 1.0)) {

count ++;

}

if((x.y > -1.0) && (x.y < 1.0)) {

count ++;

}

}

/* Copy state back to global memory */

state[id] = localState;

/* Store results */

result[id] += count;

}

int main(int argc , char *argv [])

{

int i;

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 25

unsigned int total;

curandState *devStates;

curandStateMRG32k3a *devMRGStates;

unsigned int *devResults , *hostResults;

bool useMRG = 0;

bool doubleSupported = 0;

int device;

struct cudaDeviceProp properties;

/* check for double precision support */

CUDA_CALL(cudaGetDevice (& device));

CUDA_CALL(cudaGetDeviceProperties (&properties ,device));

if (properties.major >= 2 || (properties.major == 1 && ←↩
properties.minor >= 3)) {

doubleSupported = 1;

}

/* Check for MRG32k3a option (default is XORWOW) */

if ((argc == 2) && (strcmp(argv[1],"-m") == 0)) {

useMRG = 1;

if (! doubleSupported){

printf (" MRG32k3a requires double precision\n");

printf ("^^^^ test WAIVED due to lack of double ←↩
precision\n");

return EXIT_SUCCESS;

}

}

/* Allocate space for results on host */

hostResults = (unsigned int *) calloc (64 * 64, sizeof(int))←↩
;

/* Allocate space for results on device */

CUDA_CALL(cudaMalloc ((void **)&devResults , 64 * 64 *

sizeof(unsigned int)));

/* Set results to 0 */

CUDA_CALL(cudaMemset(devResults , 0, 64 * 64 *

sizeof(unsigned int)));

/* Allocate space for prng states on device */

if (! useMRG) {

CUDA_CALL(cudaMalloc ((void **)&devStates , 64 * 64 *

sizeof(curandState)));

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 26

} else {

CUDA_CALL(cudaMalloc ((void **)&devMRGStates , 64 * 64 *

sizeof(curandStateMRG32k3a)));

}

/* Setup prng states */

if (! useMRG) {

setup_kernel <<<64, 64>>>(devStates);

} else {

setup_kernel <<<64, 64>>>(devMRGStates);

}

/* Generate and use pseudo -random */

for(i = 0; i < 50; i++) {

if (! useMRG) {

generate_kernel <<<64, 64>>>(devStates , devResults)←↩
;

} else {

generate_kernel <<<64, 64>>>(devMRGStates , ←↩
devResults);

}

}

/* Copy device memory to host */

CUDA_CALL(cudaMemcpy(hostResults , devResults , 64 * 64 *

sizeof(unsigned int), cudaMemcpyDeviceToHost));

/* Show result */

total = 0;

for(i = 0; i < 64 * 64; i++) {

total += hostResults[i];

}

printf (" Fraction with low bit set was %10.13f\n",

(float)total / (64.0f * 64.0f * 10000.0f * 50.0f));

/* Set results to 0 */

CUDA_CALL(cudaMemset(devResults , 0, 64 * 64 *

sizeof(unsigned int)));

/* Generate and use uniform pseudo -random */

for(i = 0; i < 50; i++) {

if (! useMRG) {

generate_uniform_kernel <<<64, 64>>>(devStates , ←↩
devResults);

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 27

} else {

generate_uniform_kernel <<<64, 64>>>(devMRGStates , ←↩
devResults);

}

}

/* Copy device memory to host */

CUDA_CALL(cudaMemcpy(hostResults , devResults , 64 * 64 *

sizeof(unsigned int), cudaMemcpyDeviceToHost));

/* Show result */

total = 0;

for(i = 0; i < 64 * 64; i++) {

total += hostResults[i];

}

printf (" Fraction of uniforms > 0.5 was %10.13f\n",

(float)total / (64.0f * 64.0f * 10000.0f * 50.0f));

/* Set results to 0 */

CUDA_CALL(cudaMemset(devResults , 0, 64 * 64 *

sizeof(unsigned int)));

/* Generate and use uniform pseudo -random */

for(i = 0; i < 50; i++) {

if (! useMRG) {

generate_normal_kernel <<<64, 64>>>(devStates , ←↩
devResults);

} else {

generate_normal_kernel <<<64, 64>>>(devMRGStates , ←↩
devResults);

}

}

/* Copy device memory to host */

CUDA_CALL(cudaMemcpy(hostResults , devResults , 64 * 64 *

sizeof(unsigned int), cudaMemcpyDeviceToHost));

/* Show result */

total = 0;

for(i = 0; i < 64 * 64; i++) {

total += hostResults[i];

}

printf (" Fraction of normals within 1 standard deviation ←↩
was %10.13f\n",

(float)total / (64.0f * 64.0f * 10000.0f * 50.0f));

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 28

/* Cleanup */

if (! useMRG) {

CUDA_CALL(cudaFree(devStates));

} else {

CUDA_CALL(cudaFree(devMRGStates));

}

CUDA_CALL(cudaFree(devResults));

free(hostResults);

printf ("^^^^ kernel_example PASSED\n");

return EXIT_SUCCESS;

}

The following example uses the CURAND host MTGP setup API, and the CURAND
device API, to generate integers using the MTGP32 generator, and calculates the
proportion that have the low bit set.

/*

* This program uses the device CURAND API to calculate what

* proportion of pseudo -random ints have low bit set.

*/

#include <stdio.h>

#include <stdlib.h>

#include <cuda.h>

#include <curand_kernel.h>

/* include MTGP host helper functions */

#include <curand_mtgp32_host.h>

/* include MTGP pre -computed parameter sets */

#include <curand_mtgp32dc_p_11213.h>

#define CUDA_CALL(x) do { if((x) != cudaSuccess) { \

printf ("Error at %s:%d\n",__FILE__ ,__LINE__); \

return EXIT_FAILURE ;}} while (0)

#define CURAND_CALL(x) do { if((x) != CURAND_STATUS_SUCCESS) {←↩
\

printf ("Error at %s:%d\n",__FILE__ ,__LINE__); \

return EXIT_FAILURE ;}} while (0)

__global__ void generate_kernel(curandStateMtgp32 *state ,

int n,

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 29

int *result)

{

int id = threadIdx.x + blockIdx.x * 256;

int count = 0;

unsigned int x;

/* Generate pseudo -random unsigned ints */

for(int i = 0; i < n; i++) {

x = curand (&state[blockIdx.x]);

/* Check if low bit set */

if(x & 1) {

count ++;

}

}

/* Store results */

result[id] += count;

}

int main(int argc , char *argv [])

{

int i;

long long total;

curandStateMtgp32 *devMTGPStates;

mtgp32_kernel_params *devKernelParams;

int *devResults , *hostResults;

int sampleCount = 10000;

/* Allow over -ride of sample count */

if (argc == 2) {

sscanf(argv [1],"%d",& sampleCount);

}

/* Allocate space for results on host */

hostResults = (int *) calloc (64 * 256, sizeof(int));

/* Allocate space for results on device */

CUDA_CALL(cudaMalloc ((void **)&devResults , 64 * 256 *

sizeof(int)));

/* Set results to 0 */

CUDA_CALL(cudaMemset(devResults , 0, 64 * 256 *

sizeof(int)));

/* Allocate space for prng states on device */

CUDA_CALL(cudaMalloc ((void **)&devMTGPStates , 64 *

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 30

sizeof(curandStateMtgp32)));

/* Setup MTGP prng states */

/* Allocate space for MTGP kernel parameters */

CUDA_CALL(cudaMalloc ((void **)&devKernelParams , sizeof(←↩
mtgp32_kernel_params)));

/* Reformat from predefined parameter sets to kernel ←↩
format , */

/* and copy kernel parameters to device memory ←↩
*/

CURAND_CALL(curandMakeMTGP32Constants(←↩
mtgp32dc_params_fast_11213 , devKernelParams));

/* Initialize one state per thread block */

CURAND_CALL(curandMakeMTGP32KernelState(devMTGPStates ,

mtgp32dc_params_fast_11213 , devKernelParams , ←↩
64, 1234));

/* State setup is complete */

/* Generate and use pseudo -random */

for(i = 0; i < 10; i++) {

generate_kernel <<<64, 256>>>(devMTGPStates , ←↩
sampleCount , devResults);

}

/* Copy device memory to host */

CUDA_CALL(cudaMemcpy(hostResults , devResults , 64 * 256 *

sizeof(int), cudaMemcpyDeviceToHost));

/* Show result */

total = 0;

for(i = 0; i < 64 * 256; i++) {

total += hostResults[i];

}

printf (" Fraction with low bit set was %10.13g\n",

(double)total / (64.0f * 256.0f * sampleCount * 10.0f)←↩
);

/* Cleanup */

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 31

CUDA_CALL(cudaFree(devMTGPStates));

CUDA_CALL(cudaFree(devResults));

free(hostResults);

printf ("^^^^ kernel_mtgp_example PASSED\n");

return EXIT_SUCCESS;

}

Thrust and CURAND Example

The following example demonstrates mixing CURAND and Thrust. It is a minimally
modi�ed version of monte_carlo.cu, one of the standard Thrust examples. The example
estimates π by randomly picking points in the unit square and calculating the distance to
the origin to see if the points are in the quarter unit circle.

#include <thrust/iterator/counting_iterator.h>

#include <thrust/functional.h>

#include <thrust/transform_reduce.h>

#include <curand_kernel.h>

#include <iostream >

#include <iomanip >

// we could vary M & N to find the perf sweet spot

struct estimate_pi :

public thrust :: unary_function <unsigned int , float >

{

__device__

float operator ()(unsigned int thread_id)

{

float sum = 0;

unsigned int N = 10000; // samples per thread

unsigned int seed = thread_id;

curandState s;

// seed a random number generator

curand_init(seed , 0, 0, &s);

// take N samples in a quarter circle

for(unsigned int i = 0; i < N; ++i)

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 32

{

// draw a sample from the unit square

float x = curand_uniform (&s);

float y = curand_uniform (&s);

// measure distance from the origin

float dist = sqrtf(x*x + y*y);

// add 1.0f if (u0,u1) is inside the quarter circle

if(dist <= 1.0f)

sum += 1.0f;

}

// multiply by 4 to get the area of the whole circle

sum *= 4.0f;

// divide by N

return sum / N;

}

};

int main(void)

{

// use 30K independent seeds

int M = 30000;

float estimate = thrust :: transform_reduce(

thrust :: counting_iterator <int >(0),

thrust :: counting_iterator <int >(M),

estimate_pi (),

0.0f,

thrust ::plus <float >());

estimate /= M;

std::cout << std:: setprecision (3);

std::cout << "pi is approximately ";

std::cout << estimate << std::endl;

return 0;

}

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 33

Poisson API Example

This example shows the di�erences between the 3 API types for the Poisson distribution.
It is a simulation of queues in a store. The host API is the most robust for generating
large vectors of Poisson-distributed random numbers. (i.e. it has the best statistical
properties accross the full range of lambda values) The discrete Device API is almost as
robust as the HOST API and allows Poisson-distributed random numbers to be generated
inside a kernel. The simple Device API is the least robust but is more e�cient whem
generating Poisson-distributed random numbers for many di�erent lambdas.

/*

* This program uses CURAND library for Poisson distribution

* to simulate queues in store for 16 hours. It shows the

* difference of using 3 different APIs:

* - HOST API -arrival of customers is described by Poisson (4)

* - SIMPLE DEVICE API -arrival of customers is described by

* Poisson (4*(sin(x/100) +1)), where x is number of minutes

* from store opening time.

* - ROBUST DEVICE API -arrival of customers is described by:

* - Poisson (2) for first 3 hours.

* - Poisson (1) for second 3 hours.

* - Poisson (3) after 6 hours.

*/

#include <stdio.h>

#include <stdlib.h>

#include <cuda.h>

#include <curand_kernel.h>

#include <curand.h>

#define CUDA_CALL(x) do { if((x) != cudaSuccess) { \

printf ("Error at %s:%d\n",__FILE__ ,__LINE__); \

return EXIT_FAILURE ;}} while (0)

#define CURAND_CALL(x) do { if((x)!= CURAND_STATUS_SUCCESS) { \

printf ("Error at %s:%d\n",__FILE__ ,__LINE__);\

return EXIT_FAILURE ;}} while (0)

#define HOURS 16

#define OPENING_HOUR 7

#define CLOSING_HOUR (OPENING_HOUR + HOURS)

#define access_2D(type , ptr , row , column , pitch)\

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 34

((type)((char*)ptr + (row) * pitch) + column)

enum API_TYPE {

HOST_API = 0,

SIMPLE_DEVICE_API = 1,

ROBUST_DEVICE_API = 2,

};

/* global variables */

API_TYPE api;

int report_break;

int cashiers_load_h[HOURS];

__constant__ int cashiers_load[HOURS];

__global__ void setup_kernel(curandState *state)

{

int id = threadIdx.x + blockIdx.x * blockDim.x;

/* Each thread gets same seed , a different sequence

number , no offset */

curand_init (1234, id, 0, &state[id]);

}

__inline__ __device__

void update_queue(int id, int min , unsigned int new_customers ,

unsigned int &queue_length ,

unsigned int *queue_lengths , size_t pitch)

{

int balance;

balance = new_customers - 2 * cashiers_load [(min -1) /60];

if (balance + (int)queue_length <= 0){

queue_length = 0;

}else{

queue_length += balance;

}

/* Store results */

access_2D(unsigned int , queue_lengths , min -1, id, pitch)

= queue_length;

}

__global__ void simple_device_API_kernel(curandState *state ,

unsigned int *queue_lengths , size_t pitch)

{

int id = threadIdx.x + blockIdx.x * blockDim.x;

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 35

unsigned int new_customers;

unsigned int queue_length = 0;

/* Copy state to local memory for efficiency */

curandState localState = state[id];

/* Simulate queue in time */

for(int min = 1; min <= 60 * HOURS; min++) {

/* Draw number of new customers depending on API */

new_customers = curand_poisson (&localState ,

4*(sin((float)min /100.0) +1));

/* Update queue */

update_queue(id, min , new_customers , queue_length ,

queue_lengths , pitch);

}

/* Copy state back to global memory */

state[id] = localState;

}

__global__ void host_API_kernel(unsigned int *poisson_numbers ,

unsigned int *queue_lengths , size_t pitch)

{

int id = threadIdx.x + blockIdx.x * blockDim.x;

unsigned int new_customers;

unsigned int queue_length = 0;

/* Simulate queue in time */

for(int min = 1; min <= 60 * HOURS; min++) {

/* Get random number from global memory */

new_customers = poisson_numbers

[blockDim.x * gridDim.x * (min -1) + id];

/* Update queue */

update_queue(id, min , new_customers , queue_length ,

queue_lengths , pitch);

}

}

__global__ void robust_device_API_kernel(curandState *state ,

curandDiscreteDistribution_t poisson_1 ,

curandDiscreteDistribution_t poisson_2 ,

curandDiscreteDistribution_t poisson_3 ,

unsigned int *queue_lengths , size_t pitch)

{

int id = threadIdx.x + blockIdx.x * 64;

unsigned int new_customers;

unsigned int queue_length = 0;

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 36

/* Copy state to local memory for efficiency */

curandState localState = state[id];

/* Simulate queue in time */

/* first 3 hours */

for(int min = 1; min <= 60 * 3; min++) {

/* draw number of new customers depending on API */

new_customers =

curand_discrete (&localState , poisson_2);

/* Update queue */

update_queue(id, min , new_customers , queue_length ,

queue_lengths , pitch);

}

/* second 3 hours */

for(int min = 60 * 3 + 1; min <= 60 * 6; min++) {

/* draw number of new customers depending on API */

new_customers =

curand_discrete (&localState , poisson_1);

/* Update queue */

update_queue(id, min , new_customers , queue_length ,

queue_lengths , pitch);

}

/* after 6 hours */

for(int min = 60 * 6 + 1; min <= 60 * HOURS; min++) {

/* draw number of new customers depending on API */

new_customers =

curand_discrete (&localState , poisson_3);

/* Update queue */

update_queue(id, min , new_customers , queue_length ,

queue_lengths , pitch);

}

/* Copy state back to global memory */

state[id] = localState;

}

/* Set time intervals between reports */

void report_settings ()

{

do{

printf ("Set time intervals between queue reports ");

printf ("(in minutes > 0)\n");

if (scanf ("%d", &report_break) == 0) continue;

}while(report_break <= 0);

}

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 37

/* Set number of cashiers each hour */

void add_cachiers(int *cashiers_load)

{

int i, min , max , begin , end;

printf (" Cashier serves 2 customers per minute ...\n");

for (i = 0; i < HOURS; i++){

cashiers_load_h[i] = 0;

}

while (true){

printf (" Adding cashier ...\n");

min = OPENING_HOUR;

max = CLOSING_HOUR -1;

do{

printf ("Set hour that cahier comes (%d-%d)",

min , max);

printf (" [type 0 to finish adding cashiers]\n");

if (scanf ("%d", &begin) == 0) continue;

}while (begin > max || (begin < min && begin != 0));

if (begin == 0) break;

min = begin +1;

max = CLOSING_HOUR;

do{

printf ("Set hour that cahier leaves (%d-%d)",

min , max);

printf (" [type 0 to finish adding cashiers]\n");

if (scanf ("%d", &end) == 0) continue;

}while (end > max || (end < min && end != 0));

if (end == 0) break;

for (i = begin - OPENING_HOUR;

i < end - OPENING_HOUR; i++){

cashiers_load_h[i]++;

}

}

for (i = OPENING_HOUR; i < CLOSING_HOUR; i++){

printf ("\n%2d:00 - %2d:00 %d cashier",

i, i+1, cashiers_load_h[i-OPENING_HOUR]);

if (cashiers_load[i-OPENING_HOUR] != 1) printf ("s");

}

printf ("\n");

}

/* Set API type */

API_TYPE set_API_type ()

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 38

{

printf (" Choose API type:\n");

int choose;

do{

printf ("type 1 for HOST API\n");

printf ("type 2 for SIMPLE DEVICE API\n");

printf ("type 3 for ROBUST DEVICE API\n");

if (scanf ("%d", &choose) == 0) continue;

}while(choose < 1 || choose > 3);

switch(choose){

case 1: return HOST_API;

case 2: return SIMPLE_DEVICE_API;

case 3: return ROBUST_DEVICE_API;

default:

fprintf(stderr , "wrong API\n");

return HOST_API;

}

}

void settings ()

{

add_cachiers(cashiers_load);

cudaMemcpyToSymbol (" cashiers_load", cashiers_load_h ,

HOURS * sizeof(int), 0, cudaMemcpyHostToDevice);

report_settings ();

api = set_API_type ();

}

void print_statistics(unsigned int *hostResults , size_t pitch)

{

int min , i, hour , minute;

unsigned int sum;

for(min = report_break; min <= 60 * HOURS;

min += report_break) {

sum = 0;

for(i = 0; i < 64 * 64; i++) {

sum += access_2D(unsigned int , hostResults ,

min -1, i, pitch);

}

hour = OPENING_HOUR + min /60;

minute = min %60;

printf ("%2d:%02d # of waiting customers = %10.4g |",

hour , minute , (float)sum /(64.0 * 64.0));

printf (" # of cashiers = %d | ",

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 39

cashiers_load_h [(min -1) /60]);

printf ("# of new customers/min ~= ");

switch (api){

case HOST_API:

printf ("%2.2f\n", 4.0);

break;

case SIMPLE_DEVICE_API:

printf ("%2.2f\n",

4*(sin((float)min /100.0) +1));

break;

case ROBUST_DEVICE_API:

if (min <= 3 * 60){

printf ("%2.2f\n", 2.0);

}else{

if (min <= 6 * 60){

printf ("%2.2f\n", 1.0);

}else{

printf ("%2.2f\n", 3.0);

}

}

break;

default:

fprintf(stderr , "Wrong API\n");

}

}

}

int main(int argc , char *argv [])

{

int n;

size_t pitch;

curandState *devStates;

unsigned int *devResults , *hostResults;

unsigned int *poisson_numbers_d;

curandDiscreteDistribution_t poisson_1 , poisson_2;

curandDiscreteDistribution_t poisson_3;

curandGenerator_t gen;

/* Setting cashiers , report and API */

settings ();

/* Allocate space for results on device */

CUDA_CALL(cudaMallocPitch ((void **)&devResults , &pitch ,

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 40

64 * 64 * sizeof(unsigned int), 60 * HOURS));

/* Allocate space for results on host */

hostResults = (unsigned int *) calloc(pitch * 60 * HOURS ,

sizeof(unsigned int));

/* Allocate space for prng states on device */

CUDA_CALL(cudaMalloc ((void **)&devStates , 64 * 64 *

sizeof(curandState)));

/* Setup prng states */

if (api != HOST_API){

setup_kernel <<<64, 64>>>(devStates);

}

/* Simulate queue */

switch (api){

case HOST_API:

/* Create pseudo -random number generator */

CURAND_CALL(curandCreateGenerator (&gen ,

CURAND_RNG_PSEUDO_DEFAULT));

/* Set seed */

CURAND_CALL(curandSetPseudoRandomGeneratorSeed(

gen , 1234 ULL));

/* compute n */

n = 64 * 64 * HOURS * 60;

/* Allocate n unsigned ints on device */

CUDA_CALL(cudaMalloc ((void **)&poisson_numbers_d ,

n * sizeof(unsigned int)));

/* Generate n unsigned ints on device */

CURAND_CALL(curandGeneratePoisson(gen ,

poisson_numbers_d , n, 4.0));

host_API_kernel <<<64, 64>>>(poisson_numbers_d ,

devResults , pitch);

/* Cleanup */

CURAND_CALL(curandDestroyGenerator(gen));

break;

case SIMPLE_DEVICE_API:

simple_device_API_kernel <<<64, 64>>>(devStates ,

devResults , pitch);

break;

case ROBUST_DEVICE_API:

/* Create histograms for Poisson (1) */

CURAND_CALL(curandCreatePoissonDistribution (1.0,

&poisson_1));

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 41

/* Create histograms for Poisson (2) */

CURAND_CALL(curandCreatePoissonDistribution (2.0,

&poisson_2));

/* Create histograms for Poisson (3) */

CURAND_CALL(curandCreatePoissonDistribution (3.0,

&poisson_3));

robust_device_API_kernel <<<64, 64>>>(devStates ,

poisson_1 , poisson_2 , poisson_3 ,

devResults , pitch);

/* Cleanup */

CURAND_CALL(curandDestroyDistribution(poisson_1));

CURAND_CALL(curandDestroyDistribution(poisson_2));

CURAND_CALL(curandDestroyDistribution(poisson_3));

break;

default:

fprintf(stderr , "Wrong API\n");

}

/* Copy device memory to host */

CUDA_CALL(cudaMemcpy2D(hostResults , pitch , devResults ,

pitch , 64 * 64 * sizeof(unsigned int),

60 * HOURS , cudaMemcpyDeviceToHost));

/* Show result */

print_statistics(hostResults , pitch);

/* Cleanup */

CUDA_CALL(cudaFree(devStates));

CUDA_CALL(cudaFree(devResults));

free(hostResults);

return EXIT_SUCCESS;

}

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 42

Testing

The XORWOW generator was proposed by Marsaglia [2] and has been tested using the
TestU01 "Crush" framework of tests [3]. The full suite of NIST pseudorandomness tests [4]
has also been run, though the focus has been on TestU01. The most rigorous the the
TestU01 batteries is "BigCrush", which executes 106 statistical tests over the course of
approximately 5 hours on a high-end CPU/GPU. The XORWOW generator passes all of
the tests on most runs, but does produce occasional suspect statistics. Below is an
example of the summary output from a run that did not pass all tests, with the detail of
the speci�c failure.

========= Summary results of BigCrush =========

Version: TestU01 1.2.3

Generator: curandXORWOW

Number of statistics: 160

Total CPU time: 05:17:59.63

The following tests gave p-values outside [0.001, 0.9990]:

(eps means a value < 1.0e-300):

(eps1 means a value < 1.0e-15):

Test p-value

--

81 LinearComp, r = 29 1 - 7.1e-11

--

All other tests were passed

Detail from test 81:

scomp_LinearComp test:

N = 1, n = 400020, r = 29, s = 1

Number of degrees of freedom : 12

Chi2 statistic for size of jumps : 7.11

p-value of test : 0.85

Normal statistic for number of jumps : -6.41

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 43

p-value of test : 1 - 7.1e-11 *****

To put this into perspective, there is a table in [3] that gives the results of running various
levels of the "Crush" tests on a broad selection of generators. Only a small number of
generators pass all of the BigCrush tests. For example the widely-respected Mersenne
twister [5] consistently fails two of the linear complexity tests.

The MRG32k3a generator was proposed in [6], with a speci�c implementation suggested
in [7]. This generator passes all "BigCrush" tests frequently, with occasional marginal
results similar to those shown below.

========= Summary results of BigCrush =========

Version: TestU01 1.2.3

Generator: curandMRG32k3a

Number of statistics: 160

Total CPU time: 07:14:55.41

The following tests gave p-values outside [0.001, 0.9990]:

(eps means a value < 1.0e-300):

(eps1 means a value < 1.0e-15):

Test p-value

--

59 WeightDistrib, r = 0 5.2e-4

--

All other tests were passed

Detail from test 59:

svaria_WeightDistrib test:

N = 1, n = 20000000, r = 0, k = 256, Alpha = 0, Beta = 0.25

Number of degrees of freedom : 67

Chi-square statistic : 111.55

p-value of test : 5.2e-4 *****

CPU time used : 00:02:56.25

The MTGP32 generator is an adaptation of the work outlined in [1]. The MTGP32
generator exhibits some marginal results on "BigCrush". Below is an example.

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 44

========= Summary results of BigCrush =========

Version: TestU01 1.2.3

Generator: curandMtgp32Int

Number of statistics: 160

Total CPU time: 05:45:29.49

The following tests gave p-values outside [0.001, 0.9990]:

(eps means a value < 1.0e-300):

(eps1 means a value < 1.0e-15):

Test p-value

--

12 CollisionOver, t = 21 0.9993

--

All other tests were passed

Detail from test 12:

smultin_MultinomialOver test:

N = 30, n = 20000000, r = 28, d = 4, t = 21,

Sparse = TRUE

GenerCell = smultin_GenerCellSerial

Number of cells = d^t = 4398046511104

Expected number per cell = 1 / 219902.33

EColl = n^2 / (2k) = 45.47473509

Hashing = TRUE

Collision test

CollisionOver: density = n / k = 1 / 219902.33

Expected number of collisions = Mu = 45.47

Results of CollisionOver test:

POISSON approximation :

Expected number of collisions = N*Mu : 1364.24

Observed number of collisions : 1248

p-value of test : 0.9993 *****

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 45

Total number of cells containing j balls

j = 0 : 131940795334368

j = 1 : 599997504

j = 2 : 1248

j = 3 : 0

j = 4 : 0

j = 5 : 0

CPU time used : 00:04:32.52

Sobol' sequences are generated using the direction vectors recommended by Joe and
Kuo [8]. The scrambled Sobol' method is described in [9] and [10].

Testing of the normal distribution, with the each of the generators, has been done using
the Pearson chi-squared test [11], [12], the Jarque-Bera test [13], the Kolmogorov-Smirnov
test [14], [15], and the Anderson-Darling test [16].

Tests are run over the range +/- 6 standard deviations. Three Pearson tests are run, with
cell counts 1000, 100, and 25. The test output has columns labeled PK for Pearson with
1000 cells, PC for Pearson with 100 cells, P25 for Pearson with 25 cells, JB for
Jarque-Bera, KS for Kolmogorov-Smirnov, and AD for Anderson-Darling. The rejection
criterion for each test is printed below the label.

The following tables are representative of the test output for statistical testing of the
normal distribution for XORWOW, MRG32k3a, MTGP32, Sobol' 32-bit, and scrambled
Sobol' 32-bit generators. The rows of each table represent the statistical results computed
over successive sequences of 10000 samples.

XORWOW Generator:

PK PC P25 JB KS AD

<1058 <118 <33 <4.6 <0.0122 <.632

--

684.48120 58.97784 20.44693 2.84152 0.00540 0.32829

686.37925 54.84938 7.79583 0.55109 0.00900 0.25832

673.21437 69.15825 15.46540 0.30335 0.00872 0.26772

568.26999 49.99519 8.85046 0.66624 0.00870 0.22939

639.10690 84.23040 10.19753 0.19844 0.00542 0.27939

MRg32k3a Generator:

PK PC P25 JB KS AD

<1058 <118 <33 <4.6 <0.0122 <.632

--

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 46

764.38500 74.48157 19.32716 1.50118 0.01103 0.60351

795.31006 74.15086 11.78414 1.15159 0.00821 0.35343

741.85426 91.88692 20.67103 2.34232 0.00900 0.61787

644.62093 70.68369 17.18277 0.32870 0.01243* 0.34630

806.02693 93.50691 23.10548 2.67340 0.00978 0.51466

MTGP32 Generator:

PK PC P25 JB KS AD

<1058 <118 <33 <4.6 <0.0122 <.632

--

924.62604 110.19868 23.45811 0.86919 0.00519 0.33411

708.76047 79.42919 20.67913 1.13427 0.01142 0.54632

674.17713 65.80415 13.09834 1.07799 0.01040 0.23860

733.35915 57.13829 17.66337 3.17017 0.01188 0.30864

620.17297 50.39043 14.75682 0.57970 0.00845 0.28916

Sobol' 32-bit generator:

PK PC P25 JB KS AD

<1058 <118 <33 <4.6 <0.0122 <.632

--

157.04578 6.47398 1.45802 0.19007 0.00024 0.00188

243.82767 11.98164 1.34982 0.00668 0.00030 0.00086

229.87234 10.40206 2.73912 0.04165 0.00036 0.00137

290.29451 17.09013 3.25717 0.02583 0.00042 0.00172

327.32072 19.22832 5.09510 0.00335 0.00036 0.00127

Scrambled Sobol' 32-bit generator:

PK PC P25 JB KS AD

<1058 <118 <33 <4.6 <0.0122 <.632

--

255.80606 10.93180 1.33766 0.01226 0.00036 0.00112

258.84244 8.45589 1.56766 0.04164 0.00036 0.00170

585.34346 49.33610 5.32037 0.04069 0.00043 0.00208

337.50312 27.64720 3.38925 0.01953 0.00041 0.00211

729.56687 56.89682 32.89772 0.00911 0.00040 0.00204

Even though the log-normal distribution is closely derived from the normal distribution, it
has also been tested using the Pearson chi-squared test and the Kolmogorov-Smirnov test.

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 47

The following tables are representative of the test output for statistical testing of the log
normal distribution for XORWOW, MRG32k3a, MTGP32, Sobol' 32-bit, and scrambled
Sobol' 32-bit generators.

XORWOW generator:

PK PC P25 KS

<1058 <118 <33 <0.0122

--

1019.57936 105.63667 13.15820 0.00540

991.93663 91.95369 20.46549 0.00900

983.09678 115.34978 20.50434 0.00872

966.45604 113.30013 24.54060 0.00870

996.35262 111.50026 21.01332 0.00542

MRG32k3a generator:

PK PC P25 KS

<1058 <118 <33 <0.0122

--

1000.00359 90.12428 22.82709 0.00826

942.17843 81.16259 16.13670 0.00739

1005.62148 102.29924 23.62705 0.00697

1053.68391 98.75565 28.65422 0.01107

998.38936 103.43649 19.26568 0.00803

MTGP32 generator:

PK PC P25 KS

<1058 <118 <33 <0.0122

--

1010.18903 94.51850 17.98126 0.00771

993.78319 76.86543 12.48859 0.00831

1010.22068 63.76027 11.65743 0.00677

963.33103 89.44369 17.96636 0.01200

927.15616 75.85515 13.64221 0.00566

Sobol' 32-bit generator:

PK PC P25 KS

<1058 <118 <33 <0.0122

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 48

--

289.42589 5.03327 0.48858 0.00024

386.79860 6.57783 0.76902 0.00030

355.04631 8.54472 1.12228 0.00036

434.19211 9.54021 2.07006 0.00042

343.57507 10.71571 0.42503 0.00036

Scrambled Sobol- 32-bit generator:

PK PC P25 KS

<1058 <118 <33 <0.0122

--

354.55037 8.20727 0.24592 0.00036

506.45280 12.93848 0.73323 0.00036

451.96949 18.18903 0.69465 0.00043

593.25666 16.55782 0.54769 0.00041

423.05263 12.06600 0.53472 0.00040

Poisson testing

Testing of the Poisson-distribution, with each of the generators, has been done using the
Pearson chi-squared test [11].

Tests are run over a broad range of lambda values, and the statistics are compared to
those for Poisson distribution results using MKL.

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 49

Bibliography

[1] Mutsuo Saito. A variant of mersenne twister suitable for graphic processors.
arXiv:1005.4973v2 [cs.MS], Jun 2010.

[2] George Marsaglia. Xorshift RNGs. Journal of Statistical Software, 8(14), 2003.
Available at http://www.jstatsoft.org/v08/i14/paper.

[3] Pierre L'Ecuyer and Richard Simard. TestU01: A C library for empirical testing of
random number generators. ACM Transactions on Mathematical Software, 33(4),
August 2007. Available at
http://www.iro.umontreal.ca/~lecuyer/myftp/papers/testu01.pdf.

[4] Andrew Rukhin, Juan Soto, James Nechvatal, Miles Smid, Elaine Barker, Stefan
Leigh, Mark Levenson, Mark Vangel, David Banks, Alan Heckert, James Dray, and
San Vo. A statistical test suite for the validation of random number generators and
pseudorandom number generators for cryptographic applications. Special Publication
800-22 Revision 1a, National Institute of Standards and Technology, April 2010.
Available at http://csrc.nist.gov/groups/ST/toolkit/rng/index.html.

[5] M. Matsumoto and T. Nishimura. Mersenne twister: A 623-dimensionally
equidistributed uniform pseudorandom number generator. ACM Transactions on
Modeling and Computer Simulation, 8(1):3�30, January 1998.

[6] Pierre L'Ecuyer. Good parameters and implementations for combined multiple
recursive random number generators. Operations Research, 47(1), Jan-Feb 1999.

[7] Pierre L'Ecuyer, Richard Simard, E. Jack Chen, and W. David Kelton. An
object-oriented random-number package with many long streams and substreams.
Operations Research, 50(6), Nov-Dec 2002.

[8] S. Joe and F. Y. Kuo. Remark on algorithm 659: Implementing sobol's quasirandom
sequence generator. ACM Transactions on Mathematical Software, 29:49�57, March
2003.

[9] Jiri Matousek. Journal of complexity. ACM Transactions on Mathematical Software,
14(4):527�556, December 1998.

[10] Art B. Owen. Local antithetic sampling with scrambled nets. The Annals of
Statistics, 36(5):2319�2343, 2008.

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 50

http://www.jstatsoft.org/v08/i14/paper
http://www.iro.umontreal.ca/~lecuyer/myftp/papers/testu01.pdf
http://csrc.nist.gov/groups/ST/toolkit/rng/index.html

[11] Karl Pearson. On the criterion that a given system of deviations from the probable in
the case of a correlated system of variables is such that it can be reasonably supposed
to have arisen from random sampling. Philosophical Magazine, 50(302):157�175, July
1900.

[12] R. L. Placket. Karl Pearson and the chi-squared test. International Statistics Review,
51:59�72, 1983.

[13] Carlos M. Jarque and Anil K. Bera. E�cient tests for normality, homoscedasticity and
serial independence of regression residuals. Economics Letters, 6(3):255�259, 1980.

[14] A. Kolmogorov. Sulla determinazione empirica di una legge di distribuzione. G. Inst.
Ital. Attuari, 4(83), 1933.

[15] Frank J. Massey. The Kolmogorov-Smirnov test for goodness of �t. Journal of the
American Statistical Association, 46(253):68�78, 1951.

[16] T. W. Anderson and D. A. Darling. Asymptotic theory of certain "goodness-of-�t"
criteria based on stochastic processes. Annals of Mathematical Statistics,
23(2):193�212, 1952.

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 51

CURAND Reference

Host API

Functions

I curandStatus_t curandCreateGenerator (curandGenerator_t ∗generator,
curandRngType_t rng_type)

Create new random number generator.

I curandStatus_t curandCreateGeneratorHost (curandGenerator_t ∗generator,
curandRngType_t rng_type)

Create new host CPU random number generator.

I curandStatus_t curandCreatePoissonDistribution (double lambda,
curandDiscreteDistribution_t ∗discrete_distribution)

Construct the histogram array for a Poisson distribution.

I curandStatus_t curandDestroyDistribution (curandDiscreteDistribution_t
discrete_distribution)

Destroy the histogram array for a discrete distribution (e.g. Poisson).

I curandStatus_t curandDestroyGenerator (curandGenerator_t generator)

Destroy an existing generator.

I curandStatus_t curandGenerate (curandGenerator_t generator, unsigned int
∗outputPtr, size_t num)

Generate 32-bit pseudo or quasirandom numbers.

I curandStatus_t curandGenerateLogNormal (curandGenerator_t generator, �oat
∗outputPtr, size_t n, �oat mean, �oat stddev)

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 52

Generate log-normally distributed �oats.

I curandStatus_t curandGenerateLogNormalDouble (curandGenerator_t generator,
double ∗outputPtr, size_t n, double mean, double stddev)

Generate log-normally distributed doubles.

I curandStatus_t curandGenerateLongLong (curandGenerator_t generator, unsigned
long long ∗outputPtr, size_t num)

Generate 64-bit quasirandom numbers.

I curandStatus_t curandGenerateNormal (curandGenerator_t generator, �oat
∗outputPtr, size_t n, �oat mean, �oat stddev)

Generate normally distributed �oats.

I curandStatus_t curandGenerateNormalDouble (curandGenerator_t generator,
double ∗outputPtr, size_t n, double mean, double stddev)

Generate normally distributed doubles.

I curandStatus_t curandGeneratePoisson (curandGenerator_t generator, unsigned int
∗outputPtr, size_t n, double lambda)

Generate Poisson-distributed unsigned ints.

I curandStatus_t curandGenerateSeeds (curandGenerator_t generator)

Setup starting states.

I curandStatus_t curandGenerateUniform (curandGenerator_t generator, �oat
∗outputPtr, size_t num)

Generate uniformly distributed �oats.

I curandStatus_t curandGenerateUniformDouble (curandGenerator_t generator,
double ∗outputPtr, size_t num)

Generate uniformly distributed doubles.

I curandStatus_t curandGetDirectionVectors32 (curandDirectionVectors32_t
∗vectors[], curandDirectionVectorSet_t set)

Get direction vectors for 32-bit quasirandom number generation.

I curandStatus_t curandGetDirectionVectors64 (curandDirectionVectors64_t
∗vectors[], curandDirectionVectorSet_t set)

Get direction vectors for 64-bit quasirandom number generation.

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 53

I curandStatus_t curandGetScrambleConstants32 (unsigned int ∗∗constants)
Get scramble constants for 32-bit scrambled Sobol' .

I curandStatus_t curandGetScrambleConstants64 (unsigned long long ∗∗constants)
Get scramble constants for 64-bit scrambled Sobol' .

I curandStatus_t curandGetVersion (int ∗version)
Return the version number of the library.

I curandStatus_t curandSetGeneratorO�set (curandGenerator_t generator, unsigned
long long o�set)

Set the absolute o�set of the pseudo or quasirandom number generator.

I curandStatus_t curandSetGeneratorOrdering (curandGenerator_t generator,
curandOrdering_t order)

Set the ordering of results of the pseudo or quasirandom number generator.

I curandStatus_t curandSetPseudoRandomGeneratorSeed (curandGenerator_t
generator, unsigned long long seed)

Set the seed value of the pseudo-random number generator.

I curandStatus_t curandSetQuasiRandomGeneratorDimensions (curandGenerator_t
generator, unsigned int num_dimensions)

Set the number of dimensions.

I curandStatus_t curandSetStream (curandGenerator_t generator, cudaStream_t
stream)

Set the current stream for CURAND kernel launches.

I enum curandDirectionVectorSet {

CURAND_DIRECTION_VECTORS_32_JOEKUO6 = 101,

CURAND_SCRAMBLED_DIRECTION_VECTORS_32_JOEKUO6 = 102,

CURAND_DIRECTION_VECTORS_64_JOEKUO6 = 103,

CURAND_SCRAMBLED_DIRECTION_VECTORS_64_JOEKUO6 = 104 }

I enum curandOrdering {

CURAND_ORDERING_PSEUDO_BEST = 100,

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 54

CURAND_ORDERING_PSEUDO_DEFAULT = 101,

CURAND_ORDERING_PSEUDO_SEEDED = 102,

CURAND_ORDERING_QUASI_DEFAULT = 201 }

I enum curandRngType { ,

CURAND_RNG_PSEUDO_DEFAULT = 100,

CURAND_RNG_PSEUDO_XORWOW = 101,

CURAND_RNG_PSEUDO_MRG32K3A = 121,

CURAND_RNG_PSEUDO_MTGP32 = 141,

CURAND_RNG_QUASI_DEFAULT = 200,

CURAND_RNG_QUASI_SOBOL32 = 201,

CURAND_RNG_QUASI_SCRAMBLED_SOBOL32 = 202,

CURAND_RNG_QUASI_SOBOL64 = 203,

CURAND_RNG_QUASI_SCRAMBLED_SOBOL64 = 204 }

I enum curandStatus {

CURAND_STATUS_SUCCESS = 0,

CURAND_STATUS_VERSION_MISMATCH = 100,

CURAND_STATUS_NOT_INITIALIZED = 101,

CURAND_STATUS_ALLOCATION_FAILED = 102,

CURAND_STATUS_TYPE_ERROR = 103,

CURAND_STATUS_OUT_OF_RANGE = 104,

CURAND_STATUS_LENGTH_NOT_MULTIPLE = 105,

CURAND_STATUS_DOUBLE_PRECISION_REQUIRED = 106,

CURAND_STATUS_LAUNCH_FAILURE = 201,

CURAND_STATUS_PREEXISTING_FAILURE = 202,

CURAND_STATUS_INITIALIZATION_FAILED = 203,

CURAND_STATUS_ARCH_MISMATCH = 204,

CURAND_STATUS_INTERNAL_ERROR = 999 }

Enumeration Type Documentation

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 55

enum curandDirectionVectorSet

CURAND choice of direction vector set

Enumerator:

CURAND_DIRECTION_VECTORS_32_JOEKUO6 Speci�c set of 32-bit
direction vectors generated from polynomials recommended by S. Joe and F. Y.
Kuo, for up to 20,000 dimensions.

CURAND_SCRAMBLED_DIRECTION_VECTORS_32_JOEKUO6 Speci�c set
of 32-bit direction vectors generated from polynomials recommended by S. Joe
and F. Y. Kuo, for up to 20,000 dimensions, and scrambled.

CURAND_DIRECTION_VECTORS_64_JOEKUO6 Speci�c set of 64-bit
direction vectors generated from polynomials recommended by S. Joe and F. Y.
Kuo, for up to 20,000 dimensions.

CURAND_SCRAMBLED_DIRECTION_VECTORS_64_JOEKUO6 Speci�c set
of 64-bit direction vectors generated from polynomials recommended by S. Joe
and F. Y. Kuo, for up to 20,000 dimensions, and scrambled.

enum curandOrdering

CURAND ordering of results in memory

Enumerator:

CURAND_ORDERING_PSEUDO_BEST Best ordering for pseudorandom
results.

CURAND_ORDERING_PSEUDO_DEFAULT Speci�c default 4096 thread
sequence for pseudorandom results.

CURAND_ORDERING_PSEUDO_SEEDED Speci�c seeding pattern for fast
lower quality pseudorandom results.

CURAND_ORDERING_QUASI_DEFAULT Speci�c n-dimensional ordering for
quasirandom results.

enum curandRngType

CURAND generator types

Enumerator:

CURAND_RNG_PSEUDO_DEFAULT Default pseudorandom generator.

CURAND_RNG_PSEUDO_XORWOW XORWOW pseudorandom generator.

CURAND_RNG_PSEUDO_MRG32K3A MRG32k3a pseudorandom generator.

CURAND_RNG_PSEUDO_MTGP32 Mersenne Twister pseudorandom generator.

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 56

CURAND_RNG_QUASI_DEFAULT Default quasirandom generator.

CURAND_RNG_QUASI_SOBOL32 Sobol32 quasirandom generator.

CURAND_RNG_QUASI_SCRAMBLED_SOBOL32 Scrambled Sobol32
quasirandom generator.

CURAND_RNG_QUASI_SOBOL64 Sobol64 quasirandom generator.

CURAND_RNG_QUASI_SCRAMBLED_SOBOL64 Scrambled Sobol64
quasirandom generator.

enum curandStatus

CURAND function call status types

Enumerator:

CURAND_STATUS_SUCCESS No errors.

CURAND_STATUS_VERSION_MISMATCH Header �le and linked library
version do not match.

CURAND_STATUS_NOT_INITIALIZED Generator not initialized.

CURAND_STATUS_ALLOCATION_FAILED Memory allocation failed.

CURAND_STATUS_TYPE_ERROR Generator is wrong type.

CURAND_STATUS_OUT_OF_RANGE Argument out of range.

CURAND_STATUS_LENGTH_NOT_MULTIPLE Length requested is not a
multple of dimension.

CURAND_STATUS_DOUBLE_PRECISION_REQUIRED GPU does not have
double precision required by MRG32k3a.

CURAND_STATUS_LAUNCH_FAILURE Kernel launch failure.

CURAND_STATUS_PREEXISTING_FAILURE Preexisting failure on library
entry.

CURAND_STATUS_INITIALIZATION_FAILED Initialization of CUDA failed.

CURAND_STATUS_ARCH_MISMATCH Architecture mismatch, GPU does not
support requested feature.

CURAND_STATUS_INTERNAL_ERROR Internal library error.

Function Documentation

curandStatus_t curandCreateGenerator (curandGenerator_t ∗
generator, curandRngType_t rng_type)

CURAND generator CURAND distribution CURAND distribution M2 Creates a new
random number generator of type rng_type and returns it in ∗generator.

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 57

Legal values for rng_type are:

I CURAND_RNG_PSEUDO_DEFAULT

I CURAND_RNG_PSEUDO_XORWOW

I CURAND_RNG_PSEUDO_MRG32K3A

I CURAND_RNG_PSEUDO_MTGP32

I CURAND_RNG_QUASI_DEFAULT

I CURAND_RNG_QUASI_SOBOL32

I CURAND_RNG_QUASI_SCRAMBLED_SOBOL32

I CURAND_RNG_QUASI_SOBOL64

I CURAND_RNG_QUASI_SCRAMBLED_SOBOL64

When rng_type is CURAND_RNG_PSEUDO_DEFAULT, the type chosen is
CURAND_RNG_PSEUDO_XORWOW.

When rng_type is CURAND_RNG_QUASI_DEFAULT, the type chosen is
CURAND_RNG_QUASI_SOBOL32.

The default values for rng_type = CURAND_RNG_PSEUDO_XORWOW are:

I seed = 0

I offset = 0

I ordering = CURAND_ORDERING_PSEUDO_DEFAULT

The default values for rng_type = CURAND_RNG_PSEUDO_MRG32K3A are:

I seed = 0

I offset = 0

I ordering = CURAND_ORDERING_PSEUDO_DEFAULT

The default values for rng_type = CURAND_RNG_PSEUDO_MTGP32 are:

I seed = 0

I offset = 0

I ordering = CURAND_ORDERING_PSEUDO_DEFAULT

The default values for rng_type = CURAND_RNG_QUASI_SOBOL32 are:

I dimensions = 1

I offset = 0

I ordering = CURAND_ORDERING_QUASI_DEFAULT

The default values for rng_type = CURAND_RNG_QUASI_SOBOL64 are:

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 58

I dimensions = 1

I offset = 0

I ordering = CURAND_ORDERING_QUASI_DEFAULT

The default values for rng_type =
CURAND_RNG_QUASI_SCRAMBBLED_SOBOL32 are:

I dimensions = 1

I offset = 0

I ordering = CURAND_ORDERING_QUASI_DEFAULT

The default values for rng_type = CURAND_RNG_QUASI_SCRAMBLED_SOBOL64
are:

I dimensions = 1

I offset = 0

I ordering = CURAND_ORDERING_QUASI_DEFAULT

Parameters:

generator - Pointer to generator

rng_type - Type of generator to create

Returns:

I CURAND_STATUS_ALLOCATION_FAILED, if memory could not be
allocated

I CURAND_STATUS_INITIALIZATION_FAILED if there was a problem
setting up the GPU

I CURAND_STATUS_VERSION_MISMATCH if the header �le version does
not match the dynamically linked library version

I CURAND_STATUS_TYPE_ERROR if the value for rng_type is invalid

I CURAND_STATUS_SUCCESS if generator was created successfully

curandStatus_t curandCreateGeneratorHost (curandGenerator_t ∗
generator, curandRngType_t rng_type)

Creates a new host CPU random number generator of type rng_type and returns it in
∗generator.

Legal values for rng_type are:

I CURAND_RNG_PSEUDO_DEFAULT

I CURAND_RNG_PSEUDO_XORWOW

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 59

I CURAND_RNG_PSEUDO_MRG32K3A

I CURAND_RNG_PSEUDO_MTGP32

I CURAND_RNG_QUASI_DEFAULT

I CURAND_RNG_QUASI_SOBOL32

When rng_type is CURAND_RNG_PSEUDO_DEFAULT, the type chosen is
CURAND_RNG_PSEUDO_XORWOW.

When rng_type is CURAND_RNG_QUASI_DEFAULT, the type chosen is
CURAND_RNG_QUASI_SOBOL32.

The default values for rng_type = CURAND_RNG_PSEUDO_XORWOW are:

I seed = 0

I offset = 0

I ordering = CURAND_ORDERING_PSEUDO_DEFAULT

The default values for rng_type = CURAND_RNG_PSEUDO_MRG32K3A are:

I seed = 0

I offset = 0

I ordering = CURAND_ORDERING_PSEUDO_DEFAULT

The default values for rng_type = CURAND_RNG_PSEUDO_MTGP32 are:

I seed = 0

I offset = 0

I ordering = CURAND_ORDERING_PSEUDO_DEFAULT

The default values for rng_type = CURAND_RNG_QUASI_SOBOL32 are:

I dimensions = 1

I offset = 0

I ordering = CURAND_ORDERING_QUASI_DEFAULT

The default values for rng_type = CURAND_RNG_QUASI_SOBOL64 are:

I dimensions = 1

I offset = 0

I ordering = CURAND_ORDERING_QUASI_DEFAULT

The default values for rng_type = CURAND_RNG_QUASI_SCRAMBLED_SOBOL32
are:

I dimensions = 1

I offset = 0

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 60

I ordering = CURAND_ORDERING_QUASI_DEFAULT

The default values for rng_type = CURAND_RNG_QUASI_SCRAMBLED_SOBOL64
are:

I dimensions = 1

I offset = 0

I ordering = CURAND_ORDERING_QUASI_DEFAULT

Parameters:

generator - Pointer to generator

rng_type - Type of generator to create

Returns:

I CURAND_STATUS_ALLOCATION_FAILED if memory could not be
allocated

I CURAND_STATUS_INITIALIZATION_FAILED if there was a problem
setting up the GPU

I CURAND_STATUS_VERSION_MISMATCH if the header �le version does
not match the dynamically linked library version

I CURAND_STATUS_TYPE_ERROR if the value for rng_type is invalid

I CURAND_STATUS_SUCCESS if generator was created successfully

curandStatus_t curandCreatePoissonDistribution (double lambda,
curandDiscreteDistribution_t ∗ discrete_distribution)

Construct the histogram array for the Poisson distribution with lambda lambda. For
lambda greater than 2000, an approximation with a normal distribution is used.

Parameters:

lambda - lambda for the Poisson distribution

discrete_distribution - pointer to the histogram in device memory

Returns:

I CURAND_STATUS_ALLOCATION_FAILED if memory could not be
allocated

I CURAND_STATUS_ARCH_MISMATCH if the GPU does not support double
precision

I CURAND_STATUS_INITIALIZATION_FAILED if there was a problem
setting up the GPU

I CURAND_STATUS_PREEXISTING_FAILURE if there was an existing error
from a previous kernel launch

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 61

I CURAND_STATUS_OUT_OF_RANGE if lambda is non-positive or greater
than 400,000

I CURAND_STATUS_SUCCESS if the histogram were generated successfully

curandStatus_t curandDestroyDistribution (curandDiscreteDistribu-
tion_t discrete_distribution)

Destroy the histogram array for a discrete distribution created by
curandCreatePoissonDistribution.

Parameters:

discrete_distribution - pointer to device memory where the histogram is stored

Returns:

I CURAND_STATUS_NOT_INITIALIZED if the histogram was never created

I CURAND_STATUS_SUCCESS if the histogram was destroyed successfully

curandStatus_t curandDestroyGenerator (curandGenerator_t
generator)

Destroy an existing generator and free all memory associated with its state.

Parameters:

generator - Generator to destroy

Returns:

I CURAND_STATUS_NOT_INITIALIZED if the generator was never created

I CURAND_STATUS_SUCCESS if generator was destroyed successfully

curandStatus_t curandGenerate (curandGenerator_t generator,
unsigned int ∗ outputPtr, size_t num)

Use generator to generate num 32-bit results into the device memory at outputPtr. The
device memory must have been previously allocated and be large enough to hold all the
results. Launches are done with the stream set using curandSetStream(), or the null
stream if no stream has been set.

Results are 32-bit values with every bit random.

Parameters:

generator - Generator to use

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 62

outputPtr - Pointer to device memory to store CUDA-generated results, or Pointer to
host memory to store CPU-generated resluts

num - Number of random 32-bit values to generate

Returns:

I CURAND_STATUS_NOT_INITIALIZED if the generator was never created

I CURAND_STATUS_PREEXISTING_FAILURE if there was an existing error
from a previous kernel launch

I CURAND_STATUS_LENGTH_NOT_MULTIPLE if the number of output
samples is not a multiple of the quasirandom dimension

I CURAND_STATUS_LAUNCH_FAILURE if the kernel launch failed for any
reason

I CURAND_STATUS_TYPE_ERROR if the generator is a 64 bit quasirandom
generator. (use curandGenerateLongLong() with 64 bit quasirandom generators)

I CURAND_STATUS_SUCCESS if the results were generated successfully

curandStatus_t curandGenerateLogNormal (curandGenerator_t
generator, �oat ∗ outputPtr, size_t n, �oat mean, �oat stddev)

Use generator to generate num �oat results into the device memory at outputPtr. The
device memory must have been previously allocated and be large enough to hold all the
results. Launches are done with the stream set using curandSetStream(), or the null
stream if no stream has been set.

Results are 32-bit �oating point values with log-normal distribution based on an associated
normal distribution with mean mean and standard deviation stddev.

Normally distributed results are generated from pseudorandom generators with a
Box-Muller transform, and so require num to be even. Quasirandom generators use an
inverse cumulative distribution function to preserve dimensionality. The normally
distributed results are transformed into log-normal distribution.

There may be slight numerical di�erences between results generated on the GPU with
generators created with curandCreateGenerator() and results calculated on the CPU with
generators created with curandCreateGeneratorHost(). These di�erences arise because of
di�erences in results for transcendental functions. In addition, future versions of CURAND
may use newer versions of the CUDA math library, so di�erent versions of CURAND may
give slightly di�erent numerical values.

Parameters:

generator - Generator to use

outputPtr - Pointer to device memory to store CUDA-generated results, or Pointer to
host memory to store CPU-generated resluts

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 63

n - Number of �oats to generate

mean - Mean of associated normal distribution

stddev - Standard deviation of associated normal distribution

Returns:

I CURAND_STATUS_NOT_INITIALIZED if the generator was never created

I CURAND_STATUS_PREEXISTING_FAILURE if there was an existing error
from a previous kernel launch

I CURAND_STATUS_LAUNCH_FAILURE if the kernel launch failed for any
reason

I CURAND_STATUS_LENGTH_NOT_MULTIPLE if the number of output
samples is not a multiple of the quasirandom dimension, or is not a multiple of
two for pseudorandom generators

I CURAND_STATUS_SUCCESS if the results were generated successfully

curandStatus_t curandGenerateLogNormalDouble (curandGenerator_t
generator, double ∗ outputPtr, size_t n, double mean, double stddev)

Use generator to generate num double results into the device memory at outputPtr. The
device memory must have been previously allocated and be large enough to hold all the
results. Launches are done with the stream set using curandSetStream(), or the null
stream if no stream has been set.

Results are 64-bit �oating point values with log-normal distribution based on an associated
normal distribution with mean mean and standard deviation stddev.

Normally distributed results are generated from pseudorandom generators with a
Box-Muller transform, and so require num to be even. Quasirandom generators use an
inverse cumulative distribution function to preserve dimensionality. The normally
distributed results are transformed into log-normal distribution.

There may be slight numerical di�erences between results generated on the GPU with
generators created with curandCreateGenerator() and results calculated on the CPU with
generators created with curandCreateGeneratorHost(). These di�erences arise because of
di�erences in results for transcendental functions. In addition, future versions of CURAND
may use newer versions of the CUDA math library, so di�erent versions of CURAND may
give slightly di�erent numerical values.

Parameters:

generator - Generator to use

outputPtr - Pointer to device memory to store CUDA-generated results, or Pointer to
host memory to store CPU-generated resluts

n - Number of doubles to generate

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 64

mean - Mean of normal distribution

stddev - Standard deviation of normal distribution

Returns:

I CURAND_STATUS_NOT_INITIALIZED if the generator was never created

I CURAND_STATUS_PREEXISTING_FAILURE if there was an existing error
from a previous kernel launch

I CURAND_STATUS_LAUNCH_FAILURE if the kernel launch failed for any
reason

I CURAND_STATUS_LENGTH_NOT_MULTIPLE if the number of output
samples is not a multiple of the quasirandom dimension, or is not a multiple of
two for pseudorandom generators

I CURAND_STATUS_ARCH_MISMATCH if the GPU does not support double
precision

I CURAND_STATUS_SUCCESS if the results were generated successfully

curandStatus_t curandGenerateLongLong (curandGenerator_t
generator, unsigned long long ∗ outputPtr, size_t num)

Use generator to generate num 64-bit results into the device memory at outputPtr. The
device memory must have been previously allocated and be large enough to hold all the
results. Launches are done with the stream set using curandSetStream(), or the null
stream if no stream has been set.

Results are 64-bit values with every bit random.

Parameters:

generator - Generator to use

outputPtr - Pointer to device memory to store CUDA-generated results, or Pointer to
host memory to store CPU-generated resluts

num - Number of random 64-bit values to generate

Returns:

I CURAND_STATUS_NOT_INITIALIZED if the generator was never created

I CURAND_STATUS_PREEXISTING_FAILURE if there was an existing error
from a previous kernel launch

I CURAND_STATUS_LENGTH_NOT_MULTIPLE if the number of output
samples is not a multiple of the quasirandom dimension

I CURAND_STATUS_LAUNCH_FAILURE if the kernel launch failed for any
reason

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 65

I CURAND_STATUS_TYPE_ERROR if the generator is not a 64 bit
quasirandom generator

I CURAND_STATUS_SUCCESS if the results were generated successfully

curandStatus_t curandGenerateNormal (curandGenerator_t generator,
�oat ∗ outputPtr, size_t n, �oat mean, �oat stddev)

Use generator to generate num �oat results into the device memory at outputPtr. The
device memory must have been previously allocated and be large enough to hold all the
results. Launches are done with the stream set using curandSetStream(), or the null
stream if no stream has been set.

Results are 32-bit �oating point values with mean mean and standard deviation stddev.

Normally distributed results are generated from pseudorandom generators with a
Box-Muller transform, and so require num to be even. Quasirandom generators use an
inverse cumulative distribution function to preserve dimensionality.

There may be slight numerical di�erences between results generated on the GPU with
generators created with curandCreateGenerator() and results calculated on the CPU with
generators created with curandCreateGeneratorHost(). These di�erences arise because of
di�erences in results for transcendental functions. In addition, future versions of CURAND
may use newer versions of the CUDA math library, so di�erent versions of CURAND may
give slightly di�erent numerical values.

Parameters:

generator - Generator to use

outputPtr - Pointer to device memory to store CUDA-generated results, or Pointer to
host memory to store CPU-generated resluts

n - Number of �oats to generate

mean - Mean of normal distribution

stddev - Standard deviation of normal distribution

Returns:

I CURAND_STATUS_NOT_INITIALIZED if the generator was never created

I CURAND_STATUS_PREEXISTING_FAILURE if there was an existing error
from a previous kernel launch

I CURAND_STATUS_LAUNCH_FAILURE if the kernel launch failed for any
reason

I CURAND_STATUS_LENGTH_NOT_MULTIPLE if the number of output
samples is not a multiple of the quasirandom dimension, or is not a multiple of
two for pseudorandom generators

I CURAND_STATUS_SUCCESS if the results were generated successfully

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 66

curandStatus_t curandGenerateNormalDouble (curandGenerator_t
generator, double ∗ outputPtr, size_t n, double mean, double stddev)

Use generator to generate num double results into the device memory at outputPtr. The
device memory must have been previously allocated and be large enough to hold all the
results. Launches are done with the stream set using curandSetStream(), or the null
stream if no stream has been set.

Results are 64-bit �oating point values with mean mean and standard deviation stddev.

Normally distributed results are generated from pseudorandom generators with a
Box-Muller transform, and so require num to be even. Quasirandom generators use an
inverse cumulative distribution function to preserve dimensionality.

There may be slight numerical di�erences between results generated on the GPU with
generators created with curandCreateGenerator() and results calculated on the CPU with
generators created with curandCreateGeneratorHost(). These di�erences arise because of
di�erences in results for transcendental functions. In addition, future versions of CURAND
may use newer versions of the CUDA math library, so di�erent versions of CURAND may
give slightly di�erent numerical values.

Parameters:

generator - Generator to use

outputPtr - Pointer to device memory to store CUDA-generated results, or Pointer to
host memory to store CPU-generated resluts

n - Number of doubles to generate

mean - Mean of normal distribution

stddev - Standard deviation of normal distribution

Returns:

I CURAND_STATUS_NOT_INITIALIZED if the generator was never created

I CURAND_STATUS_PREEXISTING_FAILURE if there was an existing error
from a previous kernel launch

I CURAND_STATUS_LAUNCH_FAILURE if the kernel launch failed for any
reason

I CURAND_STATUS_LENGTH_NOT_MULTIPLE if the number of output
samples is not a multiple of the quasirandom dimension, or is not a multiple of
two for pseudorandom generators

I CURAND_STATUS_ARCH_MISMATCH if the GPU does not support double
precision

I CURAND_STATUS_SUCCESS if the results were generated successfully

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 67

curandStatus_t curandGeneratePoisson (curandGenerator_t generator,
unsigned int ∗ outputPtr, size_t n, double lambda)

Use generator to generate num unsigned int results into device memory at outputPtr.
The device memory must have been previously allocated and must be large enough to hold
all the results. Launches are done with the stream set using curandSetStream(), or the null
stream if no stream has been set.

Results are 32-bit unsigned int point values with Poisson distribution, with lambda lambda.

Parameters:

generator - Generator to use

outputPtr - Pointer to device memory to store CUDA-generated results, or Pointer to
host memory to store CPU-generated results

n - Number of unsigned ints to generate

lambda - lambda for the Poisson distribution

Returns:

I CURAND_STATUS_NOT_INITIALIZED if the generator was never created

I CURAND_STATUS_PREEXISTING_FAILURE if there was an existing error
from a previous kernel launch

I CURAND_STATUS_LAUNCH_FAILURE if the kernel launch failed for any
reason

I CURAND_STATUS_LENGTH_NOT_MULTIPLE if the number of output
samples is not a multiple of the quasirandom dimension

I CURAND_STATUS_ARCH_MISMATCH if the GPU or sm does not support
double precision

I CURAND_STATUS_OUT_OF_RANGE if lambda is non-positive or greater
than 400,000

I CURAND_STATUS_SUCCESS if the results were generated successfully

curandStatus_t curandGenerateSeeds (curandGenerator_t generator)

Generate the starting state of the generator. This function is automatically called by
generation functions such as curandGenerate() and curandGenerateUniform(). It can be
called manually for performance testing reasons to separate timings for starting state
generation and random number generation.

Parameters:

generator - Generator to update

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 68

Returns:

I CURAND_STATUS_NOT_INITIALIZED if the generator was never created

I CURAND_STATUS_PREEXISTING_FAILURE if there was an existing error
from a previous kernel launch

I CURAND_STATUS_LAUNCH_FAILURE if the kernel launch failed for any
reason

I CURAND_STATUS_SUCCESS if the seeds were generated successfully

curandStatus_t curandGenerateUniform (curandGenerator_t
generator, �oat ∗ outputPtr, size_t num)

Use generator to generate num �oat results into the device memory at outputPtr. The
device memory must have been previously allocated and be large enough to hold all the
results. Launches are done with the stream set using curandSetStream(), or the null
stream if no stream has been set.

Results are 32-bit �oating point values between 0.0f and 1.0f, excluding 0.0f and
including 1.0f.

Parameters:

generator - Generator to use

outputPtr - Pointer to device memory to store CUDA-generated results, or Pointer to
host memory to store CPU-generated resluts

num - Number of �oats to generate

Returns:

I CURAND_STATUS_NOT_INITIALIZED if the generator was never created

I CURAND_STATUS_PREEXISTING_FAILURE if there was an existing error
from a previous kernel launch

I CURAND_STATUS_LAUNCH_FAILURE if the kernel launch failed for any
reason

I CURAND_STATUS_LENGTH_NOT_MULTIPLE if the number of output
samples is not a multiple of the quasirandom dimension

I CURAND_STATUS_SUCCESS if the results were generated successfully

curandStatus_t curandGenerateUniformDouble (curandGenerator_t
generator, double ∗ outputPtr, size_t num)

Use generator to generate num double results into the device memory at outputPtr. The
device memory must have been previously allocated and be large enough to hold all the

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 69

results. Launches are done with the stream set using curandSetStream(), or the null
stream if no stream has been set.

Results are 64-bit double precision �oating point values between 0.0 and 1.0, excluding
0.0 and including 1.0.

Parameters:

generator - Generator to use

outputPtr - Pointer to device memory to store CUDA-generated results, or Pointer to
host memory to store CPU-generated resluts

num - Number of doubles to generate

Returns:

I CURAND_STATUS_NOT_INITIALIZED if the generator was never created

I CURAND_STATUS_PREEXISTING_FAILURE if there was an existing error
from a previous kernel launch

I CURAND_STATUS_LAUNCH_FAILURE if the kernel launch failed for any
reason

I CURAND_STATUS_LENGTH_NOT_MULTIPLE if the number of output
samples is not a multiple of the quasirandom dimension

I CURAND_STATUS_ARCH_MISMATCH if the GPU does not support double
precision

I CURAND_STATUS_SUCCESS if the results were generated successfully

curandStatus_t curandGetDirectionVectors32 (curandDirec-
tionVectors32_t ∗ vectors[], curandDirectionVectorSet_t
set)

Get a pointer to an array of direction vectors that can be used for quasirandom number
generation. The resulting pointer will reference an array of direction vectors in host
memory.

The array contains vectors for many dimensions. Each dimension has 32 vectors. Each
individual vector is an unsigned int.

Legal values for set are:

I CURAND_DIRECTION_VECTORS_32_JOEKUO6 (20,000 dimensions)

I CURAND_SCRAMBLED_DIRECTION_VECTORS_32_JOEKUO6 (20,000
dimensions)

Parameters:

vectors - Address of pointer in which to return direction vectors

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 70

set - Which set of direction vectors to use

Returns:

I CURAND_STATUS_OUT_OF_RANGE if the choice of set is invalid

I CURAND_STATUS_SUCCESS if the pointer was set successfully

curandStatus_t curandGetDirectionVectors64 (curandDirec-
tionVectors64_t ∗ vectors[], curandDirectionVectorSet_t
set)

Get a pointer to an array of direction vectors that can be used for quasirandom number
generation. The resulting pointer will reference an array of direction vectors in host
memory.

The array contains vectors for many dimensions. Each dimension has 64 vectors. Each
individual vector is an unsigned long long.

Legal values for set are:

I CURAND_DIRECTION_VECTORS_64_JOEKUO6 (20,000 dimensions)

I CURAND_SCRAMBLED_DIRECTION_VECTORS_64_JOEKUO6 (20,000
dimensions)

Parameters:

vectors - Address of pointer in which to return direction vectors

set - Which set of direction vectors to use

Returns:

I CURAND_STATUS_OUT_OF_RANGE if the choice of set is invalid

I CURAND_STATUS_SUCCESS if the pointer was set successfully

curandStatus_t curandGetScrambleConstants32 (unsigned int ∗∗
constants)

Get a pointer to an array of scramble constants that can be used for quasirandom number
generation. The resulting pointer will reference an array of unsinged ints in host memory.

The array contains constants for many dimensions. Each dimension has a single unsigned
int constant.

Parameters:

constants - Address of pointer in which to return scramble constants

Returns:

I CURAND_STATUS_SUCCESS if the pointer was set successfully

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 71

curandStatus_t curandGetScrambleConstants64 (unsigned long long ∗∗
constants)

Get a pointer to an array of scramble constants that can be used for quasirandom number
generation. The resulting pointer will reference an array of unsinged long longs in host
memory.

The array contains constants for many dimensions. Each dimension has a single unsigned
long long constant.

Parameters:

constants - Address of pointer in which to return scramble constants

Returns:

I CURAND_STATUS_SUCCESS if the pointer was set successfully

curandStatus_t curandGetVersion (int ∗ version)

Return in ∗version the version number of the dynamically linked CURAND library. The
format is the same as CUDART_VERSION from the CUDA Runtime. The only
supported con�guration is CURAND version equal to CUDA Runtime version.

Parameters:

version - CURAND library version

Returns:

I CURAND_STATUS_SUCCESS if the version number was successfully returned

curandStatus_t curandSetGeneratorO�set (curandGenerator_t
generator, unsigned long long o�set)

Set the absolute o�set of the pseudo or quasirandom number generator.

All values of o�set are valid. The o�set position is absolute, not relative to the current
position in the sequence.

Parameters:

generator - Generator to modify

o�set - Absolute o�set position

Returns:

I CURAND_STATUS_NOT_INITIALIZED if the generator was never created

I CURAND_STATUS_SUCCESS if generator o�set was set successfully

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 72

curandStatus_t curandSetGeneratorOrdering (curandGenerator_t
generator, curandOrdering_t order)

Set the ordering of results of the pseudo or quasirandom number generator.

Legal values of order for pseudorandom generators are:

I CURAND_ORDERING_PSEUDO_DEFAULT

I CURAND_ORDERING_PSEUDO_BEST

I CURAND_ORDERING_PSEUDO_SEEDED

Legal values of order for quasirandom generators are:

I CURAND_ORDERING_QUASI_DEFAULT

Parameters:

generator - Generator to modify

order - Ordering of results

Returns:

I CURAND_STATUS_NOT_INITIALIZED if the generator was never created

I CURAND_STATUS_OUT_OF_RANGE if the ordering is not valid

I CURAND_STATUS_SUCCESS if generator ordering was set successfully

curandStatus_t curandSetPseudoRandomGeneratorSeed
(curandGenerator_t generator, unsigned long long seed)

Set the seed value of the pseudorandom number generator. All values of seed are valid.
Di�erent seeds will produce di�erent sequences. Di�erent seeds will often not be
statistically correlated with each other, but some pairs of seed values may generate
sequences which are statistically correlated.

Parameters:

generator - Generator to modify

seed - Seed value

Returns:

I CURAND_STATUS_NOT_INITIALIZED if the generator was never created

I CURAND_STATUS_TYPE_ERROR if the generator is not a pseudorandom
number generator

I CURAND_STATUS_SUCCESS if generator seed was set successfully

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 73

curandStatus_t curandSetQuasiRandomGeneratorDimensions
(curandGenerator_t generator, unsigned int num_dimensions)

Set the number of dimensions to be generated by the quasirandom number generator.

Legal values for num_dimensions are 1 to 20000.

Parameters:

generator - Generator to modify

num_dimensions - Number of dimensions

Returns:

I CURAND_STATUS_NOT_INITIALIZED if the generator was never created

I CURAND_STATUS_OUT_OF_RANGE if num_dimensions is not valid

I CURAND_STATUS_TYPE_ERROR if the generator is not a quasirandom
number generator

I CURAND_STATUS_SUCCESS if generator ordering was set successfully

curandStatus_t curandSetStream (curandGenerator_t generator,
cudaStream_t stream)

Set the current stream for CURAND kernel launches. All library functions will use this
stream until set again.

Parameters:

generator - Generator to modify

stream - Stream to use or NULL for null stream

Returns:

I CURAND_STATUS_NOT_INITIALIZED if the generator was never created

I CURAND_STATUS_SUCCESS if stream was set successfully

Device API

Functions

I __device__ unsigned int curand (curandStateMtgp32_t ∗state)
Return 32-bits of pseudorandomness from a mtgp32 generator.

I __device__ unsigned int curand (curandStateMRG32k3a_t ∗state)

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 74

Return 32-bits of pseudorandomness from an MRG32k3a generator.

I __device__ unsigned long long curand (curandStateScrambledSobol64_t ∗state)
Return 64-bits of quasirandomness from a scrambled Sobol64 generator.

I __device__ unsigned long long curand (curandStateSobol64_t ∗state)
Return 64-bits of quasirandomness from a Sobol64 generator.

I __device__ unsigned int curand (curandStateScrambledSobol32_t ∗state)
Return 32-bits of quasirandomness from a scrambled Sobol32 generator.

I __device__ unsigned int curand (curandStateSobol32_t ∗state)
Return 32-bits of quasirandomness from a Sobol32 generator.

I __device__ unsigned int curand (curandStateXORWOW_t ∗state)
Return 32-bits of pseudorandomness from an XORWOW generator.

I __device__ void curand_init (curandDirectionVectors64_t direction_vectors,
unsigned long long scramble_c, unsigned long long o�set,
curandStateScrambledSobol64_t ∗state)

Initialize Scrambled Sobol64 state.

I __device__ void curand_init (curandDirectionVectors64_t direction_vectors,
unsigned long long o�set, curandStateSobol64_t ∗state)

Initialize Sobol64 state.

I __device__ void curand_init (curandDirectionVectors32_t direction_vectors,
unsigned int scramble_c, unsigned int o�set, curandStateScrambledSobol32_t
∗state)

Initialize Scrambled Sobol32 state.

I __device__ void curand_init (curandDirectionVectors32_t direction_vectors,
unsigned int o�set, curandStateSobol32_t ∗state)

Initialize Sobol32 state.

I __device__ void curand_init (unsigned long long seed, unsigned long long
subsequence, unsigned long long o�set, curandStateMRG32k3a_t ∗state)

Initialize MRG32k3a state.

I __device__ void curand_init (unsigned long long seed, unsigned long long

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 75

subsequence, unsigned long long o�set, curandStateXORWOW_t ∗state)
Initialize XORWOW state.

I __device__ void curand_init (unsigned long long seed, unsigned long long
subsequence, unsigned long long o�set, curandStateTest_t ∗state)

I __device__ �oat curand_log_normal (curandStateScrambledSobol64_t ∗state,
�oat mean, �oat stddev)

Return a log-normally distributed �oat from a scrambled Sobol64 generator.

I __device__ �oat curand_log_normal (curandStateSobol64_t ∗state, �oat mean,
�oat stddev)

Return a log-normally distributed �oat from a Sobol64 generator.

I __device__ �oat curand_log_normal (curandStateScrambledSobol32_t ∗state,
�oat mean, �oat stddev)

Return a log-normally distributed �oat from a scrambled Sobol32 generator.

I __device__ �oat curand_log_normal (curandStateSobol32_t ∗state, �oat mean,
�oat stddev)

Return a log-normally distributed �oat from a Sobol32 generator.

I __device__ �oat curand_log_normal (curandStateMtgp32_t ∗state, �oat mean,
�oat stddev)

Return a log-normally distributed �oat from an MTGP32 generator.

I __device__ �oat curand_log_normal (curandStateMRG32k3a_t ∗state, �oat
mean, �oat stddev)

Return a log-normally distributed �oat from an MRG32k3a generator.

I __device__ �oat curand_log_normal (curandStateXORWOW_t ∗state, �oat
mean, �oat stddev)

Return a log-normally distributed �oat from an XORWOW generator.

I __device__ �oat2 curand_log_normal2 (curandStateMRG32k3a_t ∗state, �oat
mean, �oat stddev)

Return two normally distributed �oats from an MRG32k3a generator.

I __device__ �oat2 curand_log_normal2 (curandStateXORWOW_t ∗state, �oat
mean, �oat stddev)

Return two normally distributed �oats from an XORWOW generator.

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 76

I __device__ double2 curand_log_normal2_double (curandStateMRG32k3a_t
∗state, double mean, double stddev)

Return two log-normally distributed doubles from an MRG32k3a generator.

I __device__ double2 curand_log_normal2_double (curandStateXORWOW_t
∗state, double mean, double stddev)

Return two log-normally distributed doubles from an XORWOW generator.

I __device__ double curand_log_normal_double (curandStateScrambledSobol64_t
∗state, double mean, double stddev)

Return a log-normally distributed double from a scrambled Sobol64 generator.

I __device__ double curand_log_normal_double (curandStateSobol64_t ∗state,
double mean, double stddev)

Return a log-normally distributed double from a Sobol64 generator.

I __device__ double curand_log_normal_double (curandStateScrambledSobol32_t
∗state, double mean, double stddev)

Return a log-normally distributed double from a scrambled Sobol32 generator.

I __device__ double curand_log_normal_double (curandStateSobol32_t ∗state,
double mean, double stddev)

Return a log-normally distributed double from a Sobol32 generator.

I __device__ double curand_log_normal_double (curandStateMtgp32_t ∗state,
double mean, double stddev)

Return a log-normally distributed double from an MTGP32 generator.

I __device__ double curand_log_normal_double (curandStateMRG32k3a_t ∗state,
double mean, double stddev)

Return a log-normally distributed double from an MRG32k3a generator.

I __device__ double curand_log_normal_double (curandStateXORWOW_t ∗state,
double mean, double stddev)

Return a log-normally distributed double from an XORWOW generator.

I __device__ �oat curand_mtgp32_single (curandStateMtgp32_t ∗state)
Return a uniformly distributed �oat from a mtgp32 generator.

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 77

I __device__ �oat curand_mtgp32_single_speci�c (curandStateMtgp32_t ∗state,
unsigned char index, unsigned char n)

Return a uniformly distributed �oat from a speci�c position in a mtgp32 generator.

I __device__ unsigned int curand_mtgp32_speci�c (curandStateMtgp32_t ∗state,
unsigned char index, unsigned char n)

Return 32-bits of pseudorandomness from a speci�c position in a mtgp32 generator.

I __device__ �oat curand_normal (curandStateScrambledSobol64_t ∗state)
Return a normally distributed �oat from a scrambled Sobol64 generator.

I __device__ �oat curand_normal (curandStateSobol64_t ∗state)
Return a normally distributed �oat from a Sobol64 generator.

I __device__ �oat curand_normal (curandStateScrambledSobol32_t ∗state)
Return a normally distributed �oat from a scrambled Sobol32 generator.

I __device__ �oat curand_normal (curandStateSobol32_t ∗state)
Return a normally distributed �oat from a Sobol32 generator.

I __device__ �oat curand_normal (curandStateMtgp32_t ∗state)
Return a normally distributed �oat from a MTGP32 generator.

I __device__ �oat curand_normal (curandStateMRG32k3a_t ∗state)
Return a normally distributed �oat from an MRG32k3a generator.

I __device__ �oat curand_normal (curandStateXORWOW_t ∗state)
Return a normally distributed �oat from an XORWOW generator.

I __device__ �oat2 curand_normal2 (curandStateMRG32k3a_t ∗state)
Return two normally distributed �oats from an MRG32k3a generator.

I __device__ �oat2 curand_normal2 (curandStateXORWOW_t ∗state)
Return two normally distributed �oats from an XORWOW generator.

I __device__ double2 curand_normal2_double (curandStateMRG32k3a_t ∗state)

Return two normally distributed doubles from an MRG32k3a generator.

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 78

I __device__ double2 curand_normal2_double (curandStateXORWOW_t ∗state)
Return two normally distributed doubles from an XORWOW generator.

I __device__ double curand_normal_double (curandStateScrambledSobol64_t
∗state)

Return a normally distributed double from a scrambled Sobol64 generator.

I __device__ double curand_normal_double (curandStateSobol64_t ∗state)
Return a normally distributed double from a Sobol64 generator.

I __device__ double curand_normal_double (curandStateScrambledSobol32_t
∗state)

Return a normally distributed double from a scrambled Sobol32 generator.

I __device__ double curand_normal_double (curandStateSobol32_t ∗state)
Return a normally distributed double from an Sobol32 generator.

I __device__ double curand_normal_double (curandStateMtgp32_t ∗state)
Return a normally distributed double from an MTGP32 generator.

I __device__ double curand_normal_double (curandStateMRG32k3a_t ∗state)
Return a normally distributed double from an MRG32k3a generator.

I __device__ double curand_normal_double (curandStateXORWOW_t ∗state)
Return a normally distributed double from an XORWOW generator.

I __device__ unsigned int curand_poisson (curandStateScrambledSobol64_t ∗state,
double lambda)

Return a Poisson-distributed unsigned int from a scrambled Sobol64 generator.

I __device__ unsigned int curand_poisson (curandStateSobol64_t ∗state, double
lambda)

Return a Poisson-distributed unsigned int from a Sobol64 generator.

I __device__ unsigned int curand_poisson (curandStateScrambledSobol32_t ∗state,
double lambda)

Return a Poisson-distributed unsigned int from a scrambled Sobol32 generator.

I __device__ unsigned int curand_poisson (curandStateSobol32_t ∗state, double

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 79

lambda)

Return a Poisson-distributed unsigned int from a Sobol32 generator.

I __device__ unsigned int curand_poisson (curandStateMtgp32_t ∗state, double
lambda)

Return a Poisson-distributed unsigned int from a MTGP32 generator.

I __device__ unsigned int curand_poisson (curandStateMRG32k3a_t ∗state, double
lambda)

Return a Poisson-distributed unsigned int from a MRG32k3A generator.

I __device__ unsigned int curand_poisson (curandStateXORWOW_t ∗state, double
lambda)

Return a Poisson-distributed unsigned int from a XORWOW generator.

I __device__ �oat curand_uniform (curandStateScrambledSobol64_t ∗state)
Return a uniformly distributed �oat from a scrambled Sobol64 generator.

I __device__ �oat curand_uniform (curandStateSobol64_t ∗state)
Return a uniformly distributed �oat from a Sobol64 generator.

I __device__ �oat curand_uniform (curandStateScrambledSobol32_t ∗state)
Return a uniformly distributed �oat from a scrambled Sobol32 generator.

I __device__ �oat curand_uniform (curandStateSobol32_t ∗state)
Return a uniformly distributed �oat from a Sobol32 generator.

I __device__ �oat curand_uniform (curandStateMtgp32_t ∗state)
Return a uniformly distributed �oat from a MTGP32 generator.

I __device__ �oat curand_uniform (curandStateMRG32k3a_t ∗state)
Return a uniformly distributed �oat from an MRG32k3a generator.

I __device__ �oat curand_uniform (curandStateXORWOW_t ∗state)
Return a uniformly distributed �oat from an XORWOW generator.

I __device__ double curand_uniform_double (curandStateScrambledSobol64_t
∗state)

Return a uniformly distributed double from a scrambled Sobol64 generator.

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 80

I __device__ double curand_uniform_double (curandStateSobol64_t ∗state)
Return a uniformly distributed double from a Sobol64 generator.

I __device__ double curand_uniform_double (curandStateScrambledSobol32_t
∗state)

Return a uniformly distributed double from a scrambled Sobol32 generator.

I __device__ double curand_uniform_double (curandStateSobol32_t ∗state)
Return a uniformly distributed double from a Sobol32 generator.

I __device__ double curand_uniform_double (curandStateMtgp32_t ∗state)
Return a uniformly distributed double from a MTGP32 generator.

I __device__ double curand_uniform_double (curandStateMRG32k3a_t ∗state)
Return a uniformly distributed double from an MRG32k3a generator.

I __device__ double curand_uniform_double (curandStateXORWOW_t ∗state)
Return a uniformly distributed double from an XORWOW generator.

I curandStatus_t curandMakeMTGP32Constants (const mtgp32_params_fast_t
params[], mtgp32_kernel_params_t ∗p)

Set up constant parameters for the mtgp32 generator.

I curandStatus_t curandMakeMTGP32KernelState (curandStateMtgp32_t ∗s,
mtgp32_params_fast_t params[], mtgp32_kernel_params_t ∗k, int n, unsigned
long long seed)

Set up initial states for the mtgp32 generator.

I template<typename T >

__device__ void skipahead (unsigned long long n, T state)

Update Sobol64 state to skip n elements.

I template<typename T >

__device__ void skipahead (unsigned int n, T state)

Update Sobol32 state to skip n elements.

I __device__ void skipahead (unsigned long long n, curandStateMRG32k3a_t
∗state)

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 81

Update MRG32k3a state to skip n elements.

I __device__ void skipahead (unsigned long long n, curandStateXORWOW_t
∗state)

Update XORWOW state to skip n elements.

I __device__ void skipahead_sequence (unsigned long long n,
curandStateMRG32k3a_t ∗state)

Update MRG32k3a state to skip ahead n sequences.

I __device__ void skipahead_sequence (unsigned long long n,
curandStateXORWOW_t ∗state)

Update XORWOW state to skip ahead n subsequences.

I __device__ void skipahead_subsequence (unsigned long long n,
curandStateMRG32k3a_t ∗state)

Update MRG32k3a state to skip ahead n subsequences.

Function Documentation

__device__ unsigned int curand (curandStateMtgp32_t ∗ state)

Return 32-bits of pseudorandomness from the mtgp32 generator in state, increment
position of generator by the number of threads in the block. Note the number of threads in
the block can not exceed 256.

Parameters:

state - Pointer to state to update

Returns:

32-bits of pseudorandomness as an unsigned int, all bits valid to use.

__device__ unsigned int curand (curandStateMRG32k3a_t ∗ state)

Return 32-bits of pseudorandomness from the MRG32k3a generator in state, increment
position of generator by one.

Parameters:

state - Pointer to state to update

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 82

Returns:

32-bits of pseudorandomness as an unsigned int, all bits valid to use.

__device__ unsigned long long curand (curandStateScrambled-
Sobol64_t ∗ state)

Return 64-bits of quasirandomness from the scrambled Sobol32 generator in state,
increment position of generator by one.

Parameters:

state - Pointer to state to update

Returns:

64-bits of quasirandomness as an unsigned long long, all bits valid to use.

__device__ unsigned long long curand (curandStateSobol64_t ∗
state)

Return 64-bits of quasirandomness from the Sobol64 generator in state, increment
position of generator by one.

Parameters:

state - Pointer to state to update

Returns:

64-bits of quasirandomness as an unsigned long long, all bits valid to use.

__device__ unsigned int curand (curandStateScrambledSobol32_t ∗
state)

Return 32-bits of quasirandomness from the scrambled Sobol32 generator in state,
increment position of generator by one.

Parameters:

state - Pointer to state to update

Returns:

32-bits of quasirandomness as an unsigned int, all bits valid to use.

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 83

__device__ unsigned int curand (curandStateSobol32_t ∗ state)

Return 32-bits of quasirandomness from the Sobol32 generator in state, increment
position of generator by one.

Parameters:

state - Pointer to state to update

Returns:

32-bits of quasirandomness as an unsigned int, all bits valid to use.

__device__ unsigned int curand (curandStateXORWOW_t ∗ state)

Return 32-bits of pseudorandomness from the XORWOW generator in state, increment
position of generator by one.

Parameters:

state - Pointer to state to update

Returns:

32-bits of pseudorandomness as an unsigned int, all bits valid to use.

__device__ void curand_init (curandDirectionVectors64_t
direction_vectors, unsigned long long scramble_c, unsigned long long
o�set, curandStateScrambledSobol64_t ∗ state)

Initialize Sobol64 state in state with the given direction vectors and offset.

The direction vector is a device pointer to an array of 64 unsigned long longs. All input
values of offset are legal.

Parameters:

direction_vectors - Pointer to array of 64 unsigned long longs representing the
direction vectors for the desired dimension

scramble_c Scramble constant

o�set - Absolute o�set into sequence

state - Pointer to state to initialize

__device__ void curand_init (curandDirectionVectors64_t
direction_vectors, unsigned long long o�set, curandStateSobol64_t ∗
state)

Initialize Sobol64 state in state with the given direction vectors and offset.

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 84

The direction vector is a device pointer to an array of 64 unsigned long longs. All input
values of offset are legal.

Parameters:

direction_vectors - Pointer to array of 64 unsigned long longs representing the
direction vectors for the desired dimension

o�set - Absolute o�set into sequence

state - Pointer to state to initialize

__device__ void curand_init (curandDirectionVectors32_t
direction_vectors, unsigned int scramble_c, unsigned int o�set,
curandStateScrambledSobol32_t ∗ state)

Initialize Sobol32 state in state with the given direction vectors and offset.

The direction vector is a device pointer to an array of 32 unsigned ints. All input values of
offset are legal.

Parameters:

direction_vectors - Pointer to array of 32 unsigned ints representing the direction
vectors for the desired dimension

scramble_c Scramble constant

o�set - Absolute o�set into sequence

state - Pointer to state to initialize

__device__ void curand_init (curandDirectionVectors32_t
direction_vectors, unsigned int o�set, curandStateSobol32_t ∗ state)

Initialize Sobol32 state in state with the given direction vectors and offset.

The direction vector is a device pointer to an array of 32 unsigned ints. All input values of
offset are legal.

Parameters:

direction_vectors - Pointer to array of 32 unsigned ints representing the direction
vectors for the desired dimension

o�set - Absolute o�set into sequence

state - Pointer to state to initialize

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 85

__device__ void curand_init (unsigned long long seed, unsigned long
long subsequence, unsigned long long o�set, curandStateMRG32k3a_t
∗ state)

Initialize MRG32k3a state in state with the given seed, subsequence, and offset.

All input values of seed, subsequence, and offset are legal. subsequence will be
truncated to 51 bits to avoid running into the next sequence

A value of 0 for seed sets the state to the values of the original published version of the
MRG32k3a algorithm.

Parameters:

seed - Arbitrary bits to use as a seed

subsequence - Subsequence to start at

o�set - Absolute o�set into sequence

state - Pointer to state to initialize

__device__ void curand_init (unsigned long long seed, unsigned long
long subsequence, unsigned long long o�set, curandStateXORWOW_t
∗ state)

Initialize XORWOW state in state with the given seed, subsequence, and offset.

All input values of seed, subsequence, and offset are legal. Large values for subsequence
and offset require more computation and so will take more time to complete.

A value of 0 for seed sets the state to the values of the original published version of the
xorwow algorithm.

Parameters:

seed - Arbitrary bits to use as a seed

subsequence - Subsequence to start at

o�set - Absolute o�set into sequence

state - Pointer to state to initialize

__device__ void curand_init (unsigned long long seed, unsigned long
long subsequence, unsigned long long o�set, curandStateTest_t ∗
state)

CURAND Scrambled Sobol64 state Default RNG

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 86

__device__ �oat curand_log_normal (curandStateScrambled-
Sobol64_t ∗ state, �oat mean, �oat stddev)

Return a single log-normally distributed �oat derived from a normal distribution with
mean mean and standard deviation stddev from the scrambled Sobol64 generator in state,
increment position of generator by one.

The implementation uses the inverse cumulative distribution function to generate normally
distributed results, then converts to log-normal distribution.

Parameters:

state - Pointer to state to update

mean - Mean of the related normal distribution

stddev - Standard deviation of the related normal distribution

Returns:

Log-normally distributed �oat with mean mean and standard deviation stddev

__device__ �oat curand_log_normal (curandStateSobol64_t ∗ state,
�oat mean, �oat stddev)

Return a single log-normally distributed �oat derived from a normal distribution with
mean mean and standard deviation stddev from the Sobol64 generator in state, increment
position of generator by one.

The implementation uses the inverse cumulative distribution function to generate normally
distributed results, then converts to log-normal distribution.

Parameters:

state - Pointer to state to update

mean - Mean of the related normal distribution

stddev - Standard deviation of the related normal distribution

Returns:

Log-normally distributed �oat with mean mean and standard deviation stddev

__device__ �oat curand_log_normal (curandStateScrambled-
Sobol32_t ∗ state, �oat mean, �oat stddev)

Return a single log-normally distributed �oat derived from a normal distribution with
mean mean and standard deviation stddev from the scrambled Sobol32 generator in state,
increment position of generator by one.

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 87

The implementation uses the inverse cumulative distribution function to generate a
normally distributed result, then transforms the result to log-normal.

Parameters:

state - Pointer to state to update

mean - Mean of the related normal distribution

stddev - Standard deviation of the related normal distribution

Returns:

Log-normally distributed �oat with mean mean and standard deviation stddev

__device__ �oat curand_log_normal (curandStateSobol32_t ∗ state,
�oat mean, �oat stddev)

Return a single log-normally distributed �oat derived from a normal distribution with
mean mean and standard deviation stddev from the Sobol32 generator in state, increment
position of generator by one.

The implementation uses the inverse cumulative distribution function to generate a
normally distributed result, then transforms the result to log-normal.

Parameters:

state - Pointer to state to update

mean - Mean of the related normal distribution

stddev - Standard deviation of the related normal distribution

Returns:

Log-normally distributed �oat with mean mean and standard deviation stddev

__device__ �oat curand_log_normal (curandStateMtgp32_t ∗ state,
�oat mean, �oat stddev)

Return a single log-normally distributed �oat derived from a normal distribution with
mean mean and standard deviation stddev from the MTGP32 generator in state,
increment position of generator.

The implementation uses the inverse cumulative distribution function to generate a
normally distributed result, then transforms the result to log-normal.

Parameters:

state - Pointer to state to update

mean - Mean of the related normal distribution

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 88

stddev - Standard deviation of the related normal distribution

Returns:

Log-normally distributed �oat with mean mean and standard deviation stddev

__device__ �oat curand_log_normal (curandStateMRG32k3a_t ∗
state, �oat mean, �oat stddev)

Return a single log-normally distributed �oat derived from a normal distribution with
mean mean and standard deviation stddev from the MRG32k3a generator in state,
increment position of generator by one.

The implementation uses a Box-Muller transform to generate two normally distributed
results, transforms them to log-normal distribution, then returns them one at a time. See
curand_log_normal2() for a more e�cient version that returns both results at once.

Parameters:

state - Pointer to state to update

mean - Mean of the related normal distribution

stddev - Standard deviation of the related normal distribution

Returns:

Log-normally distributed �oat with mean mean and standard deviation stddev

__device__ �oat curand_log_normal (curandStateXORWOW_t ∗
state, �oat mean, �oat stddev)

Return a single log-normally distributed �oat derived from a normal distribution with
mean mean and standard deviation stddev from the XORWOW generator in state,
increment position of generator by one.

The implementation uses a Box-Muller transform to generate two normally distributed
results, transforms them to log-normal distribution, then returns them one at a time. See
curand_log_normal2() for a more e�cient version that returns both results at once.

Parameters:

state - Pointer to state to update

mean - Mean of the related normal distribution

stddev - Standard deviation of the related normal distribution

Returns:

Log-normally distributed �oat with mean mean and standard deviation stddev

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 89

__device__ �oat2 curand_log_normal2 (curandStateMRG32k3a_t ∗
state, �oat mean, �oat stddev)

Return two log-normally distributed �oats derived from a normal distribution with mean
mean and standard deviation stddev from the MRG32k3a generator in state, increment
position of generator by two.

The implementation uses a Box-Muller transform to generate two normally distributed
results, then transforms them to log-normal.

Parameters:

state - Pointer to state to update

mean - Mean of the related normal distribution

stddev - Standard deviation of the related normal distribution

Returns:

Log-normally distributed �oat2 where each element is from a distribution with mean
mean and standard deviation stddev

__device__ �oat2 curand_log_normal2 (curandStateXORWOW_t ∗
state, �oat mean, �oat stddev)

Return two log-normally distributed �oats derived from a normal distribution with mean
mean and standard deviation stddev from the XORWOW generator in state, increment
position of generator by two.

The implementation uses a Box-Muller transform to generate two normally distributed
results, then transforms them to log-normal.

Parameters:

state - Pointer to state to update

mean - Mean of the related normal distribution

stddev - Standard deviation of the related normal distribution

Returns:

Log-normally distributed �oat2 where each element is from a distribution with mean
mean and standard deviation stddev

__device__ double2 curand_log_normal2_double
(curandStateMRG32k3a_t ∗ state, double mean, double stddev)

Return two log-normally distributed doubles derived from a normal distribution with mean
mean and standard deviation stddev from the MRG32k3a generator in state, increment
position of generator by two.

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 90

The implementation uses a Box-Muller transform to generate two normally distributed
results, and transforms them to log-normal distribution,.

Parameters:

state - Pointer to state to update

mean - Mean of the related normal distribution

stddev - Standard deviation of the related normal distribution

Returns:

Log-normally distributed double2 where each element is from a distribution with mean
mean and standard deviation stddev

__device__ double2 curand_log_normal2_double
(curandStateXORWOW_t ∗ state, double mean, double stddev)

Return two log-normally distributed doubles derived from a normal distribution with mean
mean and standard deviation stddev from the XORWOW generator in state, increment
position of generator by two.

The implementation uses a Box-Muller transform to generate two normally distributed
results, and transforms them to log-normal distribution,.

Parameters:

state - Pointer to state to update

mean - Mean of the related normal distribution

stddev - Standard deviation of the related normal distribution

Returns:

Log-normally distributed double2 where each element is from a distribution with mean
mean and standard deviation stddev

__device__ double curand_log_normal_double
(curandStateScrambledSobol64_t ∗ state, double mean, double
stddev)

Return a single normally distributed double derived from a normal distribution with mean
mean and standard deviation stddev from the scrambled Sobol64 generator in state,
increment position of generator by one.

The implementation uses the inverse cumulative distribution function to generate normally
distributed results.

Parameters:

state - Pointer to state to update

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 91

mean - Mean of the related normal distribution

stddev - Standard deviation of the related normal distribution

Returns:

Log-normally distributed double with mean mean and standard deviation stddev

__device__ double curand_log_normal_double
(curandStateSobol64_t ∗ state, double mean, double stddev)

Return a single normally distributed double derived from a normal distribution with mean
mean and standard deviation stddev from the Sobol64 generator in state, increment
position of generator by one.

The implementation uses the inverse cumulative distribution function to generate normally
distributed results.

Parameters:

state - Pointer to state to update

mean - Mean of the related normal distribution

stddev - Standard deviation of the related normal distribution

Returns:

Log-normally distributed double with mean mean and standard deviation stddev

__device__ double curand_log_normal_double
(curandStateScrambledSobol32_t ∗ state, double mean, double
stddev)

Return a single log-normally distributed double derived from a normal distribution with
mean mean and standard deviation stddev from the scrambled Sobol32 generator in state,
increment position of generator by one.

The implementation uses the inverse cumulative distribution function to generate normally
distributed results, and transforms them into log-normal distribution.

Parameters:

state - Pointer to state to update

mean - Mean of the related normal distribution

stddev - Standard deviation of the related normal distribution

Returns:

Log-normally distributed double with mean mean and standard deviation stddev

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 92

__device__ double curand_log_normal_double
(curandStateSobol32_t ∗ state, double mean, double stddev)

Return a single log-normally distributed double derived from a normal distribution with
mean mean and standard deviation stddev from the Sobol32 generator in state, increment
position of generator by one.

The implementation uses the inverse cumulative distribution function to generate normally
distributed results, and transforms them into log-normal distribution.

Parameters:

state - Pointer to state to update

mean - Mean of the related normal distribution

stddev - Standard deviation of the related normal distribution

Returns:

Log-normally distributed double with mean mean and standard deviation stddev

__device__ double curand_log_normal_double
(curandStateMtgp32_t ∗ state, double mean, double stddev)

Return a single log-normally distributed double derived from a normal distribution with
mean mean and standard deviation stddev from the MTGP32 generator in state,
increment position of generator.

The implementation uses the inverse cumulative distribution function to generate normally
distributed results, and transforms them into log-normal distribution.

Parameters:

state - Pointer to state to update

mean - Mean of the related normal distribution

stddev - Standard deviation of the related normal distribution

Returns:

Log-normally distributed double with mean mean and standard deviation stddev

__device__ double curand_log_normal_double
(curandStateMRG32k3a_t ∗ state, double mean, double stddev)

Return a single normally distributed double derived from a normal distribution with mean
mean and standard deviation stddev from the MRG32k3a generator in state, increment
position of generator.

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 93

The implementation uses a Box-Muller transform to generate two normally distributed
results, transforms them to log-normal distribution, then returns them one at a time. See
curand_log_normal2_double() for a more e�cient version that returns both results at
once.

Parameters:

state - Pointer to state to update

mean - Mean of the related normal distribution

stddev - Standard deviation of the related normal distribution

Returns:

Log-normally distributed double with mean mean and standard deviation stddev

__device__ double curand_log_normal_double
(curandStateXORWOW_t ∗ state, double mean, double stddev)

Return a single normally distributed double derived from a normal distribution with mean
mean and standard deviation stddev from the XORWOW generator in state, increment
position of generator.

The implementation uses a Box-Muller transform to generate two normally distributed
results, transforms them to log-normal distribution, then returns them one at a time. See
curand_log_normal2_double() for a more e�cient version that returns both results at
once.

Parameters:

state - Pointer to state to update

mean - Mean of the related normal distribution

stddev - Standard deviation of the related normal distribution

Returns:

Log-normally distributed double with mean mean and standard deviation stddev

__device__ �oat curand_mtgp32_single (curandStateMtgp32_t ∗
state)

Return a uniformly distributed �oat between 0.0f and 1.0f from the mtgp32 generator in
state, increment position of generator. Output range excludes 0.0f but includes 1.0f.
Denormalized �oating point outputs are never returned.

Note: This alternate derivation of a uniform �oat is provided for completeness with the
original source

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 94

Parameters:

state - Pointer to state to update

Returns:

uniformly distributed �oat between 0.0f and 1.0f

__device__ �oat curand_mtgp32_single_speci�c
(curandStateMtgp32_t ∗ state, unsigned char index, unsigned char n)

Return a uniformly distributed �oat between 0.0f and 1.0f from position index of the
mtgp32 generator in state, and increment position of generator by n positions, which
must be the total number of positions upddated in the state by the thread block, for this
invocation. Output range excludes 0.0f but includes 1.0f. Denormalized �oating point
outputs are never returned.

Note 1: Thread indices must range from 0...n - 1. The number of positions updated may
not exceed 256. A thread block may update more than one state, but a given state may
not be updated by more than one thread block.

Note 2: This alternate derivation of a uniform �oat is provided for completeness with the
original source

Parameters:

state - Pointer to state to update

index - Index (0..255) of the position within the state to draw from and update

n - The total number of postions in this state that are being updated by this
invocation

Returns:

uniformly distributed �oat between 0.0f and 1.0f

__device__ unsigned int curand_mtgp32_speci�c
(curandStateMtgp32_t ∗ state, unsigned char index, unsigned char n)

Return 32-bits of pseudorandomness from position index of the mtgp32 generator in
state, increment position of generator by n positions, which must be the total number of
positions upddated in the state by the thread block, for this invocation.

Note : Thread indices must range from 0... n - 1. The number of positions updated may
not exceed 256. A thread block may update more than one state, but a given state may
not be updated by more than one thread block.

Parameters:

state - Pointer to state to update

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 95

index - Index (0..255) of the position within the state to draw from and update

n - The total number of postions in this state that are being updated by this
invocation

Returns:

32-bits of pseudorandomness as an unsigned int, all bits valid to use.

__device__ �oat curand_normal (curandStateScrambledSobol64_t ∗
state)

Return a single normally distributed �oat with mean 0.0f and standard deviation 1.0f

from the scrambled Sobol64 generator in state, increment position of generator by one.

The implementation uses the inverse cumulative distribution function to generate normally
distributed results.

Parameters:

state - Pointer to state to update

Returns:

Normally distributed �oat with mean 0.0f and standard deviation 1.0f

__device__ �oat curand_normal (curandStateSobol64_t ∗ state)

Return a single normally distributed �oat with mean 0.0f and standard deviation 1.0f

from the Sobol64 generator in state, increment position of generator by one.

The implementation uses the inverse cumulative distribution function to generate normally
distributed results.

Parameters:

state - Pointer to state to update

Returns:

Normally distributed �oat with mean 0.0f and standard deviation 1.0f

__device__ �oat curand_normal (curandStateScrambledSobol32_t ∗
state)

Return a single normally distributed �oat with mean 0.0f and standard deviation 1.0f

from the scrambled Sobol32 generator in state, increment position of generator by one.

The implementation uses the inverse cumulative distribution function to generate normally
distributed results.

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 96

Parameters:

state - Pointer to state to update

Returns:

Normally distributed �oat with mean 0.0f and standard deviation 1.0f

__device__ �oat curand_normal (curandStateSobol32_t ∗ state)

Return a single normally distributed �oat with mean 0.0f and standard deviation 1.0f

from the Sobol32 generator in state, increment position of generator by one.

The implementation uses the inverse cumulative distribution function to generate normally
distributed results.

Parameters:

state - Pointer to state to update

Returns:

Normally distributed �oat with mean 0.0f and standard deviation 1.0f

__device__ �oat curand_normal (curandStateMtgp32_t ∗ state)

Return a single normally distributed �oat with mean 0.0f and standard deviation 1.0f

from the MTGP32 generator in state, increment position of generator.

The implementation uses the inverse cumulative distribution function to generate normally
distributed results.

Parameters:

state - Pointer to state to update

Returns:

Normally distributed �oat with mean 0.0f and standard deviation 1.0f

__device__ �oat curand_normal (curandStateMRG32k3a_t ∗ state)

Return a single normally distributed �oat with mean 0.0f and standard deviation 1.0f

from the MRG32k3a generator in state, increment position of generator by one.

The implementation uses a Box-Muller transform to generate two normally distributed
results, then returns them one at a time. See curand_normal2() for a more e�cient
version that returns both results at once.

Parameters:

state - Pointer to state to update

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 97

Returns:

Normally distributed �oat with mean 0.0f and standard deviation 1.0f

__device__ �oat curand_normal (curandStateXORWOW_t ∗ state)

Return a single normally distributed �oat with mean 0.0f and standard deviation 1.0f

from the XORWOW generator in state, increment position of generator by one.

The implementation uses a Box-Muller transform to generate two normally distributed
results, then returns them one at a time. See curand_normal2() for a more e�cient
version that returns both results at once.

Parameters:

state - Pointer to state to update

Returns:

Normally distributed �oat with mean 0.0f and standard deviation 1.0f

__device__ �oat2 curand_normal2 (curandStateMRG32k3a_t ∗
state)

Return two normally distributed �oats with mean 0.0f and standard deviation 1.0f from
the MRG32k3a generator in state, increment position of generator by two.

The implementation uses a Box-Muller transform to generate two normally distributed
results.

Parameters:

state - Pointer to state to update

Returns:

Normally distributed �oat2 where each element is from a distribution with mean 0.0f

and standard deviation 1.0f

__device__ �oat2 curand_normal2 (curandStateXORWOW_t ∗
state)

Return two normally distributed �oats with mean 0.0f and standard deviation 1.0f from
the XORWOW generator in state, increment position of generator by two.

The implementation uses a Box-Muller transform to generate two normally distributed
results.

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 98

Parameters:

state - Pointer to state to update

Returns:

Normally distributed �oat2 where each element is from a distribution with mean 0.0f

and standard deviation 1.0f

__device__ double2 curand_normal2_double (curand-
StateMRG32k3a_t ∗ state)

Return two normally distributed doubles with mean 0.0 and standard deviation 1.0 from
the MRG32k3a generator in state, increment position of generator.

The implementation uses a Box-Muller transform to generate two normally distributed
results.

Parameters:

state - Pointer to state to update

Returns:

Normally distributed double2 where each element is from a distribution with mean
0.0 and standard deviation 1.0

__device__ double2 curand_normal2_double (curandStateXOR-
WOW_t ∗ state)

Return two normally distributed doubles with mean 0.0 and standard deviation 1.0 from
the XORWOW generator in state, increment position of generator.

The implementation uses a Box-Muller transform to generate two normally distributed
results.

Parameters:

state - Pointer to state to update

Returns:

Normally distributed double2 where each element is from a distribution with mean
0.0 and standard deviation 1.0

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 99

__device__ double curand_normal_double (curandStateScrambled-
Sobol64_t ∗ state)

Return a single normally distributed double with mean 0.0 and standard deviation 1.0

from the scrambled Sobol64 generator in state, increment position of generator by one.

The implementation uses the inverse cumulative distribution function to generate normally
distributed results.

Parameters:

state - Pointer to state to update

Returns:

Normally distributed double with mean 0.0 and standard deviation 1.0

__device__ double curand_normal_double (curandStateSobol64_t ∗
state)

Return a single normally distributed double with mean 0.0 and standard deviation 1.0

from the Sobol64 generator in state, increment position of generator by one.

The implementation uses the inverse cumulative distribution function to generate normally
distributed results.

Parameters:

state - Pointer to state to update

Returns:

Normally distributed double with mean 0.0 and standard deviation 1.0

__device__ double curand_normal_double (curandStateScrambled-
Sobol32_t ∗ state)

Return a single normally distributed double with mean 0.0 and standard deviation 1.0

from the scrambled Sobol32 generator in state, increment position of generator by one.

The implementation uses the inverse cumulative distribution function to generate normally
distributed results.

Parameters:

state - Pointer to state to update

Returns:

Normally distributed double with mean 0.0 and standard deviation 1.0

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 100

__device__ double curand_normal_double (curandStateSobol32_t ∗
state)

Return a single normally distributed double with mean 0.0 and standard deviation 1.0

from the Sobol32 generator in state, increment position of generator by one.

The implementation uses the inverse cumulative distribution function to generate normally
distributed results.

Parameters:

state - Pointer to state to update

Returns:

Normally distributed double with mean 0.0 and standard deviation 1.0

__device__ double curand_normal_double (curandStateMtgp32_t ∗
state)

Return a single normally distributed double with mean 0.0 and standard deviation 1.0

from the MTGP32 generator in state, increment position of generator.

The implementation uses the inverse cumulative distribution function to generate normally
distributed results.

Parameters:

state - Pointer to state to update

Returns:

Normally distributed double with mean 0.0 and standard deviation 1.0

__device__ double curand_normal_double (curandStateMRG32k3a_t
∗ state)

Return a single normally distributed double with mean 0.0 and standard deviation 1.0

from the XORWOW generator in state, increment position of generator.

The implementation uses a Box-Muller transform to generate two normally distributed
results, then returns them one at a time. See curand_normal2_double() for a more
e�cient version that returns both results at once.

Parameters:

state - Pointer to state to update

Returns:

Normally distributed double with mean 0.0 and standard deviation 1.0

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 101

__device__ double curand_normal_double (curandStateXORWOW_t
∗ state)

Return a single normally distributed double with mean 0.0 and standard deviation 1.0

from the XORWOW generator in state, increment position of generator.

The implementation uses a Box-Muller transform to generate two normally distributed
results, then returns them one at a time. See curand_normal2_double() for a more
e�cient version that returns both results at once.

Parameters:

state - Pointer to state to update

Returns:

Normally distributed double with mean 0.0 and standard deviation 1.0

__device__ unsigned int curand_poisson (curandStateScrambled-
Sobol64_t ∗ state, double lambda)

Return a single unsigned int from a Poisson distribution with lambda lambda from the
scrambled Sobol64 generator in state, increment position of generator by one.

Parameters:

state - Pointer to state to update

lambda - Lambda of the Poisson distribution

Returns:

Poisson-distributed unsigned int with lambda lambda

__device__ unsigned int curand_poisson (curandStateSobol64_t ∗
state, double lambda)

Return a single unsigned int from a Poisson distribution with lambda lambda from the
Sobol64 generator in state, increment position of generator by one.

Parameters:

state - Pointer to state to update

lambda - Lambda of the Poisson distribution

Returns:

Poisson-distributed unsigned int with lambda lambda

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 102

__device__ unsigned int curand_poisson (curandStateScrambled-
Sobol32_t ∗ state, double lambda)

Return a single unsigned int from a Poisson distribution with lambda lambda from the
scrambled Sobol32 generator in state, increment the position of the generator by one.

Parameters:

state - Pointer to state to update

lambda - Lambda of the Poisson distribution

Returns:

Poisson-distributed unsigned int with lambda lambda

__device__ unsigned int curand_poisson (curandStateSobol32_t ∗
state, double lambda)

Return a single unsigned int from a Poisson distribution with lambda lambda from the
Sobol32 generator in state, increment the position of the generator by one.

Parameters:

state - Pointer to state to update

lambda - Lambda of the Poisson distribution

Returns:

Poisson-distributed unsigned int with lambda lambda

__device__ unsigned int curand_poisson (curandStateMtgp32_t ∗
state, double lambda)

Return a single int from a Poisson distribution with lambda lambda from the MTGP32
generator in state, increment the position of the generator by one.

Parameters:

state - Pointer to state to update

lambda - Lambda of the Poisson distribution

Returns:

Poisson-distributed unsigned int with lambda lambda

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 103

__device__ unsigned int curand_poisson (curandStateMRG32k3a_t
∗ state, double lambda)

Return a single unsigned int from a Poisson distribution with lambda lambda from the
MRG32k3a generator in state, increment the position of the generator by a variable
amount, depending on the algorithm used.

Parameters:

state - Pointer to state to update

lambda - Lambda of the Poisson distribution

Returns:

Poisson-distributed unsigned int with lambda lambda

__device__ unsigned int curand_poisson (curandStateXORWOW_t
∗ state, double lambda)

Return a single unsigned int from a Poisson distribution with lambda lambda from the
XORWOW generator in state, increment the position of the generator by a variable
amount, depending on the algorithm used.

Parameters:

state - Pointer to state to update

lambda - Lambda of the Poisson distribution

Returns:

Poisson-distributed unsigned int with lambda lambda

__device__ �oat curand_uniform (curandStateScrambledSobol64_t ∗
state)

Return a uniformly distributed �oat between 0.0f and 1.0f from the scrambled Sobol64
generator in state, increment position of generator. Output range excludes 0.0f but
includes 1.0f. Denormalized �oating point outputs are never returned.

The implementation is guaranteed to use a single call to curand().

Parameters:

state - Pointer to state to update

Returns:

uniformly distributed �oat between 0.0f and 1.0f

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 104

__device__ �oat curand_uniform (curandStateSobol64_t ∗ state)

Return a uniformly distributed �oat between 0.0f and 1.0f from the Sobol64 generator in
state, increment position of generator. Output range excludes 0.0f but includes 1.0f.
Denormalized �oating point outputs are never returned.

The implementation is guaranteed to use a single call to curand().

Parameters:

state - Pointer to state to update

Returns:

uniformly distributed �oat between 0.0f and 1.0f

__device__ �oat curand_uniform (curandStateScrambledSobol32_t ∗
state)

Return a uniformly distributed �oat between 0.0f and 1.0f from the scrambled Sobol32
generator in state, increment position of generator. Output range excludes 0.0f but
includes 1.0f. Denormalized �oating point outputs are never returned.

The implementation is guaranteed to use a single call to curand().

Parameters:

state - Pointer to state to update

Returns:

uniformly distributed �oat between 0.0f and 1.0f

__device__ �oat curand_uniform (curandStateSobol32_t ∗ state)

Return a uniformly distributed �oat between 0.0f and 1.0f from the Sobol32 generator in
state, increment position of generator. Output range excludes 0.0f but includes 1.0f.
Denormalized �oating point outputs are never returned.

The implementation is guaranteed to use a single call to curand().

Parameters:

state - Pointer to state to update

Returns:

uniformly distributed �oat between 0.0f and 1.0f

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 105

__device__ �oat curand_uniform (curandStateMtgp32_t ∗ state)

Return a uniformly distributed �oat between 0.0f and 1.0f from the MTGP32 generator
in state, increment position of generator. Output range excludes 0.0f but includes 1.0f.
Denormalized �oating point outputs are never returned.

Parameters:

state - Pointer to state to update

Returns:

uniformly distributed �oat between 0.0f and 1.0f

__device__ �oat curand_uniform (curandStateMRG32k3a_t ∗ state)

Return a uniformly distributed �oat between 0.0f and 1.0f from the MRG32k3a
generator in state, increment position of generator. Output range excludes 0.0f but
includes 1.0f. Denormalized �oating point outputs are never returned.

The implementation returns up to 23 bits of mantissa, with the minimum return value 2−32

Parameters:

state - Pointer to state to update

Returns:

uniformly distributed �oat between 0.0f and 1.0f

__device__ �oat curand_uniform (curandStateXORWOW_t ∗ state)

Return a uniformly distributed �oat between 0.0f and 1.0f from the XORWOW
generator in state, increment position of generator. Output range excludes 0.0f but
includes 1.0f. Denormalized �oating point outputs are never returned.

The implementation may use any number of calls to curand() to get enough random bits
to create the return value. The current implementation uses one call.

Parameters:

state - Pointer to state to update

Returns:

uniformly distributed �oat between 0.0f and 1.0f

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 106

__device__ double curand_uniform_double (curandStateScrambled-
Sobol64_t ∗ state)

Return a uniformly distributed double between 0.0 and 1.0 from the scrambled Sobol64
generator in state, increment position of generator. Output range excludes 0.0 but
includes 1.0. Denormalized �oating point outputs are never returned.

The implementation is guaranteed to use a single call to curand() to preserve the
quasirandom properties of the sequence.

Parameters:

state - Pointer to state to update

Returns:

uniformly distributed double between 0.0 and 1.0

__device__ double curand_uniform_double (curandStateSobol64_t ∗
state)

Return a uniformly distributed double between 0.0 and 1.0 from the Sobol64 generator in
state, increment position of generator. Output range excludes 0.0 but includes 1.0.
Denormalized �oating point outputs are never returned.

The implementation is guaranteed to use a single call to curand() to preserve the
quasirandom properties of the sequence.

Parameters:

state - Pointer to state to update

Returns:

uniformly distributed double between 0.0 and 1.0

__device__ double curand_uniform_double (curandStateScrambled-
Sobol32_t ∗ state)

Return a uniformly distributed double between 0.0 and 1.0 from the scrambled Sobol32
generator in state, increment position of generator. Output range excludes 0.0 but
includes 1.0. Denormalized �oating point outputs are never returned.

The implementation is guaranteed to use a single call to curand() to preserve the
quasirandom properties of the sequence.

Parameters:

state - Pointer to state to update

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 107

Returns:

uniformly distributed double between 0.0 and 1.0

__device__ double curand_uniform_double (curandStateSobol32_t ∗
state)

Return a uniformly distributed double between 0.0 and 1.0 from the Sobol32 generator in
state, increment position of generator. Output range excludes 0.0 but includes 1.0.
Denormalized �oating point outputs are never returned.

The implementation is guaranteed to use a single call to curand() to preserve the
quasirandom properties of the sequence.

Parameters:

state - Pointer to state to update

Returns:

uniformly distributed double between 0.0 and 1.0

__device__ double curand_uniform_double (curandStateMtgp32_t ∗
state)

Return a uniformly distributed double between 0.0f and 1.0f from the MTGP32
generator in state, increment position of generator. Output range excludes 0.0f but
includes 1.0f. Denormalized �oating point outputs are never returned.

Parameters:

state - Pointer to state to update

Returns:

uniformly distributed double between 0.0f and 1.0f

__device__ double curand_uniform_double (curand-
StateMRG32k3a_t ∗ state)

Return a uniformly distributed double between 0.0 and 1.0 from the MRG32k3a
generator in state, increment position of generator. Output range excludes 0.0 but
includes 1.0. Denormalized �oating point outputs are never returned.

Note the implementation returns at most 32 random bits of mantissa as outlined in the
seminal paper by L'Ecuyer.

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 108

Parameters:

state - Pointer to state to update

Returns:

uniformly distributed double between 0.0 and 1.0

__device__ double curand_uniform_double (curandStateXOR-
WOW_t ∗ state)

Return a uniformly distributed double between 0.0 and 1.0 from the XORWOW
generator in state, increment position of generator. Output range excludes 0.0 but
includes 1.0. Denormalized �oating point outputs are never returned.

The implementation may use any number of calls to curand() to get enough random bits
to create the return value. The current implementation uses exactly two calls.

Parameters:

state - Pointer to state to update

Returns:

uniformly distributed double between 0.0 and 1.0

curandStatus_t curandMakeMTGP32Constants (const
mtgp32_params_fast_t params[], mtgp32_kernel_params_t ∗ p)

This host-side helper function re-organizes CURAND_NUM_MTGP32_PARAMS sets of
generator parameters for use by kernel functions and copies the result to the speci�ed
location in device memory.

Parameters:

params - Pointer to an array of type mtgp32_params_fast_t in host memory

p - pointer to a structure of type mtgp32_kernel_params_t in device memory.

Returns:

I CURAND_STATUS_ALLOCATION_FAILED if host memory could not be
allocated

I CURAND_STATUS_INITIALIZATION_FAILED if the copy to device memory
failed

I CURAND_STATUS_SUCCESS otherwise

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 109

curandStatus_t curandMakeMTGP32KernelState
(curandStateMtgp32_t ∗ s, mtgp32_params_fast_t params[],
mtgp32_kernel_params_t ∗ k, int n, unsigned long long seed)

This host-side helper function initializes a number of states (one parameter set per state)
for an mtgp32 generator. To accomplish this it allocates a state array in host memory,
initializes that array, and copies the result to device memory.

Parameters:

s - pointer to an array of states in device memory

params - Pointer to an array of type mtgp32_params_fast_t in host memory

k - pointer to a structure of type mtgp32_kernel_params_t in device memory

n - number of parameter sets/states to initialize

seed - seed value

Returns:

I CURAND_STATUS_ALLOCATION_FAILED if host memory state could not
be allocated

I CURAND_STATUS_INITIALIZATION_FAILED if the copy to device memory
failed

I CURAND_STATUS_SUCCESS otherwise

template<typename T > __device__ void skipahead (unsigned long
long n, T state)

Update the Sobol64 state in state to skip ahead n elements.

All values of n are valid.

Parameters:

n - Number of elements to skip

state - Pointer to state to update

template<typename T > __device__ void skipahead (unsigned int n,
T state)

Update the Sobol32 state in state to skip ahead n elements.

All values of n are valid.

Parameters:

n - Number of elements to skip

state - Pointer to state to update

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 110

__device__ void skipahead (unsigned long long n,
curandStateMRG32k3a_t ∗ state)

Update the MRG32k3a state in state to skip ahead n elements.

All values of n are valid. Large values require more computation and so will take more
time to complete.

Parameters:

n - Number of elements to skip

state - Pointer to state to update

__device__ void skipahead (unsigned long long n,
curandStateXORWOW_t ∗ state)

Update the XORWOW state in state to skip ahead n elements.

All values of n are valid. Large values require more computation and so will take more
time to complete.

Parameters:

n - Number of elements to skip

state - Pointer to state to update

__device__ void skipahead_sequence (unsigned long long n,
curandStateMRG32k3a_t ∗ state)

Update the MRG32k3a state in state to skip ahead n sequences. Each sequence is 2127

elements long, so this means the function will skip ahead 2127 · n elements.

All values of n are valid. Large values require more computation and so will take more
time to complete.

Parameters:

n - Number of sequences to skip

state - Pointer to state to update

__device__ void skipahead_sequence (unsigned long long n,
curandStateXORWOW_t ∗ state)

Update the XORWOW state in state to skip ahead n subsequences. Each subsequence is
267 elements long, so this means the function will skip ahead 267 · n elements.

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 111

All values of n are valid. Large values require more computation and so will take more
time to complete.

Parameters:

n - Number of subsequences to skip

state - Pointer to state to update

__device__ void skipahead_subsequence (unsigned long long n,
curandStateMRG32k3a_t ∗ state)

Update the MRG32k3a state in state to skip ahead n subsequences. Each subsequence is
276 elements long, so this means the function will skip ahead 276 · n elements.

Valid values of n are 0 to 251. Note n will be masked to 51 bits

Parameters:

n - Number of subsequences to skip

state - Pointer to state to update

CUDA Toolkit 5.0 CURAND Guide PG-05328-050_v02 | 112

www.nvidia.com

Notice
ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER
DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO
WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR
A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication of otherwise under
any patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change
without notice. This publication supersedes and replaces all other information previously supplied. NVIDIA
Corporation products are not authorized as critical components in life support devices or systems without
express written approval of NVIDIA Corporation.

OpenCL
OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks
NVIDIA and the NVIDIA logo are trademarks and/or registered trademarks of NVIDIA Corporation in the U.S.
and other countries. Other company and product names may be trademarks of the respective companies with
which they are associated.

Copyright
© 2012 NVIDIA Corporation. All rights reserved.

	CURAND Library
	Compatibility and Versioning
	Host API Overview
	Generator Types
	Generator Options
	Seed
	Offset
	Order

	Return Values
	Generation Functions
	Host API Example
	Performance Notes

	Device API Overview
	Pseudorandom Sequences
	Bit Generation with XORWOW and MRG32k3a generators
	Bit Generation with the MTGP32 generator
	Distributions

	Quasirandom Sequences
	Skip-Ahead
	Device API for discrete distributions
	Performance Notes
	Device API Example
	Thrust and CURAND Example
	Poisson API Example

	Testing
	Poisson testing

	CURAND Reference
	Host API
	Enumeration Type Documentation
	curandDirectionVectorSet
	curandOrdering
	curandRngType
	curandStatus

	Function Documentation
	curandCreateGenerator
	curandCreateGeneratorHost
	curandCreatePoissonDistribution
	curandDestroyDistribution
	curandDestroyGenerator
	curandGenerate
	curandGenerateLogNormal
	curandGenerateLogNormalDouble
	curandGenerateLongLong
	curandGenerateNormal
	curandGenerateNormalDouble
	curandGeneratePoisson
	curandGenerateSeeds
	curandGenerateUniform
	curandGenerateUniformDouble
	curandGetDirectionVectors32
	curandGetDirectionVectors64
	curandGetScrambleConstants32
	curandGetScrambleConstants64
	curandGetVersion
	curandSetGeneratorOffset
	curandSetGeneratorOrdering
	curandSetPseudoRandomGeneratorSeed
	curandSetQuasiRandomGeneratorDimensions
	curandSetStream

	Device API
	Function Documentation
	curand
	curand
	curand
	curand
	curand
	curand
	curand
	curand_init
	curand_init
	curand_init
	curand_init
	curand_init
	curand_init
	curand_init
	curand_log_normal
	curand_log_normal
	curand_log_normal
	curand_log_normal
	curand_log_normal
	curand_log_normal
	curand_log_normal
	curand_log_normal2
	curand_log_normal2
	curand_log_normal2_double
	curand_log_normal2_double
	curand_log_normal_double
	curand_log_normal_double
	curand_log_normal_double
	curand_log_normal_double
	curand_log_normal_double
	curand_log_normal_double
	curand_log_normal_double
	curand_mtgp32_single
	curand_mtgp32_single_specific
	curand_mtgp32_specific
	curand_normal
	curand_normal
	curand_normal
	curand_normal
	curand_normal
	curand_normal
	curand_normal
	curand_normal2
	curand_normal2
	curand_normal2_double
	curand_normal2_double
	curand_normal_double
	curand_normal_double
	curand_normal_double
	curand_normal_double
	curand_normal_double
	curand_normal_double
	curand_normal_double
	curand_poisson
	curand_poisson
	curand_poisson
	curand_poisson
	curand_poisson
	curand_poisson
	curand_poisson
	curand_uniform
	curand_uniform
	curand_uniform
	curand_uniform
	curand_uniform
	curand_uniform
	curand_uniform
	curand_uniform_double
	curand_uniform_double
	curand_uniform_double
	curand_uniform_double
	curand_uniform_double
	curand_uniform_double
	curand_uniform_double
	curandMakeMTGP32Constants
	curandMakeMTGP32KernelState
	skipahead
	skipahead
	skipahead
	skipahead
	skipahead_sequence
	skipahead_sequence
	skipahead_subsequence

