

August 2012

CUDA DYNAMIC PARALLELISM
PROGRAMMING GUIDE

CUDA Dynamic Parallelism Programming Guide ii

TABLE OF CONTENTS

Introduction .. 1

Overview ... 1

Glossary .. 2

Execution Environment and Memory Model ... 3

Execution Environment .. 3

Parent and Child Grids .. 3

Scope of CUDA Primitives .. 4

Synchronization .. 4

Streams & Events .. 5

Ordering and Concurrency ... 5

Device Management .. 6

Memory Model ... 6

Coherence and Consistency .. 6

Programming Interface .. 10

CUDA C/C++ Reference .. 10

Device-Side Kernel Launch .. 10

Streams .. 12

Events .. 12

Synchronization ... 13

Device Management ... 13

Memory Declarations ... 14

API Errors and Launch Failures ... 15

API Reference ... 17

Device-Side Launch From PTX ... 18

Kernel Launch APIs ... 18

Parameter Buffer Layout .. 20

Toolkit Support for Dynamic Parallelism ... 21

Including device runtime API in CUDA code ... 21

Compiling and Linking ... 21

Programming guidelines ... 22

Basics .. 22

Performance .. 24

Synchronization ... 24

Dynamic-parallelism-enabled Kernel overhead .. 24

Implementation Restrictions & Limitations .. 24

Runtime .. 24

CUDA Dynamic Parallelism Programming Guide 1

INTRODUCTION

This document provides guidance on how to design and develop software that takes

advantage of the new Dynamic Parallelism capabilities introduced with CUDA 5.0.

OVERVIEW

Dynamic Parallelism is an extension to the CUDA programming model enabling a

CUDA kernel to create and synchronize with new work directly on the GPU. The

creation of parallelism dynamically at whichever point in a program that it is needed

offers exciting new capabilities.

The ability to create work directly from the GPU can reduce the need to transfer

execution control and data between host and device, as launch configuration decisions

can now be made at runtime by threads executing on the device. Additionally, data-

dependent parallel work can be generated inline within a kernel at run-time, taking

advantage of the GPU’s hardware schedulers and load balancers dynamically and

adapting in response to data-driven decisions or workloads. Algorithms and

programming patterns that had previously required modifications to eliminate

recursion, irregular loop structure, or other constructs that do not fit a flat, single-level of

parallelism may more transparently be expressed.

This document describes the extended capabilities of CUDA which enable Dynamic

Parallelism, including the modifications and additions to the CUDA programming

model necessary to take advantage of these, as well as guidelines and best practices for

exploiting this added capacity.

Dynamic Parallelism is only supported by devices of compute capability 3.5 and higher.

Introduction

CUDA Dynamic Parallelism Programming Guide 2

GLOSSARY

Definitions for terms used in this guide.

Grid

A Grid is a collection of Threads. Threads in a Grid execute a Kernel Function and are

divided into Thread Blocks.

Thread Block

A Thread Block is a group of threads which execute on the same multiprocessor (SMX).

Threads within a Thread Block have access to shared memory and can be explicitly

synchronized.

Kernel Function

A Kernel Function is an implicitly parallel subroutine that executes under the CUDA

execution and memory model for every Thread in a Grid.

Host

The Host refers to the execution environment that initially invoked CUDA, typically the

thread running on a system’s CPU processor.

Parent

A Parent Thread, Thread Block, or Grid is one that has launched new grid(s), the Child

Grid(s). The Parent is not considered completed until all of its launched Child Grids

have also completed.

Child

A Child thread, block, or grid is one that has been launched by a Parent grid. A Child

grid must complete before the Parent Thread, Thread Block, or Grid are considered

complete.

Thread Block Scope

Objects with Thread Block Scope have the lifetime of a single Thread Block. They only

have defined behavior when operated on by Threads in the Thread Block that created

the object and are destroyed when the Thread Block that created them is complete.

Device Runtime

The Device Runtime refers to the runtime system and APIs available to enable Kernel

Functions to use Dynamic Parallelism.

CUDA Dynamic Parallelism Programming Guide 3

EXECUTION ENVIRONMENT AND MEMORY
MODEL

EXECUTION ENVIRONMENT

The CUDA execution model is based on primitives of threads, thread blocks, and grids,

with kernel functions defining the program executed by individual threads within a

thread block and grid. When a kernel function is invoked the grid's properties are

described by an execution configuration, which has a special syntax in CUDA. Support

for dynamic parallelism in CUDA extends the ability to configure, launch, and

synchronize upon new grids to threads that are running on the device.

Parent and Child Grids

A device thread that configures and launches a new grid belongs to the parent grid, and

the grid created by the invocation is a child grid.

The invocation and completion of child grids is properly nested, meaning that the parent

grid is not considered complete until all child grids created by its threads have

completed. Even if the invoking threads do not explicitly synchronize on the child grids

launched, the runtime guarantees an implicit synchronization between the parent and

child.

Execution Environment and Memory Model

CUDA Dynamic Parallelism Programming Guide 4

Scope of CUDA Primitives

On both host and device, the CUDA runtime offers an API for launching kernels, for

waiting for launched work to complete, and for tracking dependencies between

launches via streams and events. On the host system, the state of launches and the

CUDA primitives referencing streams and events are shared by all threads within a

process; however processes execute independently and may not share CUDA objects.

A similar hierarchy exists on the device: launched kernels and CUDA objects are visible

to all threads in a thread block, but are independent between thread blocks. This means

for example that a stream may be created by one thread and used by any other thread in

the same thread block, but may not be shared with threads in any other thread block.

Synchronization

CUDA runtime operations from any thread, including kernel launches, are visible across

a thread block. This means that an invoking thread in the parent grid may perform

synchronization on the grids launched by that thread, by other threads in the thread

block, or on streams created within the same thread block. Execution of a thread block is

not considered complete until all launches by all threads in the block have completed. If

all threads in a block exit before all child launches have completed, a synchronization

operation will automatically be triggered.

Execution Environment and Memory Model

CUDA Dynamic Parallelism Programming Guide 5

Streams & Events

CUDA Streams and Events allow control over dependencies between grid launches:

grids launched into the same stream execute in-order, and events may be used to create

dependencies between streams. Streams and events created on the device serve this

exact same purpose.

Streams and events created within a grid exist within thread block scope but have

undefined behavior when used outside of the thread block where they were created. As

described above, all work launched by a thread block is implicitly synchronized when

the block exits; work launched into streams is included in this, with all dependencies

resolved appropriately. The behavior of operations on a stream that has been modified

outside of thread block scope is undefined.

Streams and events created on the host have undefined behavior when used within any

kernel, just as streams and events created by a parent grid have undefined behavior if

used within a child grid.

Ordering and Concurrency

The ordering of kernel launches from the device runtime follows CUDA Stream

ordering semantics. Within a thread block, all kernel launches into the same stream are

executed in-order. With multiple threads in the same thread block launching into the

same stream, the ordering within the stream is dependent on the thread scheduling

within the block, which may be controlled with synchronization primitives such as

__syncthreads().

Note that because streams are shared by all threads within a thread block, the implicit

‘NULL’ stream is also shared. If multiple threads in a thread block launch into the

implicit stream, then these launches will be executed in-order. If concurrency is desired,

explicit named streams should be used.

Dynamic Parallelism enables concurrency to be expressed more easily within a program;

however, the device runtime introduces no new concurrency guarantees within the

CUDA execution model. There is no guarantee of concurrent execution between any

number of different thread blocks on a device.

The lack of concurrency guarantee extends to parent thread blocks and their child grids.

When a parent thread block launches a child grid, the child is not guaranteed to begin

execution until the parent thread block reaches an explicit synchronization point (e.g.

cudaDeviceSynchronize()).

Execution Environment and Memory Model

CUDA Dynamic Parallelism Programming Guide 6

While concurrency will often easily be achieved, it may vary as a function of device

configuration, application workload, and runtime scheduling. It is therefore unsafe to

depend upon any concurrency between different thread blocks.

Device Management

There is no multi-GPU support from the device runtime; the device runtime is only

capable of operating on the device upon which it is currently executing. It is permitted,

however, to query properties for any CUDA capable device in the system.

MEMORY MODEL

Parent and child grids share the same global and constant memory storage, but have

distinct local and shared memory.

Coherence and Consistency

Global Memory

Parent and child grids have coherent access to global memory, with weak consistency

guarantees between child and parent. There are two points in the execution of a child

grid when its view of memory is fully consistent with the parent thread: when the child

grid is invoked by the parent, and when the child grid completes as signaled by a

synchronization API invocation in the parent thread.

All global memory operations in the parent thread prior to the child grid’s invocation

are visible to the child grid. All memory operations of the child grid are visible to the

parent after the parent has synchronized on the child grid’s completion.

In the following example, the child grid executing child_launch is only guaranteed to

see the modifications to data made before the child grid was launched. Since thread 0 of

the parent is performing the launch, the child will be consistent with the memory seen

by thread 0 of the parent. Due to the first __syncthreads() call, the child will see

data[0]=0, data[1]=1, ..., data[255]=255 (without the __syncthreads() call, only

data[0] would be guaranteed to be seen by the child). When the child grid returns,

thread 0 is guaranteed to see modifications made by the threads in its child grid. Those

Execution Environment and Memory Model

CUDA Dynamic Parallelism Programming Guide 7

modifications become available to the other threads of the parent grid only after the

second __syncthreads() call:

__global__ void child_launch(int *data) {

 data[threadIdx.x] = data[threadIdx.x]+1;

}

__global__ void parent_launch(int *data) {

 data[threadIdx.x] = threadIdx.x;

 __syncthreads();

 If (threadIdx.x == 0) {

 child_launch<<< 1, 256 >>>(data);

 cudaDeviceSynchronize();

 }

__syncthreads();

}

void host_launch(int *data) {

parent_launch<<< 1, 256 >>>(data);

}

Zero-Copy Memory

Zero-copy system memory has identical coherence and consistency guarantees to global

memory, and follows the semantics detailed above. A kernel may not allocate or free

zero-copy memory, but may use pointers to zero-copy passed in from the host program.

Constant Memory

Constants are immutable and may not be modified from the device, even between

parent and child launches. That is to say, the value of all __constant__ variables must be

set from the host prior to launch. Constant memory is inherited automatically by all

child kernels from their respective parents.

Taking the address of a constant memory object from within a kernel thread has the

same semantics as for all CUDA programs, and passing that pointer from parent to child

or from a child to parent is naturally supported.

Shared and Local Memory

Shared and Local memory is private to a thread block or thread, respectively, and is not

visible or coherent between parent and child. Behavior is undefined when an object in

Execution Environment and Memory Model

CUDA Dynamic Parallelism Programming Guide 8

one of these locations is referenced outside of the scope within which it belongs, and

may cause an error.

The NVIDIA compiler will attempt to warn if it can detect that a pointer to local or

shared memory is being passed as an argument to a kernel launch. At runtime, the

programmer may use the __isGlobal() intrinsic to determine whether a pointer references

global memory and so may safely be passed to a child launch.

Note that calls to cudaMemcpy*Async() or cudaMemset*Async() may invoke new child

kernels on the device in order to preserve stream semantics. As such, passing shared or

local memory pointers to these APIs is illegal and will return an error.

Local Memory

Local memory is private storage for an executing thread, and is not visible outside of

that thread. It is illegal to pass a pointer to local memory as a launch argument when

launching a child kernel. The result of dereferencing such a local memory pointer from a

child will be undefined.

For example the following is illegal, with undefined behavior if x_array is accessed by

child_launch:

int x_array[10]; // Creates x_array in parent’s local memory

child_launch<<< 1, 1 >>>(x_array);

It is sometimes difficult for a programmer to be aware of when a variable is placed into

local memory by the compiler. As a general rule, all storage passed to a child kernel

should be allocated explicitly from the global-memory heap, either with cudaMalloc(),

new() or by declaring __device__ storage at global scope.

For example:

__device__ int value;

__device__ void x() {

 value = 5;

 child<<< 1, 1 >>>(&value);

}

__device__ void y() {

 int value = 5;

 child<<< 1, 1 >>>(&value);

}

Correct – “value” is global storage Invalid – “value” is local storage

Texture Memory

Writes to the global memory region over which a texture is mapped are incoherent with

respect to texture accesses. Coherence for texture memory is enforced at the invocation

of a child grid and when a child grid completes. This means that writes to memory prior

to a child kernel launch are reflected in texture memory accesses of the child. Similarly,

Execution Environment and Memory Model

CUDA Dynamic Parallelism Programming Guide 9

writes to memory by a child will be reflected in the texture memory accesses by a parent,

but only after the parent synchronizes on the child's completion. Concurrent accesses by

parent and child may result in inconsistent data.

CUDA Dynamic Parallelism Programming Guide 10

PROGRAMMING INTERFACE

CUDA C/C++ REFERENCE

This section describes changes and additions to the CUDA C/C++ language extensions

for supporting Dynamic Parallelism.

The language interface and API available to CUDA kernels using CUDA C/C++ for

Dynamic Parallelism, referred to as the Device Runtime, is substantially like that of the

CUDA Runtime API available on the host. Where possible the syntax and semantics of

the CUDA Runtime API have been retained in order to facilitate ease of code reuse for

routines that may run in either the host or device environments.

As with all code in CUDA C/C++, the APIs and code outlined here is per-thread code.

This enables each thread to make unique, dynamic decisions regarding what kernel or

operation to execute next. There are no synchronization requirements between threads

within a block to execute any of the provided device runtime APIs, which enables the

device runtime API functions to be called in arbitrarily divergent kernel code without

deadlock.

Device-Side Kernel Launch
Kernels may be launched from the device using the standard CUDA <<< >>> syntax:

kernel_name<<< Dg, Db, Ns, S >>>([kernel arguments]);

 Dg is of type dim3 and specifies the dimensions and size of the grid

 Db is of type dim3 and specifies the dimensions and size of each thread block

Programming Interface

CUDA Dynamic Parallelism Programming Guide 11

 Ns is of type size_t and specifies the number of bytes of shared memory that is

dynamically allocated per thread block for this call and addition to statically allocated

memory. Ns is an optional argument that defaults to 0.

 S is of type cudaStream_t and specifies the stream associated with this call. The

stream must have been allocated in the same thread block where the call is being

made. S is an optional argument that defaults to 0.

Launches are Asynchronous

Identical to host-side launches, all device-side kernel launches are asynchronous with

respect to the launching thread. That is to say, the <<<>>> launch command will return

immediately and the launching thread will continue to execute until it hits an explicit

launch-synchronization point such as cudaDeviceSynchronize(). The grid launch is posted

to the device and will execute independently of the parent thread. The child grid may

begin execution at any time after launch, but is not guaranteed to begin execution until

the launching thread reaches an explicit launch-synchronization point.

Launch Environment Configuration

All global device configuration settings (e.g. shared memory & L1 cache size as returned

from cudaDeviceGetCacheConfig(), and device limits returned from cudaDeviceGetLimit())

will be inherited from the parent. That is to say if, when the parent is launched,

execution is configured globally for 16k of shared memory and 48k of L1 cache, then the

child’s execution state will be configured identically. Likewise, device limits such as

stack size will remain as-configured.

For host-launched kernels, per-kernel configurations set from the host will take

precedence over the global setting. These configurations will be used when the kernel is

launched from the device as well. It is not possible to reconfigure a kernel’s environment

from the device.

Launch From __host__ __device__ Functions

Although the device runtime enables kernel launches from either the host or device,

kernel launches from __host__ __device__ functions are unsupported. The compiler will

fail to compile if a __host__ device__ function is used to launch a kernel.

Programming Interface

CUDA Dynamic Parallelism Programming Guide 12

Streams

Both named and unnamed (NULL) streams are available from the device runtime.

Named streams may be used by any thread within a thread-block, but stream handles

may not be passed to other blocks or child/parent kernels. In other words, a stream

should be treated as private to the block in which it is created. Stream handles are not

guaranteed to be unique between blocks, so using a stream handle within a block that

did not allocate it will result in undefined behavior.

Similar to host-side launch, work launched into separate streams may run concurrently,

but actual concurrency is not guaranteed. Programs that depend upon concurrency

between child kernels are not supported by the CUDA programming model and will

have undefined behavior.

The host-side NULL stream's cross-stream barrier semantic is not supported on the

device (see below for details). In order to retain semantic compatibility with the host

runtime, all device streams must be created using the cudaStreamCreateWithFlags() API,

passing the cudaStreamNonBlocking flag. The cudaStreamCreate() call is a host-runtime-

only API and will fail to compile for the device.

As cudaStreamSynchronize() and cudaStreamQuery() are unsupported by the device

runtime, cudaDeviceSynchronize() should be used instead when the application needs to

know that stream-launched child kernels have completed.

The Implicit (NULL) Stream

Within a host program, the unnamed (NULL) stream has additional barrier

synchronization semantics with other streams (see the CUDA Programming Guide for

details). The device runtime offers a single implicit, unnamed stream shared between all

threads in a block, but as all named streams must be created with the

cudaStreamNonBlocking flag, work launched into the NULL stream will not insert an

implicit dependency on pending work in any other streams.

Events

Only the inter-stream synchronization capabilities of CUDA events are supported. This

means that cudaStreamWaitEvent() is supported, but cudaEventSynchronize()

cudaEventElapsedTime(), and cudaEventQuery() are not. As cudaEventElapsedTime() is not

supported, cudaEvents must be created via cudaEventCreateWithFlags(), passing the

cudaEventDisableTiming flag.

Programming Interface

CUDA Dynamic Parallelism Programming Guide 13

As for all device runtime objects, event objects may be shared between all threads within

the thread-block which created them but are local to that block and may not be passed to

other kernels, or between blocks within the same kernel. Event handles are not

guaranteed to be unique between blocks, so using an event handle within a block that

did not create it will result in undefined behavior.

Synchronization

The cudaDeviceSynchronize() function will synchronize on all work launched by any

thread in the thread-block up to the point where cudaDeviceSynchronize() was called.

Note that cudaDeviceSynchronize() may be called from within divergent code (see below).

It is up to the program to perform sufficient additional inter-thread synchronization, for

example via a call to __syncthreads(), if the calling thread is intended to synchronize with

child grids invoked from other threads.

Block-Wide Synchronization

The cudaDeviceSynchronize() function does not imply intra-block synchronization. In

particular, without explicit synchronization via a __syncthreads() directive the calling

thread can make no assumptions about what work has been launched by any thread

other than itself. For example if multiple threads within a block are each launching work

and synchronization is desired for all this work at once (perhaps because of event-based

dependencies), it is up to the program to guarantee that this work is submitted by all

threads before calling cudaDeviceSynchronize().

Because the implementation is permitted to synchronize on launches from any thread in

the block, it is quite possible that simultaneous calls to cudaDeviceSynchronize() by

multiple threads will drain all work in the first call and then have no effect for the later

calls.

Device Management

Only the device on which a kernel is running will be controllable from that kernel. This

means that device APIs such as cudaSetDevice() are not supported by the device runtime.

The active device as seen from the GPU (returned from cudaGetDevice()) will have the

same device number as seen from the host system. The cudaGetDeviceProperty() call may

request information about another device as this API allows specification of a device ID

Programming Interface

CUDA Dynamic Parallelism Programming Guide 14

as a parameter of the call. Note that the catch-all cudaGetDeviceProperties() API is not

offered by the device runtime – properties must be queried individually.

Memory Declarations

Device and Constant Memory

Memory declared at file scope with __device__ or __constant__ qualifiers behave

identically when using the device runtime. All kernels may read or write __device__

variables, whether the kernel was initially launched by the host or device runtime.

Equivalently, all kernels will have the same view of __constant__s as declared at the

module scope.

Textures & Surfaces

CUDA supports dynamically created texture and surface objects1, where a texture

reference may be created on the host, passed to a kernel, used by that kernel, and then

destroyed from the host. The device runtime does not allow creation or destruction of

texture or surface objects from within device code, but texture and surface objects

created from the host may be used and passed around freely on the device. Regardless

of where they are created, dynamically created texture objects are always valid and may

be passed to child kernels from a parent.

NOTE: The device runtime does not support legacy module-scope (i.e. Fermi-style)

textures and surfaces within a kernel launched from the device. Module-scope (legacy)

textures may be created from the host and used in device code as for any kernel, but

may only be used by a top-level kernel (i.e. the one which is launched from the host).

Shared Memory Variable Declarations

In CUDA C/C++ shared memory can be declared either as a statically sized file-scope or

function-scoped variable, or as an extern variable with the size determined at runtime by

the kernel’s caller via a launch configuration argument. Both types of declarations are

valid under the device runtime.

1 Dynamically created texture and surface objects are an addition to the CUDA memory model

introduced with CUDA 5.0. Please see the CUDA Programming Guide for details.

Programming Interface

CUDA Dynamic Parallelism Programming Guide 15

__global__ void permute(int n, int *data) {

 extern __shared__ int smem[];

 if (n <= 1)

 return;

 smem[threadIdx.x] = data[threadIdx.x];

__syncthreads();

 permute_data(smem, n);

__syncthreads();

// Write back to GMEM since we can’t pass SMEM to children.

 data[threadIdx.x] = smem[threadIdx.x];

__syncthreads();

if (threadIdx.x == 0) {

 permute<<< 1, 256, n/2*sizeof(int) >>>(n/2, data);

 permute<<< 1, 256, n/2*sizeof(int) >>>(n/2, data+n/2);

 }

}

void host_launch(int *data) {

permute<<< 1, 256, 256*sizeof(int) >>>(256, data);

}

Symbol Addresses

Device-side symbols (i.e. those marked __device__) may be referenced from within a

kernel simply via the ‚&‛ operator, as all global-scope device variables are in the

kernel’s visible address space. This also applies to __constant__ symbols, although in

this case the pointer will reference read-only data.

Given that device-side symbols can be referenced directly, those CUDA runtime APIs

which reference symbols (e.g. cudaMemcpyToSymbol() or cudaGetSymbolAddress()) are

redundant and hence not supported by the device runtime. Note this implies that

__constant__ data cannot be altered from within a running kernel, even ahead of a child

kernel launch, as references to __constant__ space are read-only.

API Errors and Launch Failures

As usual for the CUDA runtime, any function may return an error code. The last error

code returned is recorded and may be retrieved via the cudaGetLastError() call. Errors are

recorded per-thread, so that each thread can identify the most recent error that it has

generated. The error code is of type cudaError_t.

Similar to a host-side launch, device-side launches may fail for many reasons (invalid

arguments, etc). The user must call cudaGetLastError() to determine if a launch generated

Programming Interface

CUDA Dynamic Parallelism Programming Guide 16

an error, however lack of an error after launch does not imply the child kernel

completed successfully.

For device-side exceptions, e.g., access to an invalid address, an error in a child grid will

be returned to the host instead of being returned by the parent’s call to

cudaDeviceSynchronize().

Launch Setup APIs

Kernel launch is a system-level mechanism exposed through the device runtime library,

and as such is available directly from PTX via the underlying cudaGetParameterBuffer()

and cudaLaunchDevice() APIs. It is permitted for a CUDA application to call these APIs

itself, with the same requirements as for PTX. In both cases, the user is then responsible

for correctly populating all necessary data structures in the correct format according to

specification. Backwards compatibility is guaranteed in these data structures.

As with host-side launch, the device-side operator <<<>>> maps to underlying kernel

launch APIs. This is so that users targeting PTX will be able to enact a launch, and so

that the compiler front-end can translate <<<>>> into these calls.

Runtime API Launch

Functions

Description of Difference From Host Runtime Behaviour

(behaviour is identical if no description)

cudaGetParameterBuffer Generated automatically from <<<>>>. Note different API to
host equivalent.

cudaLaunchDevice Generated automatically from <<<>>>. Note different API to
host equivalent.

New Device-only launch implementation functions

The APIs for these launch functions are different to those of the CUDA Runtime API,

and are defined as follows:

extern __device__ cudaError_t cudaGetParameterBuffer(void **params);

extern __device__ cudaError_t cudaLaunchDevice(void *kernel,

 void* params, dim3 gridDim,

 dim3 blockDim,

 unsigned int sharedMemSize = 0,

 cudaStream_t stream = 0);

Programming Interface

CUDA Dynamic Parallelism Programming Guide 17

API Reference

The portions of the CUDA Runtime API supported in the device runtime are detailed

here. Host and device runtime APIs have identical syntax; semantics are the same except

where indicated. The table below provides an overview of the API relative to the version

available from the host.

Runtime API Functions Details

cudaDeviceSynchronize Synchronizes on work launched from thread’s own block
only

cudaDeviceGetCacheConfig

cudaDeviceGetLimit

cudaGetLastError Last error is per-thread state, not per-block state

cudaPeekAtLastError

cudaGetErrorString

cudaGetDeviceCount

cudaGetDeviceProperty Will return properties for any device

cudaGetDevice Always returns current device ID as would be seen from
host

cudaStreamCreateWithFlags Must pass cudaStreamNonBlocking flag

cudaStreamDestroy

cudaStreamWaitEvent

cudaEventCreateWithFlags Must pass cudaEventDisableTiming flag

cudaEventRecord

cudaEventDestroy

cudaFuncGetAttributes

cudaMemcpyAsync Notes about all memcpy/memset functions:

cudaMemcpy2DAsync Only async memcpy/set functions are supported

cudaMemcpy3DAsync Only device-to-device memcpy is permitted

cudaMemsetAsync May not pass in local or shared memory pointers

cudaMemset2DAsync

cudaMemset3DAsync

cudaRuntimeGetVersion

cudaMalloc May not call cudaFree on the device on a pointer created

cudaFree on the host, and vice-versa

Supported API functions

Programming Interface

CUDA Dynamic Parallelism Programming Guide 18

DEVICE-SIDE LAUNCH FROM PTX

This section is for the programming language and compiler implementers who target

Parallel Thread Execution (PTX) and plan to support Dynamic Parallelism in their

language. It provides the low-level details related to supporting kernel launches at the

PTX level.

Kernel Launch APIs

Device-side kernel launches can be implemented using the following two APIs

accessible from PTX: cudaLaunchDevice() and cudaGetParameterBuffer().

cudaLaunchDevice() launches the specified kernel with the parameter buffer that is

obtained by calling cudaGetParameterBuffer() and filled with the parameters to the

launched kernel. The parameter buffer can be NULL, i.e., no need to invoke

cudaGetParameterBuffer(), if the launched kernel does not take any parameters.

cudaLaunchDevice

At the PTX level, cudaLaunchDevice() needs to be declared in one of the two forms shown

below before it is used.

// When .address_size is 64

.extern .func(.param .b32 func_retval0) cudaLaunchDevice

(

 .param .b64 func,

 .param .b64 parameterBuffer,

 .param .align 4 .b8 gridDimension[12],

 .param .align 4 .b8 blockDimension[12],

 .param .b32 sharedMemSize,

 .param .b64 stream

)

;

PTX-level declaration of cudaLaunchDevice() when .address_size is 64

// When .address_size is 32

.extern .func(.param .b32 func_retval0) cudaLaunchDevice

(

 .param .b32 func,

 .param .b32 parameterBuffer,

 .param .align 4 .b8 gridDimension[12],

 .param .align 4 .b8 blockDimension[12],

 .param .b32 sharedMemSize,

Programming Interface

CUDA Dynamic Parallelism Programming Guide 19

 .param .b32 stream

)

;

PTX-level declaration of cudaLaunchDevice() when .address_size is 32

The CUDA-level declaration below is mapped to one of the aforementioned PTX-level

declarations and is found in the system header file cuda_device_runtime_api.h. The

function is defined in the cudadevrt system library, which must be linked with a program

in order to use device-side kernel launch functionality.

extern “C” __device__

cudaError_t cudaLaunchDevice(void *func, void *parameterBuffer,

 dim3 gridDimension, dim3 blockDimension,

 unsigned int sharedMemSize,

 cudaStream_t stream);

CUDA-level declaration of cudaLaunchDevice()

The first parameter is a pointer to the kernel to be is launched, and the second parameter

is the parameter buffer that holds the actual parameters to the launched kernel. The

layout of the parameter buffer is explained in ‚Parameter Buffer Layout‛, below. Other

parameters specify the launch configuration, i.e., as grid dimension, block dimension,

shared memory size, and the stream associated with the launch (please refer to the

CUDA Programming Guide for the detailed description of launch configuration, and of

cudaLaunchDevice() specifically).

cudaGetParameterBuffer

cudaGetParameterBuffer() needs to be declared at the PTX level before it’s used. The PTX-

level declaration must be in one of the two forms given below, depending on address

size:

// When .address_size is 64

.extern .func(.param .b64 func_retval0) cudaGetParameterBuffer

(

 .param .b64 alignment,

 .param .b64 size

)

;

PTX-level declaration of cudaGetParameterBuffer() when .address_size is 64

Programming Interface

CUDA Dynamic Parallelism Programming Guide 20

.extern .func(.param .b32 func_retval0) cudaGetParameterBuffer

(

 .param .b32 alignment,

 .param .b32 size

)

;

PTX-level declaration of cudaGetParameterBuffer() when .address_size is 32

The following CUDA-level declaration of cudaGetParameterBuffer() is mapped to the

aforementioned PTX-level declaration:

extern “C” __device__

void *cudaGetParameterBuffer(size_t alignment, size_t size);

CUDA-level declaration of cudaGetParameterBuffer()

The first parameter specifies the alignment requirement of the parameter buffer and the

second parameter the size requirement in bytes. In the current implementation, the

parameter buffer returned by cudaGetParameterBuffer() is always guaranteed to be 64-

byte aligned, and the alignment requirement parameter is ignored. However, it is

recommended to pass the correct alignment requirement value – which is the largest

alignment of any parameter to be placed in the parameter buffer – to

cudaGetParameterBuffer() to ensure portability in the future.

Parameter Buffer Layout

Parameter reordering in the parameter buffer is prohibited, and each individual

parameter placed in the parameter buffer is required to be aligned. That is, each

parameter must be placed at the nth byte in the parameter buffer, where n is the smallest

multiple of the parameter size that is greater than the offset of the last byte taken by the

preceding parameter. The maximum size of the parameter buffer is 4KB.

For a more detailed description of PTX code generated by the CUDA compiler, please

refer to the PTX-3.5 specification.

Programming Interface

CUDA Dynamic Parallelism Programming Guide 21

TOOLKIT SUPPORT FOR DYNAMIC PARALLELISM

Including device runtime API in CUDA code

Similar to the host-side runtime API, prototypes for the CUDA device runtime API are

included automatically during program compilation. There is no need to include

cuda_device_runtime_api.h explicitly.

Compiling and Linking

CUDA programs are automatically linked with the host runtime library when compiled

with nvcc, but the device runtime is shipped as a static library which must explicitly be

linked with a program which wishes to use it.

The device runtime is offered as a static library (cudadevrt.lib on Windows, libcudadevrt.a

under Linux and MacOS), against which a GPU application that uses the device runtime

must be linked. Linking of device libraries can be accomplished through nvcc and/or

nvlink. Two simple examples are shown below.

A device runtime program may be compiled and linked in a single step, if all required

source files can be specified from the command line:

$ nvcc -arch=sm_35 -rdc=true hello_world.cu -o hello -lcudadevrt

It is also possible to compile CUDA .cu source files first to object files, and then link

these together in a two-stage process:

$ nvcc -arch=sm_35 -dc hello_world.cu -o hello_world.o

$ nvcc -arch=sm_35 -rdc=true hello_world.o -o hello -lcudadevrt

Please see the ‚Using Separate Compilation‛ section of ‚The CUDA Driver Compiler

NVCC‛ guide for more details.

CUDA Dynamic Parallelism Programming Guide 22

PROGRAMMING GUIDELINES

BASICS

The device runtime is a functional subset of the host runtime. API level device

management, kernel launching, device memcpy, stream management, and event

management are exposed from the device runtime.

Programming for the device runtime should be familiar to someone who already has

experience with CUDA. Device runtime syntax and semantics are largely the same as

that of the host API, with any exceptions detailed earlier in this document.

Programming guidelines

CUDA Dynamic Parallelism Programming Guide 23

The following example shows a simple ‚Hello World‛ program incorporating dynamic

parallelism:

#include <stdio.h>

__global__ void childKernel()

{

 printf("Hello ");

}

__global__ void parentKernel()

{

 // launch child

 childKernel<<<1,1>>>();

 if (cudaSuccess != cudaGetLastError()) {

 return;

 }

 // wait for child to complete

 if (cudaSuccess != cudaDeviceSynchronize()) {

 return;

 }

 printf("World!\n");

}

int main(int argc, char *argv[])

{

 // launch parent

 parentKernel<<<1,1>>>();

 if (cudaSuccess != cudaGetLastError()) {

 return 1;

 }

 // wait for parent to complete

 if (cudaSuccess != cudaDeviceSynchronize()) {

 return 2;

 }

 return 0;

}

This program may be built in a single step from the command line as follows:

$ nvcc -arch=sm_35 -rdc=true hello_world.cu -o hello -lcudadevrt

Programming guidelines

CUDA Dynamic Parallelism Programming Guide 24

PERFORMANCE

Synchronization

Synchronization by one thread may impact the performance of other threads in the same

Thread Block, even when those other threads do not call cudaDeviceSynchronize()

themselves. This impact will depend upon the underlying implementation.

Dynamic-parallelism-enabled Kernel overhead

System software which is active when controlling dynamic launches may impose an

overhead on any kernel which is running at the time, whether or not it invokes kernel

launches of its own. This overhead arises from the device runtime’s execution tracking

and management software and may result in decreased performance for e.g. library calls

when made from the device compared to from the host side. This overhead is, in

general, incurred for applications that link against the device runtime library.

IMPLEMENTATION RESTRICTIONS & LIMITATIONS

Dynamic Parallelism guarantees all semantics described in this document, however,

certain hardware and software resources are implementation-dependent and limit the

scale, performance and other properties of a program which uses the device runtime.

Runtime

Memory Footprint

The device runtime system software reserves memory for various management

purposes, in particular one reservation which is used for saving parent-grid state during

synchronization, and a second reservation for tracking pending grid launches.

Configuration controls are available to reduce the size of these reservations in exchange

for certain launch limitations. See Configuration Options, below, for details.

The majority of reserved memory is allocated as backing-store for parent kernel state, for

use when synchronizing on a child launch. Conservatively, this memory must support

storing of state for the maximum number of live threads possible on the device. This

means that each parent generation at which cudaDeviceSynchronize() is callable may

Programming guidelines

CUDA Dynamic Parallelism Programming Guide 25

require up to 150MB of device memory, depending on the device configuration, which

will be unavailable for program use even if it is not all consumed.

Nesting & Synchronization Depth

Using the device runtime, one kernel may launch another kernel, and that kernel may

launch another, and so on. Each subordinate launch is considered a new ‚nesting level‛,

and the total number of levels is the ‚nesting depth‛ of the program. The

‚synchronization depth‛ is defined as the deepest level at which the program will

explicitly synchronize on a child launch. Typically this is one less than the nesting depth

of the program, but if the program does not need to call cudaDeviceSynchronize() at all

levels then the synchronization depth might be substantially different to the nesting

depth.

The overall maximum nesting depth is limited to 24, but practically speaking the real

limit will be the amount of memory required by the system for each new level (see

Memory Footprint above). Any launch which would result in a kernel at a deeper level

than the maximum will fail. Note that this may also apply to cudaMemcpyAsync(), which

might itself generate a kernel launch. See Configuration Options, below, for details.

By default, sufficient storage is reserved for two levels of synchronization. This

maximum synchronization depth (and hence reserved storage) may be controlled by

calling cudaDeviceSetLimit() and specifying cudaLimitDevRuntimeSyncDepth. The number

of levels to be supported must be configured before the top-level kernel is launched

from the host, in order to guarantee successful execution of a nested program. Calling

cudaDeviceSynchronize() at a depth greater than the specified maximum synchronization

depth will return an error.

An optimization is permitted where the system detects that it need not reserve space for

the parent’s state in cases where the parent kernel never calls cudaDeviceSynchronize(). In

this case, because explicit parent/child synchronization never occurs, the memory

footprint required for a program will be much less than the conservative maximum.

Such a program could specify a shallower maximum synchronization depth to avoid

over-allocation of backing store.

Pending Kernel Launches

When a kernel is launched, all associated configuration and parameter data is tracked

until the kernel completes. This data is stored within a system-managed launch pool.

The size of the launch pool is configurable by calling cudaDeviceSetLimit() from the host

and specifying cudaLimitDevRuntimePendingLaunchCount.

Programming guidelines

CUDA Dynamic Parallelism Programming Guide 26

Configuration Options

Resource allocation for the device runtime system software is controlled via the

cudaDeviceSetLimit() API from the host program. Limits must be set before any kernel is

launched, and may not be changed while the GPU is actively running programs.

The following named limits may be set:

Limit Behaviour

cudaLimitDevRuntimeSyncDepth Sets the maximum depth at which
cudaDeviceSynchronize() may be called.
Launches may be performed deeper than this,
but explicit synchronization deeper than this
limit will return the
cudaErrorLaunchMaxDepthExceeded. The
default maximum sync depth is 2.

cudaLimitDevRuntimePendingLaunchCount Controls the amount of memory set aside for
buffering kernel launches which have not yet
begun to execute, due either to unresolved
dependencies or lack of execution resources.
When the buffer is full, launches will set the
thread’s last error to
cudaErrorLaunchPendingCountExceeded. The
default pending launch count is 2048 launches.

Memory Allocation and Lifetime

cudaMalloc() and cudaFree() have distinct semantics between the host and device

environments. When invoked from the host, cudaMalloc() allocates a new region from

unused device memory. When invoked from the device runtime these functions map to

device-side malloc() and free(). This implies that within the device environment the total

allocatable memory is limited to the device malloc() heap size, which may be smaller

than the available unused device memory. Also, it is an error to invoke cudaFree() from

the host program on a pointer which was allocated by cudaMalloc() on the device or vice-

versa.

 cudaMalloc() on Host cudaMalloc() on Device

cudaFree() on Host Supported Not Supported

cudaFree() on Device Not Supported Supported

Allocation limit Free device memory cudaLimitMallocHeapSize

Programming guidelines

CUDA Dynamic Parallelism Programming Guide 27

SM Id and Warp Id

Note that in PTX %smid and %warpid are defined as volatile values. The device runtime

may reschedule thread blocks onto different SMs in order to more efficiently manage

resources. As such, it is unsafe to rely upon %smid or %warpid remaining unchanged

across the lifetime of a thread or thread block.

ECC Errors

No notification of ECC errors is available to code within a CUDA kernel. ECC errors are

reported at the host side once the entire launch tree has completed. Any ECC errors

which arise during execution of a nested program will either generate an exception or

continue execution (depending upon error and configuration).

Programming guidelines

CUDA Dynamic Parallelism Programming Guide 28

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER
DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO
WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR
A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication of otherwise under
any patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change
without notice. This publication supersedes and replaces all other information previously supplied. NVIDIA
Corporation products are not authorized as critical components in life support devices or systems without
express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, and <add all the other product names listed in this document> are trademarks
and/or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and
product names may be trademarks of the respective companies with which they are associated.

Copyright

© 2012 NVIDIA Corporation. All rights reserved.

	Introduction
	Overview
	Glossary
	Grid
	Thread Block
	Kernel Function
	Host
	Parent
	Child
	Thread Block Scope
	Device Runtime

	Execution Environment and Memory Model
	Execution Environment
	Parent and Child Grids
	Scope of CUDA Primitives
	Synchronization
	Streams & Events
	Ordering and Concurrency
	Device Management

	Memory Model
	Coherence and Consistency
	Global Memory
	Zero-Copy Memory
	Constant Memory
	Shared and Local Memory
	Local Memory

	Texture Memory

	Programming Interface
	CUDA C/C++ Reference
	Device-Side Kernel Launch
	Launches are Asynchronous
	Launch Environment Configuration
	Launch From __host__ __device__ Functions

	Streams
	The Implicit (NULL) Stream

	Events
	Synchronization
	Block-Wide Synchronization

	Device Management
	Memory Declarations
	Device and Constant Memory
	Textures & Surfaces
	Shared Memory Variable Declarations
	Symbol Addresses

	API Errors and Launch Failures
	Launch Setup APIs

	API Reference

	Device-Side Launch From PTX
	Kernel Launch APIs
	cudaLaunchDevice
	cudaGetParameterBuffer

	Parameter Buffer Layout

	Toolkit Support for Dynamic Parallelism
	Including device runtime API in CUDA code
	Compiling and Linking

	Programming guidelines
	Basics
	Performance
	Synchronization
	Dynamic-parallelism-enabled Kernel overhead

	Implementation Restrictions & Limitations
	Runtime
	Memory Footprint
	Nesting & Synchronization Depth
	Pending Kernel Launches
	Configuration Options
	Memory Allocation and Lifetime
	SM Id and Warp Id
	ECC Errors

