
NVIDIA CUDA TOOLKIT V5.0

v5.0 | October 2012

Release Notes for Windows, Linux, and Mac OS

www.nvidia.com
NVIDIA CUDA Toolkit v5.0 v5.0 | ii

REVISION HISTORY

‣ 10/2012 Version 5.0
‣ 08/2012 Version 5.0 RC
‣ 05/2012 Version 5.0 EA/Preview
‣ 04/2012 Version 4.2
‣ 01/2012 Version 4.1 Production
‣ 11/2011 Version 4.1 RC2
‣ 10/2011 Version 4.1 RC1
‣ 09/2011 Version 4.1 EA (Information in ReadMe.txt)
‣ 05/2011 Version 4.0
‣ 04/2011 Version 4.0 RC2 (Errata)
‣ 02/2011 Version 4.0 RC
‣ 11/2010 Version 3.2
‣ 10/2010 Version 3.2 RC2
‣ 09/2010 Version 3.2 RC

www.nvidia.com
NVIDIA CUDA Toolkit v5.0 v5.0 | iii

TABLE OF CONTENTS

Chapter 1. Release Highlights... 1
Chapter 2. Documentation... 2
Chapter 3. List of Important Files..3

3.1 Core Files.. 3
3.2 Windows lib Files... 4
3.3 Linux lib Files... 4
3.4 Mac OS X lib Files.. 4

Chapter 4. Supported NVIDIA Hardware...5
Chapter 5. Supported Operating Systems...6

5.1 Windows..6
5.2 Linux.. 6
5.3 Mac OS X...7

Chapter 6. Installation Notes.. 8
6.1 Windows..8
6.2 Linux.. 8

Chapter 7. New Features... 10
7.1 General CUDA..10

7.1.1 Linux... 11
7.2 CUDA Libraries...11

7.2.1 CUBLAS...11
7.2.2 CURAND..12
7.2.3 CUSPARSE.. 12
7.2.4 Math..13
7.2.5 NPP... 13

7.3 CUDA Tools... 14
7.3.1 CUDA Compiler... 14
7.3.2 CUDA-GDB... 14
7.3.3 CUDA-MEMCHECK...15
7.3.4 NVIDIA Nsight Eclipse Edition.. 15
7.3.5 NVIDIA Visual Profiler, Command Line Profiler.. 15

Chapter 8. Performance Improvements..16
8.1 CUDA Libraries...16

8.1.1 CUBLAS...16
8.1.2 CURAND..16
8.1.3 Math..16

Chapter 9. Resolved Issues... 18
9.1 General CUDA..18
9.2 CUDA Libraries...19

9.2.1 CURAND..19
9.2.2 CUSPARSE.. 19

www.nvidia.com
NVIDIA CUDA Toolkit v5.0 v5.0 | iv

9.2.3 NPP... 19
9.2.4 Thrust.. 19

9.3 CUDA Tools... 20
9.3.1 CUDA Compiler... 20
9.3.2 CUDA Occupancy Calculator... 20

Chapter 10. Known Issues.. 21
10.1 General CUDA.. 21

10.1.1 Linux, Mac OS...21
10.1.2 Windows..22

10.2 CUDA Libraries... 22
10.2.1 NPP..22

10.3 CUDA Tools..23
10.3.1 CUDA Compiler..23
10.3.2 NVIDIA Visual Profiler, Command Line Profiler...24

Chapter 11. Source Code for Open64 and CUDA-GDB.. 25
Chapter 12. More Information... 26

www.nvidia.com
NVIDIA CUDA Toolkit v5.0 v5.0 | v

LIST OF TABLES

Table 1 Supported Windows Compilers (32-bit and 64-bit)..6

Table 2 Distributions Currently Supported... 6

Table 3 Distributions No Longer Supported.. 7

www.nvidia.com
NVIDIA CUDA Toolkit v5.0 v5.0 | vi

www.nvidia.com
NVIDIA CUDA Toolkit v5.0 v5.0 | 1

 Chapter 1.
RELEASE HIGHLIGHTS

‣ CUDA Dynamic Parallelism allows __global__ and __device__ functions
running on the GPU to launch kernels using the familiar <<< >>> syntax and to
directly call CUDA Runtime API routines (previously this ability was only available
from __host__ functions).

‣ All __device__ functions can now be separately compiled and linked using NVCC.
This allows creation of closed-source static libraries of __device__ functions and
the ability for these libraries to call user-defined __device__ callback functions. The
linker support is considered to be a BETA feature in this release.

‣ Nsight Eclipse Edition for Linux and Mac OS is an integrated development
environment UI that allows developing, debugging, and optimizing CUDA code.

‣ A new command-line profiler, nvprof, provides summary information about where
applications spend the most time, so that optimization efforts can be properly ocused.

‣ See also the New Features section of this document.
‣ This release contains the following:

NVIDIA CUDA Toolkit documentation
NVIDIA CUDA compiler (nvcc) and supporting tools
NVIDIA CUDA runtime libraries
NVIDIA CUDA-GDB debugger
NVIDIA CUDA-MEMCHECK
NVIDIA Visual Profiler, nvprof, and command-line profiler
NVIDIA Nsight Eclipse Edition
NVIDIA CUBLAS, CUFFT, CUSPARSE, CURAND, Thrust, and
NVIDIA Performance Primitives (NPP) libraries

www.nvidia.com
NVIDIA CUDA Toolkit v5.0 v5.0 | 2

 Chapter 2.
DOCUMENTATION

‣ For a list of documents supplied with this release, please refer to the doc directory of
your CUDA Toolkit installation. PDF documents are available in the doc/pdf folder.
Several documents are now also available in HTML format and are found in the doc/
html folder.

‣ The HTML documentation is now fully available from a single entry page available
both locally in the CUDA Toolkit installation folder under doc/html/index.html
and online at http://docs.nvidia.com/cuda/html/index.html.

‣ The license information for the toolkit portion of this release can be found at doc/
EULA.txt.

‣ The CUDA Occupancy Calculator spreadsheet can be found at tools/
CUDA_Occupancy_Calculator.xls.

‣ The CHM documentation has been removed.

http://docs.nvidia.com/cuda/html/index.html

www.nvidia.com
NVIDIA CUDA Toolkit v5.0 v5.0 | 3

 Chapter 3.
LIST OF IMPORTANT FILES

3.1 Core Files
bin/
 nvcc CUDA C/C++ compiler
 cuda-gdb CUDA Debugger
 cuda-memcheck CUDA Memory Checker
 nsight Nsight Eclipse Edition (Linux and Mac OS)
 nvprof NVIDA Command-Line Profiler
 nvvp NVIDIA Visual Profiler (Located in libnvvp/
 on Windows)

include/
 cuda.h CUDA driver API header
 cudaGL.h CUDA OpenGL interop header for driver API
 cudaVDPAU.h CUDA VDPAU interop header for driver API
 (Linux)
 cuda_gl_interop.h CUDA OpenGL interop header for toolkit API
 (Linux)
 cuda_vdpau_interop.h CUDA VDPAU interop header for toolkit API
 (Linux)
 cudaD3D9.h CUDA DirectX 9 interop header (Windows)
 cudaD3D10.h CUDA DirectX 10 interop header (Windows)
 cudaD3D11.h CUDA DirectX 11 interop header (Windows)
 cufft.h CUFFT API header
 cublas_v2.h CUBLAS API header
 cublas.h CUBLAS Legacy API header
 cusparse_v2.h CUSPARSE API header
 cusparse.h CUSPARSE Legacy API header
 curand.h CURAND API header
 curand_kernel.h CURAND device API header
 thrust/* Thrust headers
 npp.h NPP API header
 nvToolsExt*.h NVIDIA Tools Extension headers (Linux and Mac)
 nvcuvid.h CUDA Video Decoder header (Windows and Linux)
 cuviddec.h CUDA Video Decoder header (Windows and Linux)
 NVEncodeDataTypes.h CUDA Video Encoder header (Windows; C-library
 or DirectShow)
 NVEncoderAPI.h CUDA Video Encoder header (Windows; C-library)
 INvTranscodeFilterGUIDs.h CUDA Video Encoder header (Windows; DirectShow)
 INVVESetting.h CUDA Video Encoder header (Windows; DirectShow)

extras/
 CUPTI CUDA Performance Tool Interface API
 Debugger CUDA Debugger API

List of Important Files

www.nvidia.com
NVIDIA CUDA Toolkit v5.0 v5.0 | 4

src/
 fortran.{c,h} FORTRAN interface files for CUBLAS and CUSPARSE

3.2 Windows lib Files
(Corresponding 32-bit or 64-bit DLLs are in bin/.)
lib/{Win32,x64}/
 cuda.lib CUDA driver library
 cudart.lib CUDA runtime library
 cudadevrt.lib CUDA runtime device library
 cublas.lib CUDA BLAS library
 cublas_device.lib CUDA BLAS device library
 cufft.lib CUDA FFT library
 cusparse.lib CUDA Sparse Matrix library
 curand.lib CUDA Random Number Generation library
 npp.lib NVIDIA Performance Primitives library
 nvcuvenc.lib CUDA Video Encoder library
 nvcuvid.lib CUDA High-level Video Decoder library

 OpenCL.lib OpenCL library

3.3 Linux lib Files
lib{64}/
 libcudart.so CUDA runtime library
 libcuinj.so CUDA internal library for profiling
 libcublas.so CUDA BLAS library
 libcublas_device.a CUDA BLAS device library
 libcufft.so CUDA FFT library
 libcusparse.so CUDA Sparse Matrix library
 libcurand.so CUDA Random Number Generation library
 libnpp.so NVIDIA Performance Primitives library

3.4 Mac OS X lib Files
lib/
 libcudart.dylib CUDA runtime library
 libcuinj.dylib CUDA internal library for profiling
 libcublas.dylib CUDA BLAS library
 libcublas_device.a CUDA BLAS device library
 libcufft.dylib CUDA FFT library
 libcusparse.dylib CUDA Sparse Matrix library
 libcurand.dylib CUDA Random Number Generation library
 libnpp.dylib NVIDIA Performance Primitives library
 libtlshook.dylib NVIDIA internal library

www.nvidia.com
NVIDIA CUDA Toolkit v5.0 v5.0 | 5

 Chapter 4.
SUPPORTED NVIDIA HARDWARE

See http://www.nvidia.com/object/cuda_gpus.html.

http://www.nvidia.com/object/cuda_gpus.html

www.nvidia.com
NVIDIA CUDA Toolkit v5.0 v5.0 | 6

 Chapter 5.
SUPPORTED OPERATING SYSTEMS

5.1 Windows
‣ Supported Windows Operating Systems (32-bit and 64-bit)

Windows 8
Windows 7
Windows Vista
Windows XP
Windows Server 2012
Windows Server 2008 R2

Table 1 Supported Windows Compilers (32-bit and 64-bit)

Compiler IDE

Visual C++ 10.0 Visual Studio 2010

Visual C++ 9.0 Visual Studio 2008

5.2 Linux
‣ The CUDA development environment relies on tight integration with the host

development environment, including the host compiler and C runtime libraries, and
is therefore only supported on distribution versions that have been qualified for this
CUDA Toolkit release.

Table 2 Distributions Currently Supported

Distribution 32 64 Kernel GCC GLIBC

Fedora 16 x x 3.1.0-7.fc16 4.6.2 2.14.90

ICC Compiler 12.x x

Supported Operating Systems

www.nvidia.com
NVIDIA CUDA Toolkit v5.0 v5.0 | 7

Distribution 32 64 Kernel GCC GLIBC

OpenSUSE 12.1 x 3.1.0-1.2-desktop 4.6.2 2.14.1

Red Hat RHEL 6.x x 2.6.32-131.0.15.el6 4.4.5 2.12

Red Hat RHEL 5.5+ x 2.6.18-238.el5 4.1.2 2.5

SUSE SLES 11 SP2 x 3.0.13-0.27-pae 4.3.4 2.11.3

SUSE SLES 11.1 x x 2.6.32.12-0.7-pae 4.3.4 2.11.1

Ubuntu 11.10 x x 3.0.0-19-generic-pae 4.6.1 2.13

Ubuntu 10.04 x x 2.6.35-23-generic 4.4.5 2.12.1

Table 3 Distributions No Longer Supported

Distribution 32 64 Kernel GCC GLIBC

Fedora 14 x x 2.6.35.6-45 4.5.1 2.12.90

ICC Compiler 11.1 x

OpenSUSE 11.2 x x 2.6.31.5-0.1 4.4.1 2.10.1

Red Hat RHEL 6.x x 2.6.32-131.0.15.el6 4.4.5 2.12

Red Hat RHEL 5.5+ x 2.6.18-238.el5 4.1.2 2.5

Ubuntu 11.04 x x 2.6.38-8-generic 4.5.2 2.13

5.3 Mac OS X
‣ Supported Mac Operating Systems

Mac OS X 10.8.x
Mac OS X 10.7.x

www.nvidia.com
NVIDIA CUDA Toolkit v5.0 v5.0 | 8

 Chapter 6.
INSTALLATION NOTES

6.1 Windows
For silent installation:

‣ To install, use msiexec.exe from the shell, passing these arguments:

msiexec.exe /i <cuda_toolkit_filename>.msi /qn
‣ To uninstall, use /x instead of /i.

6.2 Linux
‣ In order to run CUDA applications, the CUDA module must be loaded and the

entries in /dev created. This may be achieved by initializing X Windows, or by
creating a script to load the kernel module and create the entries. An example script
(to be run at boot time) follows.
#!/bin/bash

/sbin/modprobe nvidia

if ["$?" -eq 0]; then

 # Count the number of NVIDIA controllers found.
 N3D=`/sbin/lspci | grep -i NVIDIA | grep "3D controller" | wc -l`
 NVGA=`/sbin/lspci | grep -i NVIDIA | grep "VGA compatible controller" \
 | wc -l`

 N=`expr $N3D + $NVGA - 1`
 for i in `seq 0 $N`; do
 mknod -m 666 /dev/nvidia$i c 195 $i;
 done

 mknod -m 666 /dev/nvidiactl c 195 255

else
 exit 1
fi

Installation Notes

www.nvidia.com
NVIDIA CUDA Toolkit v5.0 v5.0 | 9

‣ On some Linux releases, due to a GRUB bug in the handling of upper memory and
a default vmalloc too small on 32-bit systems, it may be necessary to pass this
information to the bootloader:
vmalloc=256MB, uppermem=524288

Here is an example of GRUB conf:
title Red Hat Desktop (2.6.9-42.ELsmp)
root (hd0,0)
uppermem 524288
kernel /vmlinuz-2.6.9-42.ELsmp ro root=LABEL=/1 rhgb quiet vmalloc=256MB
pci=nommconf
initrd /initrd-2.6.9-42.ELsmp.img

www.nvidia.com
NVIDIA CUDA Toolkit v5.0 v5.0 | 10

 Chapter 7.
NEW FEATURES

7.1 General CUDA
‣ Support compatibility between CUDA driver and CUDA toolkit is as follows:

‣ Any nvcc generated PTX code is forward compatible to newer GPU architectures.
This means any CUDA binaries that include PTX code will continue to run on
newer GPUs and newer CUDA drivers released from NVIDIA; as the PTX code
gets JIT compiled at runtime to the newer GPU architecture.

‣ CUDA drivers are backward compatible with CUDA toolkit. This means systems
can be upgraded to newer drivers independent of upgrading to newer toolkit.
Apps built using old toolkit will load and run with the newer drivers however
if they require PTX JIT compilation to run on a newer GPU architecture (SM
version) then such apps cannot be used with CUDA tools from old toolkit. Any
JIT compiled code implies using the newer compiler and thus a new ABI which
requires upgrading to the matching newer toolkit and associated tools.

‣ Any separately compiled NVCC binaries (enabled in 5.0) require that all device
objects follow the same ABI, and must target the same GPU architecture (SM
version). Any CUDA tools usage on these binaries must match the associated
toolkit version of the compiler.

‣ The CUDA 4.2 toolkit for sm_30 implicitly increased a -maxrregcount that was less
than 32 to 32. The CUDA 5.0 toolkit does not implicitly increase the -maxrregcount
unless it is less than 16 (because the ABI requires at least 16 registers). Note that 32
is the "best minimum" for sm_3x, and the libcublas_device library is compiled for 32
registers.

‣ Any PTX code generated by NVCC is forward compatible with newer GPU
architectures. CUDA binaries that include PTX code will continue to run on newer
GPUs with newer NVIDIA CUDA drivers because the PTX code is JIT compiled at
runtime to the newer GPU architectures.

‣ CUDA drivers are backward compatible with the CUDA toolkit. This means systems
can be upgraded to newer drivers independently of upgrading to a newer toolkit.
Applications built using an older toolkit will load and run with the newer drivers;
however, if the applications require PTX JIT compilation to run on a newer GPU

New Features

www.nvidia.com
NVIDIA CUDA Toolkit v5.0 v5.0 | 11

architecture (SM version) then they cannot be used with tools from an older CUDA
toolkit. Any JIT-compiled code requires using the newer compiler and thus a new
ABI, which, in turn, requires upgrading to the matching newer toolkit and associated
tools.

‣ Any separately compiled NVCC binaries (enabled in 5.0) require that all device
objects must follow the same ABI and must target the same GPU architecture (SM
version). Any CUDA tool used with these binaries must match the associated toolkit
version of the compiler.

‣ Using flag cudaStreamNonBlocking with cudaStreamCreateWithFlags()
specifies that the created stream will run currently with stream 0 (the NULL stream)
and will perform no synchronization with the NULL stream. This flag is functional in
the CUDA 5.0 release.

‣ The cudaStreamAddCallback() routine introduces a mechanism to perform work
on the CPU after work is finished on the GPU, without polling.

‣ The cudaStreamCallbackNonblocking option for
cudaStreamAddCallback() and cuStreamAddCallback() has been removed
from the CUDA 5.0 release. Option cudaStreamCallbackBlocking is supported
and is the default behavior when no flags are specified.

‣ CUDA 5.0 introduces support for Dynamic Parallelism, which is a significant
enhancement to the CUDA programming model. Dynamic Parallelism allows a
kernel to launch and synchronize with new grids directly from the GPU using
CUDA's standard <<< >>> syntax. A broad subset of the CUDA runtime API is now
available on the device, allowing launch, synchronization, streams, events, and more.
For complete information, please see the CUDA Dynamic Parallelism Programming
Guide which is part of the CUDA 5.0 package. CUDA Dynamic Parallelism is
available only on SM 3.5 architecture GPUs.

‣ The use of a character string to indicate a device symbol, which was possible with
certain API functions, is no longer supported. Instead, the symbol should be used
directly.

7.1.1 Linux
‣ Added the cuIpc functions, which are designed to allow efficient shared memory

communication and synchronization between CUDA processes. Functions
cuIpcGetEventHandle() and cuIpcGetMemHandle() get an opaque handle
that can be freely copied and passed between processes on the same machine.
The accompanying cuIpcOpenEventHandle() and cuIpcOpenMemHandle()
functions allow processes to map handles to resources created in other processes.

7.2 CUDA Libraries

7.2.1 CUBLAS
‣ In addition to the usual CUBLAS Library host interface that supports all

architectures, the CUDA toolkit now delivers a static CUBLAS library
(cublas_device.a) that provides the same interface but is callable from the device

New Features

www.nvidia.com
NVIDIA CUDA Toolkit v5.0 v5.0 | 12

from within kernels. The device interface is only available on Kepler II because it
uses the Dynamic Parallelism feature to launch kernels internally. More details can be
found in the CUBLAS Documentation.

‣ The CUBLAS library now supports routines cublas{S,D,C,Z}getrfBatched(),
for batched LU factorization with partial pivoting, and
cublas{S,D,C,Z}trsmBatched() a batched triangular solver. Those two routines
are restricted to matrices of dimension <= 32x32.

‣ The cublasCsyr(), cublasZsyr(), cublasCsyr2(), and cublasZsyr2()
routines were added to the CUBLAS library to compute complex and double-
complex symmetric rank 1 updates and complex and double-complex
symmetric rank 2 updates respectively. Note, cublasCher(), cublasZher(),
cublasCher2(), and cublasZher2() were already supported in the library and
are used for Hermitian matrices.

‣ The cublasCsymv() and cublasZsymv() routines were added to the CUBLAS
library to compute symmetric complex and double-complex matrix-vector
multiplication. Note, cublasChemv() and cublasZhemv() were already
supported in the library and are used for Hermitian matrices.

‣ A pair of utilities were added to the CUBLAS API for all data types. The
cublas{S,C,D,Z}geam() routines compute the weighted sum of two optionally
transposed matrices. The cublas{S,C,D,Z}dgmm() routines compute the
multiplication of a matrix by a purely diagonal matrix (represented as a full matrix or
with a packed vector).

7.2.2 CURAND
‣ The Poisson distribution has been added to CURAND, for all of the base

generators. Poisson distributed results may be generated via a host function,
curandGeneratePoisson(), or directly within a kernel via a device function,
curand_poisson(). The internal algorithm used, and therefore the number
of samples drawn per result and overall performance, varies depending on the
generator, the value of the frequency parameter (lambda), and the API that is used.

7.2.3 CUSPARSE
‣ Routines to achieve addition and multiplication of two sparse matrices in CSR format

have been added to the CUSPARSE Library.

The combination of the routines cusparse{S,D,C,Z}csrgemmNnz() and
cusparse{S,C,D,Z}csrgemm() computes the multiplication of two sparse
matrices in CSR format. Although the transpose operations on the matrices are
supported, only the multiplication of two non-transpose matrices has been optimized.
For the other operations, an actual transpose of the corresponding matrices is done
internally.

The combination of the routines cusparse{S,D,C,Z}csrgeamNnz() and
cusparse{S,C,D,Z}csrgeam() computes the weighted sum of two sparse
matrices in CSR format.

‣ The location of the csrVal parameter in the cusparse<t>csrilu0() and
cusparse<t>csric0() routines has changed. It now corresponds to the parameter

New Features

www.nvidia.com
NVIDIA CUDA Toolkit v5.0 v5.0 | 13

ordering used in other CUSPARSE routines, which represent the matrix in CSR-
storage format (csrVal, csrRowPtr, csrColInd).

‣ The cusparseXhyb2csr() conversion routine was added to the CUSPARSE library.
It allows the user to verify that the conversion to HYB format was done correctly.

‣ The CUSPARSE library has added support for two preconditioners that
perform incomplete factorizations: incomplete LU factorization with no fill
in (ILU0), and incomplete Cholesky factorization with no fill in (IC0). These
are supported by the new functions cusparse{S,C,D,Z}csrilu0() and
cusparse{S,C,D,Z}csric0(), respectively.

‣ The CUSPARSE library now supports a new sparse matrix storage format called
Block Compressed Sparse Row (Block-CSR). In contrast to plain CSR which
encodes all non-zero primitive elements, the Block-CSR format divides a matrix
into a regular grid of small 2-dimensional sub-matrices, and fully encodes all sub-
matrices that have any non-zero elements in them. The library supports conversion
between the Block-CSR format and CSR via cusparse{S,C,D,Z}csr2bsr() and
cusparse{S,C,D,Z}bsr2csr(), and matrix-vector multiplication of Block-CSR
matrices via cusparse{S,C,D,Z}bsrmv().

7.2.4 Math
‣ Single-precision normcdff() and double-precision normcdf() functions were

added. They calculate the standard normal cumulative distribution function.

Single-precision normcdfinvf() and double-precision normcdfinv() functions
were also added. They calculate the inverse of the standard normal cumulative
distribution function.

‣ The sincospi(x) and sincospif(x) functions have been added to the math
library to calculate the double- and single-precision results, respectively, for both
sin(x * PI) and cos(x * PI) simultaneously. Please see the CUDA Toolkit
Reference Manual for the exact function prototypes and usage, and the CUDA C
Programmer's Guide for accuracy information. The performance of sincospi{f}(x)
should generally be faster than calling sincos{f}(x * PI) and should generally
be faster than calling sinpi{f}(x) and cospi{f}(x) separately.

‣ Intrinsic __frsqrt_rn(x) has been added to compute the reciprocal square root of
single-precision argument x, with the single-precision result rounded according to
the IEEE-754 rounding mode nearest or even.

7.2.5 NPP
‣ The NPP library in the CUDA 5.0 release contains more than 1000 new basic image

processing primitives, which include broad coverage for converting colors, copying
and moving images, and calculating image statistics.

‣ Added support for a new filtering-mode for Rotate primitives:

NPPI_INTER_CUBIC2P_CATMULLROM

This filtering mode uses cubic Catumul-Rom splines to compute the weights for
reconstruction. This and the other two CUBIC2P filtering modes are based on the
1988 SIGGRAPH paper: Reconstruction Filters in Computer Graphics by Don P. Mitchell

New Features

www.nvidia.com
NVIDIA CUDA Toolkit v5.0 v5.0 | 14

and Arun N. Netravali. At this point NPP only supports the Catmul-Rom filtering for
Rotate.

7.3 CUDA Tools

7.3.1 CUDA Compiler
‣ The separate compilation culib format is not supported in the CUDA 5.0 release.
‣ From this release, the compiler checks the execution space compatibility among

multiple declarations of the same function and generates warnings or errors based on
the three rules described below.

‣ Generates a warning if a function that was previously declared as __host__
(either implicitly or explicitly) is redeclared with __device__ or with __host__
__device__. After the redeclaration the function is treated as __host__
__device__.

‣ Generates a warning if a function that was previously declared as __device__
is redeclared with __host__ (either implicitly or explicitly) or with __host__
__device__. After the redeclaration the function is treated as __host__
__device__.

‣ Generates an error if a function that was previously declared as __global__ is
redeclared without __global__, or vice versa.

‣ With this release, nvcc allows more than one command-line switch that specifies a
compilation phase, unless there is a conflict. Known conflicts are as follows:

‣ lib cannot be used with --link or --run.
‣ --device-link and --generate-dependencies cannot be used with other

options that specify final compilation phases.

When multiple compilation phases are specified, nvcc stops processing upon the
completion of the compilation phase that is reached first. For example, nvcc --
compile --ptx is equivalent to nvcc --ptx, and nvcc --preprocess --
fatbin equivalent to nvcc --preprocess.

‣ Separate compilation and linking of device code is now supported. See the Using
Separate Compilation in CUDA section of the nvcc documentation for details.

7.3.2 CUDA-GDB
‣ (Linux and Mac OS) CUDA-GDB fully supports Dynamic Parallelism, a new feature

introduced with the 5.0 Toolkit. The debugger is able to track kernels launched from
another kernel and to inspect and modify their variables like any CPU-launched
kernel.

‣ When the environment variable CUDA_DEVICE_WAITS_ON_EXCEPTION is used, the
application runs normally until a device exception occurs. The application then waits
for the debugger to attach itself to it for further debugging.

‣ Inlined subroutines are now accessible from the debugger on SM 2.0 and above. The
user can inspect the local variables of those subroutines and visit the call frame stack
as if the routines were not inlined.

New Features

www.nvidia.com
NVIDIA CUDA Toolkit v5.0 v5.0 | 15

‣ Checking the error codes of all CUDA driver API and CUDA runtime API function
calls is vital to ensure the correctness of a CUDA application. Now the debugger is
able to report, and even stop, when any API call returns an error. See the CUDA-GDB
documentation on set cuda api_failures for more information.

‣ It is now possible to attach the debugger to a CUDA application that is already
running. It is also possible to detach it from the application before letting it run to
completion. When attached, all the usual features of the debugger are available to the
user, just as if the application had been launched from the debugger.

7.3.3 CUDA-MEMCHECK
‣ CUDA-MEMCHECK, when used from within the debugger, now displays the

address space and the address of the faulty memory access.
‣ CUDA-MEMCHECK now displays the backtrace on the host and device when an

error is discovered.
‣ CUDA-MEMCHECK now detects double free() and invalid free() on the

device.
‣ The precision of the reported errors for local, shared, and global memory

accesses has been improved.
‣ CUDA-MEMCHECK now reports leaks originating from the device heap.
‣ CUDA-MEMCHECK now reports error codes returned by the runtime API and the

driver API in the user application.
‣ CUDA-MEMCHECK now supports reporting data access hazards in shared memory.

Use the --tool racecheck command-line option to activate.

7.3.4 NVIDIA Nsight Eclipse Edition
‣ (Linux and Mac OS) Nsight Eclipse Edition is an all-in-one development environment

that allows developing, debugging, and optimizing CUDA code in an integrated UI
environment.

7.3.5 NVIDIA Visual Profiler, Command Line Profiler
‣ As mentioned in the Release Highlights, the tool, nvprof, is now available in release

5.0 for collecting profiling information from the command-line.

www.nvidia.com
NVIDIA CUDA Toolkit v5.0 v5.0 | 16

 Chapter 8.
PERFORMANCE IMPROVEMENTS

8.1 CUDA Libraries

8.1.1 CUBLAS
‣ On Kepler architectures, shared-memory access width can be

configured for 4-byte banks (default) or 8-byte banks using the routine
cudaDeviceSetSharedMemConfig(). The CUBLAS and CUSPARSE libraries do
not affect the shared-memory configuration, although some routines might benefit
from it. It is up to users to choose the best shared-memory configuration for their
applications prior to calling the CUBLAS or CUSPARSE routines.

‣ In CUDA Toolkit 5.0, cublas<S,D,C,Z>symv() and cublas<C/Z>chemv() have
an alternate, faster implementation that uses atomics. The regular implementation,
which gives predictable results from one run to another, is run by default. The routine
cublasSetAtomicsMode() can be used to choose the alternate, faster version.

8.1.2 CURAND
‣ In CUDA CURAND for 5.0, the Box-Muller formula, used to generate double-

precision normally distributed results, has been optimized to use sincospi()
instead of individual calls to sin() and cos() with multipliers to scale the
parameters. This results in a 30% performance improvement on a Tesla C2050, for
example, when generating double-precision normal results.

8.1.3 Math
‣ The performance of the double-precision fmod(), remainder(), and remquo()

functions has been significantly improved for sm_13.
‣ The sin() and cos() family of functions [sin(), sinpi(), cos(), and cospi()]

have new implementations in this release that are more accurate and faster.
Specifically, all of these functions have a worst-case error bound of 1 ulp, compared
to 2 ulps in previous releases. Furthermore, the performance of these functions has

Performance Improvements

www.nvidia.com
NVIDIA CUDA Toolkit v5.0 v5.0 | 17

improved by 25% or more, although the exact improvement observed can vary from
kernel to kernel. Note that the sincos() and sincospi() functions also inherit any
accuracy improvements from the component functions.

‣ Function erfcinvf() has been significantly optimized for both the Tesla and Fermi
architectures, and the worst case error bound has improved from 7 ulps to 4 ulps.

www.nvidia.com
NVIDIA CUDA Toolkit v5.0 v5.0 | 18

 Chapter 9.
RESOLVED ISSUES

9.1 General CUDA
‣ When PTX JIT is used to execute sm_1x- or sm_2x-native code on Kepler, and when

the maximum grid dimension is selected based on the grid-size limits reported by
cudaGetDeviceProperties(), a conflict can occur between the grid size used and
the size limit presumed by the JIT'd device code.

The grid size limit on devices of compute capability 1.x and 2.x is 65535 blocks per
grid dimension. If an application attempts to launch a grid with >= 65536 blocks in
the x dimension on such devices, the launch fails outright, as expected. However,
because Kepler increased the limit (for the x dimension) to 231-1 blocks per grid,
previous CUDA Driver releases allowed such a grid to launch successfully; but this
grid exceeds the number of blocks that can fit into the 16-bit grid size and 16-bit
block index assumed by the compiled device code. Beginning in CUDA release 5.0,
launches of kernels compiled native to earlier GPUs and JIT'd onto Kepler now return
an error as they would have with the earlier GPUs, avoiding the silent errors that
could otherwise result.

This can still pose a problem for applications that select their grid launch dimensions
based on the limits reported by cudaGetDeviceProperties(), since this function
reports 231-1 for the grid size limit in the x dimension for Kepler GPUs. Applications
that correctly limited their launches to 65535 blocks per grid in the x dimension
on earlier GPUs may attempt bigger launches on Kepler--yet these launches will
fail. To work around this issue for existing applications that were not built with
Kepler-native code, a new environment variable has been added for backward
compatibility with earlier GPUs: setting CUDA_GRID_SIZE_COMPAT = 1 causes
cudaGetDeviceProperties() to conservatively underreport 65535 as the
maximum grid dimension on Kepler, allowing such applications to work as expected.

‣ Functions cudaGetDeviceProperties(), cuDeviceGetProperties(), and
cuDeviceGetAttribute() may return the incorrect clock frequency for the SM
clock on Kepler GPUs.

Resolved Issues

www.nvidia.com
NVIDIA CUDA Toolkit v5.0 v5.0 | 19

9.2 CUDA Libraries

9.2.1 CURAND
‣ In releases prior to CUDA 5.0, the CURAND pseudorandom generator MRG32k3a

returned integer results in the range 1 through 4294967087 (the larger of two primes
used in the generator). CUDA 5.0 results have been scaled to extend the range
to 4294967295 (232 - 1). This causes the generation of integer sequences that are
somewhat different from previous releases. All other distributions (that is, uniform,
normal, log-normal, and Poisson) were already correctly scaled and are not affected
by this change.

9.2.2 CUSPARSE
‣ An extra parameter (int * nnzTotalDevHostPtr) was added to the

parameters accepted by the functions cusparseXcsrgeamNnz() and
cusparseXcsrgemmNnz(). The memory pointed to by nnzTotalDevHostPtr can
be either on the device or host, depending on the selected CUBLAS_POINTER_MODE.
On exit, *nnzTotalDevHostPtr holds the total number of non-zero elements in the
resulting sparse matrix C.

9.2.3 NPP
‣ The nppiLUT_Linear_8u_C1R and all other LUT primitives that existed in NPP

release 4.2 have undergone an API change. The pointers provided for the parameters
pValues and pLevels have to be device pointers from version 5.0 onwards. In the
past, those two values were expected to be host pointers, which was in violation of
the general NPP API guideline that all pointers to NPP functions are device pointers
(unless explicitly noted otherwise).

‣ The implementation of the nppiWarpAffine*() routines in the NPP library have
been completely replaced in this release. This fixes several outstanding bugs related
to these routines.

‣ Added these two primitives, which were temporarily removed from release 4.2:

nppiAbsDiff_8u_C3R
nppiAbsDiff_8u_C4R

9.2.4 Thrust
‣ The version of Thrust included with the current CUDA toolkit was upgraded to

version 1.5.3 in order to address several minor issues.

Resolved Issues

www.nvidia.com
NVIDIA CUDA Toolkit v5.0 v5.0 | 20

9.3 CUDA Tools
‣ (Windows) The file fatbinary.h has been released with the CUDA 5.0 Toolkit.

The file, which replaces __cudaFatFormat.h, describes the format used for all fat
binaries since CUDA 4.0.

9.3.1 CUDA Compiler
‣ The CUDA compiler driver, nvcc, predefines the macro __NVCC__. This macro

can be used in C/C++/CUDA source files to test whether they are currently being
compiled by nvcc. In addition, nvcc predefines the macro __CUDACC__, which can
be used in source files to test whether they are being treated as CUDA source files.
The __CUDACC__ macro can be particularly useful when writing header files.

‣ It is to be noted that the previous releases of nvcc also predefined the __CUDACC__
macro; however, the description in the document The CUDA Compiler Driver NVCC
was incorrect. The document has been corrected in the CUDA 5.0 release.

9.3.2 CUDA Occupancy Calculator
‣ There was an issue in the CUDA Occupancy Calculator that caused it to be overly

conservative in reporting the theoretical occupancy on Fermi and Kepler when the
number of warps per block was not a multiple of 2 or 4.

www.nvidia.com
NVIDIA CUDA Toolkit v5.0 v5.0 | 21

 Chapter 10.
KNOWN ISSUES

10.1 General CUDA
‣ The CUDA reference manual incorrectly describes the type of CUdeviceptr as an

unsigned int on all platforms. On 64-bit platforms, a CUdeviceptr is an unsigned
long long, not an unsigned int.

‣ Individual GPU program launches are limited to a run time of less than 5 seconds
on a GPU with a display attached. Exceeding this time limit usually causes a launch
failure reported through the CUDA driver or the CUDA runtime. GPUs without a
display attached are not subject to the 5 second runtime restriction. For this reason it
is recommended that CUDA be run on a GPU that is NOT attached to a display and
does not have the Windows desktop extended onto it. In this case, the system must
contain at least one NVIDIA GPU that serves as the primary graphics adapter.

10.1.1 Linux, Mac OS
‣ Device code linking does not support object files that are in Mac OS fat-file

format. As a result, the device libraries included in the toolkit (libcudadevrt.a and
libcublas_device.a) do not use the fat file format and only contain code for a 64-bit
architecture. In contrast, the other libraries in the toolkit on the Mac OS platform do
use the fat file format and support both 32-bit and 64-bit architectures.

‣ At the time of this release, there are no Mac OS configurations available that support
GPUs that implement the sm_35 architecture. Code that targets this architecture can
be built, but cannot be run or tested on a Mac OS platform with the CUDA 5.0 toolkit.

‣ The Linux kernel provides a mode where it allows user processes to overcommit
system memory. (Refer to kernel documentation for /proc/sys/vm/ for details).
If this mode is enabled (the default on many distros) the kernel may have to kill
processes in order to free up pages for allocation requests. The CUDA driver
process, especially for CUDA applications that allocate lots of zero-copy memory
with cuMemHostAlloc() or cudaMallocHost(), is particularly vulnerable to
being killed in this way. Since there is no way for the CUDA SW stack to report
an OOM error to the user before the process disappears, users, especially on 31-
bit Linux, are encouraged to disable memory overcommit in their kernel to avoid

Known Issues

www.nvidia.com
NVIDIA CUDA Toolkit v5.0 v5.0 | 22

this problem. Please refer to documentation on vm.overcommit_memory and
vm.overcommit_ratio for more information.

‣ When compiling with GCC, special care must be taken for structs that contain 64-
bit integers. This is because GCC aligns long longs to a 4-byte boundary by default,
while nvcc aligns long longs to an 8-byte boundary by default. Thus, when using
GCC to compile a file that has a struct/union, users must give the -malign-double
option to GCC. When using nvcc, this option is automatically passed to GCC.

‣ (Mac OS) When CUDA applications are run on 2012 MacBook Pro models, allowing
or forcing the system to go to sleep causes a system crash (kernel panic). To prevent
the computer from automatically going to sleep, set the Computer Sleep option slider
to Never in the Energy Saver pane of the System Preferences.

‣ (Mac OS) To save power, some Apple products automatically power down the
CUDA- capable GPU in the system. If the operating system has powered down the
CUDA-capable GPU, CUDA fails to run and the system returns an error that no
device was found. In order to ensure that your CUDA-capable GPU is not powered
down by the operating system do the following:

 1. Go to System Preferences.
 2. Open the Energy Saver section.
 3. Uncheck the Automatic graphics switching box in the upper left.

10.1.2 Windows
‣ Individual kernels are limited to a 2-second runtime by Windows Vista. Kernels that

run for longer than 2 seconds will trigger the Timeout Detection and Recovery (TDR)
mechanism. For more information, see http://www.microsoft.com/whdc/device/
display/wddm_timeout.mspx.

‣ The maximum size of a single memory allocation created by cudaMalloc() or
cuMemAlloc() on WDDM devices is limited to

MIN((System Memory Size in MB - 512 MB) / 2,
PAGING_BUFFER_SEGMENT_SIZE).

For Vista, PAGING_BUFFER_SEGMENT_SIZE is approximately 2 GB.

10.2 CUDA Libraries

10.2.1 NPP
‣ The NPP ColorTwist_32f_8u_P3R primitive does not work properly for line

strides that are not 64-byte aligned. This issue can be worked around by using the
image memory allocators provided by the NPP library.

http://www.microsoft.com/whdc/device/display/wddm_timeout.mspx
http://www.microsoft.com/whdc/device/display/wddm_timeout.mspx

Known Issues

www.nvidia.com
NVIDIA CUDA Toolkit v5.0 v5.0 | 23

10.3 CUDA Tools
With separate compiled binaries the values of the local variables may be incorrect in the
debugger, please use fully compiled binaries while debugging.

10.3.1 CUDA Compiler
‣ (Windows) Because Microsoft changed the declaration of the hypot() function

between MSVC v9 and MSVC v10, users of Microsoft Visual Studio 2010 who link
with the new cublas_device.lib and cudadevrt.lib device-code libraries
may encounter an error. Specifically, performing device- and host-linking in a single
pass using NVCC on a system with Visual Studio 2010 gives the error unresolved
external symbol hypot. Users who encounter this error can avoid it by linking
in two stages: first device-link with nvcc -dlink and then host-link using cl. This
error should not arise from the VS2010 IDE when using the CUDA plug-in, as that
plug-in already links in two stages.

‣ A CUDA program may not compile correctly if a type or typedef T is private to a
class or a structure, and at least one of the following is satisfied:

‣ T is a parameter type for a __global__ function.
‣ T is an argument type for a template instantiation of a __global__ function.

This restriction will be fixed in a future release.
‣ (Linux) The __float128 data type is not supported for the gcc host compiler.
‣ (Mac OS) The documentation surrounding the use of the flag -malign-double

suggests it be used to make the struct size the same between host and device code.
We know now that this flag causes problems with other host libraries. The CUDA
documentation will be updated to reflect this.

The work around for this issue is to manually add padding so that the structs
between the host compiler and CUDA are consistent.

‣ (Windows) When the PATH environment variable contains double quotes ("), nvcc
may fail to set up the environment for Microsoft Visual Studio 2010, generating an
error. This is because nvcc runs vcvars32.bat or vcvars64.bat to set up the
environment for Microsoft Visual Studio 2010 and these batch files are not always
able to process PATH if it contains double quotes.

One workaround for this issue is as follows:

 1. Make sure that PATH does not contain any double quotes.
 2. Run vcvars32.bat or vcvars64.bat, depending on the system.
 3. Add the directories that need to be added to PATH with double quotes.
 4. Run NVCC with the --use-local-env switch.

Known Issues

www.nvidia.com
NVIDIA CUDA Toolkit v5.0 v5.0 | 24

10.3.2 NVIDIA Visual Profiler, Command Line Profiler
‣ On Mac OS X systems with NVIDIA drivers earlier than version 295.10.05, the Visual

Profiler may fail to import session files containing profile information collected from
GPUs with compute capability 3.0 or later.

‣ If required, a Java installation is triggered the first time the Visual Profiler is
launched. If this occurs, the Visual Profiler must be exited and restarted.

‣ Visual Profiler fails to generate events or counter information. Here are a couple of
reasons why Visual Profiler may fail to gather counter information.

More than one tool is trying to access the GPU. To fix this issue please make sure only
one tool is using the GPU at any given point. Tools include the CUDA command line
profiler, Parallel NSight Analysis Tools and Graphics Tools, and applications that use
either CUPTI or PerfKit API (NVPM) to read counter values.

More than one application is using the GPU at the same time Visual Profiler is
profiling a CUDA application. To fix this issue please close all applications and
just run the one with Visual Profiler. Interacting with the active desktop should be
avoided while the application is generating counter information. Please note that for
some types of counters Visual Profiler gathers counters for only one context if the
application is using multiple contexts within the same application.

‣ Enabling certain counters can cause GPU kernels to run longer than the driver's
watchdog time-out limit. In these cases the driver will terminate the GPU kernel
resulting in an application error and profiling data will not be available. Please
disable the driver watchdog time out before profiling such long running CUDA
kernels.

‣ On Linux, setting the X Config option Interactive to false is recommended.
‣ For Windows, detailed information on disabling the Windows TDR is available at

http://msdn.microsoft.com/en-us/windows/hardware/gg487368.aspx#E2
‣ Enabling counters on GPUs with compute capability (SM type) 1.x can result in

occasional hangs. Please disable counters on such runs.
‣ The warp serialize counter for GPUs with compute capability 1.x is known to

give incorrect and high values for some cases.
‣ To ensure that all profile data is collected and flushed to a file,

cudaDeviceSynchronize() followed by either cudaDeviceReset() or
cudaProfilerStop() should be called before the application exits.

‣ Counters gld_incoherent and gst_incoherent always return zero on GPUs
with compute capability (SM type) 1.3. A value of zero doesn't mean that all load/
stores are 100% coalesced.

‣ Use Visual Profiler version 4.1 onwards with NVIDIA driver version 285 (or later).
Due to compatibility issues with profile counters, Visual Profiler 4.0 (or earlier) must
not be used with NVIDIA driver version 285 (or later).

http://msdn.microsoft.com/en-us/windows/hardware/gg487368.aspx#E2

www.nvidia.com
NVIDIA CUDA Toolkit v5.0 v5.0 | 25

 Chapter 11.
SOURCE CODE FOR OPEN64 AND CUDA-
GDB

‣ The Open64 and CUDA-GDB source files are controlled under terms of the GPL
license. Current and previously released versions are located here:

ftp://download.nvidia.com/CUDAOpen64.
‣ Linux users:

‣ Please refer to the Release Notes and Known Issues sections in the CUDA-GDB User
Manual (CUDA_GDB.pdf).

‣ Please refer to CUDA_Memcheck.pdf for notes on supported error detection and
known issues.

ftp://download.nvidia.com/CUDAOpen64

www.nvidia.com
NVIDIA CUDA Toolkit v5.0 v5.0 | 26

 Chapter 12.
MORE INFORMATION

‣ For more information and help with CUDA, please visit http://www.nvidia.com/
cuda.

‣ Please refer to the LLVM Release License text in EULA.txt for details on LLVM
licensing.

http://www.nvidia.com/cuda
http://www.nvidia.com/cuda

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA
Corporation assumes no responsibility for the consequences of use of such
information or for any infringement of patents or other rights of third parties
that may result from its use. No license is granted by implication of otherwise
under any patent rights of NVIDIA Corporation. Specifications mentioned in this
publication are subject to change without notice. This publication supersedes and
replaces all other information previously supplied. NVIDIA Corporation products
are not authorized as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA
Corporation in the U.S. and other countries. Other company and product names
may be trademarks of the respective companies with which they are associated.

Copyright

© 2007-2012 NVIDIA Corporation. All rights reserved.

www.nvidia.com

	Table of Contents
	List of Tables
	Release Highlights
	Documentation
	List of Important Files
	3.1 Core Files
	3.2 Windows lib Files
	3.3 Linux lib Files
	3.4 Mac OS X lib Files

	Supported NVIDIA Hardware
	Supported Operating Systems
	5.1 Windows
	5.2 Linux
	5.3 Mac OS X

	Installation Notes
	6.1 Windows
	6.2 Linux

	New Features
	7.1 General CUDA
	7.1.1 Linux

	7.2 CUDA Libraries
	7.2.1 CUBLAS
	7.2.2 CURAND
	7.2.3 CUSPARSE
	7.2.4 Math
	7.2.5 NPP

	7.3 CUDA Tools
	7.3.1 CUDA Compiler
	7.3.2 CUDA-GDB
	7.3.3 CUDA-MEMCHECK
	7.3.4 NVIDIA Nsight Eclipse Edition
	7.3.5 NVIDIA Visual Profiler, Command Line Profiler

	Performance Improvements
	8.1 CUDA Libraries
	8.1.1 CUBLAS
	8.1.2 CURAND
	8.1.3 Math

	Resolved Issues
	9.1 General CUDA
	9.2 CUDA Libraries
	9.2.1 CURAND
	9.2.2 CUSPARSE
	9.2.3 NPP
	9.2.4 Thrust

	9.3 CUDA Tools
	9.3.1 CUDA Compiler
	9.3.2 CUDA Occupancy Calculator

	Known Issues
	10.1 General CUDA
	10.1.1 Linux, Mac OS
	10.1.2 Windows

	10.2 CUDA Libraries
	10.2.1 NPP

	10.3 CUDA Tools
	10.3.1 CUDA Compiler
	10.3.2 NVIDIA Visual Profiler, Command Line Profiler

	Source Code for Open64 and CUDA-GDB
	More Information

