quicklinks

home TOC/contents
install changelog
examples customize
issues[bb] contact

Table Of Contents

Previous topic

pytest fixtures: explicit, modular, scalable

Next topic

classic xunit-style setup

Parametrizing fixtures and test functions

pytest supports test parametrization in several well-integrated ways:

  • @pytest.mark.parametrize allows to define parametrization at the function or class level, provides multiple argument/fixture sets for a particular test function or class.
  • pytest_generate_tests enables implementing your own custom dynamic parametrization scheme or extensions.

@pytest.mark.parametrize: parametrizing test functions

New in version 2.2.

The builtin pytest.mark.parametrize decorator enables parametrization of arguments for a test function. Here is a typical example of a test function that implements checking that a certain input leads to an expected output:

# content of test_expectation.py
import pytest
@pytest.mark.parametrize(("input", "expected"), [
    ("3+5", 8),
    ("2+4", 6),
    ("6*9", 42),
])
def test_eval(input, expected):
    assert eval(input) == expected

Here, the @parametrize decorator defines three different argument sets for the two (input, output) arguments of the test_eval function which will thus run three times:

$ py.test
=========================== test session starts ============================
platform linux2 -- Python 2.7.3 -- pytest-2.3.4
collected 3 items

test_expectation.py ..F

================================= FAILURES =================================
____________________________ test_eval[6*9-42] _____________________________

input = '6*9', expected = 42

    @pytest.mark.parametrize(("input", "expected"), [
        ("3+5", 8),
        ("2+4", 6),
        ("6*9", 42),
    ])
    def test_eval(input, expected):
>       assert eval(input) == expected
E       assert 54 == 42
E        +  where 54 = eval('6*9')

test_expectation.py:8: AssertionError
==================== 1 failed, 2 passed in 0.01 seconds ====================

As expected only one pair of input/output values fails the simple test function. And as usual with test function arguments, you can see the input and output values in the traceback.

Note that there ways how you can mark a class or a module, see Marking test functions with attributes.

Basic pytest_generate_tests example

Sometimes you may want to implement your own parametrization scheme or implement some dynamism for determining the parameters or scope of a fixture. For this, you can use the pytest_generate_tests hook which is called when collecting a test function. Through the passed in metafunc object you can inspect the requesting test context and, most importantly, you can call metafunc.parametrize() to cause parametrization.

For example, let’s say we want to run a test taking string inputs which we want to set via a new py.test command line option. Let’s first write a simple test accepting a stringinput fixture function argument:

# content of test_strings.py

def test_valid_string(stringinput):
    assert stringinput.isalpha()

Now we add a conftest.py file containing the addition of a command line option and the parametrization of our test function:

# content of conftest.py

def pytest_addoption(parser):
    parser.addoption("--stringinput", action="append", default=[],
        help="list of stringinputs to pass to test functions")

def pytest_generate_tests(metafunc):
    if 'stringinput' in metafunc.fixturenames:
        metafunc.parametrize("stringinput",
                             metafunc.config.option.stringinput)

If we now pass two stringinput values, our test will run twice:

$ py.test -q --stringinput="hello" --stringinput="world" test_strings.py
..

Let’s also run with a stringinput that will lead to a failing test:

$ py.test -q --stringinput="!" test_strings.py
F
================================= FAILURES =================================
___________________________ test_valid_string[!] ___________________________

stringinput = '!'

    def test_valid_string(stringinput):
>       assert stringinput.isalpha()
E       assert <built-in method isalpha of str object at 0x2b2319ceffa8>()
E        +  where <built-in method isalpha of str object at 0x2b2319ceffa8> = '!'.isalpha

test_strings.py:3: AssertionError

As expected our test function fails.

If you don’t specify a stringinput it will be skipped because metafunc.parametrize() will be called with an empty parameter listlist:

$ py.test -q -rs test_strings.py
s
========================= short test summary info ==========================
SKIP [1] /home/hpk/p/pytest/.tox/regen/lib/python2.7/site-packages/_pytest/python.py:962: got empty parameter set, function test_valid_string at /tmp/doc-exec-101/test_strings.py:1

For further examples, you might want to look at more parametrization examples.

The metafunc object

metafunc objects are passed to the pytest_generate_tests hook. They help to inspect a testfunction and to generate tests according to test configuration or values specified in the class or module where a test function is defined:

metafunc.fixturenames: set of required function arguments for given function

metafunc.function: underlying python test function

metafunc.cls: class object where the test function is defined in or None.

metafunc.module: the module object where the test function is defined in.

metafunc.config: access to command line opts and general config

metafunc.funcargnames: alias for fixturenames, for pre-2.3 compatibility