
GNAT User’s Guide

GNAT, The GNU Ada Compiler
For gcc version 4.7.2

(GCC)

AdaCore

Copyright c© 1995-2009 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the Free
Software Foundation; with no Invariant Sections, with no Front-Cover Texts and with no Back-
Cover Texts. A copy of the license is included in the section entitled “GNU Free Documentation
License”.

About This Guide 1

About This Guide

This guide describes the use of GNAT, a compiler and software development toolset for the full
Ada programming language. It documents the features of the compiler and tools, and explains
how to use them to build Ada applications.

GNAT implements Ada 95 and Ada 2005, and it may also be invoked in Ada 83 compatibility
mode. By default, GNAT assumes Ada 2005, but you can override with a compiler switch (see
Section 3.2.9 [Compiling Different Versions of Ada], page 69) to explicitly specify the language
version. Throughout this manual, references to “Ada” without a year suffix apply to both the
Ada 95 and Ada 2005 versions of the language.

What This Guide Contains

This guide contains the following chapters:

• Chapter 1 [Getting Started with GNAT], page 5, describes how to get started compiling
and running Ada programs with the GNAT Ada programming environment.

• Chapter 2 [The GNAT Compilation Model], page 13, describes the compilation model used
by GNAT.

• Chapter 3 [Compiling Using gcc], page 37, describes how to compile Ada programs with
gcc, the Ada compiler.

• Chapter 4 [Binding Using gnatbind], page 81, describes how to perform binding of Ada
programs with gnatbind, the GNAT binding utility.

• Chapter 5 [Linking Using gnatlink], page 91, describes gnatlink, a program that provides
for linking using the GNAT run-time library to construct a program. gnatlink can also
incorporate foreign language object units into the executable.

• Chapter 6 [The GNAT Make Program gnatmake], page 95, describes gnatmake, a utility
that automatically determines the set of sources needed by an Ada compilation unit, and
executes the necessary compilations binding and link.

• Chapter 7 [Improving Performance], page 105, shows various techniques for making your
Ada program run faster or take less space. It discusses the effect of the compiler’s optimiza-
tion switch and also describes the gnatelim tool and unused subprogram/data elimination.

• Chapter 8 [Renaming Files Using gnatchop], page 119, describes gnatchop, a utility that
allows you to preprocess a file that contains Ada source code, and split it into one or more
new files, one for each compilation unit.

• Chapter 9 [Configuration Pragmas], page 123, describes the configuration pragmas handled
by GNAT.

• Chapter 10 [Handling Arbitrary File Naming Conventions Using gnatname], page 127, shows
how to override the default GNAT file naming conventions, either for an individual unit or
globally.

• Chapter 11 [GNAT Project Manager], page 131, describes how to use project files to organize
large projects.

• Chapter 13 [The Cross-Referencing Tools gnatxref and gnatfind], page 185, discusses
gnatxref and gnatfind, two tools that provide an easy way to navigate through sources.

• Chapter 14 [The GNAT Pretty-Printer gnatpp], page 195, shows how to produce a reformat-
ted version of an Ada source file with control over casing, indentation, comment placement,
and other elements of program presentation style.

• Chapter 15 [The GNAT Metric Tool gnatmetric], page 207, shows how to compute various
metrics for an Ada source file, such as the number of types and subprograms, and assorted
complexity measures.

2 GNAT User’s Guide

• Chapter 16 [File Name Krunching Using gnatkr], page 217, describes the gnatkr file name
krunching utility, used to handle shortened file names on operating systems with a limit on
the length of names.

• Chapter 17 [Preprocessing Using gnatprep], page 221, describes gnatprep, a preprocessor
utility that allows a single source file to be used to generate multiple or parameterized
source files by means of macro substitution.

• Chapter 18 [The GNAT Library Browser gnatls], page 225, describes gnatls, a utility that
displays information about compiled units, including dependences on the corresponding
sources files, and consistency of compilations.

• Chapter 19 [Cleaning Up Using gnatclean], page 229, describes gnatclean, a utility to
delete files that are produced by the compiler, binder and linker.

• Chapter 20 [GNAT and Libraries], page 231, describes the process of creating and using
Libraries with GNAT. It also describes how to recompile the GNAT run-time library.

• Chapter 21 [Using the GNU make Utility], page 239, describes some techniques for using
the GNAT toolset in Makefiles.

• Chapter 22 [Memory Management Issues], page 243, describes some useful predefined stor-
age pools and in particular the GNAT Debug Pool facility, which helps detect incorrect
memory references. It also describes gnatmem, a utility that monitors dynamic allocation
and deallocation and helps detect “memory leaks”.

• Chapter 23 [Stack Related Facilities], page 251, describes some useful tools associated with
stack checking and analysis.

• Chapter 24 [Verifying Properties Using gnatcheck], page 253, discusses gnatcheck, a utility
that checks Ada code against a set of rules.

• Chapter 25 [Creating Sample Bodies Using gnatstub], page 255, discusses gnatstub, a
utility that generates empty but compilable bodies for library units.

• Chapter 26 [Creating Unit Tests Using gnattest], page 257, discusses gnattest, a utility
that generates unit testing templates for library units.

• Chapter 27 [Generating Ada Bindings for C and C++ headers], page 263, describes how to
generate automatically Ada bindings from C and C++ headers.

• Chapter 28 [Other Utility Programs], page 267, discusses several other GNAT utilities,
including gnathtml.

• Chapter 29 [Code Coverage and Profiling], page 271, describes how to perform a structural
coverage and profile the execution of Ada programs.

• Chapter 30 [Running and Debugging Ada Programs], page 275, describes how to run and
debug Ada programs.

• Appendix A [Platform-Specific Information for the Run-Time Libraries], page 289, describes
the various run-time libraries supported by GNAT on various platforms and explains how
to choose a particular library.

• Appendix B [Example of Binder Output File], page 295, shows the source code for the
binder output file for a sample program.

• Appendix C [Elaboration Order Handling in GNAT], page 307, describes how GNAT helps
you deal with elaboration order issues.

• Appendix D [Conditional Compilation], page 329, describes how to model conditional com-
pilation, both with Ada in general and with GNAT facilities in particular.

• Appendix E [Inline Assembler], page 335, shows how to use the inline assembly facility in
an Ada program.

About This Guide 3

• Appendix F [Compatibility and Porting Guide], page 343, contains sections on compatibility
of GNAT with other Ada development environments (including Ada 83 systems), to assist
in porting code from those environments.

• Appendix G [Microsoft Windows Topics], page 351, presents information relevant to the
Microsoft Windows platform.

What You Should Know before Reading This Guide

This guide assumes a basic familiarity with the Ada 95 language, as described in the Inter-
national Standard ANSI/ISO/IEC-8652:1995, January 1995. It does not require knowledge of
the new features introduced by Ada 2005, (officially known as ISO/IEC 8652:1995 with Tech-
nical Corrigendum 1 and Amendment 1). Both reference manuals are included in the GNAT
documentation package.

Related Information

For further information about related tools, refer to the following documents:

• See Section “About This Guide” in GNAT Reference Manual, which contains all reference
material for the GNAT implementation of Ada.

• Using the GNAT Programming Studio, which describes the GPS Integrated Development
Environment.

• GNAT Programming Studio Tutorial, which introduces the main GPS features through
examples.

• Ada 95 Reference Manual, which contains reference material for the Ada 95 programming
language.

• Ada 2005 Reference Manual, which contains reference material for the Ada 2005 program-
ming language.

• See Section “Debugging with GDB” in Debugging with GDB, for all details on the use of
the GNU source-level debugger.

• See Section “The extensible self-documenting text editor” in GNU Emacs Manual, for full
information on the extensible editor and programming environment Emacs.

Conventions

Following are examples of the typographical and graphic conventions used in this guide:

• Functions, utility program names, standard names, and classes.

• ‘Option flags’

• ‘File names’, ‘button names’, and ‘field names’.

• Variables, environment variables, and metasyntactic variables.

• Emphasis.

• [optional information or parameters]

• Examples are described by text
and then shown this way.

Commands that are entered by the user are preceded in this manual by the characters “$ ” (dollar
sign followed by space). If your system uses this sequence as a prompt, then the commands will
appear exactly as you see them in the manual. If your system uses some other prompt, then the
command will appear with the $ replaced by whatever prompt character you are using.

Full file names are shown with the “/” character as the directory separator; e.g.,
‘parent-dir/subdir/myfile.adb’. If you are using GNAT on a Windows platform, please
note that the “\” character should be used instead.

Chapter 1: Getting Started with GNAT 5

1 Getting Started with GNAT

This chapter describes some simple ways of using GNAT to build executable Ada programs.
Section 1.1 [Running GNAT], page 5, through Section 1.4 [Using the gnatmake Utility], page 7,
show how to use the command line environment. Section 1.5 [Introduction to GPS], page 8,
provides a brief introduction to the GNAT Programming Studio, a visually-oriented Integrated
Development Environment for GNAT. GPS offers a graphical “look and feel”, support for de-
velopment in other programming languages, comprehensive browsing features, and many other
capabilities. For information on GPS please refer to Using the GNAT Programming Studio.

1.1 Running GNAT

Three steps are needed to create an executable file from an Ada source file:

1. The source file(s) must be compiled.

2. The file(s) must be bound using the GNAT binder.

3. All appropriate object files must be linked to produce an executable.

All three steps are most commonly handled by using the gnatmake utility program that, given
the name of the main program, automatically performs the necessary compilation, binding and
linking steps.

1.2 Running a Simple Ada Program

Any text editor may be used to prepare an Ada program. (If Emacs is used, the optional Ada
mode may be helpful in laying out the program.) The program text is a normal text file. We will
assume in our initial example that you have used your editor to prepare the following standard
format text file:� �

with Ada.Text_IO; use Ada.Text_IO;

procedure Hello is

begin

Put_Line ("Hello WORLD!");

end Hello;
 	
This file should be named ‘hello.adb’. With the normal default file naming conventions, GNAT
requires that each file contain a single compilation unit whose file name is the unit name, with
periods replaced by hyphens; the extension is ‘ads’ for a spec and ‘adb’ for a body. You can
override this default file naming convention by use of the special pragma Source_File_Name

(see Section 2.4 [Using Other File Names], page 17). Alternatively, if you want to rename
your files according to this default convention, which is probably more convenient if you will
be using GNAT for all your compilations, then the gnatchop utility can be used to generate
correctly-named source files (see Chapter 8 [Renaming Files Using gnatchop], page 119).

You can compile the program using the following command ($ is used as the command prompt
in the examples in this document):

$ gcc -c hello.adb

gcc is the command used to run the compiler. This compiler is capable of compiling programs
in several languages, including Ada and C. It assumes that you have given it an Ada program if
the file extension is either ‘.ads’ or ‘.adb’, and it will then call the GNAT compiler to compile
the specified file.

The ‘-c’ switch is required. It tells gcc to only do a compilation. (For C programs, gcc
can also do linking, but this capability is not used directly for Ada programs, so the ‘-c’ switch
must always be present.)

6 GNAT User’s Guide

This compile command generates a file ‘hello.o’, which is the object file corresponding to
your Ada program. It also generates an “Ada Library Information” file ‘hello.ali’, which
contains additional information used to check that an Ada program is consistent. To build an
executable file, use gnatbind to bind the program and gnatlink to link it. The argument to
both gnatbind and gnatlink is the name of the ‘ALI’ file, but the default extension of ‘.ali’
can be omitted. This means that in the most common case, the argument is simply the name
of the main program:

$ gnatbind hello

$ gnatlink hello

A simpler method of carrying out these steps is to use gnatmake, a master program that invokes
all the required compilation, binding and linking tools in the correct order. In particular,
gnatmake automatically recompiles any sources that have been modified since they were last
compiled, or sources that depend on such modified sources, so that “version skew” is avoided.

$ gnatmake hello.adb

The result is an executable program called ‘hello’, which can be run by entering:
$ hello

assuming that the current directory is on the search path for executable programs.

and, if all has gone well, you will see
Hello WORLD!

appear in response to this command.

1.3 Running a Program with Multiple Units

Consider a slightly more complicated example that has three files: a main program, and the
spec and body of a package:� �

package Greetings is

procedure Hello;

procedure Goodbye;

end Greetings;

with Ada.Text_IO; use Ada.Text_IO;

package body Greetings is

procedure Hello is

begin

Put_Line ("Hello WORLD!");

end Hello;

procedure Goodbye is

begin

Put_Line ("Goodbye WORLD!");

end Goodbye;

end Greetings;

with Greetings;

procedure Gmain is

begin

Greetings.Hello;

Greetings.Goodbye;

end Gmain;
 	
Following the one-unit-per-file rule, place this program in the following three separate files:

‘greetings.ads’
spec of package Greetings

‘greetings.adb’
body of package Greetings

Chapter 1: Getting Started with GNAT 7

‘gmain.adb’
body of main program

To build an executable version of this program, we could use four separate steps to compile,
bind, and link the program, as follows:

$ gcc -c gmain.adb

$ gcc -c greetings.adb

$ gnatbind gmain

$ gnatlink gmain

Note that there is no required order of compilation when using GNAT. In particular it is perfectly
fine to compile the main program first. Also, it is not necessary to compile package specs in the
case where there is an accompanying body; you only need to compile the body. If you want to
submit these files to the compiler for semantic checking and not code generation, then use the
‘-gnatc’ switch:

$ gcc -c greetings.ads -gnatc

Although the compilation can be done in separate steps as in the above example, in practice it
is almost always more convenient to use the gnatmake tool. All you need to know in this case
is the name of the main program’s source file. The effect of the above four commands can be
achieved with a single one:

$ gnatmake gmain.adb

In the next section we discuss the advantages of using gnatmake in more detail.

1.4 Using the gnatmake Utility

If you work on a program by compiling single components at a time using gcc, you typically
keep track of the units you modify. In order to build a consistent system, you compile not only
these units, but also any units that depend on the units you have modified. For example, in the
preceding case, if you edit ‘gmain.adb’, you only need to recompile that file. But if you edit
‘greetings.ads’, you must recompile both ‘greetings.adb’ and ‘gmain.adb’, because both
files contain units that depend on ‘greetings.ads’.

gnatbind will warn you if you forget one of these compilation steps, so that it is impossible to
generate an inconsistent program as a result of forgetting to do a compilation. Nevertheless it is
tedious and error-prone to keep track of dependencies among units. One approach to handle the
dependency-bookkeeping is to use a makefile. However, makefiles present maintenance problems
of their own: if the dependencies change as you change the program, you must make sure that
the makefile is kept up-to-date manually, which is also an error-prone process.

The gnatmake utility takes care of these details automatically. Invoke it using either one of
the following forms:

$ gnatmake gmain.adb

$ gnatmake gmain

The argument is the name of the file containing the main program; you may omit the extension.
gnatmake examines the environment, automatically recompiles any files that need recompiling,
and binds and links the resulting set of object files, generating the executable file, ‘gmain’. In a
large program, it can be extremely helpful to use gnatmake, because working out by hand what
needs to be recompiled can be difficult.

Note that gnatmake takes into account all the Ada rules that establish dependencies among
units. These include dependencies that result from inlining subprogram bodies, and from generic
instantiation. Unlike some other Ada make tools, gnatmake does not rely on the dependencies
that were found by the compiler on a previous compilation, which may possibly be wrong when
sources change. gnatmake determines the exact set of dependencies from scratch each time it is
run.

8 GNAT User’s Guide

1.5 Introduction to GPS

Although the command line interface (gnatmake, etc.) alone is sufficient, a graphical Interactive
Development Environment can make it easier for you to compose, navigate, and debug programs.
This section describes the main features of GPS (“GNAT Programming Studio”), the GNAT
graphical IDE. You will see how to use GPS to build and debug an executable, and you will also
learn some of the basics of the GNAT “project” facility.

GPS enables you to do much more than is presented here; e.g., you can produce a call
graph, interface to a third-party Version Control System, and inspect the generated assembly
language for a program. Indeed, GPS also supports languages other than Ada. Such additional
information, and an explanation of all of the GPS menu items. may be found in the on-line help,
which includes a user’s guide and a tutorial (these are also accessible from the GNAT startup
menu).

1.5.1 Building a New Program with GPS

GPS invokes the GNAT compilation tools using information contained in a project (also known
as a project file): a collection of properties such as source directories, identities of main subpro-
grams, tool switches, etc., and their associated values. See Chapter 11 [GNAT Project Manager],
page 131 for details. In order to run GPS, you will need to either create a new project or else
open an existing one.

This section will explain how you can use GPS to create a project, to associate Ada source
files with a project, and to build and run programs.

1. Creating a project

Invoke GPS, either from the command line or the platform’s IDE. After it starts, GPS will
display a “Welcome” screen with three radio buttons:

• Start with default project in directory

• Create new project with wizard

• Open existing project

Select Create new project with wizard and press OK. A new window will appear. In
the text box labeled with Enter the name of the project to create, type ‘sample’ as the
project name. In the next box, browse to choose the directory in which you would like to
create the project file. After selecting an appropriate directory, press Forward.

A window will appear with the title Version Control System Configuration. Simply
press Forward.

A window will appear with the title Please select the source directories for this

project. The directory that you specified for the project file will be selected by default as
the one to use for sources; simply press Forward.

A window will appear with the title Please select the build directory for this

project. The directory that you specified for the project file will be selected by default
for object files and executables; simply press Forward.

A window will appear with the title Please select the main units for this project.
You will supply this information later, after creating the source file. Simply press Forward
for now.

A window will appear with the title Please select the switches to build the project.
Press Apply. This will create a project file named ‘sample.prj’ in the directory that you
had specified.

2. Creating and saving the source file

After you create the new project, a GPS window will appear, which is partitioned into two
main sections:

Chapter 1: Getting Started with GNAT 9

• A Workspace area, initially greyed out, which you will use for creating and editing
source files

• Directly below, a Messages area, which initially displays a “Welcome” message. (If the
Messages area is not visible, drag its border upward to expand it.)

Select File on the menu bar, and then the New command. The Workspace area will become
white, and you can now enter the source program explicitly. Type the following text

with Ada.Text_IO; use Ada.Text_IO;

procedure Hello is

begin

Put_Line("Hello from GPS!");

end Hello;

Select File, then Save As, and enter the source file name ‘hello.adb’. The file will be
saved in the same directory you specified as the location of the default project file.

3. Updating the project file

You need to add the new source file to the project. To do this, select the Project menu and
then Edit project properties. Click the Main files tab on the left, and then the Add

button. Choose ‘hello.adb’ from the list, and press Open. The project settings window
will reflect this action. Click OK.

4. Building and running the program

In the main GPS window, now choose the Build menu, then Make, and select ‘hello.adb’.
The Messages window will display the resulting invocations of gcc, gnatbind, and gnatlink

(reflecting the default switch settings from the project file that you created) and then a
“successful compilation/build” message.

To run the program, choose the Build menu, then Run, and select hello. An Arguments
Selection window will appear. There are no command line arguments, so just click OK.

The Messages window will now display the program’s output (the string Hello from GPS),
and at the bottom of the GPS window a status update is displayed (Run: hello). Close
the GPS window (or select File, then Exit) to terminate this GPS session.

1.5.2 Simple Debugging with GPS

This section illustrates basic debugging techniques (setting breakpoints, examining/modifying
variables, single stepping).

1. Opening a project

Start GPS and select Open existing project; browse to specify the project file
‘sample.prj’ that you had created in the earlier example.

2. Creating a source file

Select File, then New, and type in the following program:

with Ada.Text_IO; use Ada.Text_IO;

procedure Example is

Line : String (1..80);

N : Natural;

begin

Put_Line("Type a line of text at each prompt; an empty line to exit");

loop

Put(": ");

Get_Line (Line, N);

Put_Line (Line (1..N));

exit when N=0;

end loop;

end Example;

Select File, then Save as, and enter the file name ‘example.adb’.

10 GNAT User’s Guide

3. Updating the project file

Add Example as a new main unit for the project:

a. Select Project, then Edit Project Properties.

b. Select the Main files tab, click Add, then select the file ‘example.adb’ from the list,
and click Open. You will see the file name appear in the list of main units

c. Click OK

4. Building/running the executable

To build the executable select Build, then Make, and then choose ‘example.adb’.

Run the program to see its effect (in the Messages area). Each line that you enter is
displayed; an empty line will cause the loop to exit and the program to terminate.

5. Debugging the program

Note that the ‘-g’ switches to gcc and gnatlink, which are required for debugging, are
on by default when you create a new project. Thus unless you intentionally remove these
settings, you will be able to debug any program that you develop using GPS.

a. Initializing

Select Debug, then Initialize, then ‘example’

b. Setting a breakpoint

After performing the initialization step, you will observe a small icon to the right of
each line number. This serves as a toggle for breakpoints; clicking the icon will set a
breakpoint at the corresponding line (the icon will change to a red circle with an “x”),
and clicking it again will remove the breakpoint / reset the icon.

For purposes of this example, set a breakpoint at line 10 (the statement Put_Line

(Line (1..N));

c. Starting program execution

Select Debug, then Run. When the Program Arguments window appears, click OK. A
console window will appear; enter some line of text, e.g. abcde, at the prompt. The
program will pause execution when it gets to the breakpoint, and the corresponding
line is highlighted.

d. Examining a variable

Move the mouse over one of the occurrences of the variable N. You will see the value
(5) displayed, in “tool tip” fashion. Right click on N, select Debug, then select Display
N. You will see information about N appear in the Debugger Data pane, showing the
value as 5.

e. Assigning a new value to a variable

Right click on the N in the Debugger Data pane, and select Set value of N. When the
input window appears, enter the value 4 and click OK. This value does not automatically
appear in the Debugger Data pane; to see it, right click again on the N in the Debugger
Data pane and select Update value. The new value, 4, will appear in red.

f. Single stepping

Select Debug, then Next. This will cause the next statement to be executed, in this
case the call of Put_Line with the string slice. Notice in the console window that the
displayed string is simply abcd and not abcde which you had entered. This is because
the upper bound of the slice is now 4 rather than 5.

g. Removing a breakpoint

Toggle the breakpoint icon at line 10.

Chapter 1: Getting Started with GNAT 11

h. Resuming execution from a breakpoint

Select Debug, then Continue. The program will reach the next iteration of the loop,
and wait for input after displaying the prompt. This time, just hit the Enter key.
The value of N will be 0, and the program will terminate. The console window will
disappear.

Chapter 2: The GNAT Compilation Model 13

2 The GNAT Compilation Model

This chapter describes the compilation model used by GNAT. Although similar to that used by
other languages, such as C and C++, this model is substantially different from the traditional
Ada compilation models, which are based on a library. The model is initially described without
reference to the library-based model. If you have not previously used an Ada compiler, you need
only read the first part of this chapter. The last section describes and discusses the differences
between the GNAT model and the traditional Ada compiler models. If you have used other Ada
compilers, this section will help you to understand those differences, and the advantages of the
GNAT model.

2.1 Source Representation

Ada source programs are represented in standard text files, using Latin-1 coding. Latin-1 is
an 8-bit code that includes the familiar 7-bit ASCII set, plus additional characters used for
representing foreign languages (see Section 2.2 [Foreign Language Representation], page 13 for
support of non-USA character sets). The format effector characters are represented using their
standard ASCII encodings, as follows:

VT Vertical tab, 16#0B#

HT Horizontal tab, 16#09#

CR Carriage return, 16#0D#

LF Line feed, 16#0A#

FF Form feed, 16#0C#

Source files are in standard text file format. In addition, GNAT will recognize a wide variety of
stream formats, in which the end of physical lines is marked by any of the following sequences:
LF, CR, CR-LF, or LF-CR. This is useful in accommodating files that are imported from other
operating systems.

The end of a source file is normally represented by the physical end of file. However, the con-
trol character 16#1A# (SUB) is also recognized as signalling the end of the source file. Again, this
is provided for compatibility with other operating systems where this code is used to represent
the end of file.

Each file contains a single Ada compilation unit, including any pragmas associated with the
unit. For example, this means you must place a package declaration (a package spec) and the
corresponding body in separate files. An Ada compilation (which is a sequence of compilation
units) is represented using a sequence of files. Similarly, you will place each subunit or child
unit in a separate file.

2.2 Foreign Language Representation

GNAT supports the standard character sets defined in Ada as well as several other non-standard
character sets for use in localized versions of the compiler (see Section 3.2.10 [Character Set
Control], page 70).

2.2.1 Latin-1

The basic character set is Latin-1. This character set is defined by ISO standard 8859, part 1.
The lower half (character codes 16#00# . . . 16#7F#) is identical to standard ASCII coding, but
the upper half is used to represent additional characters. These include extended letters used
by European languages, such as French accents, the vowels with umlauts used in German, and
the extra letter A-ring used in Swedish.

14 GNAT User’s Guide

For a complete list of Latin-1 codes and their encodings, see the source file of library unit
Ada.Characters.Latin_1 in file ‘a-chlat1.ads’. You may use any of these extended characters
freely in character or string literals. In addition, the extended characters that represent letters
can be used in identifiers.

2.2.2 Other 8-Bit Codes

GNAT also supports several other 8-bit coding schemes:

ISO 8859-2 (Latin-2)
Latin-2 letters allowed in identifiers, with uppercase and lowercase equivalence.

ISO 8859-3 (Latin-3)
Latin-3 letters allowed in identifiers, with uppercase and lowercase equivalence.

ISO 8859-4 (Latin-4)
Latin-4 letters allowed in identifiers, with uppercase and lowercase equivalence.

ISO 8859-5 (Cyrillic)
ISO 8859-5 letters (Cyrillic) allowed in identifiers, with uppercase and lowercase
equivalence.

ISO 8859-15 (Latin-9)
ISO 8859-15 (Latin-9) letters allowed in identifiers, with uppercase and lowercase
equivalence

IBM PC (code page 437)
This code page is the normal default for PCs in the U.S. It corresponds to the
original IBM PC character set. This set has some, but not all, of the extended Latin-
1 letters, but these letters do not have the same encoding as Latin-1. In this mode,
these letters are allowed in identifiers with uppercase and lowercase equivalence.

IBM PC (code page 850)
This code page is a modification of 437 extended to include all the Latin-1 letters,
but still not with the usual Latin-1 encoding. In this mode, all these letters are
allowed in identifiers with uppercase and lowercase equivalence.

Full Upper 8-bit
Any character in the range 80-FF allowed in identifiers, and all are considered
distinct. In other words, there are no uppercase and lowercase equivalences in this
range. This is useful in conjunction with certain encoding schemes used for some
foreign character sets (e.g., the typical method of representing Chinese characters
on the PC).

No Upper-Half
No upper-half characters in the range 80-FF are allowed in identifiers. This gives
Ada 83 compatibility for identifier names.

For precise data on the encodings permitted, and the uppercase and lowercase equivalences that
are recognized, see the file ‘csets.adb’ in the GNAT compiler sources. You will need to obtain
a full source release of GNAT to obtain this file.

2.2.3 Wide Character Encodings

GNAT allows wide character codes to appear in character and string literals, and also optionally
in identifiers, by means of the following possible encoding schemes:

Hex Coding
In this encoding, a wide character is represented by the following five character
sequence:

Chapter 2: The GNAT Compilation Model 15

ESC a b c d

Where a, b, c, d are the four hexadecimal characters (using uppercase letters) of the
wide character code. For example, ESC A345 is used to represent the wide character
with code 16#A345#. This scheme is compatible with use of the full Wide Character
set.

Upper-Half Coding
The wide character with encoding 16#abcd# where the upper bit is on (in other
words, “a” is in the range 8-F) is represented as two bytes, 16#ab# and 16#cd#.
The second byte cannot be a format control character, but is not required to be
in the upper half. This method can be also used for shift-JIS or EUC, where the
internal coding matches the external coding.

Shift JIS Coding
A wide character is represented by a two-character sequence, 16#ab# and 16#cd#,
with the restrictions described for upper-half encoding as described above. The
internal character code is the corresponding JIS character according to the standard
algorithm for Shift-JIS conversion. Only characters defined in the JIS code set table
can be used with this encoding method.

EUC Coding
A wide character is represented by a two-character sequence 16#ab# and 16#cd#,
with both characters being in the upper half. The internal character code is the
corresponding JIS character according to the EUC encoding algorithm. Only char-
acters defined in the JIS code set table can be used with this encoding method.

UTF-8 Coding
A wide character is represented using UCS Transformation Format 8 (UTF-8) as
defined in Annex R of ISO 10646-1/Am.2. Depending on the character value, the
representation is a one, two, or three byte sequence:

16#0000#-16#007f#: 2#0xxxxxxx#

16#0080#-16#07ff#: 2#110xxxxx# 2#10xxxxxx#

16#0800#-16#ffff#: 2#1110xxxx# 2#10xxxxxx# 2#10xxxxxx#

where the xxx bits correspond to the left-padded bits of the 16-bit character value.
Note that all lower half ASCII characters are represented as ASCII bytes and all
upper half characters and other wide characters are represented as sequences of
upper-half (The full UTF-8 scheme allows for encoding 31-bit characters as 6-byte
sequences, but in this implementation, all UTF-8 sequences of four or more bytes
length will be treated as illegal).

Brackets Coding
In this encoding, a wide character is represented by the following eight character
sequence:

[" a b c d "]

Where a, b, c, d are the four hexadecimal characters (using uppercase letters) of the
wide character code. For example, [“A345”] is used to represent the wide character
with code 16#A345#. It is also possible (though not required) to use the Brackets
coding for upper half characters. For example, the code 16#A3# can be represented
as [‘‘A3’’].

This scheme is compatible with use of the full Wide Character set, and is also the
method used for wide character encoding in the standard ACVC (Ada Compiler
Validation Capability) test suite distributions.

16 GNAT User’s Guide

Note: Some of these coding schemes do not permit the full use of the Ada character set. For
example, neither Shift JIS, nor EUC allow the use of the upper half of the Latin-1 set.

2.3 File Naming Rules

The default file name is determined by the name of the unit that the file contains. The name
is formed by taking the full expanded name of the unit and replacing the separating dots with
hyphens and using lowercase for all letters.

An exception arises if the file name generated by the above rules starts with one of the
characters ‘a’, ‘g’, ‘i’, or ‘s’, and the second character is a minus. In this case, the character
tilde is used in place of the minus. The reason for this special rule is to avoid clashes with the
standard names for child units of the packages System, Ada, Interfaces, and GNAT, which use
the prefixes ‘s-’, ‘a-’, ‘i-’, and ‘g-’, respectively.

The file extension is ‘.ads’ for a spec and ‘.adb’ for a body. The following list shows some
examples of these rules.

‘main.ads’
Main (spec)

‘main.adb’
Main (body)

‘arith_functions.ads’
Arith Functions (package spec)

‘arith_functions.adb’
Arith Functions (package body)

‘func-spec.ads’
Func.Spec (child package spec)

‘func-spec.adb’
Func.Spec (child package body)

‘main-sub.adb’
Sub (subunit of Main)

‘a~bad.adb’
A.Bad (child package body)

Following these rules can result in excessively long file names if corresponding unit names are
long (for example, if child units or subunits are heavily nested). An option is available to
shorten such long file names (called file name “krunching”). This may be particularly useful
when programs being developed with GNAT are to be used on operating systems with limited
file name lengths. See Section 16.2 [Using gnatkr], page 217.

Of course, no file shortening algorithm can guarantee uniqueness over all possible unit names;
if file name krunching is used, it is your responsibility to ensure no name clashes occur. Alterna-
tively you can specify the exact file names that you want used, as described in the next section.
Finally, if your Ada programs are migrating from a compiler with a different naming conven-
tion, you can use the gnatchop utility to produce source files that follow the GNAT naming
conventions. (For details see Chapter 8 [Renaming Files Using gnatchop], page 119.)

Note: in the case of Windows NT/XP or OpenVMS operating systems, case is not significant. So
for example on Windows XP if the canonical name is main-sub.adb, you can use the file name
Main-Sub.adb instead. However, case is significant for other operating systems, so for example,
if you want to use other than canonically cased file names on a Unix system, you need to follow
the procedures described in the next section.

Chapter 2: The GNAT Compilation Model 17

2.4 Using Other File Names

In the previous section, we have described the default rules used by GNAT to determine the file
name in which a given unit resides. It is often convenient to follow these default rules, and if
you follow them, the compiler knows without being explicitly told where to find all the files it
needs.

However, in some cases, particularly when a program is imported from another Ada compiler
environment, it may be more convenient for the programmer to specify which file names contain
which units. GNAT allows arbitrary file names to be used by means of the Source File Name
pragma. The form of this pragma is as shown in the following examples:� �

pragma Source_File_Name (My_Utilities.Stacks,

Spec_File_Name => "myutilst_a.ada");

pragma Source_File_name (My_Utilities.Stacks,

Body_File_Name => "myutilst.ada");
 	
As shown in this example, the first argument for the pragma is the unit name (in this example a
child unit). The second argument has the form of a named association. The identifier indicates
whether the file name is for a spec or a body; the file name itself is given by a string literal.

The source file name pragma is a configuration pragma, which means that normally it will
be placed in the ‘gnat.adc’ file used to hold configuration pragmas that apply to a complete
compilation environment. For more details on how the ‘gnat.adc’ file is created and used see
Section 9.1 [Handling of Configuration Pragmas], page 124.

GNAT allows completely arbitrary file names to be specified using the source file name
pragma. However, if the file name specified has an extension other than ‘.ads’ or ‘.adb’ it
is necessary to use a special syntax when compiling the file. The name in this case must be
preceded by the special sequence ‘-x’ followed by a space and the name of the language, here
ada, as in:

$ gcc -c -x ada peculiar_file_name.sim

gnatmake handles non-standard file names in the usual manner (the non-standard file name for
the main program is simply used as the argument to gnatmake). Note that if the extension is
also non-standard, then it must be included in the gnatmake command, it may not be omitted.

2.5 Alternative File Naming Schemes

In the previous section, we described the use of the Source_File_Name pragma to allow arbitrary
names to be assigned to individual source files. However, this approach requires one pragma for
each file, and especially in large systems can result in very long ‘gnat.adc’ files, and also create
a maintenance problem.

GNAT also provides a facility for specifying systematic file naming schemes other than the
standard default naming scheme previously described. An alternative scheme for naming is
specified by the use of Source_File_Name pragmas having the following format:

pragma Source_File_Name (

Spec_File_Name => FILE_NAME_PATTERN

[,Casing => CASING_SPEC]
[,Dot_Replacement => STRING_LITERAL]);

pragma Source_File_Name (

Body_File_Name => FILE_NAME_PATTERN

[,Casing => CASING_SPEC]
[,Dot_Replacement => STRING_LITERAL]);

pragma Source_File_Name (

Subunit_File_Name => FILE_NAME_PATTERN

18 GNAT User’s Guide

[,Casing => CASING_SPEC]
[,Dot_Replacement => STRING_LITERAL]);

FILE_NAME_PATTERN ::= STRING_LITERAL

CASING_SPEC ::= Lowercase | Uppercase | Mixedcase

The FILE_NAME_PATTERN string shows how the file name is constructed. It contains a single
asterisk character, and the unit name is substituted systematically for this asterisk. The optional
parameter Casing indicates whether the unit name is to be all upper-case letters, all lower-case
letters, or mixed-case. If no Casing parameter is used, then the default is all lower-case.

The optional Dot_Replacement string is used to replace any periods that occur in subunit
or child unit names. If no Dot_Replacement argument is used then separating dots appear
unchanged in the resulting file name. Although the above syntax indicates that the Casing

argument must appear before the Dot_Replacement argument, but it is also permissible to
write these arguments in the opposite order.

As indicated, it is possible to specify different naming schemes for bodies, specs, and subunits.
Quite often the rule for subunits is the same as the rule for bodies, in which case, there is no
need to give a separate Subunit_File_Name rule, and in this case the Body_File_name rule is
used for subunits as well.

The separate rule for subunits can also be used to implement the rather unusual case of
a compilation environment (e.g. a single directory) which contains a subunit and a child unit
with the same unit name. Although both units cannot appear in the same partition, the Ada
Reference Manual allows (but does not require) the possibility of the two units coexisting in the
same environment.

The file name translation works in the following steps:

• If there is a specific Source_File_Name pragma for the given unit, then this is always used,
and any general pattern rules are ignored.

• If there is a pattern type Source_File_Name pragma that applies to the unit, then the
resulting file name will be used if the file exists. If more than one pattern matches, the
latest one will be tried first, and the first attempt resulting in a reference to a file that exists
will be used.

• If no pattern type Source_File_Name pragma that applies to the unit for which the corre-
sponding file exists, then the standard GNAT default naming rules are used.

As an example of the use of this mechanism, consider a commonly used scheme in which file
names are all lower case, with separating periods copied unchanged to the resulting file name,
and specs end with ‘.1.ada’, and bodies end with ‘.2.ada’. GNAT will follow this scheme if
the following two pragmas appear:

pragma Source_File_Name

(Spec_File_Name => "*.1.ada");

pragma Source_File_Name

(Body_File_Name => "*.2.ada");

The default GNAT scheme is actually implemented by providing the following default pragmas
internally:

pragma Source_File_Name

(Spec_File_Name => "*.ads", Dot_Replacement => "-");

pragma Source_File_Name

(Body_File_Name => "*.adb", Dot_Replacement => "-");

Our final example implements a scheme typically used with one of the Ada 83 compilers, where
the separator character for subunits was “ ” (two underscores), specs were identified by adding
‘_.ADA’, bodies by adding ‘.ADA’, and subunits by adding ‘.SEP’. All file names were upper
case. Child units were not present of course since this was an Ada 83 compiler, but it seems
reasonable to extend this scheme to use the same double underscore separator for child units.

Chapter 2: The GNAT Compilation Model 19

pragma Source_File_Name

(Spec_File_Name => "*_.ADA",

Dot_Replacement => "__",

Casing = Uppercase);

pragma Source_File_Name

(Body_File_Name => "*.ADA",

Dot_Replacement => "__",

Casing = Uppercase);

pragma Source_File_Name

(Subunit_File_Name => "*.SEP",

Dot_Replacement => "__",

Casing = Uppercase);

2.6 Generating Object Files

An Ada program consists of a set of source files, and the first step in compiling the program is
to generate the corresponding object files. These are generated by compiling a subset of these
source files. The files you need to compile are the following:

• If a package spec has no body, compile the package spec to produce the object file for the
package.

• If a package has both a spec and a body, compile the body to produce the object file for
the package. The source file for the package spec need not be compiled in this case because
there is only one object file, which contains the code for both the spec and body of the
package.

• For a subprogram, compile the subprogram body to produce the object file for the subpro-
gram. The spec, if one is present, is as usual in a separate file, and need not be compiled.

• In the case of subunits, only compile the parent unit. A single object file is generated for
the entire subunit tree, which includes all the subunits.

• Compile child units independently of their parent units (though, of course, the spec of all
the ancestor unit must be present in order to compile a child unit).

• Compile generic units in the same manner as any other units. The object files in this case
are small dummy files that contain at most the flag used for elaboration checking. This is
because GNAT always handles generic instantiation by means of macro expansion. How-
ever, it is still necessary to compile generic units, for dependency checking and elaboration
purposes.

The preceding rules describe the set of files that must be compiled to generate the object files
for a program. Each object file has the same name as the corresponding source file, except that
the extension is ‘.o’ as usual.

You may wish to compile other files for the purpose of checking their syntactic and semantic
correctness. For example, in the case where a package has a separate spec and body, you would
not normally compile the spec. However, it is convenient in practice to compile the spec to make
sure it is error-free before compiling clients of this spec, because such compilations will fail if
there is an error in the spec.

GNAT provides an option for compiling such files purely for the purposes of checking cor-
rectness; such compilations are not required as part of the process of building a program. To
compile a file in this checking mode, use the ‘-gnatc’ switch.

2.7 Source Dependencies

A given object file clearly depends on the source file which is compiled to produce it. Here we
are using depends in the sense of a typical make utility; in other words, an object file depends
on a source file if changes to the source file require the object file to be recompiled. In addition
to this basic dependency, a given object may depend on additional source files as follows:

20 GNAT User’s Guide

• If a file being compiled with’s a unit X, the object file depends on the file containing the
spec of unit X. This includes files that are with’ed implicitly either because they are parents
of with’ed child units or they are run-time units required by the language constructs used
in a particular unit.

• If a file being compiled instantiates a library level generic unit, the object file depends on
both the spec and body files for this generic unit.

• If a file being compiled instantiates a generic unit defined within a package, the object file
depends on the body file for the package as well as the spec file.

• If a file being compiled contains a call to a subprogram for which pragma Inline applies and
inlining is activated with the ‘-gnatn’ switch, the object file depends on the file containing
the body of this subprogram as well as on the file containing the spec. Note that for inlining
to actually occur as a result of the use of this switch, it is necessary to compile in optimizing
mode.

The use of ‘-gnatN’ activates inlining optimization that is performed by the front end of
the compiler. This inlining does not require that the code generation be optimized. Like
‘-gnatn’, the use of this switch generates additional dependencies.

When using a gcc-based back end (in practice this means using any version of GNAT other
than the JGNAT, .NET or GNAAMP versions), then the use of ‘-gnatN’ is deprecated, and
the use of ‘-gnatn’ is preferred. Historically front end inlining was more extensive than the
gcc back end inlining, but that is no longer the case.

• If an object file ‘O’ depends on the proper body of a subunit through inlining or instantiation,
it depends on the parent unit of the subunit. This means that any modification of the parent
unit or one of its subunits affects the compilation of ‘O’.

• The object file for a parent unit depends on all its subunit body files.

• The previous two rules meant that for purposes of computing dependencies and recompila-
tion, a body and all its subunits are treated as an indivisible whole.

These rules are applied transitively: if unit A with’s unit B, whose elaboration calls an
inlined procedure in package C, the object file for unit A will depend on the body of C, in
file ‘c.adb’.

The set of dependent files described by these rules includes all the files on which the unit
is semantically dependent, as dictated by the Ada language standard. However, it is a
superset of what the standard describes, because it includes generic, inline, and subunit
dependencies.

An object file must be recreated by recompiling the corresponding source file if any of the
source files on which it depends are modified. For example, if the make utility is used to
control compilation, the rule for an Ada object file must mention all the source files on
which the object file depends, according to the above definition. The determination of the
necessary recompilations is done automatically when one uses gnatmake.

2.8 The Ada Library Information Files

Each compilation actually generates two output files. The first of these is the normal object file
that has a ‘.o’ extension. The second is a text file containing full dependency information. It
has the same name as the source file, but an ‘.ali’ extension. This file is known as the Ada
Library Information (‘ALI’) file. The following information is contained in the ‘ALI’ file.

• Version information (indicates which version of GNAT was used to compile the unit(s) in
question)

• Main program information (including priority and time slice settings, as well as the wide
character encoding used during compilation).

Chapter 2: The GNAT Compilation Model 21

• List of arguments used in the gcc command for the compilation

• Attributes of the unit, including configuration pragmas used, an indication of whether the
compilation was successful, exception model used etc.

• A list of relevant restrictions applying to the unit (used for consistency) checking.

• Categorization information (e.g. use of pragma Pure).

• Information on all with’ed units, including presence of Elaborate or Elaborate_All prag-
mas.

• Information from any Linker_Options pragmas used in the unit

• Information on the use of Body_Version or Version attributes in the unit.

• Dependency information. This is a list of files, together with time stamp and checksum
information. These are files on which the unit depends in the sense that recompilation is
required if any of these units are modified.

• Cross-reference data. Contains information on all entities referenced in the unit. Used by
tools like gnatxref and gnatfind to provide cross-reference information.

For a full detailed description of the format of the ‘ALI’ file, see the source of the body of unit
Lib.Writ, contained in file ‘lib-writ.adb’ in the GNAT compiler sources.

2.9 Binding an Ada Program

When using languages such as C and C++, once the source files have been compiled the only
remaining step in building an executable program is linking the object modules together. This
means that it is possible to link an inconsistent version of a program, in which two units have
included different versions of the same header.

The rules of Ada do not permit such an inconsistent program to be built. For example, if
two clients have different versions of the same package, it is illegal to build a program containing
these two clients. These rules are enforced by the GNAT binder, which also determines an
elaboration order consistent with the Ada rules.

The GNAT binder is run after all the object files for a program have been created. It is given
the name of the main program unit, and from this it determines the set of units required by the
program, by reading the corresponding ALI files. It generates error messages if the program is
inconsistent or if no valid order of elaboration exists.

If no errors are detected, the binder produces a main program, in Ada by default, that
contains calls to the elaboration procedures of those compilation unit that require them, followed
by a call to the main program. This Ada program is compiled to generate the object file for
the main program. The name of the Ada file is ‘b~xxx.adb’ (with the corresponding spec
‘b~xxx.ads’) where xxx is the name of the main program unit.

Finally, the linker is used to build the resulting executable program, using the object from
the main program from the bind step as well as the object files for the Ada units of the program.

2.10 Mixed Language Programming

This section describes how to develop a mixed-language program, specifically one that comprises
units in both Ada and C.

2.10.1 Interfacing to C

Interfacing Ada with a foreign language such as C involves using compiler directives to import
and/or export entity definitions in each language—using extern statements in C, for instance,
and the Import, Export, and Convention pragmas in Ada. A full treatment of these topics is
provided in Appendix B, section 1 of the Ada Reference Manual.

22 GNAT User’s Guide

There are two ways to build a program using GNAT that contains some Ada sources and
some foreign language sources, depending on whether or not the main subprogram is written in
Ada. Here is a source example with the main subprogram in Ada:

/* file1.c */

#include <stdio.h>

void print_num (int num)

{

printf ("num is %d.\n", num);

return;

}

/* file2.c */

/* num_from_Ada is declared in my_main.adb */

extern int num_from_Ada;

int get_num (void)

{

return num_from_Ada;

}

-- my_main.adb

procedure My_Main is

-- Declare then export an Integer entity called num_from_Ada

My_Num : Integer := 10;

pragma Export (C, My_Num, "num_from_Ada");

-- Declare an Ada function spec for Get_Num, then use

-- C function get_num for the implementation.

function Get_Num return Integer;

pragma Import (C, Get_Num, "get_num");

-- Declare an Ada procedure spec for Print_Num, then use

-- C function print_num for the implementation.

procedure Print_Num (Num : Integer);

pragma Import (C, Print_Num, "print_num");

begin

Print_Num (Get_Num);

end My_Main;

1. To build this example, first compile the foreign language files to generate object files:
gcc -c file1.c

gcc -c file2.c

2. Then, compile the Ada units to produce a set of object files and ALI files:
gnatmake -c my_main.adb

3. Run the Ada binder on the Ada main program:
gnatbind my_main.ali

4. Link the Ada main program, the Ada objects and the other language objects:
gnatlink my_main.ali file1.o file2.o

The last three steps can be grouped in a single command:
gnatmake my_main.adb -largs file1.o file2.o

If the main program is in a language other than Ada, then you may have more than one
entry point into the Ada subsystem. You must use a special binder option to generate callable
routines that initialize and finalize the Ada units (see Section 4.2.6 [Binding with Non-Ada Main
Programs], page 87). Calls to the initialization and finalization routines must be inserted in the
main program, or some other appropriate point in the code. The call to initialize the Ada units
must occur before the first Ada subprogram is called, and the call to finalize the Ada units

Chapter 2: The GNAT Compilation Model 23

must occur after the last Ada subprogram returns. The binder will place the initialization and
finalization subprograms into the ‘b~xxx.adb’ file where they can be accessed by your C sources.
To illustrate, we have the following example:

/* main.c */

extern void adainit (void);

extern void adafinal (void);

extern int add (int, int);

extern int sub (int, int);

int main (int argc, char *argv[])

{

int a = 21, b = 7;

adainit();

/* Should print "21 + 7 = 28" */

printf ("%d + %d = %d\n", a, b, add (a, b));

/* Should print "21 - 7 = 14" */

printf ("%d - %d = %d\n", a, b, sub (a, b));

adafinal();

}

-- unit1.ads

package Unit1 is

function Add (A, B : Integer) return Integer;

pragma Export (C, Add, "add");

end Unit1;

-- unit1.adb

package body Unit1 is

function Add (A, B : Integer) return Integer is

begin

return A + B;

end Add;

end Unit1;

-- unit2.ads

package Unit2 is

function Sub (A, B : Integer) return Integer;

pragma Export (C, Sub, "sub");

end Unit2;

-- unit2.adb

package body Unit2 is

function Sub (A, B : Integer) return Integer is

begin

return A - B;

end Sub;

end Unit2;

1. The build procedure for this application is similar to the last example’s. First, compile the
foreign language files to generate object files:

gcc -c main.c

2. Next, compile the Ada units to produce a set of object files and ALI files:

gnatmake -c unit1.adb

gnatmake -c unit2.adb

3. Run the Ada binder on every generated ALI file. Make sure to use the ‘-n’ option to specify
a foreign main program:

gnatbind -n unit1.ali unit2.ali

4. Link the Ada main program, the Ada objects and the foreign language objects. You need
only list the last ALI file here:

24 GNAT User’s Guide

gnatlink unit2.ali main.o -o exec_file

This procedure yields a binary executable called ‘exec_file’.

Depending on the circumstances (for example when your non-Ada main object does not provide
symbol main), you may also need to instruct the GNAT linker not to include the standard
startup objects by passing the ‘-nostartfiles’ switch to gnatlink.

2.10.2 Calling Conventions

GNAT follows standard calling sequence conventions and will thus interface to any other lan-
guage that also follows these conventions. The following Convention identifiers are recognized
by GNAT:

Ada This indicates that the standard Ada calling sequence will be used and all Ada data
items may be passed without any limitations in the case where GNAT is used to
generate both the caller and callee. It is also possible to mix GNAT generated code
and code generated by another Ada compiler. In this case, the data types should
be restricted to simple cases, including primitive types. Whether complex data
types can be passed depends on the situation. Probably it is safe to pass simple
arrays, such as arrays of integers or floats. Records may or may not work, depending
on whether both compilers lay them out identically. Complex structures involving
variant records, access parameters, tasks, or protected types, are unlikely to be able
to be passed.

Note that in the case of GNAT running on a platform that supports HP Ada 83, a
higher degree of compatibility can be guaranteed, and in particular records are layed
out in an identical manner in the two compilers. Note also that if output from two
different compilers is mixed, the program is responsible for dealing with elaboration
issues. Probably the safest approach is to write the main program in the version of
Ada other than GNAT, so that it takes care of its own elaboration requirements,
and then call the GNAT-generated adainit procedure to ensure elaboration of the
GNAT components. Consult the documentation of the other Ada compiler for
further details on elaboration.

However, it is not possible to mix the tasking run time of GNAT and HP Ada 83,
All the tasking operations must either be entirely within GNAT compiled sections
of the program, or entirely within HP Ada 83 compiled sections of the program.

Assembler

Specifies assembler as the convention. In practice this has the same effect as conven-
tion Ada (but is not equivalent in the sense of being considered the same convention).

Asm Equivalent to Assembler.

COBOL Data will be passed according to the conventions described in section B.4 of the Ada
Reference Manual.

C Data will be passed according to the conventions described in section B.3 of the Ada
Reference Manual.

A note on interfacing to a C “varargs” function:

• In C, varargs allows a function to take a variable number of arguments. There
is no direct equivalent in this to Ada. One approach that can be used is to create
a C wrapper for each different profile and then interface to this C wrapper. For
example, to print an int value using printf, create a C function printfi that
takes two arguments, a pointer to a string and an int, and calls printf. Then
in the Ada program, use pragma Import to interface to printfi.

Chapter 2: The GNAT Compilation Model 25

• It may work on some platforms to directly interface to a varargs function by
providing a specific Ada profile for a particular call. However, this does not
work on all platforms, since there is no guarantee that the calling sequence
for a two argument normal C function is the same as for calling a varargs C
function with the same two arguments.

Default Equivalent to C.

External Equivalent to C.

C_Plus_Plus (or CPP)

This stands for C++. For most purposes this is identical to C. See the separate
description of the specialized GNAT pragmas relating to C++ interfacing for further
details.

Fortran Data will be passed according to the conventions described in section B.5 of the Ada
Reference Manual.

Intrinsic

This applies to an intrinsic operation, as defined in the Ada Reference Manual. If
a pragma Import (Intrinsic) applies to a subprogram, this means that the body of
the subprogram is provided by the compiler itself, usually by means of an efficient
code sequence, and that the user does not supply an explicit body for it. In an
application program, the pragma may be applied to the following sets of names:

• Rotate Left, Rotate Right, Shift Left, Shift Right, Shift Right Arithmetic.
The corresponding subprogram declaration must have two formal parameters.
The first one must be a signed integer type or a modular type with a binary
modulus, and the second parameter must be of type Natural. The return type
must be the same as the type of the first argument. The size of this type can
only be 8, 16, 32, or 64.

• Binary arithmetic operators: “+”, “-”, “*”, “/” The corresponding operator
declaration must have parameters and result type that have the same root
numeric type (for example, all three are long float types). This simplifies the
definition of operations that use type checking to perform dimensional checks:

type Distance is new Long_Float;

type Time is new Long_Float;

type Velocity is new Long_Float;

function "/" (D : Distance; T : Time)

return Velocity;

pragma Import (Intrinsic, "/");

This common idiom is often programmed with a generic definition and an ex-
plicit body. The pragma makes it simpler to introduce such declarations. It
incurs no overhead in compilation time or code size, because it is implemented
as a single machine instruction.

• General subprogram entities, to bind an Ada subprogram declaration to a com-
piler builtin by name with back-ends where such interfaces are available. A
typical example is the set of “ builtin” functions exposed by the GCC back-
end, as in the following example:

function builtin_sqrt (F : Float) return Float;

pragma Import (Intrinsic, builtin_sqrt, "__builtin_sqrtf");

Most of the GCC builtins are accessible this way, and as for other import
conventions (e.g. C), it is the user’s responsibility to ensure that the Ada
subprogram profile matches the underlying builtin expectations.

Stdcall This is relevant only to Windows XP/2000/NT implementations of GNAT, and
specifies that the Stdcall calling sequence will be used, as defined by the NT

26 GNAT User’s Guide

API. Nevertheless, to ease building cross-platform bindings this convention will be
handled as a C calling convention on non-Windows platforms.

DLL This is equivalent to Stdcall.

Win32 This is equivalent to Stdcall.

Stubbed This is a special convention that indicates that the compiler should provide a stub
body that raises Program_Error.

GNAT additionally provides a useful pragma Convention_Identifier that can be used to
parameterize conventions and allow additional synonyms to be specified. For example if you
have legacy code in which the convention identifier Fortran77 was used for Fortran, you can use
the configuration pragma:

pragma Convention_Identifier (Fortran77, Fortran);

And from now on the identifier Fortran77 may be used as a convention identifier (for example
in an Import pragma) with the same meaning as Fortran.

2.11 Building Mixed Ada and C++ Programs

A programmer inexperienced with mixed-language development may find that building an ap-
plication containing both Ada and C++ code can be a challenge. This section gives a few hints
that should make this task easier. The first section addresses the differences between interfacing
with C and interfacing with C++. The second section looks into the delicate problem of linking
the complete application from its Ada and C++ parts. The last section gives some hints on how
the GNAT run-time library can be adapted in order to allow inter-language dispatching with a
new C++ compiler.

2.11.1 Interfacing to C++

GNAT supports interfacing with the G++ compiler (or any C++ compiler gener-
ating code that is compatible with the G++ Application Binary Interface —see
http://www.codesourcery.com/archives/cxx-abi).

Interfacing can be done at 3 levels: simple data, subprograms, and classes. In the first two cases,
GNAT offers a specific Convention C_Plus_Plus (or CPP) that behaves exactly like Convention
C. Usually, C++ mangles the names of subprograms. To generate proper mangled names auto-
matically, see Chapter 27 [Generating Ada Bindings for C and C++ headers], page 263). This
problem can also be addressed manually in two ways:

• by modifying the C++ code in order to force a C convention using the extern "C" syntax.

• by figuring out the mangled name (using e.g. nm) and using it as the Link Name argument
of the pragma import.

Interfacing at the class level can be achieved by using the GNAT specific pragmas such as CPP_
Constructor. See Section “Interfacing to C++” in GNAT Reference Manual, for additional
information.

2.11.2 Linking a Mixed C++ & Ada Program

Usually the linker of the C++ development system must be used to link mixed applications
because most C++ systems will resolve elaboration issues (such as calling constructors on global
class instances) transparently during the link phase. GNAT has been adapted to ease the use
of a foreign linker for the last phase. Three cases can be considered:

1. Using GNAT and G++ (GNU C++ compiler) from the same GCC installation: The C++
linker can simply be called by using the C++ specific driver called g++.

Note that if the C++ code uses inline functions, you will need to compile your C++ code
with the -fkeep-inline-functions switch in order to provide an existing function imple-
mentation that the Ada code can link with.

Chapter 2: The GNAT Compilation Model 27

$ g++ -c -fkeep-inline-functions file1.C

$ g++ -c -fkeep-inline-functions file2.C

$ gnatmake ada_unit -largs file1.o file2.o --LINK=g++

2. Using GNAT and G++ from two different GCC installations: If both compilers are on
the PATH, the previous method may be used. It is important to note that environment
variables such as C_INCLUDE_PATH, GCC_EXEC_PREFIX, BINUTILS_ROOT, and GCC_ROOT will
affect both compilers at the same time and may make one of the two compilers operate
improperly if set during invocation of the wrong compiler. It is also very important that
the linker uses the proper ‘libgcc.a’ GCC library – that is, the one from the C++ compiler
installation. The implicit link command as suggested in the gnatmake command from the
former example can be replaced by an explicit link command with the full-verbosity option
in order to verify which library is used:

$ gnatbind ada_unit

$ gnatlink -v -v ada_unit file1.o file2.o --LINK=c++

If there is a problem due to interfering environment variables, it can be worked around by
using an intermediate script. The following example shows the proper script to use when
GNAT has not been installed at its default location and g++ has been installed at its default
location:

$ cat ./my_script

#!/bin/sh

unset BINUTILS_ROOT

unset GCC_ROOT

c++ $*

$ gnatlink -v -v ada_unit file1.o file2.o --LINK=./my_script

3. Using a non-GNU C++ compiler: The commands previously described can be used to insure
that the C++ linker is used. Nonetheless, you need to add a few more parameters to the
link command line, depending on the exception mechanism used.

If the setjmp/longjmp exception mechanism is used, only the paths to the libgcc libraries
are required:

$ cat ./my_script

#!/bin/sh

CC $* ‘gcc -print-file-name=libgcc.a‘ ‘gcc -print-file-name=libgcc_eh.a‘

$ gnatlink ada_unit file1.o file2.o --LINK=./my_script

Where CC is the name of the non-GNU C++ compiler.

If the zero cost exception mechanism is used, and the platform supports automatic regis-
tration of exception tables (e.g. Solaris or IRIX), paths to more objects are required:

$ cat ./my_script

#!/bin/sh

CC ‘gcc -print-file-name=crtbegin.o‘ $* \

‘gcc -print-file-name=libgcc.a‘ ‘gcc -print-file-name=libgcc_eh.a‘ \

‘gcc -print-file-name=crtend.o‘

$ gnatlink ada_unit file1.o file2.o --LINK=./my_script

If the zero cost exception mechanism is used, and the platform doesn’t support automatic
registration of exception tables (e.g. HP-UX, Tru64 or AIX), the simple approach described
above will not work and a pre-linking phase using GNAT will be necessary.

Another alternative is to use the gprbuild multi-language builder which has a large knowl-
edge base and knows how to link Ada and C++ code together automatically in most cases.

2.11.3 A Simple Example

The following example, provided as part of the GNAT examples, shows how to achieve procedural
interfacing between Ada and C++ in both directions. The C++ class A has two methods. The
first method is exported to Ada by the means of an extern C wrapper function. The second
method calls an Ada subprogram. On the Ada side, The C++ calls are modelled by a limited

28 GNAT User’s Guide

record with a layout comparable to the C++ class. The Ada subprogram, in turn, calls the C++
method. So, starting from the C++ main program, the process passes back and forth between
the two languages.

Here are the compilation commands:
$ gnatmake -c simple_cpp_interface

$ g++ -c cpp_main.C

$ g++ -c ex7.C

$ gnatbind -n simple_cpp_interface

$ gnatlink simple_cpp_interface -o cpp_main --LINK=g++

-lstdc++ ex7.o cpp_main.o

Here are the corresponding sources:

//cpp_main.C

#include "ex7.h"

extern "C" {

void adainit (void);

void adafinal (void);

void method1 (A *t);

}

void method1 (A *t)

{

t->method1 ();

}

int main ()

{

A obj;

adainit ();

obj.method2 (3030);

adafinal ();

}

//ex7.h

class Origin {

public:

int o_value;

};

class A : public Origin {

public:

void method1 (void);

void method2 (int v);

A();

int a_value;

};

//ex7.C

#include "ex7.h"

#include <stdio.h>

extern "C" { void ada_method2 (A *t, int v);}

void A::method1 (void)

{

a_value = 2020;

printf ("in A::method1, a_value = %d \n",a_value);

}

Chapter 2: The GNAT Compilation Model 29

void A::method2 (int v)

{

ada_method2 (this, v);

printf ("in A::method2, a_value = %d \n",a_value);

}

A::A(void)

{

a_value = 1010;

printf ("in A::A, a_value = %d \n",a_value);

}

-- Ada sources

package body Simple_Cpp_Interface is

procedure Ada_Method2 (This : in out A; V : Integer) is

begin

Method1 (This);

This.A_Value := V;

end Ada_Method2;

end Simple_Cpp_Interface;

with System;

package Simple_Cpp_Interface is

type A is limited

record

Vptr : System.Address;

O_Value : Integer;

A_Value : Integer;

end record;

pragma Convention (C, A);

procedure Method1 (This : in out A);

pragma Import (C, Method1);

procedure Ada_Method2 (This : in out A; V : Integer);

pragma Export (C, Ada_Method2);

end Simple_Cpp_Interface;

2.11.4 Interfacing with C++ constructors

In order to interface with C++ constructors GNAT provides the pragma CPP_Constructor

(See Section “Interfacing to C++” in GNAT Reference Manual, for additional information). In
this section we present some common uses of C++ constructors in mixed-languages programs in
GNAT.

Let us assume that we need to interface with the following C++ class:

class Root {

public:
int a_value;

int b_value;

virtual int Get_Value ();

Root(); // Default constructor

Root(int v); // 1st non-default constructor

Root(int v, int w); // 2nd non-default constructor

};

For this purpose we can write the following package spec (further information on how to
build this spec is available in Section 2.11.5 [Interfacing with C++ at the Class Level], page 31
and Chapter 27 [Generating Ada Bindings for C and C++ headers], page 263).

with Interfaces.C; use Interfaces.C;

30 GNAT User’s Guide

package Pkg_Root is

type Root is tagged limited record

A_Value : int;

B_Value : int;

end record;

pragma Import (CPP, Root);

function Get_Value (Obj : Root) return int;

pragma Import (CPP, Get_Value);

function Constructor return Root;

pragma Cpp_Constructor (Constructor, "_ZN4RootC1Ev");

function Constructor (v : Integer) return Root;

pragma Cpp_Constructor (Constructor, "_ZN4RootC1Ei");

function Constructor (v, w : Integer) return Root;

pragma Cpp_Constructor (Constructor, "_ZN4RootC1Eii");

end Pkg_Root;

On the Ada side the constructor is represented by a function (whose name is arbitrary) that
returns the classwide type corresponding to the imported C++ class. Although the constructor
is described as a function, it is typically a procedure with an extra implicit argument (the object
being initialized) at the implementation level. GNAT issues the appropriate call, whatever it is,
to get the object properly initialized.

Constructors can only appear in the following contexts:

• On the right side of an initialization of an object of type T.

• On the right side of an initialization of a record component of type T.

• In an Ada 2005 limited aggregate.

• In an Ada 2005 nested limited aggregate.

• In an Ada 2005 limited aggregate that initializes an object built in place by an extended
return statement.

In a declaration of an object whose type is a class imported from C++, either the default C++
constructor is implicitly called by GNAT, or else the required C++ constructor must be explicitly
called in the expression that initializes the object. For example:

Obj1 : Root;

Obj2 : Root := Constructor;

Obj3 : Root := Constructor (v => 10);

Obj4 : Root := Constructor (30, 40);

The first two declarations are equivalent: in both cases the default C++ constructor is invoked
(in the former case the call to the constructor is implicit, and in the latter case the call is explicit
in the object declaration). Obj3 is initialized by the C++ non-default constructor that takes an
integer argument, and Obj4 is initialized by the non-default C++ constructor that takes two
integers.

Let us derive the imported C++ class in the Ada side. For example:

type DT is new Root with record

C_Value : Natural := 2009;

end record;

In this case the components DT inherited from the C++ side must be initialized by a C++
constructor, and the additional Ada components of type DT are initialized by GNAT. The
initialization of such an object is done either by default, or by means of a function returning an
aggregate of type DT, or by means of an extension aggregate.

Obj5 : DT;

Obj6 : DT := Function_Returning_DT (50);

Obj7 : DT := (Constructor (30,40) with C_Value => 50);

Chapter 2: The GNAT Compilation Model 31

The declaration of Obj5 invokes the default constructors: the C++ default constructor of the
parent type takes care of the initialization of the components inherited from Root, and GNAT
takes care of the default initialization of the additional Ada components of type DT (that is,
C_Value is initialized to value 2009). The order of invocation of the constructors is consistent
with the order of elaboration required by Ada and C++. That is, the constructor of the parent
type is always called before the constructor of the derived type.

Let us now consider a record that has components whose type is imported from C++. For
example:

type Rec1 is limited record

Data1 : Root := Constructor (10);

Value : Natural := 1000;

end record;

type Rec2 (D : Integer := 20) is limited record

Rec : Rec1;

Data2 : Root := Constructor (D, 30);

end record;

The initialization of an object of type Rec2 will call the non-default C++ constructors specified
for the imported components. For example:

Obj8 : Rec2 (40);

Using Ada 2005 we can use limited aggregates to initialize an object invoking C++ constructors
that differ from those specified in the type declarations. For example:

Obj9 : Rec2 := (Rec => (Data1 => Constructor (15, 16),

others => <>),

others => <>);

The above declaration uses an Ada 2005 limited aggregate to initialize Obj9, and the C++
constructor that has two integer arguments is invoked to initialize the Data1 component instead
of the constructor specified in the declaration of type Rec1. In Ada 2005 the box in the aggregate
indicates that unspecified components are initialized using the expression (if any) available in
the component declaration. That is, in this case discriminant D is initialized to value 20, Value
is initialized to value 1000, and the non-default C++ constructor that handles two integers takes
care of initializing component Data2 with values 20,30.

In Ada 2005 we can use the extended return statement to build the Ada equivalent to C++
non-default constructors. For example:

function Constructor (V : Integer) return Rec2 is

begin

return Obj : Rec2 := (Rec => (Data1 => Constructor (V, 20),

others => <>),

others => <>) do

-- Further actions required for construction of

-- objects of type Rec2

...

end record;

end Constructor;

In this example the extended return statement construct is used to build in place the returned
object whose components are initialized by means of a limited aggregate. Any further action
associated with the constructor can be placed inside the construct.

2.11.5 Interfacing with C++ at the Class Level

In this section we demonstrate the GNAT features for interfacing with C++ by means of an ex-
ample making use of Ada 2005 abstract interface types. This example consists of a classification
of animals; classes have been used to model our main classification of animals, and interfaces
provide support for the management of secondary classifications. We first demonstrate a case in

32 GNAT User’s Guide

which the types and constructors are defined on the C++ side and imported from the Ada side,
and latter the reverse case.

The root of our derivation will be the Animal class, with a single private attribute (the Age

of the animal) and two public primitives to set and get the value of this attribute.
class Animal {

public:
virtual void Set_Age (int New_Age);

virtual int Age ();

private:
int Age_Count;

};

Abstract interface types are defined in C++ by means of classes with pure virtual functions
and no data members. In our example we will use two interfaces that provide support for the
common management of Carnivore and Domestic animals:

class Carnivore {

public:
virtual int Number_Of_Teeth () = 0;

};

class Domestic {

public:
virtual void Set_Owner (char* Name) = 0;

};

Using these declarations, we can now say that a Dog is an animal that is both Carnivore and
Domestic, that is:

class Dog : Animal, Carnivore, Domestic {

public:
virtual int Number_Of_Teeth ();

virtual void Set_Owner (char* Name);

Dog(); // Constructor

private:
int Tooth_Count;

char *Owner;

};

In the following examples we will assume that the previous declarations are located in a file
named animals.h. The following package demonstrates how to import these C++ declarations
from the Ada side:

with Interfaces.C.Strings; use Interfaces.C.Strings;

package Animals is

type Carnivore is interface;

pragma Convention (C_Plus_Plus, Carnivore);

function Number_Of_Teeth (X : Carnivore)

return Natural is abstract;

type Domestic is interface;

pragma Convention (C_Plus_Plus, Set_Owner);

procedure Set_Owner

(X : in out Domestic;

Name : Chars_Ptr) is abstract;

type Animal is tagged record

Age : Natural := 0;

end record;

pragma Import (C_Plus_Plus, Animal);

procedure Set_Age (X : in out Animal; Age : Integer);

pragma Import (C_Plus_Plus, Set_Age);

function Age (X : Animal) return Integer;

Chapter 2: The GNAT Compilation Model 33

pragma Import (C_Plus_Plus, Age);

type Dog is new Animal and Carnivore and Domestic with record

Tooth_Count : Natural;

Owner : String (1 .. 30);

end record;

pragma Import (C_Plus_Plus, Dog);

function Number_Of_Teeth (A : Dog) return Integer;

pragma Import (C_Plus_Plus, Number_Of_Teeth);

procedure Set_Owner (A : in out Dog; Name : Chars_Ptr);

pragma Import (C_Plus_Plus, Set_Owner);

function New_Dog return Dog;

pragma CPP_Constructor (New_Dog);

pragma Import (CPP, New_Dog, "_ZN3DogC2Ev");

end Animals;

Thanks to the compatibility between GNAT run-time structures and the C++ ABI, interfacing
with these C++ classes is easy. The only requirement is that all the primitives and components
must be declared exactly in the same order in the two languages.

Regarding the abstract interfaces, we must indicate to the GNAT compiler by means of a
pragma Convention (C_Plus_Plus), the convention used to pass the arguments to the called
primitives will be the same as for C++. For the imported classes we use pragma Import with
convention C_Plus_Plus to indicate that they have been defined on the C++ side; this is required
because the dispatch table associated with these tagged types will be built in the C++ side and
therefore will not contain the predefined Ada primitives which Ada would otherwise expect.

As the reader can see there is no need to indicate the C++mangled names associated with each
subprogram because it is assumed that all the calls to these primitives will be dispatching calls.
The only exception is the constructor, which must be registered with the compiler by means of
pragma CPP_Constructor and needs to provide its associated C++ mangled name because the
Ada compiler generates direct calls to it.

With the above packages we can now declare objects of type Dog on the Ada side and dispatch
calls to the corresponding subprograms on the C++ side. We can also extend the tagged type
Dog with further fields and primitives, and override some of its C++ primitives on the Ada
side. For example, here we have a type derivation defined on the Ada side that inherits all the
dispatching primitives of the ancestor from the C++ side.

with Animals; use Animals;

package Vaccinated_Animals is
type Vaccinated_Dog is new Dog with null record;
function Vaccination_Expired (A : Vaccinated_Dog) return Boolean;

end Vaccinated_Animals;

It is important to note that, because of the ABI compatibility, the programmer does not
need to add any further information to indicate either the object layout or the dispatch table
entry associated with each dispatching operation.

Now let us define all the types and constructors on the Ada side and export them to C++,
using the same hierarchy of our previous example:

with Interfaces.C.Strings;

use Interfaces.C.Strings;

package Animals is

type Carnivore is interface;

pragma Convention (C_Plus_Plus, Carnivore);

function Number_Of_Teeth (X : Carnivore)

return Natural is abstract;

type Domestic is interface;

34 GNAT User’s Guide

pragma Convention (C_Plus_Plus, Set_Owner);

procedure Set_Owner

(X : in out Domestic;

Name : Chars_Ptr) is abstract;

type Animal is tagged record

Age : Natural := 0;

end record;

pragma Convention (C_Plus_Plus, Animal);

procedure Set_Age (X : in out Animal; Age : Integer);

pragma Export (C_Plus_Plus, Set_Age);

function Age (X : Animal) return Integer;

pragma Export (C_Plus_Plus, Age);

type Dog is new Animal and Carnivore and Domestic with record

Tooth_Count : Natural;

Owner : String (1 .. 30);

end record;

pragma Convention (C_Plus_Plus, Dog);

function Number_Of_Teeth (A : Dog) return Integer;

pragma Export (C_Plus_Plus, Number_Of_Teeth);

procedure Set_Owner (A : in out Dog; Name : Chars_Ptr);

pragma Export (C_Plus_Plus, Set_Owner);

function New_Dog return Dog’Class;

pragma Export (C_Plus_Plus, New_Dog);

end Animals;

Compared with our previous example the only difference is the use of pragma Export to
indicate to the GNAT compiler that the primitives will be available to C++. Thanks to the ABI
compatibility, on the C++ side there is nothing else to be done; as explained above, the only
requirement is that all the primitives and components are declared in exactly the same order.

For completeness, let us see a brief C++ main program that uses the declarations available
in animals.h (presented in our first example) to import and use the declarations from the Ada
side, properly initializing and finalizing the Ada run-time system along the way:

#include "animals.h"

#include <iostream>

using namespace std;

void Check_Carnivore (Carnivore *obj) {...}

void Check_Domestic (Domestic *obj) {...}

void Check_Animal (Animal *obj) {...}

void Check_Dog (Dog *obj) {...}

extern "C" {

void adainit (void);

void adafinal (void);

Dog* new_dog ();

}

void test ()

{

Dog *obj = new_dog(); // Ada constructor

Check_Carnivore (obj); // Check secondary DT

Check_Domestic (obj); // Check secondary DT

Check_Animal (obj); // Check primary DT

Check_Dog (obj); // Check primary DT

}

Chapter 2: The GNAT Compilation Model 35

int main ()

{

adainit (); test(); adafinal ();

return 0;

}

2.12 Comparison between GNAT and C/C++ Compilation
Models

The GNAT model of compilation is close to the C and C++ models. You can think of Ada
specs as corresponding to header files in C. As in C, you don’t need to compile specs; they are
compiled when they are used. The Ada with is similar in effect to the #include of a C header.

One notable difference is that, in Ada, you may compile specs separately to check them for
semantic and syntactic accuracy. This is not always possible with C headers because they are
fragments of programs that have less specific syntactic or semantic rules.

The other major difference is the requirement for running the binder, which performs two
important functions. First, it checks for consistency. In C or C++, the only defense against
assembling inconsistent programs lies outside the compiler, in a makefile, for example. The
binder satisfies the Ada requirement that it be impossible to construct an inconsistent program
when the compiler is used in normal mode.

The other important function of the binder is to deal with elaboration issues. There are
also elaboration issues in C++ that are handled automatically. This automatic handling has the
advantage of being simpler to use, but the C++ programmer has no control over elaboration.
Where gnatbind might complain there was no valid order of elaboration, a C++ compiler would
simply construct a program that malfunctioned at run time.

2.13 Comparison between GNAT and Conventional Ada
Library Models

This section is intended for Ada programmers who have used an Ada compiler implementing
the traditional Ada library model, as described in the Ada Reference Manual.

In GNAT, there is no “library” in the normal sense. Instead, the set of source files themselves
acts as the library. Compiling Ada programs does not generate any centralized information, but
rather an object file and a ALI file, which are of interest only to the binder and linker. In a
traditional system, the compiler reads information not only from the source file being compiled,
but also from the centralized library. This means that the effect of a compilation depends on
what has been previously compiled. In particular:

• When a unit is with’ed, the unit seen by the compiler corresponds to the version of the
unit most recently compiled into the library.

• Inlining is effective only if the necessary body has already been compiled into the library.

• Compiling a unit may obsolete other units in the library.

In GNAT, compiling one unit never affects the compilation of any other units because the com-
piler reads only source files. Only changes to source files can affect the results of a compilation.
In particular:

• When a unit is with’ed, the unit seen by the compiler corresponds to the source version of
the unit that is currently accessible to the compiler.

• Inlining requires the appropriate source files for the package or subprogram bodies to be
available to the compiler. Inlining is always effective, independent of the order in which
units are complied.

• Compiling a unit never affects any other compilations. The editing of sources may cause
previous compilations to be out of date if they depended on the source file being modified.

36 GNAT User’s Guide

The most important result of these differences is that order of compilation is never significant
in GNAT. There is no situation in which one is required to do one compilation before another.
What shows up as order of compilation requirements in the traditional Ada library becomes,
in GNAT, simple source dependencies; in other words, there is only a set of rules saying what
source files must be present when a file is compiled.

Chapter 3: Compiling Using gcc 37

3 Compiling Using gcc

This chapter discusses how to compile Ada programs using the gcc command. It also describes
the set of switches that can be used to control the behavior of the compiler.

3.1 Compiling Programs

The first step in creating an executable program is to compile the units of the program using
the gcc command. You must compile the following files:

• the body file (‘.adb’) for a library level subprogram or generic subprogram

• the spec file (‘.ads’) for a library level package or generic package that has no body

• the body file (‘.adb’) for a library level package or generic package that has a body

You need not compile the following files

• the spec of a library unit which has a body

• subunits

because they are compiled as part of compiling related units. GNAT package specs when the
corresponding body is compiled, and subunits when the parent is compiled.

If you attempt to compile any of these files, you will get one of the following error messages
(where fff is the name of the file you compiled):

cannot generate code for file fff (package spec)

to check package spec, use -gnatc

cannot generate code for file fff (missing subunits)

to check parent unit, use -gnatc

cannot generate code for file fff (subprogram spec)

to check subprogram spec, use -gnatc

cannot generate code for file fff (subunit)

to check subunit, use -gnatc

As indicated by the above error messages, if you want to submit one of these files to the compiler
to check for correct semantics without generating code, then use the ‘-gnatc’ switch.

The basic command for compiling a file containing an Ada unit is

$ gcc -c [switches] ‘file name’

where file name is the name of the Ada file (usually having an extension ‘.ads’ for a spec or
‘.adb’ for a body). You specify the ‘-c’ switch to tell gcc to compile, but not link, the file. The
result of a successful compilation is an object file, which has the same name as the source file
but an extension of ‘.o’ and an Ada Library Information (ALI) file, which also has the same
name as the source file, but with ‘.ali’ as the extension. GNAT creates these two output files
in the current directory, but you may specify a source file in any directory using an absolute or
relative path specification containing the directory information.

gcc is actually a driver program that looks at the extensions of the file arguments and loads
the appropriate compiler. For example, the GNU C compiler is ‘cc1’, and the Ada compiler is
‘gnat1’. These programs are in directories known to the driver program (in some configurations
via environment variables you set), but need not be in your path. The gcc driver also calls the
assembler and any other utilities needed to complete the generation of the required object files.

It is possible to supply several file names on the same gcc command. This causes gcc to call
the appropriate compiler for each file. For example, the following command lists three separate
files to be compiled:

38 GNAT User’s Guide

$ gcc -c x.adb y.adb z.c

calls gnat1 (the Ada compiler) twice to compile ‘x.adb’ and ‘y.adb’, and cc1 (the C compiler)
once to compile ‘z.c’. The compiler generates three object files ‘x.o’, ‘y.o’ and ‘z.o’ and the
two ALI files ‘x.ali’ and ‘y.ali’ from the Ada compilations. Any switches apply to all the files
listed, except for ‘-gnatx ’ switches, which apply only to Ada compilations.

3.2 Switches for gcc

The gcc command accepts switches that control the compilation process. These switches are
fully described in this section. First we briefly list all the switches, in alphabetical order, then
we describe the switches in more detail in functionally grouped sections.

More switches exist for GCC than those documented here, especially for specific targets.
However, their use is not recommended as they may change code generation in ways that are
incompatible with the Ada run-time library, or can cause inconsistencies between compilation
units.

‘-b target ’
Compile your program to run on target, which is the name of a system configuration.
You must have a GNAT cross-compiler built if target is not the same as your host
system.

‘-Bdir ’ Load compiler executables (for example, gnat1, the Ada compiler) from dir instead
of the default location. Only use this switch when multiple versions of the GNAT
compiler are available. See Section “Options for Directory Search” in Using the
GNU Compiler Collection (GCC), for further details. You would normally use the
‘-b’ or ‘-V’ switch instead.

‘-c’ Compile. Always use this switch when compiling Ada programs.

Note: for some other languages when using gcc, notably in the case of C and C++,
it is possible to use use gcc without a ‘-c’ switch to compile and link in one step. In
the case of GNAT, you cannot use this approach, because the binder must be run
and gcc cannot be used to run the GNAT binder.

‘-fno-inline’
Suppresses all inlining, even if other optimization or inlining switches are set. This
includes suppression of inlining that results from the use of the pragma Inline_

Always. Any occurrences of pragma Inline or Inline_Always are ignored, and
‘-gnatn’ and ‘-gnatN’ have no effect if this switch is present.

‘-fno-inline-functions’
Suppresses automatic inlining of subprograms, which is enabled if ‘-O3’ is used.

‘-fno-inline-small-functions’
Suppresses automatic inlining of small subprograms, which is enabled if ‘-O2’ is
used.

‘-fno-inline-functions-called-once’
Suppresses inlining of subprograms local to the unit and called once from within it,
which is enabled if ‘-O1’ is used.

‘-fno-ivopts’
Suppresses high-level loop induction variable optimizations, which are enabled if
‘-O1’ is used. These optimizations are generally profitable but, for some specific
cases of loops with numerous uses of the iteration variable that follow a common
pattern, they may end up destroying the regularity that could be exploited at a
lower level and thus producing inferior code.

Chapter 3: Compiling Using gcc 39

‘-fno-strict-aliasing’
Causes the compiler to avoid assumptions regarding non-aliasing of objects of dif-
ferent types. See Section 7.1.8 [Optimization and Strict Aliasing], page 111 for
details.

‘-fstack-check’
Activates stack checking. See Section 23.1 [Stack Overflow Checking], page 251 for
details.

‘-fstack-usage’
Makes the compiler output stack usage information for the program, on a per-
subprogram basis. See Section 23.2 [Static Stack Usage Analysis], page 251 for
details.

‘-fcallgraph-info[=su]’
Makes the compiler output callgraph information for the program, on a per-file
basis. The information is generated in the VCG format. It can be decorated with
stack-usage per-node information.

‘-g’ Generate debugging information. This information is stored in the object file and
copied from there to the final executable file by the linker, where it can be read by
the debugger. You must use the ‘-g’ switch if you plan on using the debugger.

‘-gnat83’ Enforce Ada 83 restrictions.

‘-gnat95’ Enforce Ada 95 restrictions.

‘-gnat05’ Allow full Ada 2005 features.

‘-gnat2005’
Allow full Ada 2005 features (same as ‘-gnat05’)

‘-gnat12’

‘-gnat2012’
Allow full Ada 2012 features (same as ‘-gnat12’)

‘-gnata’ Assertions enabled. Pragma Assert and pragma Debug to be activated. Note that
these pragmas can also be controlled using the configuration pragmas Assertion_
Policy and Debug_Policy. It also activates pragmas Check, Precondition, and
Postcondition. Note that these pragmas can also be controlled using the configu-
ration pragma Check_Policy.

‘-gnatA’ Avoid processing ‘gnat.adc’. If a ‘gnat.adc’ file is present, it will be ignored.

‘-gnatb’ Generate brief messages to ‘stderr’ even if verbose mode set.

‘-gnatB’ Assume no invalid (bad) values except for ’Valid attribute use (see Section 3.2.4
[Validity Checking], page 59).

‘-gnatc’ Check syntax and semantics only (no code generation attempted).

‘-gnatC’ Generate CodePeer information (no code generation attempted). This switch will
generate an intermediate representation suitable for use by CodePeer (‘.scil’ files).
This switch is not compatible with code generation (it will, among other things,
disable some switches such as -gnatn, and enable others such as -gnata).

‘-gnatd’ Specify debug options for the compiler. The string of characters after the ‘-gnatd’
specify the specific debug options. The possible characters are 0-9, a-z, A-Z, op-
tionally preceded by a dot. See compiler source file ‘debug.adb’ for details of the
implemented debug options. Certain debug options are relevant to applications
programmers, and these are documented at appropriate points in this users guide.

40 GNAT User’s Guide

‘-gnatD’ Create expanded source files for source level debugging. This switch also suppress
generation of cross-reference information (see ‘-gnatx’).

‘-gnatec=path ’
Specify a configuration pragma file (the equal sign is optional) (see Section 9.2 [The
Configuration Pragmas Files], page 124).

‘-gnateDsymbol[=value]’
Defines a symbol, associated with value, for preprocessing. (see Section 3.2.17 [In-
tegrated Preprocessing], page 76).

‘-gnateE’ Generate extra information in exception messages. In particular, display extra col-
umn information and the value and range associated with index and range check
failures, and extra column information for access checks. In cases where the com-
piler is able to determine at compile time that a check will fail, it gives a warning,
and the extra information is not produced at run time.

‘-gnatef’ Display full source path name in brief error messages.

‘-gnateG’ Save result of preprocessing in a text file.

‘-gnateInnn ’
Indicates that the source is a multi-unit source and that the index of the unit to
compile is nnn. nnn needs to be a positive number and need to be a valid index in
the multi-unit source.

‘-gnatem=path ’
Specify a mapping file (the equal sign is optional) (see Section 3.2.16 [Units to
Sources Mapping Files], page 76).

‘-gnatep=file ’
Specify a preprocessing data file (the equal sign is optional) (see Section 3.2.17
[Integrated Preprocessing], page 76).

‘-gnateP’ Turn categorization dependency errors into warnings. Ada requires that units that
WITH one another have compatible categories, for example a Pure unit cannot
WITH a Preelaborate unit. If this switch is used, these errors become warnings
(which can be ignored, or suppressed in the usual manner). This can be useful in
some specialized circumstances such as the temporary use of special test software.

‘-gnateS’ Generate SCO (Source Coverage Obligation) information in the ALI file. This infor-
mation is used by advanced coverage tools. See unit ‘SCOs’ in the compiler sources
for details in files ‘scos.ads’ and ‘scos.adb’.

‘-gnatE’ Full dynamic elaboration checks.

‘-gnatf’ Full errors. Multiple errors per line, all undefined references, do not attempt to
suppress cascaded errors.

‘-gnatF’ Externals names are folded to all uppercase.

‘-gnatg’ Internal GNAT implementation mode. This should not be used for applications
programs, it is intended only for use by the compiler and its run-time library. For
documentation, see the GNAT sources. Note that ‘-gnatg’ implies ‘-gnatwae’ and
‘-gnatyg’ so that all standard warnings and all standard style options are turned
on. All warnings and style messages are treated as errors.

‘-gnatG=nn’
List generated expanded code in source form.

‘-gnath’ Output usage information. The output is written to ‘stdout’.

Chapter 3: Compiling Using gcc 41

‘-gnatic ’ Identifier character set (c=1/2/3/4/8/9/p/f/n/w). For details of the possible selec-
tions for c, see Section 3.2.10 [Character Set Control], page 70.

‘-gnatI’ Ignore representation clauses. When this switch is used, representation clauses
are treated as comments. This is useful when initially porting code where
you want to ignore rep clause problems, and also for compiling foreign code
(particularly for use with ASIS). The representation clauses that are ignored
are: enumeration representation clause, record representation clause, and
attribute definition clause for the following attributes: Address, Alignment,
Bit Order, Component Size, Machine Radix, Object Size, Size, Small,
Stream Size, and Value Size. Note that this option should be used only for
compiling – the code is likely to malfunction at run time.

‘-gnatjnn’
Reformat error messages to fit on nn character lines

‘-gnatk=n ’
Limit file names to n (1-999) characters (k = krunch).

‘-gnatl’ Output full source listing with embedded error messages.

‘-gnatL’ Used in conjunction with -gnatG or -gnatD to intersperse original source lines (as
comment lines with line numbers) in the expanded source output.

‘-gnatm=n ’
Limit number of detected error or warning messages to n where n is in the range
1..999999. The default setting if no switch is given is 9999. If the number of warnings
reaches this limit, then a message is output and further warnings are suppressed,
but the compilation is continued. If the number of error messages reaches this limit,
then a message is output and the compilation is abandoned. The equal sign here is
optional. A value of zero means that no limit applies.

‘-gnatn’ Activate inlining for subprograms for which pragma Inline is specified. This inlin-
ing is performed by the GCC back-end.

‘-gnatN’ Activate front end inlining for subprograms for which pragma Inline is specified.
This inlining is performed by the front end and will be visible in the ‘-gnatG’ output.

When using a gcc-based back end (in practice this means using any version of GNAT
other than the JGNAT, .NET or GNAAMP versions), then the use of ‘-gnatN’ is
deprecated, and the use of ‘-gnatn’ is preferred. Historically front end inlining was
more extensive than the gcc back end inlining, but that is no longer the case.

‘-gnato’ Enable numeric overflow checking (which is not normally enabled by default). Note
that division by zero is a separate check that is not controlled by this switch (division
by zero checking is on by default).

‘-gnatp’ Suppress all checks. See Section 3.2.6 [Run-Time Checks], page 66 for details. This
switch has no effect if cancelled by a subsequent ‘-gnat-p’ switch.

‘-gnat-p’ Cancel effect of previous ‘-gnatp’ switch.

‘-gnatP’ Enable polling. This is required on some systems (notably Windows NT) to obtain
asynchronous abort and asynchronous transfer of control capability. See Section
“Pragma Polling” in GNAT Reference Manual, for full details.

‘-gnatq’ Don’t quit. Try semantics, even if parse errors.

‘-gnatQ’ Don’t quit. Generate ‘ALI’ and tree files even if illegalities.

‘-gnatr’ Treat pragma Restrictions as Restriction Warnings.

42 GNAT User’s Guide

‘-gnatR[0/1/2/3[s]]’
Output representation information for declared types and objects.

‘-gnats’ Syntax check only.

‘-gnatS’ Print package Standard.

‘-gnatt’ Generate tree output file.

‘-gnatTnnn ’
All compiler tables start at nnn times usual starting size.

‘-gnatu’ List units for this compilation.

‘-gnatU’ Tag all error messages with the unique string “error:”

‘-gnatv’ Verbose mode. Full error output with source lines to ‘stdout’.

‘-gnatV’ Control level of validity checking (see Section 3.2.4 [Validity Checking], page 59).

‘-gnatwxxx ’
Warning mode where xxx is a string of option letters that denotes the exact warnings
that are enabled or disabled (see Section 3.2.2 [Warning Message Control], page 47).

‘-gnatWe ’ Wide character encoding method (e=n/h/u/s/e/8).

‘-gnatx’ Suppress generation of cross-reference information.

‘-gnatX’ Enable GNAT implementation extensions and latest Ada version.

‘-gnaty’ Enable built-in style checks (see Section 3.2.5 [Style Checking], page 61).

‘-gnatzm ’ Distribution stub generation and compilation (m=r/c for receiver/caller stubs).

‘-Idir ’ Direct GNAT to search the dir directory for source files needed by the current com-
pilation (see Section 3.3 [Search Paths and the Run-Time Library (RTL)], page 78).

‘-I-’ Except for the source file named in the command line, do not look for source files in
the directory containing the source file named in the command line (see Section 3.3
[Search Paths and the Run-Time Library (RTL)], page 78).

‘-mbig-switch’
This standard gcc switch causes the compiler to use larger offsets in its jump table
representation for case statements. This may result in less efficient code, but is
sometimes necessary (for example on HP-UX targets) in order to compile large
and/or nested case statements.

‘-o file ’ This switch is used in gcc to redirect the generated object file and its associated
ALI file. Beware of this switch with GNAT, because it may cause the object file
and ALI file to have different names which in turn may confuse the binder and the
linker.

‘-nostdinc’
Inhibit the search of the default location for the GNAT Run Time Library (RTL)
source files.

‘-nostdlib’
Inhibit the search of the default location for the GNAT Run Time Library (RTL)
ALI files.

‘-O[n]’ n controls the optimization level.

n = 0 No optimization, the default setting if no ‘-O’ appears

Chapter 3: Compiling Using gcc 43

n = 1 Normal optimization, the default if you specify ‘-O’ without an operand.
A good compromise between code quality and compilation time.

n = 2 Extensive optimization, may improve execution time, possibly at the
cost of substantially increased compilation time.

n = 3 Same as ‘-O2’, and also includes inline expansion for small subprograms
in the same unit.

n = s Optimize space usage

See also Section 7.1.3 [Optimization Levels], page 106.

‘-pass-exit-codes’
Catch exit codes from the compiler and use the most meaningful as exit status.

‘--RTS=rts-path ’
Specifies the default location of the runtime library. Same meaning as the equivalent
gnatmake flag (see Section 6.2 [Switches for gnatmake], page 95).

‘-S’ Used in place of ‘-c’ to cause the assembler source file to be generated, using ‘.s’ as
the extension, instead of the object file. This may be useful if you need to examine
the generated assembly code.

‘-fverbose-asm’
Used in conjunction with ‘-S’ to cause the generated assembly code file to be anno-
tated with variable names, making it significantly easier to follow.

‘-v’ Show commands generated by the gcc driver. Normally used only for debugging
purposes or if you need to be sure what version of the compiler you are executing.

‘-V ver ’ Execute ver version of the compiler. This is the gcc version, not the GNAT version.

‘-w’ Turn off warnings generated by the back end of the compiler. Use of this switch also
causes the default for front end warnings to be set to suppress (as though ‘-gnatws’
had appeared at the start of the options).

You may combine a sequence of GNAT switches into a single switch. For example, the
combined switch

-gnatofi3

is equivalent to specifying the following sequence of switches:

-gnato -gnatf -gnati3

The following restrictions apply to the combination of switches in this manner:

• The switch ‘-gnatc’ if combined with other switches must come first in the string.

• The switch ‘-gnats’ if combined with other switches must come first in the string.

• The switches

‘-gnatzc’ and ‘-gnatzr’ may not be combined with any other switches, and only one of
them may appear in the command line.

• The switch ‘-gnat-p’ may not be combined with any other switch.

• Once a “y” appears in the string (that is a use of the ‘-gnaty’ switch), then all further
characters in the switch are interpreted as style modifiers (see description of ‘-gnaty’).

• Once a “d” appears in the string (that is a use of the ‘-gnatd’ switch), then all further
characters in the switch are interpreted as debug flags (see description of ‘-gnatd’).

• Once a “w” appears in the string (that is a use of the ‘-gnatw’ switch), then all further char-
acters in the switch are interpreted as warning mode modifiers (see description of ‘-gnatw’).

44 GNAT User’s Guide

• Once a “V” appears in the string (that is a use of the ‘-gnatV’ switch), then all further char-
acters in the switch are interpreted as validity checking options (see Section 3.2.4 [Validity
Checking], page 59).

• Option “em”, “ec”, “ep”, “l=” and “R” must be the last options in a combined list of
options.

3.2.1 Output and Error Message Control

The standard default format for error messages is called “brief format”. Brief format messages
are written to ‘stderr’ (the standard error file) and have the following form:

e.adb:3:04: Incorrect spelling of keyword "function"

e.adb:4:20: ";" should be "is"

The first integer after the file name is the line number in the file, and the second integer is the
column number within the line. GPS can parse the error messages and point to the referenced
character. The following switches provide control over the error message format:

‘-gnatv’ The v stands for verbose. The effect of this setting is to write long-format error
messages to ‘stdout’ (the standard output file. The same program compiled with
the ‘-gnatv’ switch would generate:

� �
3. funcion X (Q : Integer)

|

>>> Incorrect spelling of keyword "function"

4. return Integer;

|

>>> ";" should be "is"
 	
The vertical bar indicates the location of the error, and the ‘>>>’ prefix can be used
to search for error messages. When this switch is used the only source lines output
are those with errors.

‘-gnatl’ The l stands for list. This switch causes a full listing of the file to be generated. In
the case where a body is compiled, the corresponding spec is also listed, along with
any subunits. Typical output from compiling a package body ‘p.adb’ might look
like:

Chapter 3: Compiling Using gcc 45� �
Compiling: p.adb

1. package body p is

2. procedure a;

3. procedure a is separate;

4. begin

5. null

|

>>> missing ";"

6. end;

Compiling: p.ads

1. package p is

2. pragma Elaborate_Body

|

>>> missing ";"

3. end p;

Compiling: p-a.adb

1. separate p

|

>>> missing "("

2. procedure a is

3. begin

4. null

|

>>> missing ";"

5. end;
 	
When you specify the ‘-gnatv’ or ‘-gnatl’ switches and standard output is redi-
rected, a brief summary is written to ‘stderr’ (standard error) giving the number
of error messages and warning messages generated.

‘-gnatl=file’
This has the same effect as ‘-gnatl’ except that the output is written to a file instead
of to standard output. If the given name ‘fname’ does not start with a period, then
it is the full name of the file to be written. If ‘fname’ is an extension, it is appended
to the name of the file being compiled. For example, if file ‘xyz.adb’ is compiled
with ‘-gnatl=.lst’, then the output is written to file xyz.adb.lst.

‘-gnatU’ This switch forces all error messages to be preceded by the unique string “error:”.
This means that error messages take a few more characters in space, but allows easy
searching for and identification of error messages.

‘-gnatb’ The b stands for brief. This switch causes GNAT to generate the brief format error
messages to ‘stderr’ (the standard error file) as well as the verbose format message
or full listing (which as usual is written to ‘stdout’ (the standard output file).

‘-gnatm=n ’
The m stands for maximum. n is a decimal integer in the range of 1 to 999999 and
limits the number of error or warning messages to be generated. For example, using
‘-gnatm2’ might yield

e.adb:3:04: Incorrect spelling of keyword "function"

e.adb:5:35: missing ".."

fatal error: maximum number of errors detected

compilation abandoned

46 GNAT User’s Guide

The default setting if no switch is given is 9999. If the number of warnings reaches
this limit, then a message is output and further warnings are suppressed, but the
compilation is continued. If the number of error messages reaches this limit, then
a message is output and the compilation is abandoned. A value of zero means that
no limit applies.

Note that the equal sign is optional, so the switches ‘-gnatm2’ and ‘-gnatm=2’ are
equivalent.

‘-gnatf’ The f stands for full. Normally, the compiler suppresses error messages that are
likely to be redundant. This switch causes all error messages to be generated. In
particular, in the case of references to undefined variables. If a given variable is
referenced several times, the normal format of messages is

e.adb:7:07: "V" is undefined (more references follow)

where the parenthetical comment warns that there are additional references to the
variable V. Compiling the same program with the ‘-gnatf’ switch yields

e.adb:7:07: "V" is undefined

e.adb:8:07: "V" is undefined

e.adb:8:12: "V" is undefined

e.adb:8:16: "V" is undefined

e.adb:9:07: "V" is undefined

e.adb:9:12: "V" is undefined

The ‘-gnatf’ switch also generates additional information for some error messages.
Some examples are:

• Details on possibly non-portable unchecked conversion

• List possible interpretations for ambiguous calls

• Additional details on incorrect parameters

‘-gnatjnn’
In normal operation mode (or if ‘-gnatj0’ is used, then error messages with con-
tinuation lines are treated as though the continuation lines were separate messages
(and so a warning with two continuation lines counts as three warnings, and is listed
as three separate messages).

If the ‘-gnatjnn’ switch is used with a positive value for nn, then messages are
output in a different manner. A message and all its continuation lines are treated as a
unit, and count as only one warning or message in the statistics totals. Furthermore,
the message is reformatted so that no line is longer than nn characters.

‘-gnatq’ The q stands for quit (really “don’t quit”). In normal operation mode, the compiler
first parses the program and determines if there are any syntax errors. If there
are, appropriate error messages are generated and compilation is immediately ter-
minated. This switch tells GNAT to continue with semantic analysis even if syntax
errors have been found. This may enable the detection of more errors in a single
run. On the other hand, the semantic analyzer is more likely to encounter some
internal fatal error when given a syntactically invalid tree.

‘-gnatQ’ In normal operation mode, the ‘ALI’ file is not generated if any illegalities are de-
tected in the program. The use of ‘-gnatQ’ forces generation of the ‘ALI’ file. This
file is marked as being in error, so it cannot be used for binding purposes, but it does
contain reasonably complete cross-reference information, and thus may be useful for
use by tools (e.g., semantic browsing tools or integrated development environments)
that are driven from the ‘ALI’ file. This switch implies ‘-gnatq’, since the semantic
phase must be run to get a meaningful ALI file.

In addition, if ‘-gnatt’ is also specified, then the tree file is generated even if there
are illegalities. It may be useful in this case to also specify ‘-gnatq’ to ensure that

Chapter 3: Compiling Using gcc 47

full semantic processing occurs. The resulting tree file can be processed by ASIS,
for the purpose of providing partial information about illegal units, but if the error
causes the tree to be badly malformed, then ASIS may crash during the analysis.

When ‘-gnatQ’ is used and the generated ‘ALI’ file is marked as being in error,
gnatmake will attempt to recompile the source when it finds such an ‘ALI’ file,
including with switch ‘-gnatc’.

Note that ‘-gnatQ’ has no effect if ‘-gnats’ is specified, since ALI files are never
generated if ‘-gnats’ is set.

3.2.2 Warning Message Control

In addition to error messages, which correspond to illegalities as defined in the Ada Reference
Manual, the compiler detects two kinds of warning situations.

First, the compiler considers some constructs suspicious and generates a warning message to
alert you to a possible error. Second, if the compiler detects a situation that is sure to raise
an exception at run time, it generates a warning message. The following shows an example of
warning messages:

e.adb:4:24: warning: creation of object may raise Storage_Error

e.adb:10:17: warning: static value out of range

e.adb:10:17: warning: "Constraint_Error" will be raised at run time

GNAT considers a large number of situations as appropriate for the generation of warning
messages. As always, warnings are not definite indications of errors. For example, if you do an
out-of-range assignment with the deliberate intention of raising a Constraint_Error exception,
then the warning that may be issued does not indicate an error. Some of the situations for
which GNAT issues warnings (at least some of the time) are given in the following list. This list
is not complete, and new warnings are often added to subsequent versions of GNAT. The list is
intended to give a general idea of the kinds of warnings that are generated.

• Possible infinitely recursive calls

• Out-of-range values being assigned

• Possible order of elaboration problems

• Assertions (pragma Assert) that are sure to fail

• Unreachable code

• Address clauses with possibly unaligned values, or where an attempt is made to overlay a
smaller variable with a larger one.

• Fixed-point type declarations with a null range

• Direct IO or Sequential IO instantiated with a type that has access values

• Variables that are never assigned a value

• Variables that are referenced before being initialized

• Task entries with no corresponding accept statement

• Duplicate accepts for the same task entry in a select

• Objects that take too much storage

• Unchecked conversion between types of differing sizes

• Missing return statement along some execution path in a function

• Incorrect (unrecognized) pragmas

• Incorrect external names

• Allocation from empty storage pool

• Potentially blocking operation in protected type

• Suspicious parenthesization of expressions

48 GNAT User’s Guide

• Mismatching bounds in an aggregate

• Attempt to return local value by reference

• Premature instantiation of a generic body

• Attempt to pack aliased components

• Out of bounds array subscripts

• Wrong length on string assignment

• Violations of style rules if style checking is enabled

• Unused with clauses

• Bit_Order usage that does not have any effect

• Standard.Duration used to resolve universal fixed expression

• Dereference of possibly null value

• Declaration that is likely to cause storage error

• Internal GNAT unit with’ed by application unit

• Values known to be out of range at compile time

• Unreferenced labels and variables

• Address overlays that could clobber memory

• Unexpected initialization when address clause present

• Bad alignment for address clause

• Useless type conversions

• Redundant assignment statements and other redundant constructs

• Useless exception handlers

• Accidental hiding of name by child unit

• Access before elaboration detected at compile time

• A range in a for loop that is known to be null or might be null

The following section lists compiler switches that are available to control the handling of warn-
ing messages. It is also possible to exercise much finer control over what warnings are issued
and suppressed using the GNAT pragma Warnings, See Section “Pragma Warnings” in GNAT
Reference manual.

‘-gnatwa’ Activate most optional warnings. This switch activates most optional warning mes-
sages. See the remaining list in this section for details on optional warning messages
that can be individually controlled. The warnings that are not turned on by this
switch are ‘-gnatwd’ (implicit dereferencing), ‘-gnatwh’ (hiding), ‘-gnatw.h’ (holes
(gaps) in record layouts) ‘-gnatw.i’ (overlapping actuals), ‘-gnatwl’ (elaboration
warnings), ‘-gnatw.l’ (inherited aspects), ‘-gnatw.o’ (warn on values set by out pa-
rameters ignored), ‘-gnatwt’ (tracking of deleted conditional code) and ‘-gnatw.u’
(unordered enumeration), All other optional warnings are turned on.

‘-gnatwA’ Suppress all optional errors. This switch suppresses all optional warning messages,
see remaining list in this section for details on optional warning messages that can
be individually controlled. Note that unlike switch ‘-gnatws’, the use of switch
‘-gnatwA’ does not suppress warnings that are normally given unconditionally and
cannot be individually controlled (for example, the warning about a missing exit
path in a function). Also, again unlike switch ‘-gnatws’, warnings suppressed by
the use of switch ‘-gnatwA’ can be individually turned back on. For example the use
of switch ‘-gnatwA’ followed by switch ‘-gnatwd’ will suppress all optional warnings
except the warnings for implicit dereferencing.

Chapter 3: Compiling Using gcc 49

‘-gnatw.a’
Activate warnings on failing assertions. This switch activates warnings for assertions
where the compiler can tell at compile time that the assertion will fail. Note that this
warning is given even if assertions are disabled. The default is that such warnings
are generated.

‘-gnatw.A’
Suppress warnings on failing assertions. This switch suppresses warnings for asser-
tions where the compiler can tell at compile time that the assertion will fail.

‘-gnatwb’ Activate warnings on bad fixed values. This switch activates warnings for static
fixed-point expressions whose value is not an exact multiple of Small. Such values
are implementation dependent, since an implementation is free to choose either of
the multiples that surround the value. GNAT always chooses the closer one, but
this is not required behavior, and it is better to specify a value that is an exact
multiple, ensuring predictable execution. The default is that such warnings are not
generated.

‘-gnatwB’ Suppress warnings on bad fixed values. This switch suppresses warnings for static
fixed-point expressions whose value is not an exact multiple of Small.

‘-gnatw.b’
Activate warnings on biased representation. This switch activates warnings when a
size clause, value size clause, component clause, or component size clause forces the
use of biased representation for an integer type (e.g. representing a range of 10..11
in a single bit by using 0/1 to represent 10/11). The default is that such warnings
are generated.

‘-gnatw.B’
Suppress warnings on biased representation. This switch suppresses warnings for
representation clauses that force the use of biased representation.

‘-gnatwc’ Activate warnings on conditionals. This switch activates warnings for conditional
expressions used in tests that are known to be True or False at compile time. The
default is that such warnings are not generated. Note that this warning does not
get issued for the use of boolean variables or constants whose values are known at
compile time, since this is a standard technique for conditional compilation in Ada,
and this would generate too many false positive warnings.

This warning option also activates a special test for comparisons using the operators
“>=” and“ <=”. If the compiler can tell that only the equality condition is possible,
then it will warn that the “>” or “<” part of the test is useless and that the operator
could be replaced by “=”. An example would be comparing a Natural variable <=
0.

This warning option also generates warnings if one or both tests is optimized away
in a membership test for integer values if the result can be determined at compile
time. Range tests on enumeration types are not included, since it is common for
such tests to include an end point.

This warning can also be turned on using ‘-gnatwa’.

‘-gnatwC’ Suppress warnings on conditionals. This switch suppresses warnings for conditional
expressions used in tests that are known to be True or False at compile time.

‘-gnatw.c’
Activate warnings on missing component clauses. This switch activates warnings
for record components where a record representation clause is present and has com-
ponent clauses for the majority, but not all, of the components. A warning is given
for each component for which no component clause is present.

50 GNAT User’s Guide

This warning can also be turned on using ‘-gnatwa’.

‘-gnatw.C’
Suppress warnings on missing component clauses. This switch suppresses warnings
for record components that are missing a component clause in the situation described
above.

‘-gnatwd’ Activate warnings on implicit dereferencing. If this switch is set, then the use of
a prefix of an access type in an indexed component, slice, or selected component
without an explicit .all will generate a warning. With this warning enabled, ac-
cess checks occur only at points where an explicit .all appears in the source code
(assuming no warnings are generated as a result of this switch). The default is that
such warnings are not generated. Note that ‘-gnatwa’ does not affect the setting of
this warning option.

‘-gnatwD’ Suppress warnings on implicit dereferencing. This switch suppresses warnings for
implicit dereferences in indexed components, slices, and selected components.

‘-gnatwe’ Treat warnings and style checks as errors. This switch causes warning messages and
style check messages to be treated as errors. The warning string still appears, but
the warning messages are counted as errors, and prevent the generation of an object
file. Note that this is the only -gnatw switch that affects the handling of style check
messages.

‘-gnatw.e’
Activate every optional warning This switch activates all optional warnings, in-
cluding those which are not activated by -gnatwa. The use of this switch is not
recommended for normal use. If you turn this switch on, it is almost certain that
you will get large numbers of useless warnings. The warnings that are excluded from
-gnatwa are typically highly specialized warnings that are suitable for use only in
code that has been specifically designed according to specialized coding rules.

‘-gnatwf’ Activate warnings on unreferenced formals. This switch causes a warning to be
generated if a formal parameter is not referenced in the body of the subprogram.
This warning can also be turned on using ‘-gnatwa’ or ‘-gnatwu’. The default is
that these warnings are not generated.

‘-gnatwF’ Suppress warnings on unreferenced formals. This switch suppresses warnings for
unreferenced formal parameters. Note that the combination ‘-gnatwu’ followed by
‘-gnatwF’ has the effect of warning on unreferenced entities other than subprogram
formals.

‘-gnatwg’ Activate warnings on unrecognized pragmas. This switch causes a warning to be
generated if an unrecognized pragma is encountered. Apart from issuing this warn-
ing, the pragma is ignored and has no effect. This warning can also be turned on
using ‘-gnatwa’. The default is that such warnings are issued (satisfying the Ada
Reference Manual requirement that such warnings appear).

‘-gnatwG’ Suppress warnings on unrecognized pragmas. This switch suppresses warnings for
unrecognized pragmas.

‘-gnatwh’ Activate warnings on hiding. This switch activates warnings on hiding declarations.
A declaration is considered hiding if it is for a non-overloadable entity, and it declares
an entity with the same name as some other entity that is directly or use-visible.
The default is that such warnings are not generated. Note that ‘-gnatwa’ does not
affect the setting of this warning option.

‘-gnatwH’ Suppress warnings on hiding. This switch suppresses warnings on hiding declara-
tions.

Chapter 3: Compiling Using gcc 51

‘-gnatw.h’
Activate warnings on holes/gaps in records. This switch activates warnings on com-
ponent clauses in record representation clauses that leave holes (gaps) in the record
layout. If this warning option is active, then record representation clauses should
specify a contiguous layout, adding unused fill fields if needed. Note that ‘-gnatwa’
does not affect the setting of this warning option.

‘-gnatw.H’
Suppress warnings on holes/gaps in records. This switch suppresses warnings on
component clauses in record representation clauses that leave holes (haps) in the
record layout.

‘-gnatwi’ Activate warnings on implementation units. This switch activates warnings for a
with of an internal GNAT implementation unit, defined as any unit from the Ada,
Interfaces, GNAT, or System hierarchies that is not documented in either the Ada
Reference Manual or the GNAT Programmer’s Reference Manual. Such units are
intended only for internal implementation purposes and should not be with’ed by
user programs. The default is that such warnings are generated This warning can
also be turned on using ‘-gnatwa’.

‘-gnatwI’ Disable warnings on implementation units. This switch disables warnings for a with
of an internal GNAT implementation unit.

‘-gnatw.i’
Activate warnings on overlapping actuals. This switch enables a warning on stati-
cally detectable overlapping actuals in a subprogram call, when one of the actuals
is an in-out parameter, and the types of the actuals are not by-copy types. The
warning is off by default, and is not included under -gnatwa.

‘-gnatw.I’
Disable warnings on overlapping actuals. This switch disables warnings on overlap-
ping actuals in a call..

‘-gnatwj’ Activate warnings on obsolescent features (Annex J). If this warning option is ac-
tivated, then warnings are generated for calls to subprograms marked with pragma

Obsolescent and for use of features in Annex J of the Ada Reference Manual. In
the case of Annex J, not all features are flagged. In particular use of the renamed
packages (like Text_IO) and use of package ASCII are not flagged, since these are
very common and would generate many annoying positive warnings. The default is
that such warnings are not generated. This warning is also turned on by the use of
‘-gnatwa’.

In addition to the above cases, warnings are also generated for GNAT features that
have been provided in past versions but which have been superseded (typically by
features in the new Ada standard). For example, pragma Ravenscar will be flagged
since its function is replaced by pragma Profile(Ravenscar).

Note that this warning option functions differently from the restriction
No_Obsolescent_Features in two respects. First, the restriction applies only to
annex J features. Second, the restriction does flag uses of package ASCII.

‘-gnatwJ’ Suppress warnings on obsolescent features (Annex J). This switch disables warnings
on use of obsolescent features.

‘-gnatwk’ Activate warnings on variables that could be constants. This switch activates warn-
ings for variables that are initialized but never modified, and then could be declared
constants. The default is that such warnings are not given. This warning can also
be turned on using ‘-gnatwa’.

52 GNAT User’s Guide

‘-gnatwK’ Suppress warnings on variables that could be constants. This switch disables warn-
ings on variables that could be declared constants.

‘-gnatwl’ Activate warnings for elaboration pragmas. This switch activates warnings on miss-
ing Elaborate_All and Elaborate pragmas. See the section in this guide on elab-
oration checking for details on when such pragmas should be used. In dynamic
elaboration mode, this switch generations warnings about the need to add elabo-
ration pragmas. Note however, that if you blindly follow these warnings, and add
Elaborate_All warnings wherever they are recommended, you basically end up
with the equivalent of the static elaboration model, which may not be what you
want for legacy code for which the static model does not work.

For the static model, the messages generated are labeled "info:" (for information
messages). They are not warnings to add elaboration pragmas, merely informational
messages showing what implicit elaboration pragmas have been added, for use in
analyzing elaboration circularity problems.

Warnings are also generated if you are using the static mode of elaboration, and
a pragma Elaborate is encountered. The default is that such warnings are not
generated. This warning is not automatically turned on by the use of ‘-gnatwa’.

‘-gnatwL’ Suppress warnings for elaboration pragmas. This switch suppresses warnings on
missing Elaborate and Elaborate All pragmas. See the section in this guide on
elaboration checking for details on when such pragmas should be used.

‘-gnatw.l’
List inherited aspects. This switch causes the compiler to list inherited invariants,
preconditions, and postconditions from Invariant’Class, Pre’Class, and Post’Class
aspects. Also list inherited subtype predicates. These messages are not automati-
cally turned on by the use of ‘-gnatwa’.

‘-gnatw.L’
Suppress listing of inherited aspects. This switch suppresses listing of inherited
aspects.

‘-gnatwm’ Activate warnings on modified but unreferenced variables. This switch activates
warnings for variables that are assigned (using an initialization value or with one
or more assignment statements) but whose value is never read. The warning is
suppressed for volatile variables and also for variables that are renamings of other
variables or for which an address clause is given. This warning can also be turned
on using ‘-gnatwa’. The default is that these warnings are not given.

‘-gnatwM’ Disable warnings on modified but unreferenced variables. This switch disables warn-
ings for variables that are assigned or initialized, but never read.

‘-gnatw.m’
Activate warnings on suspicious modulus values. This switch activates warnings for
modulus values that seem suspicious. The cases caught are where the size is the
same as the modulus (e.g. a modulus of 7 with a size of 7 bits), and modulus values
of 32 or 64 with no size clause. The guess in both cases is that 2**x was intended
rather than x. In addition expressions of the form 2*x for small x generate a warning
(the almost certainly accurate guess being that 2**x was intended). The default is
that these warnings are given.

‘-gnatw.M’
Disable warnings on suspicious modulus values. This switch disables warnings for
suspicious modulus values.

Chapter 3: Compiling Using gcc 53

‘-gnatwn’ Set normal warnings mode. This switch sets normal warning mode, in which enabled
warnings are issued and treated as warnings rather than errors. This is the default
mode. the switch ‘-gnatwn’ can be used to cancel the effect of an explicit ‘-gnatws’
or ‘-gnatwe’. It also cancels the effect of the implicit ‘-gnatwe’ that is activated by
the use of ‘-gnatg’.

‘-gnatwo’ Activate warnings on address clause overlays. This switch activates warnings for
possibly unintended initialization effects of defining address clauses that cause one
variable to overlap another. The default is that such warnings are generated. This
warning can also be turned on using ‘-gnatwa’.

‘-gnatwO’ Suppress warnings on address clause overlays. This switch suppresses warnings on
possibly unintended initialization effects of defining address clauses that cause one
variable to overlap another.

‘-gnatw.o’
Activate warnings on modified but unreferenced out parameters. This switch acti-
vates warnings for variables that are modified by using them as actuals for a call to
a procedure with an out mode formal, where the resulting assigned value is never
read. It is applicable in the case where there is more than one out mode formal.
If there is only one out mode formal, the warning is issued by default (controlled
by -gnatwu). The warning is suppressed for volatile variables and also for variables
that are renamings of other variables or for which an address clause is given. The
default is that these warnings are not given. Note that this warning is not included
in -gnatwa, it must be activated explicitly.

‘-gnatw.O’
Disable warnings on modified but unreferenced out parameters. This switch sup-
presses warnings for variables that are modified by using them as actuals for a call
to a procedure with an out mode formal, where the resulting assigned value is never
read.

‘-gnatwp’ Activate warnings on ineffective pragma Inlines. This switch activates warnings for
failure of front end inlining (activated by ‘-gnatN’) to inline a particular call. There
are many reasons for not being able to inline a call, including most commonly that
the call is too complex to inline. The default is that such warnings are not given.
This warning can also be turned on using ‘-gnatwa’. Warnings on ineffective inlining
by the gcc back-end can be activated separately, using the gcc switch -Winline.

‘-gnatwP’ Suppress warnings on ineffective pragma Inlines. This switch suppresses warnings
on ineffective pragma Inlines. If the inlining mechanism cannot inline a call, it will
simply ignore the request silently.

‘-gnatw.p’
Activate warnings on parameter ordering. This switch activates warnings for cases
of suspicious parameter ordering when the list of arguments are all simple identifiers
that match the names of the formals, but are in a different order. The warning is
suppressed if any use of named parameter notation is used, so this is the appropriate
way to suppress a false positive (and serves to emphasize that the "misordering" is
deliberate). The default is that such warnings are not given. This warning can also
be turned on using ‘-gnatwa’.

‘-gnatw.P’
Suppress warnings on parameter ordering. This switch suppresses warnings on cases
of suspicious parameter ordering.

‘-gnatwq’ Activate warnings on questionable missing parentheses. This switch activates warn-
ings for cases where parentheses are not used and the result is potential ambiguity

54 GNAT User’s Guide

from a readers point of view. For example (not a > b) when a and b are modular
means ((not a) > b) and very likely the programmer intended (not (a > b)). Simi-
larly (-x mod 5) means (-(x mod 5)) and quite likely ((-x) mod 5) was intended. In
such situations it seems best to follow the rule of always parenthesizing to make the
association clear, and this warning switch warns if such parentheses are not present.
The default is that these warnings are given. This warning can also be turned on
using ‘-gnatwa’.

‘-gnatwQ’ Suppress warnings on questionable missing parentheses. This switch suppresses
warnings for cases where the association is not clear and the use of parentheses
is preferred.

‘-gnatwr’ Activate warnings on redundant constructs. This switch activates warnings for re-
dundant constructs. The following is the current list of constructs regarded as
redundant:

• Assignment of an item to itself.

• Type conversion that converts an expression to its own type.

• Use of the attribute Base where typ’Base is the same as typ.

• Use of pragma Pack when all components are placed by a record representation
clause.

• Exception handler containing only a reraise statement (raise with no operand)
which has no effect.

• Use of the operator abs on an operand that is known at compile time to be
non-negative

• Comparison of boolean expressions to an explicit True value.

This warning can also be turned on using ‘-gnatwa’. The default is that warnings
for redundant constructs are not given.

‘-gnatwR’ Suppress warnings on redundant constructs. This switch suppresses warnings for
redundant constructs.

‘-gnatw.r’
Activate warnings for object renaming function. This switch activates warnings for
an object renaming that renames a function call, which is equivalent to a constant
declaration (as opposed to renaming the function itself). The default is that these
warnings are given. This warning can also be turned on using ‘-gnatwa’.

‘-gnatw.R’
Suppress warnings for object renaming function. This switch suppresses warnings
for object renaming function.

‘-gnatws’ Suppress all warnings. This switch completely suppresses the output of all warning
messages from the GNAT front end, including both warnings that can be controlled
by switches described in this section, and those that are normally given uncondi-
tionally. The effect of this suppress action can only be cancelled by a subsequent
use of the switch ‘-gnatwn’.

Note that switch ‘-gnatws’ does not suppress warnings from the gcc back end.
To suppress these back end warnings as well, use the switch ‘-w’ in addition to
‘-gnatws’. Also this switch has no effect on the handling of style check messages.

‘-gnatw.s’
Activate warnings on overridden size clauses. This switch activates warnings on
component clauses in record representation clauses where the length given overrides
that specified by an explicit size clause for the component type. A warning is

Chapter 3: Compiling Using gcc 55

similarly given in the array case if a specified component size overrides an explicit
size clause for the array component type. Note that ‘-gnatwa’ does not affect the
setting of this warning option.

‘-gnatw.S’
Suppress warnings on overridden size clauses. This switch suppresses warnings on
component clauses in record representation clauses that override size clauses, and
similar warnings when an array component size overrides a size clause.

‘-gnatwt’ Activate warnings for tracking of deleted conditional code. This switch activates
warnings for tracking of code in conditionals (IF and CASE statements) that is
detected to be dead code which cannot be executed, and which is removed by the
front end. This warning is off by default, and is not turned on by ‘-gnatwa’, it has
to be turned on explicitly. This may be useful for detecting deactivated code in
certified applications.

‘-gnatwT’ Suppress warnings for tracking of deleted conditional code. This switch suppresses
warnings for tracking of deleted conditional code.

‘-gnatw.t’
Activate warnings on suspicious contracts. This switch activates warnings on sus-
picious postconditions (whether a pragma Postcondition or a Post aspect in Ada
2012). A function postcondition is suspicious when it does not mention the result
of the function. A procedure postcondition is suspicious when it only refers to the
pre-state of the procedure, because in that case it should rather be expressed as a
precondition. The default is that such warnings are not generated. This warning
can also be turned on using ‘-gnatwa’.

‘-gnatw.T’
Suppress warnings on suspicious contracts. This switch suppresses warnings on
suspicious postconditions.

‘-gnatwu’ Activate warnings on unused entities. This switch activates warnings to be generated
for entities that are declared but not referenced, and for units that are with’ed and
not referenced. In the case of packages, a warning is also generated if no entities
in the package are referenced. This means that if a with’ed package is referenced
but the only references are in use clauses or renames declarations, a warning is still
generated. A warning is also generated for a generic package that is with’ed but
never instantiated. In the case where a package or subprogram body is compiled,
and there is a with on the corresponding spec that is only referenced in the body,
a warning is also generated, noting that the with can be moved to the body. The
default is that such warnings are not generated. This switch also activates warnings
on unreferenced formals (it includes the effect of ‘-gnatwf’). This warning can also
be turned on using ‘-gnatwa’.

‘-gnatwU’ Suppress warnings on unused entities. This switch suppresses warnings for unused
entities and packages. It also turns off warnings on unreferenced formals (and thus
includes the effect of ‘-gnatwF’).

‘-gnatw.u’
Activate warnings on unordered enumeration types. This switch causes enumeration
types to be considered as conceptually unordered, unless an explicit pragma Ordered
is given for the type. The effect is to generate warnings in clients that use explicit
comparisons or subranges, since these constructs both treat objects of the type as
ordered. (A client is defined as a unit that is other than the unit in which the
type is declared, or its body or subunits.) Please refer to the description of pragma

56 GNAT User’s Guide

Ordered in the GNAT Reference Manual for further details. The default is that
such warnings are not generated. This warning is not automatically turned on by
the use of ‘-gnatwa’.

‘-gnatw.U’
Deactivate warnings on unordered enumeration types. This switch causes all enu-
meration types to be considered as ordered, so that no warnings are given for com-
parisons or subranges for any type.

‘-gnatwv’ Activate warnings on unassigned variables. This switch activates warnings for access
to variables which may not be properly initialized. The default is that such warnings
are generated. This warning can also be turned on using ‘-gnatwa’.

‘-gnatwV’ Suppress warnings on unassigned variables. This switch suppresses warnings for ac-
cess to variables which may not be properly initialized. For variables of a composite
type, the warning can also be suppressed in Ada 2005 by using a default initializa-
tion with a box. For example, if Table is an array of records whose components are
only partially uninitialized, then the following code:

Tab : Table := (others => <>);

will suppress warnings on subsequent statements that access components of variable
Tab.

‘-gnatww’ Activate warnings on wrong low bound assumption. This switch activates warnings
for indexing an unconstrained string parameter with a literal or S’Length. This is
a case where the code is assuming that the low bound is one, which is in general
not true (for example when a slice is passed). The default is that such warnings are
generated. This warning can also be turned on using ‘-gnatwa’.

‘-gnatwW’ Suppress warnings on wrong low bound assumption. This switch suppresses warnings
for indexing an unconstrained string parameter with a literal or S’Length. Note that
this warning can also be suppressed in a particular case by adding an assertion that
the lower bound is 1, as shown in the following example.

procedure K (S : String) is

pragma Assert (S’First = 1);

...

‘-gnatw.w’
Activate warnings on unnecessary Warnings Off pragmas This switch activates
warnings for use of pragma Warnings (Off, entity) where either the pragma is
entirely useless (because it suppresses no warnings), or it could be replaced by
pragma Unreferenced or pragma Unmodified. The default is that these warnings
are not given. Note that this warning is not included in -gnatwa, it must be activated
explicitly.

‘-gnatw.W’
Suppress warnings on unnecessary Warnings Off pragmas This switch suppresses
warnings for use of pragma Warnings (Off, entity).

‘-gnatwx’ Activate warnings on Export/Import pragmas. This switch activates warnings on
Export/Import pragmas when the compiler detects a possible conflict between the
Ada and foreign language calling sequences. For example, the use of default param-
eters in a convention C procedure is dubious because the C compiler cannot supply
the proper default, so a warning is issued. The default is that such warnings are
generated. This warning can also be turned on using ‘-gnatwa’.

‘-gnatwX’ Suppress warnings on Export/Import pragmas. This switch suppresses warnings on
Export/Import pragmas. The sense of this is that you are telling the compiler that

Chapter 3: Compiling Using gcc 57

you know what you are doing in writing the pragma, and it should not complain at
you.

‘-gnatw.x’
Activate warnings for No Exception Propagation mode. This switch activates warn-
ings for exception usage when pragma Restrictions (No Exception Propagation) is
in effect. Warnings are given for implicit or explicit exception raises which are not
covered by a local handler, and for exception handlers which do not cover a local
raise. The default is that these warnings are not given.

‘-gnatw.X’
Disable warnings for No Exception Propagation mode. This switch disables warn-
ings for exception usage when pragma Restrictions (No Exception Propagation) is
in effect.

‘-gnatwy’ Activate warnings for Ada compatibility issues. For the most part, newer versions of
Ada are upwards compatible with older versions. For example, Ada 2005 programs
will almost always work when compiled as Ada 2012. However there are some
exceptions (for example the fact that some is now a reserved word in Ada 2012).
This switch activates several warnings to help in identifying and correcting such
incompatibilities. The default is that these warnings are generated. Note that at
one point Ada 2005 was called Ada 0Y, hence the choice of character. This warning
can also be turned on using ‘-gnatwa’.

‘-gnatwY’ Disable warnings for Ada compatibility issues. This switch suppresses the warnings
intended to help in identifying incompatibilities between Ada language versions.

‘-gnatwz’ Activate warnings on unchecked conversions. This switch activates warnings for
unchecked conversions where the types are known at compile time to have different
sizes. The default is that such warnings are generated. Warnings are also gen-
erated for subprogram pointers with different conventions, and, on VMS only, for
data pointers with different conventions. This warning can also be turned on using
‘-gnatwa’.

‘-gnatwZ’ Suppress warnings on unchecked conversions. This switch suppresses warnings for
unchecked conversions where the types are known at compile time to have different
sizes or conventions.

‘-Wunused’
The warnings controlled by the ‘-gnatw’ switch are generated by the front end of
the compiler. The ‘GCC’ back end can provide additional warnings and they are
controlled by the ‘-W’ switch. For example, ‘-Wunused’ activates back end warnings
for entities that are declared but not referenced.

‘-Wuninitialized’
Similarly, ‘-Wuninitialized’ activates the back end warning for uninitialized vari-
ables. This switch must be used in conjunction with an optimization level greater
than zero.

‘-Wstack-usage=len ’
Warn if the stack usage of a subprogram might be larger than len bytes. See
Section 23.2 [Static Stack Usage Analysis], page 251 for details.

‘-Wall’ This switch enables most warnings from the ‘GCC’ back end. The code generator
detects a number of warning situations that are missed by the ‘GNAT’ front end, and
this switch can be used to activate them. The use of this switch also sets the default
front end warning mode to ‘-gnatwa’, that is, most front end warnings activated as
well.

58 GNAT User’s Guide

‘-w’ Conversely, this switch suppresses warnings from the ‘GCC’ back end. The use of
this switch also sets the default front end warning mode to ‘-gnatws’, that is, front
end warnings suppressed as well.

A string of warning parameters can be used in the same parameter. For example:
-gnatwaGe

will turn on all optional warnings except for unrecognized pragma warnings, and also specify
that warnings should be treated as errors.

When no switch ‘-gnatw’ is used, this is equivalent to:

‘-gnatwB’

‘-gnatw.b’
‘-gnatwC’

‘-gnatw.C’
‘-gnatwD’

‘-gnatwF’

‘-gnatwg’

‘-gnatwH’

‘-gnatwi’

‘-gnatw.I’
‘-gnatwJ’

‘-gnatwK’

‘-gnatwL’

‘-gnatw.L’
‘-gnatwM’

‘-gnatw.m’
‘-gnatwn’

‘-gnatwo’

‘-gnatw.O’
‘-gnatwP’

‘-gnatw.P’
‘-gnatwq’

‘-gnatwR’

‘-gnatw.R’
‘-gnatw.S’
‘-gnatwT’

‘-gnatw.T’
‘-gnatwU’

‘-gnatwv’

‘-gnatww’

‘-gnatw.W’
‘-gnatwx’

‘-gnatw.X’
‘-gnatwy’

‘-gnatwz’

Chapter 3: Compiling Using gcc 59

3.2.3 Debugging and Assertion Control

‘-gnata’

The pragmas Assert and Debug normally have no effect and are ignored. This
switch, where ‘a’ stands for assert, causes Assert and Debug pragmas to be acti-
vated.

The pragmas have the form:� �
pragma Assert (Boolean-expression [,

static-string-expression])
pragma Debug (procedure call)
 	

The Assert pragma causes Boolean-expression to be tested. If the result is True,
the pragma has no effect (other than possible side effects from evaluating the ex-
pression). If the result is False, the exception Assert_Failure declared in the
package System.Assertions is raised (passing static-string-expression, if present,
as the message associated with the exception). If no string expression is given the
default is a string giving the file name and line number of the pragma.

The Debug pragma causes procedure to be called. Note that pragma Debug may
appear within a declaration sequence, allowing debugging procedures to be called
between declarations.

3.2.4 Validity Checking

The Ada Reference Manual defines the concept of invalid values (see RM 13.9.1). The primary
source of invalid values is uninitialized variables. A scalar variable that is left uninitialized may
contain an invalid value; the concept of invalid does not apply to access or composite types.

It is an error to read an invalid value, but the RM does not require run-time checks to detect
such errors, except for some minimal checking to prevent erroneous execution (i.e. unpredictable
behavior). This corresponds to the ‘-gnatVd’ switch below, which is the default. For example,
by default, if the expression of a case statement is invalid, it will raise Constraint Error rather
than causing a wild jump, and if an array index on the left-hand side of an assignment is invalid,
it will raise Constraint Error rather than overwriting an arbitrary memory location.

The ‘-gnatVa’ may be used to enable additional validity checks, which are not required by the
RM. These checks are often very expensive (which is why the RM does not require them). These
checks are useful in tracking down uninitialized variables, but they are not usually recommended
for production builds.

The other ‘-gnatVx ’ switches below allow finer-grained control; you can enable whichever
validity checks you desire. However, for most debugging purposes, ‘-gnatVa’ is sufficient, and
the default ‘-gnatVd’ (i.e. standard Ada behavior) is usually sufficient for non-debugging use.

The ‘-gnatB’ switch tells the compiler to assume that all values are valid (that is, within their
declared subtype range) except in the context of a use of the Valid attribute. This means the
compiler can generate more efficient code, since the range of values is better known at compile
time. However, an uninitialized variable can cause wild jumps and memory corruption in this
mode.

The ‘-gnatVx ’ switch allows control over the validity checking mode as described below.
The x argument is a string of letters that indicate validity checks that are performed or not
performed in addition to the default checks required by Ada as described above.

‘-gnatVa’ All validity checks. All validity checks are turned on. That is, ‘-gnatVa’ is equivalent
to ‘gnatVcdfimorst’.

60 GNAT User’s Guide

‘-gnatVc’ Validity checks for copies. The right hand side of assignments, and the initializing
values of object declarations are validity checked.

‘-gnatVd’ Default (RM) validity checks. Some validity checks are done by default following
normal Ada semantics (RM 13.9.1 (9-11)). A check is done in case statements that
the expression is within the range of the subtype. If it is not, Constraint Error is
raised. For assignments to array components, a check is done that the expression
used as index is within the range. If it is not, Constraint Error is raised. Both
these validity checks may be turned off using switch ‘-gnatVD’. They are turned on
by default. If ‘-gnatVD’ is specified, a subsequent switch ‘-gnatVd’ will leave the
checks turned on. Switch ‘-gnatVD’ should be used only if you are sure that all such
expressions have valid values. If you use this switch and invalid values are present,
then the program is erroneous, and wild jumps or memory overwriting may occur.

‘-gnatVe’ Validity checks for elementary components. In the absence of this switch, assign-
ments to record or array components are not validity checked, even if validity checks
for assignments generally (‘-gnatVc’) are turned on. In Ada, assignment of com-
posite values do not require valid data, but assignment of individual components
does. So for example, there is a difference between copying the elements of an array
with a slice assignment, compared to assigning element by element in a loop. This
switch allows you to turn off validity checking for components, even when they are
assigned component by component.

‘-gnatVf’ Validity checks for floating-point values. In the absence of this switch, validity check-
ing occurs only for discrete values. If ‘-gnatVf’ is specified, then validity checking
also applies for floating-point values, and NaNs and infinities are considered invalid,
as well as out of range values for constrained types. Note that this means that stan-
dard IEEE infinity mode is not allowed. The exact contexts in which floating-point
values are checked depends on the setting of other options. For example, ‘-gnatVif’
or ‘-gnatVfi’ (the order does not matter) specifies that floating-point parameters
of mode in should be validity checked.

‘-gnatVi’ Validity checks for in mode parameters Arguments for parameters of mode in are
validity checked in function and procedure calls at the point of call.

‘-gnatVm’ Validity checks for in out mode parameters. Arguments for parameters of mode in
out are validity checked in procedure calls at the point of call. The ’m’ here stands
for modify, since this concerns parameters that can be modified by the call. Note
that there is no specific option to test out parameters, but any reference within the
subprogram will be tested in the usual manner, and if an invalid value is copied
back, any reference to it will be subject to validity checking.

‘-gnatVn’ No validity checks. This switch turns off all validity checking, including the default
checking for case statements and left hand side subscripts. Note that the use of
the switch ‘-gnatp’ suppresses all run-time checks, including validity checks, and
thus implies ‘-gnatVn’. When this switch is used, it cancels any other ‘-gnatV’
previously issued.

‘-gnatVo’ Validity checks for operator and attribute operands. Arguments for predefined op-
erators and attributes are validity checked. This includes all operators in pack-
age Standard, the shift operators defined as intrinsic in package Interfaces and
operands for attributes such as Pos. Checks are also made on individual component
values for composite comparisons, and on the expressions in type conversions and
qualified expressions. Checks are also made on explicit ranges using ‘..’ (e.g. slices,
loops etc).

Chapter 3: Compiling Using gcc 61

‘-gnatVp’ Validity checks for parameters. This controls the treatment of parameters within
a subprogram (as opposed to ‘-gnatVi’ and ‘-gnatVm’ which control validity test-
ing of parameters on a call. If either of these call options is used, then normally
an assumption is made within a subprogram that the input arguments have been
validity checking at the point of call, and do not need checking again within a sub-
program). If ‘-gnatVp’ is set, then this assumption is not made, and parameters are
not assumed to be valid, so their validity will be checked (or rechecked) within the
subprogram.

‘-gnatVr’ Validity checks for function returns. The expression in return statements in func-
tions is validity checked.

‘-gnatVs’ Validity checks for subscripts. All subscripts expressions are checked for validity,
whether they appear on the right side or left side (in default mode only left side
subscripts are validity checked).

‘-gnatVt’ Validity checks for tests. Expressions used as conditions in if, while or exit state-
ments are checked, as well as guard expressions in entry calls.

The ‘-gnatV’ switch may be followed by a string of letters to turn on a series of validity checking
options. For example, ‘-gnatVcr’ specifies that in addition to the default validity checking,
copies and function return expressions are to be validity checked. In order to make it easier to
specify the desired combination of effects, the upper case letters CDFIMORST may be used to turn
off the corresponding lower case option. Thus ‘-gnatVaM’ turns on all validity checking options
except for checking of in out procedure arguments.

The specification of additional validity checking generates extra code (and in the case of
‘-gnatVa’ the code expansion can be substantial). However, these additional checks can be very
useful in detecting uninitialized variables, incorrect use of unchecked conversion, and other errors
leading to invalid values. The use of pragma Initialize_Scalars is useful in conjunction with
the extra validity checking, since this ensures that wherever possible uninitialized variables have
invalid values.

See also the pragma Validity_Checks which allows modification of the validity checking
mode at the program source level, and also allows for temporary disabling of validity checks.

3.2.5 Style Checking

The ‘-gnatyx’ switch causes the compiler to enforce specified style rules. A limited set of style
rules has been used in writing the GNAT sources themselves. This switch allows user programs
to activate all or some of these checks. If the source program fails a specified style check, an
appropriate message is given, preceded by the character sequence “(style)”. This message does
not prevent successful compilation (unless the ‘-gnatwe’ switch is used).

Note that this is by no means intended to be a general facility for checking arbitrary coding
standards. It is simply an embedding of the style rules we have chosen for the GNAT sources.
If you are starting a project which does not have established style standards, you may find it
useful to adopt the entire set of GNAT coding standards, or some subset of them. If you already
have an established set of coding standards, then it may be that selected style checking options
do indeed correspond to choices you have made, but for general checking of an existing set of
coding rules, you should look to the gnatcheck tool, which is designed for that purpose.

The string x is a sequence of letters or digits indicating the particular style checks to be
performed. The following checks are defined:

‘0-9’ Specify indentation level. If a digit from 1-9 appears in the string after ‘-gnaty’
then proper indentation is checked, with the digit indicating the indentation level
required. A value of zero turns off this style check. The general style of required
indentation is as specified by the examples in the Ada Reference Manual. Full line

62 GNAT User’s Guide

comments must be aligned with the -- starting on a column that is a multiple of
the alignment level, or they may be aligned the same way as the following non-blank
line (this is useful when full line comments appear in the middle of a statement.

‘a’ Check attribute casing. Attribute names, including the case of keywords such as
digits used as attributes names, must be written in mixed case, that is, the initial
letter and any letter following an underscore must be uppercase. All other letters
must be lowercase.

‘A’ Use of array index numbers in array attributes. When using the array attributes
First, Last, Range, or Length, the index number must be omitted for one-
dimensional arrays and is required for multi-dimensional arrays.

‘b’ Blanks not allowed at statement end. Trailing blanks are not allowed at the end
of statements. The purpose of this rule, together with h (no horizontal tabs), is to
enforce a canonical format for the use of blanks to separate source tokens.

‘B’ Check Boolean operators. The use of AND/OR operators is not permitted except
in the cases of modular operands, array operands, and simple stand-alone boolean
variables or boolean constants. In all other cases and then/or else are required.

‘c’ Check comments, double space. Comments must meet the following set of rules:

• The “--” that starts the column must either start in column one, or else at
least one blank must precede this sequence.

• Comments that follow other tokens on a line must have at least one blank
following the “--” at the start of the comment.

• Full line comments must have at least two blanks following the “--” that starts
the comment, with the following exceptions.

• A line consisting only of the “--” characters, possibly preceded by blanks is
permitted.

• A comment starting with “--x” where x is a special character is permitted. This
allows proper processing of the output generated by specialized tools including
gnatprep (where “--!” is used) and the SPARK annotation language (where
“--#” is used). For the purposes of this rule, a special character is defined
as being in one of the ASCII ranges 16#21#...16#2F# or 16#3A#...16#3F#.
Note that this usage is not permitted in GNAT implementation units (i.e., when
‘-gnatg’ is used).

• A line consisting entirely of minus signs, possibly preceded by blanks, is permit-
ted. This allows the construction of box comments where lines of minus signs
are used to form the top and bottom of the box.

• A comment that starts and ends with “--” is permitted as long as at least one
blank follows the initial “--”. Together with the preceding rule, this allows the
construction of box comments, as shown in the following example:

-- This is a box comment --

-- with two text lines. --

‘C’ Check comments, single space. This is identical to c except that only one space is
required following the -- of a comment instead of two.

‘d’ Check no DOS line terminators present. All lines must be terminated by a single
ASCII.LF character (in particular the DOS line terminator sequence CR/LF is not
allowed).

Chapter 3: Compiling Using gcc 63

‘e’ Check end/exit labels. Optional labels on end statements ending subprograms and
on exit statements exiting named loops, are required to be present.

‘f’ No form feeds or vertical tabs. Neither form feeds nor vertical tab characters are
permitted in the source text.

‘g’ GNAT style mode. The set of style check switches is set to match that used by
the GNAT sources. This may be useful when developing code that is eventually
intended to be incorporated into GNAT. For further details, see GNAT sources.

‘h’ No horizontal tabs. Horizontal tab characters are not permitted in the source text.
Together with the b (no blanks at end of line) check, this enforces a canonical form
for the use of blanks to separate source tokens.

‘i’ Check if-then layout. The keyword then must appear either on the same line as
corresponding if, or on a line on its own, lined up under the if with at least one
non-blank line in between containing all or part of the condition to be tested.

‘I’ check mode IN keywords. Mode in (the default mode) is not allowed to be given
explicitly. in out is fine, but not in on its own.

‘k’ Check keyword casing. All keywords must be in lower case (with the exception of
keywords such as digits used as attribute names to which this check does not
apply).

‘l’ Check layout. Layout of statement and declaration constructs must follow the rec-
ommendations in the Ada Reference Manual, as indicated by the form of the syntax
rules. For example an else keyword must be lined up with the corresponding if

keyword.

There are two respects in which the style rule enforced by this check option are
more liberal than those in the Ada Reference Manual. First in the case of record
declarations, it is permissible to put the record keyword on the same line as the
type keyword, and then the end in end record must line up under type. This is
also permitted when the type declaration is split on two lines. For example, any of
the following three layouts is acceptable:� �

type q is record

a : integer;

b : integer;

end record;

type q is

record

a : integer;

b : integer;

end record;

type q is

record

a : integer;

b : integer;

end record;
 	
Second, in the case of a block statement, a permitted alternative is to put the block
label on the same line as the declare or begin keyword, and then line the end

keyword up under the block label. For example both the following are permitted:

64 GNAT User’s Guide� �
Block : declare

A : Integer := 3;

begin

Proc (A, A);

end Block;

Block :

declare

A : Integer := 3;

begin

Proc (A, A);

end Block;
 	
The same alternative format is allowed for loops. For example, both of the following
are permitted:� �

Clear : while J < 10 loop

A (J) := 0;

end loop Clear;

Clear :

while J < 10 loop

A (J) := 0;

end loop Clear;
 	
‘Lnnn’ Set maximum nesting level. The maximum level of nesting of constructs (including

subprograms, loops, blocks, packages, and conditionals) may not exceed the given
value ‘nnn’. A value of zero disconnects this style check.

‘m’ Check maximum line length. The length of source lines must not exceed 79 char-
acters, including any trailing blanks. The value of 79 allows convenient display on
an 80 character wide device or window, allowing for possible special treatment of
80 character lines. Note that this count is of characters in the source text. This
means that a tab character counts as one character in this count but a wide char-
acter sequence counts as a single character (however many bytes are needed in the
encoding).

‘Mnnn’ Set maximum line length. The length of lines must not exceed the given value ‘nnn’.
The maximum value that can be specified is 32767.

‘n’ Check casing of entities in Standard. Any identifier from Standard must be cased
to match the presentation in the Ada Reference Manual (for example, Integer and
ASCII.NUL).

‘N’ Turn off all style checks. All style check options are turned off.

‘o’ Check order of subprogram bodies. All subprogram bodies in a given scope (e.g. a
package body) must be in alphabetical order. The ordering rule uses normal Ada
rules for comparing strings, ignoring casing of letters, except that if there is a trailing
numeric suffix, then the value of this suffix is used in the ordering (e.g. Junk2 comes
before Junk10).

‘O’ Check that overriding subprograms are explicitly marked as such. The declaration
of a primitive operation of a type extension that overrides an inherited operation
must carry an overriding indicator.

‘p’ Check pragma casing. Pragma names must be written in mixed case, that is, the
initial letter and any letter following an underscore must be uppercase. All other
letters must be lowercase.

Chapter 3: Compiling Using gcc 65

‘r’ Check references. All identifier references must be cased in the same way as the
corresponding declaration. No specific casing style is imposed on identifiers. The
only requirement is for consistency of references with declarations.

‘s’ Check separate specs. Separate declarations (“specs”) are required for subprograms
(a body is not allowed to serve as its own declaration). The only exception is that
parameterless library level procedures are not required to have a separate declara-
tion. This exception covers the most frequent form of main program procedures.

‘S’ Check no statements after then/else. No statements are allowed on the same line
as a then or else keyword following the keyword in an if statement. or else and
and then are not affected, and a special exception allows a pragma to appear after
else.

‘t’ Check token spacing. The following token spacing rules are enforced:

• The keywords abs and not must be followed by a space.

• The token => must be surrounded by spaces.

• The token <> must be preceded by a space or a left parenthesis.

• Binary operators other than ** must be surrounded by spaces. There is no
restriction on the layout of the ** binary operator.

• Colon must be surrounded by spaces.

• Colon-equal (assignment, initialization) must be surrounded by spaces.

• Comma must be the first non-blank character on the line, or be immediately
preceded by a non-blank character, and must be followed by a space.

• If the token preceding a left parenthesis ends with a letter or digit, then a space
must separate the two tokens.

• if the token following a right parenthesis starts with a letter or digit, then a
space must separate the two tokens.

• A right parenthesis must either be the first non-blank character on a line, or it
must be preceded by a non-blank character.

• A semicolon must not be preceded by a space, and must not be followed by a
non-blank character.

• A unary plus or minus may not be followed by a space.

• A vertical bar must be surrounded by spaces.

‘u’ Check unnecessary blank lines. Unnecessary blank lines are not allowed. A blank
line is considered unnecessary if it appears at the end of the file, or if more than one
blank line occurs in sequence.

‘x’ Check extra parentheses. Unnecessary extra level of parentheses (C-style) are not
allowed around conditions in if statements, while statements and exit statements.

‘y’ Set all standard style check options This is equivalent to gnaty3aAbcefhiklmnprst,
that is all checking options enabled with the exception of ‘-gnatyB’, ‘-gnatyd’,
‘-gnatyI’, ‘-gnatyLnnn’, ‘-gnatyo’, ‘-gnatyO’, ‘-gnatyS’, ‘-gnatyu’, and
‘-gnatyx’.

‘-’ Remove style check options This causes any subsequent options in the string to
act as canceling the corresponding style check option. To cancel maximum nesting
level control, use ‘L’ parameter witout any integer value after that, because any
digit following ‘-’ in the parameter string of the ‘-gnaty’ option will be threated
as canceling indentation check. The same is true for ‘M’ parameter. ‘y’ and ‘N’
parameters are not allowed after ‘-’.

66 GNAT User’s Guide

‘+’ This causes any subsequent options in the string to enable the corresponding style
check option. That is, it cancels the effect of a previous -, if any.

In the above rules, appearing in column one is always permitted, that is, counts as meeting either
a requirement for a required preceding space, or as meeting a requirement for no preceding space.

Appearing at the end of a line is also always permitted, that is, counts as meeting either a
requirement for a following space, or as meeting a requirement for no following space.

If any of these style rules is violated, a message is generated giving details on the violation.
The initial characters of such messages are always “(style)”. Note that these messages are
treated as warning messages, so they normally do not prevent the generation of an object file.
The ‘-gnatwe’ switch can be used to treat warning messages, including style messages, as fatal
errors.

The switch ‘-gnaty’ on its own (that is not followed by any letters or digits) is equivalent
to the use of ‘-gnatyy’ as described above, that is all built-in standard style check options are
enabled.

The switch ‘-gnatyN’ clears any previously set style checks.

3.2.6 Run-Time Checks

By default, the following checks are suppressed: integer overflow checks, stack overflow checks,
and checks for access before elaboration on subprogram calls. All other checks, including range
checks and array bounds checks, are turned on by default. The following gcc switches refine
this default behavior.

‘-gnatp’ This switch causes the unit to be compiled as though pragma Suppress (All_

checks) had been present in the source. Validity checks are also eliminated (in
other words ‘-gnatp’ also implies ‘-gnatVn’. Use this switch to improve the perfor-
mance of the code at the expense of safety in the presence of invalid data or program
bugs.

Note that when checks are suppressed, the compiler is allowed, but not required, to
omit the checking code. If the run-time cost of the checking code is zero or near-
zero, the compiler will generate it even if checks are suppressed. In particular, if the
compiler can prove that a certain check will necessarily fail, it will generate code
to do an unconditional “raise”, even if checks are suppressed. The compiler warns
in this case. Another case in which checks may not be eliminated is when they are
embedded in certain run time routines such as math library routines.

Of course, run-time checks are omitted whenever the compiler can prove that they
will not fail, whether or not checks are suppressed.

Note that if you suppress a check that would have failed, program execution is
erroneous, which means the behavior is totally unpredictable. The program might
crash, or print wrong answers, or do anything else. It might even do exactly what
you wanted it to do (and then it might start failing mysteriously next week or next
year). The compiler will generate code based on the assumption that the condition
being checked is true, which can result in disaster if that assumption is wrong.

The ‘-gnatp’ switch has no effect if a subsequent ‘-gnat-p’ switch appears.

‘-gnat-p’ This switch cancels the effect of a previous ‘gnatp’ switch.

‘-gnato’ Enables overflow checking for integer operations. This causes GNAT to generate
slower and larger executable programs by adding code to check for overflow (result-
ing in raising Constraint_Error as required by standard Ada semantics). These
overflow checks correspond to situations in which the true value of the result of an
operation may be outside the base range of the result type. The following example
shows the distinction:

Chapter 3: Compiling Using gcc 67

X1 : Integer := "Integer’Last";

X2 : Integer range 1 .. 5 := "5";

X3 : Integer := "Integer’Last";

X4 : Integer range 1 .. 5 := "5";

F : Float := "2.0E+20";

...

X1 := X1 + 1;

X2 := X2 + 1;

X3 := Integer (F);

X4 := Integer (F);

Note that if explicit values are assigned at compile time, the compiler may be able
to detect overflow at compile time, in which case no actual run-time checking code
is required, and Constraint Error will be raised unconditionally, with or without
‘-gnato’. That’s why the assigned values in the above fragment are in quotes, the
meaning is "assign a value not known to the compiler that happens to be equal to
...". The remaining discussion assumes that the compiler cannot detect the values
at compile time.

Here the first addition results in a value that is outside the base range of Integer,
and hence requires an overflow check for detection of the constraint error. Thus the
first assignment to X1 raises a Constraint_Error exception only if ‘-gnato’ is set.

The second increment operation results in a violation of the explicit range constraint;
such range checks are performed by default, and are unaffected by ‘-gnato’.

The two conversions of F both result in values that are outside the base range of
type Integer and thus will raise Constraint_Error exceptions only if ‘-gnato’ is
used. The fact that the result of the second conversion is assigned to variable X4

with a restricted range is irrelevant, since the problem is in the conversion, not the
assignment.

Basically the rule is that in the default mode (‘-gnato’ not used), the generated
code assures that all integer variables stay within their declared ranges, or within
the base range if there is no declared range. This prevents any serious problems like
indexes out of range for array operations.

What is not checked in default mode is an overflow that results in an in-range, but
incorrect value. In the above example, the assignments to X1, X2, X3 all give results
that are within the range of the target variable, but the result is wrong in the sense
that it is too large to be represented correctly. Typically the assignment to X1 will
result in wrap around to the largest negative number. The conversions of F will
result in some Integer value and if that integer value is out of the X4 range then
the subsequent assignment would generate an exception.

Note that the ‘-gnato’ switch does not affect the code generated for any floating-
point operations; it applies only to integer semantics). For floating-point, GNAT has
the Machine_Overflows attribute set to False and the normal mode of operation
is to generate IEEE NaN and infinite values on overflow or invalid operations (such
as dividing 0.0 by 0.0).

The reason that we distinguish overflow checking from other kinds of range con-
straint checking is that a failure of an overflow check, unlike for example the failure
of a range check, can result in an incorrect value, but cannot cause random memory
destruction (like an out of range subscript), or a wild jump (from an out of range
case value). Overflow checking is also quite expensive in time and space, since in
general it requires the use of double length arithmetic.

Note again that ‘-gnato’ is off by default, so overflow checking is not performed in
default mode. This means that out of the box, with the default settings, GNAT does
not do all the checks expected from the language description in the Ada Reference

68 GNAT User’s Guide

Manual. If you want all constraint checks to be performed, as described in this
Manual, then you must explicitly use the -gnato switch either on the gnatmake or
gcc command.

‘-gnatE’ Enables dynamic checks for access-before-elaboration on subprogram calls and
generic instantiations. Note that ‘-gnatE’ is not necessary for safety, because in
the default mode, GNAT ensures statically that the checks would not fail. For full
details of the effect and use of this switch, See Chapter 3 [Compiling Using gcc],
page 37.

‘-fstack-check’
Activates stack overflow checking. For full details of the effect and use of this switch
see Section 23.1 [Stack Overflow Checking], page 251.

The setting of these switches only controls the default setting of the checks. You may modify
them using either Suppress (to remove checks) or Unsuppress (to add back suppressed checks)
pragmas in the program source.

3.2.7 Using gcc for Syntax Checking

‘-gnats’

The s stands for “syntax”.

Run GNAT in syntax checking only mode. For example, the command
$ gcc -c -gnats x.adb

compiles file ‘x.adb’ in syntax-check-only mode. You can check a series of files in a
single command , and can use wild cards to specify such a group of files. Note that
you must specify the ‘-c’ (compile only) flag in addition to the ‘-gnats’ flag. . You
may use other switches in conjunction with ‘-gnats’. In particular, ‘-gnatl’ and
‘-gnatv’ are useful to control the format of any generated error messages.

When the source file is empty or contains only empty lines and/or comments, the
output is a warning:

$ gcc -c -gnats -x ada toto.txt

toto.txt:1:01: warning: empty file, contains no compilation units

$

Otherwise, the output is simply the error messages, if any. No object file or ALI
file is generated by a syntax-only compilation. Also, no units other than the one
specified are accessed. For example, if a unit X with’s a unit Y, compiling unit X in
syntax check only mode does not access the source file containing unit Y.

Normally, GNAT allows only a single unit in a source file. However, this restriction
does not apply in syntax-check-only mode, and it is possible to check a file containing
multiple compilation units concatenated together. This is primarily used by the
gnatchop utility (see Chapter 8 [Renaming Files Using gnatchop], page 119).

3.2.8 Using gcc for Semantic Checking

‘-gnatc’

The c stands for “check”. Causes the compiler to operate in semantic check mode,
with full checking for all illegalities specified in the Ada Reference Manual, but
without generation of any object code (no object file is generated).

Because dependent files must be accessed, you must follow the GNAT semantic
restrictions on file structuring to operate in this mode:

• The needed source files must be accessible (see Section 3.3 [Search Paths and
the Run-Time Library (RTL)], page 78).

Chapter 3: Compiling Using gcc 69

• Each file must contain only one compilation unit.

• The file name and unit name must match (see Section 2.3 [File Naming Rules],
page 16).

The output consists of error messages as appropriate. No object file is generated.
An ‘ALI’ file is generated for use in the context of cross-reference tools, but this file
is marked as not being suitable for binding (since no object file is generated). The
checking corresponds exactly to the notion of legality in the Ada Reference Manual.

Any unit can be compiled in semantics-checking-only mode, including units that
would not normally be compiled (subunits, and specifications where a separate body
is present).

3.2.9 Compiling Different Versions of Ada

The switches described in this section allow you to explicitly specify the version of the Ada
language that your programs are written in. By default GNAT assumes Ada 2005, but you can
also specify Ada 95 or indicate Ada 83 compatibility mode.

‘-gnat83 (Ada 83 Compatibility Mode)’
Although GNAT is primarily an Ada 95 / Ada 2005 compiler, this switch specifies
that the program is to be compiled in Ada 83 mode. With ‘-gnat83’, GNAT rejects
most post-Ada 83 extensions and applies Ada 83 semantics where this can be done
easily. It is not possible to guarantee this switch does a perfect job; some subtle
tests, such as are found in earlier ACVC tests (and that have been removed from
the ACATS suite for Ada 95), might not compile correctly. Nevertheless, this switch
may be useful in some circumstances, for example where, due to contractual reasons,
existing code needs to be maintained using only Ada 83 features.

With few exceptions (most notably the need to use <> on unconstrained generic
formal parameters, the use of the new Ada 95 / Ada 2005 reserved words, and the
use of packages with optional bodies), it is not necessary to specify the ‘-gnat83’
switch when compiling Ada 83 programs, because, with rare exceptions, Ada 95 and
Ada 2005 are upwardly compatible with Ada 83. Thus a correct Ada 83 program is
usually also a correct program in these later versions of the language standard. For
further information, please refer to Appendix F [Compatibility and Porting Guide],
page 343.

‘-gnat95 (Ada 95 mode)’
This switch directs the compiler to implement the Ada 95 version of the language.
Since Ada 95 is almost completely upwards compatible with Ada 83, Ada 83 pro-
grams may generally be compiled using this switch (see the description of the
‘-gnat83’ switch for further information about Ada 83 mode). If an Ada 2005
program is compiled in Ada 95 mode, uses of the new Ada 2005 features will cause
error messages or warnings.

This switch also can be used to cancel the effect of a previous ‘-gnat83’,
‘-gnat05/2005’, or ‘-gnat12/2012’ switch earlier in the command line.

‘-gnat05 or -gnat2005 (Ada 2005 mode)’
This switch directs the compiler to implement the Ada 2005 version of the language,
as documented in the official Ada standards document. Since Ada 2005 is almost
completely upwards compatible with Ada 95 (and thus also with Ada 83), Ada
83 and Ada 95 programs may generally be compiled using this switch (see the
description of the ‘-gnat83’ and ‘-gnat95’ switches for further information).

70 GNAT User’s Guide

‘-gnat12 or -gnat2012 (Ada 2012 mode)’
This switch directs the compiler to implement the Ada 2012 version of the language.
Since Ada 2012 is almost completely upwards compatible with Ada 2005 (and thus
also with Ada 83, and Ada 95), Ada 83 and Ada 95 programs may generally be
compiled using this switch (see the description of the ‘-gnat83’, ‘-gnat95’, and
‘-gnat05/2005’ switches for further information).

For information about the approved “Ada Issues” that have been incorporated into
Ada 2012, see http://www.ada-auth.org/ais.html. Included with GNAT releases
is a file ‘features-ada12’ that describes the set of implemented Ada 2012 features.

‘-gnatX (Enable GNAT Extensions)’
This switch directs the compiler to implement the latest version of the language
(currently Ada 2012) and also to enable certain GNAT implementation extensions
that are not part of any Ada standard. For a full list of these extensions, see the
GNAT reference manual.

3.2.10 Character Set Control

‘-gnatic ’

Normally GNAT recognizes the Latin-1 character set in source program identifiers,
as described in the Ada Reference Manual. This switch causes GNAT to recognize
alternate character sets in identifiers. c is a single character indicating the character
set, as follows:

1 ISO 8859-1 (Latin-1) identifiers

2 ISO 8859-2 (Latin-2) letters allowed in identifiers

3 ISO 8859-3 (Latin-3) letters allowed in identifiers

4 ISO 8859-4 (Latin-4) letters allowed in identifiers

5 ISO 8859-5 (Cyrillic) letters allowed in identifiers

9 ISO 8859-15 (Latin-9) letters allowed in identifiers

p IBM PC letters (code page 437) allowed in identifiers

8 IBM PC letters (code page 850) allowed in identifiers

f Full upper-half codes allowed in identifiers

n No upper-half codes allowed in identifiers

w Wide-character codes (that is, codes greater than 255) allowed in iden-
tifiers

See Section 2.2 [Foreign Language Representation], page 13, for full details on the
implementation of these character sets.

‘-gnatWe ’ Specify the method of encoding for wide characters. e is one of the following:

h Hex encoding (brackets coding also recognized)

u Upper half encoding (brackets encoding also recognized)

s Shift/JIS encoding (brackets encoding also recognized)

e EUC encoding (brackets encoding also recognized)

8 UTF-8 encoding (brackets encoding also recognized)

b Brackets encoding only (default value)

http://www.ada-auth.org/ais.html

Chapter 3: Compiling Using gcc 71

For full details on these encoding methods see Section 2.2.3 [Wide Character En-
codings], page 14. Note that brackets coding is always accepted, even if one of the
other options is specified, so for example ‘-gnatW8’ specifies that both brackets and
UTF-8 encodings will be recognized. The units that are with’ed directly or indi-
rectly will be scanned using the specified representation scheme, and so if one of the
non-brackets scheme is used, it must be used consistently throughout the program.
However, since brackets encoding is always recognized, it may be conveniently used
in standard libraries, allowing these libraries to be used with any of the available
coding schemes.

Note that brackets encoding only applies to program text. Within comments, brack-
ets are considered to be normal graphic characters, and bracket sequences are never
recognized as wide characters.

If no ‘-gnatW?’ parameter is present, then the default representation is normally
Brackets encoding only. However, if the first three characters of the file are 16#EF#
16#BB# 16#BF# (the standard byte order mark or BOM for UTF-8), then these
three characters are skipped and the default representation for the file is set to
UTF-8.

Note that the wide character representation that is specified (explicitly or by default)
for the main program also acts as the default encoding used for Wide Text IO files
if not specifically overridden by a WCEM form parameter.

When no ‘-gnatW?’ is specified, then characters (other than wide characters represented
using brackets notation) are treated as 8-bit Latin-1 codes. The codes recognized are the Latin-
1 graphic characters, and ASCII format effectors (CR, LF, HT, VT). Other lower half control
characters in the range 16#00#..16#1F# are not accepted in program text or in comments.
Upper half control characters (16#80#..16#9F#) are rejected in program text, but allowed and
ignored in comments. Note in particular that the Next Line (NEL) character whose encoding is
16#85# is not recognized as an end of line in this default mode. If your source program contains
instances of the NEL character used as a line terminator, you must use UTF-8 encoding for the
whole source program. In default mode, all lines must be ended by a standard end of line
sequence (CR, CR/LF, or LF).

Note that the convention of simply accepting all upper half characters in comments means
that programs that use standard ASCII for program text, but UTF-8 encoding for comments
are accepted in default mode, providing that the comments are ended by an appropriate (CR,
or CR/LF, or LF) line terminator. This is a common mode for many programs with foreign
language comments.

3.2.11 File Naming Control

‘-gnatkn ’ Activates file name “krunching”. n, a decimal integer in the range 1-999, indicates
the maximum allowable length of a file name (not including the ‘.ads’ or ‘.adb’
extension). The default is not to enable file name krunching.

For the source file naming rules, See Section 2.3 [File Naming Rules], page 16.

3.2.12 Subprogram Inlining Control

‘-gnatn’ The n here is intended to suggest the first syllable of the word “inline”. GNAT
recognizes and processes Inline pragmas. However, for the inlining to actually oc-
cur, optimization must be enabled. To enable inlining of subprograms specified by
pragma Inline, you must also specify this switch. In the absence of this switch,
GNAT does not attempt inlining and does not need to access the bodies of subpro-
grams for which pragma Inline is specified if they are not in the current unit.

72 GNAT User’s Guide

If you specify this switch the compiler will access these bodies, creating an extra
source dependency for the resulting object file, and where possible, the call will be
inlined. For further details on when inlining is possible see Section 7.1.5 [Inlining of
Subprograms], page 108.

‘-gnatN’ This switch activates front-end inlining which also generates additional dependen-
cies.

When using a gcc-based back end (in practice this means using any version of GNAT
other than the JGNAT, .NET or GNAAMP versions), then the use of ‘-gnatN’ is
deprecated, and the use of ‘-gnatn’ is preferred. Historically front end inlining was
more extensive than the gcc back end inlining, but that is no longer the case.

3.2.13 Auxiliary Output Control

‘-gnatt’ Causes GNAT to write the internal tree for a unit to a file (with the extension ‘.adt’.
This not normally required, but is used by separate analysis tools. Typically these
tools do the necessary compilations automatically, so you should not have to specify
this switch in normal operation. Note that the combination of switches ‘-gnatct’
generates a tree in the form required by ASIS applications.

‘-gnatu’ Print a list of units required by this compilation on ‘stdout’. The listing includes
all units on which the unit being compiled depends either directly or indirectly.

‘-pass-exit-codes’
If this switch is not used, the exit code returned by gcc when compiling multiple
files indicates whether all source files have been successfully used to generate object
files or not.

When ‘-pass-exit-codes’ is used, gcc exits with an extended exit status and allows
an integrated development environment to better react to a compilation failure.
Those exit status are:

5 There was an error in at least one source file.

3 At least one source file did not generate an object file.

2 The compiler died unexpectedly (internal error for example).

0 An object file has been generated for every source file.

3.2.14 Debugging Control

‘-gnatdx ’ Activate internal debugging switches. x is a letter or digit, or string of letters or
digits, which specifies the type of debugging outputs desired. Normally these are
used only for internal development or system debugging purposes. You can find
full documentation for these switches in the body of the Debug unit in the compiler
source file ‘debug.adb’.

‘-gnatG[=nn]’
This switch causes the compiler to generate auxiliary output containing a pseudo-
source listing of the generated expanded code. Like most Ada compilers, GNAT
works by first transforming the high level Ada code into lower level constructs.
For example, tasking operations are transformed into calls to the tasking run-time
routines. A unique capability of GNAT is to list this expanded code in a form very
close to normal Ada source. This is very useful in understanding the implications of
various Ada usage on the efficiency of the generated code. There are many cases in
Ada (e.g. the use of controlled types), where simple Ada statements can generate a
lot of run-time code. By using ‘-gnatG’ you can identify these cases, and consider
whether it may be desirable to modify the coding approach to improve efficiency.

Chapter 3: Compiling Using gcc 73

The optional parameter nn if present after -gnatG specifies an alternative maximum
line length that overrides the normal default of 72. This value is in the range 40-
999999, values less than 40 being silently reset to 40. The equal sign is optional.

The format of the output is very similar to standard Ada source, and is easily under-
stood by an Ada programmer. The following special syntactic additions correspond
to low level features used in the generated code that do not have any exact analogies
in pure Ada source form. The following is a partial list of these special constructions.
See the spec of package Sprint in file ‘sprint.ads’ for a full list.

If the switch ‘-gnatL’ is used in conjunction with ‘-gnatG’, then the original source
lines are interspersed in the expanded source (as comment lines with the original
line number).

new xxx [storage_pool = yyy]
Shows the storage pool being used for an allocator.

at end procedure-name;

Shows the finalization (cleanup) procedure for a scope.

(if expr then expr else expr)

Conditional expression equivalent to the x?y:z construction in C.

target^(source)

A conversion with floating-point truncation instead of rounding.

target?(source)

A conversion that bypasses normal Ada semantic checking. In particular
enumeration types and fixed-point types are treated simply as integers.

target?^(source)

Combines the above two cases.

x #/ y

x #mod y

x #* y

x #rem y A division or multiplication of fixed-point values which are treated as
integers without any kind of scaling.

free expr [storage_pool = xxx]
Shows the storage pool associated with a free statement.

[subtype or type declaration]

Used to list an equivalent declaration for an internally generated type
that is referenced elsewhere in the listing.

freeze type-name [actions]
Shows the point at which type-name is frozen, with possible associated
actions to be performed at the freeze point.

reference itype

Reference (and hence definition) to internal type itype.

function-name! (arg, arg, arg)

Intrinsic function call.

label-name : label

Declaration of label labelname.

#$ subprogram-name

An implicit call to a run-time support routine (to meet the requirement
of H.3.1(9) in a convenient manner).

74 GNAT User’s Guide

expr && expr && expr ... && expr

A multiple concatenation (same effect as expr & expr & expr, but han-
dled more efficiently).

[constraint_error]

Raise the Constraint_Error exception.

expression’reference

A pointer to the result of evaluating expression.

target-type!(source-expression)

An unchecked conversion of source-expression to target-type.

[numerator/denominator]

Used to represent internal real literals (that) have no exact representa-
tion in base 2-16 (for example, the result of compile time evaluation of
the expression 1.0/27.0).

‘-gnatD[=nn]’
When used in conjunction with ‘-gnatG’, this switch causes the expanded source,
as described above for ‘-gnatG’ to be written to files with names ‘xxx.dg’, where
‘xxx’ is the normal file name, instead of to the standard output file. For example, if
the source file name is ‘hello.adb’, then a file ‘hello.adb.dg’ will be written. The
debugging information generated by the gcc ‘-g’ switch will refer to the generated
‘xxx.dg’ file. This allows you to do source level debugging using the generated
code which is sometimes useful for complex code, for example to find out exactly
which part of a complex construction raised an exception. This switch also suppress
generation of cross-reference information (see ‘-gnatx’) since otherwise the cross-
reference information would refer to the ‘.dg’ file, which would cause confusion since
this is not the original source file.

Note that ‘-gnatD’ actually implies ‘-gnatG’ automatically, so it is not necessary to
give both options. In other words ‘-gnatD’ is equivalent to ‘-gnatDG’).

If the switch ‘-gnatL’ is used in conjunction with ‘-gnatDG’, then the original source
lines are interspersed in the expanded source (as comment lines with the original
line number).

The optional parameter nn if present after -gnatD specifies an alternative maximum
line length that overrides the normal default of 72. This value is in the range 40-
999999, values less than 40 being silently reset to 40. The equal sign is optional.

‘-gnatr’ This switch causes pragma Restrictions to be treated as Restriction Warnings so
that violation of restrictions causes warnings rather than illegalities. This is useful
during the development process when new restrictions are added or investigated.
The switch also causes pragma Profile to be treated as Profile Warnings, and pragma
Restricted Run Time and pragma Ravenscar set restriction warnings rather than
restrictions.

‘-gnatR[0|1|2|3[s]]’
This switch controls output from the compiler of a listing showing representation
information for declared types and objects. For ‘-gnatR0’, no information is output
(equivalent to omitting the ‘-gnatR’ switch). For ‘-gnatR1’ (which is the default,
so ‘-gnatR’ with no parameter has the same effect), size and alignment information
is listed for declared array and record types. For ‘-gnatR2’, size and alignment
information is listed for all declared types and objects. Finally ‘-gnatR3’ includes
symbolic expressions for values that are computed at run time for variant records.
These symbolic expressions have a mostly obvious format with #n being used to

Chapter 3: Compiling Using gcc 75

represent the value of the n’th discriminant. See source files ‘repinfo.ads/adb’ in
the GNAT sources for full details on the format of ‘-gnatR3’ output. If the switch
is followed by an s (e.g. ‘-gnatR2s’), then the output is to a file with the name
‘file.rep’ where file is the name of the corresponding source file. Note that it is
possible for record components to have zero size. In this case, the component clause
uses an obvious extension of permitted Ada syntax, for example at 0 range 0 ..

-1.

Representation information requires that code be generated (since it is the code
generator that lays out complex data structures). If an attempt is made to output
representation information when no code is generated, for example when a subunit
is compiled on its own, then no information can be generated and the compiler
outputs a message to this effect.

‘-gnatS’ The use of the switch ‘-gnatS’ for an Ada compilation will cause the compiler to
output a representation of package Standard in a form very close to standard Ada.
It is not quite possible to do this entirely in standard Ada (since new numeric base
types cannot be created in standard Ada), but the output is easily readable to any
Ada programmer, and is useful to determine the characteristics of target dependent
types in package Standard.

‘-gnatx’ Normally the compiler generates full cross-referencing information in the ‘ALI’ file.
This information is used by a number of tools, including gnatfind and gnatxref.
The ‘-gnatx’ switch suppresses this information. This saves some space and may
slightly speed up compilation, but means that these tools cannot be used.

3.2.15 Exception Handling Control

GNAT uses two methods for handling exceptions at run-time. The setjmp/longjmp method
saves the context when entering a frame with an exception handler. Then when an exception
is raised, the context can be restored immediately, without the need for tracing stack frames.
This method provides very fast exception propagation, but introduces significant overhead for
the use of exception handlers, even if no exception is raised.

The other approach is called “zero cost” exception handling. With this method, the compiler
builds static tables to describe the exception ranges. No dynamic code is required when entering
a frame containing an exception handler. When an exception is raised, the tables are used to
control a back trace of the subprogram invocation stack to locate the required exception handler.
This method has considerably poorer performance for the propagation of exceptions, but there
is no overhead for exception handlers if no exception is raised. Note that in this mode and in the
context of mixed Ada and C/C++ programming, to propagate an exception through a C/C++
code, the C/C++ code must be compiled with the ‘-funwind-tables’ GCC’s option.

The following switches may be used to control which of the two exception handling methods
is used.

‘--RTS=sjlj’
This switch causes the setjmp/longjmp run-time (when available) to be used for
exception handling. If the default mechanism for the target is zero cost exceptions,
then this switch can be used to modify this default, and must be used for all units in
the partition. This option is rarely used. One case in which it may be advantageous
is if you have an application where exception raising is common and the overall
performance of the application is improved by favoring exception propagation.

‘--RTS=zcx’
This switch causes the zero cost approach to be used for exception handling. If this
is the default mechanism for the target (see below), then this switch is unneeded. If

76 GNAT User’s Guide

the default mechanism for the target is setjmp/longjmp exceptions, then this switch
can be used to modify this default, and must be used for all units in the partition.
This option can only be used if the zero cost approach is available for the target in
use, otherwise it will generate an error.

The same option ‘--RTS’ must be used both for gcc and gnatbind. Passing this option to
gnatmake (see Section 6.2 [Switches for gnatmake], page 95) will ensure the required consistency
through the compilation and binding steps.

3.2.16 Units to Sources Mapping Files

‘-gnatem=path ’
A mapping file is a way to communicate to the compiler two mappings: from unit
names to file names (without any directory information) and from file names to path
names (with full directory information). These mappings are used by the compiler
to short-circuit the path search.

The use of mapping files is not required for correct operation of the compiler, but
mapping files can improve efficiency, particularly when sources are read over a slow
network connection. In normal operation, you need not be concerned with the
format or use of mapping files, and the ‘-gnatem’ switch is not a switch that you
would use explicitly. It is intended primarily for use by automatic tools such as
gnatmake running under the project file facility. The description here of the format
of mapping files is provided for completeness and for possible use by other tools.

A mapping file is a sequence of sets of three lines. In each set, the first line is the
unit name, in lower case, with %s appended for specs and %b appended for bodies;
the second line is the file name; and the third line is the path name.

Example:

main%b

main.2.ada

/gnat/project1/sources/main.2.ada

When the switch ‘-gnatem’ is specified, the compiler will create in memory the two
mappings from the specified file. If there is any problem (nonexistent file, truncated
file or duplicate entries), no mapping will be created.

Several ‘-gnatem’ switches may be specified; however, only the last one on the
command line will be taken into account.

When using a project file, gnatmake creates a temporary mapping file and commu-
nicates it to the compiler using this switch.

3.2.17 Integrated Preprocessing

GNAT sources may be preprocessed immediately before compilation. In this case, the actual
text of the source is not the text of the source file, but is derived from it through a process
called preprocessing. Integrated preprocessing is specified through switches ‘-gnatep’ and/or
‘-gnateD’. ‘-gnatep’ indicates, through a text file, the preprocessing data to be used. ‘-gnateD’
specifies or modifies the values of preprocessing symbol.

Note that when integrated preprocessing is used, the output from the preprocessor is not written
to any external file. Instead it is passed internally to the compiler. If you need to preserve
the result of preprocessing in a file, then you should use gnatprep to perform the desired
preprocessing in stand-alone mode.

It is recommended that gnatmake switch -s should be used when Integrated Preprocessing is
used. The reason is that preprocessing with another Preprocessing Data file without changing
the sources will not trigger recompilation without this switch.

Chapter 3: Compiling Using gcc 77

Note that gnatmake switch -m will almost always trigger recompilation for sources that are
preprocessed, because gnatmake cannot compute the checksum of the source after preprocessing.

The actual preprocessing function is described in details in section Chapter 17 [Preprocessing
Using gnatprep], page 221. This section only describes how integrated preprocessing is triggered
and parameterized.

-gnatep=file

This switch indicates to the compiler the file name (without directory information)
of the preprocessor data file to use. The preprocessor data file should be found in
the source directories. Note that when the compiler is called by a builder (gnatmake
or gprbuild) with a project file, if the object directory is not also a source directory,
the builder needs to be called with ‘-x’.

A preprocessing data file is a text file with significant lines indicating how should
be preprocessed either a specific source or all sources not mentioned in other lines.
A significant line is a nonempty, non-comment line. Comments are similar to Ada
comments.

Each significant line starts with either a literal string or the character ’*’. A literal
string is the file name (without directory information) of the source to preprocess.
A character ’*’ indicates the preprocessing for all the sources that are not specified
explicitly on other lines (order of the lines is not significant). It is an error to have
two lines with the same file name or two lines starting with the character ’*’.

After the file name or the character ’*’, another optional literal string indicating the
file name of the definition file to be used for preprocessing (see Section 17.4 [Form of
Definitions File], page 222). The definition files are found by the compiler in one of
the source directories. In some cases, when compiling a source in a directory other
than the current directory, if the definition file is in the current directory, it may
be necessary to add the current directory as a source directory through switch -I.,
otherwise the compiler would not find the definition file.

Then, optionally, switches similar to those of gnatprep may be found. Those
switches are:

-b Causes both preprocessor lines and the lines deleted by preprocessing
to be replaced by blank lines, preserving the line number. This switch
is always implied; however, if specified after ‘-c’ it cancels the effect of
‘-c’.

-c Causes both preprocessor lines and the lines deleted by preprocessing
to be retained as comments marked with the special string “--! ”.

-Dsymbol=value

Define or redefine a symbol, associated with value. A symbol is an Ada
identifier, or an Ada reserved word, with the exception of if, else,
elsif, end, and, or and then. value is either a literal string, an Ada
identifier or any Ada reserved word. A symbol declared with this switch
replaces a symbol with the same name defined in a definition file.

-s Causes a sorted list of symbol names and values to be listed on the
standard output file.

-u Causes undefined symbols to be treated as having the value FALSE in
the context of a preprocessor test. In the absence of this option, an
undefined symbol in a #if or #elsif test will be treated as an error.

Examples of valid lines in a preprocessor data file:

78 GNAT User’s Guide

"toto.adb" "prep.def" -u

-- preprocess "toto.adb", using definition file "prep.def",

-- undefined symbol are False.

* -c -DVERSION=V101

-- preprocess all other sources without a definition file;

-- suppressed lined are commented; symbol VERSION has the value V101.

"titi.adb" "prep2.def" -s

-- preprocess "titi.adb", using definition file "prep2.def";

-- list all symbols with their values.

-gnateDsymbol[=value]
Define or redefine a preprocessing symbol, associated with value. If no value is
given on the command line, then the value of the symbol is True. A symbol is
an identifier, following normal Ada (case-insensitive) rules for its syntax, and value
is any sequence (including an empty sequence) of characters from the set (letters,
digits, period, underline). Ada reserved words may be used as symbols, with the
exceptions of if, else, elsif, end, and, or and then.

A symbol declared with this switch on the command line replaces a symbol with the
same name either in a definition file or specified with a switch -D in the preprocessor
data file.

This switch is similar to switch ‘-D’ of gnatprep.

-gnateG When integrated preprocessing is performed and the preprocessor modifies the
source text, write the result of this preprocessing into a file <source>.prep.

3.2.18 Code Generation Control

The GCC technology provides a wide range of target dependent ‘-m’ switches for controlling
details of code generation with respect to different versions of architectures. This includes
variations in instruction sets (e.g. different members of the power pc family), and different
requirements for optimal arrangement of instructions (e.g. different members of the x86 family).
The list of available ‘-m’ switches may be found in the GCC documentation.

Use of these ‘-m’ switches may in some cases result in improved code performance.

The GNAT technology is tested and qualified without any ‘-m’ switches, so generally the
most reliable approach is to avoid the use of these switches. However, we generally expect most
of these switches to work successfully with GNAT, and many customers have reported successful
use of these options.

Our general advice is to avoid the use of ‘-m’ switches unless special needs lead to requirements
in this area. In particular, there is no point in using ‘-m’ switches to improve performance unless
you actually see a performance improvement.

3.3 Search Paths and the Run-Time Library (RTL)

With the GNAT source-based library system, the compiler must be able to find source files for
units that are needed by the unit being compiled. Search paths are used to guide this process.

The compiler compiles one source file whose name must be given explicitly on the command
line. In other words, no searching is done for this file. To find all other source files that are needed
(the most common being the specs of units), the compiler examines the following directories, in
the following order:

1. The directory containing the source file of the main unit being compiled (the file name on
the command line).

2. Each directory named by an ‘-I’ switch given on the gcc command line, in the order given.

Chapter 3: Compiling Using gcc 79

3. Each of the directories listed in the text file whose name is given by the ADA_PRJ_INCLUDE_
FILE environment variable.

ADA_PRJ_INCLUDE_FILE is normally set by gnatmake or by the gnat driver when project
files are used. It should not normally be set by other means.

4. Each of the directories listed in the value of the ADA_INCLUDE_PATH environment variable.
Construct this value exactly as the PATH environment variable: a list of directory names
separated by colons (semicolons when working with the NT version).

5. The content of the ‘ada_source_path’ file which is part of the GNAT installation tree and
is used to store standard libraries such as the GNAT Run Time Library (RTL) source files.
Section 20.2.2 [Installing a library], page 233

Specifying the switch ‘-I-’ inhibits the use of the directory containing the source file named in
the command line. You can still have this directory on your search path, but in this case it must
be explicitly requested with a ‘-I’ switch.

Specifying the switch ‘-nostdinc’ inhibits the search of the default location for the GNAT
Run Time Library (RTL) source files.

The compiler outputs its object files and ALI files in the current working directory. Caution:
The object file can be redirected with the ‘-o’ switch; however, gcc and gnat1 have not been
coordinated on this so the ‘ALI’ file will not go to the right place. Therefore, you should avoid
using the ‘-o’ switch.

The packages Ada, System, and Interfaces and their children make up the GNAT RTL,
together with the simple System.IO package used in the "Hello World" example. The sources
for these units are needed by the compiler and are kept together in one directory. Not all of
the bodies are needed, but all of the sources are kept together anyway. In a normal installation,
you need not specify these directory names when compiling or binding. Either the environment
variables or the built-in defaults cause these files to be found.

In addition to the language-defined hierarchies (System, Ada and Interfaces), the GNAT
distribution provides a fourth hierarchy, consisting of child units of GNAT. This is a collection of
generally useful types, subprograms, etc. See Section “About This Guid” in GNAT Reference
Manual, for further details.

Besides simplifying access to the RTL, a major use of search paths is in compiling sources
from multiple directories. This can make development environments much more flexible.

3.4 Order of Compilation Issues

If, in our earlier example, there was a spec for the hello procedure, it would be contained in
the file ‘hello.ads’; yet this file would not have to be explicitly compiled. This is the result of
the model we chose to implement library management. Some of the consequences of this model
are as follows:

• There is no point in compiling specs (except for package specs with no bodies) because these
are compiled as needed by clients. If you attempt a useless compilation, you will receive an
error message. It is also useless to compile subunits because they are compiled as needed
by the parent.

• There are no order of compilation requirements: performing a compilation never obsoletes
anything. The only way you can obsolete something and require recompilations is to modify
one of the source files on which it depends.

• There is no library as such, apart from the ALI files (see Section 2.8 [The Ada Library
Information Files], page 20, for information on the format of these files). For now we find
it convenient to create separate ALI files, but eventually the information therein may be
incorporated into the object file directly.

80 GNAT User’s Guide

• When you compile a unit, the source files for the specs of all units that it with’s, all its
subunits, and the bodies of any generics it instantiates must be available (reachable by the
search-paths mechanism described above), or you will receive a fatal error message.

3.5 Examples

The following are some typical Ada compilation command line examples:

$ gcc -c xyz.adb

Compile body in file ‘xyz.adb’ with all default options.

$ gcc -c -O2 -gnata xyz-def.adb

Compile the child unit package in file ‘xyz-def.adb’ with extensive optimizations,
and pragma Assert/Debug statements enabled.

$ gcc -c -gnatc abc-def.adb

Compile the subunit in file ‘abc-def.adb’ in semantic-checking-only mode.

Chapter 4: Binding Using gnatbind 81

4 Binding Using gnatbind

This chapter describes the GNAT binder, gnatbind, which is used to bind compiled GNAT
objects.

Note: to invoke gnatbind with a project file, use the gnat driver (see Section 12.2 [The
GNAT Driver and Project Files], page 179).

The gnatbind program performs four separate functions:

1. Checks that a program is consistent, in accordance with the rules in Chapter 10 of the Ada
Reference Manual. In particular, error messages are generated if a program uses inconsistent
versions of a given unit.

2. Checks that an acceptable order of elaboration exists for the program and issues an error
message if it cannot find an order of elaboration that satisfies the rules in Chapter 10 of
the Ada Language Manual.

3. Generates a main program incorporating the given elaboration order. This program is a
small Ada package (body and spec) that must be subsequently compiled using the GNAT
compiler. The necessary compilation step is usually performed automatically by gnatlink.
The two most important functions of this program are to call the elaboration routines of
units in an appropriate order and to call the main program.

4. Determines the set of object files required by the given main program. This information is
output in the forms of comments in the generated program, to be read by the gnatlink

utility used to link the Ada application.

4.1 Running gnatbind

The form of the gnatbind command is
$ gnatbind [switches] mainprog [.ali] [switches]

where ‘mainprog.adb’ is the Ada file containing the main program unit body. gnatbind con-
structs an Ada package in two files whose names are ‘b~mainprog.ads’, and ‘b~mainprog.adb’.
For example, if given the parameter ‘hello.ali’, for a main program contained in file
‘hello.adb’, the binder output files would be ‘b~hello.ads’ and ‘b~hello.adb’.

When doing consistency checking, the binder takes into consideration any source files it can
locate. For example, if the binder determines that the given main program requires the package
Pack, whose ‘.ALI’ file is ‘pack.ali’ and whose corresponding source spec file is ‘pack.ads’,
it attempts to locate the source file ‘pack.ads’ (using the same search path conventions as
previously described for the gcc command). If it can locate this source file, it checks that the
time stamps or source checksums of the source and its references to in ‘ALI’ files match. In other
words, any ‘ALI’ files that mentions this spec must have resulted from compiling this version of
the source file (or in the case where the source checksums match, a version close enough that
the difference does not matter).

The effect of this consistency checking, which includes source files, is that the binder ensures
that the program is consistent with the latest version of the source files that can be located at
bind time. Editing a source file without compiling files that depend on the source file cause
error messages to be generated by the binder.

For example, suppose you have a main program ‘hello.adb’ and a package P, from file
‘p.ads’ and you perform the following steps:

1. Enter gcc -c hello.adb to compile the main program.

2. Enter gcc -c p.ads to compile package P.

3. Edit file ‘p.ads’.

4. Enter gnatbind hello.

82 GNAT User’s Guide

At this point, the file ‘p.ali’ contains an out-of-date time stamp because the file ‘p.ads’ has
been edited. The attempt at binding fails, and the binder generates the following error messages:

error: "hello.adb" must be recompiled ("p.ads" has been modified)

error: "p.ads" has been modified and must be recompiled

Now both files must be recompiled as indicated, and then the bind can succeed, generating
a main program. You need not normally be concerned with the contents of this file, but for
reference purposes a sample binder output file is given in Appendix B [Example of Binder Output
File], page 295.

In most normal usage, the default mode of gnatbind which is to generate the main package
in Ada, as described in the previous section. In particular, this means that any Ada programmer
can read and understand the generated main program. It can also be debugged just like any
other Ada code provided the ‘-g’ switch is used for gnatbind and gnatlink.

4.2 Switches for gnatbind

The following switches are available with gnatbind; details will be presented in subsequent
sections.

‘--version’
Display Copyright and version, then exit disregarding all other options.

‘--help’ If ‘--version’ was not used, display usage, then exit disregarding all other options.

‘-a’ Indicates that, if supported by the platform, the adainit procedure should be treated
as an initialisation routine by the linker (a constructor). This is intended to be used
by the Project Manager to automatically initialize shared Stand-Alone Libraries.

‘-aO’ Specify directory to be searched for ALI files.

‘-aI’ Specify directory to be searched for source file.

‘-A[=filename]’
Output ALI list (to standard output or to the named file).

‘-b’ Generate brief messages to ‘stderr’ even if verbose mode set.

‘-c’ Check only, no generation of binder output file.

‘-dnn [k|m]’
This switch can be used to change the default task stack size value to a specified
size nn, which is expressed in bytes by default, or in kilobytes when suffixed with k
or in megabytes when suffixed with m. In the absence of a ‘[k|m]’ suffix, this switch
is equivalent, in effect, to completing all task specs with

pragma Storage_Size (nn);

When they do not already have such a pragma.

‘-Dnn [k|m]’
This switch can be used to change the default secondary stack size value to a specified
size nn, which is expressed in bytes by default, or in kilobytes when suffixed with k
or in megabytes when suffixed with m.

The secondary stack is used to deal with functions that return a variable sized result,
for example a function returning an unconstrained String. There are two ways in
which this secondary stack is allocated.

For most targets, the secondary stack is growing on demand and is allocated as
a chain of blocks in the heap. The -D option is not very relevant. It only give
some control over the size of the allocated blocks (whose size is the minimum of

Chapter 4: Binding Using gnatbind 83

the default secondary stack size value, and the actual size needed for the current
allocation request).

For certain targets, notably VxWorks 653, the secondary stack is allocated by carv-
ing off a fixed ratio chunk of the primary task stack. The -D option is used to define
the size of the environment task’s secondary stack.

‘-e’ Output complete list of elaboration-order dependencies.

‘-E’ Store tracebacks in exception occurrences when the target supports it. See also the
packages GNAT.Traceback and GNAT.Traceback.Symbolic for more information.
Note that on x86 ports, you must not use ‘-fomit-frame-pointer’ gcc option.

‘-F’ Force the checks of elaboration flags. gnatbind does not normally generate checks
of elaboration flags for the main executable, except when a Stand-Alone Library
is used. However, there are cases when this cannot be detected by gnatbind. An
example is importing an interface of a Stand-Alone Library through a pragma Import
and only specifying through a linker switch this Stand-Alone Library. This switch
is used to guarantee that elaboration flag checks are generated.

‘-h’ Output usage (help) information

‘-H32’ Use 32-bit allocations for __gnat_malloc (and thus for access types). For further
details see Section 4.2.5 [Dynamic Allocation Control], page 87.

‘-H64’ Use 64-bit allocations for __gnat_malloc (and thus for access types). For further
details see Section 4.2.5 [Dynamic Allocation Control], page 87.

‘-I’ Specify directory to be searched for source and ALI files.

‘-I-’ Do not look for sources in the current directory where gnatbind was invoked, and do
not look for ALI files in the directory containing the ALI file named in the gnatbind
command line.

‘-l’ Output chosen elaboration order.

‘-Lxxx ’ Bind the units for library building. In this case the adainit and adafinal procedures
(see Section 4.2.6 [Binding with Non-Ada Main Programs], page 87) are renamed to
xxxinit and xxxfinal. Implies -n. (See Chapter 20 [GNAT and Libraries], page 231,
for more details.)

‘-Mxyz’ Rename generated main program from main to xyz. This option is supported on
cross environments only.

‘-mn ’ Limit number of detected errors or warnings to n, where n is in the range 1..999999.
The default value if no switch is given is 9999. If the number of warnings reaches
this limit, then a message is output and further warnings are suppressed, the bind
continues in this case. If the number of errors reaches this limit, then a message is
output and the bind is abandoned. A value of zero means that no limit is enforced.
The equal sign is optional.

Furthermore, under Windows, the sources pointed to by the libraries path set in the
registry are not searched for.

‘-n’ No main program.

‘-nostdinc’
Do not look for sources in the system default directory.

‘-nostdlib’
Do not look for library files in the system default directory.

84 GNAT User’s Guide

‘--RTS=rts-path ’
Specifies the default location of the runtime library. Same meaning as the equivalent
gnatmake flag (see Section 6.2 [Switches for gnatmake], page 95).

‘-o file ’ Name the output file file (default is ‘b~xxx.adb’). Note that if this option is used,
then linking must be done manually, gnatlink cannot be used.

‘-O[=filename]’
Output object list (to standard output or to the named file).

‘-p’ Pessimistic (worst-case) elaboration order

‘-P’ Generate binder file suitable for CodePeer.

‘-R’ Output closure source list.

‘-s’ Require all source files to be present.

‘-Sxxx ’ Specifies the value to be used when detecting uninitialized scalar objects with
pragma Initialize Scalars. The xxx string specified with the switch may be either

• “‘in’” requesting an invalid value where possible

• “‘lo’” for the lowest possible value

• “‘hi’” for the highest possible value

• “‘xx ’” for a value consisting of repeated bytes with the value 16#xx# (i.e., xx
is a string of two hexadecimal digits).

In addition, you can specify ‘-Sev’ to indicate that the value is to be set at run
time. In this case, the program will look for an environment variable of the form
GNAT_INIT_SCALARS=xx , where xx is one of ‘in/lo/hi/xx ’ with the same meanings
as above. If no environment variable is found, or if it does not have a valid value,
then the default is ‘in’ (invalid values).

‘-static’ Link against a static GNAT run time.

‘-shared’ Link against a shared GNAT run time when available.

‘-t’ Tolerate time stamp and other consistency errors

‘-Tn ’ Set the time slice value to n milliseconds. If the system supports the specification of
a specific time slice value, then the indicated value is used. If the system does not
support specific time slice values, but does support some general notion of round-
robin scheduling, then any nonzero value will activate round-robin scheduling.

A value of zero is treated specially. It turns off time slicing, and in addition, indicates
to the tasking run time that the semantics should match as closely as possible the
Annex D requirements of the Ada RM, and in particular sets the default scheduling
policy to FIFO_Within_Priorities.

‘-un ’ Enable dynamic stack usage, with n results stored and displayed at program termi-
nation. A result is generated when a task terminates. Results that can’t be stored
are displayed on the fly, at task termination. This option is currently not supported
on Itanium platforms. (See Section 23.3 [Dynamic Stack Usage Analysis], page 252
for details.)

‘-v’ Verbose mode. Write error messages, header, summary output to ‘stdout’.

‘-wx ’ Warning mode (x=s/e for suppress/treat as error)

‘-Wxe ’ Override default wide character encoding for standard Text IO files.

‘-x’ Exclude source files (check object consistency only).

Chapter 4: Binding Using gnatbind 85

‘-y’ Enable leap seconds support in Ada.Calendar and its children.

‘-z’ No main subprogram.

You may obtain this listing of switches by running gnatbind with no arguments.

4.2.1 Consistency-Checking Modes

As described earlier, by default gnatbind checks that object files are consistent with one another
and are consistent with any source files it can locate. The following switches control binder access
to sources.

‘-s’ Require source files to be present. In this mode, the binder must be able to locate
all source files that are referenced, in order to check their consistency. In normal
mode, if a source file cannot be located it is simply ignored. If you specify this
switch, a missing source file is an error.

‘-Wxe ’ Override default wide character encoding for standard Text IO files. Normally the
default wide character encoding method used for standard [Wide [Wide]]Text IO
files is taken from the encoding specified for the main source input (see description
of switch ‘-gnatWx’ for the compiler). The use of this switch for the binder (which
has the same set of possible arguments) overrides this default as specified.

‘-x’ Exclude source files. In this mode, the binder only checks that ALI files are consis-
tent with one another. Source files are not accessed. The binder runs faster in this
mode, and there is still a guarantee that the resulting program is self-consistent. If
a source file has been edited since it was last compiled, and you specify this switch,
the binder will not detect that the object file is out of date with respect to the source
file. Note that this is the mode that is automatically used by gnatmake because in
this case the checking against sources has already been performed by gnatmake in
the course of compilation (i.e. before binding).

4.2.2 Binder Error Message Control

The following switches provide control over the generation of error messages from the binder:

‘-v’ Verbose mode. In the normal mode, brief error messages are generated to ‘stderr’.
If this switch is present, a header is written to ‘stdout’ and any error messages are
directed to ‘stdout’. All that is written to ‘stderr’ is a brief summary message.

‘-b’ Generate brief error messages to ‘stderr’ even if verbose mode is specified. This is
relevant only when used with the ‘-v’ switch.

‘-mn ’ Limits the number of error messages to n, a decimal integer in the range 1-999. The
binder terminates immediately if this limit is reached.

‘-Mxxx ’ Renames the generated main program from main to xxx. This is useful in the case of
some cross-building environments, where the actual main program is separate from
the one generated by gnatbind.

‘-ws’ Suppress all warning messages.

‘-we’ Treat any warning messages as fatal errors.

‘-t’ The binder performs a number of consistency checks including:

• Check that time stamps of a given source unit are consistent

• Check that checksums of a given source unit are consistent

• Check that consistent versions of GNAT were used for compilation

• Check consistency of configuration pragmas as required

86 GNAT User’s Guide

Normally failure of such checks, in accordance with the consistency requirements
of the Ada Reference Manual, causes error messages to be generated which abort
the binder and prevent the output of a binder file and subsequent link to obtain an
executable.

The ‘-t’ switch converts these error messages into warnings, so that binding and
linking can continue to completion even in the presence of such errors. The re-
sult may be a failed link (due to missing symbols), or a non-functional executable
which has undefined semantics. This means that ‘-t’ should be used only in unusual
situations, with extreme care.

4.2.3 Elaboration Control

The following switches provide additional control over the elaboration order. For full details see
Appendix C [Elaboration Order Handling in GNAT], page 307.

‘-p’ Normally the binder attempts to choose an elaboration order that is likely to min-
imize the likelihood of an elaboration order error resulting in raising a Program_

Error exception. This switch reverses the action of the binder, and requests that
it deliberately choose an order that is likely to maximize the likelihood of an elab-
oration error. This is useful in ensuring portability and avoiding dependence on
accidental fortuitous elaboration ordering.

Normally it only makes sense to use the ‘-p’ switch if dynamic elaboration check-
ing is used (‘-gnatE’ switch used for compilation). This is because in the default
static elaboration mode, all necessary Elaborate and Elaborate_All pragmas are
implicitly inserted. These implicit pragmas are still respected by the binder in ‘-p’
mode, so a safe elaboration order is assured.

Note that ‘-p’ is not intended for production use; it is more for debug-
ging/experimental use.

4.2.4 Output Control

The following switches allow additional control over the output generated by the binder.

‘-c’ Check only. Do not generate the binder output file. In this mode the binder performs
all error checks but does not generate an output file.

‘-e’ Output complete list of elaboration-order dependencies, showing the reason for each
dependency. This output can be rather extensive but may be useful in diagnosing
problems with elaboration order. The output is written to ‘stdout’.

‘-h’ Output usage information. The output is written to ‘stdout’.

‘-K’ Output linker options to ‘stdout’. Includes library search paths, contents of prag-
mas Ident and Linker Options, and libraries added by gnatbind.

‘-l’ Output chosen elaboration order. The output is written to ‘stdout’.

‘-O’ Output full names of all the object files that must be linked to provide the Ada
component of the program. The output is written to ‘stdout’. This list includes the
files explicitly supplied and referenced by the user as well as implicitly referenced
run-time unit files. The latter are omitted if the corresponding units reside in
shared libraries. The directory names for the run-time units depend on the system
configuration.

‘-o file ’ Set name of output file to file instead of the normal ‘b~mainprog.adb’ default. Note
that file denote the Ada binder generated body filename. Note that if this option is
used, then linking must be done manually. It is not possible to use gnatlink in this
case, since it cannot locate the binder file.

Chapter 4: Binding Using gnatbind 87

‘-r’ Generate list of pragma Restrictions that could be applied to the current unit.
This is useful for code audit purposes, and also may be used to improve code gen-
eration in some cases.

4.2.5 Dynamic Allocation Control

The heap control switches – ‘-H32’ and ‘-H64’ – determine whether dynamic allocation uses
32-bit or 64-bit memory. They only affect compiler-generated allocations via __gnat_malloc;
explicit calls to malloc and related functions from the C run-time library are unaffected.

‘-H32’ Allocate memory on 32-bit heap

‘-H64’ Allocate memory on 64-bit heap. This is the default unless explicitly overridden by
a ’Size clause on the access type.

These switches are only effective on VMS platforms.

4.2.6 Binding with Non-Ada Main Programs

In our description so far we have assumed that the main program is in Ada, and that the task
of the binder is to generate a corresponding function main that invokes this Ada main program.
GNAT also supports the building of executable programs where the main program is not in Ada,
but some of the called routines are written in Ada and compiled using GNAT (see Section 2.10
[Mixed Language Programming], page 21). The following switch is used in this situation:

‘-n’ No main program. The main program is not in Ada.

In this case, most of the functions of the binder are still required, but instead of generating a
main program, the binder generates a file containing the following callable routines:

adainit You must call this routine to initialize the Ada part of the program by calling the
necessary elaboration routines. A call to adainit is required before the first call to
an Ada subprogram.

Note that it is assumed that the basic execution environment must be setup to be
appropriate for Ada execution at the point where the first Ada subprogram is called.
In particular, if the Ada code will do any floating-point operations, then the FPU
must be setup in an appropriate manner. For the case of the x86, for example, full
precision mode is required. The procedure GNAT.Float Control.Reset may be used
to ensure that the FPU is in the right state.

adafinal You must call this routine to perform any library-level finalization required by the
Ada subprograms. A call to adafinal is required after the last call to an Ada
subprogram, and before the program terminates.

If the ‘-n’ switch is given, more than one ALI file may appear on the command line for gnatbind.
The normal closure calculation is performed for each of the specified units. Calculating the
closure means finding out the set of units involved by tracing with references. The reason it is
necessary to be able to specify more than one ALI file is that a given program may invoke two
or more quite separate groups of Ada units.

The binder takes the name of its output file from the last specified ALI file, unless overridden
by the use of the ‘-o file’. The output is an Ada unit in source form that can be compiled
with GNAT. This compilation occurs automatically as part of the gnatlink processing.

Currently the GNAT run time requires a FPU using 80 bits mode precision. Under targets
where this is not the default it is required to call GNAT.Float Control.Reset before using floating
point numbers (this include float computation, float input and output) in the Ada code. A side
effect is that this could be the wrong mode for the foreign code where floating point computation
could be broken after this call.

88 GNAT User’s Guide

4.2.7 Binding Programs with No Main Subprogram

It is possible to have an Ada program which does not have a main subprogram. This program
will call the elaboration routines of all the packages, then the finalization routines.

The following switch is used to bind programs organized in this manner:

‘-z’ Normally the binder checks that the unit name given on the command line corre-
sponds to a suitable main subprogram. When this switch is used, a list of ALI files
can be given, and the execution of the program consists of elaboration of these units
in an appropriate order. Note that the default wide character encoding method for
standard Text IO files is always set to Brackets if this switch is set (you can use the
binder switch ‘-Wx’ to override this default).

4.3 Command-Line Access

The package Ada.Command_Line provides access to the command-line arguments and program
name. In order for this interface to operate correctly, the two variables

int gnat_argc;

char **gnat_argv;

are declared in one of the GNAT library routines. These variables must be set from the actual
argc and argv values passed to the main program. With no ‘n’ present, gnatbind generates
the C main program to automatically set these variables. If the ‘n’ switch is used, there is no
automatic way to set these variables. If they are not set, the procedures in Ada.Command_Line

will not be available, and any attempt to use them will raise Constraint_Error. If command
line access is required, your main program must set gnat_argc and gnat_argv from the argc

and argv values passed to it.

4.4 Search Paths for gnatbind

The binder takes the name of an ALI file as its argument and needs to locate source files as well
as other ALI files to verify object consistency.

For source files, it follows exactly the same search rules as gcc (see Section 3.3 [Search Paths
and the Run-Time Library (RTL)], page 78). For ALI files the directories searched are:

1. The directory containing the ALI file named in the command line, unless the switch ‘-I-’
is specified.

2. All directories specified by ‘-I’ switches on the gnatbind command line, in the order given.

3. Each of the directories listed in the text file whose name is given by the ADA_PRJ_OBJECTS_
FILE environment variable.

ADA_PRJ_OBJECTS_FILE is normally set by gnatmake or by the gnat driver when project
files are used. It should not normally be set by other means.

4. Each of the directories listed in the value of the ADA_OBJECTS_PATH environment variable.
Construct this value exactly as the PATH environment variable: a list of directory names
separated by colons (semicolons when working with the NT version of GNAT).

5. The content of the ‘ada_object_path’ file which is part of the GNAT installation tree and
is used to store standard libraries such as the GNAT Run Time Library (RTL) unless the
switch ‘-nostdlib’ is specified. Section 20.2.2 [Installing a library], page 233

In the binder the switch ‘-I’ is used to specify both source and library file paths. Use ‘-aI’
instead if you want to specify source paths only, and ‘-aO’ if you want to specify library paths
only. This means that for the binder ‘-I’dir is equivalent to ‘-aI’dir ‘-aO’dir. The binder
generates the bind file (a C language source file) in the current working directory.

The packages Ada, System, and Interfaces and their children make up the GNAT Run-
Time Library, together with the package GNAT and its children, which contain a set of useful

Chapter 4: Binding Using gnatbind 89

additional library functions provided by GNAT. The sources for these units are needed by
the compiler and are kept together in one directory. The ALI files and object files generated
by compiling the RTL are needed by the binder and the linker and are kept together in one
directory, typically different from the directory containing the sources. In a normal installation,
you need not specify these directory names when compiling or binding. Either the environment
variables or the built-in defaults cause these files to be found.

Besides simplifying access to the RTL, a major use of search paths is in compiling sources
from multiple directories. This can make development environments much more flexible.

4.5 Examples of gnatbind Usage

This section contains a number of examples of using the GNAT binding utility gnatbind.

gnatbind hello

The main program Hello (source program in ‘hello.adb’) is bound using the stan-
dard switch settings. The generated main program is ‘b~hello.adb’. This is the
normal, default use of the binder.

gnatbind hello -o mainprog.adb

The main program Hello (source program in ‘hello.adb’) is bound using the stan-
dard switch settings. The generated main program is ‘mainprog.adb’ with the
associated spec in ‘mainprog.ads’. Note that you must specify the body here not
the spec. Note that if this option is used, then linking must be done manually, since
gnatlink will not be able to find the generated file.

Chapter 5: Linking Using gnatlink 91

5 Linking Using gnatlink

This chapter discusses gnatlink, a tool that links an Ada program and builds an executable
file. This utility invokes the system linker (via the gcc command) with a correct list of object
files and library references. gnatlink automatically determines the list of files and references
for the Ada part of a program. It uses the binder file generated by the gnatbind to determine
this list.

Note: to invoke gnatlink with a project file, use the gnat driver (see Section 12.2 [The
GNAT Driver and Project Files], page 179).

5.1 Running gnatlink

The form of the gnatlink command is
$ gnatlink [switches] mainprog [.ali]

[non-Ada objects] [linker options]

The arguments of gnatlink (switches, main ‘ALI’ file, non-Ada objects or linker options) may
be in any order, provided that no non-Ada object may be mistaken for a main ‘ALI’ file. Any file
name ‘F’ without the ‘.ali’ extension will be taken as the main ‘ALI’ file if a file exists whose
name is the concatenation of ‘F’ and ‘.ali’.

‘mainprog.ali’ references the ALI file of the main program. The ‘.ali’ extension of this
file can be omitted. From this reference, gnatlink locates the corresponding binder file
‘b~mainprog.adb’ and, using the information in this file along with the list of non-Ada ob-
jects and linker options, constructs a linker command file to create the executable.

The arguments other than the gnatlink switches and the main ‘ALI’ file are passed to the
linker uninterpreted. They typically include the names of object files for units written in other
languages than Ada and any library references required to resolve references in any of these
foreign language units, or in Import pragmas in any Ada units.

linker options is an optional list of linker specific switches. The default linker called by
gnatlink is gcc which in turn calls the appropriate system linker.

One useful option for the linker is ‘-s’: it reduces the size of the executable by removing all
symbol table and relocation information from the executable.

Standard options for the linker such as ‘-lmy_lib’ or ‘-Ldir’ can be added as is. For options
that are not recognized by gcc as linker options, use the gcc switches ‘-Xlinker’ or ‘-Wl,’.

Refer to the GCC documentation for details.

Here is an example showing how to generate a linker map:
$ gnatlink my_prog -Wl,-Map,MAPFILE

Using linker options it is possible to set the program stack and heap size. See Section G.14
[Setting Stack Size from gnatlink], page 368 and Section G.15 [Setting Heap Size from gnatlink],
page 368.

gnatlink determines the list of objects required by the Ada program and prepends them to
the list of objects passed to the linker. gnatlink also gathers any arguments set by the use of
pragma Linker_Options and adds them to the list of arguments presented to the linker.

5.2 Switches for gnatlink

The following switches are available with the gnatlink utility:

‘--version’
Display Copyright and version, then exit disregarding all other options.

‘--help’ If ‘--version’ was not used, display usage, then exit disregarding all other options.

92 GNAT User’s Guide

‘-f’ On some targets, the command line length is limited, and gnatlink will generate a
separate file for the linker if the list of object files is too long. The ‘-f’ switch forces
this file to be generated even if the limit is not exceeded. This is useful in some
cases to deal with special situations where the command line length is exceeded.

‘-g’ The option to include debugging information causes the Ada bind file (in other
words, ‘b~mainprog.adb’) to be compiled with ‘-g’. In addition, the binder does not
delete the ‘b~mainprog.adb’, ‘b~mainprog.o’ and ‘b~mainprog.ali’ files. Without
‘-g’, the binder removes these files by default. The same procedure apply if a C
bind file was generated using ‘-C’ gnatbind option, in this case the filenames are
‘b_mainprog.c’ and ‘b_mainprog.o’.

‘-n’ Do not compile the file generated by the binder. This may be used when a link is
rerun with different options, but there is no need to recompile the binder file.

‘-v’ Causes additional information to be output, including a full list of the included
object files. This switch option is most useful when you want to see what set of
object files are being used in the link step.

‘-v -v’ Very verbose mode. Requests that the compiler operate in verbose mode when it
compiles the binder file, and that the system linker run in verbose mode.

‘-o exec-name ’
exec-name specifies an alternate name for the generated executable program. If this
switch is omitted, the executable has the same name as the main unit. For example,
gnatlink try.ali creates an executable called ‘try’.

‘-b target ’
Compile your program to run on target, which is the name of a system configuration.
You must have a GNAT cross-compiler built if target is not the same as your host
system.

‘-Bdir ’ Load compiler executables (for example, gnat1, the Ada compiler) from dir instead
of the default location. Only use this switch when multiple versions of the GNAT
compiler are available. See Section “Directory Options” in The GNU Compiler
Collection, for further details. You would normally use the ‘-b’ or ‘-V’ switch
instead.

‘-M’ When linking an executable, create a map file. The name of the map file has the
same name as the executable with extension ".map".

‘-M=mapfile’
When linking an executable, create a map file. The name of the map file is "mapfile".

‘--GCC=compiler_name ’
Program used for compiling the binder file. The default is gcc. You need to use
quotes around compiler name if compiler_name contains spaces or other separator
characters. As an example ‘--GCC="foo -x -y"’ will instruct gnatlink to use foo -

x -y as your compiler. Note that switch ‘-c’ is always inserted after your command
name. Thus in the above example the compiler command that will be used by
gnatlink will be foo -c -x -y. A limitation of this syntax is that the name and
path name of the executable itself must not include any embedded spaces. If the
compiler executable is different from the default one (gcc or <prefix>-gcc), then the
back-end switches in the ALI file are not used to compile the binder generated source.
For example, this is the case with ‘--GCC="foo -x -y"’. But the back end switches
will be used for ‘--GCC="gcc -gnatv"’. If several ‘--GCC=compiler_name’ are used,
only the last compiler name is taken into account. However, all the additional

Chapter 5: Linking Using gnatlink 93

switches are also taken into account. Thus, ‘--GCC="foo -x -y" --GCC="bar -z

-t"’ is equivalent to ‘--GCC="bar -x -y -z -t"’.

‘--LINK=name ’
name is the name of the linker to be invoked. This is especially useful in mixed
language programs since languages such as C++ require their own linker to be used.
When this switch is omitted, the default name for the linker is gcc. When this switch
is used, the specified linker is called instead of gcc with exactly the same param-
eters that would have been passed to gcc so if the desired linker requires different
parameters it is necessary to use a wrapper script that massages the parameters
before invoking the real linker. It may be useful to control the exact invocation by
using the verbose switch.

Chapter 6: The GNAT Make Program gnatmake 95

6 The GNAT Make Program gnatmake

A typical development cycle when working on an Ada program consists of the following steps:

1. Edit some sources to fix bugs.

2. Add enhancements.

3. Compile all sources affected.

4. Rebind and relink.

5. Test.

The third step can be tricky, because not only do the modified files have to be compiled, but
any files depending on these files must also be recompiled. The dependency rules in Ada can
be quite complex, especially in the presence of overloading, use clauses, generics and inlined
subprograms.

gnatmake automatically takes care of the third and fourth steps of this process. It determines
which sources need to be compiled, compiles them, and binds and links the resulting object files.

Unlike some other Ada make programs, the dependencies are always accurately recomputed
from the new sources. The source based approach of the GNAT compilation model makes this
possible. This means that if changes to the source program cause corresponding changes in
dependencies, they will always be tracked exactly correctly by gnatmake.

6.1 Running gnatmake

The usual form of the gnatmake command is
$ gnatmake [switches] file_name

[file_names] [mode_switches]

The only required argument is one file name, which specifies a compilation unit that is a main
program. Several file names can be specified: this will result in several executables being built.
If switches are present, they can be placed before the first file name, between file names or
after the last file name. If mode switches are present, they must always be placed after the last
file name and all switches.

If you are using standard file extensions (‘.adb’ and ‘.ads’), then the extension may be
omitted from the file name arguments. However, if you are using non-standard extensions, then
it is required that the extension be given. A relative or absolute directory path can be specified
in a file name, in which case, the input source file will be searched for in the specified directory
only. Otherwise, the input source file will first be searched in the directory where gnatmake was
invoked and if it is not found, it will be search on the source path of the compiler as described
in Section 3.3 [Search Paths and the Run-Time Library (RTL)], page 78.

All gnatmake output (except when you specify ‘-M’) is to ‘stderr’. The output produced by
the ‘-M’ switch is send to ‘stdout’.

6.2 Switches for gnatmake

You may specify any of the following switches to gnatmake:

‘--version’
Display Copyright and version, then exit disregarding all other options.

‘--help’ If ‘--version’ was not used, display usage, then exit disregarding all other options.

‘--GCC=compiler_name ’
Program used for compiling. The default is ‘gcc’. You need to use quotes around
compiler name if compiler_name contains spaces or other separator characters. As
an example ‘--GCC="foo -x -y"’ will instruct gnatmake to use foo -x -y as your

96 GNAT User’s Guide

compiler. A limitation of this syntax is that the name and path name of the ex-
ecutable itself must not include any embedded spaces. Note that switch ‘-c’ is
always inserted after your command name. Thus in the above example the com-
piler command that will be used by gnatmake will be foo -c -x -y. If several
‘--GCC=compiler_name’ are used, only the last compiler name is taken into account.
However, all the additional switches are also taken into account. Thus, ‘--GCC="foo
-x -y" --GCC="bar -z -t"’ is equivalent to ‘--GCC="bar -x -y -z -t"’.

‘--GNATBIND=binder_name ’
Program used for binding. The default is ‘gnatbind’. You need to use quotes around
binder name if binder name contains spaces or other separator characters. As an
example ‘--GNATBIND="bar -x -y"’ will instruct gnatmake to use bar -x -y as your
binder. Binder switches that are normally appended by gnatmake to ‘gnatbind’ are
now appended to the end of bar -x -y. A limitation of this syntax is that the name
and path name of the executable itself must not include any embedded spaces.

‘--GNATLINK=linker_name ’
Program used for linking. The default is ‘gnatlink’. You need to use quotes around
linker name if linker name contains spaces or other separator characters. As an
example ‘--GNATLINK="lan -x -y"’ will instruct gnatmake to use lan -x -y as your
linker. Linker switches that are normally appended by gnatmake to ‘gnatlink’ are
now appended to the end of lan -x -y. A limitation of this syntax is that the name
and path name of the executable itself must not include any embedded spaces.

‘--subdirs=subdir’
Actual object directory of each project file is the subdirectory subdir of the object
directory specified or defaulted in the project file.

‘--single-compile-per-obj-dir’
Disallow simultaneous compilations in the same object directory when project files
are used.

‘--unchecked-shared-lib-imports’
By default, shared library projects are not allowed to import static library projects.
When this switch is used on the command line, this restriction is relaxed.

‘--source-info=<source info file>’
Specify a source info file. This switch is active only when project files are used. If
the source info file is specified as a relative path, then it is relative to the object
directory of the main project. If the source info file does not exist, then after the
Project Manager has successfully parsed and processed the project files and found
the sources, it creates the source info file. If the source info file already exists and can
be read successfully, then the Project Manager will get all the needed information
about the sources from the source info file and will not look for them. This reduces
the time to process the project files, especially when looking for sources that take a
long time. If the source info file exists but cannot be parsed successfully, the Project
Manager will attempt to recreate it. If the Project Manager fails to create the source
info file, a message is issued, but gnatmake does not fail. gnatmake "trusts" the
source info file. This means that if the source files have changed (addition, deletion,
moving to a different source directory), then the source info file need to be deleted
and recreated.

‘--create-map-file’
When linking an executable, create a map file. The name of the map file has the
same name as the executable with extension ".map".

Chapter 6: The GNAT Make Program gnatmake 97

‘--create-map-file=mapfile’
When linking an executable, create a map file. The name of the map file is "mapfile".

‘-a’ Consider all files in the make process, even the GNAT internal system files (for
example, the predefined Ada library files), as well as any locked files. Locked files
are files whose ALI file is write-protected. By default, gnatmake does not check
these files, because the assumption is that the GNAT internal files are properly up
to date, and also that any write protected ALI files have been properly installed.
Note that if there is an installation problem, such that one of these files is not up to
date, it will be properly caught by the binder. You may have to specify this switch
if you are working on GNAT itself. The switch ‘-a’ is also useful in conjunction with
‘-f’ if you need to recompile an entire application, including run-time files, using
special configuration pragmas, such as a Normalize_Scalars pragma.

By default gnatmake -a compiles all GNAT internal files with gcc -c -gnatpg

rather than gcc -c.

‘-b’ Bind only. Can be combined with ‘-c’ to do compilation and binding, but no link.
Can be combined with ‘-l’ to do binding and linking. When not combined with ‘-c’
all the units in the closure of the main program must have been previously compiled
and must be up to date. The root unit specified by file name may be given without
extension, with the source extension or, if no GNAT Project File is specified, with
the ALI file extension.

‘-c’ Compile only. Do not perform binding, except when ‘-b’ is also specified. Do not
perform linking, except if both ‘-b’ and ‘-l’ are also specified. If the root unit
specified by file name is not a main unit, this is the default. Otherwise gnatmake

will attempt binding and linking unless all objects are up to date and the executable
is more recent than the objects.

‘-C’ Use a temporary mapping file. A mapping file is a way to communicate to the
compiler two mappings: from unit names to file names (without any directory in-
formation) and from file names to path names (with full directory information). A
mapping file can make the compiler’s file searches faster, especially if there are many
source directories, or the sources are read over a slow network connection. If ‘-P’ is
used, a mapping file is always used, so ‘-C’ is unnecessary; in this case the mapping
file is initially populated based on the project file. If ‘-C’ is used without ‘-P’, the
mapping file is initially empty. Each invocation of the compiler will add any newly
accessed sources to the mapping file.

‘-C=file ’ Use a specific mapping file. The file, specified as a path name (absolute or relative)
by this switch, should already exist, otherwise the switch is ineffective. The specified
mapping file will be communicated to the compiler. This switch is not compatible
with a project file (-Pfile) or with multiple compiling processes (-jnnn, when nnn is
greater than 1).

‘-d’ Display progress for each source, up to date or not, as a single line
completed x out of y (zz%)

If the file needs to be compiled this is displayed after the invocation of the compiler.
These lines are displayed even in quiet output mode.

‘-D dir ’ Put all object files and ALI file in directory dir. If the ‘-D’ switch is not used, all
object files and ALI files go in the current working directory.

This switch cannot be used when using a project file.

‘-eInnn’ Indicates that the main source is a multi-unit source and the rank of the unit in
the source file is nnn. nnn needs to be a positive number and a valid index in the
source. This switch cannot be used when gnatmake is invoked for several mains.

98 GNAT User’s Guide

‘-eL’ Follow all symbolic links when processing project files. This should be used if your
project uses symbolic links for files or directories, but is not needed in other cases.

This also assumes that no directory matches the naming scheme for files (for instance
that you do not have a directory called "sources.ads" when using the default GNAT
naming scheme).

When you do not have to use this switch (i.e. by default), gnatmake is able to save
a lot of system calls (several per source file and object file), which can result in a
significant speed up to load and manipulate a project file, especially when using
source files from a remote system.

‘-eS’ Output the commands for the compiler, the binder and the linker on standard
output, instead of standard error.

‘-f’ Force recompilations. Recompile all sources, even though some object files may be
up to date, but don’t recompile predefined or GNAT internal files or locked files
(files with a write-protected ALI file), unless the ‘-a’ switch is also specified.

‘-F’ When using project files, if some errors or warnings are detected during parsing and
verbose mode is not in effect (no use of switch -v), then error lines start with the
full path name of the project file, rather than its simple file name.

‘-g’ Enable debugging. This switch is simply passed to the compiler and to the linker.

‘-i’ In normal mode, gnatmake compiles all object files and ALI files into the current di-
rectory. If the ‘-i’ switch is used, then instead object files and ALI files that already
exist are overwritten in place. This means that once a large project is organized
into separate directories in the desired manner, then gnatmake will automatically
maintain and update this organization. If no ALI files are found on the Ada object
path (Section 3.3 [Search Paths and the Run-Time Library (RTL)], page 78), the
new object and ALI files are created in the directory containing the source being
compiled. If another organization is desired, where objects and sources are kept in
different directories, a useful technique is to create dummy ALI files in the desired
directories. When detecting such a dummy file, gnatmake will be forced to recom-
pile the corresponding source file, and it will be put the resulting object and ALI
files in the directory where it found the dummy file.

‘-jn ’ Use n processes to carry out the (re)compilations. On a multiprocessor machine
compilations will occur in parallel. In the event of compilation errors, messages
from various compilations might get interspersed (but gnatmake will give you the
full ordered list of failing compiles at the end). If this is problematic, rerun the
make process with n set to 1 to get a clean list of messages.

‘-k’ Keep going. Continue as much as possible after a compilation error. To ease the
programmer’s task in case of compilation errors, the list of sources for which the
compile fails is given when gnatmake terminates.

If gnatmake is invoked with several ‘file_names’ and with this switch, if there are
compilation errors when building an executable, gnatmake will not attempt to build
the following executables.

‘-l’ Link only. Can be combined with ‘-b’ to binding and linking. Linking will not be
performed if combined with ‘-c’ but not with ‘-b’. When not combined with ‘-b’
all the units in the closure of the main program must have been previously compiled
and must be up to date, and the main program needs to have been bound. The
root unit specified by file name may be given without extension, with the source
extension or, if no GNAT Project File is specified, with the ALI file extension.

Chapter 6: The GNAT Make Program gnatmake 99

‘-m’ Specify that the minimum necessary amount of recompilations be performed. In
this mode gnatmake ignores time stamp differences when the only modifications
to a source file consist in adding/removing comments, empty lines, spaces or tabs.
This means that if you have changed the comments in a source file or have simply
reformatted it, using this switch will tell gnatmake not to recompile files that depend
on it (provided other sources on which these files depend have undergone no semantic
modifications). Note that the debugging information may be out of date with respect
to the sources if the ‘-m’ switch causes a compilation to be switched, so the use of
this switch represents a trade-off between compilation time and accurate debugging
information.

‘-M’ Check if all objects are up to date. If they are, output the object dependences to
‘stdout’ in a form that can be directly exploited in a ‘Makefile’. By default, each
source file is prefixed with its (relative or absolute) directory name. This name is
whatever you specified in the various ‘-aI’ and ‘-I’ switches. If you use gnatmake

-M ‘-q’ (see below), only the source file names, without relative paths, are output.
If you just specify the ‘-M’ switch, dependencies of the GNAT internal system files
are omitted. This is typically what you want. If you also specify the ‘-a’ switch,
dependencies of the GNAT internal files are also listed. Note that dependencies of
the objects in external Ada libraries (see switch ‘-aL’dir in the following list) are
never reported.

‘-n’ Don’t compile, bind, or link. Checks if all objects are up to date. If they are not,
the full name of the first file that needs to be recompiled is printed. Repeated use
of this option, followed by compiling the indicated source file, will eventually result
in recompiling all required units.

‘-o exec_name ’
Output executable name. The name of the final executable program will be
exec name. If the ‘-o’ switch is omitted the default name for the executable will
be the name of the input file in appropriate form for an executable file on the host
system.

This switch cannot be used when invoking gnatmake with several ‘file_names’.

‘-p or --create-missing-dirs’
When using project files (-Pproject), create automatically missing object directories,
library directories and exec directories.

‘-Pproject ’
Use project file project. Only one such switch can be used. See Section 12.1 [gnat-
make and Project Files], page 175.

‘-q’ Quiet. When this flag is not set, the commands carried out by gnatmake are dis-
played.

‘-s’ Recompile if compiler switches have changed since last compilation. All compiler
switches but -I and -o are taken into account in the following way: orders between
different “first letter” switches are ignored, but orders between same switches are
taken into account. For example, ‘-O -O2’ is different than ‘-O2 -O’, but ‘-g -O’ is
equivalent to ‘-O -g’.

This switch is recommended when Integrated Preprocessing is used.

‘-u’ Unique. Recompile at most the main files. It implies -c. Combined with -f, it
is equivalent to calling the compiler directly. Note that using -u with a project
file and no main has a special meaning (see Section 12.1.4 [Project Files and Main
Subprograms], page 178).

100 GNAT User’s Guide

‘-U’ When used without a project file or with one or several mains on the command line,
is equivalent to -u. When used with a project file and no main on the command
line, all sources of all project files are checked and compiled if not up to date, and
libraries are rebuilt, if necessary.

‘-v’ Verbose. Display the reason for all recompilations gnatmake decides are necessary,
with the highest verbosity level.

‘-vl’ Verbosity level Low. Display fewer lines than in verbosity Medium.

‘-vm’ Verbosity level Medium. Potentially display fewer lines than in verbosity High.

‘-vh’ Verbosity level High. Equivalent to -v.

‘-vPx ’ Indicate the verbosity of the parsing of GNAT project files. See Section 12.1.1
[Switches Related to Project Files], page 175.

‘-x’ Indicate that sources that are not part of any Project File may be compiled. Nor-
mally, when using Project Files, only sources that are part of a Project File may
be compile. When this switch is used, a source outside of all Project Files may be
compiled. The ALI file and the object file will be put in the object directory of the
main Project. The compilation switches used will only be those specified on the
command line. Even when ‘-x’ is used, mains specified on the command line need
to be sources of a project file.

‘-Xname=value ’
Indicate that external variable name has the value value. The Project Manager will
use this value for occurrences of external(name) when parsing the project file. See
Section 12.1.1 [Switches Related to Project Files], page 175.

‘-z’ No main subprogram. Bind and link the program even if the unit name given on
the command line is a package name. The resulting executable will execute the
elaboration routines of the package and its closure, then the finalization routines.

gcc switches
Any uppercase or multi-character switch that is not a gnatmake switch is passed to
gcc (e.g. ‘-O’, ‘-gnato,’ etc.)

Source and library search path switches:

‘-aIdir ’ When looking for source files also look in directory dir. The order in which source
files search is undertaken is described in Section 3.3 [Search Paths and the Run-Time
Library (RTL)], page 78.

‘-aLdir ’ Consider dir as being an externally provided Ada library. Instructs gnatmake to skip
compilation units whose ‘.ALI’ files have been located in directory dir. This allows
you to have missing bodies for the units in dir and to ignore out of date bodies for the
same units. You still need to specify the location of the specs for these units by using
the switches ‘-aIdir ’ or ‘-Idir ’. Note: this switch is provided for compatibility
with previous versions of gnatmake. The easier method of causing standard libraries
to be excluded from consideration is to write-protect the corresponding ALI files.

‘-aOdir ’ When searching for library and object files, look in directory dir. The order in which
library files are searched is described in Section 4.4 [Search Paths for gnatbind],
page 88.

‘-Adir ’ Equivalent to ‘-aLdir -aIdir ’.

‘-Idir ’ Equivalent to ‘-aOdir -aIdir ’.

Chapter 6: The GNAT Make Program gnatmake 101

‘-I-’ Do not look for source files in the directory containing the source file named in the
command line. Do not look for ALI or object files in the directory where gnatmake
was invoked.

‘-Ldir ’ Add directory dir to the list of directories in which the linker will search for libraries.
This is equivalent to ‘-largs -L’dir. Furthermore, under Windows, the sources
pointed to by the libraries path set in the registry are not searched for.

‘-nostdinc’
Do not look for source files in the system default directory.

‘-nostdlib’
Do not look for library files in the system default directory.

‘--RTS=rts-path ’
Specifies the default location of the runtime library. GNAT looks for the runtime in
the following directories, and stops as soon as a valid runtime is found (‘adainclude’
or ‘ada_source_path’, and ‘adalib’ or ‘ada_object_path’ present):

• <current directory>/$rts path

• <default-search-dir>/$rts path

• <default-search-dir>/rts-$rts path

The selected path is handled like a normal RTS path.

6.3 Mode Switches for gnatmake

The mode switches (referred to as mode_switches) allow the inclusion of switches that are to
be passed to the compiler itself, the binder or the linker. The effect of a mode switch is to cause
all subsequent switches up to the end of the switch list, or up to the next mode switch, to be
interpreted as switches to be passed on to the designated component of GNAT.

‘-cargs switches ’
Compiler switches. Here switches is a list of switches that are valid switches for
gcc. They will be passed on to all compile steps performed by gnatmake.

‘-bargs switches ’
Binder switches. Here switches is a list of switches that are valid switches for
gnatbind. They will be passed on to all bind steps performed by gnatmake.

‘-largs switches ’
Linker switches. Here switches is a list of switches that are valid switches for
gnatlink. They will be passed on to all link steps performed by gnatmake.

‘-margs switches ’
Make switches. The switches are directly interpreted by gnatmake, regardless of
any previous occurrence of ‘-cargs’, ‘-bargs’ or ‘-largs’.

6.4 Notes on the Command Line

This section contains some additional useful notes on the operation of the gnatmake command.

• If gnatmake finds no ALI files, it recompiles the main program and all other units required
by the main program. This means that gnatmake can be used for the initial compile, as
well as during subsequent steps of the development cycle.

• If you enter gnatmake file.adb, where ‘file.adb’ is a subunit or body of a generic unit,
gnatmake recompiles ‘file.adb’ (because it finds no ALI) and stops, issuing a warning.

102 GNAT User’s Guide

• In gnatmake the switch ‘-I’ is used to specify both source and library file paths. Use ‘-aI’
instead if you just want to specify source paths only and ‘-aO’ if you want to specify library
paths only.

• gnatmake will ignore any files whose ALI file is write-protected. This may conveniently be
used to exclude standard libraries from consideration and in particular it means that the
use of the ‘-f’ switch will not recompile these files unless ‘-a’ is also specified.

• gnatmake has been designed to make the use of Ada libraries particularly convenient. As-
sume you have an Ada library organized as follows: obj-dir contains the objects and ALI
files for of your Ada compilation units, whereas include-dir contains the specs of these units,
but no bodies. Then to compile a unit stored in main.adb, which uses this Ada library you
would just type

$ gnatmake -aIinclude-dir -aLobj-dir main

• Using gnatmake along with the ‘-m (minimal recompilation)’ switch provides a mech-
anism for avoiding unnecessary recompilations. Using this switch, you can update the
comments/format of your source files without having to recompile everything. Note, how-
ever, that adding or deleting lines in a source files may render its debugging info obsolete.
If the file in question is a spec, the impact is rather limited, as that debugging info will only
be useful during the elaboration phase of your program. For bodies the impact can be more
significant. In all events, your debugger will warn you if a source file is more recent than
the corresponding object, and alert you to the fact that the debugging information may be
out of date.

6.5 How gnatmake Works

Generally gnatmake automatically performs all necessary recompilations and you don’t need
to worry about how it works. However, it may be useful to have some basic understanding
of the gnatmake approach and in particular to understand how it uses the results of previous
compilations without incorrectly depending on them.

First a definition: an object file is considered up to date if the corresponding ALI file exists
and if all the source files listed in the dependency section of this ALI file have time stamps
matching those in the ALI file. This means that neither the source file itself nor any files that
it depends on have been modified, and hence there is no need to recompile this file.

gnatmake works by first checking if the specified main unit is up to date. If so, no compilations
are required for the main unit. If not, gnatmake compiles the main program to build a new
ALI file that reflects the latest sources. Then the ALI file of the main unit is examined to find
all the source files on which the main program depends, and gnatmake recursively applies the
above procedure on all these files.

This process ensures that gnatmake only trusts the dependencies in an existing ALI file if
they are known to be correct. Otherwise it always recompiles to determine a new, guaranteed
accurate set of dependencies. As a result the program is compiled “upside down” from what may
be more familiar as the required order of compilation in some other Ada systems. In particular,
clients are compiled before the units on which they depend. The ability of GNAT to compile
in any order is critical in allowing an order of compilation to be chosen that guarantees that
gnatmake will recompute a correct set of new dependencies if necessary.

When invoking gnatmake with several file names, if a unit is imported by several of the
executables, it will be recompiled at most once.

Note: when using non-standard naming conventions (see Section 2.4 [Using Other File
Names], page 17), changing through a configuration pragmas file the version of a source and
invoking gnatmake to recompile may have no effect, if the previous version of the source is still
accessible by gnatmake. It may be necessary to use the switch -f.

Chapter 6: The GNAT Make Program gnatmake 103

6.6 Examples of gnatmake Usage

gnatmake hello.adb

Compile all files necessary to bind and link the main program ‘hello.adb’ (contain-
ing unit Hello) and bind and link the resulting object files to generate an executable
file ‘hello’.

gnatmake main1 main2 main3

Compile all files necessary to bind and link the main programs ‘main1.adb’ (contain-
ing unit Main1), ‘main2.adb’ (containing unit Main2) and ‘main3.adb’ (containing
unit Main3) and bind and link the resulting object files to generate three executable
files ‘main1’, ‘main2’ and ‘main3’.

gnatmake -q Main_Unit -cargs -O2 -bargs -l

Compile all files necessary to bind and link the main program unit Main_Unit (from
file ‘main_unit.adb’). All compilations will be done with optimization level 2 and
the order of elaboration will be listed by the binder. gnatmake will operate in quiet
mode, not displaying commands it is executing.

Chapter 7: Improving Performance 105

7 Improving Performance

This chapter presents several topics related to program performance. It first describes some of
the tradeoffs that need to be considered and some of the techniques for making your program run
faster. It then documents the gnatelim tool and unused subprogram/data elimination feature,
which can reduce the size of program executables.

7.1 Performance Considerations

The GNAT system provides a number of options that allow a trade-off between

• performance of the generated code

• speed of compilation

• minimization of dependences and recompilation

• the degree of run-time checking.

The defaults (if no options are selected) aim at improving the speed of compilation and mini-
mizing dependences, at the expense of performance of the generated code:

• no optimization

• no inlining of subprogram calls

• all run-time checks enabled except overflow and elaboration checks

These options are suitable for most program development purposes. This chapter describes how
you can modify these choices, and also provides some guidelines on debugging optimized code.

7.1.1 Controlling Run-Time Checks

By default, GNAT generates all run-time checks, except integer overflow checks, stack overflow
checks, and checks for access before elaboration on subprogram calls. The latter are not required
in default mode, because all necessary checking is done at compile time. Two gnat switches,
‘-gnatp’ and ‘-gnato’ allow this default to be modified. See Section 3.2.6 [Run-Time Checks],
page 66.

Our experience is that the default is suitable for most development purposes.

We treat integer overflow specially because these are quite expensive and in our experience
are not as important as other run-time checks in the development process. Note that division by
zero is not considered an overflow check, and divide by zero checks are generated where required
by default.

Elaboration checks are off by default, and also not needed by default, since GNAT uses a static
elaboration analysis approach that avoids the need for run-time checking. This manual contains
a full chapter discussing the issue of elaboration checks, and if the default is not satisfactory for
your use, you should read this chapter.

For validity checks, the minimal checks required by the Ada Reference Manual (for case
statements and assignments to array elements) are on by default. These can be suppressed by
use of the ‘-gnatVn’ switch. Note that in Ada 83, there were no validity checks, so if the Ada 83
mode is acceptable (or when comparing GNAT performance with an Ada 83 compiler), it may
be reasonable to routinely use ‘-gnatVn’. Validity checks are also suppressed entirely if ‘-gnatp’
is used.

Note that the setting of the switches controls the default setting of the checks. They may be
modified using either pragma Suppress (to remove checks) or pragma Unsuppress (to add back
suppressed checks) in the program source.

106 GNAT User’s Guide

7.1.2 Use of Restrictions

The use of pragma Restrictions allows you to control which features are permitted in your
program. Apart from the obvious point that if you avoid relatively expensive features like
finalization (enforceable by the use of pragma Restrictions (No Finalization), the use of this
pragma does not affect the generated code in most cases.

One notable exception to this rule is that the possibility of task abort results in some dis-
tributed overhead, particularly if finalization or exception handlers are used. The reason is that
certain sections of code have to be marked as non-abortable.

If you use neither the abort statement, nor asynchronous transfer of control (select ...

then abort), then this distributed overhead is removed, which may have a general positive effect
in improving overall performance. Especially code involving frequent use of tasking constructs
and controlled types will show much improved performance. The relevant restrictions pragmas
are

pragma Restrictions (No_Abort_Statements);

pragma Restrictions (Max_Asynchronous_Select_Nesting => 0);

It is recommended that these restriction pragmas be used if possible. Note that this also means
that you can write code without worrying about the possibility of an immediate abort at any
point.

7.1.3 Optimization Levels

Without any optimization option, the compiler’s goal is to reduce the cost of compilation and
to make debugging produce the expected results. Statements are independent: if you stop the
program with a breakpoint between statements, you can then assign a new value to any variable
or change the program counter to any other statement in the subprogram and get exactly the
results you would expect from the source code.

Turning on optimization makes the compiler attempt to improve the performance and/or
code size at the expense of compilation time and possibly the ability to debug the program.

If you use multiple -O options, with or without level numbers, the last such option is the one
that is effective.

The default is optimization off. This results in the fastest compile times, but GNAT makes
absolutely no attempt to optimize, and the generated programs are considerably larger and
slower than when optimization is enabled. You can use the ‘-O’ switch (the permitted forms are
‘-O0’, ‘-O1’ ‘-O2’, ‘-O3’, and ‘-Os’) to gcc to control the optimization level:

‘-O0’ No optimization (the default); generates unoptimized code but has the fastest com-
pilation time.

Note that many other compilers do fairly extensive optimization even if “no opti-
mization” is specified. With gcc, it is very unusual to use -O0 for production if
execution time is of any concern, since -O0 really does mean no optimization at all.
This difference between gcc and other compilers should be kept in mind when doing
performance comparisons.

‘-O1’ Moderate optimization; optimizes reasonably well but does not degrade compilation
time significantly.

‘-O2’ Full optimization; generates highly optimized code and has the slowest compilation
time.

‘-O3’ Full optimization as in ‘-O2’; also uses more aggressive automatic inlining of sub-
programs within a unit (see Section 7.1.5 [Inlining of Subprograms], page 108) and
attempts to vectorize loops.

‘-Os’ Optimize space usage (code and data) of resulting program.

Chapter 7: Improving Performance 107

Higher optimization levels perform more global transformations on the program and apply more
expensive analysis algorithms in order to generate faster and more compact code. The price
in compilation time, and the resulting improvement in execution time, both depend on the
particular application and the hardware environment. You should experiment to find the best
level for your application.

Since the precise set of optimizations done at each level will vary from release to release
(and sometime from target to target), it is best to think of the optimization settings in general
terms. See Section “Options That Control Optimization” in Using the GNU Compiler Collection
(GCC), for details about the ‘-O’ settings and a number of ‘-f’ options that individually enable
or disable specific optimizations.

Unlike some other compilation systems, gcc has been tested extensively at all optimization
levels. There are some bugs which appear only with optimization turned on, but there have
also been bugs which show up only in unoptimized code. Selecting a lower level of optimization
does not improve the reliability of the code generator, which in practice is highly reliable at all
optimization levels.

Note regarding the use of ‘-O3’: The use of this optimization level is generally discouraged
with GNAT, since it often results in larger executables which may run more slowly. See further
discussion of this point in Section 7.1.5 [Inlining of Subprograms], page 108.

7.1.4 Debugging Optimized Code

Although it is possible to do a reasonable amount of debugging at nonzero optimization levels,
the higher the level the more likely that source-level constructs will have been eliminated by
optimization. For example, if a loop is strength-reduced, the loop control variable may be
completely eliminated and thus cannot be displayed in the debugger. This can only happen at
‘-O2’ or ‘-O3’. Explicit temporary variables that you code might be eliminated at level ‘-O1’ or
higher.

The use of the ‘-g’ switch, which is needed for source-level debugging, affects the size of the
program executable on disk, and indeed the debugging information can be quite large. However,
it has no effect on the generated code (and thus does not degrade performance)

Since the compiler generates debugging tables for a compilation unit before it performs op-
timizations, the optimizing transformations may invalidate some of the debugging data. You
therefore need to anticipate certain anomalous situations that may arise while debugging opti-
mized code. These are the most common cases:

1. The “hopping Program Counter”: Repeated step or next commands show the PC bouncing
back and forth in the code. This may result from any of the following optimizations:

• Common subexpression elimination: using a single instance of code for a quantity that
the source computes several times. As a result you may not be able to stop on what
looks like a statement.

• Invariant code motion: moving an expression that does not change within a loop, to
the beginning of the loop.

• Instruction scheduling: moving instructions so as to overlap loads and stores (typically)
with other code, or in general to move computations of values closer to their uses. Often
this causes you to pass an assignment statement without the assignment happening and
then later bounce back to the statement when the value is actually needed. Placing a
breakpoint on a line of code and then stepping over it may, therefore, not always cause
all the expected side-effects.

2. The “big leap”: More commonly known as cross-jumping, in which two identical pieces
of code are merged and the program counter suddenly jumps to a statement that is not
supposed to be executed, simply because it (and the code following) translates to the same

108 GNAT User’s Guide

thing as the code that was supposed to be executed. This effect is typically seen in sequences
that end in a jump, such as a goto, a return, or a break in a C switch statement.

3. The “roving variable”: The symptom is an unexpected value in a variable. There are various
reasons for this effect:

• In a subprogram prologue, a parameter may not yet have been moved to its “home”.

• A variable may be dead, and its register re-used. This is probably the most common
cause.

• As mentioned above, the assignment of a value to a variable may have been moved.

• A variable may be eliminated entirely by value propagation or other means. In this
case, GCC may incorrectly generate debugging information for the variable

In general, when an unexpected value appears for a local variable or parameter you should
first ascertain if that value was actually computed by your program, as opposed to being
incorrectly reported by the debugger. Record fields or array elements in an object designated
by an access value are generally less of a problem, once you have ascertained that the access
value is sensible. Typically, this means checking variables in the preceding code and in the
calling subprogram to verify that the value observed is explainable from other values (one
must apply the procedure recursively to those other values); or re-running the code and
stopping a little earlier (perhaps before the call) and stepping to better see how the variable
obtained the value in question; or continuing to step from the point of the strange value to
see if code motion had simply moved the variable’s assignments later.

In light of such anomalies, a recommended technique is to use ‘-O0’ early in the software devel-
opment cycle, when extensive debugging capabilities are most needed, and then move to ‘-O1’
and later ‘-O2’ as the debugger becomes less critical. Whether to use the ‘-g’ switch in the
release version is a release management issue. Note that if you use ‘-g’ you can then use the
strip program on the resulting executable, which removes both debugging information and
global symbols.

7.1.5 Inlining of Subprograms

A call to a subprogram in the current unit is inlined if all the following conditions are met:

• The optimization level is at least ‘-O1’.

• The called subprogram is suitable for inlining: It must be small enough and not contain
something that gcc cannot support in inlined subprograms.

• Any one of the following applies: pragma Inline is applied to the subprogram and the
‘-gnatn’ switch is specified; the subprogram is local to the unit and called once from within
it; the subprogram is small and optimization level ‘-O2’ is specified; optimization level ‘-O3’)
is specified.

Calls to subprograms in with’ed units are normally not inlined. To achieve actual inlining (that
is, replacement of the call by the code in the body of the subprogram), the following conditions
must all be true.

• The optimization level is at least ‘-O1’.

• The called subprogram is suitable for inlining: It must be small enough and not contain
something that gcc cannot support in inlined subprograms.

• The call appears in a body (not in a package spec).

• There is a pragma Inline for the subprogram.

• The ‘-gnatn’ switch is used on the command line.

Even if all these conditions are met, it may not be possible for the compiler to inline the call,
due to the length of the body, or features in the body that make it impossible for the compiler
to do the inlining.

Chapter 7: Improving Performance 109

Note that specifying the ‘-gnatn’ switch causes additional compilation dependencies. Con-
sider the following:� �

package R is

procedure Q;

pragma Inline (Q);

end R;

package body R is

...

end R;

with R;

procedure Main is

begin

...

R.Q;

end Main;
 	
With the default behavior (no ‘-gnatn’ switch specified), the compilation of the Main procedure
depends only on its own source, ‘main.adb’, and the spec of the package in file ‘r.ads’. This
means that editing the body of R does not require recompiling Main.

On the other hand, the call R.Q is not inlined under these circumstances. If the ‘-gnatn’
switch is present when Main is compiled, the call will be inlined if the body of Q is small enough,
but now Main depends on the body of R in ‘r.adb’ as well as on the spec. This means that if
this body is edited, the main program must be recompiled. Note that this extra dependency
occurs whether or not the call is in fact inlined by gcc.

The use of front end inlining with ‘-gnatN’ generates similar additional dependencies.

Note: The ‘-fno-inline’ switch can be used to prevent all inlining. This switch overrides
all other conditions and ensures that no inlining occurs. The extra dependences resulting from
‘-gnatn’ will still be active, even if this switch is used to suppress the resulting inlining actions.

Note: The ‘-fno-inline-functions’ switch can be used to prevent automatic inlining of
subprograms if ‘-O3’ is used.

Note: The ‘-fno-inline-small-functions’ switch can be used to prevent automatic inlin-
ing of small subprograms if ‘-O2’ is used.

Note: The ‘-fno-inline-functions-called-once’ switch can be used to prevent inlining
of subprograms local to the unit and called once from within it if ‘-O1’ is used.

Note regarding the use of ‘-O3’: There is no difference in inlining behavior between ‘-O2’
and ‘-O3’ for subprograms with an explicit pragma Inline assuming the use of ‘-gnatn’ or
‘-gnatN’ (the switches that activate inlining). If you have used pragma Inline in appropriate
cases, then it is usually much better to use ‘-O2’ and ‘-gnatn’ and avoid the use of ‘-O3’ which
in this case only has the effect of inlining subprograms you did not think should be inlined. We
often find that the use of ‘-O3’ slows down code by performing excessive inlining, leading to
increased instruction cache pressure from the increased code size. So the bottom line here is
that you should not automatically assume that ‘-O3’ is better than ‘-O2’, and indeed you should
use ‘-O3’ only if tests show that it actually improves performance.

7.1.6 Vectorization of loops

You can take advantage of the auto-vectorizer present in the gcc back end to vectorize loops with
GNAT. The corresponding command line switch is ‘-ftree-vectorize’ but, as it is enabled by
default at ‘-O3’ and other aggressive optimizations helpful for vectorization also are enabled by
default at this level, using ‘-O3’ directly is recommended.

You also need to make sure that the target architecture features a supported SIMD instruc-
tion set. For example, for the x86 architecture, you should at least specify ‘-msse2’ to get

110 GNAT User’s Guide

significant vectorization (but you don’t need to specify it for x86-64 as it is part of the base
64-bit architecture). Similarly, for the PowerPC architecture, you should specify ‘-maltivec’.

The preferred loop form for vectorization is the for iteration scheme. Loops with a while

iteration scheme can also be vectorized if they are very simple, but the vectorizer will quickly give
up otherwise. With either iteration scheme, the flow of control must be straight, in particular
no exit statement may appear in the loop body. The loop may however contain a single nested
loop, if it can be vectorized when considered alone:� �

A : array (1..4, 1..4) of Long_Float;

S : array (1..4) of Long_Float;

procedure Sum is

begin

for I in A’Range(1) loop

for J in A’Range(2) loop

S (I) := S (I) + A (I, J);

end loop;

end loop;

end Sum;
 	
The vectorizable operations depend on the targeted SIMD instruction set, but the adding

and some of the multiplying operators are generally supported, as well as the logical operators
for modular types. Note that, in the former case, enabling overflow checks, for example with
‘-gnato’, totally disables vectorization. The other checks are not supposed to have the same
definitive effect, although compiling with ‘-gnatp’ might well reveal cases where some checks do
thwart vectorization.

Type conversions may also prevent vectorization if they involve semantics that are not directly
supported by the code generator or the SIMD instruction set. A typical example is direct
conversion from floating-point to integer types. The solution in this case is to use the following
idiom:

Integer (S’Truncation (F))

if S is the subtype of floating-point object F.

In most cases, the vectorizable loops are loops that iterate over arrays. All kinds of array
types are supported, i.e. constrained array types with static bounds:

type Array_Type is array (1 .. 4) of Long_Float;

constrained array types with dynamic bounds:

type Array_Type is array (1 .. Q.N) of Long_Float;

type Array_Type is array (Q.K .. 4) of Long_Float;

type Array_Type is array (Q.K .. Q.N) of Long_Float;

or unconstrained array types:

type Array_Type is array (Positive range <>) of Long_Float;

The quality of the generated code decreases when the dynamic aspect of the array type increases,
the worst code being generated for unconstrained array types. This is so because, the less
information the compiler has about the bounds of the array, the more fallback code it needs to
generate in order to fix things up at run time.

You can obtain information about the vectorization performed by the compiler by specifying
‘-ftree-vectorizer-verbose=N’. For more details of this switch, see Section “Options for
Debugging Your Program or GCC” in Using the GNU Compiler Collection (GCC).

Chapter 7: Improving Performance 111

7.1.7 Other Optimization Switches

Since GNAT uses the gcc back end, all the specialized gcc optimization switches are potentially
usable. These switches have not been extensively tested with GNAT but can generally be ex-
pected to work. Examples of switches in this category are ‘-funroll-loops’ and the various
target-specific ‘-m’ options (in particular, it has been observed that ‘-march=xxx’ can signifi-
cantly improve performance on appropriate machines). For full details of these switches, see
Section “Hardware Models and Configurations” in Using the GNU Compiler Collection (GCC).

7.1.8 Optimization and Strict Aliasing

The strong typing capabilities of Ada allow an optimizer to generate efficient code in situa-
tions where other languages would be forced to make worst case assumptions preventing such
optimizations. Consider the following example:

� �
procedure R is

type Int1 is new Integer;

type Int2 is new Integer;

type Int1A is access Int1;

type Int2A is access Int2;

Int1V : Int1A;

Int2V : Int2A;

...

begin

...

for J in Data’Range loop

if Data (J) = Int1V.all then

Int2V.all := Int2V.all + 1;

end if;

end loop;

...

end R;
 	
In this example, since the variable Int1V can only access objects of type Int1, and Int2V

can only access objects of type Int2, there is no possibility that the assignment to Int2V.all

affects the value of Int1V.all. This means that the compiler optimizer can "know" that the
value Int1V.all is constant for all iterations of the loop and avoid the extra memory reference
required to dereference it each time through the loop.

This kind of optimization, called strict aliasing analysis, is triggered by specifying an opti-
mization level of ‘-O2’ or higher or ‘-Os’ and allows GNAT to generate more efficient code when
access values are involved.

However, although this optimization is always correct in terms of the formal semantics of the
Ada Reference Manual, difficulties can arise if features like Unchecked_Conversion are used to
break the typing system. Consider the following complete program example:

112 GNAT User’s Guide� �
package p1 is

type int1 is new integer;

type int2 is new integer;

type a1 is access int1;

type a2 is access int2;

end p1;

with p1; use p1;

package p2 is

function to_a2 (Input : a1) return a2;

end p2;

with Unchecked_Conversion;

package body p2 is

function to_a2 (Input : a1) return a2 is

function to_a2u is

new Unchecked_Conversion (a1, a2);

begin

return to_a2u (Input);

end to_a2;

end p2;

with p2; use p2;

with p1; use p1;

with Text_IO; use Text_IO;

procedure m is

v1 : a1 := new int1;

v2 : a2 := to_a2 (v1);

begin

v1.all := 1;

v2.all := 0;

put_line (int1’image (v1.all));

end;
 	
This program prints out 0 in ‘-O0’ or ‘-O1’ mode, but it prints out 1 in ‘-O2’ mode. That’s
because in strict aliasing mode, the compiler can and does assume that the assignment to v2.all
could not affect the value of v1.all, since different types are involved.

This behavior is not a case of non-conformance with the standard, since the Ada RM specifies
that an unchecked conversion where the resulting bit pattern is not a correct value of the target
type can result in an abnormal value and attempting to reference an abnormal value makes the
execution of a program erroneous. That’s the case here since the result does not point to an
object of type int2. This means that the effect is entirely unpredictable.

However, although that explanation may satisfy a language lawyer, in practice an applica-
tions programmer expects an unchecked conversion involving pointers to create true aliases and
the behavior of printing 1 seems plain wrong. In this case, the strict aliasing optimization is
unwelcome.

Indeed the compiler recognizes this possibility, and the unchecked conversion generates a
warning:

p2.adb:5:07: warning: possible aliasing problem with type "a2"

p2.adb:5:07: warning: use -fno-strict-aliasing switch for references

p2.adb:5:07: warning: or use "pragma No_Strict_Aliasing (a2);"

Unfortunately the problem is recognized when compiling the body of package p2, but the actual
"bad" code is generated while compiling the body of m and this latter compilation does not see
the suspicious Unchecked_Conversion.

As implied by the warning message, there are approaches you can use to avoid the unwanted
strict aliasing optimization in a case like this.

One possibility is to simply avoid the use of ‘-O2’, but that is a bit drastic, since it throws
away a number of useful optimizations that do not involve strict aliasing assumptions.

Chapter 7: Improving Performance 113

A less drastic approach is to compile the program using the option ‘-fno-strict-aliasing’.
Actually it is only the unit containing the dereferencing of the suspicious pointer that needs to be
compiled. So in this case, if we compile unit m with this switch, then we get the expected value of
zero printed. Analyzing which units might need the switch can be painful, so a more reasonable
approach is to compile the entire program with options ‘-O2’ and ‘-fno-strict-aliasing’. If
the performance is satisfactory with this combination of options, then the advantage is that the
entire issue of possible "wrong" optimization due to strict aliasing is avoided.

To avoid the use of compiler switches, the configuration pragma No_Strict_Aliasing with
no parameters may be used to specify that for all access types, the strict aliasing optimization
should be suppressed.

However, these approaches are still overkill, in that they causes all manipulations of all access
values to be deoptimized. A more refined approach is to concentrate attention on the specific
access type identified as problematic.

First, if a careful analysis of uses of the pointer shows that there are no possible problematic
references, then the warning can be suppressed by bracketing the instantiation of Unchecked_
Conversion to turn the warning off:

pragma Warnings (Off);

function to_a2u is

new Unchecked_Conversion (a1, a2);

pragma Warnings (On);

Of course that approach is not appropriate for this particular example, since indeed there is a
problematic reference. In this case we can take one of two other approaches.

The first possibility is to move the instantiation of unchecked conversion to the unit in which
the type is declared. In this example, we would move the instantiation of Unchecked_Conversion
from the body of package p2 to the spec of package p1. Now the warning disappears. That’s
because any use of the access type knows there is a suspicious unchecked conversion, and the
strict aliasing optimization is automatically suppressed for the type.

If it is not practical to move the unchecked conversion to the same unit in which the des-
tination access type is declared (perhaps because the source type is not visible in that unit),
you may use pragma No_Strict_Aliasing for the type. This pragma must occur in the same
declarative sequence as the declaration of the access type:

type a2 is access int2;

pragma No_Strict_Aliasing (a2);

Here again, the compiler now knows that the strict aliasing optimization should be suppressed
for any reference to type a2 and the expected behavior is obtained.

Finally, note that although the compiler can generate warnings for simple cases of unchecked
conversions, there are tricker and more indirect ways of creating type incorrect aliases which the
compiler cannot detect. Examples are the use of address overlays and unchecked conversions
involving composite types containing access types as components. In such cases, no warnings
are generated, but there can still be aliasing problems. One safe coding practice is to forbid the
use of address clauses for type overlaying, and to allow unchecked conversion only for primitive
types. This is not really a significant restriction since any possible desired effect can be achieved
by unchecked conversion of access values.

The aliasing analysis done in strict aliasing mode can certainly have significant benefits.
We have seen cases of large scale application code where the time is increased by up to 5%
by turning this optimization off. If you have code that includes significant usage of unchecked
conversion, you might want to just stick with ‘-O1’ and avoid the entire issue. If you get
adequate performance at this level of optimization level, that’s probably the safest approach.
If tests show that you really need higher levels of optimization, then you can experiment with
‘-O2’ and ‘-O2 -fno-strict-aliasing’ to see how much effect this has on size and speed of
the code. If you really need to use ‘-O2’ with strict aliasing in effect, then you should review

114 GNAT User’s Guide

any uses of unchecked conversion of access types, particularly if you are getting the warnings
described above.

7.2 Text_IO Suggestions

The Ada.Text_IO package has fairly high overheads due in part to the requirement of main-
taining page and line counts. If performance is critical, a recommendation is to use Stream_IO

instead of Text_IO for volume output, since this package has less overhead.

If Text_IO must be used, note that by default output to the standard output and standard
error files is unbuffered (this provides better behavior when output statements are used for
debugging, or if the progress of a program is observed by tracking the output, e.g. by using the
Unix tail -f command to watch redirected output.

If you are generating large volumes of output with Text_IO and performance is an important
factor, use a designated file instead of the standard output file, or change the standard output
file to be buffered using Interfaces.C_Streams.setvbuf.

7.3 Reducing Size of Ada Executables with gnatelim

This section describes gnatelim, a tool which detects unused subprograms and helps the com-
piler to create a smaller executable for your program.

7.3.1 About gnatelim

When a program shares a set of Ada packages with other programs, it may happen that this
program uses only a fraction of the subprograms defined in these packages. The code created
for these unused subprograms increases the size of the executable.

gnatelim tracks unused subprograms in an Ada program and outputs a list of GNAT-specific
pragmas Eliminate marking all the subprograms that are declared but never called. By placing
the list of Eliminate pragmas in the GNAT configuration file ‘gnat.adc’ and recompiling your
program, you may decrease the size of its executable, because the compiler will not generate
the code for ’eliminated’ subprograms. See Section “Pragma Eliminate” in GNAT Reference
Manual, for more information about this pragma.

gnatelim needs as its input data the name of the main subprogram.

If a set of source files is specified as gnatelim arguments, it treats these files as a complete
set of sources making up a program to analyse, and analyses only these sources.

After a full successful build of the main subprogram gnatelim can be called without speci-
fying sources to analyse, in this case it computes the source closure of the main unit from the
‘ALI’ files.

The following command will create the set of ‘ALI’ files needed for gnatelim:
$ gnatmake -c Main_Prog

Note that gnatelim does not need object files.

7.3.2 Running gnatelim

gnatelim has the following command-line interface:
$ gnatelim [switches] -main=main_unit_name {filename} [-cargs gcc_switches]

main unit name should be a name of a source file that contains the main subprogram of a
program (partition).

Each filename is the name (including the extension) of a source file to process. “Wildcards”
are allowed, and the file name may contain path information.

‘gcc_switches ’ is a list of switches for gcc. They will be passed on to all compiler invocations
made by gnatelim to generate the ASIS trees. Here you can provide ‘-I’ switches to form the

Chapter 7: Improving Performance 115

source search path, use the ‘-gnatec’ switch to set the configuration file, use the ‘-gnat05’
switch if sources should be compiled in Ada 2005 mode etc.

gnatelim has the following switches:

‘-files=filename ’
Take the argument source files from the specified file. This file should be an ordinary
text file containing file names separated by spaces or line breaks. You can use this
switch more than once in the same call to gnatelim. You also can combine this
switch with an explicit list of files.

‘-log’ Duplicate all the output sent to ‘stderr’ into a log file. The log file is named
‘gnatelim.log’ and is located in the current directory.

‘-log=filename ’
Duplicate all the output sent to ‘stderr’ into a specified log file.

‘--no-elim-dispatch’
Do not generate pragmas for dispatching operations.

‘--ignore=filename ’
Do not generate pragmas for subprograms declared in the sources listed in a specified
file

‘-o=report_file ’
Put gnatelim output into a specified file. If this file already exists, it is overridden.
If this switch is not used, gnatelim outputs its results into ‘stderr’

‘-q’ Quiet mode: by default gnatelim outputs to the standard error stream the number
of program units left to be processed. This option turns this trace off.

‘-t’ Print out execution time.

‘-v’ Verbose mode: gnatelim version information is printed as Ada comments to the
standard output stream. Also, in addition to the number of program units left
gnatelim will output the name of the current unit being processed.

‘-wq’ Quiet warning mode - some warnings are suppressed. In particular warnings that
indicate that the analysed set of sources is incomplete to make up a partition and
that some subprogram bodies are missing are not generated.

Note: to invoke gnatelim with a project file, use the gnat driver (see Section 12.2 [The GNAT
Driver and Project Files], page 179).

7.3.3 Processing Precompiled Libraries

If some program uses a precompiled Ada library, it can be processed by gnatelim in a usual
way. gnatelim will newer generate an Eliminate pragma for a subprogram if the body of this
subprogram has not been analysed, this is a typical case for subprograms from precompiled
libraries. Switch ‘-wq’ may be used to suppress warnings about missing source files and non-
analyzed subprogram bodies that can be generated when processing precompiled Ada libraries.

7.3.4 Correcting the List of Eliminate Pragmas

In some rare cases gnatelim may try to eliminate subprograms that are actually called in the
program. In this case, the compiler will generate an error message of the form:

main.adb:4:08: cannot reference subprogram "P" eliminated at elim.out:5

You will need to manually remove the wrong Eliminate pragmas from the configuration file
indicated in the error message. You should recompile your program from scratch after that,
because you need a consistent configuration file(s) during the entire compilation.

116 GNAT User’s Guide

7.3.5 Making Your Executables Smaller

In order to get a smaller executable for your program you now have to recompile the program
completely with the configuration file containing pragmas Eliminate generated by gnatelim. If
these pragmas are placed in ‘gnat.adc’ file located in your current directory, just do:

$ gnatmake -f main_prog

(Use the ‘-f’ option for gnatmake to recompile everything with the set of pragmas Eliminate
that you have obtained with gnatelim).

Be aware that the set of Eliminate pragmas is specific to each program. It is not recom-
mended to merge sets of Eliminate pragmas created for different programs in one configuration
file.

7.3.6 Summary of the gnatelim Usage Cycle

Here is a quick summary of the steps to be taken in order to reduce the size of your executables
with gnatelim. You may use other GNAT options to control the optimization level, to produce
the debugging information, to set search path, etc.

1. Create a complete set of ‘ALI’ files (if the program has not been built already)

$ gnatmake -c main_prog

2. Generate a list of Eliminate pragmas in default configuration file ‘gnat.adc’ in the current
directory

$ gnatelim main_prog >[>] gnat.adc

3. Recompile the application

$ gnatmake -f main_prog

7.4 Reducing Size of Executables with Unused
Subprogram/Data Elimination

This section describes how you can eliminate unused subprograms and data from your executable
just by setting options at compilation time.

7.4.1 About unused subprogram/data elimination

By default, an executable contains all code and data of its composing objects (directly linked or
coming from statically linked libraries), even data or code never used by this executable.

This feature will allow you to eliminate such unused code from your executable, making it
smaller (in disk and in memory).

This functionality is available on all Linux platforms except for the IA-64 architecture and
on all cross platforms using the ELF binary file format. In both cases GNU binutils version 2.16
or later are required to enable it.

7.4.2 Compilation options

The operation of eliminating the unused code and data from the final executable is directly
performed by the linker.

In order to do this, it has to work with objects compiled with the following options:
‘-ffunction-sections’ ‘-fdata-sections’. These options are usable with C and Ada files.
They will place respectively each function or data in a separate section in the resulting object
file.

Once the objects and static libraries are created with these options, the linker can perform
the dead code elimination. You can do this by setting the ‘-Wl,--gc-sections’ option to gcc
command or in the ‘-largs’ section of gnatmake. This will perform a garbage collection of code
and data never referenced.

Chapter 7: Improving Performance 117

If the linker performs a partial link (‘-r’ ld linker option), then you will need to provide one
or several entry point using the ‘-e’ / ‘--entry’ ld option.

Note that objects compiled without the ‘-ffunction-sections’ and ‘-fdata-sections’
options can still be linked with the executable. However, no dead code elimination will be
performed on those objects (they will be linked as is).

The GNAT static library is now compiled with -ffunction-sections and -fdata-sections on
some platforms. This allows you to eliminate the unused code and data of the GNAT library
from your executable.

7.4.3 Example of unused subprogram/data elimination

Here is a simple example:
with Aux;

procedure Test is

begin

Aux.Used (10);

end Test;

package Aux is

Used_Data : Integer;

Unused_Data : Integer;

procedure Used (Data : Integer);

procedure Unused (Data : Integer);

end Aux;

package body Aux is

procedure Used (Data : Integer) is

begin

Used_Data := Data;

end Used;

procedure Unused (Data : Integer) is

begin

Unused_Data := Data;

end Unused;

end Aux;

Unused and Unused_Data are never referenced in this code excerpt, and hence they may be
safely removed from the final executable.

$ gnatmake test

$ nm test | grep used

020015f0 T aux__unused

02005d88 B aux__unused_data

020015cc T aux__used

02005d84 B aux__used_data

$ gnatmake test -cargs -fdata-sections -ffunction-sections \

-largs -Wl,--gc-sections

$ nm test | grep used

02005350 T aux__used

0201ffe0 B aux__used_data

It can be observed that the procedure Unused and the object Unused_Data are removed by the
linker when using the appropriate options.

Chapter 8: Renaming Files Using gnatchop 119

8 Renaming Files Using gnatchop

This chapter discusses how to handle files with multiple units by using the gnatchop utility.
This utility is also useful in renaming files to meet the standard GNAT default file naming
conventions.

8.1 Handling Files with Multiple Units

The basic compilation model of GNAT requires that a file submitted to the compiler have only
one unit and there be a strict correspondence between the file name and the unit name.

The gnatchop utility allows both of these rules to be relaxed, allowing GNAT to process files
which contain multiple compilation units and files with arbitrary file names. gnatchop reads
the specified file and generates one or more output files, containing one unit per file. The unit
and the file name correspond, as required by GNAT.

If you want to permanently restructure a set of “foreign” files so that they match the
GNAT rules, and do the remaining development using the GNAT structure, you can simply
use gnatchop once, generate the new set of files and work with them from that point on.

Alternatively, if you want to keep your files in the “foreign” format, perhaps to maintain
compatibility with some other Ada compilation system, you can set up a procedure where you
use gnatchop each time you compile, regarding the source files that it writes as temporary files
that you throw away.

Note that if your file containing multiple units starts with a byte order mark (BOM) specifying
UTF-8 encoding, then the files generated by gnatchop will each start with a copy of this BOM,
meaning that they can be compiled automatically in UTF-8 mode without needing to specify
an explicit encoding.

8.2 Operating gnatchop in Compilation Mode

The basic function of gnatchop is to take a file with multiple units and split it into separate files.
The boundary between files is reasonably clear, except for the issue of comments and pragmas.
In default mode, the rule is that any pragmas between units belong to the previous unit, except
that configuration pragmas always belong to the following unit. Any comments belong to the
following unit. These rules almost always result in the right choice of the split point without
needing to mark it explicitly and most users will find this default to be what they want. In this
default mode it is incorrect to submit a file containing only configuration pragmas, or one that
ends in configuration pragmas, to gnatchop.

However, using a special option to activate “compilation mode”, gnatchop can perform
another function, which is to provide exactly the semantics required by the RM for handling of
configuration pragmas in a compilation. In the absence of configuration pragmas (at the main
file level), this option has no effect, but it causes such configuration pragmas to be handled in
a quite different manner.

First, in compilation mode, if gnatchop is given a file that consists of only configuration
pragmas, then this file is appended to the ‘gnat.adc’ file in the current directory. This behavior
provides the required behavior described in the RM for the actions to be taken on submitting such
a file to the compiler, namely that these pragmas should apply to all subsequent compilations
in the same compilation environment. Using GNAT, the current directory, possibly containing
a ‘gnat.adc’ file is the representation of a compilation environment. For more information on
the ‘gnat.adc’ file, see Section 9.1 [Handling of Configuration Pragmas], page 124.

Second, in compilation mode, if gnatchop is given a file that starts with configuration prag-
mas, and contains one or more units, then these configuration pragmas are prepended to each
of the chopped files. This behavior provides the required behavior described in the RM for the

120 GNAT User’s Guide

actions to be taken on compiling such a file, namely that the pragmas apply to all units in the
compilation, but not to subsequently compiled units.

Finally, if configuration pragmas appear between units, they are appended to the previous
unit. This results in the previous unit being illegal, since the compiler does not accept con-
figuration pragmas that follow a unit. This provides the required RM behavior that forbids
configuration pragmas other than those preceding the first compilation unit of a compilation.

For most purposes, gnatchop will be used in default mode. The compilation mode described
above is used only if you need exactly accurate behavior with respect to compilations, and you
have files that contain multiple units and configuration pragmas. In this circumstance the use of
gnatchop with the compilation mode switch provides the required behavior, and is for example
the mode in which GNAT processes the ACVC tests.

8.3 Command Line for gnatchop

The gnatchop command has the form:

$ gnatchop switches file name [file name ...]
[directory]

The only required argument is the file name of the file to be chopped. There are no restrictions
on the form of this file name. The file itself contains one or more Ada units, in normal GNAT
format, concatenated together. As shown, more than one file may be presented to be chopped.

When run in default mode, gnatchop generates one output file in the current directory for
each unit in each of the files.

directory, if specified, gives the name of the directory to which the output files will be written.
If it is not specified, all files are written to the current directory.

For example, given a file called ‘hellofiles’ containing� �
procedure hello;

with Text_IO; use Text_IO;

procedure hello is

begin

Put_Line ("Hello");

end hello;
 	
the command

$ gnatchop hellofiles

generates two files in the current directory, one called ‘hello.ads’ containing the single line
that is the procedure spec, and the other called ‘hello.adb’ containing the remaining text. The
original file is not affected. The generated files can be compiled in the normal manner.

When gnatchop is invoked on a file that is empty or that contains only empty lines and/or
comments, gnatchop will not fail, but will not produce any new sources.

For example, given a file called ‘toto.txt’ containing� �
-- Just a comment
 	

the command

$ gnatchop toto.txt

will not produce any new file and will result in the following warnings:

toto.txt:1:01: warning: empty file, contains no compilation units

no compilation units found

no source files written

Chapter 8: Renaming Files Using gnatchop 121

8.4 Switches for gnatchop

gnatchop recognizes the following switches:

‘--version’
Display Copyright and version, then exit disregarding all other options.

‘--help’ If ‘--version’ was not used, display usage, then exit disregarding all other options.

‘-c’ Causes gnatchop to operate in compilation mode, in which configuration pragmas
are handled according to strict RM rules. See previous section for a full description
of this mode.

‘-gnatxxx ’
This passes the given ‘-gnatxxx ’ switch to gnat which is used to parse the given
file. Not all xxx options make sense, but for example, the use of ‘-gnati2’ allows
gnatchop to process a source file that uses Latin-2 coding for identifiers.

‘-h’ Causes gnatchop to generate a brief help summary to the standard output file
showing usage information.

‘-kmm ’ Limit generated file names to the specified number mm of characters. This is useful if
the resulting set of files is required to be interoperable with systems which limit the
length of file names. No space is allowed between the ‘-k’ and the numeric value.
The numeric value may be omitted in which case a default of ‘-k8’, suitable for use
with DOS-like file systems, is used. If no ‘-k’ switch is present then there is no limit
on the length of file names.

‘-p’ Causes the file modification time stamp of the input file to be preserved and used for
the time stamp of the output file(s). This may be useful for preserving coherency of
time stamps in an environment where gnatchop is used as part of a standard build
process.

‘-q’ Causes output of informational messages indicating the set of generated files to be
suppressed. Warnings and error messages are unaffected.

‘-r’ Generate Source_Reference pragmas. Use this switch if the output files are re-
garded as temporary and development is to be done in terms of the original un-
chopped file. This switch causes Source_Reference pragmas to be inserted into
each of the generated files to refers back to the original file name and line number.
The result is that all error messages refer back to the original unchopped file. In
addition, the debugging information placed into the object file (when the ‘-g’ switch
of gcc or gnatmake is specified) also refers back to this original file so that tools like
profilers and debuggers will give information in terms of the original unchopped file.

If the original file to be chopped itself contains a Source_Reference pragma refer-
encing a third file, then gnatchop respects this pragma, and the generated Source_

Reference pragmas in the chopped file refer to the original file, with appropriate
line numbers. This is particularly useful when gnatchop is used in conjunction with
gnatprep to compile files that contain preprocessing statements and multiple units.

‘-v’ Causes gnatchop to operate in verbose mode. The version number and copyright
notice are output, as well as exact copies of the gnat1 commands spawned to obtain
the chop control information.

‘-w’ Overwrite existing file names. Normally gnatchop regards it as a fatal error if there
is already a file with the same name as a file it would otherwise output, in other
words if the files to be chopped contain duplicated units. This switch bypasses this
check, and causes all but the last instance of such duplicated units to be skipped.

122 GNAT User’s Guide

‘--GCC=xxxx ’
Specify the path of the GNAT parser to be used. When this switch is used, no
attempt is made to add the prefix to the GNAT parser executable.

8.5 Examples of gnatchop Usage

gnatchop -w hello_s.ada prerelease/files

Chops the source file ‘hello_s.ada’. The output files will be placed in the directory
‘prerelease/files’, overwriting any files with matching names in that directory
(no files in the current directory are modified).

gnatchop archive

Chops the source file ‘archive’ into the current directory. One useful application of
gnatchop is in sending sets of sources around, for example in email messages. The
required sources are simply concatenated (for example, using a Unix cat command),
and then gnatchop is used at the other end to reconstitute the original file names.

gnatchop file1 file2 file3 direc

Chops all units in files ‘file1’, ‘file2’, ‘file3’, placing the resulting files in the
directory ‘direc’. Note that if any units occur more than once anywhere within
this set of files, an error message is generated, and no files are written. To override
this check, use the ‘-w’ switch, in which case the last occurrence in the last file will
be the one that is output, and earlier duplicate occurrences for a given unit will be
skipped.

Chapter 9: Configuration Pragmas 123

9 Configuration Pragmas

Configuration pragmas include those pragmas described as such in the Ada Reference Manual,
as well as implementation-dependent pragmas that are configuration pragmas. See Section
“Implementation Defined Pragmas” in GNAT Reference Manual, for details on these additional
GNAT-specific configuration pragmas. Most notably, the pragma Source_File_Name, which
allows specifying non-default names for source files, is a configuration pragma. The following is
a complete list of configuration pragmas recognized by GNAT:

Ada_83

Ada_95

Ada_05

Ada_2005

Ada_12

Ada_2012

Annotate

Assertion_Policy

Assume_No_Invalid_Values

C_Pass_By_Copy

Check_Name

Check_Policy

Compile_Time_Error

Compile_Time_Warning

Compiler_Unit

Component_Alignment

Convention_Identifier

Debug_Policy

Detect_Blocking

Default_Storage_Pool

Discard_Names

Elaboration_Checks

Eliminate

Extend_System

Extensions_Allowed

External_Name_Casing

Fast_Math

Favor_Top_Level

Float_Representation

Implicit_Packing

Initialize_Scalars

Interrupt_State

License

Locking_Policy

Long_Float

No_Run_Time

No_Strict_Aliasing

Normalize_Scalars

Optimize_Alignment

Persistent_BSS

Polling

Priority_Specific_Dispatching

Profile

Profile_Warnings

Propagate_Exceptions

Queuing_Policy

Ravenscar

Restricted_Run_Time

Restrictions

Restrictions_Warnings

Reviewable

Short_Circuit_And_Or

Source_File_Name

Source_File_Name_Project

Style_Checks

124 GNAT User’s Guide

Suppress

Suppress_Exception_Locations

Task_Dispatching_Policy

Universal_Data

Unsuppress

Use_VADS_Size

Validity_Checks

Warnings

Wide_Character_Encoding

9.1 Handling of Configuration Pragmas

Configuration pragmas may either appear at the start of a compilation unit, or they can appear
in a configuration pragma file to apply to all compilations performed in a given compilation
environment.

GNAT also provides the gnatchop utility to provide an automatic way to handle configuration
pragmas following the semantics for compilations (that is, files with multiple units), described
in the RM. See Section 8.2 [Operating gnatchop in Compilation Mode], page 119 for details.
However, for most purposes, it will be more convenient to edit the ‘gnat.adc’ file that contains
configuration pragmas directly, as described in the following section.

In the case of Restrictions pragmas appearing as configuration pragmas in individual com-
pilation units, the exact handling depends on the type of restriction.

Restrictions that require partition-wide consistency (like No_Tasking) are recognized wher-
ever they appear and can be freely inherited, e.g. from a with’ed unit to the with’ing unit. This
makes sense since the binder will in any case insist on seeing consistent use, so any unit not
conforming to any restrictions that are anywhere in the partition will be rejected, and you might
as well find that out at compile time rather than at bind time.

For restrictions that do not require partition-wide consistency, e.g. SPARK or
No Implementation Attributes, in general the restriction applies only to the unit in which the
pragma appears, and not to any other units.

The exception is No Elaboration Code which always applies to the entire object file from
a compilation, i.e. to the body, spec, and all subunits. This restriction can be specified in a
configuration pragma file, or it can be on the body and/or the spec (in eithe case it applies to
all the relevant units). It can appear on a subunit only if it has previously appeared in the body
of spec.

9.2 The Configuration Pragmas Files

In GNAT a compilation environment is defined by the current directory at the time that a
compile command is given. This current directory is searched for a file whose name is ‘gnat.adc’.
If this file is present, it is expected to contain one or more configuration pragmas that will be
applied to the current compilation. However, if the switch ‘-gnatA’ is used, ‘gnat.adc’ is not
considered.

Configuration pragmas may be entered into the ‘gnat.adc’ file either by running gnatchop

on a source file that consists only of configuration pragmas, or more conveniently by direct
editing of the ‘gnat.adc’ file, which is a standard format source file.

In addition to ‘gnat.adc’, additional files containing configuration pragmas may be applied
to the current compilation using the switch ‘-gnatec’path. path must designate an existing file
that contains only configuration pragmas. These configuration pragmas are in addition to those
found in ‘gnat.adc’ (provided ‘gnat.adc’ is present and switch ‘-gnatA’ is not used).

It is allowed to specify several switches ‘-gnatec’, all of which will be taken into account.

Chapter 9: Configuration Pragmas 125

If you are using project file, a separate mechanism is provided using project attributes, see
Section 12.1.3 [Specifying Configuration Pragmas], page 178 for more details.

Chapter 10: Handling Arbitrary File Naming Conventions Using gnatname 127

10 Handling Arbitrary File Naming Conventions
Using gnatname

10.1 Arbitrary File Naming Conventions

The GNAT compiler must be able to know the source file name of a compilation unit. When
using the standard GNAT default file naming conventions (.ads for specs, .adb for bodies), the
GNAT compiler does not need additional information.

When the source file names do not follow the standard GNAT default file naming conventions,
the GNAT compiler must be given additional information through a configuration pragmas file
(see Chapter 9 [Configuration Pragmas], page 123) or a project file. When the non-standard file
naming conventions are well-defined, a small number of pragmas Source_File_Name specifying
a naming pattern (see Section 2.5 [Alternative File Naming Schemes], page 17) may be suffi-
cient. However, if the file naming conventions are irregular or arbitrary, a number of pragma
Source_File_Name for individual compilation units must be defined. To help maintain the cor-
respondence between compilation unit names and source file names within the compiler, GNAT
provides a tool gnatname to generate the required pragmas for a set of files.

10.2 Running gnatname

The usual form of the gnatname command is

$ gnatname [switches] naming_pattern [naming_patterns]
[--and [switches] naming_pattern [naming_patterns]]

All of the arguments are optional. If invoked without any argument, gnatname will display its
usage.

When used with at least one naming pattern, gnatname will attempt to find all the compilation
units in files that follow at least one of the naming patterns. To find these compilation units,
gnatname will use the GNAT compiler in syntax-check-only mode on all regular files.

One or several Naming Patterns may be given as arguments to gnatname. Each Naming Pattern
is enclosed between double quotes (or single quotes on Windows). A Naming Pattern is a regular
expression similar to the wildcard patterns used in file names by the Unix shells or the DOS
prompt.

gnatname may be called with several sections of directories/patterns. Sections are separated by
switch --and. In each section, there must be at least one pattern. If no directory is specified in
a section, the current directory (or the project directory is -P is used) is implied. The options
other that the directory switches and the patterns apply globally even if they are in different
sections.

Examples of Naming Patterns are

"*.[12].ada"

"*.ad[sb]*"

"body_*" "spec_*"

For a more complete description of the syntax of Naming Patterns, see the second kind of regular
expressions described in ‘g-regexp.ads’ (the “Glob” regular expressions).

When invoked with no switch -P, gnatname will create a configuration pragmas file ‘gnat.adc’
in the current working directory, with pragmas Source_File_Name for each file that contains a
valid Ada unit.

10.3 Switches for gnatname

Switches for gnatname must precede any specified Naming Pattern.

You may specify any of the following switches to gnatname:

128 GNAT User’s Guide

‘--version’
Display Copyright and version, then exit disregarding all other options.

‘--help’ If ‘--version’ was not used, display usage, then exit disregarding all other options.

‘--and’ Start another section of directories/patterns.

‘-c‘file’’
Create a configuration pragmas file ‘file’ (instead of the default ‘gnat.adc’). There
may be zero, one or more space between ‘-c’ and ‘file’. ‘file’ may include di-
rectory information. ‘file’ must be writable. There may be only one switch ‘-c’.
When a switch ‘-c’ is specified, no switch ‘-P’ may be specified (see below).

‘-d‘dir’’ Look for source files in directory ‘dir’. There may be zero, one or more spaces
between ‘-d’ and ‘dir’. When a switch ‘-d’ is specified, the current working directory
will not be searched for source files, unless it is explicitly specified with a ‘-d’ or
‘-D’ switch. Several switches ‘-d’ may be specified. If ‘dir’ is a relative path, it is
relative to the directory of the configuration pragmas file specified with switch ‘-c’,
or to the directory of the project file specified with switch ‘-P’ or, if neither switch
‘-c’ nor switch ‘-P’ are specified, it is relative to the current working directory. The
directory specified with switch ‘-d’ must exist and be readable.

‘-D‘file’’
Look for source files in all directories listed in text file ‘file’. There may be zero,
one or more spaces between ‘-D’ and ‘file’. ‘file’ must be an existing, readable
text file. Each nonempty line in ‘file’ must be a directory. Specifying switch ‘-D’ is
equivalent to specifying as many switches ‘-d’ as there are nonempty lines in ‘file’.

‘-f‘pattern’’
Foreign patterns. Using this switch, it is possible to add sources of languages other
than Ada to the list of sources of a project file. It is only useful if a -P switch is
used. For example,

gnatname -Pprj -f"*.c" "*.ada"

will look for Ada units in all files with the ‘.ada’ extension, and will add to the list
of file for project ‘prj.gpr’ the C files with extension ‘.c’.

‘-h’ Output usage (help) information. The output is written to ‘stdout’.

‘-P‘proj’’
Create or update project file ‘proj’. There may be zero, one or more space between
‘-P’ and ‘proj’. ‘proj’ may include directory information. ‘proj’ must be writable.
There may be only one switch ‘-P’. When a switch ‘-P’ is specified, no switch ‘-c’
may be specified.

‘-v’ Verbose mode. Output detailed explanation of behavior to ‘stdout’. This includes
name of the file written, the name of the directories to search and, for each file
in those directories whose name matches at least one of the Naming Patterns, an
indication of whether the file contains a unit, and if so the name of the unit.

‘-v -v’ Very Verbose mode. In addition to the output produced in verbose mode, for each
file in the searched directories whose name matches none of the Naming Patterns,
an indication is given that there is no match.

‘-x‘pattern’’
Excluded patterns. Using this switch, it is possible to exclude some files that would
match the name patterns. For example,

gnatname -x "*_nt.ada" "*.ada"

will look for Ada units in all files with the ‘.ada’ extension, except those whose
names end with ‘_nt.ada’.

Chapter 10: Handling Arbitrary File Naming Conventions Using gnatname 129

10.4 Examples of gnatname Usage
$ gnatname -c /home/me/names.adc -d sources "[a-z]*.ada*"

In this example, the directory ‘/home/me’ must already exist and be writable. In addition, the
directory ‘/home/me/sources’ (specified by ‘-d sources’) must exist and be readable.

Note the optional spaces after ‘-c’ and ‘-d’.
$ gnatname -P/home/me/proj -x "*_nt_body.ada"

-dsources -dsources/plus -Dcommon_dirs.txt "body_*" "spec_*"

Note that several switches ‘-d’ may be used, even in conjunction with one or several switches
‘-D’. Several Naming Patterns and one excluded pattern are used in this example.

Chapter 11: GNAT Project Manager 131

11 GNAT Project Manager

11.1 Introduction

This chapter describes GNAT’s Project Manager, a facility that allows you to manage complex
builds involving a number of source files, directories, and options for different system configura-
tions. In particular, project files allow you to specify:

• The directory or set of directories containing the source files, and/or the names of the
specific source files themselves

• The directory in which the compiler’s output (‘ALI’ files, object files, tree files, etc.) is to
be placed

• The directory in which the executable programs are to be placed

• Switch settings for any of the project-enabled tools; you can apply these settings either
globally or to individual compilation units.

• The source files containing the main subprogram(s) to be built

• The source programming language(s)

• Source file naming conventions; you can specify these either globally or for individual com-
pilation units (see Section 11.2.8 [Naming Schemes], page 140).

• Change any of the above settings depending on external values, thus enabling the reuse of
the projects in various scenarios (see Section 11.4 [Scenarios in Projects], page 145).

• Automatically build libraries as part of the build process (see Section 11.5 [Library Projects],
page 147).

Project files are written in a syntax close to that of Ada, using familiar notions such as packages,
context clauses, declarations, default values, assignments, and inheritance (see Section 11.9
[Project File Reference], page 162).

Project files can be built hierarchically from other project files, simplifying complex system
integration and project reuse (see Section 11.3 [Organizing Projects into Subsystems], page 142).

• One project can import other projects containing needed source files. More generally, the
Project Manager lets you structure large development efforts into hierarchical subsystems,
where build decisions are delegated to the subsystem level, and thus different compilation
environments (switch settings) used for different subsystems.

• You can organize GNAT projects in a hierarchy: a child project can extend a parent project,
inheriting the parent’s source files and optionally overriding any of them with alternative
versions (see Section 11.6 [Project Extension], page 152).

Several tools support project files, generally in addition to specifying the information on the
command line itself). They share common switches to control the loading of the project (in par-
ticular ‘-Pprojectfile ’ and ‘-Xvbl=value ’). See Section 12.1.1 [Switches Related to Project
Files], page 175.

The Project Manager supports a wide range of development strategies, for systems of all
sizes. Here are some typical practices that are easily handled:

• Using a common set of source files and generating object files in different directories via
different switch settings. It can be used for instance, for generating separate sets of object
files for debugging and for production.

• Using a mostly-shared set of source files with different versions of some units or subunits.
It can be used for instance, for grouping and hiding

all OS dependencies in a small number of implementation units.

132 GNAT User’s Guide

Project files can be used to achieve some of the effects of a source versioning system (for
example, defining separate projects for the different sets of sources that comprise different re-
leases) but the Project Manager is independent of any source configuration management tool
that might be used by the developers.

The various sections below introduce the different concepts related to projects. Each sec-
tion starts with examples and use cases, and then goes into the details of related project file
capabilities.

11.2 Building With Projects

In its simplest form, a unique project is used to build a single executable. This section con-
centrates on such a simple setup. Later sections will extend this basic model to more complex
setups.

The following concepts are the foundation of project files, and will be further detailed later
in this documentation. They are summarized here as a reference.

Project file:
A text file using an Ada-like syntax, generally using the ‘.gpr’ extension. It defines
build-related characteristics of an application. The characteristics include the list
of sources, the location of those sources, the location for the generated object files,
the name of the main program, and the options for the various tools involved in the
build process.

Project attribute:
A specific project characteristic is defined by an attribute clause. Its value is a
string or a sequence of strings. All settings in a project are defined through a
list of predefined attributes with precise semantics. See Section 11.9.9 [Attributes],
page 169.

Package in a project:
Global attributes are defined at the top level of a project. Attributes affecting
specific tools are grouped in a package whose name is related to tool’s function.
The most common packages are Builder, Compiler, Binder, and Linker. See
Section 11.9.4 [Packages], page 164.

Project variables:
In addition to attributes, a project can use variables to store intermediate values
and avoid duplication in complex expressions. It can be initialized with a value
coming from the environment. A frequent use of variables is to define scenarios. See
Section 11.9.6 [External Values], page 167, See Section 11.4 [Scenarios in Projects],
page 145, and See Section 11.9.8 [Variables], page 168.

Source files and source directories:
A source file is associated with a language through a naming convention. For in-
stance, foo.c is typically the name of a C source file; bar.ads or bar.1.ada are two
common naming conventions for a file containing an Ada spec. A compilation unit
is often composed of a main source file and potentially several auxiliary ones, such
as header files in C. The naming conventions can be user defined See Section 11.2.8
[Naming Schemes], page 140, and will drive the builder to call the appropriate com-
piler for the given source file. Source files are searched for in the source directories
associated with the project through the Source Dirs attribute. By default, all the
files (in these source directories) following the naming conventions associated with
the declared languages are considered to be part of the project. It is also possible
to limit the list of source files using the Source Files or Source List File attributes.

Chapter 11: GNAT Project Manager 133

Note that those last two attributes only accept basenames with no directory infor-
mation.

Object files and object directory:
An object file is an intermediate file produced by the compiler from a compilation
unit. It is used by post-compilation tools to produce final executables or libraries.
Object files produced in the context of a given project are stored in a single directory
that can be specified by the Object Dir attribute. In order to store objects in two
or more object directories, the system must be split into distinct subsystems with
their own project file.

The following subsections introduce gradually all the attributes of interest for simple build
needs. Here is the simple setup that will be used in the following examples.

The Ada source files ‘pack.ads’, ‘pack.adb’, and ‘proc.adb’ are in the ‘common/’ directory.
The file ‘proc.adb’ contains an Ada main subprogram Proc that withs package Pack. We want
to compile these source files with the switch ‘-O2’, and put the resulting files in the directory
‘obj/’.

common/

pack.ads

pack.adb

proc.adb

common/release/

proc.ali, proc.o pack.ali, pack.o

Our project is to be called Build. The name of the file is the name of the project (case-insensitive)
with the ‘.gpr’ extension, therefore the project file name is ‘build.gpr’. This is not mandatory,
but a warning is issued when this convention is not followed.

This is a very simple example, and as stated above, a single project file is enough for it. We
will thus create a new file, that for now should contain the following code:

project Build is
end Build;

11.2.1 Source Files and Directories

When you create a new project, the first thing to describe is how to find the corresponding
source files. This is the only settings that are needed by all the tools that will use this project
(builder, compiler, binder and linker for the compilation, IDEs to edit the source files,. . .).

First step is to declare the source directories, which are the directories to be searched to find
source files. In the case of the example, the ‘common’ directory is the only source directory.

There are several ways of defining source directories:

• When the attribute Source Dirs is not used, a project contains a single source directory
which is the one where the project file itself resides. In our example, if ‘build.gpr’ is placed
in the ‘common’ directory, the project has the needed implicit source directory.

• The attribute Source Dirs can be set to a list of path names, one for each of the source
directories. Such paths can either be absolute names (for instance ‘"/usr/local/common/"’
on UNIX), or relative to the directory in which the project file resides (for instance "." if
‘build.gpr’ is inside ‘common/’, or "common" if it is one level up). Each of the source
directories must exist and be readable.

The syntax for directories is platform specific. For portability, however, the project man-
ager will always properly translate UNIX-like path names to the native format of specific
platform. For instance, when the same project file is to be used both on Unix and Windows,
"/" should be used as the directory separator rather than "\".

• The attribute Source Dirs can automatically include subdirectories using a special syntax
inspired by some UNIX shells. If any of the path in the list ends with "**", then that path

134 GNAT User’s Guide

and all its subdirectories (recursively) are included in the list of source directories. For
instance, ‘**’ and ‘./**’ represent the complete directory tree rooted at ".".

When using that construct, it can sometimes be convenient to also use the attribute Ex-
cluded Source Dirs, which is also a list of paths. Each entry specifies a directory whose
immediate content, not including subdirs, is to be excluded. It is also possible to exclude a
complete directory subtree using the "**" notation.

It is often desirable to remove, from the source directories, directory subtrees rooted at
some subdirectories. An example is the subdirectories created by a Version Control Sys-
tem such as Subversion that creates directory subtrees .svn/**. To do that, attribute
Ignore Source Sub Dirs can be used. It specifies the list of simple file names for the root
of these undesirable directory subtrees.

When applied to the simple example, and because we generally prefer to have the project file at
the toplevel directory rather than mixed with the sources, we will create the following file

build.gpr

project Build is
for Source_Dirs use ("common"); -- <<<<

end Build;

Once source directories have been specified, one may need to indicate source files of interest. By
default, all source files present in the source directories are considered by the project manager.
When this is not desired, it is possible to specify the list of sources to consider explicitly. In
such a case, only source file base names are indicated and not their absolute or relative path
names. The project manager is in charge of locating the specified source files in the specified
source directories.

• By default, the project manager search for all source files of all specified languages in all
the source directories.

Since the project manager was initially developed for Ada environments, the default lan-
guage is usually Ada and the above project file is complete: it defines without ambiguity
the sources composing the project: that is to say, all the sources in subdirectory "common"
for the default language (Ada) using the default naming convention.

However, when compiling a multi-language application, or a pure C application, the project
manager must be told which languages are of interest, which is done by setting the Lan-
guages attribute to a list of strings, each of which is the name of a language. Tools like
gnatmake only know about Ada, while other tools like gprbuild know about many more
languages such as C, C++, Fortran, assembly and others can be added dynamically.

Even when using only Ada, the default naming might not be suitable. Indeed, how does the
project manager recognizes an "Ada file" from any other file? Project files can describe the
naming scheme used for source files, and override the default (see Section 11.2.8 [Naming
Schemes], page 140). The default is the standard GNAT extension (‘.adb’ for bodies and
‘.ads’ for specs), which is what is used in our example, explaining why no naming scheme
is explicitly specified. See Section 11.2.8 [Naming Schemes], page 140.

• Source Files In some cases, source directories might contain files that should not be in-
cluded in a project. One can specify the explicit list of file names to be considered through
the Source Files attribute. When this attribute is defined, instead of looking at every file
in the source directories, the project manager takes only those names into consideration
reports errors if they cannot be found in the source directories or does not correspond to
the naming scheme.

• For various reasons, it is sometimes useful to have a project with no sources (most of the
time because the attributes defined in the project file will be reused in other projects, as
explained in see Section 11.3 [Organizing Projects into Subsystems], page 142. To do this,
the attribute Source Files is set to the empty list, i.e. (). Alternatively, Source Dirs can
be set to the empty list, with the same result.

Chapter 11: GNAT Project Manager 135

• Source_List_File If there is a great number of files, it might be more convenient to use
the attribute Source List File, which specifies the full path of a file. This file must contain a
list of source file names (one per line, no directory information) that are searched as if they
had been defined through Source Files. Such a file can easily be created through external
tools.

A warning is issued if both attributes Source_Files and Source_List_File are given
explicit values. In this case, the attribute Source_Files prevails.

• Excluded_Source_Files Specifying an explicit list of files is not always convenient.It might
be more convenient to use the default search rules with specific exceptions. This can be done
thanks to the attribute Excluded Source Files (or its synonym Locally Removed Files).
Its value is the list of file names that should not be taken into account. This attribute is
often used when extending a project, See Section 11.6 [Project Extension], page 152. A
similar attribute Excluded Source List File plays the same role but takes the name of file
containing file names similarly to Source_List_File.

In most simple cases, such as the above example, the default source file search behavior provides
the expected result, and we do not need to add anything after setting Source_Dirs. The project
manager automatically finds ‘pack.ads’, ‘pack.adb’ and ‘proc.adb’ as source files of the project.

Note that it is considered an error for a project file to have no sources attached to it unless
explicitly declared as mentioned above.

If the order of the source directories is known statically, that is if "**" is not used in the
string list Source_Dirs, then there may be several files with the same source file name sitting in
different directories of the project. In this case, only the file in the first directory is considered as
a source of the project and the others are hidden. If "**" is used in the string list Source_Dirs,
it is an error to have several files with the same source file name in the same directory "**"

subtree, since there would be an ambiguity as to which one should be used. However, two files
with the same source file name may exist in two single directories or directory subtrees. In this
case, the one in the first directory or directory subtree is a source of the project.

11.2.2 Object and Exec Directory

The next step when writing a project is to indicate where the compiler should put the object
files. In fact, the compiler and other tools might create several different kind of files (for GNAT,
there is the object file and the ALI file for instance). One of the important concepts in projects
is that most tools may consider source directories as read-only and do not attempt to create
new or temporary files there. Instead, all files are created in the object directory. It is of course
not true for project-aware IDEs, whose purpose it is to create the source files.

The object directory is specified through the Object Dir attribute. Its value is the path to
the object directory, either absolute or relative to the directory containing the project file. This
directory must already exist and be readable and writable, although some tools have a switch
to create the directory if needed (See the switch -p for gnatmake and gprbuild).

If the attribute Object_Dir is not specified, it defaults to the project directory, that is the
directory containing the project file.

For our example, we can specify the object dir in this way:

project Build is
for Source_Dirs use ("common");

for Object_Dir use "obj"; -- <<<<

end Build;

As mentioned earlier, there is a single object directory per project. As a result, if you have an
existing system where the object files are spread in several directories, you can either move all
of them into the same directory if you want to build it with a single project file, or study the
section on subsystems (see Section 11.3 [Organizing Projects into Subsystems], page 142) to see

136 GNAT User’s Guide

how each separate object directory can be associated with one of the subsystem constituting the
application.

When the linker is called, it usually creates an executable. By default, this executable
is placed in the object directory of the project. It might be convenient to store it in its own
directory.

This can be done through the Exec_Dir attribute, which, like Object Dir contains a single
absolute or relative path and must point to an existing and writable directory, unless you ask
the tool to create it on your behalf. When not specified, It defaults to the object directory and
therefore to the project file’s directory if neither Object Dir nor Exec Dir was specified.

In the case of the example, let’s place the executable in the root of the hierarchy, ie the same
directory as ‘build.gpr’. Hence the project file is now

project Build is
for Source_Dirs use ("common");

for Object_Dir use "obj";

for Exec_Dir use "."; -- <<<<

end Build;

11.2.3 Main Subprograms

In the previous section, executables were mentioned. The project manager needs to be taught
what they are. In a project file, an executable is indicated by pointing to source file of the
main subprogram. In C this is the file that contains the main function, and in Ada the file that
contains the main unit.

There can be any number of such main files within a given project, and thus several executa-
bles can be built in the context of a single project file. Of course, one given executable might
not (and in fact will not) need all the source files referenced by the project. As opposed to other
build environments such as makefile, one does not need to specify the list of dependencies of
each executable, the project-aware builders knows enough of the semantics of the languages to
build ands link only the necessary elements.

The list of main files is specified via the Main attribute. It contains a list of file names (no
directories). If a project defines this attribute, it is not necessary to identify main files on the
command line when invoking a builder, and editors like GPS will be able to create extra menus
to spawn or debug the corresponding executables.

project Build is
for Source_Dirs use ("common");

for Object_Dir use "obj";

for Exec_Dir use ".";

for Main use ("proc.adb"); -- <<<<

end Build;

If this attribute is defined in the project, then spawning the builder with a command such as

gnatmake -Pbuild

automatically builds all the executables corresponding to the files listed in the Main attribute.
It is possible to specify one or more executables on the command line to build a subset of them.

11.2.4 Tools Options in Project Files

We now have a project file that fully describes our environment, and can be used to build the
application with a simple gnatmake command as seen in the previous section. In fact, the empty
project we showed immediately at the beginning (with no attribute at all) could already fulfill
that need if it was put in the ‘common’ directory.

Of course, we always want more control. This section will show you how to specify the
compilation switches that the various tools involved in the building of the executable should
use.

Chapter 11: GNAT Project Manager 137

Since source names and locations are described into the project file, it is not necessary to
use switches on the command line for this purpose (switches such as -I for gcc). This removes a
major source of command line length overflow. Clearly, the builders will have to communicate
this information one way or another to the underlying compilers and tools they call but they
usually use response files for this and thus should not be subject to command line overflows.

Several tools are participating to the creation of an executable: the compiler produces object
files from the source files; the binder (in the Ada case) creates an source file that takes care,
among other things, of elaboration issues and global variables initialization; and the linker
gathers everything into a single executable that users can execute. All these tools are known
by the project manager and will be called with user defined switches from the project files.
However, we need to introduce a new project file concept to express which switches to be used
for any of the tools involved in the build.

A project file is subdivided into zero or more packages, each of which contains the attributes
specific to one tool (or one set of tools). Project files use an Ada-like syntax for packages.
Package names permitted in project files are restricted to a predefined set (see Section 11.9.4
[Packages], page 164), and the contents of packages are limited to a small set of constructs and
attributes (see Section 11.9.9 [Attributes], page 169).

Our example project file can be extended with the following empty packages. At this stage,
they could all be omitted since they are empty, but they show which packages would be involved
in the build process.

project Build is
for Source_Dirs use ("common");

for Object_Dir use "obj";

for Exec_Dir use ".";

for Main use ("proc.adb");

package Builder is --<<< for gnatmake and gprbuild

end Builder;

package Compiler is --<<< for the compiler

end Compiler;

package Binder is --<<< for the binder

end Binder;

package Linker is --<<< for the linker

end Linker;

end Build;

Let’s first examine the compiler switches. As stated in the initial description of the example,
we want to compile all files with ‘-O2’. This is a compiler switch, although it is usual, on the
command line, to pass it to the builder which then passes it to the compiler. It is recommended
to use directly the right package, which will make the setup easier to understand for other people.

Several attributes can be used to specify the switches:

Default Switches:
This is the first mention in this manual of an indexed attribute. When this attribute
is defined, one must supply an index in the form of a literal string. In the case of
Default Switches, the index is the name of the language to which the switches apply
(since a different compiler will likely be used for each language, and each compiler
has its own set of switches). The value of the attribute is a list of switches.

In this example, we want to compile all Ada source files with the ‘-O2’ switch, and
the resulting project file is as follows (only the Compiler package is shown):

package Compiler is
for Default_Switches ("Ada") use ("-O2");

end Compiler;

138 GNAT User’s Guide

Switches: in some cases, we might want to use specific switches for one or more files. For
instance, compiling ‘proc.adb’ might not be possible at high level of optimization
because of a compiler issue. In such a case, the Switches attribute (indexed on the
file name) can be used and will override the switches defined by Default Switches.
Our project file would become:

package Compiler is
for Default_Switches ("Ada") use ("-O2");

for Switches ("proc.adb") use ("-O0");

end Compiler;

Switches may take a pattern as an index, such as in:
package Compiler is

for Default_Switches ("Ada") use ("-O2");

for Switches ("pkg*") use ("-O0");

end Compiler;

Sources ‘pkg.adb’ and ‘pkg-child.adb’ would be compiled with -O0, not -O2.

Switches can also be given a language name as index instead of a file name in
which case it has the same semantics as Default Switches. However, indexes with
wild cards are never valid for language name.

Local Configuration Pragmas:
this attribute may specify the path of a file containing configuration pragmas for use
by the Ada compiler, such as pragma Restrictions (No_Tasking). These pragmas
will be used for all the sources of the project.

The switches for the other tools are defined in a similar manner through the Default Switches
and Switches attributes, respectively in the Builder package (for gnatmake and gprbuild), the
Binder package (binding Ada executables) and the Linker package (for linking executables).

11.2.5 Compiling with Project Files

Now that our project files are written, let’s build our executable. Here is the command we would
use from the command line:

gnatmake -Pbuild

This will automatically build the executables specified through the Main attribute: for each, it
will compile or recompile the sources for which the object file does not exist or is not up-to-date;
it will then run the binder; and finally run the linker to create the executable itself.

gnatmake only knows how to handle Ada files. By using gprbuild as a builder, you could
automatically manage C files the same way: create the file ‘utils.c’ in the ‘common’ directory,
set the attribute Languages to "(Ada, C)", and run

gprbuild -Pbuild

Gprbuild knows how to recompile the C files and will recompile them only if one of their
dependencies has changed. No direct indication on how to build the various elements is given
in the project file, which describes the project properties rather than a set of actions to be
executed. Here is the invocation of gprbuild when building a multi-language program:

$ gprbuild -Pbuild

gcc -c proc.adb

gcc -c pack.adb

gcc -c utils.c

gprbind proc

...

gcc proc.o -o proc

Notice the three steps described earlier:

Chapter 11: GNAT Project Manager 139

• The first three gcc commands correspond to the compilation phase.

• The gprbind command corresponds to the post-compilation phase.

• The last gcc command corresponds to the final link.

The default output of GPRbuild’s execution is kept reasonably simple and easy to understand.
In particular, some of the less frequently used commands are not shown, and some parameters
are abbreviated. So it is not possible to rerun the effect of the gprbuild command by cut-and-
pasting its output. GPRbuild’s option -v provides a much more verbose output which includes,
among other information, more complete compilation, post-compilation and link commands.

11.2.6 Executable File Names

By default, the executable name corresponding to a main file is computed from the main source
file name. Through the attribute Builder.Executable, it is possible to change this default.

For instance, instead of building proc (or proc.exe on Windows), we could configure our
project file to build "proc1" (resp proc1.exe) with the following addition:

project Build is

... -- same as before

package Builder is

for Executable ("proc.adb") use "proc1";

end Builder

end Build;

Attribute Executable Suffix, when specified, may change the suffix of the executable files, when
no attribute Executable applies: its value replace the platform-specific executable suffix. The
default executable suffix is empty on UNIX and ".exe" on Windows.

It is also possible to change the name of the produced executable by using the command
line switch ‘-o’. When several mains are defined in the project, it is not possible to use the
‘-o’ switch and the only way to change the names of the executable is provided by Attributes
Executable and Executable_Suffix.

11.2.7 Avoid Duplication With Variables

To illustrate some other project capabilities, here is a slightly more complex project using similar
sources and a main program in C:

project C_Main is

for Languages use ("Ada", "C");

for Source_Dirs use ("common");

for Object_Dir use "obj";

for Main use ("main.c");

package Compiler is

C_Switches := ("-pedantic");

for Default_Switches ("C") use C_Switches;

for Default_Switches ("Ada") use ("-gnaty");

for Switches ("main.c") use C_Switches & ("-g");

end Compiler;

end C_Main;

This project has many similarities with the previous one. As expected, its Main attribute now
refers to a C source. The attribute Exec Dir is now omitted, thus the resulting executable will
be put in the directory ‘obj’.

The most noticeable difference is the use of a variable in the Compiler package to store
settings used in several attributes. This avoids text duplication, and eases maintenance (a
single place to modify if we want to add new switches for C files). We will revisit the use of
variables in the context of scenarios (see Section 11.4 [Scenarios in Projects], page 145).

In this example, we see how the file ‘main.c’ can be compiled with the switches used for
all the other C files, plus ‘-g’. In this specific situation the use of a variable could have been
replaced by a reference to the Default_Switches attribute:

140 GNAT User’s Guide

for Switches ("c_main.c") use Compiler’Default_Switches ("C") & ("-g");

Note the tick (’) used to refer to attributes defined in a package.

Here is the output of the GPRbuild command using this project:

$gprbuild -Pc_main

gcc -c -pedantic -g main.c

gcc -c -gnaty proc.adb

gcc -c -gnaty pack.adb

gcc -c -pedantic utils.c

gprbind main.bexch

...

gcc main.o -o main

The default switches for Ada sources, the default switches for C sources (in the compilation of
‘lib.c’), and the specific switches for ‘main.c’ have all been taken into account.

11.2.8 Naming Schemes

Sometimes an Ada software system is ported from one compilation environment to another (say
GNAT), and the file are not named using the default GNAT conventions. Instead of changing all
the file names, which for a variety of reasons might not be possible, you can define the relevant
file naming scheme in the Naming package of your project file.

The naming scheme has two distinct goals for the project manager: it allows finding of source
files when searching in the source directories, and given a source file name it makes it possible
to guess the associated language, and thus the compiler to use.

Note that the use by the Ada compiler of pragmas Source File Name is not supported when
using project files. You must use the features described in this paragraph. You can however
specify other configuration pragmas (see Section 12.1.3 [Specifying Configuration Pragmas],
page 178).

The following attributes can be defined in package Naming:

Casing: Its value must be one of "lowercase" (the default if unspecified), "uppercase"
or "mixedcase". It describes the casing of file names with regards to the Ada unit
name. Given an Ada unit My Unit, the file name will respectively be ‘my_unit.adb’
(lowercase), ‘MY_UNIT.ADB’ (uppercase) or ‘My_Unit.adb’ (mixedcase). On Win-
dows, file names are case insensitive, so this attribute is irrelevant.

Dot Replacement:
This attribute specifies the string that should replace the "." in unit names. Its
default value is "-" so that a unit Parent.Child is expected to be found in the
file ‘parent-child.adb’. The replacement string must satisfy the following require-
ments to avoid ambiguities in the naming scheme:

- It must not be empty

- It cannot start or end with an alphanumeric character

- It cannot be a single underscore

- It cannot start with an underscore followed by an alphanumeric

- It cannot contain a dot ’.’ except if the entire string is "."

Spec Suffix and Specification Suffix:
For Ada, these attributes give the suffix used in file names that contain specifica-
tions. For other languages, they give the extension for files that contain declaration
(header files in C for instance). The attribute is indexed on the language. The two
attributes are equivalent, but the latter is obsolescent. If Spec_Suffix ("Ada")

is not specified, then the default is ".ads". The value must satisfy the following
requirements:

Chapter 11: GNAT Project Manager 141

- It must not be empty

- It cannot start with an alphanumeric character

- It cannot start with an underscore followed by an alphanumeric character

- It must include at least one dot

Body Suffix and Implementation Suffix:
These attributes give the extension used for file names that contain code (bodies in
Ada). They are indexed on the language. The second version is obsolescent and
fully replaced by the first attribute.

These attributes must satisfy the same requirements as Spec_Suffix. In addition,
they must be different from any of the values in Spec_Suffix. If Body_Suffix
("Ada") is not specified, then the default is ".adb".

If Body_Suffix ("Ada") and Spec_Suffix ("Ada") end with the same string, then
a file name that ends with the longest of these two suffixes will be a body if the
longest suffix is Body_Suffix ("Ada") or a spec if the longest suffix is Spec_Suffix
("Ada").

If the suffix does not start with a ’.’, a file with a name exactly equal to the suffix
will also be part of the project (for instance if you define the suffix as Makefile,
a file called ‘Makefile’ will be part of the project. This capability is usually not
interesting when building. However, it might become useful when a project is also
used to find the list of source files in an editor, like the GNAT Programming System
(GPS).

Separate Suffix:
This attribute is specific to Ada. It denotes the suffix used in file names that contain
separate bodies. If it is not specified, then it defaults to same value as Body_Suffix
("Ada"). The same rules apply as for the Body_Suffix attribute. The only accepted
index is "Ada".

Spec or Specification:
This attribute Spec can be used to define the source file name for a given Ada com-
pilation unit’s spec. The index is the literal name of the Ada unit (case insensitive).
The value is the literal base name of the file that contains this unit’s spec (case
sensitive or insensitive depending on the operating system). This attribute allows
the definition of exceptions to the general naming scheme, in case some files do not
follow the usual convention.

When a source file contains several units, the relative position of the unit can be
indicated. The first unit in the file is at position 1

for Spec ("MyPack.MyChild") use "mypack.mychild.spec";

for Spec ("top") use "foo.a" at 1;

for Spec ("foo") use "foo.a" at 2;

Body or Implementation:
These attribute play the same role as Spec for Ada bodies.

Specification Exceptions and Implementation Exceptions:
These attributes define exceptions to the naming scheme for languages other than
Ada. They are indexed on the language name, and contain a list of file names
respectively for headers and source code.

For example, the following package models the Apex file naming rules:

142 GNAT User’s Guide

package Naming is

for Casing use "lowercase";

for Dot_Replacement use ".";

for Spec_Suffix ("Ada") use ".1.ada";

for Body_Suffix ("Ada") use ".2.ada";

end Naming;

11.3 Organizing Projects into Subsystems

A subsystem is a coherent part of the complete system to be built. It is represented by a set of
sources and one single object directory. A system can be composed of a single subsystem when
it is simple as we have seen in the first section. Complex systems are usually composed of several
interdependent subsystems. A subsystem is dependent on another subsystem if knowledge of
the other one is required to build it, and in particular if visibility on some of the sources of this
other subsystem is required. Each subsystem is usually represented by its own project file.

In this section, the previous example is being extended. Let’s assume some sources of our
Build project depend on other sources. For instance, when building a graphical interface, it is
usual to depend upon a graphical library toolkit such as GtkAda. Furthermore, we also need
sources from a logging module we had previously written.

11.3.1 Project Dependencies

GtkAda comes with its own project file (appropriately called ‘gtkada.gpr’), and we will assume
we have already built a project called ‘logging.gpr’ for the logging module. With the informa-
tion provided so far in ‘build.gpr’, building the application would fail with an error indicating
that the gtkada and logging units that are relied upon by the sources of this project cannot be
found.

This is easily solved by adding the following with clauses at the beginning of our project:

with "gtkada.gpr";

with "a/b/logging.gpr";

project Build is

... -- as before

end Build;

When such a project is compiled, gnatmake will automatically check the other projects and
recompile their sources when needed. It will also recompile the sources from Build when needed,
and finally create the executable. In some cases, the implementation units needed to recompile
a project are not available, or come from some third-party and you do not want to recompile
it yourself. In this case, the attribute Externally Built to "true" can be set, indicating to the
builder that this project can be assumed to be up-to-date, and should not be considered for
recompilation. In Ada, if the sources of this externally built project were compiled with another
version of the compiler or with incompatible options, the binder will issue an error.

The project’s with clause has several effects. It provides source visibility between projects
during the compilation process. It also guarantees that the necessary object files from Logging

and GtkAda are available when linking Build.

As can be seen in this example, the syntax for importing projects is similar to the syntax for
importing compilation units in Ada. However, project files use literal strings instead of names,
and the with clause identifies project files rather than packages.

Each literal string after with is the path (absolute or relative) to a project file. The .gpr

extension is optional, although we recommend adding it. If no extension is specified, and no
project file with the ‘.gpr’ extension is found, then the file is searched for exactly as written in
the with clause, that is with no extension.

As mentioned above, the path after a with has to be a literal string, and you cannot use
concatenation, or lookup the value of external variables to change the directories from which a

Chapter 11: GNAT Project Manager 143

project is loaded. A solution if you need something like this is to use aggregate projects (see
Section 11.7 [Aggregate Projects], page 155).

When a relative path or a base name is used, the project files are searched relative to each
of the directories in the project path. This path includes all the directories found with the
following algorithm, in that order, as soon as a matching file is found, the search stops:

• First, the file is searched relative to the directory that contains the current project file.

• Then it is searched relative to all the directories specified in the environment variables
GPR PROJECT PATH and ADA PROJECT PATH (in that order) if they exist. The
former is recommended, the latter is kept for backward compatibility.

• Finally, it is searched relative to the default project directories. Such directories depends
on the tool used. The different locations searched in the specified order are:

• ‘<prefix>/<target>/lib/gnat’ (for gnatmake in all cases, and for gprbuild if option
‘--target’ is specified)

• ‘<prefix>/share/gpr/’ (for gnatmake and gprbuild)

• ‘<prefix>/lib/gnat/’ (for gnatmake and gprbuild)

In our example, ‘gtkada.gpr’ is found in the predefined directory if it was installed at the
same root as GNAT.

Some tools also support extending the project path from the command line, generally through
the ‘-aP’. You can see the value of the project path by using the gnatls -v command.

Any symbolic link will be fully resolved in the directory of the importing project file before
the imported project file is examined.

Any source file in the imported project can be used by the sources of the importing project,
transitively. Thus if A imports B, which imports C, the sources of A may depend on the sources
of C, even if A does not import C explicitly. However, this is not recommended, because if and
when B ceases to import C, some sources in A will no longer compile. gprbuild has a switch
‘--no-indirect-imports’ that will report such indirect dependencies.

One very important aspect of a project hierarchy is that a given source can only belong to
one project (otherwise the project manager would not know which settings apply to it and when
to recompile it). It means that different project files do not usually share source directories or
when they do, they need to specify precisely which project owns which sources using attribute
Source_Files or equivalent. By contrast, 2 projects can each own a source with the same base
file name as long as they live in different directories. The latter is not true for Ada Sources
because of the correlation between source files and Ada units.

11.3.2 Cyclic Project Dependencies

Cyclic dependencies are mostly forbidden: if A imports B (directly or indirectly) then B is not
allowed to import A. However, there are cases when cyclic dependencies would be beneficial.
For these cases, another form of import between projects exists: the limited with. A project A
that imports a project B with a straight with may also be imported, directly or indirectly, by B

through a limited with.

The difference between straight with and limited with is that the name of a project im-
ported with a limited with cannot be used in the project importing it. In particular, its
packages cannot be renamed and its variables cannot be referred to.

with "b.gpr";

with "c.gpr";

project A is

For Exec_Dir use B’Exec_Dir; -- ok

end A;

144 GNAT User’s Guide

limited with "a.gpr"; -- Cyclic dependency: A -> B -> A

project B is

For Exec_Dir use A’Exec_Dir; -- not ok

end B;

with "d.gpr";

project C is

end C;

limited with "a.gpr"; -- Cyclic dependency: A -> C -> D -> A

project D is

For Exec_Dir use A’Exec_Dir; -- not ok

end D;

11.3.3 Sharing Between Projects

When building an application, it is common to have similar needs in several of the projects
corresponding to the subsystems under construction. For instance, they will all have the same
compilation switches.

As seen before (see Section 11.2.4 [Tools Options in Project Files], page 136), setting com-
pilation switches for all sources of a subsystem is simple: it is just a matter of adding a
Compiler.Default_Switches attribute to each project files with the same value. Of course,
that means duplication of data, and both places need to be changed in order to recompile
the whole application with different switches. It can become a real problem if there are many
subsystems and thus many project files to edit.

There are two main approaches to avoiding this duplication:

• Since ‘build.gpr’ imports ‘logging.gpr’, we could change it to reference the attribute in
Logging, either through a package renaming, or by referencing the attribute. The following
example shows both cases:

project Logging is

package Compiler is

for Switches ("Ada") use ("-O2");

end Compiler;

package Binder is

for Switches ("Ada") use ("-E");

end Binder;

end Logging;

with "logging.gpr";

project Build is

package Compiler renames Logging.Compiler;

package Binder is

for Switches ("Ada") use Logging.Binder’Switches ("Ada");

end Binder;

end Build;

The solution used for Compiler gets the same value for all attributes of the package, but
you cannot modify anything from the package (adding extra switches or some exceptions).
The second version is more flexible, but more verbose.

If you need to refer to the value of a variable in an imported project, rather than an
attribute, the syntax is similar but uses a "." rather than an apostrophe. For instance:

with "imported";

project Main is

Var1 := Imported.Var;

end Main;

• The second approach is to define the switches in a third project. That project is setup
without any sources (so that, as opposed to the first example, none of the project plays

Chapter 11: GNAT Project Manager 145

a special role), and will only be used to define the attributes. Such a project is typically
called ‘shared.gpr’.

abstract project Shared is

for Source_Files use (); -- no project

package Compiler is

for Switches ("Ada") use ("-O2");

end Compiler;

end Shared;

with "shared.gpr";

project Logging is

package Compiler renames Shared.Compiler;

end Logging;

with "shared.gpr";

project Build is

package Compiler renames Shared.Compiler;

end Build;

As for the first example, we could have chosen to set the attributes one by one rather than
to rename a package. The reason we explicitly indicate that Shared has no sources is so
that it can be created in any directory and we are sure it shares no sources with Build or
Logging, which of course would be invalid.

Note the additional use of the abstract qualifier in ‘shared.gpr’. This qualifier is optional,
but helps convey the message that we do not intend this project to have sources (see
Section 11.9.2 [Qualified Projects], page 163 for more qualifiers).

11.3.4 Global Attributes

We have already seen many examples of attributes used to specify a special option of one of the
tools involved in the build process. Most of those attributes are project specific. That it to say,
they only affect the invocation of tools on the sources of the project where they are defined.

There are a few additional attributes that apply to all projects in a hierarchy as long as they
are defined on the "main" project. The main project is the project explicitly mentioned on the
command-line. The project hierarchy is the "with"-closure of the main project.

Here is a list of commonly used global attributes:

Builder.Global Configuration Pragmas:
This attribute points to a file that contains configuration pragmas to use when
building executables. These pragmas apply for all executables build from this project
hierarchy. As we have seen before, additional pragmas can be specified on a per-
project basis by setting the Compiler.Local_Configuration_Pragmas attribute.

Builder.Global Compilation Switches:
This attribute is a list of compiler switches to use when compiling any source file in
the project hierarchy. These switches are used in addition to the ones defined in the
Compiler package, which only apply to the sources of the corresponding project.
This attribute is indexed on the name of the language.

Using such global capabilities is convenient. It can also lead to unexpected behavior. Es-
pecially when several subsystems are shared among different main projects and the different
global attributes are not compatible. Note that using aggregate projects can be a safer and
more powerful replacement to global attributes.

11.4 Scenarios in Projects

Various aspects of the projects can be modified based on scenarios. These are user-defined
modes that change the behavior of a project. Typical examples are the setup of platform-

146 GNAT User’s Guide

specific compiler options, or the use of a debug and a release mode (the former would activate
the generation of debug information, when the second will focus on improving code optimization).

Let’s enhance our example to support a debug and a release modes.The issue is to let the
user choose what kind of system he is building: use ‘-g’ as compiler switches in debug mode
and ‘-O2’ in release mode. We will also setup the projects so that we do not share the same
object directory in both modes, otherwise switching from one to the other might trigger more
recompilations than needed or mix objects from the 2 modes.

One naive approach is to create two different project files, say ‘build_debug.gpr’ and
‘build_release.gpr’, that set the appropriate attributes as explained in previous sections.
This solution does not scale well, because in presence of multiple projects depending on each
other, you will also have to duplicate the complete hierarchy and adapt the project files to point
to the right copies.

Instead, project files support the notion of scenarios controlled by external values. Such
values can come from several sources (in decreasing order of priority):

Command line:
When launching gnatmake or gprbuild, the user can pass extra ‘-X’ switches to
define the external value. In our case, the command line might look like

gnatmake -Pbuild.gpr -Xmode=debug

or gnatmake -Pbuild.gpr -Xmode=release

Environment variables:
When the external value does not come from the command line, it can come from
the value of environment variables of the appropriate name. In our case, if an
environment variable called "mode" exist, its value will be taken into account.

External function second parameter

We now need to get that value in the project. The general form is to use the predefined
function external which returns the current value of the external. For instance, we could setup
the object directory to point to either ‘obj/debug’ or ‘obj/release’ by changing our project to

project Build is

for Object_Dir use "obj/" & external ("mode", "debug");

... -- as before

end Build;

The second parameter to external is optional, and is the default value to use if "mode" is not
set from the command line or the environment.

In order to set the switches according to the different scenarios, other constructs have to be
introduced such as typed variables and case statements.

A typed variable is a variable that can take only a limited number of values, similar to an
enumeration in Ada. Such a variable can then be used in a case statement and create conditional
sections in the project. The following example shows how this can be done:

project Build is

type Mode_Type is ("debug", "release"); -- all possible values

Mode : Mode_Type := external ("mode", "debug"); -- a typed variable

package Compiler is

case Mode is

when "debug" =>

for Switches ("Ada") use ("-g");

when "release" =>

for Switches ("Ada") use ("-O2");

end case;

end Compiler;

end Build;

Chapter 11: GNAT Project Manager 147

The project has suddenly grown in size, but has become much more flexible. Mode_Type defines
the only valid values for the mode variable. If any other value is read from the environment, an
error is reported and the project is considered as invalid.

The Mode variable is initialized with an external value defaulting to "debug". This default
could be omitted and that would force the user to define the value. Finally, we can use a case
statement to set the switches depending on the scenario the user has chosen.

Most aspects of the projects can depend on scenarios. The notable exception are project
dependencies (with clauses), which may not depend on a scenario.

Scenarios work the same way with project hierarchies: you can either duplicate a variable
similar to Mode in each of the project (as long as the first argument to external is always the
same and the type is the same), or simply set the variable in the ‘shared.gpr’ project (see
Section 11.3.3 [Sharing Between Projects], page 144).

11.5 Library Projects

So far, we have seen examples of projects that create executables. However, it is also possible to
create libraries instead. A library is a specific type of subsystem where, for convenience, objects
are grouped together using system-specific means such as archives or windows DLLs.

Library projects provide a system- and language-independent way of building both static and
dynamic libraries. They also support the concept of standalone libraries (SAL) which offers two
significant properties: the elaboration (e.g. initialization) of the library is either automatic or
very simple; a change in the implementation part of the library implies minimal post-compilation
actions on the complete system and potentially no action at all for the rest of the system in the
case of dynamic SALs.

The GNAT Project Manager takes complete care of the library build, rebuild and installation
tasks, including recompilation of the source files for which objects do not exist or are not up
to date, assembly of the library archive, and installation of the library (i.e., copying associated
source, object and ‘ALI’ files to the specified location).

11.5.1 Building Libraries

Let’s enhance our example and transform the logging subsystem into a library. In order to do
so, a few changes need to be made to ‘logging.gpr’. A number of specific attributes needs to
be defined: at least Library_Name and Library_Dir; in addition, a number of other attributes
can be used to specify specific aspects of the library. For readability, it is also recommended
(although not mandatory), to use the qualifier library in front of the project keyword.

Library Name:
This attribute is the name of the library to be built. There is no restriction on the
name of a library imposed by the project manager, except for stand-alone libraries
whose names must follow the syntax of Ada identifiers; however, there may be
system specific restrictions on the name. In general, it is recommended to stick to
alphanumeric characters (and possibly single underscores) to help portability.

Library Dir:
This attribute is the path (absolute or relative) of the directory where the library
is to be installed. In the process of building a library, the sources are compiled,
the object files end up in the explicit or implicit Object_Dir directory. When all
sources of a library are compiled, some of the compilation artifacts, including the
library itself, are copied to the library dir directory. This directory must exists and
be writable. It must also be different from the object directory so that cleanup
activities in the Library Dir do not affect recompilation needs.

Here is the new version of ‘logging.gpr’ that makes it a library:

148 GNAT User’s Guide

library project Logging is -- "library" is optional

for Library_Name use "logging"; -- will create "liblogging.a" on Unix

for Object_Dir use "obj";

for Library_Dir use "lib"; -- different from object_dir

end Logging;

Once the above two attributes are defined, the library project is valid and is enough for building
a library with default characteristics. Other library-related attributes can be used to change the
defaults:

Library Kind:
The value of this attribute must be either "static", "dynamic" or "relocatable"
(the latter is a synonym for dynamic). It indicates which kind of library should
be build (the default is to build a static library, that is an archive of object files
that can potentially be linked into a static executable). When the library is set to
be dynamic, a separate image is created that will be loaded independently, usually
at the start of the main program execution. Support for dynamic libraries is very
platform specific, for instance on Windows it takes the form of a DLL while on
GNU/Linux, it is a dynamic elf image whose suffix is usually ‘.so’. Library project
files, on the other hand, can be written in a platform independent way so that the
same project file can be used to build a library on different operating systems.

If you need to build both a static and a dynamic library, it is recommended use
two different object directories, since in some cases some extra code needs to be
generated for the latter. For such cases, one can either define two different project
files, or a single one which uses scenarios to indicate at the various kinds of library
to be build and their corresponding object dir.

Library ALI Dir:
This attribute may be specified to indicate the directory where the ALI files of the
library are installed. By default, they are copied into the Library_Dir directory,
but as for the executables where we have a separate Exec_Dir attribute, you might
want to put them in a separate directory since there can be hundreds of them. The
same restrictions as for the Library_Dir attribute apply.

Library Version:
This attribute is platform dependent, and has no effect on VMS and Windows. On
Unix, it is used only for dynamic libraries as the internal name of the library (the
"soname"). If the library file name (built from the Library_Name) is different from
the Library_Version, then the library file will be a symbolic link to the actual file
whose name will be Library_Version. This follows the usual installation schemes
for dynamic libraries on many Unix systems.

project Logging is

Version := "1";

for Library_Dir use "lib";

for Library_Name use "logging";

for Library_Kind use "dynamic";

for Library_Version use "liblogging.so." & Version;

end Logging;

After the compilation, the directory ‘lib’ will contain both a ‘libdummy.so.1’ li-
brary and a symbolic link to it called ‘libdummy.so’.

Library GCC:
This attribute is the name of the tool to use instead of "gcc" to link shared libraries.
A common use of this attribute is to define a wrapper script that accomplishes
specific actions before calling gcc (which itself is calling the linker to build the
library image).

Chapter 11: GNAT Project Manager 149

Library Options:
This attribute may be used to specify additional switches (last switches) when link-
ing a shared library.

Leading Library Options:
This attribute, that is taken into account only by gprbuild, may be used to specified
leading options (first switches) when linking a shared library.

Linker.Linker Options:
This attribute specifies additional switches to be given to the linker when linking an
executable. It is ignored when defined in the main project and taken into account
in all other projects that are imported directly or indirectly. These switches com-
plement the Linker.Switches defined in the main project. This is useful when a
particular subsystem depends on an external library: adding this dependency as a
Linker_Options in the project of the subsystem is more convenient than adding it
to all the Linker.Switches of the main projects that depend upon this subsystem.

11.5.2 Using Library Projects

When the builder detects that a project file is a library project file, it recompiles all sources
of the project that need recompilation and rebuild the library if any of the sources have been
recompiled. It then groups all object files into a single file, which is a shared or a static library.
This library can later on be linked with multiple executables. Note that the use of shard libraries
reduces the size of the final executable and can also reduce the memory footprint at execution
time when the library is shared among several executables.

It is also possible to build multi-language libraries. When using gprbuild as a builder, multi-
language library projects allow naturally the creation of multi-language libraries . gnatmake,
does not try to compile non Ada sources. However, when the project is multi-language, it
will automatically link all object files found in the object directory, whether or not they were
compiled from an Ada source file. This specific behavior does not apply to Ada-only projects
which only take into account the objects corresponding to the sources of the project.

A non-library project can import a library project. When the builder is invoked on the
former, the library of the latter is only rebuilt when absolutely necessary. For instance, if a
unit of the library is not up-to-date but non of the executables need this unit, then the unit is
not recompiled and the library is not reassembled. For instance, let’s assume in our example
that logging has the following sources: ‘log1.ads’, ‘log1.adb’, ‘log2.ads’ and ‘log2.adb’. If
‘log1.adb’ has been modified, then the library ‘liblogging’ will be rebuilt when compiling all
the sources of Build only if ‘proc.ads’, ‘pack.ads’ or ‘pack.adb’ include a "with Log1".

To ensure that all the sources in the Logging library are up to date, and that all the sources
of Build are also up to date, the following two commands needs to be used:

gnatmake -Plogging.gpr

gnatmake -Pbuild.gpr

All ‘ALI’ files will also be copied from the object directory to the library directory. To build
executables, gnatmake will use the library rather than the individual object files.

Library projects can also be useful to describe a library that need to be used but, for some
reason, cannot be rebuilt. For instance, it is the case when some of the library sources are not
available. Such library projects need simply to use the Externally_Built attribute as in the
example below:

library project Extern_Lib is

for Languages use ("Ada", "C");

for Source_Dirs use ("lib_src");

for Library_Dir use "lib2";

for Library_Kind use "dynamic";

for Library_Name use "l2";

150 GNAT User’s Guide

for Externally_Built use "true"; -- <<<<

end Extern_Lib;

In the case of externally built libraries, the Object_Dir attribute does not need to be specified
because it will never be used.

The main effect of using such an externally built library project is mostly to affect the
linker command in order to reference the desired library. It can also be achieved by using
Linker.Linker_Options or Linker.Switches in the project corresponding to the subsystem
needing this external library. This latter method is more straightforward in simple cases but
when several subsystems depend upon the same external library, finding the proper place for
the Linker.Linker_Options might not be easy and if it is not placed properly, the final link
command is likely to present ordering issues. In such a situation, it is better to use the externally
built library project so that all other subsystems depending on it can declare this dependency
thanks to a project with clause, which in turn will trigger the builder to find the proper order
of libraries in the final link command.

11.5.3 Stand-alone Library Projects

A stand-alone library is a library that contains the necessary code to elaborate the Ada units
that are included in the library. A stand-alone library is a convenient way to add an Ada
subsystem to a more global system whose main is not in Ada since it makes the elaboration of
the Ada part mostly transparent. However, stand-alone libraries are also useful when the main
is in Ada: they provide a means for minimizing relinking & redeployment of complex systems
when localized changes are made.

The name of a stand-alone library, specified with attribute Library_Name, must have the
syntax of an Ada identifier.

The most prominent characteristic of a stand-alone library is that it offers a distinction
between interface units and implementation units. Only the former are visible to units out-
side the library. A stand-alone library project is thus characterised by a third attribute,
usually Library Interface, in addition to the two attributes that make a project a Library
Project (Library_Name and Library_Dir). This third attribute may also be Interfaces. Li-
brary Interface only works when the interface is in Ada and takes a list of units as parameter.
Interfaces works for any supported language and takes a list of sources as parameter.

Library Interface:
This attribute defines an explicit subset of the units of the project. Units from
projects importing this library project may only "with" units whose sources are
listed in the Library_Interface. Other sources are considered implementation
units.

for Library_Dir use "lib";

for Library_Name use "loggin";

for Library_Interface use ("lib1", "lib2"); -- unit names

Interfaces This attribute defines an explicit subset of the source files of a project. Sources from
projects importing this project, can only depend on sources from this subset. This
attribute can be used on non library projects. It can also be used as a replacement
for attribute Library_Interface, in which case, units have to be replaced by source
files. For multi-language library projects, it is the only way to make the project a
Stand-Alone Library project whose interface is not purely Ada.

Library Standalone:
This attribute defines the kind of standalone library to build. Values are either
standard (the default), no or encapsulated. When standard is used the code
to elaborate and finalize the library is embedded, when encapsulated is used the

Chapter 11: GNAT Project Manager 151

library can furthermore only depends on static libraries (including the GNAT run-
time). This attribute can be set to no to make it clear that the library should not
be standalone in which case the Library_Interface should not defined.

for Library_Dir use "lib";

for Library_Name use "loggin";

for Library_Interface use ("lib1", "lib2"); -- unit names

for Library_Standalone use "encapsulated";

In order to include the elaboration code in the stand-alone library, the binder is invoked
on the closure of the library units creating a package whose name depends on the library
name (b~logging.ads/b in the example). This binder-generated package includes initializa-
tion and finalization procedures whose names depend on the library name (logginginit and
loggingfinal in the example). The object corresponding to this package is included in the
library.

Library Auto Init:
A dynamic stand-alone Library is automatically initialized if automatic initializa-
tion of Stand-alone Libraries is supported on the platform and if attribute Li-
brary Auto Init is not specified or is specified with the value "true". A static
Stand-alone Library is never automatically initialized. Specifying "false" for this
attribute prevent automatic initialization.

When a non-automatically initialized stand-alone library is used in an executable,
its initialization procedure must be called before any service of the library is used.
When the main subprogram is in Ada, it may mean that the initialization procedure
has to be called during elaboration of another package.

Library Dir:
For a stand-alone library, only the ‘ALI’ files of the interface units (those that are
listed in attribute Library_Interface) are copied to the library directory. As a
consequence, only the interface units may be imported from Ada units outside of
the library. If other units are imported, the binding phase will fail.

Binder.Default Switches:
When a stand-alone library is bound, the switches that are specified in the attribute
Binder.Default Switches ("Ada") are used in the call to gnatbind.

Library Src Dir:
This attribute defines the location (absolute or relative to the project directory)
where the sources of the interface units are copied at installation time. These sources
includes the specs of the interface units along with the closure of sources necessary
to compile them successfully. That may include bodies and subunits, when pragmas
Inline are used, or when there is a generic units in the spec. This directory cannot
point to the object directory or one of the source directories, but it can point to the
library directory, which is the default value for this attribute.

Library Symbol Policy:
This attribute controls the export of symbols and, on some platforms (like VMS)
that have the notions of major and minor IDs built in the library files, it controls
the setting of these IDs. It is not supported on all platforms (where it will just have
no effect). It may have one of the following values:

- "autonomous" or "default": exported symbols are not controlled

- "compliant": if attribute Library Reference Symbol File is not defined, then
it is equivalent to policy "autonomous". If there are exported symbols in the
reference symbol file that are not in the object files of the interfaces, the major
ID of the library is increased. If there are symbols in the object files of the

152 GNAT User’s Guide

interfaces that are not in the reference symbol file, these symbols are put at the
end of the list in the newly created symbol file and the minor ID is increased.

- "controlled": the attribute Library Reference Symbol File must be defined.
The library will fail to build if the exported symbols in the object files of the
interfaces do not match exactly the symbol in the symbol file.

- "restricted": The attribute Library Symbol File must be defined. The li-
brary will fail to build if there are symbols in the symbol file that are not in
the exported symbols of the object files of the interfaces. Additional symbols
in the object files are not added to the symbol file.

- "direct": The attribute Library Symbol File must be defined and must des-
ignate an existing file in the object directory. This symbol file is passed directly
to the underlying linker without any symbol processing.

Library Reference Symbol File
This attribute may define the path name of a reference symbol file that is read when
the symbol policy is either "compliant" or "controlled", on platforms that support
symbol control, such as VMS, when building a stand-alone library. The path may
be an absolute path or a path relative to the project directory.

Library Symbol File
This attribute may define the name of the symbol file to be created when building
a stand-alone library when the symbol policy is either "compliant", "controlled" or
"restricted", on platforms that support symbol control, such as VMS. When symbol
policy is "direct", then a file with this name must exist in the object directory.

11.5.4 Installing a library with project files

When using project files, library installation is part of the library build process. Thus no
further action is needed in order to make use of the libraries that are built as part of the general
application build. A usable version of the library is installed in the directory specified by the
Library_Dir attribute of the library project file.

You may want to install a library in a context different from where the library is built. This
situation arises with third party suppliers, who may want to distribute a library in binary form
where the user is not expected to be able to recompile the library. The simplest option in this
case is to provide a project file slightly different from the one used to build the library, by using
the externally_built attribute. Section 11.5.2 [Using Library Projects], page 149

11.6 Project Extension

During development of a large system, it is sometimes necessary to use modified versions of
some of the source files, without changing the original sources. This can be achieved through
the project extension facility.

Suppose for instance that our example Build project is build every night for the whole team,
in some shared directory. A developer usually need to work on a small part of the system, and
might not want to have a copy of all the sources and all the object files (mostly because that
would require too much disk space, time to recompile everything). He prefers to be able to
override some of the source files in his directory, while taking advantage of all the object files
generated at night.

Another example can be taken from large software systems, where it is common to have
multiple implementations of a common interface; in Ada terms, multiple versions of a package
body for the same spec. For example, one implementation might be safe for use in tasking
programs, while another might only be used in sequential applications. This can be modeled
in GNAT using the concept of project extension. If one project (the “child”) extends another

Chapter 11: GNAT Project Manager 153

project (the “parent”) then by default all source files of the parent project are inherited by the
child, but the child project can override any of the parent’s source files with new versions, and
can also add new files or remove unnecessary ones. This facility is the project analog of a type
extension in object-oriented programming. Project hierarchies are permitted (an extending
project may itself be extended), and a project that extends a project can also import other
projects.

A third example is that of using project extensions to provide different versions of the same
system. For instance, assume that a Common project is used by two development branches. One
of the branches has now been frozen, and no further change can be done to it or to Common.
However, the other development branch still needs evolution of Common. Project extensions
provide a flexible solution to create a new version of a subsystem while sharing and reusing as
much as possible from the original one.

A project extension inherits implicitly all the sources and objects from the project it extends.
It is possible to create a new version of some of the sources in one of the additional source dirs
of the extending project. Those new versions hide the original versions. Adding new sources or
removing existing ones is also possible. Here is an example on how to extend the project Build
from previous examples:

project Work extends "../bld/build.gpr" is

end Work;

The project after extends is the one being extended. As usual, it can be specified using an
absolute path, or a path relative to any of the directories in the project path (see Section 11.3.1
[Project Dependencies], page 142). This project does not specify source or object directories,
so the default value for these attribute will be used that is to say the current directory (where
project Work is placed). We can already compile that project with

gnatmake -Pwork

If no sources have been placed in the current directory, this command won’t do anything, since
this project does not change the sources it inherited from Build, therefore all the object files in
Build and its dependencies are still valid and are reused automatically.

Suppose we now want to supply an alternate version of ‘pack.adb’ but use the existing
versions of ‘pack.ads’ and ‘proc.adb’. We can create the new file Work’s current directory
(likely by copying the one from the Build project and making changes to it. If new packages
are needed at the same time, we simply create new files in the source directory of the extending
project.

When we recompile, gnatmake will now automatically recompile this file (thus creating
‘pack.o’ in the current directory) and any file that depends on it (thus creating ‘proc.o’).
Finally, the executable is also linked locally.

Note that we could have obtained the desired behavior using project import rather than
project inheritance. A base project would contain the sources for ‘pack.ads’ and ‘proc.adb’,
and Work would import base and add ‘pack.adb’. In this scenario, base cannot contain the
original version of ‘pack.adb’ otherwise there would be 2 versions of the same unit in the closure
of the project and this is not allowed. Generally speaking, it is not recommended to put the spec
and the body of a unit in different projects since this affects their autonomy and reusability.

In a project file that extends another project, it is possible to indicate that an inherited
source is not part of the sources of the extending project. This is necessary sometimes when a
package spec has been overridden and no longer requires a body: in this case, it is necessary to
indicate that the inherited body is not part of the sources of the project, otherwise there will
be a compilation error when compiling the spec.

For that purpose, the attribute Excluded Source Files is used. Its value is a list of file names.
It is also possible to use attribute Excluded_Source_List_File. Its value is the path of a text
file containing one file name per line.

154 GNAT User’s Guide

project Work extends "../bld/build.gpr" is

for Source_Files use ("pack.ads");

-- New spec of Pkg does not need a completion

for Excluded_Source_Files use ("pack.adb");

end Work;

All packages that are not declared in the extending project are inherited from the project being
extended, with their attributes, with the exception of Linker’Linker_Options which is never
inherited. In particular, an extending project retains all the switches specified in the project
being extended.

At the project level, if they are not declared in the extending project, some attributes are
inherited from the project being extended. They are: Languages, Main (for a root non library
project) and Library_Name (for a project extending a library project)

11.6.1 Project Hierarchy Extension

One of the fundamental restrictions in project extension is the following: A project is not allowed
to import directly or indirectly at the same time an extending project and one of its ancestors.

By means of example, consider the following hierarchy of projects.
a.gpr contains package A1

b.gpr, imports a.gpr and contains B1, which depends on A1

c.gpr, imports b.gpr and contains C1, which depends on B1

If we want to locally extend the packages A1 and C1, we need to create several extending projects:
a_ext.gpr which extends a.gpr, and overrides A1

b_ext.gpr which extends b.gpr and imports a_ext.gpr

c_ext.gpr which extends c.gpr, imports b_ext.gpr and overrides C1

project A_Ext extends "a.gpr" is

for Source_Files use ("a1.adb", "a1.ads");

end A_Ext;

with "a_ext.gpr";

project B_Ext extends "b.gpr" is

end B_Ext;

with "b_ext.gpr";

project C_Ext extends "c.gpr" is

for Source_Files use ("c1.adb");

end C_Ext;

The extension ‘b_ext.gpr’ is required, even though we are not overriding any of the sources of
‘b.gpr’ because otherwise ‘c_expr.gpr’ would import ‘b.gpr’ which itself knows nothing about
‘a_ext.gpr’.

When extending a large system spanning multiple projects, it is often inconvenient to extend
every project in the hierarchy that is impacted by a small change introduced in a low layer.
In such cases, it is possible to create an implicit extension of entire hierarchy using extends all
relationship.

When the project is extended using extends all inheritance, all projects that are imported
by it, both directly and indirectly, are considered virtually extended. That is, the project
manager creates implicit projects that extend every project in the hierarchy; all these implicit
projects do not control sources on their own and use the object directory of the "extending all"
project.

It is possible to explicitly extend one or more projects in the hierarchy in order to modify
the sources. These extending projects must be imported by the "extending all" project, which
will replace the corresponding virtual projects with the explicit ones.

When building such a project hierarchy extension, the project manager will ensure that both
modified sources and sources in implicit extending projects that depend on them, are recompiled.

Thus, in our example we could create the following projects instead:

Chapter 11: GNAT Project Manager 155

a_ext.gpr, extends a.gpr and overrides A1

c_ext.gpr, "extends all" c.gpr, imports a_ext.gpr and overrides C1

project A_Ext extends "a.gpr" is

for Source_Files use ("a1.adb", "a1.ads");

end A_Ext;

with "a_ext.gpr";

project C_Ext extends all "c.gpr" is

for Source_Files use ("c1.adb");

end C_Ext;

When building project ‘c_ext.gpr’, the entire modified project space is considered for recom-
pilation, including the sources of ‘b.gpr’ that are impacted by the changes in A1 and C1.

11.7 Aggregate Projects

Aggregate projects are an extension of the project paradigm, and are meant to solve a few
specific use cases that cannot be solved directly using standard projects. This section will go
over a few of these use cases to try and explain what you can use aggregate projects for.

11.7.1 Building all main programs from a single project tree

Most often, an application is organized into modules and submodules, which are very conve-
niently represented as a project tree or graph (the root project A withs the projects for each
modules (say B and C), which in turn with projects for submodules.

Very often, modules will build their own executables (for testing purposes for instance), or
libraries (for easier reuse in various contexts).

However, if you build your project through gnatmake or gprbuild, using a syntax similar to
gprbuild -PA.gpr

this will only rebuild the main programs of project A, not those of the imported projects B
and C. Therefore you have to spawn several gnatmake commands, one per project, to build all
executables. This is a little inconvenient, but more importantly is inefficient (since gnatmake
needs to do duplicate work to ensure that sources are up-to-date, and cannot easily compile
things in parallel when using the -j switch).

Also libraries are always rebuild when building a project.

You could therefore define an aggregate project Agg that groups A, B and C. Then, when
you build with

gprbuild -PAgg.gpr

this will build all mains from A, B and C.
aggregate project Agg is

for Project_Files use ("a.gpr", "b.gpr", "c.gpr");

end Agg;

If B or C do not define any main program (through their Main attribute), all their sources
are build. When you do not group them in the aggregate project, only those sources that are
needed by A will be build.

If you add a main to a project P not already explicitly referenced in the aggregate project,
you will need to add "p.gpr" in the list of project files for the aggregate project, or the main
will not be built when building the aggregate project.

11.7.2 Building a set of projects with a single command

One other case is when you have multiple applications and libraries that are build independently
from each other (but they can be build in parallel). For instance, you have a project tree rooted
at A, and another one (which might share some subprojects) rooted at B.

Using only gprbuild, you could do

156 GNAT User’s Guide

gprbuild -PA.gpr

gprbuild -PB.gpr

to build both. But again, gprbuild has to do some duplicate work for those files that are
shared between the two, and cannot truly build things in parallel efficiently.

If the two projects are really independent, share no sources other than through a common
subproject, and have no source files with a common basename, you could create a project C
that imports A and B. But these restrictions are often too strong, and one has to build them
independently. An aggregate project does not have these limitations, and can aggregate two
project trees that have common sources.

Aggregate projects can group projects with duplicate file names

This scenario is particularly useful in environment like VxWork 653 where the applications
running in the multiple partitions can be build in parallel through a single gprbuild command.
This also works nicely with Annex E.

Aggregate projects can be used to build multiple partitions

11.7.3 Define a build environment

The environment variables at the time you launch gprbuild or gprbuild will influence the
view these tools have of the project (PATH to find the compiler, ADA PROJECT PATH
or GPR PROJECT PATH to find the projects, environment variables that are referenced in
project files through the "external" statement,...). Several command line switches can be used
to override those (-X or -aP), but on some systems and with some projects, this might make the
command line too long, and on all systems often make it hard to read.

An aggregate project can be used to set the environment for all projects build through that
aggregate. One of the nice aspects is that you can put the aggregate project under configuration
management, and make sure all your user have a consistent environment when building. The
syntax looks like

aggregate project Agg is

for Project_Files use ("A.gpr", "B.gpr");

for Project_Path use ("../dir1", "../dir1/dir2");

for External ("BUILD") use "PRODUCTION";

package Builder is

for Switches ("Ada") use ("-q");

end Builder;

end Agg;

One of the often requested features in projects is to be able to reference external variables in
with statements, as in

with external("SETUP") & "path/prj.gpr"; -- ILLEGAL

project MyProject is

...

end MyProject;

For various reasons, this isn’t authorized. But using aggregate projects provide an elegant
solution. For instance, you could use a project file like:

aggregate project Agg is

for Project_Path use (external("SETUP") % "path");

for Project_Files use ("myproject.gpr");

end Agg;

with "prj.gpr"; -- searched on Agg’Project_Path

project MyProject is

...

end MyProject;

Chapter 11: GNAT Project Manager 157

11.7.4 Performance improvements in builder

The loading of aggregate projects is optimized in gprbuild and gnatmake, so that all files are
searched for only once on the disk (thus reducing the number of system calls and contributing
to faster compilation times especially on systems with sources on remote servers). As part of
the loading, gprbuild and gnatmake compute how and where a source file should be compiled,
and even if it is found several times in the aggregated projects it will be compiled only once.

Since there is no ambiguity as to which switches should be used, files can be compiled in
parallel (through the usual -j switch) and this can be done while maximizing the use of CPUs
(compared to launching multiple gprbuild and gnatmake commands in parallel).

11.7.5 Syntax of aggregate projects

An aggregate project follows the general syntax of project files. The recommended extension is
still ‘.gpr’. However, a special aggregate qualifier must be put before the keyword project.

An aggregate project cannot with any other project (standard or aggregate), except an
abstract project which can be used to share attribute values. Building other aggregate projects
from an aggregate project is done through the Project Files attribute (see below).

An aggregate project does not have any source files directly (only through other standard
projects). Therefore a number of the standard attributes and packages are forbidden in an
aggregate project. Here is the (non exhaustive) list:

• Languages

• Source Files, Source List File and other attributes dealing with list of sources.

• Source Dirs, Exec Dir and Object Dir

• Library Dir, Library Name and other library-related attributes

• Main

• Roots

• Externally Built

• Inherit Source Path

• Excluded Source Dirs

• Locally Removed Files

• Excluded Source Files

• Excluded Source List File

• Interfaces

The only package that is authorized (albeit optional) is Builder. Other packages (in particular
Compiler, Binder and Linker) are forbidden. It is an error to have any of these (and such an
error prevents the proper loading of the aggregate project).

Three new attributes have been created, which can only be used in the context of aggregate
projects:

Project Files:
This attribute is compulsory (or else we are not aggregating any project, and thus not
doing anything). It specifies a list of ‘.gpr’ files that are grouped in the aggregate.
The list may be empty. The project files can be either other aggregate projects, or
standard projects. When grouping standard projects, you can have both the root
of a project tree (and you do not need to specify all its imported projects), and any
project within the tree.

Basically, the idea is to specify all those projects that have main programs you want
to build and link, or libraries you want to build. You can even specify projects that

158 GNAT User’s Guide

do not use the Main attribute nor the Library_* attributes, and the result will be
to build all their source files (not just the ones needed by other projects).

The file can include paths (absolute or relative). Paths are relative to the location
of the aggregate project file itself (if you use a base name, we expect to find the
.gpr file in the same directory as the aggregate project file). The extension ‘.gpr’
is mandatory, since this attribute contains file names, not project names.

Paths can also include the "*" and "**" globbing patterns. The latter indicates
that any subdirectory (recursively) will be searched for matching files. The latter
("**") can only occur at the last position in the directory part (ie "a/**/*.gpr" is
supported, but not "**/a/*.gpr"). Starting the pattern with "**" is equivalent to
starting with "./**".

For now, the pattern "*" is only allowed in the filename part, not in the directory
part. This is mostly for efficiency reasons to limit the number of system calls that
are needed.

Here are a few valid examples:

for Project_Files use ("a.gpr", "subdir/b.gpr");

-- two specific projects relative to the directory of agg.gpr

for Project_Files use ("**/*.gpr");

-- all projects recursively

Project Path:
This attribute can be used to specify a list of directories in which to look for project
files in with statements.

When you specify a project in Project Files say "x/y/a.gpr"), and this projects
imports a project "b.gpr", only b.gpr is searched in the project path. a.gpr must
be exactly at <dir of the aggregate>/x/y/a.gpr.

This attribute, however, does not affect the search for the aggregated project files
specified with Project_Files.

Each aggregate project has its own (that is if agg1.gpr includes agg2.gpr, they can
potentially both have a different project path). This project path is defined as the
concatenation, in that order, of the current directory, followed by the command line
-aP switches, then the directories from the Project Path attribute, then the directo-
ries from the GPR PROJECT PATH and ADA PROJECT PATH env. variables,
and finally the predefined directories.

In the example above, agg2.gpr’s project path is not influenced by the attribute
agg1’Project Path, nor is agg1 influenced by agg2’Project Path.

This can potentially lead to errors. In the following example:

+---------------+ +----------------+

| Agg1.gpr |-=--includes--=-->| Agg2.gpr |

| ’project_path| | ’project_path |

| | | |

+---------------+ +----------------+

: :

includes includes

: :

v v

+-------+ +---------+

| P.gpr |<---------- withs --------| Q.gpr |

+-------+---------\ +---------+

| |

withs |

| |

v v

Chapter 11: GNAT Project Manager 159

+-------+ +---------+

| R.gpr | | R’.gpr |

+-------+ +---------+

When looking for p.gpr, both aggregates find the same physical file on the disk.
However, it might happen that with their different project paths, both aggregate
projects would in fact find a different r.gpr. Since we have a common project (p.gpr)
"with"ing two different r.gpr, this will be reported as an error by the builder.

Directories are relative to the location of the aggregate project file.

Here are a few valid examples:
for Project_Path use ("/usr/local/gpr", "gpr/");

External:

This attribute can be used to set the value of environment variables as retrieved
through the external statement in projects. It does not affect the environment
variables themselves (so for instance you cannot use it to change the value of your
PATH as seen from the spawned compiler).

This attribute affects the external values as seen in the rest of the aggreate projects,
and in the aggregated projects.

The exact value of external a variable comes from one of three sources (each level
overrides the previous levels):

• An External attribute in aggregate project, for instance for External

("BUILD_MODE") use "DEBUG";

• Environment variables

These override the value given by the attribute, so that users can override the
value set in the (presumably shared with others in his team) aggregate project.

• The -X command line switch to gprbuild and gnatmake

This always takes precedence.

This attribute is only taken into account in the main aggregate project (i.e. the
one specified on the command line to gprbuild or natmake), and ignored in other
aggregate projects. It is invalid in standard projects. The goal is to have a consistent
value in all projects that are build through the aggregate, which would not be the
case in the diamond case: A groups the aggregate projects B and C, which both
(either directly or indirectly) build the project P. If B and C could set different
values for the environment variables, we would have two different views of P, which
in particular might impact the list of source files in P.

11.7.6 package Builder in aggregate projects

As we mentioned before, only the package Builder can be specified in an aggregate project. In
this package, only the following attributes are valid:

Switches: This attribute gives the list of switches to use for the builder (gprbuild or gnatmake),
depending on the language of the main file. For instance,

for Switches ("Ada") use ("-d", "-p");

for Switches ("C") use ("-p");

These switches are only read from the main aggregate project (the one passed on
the command line), and ignored in all other aggregate projects or projects.

It can only contain builder switches, not compiler switches.

Global Compilation Switches
This attribute gives the list of compiler switches for the various languages. For
instance,

160 GNAT User’s Guide

for Global_Compilation_Switches ("Ada") use ("-O1", "-g");

for Global_Compilation_Switches ("C") use ("-O2");

This attribute is only taken into account in the aggregate project specified on the
command line, not in other aggregate projects.

In the projects grouped by that aggregate, the attribute
Builder.Global Compilation Switches is also ignored. However, the at-
tribute Compiler.Default Switches will be taken into account (but that of the
aggregate have higher priority). The attribute Compiler.Switches is also taken into
account and can be used to override the switches for a specific file. As a result, it
always has priority.

The rules are meant to avoid ambiguities when compiling. For instance, aggregate
project Agg groups the projects A and B, that both depend on C. Here is an extra
for all of these projects:

aggregate project Agg is

for Project_Files use ("a.gpr", "b.gpr");

package Builder is

for Global_Compilation_Switches ("Ada") use ("-O2");

end Builder;

end Agg;

with "c.gpr";

project A is

package Builder is

for Global_Compilation_Switches ("Ada") use ("-O1");

-- ignored

end Builder;

package Compiler is

for Default_Switches ("Ada") use ("-O1", "-g");

for Switches ("a_file1.adb") use ("-O0");

end Compiler;

end A;

with "c.gpr";

project B is

package Compiler is

for Default_Switches ("Ada") use ("-O0");

end Compiler;

end B;

project C is

package Compiler is

for Default_Switches ("Ada") use ("-O3", "-gnatn");

for Switches ("c_file1.adb") use ("-O0", "-g");

end Compiler;

end C;

then the following switches are used:

• all files from project A except a file1.adb are compiled with "-O2 -g", since the
aggregate project has priority.

• the file a file1.adb is compiled with "-O0", since the Compiler.Switches has
priority

• all files from project B are compiled with "-O2", since the aggregate project
has priority

• all files from C are compiled with "-O2 -gnatn", except for c file1.adb which is
compiled with "-O0 -g"

Even though C is seen through two paths (through A and through B), the switches
used by the compiler are unambiguous.

Chapter 11: GNAT Project Manager 161

Global Configuration Pragmas
This attribute can be used to specify a file containing configuration pragmas, to
be passed to the compiler. Since we ignore the package Builder in other aggregate
projects and projects, only those pragmas defined in the main aggregate project will
be taken into account.

Projects can locally add to those by using the Compiler.Local_Configuration_

Pragmas attribute if they need.

For projects that are build through the aggregate, the package Builder is ignored, except for
the Executable attribute which specifies the name of the executables resulting from the link of
the main programs, and for the Executable Suffix.

11.8 Aggregate Library Projects

Aggregate library projects make it possible to build a single library using object files built
using other standard or library projects. This gives the flexibility to describe an application as
having multiple modules (a GUI, database access, ...) using different project files (so possibly
built with different compiler options) and yet create a single library (static or relocatable) out
of the corresponding object files.

11.8.1 Building aggregate library projects

For example, we can define an aggregate project Agg that groups A, B and C:
aggregate library project Agg is

for Project_Files use ("a.gpr", "b.gpr", "c.gpr");

for Library_Name use ("agg");

for Library_Dir use ("lagg");

end Agg;

Then, when you build with:
gprbuild agg.gpr

This will build all units from projects A, B and C and will create a static library named
‘libagg.a’ into the ‘lagg’ directory. An aggregate library project has the same set of restriction
as a standard library project.

Note that a shared aggregate library project cannot aggregates a static library project. In
platforms where a compiler option is required to create relocatable object files, a Builder package
in the aggregate library project may be used:

aggregate library project Agg is

for Project_Files use ("a.gpr", "b.gpr", "c.gpr");

for Library_Name use ("agg");

for Library_Dir use ("lagg");

for Library_Kind use "relocatable";

package Builder is

for Global_Compilation_Switches ("Ada") use ("-fPIC");

end Builder;

end Agg;

With the above aggregate library Builder package, the -fPIC option will be passed to the
compiler when building any source code from projects ‘a.gpr’, ‘b.gpr’ and ‘c.gpr’.

11.8.2 Syntax of aggregate library projects

An aggregate library project follows the general syntax of project files. The recommended
extension is still ‘.gpr’. However, a special aggregate library qualifier must be put before the
keyword project.

An aggregate library project cannot with any other project (standard or aggregate), except
an abstract project which can be used to share attribute values.

162 GNAT User’s Guide

An aggregate library project does not have any source files directly (only through other
standard projects). Therefore a number of the standard attributes and packages are forbidden
in an aggregate library project. Here is the (non exhaustive) list:

• Languages

• Source Files, Source List File and other attributes dealing with list of sources.

• Source Dirs, Exec Dir and Object Dir

• Main

• Roots

• Externally Built

• Inherit Source Path

• Excluded Source Dirs

• Locally Removed Files

• Excluded Source Files

• Excluded Source List File

• Interfaces

The only package that is authorized (albeit optional) is Builder.

The Project Files attribute (See see Section 11.7 [Aggregate Projects], page 155) is used
to described the aggregated projects whose object files have to be included into the aggregate
library.

11.9 Project File Reference

This section describes the syntactic structure of project files, the various constructs that can be
used. Finally, it ends with a summary of all available attributes.

11.9.1 Project Declaration

Project files have an Ada-like syntax. The minimal project file is:
project Empty is

end Empty;

The identifier Empty is the name of the project. This project name must be present after the
reserved word end at the end of the project file, followed by a semi-colon.

Identifiers (i.e. the user-defined names such as project or variable names) have the same
syntax as Ada identifiers: they must start with a letter, and be followed by zero or more letters,
digits or underscore characters; it is also illegal to have two underscores next to each other.
Identifiers are always case-insensitive ("Name" is the same as "name").

simple_name ::= identifier

name ::= simple_name { . simple_name }

Strings are used for values of attributes or as indexes for these attributes. They are in general
case sensitive, except when noted otherwise (in particular, strings representing file names will
be case insensitive on some systems, so that "file.adb" and "File.adb" both represent the same
file).

Reserved words are the same as for standard Ada 95, and cannot be used for identifiers. In
particular, the following words are currently used in project files, but others could be added
later on. In bold are the extra reserved words in project files: all, at, case, end, for, is,

limited, null, others, package, renames, type, use, when, with, extends, external,
project.

Comments in project files have the same syntax as in Ada, two consecutive hyphens through
the end of the line.

Chapter 11: GNAT Project Manager 163

A project may be an independent project, entirely defined by a single project file. Any source
file in an independent project depends only on the predefined library and other source files in
the same project. But a project may also depend on other projects, either by importing them
through with clauses, or by extending at most one other project. Both types of dependency can
be used in the same project.

A path name denotes a project file. It can be absolute or relative. An absolute path name
includes a sequence of directories, in the syntax of the host operating system, that identifies
uniquely the project file in the file system. A relative path name identifies the project file,
relative to the directory that contains the current project, or relative to a directory listed in the
environment variables ADA PROJECT PATH and GPR PROJECT PATH. Path names are
case sensitive if file names in the host operating system are case sensitive. As a special case, the
directory separator can always be "/" even onWindows systems, so that project files can be made
portable across architectures. The syntax of the environment variable ADA PROJECT PATH
and GPR PROJECT PATH is a list of directory names separated by colons on UNIX and
semicolons on Windows.

A given project name can appear only once in a context clause.

It is illegal for a project imported by a context clause to refer, directly or indirectly, to the
project in which this context clause appears (the dependency graph cannot contain cycles),
except when one of the with clause in the cycle is a limited with.

with "other_project.gpr";

project My_Project extends "extended.gpr" is

end My_Project;

These dependencies form a directed graph, potentially cyclic when using limited with. The
subprogram reflecting the extends relations is a tree.

A project’s immediate sources are the source files directly defined by that project, either
implicitly by residing in the project source directories, or explicitly through any of the source-
related attributes. More generally, a project sources are the immediate sources of the project
together with the immediate sources (unless overridden) of any project on which it depends
directly or indirectly.

A project hierarchy can be created, where projects are children of other projects. The name
of such a child project must be Parent.Child, where Parent is the name of the parent project.
In particular, this makes all with clauses of the parent project automatically visible in the child
project.

project ::= context_clause project_declaration

context_clause ::= {with_clause}

with_clause ::= with path_name { , path_name } ;

path_name ::= string_literal

project_declaration ::= simple_project_declaration | project_extension

simple_project_declaration ::=

project <project_>name is

{declarative_item}

end <project_>simple_name;

11.9.2 Qualified Projects

Before the reserved project, there may be one or two qualifiers, that is identifiers or reserved
words, to qualify the project. The current list of qualifiers is:

abstract: qualifies a project with no sources. Such a
project must either have no declaration of attributes Source_Dirs, Source_Files,
Languages or Source_List_File, or one of Source_Dirs, Source_Files, or
Languages must be declared as empty. If it extends another project, the project it
extends must also be a qualified abstract project.

164 GNAT User’s Guide

standard: a standard project is a non library project with sources.
This is the default (implicit) qualifier.

aggregate: a project whose sources are aggregated from other
project files.

aggregate library: a library whose sources are aggregated
from other project or library project files.

library: a library project must declare both attributes
Library_Name and Library_Dir.

configuration: a configuration project cannot be in a project tree.
It describes compilers and other tools to gprbuild.

11.9.3 Declarations

Declarations introduce new entities that denote types, variables, attributes, and packages. Some
declarations can only appear immediately within a project declaration. Others can appear within
a project or within a package.

declarative_item ::= simple_declarative_item

| typed_string_declaration

| package_declaration

simple_declarative_item ::= variable_declaration

| typed_variable_declaration

| attribute_declaration

| case_construction

| empty_declaration

empty_declaration ::= null ;

An empty declaration is allowed anywhere a declaration is allowed. It has no effect.

11.9.4 Packages

A project file may contain packages, that group attributes (typically all the attributes that are
used by one of the GNAT tools).

A package with a given name may only appear once in a project file. The following packages
are currently supported in project files (See see Section 11.9.9 [Attributes], page 169 for the list
of attributes that each can contain).

Binder This package specifies characteristics useful when invoking the binder either directly
via the gnat driver or when using a builder such as gnatmake or gprbuild. See
Section 11.2.3 [Main Subprograms], page 136.

Builder This package specifies the compilation options used when building an executable or
a library for a project. Most of the options should be set in one of Compiler, Binder
or Linker packages, but there are some general options that should be defined in this
package. See Section 11.2.3 [Main Subprograms], page 136, and see Section 11.2.6
[Executable File Names], page 139 in particular.

Check This package specifies the options used when calling the checking tool gnatcheck
via the gnat driver. Its attribute Default Switches has the same semantics as for
the package Builder. The first string should always be -rules to specify that all
the other options belong to the -rules section of the parameters to gnatcheck.

Compiler This package specifies the compilation options used by the compiler for each lan-
guages. See Section 11.2.4 [Tools Options in Project Files], page 136.

Chapter 11: GNAT Project Manager 165

Cross_Reference

This package specifies the options used when calling the library tool gnatxref via the
gnat driver. Its attributes Default Switches and Switches have the same semantics
as for the package Builder.

Eliminate

This package specifies the options used when calling the tool gnatelim via the gnat
driver. Its attributes Default Switches and Switches have the same semantics as for
the package Builder.

Finder This package specifies the options used when calling the search tool gnatfind via the
gnat driver. Its attributes Default Switches and Switches have the same semantics
as for the package Builder.

Gnatls This package the options to use when invoking gnatls via the gnat driver.

Gnatstub This package specifies the options used when calling the tool gnatstub via the gnat
driver. Its attributes Default Switches and Switches have the same semantics as for
the package Builder.

IDE This package specifies the options used when starting an integrated development
environment, for instance GPS or Gnatbench. See Section 12.3 [The Development
Environments], page 182.

Linker This package specifies the options used by the linker. See Section 11.2.3 [Main
Subprograms], page 136.

Makefile This package is used by the GPS plugin Makefile.py. See the documentation in that
plugin (from GPS: /Tools/Plug-ins).

Metrics This package specifies the options used when calling the tool gnatmetric via the
gnat driver. Its attributes Default Switches and Switches have the same semantics
as for the package Builder.

Naming This package specifies the naming conventions that apply to the source files in a
project. In particular, these conventions are used to automatically find all source
files in the source directories, or given a file name to find out its language for proper
processing. See Section 11.2.8 [Naming Schemes], page 140.

Pretty_Printer

This package specifies the options used when calling the formatting tool gnatpp
via the gnat driver. Its attributes Default Switches and Switches have the same
semantics as for the package Builder.

Stack This package specifies the options used when calling the tool gnatstack via the
gnat driver. Its attributes Default Switches and Switches have the same semantics
as for the package Builder.

Synchronize

This package specifies the options used when calling the tool gnatsync via the gnat
driver.

In its simplest form, a package may be empty:

project Simple is

package Builder is

end Builder;

end Simple;

A package may contain attribute declarations, variable declarations and case constructions, as
will be described below.

166 GNAT User’s Guide

When there is ambiguity between a project name and a package name, the name always
designates the project. To avoid possible confusion, it is always a good idea to avoid naming a
project with one of the names allowed for packages or any name that starts with gnat.

A package can also be defined by a renaming declaration. The new package renames a package
declared in a different project file, and has the same attributes as the package it renames. The
name of the renamed package must be the same as the name of the renaming package. The
project must contain a package declaration with this name, and the project must appear in
the context clause of the current project, or be its parent project. It is not possible to add or
override attributes to the renaming project. If you need to do so, you should use an extending
declaration (see below).

Packages that are renamed in other project files often come from project files that have no
sources: they are just used as templates. Any modification in the template will be reflected
automatically in all the project files that rename a package from the template. This is a very
common way to share settings between projects.

Finally, a package can also be defined by an extending declaration. This is similar to a
renaming declaration, except that it is possible to add or override attributes.

package_declaration ::= package_spec | package_renaming | package_extension

package_spec ::=

package <package_>simple_name is

{simple_declarative_item}

end package_identifier ;

package_renaming ::==

package <package_>simple_name renames <project_>simple_name.package_identifier ;

package_extension ::==

package <package_>simple_name extends <project_>simple_name.package_identifier is

{simple_declarative_item}

end package_identifier ;

11.9.5 Expressions

An expression is any value that can be assigned to an attribute or a variable. It is either a literal
value, or a construct requiring runtime computation by the project manager. In a project file,
the computed value of an expression is either a string or a list of strings.

A string value is one of:

• A literal string, for instance "comm/my_proj.gpr"

• The name of a variable that evaluates to a string (see Section 11.9.8 [Variables], page 168)

• The name of an attribute that evaluates to a string (see Section 11.9.9 [Attributes], page 169)

• An external reference (see Section 11.9.6 [External Values], page 167)

• A concatenation of the above, as in "prefix_" & Var.

A list of strings is one of the following:

• A parenthesized comma-separated list of zero or more string expressions, for instance (File_
Name, "gnat.adc", File_Name & ".orig") or ().

• The name of a variable that evaluates to a list of strings

• The name of an attribute that evaluates to a list of strings

• A concatenation of a list of strings and a string (as defined above), for instance ("A", "B")

& "C"

• A concatenation of two lists of strings

The following is the grammar for expressions
string_literal ::= "{string_element}" -- Same as Ada

string_expression ::= string_literal

| variable_name

Chapter 11: GNAT Project Manager 167

| external_value

| attribute_reference

| (string_expression { & string_expression })

string_list ::= (string_expression { , string_expression })

| string_variable_name

| string_attribute_reference

term ::= string_expression | string_list

expression ::= term { & term } -- Concatenation

Concatenation involves strings and list of strings. As soon as a list of strings is involved, the
result of the concatenation is a list of strings. The following Ada declarations show the existing
operators:

function "&" (X : String; Y : String) return String;

function "&" (X : String_List; Y : String) return String_List;

function "&" (X : String_List; Y : String_List) return String_List;

Here are some specific examples:
List := () & File_Name; -- One string in this list

List2 := List & (File_Name & ".orig"); -- Two strings

Big_List := List & Lists2; -- Three strings

Illegal := "gnat.adc" & List2; -- Illegal, must start with list

11.9.6 External Values

An external value is an expression whose value is obtained from the command that invoked the
processing of the current project file (typically a gnatmake or gprbuild command).

There are two kinds of external values, one that returns a single string, and one that returns
a string list.

The syntax of a single string external value is:
external_value ::= external (string_literal [, string_literal])

The first string literal is the string to be used on the command line or in the environment to
specify the external value. The second string literal, if present, is the default to use if there is
no specification for this external value either on the command line or in the environment.

Typically, the external value will either exist in the environment variables or be specified on
the command line through the ‘-Xvbl=value ’ switch. If both are specified, then the command
line value is used, so that a user can more easily override the value.

The function external always returns a string. It is an error if the value was not found in
the environment and no default was specified in the call to external.

An external reference may be part of a string expression or of a string list expression, and
can therefore appear in a variable declaration or an attribute declaration.

Most of the time, this construct is used to initialize typed variables, which are then used
in case statements to control the value assigned to attributes in various scenarios. Thus such
variables are often called scenario variables.

The syntax for a string list external value is:
external_value ::= external_as_list (string_literal , string_literal)

The first string literal is the string to be used on the command line or in the environment to
specify the external value. The second string literal is the separator between each component
of the string list.

If the external value does not exist in the environment or on the command line, the result is
an empty list. This is also the case, if the separator is an empty string or if the external value
is only one separator.

Any separator at the beginning or at the end of the external value is discarded. Then, if there
is no separator in the external value, the result is a string list with only one string. Otherwise,
any string between the beginning and the first separator, between two consecutive separators
and between the last separator and the end are components of the string list.

168 GNAT User’s Guide

external_as_list ("SWITCHES", ",")

If the external value is "-O2,-g", the result is ("-O2", "-g").

If the external value is ",-O2,-g,", the result is also ("-O2", "-g").

if the external value is "-gnav", the result is ("-gnatv").

If the external value is ",,", the result is ("").

If the external value is ",", the result is (), the empty string list.

11.9.7 Typed String Declaration

A type declaration introduces a discrete set of string literals. If a string variable is declared to
have this type, its value is restricted to the given set of literals. These are the only named types
in project files. A string type may only be declared at the project level, not inside a package.

typed_string_declaration ::=

type <typed_string_>_simple_name is (string_literal {, string_literal});

The string literals in the list are case sensitive and must all be different. They may include
any graphic characters allowed in Ada, including spaces. Here is an example of a string type
declaration:

type OS is ("NT", "nt", "Unix", "GNU/Linux", "other OS");

Variables of a string type are called typed variables; all other variables are called untyped
variables. Typed variables are particularly useful in case constructions, to support conditional
attribute declarations. (see Section 11.9.10 [Case Statements], page 173).

A string type may be referenced by its name if it has been declared in the same project file,
or by an expanded name whose prefix is the name of the project in which it is declared.

11.9.8 Variables

Variables store values (strings or list of strings) and can appear as part of an expression. The
declaration of a variable creates the variable and assigns the value of the expression to it. The
name of the variable is available immediately after the assignment symbol, if you need to reuse
its old value to compute the new value. Before the completion of its first declaration, the value
of a variable defaults to the empty string ("").

A typed variable can be used as part of a case expression to compute the value, but it can
only be declared once in the project file, so that all case statements see the same value for
the variable. This provides more consistency and makes the project easier to understand. The
syntax for its declaration is identical to the Ada syntax for an object declaration. In effect, a
typed variable acts as a constant.

An untyped variable can be declared and overridden multiple times within the same project.
It is declared implicitly through an Ada assignment. The first declaration establishes the kind
of the variable (string or list of strings) and successive declarations must respect the initial kind.
Assignments are executed in the order in which they appear, so the new value replaces the old
one and any subsequent reference to the variable uses the new value.

A variable may be declared at the project file level, or within a package.

typed_variable_declaration ::=

<typed_variable_>simple_name : <typed_string_>name := string_expression;

variable_declaration ::= <variable_>simple_name := expression;

Here are some examples of variable declarations:

Chapter 11: GNAT Project Manager 169

This_OS : OS := external ("OS"); -- a typed variable declaration

That_OS := "GNU/Linux"; -- an untyped variable declaration

Name := "readme.txt";

Save_Name := Name & ".saved";

Empty_List := ();

List_With_One_Element := ("-gnaty");

List_With_Two_Elements := List_With_One_Element & "-gnatg";

Long_List := ("main.ada", "pack1_.ada", "pack1.ada", "pack2_.ada");

A variable reference may take several forms:

• The simple variable name, for a variable in the current package (if any) or in the current
project

• An expanded name, whose prefix is a context name.

A context may be one of the following:

• The name of an existing package in the current project

• The name of an imported project of the current project

• The name of an ancestor project (i.e., a project extended by the current project, either
directly or indirectly)

• An expanded name whose prefix is an imported/parent project name, and whose selector
is a package name in that project.

11.9.9 Attributes

A project (and its packages) may have attributes that define the project’s properties. Some
attributes have values that are strings; others have values that are string lists.

attribute_declaration ::=

simple_attribute_declaration | indexed_attribute_declaration

simple_attribute_declaration ::= for attribute_designator use expression ;

indexed_attribute_declaration ::=

for <indexed_attribute_>simple_name (string_literal) use expression ;

attribute_designator ::=

<simple_attribute_>simple_name

| <indexed_attribute_>simple_name (string_literal)

There are two categories of attributes: simple attributes and indexed attributes. Each simple
attribute has a default value: the empty string (for string attributes) and the empty list (for
string list attributes). An attribute declaration defines a new value for an attribute, and overrides
the previous value. The syntax of a simple attribute declaration is similar to that of an attribute
definition clause in Ada.

Some attributes are indexed. These attributes are mappings whose domain is a set of strings.
They are declared one association at a time, by specifying a point in the domain and the
corresponding image of the attribute. Like untyped variables and simple attributes, indexed
attributes may be declared several times. Each declaration supplies a new value for the attribute,
and replaces the previous setting.

Here are some examples of attribute declarations:

-- simple attributes

for Object_Dir use "objects";

for Source_Dirs use ("units", "test/drivers");

-- indexed attributes

for Body ("main") use "Main.ada";

for Switches ("main.ada") use ("-v", "-gnatv");

for Switches ("main.ada") use Builder’Switches ("main.ada") & "-g";

-- indexed attributes copy (from package Builder in project Default)

170 GNAT User’s Guide

-- The package name must always be specified, even if it is the current

-- package.

for Default_Switches use Default.Builder’Default_Switches;

Attributes references may be appear anywhere in expressions, and are used to retrieve the value
previously assigned to the attribute. If an attribute has not been set in a given package or
project, its value defaults to the empty string or the empty list.

attribute_reference ::= attribute_prefix ’ <simple_attribute>_simple_name [(string_literal)]

attribute_prefix ::= project

| <project_>simple_name

| package_identifier

| <project_>simple_name . package_identifier

Examples are:

project’Object_Dir

Naming’Dot_Replacement

Imported_Project’Source_Dirs

Imported_Project.Naming’Casing

Builder’Default_Switches ("Ada")

The prefix of an attribute may be:

• project for an attribute of the current project

• The name of an existing package of the current project

• The name of an imported project

• The name of a parent project that is extended by the current project

• An expanded name whose prefix is imported/parent project name, and whose selector is a
package name

Legal attribute names are listed below, including the package in which they must be declared.
These names are case-insensitive. The semantics for the attributes is explained in great details
in other sections.

The column index indicates whether the attribute is an indexed attribute, and when it is
whether its index is case sensitive (sensitive) or not (insensitive), or if case sensitivity depends
is the same as file names sensitivity on the system (file). The text is between brackets ([]) if the
index is optional.

Attribute Name Value Package Index
General attributes see Section 11.2 [Building With

Projects], page 132

Name string - (Read-only, name of project)
Project Dir string - (Read-only, directory of project)
Source Files list - -
Source Dirs list - -
Source List File string - -
Locally Removed Files list - -
Excluded Source Files list - -
Object Dir string - -
Exec Dir string - -
Excluded Source Dirs list - -
Excluded Source Files list - -
Excluded Source List File list - -
Inherit Source Path list - insensitive
Languages list - -
Main list - -
Main Language string - -

Chapter 11: GNAT Project Manager 171

Externally Built string - -
Roots list - file
Library-related attributes see Section 11.5 [Library Projects],

page 147

Library Dir string - -
Library Name string - -
Library Kind string - -
Library Version string - -
Library Interface string - -
Library Auto Init string - -
Library Options list - -
Leading Library Options list - -
Library Src Dir string - -
Library ALI Dir string - -
Library GCC string - -
Library Symbol File string - -
Library Symbol Policy string - -
Library Reference Symbol Filestring - -
Interfaces list - -
Naming see Section 11.2.8 [Naming

Schemes], page 140

Spec Suffix string Naming insensitive (language)
Body Suffix string Naming insensitive (language)
Separate Suffix string Naming -
Casing string Naming -
Dot Replacement string Naming -
Spec string Naming insensitive (Ada unit)
Body string Naming insensitive (Ada unit)
Specification Exceptions list Naming insensitive (language)
Implementation Exceptions list Naming insensitive (language)
Building see Section 12.1.2 [Switches and

Project Files], page 175

Default Switches list Builder,
Compiler,
Binder, Linker,
Cross Reference,
Finder,
Pretty Printer,
gnatstub,
Check,
Synchronize,
Eliminate,
Metrics, IDE

insensitive (language name)

172 GNAT User’s Guide

Switches list Builder,
Compiler,
Binder, Linker,
Cross Reference,
Finder, gnatls,
Pretty Printer,
gnatstub,
Check,
Synchronize,
Eliminate,
Metrics, Stack

[file] (file name)

Local Configuration Pragmas string Compiler -
Local Config File string insensitive -
Global Configuration Pragmaslist Builder -
Global Compilation Switches list Builder language
Executable string Builder [file]
Executable Suffix string Builder -
Global Config File string Builder insensitive (language)
IDE (used and created by
GPS)

Remote Host string IDE -
Program Host string IDE -
Communication Protocol string IDE -
Compiler Command string IDE insensitive (language)
Debugger Command string IDE -
Gnatlist string IDE -
Gnat string IDE -
VCS Kind string IDE -
VCS File Check string IDE -
VCS Log Check string IDE -
Documentation Dir string IDE -
Configuration files See gprbuild manual
Default Language string - -
Run Path Option list - -
Run Path Origin string - -
Separate Run Path Options string - -
Toolchain Version string - insensitive
Toolchain Description string - insensitive
Object Generated string - insensitive
Objects Linked string - insensitive
Target string - -
Library Builder string - -
Library Support string - -
Archive Builder list - -
Archive Builder Append Optionlist - -
Archive Indexer list - -
Archive Suffix string - -
Library Partial Linker list - -
Shared Library Prefix string - -
Shared Library Suffix string - -
Symbolic Link Supported string - -

Chapter 11: GNAT Project Manager 173

Library Major Minor Id Supportedstring - -
Library Auto Init Supported string - -
Shared Library Minimum Switcheslist - -
Library Version Switches list - -
Library Install Name Option string - -
Runtime Library Dir string - insensitive
Runtime Source Dir string - insensitive
Driver string Compiler,Binder,Linkerinsensitive (language)
Required Switches list Compiler,Binder,Linkerinsensitive (language)
Leading Required Switches list Compiler insensitive (language)
Trailing Required Switches list Compiler insensitive (language)
Pic Options list Compiler insensitive (language)
Path Syntax string Compiler insensitive (language)
Object File Suffix string Compiler insensitive (language)
Object File Switches list Compiler insensitive (language)
Multi Unit Switches list Compiler insensitive (language)
Multi Unit Object Separator string Compiler insensitive (language)
Mapping File Switches list Compiler insensitive (language)
Mapping Spec Suffix string Compiler insensitive (language)
Mapping body Suffix string Compiler insensitive (language)
Config File Switches list Compiler insensitive (language)
Config Body File Name string Compiler insensitive (language)
Config Body File Name Indexstring Compiler insensitive (language)
Config Body File Name Patternstring Compiler insensitive (language)
Config Spec File Name string Compiler insensitive (language)
Config Spec File Name Index string Compiler insensitive (language)
Config Spec File Name Patternstring Compiler insensitive (language)
Config File Unique string Compiler insensitive (language)
Dependency Switches list Compiler insensitive (language)
Dependency Driver list Compiler insensitive (language)
Include Switches list Compiler insensitive (language)
Include Path string Compiler insensitive (language)
Include Path File string Compiler insensitive (language)
Prefix string Binder insensitive (language)
Objects Path string Binder insensitive (language)
Objects Path File string Binder insensitive (language)
Linker Options list Linker -
Leading Switches list Linker -
Map File Options string Linker -
Executable Switches list Linker -
Lib Dir Switch string Linker -
Lib Name Switch string Linker -
Max Command Line Length string Linker -
Response File Format string Linker -
Response File Switches list Linker -

11.9.10 Case Statements

A case statement is used in a project file to effect conditional behavior. Through this statement,
you can set the value of attributes and variables depending on the value previously assigned to
a typed variable.

174 GNAT User’s Guide

All choices in a choice list must be distinct. Unlike Ada, the choice lists of all alternatives
do not need to include all values of the type. An others choice must appear last in the list of
alternatives.

The syntax of a case construction is based on the Ada case statement (although the null

statement for empty alternatives is optional).

The case expression must be a typed string variable, whose value is often given by an external
reference (see Section 11.9.6 [External Values], page 167).

Each alternative starts with the reserved word when, either a list of literal strings separated
by the "|" character or the reserved word others, and the "=>" token. Each literal string
must belong to the string type that is the type of the case variable. After each =>, there
are zero or more statements. The only statements allowed in a case construction are other
case statements, attribute declarations and variable declarations. String type declarations and
package declarations are not allowed. Variable declarations are restricted to variables that have
already been declared before the case construction.

case_statement ::=

case <typed_variable_>name is {case_item} end case ;

case_item ::=

when discrete_choice_list =>

{case_statement

| attribute_declaration

| variable_declaration

| empty_declaration}

discrete_choice_list ::= string_literal {| string_literal} | others

Here is a typical example:
project MyProj is

type OS_Type is ("GNU/Linux", "Unix", "NT", "VMS");

OS : OS_Type := external ("OS", "GNU/Linux");

package Compiler is

case OS is

when "GNU/Linux" | "Unix" =>

for Switches ("Ada") use ("-gnath");

when "NT" =>

for Switches ("Ada") use ("-gnatP");

when others =>

null;

end case;

end Compiler;

end MyProj;

Chapter 12: Tools Supporting Project Files 175

12 Tools Supporting Project Files

12.1 gnatmake and Project Files

This section covers several topics related to gnatmake and project files: defining switches for
gnatmake and for the tools that it invokes; specifying configuration pragmas; the use of the Main
attribute; building and rebuilding library project files.

12.1.1 Switches Related to Project Files

The following switches are used by GNAT tools that support project files:

‘-Pproject ’
Indicates the name of a project file. This project file will be parsed with the ver-
bosity indicated by ‘-vPx ’, if any, and using the external references indicated by
‘-X’ switches, if any. There may zero, one or more spaces between ‘-P’ and project.

There must be only one ‘-P’ switch on the command line.

Since the Project Manager parses the project file only after all the switches on
the command line are checked, the order of the switches ‘-P’, ‘-vPx ’ or ‘-X’ is not
significant.

‘-Xname=value ’
Indicates that external variable name has the value value. The Project Manager
will use this value for occurrences of external(name) when parsing the project file.

If name or value includes a space, then name=value should be put between quotes.
-XOS=NT

-X"user=John Doe"

Several ‘-X’ switches can be used simultaneously. If several ‘-X’ switches specify the
same name, only the last one is used.

An external variable specified with a ‘-X’ switch takes precedence over the value of
the same name in the environment.

‘-vPx ’ Indicates the verbosity of the parsing of GNAT project files.

‘-vP0’ means Default; ‘-vP1’ means Medium; ‘-vP2’ means High.

The default is Default: no output for syntactically correct project files. If several
‘-vPx ’ switches are present, only the last one is used.

‘-aP<dir>’
Add directory <dir> at the beginning of the project search path, in order, after the
current working directory.

‘-eL’ Follow all symbolic links when processing project files.

‘--subdirs=<subdir>’
This switch is recognized by gnatmake and gnatclean. It indicate that the real
directories (except the source directories) are the subdirectories <subdir> of the di-
rectories specified in the project files. This applies in particular to object directories,
library directories and exec directories. If the subdirectories do not exist, they are
created automatically.

12.1.2 Switches and Project Files

For each of the packages Builder, Compiler, Binder, and Linker, you can specify a Default_
Switches attribute, a Switches attribute, or both; as their names imply, these switch-related
attributes affect the switches that are used for each of these GNAT components when gnatmake

176 GNAT User’s Guide

is invoked. As will be explained below, these component-specific switches precede the switches
provided on the gnatmake command line.

The Default_Switches attribute is an attribute indexed by language name (case insensitive)
whose value is a string list. For example:

package Compiler is

for Default_Switches ("Ada")

use ("-gnaty",

"-v");

end Compiler;

The Switches attribute is indexed on a file name (which may or may not be case sensitive,
depending on the operating system) whose value is a string list. For example:

package Builder is

for Switches ("main1.adb")

use ("-O2");

for Switches ("main2.adb")

use ("-g");

end Builder;

For the Builder package, the file names must designate source files for main subprograms. For
the Binder and Linker packages, the file names must designate ‘ALI’ or source files for main
subprograms. In each case just the file name without an explicit extension is acceptable.

For each tool used in a program build (gnatmake, the compiler, the binder, and the linker),
the corresponding package contributes a set of switches for each file on which the tool is invoked,
based on the switch-related attributes defined in the package. In particular, the switches that
each of these packages contributes for a given file f comprise:

• the value of attribute Switches (f), if it is specified in the package for the given file,

• otherwise, the value of Default_Switches ("Ada"), if it is specified in the package.

If neither of these attributes is defined in the package, then the package does not contribute any
switches for the given file.

When gnatmake is invoked on a file, the switches comprise two sets, in the following order:
those contributed for the file by the Builder package; and the switches passed on the command
line.

When gnatmake invokes a tool (compiler, binder, linker) on a file, the switches passed to the
tool comprise three sets, in the following order:

1. the applicable switches contributed for the file by the Builder package in the project file
supplied on the command line;

2. those contributed for the file by the package (in the relevant project file – see below)
corresponding to the tool; and

3. the applicable switches passed on the command line.

The term applicable switches reflects the fact that gnatmake switches may or may not be
passed to individual tools, depending on the individual switch.

gnatmake may invoke the compiler on source files from different projects. The Project Man-
ager will use the appropriate project file to determine the Compiler package for each source file
being compiled. Likewise for the Binder and Linker packages.

As an example, consider the following package in a project file:

Chapter 12: Tools Supporting Project Files 177

project Proj1 is

package Compiler is

for Default_Switches ("Ada")

use ("-g");

for Switches ("a.adb")

use ("-O1");

for Switches ("b.adb")

use ("-O2",

"-gnaty");

end Compiler;

end Proj1;

If gnatmake is invoked with this project file, and it needs to compile, say, the files ‘a.adb’,
‘b.adb’, and ‘c.adb’, then ‘a.adb’ will be compiled with the switch ‘-O1’, ‘b.adb’ with switches
‘-O2’ and ‘-gnaty’, and ‘c.adb’ with ‘-g’.

The following example illustrates the ordering of the switches contributed by different pack-
ages:

project Proj2 is

package Builder is

for Switches ("main.adb")

use ("-g",

"-O1",

"-f");

end Builder;

package Compiler is

for Switches ("main.adb")

use ("-O2");

end Compiler;

end Proj2;

If you issue the command:

gnatmake -Pproj2 -O0 main

then the compiler will be invoked on ‘main.adb’ with the following sequence of switches

-g -O1 -O2 -O0

with the last ‘-O’ switch having precedence over the earlier ones; several other switches (such as
‘-c’) are added implicitly.

The switches ‘-g’ and ‘-O1’ are contributed by package Builder, ‘-O2’ is contributed by the
package Compiler and ‘-O0’ comes from the command line.

The ‘-g’ switch will also be passed in the invocation of Gnatlink.

A final example illustrates switch contributions from packages in different project files:

project Proj3 is

for Source_Files use ("pack.ads", "pack.adb");

package Compiler is

for Default_Switches ("Ada")

use ("-gnata");

end Compiler;

end Proj3;

with "Proj3";

project Proj4 is

for Source_Files use ("foo_main.adb", "bar_main.adb");

package Builder is

for Switches ("foo_main.adb")

use ("-s",

"-g");

end Builder;

end Proj4;

178 GNAT User’s Guide

-- Ada source file:

with Pack;

procedure Foo_Main is

...

end Foo_Main;

If the command is

gnatmake -PProj4 foo_main.adb -cargs -gnato

then the switches passed to the compiler for ‘foo_main.adb’ are ‘-g’ (contributed by the package
Proj4.Builder) and ‘-gnato’ (passed on the command line). When the imported package Pack
is compiled, the switches used are ‘-g’ from Proj4.Builder, ‘-gnata’ (contributed from package
Proj3.Compiler, and ‘-gnato’ from the command line.

When using gnatmake with project files, some switches or arguments may be expressed as
relative paths. As the working directory where compilation occurs may change, these relative
paths are converted to absolute paths. For the switches found in a project file, the relative paths
are relative to the project file directory, for the switches on the command line, they are relative
to the directory where gnatmake is invoked. The switches for which this occurs are: -I, -A, -L,
-aO, -aL, -aI, as well as all arguments that are not switches (arguments to switch -o, object files
specified in package Linker or after -largs on the command line). The exception to this rule is
the switch –RTS= for which a relative path argument is never converted.

12.1.3 Specifying Configuration Pragmas

When using gnatmake with project files, if there exists a file ‘gnat.adc’ that contains configu-
ration pragmas, this file will be ignored.

Configuration pragmas can be defined by means of the following attributes in project files:
Global_Configuration_Pragmas in package Builder and Local_Configuration_Pragmas in
package Compiler.

Both these attributes are single string attributes. Their values is the path name of a file
containing configuration pragmas. If a path name is relative, then it is relative to the project
directory of the project file where the attribute is defined.

When compiling a source, the configuration pragmas used are, in order, those listed in
the file designated by attribute Global_Configuration_Pragmas in package Builder of the
main project file, if it is specified, and those listed in the file designated by attribute Local_

Configuration_Pragmas in package Compiler of the project file of the source, if it exists.

12.1.4 Project Files and Main Subprograms

When using a project file, you can invoke gnatmake with one or several main subprograms, by
specifying their source files on the command line.

gnatmake -Pprj main1.adb main2.adb main3.adb

Each of these needs to be a source file of the same project, except when the switch -u is used.

When -u is not used, all the mains need to be sources of the same project, one of the project
in the tree rooted at the project specified on the command line. The package Builder of this
common project, the "main project" is the one that is considered by gnatmake.

When -u is used, the specified source files may be in projects imported directly or indirectly
by the project specified on the command line. Note that if such a source file is not part of the
project specified on the command line, the switches found in package Builder of the project
specified on the command line, if any, that are transmitted to the compiler will still be used,
not those found in the project file of the source file.

When using a project file, you can also invoke gnatmake without explicitly specifying any
main, and the effect depends on whether you have defined the Main attribute. This attribute has

Chapter 12: Tools Supporting Project Files 179

a string list value, where each element in the list is the name of a source file (the file extension
is optional) that contains a unit that can be a main subprogram.

If the Main attribute is defined in a project file as a non-empty string list and the switch
‘-u’ is not used on the command line, then invoking gnatmake with this project file but without
any main on the command line is equivalent to invoking gnatmake with all the file names in the
Main attribute on the command line.

Example:

project Prj is

for Main use ("main1.adb", "main2.adb", "main3.adb");

end Prj;

With this project file, "gnatmake -Pprj" is equivalent to "gnatmake -Pprj main1.adb

main2.adb main3.adb".

When the project attribute Main is not specified, or is specified as an empty string list,
or when the switch ‘-u’ is used on the command line, then invoking gnatmake with no main
on the command line will result in all immediate sources of the project file being checked,
and potentially recompiled. Depending on the presence of the switch ‘-u’, sources from other
project files on which the immediate sources of the main project file depend are also checked
and potentially recompiled. In other words, the ‘-u’ switch is applied to all of the immediate
sources of the main project file.

When no main is specified on the command line and attribute Main exists and includes several
mains, or when several mains are specified on the command line, the default switches in package
Builder will be used for all mains, even if there are specific switches specified for one or several
mains.

But the switches from package Binder or Linker will be the specific switches for each main,
if they are specified.

12.1.5 Library Project Files

When gnatmake is invoked with a main project file that is a library project file, it is not allowed
to specify one or more mains on the command line.

When a library project file is specified, switches -b and -l have special meanings.

• -b is only allowed for stand-alone libraries. It indicates to gnatmake that gnatbind should
be invoked for the library.

• -l may be used for all library projects. It indicates to gnatmake that the binder generated
file should be compiled (in the case of a stand-alone library) and that the library should be
built.

12.2 The GNAT Driver and Project Files

A number of GNAT tools, other than gnatmake can benefit from project files: (gnatbind,
gnatcheck, gnatclean, gnatelim, gnatfind, gnatlink, gnatls, gnatmetric, gnatpp,
gnatstub, and gnatxref). However, none of these tools can be invoked directly with a project
file switch (‘-P’). They must be invoked through the gnat driver.

The gnat driver is a wrapper that accepts a number of commands and calls the corresponding
tool. It was designed initially for VMS platforms (to convert VMS qualifiers to Unix-style
switches), but it is now available on all GNAT platforms.

On non-VMS platforms, the gnat driver accepts the following commands (case insensitive):

• BIND to invoke gnatbind

• CHOP to invoke gnatchop

• CLEAN to invoke gnatclean

180 GNAT User’s Guide

• COMP or COMPILE to invoke the compiler

• ELIM to invoke gnatelim

• FIND to invoke gnatfind

• KR or KRUNCH to invoke gnatkr

• LINK to invoke gnatlink

• LS or LIST to invoke gnatls

• MAKE to invoke gnatmake

• NAME to invoke gnatname

• PREP or PREPROCESS to invoke gnatprep

• PP or PRETTY to invoke gnatpp

• METRIC to invoke gnatmetric

• STUB to invoke gnatstub

• XREF to invoke gnatxref

(note that the compiler is invoked using the command gnatmake -f -u -c).

On non-VMS platforms, between gnat and the command, two special switches may be used:

• -v to display the invocation of the tool.

• -dn to prevent the gnat driver from removing the temporary files it has created. These
temporary files are configuration files and temporary file list files.

The command may be followed by switches and arguments for the invoked tool.
gnat bind -C main.ali

gnat ls -a main

gnat chop foo.txt

Switches may also be put in text files, one switch per line, and the text files may be specified
with their path name preceded by ’@’.

gnat bind @args.txt main.ali

In addition, for commands BIND, COMP or COMPILE, FIND, ELIM, LS or LIST, LINK,
METRIC, PP or PRETTY, STUB and XREF, the project file related switches (‘-P’, ‘-X’ and
‘-vPx’) may be used in addition to the switches of the invoking tool.

When GNAT PP or GNAT PRETTY is used with a project file, but with no source specified
on the command line, it invokes gnatpp with all the immediate sources of the specified project
file.

When GNAT METRIC is used with a project file, but with no source specified on the
command line, it invokes gnatmetric with all the immediate sources of the specified project file
and with ‘-d’ with the parameter pointing to the object directory of the project.

In addition, when GNAT PP, GNAT PRETTY or GNAT METRIC is used with a project
file, no source is specified on the command line and switch -U is specified on the command line,
then the underlying tool (gnatpp or gnatmetric) is invoked for all sources of all projects, not
only for the immediate sources of the main project. (-U stands for Universal or Union of the
project files of the project tree)

For each of the following commands, there is optionally a corresponding package in the main
project.

• package Binder for command BIND (invoking gnatbind)

• package Check for command CHECK (invoking gnatcheck)

• package Compiler for command COMP or COMPILE (invoking the compiler)

• package Cross_Reference for command XREF (invoking gnatxref)

• package Eliminate for command ELIM (invoking gnatelim)

Chapter 12: Tools Supporting Project Files 181

• package Finder for command FIND (invoking gnatfind)

• package Gnatls for command LS or LIST (invoking gnatls)

• package Gnatstub for command STUB (invoking gnatstub)

• package Linker for command LINK (invoking gnatlink)

• package Check for command CHECK (invoking gnatcheck)

• package Metrics for command METRIC (invoking gnatmetric)

• package Pretty_Printer for command PP or PRETTY (invoking gnatpp)

Package Gnatls has a unique attribute Switches, a simple variable with a string list value. It
contains switches for the invocation of gnatls.

project Proj1 is

package gnatls is

for Switches

use ("-a",

"-v");

end gnatls;

end Proj1;

All other packages have two attribute Switches and Default_Switches.

Switches is an indexed attribute, indexed by the source file name, that has a string list
value: the switches to be used when the tool corresponding to the package is invoked for the
specific source file.

Default_Switches is an attribute, indexed by the programming language that has a string
list value. Default_Switches ("Ada") contains the switches for the invocation of the tool
corresponding to the package, except if a specific Switches attribute is specified for the source
file.

project Proj is

for Source_Dirs use ("**");

package gnatls is

for Switches use

("-a",

"-v");

end gnatls;

package Compiler is

for Default_Switches ("Ada")

use ("-gnatv",

"-gnatwa");

end Binder;

package Binder is

for Default_Switches ("Ada")

use ("-C",

"-e");

end Binder;

package Linker is

for Default_Switches ("Ada")

use ("-C");

for Switches ("main.adb")

use ("-C",

"-v",

"-v");

end Linker;

182 GNAT User’s Guide

package Finder is

for Default_Switches ("Ada")

use ("-a",

"-f");

end Finder;

package Cross_Reference is

for Default_Switches ("Ada")

use ("-a",

"-f",

"-d",

"-u");

end Cross_Reference;

end Proj;

With the above project file, commands such as

gnat comp -Pproj main

gnat ls -Pproj main

gnat xref -Pproj main

gnat bind -Pproj main.ali

gnat link -Pproj main.ali

will set up the environment properly and invoke the tool with the switches found in the pack-
age corresponding to the tool: Default_Switches ("Ada") for all tools, except Switches

("main.adb") for gnatlink. It is also possible to invoke some of the tools, (gnatcheck,
gnatmetric, and gnatpp) on a set of project units thanks to the combination of the switches
‘-P’, ‘-U’ and possibly the main unit when one is interested in its closure. For instance,

gnat metric -Pproj

will compute the metrics for all the immediate units of project proj.

gnat metric -Pproj -U

will compute the metrics for all the units of the closure of projects rooted at proj.

gnat metric -Pproj -U main_unit

will compute the metrics for the closure of units rooted at main_unit. This last possibility relies
implicitly on gnatbind’s option ‘-R’. But if the argument files for the tool invoked by the gnat
driver are explicitly specified either directly or through the tool ‘-files’ option, then the tool
is called only for these explicitly specified files.

12.3 The Development Environments

See the appropriate manuals for more details. These environments will store a number of settings
in the project itself, when they are meant to be shared by the whole team working on the project.
Here are the attributes defined in the package IDE in projects.

Remote_Host

This is a simple attribute. Its value is a string that designates the remote host in
a cross-compilation environment, to be used for remote compilation and debugging.
This field should not be specified when running on the local machine.

Program_Host

This is a simple attribute. Its value is a string that specifies the name of IP address
of the embedded target in a cross-compilation environment, on which the program
should execute.

Communication_Protocol

This is a simple string attribute. Its value is the name of the protocol to use
to communicate with the target in a cross-compilation environment, e.g. "wtx" or
"vxworks".

Chapter 12: Tools Supporting Project Files 183

Compiler_Command

This is an associative array attribute, whose domain is a language name. Its value
is string that denotes the command to be used to invoke the compiler. The value of
Compiler_Command ("Ada") is expected to be compatible with gnatmake, in par-
ticular in the handling of switches.

Debugger_Command

This is simple attribute, Its value is a string that specifies the name of the debugger
to be used, such as gdb, powerpc-wrs-vxworks-gdb or gdb-4.

Default_Switches

This is an associative array attribute. Its indexes are the name of the external tools
that the GNAT Programming System (GPS) is supporting. Its value is a list of
switches to use when invoking that tool.

Gnatlist This is a simple attribute. Its value is a string that specifies the name of the gnatls
utility to be used to retrieve information about the predefined path; e.g., "gnatls",
"powerpc-wrs-vxworks-gnatls".

VCS_Kind This is a simple attribute. Its value is a string used to specify the Version Control
System (VCS) to be used for this project, e.g. CVS, RCS ClearCase or Perforce.

Gnat This is a simple attribute. Its value is a string that specifies the name of the gnat

utility to be used when executing various tools from GPS, in particular "gnat pp",
"gnat stub",. . .

VCS_File_Check

This is a simple attribute. Its value is a string that specifies the command used by
the VCS to check the validity of a file, either when the user explicitly asks for a
check, or as a sanity check before doing the check-in.

VCS_Log_Check

This is a simple attribute. Its value is a string that specifies the command used by
the VCS to check the validity of a log file.

VCS_Repository_Root

The VCS repository root path. This is used to create tags or branches of the
repository. For subversion the value should be the URL as specified to check-out the
working copy of the repository.

VCS_Patch_Root

The local root directory to use for building patch file. All patch chunks will be
relative to this path. The root project directory is used if this value is not defined.

Chapter 13: The Cross-Referencing Tools gnatxref and gnatfind 185

13 The Cross-Referencing Tools gnatxref and
gnatfind

The compiler generates cross-referencing information (unless you set the ‘-gnatx’ switch), which
are saved in the ‘.ali’ files. This information indicates where in the source each entity is declared
and referenced. Note that entities in package Standard are not included, but entities in all other
predefined units are included in the output.

Before using any of these two tools, you need to compile successfully your application, so
that GNAT gets a chance to generate the cross-referencing information.

The two tools gnatxref and gnatfind take advantage of this information to provide the
user with the capability to easily locate the declaration and references to an entity. These tools
are quite similar, the difference being that gnatfind is intended for locating definitions and/or
references to a specified entity or entities, whereas gnatxref is oriented to generating a full
report of all cross-references.

To use these tools, you must not compile your application using the ‘-gnatx’ switch on
the gnatmake command line (see Chapter 6 [The GNAT Make Program gnatmake], page 95).
Otherwise, cross-referencing information will not be generated.

Note: to invoke gnatxref or gnatfind with a project file, use the gnat driver (see Section 12.2
[The GNAT Driver and Project Files], page 179).

13.1 gnatxref Switches

The command invocation for gnatxref is:
$ gnatxref [switches] sourcefile1 [sourcefile2 ...]

where

sourcefile1
sourcefile2 identifies the source files for which a report is to be generated. The “with”ed units

will be processed too. You must provide at least one file.

These file names are considered to be regular expressions, so for instance specifying
‘source*.adb’ is the same as giving every file in the current directory whose name
starts with ‘source’ and whose extension is ‘adb’.

You shouldn’t specify any directory name, just base names. gnatxref and gnatfind

will be able to locate these files by themselves using the source path. If you specify
directories, no result is produced.

The switches can be:

‘--version’
Display Copyright and version, then exit disregarding all other options.

‘--help’ If ‘--version’ was not used, display usage, then exit disregarding all other options.

‘-a’ If this switch is present, gnatfind and gnatxref will parse the read-only files found
in the library search path. Otherwise, these files will be ignored. This option can be
used to protect Gnat sources or your own libraries from being parsed, thus making
gnatfind and gnatxref much faster, and their output much smaller. Read-only
here refers to access or permissions status in the file system for the current user.

‘-aIDIR’ When looking for source files also look in directory DIR. The order in which source
file search is undertaken is the same as for gnatmake.

‘-aODIR’ When searching for library and object files, look in directory DIR. The order in
which library files are searched is the same as for gnatmake.

‘-nostdinc’
Do not look for sources in the system default directory.

186 GNAT User’s Guide

‘-nostdlib’
Do not look for library files in the system default directory.

‘--ext=extension ’
Specify an alternate ali file extension. The default is ali and other extensions (e.g.
sli for SPARK library files) may be specified via this switch. Note that if this switch
overrides the default, which means that only the new extension will be considered.

‘--RTS=rts-path ’
Specifies the default location of the runtime library. Same meaning as the equivalent
gnatmake flag (see Section 6.2 [Switches for gnatmake], page 95).

‘-d’ If this switch is set gnatxref will output the parent type reference for each matching
derived types.

‘-f’ If this switch is set, the output file names will be preceded by their directory (if the
file was found in the search path). If this switch is not set, the directory will not be
printed.

‘-g’ If this switch is set, information is output only for library-level entities, ignoring
local entities. The use of this switch may accelerate gnatfind and gnatxref.

‘-IDIR’ Equivalent to ‘-aODIR -aIDIR’.

‘-pFILE’ Specify a project file to use See Chapter 11 [GNAT Project Manager], page 131. If
you need to use the ‘.gpr’ project files, you should use gnatxref through the GNAT
driver (gnat xref -Pproject).

By default, gnatxref and gnatfind will try to locate a project file in the current
directory.

If a project file is either specified or found by the tools, then the content of the
source directory and object directory lines are added as if they had been specified
respectively by ‘-aI’ and ‘-aO’.

‘-u’ Output only unused symbols. This may be really useful if you give your main
compilation unit on the command line, as gnatxref will then display every unused
entity and ’with’ed package.

‘-v’ Instead of producing the default output, gnatxref will generate a ‘tags’ file that
can be used by vi. For examples how to use this feature, see Section 13.5 [Examples
of gnatxref Usage], page 190. The tags file is output to the standard output, thus
you will have to redirect it to a file.

All these switches may be in any order on the command line, and may even appear after the
file names. They need not be separated by spaces, thus you can say ‘gnatxref -ag’ instead of
‘gnatxref -a -g’.

13.2 gnatfind Switches

The command line for gnatfind is:
$ gnatfind [switches] pattern [:sourcefile [:line [:column]]]

[file1 file2 ...]

where

pattern An entity will be output only if it matches the regular expression found in pattern,
see Section 13.4 [Regular Expressions in gnatfind and gnatxref], page 189.

Omitting the pattern is equivalent to specifying ‘*’, which will match any entity.
Note that if you do not provide a pattern, you have to provide both a sourcefile and
a line.

Chapter 13: The Cross-Referencing Tools gnatxref and gnatfind 187

Entity names are given in Latin-1, with uppercase/lowercase equivalence for match-
ing purposes. At the current time there is no support for 8-bit codes other than
Latin-1, or for wide characters in identifiers.

sourcefile gnatfind will look for references, bodies or declarations of symbols referenced in
‘sourcefile ’, at line line and column column. See Section 13.6 [Examples of
gnatfind Usage], page 192 for syntax examples.

line is a decimal integer identifying the line number containing the reference to the entity
(or entities) to be located.

column is a decimal integer identifying the exact location on the line of the first character
of the identifier for the entity reference. Columns are numbered from 1.

file1 file2 . . .
The search will be restricted to these source files. If none are given, then the search
will be done for every library file in the search path. These file must appear only
after the pattern or sourcefile.

These file names are considered to be regular expressions, so for instance specifying
‘source*.adb’ is the same as giving every file in the current directory whose name
starts with ‘source’ and whose extension is ‘adb’.

The location of the spec of the entity will always be displayed, even if it isn’t in one
of ‘file1 ’, ‘file2 ’,. . . The occurrences of the entity in the separate units of the
ones given on the command line will also be displayed.

Note that if you specify at least one file in this part, gnatfind may sometimes not
be able to find the body of the subprograms.

At least one of ’sourcefile’ or ’pattern’ has to be present on the command line.

The following switches are available:

Display Copyright and version, then exit disregarding all other options.

‘--help’ If ‘--version’ was not used, display usage, then exit disregarding all other options.

‘-a’ If this switch is present, gnatfind and gnatxref will parse the read-only files found
in the library search path. Otherwise, these files will be ignored. This option can be
used to protect Gnat sources or your own libraries from being parsed, thus making
gnatfind and gnatxref much faster, and their output much smaller. Read-only
here refers to access or permission status in the file system for the current user.

‘-aIDIR’ When looking for source files also look in directory DIR. The order in which source
file search is undertaken is the same as for gnatmake.

‘-aODIR’ When searching for library and object files, look in directory DIR. The order in
which library files are searched is the same as for gnatmake.

‘-nostdinc’
Do not look for sources in the system default directory.

‘-nostdlib’
Do not look for library files in the system default directory.

‘--ext=extension ’
Specify an alternate ali file extension. The default is ali and other extensions (e.g.
sli for SPARK library files) may be specified via this switch. Note that if this switch
overrides the default, which means that only the new extension will be considered.

‘--RTS=rts-path ’
Specifies the default location of the runtime library. Same meaning as the equivalent
gnatmake flag (see Section 6.2 [Switches for gnatmake], page 95).

188 GNAT User’s Guide

‘-d’ If this switch is set, then gnatfind will output the parent type reference for each
matching derived types.

‘-e’ By default, gnatfind accept the simple regular expression set for ‘pattern’. If this
switch is set, then the pattern will be considered as full Unix-style regular expression.

‘-f’ If this switch is set, the output file names will be preceded by their directory (if the
file was found in the search path). If this switch is not set, the directory will not be
printed.

‘-g’ If this switch is set, information is output only for library-level entities, ignoring
local entities. The use of this switch may accelerate gnatfind and gnatxref.

‘-IDIR’ Equivalent to ‘-aODIR -aIDIR’.

‘-pFILE’ Specify a project file (see Chapter 11 [GNAT Project Manager], page 131) to use.
By default, gnatxref and gnatfind will try to locate a project file in the current
directory.

If a project file is either specified or found by the tools, then the content of the
source directory and object directory lines are added as if they had been specified
respectively by ‘-aI’ and ‘-aO’.

‘-r’ By default, gnatfind will output only the information about the declaration, body
or type completion of the entities. If this switch is set, the gnatfind will locate
every reference to the entities in the files specified on the command line (or in every
file in the search path if no file is given on the command line).

‘-s’ If this switch is set, then gnatfind will output the content of the Ada source file
lines were the entity was found.

‘-t’ If this switch is set, then gnatfind will output the type hierarchy for the specified
type. It act like -d option but recursively from parent type to parent type. When
this switch is set it is not possible to specify more than one file.

All these switches may be in any order on the command line, and may even appear after the
file names. They need not be separated by spaces, thus you can say ‘gnatxref -ag’ instead of
‘gnatxref -a -g’.

As stated previously, gnatfind will search in every directory in the search path. You can force
it to look only in the current directory if you specify * at the end of the command line.

13.3 Project Files for gnatxref and gnatfind

Project files allow a programmer to specify how to compile its application, where to find sources,
etc. These files are used primarily by GPS, but they can also be used by the two tools gnatxref
and gnatfind.

A project file name must end with ‘.gpr’. If a single one is present in the current directory,
then gnatxref and gnatfind will extract the information from it. If multiple project files are
found, none of them is read, and you have to use the ‘-p’ switch to specify the one you want to
use.

The following lines can be included, even though most of them have default values which can
be used in most cases. The lines can be entered in any order in the file. Except for ‘src_dir’
and ‘obj_dir’, you can only have one instance of each line. If you have multiple instances, only
the last one is taken into account.

src_dir=DIR

[default: "./"] specifies a directory where to look for source files. Multiple src_dir
lines can be specified and they will be searched in the order they are specified.

Chapter 13: The Cross-Referencing Tools gnatxref and gnatfind 189

obj_dir=DIR

[default: "./"] specifies a directory where to look for object and library files. Mul-
tiple obj_dir lines can be specified, and they will be searched in the order they are
specified

comp_opt=SWITCHES

[default: ""] creates a variable which can be referred to subsequently by using
the ${comp_opt} notation. This is intended to store the default switches given to
gnatmake and gcc.

bind_opt=SWITCHES

[default: ""] creates a variable which can be referred to subsequently by using the
‘${bind_opt}’ notation. This is intended to store the default switches given to
gnatbind.

link_opt=SWITCHES

[default: ""] creates a variable which can be referred to subsequently by using the
‘${link_opt}’ notation. This is intended to store the default switches given to
gnatlink.

main=EXECUTABLE

[default: ""] specifies the name of the executable for the application. This variable
can be referred to in the following lines by using the ‘${main}’ notation.

comp_cmd=COMMAND

[default: "gcc -c -I${src_dir} -g -gnatq"] specifies the command used to com-
pile a single file in the application.

make_cmd=COMMAND

[default: "gnatmake ${main} -aI${src_dir} -aO${obj_dir} -g -gnatq -cargs

${comp_opt} -bargs ${bind_opt} -largs ${link_opt}"] specifies the command
used to recompile the whole application.

run_cmd=COMMAND

[default: "${main}"] specifies the command used to run the application.

debug_cmd=COMMAND

[default: "gdb ${main}"] specifies the command used to debug the application

gnatxref and gnatfind only take into account the src_dir and obj_dir lines, and ignore the
others.

13.4 Regular Expressions in gnatfind and gnatxref

As specified in the section about gnatfind, the pattern can be a regular expression. Actually,
there are to set of regular expressions which are recognized by the program:

globbing patterns

These are the most usual regular expression. They are the same that you generally
used in a Unix shell command line, or in a DOS session.

Here is a more formal grammar:

regexp ::= term

term ::= elmt -- matches elmt

term ::= elmt elmt -- concatenation (elmt then elmt)

term ::= * -- any string of 0 or more characters

term ::= ? -- matches any character

term ::= [char {char}] -- matches any character listed

term ::= [char - char] -- matches any character in range

190 GNAT User’s Guide

full regular expression

The second set of regular expressions is much more powerful. This is the type of
regular expressions recognized by utilities such a ‘grep’.

The following is the form of a regular expression, expressed in Ada reference manual
style BNF is as follows

regexp ::= term {| term} -- alternation (term or term ...)

term ::= item {item} -- concatenation (item then item)

item ::= elmt -- match elmt

item ::= elmt * -- zero or more elmt’s

item ::= elmt + -- one or more elmt’s

item ::= elmt ? -- matches elmt or nothing

elmt ::= nschar -- matches given character

elmt ::= [nschar {nschar}] -- matches any character listed

elmt ::= [^ nschar {nschar}] -- matches any character not listed

elmt ::= [char - char] -- matches chars in given range

elmt ::= \ char -- matches given character

elmt ::= . -- matches any single character

elmt ::= (regexp) -- parens used for grouping

char ::= any character, including special characters

nschar ::= any character except ()[].*+?^

Following are a few examples:

‘abcde|fghi’
will match any of the two strings ‘abcde’ and ‘fghi’,

‘abc*d’ will match any string like ‘abd’, ‘abcd’, ‘abccd’, ‘abcccd’, and so on,

‘[a-z]+’ will match any string which has only lowercase characters in it (and at
least one character.

13.5 Examples of gnatxref Usage

13.5.1 General Usage

For the following examples, we will consider the following units:

Chapter 13: The Cross-Referencing Tools gnatxref and gnatfind 191� �
main.ads:

1: with Bar;

2: package Main is

3: procedure Foo (B : in Integer);

4: C : Integer;

5: private

6: D : Integer;

7: end Main;

main.adb:

1: package body Main is

2: procedure Foo (B : in Integer) is

3: begin

4: C := B;

5: D := B;

6: Bar.Print (B);

7: Bar.Print (C);

8: end Foo;

9: end Main;

bar.ads:

1: package Bar is

2: procedure Print (B : Integer);

3: end bar;
 	
The first thing to do is to recompile your application (for instance, in that case
just by doing a ‘gnatmake main’, so that GNAT generates the cross-referencing
information. You can then issue any of the following commands:

gnatxref main.adb

gnatxref generates cross-reference information for main.adb and every unit ’with’ed
by main.adb.

The output would be:

B Type: Integer

Decl: bar.ads 2:22

B Type: Integer

Decl: main.ads 3:20

Body: main.adb 2:20

Ref: main.adb 4:13 5:13 6:19

Bar Type: Unit

Decl: bar.ads 1:9

Ref: main.adb 6:8 7:8

main.ads 1:6

C Type: Integer

Decl: main.ads 4:5

Modi: main.adb 4:8

Ref: main.adb 7:19

D Type: Integer

Decl: main.ads 6:5

Modi: main.adb 5:8

Foo Type: Unit

Decl: main.ads 3:15

Body: main.adb 2:15

Main Type: Unit

Decl: main.ads 2:9

Body: main.adb 1:14

Print Type: Unit

Decl: bar.ads 2:15

Ref: main.adb 6:12 7:12

that is the entity Main is declared in main.ads, line 2, column 9, its body is in
main.adb, line 1, column 14 and is not referenced any where.

192 GNAT User’s Guide

The entity Print is declared in bar.ads, line 2, column 15 and it is referenced in
main.adb, line 6 column 12 and line 7 column 12.

gnatxref package1.adb package2.ads

gnatxref will generates cross-reference information for package1.adb, package2.ads
and any other package ’with’ed by any of these.

13.5.2 Using gnatxref with vi

gnatxref can generate a tags file output, which can be used directly from vi. Note that the
standard version of vi will not work properly with overloaded symbols. Consider using another
free implementation of vi, such as vim.

$ gnatxref -v gnatfind.adb > tags

will generate the tags file for gnatfind itself (if the sources are in the search path!).

From vi, you can then use the command ‘:tag entity ’ (replacing entity by whatever you
are looking for), and vi will display a new file with the corresponding declaration of entity.

13.6 Examples of gnatfind Usage

gnatfind -f xyz:main.adb

Find declarations for all entities xyz referenced at least once in main.adb. The
references are search in every library file in the search path.

The directories will be printed as well (as the ‘-f’ switch is set)

The output will look like:
directory/main.ads:106:14: xyz <= declaration

directory/main.adb:24:10: xyz <= body

directory/foo.ads:45:23: xyz <= declaration

that is to say, one of the entities xyz found in main.adb is declared at line 12 of
main.ads (and its body is in main.adb), and another one is declared at line 45 of
foo.ads

gnatfind -fs xyz:main.adb

This is the same command as the previous one, instead gnatfind will display the
content of the Ada source file lines.

The output will look like:
directory/main.ads:106:14: xyz <= declaration

procedure xyz;

directory/main.adb:24:10: xyz <= body

procedure xyz is

directory/foo.ads:45:23: xyz <= declaration

xyz : Integer;

This can make it easier to find exactly the location your are looking for.

gnatfind -r "*x*":main.ads:123 foo.adb

Find references to all entities containing an x that are referenced on line 123 of
main.ads. The references will be searched only in main.ads and foo.adb.

gnatfind main.ads:123

Find declarations and bodies for all entities that are referenced on line 123 of
main.ads.

This is the same as gnatfind "*":main.adb:123.

gnatfind mydir/main.adb:123:45

Find the declaration for the entity referenced at column 45 in line 123 of file main.adb
in directory mydir. Note that it is usual to omit the identifier name when the column
is given, since the column position identifies a unique reference.

Chapter 13: The Cross-Referencing Tools gnatxref and gnatfind 193

The column has to be the beginning of the identifier, and should not point to any
character in the middle of the identifier.

Chapter 14: The GNAT Pretty-Printer gnatpp 195

14 The GNAT Pretty-Printer gnatpp

The gnatpp tool is an ASIS-based utility for source reformatting / pretty-printing. It takes an
Ada source file as input and generates a reformatted version as output. You can specify various
style directives via switches; e.g., identifier case conventions, rules of indentation, and comment
layout.

To produce a reformatted file, gnatpp generates and uses the ASIS tree for the input source
and thus requires the input to be syntactically and semantically legal. If this condition is not
met, gnatpp will terminate with an error message; no output file will be generated.

If the source files presented to gnatpp contain preprocessing directives, then the output file
will correspond to the generated source after all preprocessing is carried out. There is no way
using gnatpp to obtain pretty printed files that include the preprocessing directives.

If the compilation unit contained in the input source depends semantically upon units located
outside the current directory, you have to provide the source search path when invoking gnatpp,
if these units are contained in files with names that do not follow the GNAT file naming rules,
you have to provide the configuration file describing the corresponding naming scheme; see the
description of the gnatpp switches below. Another possibility is to use a project file and to
call gnatpp through the gnat driver (see Section 12.2 [The GNAT Driver and Project Files],
page 179).

The gnatpp command has the form

$ gnatpp [switches] filename [-cargs gcc_switches]

where

• switches is an optional sequence of switches defining such properties as the formatting rules,
the source search path, and the destination for the output source file

• filename is the name (including the extension) of the source file to reformat; “wildcards”
or several file names on the same gnatpp command are allowed. The file name may contain
path information; it does not have to follow the GNAT file naming rules

• ‘gcc_switches ’ is a list of switches for gcc. They will be passed on to all compiler invoca-
tions made by gnatelim to generate the ASIS trees. Here you can provide ‘-I’ switches to
form the source search path, use the ‘-gnatec’ switch to set the configuration file, use the
‘-gnat05’ switch if sources should be compiled in Ada 2005 mode etc.

14.1 Switches for gnatpp

The following subsections describe the various switches accepted by gnatpp, organized by cate-
gory.

You specify a switch by supplying a name and generally also a value. In many cases the
values for a switch with a given name are incompatible with each other (for example the switch
that controls the casing of a reserved word may have exactly one value: upper case, lower case,
or mixed case) and thus exactly one such switch can be in effect for an invocation of gnatpp.
If more than one is supplied, the last one is used. However, some values for the same switch
are mutually compatible. You may supply several such switches to gnatpp, but then each must
be specified in full, with both the name and the value. Abbreviated forms (the name appearing
once, followed by each value) are not permitted. For example, to set the alignment of the
assignment delimiter both in declarations and in assignment statements, you must write ‘-A2A3’
(or ‘-A2 -A3’), but not ‘-A23’.

In most cases, it is obvious whether or not the values for a switch with a given name are
compatible with each other. When the semantics might not be evident, the summaries below
explicitly indicate the effect.

196 GNAT User’s Guide

14.1.1 Alignment Control

Programs can be easier to read if certain constructs are vertically aligned. By default all align-
ments are set ON. Through the ‘-A0’ switch you may reset the default to OFF, and then use
one or more of the other ‘-An ’ switches to activate alignment for specific constructs.

‘-A0’ Set all alignments to OFF

‘-A1’ Align : in declarations

‘-A2’ Align := in initializations in declarations

‘-A3’ Align := in assignment statements

‘-A4’ Align => in associations

‘-A5’ Align at keywords in the component clauses in record representation clauses

The ‘-A’ switches are mutually compatible; any combination is allowed.

14.1.2 Casing Control

gnatpp allows you to specify the casing for reserved words, pragma names, attribute designators
and identifiers. For identifiers you may define a general rule for name casing but also override
this rule via a set of dictionary files.

Three types of casing are supported: lower case, upper case, and mixed case. Lower and
upper case are self-explanatory (but since some letters in Latin1 and other GNAT-supported
character sets exist only in lower-case form, an upper case conversion will have no effect on
them.) “Mixed case” means that the first letter, and also each letter immediately following an
underscore, are converted to their uppercase forms; all the other letters are converted to their
lowercase forms.

‘-aL’ Attribute designators are lower case

‘-aU’ Attribute designators are upper case

‘-aM’ Attribute designators are mixed case (this is the default)

‘-kL’ Keywords (technically, these are known in Ada as reserved words) are lower case
(this is the default)

‘-kU’ Keywords are upper case

‘-nD’ Name casing for defining occurrences are as they appear in the source file (this is
the default)

‘-nU’ Names are in upper case

‘-nL’ Names are in lower case

‘-nM’ Names are in mixed case

‘-neD’ Enumeration literal casing for defining occurrences are as they appear in the source
file. Overrides -n casing setting.

‘-neU’ Enumeration literals are in upper case. Overrides -n casing setting.

‘-neL’ Enumeration literals are in lower case. Overrides -n casing setting.

‘-neM’ Enumeration literals are in mixed case. Overrides -n casing setting.

‘-neD’ Names introduced by type and subtype declarations are always cased as they appear
in the declaration in the source file. Overrides -n casing setting.

‘-ntU’ Names introduced by type and subtype declarations are always in upper case. Over-
rides -n casing setting.

Chapter 14: The GNAT Pretty-Printer gnatpp 197

‘-ntL’ Names introduced by type and subtype declarations are always in lower case. Over-
rides -n casing setting.

‘-ntM’ Names introduced by type and subtype declarations are always in mixed case. Over-
rides -n casing setting.

‘-pL’ Pragma names are lower case

‘-pU’ Pragma names are upper case

‘-pM’ Pragma names are mixed case (this is the default)

‘-Dfile ’ Use file as a dictionary file that defines the casing for a set of specified names,
thereby overriding the effect on these names by any explicit or implicit -n switch.
To supply more than one dictionary file, use several ‘-D’ switches.

‘gnatpp’ implicitly uses a default dictionary file to define the casing for the Ada
predefined names and the names declared in the GNAT libraries.

‘-D-’ Do not use the default dictionary file; instead, use the casing defined by a ‘-n’ switch
and any explicit dictionary file(s)

The structure of a dictionary file, and details on the conventions used in the default dictionary
file, are defined in Section 14.2.4 [Name Casing], page 203.

The ‘-D-’ and ‘-Dfile ’ switches are mutually compatible.

14.1.3 Construct Layout Control

This group of gnatpp switches controls the layout of comments and complex syntactic constructs.
See Section 14.2.2 [Formatting Comments], page 200 for details on their effect.

‘-c0’ All the comments remain unchanged

‘-c1’ GNAT-style comment line indentation (this is the default).

‘-c2’ Reference-manual comment line indentation.

‘-c3’ GNAT-style comment beginning

‘-c4’ Reformat comment blocks

‘-c5’ Keep unchanged special form comments

‘-l1’ GNAT-style layout (this is the default)

‘-l2’ Compact layout

‘-l3’ Uncompact layout

‘-N’ All the VT characters are removed from the comment text. All the HT characters
are expanded with the sequences of space characters to get to the next tab stops.

‘--no-separate-is’
Do not place the keyword is on a separate line in a subprogram body in case if the
spec occupies more then one line.

‘--separate-label’
Place statement label(s) on a separate line, with the following statement on the next
line.

‘--separate-loop-then’
Place the keyword loop in FOR and WHILE loop statements and the keyword then

in IF statements on a separate line.

198 GNAT User’s Guide

‘--no-separate-loop-then’
Do not place the keyword loop in FOR and WHILE loop statements and the key-
word then in IF statements on a separate line. This option is incompatible with
‘--separate-loop-then’ option.

‘--use-on-new-line’
Start each USE clause in a context clause from a separate line.

‘--separate-stmt-name’
Use a separate line for a loop or block statement name, but do not use an extra
indentation level for the statement itself.

The ‘-c1’ and ‘-c2’ switches are incompatible. The ‘-c3’ and ‘-c4’ switches are compatible
with each other and also with ‘-c1’ and ‘-c2’. The ‘-c0’ switch disables all the other comment
formatting switches.

The ‘-l1’, ‘-l2’, and ‘-l3’ switches are incompatible.

14.1.4 General Text Layout Control

These switches allow control over line length and indentation.

‘-Mnnn ’ Maximum line length, nnn from 32. . .256, the default value is 79

‘-innn ’ Indentation level, nnn from 1. . .9, the default value is 3

‘-clnnn ’ Indentation level for continuation lines (relative to the line being continued), nnn
from 1. . .9. The default value is one less then the (normal) indentation level, unless
the indentation is set to 1 (in which case the default value for continuation line
indentation is also 1)

14.1.5 Other Formatting Options

These switches control the inclusion of missing end/exit labels, and the indentation level in case
statements.

‘-e’ Do not insert missing end/exit labels. An end label is the name of a construct that
may optionally be repeated at the end of the construct’s declaration; e.g., the names
of packages, subprograms, and tasks. An exit label is the name of a loop that may
appear as target of an exit statement within the loop. By default, gnatpp inserts
these end/exit labels when they are absent from the original source. This option
suppresses such insertion, so that the formatted source reflects the original.

‘-ff’ Insert a Form Feed character after a pragma Page.

‘-Tnnn ’ Do not use an additional indentation level for case alternatives and variants if there
are nnn or more (the default value is 10). If nnn is 0, an additional indentation level
is used for case alternatives and variants regardless of their number.

‘--call_threshold=nnn ’
If the number of parameter associations is greater than nnn and if at least one
association uses named notation, start each association from a new line. If nnn is
0, no check for the number of associations is made, this is the default.

‘--par_threshold=nnn ’
If the number of parameter specifications is greater than nnn (or equal to nnn in
case of a function), start each specification from a new line. The default for nnn is
3.

Chapter 14: The GNAT Pretty-Printer gnatpp 199

14.1.6 Setting the Source Search Path

To define the search path for the input source file, gnatpp uses the same switches as the GNAT
compiler, with the same effects.

‘-Idir ’ The same as the corresponding gcc switch

‘-I-’ The same as the corresponding gcc switch

‘-gnatec=path ’
The same as the corresponding gcc switch

‘--RTS=path ’
The same as the corresponding gcc switch

14.1.7 Output File Control

By default the output is sent to the file whose name is obtained by appending the ‘.pp’
suffix to the name of the input file (if the file with this name already exists, it is uncondi-
tionally overwritten). Thus if the input file is ‘my_ada_proc.adb’ then gnatpp will produce
‘my_ada_proc.adb.pp’ as output file. The output may be redirected by the following switches:

‘-pipe’ Send the output to Standard_Output

‘-o output_file ’
Write the output into output file. If output file already exists, gnatpp terminates
without reading or processing the input file.

‘-of output_file ’
Write the output into output file, overwriting the existing file (if one is present).

‘-r’ Replace the input source file with the reformatted output, and copy the original
input source into the file whose name is obtained by appending the ‘.npp’ suffix to
the name of the input file. If a file with this name already exists, gnatpp terminates
without reading or processing the input file.

‘-rf’ Like ‘-r’ except that if the file with the specified name already exists, it is overwrit-
ten.

‘-rnb’ Replace the input source file with the reformatted output without creating any
backup copy of the input source.

‘--eol=xxx ’
Specifies the format of the reformatted output file. The xxx string specified with
the switch may be either

• “‘dos’” MS DOS style, lines end with CR LF characters

• “‘crlf’” the same as ‘crlf’

• “‘unix’” UNIX style, lines end with LF character

• “‘lf’” the same as ‘unix’

‘-We ’ Specify the wide character encoding method used to write the code in the result file
e is one of the following:

• h Hex encoding

• u Upper half encoding

• s Shift/JIS encoding

• e EUC encoding

• 8 UTF-8 encoding

• b Brackets encoding (default value)

Options ‘-pipe’, ‘-o’ and ‘-of’ are allowed only if the call to gnatpp contains only one file to
reformat. Option ‘--eol’ and ‘-W’ cannot be used together with ‘-pipe’ option.

200 GNAT User’s Guide

14.1.8 Other gnatpp Switches

The additional gnatpp switches are defined in this subsection.

‘-files filename ’
Take the argument source files from the specified file. This file should be an ordinary
text file containing file names separated by spaces or line breaks. You can use this
switch more than once in the same call to gnatpp. You also can combine this switch
with an explicit list of files.

‘-v’ Verbose mode; gnatpp generates version information and then a trace of the actions
it takes to produce or obtain the ASIS tree.

‘-w’ Warning mode; gnatpp generates a warning whenever it cannot provide a required
layout in the result source.

14.2 Formatting Rules

The following subsections show how gnatpp treats “white space”, comments, program layout,
and name casing. They provide the detailed descriptions of the switches shown above.

14.2.1 White Space and Empty Lines

gnatpp does not have an option to control space characters. It will add or remove spaces
according to the style illustrated by the examples in the Ada Reference Manual.

The only format effectors (see Ada Reference Manual, paragraph 2.1(13)) that will appear in
the output file are platform-specific line breaks, and also format effectors within (but not at the
end of) comments. In particular, each horizontal tab character that is not inside a comment will
be treated as a space and thus will appear in the output file as zero or more spaces depending on
the reformatting of the line in which it appears. The only exception is a Form Feed character,
which is inserted after a pragma Page when ‘-ff’ is set.

The output file will contain no lines with trailing “white space” (spaces, format effectors).

Empty lines in the original source are preserved only if they separate declarations or state-
ments. In such contexts, a sequence of two or more empty lines is replaced by exactly one empty
line. Note that a blank line will be removed if it separates two “comment blocks” (a comment
block is a sequence of whole-line comments). In order to preserve a visual separation between
comment blocks, use an “empty comment” (a line comprising only hyphens) rather than an
empty line. Likewise, if for some reason you wish to have a sequence of empty lines, use a
sequence of empty comments instead.

14.2.2 Formatting Comments

Comments in Ada code are of two kinds:

• a whole-line comment, which appears by itself (possibly preceded by “white space”) on a
line

• an end-of-line comment, which follows some other Ada lexical element on the same line.

The indentation of a whole-line comment is that of either the preceding or following line in the
formatted source, depending on switch settings as will be described below.

For an end-of-line comment, gnatpp leaves the same number of spaces between the end of
the preceding Ada lexical element and the beginning of the comment as appear in the original
source, unless either the comment has to be split to satisfy the line length limitation, or else
the next line contains a whole line comment that is considered a continuation of this end-of-line
comment (because it starts at the same position). In the latter two cases, the start of the end-
of-line comment is moved right to the nearest multiple of the indentation level. This may result

Chapter 14: The GNAT Pretty-Printer gnatpp 201

in a “line overflow” (the right-shifted comment extending beyond the maximum line length), in
which case the comment is split as described below.

There is a difference between ‘-c1’ (GNAT-style comment line indentation) and ‘-c2’
(reference-manual comment line indentation). With reference-manual style, a whole-line com-
ment is indented as if it were a declaration or statement at the same place (i.e., according to
the indentation of the preceding line(s)). With GNAT style, a whole-line comment that is im-
mediately followed by an if or case statement alternative, a record variant, or the reserved word
begin, is indented based on the construct that follows it.

For example:� �
if A then

null;

-- some comment

else

null;

end if;
 	
Reference-manual indentation produces:� �

if A then

null;

-- some comment

else

null;

end if;
 	
while GNAT-style indentation produces:� �

if A then

null;

-- some comment

else

null;

end if;
 	
The ‘-c3’ switch (GNAT style comment beginning) has the following effect:

• For each whole-line comment that does not end with two hyphens, gnatpp inserts spaces
if necessary after the starting two hyphens to ensure that there are at least two spaces
between these hyphens and the first non-blank character of the comment.

For an end-of-line comment, if in the original source the next line is a whole-line comment that
starts at the same position as the end-of-line comment, then the whole-line comment (and all
whole-line comments that follow it and that start at the same position) will start at this position
in the output file.

That is, if in the original source we have:� �
begin

A := B + C; -- B must be in the range Low1..High1

-- C must be in the range Low2..High2

--B+C will be in the range Low1+Low2..High1+High2

X := X + 1;
 	
Then in the formatted source we get

202 GNAT User’s Guide� �
begin

A := B + C; -- B must be in the range Low1..High1

-- C must be in the range Low2..High2

-- B+C will be in the range Low1+Low2..High1+High2

X := X + 1;
 	

A comment that exceeds the line length limit will be split. Unless switch ‘-c4’ (reformat
comment blocks) is set and the line belongs to a reformattable block, splitting the line generates
a gnatpp warning. The ‘-c4’ switch specifies that whole-line comments may be reformatted in
typical word processor style (that is, moving words between lines and putting as many words in
a line as possible).

The ‘-c5’ switch specifies, that comments that has a special format (that is, a character that is
neither a letter nor digit not white space nor line break immediately following the leading -- of
the comment) should be without any change moved from the argument source into reformatted
source. This switch allows to preserve comments that are used as a special marks in the code
(e.g. SPARK annotation).

14.2.3 Construct Layout

In several cases the suggested layout in the Ada Reference Manual includes an extra level of
indentation that many programmers prefer to avoid. The affected cases include:

• Record type declaration (RM 3.8)

• Record representation clause (RM 13.5.1)

• Loop statement in case if a loop has a statement identifier (RM 5.6)

• Block statement in case if a block has a statement identifier (RM 5.6)

In compact mode (when GNAT style layout or compact layout is set), the pretty printer uses
one level of indentation instead of two. This is achieved in the record definition and record
representation clause cases by putting the record keyword on the same line as the start of the
declaration or representation clause, and in the block and loop case by putting the block or loop
header on the same line as the statement identifier.

The difference between GNAT style ‘-l1’ and compact ‘-l2’ layout on the one hand, and
uncompact layout ‘-l3’ on the other hand, can be illustrated by the following examples:

Chapter 14: The GNAT Pretty-Printer gnatpp 203� �
GNAT style, compact layout Uncompact layout

type q is record

a : integer;

b : integer;

end record;

type q is

record

a : integer;

b : integer;

end record;

for q use record

a at 0 range 0 .. 31;

b at 4 range 0 .. 31;

end record;

for q use

record

a at 0 range 0 .. 31;

b at 4 range 0 .. 31;

end record;

Block : declare

A : Integer := 3;

begin

Proc (A, A);

end Block;

Block :

declare

A : Integer := 3;

begin

Proc (A, A);

end Block;

Clear : for J in 1 .. 10 loop

A (J) := 0;

end loop Clear;

Clear :

for J in 1 .. 10 loop

A (J) := 0;

end loop Clear;

 	
A further difference between GNAT style layout and compact layout is that GNAT style layout
inserts empty lines as separation for compound statements, return statements and bodies.

Note that the layout specified by ‘--separate-stmt-name’ for named block and loop state-
ments overrides the layout defined by these constructs by ‘-l1’, ‘-l2’ or ‘-l3’ option.

14.2.4 Name Casing

gnatpp always converts the usage occurrence of a (simple) name to the same casing as the
corresponding defining identifier.

You control the casing for defining occurrences via the ‘-n’ switch. With ‘-nD’ (“as declared”,
which is the default), defining occurrences appear exactly as in the source file where they are
declared. The other values for this switch — ‘-nU’, ‘-nL’, ‘-nM’ — result in upper, lower, or
mixed case, respectively. If gnatpp changes the casing of a defining occurrence, it analogously
changes the casing of all the usage occurrences of this name.

If the defining occurrence of a name is not in the source compilation unit currently being
processed by gnatpp, the casing of each reference to this name is changed according to the value
of the ‘-n’ switch (subject to the dictionary file mechanism described below). Thus gnatpp acts
as though the ‘-n’ switch had affected the casing for the defining occurrence of the name.

Some names may need to be spelled with casing conventions that are not covered by the
upper-, lower-, and mixed-case transformations. You can arrange correct casing by placing such
names in a dictionary file, and then supplying a ‘-D’ switch. The casing of names from dictionary
files overrides any ‘-n’ switch.

To handle the casing of Ada predefined names and the names from GNAT libraries, gnatpp
assumes a default dictionary file. The name of each predefined entity is spelled with the same
casing as is used for the entity in the Ada Reference Manual. The name of each entity in the
GNAT libraries is spelled with the same casing as is used in the declaration of that entity.

The ‘-D-’ switch suppresses the use of the default dictionary file. Instead, the casing for
predefined and GNAT-defined names will be established by the ‘-n’ switch or explicit dictionary
files. For example, by default the names Ada.Text_IO and GNAT.OS_Lib will appear as just

204 GNAT User’s Guide

shown, even in the presence of a ‘-nU’ switch. To ensure that even such names are rendered in
uppercase, additionally supply the ‘-D-’ switch (or else, less conveniently, place these names in
upper case in a dictionary file).

A dictionary file is a plain text file; each line in this file can be either a blank line (containing
only space characters and ASCII.HT characters), an Ada comment line, or the specification of
exactly one casing schema.

A casing schema is a string that has the following syntax:� �
casing_schema ::= identifier | *simple_identifier*

simple_identifier ::= letter{letter_or_digit}
 	
(See Ada Reference Manual, Section 2.3) for the definition of the identifier lexical element and
the letter or digit category.)

The casing schema string can be followed by white space and/or an Ada-style comment; any
amount of white space is allowed before the string.

If a dictionary file is passed as the value of a ‘-Dfile ’ switch then for every simple name and
every identifier, gnatpp checks if the dictionary defines the casing for the name or for some of
its parts (the term “subword” is used below to denote the part of a name which is delimited by
“ ” or by the beginning or end of the word and which does not contain any “ ” inside):

• if the whole name is in the dictionary, gnatpp uses for this name the casing defined by the
dictionary; no subwords are checked for this word

• for every subword gnatpp checks if the dictionary contains the corresponding string of the
form *simple_identifier*, and if it does, the casing of this simple identifier is used for
this subword

• if the whole name does not contain any “ ” inside, and if for this name the dictionary
contains two entries - one of the form identifier, and another - of the form *simple identifier*,
then the first one is applied to define the casing of this name

• if more than one dictionary file is passed as gnatpp switches, each dictionary adds new casing
exceptions and overrides all the existing casing exceptions set by the previous dictionaries

• when gnatpp checks if the word or subword is in the dictionary, this check is not case
sensitive

For example, suppose we have the following source to reformat:� �
procedure test is

name1 : integer := 1;

name4_name3_name2 : integer := 2;

name2_name3_name4 : Boolean;

name1_var : Float;

begin

name2_name3_name4 := name4_name3_name2 > name1;

end;
 	
And suppose we have two dictionaries:� �

dict1:

NAME1

NaMe3

Name1
 	

Chapter 14: The GNAT Pretty-Printer gnatpp 205

� �
dict2:

NAME3
 	
If gnatpp is called with the following switches:

gnatpp -nM -D dict1 -D dict2 test.adb

then we will get the following name casing in the gnatpp output:� �
procedure Test is

NAME1 : Integer := 1;

Name4_NAME3_Name2 : Integer := 2;

Name2_NAME3_Name4 : Boolean;

Name1_Var : Float;

begin

Name2_NAME3_Name4 := Name4_NAME3_Name2 > NAME1;

end Test;
 	

Chapter 15: The GNAT Metric Tool gnatmetric 207

15 The GNAT Metric Tool gnatmetric

The gnatmetric tool is an ASIS-based utility for computing various program metrics. It takes
an Ada source file as input and generates a file containing the metrics data as output. Various
switches control which metrics are computed and output.

gnatmetric generates and uses the ASIS tree for the input source and thus requires the input
to be syntactically and semantically legal. If this condition is not met, gnatmetric will generate
an error message; no metric information for this file will be computed and reported.

If the compilation unit contained in the input source depends semantically upon units in
files located outside the current directory, you have to provide the source search path when
invoking gnatmetric. If it depends semantically upon units that are contained in files with
names that do not follow the GNAT file naming rules, you have to provide the configuration file
describing the corresponding naming scheme (see the description of the gnatmetric switches
below.) Alternatively, you may use a project file and invoke gnatmetric through the gnat driver
(see Section 12.2 [The GNAT Driver and Project Files], page 179).

The gnatmetric command has the form

$ gnatmetric [switches] {filename} [-cargs gcc_switches]

where

• switches specify the metrics to compute and define the destination for the output

• Each filename is the name (including the extension) of a source file to process. “Wildcards”
are allowed, and the file name may contain path information. If no filename is supplied,
then the switches list must contain at least one ‘-files’ switch (see Section 15.1.4 [Other
gnatmetric Switches], page 215). Including both a ‘-files’ switch and one or more filename
arguments is permitted.

• ‘gcc_switches ’ is a list of switches for gcc. They will be passed on to all compiler invoca-
tions made by gnatmetric to generate the ASIS trees. Here you can provide ‘-I’ switches
to form the source search path, and use the ‘-gnatec’ switch to set the configuration file,
use the ‘-gnat05’ switch if sources should be compiled in Ada 2005 mode etc.

15.1 Switches for gnatmetric

The following subsections describe the various switches accepted by gnatmetric, organized by
category.

15.1.1 Output File Control

gnatmetric has two output formats. It can generate a textual (human-readable) form, and also
XML. By default only textual output is generated.

When generating the output in textual form, gnatmetric creates for each Ada source file
a corresponding text file containing the computed metrics, except for the case when the set of
metrics specified by gnatmetric parameters consists only of metrics that are computed for the
whole set of analyzed sources, but not for each Ada source. By default, this file is placed in the
same directory as where the source file is located, and its name is obtained by appending the
‘.metrix’ suffix to the name of the input file.

All the output information generated in XML format is placed in a single file. By default
this file is placed in the current directory and has the name ‘metrix.xml’.

Some of the computed metrics are summed over the units passed to gnatmetric; for example,
the total number of lines of code. By default this information is sent to ‘stdout’, but a file can
be specified with the ‘-og’ switch.

The following switches control the gnatmetric output:

208 GNAT User’s Guide

‘-x’ Generate the XML output

‘-xs’ Generate the XML output and the XML schema file that describes the structure of
the XML metric report, this schema is assigned to the XML file. The schema file
has the same name as the XML output file with ‘.xml’ suffix replaced with ‘.xsd’

‘-nt’ Do not generate the output in text form (implies ‘-x’)

‘-d output_dir ’
Put text files with detailed metrics into output dir

‘-o file_suffix ’
Use file suffix, instead of ‘.metrix’ in the name of the output file.

‘-og file_name ’
Put global metrics into file name

‘-ox file_name ’
Put the XML output into file name (also implies ‘-x’)

‘-sfn’ Use “short” source file names in the output. (The gnatmetric output includes the
name(s) of the Ada source file(s) from which the metrics are computed. By default
each name includes the absolute path. The ‘-sfn’ switch causes gnatmetric to
exclude all directory information from the file names that are output.)

15.1.2 Disable Metrics For Local Units

gnatmetric relies on the GNAT compilation model − one compilation unit per one source file.
It computes line metrics for the whole source file, and it also computes syntax and complexity
metrics for the file’s outermost unit.

By default, gnatmetric will also compute all metrics for certain kinds of locally declared
program units:

• subprogram (and generic subprogram) bodies;

• package (and generic package) specs and bodies;

• task object and type specifications and bodies;

• protected object and type specifications and bodies.

These kinds of entities will be referred to as eligible local program units, or simply eligible local
units, in the discussion below.

Note that a subprogram declaration, generic instantiation, or renaming declaration only
receives metrics computation when it appear as the outermost entity in a source file.

Suppression of metrics computation for eligible local units can be obtained via the following
switch:

‘-nolocal’
Do not compute detailed metrics for eligible local program units

15.1.3 Specifying a set of metrics to compute

By default all the metrics are computed and reported. The switches described in this subsection
allow you to control, on an individual basis, whether metrics are computed and reported. If at
least one positive metric switch is specified (that is, a switch that defines that a given metric or
set of metrics is to be computed), then only explicitly specified metrics are reported.

Chapter 15: The GNAT Metric Tool gnatmetric 209

15.1.3.1 Line Metrics Control

For any (legal) source file, and for each of its eligible local program units, gnatmetric computes
the following metrics:

• the total number of lines;

• the total number of code lines (i.e., non-blank lines that are not comments)

• the number of comment lines

• the number of code lines containing end-of-line comments;

• the comment percentage: the ratio between the number of lines that contain comments and
the number of all non-blank lines, expressed as a percentage;

• the number of empty lines and lines containing only space characters and/or format effectors
(blank lines)

• the average number of code lines in subprogram bodies, task bodies, entry bodies and
statement sequences in package bodies (this metric is only computed across the whole set
of the analyzed units)

gnatmetric sums the values of the line metrics for all the files being processed and then generates
the cumulative results. The tool also computes for all the files being processed the average
number of code lines in bodies.

You can use the following switches to select the specific line metrics to be computed and
reported.

‘--lines-all’
Report all the line metrics

‘--no-lines-all’
Do not report any of line metrics

‘--lines’ Report the number of all lines

‘--no-lines’
Do not report the number of all lines

‘--lines-code’
Report the number of code lines

‘--no-lines-code’
Do not report the number of code lines

‘--lines-comment’
Report the number of comment lines

‘--no-lines-comment’
Do not report the number of comment lines

‘--lines-eol-comment’
Report the number of code lines containing end-of-line comments

‘--no-lines-eol-comment’
Do not report the number of code lines containing end-of-line comments

‘--lines-ratio’
Report the comment percentage in the program text

‘--no-lines-ratio’
Do not report the comment percentage in the program text

‘--lines-blank’
Report the number of blank lines

210 GNAT User’s Guide

‘--no-lines-blank’
Do not report the number of blank lines

‘--lines-average’
Report the average number of code lines in subprogram bodies, task bodies, entry
bodies and statement sequences in package bodies. The metric is computed and
reported for the whole set of processed Ada sources only.

‘--no-lines-average’
Do not report the average number of code lines in subprogram bodies, task bodies,
entry bodies and statement sequences in package bodies.

15.1.3.2 Syntax Metrics Control

gnatmetric computes various syntactic metrics for the outermost unit and for each eligible local
unit:

LSLOC (“Logical Source Lines Of Code”)
The total number of declarations and the total number of statements. Note that
the definition of declarations is the one given in the reference manual:

“Each of the following is defined to be a declaration: any basic declaration;
an enumeration literal specification; a discriminant specification; a compo-
nent declaration; a loop parameter specification; a parameter specification;
a subprogram body; an entry declaration; an entry index specification; a
choice parameter specification; a generic formal parameter declaration.”

This means for example that each enumeration literal adds one to the count, as well
as each subprogram parameter.

Thus the results from this metric will be significantly greater than might be expected
from a naive view of counting semicolons.

Maximal static nesting level of inner program units
According to Ada Reference Manual, 10.1(1), “A program unit is either a package,
a task unit, a protected unit, a protected entry, a generic unit, or an explicitly
declared subprogram other than an enumeration literal.”

Maximal nesting level of composite syntactic constructs
This corresponds to the notion of the maximum nesting level in the GNAT built-in
style checks (see Section 3.2.5 [Style Checking], page 61)

For the outermost unit in the file, gnatmetric additionally computes the following metrics:

Public subprograms
This metric is computed for package specs. It is the number of subprograms and
generic subprograms declared in the visible part (including the visible part of nested
packages, protected objects, and protected types).

All subprograms
This metric is computed for bodies and subunits. The metric is equal to a total
number of subprogram bodies in the compilation unit. Neither generic instantia-
tions nor renamings-as-a-body nor body stubs are counted. Any subprogram body
is counted, independently of its nesting level and enclosing constructs. Generic bod-
ies and bodies of protected subprograms are counted in the same way as “usual”
subprogram bodies.

Public types
This metric is computed for package specs and generic package declarations. It is
the total number of types that can be referenced from outside this compilation unit,

Chapter 15: The GNAT Metric Tool gnatmetric 211

plus the number of types from all the visible parts of all the visible generic packages.
Generic formal types are not counted. Only types, not subtypes, are included.

Along with the total number of public types, the following types are counted and
reported separately:

• Abstract types

• Root tagged types (abstract, non-abstract, private, non-private). Type exten-
sions are not counted

• Private types (including private extensions)

• Task types

• Protected types

All types This metric is computed for any compilation unit. It is equal to the total number of
the declarations of different types given in the compilation unit. The private and the
corresponding full type declaration are counted as one type declaration. Incomplete
type declarations and generic formal types are not counted. No distinction is made
among different kinds of types (abstract, private etc.); the total number of types is
computed and reported.

By default, all the syntax metrics are computed and reported. You can use the following switches
to select specific syntax metrics.

‘--syntax-all’
Report all the syntax metrics

‘--no-syntax-all’
Do not report any of syntax metrics

‘--declarations’
Report the total number of declarations

‘--no-declarations’
Do not report the total number of declarations

‘--statements’
Report the total number of statements

‘--no-statements’
Do not report the total number of statements

‘--public-subprograms’
Report the number of public subprograms in a compilation unit

‘--no-public-subprograms’
Do not report the number of public subprograms in a compilation unit

‘--all-subprograms’
Report the number of all the subprograms in a compilation unit

‘--no-all-subprograms’
Do not report the number of all the subprograms in a compilation unit

‘--public-types’
Report the number of public types in a compilation unit

‘--no-public-types’
Do not report the number of public types in a compilation unit

‘--all-types’
Report the number of all the types in a compilation unit

212 GNAT User’s Guide

‘--no-all-types’
Do not report the number of all the types in a compilation unit

‘--unit-nesting’
Report the maximal program unit nesting level

‘--no-unit-nesting’
Do not report the maximal program unit nesting level

‘--construct-nesting’
Report the maximal construct nesting level

‘--no-construct-nesting’
Do not report the maximal construct nesting level

15.1.3.3 Complexity Metrics Control

For a program unit that is an executable body (a subprogram body (including generic bodies),
task body, entry body or a package body containing its own statement sequence) gnatmetric
computes the following complexity metrics:

• McCabe cyclomatic complexity;

• McCabe essential complexity;

• maximal loop nesting level;

• extra exit points (for subprograms);

The McCabe cyclomatic complexity metric is defined in http://www.mccabe.com/pdf/mccabe-nist235r.pdf

According to McCabe, both control statements and short-circuit control forms should be
taken into account when computing cyclomatic complexity. For each body, we compute three
metric values:

• the complexity introduced by control statements only, without taking into account short-
circuit forms,

• the complexity introduced by short-circuit control forms only, and

• the total cyclomatic complexity, which is the sum of these two values.

The origin of cyclomatic complexity metric is the need to estimate the number of independent
paths in the control flow graph that in turn gives the number of tests needed to satisfy paths
coverage testing completeness criterion. Considered from the testing point of view, a static Ada
loop (that is, the loop statement having static subtype in loop parameter specification) does
not add to cyclomatic complexity. By providing ‘--no-static-loop’ option a user may specify
that such loops should not be counted when computing the cyclomatic complexity metric

The Ada essential complexity metric is a McCabe cyclomatic complexity metric counted for
the code that is reduced by excluding all the pure structural Ada control statements. An com-
pound statement is considered as a non-structural if it contains a raise or return statement
as it subcomponent, or if it contains a goto statement that transfers the control outside the op-
erator. A selective accept statement with terminate alternative is considered as non-structural
statement. When computing this metric, exit statements are treated in the same way as goto
statements unless ‘-ne’ option is specified.

The Ada essential complexity metric defined here is intended to quantify the extent to which
the software is unstructured. It is adapted from the McCabe essential complexity metric defined
in http://www.mccabe.com/pdf/nist235r.pdf but is modified to be more suitable for typical Ada
usage. For example, short circuit forms are not penalized as unstructured in the Ada essential
complexity metric.

When computing cyclomatic and essential complexity, gnatmetric skips the code in the
exception handlers and in all the nested program units.

http://www.mccabe.com/pdf/mccabe-nist235r.pdf

Chapter 15: The GNAT Metric Tool gnatmetric 213

By default, all the complexity metrics are computed and reported. For more fine-grained
control you can use the following switches:

‘--complexity-all’
Report all the complexity metrics

‘--no-complexity-all’
Do not report any of complexity metrics

‘--complexity-cyclomatic’
Report the McCabe Cyclomatic Complexity

‘--no-complexity-cyclomatic’
Do not report the McCabe Cyclomatic Complexity

‘--complexity-essential’
Report the Essential Complexity

‘--no-complexity-essential’
Do not report the Essential Complexity

‘--loop-nesting’
Report maximal loop nesting level

‘--no-loop-nesting’
Do not report maximal loop nesting level

‘--complexity-average’
Report the average McCabe Cyclomatic Complexity for all the subprogram bodies,
task bodies, entry bodies and statement sequences in package bodies. The metric is
computed and reported for whole set of processed Ada sources only.

‘--no-complexity-average’
Do not report the average McCabe Cyclomatic Complexity for all the subprogram
bodies, task bodies, entry bodies and statement sequences in package bodies

‘-ne’ Do not consider exit statements as gotos when computing Essential Complexity

‘--no-static-loop’
Do not consider static loops when computing cyclomatic complexity

‘--extra-exit-points’
Report the extra exit points for subprogram bodies. As an exit point, this metric
counts return statements and raise statements in case when the raised exception is
not handled in the same body. In case of a function this metric subtracts 1 from the
number of exit points, because a function body must contain at least one return

statement.

‘--no-extra-exit-points’
Do not report the extra exit points for subprogram bodies

15.1.3.4 Coupling Metrics Control

Coupling metrics measure the dependencies between a given entity and other entities the pro-
gram consists of. The goal of these metrics is to estimate the stability of the whole program
considered as the collection of entities (modules, classes etc.).

Gnatmetric computes the following coupling metrics:

• object-oriented coupling - for classes in traditional object-oriented sense;

• unit coupling - for all the program units making up a program;

214 GNAT User’s Guide

• control coupling - this metric counts dependencies between a unit and only those units that
define subprograms;

Two kinds of coupling metrics are computed:

fan-out coupling (efferent coupling)
the number of entities the given entity depends upon. It estimates in what extent
the given entity depends on the changes in “external world”

fan-in coupling (afferent coupling)
the number of entities that depend on a given entity. It estimates in what extent
the “external world” depends on the changes in a given entity

Object-oriented coupling metrics are metrics that measure the dependencies between a given
class (or a group of classes) and the other classes in the program. In this subsection the term
“class” is used in its traditional object-oriented programming sense (an instantiable module that
contains data and/or method members). A category (of classes) is a group of closely related
classes that are reused and/or modified together.

A class K’s fan-out coupling is the number of classes that K depends upon. A category’s fan-
out coupling is the number of classes outside the category that the classes inside the category
depend upon.

A class K’s fan-in coupling is the number of classes that depend upon K. A category’s fan-in
coupling is the number of classes outside the category that depend on classes belonging to the
category.

Ada’s implementation of the object-oriented paradigm does not use the traditional class
notion, so the definition of the coupling metrics for Ada maps the class and class category
notions onto Ada constructs.

For the coupling metrics, several kinds of modules – a library package, a library generic
package, and a library generic package instantiation – that define a tagged type or an interface
type are considered to be a class. A category consists of a library package (or a library generic
package) that defines a tagged or an interface type, together with all its descendant (generic)
packages that define tagged or interface types. That is a category is an Ada hierarchy of library-
level program units. So class coupling in case of Ada is called as tagged coupling, and category
coupling - as hierarchy coupling.

For any package counted as a class, its body and subunits (if any) are considered together
with its spec when counting the dependencies, and coupling metrics are reported for spec units
only. For dependencies between classes, the Ada semantic dependencies are considered. For
object-oriented coupling metrics, only dependencies on units that are considered as classes, are
considered.

For unit and control coupling also not compilation units but program units are counted.
That is, for a package, its spec, its body and its subunits (if any) are considered as making up
one unit, and the dependencies that are counted are the dependencies of all these compilation
units collected together as the dependencies as a (whole) unit. And metrics are reported for
spec compilation units only (or for a subprogram body unit in case if there is no separate spec
for the given subprogram).

For unit coupling, dependencies between all kinds of program units are considered. For
control coupling, for each unit the dependencies of this unit upon units that define subprograms
are counted, so control fan-out coupling is reported for all units, but control fan-in coupling -
only for the units that define subprograms.

When computing coupling metrics, gnatmetric counts only dependencies between units that
are arguments of the gnatmetric call. Coupling metrics are program-wide (or project-wide)
metrics, so to get a valid result, you should call gnatmetric for the whole set of sources that

Chapter 15: The GNAT Metric Tool gnatmetric 215

make up your program. It can be done by calling gnatmetric from the GNAT driver with ‘-U’
option (see Section 12.2 [The GNAT Driver and Project Files], page 179 for details).

By default, all the coupling metrics are disabled. You can use the following switches to
specify the coupling metrics to be computed and reported:

‘--coupling-all’
Report all the coupling metrics

‘--tagged-coupling-out’
Report tagged (class) fan-out coupling

‘--tagged-coupling-in’
Report tagged (class) fan-in coupling

‘--hierarchy-coupling-out’
Report hierarchy (category) fan-out coupling

‘--hierarchy-coupling-in’
Report hierarchy (category) fan-in coupling

‘--unit-coupling-out’
Report unit fan-out coupling

‘--unit-coupling-in’
Report unit fan-in coupling

‘--control-coupling-out’
Report control fan-out coupling

‘--control-coupling-in’
Report control fan-in coupling

15.1.4 Other gnatmetric Switches

Additional gnatmetric switches are as follows:

‘-files filename ’
Take the argument source files from the specified file. This file should be an ordinary
text file containing file names separated by spaces or line breaks. You can use this
switch more than once in the same call to gnatmetric. You also can combine this
switch with an explicit list of files.

‘-v’ Verbose mode; gnatmetric generates version information and then a trace of sources
being processed.

‘-q’ Quiet mode.

15.1.5 Generate project-wide metrics

In order to compute metrics on all units of a given project, you can use the gnat driver along
with the ‘-P’ option:

gnat metric -Pproj

If the project proj depends upon other projects, you can compute the metrics on the project
closure using the ‘-U’ option:

gnat metric -Pproj -U

Finally, if not all the units are relevant to a particular main program in the project closure, you
can generate metrics for the set of units needed to create a given main program (unit closure)
using the ‘-U’ option followed by the name of the main unit:

gnat metric -Pproj -U main

Chapter 16: File Name Krunching Using gnatkr 217

16 File Name Krunching Using gnatkr

This chapter discusses the method used by the compiler to shorten the default file names chosen
for Ada units so that they do not exceed the maximum length permitted. It also describes the
gnatkr utility that can be used to determine the result of applying this shortening.

16.1 About gnatkr

The default file naming rule in GNAT is that the file name must be derived from the unit name.
The exact default rule is as follows:

• Take the unit name and replace all dots by hyphens.

• If such a replacement occurs in the second character position of a name, and the first
character is ‘a’, ‘g’, ‘s’, or ‘i’, then replace the dot by the character ‘~’ (tilde) instead of a
minus.

The reason for this exception is to avoid clashes with the standard names for children of
System, Ada, Interfaces, and GNAT, which use the prefixes ‘s-’, ‘a-’, ‘i-’, and ‘g-’, respectively.

The ‘-gnatknn ’ switch of the compiler activates a “krunching” circuit that limits file names
to nn characters (where nn is a decimal integer). For example, using OpenVMS, where the
maximum file name length is 39, the value of nn is usually set to 39, but if you want to generate
a set of files that would be usable if ported to a system with some different maximum file length,
then a different value can be specified. The default value of 39 for OpenVMS need not be
specified.

The gnatkr utility can be used to determine the krunched name for a given file, when
krunched to a specified maximum length.

16.2 Using gnatkr

The gnatkr command has the form

$ gnatkr name [length]

name is the uncrunched file name, derived from the name of the unit in the standard manner
described in the previous section (i.e., in particular all dots are replaced by hyphens). The file
name may or may not have an extension (defined as a suffix of the form period followed by
arbitrary characters other than period). If an extension is present then it will be preserved in
the output. For example, when krunching ‘hellofile.ads’ to eight characters, the result will
be hellofil.ads.

Note: for compatibility with previous versions of gnatkr dots may appear in the name instead
of hyphens, but the last dot will always be taken as the start of an extension. So if gnatkr is
given an argument such as ‘Hello.World.adb’ it will be treated exactly as if the first period had
been a hyphen, and for example krunching to eight characters gives the result ‘hellworl.adb’.

Note that the result is always all lower case (except on OpenVMS where it is all upper case).
Characters of the other case are folded as required.

length represents the length of the krunched name. The default when no argument is given
is 8 characters. A length of zero stands for unlimited, in other words do not chop except for
system files where the implied crunching length is always eight characters.

The output is the krunched name. The output has an extension only if the original argument
was a file name with an extension.

218 GNAT User’s Guide

16.3 Krunching Method

The initial file name is determined by the name of the unit that the file contains. The name
is formed by taking the full expanded name of the unit and replacing the separating dots with
hyphens and using lowercase for all letters, except that a hyphen in the second character position
is replaced by a tilde if the first character is ‘a’, ‘i’, ‘g’, or ‘s’. The extension is .ads for a spec
and .adb for a body. Krunching does not affect the extension, but the file name is shortened to
the specified length by following these rules:

• The name is divided into segments separated by hyphens, tildes or underscores and all
hyphens, tildes, and underscores are eliminated. If this leaves the name short enough, we
are done.

• If the name is too long, the longest segment is located (left-most if there are two of equal
length), and shortened by dropping its last character. This is repeated until the name is
short enough.

As an example, consider the krunching of
‘our-strings-wide_fixed.adb’ to fit the name into 8 characters as required by some
operating systems.

our-strings-wide_fixed 22

our strings wide fixed 19

our string wide fixed 18

our strin wide fixed 17

our stri wide fixed 16

our stri wide fixe 15

our str wide fixe 14

our str wid fixe 13

our str wid fix 12

ou str wid fix 11

ou st wid fix 10

ou st wi fix 9

ou st wi fi 8

Final file name: oustwifi.adb

• The file names for all predefined units are always krunched to eight characters. The krunch-
ing of these predefined units uses the following special prefix replacements:

‘ada-’ replaced by ‘a-’

‘gnat-’ replaced by ‘g-’

‘interfaces-’
replaced by ‘i-’

‘system-’ replaced by ‘s-’

These system files have a hyphen in the second character position. That is why normal user
files replace such a character with a tilde, to avoid confusion with system file names.

As an example of this special rule, consider
‘ada-strings-wide_fixed.adb’, which gets krunched as follows:

ada-strings-wide_fixed 22

a- strings wide fixed 18

a- string wide fixed 17

a- strin wide fixed 16

a- stri wide fixed 15

a- stri wide fixe 14

a- str wide fixe 13

a- str wid fixe 12

a- str wid fix 11

a- st wid fix 10

a- st wi fix 9

a- st wi fi 8

Final file name: a-stwifi.adb

Chapter 16: File Name Krunching Using gnatkr 219

Of course no file shortening algorithm can guarantee uniqueness over all possible unit names,
and if file name krunching is used then it is your responsibility to ensure that no name clashes
occur. The utility program gnatkr is supplied for conveniently determining the krunched name
of a file.

16.4 Examples of gnatkr Usage

$ gnatkr very_long_unit_name.ads --> velounna.ads

$ gnatkr grandparent-parent-child.ads --> grparchi.ads

$ gnatkr Grandparent.Parent.Child.ads --> grparchi.ads

$ gnatkr grandparent-parent-child --> grparchi

$ gnatkr very_long_unit_name.ads/count=6 --> vlunna.ads

$ gnatkr very_long_unit_name.ads/count=0 --> very_long_unit_name.ads

Chapter 17: Preprocessing Using gnatprep 221

17 Preprocessing Using gnatprep

This chapter discusses how to use GNAT’s gnatprep utility for simple preprocessing. Although
designed for use with GNAT, gnatprep does not depend on any special GNAT features. For fur-
ther discussion of conditional compilation in general, see Appendix D [Conditional Compilation],
page 329.

17.1 Preprocessing Symbols

Preprocessing symbols are defined in definition files and referred to in sources to be preprocessed.
A Preprocessing symbol is an identifier, following normal Ada (case-insensitive) rules for its
syntax, with the restriction that all characters need to be in the ASCII set (no accented letters).

17.2 Using gnatprep

To call gnatprep use

$ gnatprep [switches] infile outfile [deffile]

where

switches is an optional sequence of switches as described in the next section.

infile is the full name of the input file, which is an Ada source file containing preprocessor
directives.

outfile is the full name of the output file, which is an Ada source in standard Ada form.
When used with GNAT, this file name will normally have an ads or adb suffix.

deffile is the full name of a text file containing definitions of preprocessing symbols to be
referenced by the preprocessor. This argument is optional, and can be replaced by
the use of the ‘-D’ switch.

17.3 Switches for gnatprep

‘-b’ Causes both preprocessor lines and the lines deleted by preprocessing to be replaced
by blank lines in the output source file, preserving line numbers in the output file.

‘-c’ Causes both preprocessor lines and the lines deleted by preprocessing to be retained
in the output source as comments marked with the special string "--! ". This
option will result in line numbers being preserved in the output file.

‘-C’ Causes comments to be scanned. Normally comments are ignored by gnatprep. If
this option is specified, then comments are scanned and any $symbol substitutions
performed as in program text. This is particularly useful when structured comments
are used (e.g., when writing programs in the SPARK dialect of Ada). Note that this
switch is not available when doing integrated preprocessing (it would be useless in
this context since comments are ignored by the compiler in any case).

‘-Dsymbol=value’
Defines a new preprocessing symbol, associated with value. If no value is given on
the command line, then symbol is considered to be True. This switch can be used
in place of a definition file.

‘-r’ Causes a Source_Reference pragma to be generated that references the original
input file, so that error messages will use the file name of this original file. The use
of this switch implies that preprocessor lines are not to be removed from the file, so
its use will force ‘-b’ mode if ‘-c’ has not been specified explicitly.

222 GNAT User’s Guide

Note that if the file to be preprocessed contains multiple units, then it will be
necessary to gnatchop the output file from gnatprep. If a Source_Reference

pragma is present in the preprocessed file, it will be respected by gnatchop -r so
that the final chopped files will correctly refer to the original input source file for
gnatprep.

‘-s’ Causes a sorted list of symbol names and values to be listed on the standard output
file.

‘-u’ Causes undefined symbols to be treated as having the value FALSE in the context
of a preprocessor test. In the absence of this option, an undefined symbol in a #if

or #elsif test will be treated as an error.

Note: if neither ‘-b’ nor ‘-c’ is present, then preprocessor lines and deleted lines are completely
removed from the output, unless -r is specified, in which case -b is assumed.

17.4 Form of Definitions File

The definitions file contains lines of the form
symbol := value

where symbol is a preprocessing symbol, and value is one of the following:

• Empty, corresponding to a null substitution

• A string literal using normal Ada syntax

• Any sequence of characters from the set (letters, digits, period, underline).

Comment lines may also appear in the definitions file, starting with the usual --, and comments
may be added to the definitions lines.

17.5 Form of Input Text for gnatprep

The input text may contain preprocessor conditional inclusion lines, as well as general symbol
substitution sequences.

The preprocessor conditional inclusion commands have the form� �
#if expression [then]

lines

#elsif expression [then]
lines

#elsif expression [then]
lines

...

#else

lines

#end if;
 	
In this example, expression is defined by the following grammar:

expression ::= <symbol>

expression ::= <symbol> = "<value>"

expression ::= <symbol> = <symbol>

expression ::= <symbol> ’Defined

expression ::= not expression

expression ::= expression and expression

expression ::= expression or expression

expression ::= expression and then expression

expression ::= expression or else expression

expression ::= (expression)

The following restriction exists: it is not allowed to have "and" or "or" following "not" in
the same expression without parentheses. For example, this is not allowed:

Chapter 17: Preprocessing Using gnatprep 223

not X or Y

This should be one of the following:
(not X) or Y

not (X or Y)

For the first test (expression ::= <symbol>) the symbol must have either the value true or false,
that is to say the right-hand of the symbol definition must be one of the (case-insensitive) literals
True or False. If the value is true, then the corresponding lines are included, and if the value
is false, they are excluded.

The test (expression ::= <symbol> ’Defined) is true only if the symbol has been defined in
the definition file or by a ‘-D’ switch on the command line. Otherwise, the test is false.

The equality tests are case insensitive, as are all the preprocessor lines.

If the symbol referenced is not defined in the symbol definitions file, then the effect depends
on whether or not switch ‘-u’ is specified. If so, then the symbol is treated as if it had the value
false and the test fails. If this switch is not specified, then it is an error to reference an undefined
symbol. It is also an error to reference a symbol that is defined with a value other than True or
False.

The use of the not operator inverts the sense of this logical test. The not operator cannot
be combined with the or or and operators, without parentheses. For example, "if not X or Y
then" is not allowed, but "if (not X) or Y then" and "if not (X or Y) then" are.

The then keyword is optional as shown

The # must be the first non-blank character on a line, but otherwise the format is free form.
Spaces or tabs may appear between the # and the keyword. The keywords and the symbols are
case insensitive as in normal Ada code. Comments may be used on a preprocessor line, but other
than that, no other tokens may appear on a preprocessor line. Any number of elsif clauses
can be present, including none at all. The else is optional, as in Ada.

The # marking the start of a preprocessor line must be the first non-blank character on the
line, i.e., it must be preceded only by spaces or horizontal tabs.

Symbol substitution outside of preprocessor lines is obtained by using the sequence
$symbol

anywhere within a source line, except in a comment or within a string literal. The identifier
following the $ must match one of the symbols defined in the symbol definition file, and the
result is to substitute the value of the symbol in place of $symbol in the output file.

Note that although the substitution of strings within a string literal is not possible, it is
possible to have a symbol whose defined value is a string literal. So instead of setting XYZ to
hello and writing:

Header : String := "$XYZ";

you should set XYZ to "hello" and write:
Header : String := $XYZ;

and then the substitution will occur as desired.

Chapter 18: The GNAT Library Browser gnatls 225

18 The GNAT Library Browser gnatls

gnatls is a tool that outputs information about compiled units. It gives the relationship between
objects, unit names and source files. It can also be used to check the source dependencies of a
unit as well as various characteristics.

Note: to invoke gnatls with a project file, use the gnat driver (see Section 12.2 [The GNAT
Driver and Project Files], page 179).

18.1 Running gnatls

The gnatls command has the form

$ gnatls switches object_or_ali_file

The main argument is the list of object or ‘ali’ files (see Section 2.8 [The Ada Library Infor-
mation Files], page 20) for which information is requested.

In normal mode, without additional option, gnatls produces a four-column listing. Each line
represents information for a specific object. The first column gives the full path of the object,
the second column gives the name of the principal unit in this object, the third column gives
the status of the source and the fourth column gives the full path of the source representing this
unit. Here is a simple example of use:

$ gnatls *.o

./demo1.o demo1 DIF demo1.adb

./demo2.o demo2 OK demo2.adb

./hello.o h1 OK hello.adb

./instr-child.o instr.child MOK instr-child.adb

./instr.o instr OK instr.adb

./tef.o tef DIF tef.adb

./text_io_example.o text_io_example OK text_io_example.adb

./tgef.o tgef DIF tgef.adb

The first line can be interpreted as follows: the main unit which is contained in object file
‘demo1.o’ is demo1, whose main source is in ‘demo1.adb’. Furthermore, the version of the
source used for the compilation of demo1 has been modified (DIF). Each source file has a status
qualifier which can be:

OK (unchanged)

The version of the source file used for the compilation of the specified unit corre-
sponds exactly to the actual source file.

MOK (slightly modified)

The version of the source file used for the compilation of the specified unit differs
from the actual source file but not enough to require recompilation. If you use
gnatmake with the qualifier ‘-m (minimal recompilation)’, a file marked MOK
will not be recompiled.

DIF (modified)

No version of the source found on the path corresponds to the source used to build
this object.

??? (file not found)

No source file was found for this unit.

HID (hidden, unchanged version not first on PATH)

The version of the source that corresponds exactly to the source used for compilation
has been found on the path but it is hidden by another version of the same source
that has been modified.

226 GNAT User’s Guide

18.2 Switches for gnatls

gnatls recognizes the following switches:

Display Copyright and version, then exit disregarding all other options.

‘--help’ If ‘--version’ was not used, display usage, then exit disregarding all other options.

‘-a’ Consider all units, including those of the predefined Ada library. Especially useful
with ‘-d’.

‘-d’ List sources from which specified units depend on.

‘-h’ Output the list of options.

‘-o’ Only output information about object files.

‘-s’ Only output information about source files.

‘-u’ Only output information about compilation units.

‘-files=file ’
Take as arguments the files listed in text file file. Text file file may contain empty
lines that are ignored. Each nonempty line should contain the name of an existing
file. Several such switches may be specified simultaneously.

‘-aOdir ’
‘-aIdir ’
‘-Idir ’
‘-I-’
‘-nostdinc’

Source path manipulation. Same meaning as the equivalent gnatmake flags (see
Section 6.2 [Switches for gnatmake], page 95).

‘--RTS=rts-path ’
Specifies the default location of the runtime library. Same meaning as the equivalent
gnatmake flag (see Section 6.2 [Switches for gnatmake], page 95).

‘-v’ Verbose mode. Output the complete source, object and project paths. Do not use
the default column layout but instead use long format giving as much as information
possible on each requested units, including special characteristics such as:

Preelaborable

The unit is preelaborable in the Ada sense.

No_Elab_Code

No elaboration code has been produced by the compiler for this unit.

Pure The unit is pure in the Ada sense.

Elaborate_Body

The unit contains a pragma Elaborate Body.

Remote_Types

The unit contains a pragma Remote Types.

Shared_Passive

The unit contains a pragma Shared Passive.

Predefined

This unit is part of the predefined environment and cannot be modified
by the user.

Remote_Call_Interface

The unit contains a pragma Remote Call Interface.

Chapter 18: The GNAT Library Browser gnatls 227

18.3 Example of gnatls Usage

Example of using the verbose switch. Note how the source and object paths are affected by the
-I switch.

$ gnatls -v -I.. demo1.o

GNATLS 5.03w (20041123-34)

Copyright 1997-2004 Free Software Foundation, Inc.

Source Search Path:

<Current_Directory>

../

/home/comar/local/adainclude/

Object Search Path:

<Current_Directory>

../

/home/comar/local/lib/gcc-lib/x86-linux/3.4.3/adalib/

Project Search Path:

<Current_Directory>

/home/comar/local/lib/gnat/

./demo1.o

Unit =>

Name => demo1

Kind => subprogram body

Flags => No_Elab_Code

Source => demo1.adb modified

The following is an example of use of the dependency list. Note the use of the -s switch which
gives a straight list of source files. This can be useful for building specialized scripts.

$ gnatls -d demo2.o

./demo2.o demo2 OK demo2.adb

OK gen_list.ads

OK gen_list.adb

OK instr.ads

OK instr-child.ads

$ gnatls -d -s -a demo1.o

demo1.adb

/home/comar/local/adainclude/ada.ads

/home/comar/local/adainclude/a-finali.ads

/home/comar/local/adainclude/a-filico.ads

/home/comar/local/adainclude/a-stream.ads

/home/comar/local/adainclude/a-tags.ads

gen_list.ads

gen_list.adb

/home/comar/local/adainclude/gnat.ads

/home/comar/local/adainclude/g-io.ads

instr.ads

/home/comar/local/adainclude/system.ads

/home/comar/local/adainclude/s-exctab.ads

/home/comar/local/adainclude/s-finimp.ads

/home/comar/local/adainclude/s-finroo.ads

/home/comar/local/adainclude/s-secsta.ads

/home/comar/local/adainclude/s-stalib.ads

/home/comar/local/adainclude/s-stoele.ads

/home/comar/local/adainclude/s-stratt.ads

/home/comar/local/adainclude/s-tasoli.ads

/home/comar/local/adainclude/s-unstyp.ads

/home/comar/local/adainclude/unchconv.ads

Chapter 19: Cleaning Up Using gnatclean 229

19 Cleaning Up Using gnatclean

gnatclean is a tool that allows the deletion of files produced by the compiler, binder and linker,
including ALI files, object files, tree files, expanded source files, library files, interface copy
source files, binder generated files and executable files.

19.1 Running gnatclean

The gnatclean command has the form:
$ gnatclean switches names

names is a list of source file names. Suffixes .ads and adb may be omitted. If a project file is
specified using switch -P, then names may be completely omitted.

In normal mode, gnatclean delete the files produced by the compiler and, if switch -c is not
specified, by the binder and the linker. In informative-only mode, specified by switch -n, the
list of files that would have been deleted in normal mode is listed, but no file is actually deleted.

19.2 Switches for gnatclean

gnatclean recognizes the following switches:

Display Copyright and version, then exit disregarding all other options.

‘--help’ If ‘--version’ was not used, display usage, then exit disregarding all other options.

‘--subdirs=subdir’
Actual object directory of each project file is the subdirectory subdir of the object
directory specified or defaulted in the project file.

‘--unchecked-shared-lib-imports’
By default, shared library projects are not allowed to import static library projects.
When this switch is used on the command line, this restriction is relaxed.

‘-c’ Only attempt to delete the files produced by the compiler, not those produced by
the binder or the linker. The files that are not to be deleted are library files, interface
copy files, binder generated files and executable files.

‘-D dir ’ Indicate that ALI and object files should normally be found in directory dir.

‘-F’ When using project files, if some errors or warnings are detected during parsing and
verbose mode is not in effect (no use of switch -v), then error lines start with the
full path name of the project file, rather than its simple file name.

‘-h’ Output a message explaining the usage of gnatclean.

‘-n’ Informative-only mode. Do not delete any files. Output the list of the files that
would have been deleted if this switch was not specified.

‘-Pproject ’
Use project file project. Only one such switch can be used. When cleaning a project
file, the files produced by the compilation of the immediate sources or inherited
sources of the project files are to be deleted. This is not depending on the presence
or not of executable names on the command line.

‘-q’ Quiet output. If there are no errors, do not output anything, except in verbose
mode (switch -v) or in informative-only mode (switch -n).

‘-r’ When a project file is specified (using switch -P), clean all imported and extended
project files, recursively. If this switch is not specified, only the files related to the
main project file are to be deleted. This switch has no effect if no project file is
specified.

230 GNAT User’s Guide

‘-v’ Verbose mode.

‘-vPx ’ Indicates the verbosity of the parsing of GNAT project files. See Section 12.1.1
[Switches Related to Project Files], page 175.

‘-Xname=value ’
Indicates that external variable name has the value value. The Project Manager
will use this value for occurrences of external(name) when parsing the project file.
See Section 12.1.1 [Switches Related to Project Files], page 175.

‘-aOdir ’ When searching for ALI and object files, look in directory dir.

‘-Idir ’ Equivalent to ‘-aOdir ’.

‘-I-’ Do not look for ALI or object files in the directory where gnatclean was invoked.

Chapter 20: GNAT and Libraries 231

20 GNAT and Libraries

This chapter describes how to build and use libraries with GNAT, and also shows how to
recompile the GNAT run-time library. You should be familiar with the Project Manager facility
(see Chapter 11 [GNAT Project Manager], page 131) before reading this chapter.

20.1 Introduction to Libraries in GNAT

A library is, conceptually, a collection of objects which does not have its own main thread of
execution, but rather provides certain services to the applications that use it. A library can be
either statically linked with the application, in which case its code is directly included in the
application, or, on platforms that support it, be dynamically linked, in which case its code is
shared by all applications making use of this library.

GNAT supports both types of libraries. In the static case, the compiled code can be provided
in different ways. The simplest approach is to provide directly the set of objects resulting from
compilation of the library source files. Alternatively, you can group the objects into an archive
using whatever commands are provided by the operating system. For the latter case, the objects
are grouped into a shared library.

In the GNAT environment, a library has three types of components:

• Source files.

• ‘ALI’ files. See Section 2.8 [The Ada Library Information Files], page 20.

• Object files, an archive or a shared library.

A GNAT library may expose all its source files, which is useful for documentation purposes.
Alternatively, it may expose only the units needed by an external user to make use of the
library. That is to say, the specs reflecting the library services along with all the units needed
to compile those specs, which can include generic bodies or any body implementing an inlined
routine. In the case of stand-alone libraries those exposed units are called interface units (see
Section 20.3 [Stand-alone Ada Libraries], page 234).

All compilation units comprising an application, including those in a library, need to be
elaborated in an order partially defined by Ada’s semantics. GNAT computes the elaboration
order from the ‘ALI’ files and this is why they constitute a mandatory part of GNAT libraries.
Stand-alone libraries are the exception to this rule because a specific library elaboration routine
is produced independently of the application(s) using the library.

20.2 General Ada Libraries

20.2.1 Building a library

The easiest way to build a library is to use the Project Manager, which supports a special type
of project called a Library Project (see Section 11.5 [Library Projects], page 147).

A project is considered a library project, when two project-level attributes are defined in it:
Library_Name and Library_Dir. In order to control different aspects of library configuration,
additional optional project-level attributes can be specified:

Library_Kind

This attribute controls whether the library is to be static or dynamic

Library_Version

This attribute specifies the library version; this value is used during dynamic linking
of shared libraries to determine if the currently installed versions of the binaries are
compatible.

232 GNAT User’s Guide

Library_Options

Library_GCC

These attributes specify additional low-level options to be used during library gen-
eration, and redefine the actual application used to generate library.

The GNAT Project Manager takes full care of the library maintenance task, including recom-
pilation of the source files for which objects do not exist or are not up to date, assembly of the
library archive, and installation of the library (i.e., copying associated source, object and ‘ALI’
files to the specified location).

Here is a simple library project file:
project My_Lib is

for Source_Dirs use ("src1", "src2");

for Object_Dir use "obj";

for Library_Name use "mylib";

for Library_Dir use "lib";

for Library_Kind use "dynamic";

end My_lib;

and the compilation command to build and install the library:
$ gnatmake -Pmy_lib

It is not entirely trivial to perform manually all the steps required to produce a library. We
recommend that you use the GNAT Project Manager for this task. In special cases where this
is not desired, the necessary steps are discussed below.

There are various possibilities for compiling the units that make up the library: for example
with a Makefile (see Chapter 21 [Using the GNU make Utility], page 239) or with a conventional
script. For simple libraries, it is also possible to create a dummy main program which depends
upon all the packages that comprise the interface of the library. This dummy main program can
then be given to gnatmake, which will ensure that all necessary objects are built.

After this task is accomplished, you should follow the standard procedure of the underlying
operating system to produce the static or shared library.

Here is an example of such a dummy program:
with My_Lib.Service1;

with My_Lib.Service2;

with My_Lib.Service3;

procedure My_Lib_Dummy is

begin

null;

end;

Here are the generic commands that will build an archive or a shared library.
compiling the library

$ gnatmake -c my_lib_dummy.adb

we don’t need the dummy object itself

$ rm my_lib_dummy.o my_lib_dummy.ali

create an archive with the remaining objects

$ ar rc libmy_lib.a *.o

some systems may require "ranlib" to be run as well

or create a shared library

$ gcc -shared -o libmy_lib.so *.o

some systems may require the code to have been compiled with -fPIC

remove the object files that are now in the library

$ rm *.o

Make the ALI files read-only so that gnatmake will not try to

regenerate the objects that are in the library

Chapter 20: GNAT and Libraries 233

$ chmod -w *.ali

Please note that the library must have a name of the form ‘libxxx.a’ or ‘libxxx.so’ (or
‘libxxx.dll’ on Windows) in order to be accessed by the directive ‘-lxxx ’ at link time.

20.2.2 Installing a library

If you use project files, library installation is part of the library build process (see Section 11.5.4
[Installing a library with project files], page 152).

When project files are not an option, it is also possible, but not recommended, to install the
library so that the sources needed to use the library are on the Ada source path and the ALI
files & libraries be on the Ada Object path (see Section 3.3 [Search Paths and the Run-Time
Library (RTL)], page 78. Alternatively, the system administrator can place general-purpose
libraries in the default compiler paths, by specifying the libraries’ location in the configuration
files ‘ada_source_path’ and ‘ada_object_path’. These configuration files must be located in
the GNAT installation tree at the same place as the gcc spec file. The location of the gcc spec
file can be determined as follows:

$ gcc -v

The configuration files mentioned above have a simple format: each line must contain one unique
directory name. Those names are added to the corresponding path in their order of appearance
in the file. The names can be either absolute or relative; in the latter case, they are relative to
where theses files are located.

The files ‘ada_source_path’ and ‘ada_object_path’ might not be present in a GNAT in-
stallation, in which case, GNAT will look for its run-time library in the directories ‘adainclude’
(for the sources) and ‘adalib’ (for the objects and ‘ALI’ files). When the files exist, the com-
piler does not look in ‘adainclude’ and ‘adalib’, and thus the ‘ada_source_path’ file must
contain the location for the GNAT run-time sources (which can simply be ‘adainclude’). In
the same way, the ‘ada_object_path’ file must contain the location for the GNAT run-time
objects (which can simply be ‘adalib’).

You can also specify a new default path to the run-time library at compilation time with the
switch ‘--RTS=rts-path’. You can thus choose / change the run-time library you want your
program to be compiled with. This switch is recognized by gcc, gnatmake, gnatbind, gnatls,
gnatfind and gnatxref.

It is possible to install a library before or after the standard GNAT library, by reordering the
lines in the configuration files. In general, a library must be installed before the GNAT library
if it redefines any part of it.

20.2.3 Using a library

Once again, the project facility greatly simplifies the use of libraries. In this context, using a
library is just a matter of adding a with clause in the user project. For instance, to make use
of the library My_Lib shown in examples in earlier sections, you can write:

with "my_lib";

project My_Proj is

...

end My_Proj;

Even if you have a third-party, non-Ada library, you can still use GNAT’s Project Manager
facility to provide a wrapper for it. For example, the following project, when withed by your
main project, will link with the third-party library ‘liba.a’:

project Liba is

for Externally_Built use "true";

for Source_Files use ();

for Library_Dir use "lib";

for Library_Name use "a";

for Library_Kind use "static";

end Liba;

234 GNAT User’s Guide

This is an alternative to the use of pragma Linker_Options. It is especially interesting in the
context of systems with several interdependent static libraries where finding a proper linker order
is not easy and best be left to the tools having visibility over project dependence information.

In order to use an Ada library manually, you need to make sure that this library is on both
your source and object path (see Section 3.3 [Search Paths and the Run-Time Library (RTL)],
page 78 and Section 4.4 [Search Paths for gnatbind], page 88). Furthermore, when the objects
are grouped in an archive or a shared library, you need to specify the desired library at link
time.

For example, you can use the library ‘mylib’ installed in ‘/dir/my_lib_src’ and
‘/dir/my_lib_obj’ with the following commands:

$ gnatmake -aI/dir/my_lib_src -aO/dir/my_lib_obj my_appl \

-largs -lmy_lib

This can be expressed more simply:
$ gnatmake my_appl

when the following conditions are met:

• ‘/dir/my_lib_src’ has been added by the user to the environment variable ADA_INCLUDE_
PATH, or by the administrator to the file ‘ada_source_path’

• ‘/dir/my_lib_obj’ has been added by the user to the environment variable ADA_OBJECTS_
PATH, or by the administrator to the file ‘ada_object_path’

• a pragma Linker_Options has been added to one of the sources. For example:
pragma Linker_Options ("-lmy_lib");

20.3 Stand-alone Ada Libraries

20.3.1 Introduction to Stand-alone Libraries

A Stand-alone Library (abbreviated “SAL”) is a library that contains the necessary code to
elaborate the Ada units that are included in the library. In contrast with an ordinary library,
which consists of all sources, objects and ‘ALI’ files of the library, a SAL may specify a restricted
subset of compilation units to serve as a library interface. In this case, the fully self-sufficient set
of files will normally consist of an objects archive, the sources of interface units’ specs, and the
‘ALI’ files of interface units. If an interface spec contains a generic unit or an inlined subprogram,
the body’s source must also be provided; if the units that must be provided in the source form
depend on other units, the source and ‘ALI’ files of those must also be provided.

The main purpose of a SAL is to minimize the recompilation overhead of client applications
when a new version of the library is installed. Specifically, if the interface sources have not
changed, client applications do not need to be recompiled. If, furthermore, a SAL is provided in
the shared form and its version, controlled by Library_Version attribute, is not changed, then
the clients do not need to be relinked.

SALs also allow the library providers to minimize the amount of library source text exposed
to the clients. Such “information hiding” might be useful or necessary for various reasons.

Stand-alone libraries are also well suited to be used in an executable whose main routine is
not written in Ada.

20.3.2 Building a Stand-alone Library

GNAT’s Project facility provides a simple way of building and installing stand-alone libraries; see
Section 11.5.3 [Stand-alone Library Projects], page 150. To be a Stand-alone Library Project,
in addition to the two attributes that make a project a Library Project (Library_Name and
Library_Dir; see Section 11.5 [Library Projects], page 147), the attribute Library_Interface
must be defined. For example:

Chapter 20: GNAT and Libraries 235

for Library_Dir use "lib_dir";

for Library_Name use "dummy";

for Library_Interface use ("int1", "int1.child");

Attribute Library_Interface has a non-empty string list value, each string in the list desig-
nating a unit contained in an immediate source of the project file.

When a Stand-alone Library is built, first the binder is invoked to build a package whose name
depends on the library name (‘b~dummy.ads/b’ in the example above). This binder-generated
package includes initialization and finalization procedures whose names depend on the library
name (dummyinit and dummyfinal in the example above). The object corresponding to this
package is included in the library.

You must ensure timely (e.g., prior to any use of interfaces in the SAL) calling of these
procedures if a static SAL is built, or if a shared SAL is built with the project-level attribute
Library_Auto_Init set to "false".

For a Stand-Alone Library, only the ‘ALI’ files of the Interface Units (those that are listed
in attribute Library_Interface) are copied to the Library Directory. As a consequence, only
the Interface Units may be imported from Ada units outside of the library. If other units are
imported, the binding phase will fail.

It is also possible to build an encapsulated library where not only the code to elaborate and
finalize the library is embedded but also ensuring that the library is linked only against static
libraries. So an encapsulated library only depends on system libraries, all other code, including
the GNAT runtime, is embedded. To build an encapsulated library the attribute Library_

Standalone must be set to encapsulated:

for Library_Dir use "lib_dir";

for Library_Name use "dummy";

for Library_Interface use ("int1", "int1.child");

for Library_Standalone use "encapsulated";

The default value for this attribute is standard in which case a stand-alone library is built.

The attribute Library_Src_Dir may be specified for a Stand-Alone Library. Library_Src_
Dir is a simple attribute that has a single string value. Its value must be the path (absolute or
relative to the project directory) of an existing directory. This directory cannot be the object
directory or one of the source directories, but it can be the same as the library directory. The
sources of the Interface Units of the library that are needed by an Ada client of the library will
be copied to the designated directory, called the Interface Copy directory. These sources include
the specs of the Interface Units, but they may also include bodies and subunits, when pragmas
Inline or Inline_Always are used, or when there is a generic unit in the spec. Before the
sources are copied to the Interface Copy directory, an attempt is made to delete all files in the
Interface Copy directory.

Building stand-alone libraries by hand is somewhat tedious, but for those occasions when it
is necessary here are the steps that you need to perform:

• Compile all library sources.

• Invoke the binder with the switch ‘-n’ (No Ada main program), with all the ‘ALI’ files
of the interfaces, and with the switch ‘-L’ to give specific names to the init and final

procedures. For example:
gnatbind -n int1.ali int2.ali -Lsal1

• Compile the binder generated file:
gcc -c b~int2.adb

• Link the dynamic library with all the necessary object files, indicating to the linker the
names of the init (and possibly final) procedures for automatic initialization (and fi-
nalization). The built library should be placed in a directory different from the object
directory.

236 GNAT User’s Guide

• Copy the ALI files of the interface to the library directory, add in this copy an indication
that it is an interface to a SAL (i.e., add a word ‘SL’ on the line in the ‘ALI’ file that starts
with letter “P”) and make the modified copy of the ‘ALI’ file read-only.

Using SALs is not different from using other libraries (see Section 20.2.3 [Using a library],
page 233).

20.3.3 Creating a Stand-alone Library to be used in a non-Ada
context

It is easy to adapt the SAL build procedure discussed above for use of a SAL in a non-Ada
context.

The only extra step required is to ensure that library interface subprograms are compatible
with the main program, by means of pragma Export or pragma Convention.

Here is an example of simple library interface for use with C main program:

package My_Package is

procedure Do_Something;

pragma Export (C, Do_Something, "do_something");

procedure Do_Something_Else;

pragma Export (C, Do_Something_Else, "do_something_else");

end My_Package;

On the foreign language side, you must provide a “foreign” view of the library interface; remem-
ber that it should contain elaboration routines in addition to interface subprograms.

The example below shows the content of mylib_interface.h (note that there is no rule for
the naming of this file, any name can be used)

/* the library elaboration procedure */

extern void mylibinit (void);

/* the library finalization procedure */

extern void mylibfinal (void);

/* the interface exported by the library */

extern void do_something (void);

extern void do_something_else (void);

Libraries built as explained above can be used from any program, provided that the elaboration
procedures (named mylibinit in the previous example) are called before the library services are
used. Any number of libraries can be used simultaneously, as long as the elaboration procedure
of each library is called.

Below is an example of a C program that uses the mylib library.

#include "mylib_interface.h"

int

main (void)

{

/* First, elaborate the library before using it */

mylibinit ();

/* Main program, using the library exported entities */

do_something ();

do_something_else ();

/* Library finalization at the end of the program */

mylibfinal ();

return 0;

}

Chapter 20: GNAT and Libraries 237

Note that invoking any library finalization procedure generated by gnatbind shuts down the
Ada run-time environment. Consequently, the finalization of all Ada libraries must be performed
at the end of the program. No call to these libraries or to the Ada run-time library should be
made after the finalization phase.

20.3.4 Restrictions in Stand-alone Libraries

The pragmas listed below should be used with caution inside libraries, as they can create in-
compatibilities with other Ada libraries:

• pragma Locking_Policy

• pragma Queuing_Policy

• pragma Task_Dispatching_Policy

• pragma Unreserve_All_Interrupts

When using a library that contains such pragmas, the user must make sure that all libraries use
the same pragmas with the same values. Otherwise, Program_Error will be raised during the
elaboration of the conflicting libraries. The usage of these pragmas and its consequences for the
user should therefore be well documented.

Similarly, the traceback in the exception occurrence mechanism should be enabled or disabled
in a consistent manner across all libraries. Otherwise, Program Error will be raised during the
elaboration of the conflicting libraries.

If the Version or Body_Version attributes are used inside a library, then you need to perform
a gnatbind step that specifies all ‘ALI’ files in all libraries, so that version identifiers can be
properly computed. In practice these attributes are rarely used, so this is unlikely to be a
consideration.

20.4 Rebuilding the GNAT Run-Time Library

It may be useful to recompile the GNAT library in various contexts, the most important one
being the use of partition-wide configuration pragmas such as Normalize_Scalars. A special
Makefile called Makefile.adalib is provided to that effect and can be found in the directory
containing the GNAT library. The location of this directory depends on the way the GNAT
environment has been installed and can be determined by means of the command:

$ gnatls -v

The last entry in the object search path usually contains the gnat library. This Makefile contains
its own documentation and in particular the set of instructions needed to rebuild a new library
and to use it.

Chapter 21: Using the GNU make Utility 239

21 Using the GNU make Utility

This chapter offers some examples of makefiles that solve specific problems. It does not explain
how to write a makefile (see Section “GNU make” in GNU make), nor does it try to replace the
gnatmake utility (see Chapter 6 [The GNAT Make Program gnatmake], page 95).

All the examples in this section are specific to the GNU version of make. Although make is a
standard utility, and the basic language is the same, these examples use some advanced features
found only in GNU make.

21.1 Using gnatmake in a Makefile

Complex project organizations can be handled in a very powerful way by using GNU make com-
bined with gnatmake. For instance, here is a Makefile which allows you to build each subsystem
of a big project into a separate shared library. Such a makefile allows you to significantly reduce
the link time of very big applications while maintaining full coherence at each step of the build
process.

The list of dependencies are handled automatically by gnatmake. The Makefile is simply
used to call gnatmake in each of the appropriate directories.

Note that you should also read the example on how to automatically create the list of direc-
tories (see Section 21.2 [Automatically Creating a List of Directories], page 240) which might
help you in case your project has a lot of subdirectories.

This Makefile is intended to be used with the following directory

configuration:

- The sources are split into a series of csc (computer software components)

Each of these csc is put in its own directory.

Their name are referenced by the directory names.

They will be compiled into shared library (although this would also work

with static libraries

- The main program (and possibly other packages that do not belong to any

csc is put in the top level directory (where the Makefile is).

toplevel dir first csc (sources) lib (will contain the library)

\ second csc (sources) lib (will contain the library)

\ . . .

Although this Makefile is build for shared library, it is easy to modify

to build partial link objects instead (modify the lines with -shared and

gnatlink below)

##

With this makefile, you can change any file in the system or add any new

file, and everything will be recompiled correctly (only the relevant shared

objects will be recompiled, and the main program will be re-linked).

The list of computer software component for your project. This might be

generated automatically.

CSC LIST=aa bb cc

Name of the main program (no extension)

MAIN=main

If we need to build objects with -fPIC, uncomment the following line

#NEED FPIC=-fPIC

The following variable should give the directory containing libgnat.so

You can get this directory through ’gnatls -v’. This is usually the last

directory in the Object Path.

GLIB=. . .

240 GNAT User’s Guide

The directories for the libraries

(This macro expands the list of CSC to the list of shared libraries, you

could simply use the expanded form:

LIB DIR=aa/lib/libaa.so bb/lib/libbb.so cc/lib/libcc.so

LIB DIR=${foreach dir,${CSC LIST},${dir}/lib/lib${dir}.so}

${MAIN}: objects ${LIB DIR}

gnatbind ${MAIN} ${CSC LIST:%=-aO%/lib} -shared

gnatlink ${MAIN} ${CSC LIST:%=-l%}

objects::

recompile the sources

gnatmake -c -i ${MAIN}.adb ${NEED FPIC} ${CSC LIST:%=-I%}

Note: In a future version of GNAT, the following commands will be simplified

by a new tool, gnatmlib

${LIB DIR}:

mkdir -p ${dir $@ }

cd ${dir $@ } && gcc -shared -o ${notdir $@ } ../*.o -L${GLIB} -lgnat

cd ${dir $@ } && cp -f ../*.ali .

The dependencies for the modules

Note that we have to force the expansion of *.o, since in some cases

make won’t be able to do it itself.

aa/lib/libaa.so: ${wildcard aa/*.o}

bb/lib/libbb.so: ${wildcard bb/*.o}

cc/lib/libcc.so: ${wildcard cc/*.o}

Make sure all of the shared libraries are in the path before starting the

program

run::

LD LIBRARY PATH=‘pwd‘/aa/lib:‘pwd‘/bb/lib:‘pwd‘/cc/lib ./${MAIN}

clean::

${RM} -rf ${CSC LIST:%=%/lib}

${RM} ${CSC LIST:%=%/*.ali}

${RM} ${CSC LIST:%=%/*.o}

${RM} *.o *.ali ${MAIN}

21.2 Automatically Creating a List of Directories

In most makefiles, you will have to specify a list of directories, and store it in a variable. For
small projects, it is often easier to specify each of them by hand, since you then have full control
over what is the proper order for these directories, which ones should be included.

However, in larger projects, which might involve hundreds of subdirectories, it might be more
convenient to generate this list automatically.

The example below presents two methods. The first one, although less general, gives you
more control over the list. It involves wildcard characters, that are automatically expanded by
make. Its shortcoming is that you need to explicitly specify some of the organization of your
project, such as for instance the directory tree depth, whether some directories are found in a
separate tree, . . .

The second method is the most general one. It requires an external program, called find,
which is standard on all Unix systems. All the directories found under a given root directory
will be added to the list.

The examples below are based on the following directory hierarchy:

Chapter 21: Using the GNU make Utility 241

All the directories can contain any number of files

ROOT DIRECTORY -> a -> aa -> aaa

-> ab

-> ac

-> b -> ba -> baa

-> bb

-> bc

This Makefile creates a variable called DIRS, that can be reused any time

you need this list (see the other examples in this section)

The root of your project’s directory hierarchy

ROOT DIRECTORY=.

####

First method: specify explicitly the list of directories

This allows you to specify any subset of all the directories you need.

####

DIRS := a/aa/ a/ab/ b/ba/

####

Second method: use wildcards

Note that the argument(s) to wildcard below should end with a ’/’.

Since wildcards also return file names, we have to filter them out

to avoid duplicate directory names.

We thus use make’s dir and sort functions.

It sets DIRs to the following value (note that the directories aaa and baa

are not given, unless you change the arguments to wildcard).

DIRS= ./a/a/ ./b/ ./a/aa/ ./a/ab/ ./a/ac/ ./b/ba/ ./b/bb/ ./b/bc/

####

DIRS := ${sort ${dir ${wildcard ${ROOT DIRECTORY}/*/

${ROOT DIRECTORY}/*/*/}}}

####

Third method: use an external program

This command is much faster if run on local disks, avoiding NFS slowdowns.

This is the most complete command: it sets DIRs to the following value:

DIRS= ./a ./a/aa ./a/aa/aaa ./a/ab ./a/ac ./b ./b/ba ./b/ba/baa ./b/bb ./b/bc

####

DIRS := ${shell find ${ROOT DIRECTORY} -type d -print}

21.3 Generating the Command Line Switches

Once you have created the list of directories as explained in the previous section (see Section 21.2
[Automatically Creating a List of Directories], page 240), you can easily generate the command
line arguments to pass to gnatmake.

For the sake of completeness, this example assumes that the source path is not the same as
the object path, and that you have two separate lists of directories.

see "Automatically creating a list of directories" to create

these variables

SOURCE_DIRS=

OBJECT_DIRS=

GNATMAKE_SWITCHES := ${patsubst %,-aI%,${SOURCE_DIRS}}

GNATMAKE_SWITCHES += ${patsubst %,-aO%,${OBJECT_DIRS}}

all:

gnatmake ${GNATMAKE_SWITCHES} main_unit

242 GNAT User’s Guide

21.4 Overcoming Command Line Length Limits

One problem that might be encountered on big projects is that many operating systems limit
the length of the command line. It is thus hard to give gnatmake the list of source and object
directories.

This example shows how you can set up environment variables, which will make gnatmake

behave exactly as if the directories had been specified on the command line, but have a much
higher length limit (or even none on most systems).

It assumes that you have created a list of directories in your Makefile, using one of the
methods presented in Section 21.2 [Automatically Creating a List of Directories], page 240. For
the sake of completeness, we assume that the object path (where the ALI files are found) is
different from the sources patch.

Note a small trick in the Makefile below: for efficiency reasons, we create two temporary
variables (SOURCE LIST and OBJECT LIST), that are expanded immediately by make. This
way we overcome the standard make behavior which is to expand the variables only when they
are actually used.

On Windows, if you are using the standard Windows command shell, you must replace colons
with semicolons in the assignments to these variables.

In this example, we create both ADA INCLUDE PATH and ADA OBJECTS PATH.

This is the same thing as putting the -I arguments on the command line.

(the equivalent of using -aI on the command line would be to define

only ADA INCLUDE PATH, the equivalent of -aO is ADA OBJECTS PATH).

You can of course have different values for these variables.

#

Note also that we need to keep the previous values of these variables, since

they might have been set before running ’make’ to specify where the GNAT

library is installed.

see "Automatically creating a list of directories" to create these

variables

SOURCE DIRS=

OBJECT DIRS=

empty:=

space:=${empty} ${empty}

SOURCE LIST := ${subst ${space},:,${SOURCE DIRS}}

OBJECT LIST := ${subst ${space},:,${OBJECT DIRS}}

ADA INCLUDE PATH += ${SOURCE LIST}

ADA OBJECTS PATH += ${OBJECT LIST}

export ADA INCLUDE PATH

export ADA OBJECTS PATH

all:

gnatmake main unit

Chapter 22: Memory Management Issues 243

22 Memory Management Issues

This chapter describes some useful memory pools provided in the GNAT library and in particular
the GNAT Debug Pool facility, which can be used to detect incorrect uses of access values
(including “dangling references”). It also describes the gnatmem tool, which can be used to
track down “memory leaks”.

22.1 Some Useful Memory Pools

The System.Pool_Global package offers the Unbounded No Reclaim Pool storage pool. Allo-
cations use the standard system call malloc while deallocations use the standard system call
free. No reclamation is performed when the pool goes out of scope. For performance reasons,
the standard default Ada allocators/deallocators do not use any explicit storage pools but if
they did, they could use this storage pool without any change in behavior. That is why this
storage pool is used when the user manages to make the default implicit allocator explicit as in
this example:

type T1 is access Something;

-- no Storage pool is defined for T2

type T2 is access Something_Else;

for T2’Storage_Pool use T1’Storage_Pool;

-- the above is equivalent to

for T2’Storage_Pool use System.Pool_Global.Global_Pool_Object;

The System.Pool_Local package offers the Unbounded Reclaim Pool storage pool. The allo-
cation strategy is similar to Pool_Local’s except that the all storage allocated with this pool is
reclaimed when the pool object goes out of scope. This pool provides a explicit mechanism sim-
ilar to the implicit one provided by several Ada 83 compilers for allocations performed through
a local access type and whose purpose was to reclaim memory when exiting the scope of a given
local access. As an example, the following program does not leak memory even though it does
not perform explicit deallocation:

with System.Pool_Local;

procedure Pooloc1 is

procedure Internal is

type A is access Integer;

X : System.Pool_Local.Unbounded_Reclaim_Pool;

for A’Storage_Pool use X;

v : A;

begin

for I in 1 .. 50 loop

v := new Integer;

end loop;

end Internal;

begin

for I in 1 .. 100 loop

Internal;

end loop;

end Pooloc1;

The System.Pool_Size package implements the Stack Bounded Pool used when Storage_Size

is specified for an access type. The whole storage for the pool is allocated at once, usually on
the stack at the point where the access type is elaborated. It is automatically reclaimed when
exiting the scope where the access type is defined. This package is not intended to be used
directly by the user and it is implicitly used for each such declaration:

type T1 is access Something;

for T1’Storage_Size use 10_000;

244 GNAT User’s Guide

22.2 The GNAT Debug Pool Facility

The use of unchecked deallocation and unchecked conversion can easily lead to incorrect memory
references. The problems generated by such references are usually difficult to tackle because the
symptoms can be very remote from the origin of the problem. In such cases, it is very helpful
to detect the problem as early as possible. This is the purpose of the Storage Pool provided by
GNAT.Debug_Pools.

In order to use the GNAT specific debugging pool, the user must associate a debug pool
object with each of the access types that may be related to suspected memory problems. See
Ada Reference Manual 13.11.

type Ptr is access Some_Type;

Pool : GNAT.Debug_Pools.Debug_Pool;

for Ptr’Storage_Pool use Pool;

GNAT.Debug_Pools is derived from a GNAT-specific kind of pool: the Checked_Pool. Such
pools, like standard Ada storage pools, allow the user to redefine allocation and deallocation
strategies. They also provide a checkpoint for each dereference, through the use of the primitive
operation Dereference which is implicitly called at each dereference of an access value.

Once an access type has been associated with a debug pool, operations on values of the
type may raise four distinct exceptions, which correspond to four potential kinds of memory
corruption:

• GNAT.Debug_Pools.Accessing_Not_Allocated_Storage

• GNAT.Debug_Pools.Accessing_Deallocated_Storage

• GNAT.Debug_Pools.Freeing_Not_Allocated_Storage

• GNAT.Debug_Pools.Freeing_Deallocated_Storage

For types associated with a Debug Pool, dynamic allocation is performed using the standard
GNAT allocation routine. References to all allocated chunks of memory are kept in an internal
dictionary. Several deallocation strategies are provided, whereupon the user can choose to release
the memory to the system, keep it allocated for further invalid access checks, or fill it with an
easily recognizable pattern for debug sessions. The memory pattern is the old IBM hexadecimal
convention: 16#DEADBEEF#.

See the documentation in the file g-debpoo.ads for more information on the various strategies.

Upon each dereference, a check is made that the access value denotes a properly allocated
memory location. Here is a complete example of use of Debug_Pools, that includes typical
instances of memory corruption:

with Gnat.Io; use Gnat.Io;

with Unchecked_Deallocation;

with Unchecked_Conversion;

with GNAT.Debug_Pools;

with System.Storage_Elements;

with Ada.Exceptions; use Ada.Exceptions;

procedure Debug_Pool_Test is

type T is access Integer;

type U is access all T;

P : GNAT.Debug_Pools.Debug_Pool;

for T’Storage_Pool use P;

procedure Free is new Unchecked_Deallocation (Integer, T);

function UC is new Unchecked_Conversion (U, T);

A, B : aliased T;

Chapter 22: Memory Management Issues 245

procedure Info is new GNAT.Debug_Pools.Print_Info(Put_Line);

begin

Info (P);

A := new Integer;

B := new Integer;

B := A;

Info (P);

Free (A);

begin

Put_Line (Integer’Image(B.all));

exception

when E : others => Put_Line ("raised: " & Exception_Name (E));

end;

begin

Free (B);

exception

when E : others => Put_Line ("raised: " & Exception_Name (E));

end;

B := UC(A’Access);

begin

Put_Line (Integer’Image(B.all));

exception

when E : others => Put_Line ("raised: " & Exception_Name (E));

end;

begin

Free (B);

exception

when E : others => Put_Line ("raised: " & Exception_Name (E));

end;

Info (P);

end Debug_Pool_Test;

The debug pool mechanism provides the following precise diagnostics on the execution of this
erroneous program:

Debug Pool info:

Total allocated bytes : 0

Total deallocated bytes : 0

Current Water Mark: 0

High Water Mark: 0

Debug Pool info:

Total allocated bytes : 8

Total deallocated bytes : 0

Current Water Mark: 8

High Water Mark: 8

raised: GNAT.DEBUG_POOLS.ACCESSING_DEALLOCATED_STORAGE

raised: GNAT.DEBUG_POOLS.FREEING_DEALLOCATED_STORAGE

raised: GNAT.DEBUG_POOLS.ACCESSING_NOT_ALLOCATED_STORAGE

raised: GNAT.DEBUG_POOLS.FREEING_NOT_ALLOCATED_STORAGE

Debug Pool info:

Total allocated bytes : 8

Total deallocated bytes : 4

Current Water Mark: 4

High Water Mark: 8

22.3 The gnatmem Tool

The gnatmem utility monitors dynamic allocation and deallocation activity in a program, and
displays information about incorrect deallocations and possible sources of memory leaks. It is
designed to work in association with a static runtime library only and in this context provides
three types of information:

246 GNAT User’s Guide

• General information concerning memory management, such as the total number of alloca-
tions and deallocations, the amount of allocated memory and the high water mark, i.e. the
largest amount of allocated memory in the course of program execution.

• Backtraces for all incorrect deallocations, that is to say deallocations which do not corre-
spond to a valid allocation.

• Information on each allocation that is potentially the origin of a memory leak.

22.3.1 Running gnatmem

gnatmem makes use of the output created by the special version of allocation and deallocation
routines that record call information. This allows to obtain accurate dynamic memory usage
history at a minimal cost to the execution speed. Note however, that gnatmem is not supported
on all platforms (currently, it is supported on AIX, HP-UX, GNU/Linux, Solaris and Windows
NT/2000/XP (x86).

The gnatmem command has the form

$ gnatmem [switches] user_program

The program must have been linked with the instrumented version of the allocation and deallo-
cation routines. This is done by linking with the ‘libgmem.a’ library. For correct symbolic back-
trace information, the user program should be compiled with debugging options (see Section 3.2
[Switches for gcc], page 38). For example to build ‘my_program’:

$ gnatmake -g my_program -largs -lgmem

As library ‘libgmem.a’ contains an alternate body for package System.Memory, ‘s-memory.adb’
should not be compiled and linked when an executable is linked with library ‘libgmem.a’. It is
then not recommended to use gnatmake with switch ‘-a’.

When ‘my_program’ is executed, the file ‘gmem.out’ is produced. This file contains informa-
tion about all allocations and deallocations performed by the program. It is produced by the
instrumented allocations and deallocations routines and will be used by gnatmem.

In order to produce symbolic backtrace information for allocations and deallocations per-
formed by the GNAT run-time library, you need to use a version of that library that has been
compiled with the ‘-g’ switch (see Section 20.4 [Rebuilding the GNAT Run-Time Library],
page 237).

Gnatmem must be supplied with the ‘gmem.out’ file and the executable to examine. If the
location of ‘gmem.out’ file was not explicitly supplied by ‘-i’ switch, gnatmem will assume
that this file can be found in the current directory. For example, after you have executed
‘my_program’, ‘gmem.out’ can be analyzed by gnatmem using the command:

$ gnatmem my_program

This will produce the output with the following format:

*************** debut cc

$ gnatmem my_program

Global information

Total number of allocations : 45

Total number of deallocations : 6

Final Water Mark (non freed mem) : 11.29 Kilobytes

High Water Mark : 11.40 Kilobytes

.

.

.

Allocation Root # 2

Number of non freed allocations : 11

Chapter 22: Memory Management Issues 247

Final Water Mark (non freed mem) : 1.16 Kilobytes

High Water Mark : 1.27 Kilobytes

Backtrace :

my_program.adb:23 my_program.alloc

.

.

.

The first block of output gives general information. In this case, the Ada construct “new”
was executed 45 times, and only 6 calls to an Unchecked Deallocation routine occurred.

Subsequent paragraphs display information on all allocation roots. An allocation root is a
specific point in the execution of the program that generates some dynamic allocation, such as a
“new” construct. This root is represented by an execution backtrace (or subprogram call stack).
By default the backtrace depth for allocations roots is 1, so that a root corresponds exactly to
a source location. The backtrace can be made deeper, to make the root more specific.

22.3.2 Switches for gnatmem

gnatmem recognizes the following switches:

‘-q’ Quiet. Gives the minimum output needed to identify the origin of the memory leaks.
Omits statistical information.

‘N ’ N is an integer literal (usually between 1 and 10) which controls the depth of the
backtraces defining allocation root. The default value for N is 1. The deeper the
backtrace, the more precise the localization of the root. Note that the total number
of roots can depend on this parameter. This parameter must be specified before the
name of the executable to be analyzed, to avoid ambiguity.

‘-b n’ This switch has the same effect as just depth parameter.

‘-i file ’ Do the gnatmem processing starting from ‘file’, rather than ‘gmem.out’ in the
current directory.

‘-m n’ This switch causes gnatmem to mask the allocation roots that have less than n leaks.
The default value is 1. Specifying the value of 0 will allow to examine even the roots
that didn’t result in leaks.

‘-s order’ This switch causes gnatmem to sort the allocation roots according to the specified
order of sort criteria, each identified by a single letter. The currently supported
criteria are n, h, w standing respectively for number of unfreed allocations, high
watermark, and final watermark corresponding to a specific root. The default order
is nwh.

22.3.3 Example of gnatmem Usage

The following example shows the use of gnatmem on a simple memory-leaking program. Suppose
that we have the following Ada program:

248 GNAT User’s Guide� �
with Unchecked_Deallocation;

procedure Test_Gm is

type T is array (1..1000) of Integer;

type Ptr is access T;

procedure Free is new Unchecked_Deallocation (T, Ptr);

A : Ptr;

procedure My_Alloc is

begin

A := new T;

end My_Alloc;

procedure My_DeAlloc is

B : Ptr := A;

begin

Free (B);

end My_DeAlloc;

begin

My_Alloc;

for I in 1 .. 5 loop

for J in I .. 5 loop

My_Alloc;

end loop;

My_Dealloc;

end loop;

end;
 	
The program needs to be compiled with debugging option and linked with gmem library:

$ gnatmake -g test_gm -largs -lgmem

Then we execute the program as usual:
$ test_gm

Then gnatmem is invoked simply with
$ gnatmem test_gm

which produces the following output (result may vary on different platforms):
Global information

Total number of allocations : 18

Total number of deallocations : 5

Final Water Mark (non freed mem) : 53.00 Kilobytes

High Water Mark : 56.90 Kilobytes

Allocation Root # 1

Number of non freed allocations : 11

Final Water Mark (non freed mem) : 42.97 Kilobytes

High Water Mark : 46.88 Kilobytes

Backtrace :

test_gm.adb:11 test_gm.my_alloc

Allocation Root # 2

Number of non freed allocations : 1

Final Water Mark (non freed mem) : 10.02 Kilobytes

High Water Mark : 10.02 Kilobytes

Backtrace :

s-secsta.adb:81 system.secondary_stack.ss_init

Allocation Root # 3

Number of non freed allocations : 1

Final Water Mark (non freed mem) : 12 Bytes

High Water Mark : 12 Bytes

Chapter 22: Memory Management Issues 249

Backtrace :

s-secsta.adb:181 system.secondary_stack.ss_init

Note that the GNAT run time contains itself a certain number of allocations that have no
corresponding deallocation, as shown here for root #2 and root #3. This is a normal behavior
when the number of non-freed allocations is one, it allocates dynamic data structures that the run
time needs for the complete lifetime of the program. Note also that there is only one allocation
root in the user program with a single line back trace: test gm.adb:11 test gm.my alloc, whereas
a careful analysis of the program shows that ’My Alloc’ is called at 2 different points in the source
(line 21 and line 24). If those two allocation roots need to be distinguished, the backtrace depth
parameter can be used:

$ gnatmem 3 test_gm

which will give the following output:
Global information

Total number of allocations : 18

Total number of deallocations : 5

Final Water Mark (non freed mem) : 53.00 Kilobytes

High Water Mark : 56.90 Kilobytes

Allocation Root # 1

Number of non freed allocations : 10

Final Water Mark (non freed mem) : 39.06 Kilobytes

High Water Mark : 42.97 Kilobytes

Backtrace :

test_gm.adb:11 test_gm.my_alloc

test_gm.adb:24 test_gm

b_test_gm.c:52 main

Allocation Root # 2

Number of non freed allocations : 1

Final Water Mark (non freed mem) : 10.02 Kilobytes

High Water Mark : 10.02 Kilobytes

Backtrace :

s-secsta.adb:81 system.secondary_stack.ss_init

s-secsta.adb:283 <system__secondary_stack___elabb>

b_test_gm.c:33 adainit

Allocation Root # 3

Number of non freed allocations : 1

Final Water Mark (non freed mem) : 3.91 Kilobytes

High Water Mark : 3.91 Kilobytes

Backtrace :

test_gm.adb:11 test_gm.my_alloc

test_gm.adb:21 test_gm

b_test_gm.c:52 main

Allocation Root # 4

Number of non freed allocations : 1

Final Water Mark (non freed mem) : 12 Bytes

High Water Mark : 12 Bytes

Backtrace :

s-secsta.adb:181 system.secondary_stack.ss_init

s-secsta.adb:283 <system__secondary_stack___elabb>

b_test_gm.c:33 adainit

The allocation root #1 of the first example has been split in 2 roots #1 and #3 thanks to the
more precise associated backtrace.

Chapter 23: Stack Related Facilities 251

23 Stack Related Facilities

This chapter describes some useful tools associated with stack checking and analysis. In partic-
ular, it deals with dynamic and static stack usage measurements.

23.1 Stack Overflow Checking

For most operating systems, gcc does not perform stack overflow checking by default. This
means that if the main environment task or some other task exceeds the available stack space,
then unpredictable behavior will occur. Most native systems offer some level of protection by
adding a guard page at the end of each task stack. This mechanism is usually not enough for
dealing properly with stack overflow situations because a large local variable could “jump” above
the guard page. Furthermore, when the guard page is hit, there may not be any space left on
the stack for executing the exception propagation code. Enabling stack checking avoids such
situations.

To activate stack checking, compile all units with the gcc option ‘-fstack-check’. For
example:

gcc -c -fstack-check package1.adb

Units compiled with this option will generate extra instructions to check that any use of the
stack (for procedure calls or for declaring local variables in declare blocks) does not exceed the
available stack space. If the space is exceeded, then a Storage_Error exception is raised.

For declared tasks, the stack size is controlled by the size given in an applicable Storage_Size
pragma or by the value specified at bind time with ‘-d’ (see Section 4.2 [Switches for gnatbind],
page 82) or is set to the default size as defined in the GNAT runtime otherwise.

For the environment task, the stack size depends on system defaults and is unknown to the
compiler. Stack checking may still work correctly if a fixed size stack is allocated, but this
cannot be guaranteed. To ensure that a clean exception is signalled for stack overflow, set the
environment variable GNAT_STACK_LIMIT to indicate the maximum stack area that can be used,
as in:

SET GNAT_STACK_LIMIT 1600

The limit is given in kilobytes, so the above declaration would set the stack limit of the envi-
ronment task to 1.6 megabytes. Note that the only purpose of this usage is to limit the amount
of stack used by the environment task. If it is necessary to increase the amount of stack for
the environment task, then this is an operating systems issue, and must be addressed with the
appropriate operating systems commands.

23.2 Static Stack Usage Analysis

A unit compiled with ‘-fstack-usage’ will generate an extra file that specifies the maximum
amount of stack used, on a per-function basis. The file has the same basename as the target
object file with a ‘.su’ extension. Each line of this file is made up of three fields:

• The name of the function.

• A number of bytes.

• One or more qualifiers: static, dynamic, bounded.

The second field corresponds to the size of the known part of the function frame.

The qualifier static means that the function frame size is purely static. It usually means
that all local variables have a static size. In this case, the second field is a reliable measure of
the function stack utilization.

The qualifier dynamic means that the function frame size is not static. It happens mainly
when some local variables have a dynamic size. When this qualifier appears alone, the second

252 GNAT User’s Guide

field is not a reliable measure of the function stack analysis. When it is qualified with bounded,
it means that the second field is a reliable maximum of the function stack utilization.

A unit compiled with ‘-Wstack-usage’ will issue a warning for each subprogram whose stack
usage might be larger than the specified amount of bytes. The wording is in keeping with the
qualifier documented above.

23.3 Dynamic Stack Usage Analysis

It is possible to measure the maximum amount of stack used by a task, by adding a switch to
gnatbind, as:

$ gnatbind -u0 file

With this option, at each task termination, its stack usage is output on ‘stderr’. It is not
always convenient to output the stack usage when the program is still running. Hence, it is
possible to delay this output until program termination. for a given number of tasks specified
as the argument of the ‘-u’ option. For instance:

$ gnatbind -u100 file

will buffer the stack usage information of the first 100 tasks to terminate and output this info
at program termination. Results are displayed in four columns:

Index | Task Name | Stack Size | Stack Usage

where:

Index is a number associated with each task.

Task Name
is the name of the task analyzed.

Stack Size is the maximum size for the stack.

Stack Usage
is the measure done by the stack analyzer. In order to prevent overflow, the stack is
not entirely analyzed, and it’s not possible to know exactly how much has actually
been used.

The environment task stack, e.g., the stack that contains the main unit, is only processed when
the environment variable GNAT STACK LIMIT is set.

The package GNAT.Task_Stack_Usage provides facilities to get stack usage reports at run-time.
See its body for the details.

Chapter 24: Verifying Properties Using gnatcheck 253

24 Verifying Properties Using gnatcheck

The gnatcheck tool is an ASIS-based utility that checks properties of Ada source files according
to a given set of semantic rules.

In order to check compliance with a given rule, gnatcheck has to semantically analyze the
Ada sources. Therefore, checks can only be performed on legal Ada units. Moreover, when a unit
depends semantically upon units located outside the current directory, the source search path
has to be provided when calling gnatcheck, either through a specified project file or through
gnatcheck switches.

For full details, refer to GNATcheck Reference Manual document.

Chapter 25: Creating Sample Bodies Using gnatstub 255

25 Creating Sample Bodies Using gnatstub

gnatstub creates body stubs, that is, empty but compilable bodies for library unit declarations.

Note: to invoke gnatstub with a project file, use the gnat driver (see Section 12.2 [The
GNAT Driver and Project Files], page 179).

To create a body stub, gnatstub has to compile the library unit declaration. Therefore,
bodies can be created only for legal library units. Moreover, if a library unit depends semantically
upon units located outside the current directory, you have to provide the source search path
when calling gnatstub, see the description of gnatstub switches below.

By default, all the program unit body stubs generated by gnatstub raise the predefined
Program_Error exception, which will catch accidental calls of generated stubs. This behavior
can be changed with option ‘--no-exception’ (see below).

25.1 Running gnatstub

gnatstub has a command-line interface of the form:
$ gnatstub [switches] filename [directory] [-cargs gcc_switches]

where

filename is the name of the source file that contains a library unit declaration for which
a body must be created. The file name may contain the path information. The
file name does not have to follow the GNAT file name conventions. If the name
does not follow GNAT file naming conventions, the name of the body file must be
provided explicitly as the value of the ‘-obody-name ’ option. If the file name follows
the GNAT file naming conventions and the name of the body file is not provided,
gnatstub creates the name of the body file from the argument file name by replacing
the ‘.ads’ suffix with the ‘.adb’ suffix.

directory indicates the directory in which the body stub is to be placed (the default is the
current directory)

‘gcc_switches ’ is a list of switches for
gcc. They will be passed on to all compiler invocations made by gnatstub to
generate the ASIS trees. Here you can provide ‘-I’ switches to form the source
search path, use the ‘-gnatec’ switch to set the configuration file, use the ‘-gnat05’
switch if sources should be compiled in Ada 2005 mode etc.

switches is an optional sequence of switches as described in the next section

25.2 Switches for gnatstub

‘-f’ If the destination directory already contains a file with the name of the body file for
the argument spec file, replace it with the generated body stub.

‘-hs’ Put the comment header (i.e., all the comments preceding the compilation unit)
from the source of the library unit declaration into the body stub.

‘-hg’ Put a sample comment header into the body stub.

‘--header-file=filename ’
Use the content of the file as the comment header for a generated body stub.

‘-IDIR’
‘-I-’ These switches have the same meaning as in calls to gcc. They define the source

search path in the call to gcc issued by gnatstub to compile an argument source
file.

256 GNAT User’s Guide

‘-gnatecPATH ’
This switch has the same meaning as in calls to gcc. It defines the additional
configuration file to be passed to the call to gcc issued by gnatstub to compile an
argument source file.

‘-gnatyMn ’
(n is a non-negative integer). Set the maximum line length in the body stub to n; the
default is 79. The maximum value that can be specified is 32767. Note that in the
special case of configuration pragma files, the maximum is always 32767 regardless
of whether or not this switch appears.

‘-gnatyn ’ (n is a non-negative integer from 1 to 9). Set the indentation level in the generated
body sample to n. The default indentation is 3.

‘-gnatyo’ Order local bodies alphabetically. (By default local bodies are ordered in the same
way as the corresponding local specs in the argument spec file.)

‘-in ’ Same as ‘-gnatyn ’

‘-k’ Do not remove the tree file (i.e., the snapshot of the compiler internal structures
used by gnatstub) after creating the body stub.

‘-ln ’ Same as ‘-gnatyMn ’

‘--no-exception’
Avoid raising PROGRAM ERROR in the generated bodies of program unit stubs.
This is not always possible for function stubs.

‘--no-local-header’
Do not place local comment header with unit name before body stub for a unit.

‘-o body-name ’
Body file name. This should be set if the argument file name does not follow the
GNAT file naming conventions. If this switch is omitted the default name for the
body will be obtained from the argument file name according to the GNAT file
naming conventions.

‘-q’ Quiet mode: do not generate a confirmation when a body is successfully created,
and do not generate a message when a body is not required for an argument unit.

‘-r’ Reuse the tree file (if it exists) instead of creating it. Instead of creating the tree
file for the library unit declaration, gnatstub tries to find it in the current directory
and use it for creating a body. If the tree file is not found, no body is created. This
option also implies ‘-k’, whether or not the latter is set explicitly.

‘-t’ Overwrite the existing tree file. If the current directory already contains the file
which, according to the GNAT file naming rules should be considered as a tree file
for the argument source file, gnatstub will refuse to create the tree file needed to
create a sample body unless this option is set.

‘-v’ Verbose mode: generate version information.

Chapter 26: Creating Unit Tests Using gnattest 257

26 Creating Unit Tests Using gnattest

gnattest is an ASIS-based utility that creates unit-test stubs as well as a test driver infras-
tructure (harness). gnattest creates a stub for each visible subprogram in the packages under
consideration when they do not exist already.

In order to process source files from a project, gnattest has to semantically analyze the
sources. Therefore, test stubs can only be generated for legal Ada units. If a unit is dependent
on other units, those units should be among the source files of the project or of other projects
imported by this one.

Generated stubs and harnesses are based on the AUnit testing framework. AUnit is an Ada
adaptation of the xxxUnit testing frameworks, similar to JUnit for Java or CppUnit for C++.
While it is advised that gnattest users read the AUnit manual, deep knowledge of AUnit is not
necessary for using gnattest. For correct operation of gnattest, AUnit should be installed and
aunit.gpr must be on the project path. This happens automatically when Aunit is installed at
its default location.

26.1 Running gnattest

gnattest has a command-line interface of the form
$ gnattest -Pprojname [--harness-dir=dirname] [switches] [filename] [-cargs gcc_switches]

where

-Pprojname
specifies the project defining the location of source files. When no file names are
provided on the command line, all sources in the project are used as input. This
switch is required.

–harness-dir=dirname
specifies the directory that will hold the harness packages and project file for the
test driver. The harness directory should be specified either by that switch or by
the corresponding attribute in the project file.

filename is the name of the source file containing the library unit package declaration for
which a test package will be created. The file name may be given with a path.

‘gcc_switches ’
is a list of switches for gcc. These switches will be passed on to all compiler invo-
cations made by gnatstub to generate a set of ASIS trees. Here you can provide
‘-I’ switches to form the source search path, use the ‘-gnatec’ switch to set the
configuration file, use the ‘-gnat05’ switch if sources should be compiled in Ada
2005 mode, etc.

switches is an optional sequence of switches as described in the next section.

gnattest results can be found in two different places.

• automatic harness: the harness code, which is located either in the harness-dir as specified
on the command line or in the project file. All of this code is generated completely auto-
matically and can be destroyed and regenerated at will. It is not recommended to modify
this code manually, since it could easily be overridden by mistake. The entry point in the
harness code is the project file named test_driver.gpr. Tests can be compiled and run
using a command such as:

gnatmake -P<harness-dir>/test_driver

test_runner

Note that you might need to specify the necessary values of scenario variables when you are
not using the AUnit defaults.

258 GNAT User’s Guide

• actual unit test stubs: a test stub for each visible subprogram is created in a separate file,
if it doesn’t exist already. By default, those separate test files are located in a "tests"
directory that is created in the directory containing the source file itself. If it is not ap-
propriate to create the tests in subdirectories of the source, option ‘--separate-root’
can be used. For example, if a source file my unit.ads in directory src contains a visible
subprogram Proc, then the corresponding unit test will be found in file src/tests/my unit-
tests-proc <code>.adb. <code> is a signature encoding used to differentiate test names in
case of overloading.

Note that if the project already has both my unit.ads and my unit-tests.ads, this will cause
a name conflict with the generated test package.

26.2 Switches for gnattest

‘--harness-only’
When this option is given, gnattest creates a harness for all sources, treating them
as test packages.

‘--additional-tests=projname ’
Sources described in projname are considered potential additional manual tests to
be added to the test suite.

‘-r’ Recursively consider all sources from all projects.

‘-Xname=value ’
Indicate that external variable name has the value value.

‘-q’ Suppresses noncritical output messages.

‘-v’ Verbose mode: generates version information.

‘--liskov’
Enables Liskov verification: run all tests from all parents in order to check substi-
tutability.

‘--stub-default=val ’
Specifies the default behavior of generated stubs. val can be either "fail" or "pass",
"fail" being the default.

‘--separate-root=dirname ’
The directory hierarchy of tested sources is recreated in the dirname directory, and
test packages are placed in corresponding directories.

‘--subdir=dirname ’
Test packages are placed in subdirectories. This is the default output mode since it
does not require any additional input from the user. Subdirectories named "tests"
will be created by default.

‘--separate_root’ and ‘--subdir’ switches are mutually exclusive.

26.3 Project Attributes for gnattest

Most of the command-line options can also be passed to the tool by adding special attributes
to the project file. Those attributes should be put in package gnattest. Here is the list of
attributes:

• Separate Stub Root is used to select the same output mode as with the –separate-root
option. This attribute cannot be used together with Stub Subdir.

• Stub Subdir is used to select the same output mode as with the –subdir option. This
attribute cannot be used together with Separate Stub Root.

Chapter 26: Creating Unit Tests Using gnattest 259

• Harness Dir is used to specify the directory in which to place harness packages and project
file for the test driver, otherwise specified by –harness-dir.

• Additional Tests is used to specify the project file, otherwise given by –additional-tests
switch.

• Stubs Default is used to specify the default behaviour of test stubs, otherwise specified by
–stub-default option. The value of this attribute should be either "pass" or "fail".

Each of those attributes can be overridden from the command line if needed. Other gnattest
switches can also be passed via the project file as an attribute list called GNATtest Switches.

26.4 Simple Example

Let’s take a very simple example using the first gnattest example located in:

<install_prefix>/share/examples/gnattest/simple

This project contains a simple package containing one subprogram. By running gnattest:

$ gnattest --harness-dir=driver -Psimple.gpr

a test driver is created in directory "driver". It can be compiled and run:

$ cd driver

$ gprbuild -Ptest_driver

$ test_runner

One failed test with diagnosis "test not implemented" is reported. Since no special output
option was specified, the test package Simple.Tests is located in:

<install_prefix>/share/examples/gnattest/simple/src/tests

For each package containing visible subprograms, a child test package is generated. It contains
one test routine per tested subprogram. Each declaration of a test subprogram has a comment
specifying which tested subprogram it corresponds to. All of the test routines have separate
bodies. The test routine located at simple-tests-test inc 5eaee3.adb contains a single statement:
a call to procedure Assert. It has two arguments: the Boolean expression we want to check and
the diagnosis message to display if the condition is false.

That is where actual testing code should be written after a proper setup. An actual check
can be performed by replacing the Assert call with:

Assert (Inc (1) = 2, "wrong incrementation");

After recompiling and running the test driver, one successfully passed test is reported.

26.5 Setting Up and Tearing Down the Testing Environment

Besides test routines themselves, each test package has an inner package Env Mgmt that
has two procedures: User Set Up and User Tear Down. User Set Up is called before each
test routine of the package and User Tear Down is called after each test routine. Those two
procedures can be used to perform necessary initialization and finalization, memory allocation,
etc.

26.6 Regenerating Tests

Bodies of test routines and env mgmt packages are never overridden after they have been
created once. As long as the name of the subprogram, full expanded Ada names, and the order
of its parameters is the same, the old test routine will fit in its place and no test stub will be
generated for the subprogram.

This can be demonstrated with the previous example. By uncommenting declaration and
body of function Dec in simple.ads and simple.adb, running gnattest on the project, and then
running the test driver:

260 GNAT User’s Guide

gnattest --harness-dir=driver -Psimple.gpr

cd driver

gprbuild -Ptest_driver

test_runner

the old test is not replaced with a stub, nor is it lost, but a new test stub is created for
function Dec.

The only way of regenerating tests stubs is to remove the previously created tests.

26.7 Default Test Behavior

The generated test driver can treat unimplemented tests in two ways: either count them all
as failed (this is useful to see which tests are still left to implement) or as passed (to sort out
unimplemented ones from those actually failing).

The test driver accepts a switch to specify this behavior: –stub-default=val, where val is
either "pass" or "fail" (exactly as for gnattest).

The default behavior of the test driver is set with the same switch as passed to gnattest when
generating the test driver.

Passing it to the driver generated on the first example:

test_runner --stub-default=pass

makes both tests pass, even the unimplemented one.

26.8 Testing Primitive Operations of Tagged Types

Creation of test stubs for primitive operations of tagged types entails a number of features.
Test routines for all primitives of a given tagged type are placed in a separate child package
named according to the tagged type. For example, if you have tagged type T in package P, all
tests for primitives of T will be in P.T Tests.

Consider running gnattest on the second example (note: actual tests for this example already
exist, so there’s no need to worry if the tool reports that no new stubs were generated):

cd <install_prefix>/share/examples/gnattest/tagged_rec

gnattest --harness-dir=driver -Ptagged_rec.gpr

Taking a closer look at the test type declared in the test package Speed1.Controller Tests is
necessary. It is declared in:

<install_prefix>/share/examples/gnattest/tagged_rec/src/tests

Test types are direct or indirect descendants of AUnit.Test Fixtures.Test Fixture type. In
the case of nonprimitive tested subprograms, the user doesn’t need to be concerned with them.
However, when generating test packages for primitive operations, there are some things the user
needs to know.

Type Test Controller has components that allow assignment of various derivations of type
Controller. And if you look at the specification of package Speed2.Auto Controller, you will
see that Test Auto Controller actually derives from Test Controller rather than AUnit type
Test Fixture. Thus, test types mirror the hierarchy of tested types.

The User Set Up procedure of Env Mgmt package corresponding to a test package of prim-
itive operations of type T assigns to Fixture a reference to an object of that exact type T.
Notice, however, that if the tagged type has discriminants, the User Set Up only has a com-
mented template for setting up the fixture, since filling the discriminant with actual value is up
to the user.

The knowledge of the structure of test types allows additional testing without additional
effort. Those possibilities are described below.

Chapter 26: Creating Unit Tests Using gnattest 261

26.9 Testing Inheritance

Since the test type hierarchy mimics the hierarchy of tested types, the inheritance of tests
takes place. An example of such inheritance can be seen by running the test driver generated for
the second example. As previously mentioned, actual tests are already written for this example.

cd driver

gprbuild -Ptest_driver

test_runner

There are 6 passed tests while there are only 5 testable subprograms. The test routine for
function Speed has been inherited and run against objects of the derived type.

26.10 Tagged Types Substitutability Testing

Tagged Types Substitutability Testing is a way of verifying the Liskov substitution principle
(LSP) by testing. LSP is a principle stating that if S is a subtype of T (in Ada, S is a derived
type of tagged type T), then objects of type T may be replaced with objects of type S (that is,
objects of type S may be substituted for objects of type T), without altering any of the desirable
properties of the program. When the properties of the program are expressed in the form of
subprogram preconditions and postconditions (let’s call them pre and post), LSP is formulated
as relations between the pre and post of primitive operations and the pre and post of their
derived operations. The pre of a derived operation should not be stronger than the original
pre, and the post of the derived operation should not be weaker than the original post. Those
relations ensure that verifying if a dispatching call is safe can be done just by using the pre and
post of the root operation.

Verifying LSP by testing consists of running all the unit tests associated with the primitives
of a given tagged type with objects of its derived types.

In the example used in the previous section, there was clearly a violation of LSP. The over-
riding primitive Adjust Speed in package Speed2 removes the functionality of the overridden
primitive and thus doesn’t respect LSP. Gnattest has a special option to run overridden parent
tests against objects of the type which have overriding primitives:

gnattest --harness-dir=driver --liskov -Ptagged_rec.gpr

cd driver

gprbuild -Ptest_driver

test_runner

While all the tests pass by themselves, the parent test for Adjust Speed fails against objects
of the derived type.

26.11 Testing with Contracts

gnattest supports pragmas Precondition, Postcondition, and Test Case. Test routines are
generated, one per each Test Case associated with a tested subprogram. Those test routines
have special wrappers for tested functions that have composition of pre- and postcondition of
the subprogram with "requires" and "ensures" of the Test Case (depending on the mode, pre
and post either count for Nominal mode or do not count for Robustness mode).

The third example demonstrates how this works:

cd <install_prefix>/share/examples/gnattest/contracts

gnattest --harness-dir=driver -Pcontracts.gpr

Putting actual checks within the range of the contract does not cause any error reports. For
example, for the test routine which corresponds to test case 1:

Assert (Sqrt (9.0) = 3.0, "wrong sqrt");

and for the test routine corresponding to test case 2:

262 GNAT User’s Guide

Assert (Sqrt (-5.0) = -1.0, "wrong error indication");

are acceptable:
cd driver

gprbuild -Ptest_driver

test_runner

However, by changing 9.0 to 25.0 and 3.0 to 5.0, for example, you can get a precondition
violation for test case one. Also, by using any otherwise correct but positive pair of numbers in
the second test routine, you can also get a precondition violation. Postconditions are checked
and reported the same way.

26.12 Additional Tests

gnattest can add user-written tests to the main suite of the test driver. gnattest traverses the
given packages and searches for test routines. All procedures with a single in out parameter of a
type which is derived from AUnit.Test Fixtures.Test Fixture and that are declared in package
specifications are added to the suites and are then executed by the test driver. (Set Up and
Tear Down are filtered out.)

An example illustrates two ways of creating test harnesses for user-written tests. Directory
additional tests contains an AUnit-based test driver written by hand.

<install_prefix>/share/examples/gnattest/additional_tests/

To create a test driver for already-written tests, use the –harness-only option:
gnattest -Padditional/harness/harness.gpr --harness-dir=harness_only \

--harness-only

gnatmake -Pharness_only/test_driver.gpr

harness_only/test_runner

Additional tests can also be executed together with generated tests:
gnattest -Psimple.gpr --additional-tests=additional/harness/harness.gpr \

--harness-dir=mixing

gnatmake -Pmixing/test_driver.gpr

mixing/test_runner

26.13 Current Limitations

The tool currently does not support following features:

• generic tests for generic packages and package instantiations

• tests for protected subprograms and entries

• aspects Precondition, Postcondition, and Test Case

• generating test packages for code that is not conformant with ada 2005

Chapter 27: Generating Ada Bindings for C and C++ headers 263

27 Generating Ada Bindings for C and C++ headers

GNAT now comes with a binding generator for C and C++ headers which is intended to do 95%
of the tedious work of generating Ada specs from C or C++ header files.

Note that this capability is not intended to generate 100% correct Ada specs, and will is some
cases require manual adjustments, although it can often be used out of the box in practice.

Some of the known limitations include:

• only very simple character constant macros are translated into Ada constants. Function
macros (macros with arguments) are partially translated as comments, to be completed
manually if needed.

• some extensions (e.g. vector types) are not supported

• pointers to pointers or complex structures are mapped to System.Address

• identifiers with identical name (except casing) will generate compilation errors (e.g. shm_

get vs SHM_GET).

The code generated is using the Ada 2005 syntax, which makes it easier to interface with
other languages than previous versions of Ada.

27.1 Running the binding generator

The binding generator is part of the gcc compiler and can be invoked via the ‘-fdump-ada-spec’
switch, which will generate Ada spec files for the header files specified on the command line,
and all header files needed by these files transitively. For example:

$ g++ -c -fdump-ada-spec -C /usr/include/time.h

$ gcc -c -gnat05 *.ads

will generate, under GNU/Linux, the following files: ‘time_h.ads’, ‘bits_time_h.ads’,
‘stddef_h.ads’, ‘bits_types_h.ads’ which correspond to the files ‘/usr/include/time.h’,
‘/usr/include/bits/time.h’, etc. . . , and will then compile in Ada 2005 mode these Ada specs.

The -C switch tells gcc to extract comments from headers, and will attempt to generate
corresponding Ada comments.

If you want to generate a single Ada file and not the transitive closure, you can use instead
the ‘-fdump-ada-spec-slim’ switch.

Note that we recommend when possible to use the g++ driver to generate bindings, even for
most C headers, since this will in general generate better Ada specs. For generating bindings
for C++ headers, it is mandatory to use the g++ command, or gcc -x c++ which is equivalent
in this case. If g++ cannot work on your C headers because of incompatibilities between C and
C++, then you can fallback to gcc instead.

For an example of better bindings generated from the C++ front-end, the name of the pa-
rameters (when available) are actually ignored by the C front-end. Consider the following C
header:

extern void foo (int variable);

with the C front-end, variable is ignored, and the above is handled as:
extern void foo (int);

generating a generic:
procedure foo (param1 : int);

with the C++ front-end, the name is available, and we generate:
procedure foo (variable : int);

In some cases, the generated bindings will be more complete or more meaningful when defining
some macros, which you can do via the ‘-D’ switch. This is for example the case with ‘Xlib.h’
under GNU/Linux:

264 GNAT User’s Guide

g++ -c -fdump-ada-spec -DXLIB_ILLEGAL_ACCESS -C /usr/include/X11/Xlib.h

The above will generate more complete bindings than a straight call without the
‘-DXLIB_ILLEGAL_ACCESS’ switch.

In other cases, it is not possible to parse a header file in a stand-alone manner, because other
include files need to be included first. In this case, the solution is to create a small header file
including the needed #include and possible #define directives. For example, to generate Ada
bindings for ‘readline/readline.h’, you need to first include ‘stdio.h’, so you can create a
file with the following two lines in e.g. ‘readline1.h’:

#include <stdio.h>

#include <readline/readline.h>

and then generate Ada bindings from this file:

$ g++ -c -fdump-ada-spec readline1.h

27.2 Generating bindings for C++ headers

Generating bindings for C++ headers is done using the same options, always with the g++

compiler.

In this mode, C++ classes will be mapped to Ada tagged types, constructors will be mapped
using the CPP_Constructor pragma, and when possible, multiple inheritance of abstract classes
will be mapped to Ada interfaces (See Section “Interfacing to C++” in GNAT Reference Manual,
for additional information on interfacing to C++).

For example, given the following C++ header file:� �
class Carnivore {

public:

virtual int Number_Of_Teeth () = 0;

};

class Domestic {

public:

virtual void Set_Owner (char* Name) = 0;

};

class Animal {

public:

int Age_Count;

virtual void Set_Age (int New_Age);

};

class Dog : Animal, Carnivore, Domestic {

public:

int Tooth_Count;

char *Owner;

virtual int Number_Of_Teeth ();

virtual void Set_Owner (char* Name);

Dog();

};
 	
The corresponding Ada code is generated:

Chapter 27: Generating Ada Bindings for C and C++ headers 265� �
package Class_Carnivore is

type Carnivore is limited interface;

pragma Import (CPP, Carnivore);

function Number_Of_Teeth (this : access Carnivore) return int is abstract;

end;

use Class_Carnivore;

package Class_Domestic is

type Domestic is limited interface;

pragma Import (CPP, Domestic);

procedure Set_Owner

(this : access Domestic;

Name : Interfaces.C.Strings.chars_ptr) is abstract;

end;

use Class_Domestic;

package Class_Animal is

type Animal is tagged limited record

Age_Count : aliased int;

end record;

pragma Import (CPP, Animal);

procedure Set_Age (this : access Animal; New_Age : int);

pragma Import (CPP, Set_Age, "_ZN6Animal7Set_AgeEi");

end;

use Class_Animal;

package Class_Dog is

type Dog is new Animal and Carnivore and Domestic with record

Tooth_Count : aliased int;

Owner : Interfaces.C.Strings.chars_ptr;

end record;

pragma Import (CPP, Dog);

function Number_Of_Teeth (this : access Dog) return int;

pragma Import (CPP, Number_Of_Teeth, "_ZN3Dog15Number_Of_TeethEv");

procedure Set_Owner

(this : access Dog; Name : Interfaces.C.Strings.chars_ptr);

pragma Import (CPP, Set_Owner, "_ZN3Dog9Set_OwnerEPc");

function New_Dog return Dog;

pragma CPP_Constructor (New_Dog);

pragma Import (CPP, New_Dog, "_ZN3DogC1Ev");

end;

use Class_Dog;
 	
27.3 Switches

‘-fdump-ada-spec’
Generate Ada spec files for the given header files transitively (including all header
files that these headers depend upon).

‘-fdump-ada-spec-slim’
Generate Ada spec files for the header files specified on the command line only.

‘-C’ Extract comments from headers and generate Ada comments in the Ada spec files.

Chapter 28: Other Utility Programs 267

28 Other Utility Programs

This chapter discusses some other utility programs available in the Ada environment.

28.1 Using Other Utility Programs with GNAT

The object files generated by GNAT are in standard system format and in particular the de-
bugging information uses this format. This means programs generated by GNAT can be used
with existing utilities that depend on these formats.

In general, any utility program that works with C will also often work with Ada programs
generated by GNAT. This includes software utilities such as gprof (a profiling program), gdb
(the FSF debugger), and utilities such as Purify.

28.2 The External Symbol Naming Scheme of GNAT

In order to interpret the output from GNAT, when using tools that are originally intended for
use with other languages, it is useful to understand the conventions used to generate link names
from the Ada entity names.

All link names are in all lowercase letters. With the exception of library procedure names,
the mechanism used is simply to use the full expanded Ada name with dots replaced by double
underscores. For example, suppose we have the following package spec:� �

package QRS is

MN : Integer;

end QRS;
 	
The variable MN has a full expanded Ada name of QRS.MN, so the corresponding link name is
qrs__mn. Of course if a pragma Export is used this may be overridden:� �

package Exports is

Var1 : Integer;

pragma Export (Var1, C, External_Name => "var1_name");

Var2 : Integer;

pragma Export (Var2, C, Link_Name => "var2_link_name");

end Exports;
 	
In this case, the link name for Var1 is whatever link name the C compiler would assign for
the C function var1 name. This typically would be either var1 name or var1 name, depend-
ing on operating system conventions, but other possibilities exist. The link name for Var2 is
var2 link name, and this is not operating system dependent.

One exception occurs for library level procedures. A potential ambiguity arises between the
required name _main for the C main program, and the name we would otherwise assign to an
Ada library level procedure called Main (which might well not be the main program).

To avoid this ambiguity, we attach the prefix _ada_ to such names. So if we have a library
level procedure such as� �

procedure Hello (S : String);
 	
the external name of this procedure will be ada hello.

268 GNAT User’s Guide

28.3 Converting Ada Files to HTML with gnathtml

This Perl script allows Ada source files to be browsed using standard Web browsers. For
installation procedure, see the section See Section 28.4 [Installing gnathtml], page 269.

Ada reserved keywords are highlighted in a bold font and Ada comments in a blue font.
Unless your program was compiled with the gcc ‘-gnatx’ switch to suppress the generation of
cross-referencing information, user defined variables and types will appear in a different color;
you will be able to click on any identifier and go to its declaration.

The command line is as follow:

$ perl gnathtml.pl [switches] ada-files

You can pass it as many Ada files as you want. gnathtml will generate an html file for every
ada file, and a global file called ‘index.htm’. This file is an index of every identifier defined in
the files.

The available switches are the following ones:

‘-83’ Only the Ada 83 subset of keywords will be highlighted.

‘-cc color ’
This option allows you to change the color used for comments. The default value is
green. The color argument can be any name accepted by html.

‘-d’ If the Ada files depend on some other files (for instance through with clauses, the
latter files will also be converted to html. Only the files in the user project will be
converted to html, not the files in the run-time library itself.

‘-D’ This command is the same as ‘-d’ above, but gnathtml will also look for files in the
run-time library, and generate html files for them.

‘-ext extension ’
This option allows you to change the extension of the generated HTML files. If you
do not specify an extension, it will default to ‘htm’.

‘-f’ By default, gnathtml will generate html links only for global entities (’with’ed units,
global variables and types,. . .). If you specify ‘-f’ on the command line, then links
will be generated for local entities too.

‘-l number ’
If this switch is provided and number is not 0, then gnathtml will number the html
files every number line.

‘-I dir ’ Specify a directory to search for library files (‘.ALI’ files) and source files. You can
provide several -I switches on the command line, and the directories will be parsed
in the order of the command line.

‘-o dir ’ Specify the output directory for html files. By default, gnathtml will saved the
generated html files in a subdirectory named ‘html/’.

‘-p file ’ If you are using Emacs and the most recent Emacs Ada mode, which provides
a full Integrated Development Environment for compiling, checking, running and
debugging applications, you may use ‘.gpr’ files to give the directories where Emacs
can find sources and object files.

Using this switch, you can tell gnathtml to use these files. This allows you to get
an html version of your application, even if it is spread over multiple directories.

‘-sc color ’
This switch allows you to change the color used for symbol definitions. The default
value is red. The color argument can be any name accepted by html.

Chapter 28: Other Utility Programs 269

‘-t file ’ This switch provides the name of a file. This file contains a list of file names to be
converted, and the effect is exactly as though they had appeared explicitly on the
command line. This is the recommended way to work around the command line
length limit on some systems.

28.4 Installing gnathtml

Perl needs to be installed on your machine to run this script. Perl is freely available for almost
every architecture and Operating System via the Internet.

On Unix systems, you may want to modify the first line of the script gnathtml, to explicitly
tell the Operating system where Perl is. The syntax of this line is:

#!full_path_name_to_perl

Alternatively, you may run the script using the following command line:
$ perl gnathtml.pl [switches] files

Chapter 29: Code Coverage and Profiling 271

29 Code Coverage and Profiling

This chapter describes how to use gcov - coverage testing tool - and gprof - profiler tool - on
your Ada programs.

29.1 Code Coverage of Ada Programs using gcov

gcov is a test coverage program: it analyzes the execution of a given program on selected tests,
to help you determine the portions of the program that are still untested.

gcov is part of the GCC suite, and is described in detail in the GCC User’s Guide. You can
refer to this documentation for a more complete description.

This chapter provides a quick startup guide, and details some Gnat-specific features.

29.1.1 Quick startup guide

In order to perform coverage analysis of a program using gcov, 3 steps are needed:

• Code instrumentation during the compilation process

• Execution of the instrumented program

• Execution of the gcov tool to generate the result.

The code instrumentation needed by gcov is created at the object level: The source code
is not modified in any way, because the instrumentation code is inserted by gcc during the
compilation process. To compile your code with code coverage activated, you need to recompile
your whole project using the switches -fprofile-arcs and -ftest-coverage, and link it using
-fprofile-arcs.

$ gnatmake -P my_project.gpr -f -cargs -fprofile-arcs -ftest-coverage \

-largs -fprofile-arcs

This compilation process will create ‘.gcno’ files together with the usual object files.

Once the program is compiled with coverage instrumentation, you can run it as many times
as needed - on portions of a test suite for example. The first execution will produce ‘.gcda’
files at the same location as the ‘.gcno’ files. The following executions will update those files,
so that a cumulative result of the covered portions of the program is generated.

Finally, you need to call the gcov tool. The different options of gcov are available in the
GCC User’s Guide, section ’Invoking gcov’.

This will create annotated source files with a ‘.gcov’ extension: ‘my_main.adb’ file will be
analysed in ‘my_main.adb.gcov’.

29.1.2 Gnat specifics

Because Ada semantics, portions of the source code may be shared among several object files.
This is the case for example when generics are involved, when inlining is active or when decla-
rations generate initialisation calls. In order to take into account this shared code, you need to
call gcov on all source files of the tested program at once.

The list of source files might exceed the system’s maximum command line length. In order
to bypass this limitation, a new mechanism has been implemented in gcov: you can now list all
your project’s files into a text file, and provide this file to gcov as a parameter, preceded by a @

(e.g. ‘gcov @mysrclist.txt’).

Note that on AIX compiling a static library with -fprofile-arcs is not supported as there
can be unresolved symbols during the final link.

272 GNAT User’s Guide

29.2 Profiling an Ada Program using gprof

This section is not meant to be an exhaustive documentation of gprof. Full documentation for
it can be found in the GNU Profiler User’s Guide documentation that is part of this GNAT
distribution.

Profiling a program helps determine the parts of a program that are executed most often,
and are therefore the most time-consuming.

gprof is the standard GNU profiling tool; it has been enhanced to better handle Ada pro-
grams and multitasking. It is currently supported on the following platforms

• linux x86/x86 64

• solaris sparc/sparc64/x86

• windows x86

In order to profile a program using gprof, 3 steps are needed:

• Code instrumentation, requiring a full recompilation of the project with the proper switches.

• Execution of the program under the analysis conditions, i.e. with the desired input.

• Analysis of the results using the gprof tool.

The following sections detail the different steps, and indicate how to interpret the results:

29.2.1 Compilation for profiling

In order to profile a program the first step is to tell the compiler to generate the necessary
profiling information. The compiler switch to be used is -pg, which must be added to other
compilation switches. This switch needs to be specified both during compilation and link stages,
and can be specified once when using gnatmake:

gnatmake -f -pg -P my_project

Note that only the objects that were compiled with the ‘-pg’ switch will be profiled; if you need
to profile your whole project, use the ‘-f’ gnatmake switch to force full recompilation.

29.2.2 Program execution

Once the program has been compiled for profiling, you can run it as usual.

The only constraint imposed by profiling is that the program must terminate normally. An
interrupted program (via a Ctrl-C, kill, etc.) will not be properly analyzed.

Once the program completes execution, a data file called ‘gmon.out’ is generated in the
directory where the program was launched from. If this file already exists, it will be overwritten.

29.2.3 Running gprof

The gprof tool is called as follow:

gprof my_prog gmon.out

or simpler:

gprof my_prog

The complete form of the gprof command line is the following:

gprof [switches] [executable [data-file]]

gprof supports numerous switch. The order of these switch does not matter. The full list of
options can be found in the GNU Profiler User’s Guide documentation that comes with this
documentation.

The following is the subset of those switches that is most relevant:

Chapter 29: Code Coverage and Profiling 273

‘--demangle[=style]’
‘--no-demangle’

These options control whether symbol names should be demangled when printing
output. The default is to demangle C++ symbols. The --no-demangle option
may be used to turn off demangling. Different compilers have different mangling
styles. The optional demangling style argument can be used to choose an appropriate
demangling style for your compiler, in particular Ada symbols generated by GNAT
can be demangled using --demangle=gnat.

‘-e function_name ’
The ‘-e function ’ option tells gprof not to print information about the function
function name (and its children. . .) in the call graph. The function will still be
listed as a child of any functions that call it, but its index number will be shown as
‘[not printed]’. More than one ‘-e’ option may be given; only one function name
may be indicated with each ‘-e’ option.

‘-E function_name ’
The -E function option works like the -e option, but execution time spent in the
function (and children who were not called from anywhere else), will not be used to
compute the percentages-of-time for the call graph. More than one ‘-E’ option may
be given; only one function name may be indicated with each ‘-E’ option.

‘-f function_name ’
The ‘-f function ’ option causes gprof to limit the call graph to the function
function name and its children (and their children. . .). More than one ‘-f’ option
may be given; only one function name may be indicated with each ‘-f’ option.

‘-F function_name ’
The ‘-F function ’ option works like the -f option, but only time spent in the
function and its children (and their children. . .) will be used to determine total-
time and percentages-of-time for the call graph. More than one ‘-F’ option may be
given; only one function name may be indicated with each ‘-F’ option. The ‘-F’
option overrides the ‘-E’ option.

29.2.4 Interpretation of profiling results

The results of the profiling analysis are represented by two arrays: the ’flat profile’ and the
’call graph’. Full documentation of those outputs can be found in the GNU Profiler User’s
Guide.

The flat profile shows the time spent in each function of the program, and how many time it
has been called. This allows you to locate easily the most time-consuming functions.

The call graph shows, for each subprogram, the subprograms that call it, and the subprograms
that it calls. It also provides an estimate of the time spent in each of those callers/called
subprograms.

Chapter 30: Running and Debugging Ada Programs 275

30 Running and Debugging Ada Programs

This chapter discusses how to debug Ada programs.

An incorrect Ada program may be handled in three ways by the GNAT compiler:

1. The illegality may be a violation of the static semantics of Ada. In that case GNAT
diagnoses the constructs in the program that are illegal. It is then a straightforward matter
for the user to modify those parts of the program.

2. The illegality may be a violation of the dynamic semantics of Ada. In that case the program
compiles and executes, but may generate incorrect results, or may terminate abnormally
with some exception.

3. When presented with a program that contains convoluted errors, GNAT itself may terminate
abnormally without providing full diagnostics on the incorrect user program.

30.1 The GNAT Debugger GDB

GDB is a general purpose, platform-independent debugger that can be used to debug mixed-
language programs compiled with gcc, and in particular is capable of debugging Ada programs
compiled with GNAT. The latest versions of GDB are Ada-aware and can handle complex Ada
data structures.

See Section “Debugging with GDB” in Debugging with GDB, for full details on the usage
of GDB, including a section on its usage on programs. This manual should be consulted for full
details. The section that follows is a brief introduction to the philosophy and use of GDB.

When GNAT programs are compiled, the compiler optionally writes debugging information
into the generated object file, including information on line numbers, and on declared types
and variables. This information is separate from the generated code. It makes the object files
considerably larger, but it does not add to the size of the actual executable that will be loaded
into memory, and has no impact on run-time performance. The generation of debug information
is triggered by the use of the -g switch in the gcc or gnatmake command used to carry out the
compilations. It is important to emphasize that the use of these options does not change the
generated code.

The debugging information is written in standard system formats that are used by many
tools, including debuggers and profilers. The format of the information is typically designed to
describe C types and semantics, but GNAT implements a translation scheme which allows full
details about Ada types and variables to be encoded into these standard C formats. Details
of this encoding scheme may be found in the file exp dbug.ads in the GNAT source distribu-
tion. However, the details of this encoding are, in general, of no interest to a user, since GDB

automatically performs the necessary decoding.

When a program is bound and linked, the debugging information is collected from the object
files, and stored in the executable image of the program. Again, this process significantly in-
creases the size of the generated executable file, but it does not increase the size of the executable
program itself. Furthermore, if this program is run in the normal manner, it runs exactly as if
the debug information were not present, and takes no more actual memory.

However, if the program is run under control of GDB, the debugger is activated. The image
of the program is loaded, at which point it is ready to run. If a run command is given, then
the program will run exactly as it would have if GDB were not present. This is a crucial part
of the GDB design philosophy. GDB is entirely non-intrusive until a breakpoint is encountered. If
no breakpoint is ever hit, the program will run exactly as it would if no debugger were present.
When a breakpoint is hit, GDB accesses the debugging information and can respond to user
commands to inspect variables, and more generally to report on the state of execution.

276 GNAT User’s Guide

30.2 Running GDB

This section describes how to initiate the debugger.

The debugger can be launched from a GPS menu or directly from the command line. The
description below covers the latter use. All the commands shown can be used in the GPS debug
console window, but there are usually more GUI-based ways to achieve the same effect.

The command to run GDB is

$ gdb program

where program is the name of the executable file. This activates the debugger and results in
a prompt for debugger commands. The simplest command is simply run, which causes the
program to run exactly as if the debugger were not present. The following section describes
some of the additional commands that can be given to GDB.

30.3 Introduction to GDB Commands

GDB contains a large repertoire of commands. See Section “Debugging with GDB” in Debugging
with GDB, for extensive documentation on the use of these commands, together with examples
of their use. Furthermore, the command help invoked from within GDB activates a simple
help facility which summarizes the available commands and their options. In this section we
summarize a few of the most commonly used commands to give an idea of what GDB is about.
You should create a simple program with debugging information and experiment with the use
of these GDB commands on the program as you read through the following section.

set args arguments

The arguments list above is a list of arguments to be passed to the program on
a subsequent run command, just as though the arguments had been entered on a
normal invocation of the program. The set args command is not needed if the
program does not require arguments.

run The run command causes execution of the program to start from the beginning. If
the program is already running, that is to say if you are currently positioned at a
breakpoint, then a prompt will ask for confirmation that you want to abandon the
current execution and restart.

breakpoint location

The breakpoint command sets a breakpoint, that is to say a point at which ex-
ecution will halt and GDB will await further commands. location is either a line
number within a file, given in the format file:linenumber, or it is the name of
a subprogram. If you request that a breakpoint be set on a subprogram that is
overloaded, a prompt will ask you to specify on which of those subprograms you
want to breakpoint. You can also specify that all of them should be breakpointed.
If the program is run and execution encounters the breakpoint, then the program
stops and GDB signals that the breakpoint was encountered by printing the line of
code before which the program is halted.

catch exception name

This command causes the program execution to stop whenever exception name is
raised. If name is omitted, then the execution is suspended when any exception is
raised.

print expression

This will print the value of the given expression. Most simple Ada expression formats
are properly handled by GDB, so the expression can contain function calls, variables,
operators, and attribute references.

Chapter 30: Running and Debugging Ada Programs 277

continue Continues execution following a breakpoint, until the next breakpoint or the termi-
nation of the program.

step Executes a single line after a breakpoint. If the next statement is a subprogram call,
execution continues into (the first statement of) the called subprogram.

next Executes a single line. If this line is a subprogram call, executes and returns from
the call.

list Lists a few lines around the current source location. In practice, it is usually more
convenient to have a separate edit window open with the relevant source file dis-
played. Successive applications of this command print subsequent lines. The com-
mand can be given an argument which is a line number, in which case it displays a
few lines around the specified one.

backtrace

Displays a backtrace of the call chain. This command is typically used after a
breakpoint has occurred, to examine the sequence of calls that leads to the cur-
rent breakpoint. The display includes one line for each activation record (frame)
corresponding to an active subprogram.

up At a breakpoint, GDB can display the values of variables local to the current frame.
The command up can be used to examine the contents of other active frames, by
moving the focus up the stack, that is to say from callee to caller, one frame at a
time.

down Moves the focus of GDB down from the frame currently being examined to the frame
of its callee (the reverse of the previous command),

frame n Inspect the frame with the given number. The value 0 denotes the frame of the
current breakpoint, that is to say the top of the call stack.

The above list is a very short introduction to the commands that GDB provides. Important addi-
tional capabilities, including conditional breakpoints, the ability to execute command sequences
on a breakpoint, the ability to debug at the machine instruction level and many other features
are described in detail in Section “Debugging with GDB” in Debugging with GDB. Note that
most commands can be abbreviated (for example, c for continue, bt for backtrace).

30.4 Using Ada Expressions

GDB supports a fairly large subset of Ada expression syntax, with some extensions. The philos-
ophy behind the design of this subset is

• That GDB should provide basic literals and access to operations for arithmetic, dereferencing,
field selection, indexing, and subprogram calls, leaving more sophisticated computations to
subprograms written into the program (which therefore may be called from GDB).

• That type safety and strict adherence to Ada language restrictions are not particularly
important to the GDB user.

• That brevity is important to the GDB user.

Thus, for brevity, the debugger acts as if there were implicit with and use clauses in effect for
all user-written packages, thus making it unnecessary to fully qualify most names with their
packages, regardless of context. Where this causes ambiguity, GDB asks the user’s intent.

For details on the supported Ada syntax, see Section “Debugging with GDB” in Debugging
with GDB.

278 GNAT User’s Guide

30.5 Calling User-Defined Subprograms

An important capability of GDB is the ability to call user-defined subprograms while debugging.
This is achieved simply by entering a subprogram call statement in the form:

call subprogram-name (parameters)

The keyword call can be omitted in the normal case where the subprogram-name does not
coincide with any of the predefined GDB commands.

The effect is to invoke the given subprogram, passing it the list of parameters that is supplied.
The parameters can be expressions and can include variables from the program being debugged.
The subprogram must be defined at the library level within your program, and GDB will call
the subprogram within the environment of your program execution (which means that the
subprogram is free to access or even modify variables within your program).

The most important use of this facility is in allowing the inclusion of debugging routines
that are tailored to particular data structures in your program. Such debugging routines can be
written to provide a suitably high-level description of an abstract type, rather than a low-level
dump of its physical layout. After all, the standard GDB print command only knows the physical
layout of your types, not their abstract meaning. Debugging routines can provide information
at the desired semantic level and are thus enormously useful.

For example, when debugging GNAT itself, it is crucial to have access to the contents of the
tree nodes used to represent the program internally. But tree nodes are represented simply by
an integer value (which in turn is an index into a table of nodes). Using the print command on
a tree node would simply print this integer value, which is not very useful. But the PN routine
(defined in file treepr.adb in the GNAT sources) takes a tree node as input, and displays a useful
high level representation of the tree node, which includes the syntactic category of the node, its
position in the source, the integers that denote descendant nodes and parent node, as well as
varied semantic information. To study this example in more detail, you might want to look at
the body of the PN procedure in the stated file.

30.6 Using the Next Command in a Function

When you use the next command in a function, the current source location will advance to the
next statement as usual. A special case arises in the case of a return statement.

Part of the code for a return statement is the “epilog” of the function. This is the code
that returns to the caller. There is only one copy of this epilog code, and it is typically associ-
ated with the last return statement in the function if there is more than one return. In some
implementations, this epilog is associated with the first statement of the function.

The result is that if you use the next command from a return statement that is not the
last return statement of the function you may see a strange apparent jump to the last return
statement or to the start of the function. You should simply ignore this odd jump. The value
returned is always that from the first return statement that was stepped through.

30.7 Stopping when Ada Exceptions are Raised

You can set catchpoints that stop the program execution when your program raises selected
exceptions.

catch exception

Set a catchpoint that stops execution whenever (any task in the) program raises any
exception.

catch exception name

Set a catchpoint that stops execution whenever (any task in the) program raises the
exception name.

Chapter 30: Running and Debugging Ada Programs 279

catch exception unhandled

Set a catchpoint that stops executing whenever (any task in the) program raises an
exception for which there is no handler.

info exceptions

info exceptions regexp

The info exceptions command permits the user to examine all defined exceptions
within Ada programs. With a regular expression, regexp, as argument, prints out
only those exceptions whose name matches regexp.

30.8 Ada Tasks

GDB allows the following task-related commands:

info tasks

This command shows a list of current Ada tasks, as in the following example:

(gdb) info tasks

ID TID P-ID Thread Pri State Name

1 8088000 0 807e000 15 Child Activation Wait main_task

2 80a4000 1 80ae000 15 Accept/Select Wait b

3 809a800 1 80a4800 15 Child Activation Wait a

* 4 80ae800 3 80b8000 15 Running c

In this listing, the asterisk before the first task indicates it to be the currently
running task. The first column lists the task ID that is used to refer to tasks in the
following commands.

break linespec task taskid

break linespec task taskid if ...

These commands are like the break ... thread linespec specifies source lines.

Use the qualifier ‘task taskid ’ with a breakpoint command to specify that you only
want GDB to stop the program when a particular Ada task reaches this breakpoint.
taskid is one of the numeric task identifiers assigned by GDB, shown in the first
column of the ‘info tasks’ display.

If you do not specify ‘task taskid ’ when you set a breakpoint, the breakpoint
applies to all tasks of your program.

You can use the task qualifier on conditional breakpoints as well; in this case, place
‘task taskid ’ before the breakpoint condition (before the if).

task taskno

This command allows to switch to the task referred by taskno. In particular, This
allows to browse the backtrace of the specified task. It is advised to switch back
to the original task before continuing execution otherwise the scheduling of the
program may be perturbed.

For more detailed information on the tasking support, see Section “Debugging with GDB” in
Debugging with GDB.

30.9 Debugging Generic Units

GNAT always uses code expansion for generic instantiation. This means that each time an
instantiation occurs, a complete copy of the original code is made, with appropriate substitutions
of formals by actuals.

It is not possible to refer to the original generic entities in GDB, but it is always possible to
debug a particular instance of a generic, by using the appropriate expanded names. For example,
if we have

280 GNAT User’s Guide� �
procedure g is

generic package k is

procedure kp (v1 : in out integer);

end k;

package body k is

procedure kp (v1 : in out integer) is

begin

v1 := v1 + 1;

end kp;

end k;

package k1 is new k;

package k2 is new k;

var : integer := 1;

begin

k1.kp (var);

k2.kp (var);

k1.kp (var);

k2.kp (var);

end;
 	
Then to break on a call to procedure kp in the k2 instance, simply use the command:

(gdb) break g.k2.kp

When the breakpoint occurs, you can step through the code of the instance in the normal manner
and examine the values of local variables, as for other units.

30.10 Remote Debugging using gdbserver

On platforms where gdbserver is supported, it is possible to use this tool to debug your applica-
tion remotely. This can be useful in situations where the program needs to be run on a target
host that is different from the host used for development, particularly when the target has a
limited amount of resources (either CPU and/or memory).

To do so, start your program using gdbserver on the target machine. gdbserver then auto-
matically suspends the execution of your program at its entry point, waiting for a debugger to
connect to it. The following commands starts an application and tells gdbserver to wait for a
connection with the debugger on localhost port 4444.

$ gdbserver localhost:4444 program

Process program created; pid = 5685

Listening on port 4444

Once gdbserver has started listening, we can tell the debugger to establish a connection with
this gdbserver, and then start the same debugging session as if the program was being debugged
on the same host, directly under the control of GDB.

$ gdb program

(gdb) target remote targethost:4444

Remote debugging using targethost:4444

0x00007f29936d0af0 in ?? () from /lib64/ld-linux-x86-64.so.

(gdb) b foo.adb:3

Breakpoint 1 at 0x401f0c: file foo.adb, line 3.

(gdb) continue

Continuing.

Breakpoint 1, foo () at foo.adb:4

4 end foo;

It is also possible to use gdbserver to attach to an already running program, in which case
the execution of that program is simply suspended until the connection between the debugger
and gdbserver is established.

Chapter 30: Running and Debugging Ada Programs 281

For more information on how to use gdbserver, Section “Using the gdbserver Program” in
Debugging with GDB. GNAT provides support for gdbserver on x86-linux, x86-windows and
x86 64-linux.

30.11 GNAT Abnormal Termination or Failure to Terminate

When presented with programs that contain serious errors in syntax or semantics, GNAT may
on rare occasions experience problems in operation, such as aborting with a segmentation fault
or illegal memory access, raising an internal exception, terminating abnormally, or failing to
terminate at all. In such cases, you can activate various features of GNAT that can help you
pinpoint the construct in your program that is the likely source of the problem.

The following strategies are presented in increasing order of difficulty, corresponding to your
experience in using GNAT and your familiarity with compiler internals.

1. Run gcc with the ‘-gnatf’. This first switch causes all errors on a given line to be reported.
In its absence, only the first error on a line is displayed.

The ‘-gnatdO’ switch causes errors to be displayed as soon as they are encountered, rather
than after compilation is terminated. If GNAT terminates prematurely or goes into an
infinite loop, the last error message displayed may help to pinpoint the culprit.

2. Run gcc with the ‘-v (verbose)’ switch. In this mode, gcc produces ongoing information
about the progress of the compilation and provides the name of each procedure as code is
generated. This switch allows you to find which Ada procedure was being compiled when
it encountered a code generation problem.

3. Run gcc with the ‘-gnatdc’ switch. This is a GNAT specific switch that does for the front-
end what ‘-v’ does for the back end. The system prints the name of each unit, either a
compilation unit or nested unit, as it is being analyzed.

4. Finally, you can start gdb directly on the gnat1 executable. gnat1 is the front-end of
GNAT, and can be run independently (normally it is just called from gcc). You can use
gdb on gnat1 as you would on a C program (but see Section 30.1 [The GNAT Debugger
GDB], page 275 for caveats). The where command is the first line of attack; the variable
lineno (seen by print lineno), used by the second phase of gnat1 and by the gcc backend,
indicates the source line at which the execution stopped, and input_file name indicates
the name of the source file.

30.12 Naming Conventions for GNAT Source Files

In order to examine the workings of the GNAT system, the following brief description of its
organization may be helpful:

• Files with prefix ‘sc’ contain the lexical scanner.

• All files prefixed with ‘par’ are components of the parser. The numbers correspond to
chapters of the Ada Reference Manual. For example, parsing of select statements can be
found in ‘par-ch9.adb’.

• All files prefixed with ‘sem’ perform semantic analysis. The numbers correspond to chap-
ters of the Ada standard. For example, all issues involving context clauses can be found in
‘sem_ch10.adb’. In addition, some features of the language require sufficient special pro-
cessing to justify their own semantic files: sem aggr for aggregates, sem disp for dynamic
dispatching, etc.

• All files prefixed with ‘exp’ perform normalization and expansion of the intermediate repre-
sentation (abstract syntax tree, or AST). these files use the same numbering scheme as the
parser and semantics files. For example, the construction of record initialization procedures
is done in ‘exp_ch3.adb’.

282 GNAT User’s Guide

• The files prefixed with ‘bind’ implement the binder, which verifies the consistency of the
compilation, determines an order of elaboration, and generates the bind file.

• The files ‘atree.ads’ and ‘atree.adb’ detail the low-level data structures used by the
front-end.

• The files ‘sinfo.ads’ and ‘sinfo.adb’ detail the structure of the abstract syntax tree as
produced by the parser.

• The files ‘einfo.ads’ and ‘einfo.adb’ detail the attributes of all entities, computed during
semantic analysis.

• Library management issues are dealt with in files with prefix ‘lib’.

• Ada files with the prefix ‘a-’ are children of Ada, as defined in Annex A.

• Files with prefix ‘i-’ are children of Interfaces, as defined in Annex B.

• Files with prefix ‘s-’ are children of System. This includes both language-defined children
and GNAT run-time routines.

• Files with prefix ‘g-’ are children of GNAT. These are useful general-purpose packages, fully
documented in their specs. All the other ‘.c’ files are modifications of common gcc files.

30.13 Getting Internal Debugging Information

Most compilers have internal debugging switches and modes. GNAT does also, except GNAT
internal debugging switches and modes are not secret. A summary and full description of all
the compiler and binder debug flags are in the file ‘debug.adb’. You must obtain the sources of
the compiler to see the full detailed effects of these flags.

The switches that print the source of the program (reconstructed from the internal tree) are
of general interest for user programs, as are the options to print the full internal tree, and the
entity table (the symbol table information). The reconstructed source provides a readable version
of the program after the front-end has completed analysis and expansion, and is useful when
studying the performance of specific constructs. For example, constraint checks are indicated,
complex aggregates are replaced with loops and assignments, and tasking primitives are replaced
with run-time calls.

30.14 Stack Traceback

Traceback is a mechanism to display the sequence of subprogram calls that leads to a specified
execution point in a program. Often (but not always) the execution point is an instruction at
which an exception has been raised. This mechanism is also known as stack unwinding because
it obtains its information by scanning the run-time stack and recovering the activation records
of all active subprograms. Stack unwinding is one of the most important tools for program
debugging.

The first entry stored in traceback corresponds to the deepest calling level, that is to say the
subprogram currently executing the instruction from which we want to obtain the traceback.

Note that there is no runtime performance penalty when stack traceback is enabled, and no
exception is raised during program execution.

30.14.1 Non-Symbolic Traceback

Note: this feature is not supported on all platforms. See ‘GNAT.Traceback spec in

g-traceb.ads’ for a complete list of supported platforms.

30.14.1.1 Tracebacks From an Unhandled Exception

A runtime non-symbolic traceback is a list of addresses of call instructions. To enable this
feature you must use the ‘-E’ gnatbind’s option. With this option a stack traceback is stored
as part of exception information. You can retrieve this information using the addr2line tool.

Chapter 30: Running and Debugging Ada Programs 283

Here is a simple example:� �
procedure STB is

procedure P1 is

begin

raise Constraint_Error;

end P1;

procedure P2 is

begin

P1;

end P2;

begin

P2;

end STB;
 	
$ gnatmake stb -bargs -E

$ stb

Execution terminated by unhandled exception

Exception name: CONSTRAINT_ERROR

Message: stb.adb:5

Call stack traceback locations:

0x401373 0x40138b 0x40139c 0x401335 0x4011c4 0x4011f1 0x77e892a4

As we see the traceback lists a sequence of addresses for the unhandled exception CONSTRAINT_

ERROR raised in procedure P1. It is easy to guess that this exception come from procedure P1.
To translate these addresses into the source lines where the calls appear, the addr2line tool,
described below, is invaluable. The use of this tool requires the program to be compiled with
debug information.

$ gnatmake -g stb -bargs -E

$ stb

Execution terminated by unhandled exception

Exception name: CONSTRAINT_ERROR

Message: stb.adb:5

Call stack traceback locations:

0x401373 0x40138b 0x40139c 0x401335 0x4011c4 0x4011f1 0x77e892a4

$ addr2line --exe=stb 0x401373 0x40138b 0x40139c 0x401335 0x4011c4

0x4011f1 0x77e892a4

00401373 at d:/stb/stb.adb:5

0040138B at d:/stb/stb.adb:10

0040139C at d:/stb/stb.adb:14

00401335 at d:/stb/b~stb.adb:104

004011C4 at /build/.../crt1.c:200

004011F1 at /build/.../crt1.c:222

77E892A4 in ?? at ??:0

The addr2line tool has several other useful options:

--functions

to get the function name corresponding to any location

--demangle=gnat

to use the gnat decoding mode for the function names. Note that for binutils version
2.9.x the option is simply ‘--demangle’.

$ addr2line --exe=stb --functions --demangle=gnat 0x401373 0x40138b

0x40139c 0x401335 0x4011c4 0x4011f1

284 GNAT User’s Guide

00401373 in stb.p1 at d:/stb/stb.adb:5

0040138B in stb.p2 at d:/stb/stb.adb:10

0040139C in stb at d:/stb/stb.adb:14

00401335 in main at d:/stb/b~stb.adb:104

004011C4 in <__mingw_CRTStartup> at /build/.../crt1.c:200

004011F1 in <mainCRTStartup> at /build/.../crt1.c:222

From this traceback we can see that the exception was raised in ‘stb.adb’ at line 5, which was
reached from a procedure call in ‘stb.adb’ at line 10, and so on. The ‘b~std.adb’ is the binder
file, which contains the call to the main program. See Section 4.1 [Running gnatbind], page 81.
The remaining entries are assorted runtime routines, and the output will vary from platform to
platform.

It is also possible to use GDB with these traceback addresses to debug the program. For
example, we can break at a given code location, as reported in the stack traceback:

$ gdb -nw stb

Furthermore, this feature is not implemented inside Windows DLL. Only

the non-symbolic traceback is reported in this case.

(gdb) break *0x401373

Breakpoint 1 at 0x401373: file stb.adb, line 5.

It is important to note that the stack traceback addresses do not change when debug information
is included. This is particularly useful because it makes it possible to release software without
debug information (to minimize object size), get a field report that includes a stack traceback
whenever an internal bug occurs, and then be able to retrieve the sequence of calls with the
same program compiled with debug information.

30.14.1.2 Tracebacks From Exception Occurrences

Non-symbolic tracebacks are obtained by using the ‘-E’ binder argument. The stack traceback
is attached to the exception information string, and can be retrieved in an exception handler
within the Ada program, by means of the Ada facilities defined in Ada.Exceptions. Here is a
simple example:

with Ada.Text_IO;

with Ada.Exceptions;

procedure STB is

use Ada;

use Ada.Exceptions;

procedure P1 is

K : Positive := 1;

begin

K := K - 1;

exception

when E : others =>

Text_IO.Put_Line (Exception_Information (E));

end P1;

procedure P2 is

begin

P1;

end P2;

begin

P2;

end STB;

This program will output:
$ stb

Chapter 30: Running and Debugging Ada Programs 285

Exception name: CONSTRAINT_ERROR

Message: stb.adb:12

Call stack traceback locations:

0x4015e4 0x401633 0x401644 0x401461 0x4011c4 0x4011f1 0x77e892a4

30.14.1.3 Tracebacks From Anywhere in a Program

It is also possible to retrieve a stack traceback from anywhere in a program. For this you
need to use the GNAT.Traceback API. This package includes a procedure called Call_Chain

that computes a complete stack traceback, as well as useful display procedures described below.
It is not necessary to use the ‘-E gnatbind’ option in this case, because the stack traceback
mechanism is invoked explicitly.

In the following example we compute a traceback at a specific location in the program, and we
display it using GNAT.Debug_Utilities.Image to convert addresses to strings:

with Ada.Text_IO;

with GNAT.Traceback;

with GNAT.Debug_Utilities;

procedure STB is

use Ada;

use GNAT;

use GNAT.Traceback;

procedure P1 is

TB : Tracebacks_Array (1 .. 10);

-- We are asking for a maximum of 10 stack frames.

Len : Natural;

-- Len will receive the actual number of stack frames returned.

begin

Call_Chain (TB, Len);

Text_IO.Put ("In STB.P1 : ");

for K in 1 .. Len loop

Text_IO.Put (Debug_Utilities.Image (TB (K)));

Text_IO.Put (’ ’);

end loop;

Text_IO.New_Line;

end P1;

procedure P2 is

begin

P1;

end P2;

begin

P2;

end STB;

$ gnatmake -g stb

$ stb

In STB.P1 : 16#0040_F1E4# 16#0040_14F2# 16#0040_170B# 16#0040_171C#

16#0040_1461# 16#0040_11C4# 16#0040_11F1# 16#77E8_92A4#

You can then get further information by invoking the addr2line tool as described earlier (note
that the hexadecimal addresses need to be specified in C format, with a leading “0x”).

286 GNAT User’s Guide

30.14.2 Symbolic Traceback

A symbolic traceback is a stack traceback in which procedure names are associated with each
code location.

Note that this feature is not supported on all platforms. See ‘GNAT.Traceback.Symbolic spec

in g-trasym.ads’ for a complete list of currently supported platforms.

Note that the symbolic traceback requires that the program be compiled with debug information.
If it is not compiled with debug information only the non-symbolic information will be valid.

30.14.2.1 Tracebacks From Exception Occurrences
with Ada.Text_IO;

with GNAT.Traceback.Symbolic;

procedure STB is

procedure P1 is

begin

raise Constraint_Error;

end P1;

procedure P2 is

begin

P1;

end P2;

procedure P3 is

begin

P2;

end P3;

begin

P3;

exception

when E : others =>

Ada.Text_IO.Put_Line (GNAT.Traceback.Symbolic.Symbolic_Traceback (E));

end STB;

$ gnatmake -g .\stb -bargs -E -largs -lgnat -laddr2line -lintl

$ stb

0040149F in stb.p1 at stb.adb:8

004014B7 in stb.p2 at stb.adb:13

004014CF in stb.p3 at stb.adb:18

004015DD in ada.stb at stb.adb:22

00401461 in main at b~stb.adb:168

004011C4 in __mingw_CRTStartup at crt1.c:200

004011F1 in mainCRTStartup at crt1.c:222

77E892A4 in ?? at ??:0

In the above example the “.\” syntax in the gnatmake command is currently required by
addr2line for files that are in the current working directory. Moreover, the exact sequence
of linker options may vary from platform to platform. The above ‘-largs’ section is for Win-
dows platforms. By contrast, under Unix there is no need for the ‘-largs’ section. Differences
across platforms are due to details of linker implementation.

30.14.2.2 Tracebacks From Anywhere in a Program

It is possible to get a symbolic stack traceback from anywhere in a program, just as for
non-symbolic tracebacks. The first step is to obtain a non-symbolic traceback, and then call
Symbolic_Traceback to compute the symbolic information. Here is an example:

with Ada.Text_IO;

with GNAT.Traceback;

Chapter 30: Running and Debugging Ada Programs 287

with GNAT.Traceback.Symbolic;

procedure STB is

use Ada;

use GNAT.Traceback;

use GNAT.Traceback.Symbolic;

procedure P1 is

TB : Tracebacks_Array (1 .. 10);

-- We are asking for a maximum of 10 stack frames.

Len : Natural;

-- Len will receive the actual number of stack frames returned.

begin

Call_Chain (TB, Len);

Text_IO.Put_Line (Symbolic_Traceback (TB (1 .. Len)));

end P1;

procedure P2 is

begin

P1;

end P2;

begin

P2;

end STB;

Appendix A: Platform-Specific Information for the Run-Time Libraries 289

Appendix A Platform-Specific Information for the
Run-Time Libraries

The GNAT run-time implementation may vary with respect to both the underlying threads
library and the exception handling scheme. For threads support, one or more of the following
are supplied:

• native threads library, a binding to the thread package from the underlying operating
system

• pthreads library (Sparc Solaris only), a binding to the Solaris POSIX thread package

For exception handling, either or both of two models are supplied:

• Zero-Cost Exceptions (“ZCX”),1 which uses binder-generated tables that are interrogated
at run time to locate a handler

• setjmp / longjmp (“SJLJ”), which uses dynamically-set data to establish the set of handlers

This appendix summarizes which combinations of threads and exception support are supplied
on various GNAT platforms. It then shows how to select a particular library either permanently
or temporarily, explains the properties of (and tradeoffs among) the various threads libraries,
and provides some additional information about several specific platforms.

A.1 Summary of Run-Time Configurations

alpha-openvms
rts-native (default)

Tasking native VMS threads
Exceptions ZCX

alpha-tru64
rts-native (default)

Tasking native TRU64 threads
Exceptions ZCX

rts-sjlj
Tasking native TRU64 threads
Exceptions SJLJ

ia64-hp linux
rts-native (default)

Tasking pthread library
Exceptions ZCX

ia64-hpux
rts-native (default)

Tasking native HP-UX threads
Exceptions SJLJ

ia64-openvms
rts-native (default)

Tasking native VMS threads
Exceptions ZCX

1 Most programs should experience a substantial speed improvement by being compiled with a ZCX run-time.
This is especially true for tasking applications or applications with many exception handlers.

290 GNAT User’s Guide

ia64-sgi linux
rts-native (default)

Tasking pthread library
Exceptions ZCX

mips-irix
rts-native (default)

Tasking native IRIX threads
Exceptions ZCX

pa-hpux
rts-native (default)

Tasking native HP-UX threads
Exceptions ZCX

rts-sjlj
Tasking native HP-UX threads
Exceptions SJLJ

ppc-aix
rts-native (default)

Tasking native AIX threads
Exceptions ZCX

rts-sjlj
Tasking native AIX threads
Exceptions SJLJ

ppc-darwin
rts-native (default)

Tasking native MacOS threads
Exceptions ZCX

sparc-solaris
rts-native (default)

Tasking native Solaris threads library
Exceptions ZCX

rts-pthread
Tasking pthread library
Exceptions ZCX

rts-sjlj
Tasking native Solaris threads library
Exceptions SJLJ

sparc64-solaris
rts-native (default)

Tasking native Solaris threads library
Exceptions ZCX

Appendix A: Platform-Specific Information for the Run-Time Libraries 291

x86-linux
rts-native (default)

Tasking pthread library
Exceptions ZCX

rts-sjlj
Tasking pthread library
Exceptions SJLJ

x86-lynx
rts-native (default)

Tasking native LynxOS threads
Exceptions SJLJ

x86-solaris
rts-native (default)

Tasking native Solaris threads
Exceptions ZCX

rts-sjlj
Tasking native Solaris threads library
Exceptions SJLJ

x86-windows
rts-native (default)

Tasking native Win32 threads
Exceptions ZCX

rts-sjlj
Tasking native Win32 threads
Exceptions SJLJ

x86-windows-rtx
rts-rtx-rtss (default)

Tasking RTX real-time subsystem RTSS threads (kernel mode)
Exceptions SJLJ

rts-rtx-w32
Tasking RTX Win32 threads (user mode)
Exceptions ZCX

x86 64-linux
rts-native (default)

Tasking pthread library
Exceptions ZCX

rts-sjlj
Tasking pthread library
Exceptions SJLJ

292 GNAT User’s Guide

A.2 Specifying a Run-Time Library

The ‘adainclude’ subdirectory containing the sources of the GNAT run-time library, and the
‘adalib’ subdirectory containing the ‘ALI’ files and the static and/or shared GNAT library, are
located in the gcc target-dependent area:

target=$prefix/lib/gcc/gcc-dumpmachine/gcc-dumpversion/

As indicated above, on some platforms several run-time libraries are supplied. These libraries are
installed in the target dependent area and contain a complete source and binary subdirectory.
The detailed description below explains the differences between the different libraries in terms
of their thread support.

The default run-time library (when GNAT is installed) is rts-native. This default run time
is selected by the means of soft links. For example on x86-linux:

$(target-dir)

|

+--- adainclude----------+

| |

+--- adalib-----------+ |

| | |

+--- rts-native | |

| | | |

| +--- adainclude <---+

| | |

| +--- adalib <----+

|

+--- rts-sjlj

|

+--- adainclude

|

+--- adalib

If the rts-sjlj library is to be selected on a permanent basis, these soft links can be modified
with the following commands:

$ cd $target

$ rm -f adainclude adalib

$ ln -s rts-sjlj/adainclude adainclude

$ ln -s rts-sjlj/adalib adalib

Alternatively, you can specify ‘rts-sjlj/adainclude’ in the file ‘$target/ada_source_path’
and ‘rts-sjlj/adalib’ in ‘$target/ada_object_path’.

Selecting another run-time library temporarily can be achieved by using the ‘--RTS’ switch,
e.g., ‘--RTS=sjlj’

A.3 Choosing the Scheduling Policy

When using a POSIX threads implementation, you have a choice of several scheduling policies:
SCHED_FIFO, SCHED_RR and SCHED_OTHER. Typically, the default is SCHED_OTHER, while using
SCHED_FIFO or SCHED_RR requires special (e.g., root) privileges.

By default, GNAT uses the SCHED_OTHER policy. To specify SCHED_FIFO, you can use one of
the following:

• pragma Time_Slice (0.0)

• the corresponding binder option ‘-T0’

• pragma Task_Dispatching_Policy (FIFO_Within_Priorities)

To specify SCHED_RR, you should use pragma Time_Slice with a value greater than 0.0, or else
use the corresponding ‘-T’ binder option.

Appendix A: Platform-Specific Information for the Run-Time Libraries 293

A.4 Solaris-Specific Considerations

This section addresses some topics related to the various threads libraries on Sparc Solaris.

A.4.1 Solaris Threads Issues

GNAT under Solaris/Sparc 32 bits comes with an alternate tasking run-time library based
on POSIX threads — rts-pthread. This run-time library has the advantage of being mostly
shared across all POSIX-compliant thread implementations, and it also provides under Solaris 8
the PTHREAD_PRIO_INHERIT and PTHREAD_PRIO_PROTECT semantics that can be selected using
the predefined pragma Locking_Policy with respectively Inheritance_Locking and Ceiling_

Locking as the policy.

As explained above, the native run-time library is based on the Solaris thread library
(libthread) and is the default library.

When the Solaris threads library is used (this is the default), programs compiled with GNAT
can automatically take advantage of and can thus execute on multiple processors. The user can
alternatively specify a processor on which the program should run to emulate a single-processor
system. The multiprocessor / uniprocessor choice is made by setting the environment variable
GNAT_PROCESSOR to one of the following:

-2 Use the default configuration (run the program on all available processors) - this is
the same as having GNAT_PROCESSOR unset

-1 Let the run-time implementation choose one processor and run the program on that
processor

0 .. Last_Proc

Run the program on the specified processor. Last_Proc is equal to
_SC_NPROCESSORS_CONF - 1 (where _SC_NPROCESSORS_CONF is a system variable).

A.5 Linux-Specific Considerations

On GNU/Linux without NPTL support (usually system with GNU C Library older than 2.3),
the signal model is not POSIX compliant, which means that to send a signal to the process, you
need to send the signal to all threads, e.g. by using killpg().

A.6 AIX-Specific Considerations

On AIX, the resolver library initializes some internal structure on the first call to get*by* func-
tions, which are used to implement GNAT.Sockets.Get_Host_By_Name and GNAT.Sockets.Get_

Host_By_Address. If such initialization occurs within an Ada task, and the stack size for the
task is the default size, a stack overflow may occur.

To avoid this overflow, the user should either ensure that the first call to GNAT.Sockets.Get_
Host_By_Name or GNAT.Sockets.Get_Host_By_Addrss occurs in the environment task, or use
pragma Storage_Size to specify a sufficiently large size for the stack of the task that contains
this call.

A.7 Irix-Specific Considerations

The GCC support libraries coming with the Irix compiler have moved to their canonical place
with respect to the general Irix ABI related conventions. Running applications built with the
default shared GNAT run-time now requires the LD LIBRARY PATH environment variable to
include this location. A possible way to achieve this is to issue the following command line on
a bash prompt:

$ LD_LIBRARY_PATH=$LD_LIBRARY_PATH:‘dirname \‘gcc --print-file-name=libgcc_s.so\‘‘

294 GNAT User’s Guide

A.8 RTX-Specific Considerations

The Real-time Extension (RTX) to Windows is based on the Windows Win32 API. Applications
can be built to work in two different modes:

• Windows executables that run in Ring 3 to utilize memory protection (rts-rtx-w32).

• Real-time subsystem (RTSS) executables that run in Ring 0, where performance can be
optimized with RTSS applications taking precedent over all Windows applications (rts-rtx-
rtss). This mode requires the Microsoft linker to handle RTSS libraries.

A.9 HP-UX-Specific Considerations

On HP-UX, appropriate privileges are required to change the scheduling parameters of a task.
The calling process must have appropriate privileges or be a member of a group having PRIV_

RTSCHED access to successfully change the scheduling parameters.

By default, GNAT uses the SCHED_HPUX policy. To have access to the priority range 0-
31 either the FIFO_Within_Priorities or the Round_Robin_Within_Priorities scheduling
policies need to be set.

To specify the FIFO_Within_Priorities scheduling policy you can use one of the following:

• pragma Time_Slice (0.0)

• the corresponding binder option ‘-T0’

• pragma Task_Dispatching_Policy (FIFO_Within_Priorities)

To specify the Round_Robin_Within_Priorities, scheduling policy you should use pragma

Time_Slice with a value greater than 0.0, or use the corresponding ‘-T’ binder option, or set
the pragma Task_Dispatching_Policy (Round_Robin_Within_Priorities).

Appendix B: Example of Binder Output File 295

Appendix B Example of Binder Output File

This Appendix displays the source code for gnatbind’s output file generated for a simple “Hello
World” program. Comments have been added for clarification purposes.

-- The package is called Ada_Main unless this name is actually used

-- as a unit name in the partition, in which case some other unique

-- name is used.

with System;

package ada_main is

Elab_Final_Code : Integer;

pragma Import (C, Elab_Final_Code, "__gnat_inside_elab_final_code");

-- The main program saves the parameters (argument count,

-- argument values, environment pointer) in global variables

-- for later access by other units including

-- Ada.Command_Line.

gnat_argc : Integer;

gnat_argv : System.Address;

gnat_envp : System.Address;

-- The actual variables are stored in a library routine. This

-- is useful for some shared library situations, where there

-- are problems if variables are not in the library.

pragma Import (C, gnat_argc);

pragma Import (C, gnat_argv);

pragma Import (C, gnat_envp);

-- The exit status is similarly an external location

gnat_exit_status : Integer;

pragma Import (C, gnat_exit_status);

GNAT_Version : constant String :=

"GNAT Version: 6.0.0w (20061115)";

pragma Export (C, GNAT_Version, "__gnat_version");

-- This is the generated adafinal routine that performs

-- finalization at the end of execution. In the case where

-- Ada is the main program, this main program makes a call

-- to adafinal at program termination.

procedure adafinal;

pragma Export (C, adafinal, "adafinal");

-- This is the generated adainit routine that performs

-- initialization at the start of execution. In the case

-- where Ada is the main program, this main program makes

-- a call to adainit at program startup.

procedure adainit;

pragma Export (C, adainit, "adainit");

-- This routine is called at the start of execution. It is

-- a dummy routine that is used by the debugger to breakpoint

-- at the start of execution.

procedure Break_Start;

pragma Import (C, Break_Start, "__gnat_break_start");

296 GNAT User’s Guide

-- This is the actual generated main program (it would be

-- suppressed if the no main program switch were used). As

-- required by standard system conventions, this program has

-- the external name main.

function main

(argc : Integer;

argv : System.Address;

envp : System.Address)

return Integer;

pragma Export (C, main, "main");

-- The following set of constants give the version

-- identification values for every unit in the bound

-- partition. This identification is computed from all

-- dependent semantic units, and corresponds to the

-- string that would be returned by use of the

-- Body_Version or Version attributes.

type Version_32 is mod 2 ** 32;

u00001 : constant Version_32 := 16#7880BEB3#;

u00002 : constant Version_32 := 16#0D24CBD0#;

u00003 : constant Version_32 := 16#3283DBEB#;

u00004 : constant Version_32 := 16#2359F9ED#;

u00005 : constant Version_32 := 16#664FB847#;

u00006 : constant Version_32 := 16#68E803DF#;

u00007 : constant Version_32 := 16#5572E604#;

u00008 : constant Version_32 := 16#46B173D8#;

u00009 : constant Version_32 := 16#156A40CF#;

u00010 : constant Version_32 := 16#033DABE0#;

u00011 : constant Version_32 := 16#6AB38FEA#;

u00012 : constant Version_32 := 16#22B6217D#;

u00013 : constant Version_32 := 16#68A22947#;

u00014 : constant Version_32 := 16#18CC4A56#;

u00015 : constant Version_32 := 16#08258E1B#;

u00016 : constant Version_32 := 16#367D5222#;

u00017 : constant Version_32 := 16#20C9ECA4#;

u00018 : constant Version_32 := 16#50D32CB6#;

u00019 : constant Version_32 := 16#39A8BB77#;

u00020 : constant Version_32 := 16#5CF8FA2B#;

u00021 : constant Version_32 := 16#2F1EB794#;

u00022 : constant Version_32 := 16#31AB6444#;

u00023 : constant Version_32 := 16#1574B6E9#;

u00024 : constant Version_32 := 16#5109C189#;

u00025 : constant Version_32 := 16#56D770CD#;

u00026 : constant Version_32 := 16#02F9DE3D#;

u00027 : constant Version_32 := 16#08AB6B2C#;

u00028 : constant Version_32 := 16#3FA37670#;

u00029 : constant Version_32 := 16#476457A0#;

u00030 : constant Version_32 := 16#731E1B6E#;

u00031 : constant Version_32 := 16#23C2E789#;

u00032 : constant Version_32 := 16#0F1BD6A1#;

u00033 : constant Version_32 := 16#7C25DE96#;

u00034 : constant Version_32 := 16#39ADFFA2#;

u00035 : constant Version_32 := 16#571DE3E7#;

u00036 : constant Version_32 := 16#5EB646AB#;

u00037 : constant Version_32 := 16#4249379B#;

u00038 : constant Version_32 := 16#0357E00A#;

u00039 : constant Version_32 := 16#3784FB72#;

u00040 : constant Version_32 := 16#2E723019#;

u00041 : constant Version_32 := 16#623358EA#;

u00042 : constant Version_32 := 16#107F9465#;

u00043 : constant Version_32 := 16#6843F68A#;

u00044 : constant Version_32 := 16#63305874#;

Appendix B: Example of Binder Output File 297

u00045 : constant Version_32 := 16#31E56CE1#;

u00046 : constant Version_32 := 16#02917970#;

u00047 : constant Version_32 := 16#6CCBA70E#;

u00048 : constant Version_32 := 16#41CD4204#;

u00049 : constant Version_32 := 16#572E3F58#;

u00050 : constant Version_32 := 16#20729FF5#;

u00051 : constant Version_32 := 16#1D4F93E8#;

u00052 : constant Version_32 := 16#30B2EC3D#;

u00053 : constant Version_32 := 16#34054F96#;

u00054 : constant Version_32 := 16#5A199860#;

u00055 : constant Version_32 := 16#0E7F912B#;

u00056 : constant Version_32 := 16#5760634A#;

u00057 : constant Version_32 := 16#5D851835#;

-- The following Export pragmas export the version numbers

-- with symbolic names ending in B (for body) or S

-- (for spec) so that they can be located in a link. The

-- information provided here is sufficient to track down

-- the exact versions of units used in a given build.

pragma Export (C, u00001, "helloB");

pragma Export (C, u00002, "system__standard_libraryB");

pragma Export (C, u00003, "system__standard_libraryS");

pragma Export (C, u00004, "adaS");

pragma Export (C, u00005, "ada__text_ioB");

pragma Export (C, u00006, "ada__text_ioS");

pragma Export (C, u00007, "ada__exceptionsB");

pragma Export (C, u00008, "ada__exceptionsS");

pragma Export (C, u00009, "gnatS");

pragma Export (C, u00010, "gnat__heap_sort_aB");

pragma Export (C, u00011, "gnat__heap_sort_aS");

pragma Export (C, u00012, "systemS");

pragma Export (C, u00013, "system__exception_tableB");

pragma Export (C, u00014, "system__exception_tableS");

pragma Export (C, u00015, "gnat__htableB");

pragma Export (C, u00016, "gnat__htableS");

pragma Export (C, u00017, "system__exceptionsS");

pragma Export (C, u00018, "system__machine_state_operationsB");

pragma Export (C, u00019, "system__machine_state_operationsS");

pragma Export (C, u00020, "system__machine_codeS");

pragma Export (C, u00021, "system__storage_elementsB");

pragma Export (C, u00022, "system__storage_elementsS");

pragma Export (C, u00023, "system__secondary_stackB");

pragma Export (C, u00024, "system__secondary_stackS");

pragma Export (C, u00025, "system__parametersB");

pragma Export (C, u00026, "system__parametersS");

pragma Export (C, u00027, "system__soft_linksB");

pragma Export (C, u00028, "system__soft_linksS");

pragma Export (C, u00029, "system__stack_checkingB");

pragma Export (C, u00030, "system__stack_checkingS");

pragma Export (C, u00031, "system__tracebackB");

pragma Export (C, u00032, "system__tracebackS");

pragma Export (C, u00033, "ada__streamsS");

pragma Export (C, u00034, "ada__tagsB");

pragma Export (C, u00035, "ada__tagsS");

pragma Export (C, u00036, "system__string_opsB");

pragma Export (C, u00037, "system__string_opsS");

pragma Export (C, u00038, "interfacesS");

pragma Export (C, u00039, "interfaces__c_streamsB");

pragma Export (C, u00040, "interfaces__c_streamsS");

pragma Export (C, u00041, "system__file_ioB");

pragma Export (C, u00042, "system__file_ioS");

pragma Export (C, u00043, "ada__finalizationB");

pragma Export (C, u00044, "ada__finalizationS");

pragma Export (C, u00045, "system__finalization_rootB");

298 GNAT User’s Guide

pragma Export (C, u00046, "system__finalization_rootS");

pragma Export (C, u00047, "system__finalization_implementationB");

pragma Export (C, u00048, "system__finalization_implementationS");

pragma Export (C, u00049, "system__string_ops_concat_3B");

pragma Export (C, u00050, "system__string_ops_concat_3S");

pragma Export (C, u00051, "system__stream_attributesB");

pragma Export (C, u00052, "system__stream_attributesS");

pragma Export (C, u00053, "ada__io_exceptionsS");

pragma Export (C, u00054, "system__unsigned_typesS");

pragma Export (C, u00055, "system__file_control_blockS");

pragma Export (C, u00056, "ada__finalization__list_controllerB");

pragma Export (C, u00057, "ada__finalization__list_controllerS");

-- BEGIN ELABORATION ORDER

-- ada (spec)

-- gnat (spec)

-- gnat.heap_sort_a (spec)

-- gnat.heap_sort_a (body)

-- gnat.htable (spec)

-- gnat.htable (body)

-- interfaces (spec)

-- system (spec)

-- system.machine_code (spec)

-- system.parameters (spec)

-- system.parameters (body)

-- interfaces.c_streams (spec)

-- interfaces.c_streams (body)

-- system.standard_library (spec)

-- ada.exceptions (spec)

-- system.exception_table (spec)

-- system.exception_table (body)

-- ada.io_exceptions (spec)

-- system.exceptions (spec)

-- system.storage_elements (spec)

-- system.storage_elements (body)

-- system.machine_state_operations (spec)

-- system.machine_state_operations (body)

-- system.secondary_stack (spec)

-- system.stack_checking (spec)

-- system.soft_links (spec)

-- system.soft_links (body)

-- system.stack_checking (body)

-- system.secondary_stack (body)

-- system.standard_library (body)

-- system.string_ops (spec)

-- system.string_ops (body)

-- ada.tags (spec)

-- ada.tags (body)

-- ada.streams (spec)

-- system.finalization_root (spec)

-- system.finalization_root (body)

-- system.string_ops_concat_3 (spec)

-- system.string_ops_concat_3 (body)

-- system.traceback (spec)

-- system.traceback (body)

-- ada.exceptions (body)

-- system.unsigned_types (spec)

-- system.stream_attributes (spec)

-- system.stream_attributes (body)

-- system.finalization_implementation (spec)

-- system.finalization_implementation (body)

-- ada.finalization (spec)

-- ada.finalization (body)

-- ada.finalization.list_controller (spec)

-- ada.finalization.list_controller (body)

Appendix B: Example of Binder Output File 299

-- system.file_control_block (spec)

-- system.file_io (spec)

-- system.file_io (body)

-- ada.text_io (spec)

-- ada.text_io (body)

-- hello (body)

-- END ELABORATION ORDER

end ada_main;

-- The following source file name pragmas allow the generated file

-- names to be unique for different main programs. They are needed

-- since the package name will always be Ada_Main.

pragma Source_File_Name (ada_main, Spec_File_Name => "b~hello.ads");

pragma Source_File_Name (ada_main, Body_File_Name => "b~hello.adb");

-- Generated package body for Ada_Main starts here

package body ada_main is

-- The actual finalization is performed by calling the

-- library routine in System.Standard_Library.Adafinal

procedure Do_Finalize;

pragma Import (C, Do_Finalize, "system__standard_library__adafinal");

-- adainit --

procedure adainit is

-- These booleans are set to True once the associated unit has

-- been elaborated. It is also used to avoid elaborating the

-- same unit twice.

E040 : Boolean;

pragma Import (Ada, E040, "interfaces__c_streams_E");

E008 : Boolean;

pragma Import (Ada, E008, "ada__exceptions_E");

E014 : Boolean;

pragma Import (Ada, E014, "system__exception_table_E");

E053 : Boolean;

pragma Import (Ada, E053, "ada__io_exceptions_E");

E017 : Boolean;

pragma Import (Ada, E017, "system__exceptions_E");

E024 : Boolean;

pragma Import (Ada, E024, "system__secondary_stack_E");

E030 : Boolean;

pragma Import (Ada, E030, "system__stack_checking_E");

E028 : Boolean;

pragma Import (Ada, E028, "system__soft_links_E");

E035 : Boolean;

pragma Import (Ada, E035, "ada__tags_E");

E033 : Boolean;

300 GNAT User’s Guide

pragma Import (Ada, E033, "ada__streams_E");

E046 : Boolean;

pragma Import (Ada, E046, "system__finalization_root_E");

E048 : Boolean;

pragma Import (Ada, E048, "system__finalization_implementation_E");

E044 : Boolean;

pragma Import (Ada, E044, "ada__finalization_E");

E057 : Boolean;

pragma Import (Ada, E057, "ada__finalization__list_controller_E");

E055 : Boolean;

pragma Import (Ada, E055, "system__file_control_block_E");

E042 : Boolean;

pragma Import (Ada, E042, "system__file_io_E");

E006 : Boolean;

pragma Import (Ada, E006, "ada__text_io_E");

-- Set_Globals is a library routine that stores away the

-- value of the indicated set of global values in global

-- variables within the library.

procedure Set_Globals

(Main_Priority : Integer;

Time_Slice_Value : Integer;

WC_Encoding : Character;

Locking_Policy : Character;

Queuing_Policy : Character;

Task_Dispatching_Policy : Character;

Adafinal : System.Address;

Unreserve_All_Interrupts : Integer;

Exception_Tracebacks : Integer);

pragma Import (C, Set_Globals, "__gnat_set_globals");

-- SDP_Table_Build is a library routine used to build the

-- exception tables. See unit Ada.Exceptions in files

-- a-except.ads/adb for full details of how zero cost

-- exception handling works. This procedure, the call to

-- it, and the two following tables are all omitted if the

-- build is in longjmp/setjmp exception mode.

procedure SDP_Table_Build

(SDP_Addresses : System.Address;

SDP_Count : Natural;

Elab_Addresses : System.Address;

Elab_Addr_Count : Natural);

pragma Import (C, SDP_Table_Build, "__gnat_SDP_Table_Build");

-- Table of Unit_Exception_Table addresses. Used for zero

-- cost exception handling to build the top level table.

ST : aliased constant array (1 .. 23) of System.Address := (

Hello’UET_Address,

Ada.Text_Io’UET_Address,

Ada.Exceptions’UET_Address,

Gnat.Heap_Sort_A’UET_Address,

System.Exception_Table’UET_Address,

System.Machine_State_Operations’UET_Address,

System.Secondary_Stack’UET_Address,

System.Parameters’UET_Address,

Appendix B: Example of Binder Output File 301

System.Soft_Links’UET_Address,

System.Stack_Checking’UET_Address,

System.Traceback’UET_Address,

Ada.Streams’UET_Address,

Ada.Tags’UET_Address,

System.String_Ops’UET_Address,

Interfaces.C_Streams’UET_Address,

System.File_Io’UET_Address,

Ada.Finalization’UET_Address,

System.Finalization_Root’UET_Address,

System.Finalization_Implementation’UET_Address,

System.String_Ops_Concat_3’UET_Address,

System.Stream_Attributes’UET_Address,

System.File_Control_Block’UET_Address,

Ada.Finalization.List_Controller’UET_Address);

-- Table of addresses of elaboration routines. Used for

-- zero cost exception handling to make sure these

-- addresses are included in the top level procedure

-- address table.

EA : aliased constant array (1 .. 23) of System.Address := (

adainit’Code_Address,

Do_Finalize’Code_Address,

Ada.Exceptions’Elab_Spec’Address,

System.Exceptions’Elab_Spec’Address,

Interfaces.C_Streams’Elab_Spec’Address,

System.Exception_Table’Elab_Body’Address,

Ada.Io_Exceptions’Elab_Spec’Address,

System.Stack_Checking’Elab_Spec’Address,

System.Soft_Links’Elab_Body’Address,

System.Secondary_Stack’Elab_Body’Address,

Ada.Tags’Elab_Spec’Address,

Ada.Tags’Elab_Body’Address,

Ada.Streams’Elab_Spec’Address,

System.Finalization_Root’Elab_Spec’Address,

Ada.Exceptions’Elab_Body’Address,

System.Finalization_Implementation’Elab_Spec’Address,

System.Finalization_Implementation’Elab_Body’Address,

Ada.Finalization’Elab_Spec’Address,

Ada.Finalization.List_Controller’Elab_Spec’Address,

System.File_Control_Block’Elab_Spec’Address,

System.File_Io’Elab_Body’Address,

Ada.Text_Io’Elab_Spec’Address,

Ada.Text_Io’Elab_Body’Address);

-- Start of processing for adainit

begin

-- Call SDP_Table_Build to build the top level procedure

-- table for zero cost exception handling (omitted in

-- longjmp/setjmp mode).

SDP_Table_Build (ST’Address, 23, EA’Address, 23);

-- Call Set_Globals to record various information for

-- this partition. The values are derived by the binder

-- from information stored in the ali files by the compiler.

Set_Globals

(Main_Priority => -1,

-- Priority of main program, -1 if no pragma Priority used

Time_Slice_Value => -1,

302 GNAT User’s Guide

-- Time slice from Time_Slice pragma, -1 if none used

WC_Encoding => ’b’,

-- Wide_Character encoding used, default is brackets

Locking_Policy => ’ ’,

-- Locking_Policy used, default of space means not

-- specified, otherwise it is the first character of

-- the policy name.

Queuing_Policy => ’ ’,

-- Queuing_Policy used, default of space means not

-- specified, otherwise it is the first character of

-- the policy name.

Task_Dispatching_Policy => ’ ’,

-- Task_Dispatching_Policy used, default of space means

-- not specified, otherwise first character of the

-- policy name.

Adafinal => System.Null_Address,

-- Address of Adafinal routine, not used anymore

Unreserve_All_Interrupts => 0,

-- Set true if pragma Unreserve_All_Interrupts was used

Exception_Tracebacks => 0);

-- Indicates if exception tracebacks are enabled

Elab_Final_Code := 1;

-- Now we have the elaboration calls for all units in the partition.

-- The Elab_Spec and Elab_Body attributes generate references to the

-- implicit elaboration procedures generated by the compiler for

-- each unit that requires elaboration.

if not E040 then

Interfaces.C_Streams’Elab_Spec;

end if;

E040 := True;

if not E008 then

Ada.Exceptions’Elab_Spec;

end if;

if not E014 then

System.Exception_Table’Elab_Body;

E014 := True;

end if;

if not E053 then

Ada.Io_Exceptions’Elab_Spec;

E053 := True;

end if;

if not E017 then

System.Exceptions’Elab_Spec;

E017 := True;

end if;

if not E030 then

System.Stack_Checking’Elab_Spec;

end if;

if not E028 then

System.Soft_Links’Elab_Body;

E028 := True;

end if;

E030 := True;

if not E024 then

System.Secondary_Stack’Elab_Body;

Appendix B: Example of Binder Output File 303

E024 := True;

end if;

if not E035 then

Ada.Tags’Elab_Spec;

end if;

if not E035 then

Ada.Tags’Elab_Body;

E035 := True;

end if;

if not E033 then

Ada.Streams’Elab_Spec;

E033 := True;

end if;

if not E046 then

System.Finalization_Root’Elab_Spec;

end if;

E046 := True;

if not E008 then

Ada.Exceptions’Elab_Body;

E008 := True;

end if;

if not E048 then

System.Finalization_Implementation’Elab_Spec;

end if;

if not E048 then

System.Finalization_Implementation’Elab_Body;

E048 := True;

end if;

if not E044 then

Ada.Finalization’Elab_Spec;

end if;

E044 := True;

if not E057 then

Ada.Finalization.List_Controller’Elab_Spec;

end if;

E057 := True;

if not E055 then

System.File_Control_Block’Elab_Spec;

E055 := True;

end if;

if not E042 then

System.File_Io’Elab_Body;

E042 := True;

end if;

if not E006 then

Ada.Text_Io’Elab_Spec;

end if;

if not E006 then

Ada.Text_Io’Elab_Body;

E006 := True;

end if;

Elab_Final_Code := 0;

end adainit;

-- adafinal --

procedure adafinal is

begin

Do_Finalize;

end adafinal;

304 GNAT User’s Guide

-- main --

-- main is actually a function, as in the ANSI C standard,

-- defined to return the exit status. The three parameters

-- are the argument count, argument values and environment

-- pointer.

function main

(argc : Integer;

argv : System.Address;

envp : System.Address)

return Integer

is

-- The initialize routine performs low level system

-- initialization using a standard library routine which

-- sets up signal handling and performs any other

-- required setup. The routine can be found in file

-- a-init.c.

procedure initialize;

pragma Import (C, initialize, "__gnat_initialize");

-- The finalize routine performs low level system

-- finalization using a standard library routine. The

-- routine is found in file a-final.c and in the standard

-- distribution is a dummy routine that does nothing, so

-- really this is a hook for special user finalization.

procedure finalize;

pragma Import (C, finalize, "__gnat_finalize");

-- We get to the main program of the partition by using

-- pragma Import because if we try to with the unit and

-- call it Ada style, then not only do we waste time

-- recompiling it, but also, we don’t really know the right

-- switches (e.g. identifier character set) to be used

-- to compile it.

procedure Ada_Main_Program;

pragma Import (Ada, Ada_Main_Program, "_ada_hello");

-- Start of processing for main

begin

-- Save global variables

gnat_argc := argc;

gnat_argv := argv;

gnat_envp := envp;

-- Call low level system initialization

Initialize;

-- Call our generated Ada initialization routine

adainit;

-- This is the point at which we want the debugger to get

-- control

Break_Start;

-- Now we call the main program of the partition

Appendix B: Example of Binder Output File 305

Ada_Main_Program;

-- Perform Ada finalization

adafinal;

-- Perform low level system finalization

Finalize;

-- Return the proper exit status

return (gnat_exit_status);

end;

-- This section is entirely comments, so it has no effect on the

-- compilation of the Ada_Main package. It provides the list of

-- object files and linker options, as well as some standard

-- libraries needed for the link. The gnatlink utility parses

-- this b~hello.adb file to read these comment lines to generate

-- the appropriate command line arguments for the call to the

-- system linker. The BEGIN/END lines are used for sentinels for

-- this parsing operation.

-- The exact file names will of course depend on the environment,

-- host/target and location of files on the host system.

-- BEGIN Object file/option list

-- ./hello.o

-- -L./

-- -L/usr/local/gnat/lib/gcc-lib/i686-pc-linux-gnu/2.8.1/adalib/

-- /usr/local/gnat/lib/gcc-lib/i686-pc-linux-gnu/2.8.1/adalib/libgnat.a

-- END Object file/option list

end ada_main;

The Ada code in the above example is exactly what is generated by the binder. We have added
comments to more clearly indicate the function of each part of the generated Ada_Main package.

The code is standard Ada in all respects, and can be processed by any tools that handle Ada.
In particular, it is possible to use the debugger in Ada mode to debug the generated Ada_Main

package. For example, suppose that for reasons that you do not understand, your program is
crashing during elaboration of the body of Ada.Text_IO. To locate this bug, you can place a
breakpoint on the call:

Ada.Text_Io’Elab_Body;

and trace the elaboration routine for this package to find out where the problem might be (more
usually of course you would be debugging elaboration code in your own application).

Appendix C: Elaboration Order Handling in GNAT 307

Appendix C Elaboration Order Handling in GNAT

This chapter describes the handling of elaboration code in Ada and in GNAT, and discusses
how the order of elaboration of program units can be controlled in GNAT, either automatically
or with explicit programming features.

C.1 Elaboration Code

Ada provides rather general mechanisms for executing code at elaboration time, that is to say
before the main program starts executing. Such code arises in three contexts:

Initializers for variables.
Variables declared at the library level, in package specs or bodies, can require ini-
tialization that is performed at elaboration time, as in:� �

Sqrt_Half : Float := Sqrt (0.5);
 	
Package initialization code

Code in a BEGIN-END section at the outer level of a package body is executed as
part of the package body elaboration code.

Library level task allocators
Tasks that are declared using task allocators at the library level start executing
immediately and hence can execute at elaboration time.

Subprogram calls are possible in any of these contexts, which means that any arbitrary part
of the program may be executed as part of the elaboration code. It is even possible to write
a program which does all its work at elaboration time, with a null main program, although
stylistically this would usually be considered an inappropriate way to structure a program.

An important concern arises in the context of elaboration code: we have to be sure that
it is executed in an appropriate order. What we have is a series of elaboration code sections,
potentially one section for each unit in the program. It is important that these execute in the
correct order. Correctness here means that, taking the above example of the declaration of
Sqrt_Half, if some other piece of elaboration code references Sqrt_Half, then it must run after
the section of elaboration code that contains the declaration of Sqrt_Half.

There would never be any order of elaboration problem if we made a rule that whenever you
with a unit, you must elaborate both the spec and body of that unit before elaborating the unit
doing the with’ing:� �

with Unit_1;

package Unit_2 is ...
 	
would require that both the body and spec of Unit_1 be elaborated before the spec of Unit_2.
However, a rule like that would be far too restrictive. In particular, it would make it impossible
to have routines in separate packages that were mutually recursive.

You might think that a clever enough compiler could look at the actual elaboration code
and determine an appropriate correct order of elaboration, but in the general case, this is not
possible. Consider the following example.

In the body of Unit_1, we have a procedure Func_1 that references the variable Sqrt_1,
which is declared in the elaboration code of the body of Unit_1:� �

Sqrt_1 : Float := Sqrt (0.1);
 	

308 GNAT User’s Guide

The elaboration code of the body of Unit_1 also contains:� �
if expression_1 = 1 then

Q := Unit_2.Func_2;

end if;
 	
Unit_2 is exactly parallel, it has a procedure Func_2 that references the variable Sqrt_2, which
is declared in the elaboration code of the body Unit_2:� �

Sqrt_2 : Float := Sqrt (0.1);
 	
The elaboration code of the body of Unit_2 also contains:� �

if expression_2 = 2 then

Q := Unit_1.Func_1;

end if;
 	
Now the question is, which of the following orders of elaboration is acceptable:

Spec of Unit_1

Spec of Unit_2

Body of Unit_1

Body of Unit_2

or
Spec of Unit_2

Spec of Unit_1

Body of Unit_2

Body of Unit_1

If you carefully analyze the flow here, you will see that you cannot tell at compile time the
answer to this question. If expression_1 is not equal to 1, and expression_2 is not equal to
2, then either order is acceptable, because neither of the function calls is executed. If both tests
evaluate to true, then neither order is acceptable and in fact there is no correct order.

If one of the two expressions is true, and the other is false, then one of the above orders is
correct, and the other is incorrect. For example, if expression_1 /= 1 and expression_2 = 2,
then the call to Func_1 will occur, but not the call to Func_2. This means that it is essential
to elaborate the body of Unit_1 before the body of Unit_2, so the first order of elaboration is
correct and the second is wrong.

By making expression_1 and expression_2 depend on input data, or perhaps the time of
day, we can make it impossible for the compiler or binder to figure out which of these expressions
will be true, and hence it is impossible to guarantee a safe order of elaboration at run time.

C.2 Checking the Elaboration Order

In some languages that involve the same kind of elaboration problems, e.g. Java and C++, the
programmer is expected to worry about these ordering problems himself, and it is common
to write a program in which an incorrect elaboration order gives surprising results, because
it references variables before they are initialized. Ada is designed to be a safe language, and
a programmer-beware approach is clearly not sufficient. Consequently, the language provides
three lines of defense:

Standard rules
Some standard rules restrict the possible choice of elaboration order. In particular,
if you with a unit, then its spec is always elaborated before the unit doing the with.
Similarly, a parent spec is always elaborated before the child spec, and finally a spec
is always elaborated before its corresponding body.

Appendix C: Elaboration Order Handling in GNAT 309

Dynamic elaboration checks
Dynamic checks are made at run time, so that if some entity is accessed before it is
elaborated (typically by means of a subprogram call) then the exception (Program_
Error) is raised.

Elaboration control
Facilities are provided for the programmer to specify the desired order of elaboration.

Let’s look at these facilities in more detail. First, the rules for dynamic checking. One
possible rule would be simply to say that the exception is raised if you access a variable which
has not yet been elaborated. The trouble with this approach is that it could require expensive
checks on every variable reference. Instead Ada has two rules which are a little more restrictive,
but easier to check, and easier to state:

Restrictions on calls
A subprogram can only be called at elaboration time if its body has been elaborated.
The rules for elaboration given above guarantee that the spec of the subprogram
has been elaborated before the call, but not the body. If this rule is violated, then
the exception Program_Error is raised.

Restrictions on instantiations
A generic unit can only be instantiated if the body of the generic unit has been
elaborated. Again, the rules for elaboration given above guarantee that the spec of
the generic unit has been elaborated before the instantiation, but not the body. If
this rule is violated, then the exception Program_Error is raised.

The idea is that if the body has been elaborated, then any variables it references must have been
elaborated; by checking for the body being elaborated we guarantee that none of its references
causes any trouble. As we noted above, this is a little too restrictive, because a subprogram
that has no non-local references in its body may in fact be safe to call. However, it really would
be unsafe to rely on this, because it would mean that the caller was aware of details of the
implementation in the body. This goes against the basic tenets of Ada.

A plausible implementation can be described as follows. A Boolean variable is associated
with each subprogram and each generic unit. This variable is initialized to False, and is set to
True at the point body is elaborated. Every call or instantiation checks the variable, and raises
Program_Error if the variable is False.

Note that one might think that it would be good enough to have one Boolean variable for
each package, but that would not deal with cases of trying to call a body in the same package
as the call that has not been elaborated yet. Of course a compiler may be able to do enough
analysis to optimize away some of the Boolean variables as unnecessary, and GNAT indeed does
such optimizations, but still the easiest conceptual model is to think of there being one variable
per subprogram.

C.3 Controlling the Elaboration Order

In the previous section we discussed the rules in Ada which ensure that Program_Error is
raised if an incorrect elaboration order is chosen. This prevents erroneous executions, but we
need mechanisms to specify a correct execution and avoid the exception altogether. To achieve
this, Ada provides a number of features for controlling the order of elaboration. We discuss
these features in this section.

First, there are several ways of indicating to the compiler that a given unit has no elaboration
problems:

packages that do not require a body
A library package that does not require a body does not permit a body (this rule
was introduced in Ada 95). Thus if we have a such a package, as in:

310 GNAT User’s Guide� �
package Definitions is

generic

type m is new integer;

package Subp is

type a is array (1 .. 10) of m;

type b is array (1 .. 20) of m;

end Subp;

end Definitions;
 	
A package that with’s Definitions may safely instantiate Definitions.Subp be-
cause the compiler can determine that there definitely is no package body to worry
about in this case

pragma Pure
Places sufficient restrictions on a unit to guarantee that no call to any subprogram
in the unit can result in an elaboration problem. This means that the compiler does
not need to worry about the point of elaboration of such units, and in particular,
does not need to check any calls to any subprograms in this unit.

pragma Preelaborate
This pragma places slightly less stringent restrictions on a unit than does pragma
Pure, but these restrictions are still sufficient to ensure that there are no elaboration
problems with any calls to the unit.

pragma Elaborate Body
This pragma requires that the body of a unit be elaborated immediately after its
spec. Suppose a unit A has such a pragma, and unit B does a with of unit A.
Recall that the standard rules require the spec of unit A to be elaborated before
the with’ing unit; given the pragma in A, we also know that the body of A will be
elaborated before B, so that calls to A are safe and do not need a check.

Note that, unlike pragma Pure and pragma Preelaborate, the use of Elaborate_Body does not
guarantee that the program is free of elaboration problems, because it may not be possible to
satisfy the requested elaboration order. Let’s go back to the example with Unit_1 and Unit_

2. If a programmer marks Unit_1 as Elaborate_Body, and not Unit_2, then the order of
elaboration will be:

Spec of Unit_2

Spec of Unit_1

Body of Unit_1

Body of Unit_2

Now that means that the call to Func_1 in Unit_2 need not be checked, it must be safe. But
the call to Func_2 in Unit_1 may still fail if Expression_1 is equal to 1, and the programmer
must still take responsibility for this not being the case.

If all units carry a pragma Elaborate_Body, then all problems are eliminated, except for calls
entirely within a body, which are in any case fully under programmer control. However, using
the pragma everywhere is not always possible. In particular, for our Unit_1/Unit_2 example,
if we marked both of them as having pragma Elaborate_Body, then clearly there would be no
possible elaboration order.

The above pragmas allow a server to guarantee safe use by clients, and clearly this is the
preferable approach. Consequently a good rule is to mark units as Pure or Preelaborate if
possible, and if this is not possible, mark them as Elaborate_Body if possible. As we have
seen, there are situations where neither of these three pragmas can be used. So we also provide
methods for clients to control the order of elaboration of the servers on which they depend:

pragma Elaborate (unit)
This pragma is placed in the context clause, after a with clause, and it requires
that the body of the named unit be elaborated before the unit in which the pragma

Appendix C: Elaboration Order Handling in GNAT 311

occurs. The idea is to use this pragma if the current unit calls at elaboration time,
directly or indirectly, some subprogram in the named unit.

pragma Elaborate All (unit)
This is a stronger version of the Elaborate pragma. Consider the following example:

Unit A with’s unit B and calls B.Func in elab code

Unit B with’s unit C, and B.Func calls C.Func

Now if we put a pragma Elaborate (B) in unit A, this ensures that the body of B
is elaborated before the call, but not the body of C, so the call to C.Func could still
cause Program_Error to be raised.

The effect of a pragma Elaborate_All is stronger, it requires not only that the
body of the named unit be elaborated before the unit doing the with, but also the
bodies of all units that the named unit uses, following with links transitively. For
example, if we put a pragma Elaborate_All (B) in unit A, then it requires not only
that the body of B be elaborated before A, but also the body of C, because B with’s
C.

We are now in a position to give a usage rule in Ada for avoiding elaboration problems, at least
if dynamic dispatching and access to subprogram values are not used. We will handle these
cases separately later.

The rule is simple. If a unit has elaboration code that can directly or indirectly make a call
to a subprogram in a with’ed unit, or instantiate a generic package in a with’ed unit, then if
the with’ed unit does not have pragma Pure or Preelaborate, then the client should have a
pragma Elaborate_All for the with’ed unit. By following this rule a client is assured that calls
can be made without risk of an exception.

For generic subprogram instantiations, the rule can be relaxed to require only a pragma
Elaborate since elaborating the body of a subprogram cannot cause any transitive elaboration
(we are not calling the subprogram in this case, just elaborating its declaration).

If this rule is not followed, then a program may be in one of four states:

No order exists
No order of elaboration exists which follows the rules, taking into account any
Elaborate, Elaborate_All, or Elaborate_Body pragmas. In this case, an Ada
compiler must diagnose the situation at bind time, and refuse to build an executable
program.

One or more orders exist, all incorrect
One or more acceptable elaboration orders exist, and all of them generate an elab-
oration order problem. In this case, the binder can build an executable program,
but Program_Error will be raised when the program is run.

Several orders exist, some right, some incorrect
One or more acceptable elaboration orders exists, and some of them work, and some
do not. The programmer has not controlled the order of elaboration, so the binder
may or may not pick one of the correct orders, and the program may or may not
raise an exception when it is run. This is the worst case, because it means that the
program may fail when moved to another compiler, or even another version of the
same compiler.

One or more orders exists, all correct
One ore more acceptable elaboration orders exist, and all of them work. In this case
the program runs successfully. This state of affairs can be guaranteed by following
the rule we gave above, but may be true even if the rule is not followed.

312 GNAT User’s Guide

Note that one additional advantage of following our rules on the use of Elaborate and
Elaborate_All is that the program continues to stay in the ideal (all orders OK) state even if
maintenance changes some bodies of some units. Conversely, if a program that does not follow
this rule happens to be safe at some point, this state of affairs may deteriorate silently as a
result of maintenance changes.

You may have noticed that the above discussion did not mention the use of Elaborate_Body.
This was a deliberate omission. If you with an Elaborate_Body unit, it still may be the case that
code in the body makes calls to some other unit, so it is still necessary to use Elaborate_All

on such units.

C.4 Controlling Elaboration in GNAT - Internal Calls

In the case of internal calls, i.e., calls within a single package, the programmer has full control
over the order of elaboration, and it is up to the programmer to elaborate declarations in an
appropriate order. For example writing:� �

function One return Float;

Q : Float := One;

function One return Float is

begin

return 1.0;

end One;
 	
will obviously raise Program_Error at run time, because function One will be called before its
body is elaborated. In this case GNAT will generate a warning that the call will raise Program_
Error:� �

1. procedure y is

2. function One return Float;

3.

4. Q : Float := One;

|

>>> warning: cannot call "One" before body is elaborated

>>> warning: Program_Error will be raised at run time

5.

6. function One return Float is

7. begin

8. return 1.0;

9. end One;

10.

11. begin

12. null;

13. end;
 	
Note that in this particular case, it is likely that the call is safe, because the function One does
not access any global variables. Nevertheless in Ada, we do not want the validity of the check
to depend on the contents of the body (think about the separate compilation case), so this is
still wrong, as we discussed in the previous sections.

The error is easily corrected by rearranging the declarations so that the body of One appears
before the declaration containing the call (note that in Ada 95 and Ada 2005, declarations can
appear in any order, so there is no restriction that would prevent this reordering, and if we
write:

Appendix C: Elaboration Order Handling in GNAT 313� �
function One return Float;

function One return Float is

begin

return 1.0;

end One;

Q : Float := One;
 	
then all is well, no warning is generated, and no Program_Error exception will be raised. Things
are more complicated when a chain of subprograms is executed:

� �
function A return Integer;

function B return Integer;

function C return Integer;

function B return Integer is begin return A; end;

function C return Integer is begin return B; end;

X : Integer := C;

function A return Integer is begin return 1; end;
 	
Now the call to C at elaboration time in the declaration of X is correct, because the body of C
is already elaborated, and the call to B within the body of C is correct, but the call to A within
the body of B is incorrect, because the body of A has not been elaborated, so Program_Error

will be raised on the call to A. In this case GNAT will generate a warning that Program_Error
may be raised at the point of the call. Let’s look at the warning:

� �
1. procedure x is

2. function A return Integer;

3. function B return Integer;

4. function C return Integer;

5.

6. function B return Integer is begin return A; end;

|

>>> warning: call to "A" before body is elaborated may

raise Program_Error

>>> warning: "B" called at line 7

>>> warning: "C" called at line 9

7. function C return Integer is begin return B; end;

8.

9. X : Integer := C;

10.

11. function A return Integer is begin return 1; end;

12.

13. begin

14. null;

15. end;
 	
Note that the message here says “may raise”, instead of the direct case, where the message says
“will be raised”. That’s because whether A is actually called depends in general on run-time
flow of control. For example, if the body of B said

314 GNAT User’s Guide� �
function B return Integer is

begin

if some-condition-depending-on-input-data then

return A;

else

return 1;

end if;

end B;
 	
then we could not know until run time whether the incorrect call to A would actually occur,
so Program_Error might or might not be raised. It is possible for a compiler to do a better
job of analyzing bodies, to determine whether or not Program_Error might be raised, but
it certainly couldn’t do a perfect job (that would require solving the halting problem and is
provably impossible), and because this is a warning anyway, it does not seem worth the effort
to do the analysis. Cases in which it would be relevant are rare.

In practice, warnings of either of the forms given above will usually correspond to real errors,
and should be examined carefully and eliminated. In the rare case where a warning is bogus, it
can be suppressed by any of the following methods:

• Compile with the ‘-gnatws’ switch set

• Suppress Elaboration_Check for the called subprogram

• Use pragma Warnings_Off to turn warnings off for the call

For the internal elaboration check case, GNAT by default generates the necessary run-time
checks to ensure that Program_Error is raised if any call fails an elaboration check. Of course
this can only happen if a warning has been issued as described above. The use of pragma
Suppress (Elaboration_Check) may (but is not guaranteed to) suppress some of these checks,
meaning that it may be possible (but is not guaranteed) for a program to be able to call a
subprogram whose body is not yet elaborated, without raising a Program_Error exception.

C.5 Controlling Elaboration in GNAT - External Calls

The previous section discussed the case in which the execution of a particular thread of elab-
oration code occurred entirely within a single unit. This is the easy case to handle, because a
programmer has direct and total control over the order of elaboration, and furthermore, checks
need only be generated in cases which are rare and which the compiler can easily detect. The
situation is more complex when separate compilation is taken into account. Consider the fol-
lowing:� �

package Math is

function Sqrt (Arg : Float) return Float;

end Math;

package body Math is

function Sqrt (Arg : Float) return Float is

begin

...

end Sqrt;

end Math;

with Math;

package Stuff is

X : Float := Math.Sqrt (0.5);

end Stuff;

with Stuff;

procedure Main is

begin

...

end Main;
 	

Appendix C: Elaboration Order Handling in GNAT 315

where Main is the main program. When this program is executed, the elaboration code must
first be executed, and one of the jobs of the binder is to determine the order in which the units
of a program are to be elaborated. In this case we have four units: the spec and body of Math,
the spec of Stuff and the body of Main). In what order should the four separate sections of
elaboration code be executed?

There are some restrictions in the order of elaboration that the binder can choose. In partic-
ular, if unit U has a with for a package X, then you are assured that the spec of X is elaborated
before U , but you are not assured that the body of X is elaborated before U. This means that
in the above case, the binder is allowed to choose the order:

spec of Math

spec of Stuff

body of Math

body of Main

but that’s not good, because now the call to Math.Sqrt that happens during the elaboration of
the Stuff spec happens before the body of Math.Sqrt is elaborated, and hence causes Program_
Error exception to be raised. At first glance, one might say that the binder is misbehaving,
because obviously you want to elaborate the body of something you with first, but that is not
a general rule that can be followed in all cases. Consider� �

package X is ...

package Y is ...

with X;

package body Y is ...

with Y;

package body X is ...
 	
This is a common arrangement, and, apart from the order of elaboration problems that might
arise in connection with elaboration code, this works fine. A rule that says that you must first
elaborate the body of anything you with cannot work in this case: the body of X with’s Y, which
means you would have to elaborate the body of Y first, but that with’s X, which means you have
to elaborate the body of X first, but . . . and we have a loop that cannot be broken.

It is true that the binder can in many cases guess an order of elaboration that is unlikely to
cause a Program_Error exception to be raised, and it tries to do so (in the above example of
Math/Stuff/Spec, the GNAT binder will by default elaborate the body of Math right after its
spec, so all will be well).

However, a program that blindly relies on the binder to be helpful can get into trouble, as
we discussed in the previous sections, so GNAT provides a number of facilities for assisting the
programmer in developing programs that are robust with respect to elaboration order.

C.6 Default Behavior in GNAT - Ensuring Safety

The default behavior in GNAT ensures elaboration safety. In its default mode GNAT implements
the rule we previously described as the right approach. Let’s restate it:

• If a unit has elaboration code that can directly or indirectly make a call to a subprogram in
a with’ed unit, or instantiate a generic package in a with’ed unit, then if the with’ed unit
does not have pragma Pure or Preelaborate, then the client should have an Elaborate_All

pragma for the with’ed unit.

In the case of instantiating a generic subprogram, it is always sufficient to have only an
Elaborate pragma for the with’ed unit.

316 GNAT User’s Guide

By following this rule a client is assured that calls and instantiations can be made without risk
of an exception.

In this mode GNAT traces all calls that are potentially made from elaboration code, and
puts in any missing implicit Elaborate and Elaborate_All pragmas. The advantage of this
approach is that no elaboration problems are possible if the binder can find an elaboration order
that is consistent with these implicit Elaborate and Elaborate_All pragmas. The disadvantage
of this approach is that no such order may exist.

If the binder does not generate any diagnostics, then it means that it has found an elaboration
order that is guaranteed to be safe. However, the binder may still be relying on implicitly
generated Elaborate and Elaborate_All pragmas so portability to other compilers than GNAT
is not guaranteed.

If it is important to guarantee portability, then the compilations should use the ‘-gnatwl’
(warn on elaboration problems) switch. This will cause warning messages to be generated
indicating the missing Elaborate and Elaborate_All pragmas. Consider the following source
program:� �

with k;

package j is

m : integer := k.r;

end;
 	
where it is clear that there should be a pragma Elaborate_All for unit k. An implicit pragma
will be generated, and it is likely that the binder will be able to honor it. However, if you want
to port this program to some other Ada compiler than GNAT. it is safer to include the pragma
explicitly in the source. If this unit is compiled with the ‘-gnatwl’ switch, then the compiler
outputs a warning:� �

1. with k;

2. package j is

3. m : integer := k.r;

|

>>> warning: call to "r" may raise Program_Error

>>> warning: missing pragma Elaborate_All for "k"

4. end;
 	
and these warnings can be used as a guide for supplying manually the missing pragmas. It
is usually a bad idea to use this warning option during development. That’s because it will
warn you when you need to put in a pragma, but cannot warn you when it is time to take it
out. So the use of pragma Elaborate_All may lead to unnecessary dependencies and even false
circularities.

This default mode is more restrictive than the Ada Reference Manual, and it is possible to
construct programs which will compile using the dynamic model described there, but will run
into a circularity using the safer static model we have described.

Of course any Ada compiler must be able to operate in a mode consistent with the require-
ments of the Ada Reference Manual, and in particular must have the capability of implementing
the standard dynamic model of elaboration with run-time checks.

In GNAT, this standard mode can be achieved either by the use of the ‘-gnatE’ switch on
the compiler (gcc or gnatmake) command, or by the use of the configuration pragma:

pragma Elaboration_Checks (DYNAMIC);

Either approach will cause the unit affected to be compiled using the standard dynamic run-
time elaboration checks described in the Ada Reference Manual. The static model is generally

Appendix C: Elaboration Order Handling in GNAT 317

preferable, since it is clearly safer to rely on compile and link time checks rather than run-time
checks. However, in the case of legacy code, it may be difficult to meet the requirements of
the static model. This issue is further discussed in Section C.10 [What to Do If the Default
Elaboration Behavior Fails], page 322.

Note that the static model provides a strict subset of the allowed behavior and programs of
the Ada Reference Manual, so if you do adhere to the static model and no circularities exist,
then you are assured that your program will work using the dynamic model, providing that you
remove any pragma Elaborate statements from the source.

C.7 Treatment of Pragma Elaborate

The use of pragma Elaborate should generally be avoided in Ada 95 and Ada 2005 programs,
since there is no guarantee that transitive calls will be properly handled. Indeed at one point,
this pragma was placed in Annex J (Obsolescent Features), on the grounds that it is never
useful.

Now that’s a bit restrictive. In practice, the case in which pragma Elaborate is useful is
when the caller knows that there are no transitive calls, or that the called unit contains all
necessary transitive pragma Elaborate statements, and legacy code often contains such uses.

Strictly speaking the static mode in GNAT should ignore such pragmas, since there is no
assurance at compile time that the necessary safety conditions are met. In practice, this would
cause GNAT to be incompatible with correctly written Ada 83 code that had all necessary
pragma Elaborate statements in place. Consequently, we made the decision that GNAT in its
default mode will believe that if it encounters a pragma Elaborate then the programmer knows
what they are doing, and it will trust that no elaboration errors can occur.

The result of this decision is two-fold. First to be safe using the static mode, you should
remove all pragma Elaborate statements. Second, when fixing circularities in existing code, you
can selectively use pragma Elaborate statements to convince the static mode of GNAT that it
need not generate an implicit pragma Elaborate_All statement.

When using the static mode with ‘-gnatwl’, any use of pragma Elaborate will generate a
warning about possible problems.

C.8 Elaboration Issues for Library Tasks

In this section we examine special elaboration issues that arise for programs that declare library
level tasks.

Generally the model of execution of an Ada program is that all units are elaborated, and
then execution of the program starts. However, the declaration of library tasks definitely does
not fit this model. The reason for this is that library tasks start as soon as they are declared
(more precisely, as soon as the statement part of the enclosing package body is reached), that
is to say before elaboration of the program is complete. This means that if such a task calls a
subprogram, or an entry in another task, the callee may or may not be elaborated yet, and in
the standard Reference Manual model of dynamic elaboration checks, you can even get timing
dependent Program Error exceptions, since there can be a race between the elaboration code
and the task code.

The static model of elaboration in GNAT seeks to avoid all such dynamic behavior, by being
conservative, and the conservative approach in this particular case is to assume that all the code
in a task body is potentially executed at elaboration time if a task is declared at the library
level.

This can definitely result in unexpected circularities. Consider the following example

package Decls is

task Lib_Task is

318 GNAT User’s Guide

entry Start;

end Lib_Task;

type My_Int is new Integer;

function Ident (M : My_Int) return My_Int;

end Decls;

with Utils;

package body Decls is

task body Lib_Task is

begin

accept Start;

Utils.Put_Val (2);

end Lib_Task;

function Ident (M : My_Int) return My_Int is

begin

return M;

end Ident;

end Decls;

with Decls;

package Utils is

procedure Put_Val (Arg : Decls.My_Int);

end Utils;

with Text_IO;

package body Utils is

procedure Put_Val (Arg : Decls.My_Int) is

begin

Text_IO.Put_Line (Decls.My_Int’Image (Decls.Ident (Arg)));

end Put_Val;

end Utils;

with Decls;

procedure Main is

begin

Decls.Lib_Task.Start;

end;

If the above example is compiled in the default static elaboration mode, then a circularity occurs.
The circularity comes from the call Utils.Put_Val in the task body of Decls.Lib_Task. Since
this call occurs in elaboration code, we need an implicit pragma Elaborate_All for Utils. This
means that not only must the spec and body of Utils be elaborated before the body of Decls,
but also the spec and body of any unit that is with’ed by the body of Utils must also be
elaborated before the body of Decls. This is the transitive implication of pragma Elaborate_

All and it makes sense, because in general the body of Put_Val might have a call to something
in a with’ed unit.

In this case, the body of Utils (actually its spec) with’s Decls. Unfortunately this means
that the body of Decls must be elaborated before itself, in case there is a call from the body of
Utils.

Here is the exact chain of events we are worrying about:

1. In the body of Decls a call is made from within the body of a library task to a subprogram
in the package Utils. Since this call may occur at elaboration time (given that the task is
activated at elaboration time), we have to assume the worst, i.e., that the call does happen
at elaboration time.

2. This means that the body and spec of Util must be elaborated before the body of Decls
so that this call does not cause an access before elaboration.

Appendix C: Elaboration Order Handling in GNAT 319

3. Within the body of Util, specifically within the body of Util.Put_Val there may be calls
to any unit with’ed by this package.

4. One such with’ed package is package Decls, so there might be a call to a subprogram in
Decls in Put_Val. In fact there is such a call in this example, but we would have to assume
that there was such a call even if it were not there, since we are not supposed to write the
body of Decls knowing what is in the body of Utils; certainly in the case of the static
elaboration model, the compiler does not know what is in other bodies and must assume
the worst.

5. This means that the spec and body of Decls must also be elaborated before we elaborate
the unit containing the call, but that unit is Decls! This means that the body of Decls
must be elaborated before itself, and that’s a circularity.

Indeed, if you add an explicit pragma Elaborate_All for Utils in the body of Decls you will
get a true Ada Reference Manual circularity that makes the program illegal.

In practice, we have found that problems with the static model of elaboration in existing
code often arise from library tasks, so we must address this particular situation.

Note that if we compile and run the program above, using the dynamic model of elaboration
(that is to say use the ‘-gnatE’ switch), then it compiles, binds, links, and runs, printing the
expected result of 2. Therefore in some sense the circularity here is only apparent, and we need
to capture the properties of this program that distinguish it from other library-level tasks that
have real elaboration problems.

We have four possible answers to this question:

• Use the dynamic model of elaboration.

If we use the ‘-gnatE’ switch, then as noted above, the program works. Why is this? If
we examine the task body, it is apparent that the task cannot proceed past the accept

statement until after elaboration has been completed, because the corresponding entry call
comes from the main program, not earlier. This is why the dynamic model works here. But
that’s really giving up on a precise analysis, and we prefer to take this approach only if we
cannot solve the problem in any other manner. So let us examine two ways to reorganize
the program to avoid the potential elaboration problem.

• Split library tasks into separate packages.

Write separate packages, so that library tasks are isolated from other declarations as much
as possible. Let us look at a variation on the above program.

package Decls1 is

task Lib_Task is

entry Start;

end Lib_Task;

end Decls1;

with Utils;

package body Decls1 is

task body Lib_Task is

begin

accept Start;

Utils.Put_Val (2);

end Lib_Task;

end Decls1;

package Decls2 is

type My_Int is new Integer;

function Ident (M : My_Int) return My_Int;

end Decls2;

with Utils;

package body Decls2 is

320 GNAT User’s Guide

function Ident (M : My_Int) return My_Int is

begin

return M;

end Ident;

end Decls2;

with Decls2;

package Utils is

procedure Put_Val (Arg : Decls2.My_Int);

end Utils;

with Text_IO;

package body Utils is

procedure Put_Val (Arg : Decls2.My_Int) is

begin

Text_IO.Put_Line (Decls2.My_Int’Image (Decls2.Ident (Arg)));

end Put_Val;

end Utils;

with Decls1;

procedure Main is

begin

Decls1.Lib_Task.Start;

end;

All we have done is to split Decls into two packages, one containing the library task, and
one containing everything else. Now there is no cycle, and the program compiles, binds,
links and executes using the default static model of elaboration.

• Declare separate task types.

A significant part of the problem arises because of the use of the single task declaration
form. This means that the elaboration of the task type, and the elaboration of the task
itself (i.e. the creation of the task) happen at the same time. A good rule of style in Ada
is to always create explicit task types. By following the additional step of placing task
objects in separate packages from the task type declaration, many elaboration problems are
avoided. Here is another modified example of the example program:

package Decls is

task type Lib_Task_Type is

entry Start;

end Lib_Task_Type;

type My_Int is new Integer;

function Ident (M : My_Int) return My_Int;

end Decls;

with Utils;

package body Decls is

task body Lib_Task_Type is

begin

accept Start;

Utils.Put_Val (2);

end Lib_Task_Type;

function Ident (M : My_Int) return My_Int is

begin

return M;

end Ident;

end Decls;

with Decls;

package Utils is

procedure Put_Val (Arg : Decls.My_Int);

Appendix C: Elaboration Order Handling in GNAT 321

end Utils;

with Text_IO;

package body Utils is

procedure Put_Val (Arg : Decls.My_Int) is

begin

Text_IO.Put_Line (Decls.My_Int’Image (Decls.Ident (Arg)));

end Put_Val;

end Utils;

with Decls;

package Declst is

Lib_Task : Decls.Lib_Task_Type;

end Declst;

with Declst;

procedure Main is

begin

Declst.Lib_Task.Start;

end;

What we have done here is to replace the task declaration in package Decls with a task

type declaration. Then we introduce a separate package Declst to contain the actual task
object. This separates the elaboration issues for the task type declaration, which causes no
trouble, from the elaboration issues of the task object, which is also unproblematic, since it
is now independent of the elaboration of Utils. This separation of concerns also corresponds
to a generally sound engineering principle of separating declarations from instances. This
version of the program also compiles, binds, links, and executes, generating the expected
output.

• Use No Entry Calls In Elaboration Code restriction.

The previous two approaches described how a program can be restructured to avoid the
special problems caused by library task bodies. in practice, however, such restructuring
may be difficult to apply to existing legacy code, so we must consider solutions that do not
require massive rewriting.

Let us consider more carefully why our original sample program works under the dynamic
model of elaboration. The reason is that the code in the task body blocks immediately
on the accept statement. Now of course there is nothing to prohibit elaboration code
from making entry calls (for example from another library level task), so we cannot tell in
isolation that the task will not execute the accept statement during elaboration.

However, in practice it is very unusual to see elaboration code make any entry calls, and
the pattern of tasks starting at elaboration time and then immediately blocking on accept

or select statements is very common. What this means is that the compiler is being too
pessimistic when it analyzes the whole package body as though it might be executed at
elaboration time.

If we know that the elaboration code contains no entry calls, (a very safe assumption most
of the time, that could almost be made the default behavior), then we can compile all units
of the program under control of the following configuration pragma:

pragma Restrictions (No_Entry_Calls_In_Elaboration_Code);

This pragma can be placed in the ‘gnat.adc’ file in the usual manner. If we take our original
unmodified program and compile it in the presence of a ‘gnat.adc’ containing the above
pragma, then once again, we can compile, bind, link, and execute, obtaining the expected
result. In the presence of this pragma, the compiler does not trace calls in a task body,
that appear after the first accept or select statement, and therefore does not report a
potential circularity in the original program.

322 GNAT User’s Guide

The compiler will check to the extent it can that the above restriction is not violated, but
it is not always possible to do a complete check at compile time, so it is important to use
this pragma only if the stated restriction is in fact met, that is to say no task receives an
entry call before elaboration of all units is completed.

C.9 Mixing Elaboration Models

So far, we have assumed that the entire program is either compiled using the dynamic model
or static model, ensuring consistency. It is possible to mix the two models, but rules have to be
followed if this mixing is done to ensure that elaboration checks are not omitted.

The basic rule is that a unit compiled with the static model cannot be with’ed by a unit
compiled with the dynamic model. The reason for this is that in the static model, a unit assumes
that its clients guarantee to use (the equivalent of) pragma Elaborate_All so that no elaboration
checks are required in inner subprograms, and this assumption is violated if the client is compiled
with dynamic checks.

The precise rule is as follows. A unit that is compiled with dynamic checks can only with a
unit that meets at least one of the following criteria:

• The with’ed unit is itself compiled with dynamic elaboration checks (that is with the
‘-gnatE’ switch.

• The with’ed unit is an internal GNAT implementation unit from the System, Interfaces,
Ada, or GNAT hierarchies.

• The with’ed unit has pragma Preelaborate or pragma Pure.

• The with’ing unit (that is the client) has an explicit pragma Elaborate_All for the
with’ed unit.

If this rule is violated, that is if a unit with dynamic elaboration checks with’s a unit that does
not meet one of the above four criteria, then the binder (gnatbind) will issue a warning similar
to that in the following example:

warning: "x.ads" has dynamic elaboration checks and with’s

warning: "y.ads" which has static elaboration checks

These warnings indicate that the rule has been violated, and that as a result elaboration checks
may be missed in the resulting executable file. This warning may be suppressed using the ‘-ws’
binder switch in the usual manner.

One useful application of this mixing rule is in the case of a subsystem which does not itself
with units from the remainder of the application. In this case, the entire subsystem can be
compiled with dynamic checks to resolve a circularity in the subsystem, while allowing the main
application that uses this subsystem to be compiled using the more reliable default static model.

C.10 What to Do If the Default Elaboration Behavior Fails

If the binder cannot find an acceptable order, it outputs detailed diagnostics. For example:

error: elaboration circularity detected

info: "proc (body)" must be elaborated before "pack (body)"

info: reason: Elaborate_All probably needed in unit "pack (body)"

info: recompile "pack (body)" with -gnatwl

info: for full details

info: "proc (body)"

info: is needed by its spec:

info: "proc (spec)"

info: which is withed by:

info: "pack (body)"

info: "pack (body)" must be elaborated before "proc (body)"

info: reason: pragma Elaborate in unit "proc (body)"

Appendix C: Elaboration Order Handling in GNAT 323

In this case we have a cycle that the binder cannot break. On the one hand, there is an explicit
pragma Elaborate in proc for pack. This means that the body of pack must be elaborated
before the body of proc. On the other hand, there is elaboration code in pack that calls a
subprogram in proc. This means that for maximum safety, there should really be a pragma
Elaborate All in pack for proc which would require that the body of proc be elaborated before
the body of pack. Clearly both requirements cannot be satisfied. Faced with a circularity of
this kind, you have three different options.

Fix the program
The most desirable option from the point of view of long-term maintenance is to
rearrange the program so that the elaboration problems are avoided. One useful
technique is to place the elaboration code into separate child packages. Another
is to move some of the initialization code to explicitly called subprograms, where
the program controls the order of initialization explicitly. Although this is the most
desirable option, it may be impractical and involve too much modification, especially
in the case of complex legacy code.

Perform dynamic checks
If the compilations are done using the ‘-gnatE’ (dynamic elaboration check) switch,
then GNAT behaves in a quite different manner. Dynamic checks are generated for
all calls that could possibly result in raising an exception. With this switch, the
compiler does not generate implicit Elaborate or Elaborate_All pragmas. The
behavior then is exactly as specified in the Ada Reference Manual. The binder will
generate an executable program that may or may not raise Program_Error, and
then it is the programmer’s job to ensure that it does not raise an exception. Note
that it is important to compile all units with the switch, it cannot be used selectively.

Suppress checks
The drawback of dynamic checks is that they generate a significant overhead at run
time, both in space and time. If you are absolutely sure that your program cannot
raise any elaboration exceptions, and you still want to use the dynamic elabora-
tion model, then you can use the configuration pragma Suppress (Elaboration_

Check) to suppress all such checks. For example this pragma could be placed in the
‘gnat.adc’ file.

Suppress checks selectively
When you know that certain calls or instantiations in elaboration code cannot pos-
sibly lead to an elaboration error, and the binder nevertheless complains about
implicit Elaborate and Elaborate_All pragmas that lead to elaboration circular-
ities, it is possible to remove those warnings locally and obtain a program that will
bind. Clearly this can be unsafe, and it is the responsibility of the programmer to
make sure that the resulting program has no elaboration anomalies. The pragma
Suppress (Elaboration_Check) can be used with different granularity to suppress
warnings and break elaboration circularities:

• Place the pragma that names the called subprogram in the declarative part
that contains the call.

• Place the pragma in the declarative part, without naming an entity. This
disables warnings on all calls in the corresponding declarative region.

• Place the pragma in the package spec that declares the called subprogram, and
name the subprogram. This disables warnings on all elaboration calls to that
subprogram.

324 GNAT User’s Guide

• Place the pragma in the package spec that declares the called subprogram,
without naming any entity. This disables warnings on all elaboration calls to
all subprograms declared in this spec.

• Use Pragma Elaborate As previously described in section See Section C.7
[Treatment of Pragma Elaborate], page 317, GNAT in static mode assumes
that a pragma Elaborate indicates correctly that no elaboration checks are re-
quired on calls to the designated unit. There may be cases in which the caller
knows that no transitive calls can occur, so that a pragma Elaborate will be
sufficient in a case where pragma Elaborate_All would cause a circularity.

These five cases are listed in order of decreasing safety, and therefore require in-
creasing programmer care in their application. Consider the following program:

package Pack1 is

function F1 return Integer;

X1 : Integer;

end Pack1;

package Pack2 is

function F2 return Integer;

function Pure (x : integer) return integer;

-- pragma Suppress (Elaboration_Check, On => Pure); -- (3)

-- pragma Suppress (Elaboration_Check); -- (4)

end Pack2;

with Pack2;

package body Pack1 is

function F1 return Integer is

begin

return 100;

end F1;

Val : integer := Pack2.Pure (11); -- Elab. call (1)

begin

declare

-- pragma Suppress(Elaboration_Check, Pack2.F2); -- (1)

-- pragma Suppress(Elaboration_Check); -- (2)

begin

X1 := Pack2.F2 + 1; -- Elab. call (2)

end;

end Pack1;

with Pack1;

package body Pack2 is

function F2 return Integer is

begin

return Pack1.F1;

end F2;

function Pure (x : integer) return integer is

begin

return x ** 3 - 3 * x;

end;

end Pack2;

with Pack1, Ada.Text_IO;

procedure Proc3 is

begin

Ada.Text_IO.Put_Line(Pack1.X1’Img); -- 101

end Proc3;

In the absence of any pragmas, an attempt to bind this program produces the
following diagnostics:

Appendix C: Elaboration Order Handling in GNAT 325

error: elaboration circularity detected

info: "pack1 (body)" must be elaborated before "pack1 (body)"

info: reason: Elaborate_All probably needed in unit "pack1 (body)"

info: recompile "pack1 (body)" with -gnatwl for full details

info: "pack1 (body)"

info: must be elaborated along with its spec:

info: "pack1 (spec)"

info: which is withed by:

info: "pack2 (body)"

info: which must be elaborated along with its spec:

info: "pack2 (spec)"

info: which is withed by:

info: "pack1 (body)"

The sources of the circularity are the two calls to Pack2.Pure and Pack2.F2 in the
body of Pack1. We can see that the call to F2 is safe, even though F2 calls F1,
because the call appears after the elaboration of the body of F1. Therefore the
pragma (1) is safe, and will remove the warning on the call. It is also possible to
use pragma (2) because there are no other potentially unsafe calls in the block.

The call to Pure is safe because this function does not depend on the state of Pack2.
Therefore any call to this function is safe, and it is correct to place pragma (3) in
the corresponding package spec.

Finally, we could place pragma (4) in the spec of Pack2 to disable warnings on all
calls to functions declared therein. Note that this is not necessarily safe, and requires
more detailed examination of the subprogram bodies involved. In particular, a call
to F2 requires that F1 be already elaborated.

It is hard to generalize on which of these four approaches should be taken. Obviously if it is
possible to fix the program so that the default treatment works, this is preferable, but this may
not always be practical. It is certainly simple enough to use ‘-gnatE’ but the danger in this
case is that, even if the GNAT binder finds a correct elaboration order, it may not always do
so, and certainly a binder from another Ada compiler might not. A combination of testing and
analysis (for which the warnings generated with the ‘-gnatwl’ switch can be useful) must be
used to ensure that the program is free of errors. One switch that is useful in this testing is
the ‘-p (pessimistic elaboration order)’ switch for gnatbind. Normally the binder tries to
find an order that has the best chance of avoiding elaboration problems. However, if this switch
is used, the binder plays a devil’s advocate role, and tries to choose the order that has the best
chance of failing. If your program works even with this switch, then it has a better chance of
being error free, but this is still not a guarantee.

For an example of this approach in action, consider the C-tests (executable tests) from the
ACVC suite. If these are compiled and run with the default treatment, then all but one of them
succeed without generating any error diagnostics from the binder. However, there is one test
that fails, and this is not surprising, because the whole point of this test is to ensure that the
compiler can handle cases where it is impossible to determine a correct order statically, and it
checks that an exception is indeed raised at run time.

This one test must be compiled and run using the ‘-gnatE’ switch, and then it passes.
Alternatively, the entire suite can be run using this switch. It is never wrong to run with the
dynamic elaboration switch if your code is correct, and we assume that the C-tests are indeed
correct (it is less efficient, but efficiency is not a factor in running the ACVC tests.)

C.11 Elaboration for Access-to-Subprogram Values

Access-to-subprogram types (introduced in Ada 95) complicate the handling of elaboration. The
trouble is that it becomes impossible to tell at compile time which procedure is being called.

326 GNAT User’s Guide

This means that it is not possible for the binder to analyze the elaboration requirements in this
case.

If at the point at which the access value is created (i.e., the evaluation of P’Access for
a subprogram P), the body of the subprogram is known to have been elaborated, then the
access value is safe, and its use does not require a check. This may be achieved by appropriate
arrangement of the order of declarations if the subprogram is in the current unit, or, if the
subprogram is in another unit, by using pragma Pure, Preelaborate, or Elaborate_Body on
the referenced unit.

If the referenced body is not known to have been elaborated at the point the access value
is created, then any use of the access value must do a dynamic check, and this dynamic check
will fail and raise a Program_Error exception if the body has not been elaborated yet. GNAT
will generate the necessary checks, and in addition, if the ‘-gnatwl’ switch is set, will generate
warnings that such checks are required.

The use of dynamic dispatching for tagged types similarly generates a requirement for dy-
namic checks, and premature calls to any primitive operation of a tagged type before the body
of the operation has been elaborated, will result in the raising of Program_Error.

C.12 Summary of Procedures for Elaboration Control

First, compile your program with the default options, using none of the special elaboration
control switches. If the binder successfully binds your program, then you can be confident that,
apart from issues raised by the use of access-to-subprogram types and dynamic dispatching, the
program is free of elaboration errors. If it is important that the program be portable, then use
the ‘-gnatwl’ switch to generate warnings about missing Elaborate or Elaborate_All pragmas,
and supply the missing pragmas.

If the program fails to bind using the default static elaboration handling, then you can fix
the program to eliminate the binder message, or recompile the entire program with the ‘-gnatE’
switch to generate dynamic elaboration checks, and, if you are sure there really are no elaboration
problems, use a global pragma Suppress (Elaboration_Check).

C.13 Other Elaboration Order Considerations

This section has been entirely concerned with the issue of finding a valid elaboration order, as
defined by the Ada Reference Manual. In a case where several elaboration orders are valid, the
task is to find one of the possible valid elaboration orders (and the static model in GNAT will
ensure that this is achieved).

The purpose of the elaboration rules in the Ada Reference Manual is to make sure that no
entity is accessed before it has been elaborated. For a subprogram, this means that the spec
and body must have been elaborated before the subprogram is called. For an object, this means
that the object must have been elaborated before its value is read or written. A violation of
either of these two requirements is an access before elaboration order, and this section has been
all about avoiding such errors.

In the case where more than one order of elaboration is possible, in the sense that access
before elaboration errors are avoided, then any one of the orders is “correct” in the sense that
it meets the requirements of the Ada Reference Manual, and no such error occurs.

However, it may be the case for a given program, that there are constraints on the order of
elaboration that come not from consideration of avoiding elaboration errors, but rather from
extra-lingual logic requirements. Consider this example:

with Init_Constants;

package Constants is

X : Integer := 0;

Y : Integer := 0;

Appendix C: Elaboration Order Handling in GNAT 327

end Constants;

package Init_Constants is

procedure P; -- require a body

end Init_Constants;

with Constants;

package body Init_Constants is

procedure P is begin null; end;

begin

Constants.X := 3;

Constants.Y := 4;

end Init_Constants;

with Constants;

package Calc is

Z : Integer := Constants.X + Constants.Y;

end Calc;

with Calc;

with Text_IO; use Text_IO;

procedure Main is

begin

Put_Line (Calc.Z’Img);

end Main;

In this example, there is more than one valid order of elaboration. For example both the following
are correct orders:

Init_Constants spec

Constants spec

Calc spec

Init_Constants body

Main body

and

Init_Constants spec

Init_Constants body

Constants spec

Calc spec

Main body

There is no language rule to prefer one or the other, both are correct from an order of elaboration
point of view. But the programmatic effects of the two orders are very different. In the first,
the elaboration routine of Calc initializes Z to zero, and then the main program runs with this
value of zero. But in the second order, the elaboration routine of Calc runs after the body of
Init Constants has set X and Y and thus Z is set to 7 before Main runs.

One could perhaps by applying pretty clever non-artificial intelligence to the situation guess
that it is more likely that the second order of elaboration is the one desired, but there is no
formal linguistic reason to prefer one over the other. In fact in this particular case, GNAT will
prefer the second order, because of the rule that bodies are elaborated as soon as possible, but
it’s just luck that this is what was wanted (if indeed the second order was preferred).

If the program cares about the order of elaboration routines in a case like this, it is important
to specify the order required. In this particular case, that could have been achieved by adding
to the spec of Calc:

pragma Elaborate_All (Constants);

which requires that the body (if any) and spec of Constants, as well as the body and spec of
any unit with’ed by Constants be elaborated before Calc is elaborated.

Clearly no automatic method can always guess which alternative you require, and if you are
working with legacy code that had constraints of this kind which were not properly specified

328 GNAT User’s Guide

by adding Elaborate or Elaborate_All pragmas, then indeed it is possible that two different
compilers can choose different orders.

However, GNAT does attempt to diagnose the common situation where there are uninitialized
variables in the visible part of a package spec, and the corresponding package body has an
elaboration block that directly or indirectly initialized one or more of these variables. This is
the situation in which a pragma Elaborate Body is usually desirable, and GNAT will generate
a warning that suggests this addition if it detects this situation.

The gnatbind ‘-p’ switch may be useful in smoking out problems. This switch causes bodies
to be elaborated as late as possible instead of as early as possible. In the example above, it
would have forced the choice of the first elaboration order. If you get different results when
using this switch, and particularly if one set of results is right, and one is wrong as far as you are
concerned, it shows that you have some missing Elaborate pragmas. For the example above,
we have the following output:

gnatmake -f -q main

main

7

gnatmake -f -q main -bargs -p

main

0

It is of course quite unlikely that both these results are correct, so it is up to you in a case
like this to investigate the source of the difference, by looking at the two elaboration orders
that are chosen, and figuring out which is correct, and then adding the necessary Elaborate or
Elaborate_All pragmas to ensure the desired order.

Appendix D: Conditional Compilation 329

Appendix D Conditional Compilation

It is often necessary to arrange for a single source program to serve multiple purposes, where
it is compiled in different ways to achieve these different goals. Some examples of the need for
this feature are

• Adapting a program to a different hardware environment

• Adapting a program to a different target architecture

• Turning debugging features on and off

• Arranging for a program to compile with different compilers

In C, or C++, the typical approach would be to use the preprocessor that is defined as part of
the language. The Ada language does not contain such a feature. This is not an oversight, but
rather a very deliberate design decision, based on the experience that overuse of the preprocess-
ing features in C and C++ can result in programs that are extremely difficult to maintain. For
example, if we have ten switches that can be on or off, this means that there are a thousand
separate programs, any one of which might not even be syntactically correct, and even if syn-
tactically correct, the resulting program might not work correctly. Testing all combinations can
quickly become impossible.

Nevertheless, the need to tailor programs certainly exists, and in this Appendix we will
discuss how this can be achieved using Ada in general, and GNAT in particular.

D.1 Use of Boolean Constants

In the case where the difference is simply which code sequence is executed, the cleanest solution
is to use Boolean constants to control which code is executed.

FP_Initialize_Required : constant Boolean := True;

...

if FP_Initialize_Required then

...

end if;

Not only will the code inside the if statement not be executed if the constant Boolean is False,
but it will also be completely deleted from the program. However, the code is only deleted after
the if statement has been checked for syntactic and semantic correctness. (In contrast, with
preprocessors the code is deleted before the compiler ever gets to see it, so it is not checked until
the switch is turned on.)

Typically the Boolean constants will be in a separate package, something like:
package Config is

FP_Initialize_Required : constant Boolean := True;

Reset_Available : constant Boolean := False;

...

end Config;

The Config package exists in multiple forms for the various targets, with an appropriate script
selecting the version of Config needed. Then any other unit requiring conditional compilation
can do a with of Config to make the constants visible.

D.2 Debugging - A Special Case

A common use of conditional code is to execute statements (for example dynamic checks, or
output of intermediate results) under control of a debug switch, so that the debugging behavior
can be turned on and off. This can be done using a Boolean constant to control whether the
code is active:

if Debugging then

Put_Line ("got to the first stage!");

end if;

330 GNAT User’s Guide

or
if Debugging and then Temperature > 999.0 then

raise Temperature_Crazy;

end if;

Since this is a common case, there are special features to deal with this in a convenient manner.
For the case of tests, Ada 2005 has added a pragma Assert that can be used for such tests.
This pragma is modeled on the Assert pragma that has always been available in GNAT, so
this feature may be used with GNAT even if you are not using Ada 2005 features. The use of
pragma Assert is described in Section “Pragma Assert” in GNAT Reference Manual, but as an
example, the last test could be written:

pragma Assert (Temperature <= 999.0, "Temperature Crazy");

or simply
pragma Assert (Temperature <= 999.0);

In both cases, if assertions are active and the temperature is excessive, the exception Assert_

Failure will be raised, with the given string in the first case or a string indicating the location
of the pragma in the second case used as the exception message.

You can turn assertions on and off by using the Assertion_Policy pragma. This is an Ada
2005 pragma which is implemented in all modes by GNAT, but only in the latest versions of
GNAT which include Ada 2005 capability. Alternatively, you can use the ‘-gnata’ switch to
enable assertions from the command line (this is recognized by all versions of GNAT).

For the example above with the Put_Line, the GNAT-specific pragma Debug can be used:
pragma Debug (Put_Line ("got to the first stage!"));

If debug pragmas are enabled, the argument, which must be of the form of a procedure call, is
executed (in this case, Put_Line will be called). Only one call can be present, but of course a
special debugging procedure containing any code you like can be included in the program and
then called in a pragma Debug argument as needed.

One advantage of pragma Debug over the if Debugging then construct is that pragma Debug
can appear in declarative contexts, such as at the very beginning of a procedure, before local
declarations have been elaborated.

Debug pragmas are enabled using either the ‘-gnata’ switch that also controls assertions, or
with a separate Debug Policy pragma. The latter pragma is new in the Ada 2005 versions of
GNAT (but it can be used in Ada 95 and Ada 83 programs as well), and is analogous to pragma
Assertion_Policy to control assertions.

Assertion_Policy and Debug_Policy are configuration pragmas, and thus they can appear
in ‘gnat.adc’ if you are not using a project file, or in the file designated to contain configuration
pragmas in a project file. They then apply to all subsequent compilations. In practice the use
of the ‘-gnata’ switch is often the most convenient method of controlling the status of these
pragmas.

Note that a pragma is not a statement, so in contexts where a statement sequence is required,
you can’t just write a pragma on its own. You have to add a null statement.

if ... then

... -- some statements

else

pragma Assert (Num_Cases < 10);

null;

end if;

D.3 Conditionalizing Declarations

In some cases, it may be necessary to conditionalize declarations to meet different requirements.
For example we might want a bit string whose length is set to meet some hardware message
requirement.

Appendix D: Conditional Compilation 331

In some cases, it may be possible to do this using declare blocks controlled by conditional
constants:

if Small_Machine then

declare

X : Bit_String (1 .. 10);

begin

...

end;

else

declare

X : Large_Bit_String (1 .. 1000);

begin

...

end;

end if;

Note that in this approach, both declarations are analyzed by the compiler so this can only be
used where both declarations are legal, even though one of them will not be used.

Another approach is to define integer constants, e.g. Bits_Per_Word, or Boolean constants,
e.g. Little_Endian, and then write declarations that are parameterized by these constants. For
example

for Rec use

Field1 at 0 range Boolean’Pos (Little_Endian) * 10 .. Bits_Per_Word;

end record;

If Bits_Per_Word is set to 32, this generates either

for Rec use

Field1 at 0 range 0 .. 32;

end record;

for the big endian case, or

for Rec use record

Field1 at 0 range 10 .. 32;

end record;

for the little endian case. Since a powerful subset of Ada expression notation is usable for
creating static constants, clever use of this feature can often solve quite difficult problems in
conditionalizing compilation (note incidentally that in Ada 95, the little endian constant was
introduced as System.Default_Bit_Order, so you do not need to define this one yourself).

D.4 Use of Alternative Implementations

In some cases, none of the approaches described above are adequate. This can occur for example
if the set of declarations required is radically different for two different configurations.

In this situation, the official Ada way of dealing with conditionalizing such code is to write
separate units for the different cases. As long as this does not result in excessive duplication of
code, this can be done without creating maintenance problems. The approach is to share common
code as far as possible, and then isolate the code and declarations that are different. Subunits
are often a convenient method for breaking out a piece of a unit that is to be conditionalized,
with separate files for different versions of the subunit for different targets, where the build script
selects the right one to give to the compiler.

As an example, consider a situation where a new feature in Ada 2005 allows something to
be done in a really nice way. But your code must be able to compile with an Ada 95 compiler.
Conceptually you want to say:

if Ada_2005 then

... neat Ada 2005 code

else

... not quite as neat Ada 95 code

end if;

332 GNAT User’s Guide

where Ada_2005 is a Boolean constant.

But this won’t work when Ada_2005 is set to False, since the then clause will be illegal for
an Ada 95 compiler. (Recall that although such unreachable code would eventually be deleted
by the compiler, it still needs to be legal. If it uses features introduced in Ada 2005, it will be
illegal in Ada 95.)

So instead we write

procedure Insert is separate;

Then we have two files for the subunit Insert, with the two sets of code. If the package
containing this is called File_Queries, then we might have two files

• ‘file_queries-insert-2005.adb’

• ‘file_queries-insert-95.adb’

and the build script renames the appropriate file to

file_queries-insert.adb

and then carries out the compilation.

This can also be done with project files’ naming schemes. For example:

For Body ("File_Queries.Insert") use "file_queries-insert-2005.ada";

Note also that with project files it is desirable to use a different extension than ‘ads’ / ‘adb’
for alternative versions. Otherwise a naming conflict may arise through another commonly used
feature: to declare as part of the project a set of directories containing all the sources obeying
the default naming scheme.

The use of alternative units is certainly feasible in all situations, and for example the Ada part
of the GNAT run-time is conditionalized based on the target architecture using this approach.
As a specific example, consider the implementation of the AST feature in VMS. There is one
spec:

s-asthan.ads

which is the same for all architectures, and three bodies:

‘s-asthan.adb’
used for all non-VMS operating systems

‘s-asthan-vms-alpha.adb’
used for VMS on the Alpha

‘s-asthan-vms-ia64.adb’
used for VMS on the ia64

The dummy version ‘s-asthan.adb’ simply raises exceptions noting that this operating system
feature is not available, and the two remaining versions interface with the corresponding ver-
sions of VMS to provide VMS-compatible AST handling. The GNAT build script knows the
architecture and operating system, and automatically selects the right version, renaming it if
necessary to ‘s-asthan.adb’ before the run-time build.

Another style for arranging alternative implementations is through Ada’s access-to-
subprogram facility. In case some functionality is to be conditionally included, you can declare
an access-to-procedure variable Ref that is initialized to designate a “do nothing” procedure,
and then invoke Ref.all when appropriate. In some library package, set Ref to Proc’Access

for some procedure Proc that performs the relevant processing. The initialization only occurs
if the library package is included in the program. The same idea can also be implemented using
tagged types and dispatching calls.

Appendix D: Conditional Compilation 333

D.5 Preprocessing

Although it is quite possible to conditionalize code without the use of C-style preprocessing,
as described earlier in this section, it is nevertheless convenient in some cases to use the C
approach. Moreover, older Ada compilers have often provided some preprocessing capability, so
legacy code may depend on this approach, even though it is not standard.

To accommodate such use, GNAT provides a preprocessor (modeled to a large extent on the
various preprocessors that have been used with legacy code on other compilers, to enable easier
transition).

The preprocessor may be used in two separate modes. It can be used quite separately from the
compiler, to generate a separate output source file that is then fed to the compiler as a separate
step. This is the gnatprep utility, whose use is fully described in Chapter 17 [Preprocessing
Using gnatprep], page 221.

The preprocessing language allows such constructs as
#if DEBUG or PRIORITY > 4 then

bunch of declarations

#else

completely different bunch of declarations

#end if;

The values of the symbols DEBUG and PRIORITY can be defined either on the command line or
in a separate file.

The other way of running the preprocessor is even closer to the C style and often more
convenient. In this approach the preprocessing is integrated into the compilation process. The
compiler is fed the preprocessor input which includes #if lines etc, and then the compiler carries
out the preprocessing internally and processes the resulting output. For more details on this
approach, see Section 3.2.17 [Integrated Preprocessing], page 76.

Appendix E: Inline Assembler 335

Appendix E Inline Assembler

If you need to write low-level software that interacts directly with the hardware, Ada provides
two ways to incorporate assembly language code into your program. First, you can import
and invoke external routines written in assembly language, an Ada feature fully supported by
GNAT. However, for small sections of code it may be simpler or more efficient to include as-
sembly language statements directly in your Ada source program, using the facilities of the
implementation-defined package System.Machine_Code, which incorporates the gcc Inline As-
sembler. The Inline Assembler approach offers a number of advantages, including the following:

• No need to use non-Ada tools

• Consistent interface over different targets

• Automatic usage of the proper calling conventions

• Access to Ada constants and variables

• Definition of intrinsic routines

• Possibility of inlining a subprogram comprising assembler code

• Code optimizer can take Inline Assembler code into account

This chapter presents a series of examples to show you how to use the Inline Assembler.
Although it focuses on the Intel x86, the general approach applies also to other processors. It is
assumed that you are familiar with Ada and with assembly language programming.

E.1 Basic Assembler Syntax

The assembler used by GNAT and gcc is based not on the Intel assembly language, but rather on
a language that descends from the AT&T Unix assembler as (and which is often referred to as
“AT&T syntax”). The following table summarizes the main features of as syntax and points out
the differences from the Intel conventions. See the gcc as and gas (an as macro pre-processor)
documentation for further information.

Register names
gcc / as: Prefix with “%”; for example %eax
Intel: No extra punctuation; for example eax

Immediate operand
gcc / as: Prefix with “$”; for example $4
Intel: No extra punctuation; for example 4

Address gcc / as: Prefix with “$”; for example $loc
Intel: No extra punctuation; for example loc

Memory contents
gcc / as: No extra punctuation; for example loc
Intel: Square brackets; for example [loc]

Register contents
gcc / as: Parentheses; for example (%eax)
Intel: Square brackets; for example [eax]

Hexadecimal numbers
gcc / as: Leading “0x” (C language syntax); for example 0xA0
Intel: Trailing “h”; for example A0h

Operand size
gcc / as: Explicit in op code; for example movw to move a 16-bit word
Intel: Implicit, deduced by assembler; for example mov

336 GNAT User’s Guide

Instruction repetition
gcc / as: Split into two lines; for example
rep

stosl

Intel: Keep on one line; for example rep stosl

Order of operands
gcc / as: Source first; for example movw $4, %eax

Intel: Destination first; for example mov eax, 4

E.2 A Simple Example of Inline Assembler

The following example will generate a single assembly language statement, nop, which does
nothing. Despite its lack of run-time effect, the example will be useful in illustrating the basics
of the Inline Assembler facility.

with System.Machine_Code; use System.Machine_Code;

procedure Nothing is

begin

Asm ("nop");

end Nothing;

Asm is a procedure declared in package System.Machine_Code; here it takes one parameter,
a template string that must be a static expression and that will form the generated instruction.
Asm may be regarded as a compile-time procedure that parses the template string and additional
parameters (none here), from which it generates a sequence of assembly language instructions.

The examples in this chapter will illustrate several of the forms for invoking Asm; a complete
specification of the syntax is found in Section “Machine Code Insertions” in GNAT Reference
Manual.

Under the standard GNAT conventions, the Nothing procedure should be in a file named
‘nothing.adb’. You can build the executable in the usual way:

gnatmake nothing

However, the interesting aspect of this example is not its run-time behavior but rather the
generated assembly code. To see this output, invoke the compiler as follows:

gcc -c -S -fomit-frame-pointer -gnatp ‘nothing.adb’

where the options are:

-c compile only (no bind or link)

-S generate assembler listing

-fomit-frame-pointer

do not set up separate stack frames

-gnatp do not add runtime checks

This gives a human-readable assembler version of the code. The resulting file will have the
same name as the Ada source file, but with a .s extension. In our example, the file ‘nothing.s’
has the following contents:

Appendix E: Inline Assembler 337

.file "nothing.adb"

gcc2_compiled.:

___gnu_compiled_ada:

.text

.align 4

.globl __ada_nothing

__ada_nothing:

#APP

nop

#NO_APP

jmp L1

.align 2,0x90

L1:

ret

The assembly code you included is clearly indicated by the compiler, between the #APP and
#NO_APP delimiters. The character before the ’APP’ and ’NOAPP’ can differ on different targets.
For example, GNU/Linux uses ’#APP’ while on NT you will see ’/APP’.

If you make a mistake in your assembler code (such as using the wrong size modifier, or using
a wrong operand for the instruction) GNAT will report this error in a temporary file, which will
be deleted when the compilation is finished. Generating an assembler file will help in such cases,
since you can assemble this file separately using the as assembler that comes with gcc.

Assembling the file using the command
as ‘nothing.s’

will give you error messages whose lines correspond to the assembler input file, so you can easily
find and correct any mistakes you made. If there are no errors, as will generate an object file
‘nothing.out’.

E.3 Output Variables in Inline Assembler

The examples in this section, showing how to access the processor flags, illustrate how to specify
the destination operands for assembly language statements.

with Interfaces; use Interfaces;

with Ada.Text_IO; use Ada.Text_IO;

with System.Machine_Code; use System.Machine_Code;

procedure Get_Flags is

Flags : Unsigned_32;

use ASCII;

begin

Asm ("pushfl" & LF & HT & -- push flags on stack

"popl %%eax" & LF & HT & -- load eax with flags

"movl %%eax, %0", -- store flags in variable

Outputs => Unsigned_32’Asm_Output ("=g", Flags));

Put_Line ("Flags register:" & Flags’Img);

end Get_Flags;

In order to have a nicely aligned assembly listing, we have separated multiple assembler
statements in the Asm template string with linefeed (ASCII.LF) and horizontal tab (ASCII.HT)
characters. The resulting section of the assembly output file is:

#APP

pushfl

popl %eax

movl %eax, -40(%ebp)

#NO_APP

It would have been legal to write the Asm invocation as:
Asm ("pushfl popl %%eax movl %%eax, %0")

but in the generated assembler file, this would come out as:
#APP

pushfl popl %eax movl %eax, -40(%ebp)

338 GNAT User’s Guide

#NO_APP

which is not so convenient for the human reader.

We use Ada comments at the end of each line to explain what the assembler instructions
actually do. This is a useful convention.

When writing Inline Assembler instructions, you need to precede each register and variable
name with a percent sign. Since the assembler already requires a percent sign at the beginning
of a register name, you need two consecutive percent signs for such names in the Asm template
string, thus %%eax. In the generated assembly code, one of the percent signs will be stripped off.

Names such as %0, %1, %2, etc., denote input or output variables: operands you later define
using Input or Output parameters to Asm. An output variable is illustrated in the third statement
in the Asm template string:

movl %%eax, %0

The intent is to store the contents of the eax register in a variable that can be accessed in
Ada. Simply writing movl %%eax, Flags would not necessarily work, since the compiler might
optimize by using a register to hold Flags, and the expansion of the movl instruction would
not be aware of this optimization. The solution is not to store the result directly but rather to
advise the compiler to choose the correct operand form; that is the purpose of the %0 output
variable.

Information about the output variable is supplied in the Outputs parameter to Asm:
Outputs => Unsigned_32’Asm_Output ("=g", Flags));

The output is defined by the Asm_Output attribute of the target type; the general format is
Type’Asm_Output (constraint_string, variable_name)

The constraint string directs the compiler how to store/access the associated variable. In the
example

Unsigned_32’Asm_Output ("=m", Flags);

the "m" (memory) constraint tells the compiler that the variable Flags should be stored in
a memory variable, thus preventing the optimizer from keeping it in a register. In contrast,

Unsigned_32’Asm_Output ("=r", Flags);

uses the "r" (register) constraint, telling the compiler to store the variable in a register.

If the constraint is preceded by the equal character (=), it tells the compiler that the variable
will be used to store data into it.

In the Get_Flags example, we used the "g" (global) constraint, allowing the optimizer to
choose whatever it deems best.

There are a fairly large number of constraints, but the ones that are most useful (for the
Intel x86 processor) are the following:

= output constraint

g global (i.e. can be stored anywhere)

m in memory

I a constant

a use eax

b use ebx

c use ecx

d use edx

S use esi

D use edi

Appendix E: Inline Assembler 339

r use one of eax, ebx, ecx or edx

q use one of eax, ebx, ecx, edx, esi or edi

The full set of constraints is described in the gcc and as documentation; note that it is
possible to combine certain constraints in one constraint string.

You specify the association of an output variable with an assembler operand through the %n
notation, where n is a non-negative integer. Thus in

Asm ("pushfl" & LF & HT & -- push flags on stack

"popl %%eax" & LF & HT & -- load eax with flags

"movl %%eax, %0", -- store flags in variable

Outputs => Unsigned_32’Asm_Output ("=g", Flags));

%0 will be replaced in the expanded code by the appropriate operand, whatever the compiler
decided for the Flags variable.

In general, you may have any number of output variables:

• Count the operands starting at 0; thus %0, %1, etc.

• Specify the Outputs parameter as a parenthesized comma-separated list of Asm_Output
attributes

For example:

Asm ("movl %%eax, %0" & LF & HT &

"movl %%ebx, %1" & LF & HT &

"movl %%ecx, %2",

Outputs => (Unsigned_32’Asm_Output ("=g", Var_A), -- %0 = Var_A

Unsigned_32’Asm_Output ("=g", Var_B), -- %1 = Var_B

Unsigned_32’Asm_Output ("=g", Var_C))); -- %2 = Var_C

where Var_A, Var_B, and Var_C are variables in the Ada program.

As a variation on the Get_Flags example, we can use the constraints string to direct the com-
piler to store the eax register into the Flags variable, instead of including the store instruction
explicitly in the Asm template string:

with Interfaces; use Interfaces;

with Ada.Text_IO; use Ada.Text_IO;

with System.Machine_Code; use System.Machine_Code;

procedure Get_Flags_2 is

Flags : Unsigned_32;

use ASCII;

begin

Asm ("pushfl" & LF & HT & -- push flags on stack

"popl %%eax", -- save flags in eax

Outputs => Unsigned_32’Asm_Output ("=a", Flags));

Put_Line ("Flags register:" & Flags’Img);

end Get_Flags_2;

The "a" constraint tells the compiler that the Flags variable will come from the eax register.
Here is the resulting code:

#APP

pushfl

popl %eax

#NO_APP

movl %eax,-40(%ebp)

The compiler generated the store of eax into Flags after expanding the assembler code.

Actually, there was no need to pop the flags into the eax register; more simply, we could just
pop the flags directly into the program variable:

340 GNAT User’s Guide

with Interfaces; use Interfaces;

with Ada.Text_IO; use Ada.Text_IO;

with System.Machine_Code; use System.Machine_Code;

procedure Get_Flags_3 is

Flags : Unsigned_32;

use ASCII;

begin

Asm ("pushfl" & LF & HT & -- push flags on stack

"pop %0", -- save flags in Flags

Outputs => Unsigned_32’Asm_Output ("=g", Flags));

Put_Line ("Flags register:" & Flags’Img);

end Get_Flags_3;

E.4 Input Variables in Inline Assembler

The example in this section illustrates how to specify the source operands for assembly language
statements. The program simply increments its input value by 1:

with Interfaces; use Interfaces;

with Ada.Text_IO; use Ada.Text_IO;

with System.Machine_Code; use System.Machine_Code;

procedure Increment is

function Incr (Value : Unsigned_32) return Unsigned_32 is

Result : Unsigned_32;

begin

Asm ("incl %0",

Inputs => Unsigned_32’Asm_Input ("a", Value),

Outputs => Unsigned_32’Asm_Output ("=a", Result));

return Result;

end Incr;

Value : Unsigned_32;

begin

Value := 5;

Put_Line ("Value before is" & Value’Img);

Value := Incr (Value);

Put_Line ("Value after is" & Value’Img);

end Increment;

The Outputs parameter to Asm specifies that the result will be in the eax register and that
it is to be stored in the Result variable.

The Inputs parameter looks much like the Outputs parameter, but with an Asm_Input

attribute. The "=" constraint, indicating an output value, is not present.

You can have multiple input variables, in the same way that you can have more than one
output variable.

The parameter count (%0, %1) etc, now starts at the first input statement, and continues
with the output statements. When both parameters use the same variable, the compiler will
treat them as the same %n operand, which is the case here.

Just as the Outputs parameter causes the register to be stored into the target variable after
execution of the assembler statements, so does the Inputs parameter cause its variable to be
loaded into the register before execution of the assembler statements.

Thus the effect of the Asm invocation is:

1. load the 32-bit value of Value into eax

2. execute the incl %eax instruction

3. store the contents of eax into the Result variable

The resulting assembler file (with ‘-O2’ optimization) contains:

Appendix E: Inline Assembler 341

_increment__incr.1:

subl $4,%esp

movl 8(%esp),%eax

#APP

incl %eax

#NO_APP

movl %eax,%edx

movl %ecx,(%esp)

addl $4,%esp

ret

E.5 Inlining Inline Assembler Code

For a short subprogram such as the Incr function in the previous section, the overhead of
the call and return (creating / deleting the stack frame) can be significant, compared to the
amount of code in the subprogram body. A solution is to apply Ada’s Inline pragma to the
subprogram, which directs the compiler to expand invocations of the subprogram at the point(s)
of call, instead of setting up a stack frame for out-of-line calls. Here is the resulting program:

with Interfaces; use Interfaces;

with Ada.Text_IO; use Ada.Text_IO;

with System.Machine_Code; use System.Machine_Code;

procedure Increment_2 is

function Incr (Value : Unsigned_32) return Unsigned_32 is

Result : Unsigned_32;

begin

Asm ("incl %0",

Inputs => Unsigned_32’Asm_Input ("a", Value),

Outputs => Unsigned_32’Asm_Output ("=a", Result));

return Result;

end Incr;

pragma Inline (Increment);

Value : Unsigned_32;

begin

Value := 5;

Put_Line ("Value before is" & Value’Img);

Value := Increment (Value);

Put_Line ("Value after is" & Value’Img);

end Increment_2;

Compile the program with both optimization (‘-O2’) and inlining (‘-gnatn’) enabled.

The Incr function is still compiled as usual, but at the point in Increment where our function
used to be called:

pushl %edi

call _increment__incr.1

the code for the function body directly appears:

movl %esi,%eax

#APP

incl %eax

#NO_APP

movl %eax,%edx

thus saving the overhead of stack frame setup and an out-of-line call.

E.6 Other Asm Functionality

This section describes two important parameters to the Asm procedure: Clobber, which identifies
register usage; and Volatile, which inhibits unwanted optimizations.

342 GNAT User’s Guide

E.6.1 The Clobber Parameter

One of the dangers of intermixing assembly language and a compiled language such as Ada is that
the compiler needs to be aware of which registers are being used by the assembly code. In some
cases, such as the earlier examples, the constraint string is sufficient to indicate register usage
(e.g., "a" for the eax register). But more generally, the compiler needs an explicit identification
of the registers that are used by the Inline Assembly statements.

Using a register that the compiler doesn’t know about could be a side effect of an instruction
(like mull storing its result in both eax and edx). It can also arise from explicit register usage
in your assembly code; for example:

Asm ("movl %0, %%ebx" & LF & HT &

"movl %%ebx, %1",

Inputs => Unsigned_32’Asm_Input ("g", Var_In),

Outputs => Unsigned_32’Asm_Output ("=g", Var_Out));

where the compiler (since it does not analyze the Asm template string) does not know you are
using the ebx register.

In such cases you need to supply the Clobber parameter to Asm, to identify the registers that
will be used by your assembly code:

Asm ("movl %0, %%ebx" & LF & HT &

"movl %%ebx, %1",

Inputs => Unsigned_32’Asm_Input ("g", Var_In),

Outputs => Unsigned_32’Asm_Output ("=g", Var_Out),

Clobber => "ebx");

The Clobber parameter is a static string expression specifying the register(s) you are using.
Note that register names are not prefixed by a percent sign. Also, if more than one register is
used then their names are separated by commas; e.g., "eax, ebx"

The Clobber parameter has several additional uses:

1. Use “register” name cc to indicate that flags might have changed

2. Use “register” name memory if you changed a memory location

E.6.2 The Volatile Parameter

Compiler optimizations in the presence of Inline Assembler may sometimes have unwanted ef-
fects. For example, when an Asm invocation with an input variable is inside a loop, the compiler
might move the loading of the input variable outside the loop, regarding it as a one-time initial-
ization.

If this effect is not desired, you can disable such optimizations by setting the Volatile

parameter to True; for example:
Asm ("movl %0, %%ebx" & LF & HT &

"movl %%ebx, %1",

Inputs => Unsigned_32’Asm_Input ("g", Var_In),

Outputs => Unsigned_32’Asm_Output ("=g", Var_Out),

Clobber => "ebx",

Volatile => True);

By default, Volatile is set to False unless there is no Outputs parameter.

Although setting Volatile to True prevents unwanted optimizations, it will also disable
other optimizations that might be important for efficiency. In general, you should set Volatile
to True only if the compiler’s optimizations have created problems.

Appendix F: Compatibility and Porting Guide 343

Appendix F Compatibility and Porting Guide

This chapter describes the compatibility issues that may arise between GNAT and other Ada
compilation systems (including those for Ada 83), and shows how GNAT can expedite porting
applications developed in other Ada environments.

F.1 Compatibility with Ada 83

Ada 95 and Ada 2005 are highly upwards compatible with Ada 83. In particular, the design
intention was that the difficulties associated with moving from Ada 83 to Ada 95 or Ada 2005
should be no greater than those that occur when moving from one Ada 83 system to another.

However, there are a number of points at which there are minor incompatibilities. The Ada
95 Annotated Reference Manual contains full details of these issues, and should be consulted
for a complete treatment. In practice the following subsections treat the most likely issues to
be encountered.

F.1.1 Legal Ada 83 programs that are illegal in Ada 95

Some legal Ada 83 programs are illegal (i.e., they will fail to compile) in Ada 95 and thus also
in Ada 2005:

Character literals
Some uses of character literals are ambiguous. Since Ada 95 has introduced Wide_

Character as a new predefined character type, some uses of character literals that
were legal in Ada 83 are illegal in Ada 95. For example:

for Char in ’A’ .. ’Z’ loop ... end loop;

The problem is that ’A’ and ’Z’ could be from either Character or Wide_

Character. The simplest correction is to make the type explicit; e.g.:
for Char in Character range ’A’ .. ’Z’ loop ... end loop;

New reserved words
The identifiers abstract, aliased, protected, requeue, tagged, and until are
reserved in Ada 95. Existing Ada 83 code using any of these identifiers must be
edited to use some alternative name.

Freezing rules
The rules in Ada 95 are slightly different with regard to the point at which entities
are frozen, and representation pragmas and clauses are not permitted past the freeze
point. This shows up most typically in the form of an error message complaining
that a representation item appears too late, and the appropriate corrective action
is to move the item nearer to the declaration of the entity to which it refers.

A particular case is that representation pragmas cannot be applied to a subprogram
body. If necessary, a separate subprogram declaration must be introduced to which
the pragma can be applied.

Optional bodies for library packages
In Ada 83, a package that did not require a package body was nevertheless allowed
to have one. This lead to certain surprises in compiling large systems (situations
in which the body could be unexpectedly ignored by the binder). In Ada 95, if
a package does not require a body then it is not permitted to have a body. To
fix this problem, simply remove a redundant body if it is empty, or, if it is non-
empty, introduce a dummy declaration into the spec that makes the body required.
One approach is to add a private part to the package declaration (if necessary),
and define a parameterless procedure called Requires_Body, which must then be
given a dummy procedure body in the package body, which then becomes required.

344 GNAT User’s Guide

Another approach (assuming that this does not introduce elaboration circularities)
is to add an Elaborate_Body pragma to the package spec, since one effect of this
pragma is to require the presence of a package body.

Numeric_Error is now the same as Constraint_Error
In Ada 95, the exception Numeric_Error is a renaming of Constraint_Error. This
means that it is illegal to have separate exception handlers for the two exceptions.
The fix is simply to remove the handler for the Numeric_Error case (since even in
Ada 83, a compiler was free to raise Constraint_Error in place of Numeric_Error
in all cases).

Indefinite subtypes in generics
In Ada 83, it was permissible to pass an indefinite type (e.g. String) as the actual
for a generic formal private type, but then the instantiation would be illegal if
there were any instances of declarations of variables of this type in the generic
body. In Ada 95, to avoid this clear violation of the methodological principle known
as the “contract model”, the generic declaration explicitly indicates whether or
not such instantiations are permitted. If a generic formal parameter has explicit
unknown discriminants, indicated by using (<>) after the subtype name, then it can
be instantiated with indefinite types, but no stand-alone variables can be declared
of this type. Any attempt to declare such a variable will result in an illegality at
the time the generic is declared. If the (<>) notation is not used, then it is illegal to
instantiate the generic with an indefinite type. This is the potential incompatibility
issue when porting Ada 83 code to Ada 95. It will show up as a compile time error,
and the fix is usually simply to add the (<>) to the generic declaration.

F.1.2 More deterministic semantics

Conversions
Conversions from real types to integer types round away from 0. In Ada 83 the
conversion Integer(2.5) could deliver either 2 or 3 as its value. This implementation
freedom was intended to support unbiased rounding in statistical applications, but
in practice it interfered with portability. In Ada 95 the conversion semantics are
unambiguous, and rounding away from 0 is required. Numeric code may be affected
by this change in semantics. Note, though, that this issue is no worse than already
existed in Ada 83 when porting code from one vendor to another.

Tasking The Real-Time Annex introduces a set of policies that define the behavior of features
that were implementation dependent in Ada 83, such as the order in which open
select branches are executed.

F.1.3 Changed semantics

The worst kind of incompatibility is one where a program that is legal in Ada 83 is also legal in
Ada 95 but can have an effect in Ada 95 that was not possible in Ada 83. Fortunately this is
extremely rare, but the one situation that you should be alert to is the change in the predefined
type Character from 7-bit ASCII to 8-bit Latin-1.

Range of type Character

The range of Standard.Character is now the full 256 characters of Latin-1, whereas
in most Ada 83 implementations it was restricted to 128 characters. Although some
of the effects of this change will be manifest in compile-time rejection of legal Ada
83 programs it is possible for a working Ada 83 program to have a different effect
in Ada 95, one that was not permitted in Ada 83. As an example, the expression
Character’Pos(Character’Last) returned 127 in Ada 83 and now delivers 255 as
its value. In general, you should look at the logic of any character-processing Ada

Appendix F: Compatibility and Porting Guide 345

83 program and see whether it needs to be adapted to work correctly with Latin-1.
Note that the predefined Ada 95 API has a character handling package that may be
relevant if code needs to be adapted to account for the additional Latin-1 elements.
The desirable fix is to modify the program to accommodate the full character set, but
in some cases it may be convenient to define a subtype or derived type of Character
that covers only the restricted range.

F.1.4 Other language compatibility issues

‘-gnat83’ switch
All implementations of GNAT provide a switch that causes GNAT to operate in
Ada 83 mode. In this mode, some but not all compatibility problems of the type
described above are handled automatically. For example, the new reserved words
introduced in Ada 95 and Ada 2005 are treated simply as identifiers as in Ada 83.
However, in practice, it is usually advisable to make the necessary modifications to
the program to remove the need for using this switch. See Section 3.2.9 [Compiling
Different Versions of Ada], page 69.

Support for removed Ada 83 pragmas and attributes
A number of pragmas and attributes from Ada 83 were removed from Ada 95, gen-
erally because they were replaced by other mechanisms. Ada 95 and Ada 2005
compilers are allowed, but not required, to implement these missing elements. In
contrast with some other compilers, GNAT implements all such pragmas and at-
tributes, eliminating this compatibility concern. These include pragma Interface

and the floating point type attributes (Emax, Mantissa, etc.), among other items.

F.2 Compatibility between Ada 95 and Ada 2005

Although Ada 2005 was designed to be upwards compatible with Ada 95, there are a number
of incompatibilities. Several are enumerated below; for a complete description please see the
Annotated Ada 2005 Reference Manual, or section 9.1.1 in Rationale for Ada 2005.

New reserved words.
The words interface, overriding and synchronized are reserved in Ada 2005. A
pre-Ada 2005 program that uses any of these as an identifier will be illegal.

New declarations in predefined packages.
A number of packages in the predefined environment contain new declara-
tions: Ada.Exceptions, Ada.Real_Time, Ada.Strings, Ada.Strings.Fixed,
Ada.Strings.Bounded, Ada.Strings.Unbounded, Ada.Strings.Wide_Fixed,
Ada.Strings.Wide_Bounded, Ada.Strings.Wide_Unbounded, Ada.Tags,
Ada.Text_IO, and Interfaces.C. If an Ada 95 program does a with and use of
any of these packages, the new declarations may cause name clashes.

Access parameters.
A nondispatching subprogram with an access parameter cannot be renamed as a
dispatching operation. This was permitted in Ada 95.

Access types, discriminants, and constraints.
Rule changes in this area have led to some incompatibilities; for example, constrained
subtypes of some access types are not permitted in Ada 2005.

Aggregates for limited types.
The allowance of aggregates for limited types in Ada 2005 raises the possibility
of ambiguities in legal Ada 95 programs, since additional types now need to be
considered in expression resolution.

346 GNAT User’s Guide

Fixed-point multiplication and division.
Certain expressions involving “*” or “/” for a fixed-point type, which were legal in
Ada 95 and invoked the predefined versions of these operations, are now ambigu-
ous. The ambiguity may be resolved either by applying a type conversion to the
expression, or by explicitly invoking the operation from package Standard.

Return-by-reference types.
The Ada 95 return-by-reference mechanism has been removed. Instead, the user
can declare a function returning a value from an anonymous access type.

F.3 Implementation-dependent characteristics

Although the Ada language defines the semantics of each construct as precisely as practical, in
some situations (for example for reasons of efficiency, or where the effect is heavily dependent
on the host or target platform) the implementation is allowed some freedom. In porting Ada
83 code to GNAT, you need to be aware of whether / how the existing code exercised such
implementation dependencies. Such characteristics fall into several categories, and GNAT offers
specific support in assisting the transition from certain Ada 83 compilers.

F.3.1 Implementation-defined pragmas

Ada compilers are allowed to supplement the language-defined pragmas, and these are a potential
source of non-portability. All GNAT-defined pragmas are described in Section “Implementation
Defined Pragmas” in GNAT Reference Manual, and these include several that are specifically
intended to correspond to other vendors’ Ada 83 pragmas. For migrating from VADS, the
pragma Use_VADS_Size may be useful. For compatibility with HP Ada 83, GNAT supplies the
pragmas Extend_System, Ident, Inline_Generic, Interface_Name, Passive, Suppress_All,
and Volatile. Other relevant pragmas include External and Link_With. Some vendor-specific
Ada 83 pragmas (Share_Generic, Subtitle, and Title) are recognized, thus avoiding compiler
rejection of units that contain such pragmas; they are not relevant in a GNAT context and hence
are not otherwise implemented.

F.3.2 Implementation-defined attributes

Analogous to pragmas, the set of attributes may be extended by an implementation. All GNAT-
defined attributes are described in Section “Implementation Defined Attributes” in GNAT Ref-
erence Manual, and these include several that are specifically intended to correspond to other
vendors’ Ada 83 attributes. For migrating from VADS, the attribute VADS_Size may be use-
ful. For compatibility with HP Ada 83, GNAT supplies the attributes Bit, Machine_Size and
Type_Class.

F.3.3 Libraries

Vendors may supply libraries to supplement the standard Ada API. If Ada 83 code uses vendor-
specific libraries then there are several ways to manage this in Ada 95 or Ada 2005:

1. If the source code for the libraries (specs and bodies) are available, then the libraries can
be migrated in the same way as the application.

2. If the source code for the specs but not the bodies are available, then you can reimplement
the bodies.

3. Some features introduced by Ada 95 obviate the need for library support. For example
most Ada 83 vendors supplied a package for unsigned integers. The Ada 95 modular type
feature is the preferred way to handle this need, so instead of migrating or reimplementing
the unsigned integer package it may be preferable to retrofit the application using modular
types.

Appendix F: Compatibility and Porting Guide 347

F.3.4 Elaboration order

The implementation can choose any elaboration order consistent with the unit dependency re-
lationship. This freedom means that some orders can result in Program Error being raised
due to an “Access Before Elaboration”: an attempt to invoke a subprogram its body has been
elaborated, or to instantiate a generic before the generic body has been elaborated. By default
GNAT attempts to choose a safe order (one that will not encounter access before elaboration
problems) by implicitly inserting Elaborate or Elaborate_All pragmas where needed. How-
ever, this can lead to the creation of elaboration circularities and a resulting rejection of the
program by gnatbind. This issue is thoroughly described in Appendix C [Elaboration Order
Handling in GNAT], page 307. In brief, there are several ways to deal with this situation:

• Modify the program to eliminate the circularities, e.g. by moving elaboration-time code into
explicitly-invoked procedures

• Constrain the elaboration order by including explicit Elaborate_Body or Elaborate prag-
mas, and then inhibit the generation of implicit Elaborate_All pragmas either globally (as
an effect of the ‘-gnatE’ switch) or locally (by selectively suppressing elaboration checks
via pragma Suppress(Elaboration_Check) when it is safe to do so).

F.3.5 Target-specific aspects

Low-level applications need to deal with machine addresses, data representations, interfacing
with assembler code, and similar issues. If such an Ada 83 application is being ported to different
target hardware (for example where the byte endianness has changed) then you will need to
carefully examine the program logic; the porting effort will heavily depend on the robustness of
the original design. Moreover, Ada 95 (and thus Ada 2005) are sometimes incompatible with
typical Ada 83 compiler practices regarding implicit packing, the meaning of the Size attribute,
and the size of access values. GNAT’s approach to these issues is described in Section F.5
[Representation Clauses], page 348.

F.4 Compatibility with Other Ada Systems

If programs avoid the use of implementation dependent and implementation defined features, as
documented in the Ada Reference Manual, there should be a high degree of portability between
GNAT and other Ada systems. The following are specific items which have proved troublesome
in moving Ada 95 programs from GNAT to other Ada 95 compilers, but do not affect porting
code to GNAT. (As of January 2007, GNAT is the only compiler available for Ada 2005; the
following issues may or may not arise for Ada 2005 programs when other compilers appear.)

Ada 83 Pragmas and Attributes
Ada 95 compilers are allowed, but not required, to implement the missing Ada 83
pragmas and attributes that are no longer defined in Ada 95. GNAT implements all
such pragmas and attributes, eliminating this as a compatibility concern, but some
other Ada 95 compilers reject these pragmas and attributes.

Specialized Needs Annexes
GNAT implements the full set of special needs annexes. At the current time, it is
the only Ada 95 compiler to do so. This means that programs making use of these
features may not be portable to other Ada 95 compilation systems.

Representation Clauses
Some other Ada 95 compilers implement only the minimal set of representation
clauses required by the Ada 95 reference manual. GNAT goes far beyond this
minimal set, as described in the next section.

348 GNAT User’s Guide

F.5 Representation Clauses

The Ada 83 reference manual was quite vague in describing both the minimal required imple-
mentation of representation clauses, and also their precise effects. Ada 95 (and thus also Ada
2005) are much more explicit, but the minimal set of capabilities required is still quite limited.

GNAT implements the full required set of capabilities in Ada 95 and Ada 2005, but also goes
much further, and in particular an effort has been made to be compatible with existing Ada 83
usage to the greatest extent possible.

A few cases exist in which Ada 83 compiler behavior is incompatible with the requirements
in Ada 95 (and thus also Ada 2005). These are instances of intentional or accidental dependence
on specific implementation dependent characteristics of these Ada 83 compilers. The following
is a list of the cases most likely to arise in existing Ada 83 code.

Implicit Packing
Some Ada 83 compilers allowed a Size specification to cause implicit packing of an
array or record. This could cause expensive implicit conversions for change of repre-
sentation in the presence of derived types, and the Ada design intends to avoid this
possibility. Subsequent AI’s were issued to make it clear that such implicit change
of representation in response to a Size clause is inadvisable, and this recommenda-
tion is represented explicitly in the Ada 95 (and Ada 2005) Reference Manuals as
implementation advice that is followed by GNAT. The problem will show up as
an error message rejecting the size clause. The fix is simply to provide the explicit
pragma Pack, or for more fine tuned control, provide a Component Size clause.

Meaning of Size Attribute
The Size attribute in Ada 95 (and Ada 2005) for discrete types is defined as the
minimal number of bits required to hold values of the type. For example, on a 32-bit
machine, the size of Natural will typically be 31 and not 32 (since no sign bit is
required). Some Ada 83 compilers gave 31, and some 32 in this situation. This
problem will usually show up as a compile time error, but not always. It is a good
idea to check all uses of the ’Size attribute when porting Ada 83 code. The GNAT
specific attribute Object Size can provide a useful way of duplicating the behavior
of some Ada 83 compiler systems.

Size of Access Types
A common assumption in Ada 83 code is that an access type is in fact a pointer, and
that therefore it will be the same size as a System.Address value. This assumption
is true for GNAT in most cases with one exception. For the case of a pointer to an
unconstrained array type (where the bounds may vary from one value of the access
type to another), the default is to use a “fat pointer”, which is represented as two
separate pointers, one to the bounds, and one to the array. This representation has
a number of advantages, including improved efficiency. However, it may cause some
difficulties in porting existing Ada 83 code which makes the assumption that, for
example, pointers fit in 32 bits on a machine with 32-bit addressing.

To get around this problem, GNAT also permits the use of “thin pointers” for access
types in this case (where the designated type is an unconstrained array type). These
thin pointers are indeed the same size as a System.Address value. To specify a thin
pointer, use a size clause for the type, for example:

type X is access all String;

for X’Size use Standard’Address_Size;

which will cause the type X to be represented using a single pointer. When using
this representation, the bounds are right behind the array. This representation is
slightly less efficient, and does not allow quite such flexibility in the use of foreign

Appendix F: Compatibility and Porting Guide 349

pointers or in using the Unrestricted Access attribute to create pointers to non-
aliased objects. But for any standard portable use of the access type it will work in
a functionally correct manner and allow porting of existing code. Note that another
way of forcing a thin pointer representation is to use a component size clause for
the element size in an array, or a record representation clause for an access field in
a record.

F.6 Compatibility with HP Ada 83

The VMS version of GNAT fully implements all the pragmas and attributes provided by HP
Ada 83, as well as providing the standard HP Ada 83 libraries, including Starlet. In addition,
data layouts and parameter passing conventions are highly compatible. This means that porting
existing HP Ada 83 code to GNAT in VMS systems should be easier than most other porting
efforts. The following are some of the most significant differences between GNAT and HP Ada
83.

Default floating-point representation
In GNAT, the default floating-point format is IEEE, whereas in HP Ada 83,
it is VMS format. GNAT does implement the necessary pragmas (Long Float,
Float Representation) for changing this default.

System The package System in GNAT exactly corresponds to the definition in the Ada 95
reference manual, which means that it excludes many of the HP Ada 83 extensions.
However, a separate package Aux DEC is provided that contains the additional
definitions, and a special pragma, Extend System allows this package to be treated
transparently as an extension of package System.

To Address
The definitions provided by Aux DEC are exactly compatible with those in the
HP Ada 83 version of System, with one exception. HP Ada provides the following
declarations:

TO_ADDRESS (INTEGER)

TO_ADDRESS (UNSIGNED_LONGWORD)

TO_ADDRESS (universal_integer)

The version of TO ADDRESS taking a universal integer argument is in fact an
extension to Ada 83 not strictly compatible with the reference manual. In GNAT,
we are constrained to be exactly compatible with the standard, and this means we
cannot provide this capability. In HP Ada 83, the point of this definition is to deal
with a call like:

TO_ADDRESS (16#12777#);

Normally, according to the Ada 83 standard, one would expect this to be ambigu-
ous, since it matches both the INTEGER and UNSIGNED LONGWORD forms of
TO ADDRESS. However, in HP Ada 83, there is no ambiguity, since the definition
using universal integer takes precedence.

In GNAT, since the version with universal integer cannot be supplied, it is not
possible to be 100% compatible. Since there are many programs using numeric
constants for the argument to TO ADDRESS, the decision in GNAT was to change
the name of the function in the UNSIGNED LONGWORD case, so the declarations
provided in the GNAT version of AUX Dec are:

function To_Address (X : Integer) return Address;

pragma Pure_Function (To_Address);

function To_Address_Long (X : Unsigned_Longword)

return Address;

pragma Pure_Function (To_Address_Long);

350 GNAT User’s Guide

This means that programs using TO ADDRESS for UNSIGNED LONGWORD
must change the name to TO ADDRESS LONG.

Task Id values
The Task Id values assigned will be different in the two systems, and GNAT does
not provide a specified value for the Task Id of the environment task, which in
GNAT is treated like any other declared task.

For full details on these and other less significant compatibility issues, see appendix E of the HP
publication entitled HP Ada, Technical Overview and Comparison on HP Platforms.

For GNAT running on other than VMS systems, all the HP Ada 83 pragmas and attributes
are recognized, although only a subset of them can sensibly be implemented. The description of
pragmas in Section “Implementation Defined Pragmas” in GNAT Reference Manual indicates
whether or not they are applicable to non-VMS systems.

Appendix G: Microsoft Windows Topics 351

Appendix G Microsoft Windows Topics

This chapter describes topics that are specific to the Microsoft Windows platforms (NT, 2000,
and XP Professional).

G.1 Using GNAT on Windows

One of the strengths of the GNAT technology is that its tool set (gcc, gnatbind, gnatlink,
gnatmake, the gdb debugger, etc.) is used in the same way regardless of the platform.

On Windows this tool set is complemented by a number of Microsoft-specific tools that have
been provided to facilitate interoperability with Windows when this is required. With these
tools:

• You can build applications using the CONSOLE or WINDOWS subsystems.

• You can use any Dynamically Linked Library (DLL) in your Ada code (both relocatable
and non-relocatable DLLs are supported).

• You can build Ada DLLs for use in other applications. These applications can be written in
a language other than Ada (e.g., C, C++, etc). Again both relocatable and non-relocatable
Ada DLLs are supported.

• You can include Windows resources in your Ada application.

• You can use or create COM/DCOM objects.

Immediately below are listed all known general GNAT-for-Windows restrictions. Other restric-
tions about specific features like Windows Resources and DLLs are listed in separate sections
below.

• It is not possible to use GetLastError and SetLastError when tasking, protected records,
or exceptions are used. In these cases, in order to implement Ada semantics, the GNAT run-
time system calls certain Win32 routines that set the last error variable to 0 upon success. It
should be possible to use GetLastError and SetLastError when tasking, protected record,
and exception features are not used, but it is not guaranteed to work.

• It is not possible to link against Microsoft libraries except for import libraries. Interfacing
must be done by the mean of DLLs.

• When the compilation environment is located on FAT32 drives, users may experience re-
compilations of the source files that have not changed if Daylight Saving Time (DST) state
has changed since the last time files were compiled. NTFS drives do not have this problem.

• No components of the GNAT toolset use any entries in the Windows registry. The only
entries that can be created are file associations and PATH settings, provided the user has
chosen to create them at installation time, as well as some minimal book-keeping information
needed to correctly uninstall or integrate different GNAT products.

G.2 Using a network installation of GNAT

Make sure the system on which GNAT is installed is accessible from the current machine, i.e.,
the install location is shared over the network. Shared resources are accessed on Windows by
means of UNC paths, which have the format \\server\sharename\path

In order to use such a network installation, simply add the UNC path of the ‘bin’ directory
of your GNAT installation in front of your PATH. For example, if GNAT is installed in ‘\GNAT’
directory of a share location called ‘c-drive’ on a machine ‘LOKI’, the following command will
make it available:

path \\loki\c-drive\gnat\bin;%path%

Be aware that every compilation using the network installation results in the transfer of large
amounts of data across the network and will likely cause serious performance penalty.

352 GNAT User’s Guide

G.3 CONSOLE and WINDOWS subsystems

There are two main subsystems under Windows. The CONSOLE subsystem (which is the default
subsystem) will always create a console when launching the application. This is not something
desirable when the application has a Windows GUI. To get rid of this console the application
must be using the WINDOWS subsystem. To do so the ‘-mwindows’ linker option must be specified.

$ gnatmake winprog -largs -mwindows

G.4 Temporary Files

It is possible to control where temporary files gets created by setting the TMP environment
variable. The file will be created:

• Under the directory pointed to by the TMP environment variable if this directory exists.

• Under ‘c:\temp’, if the TMP environment variable is not set (or not pointing to a directory)
and if this directory exists.

• Under the current working directory otherwise.

This allows you to determine exactly where the temporary file will be created. This is particularly
useful in networked environments where you may not have write access to some directories.

G.5 Mixed-Language Programming on Windows

Developing pure Ada applications on Windows is no different than on other GNAT-supported
platforms. However, when developing or porting an application that contains a mix of Ada and
C/C++, the choice of your Windows C/C++ development environment conditions your overall
interoperability strategy.

If you use gcc to compile the non-Ada part of your application, there are no Windows-specific
restrictions that affect the overall interoperability with your Ada code. If you do want to use
the Microsoft tools for your non-Ada code, you have two choices:

1. Encapsulate your non-Ada code in a DLL to be linked with your Ada application. In this
case, use the Microsoft or whatever environment to build the DLL and use GNAT to build
your executable (see Section G.8 [Using DLLs with GNAT], page 355).

2. Or you can encapsulate your Ada code in a DLL to be linked with the other part of your
application. In this case, use GNAT to build the DLL (see Section G.9 [Building DLLs
with GNAT Project files], page 357) and use the Microsoft or whatever environment to
build your executable.

G.6 Windows Calling Conventions

This section pertain only to Win32. On Win64 there is a single native calling convention. All
convention specifiers are ignored on this platform.

When a subprogram F (caller) calls a subprogram G (callee), there are several ways to push G’s
parameters on the stack and there are several possible scenarios to clean up the stack upon G’s
return. A calling convention is an agreed upon software protocol whereby the responsibilities
between the caller (F) and the callee (G) are clearly defined. Several calling conventions are
available for Windows:

• C (Microsoft defined)

• Stdcall (Microsoft defined)

• Win32 (GNAT specific)

• DLL (GNAT specific)

Appendix G: Microsoft Windows Topics 353

G.6.1 C Calling Convention

This is the default calling convention used when interfacing to C/C++ routines compiled with
either gcc or Microsoft Visual C++.

In the C calling convention subprogram parameters are pushed on the stack by the caller from
right to left. The caller itself is in charge of cleaning up the stack after the call. In addition, the
name of a routine with C calling convention is mangled by adding a leading underscore.

The name to use on the Ada side when importing (or exporting) a routine with C calling
convention is the name of the routine. For instance the C function:

int get_val (long);

should be imported from Ada as follows:
function Get_Val (V : Interfaces.C.long) return Interfaces.C.int;

pragma Import (C, Get_Val, External_Name => "get_val");

Note that in this particular case the External_Name parameter could have been omitted since,
when missing, this parameter is taken to be the name of the Ada entity in lower case. When
the Link_Name parameter is missing, as in the above example, this parameter is set to be the
External_Name with a leading underscore.

When importing a variable defined in C, you should always use the C calling convention unless
the object containing the variable is part of a DLL (in which case you should use the Stdcall

calling convention, see Section G.6.2 [Stdcall Calling Convention], page 353).

G.6.2 Stdcall Calling Convention

This convention, which was the calling convention used for Pascal programs, is used by Microsoft
for all the routines in the Win32 API for efficiency reasons. It must be used to import any routine
for which this convention was specified.

In the Stdcall calling convention subprogram parameters are pushed on the stack by the
caller from right to left. The callee (and not the caller) is in charge of cleaning the stack on
routine exit. In addition, the name of a routine with Stdcall calling convention is mangled by
adding a leading underscore (as for the C calling convention) and a trailing @nn , where nn is the
overall size (in bytes) of the parameters passed to the routine.

The name to use on the Ada side when importing a C routine with a Stdcall calling con-
vention is the name of the C routine. The leading underscore and trailing @nn are added
automatically by the compiler. For instance the Win32 function:

APIENTRY int get_val (long);

should be imported from Ada as follows:
function Get_Val (V : Interfaces.C.long) return Interfaces.C.int;

pragma Import (Stdcall, Get_Val);

-- On the x86 a long is 4 bytes, so the Link_Name is "_get_val@4"

As for the C calling convention, when the External_Name parameter is missing, it is taken to
be the name of the Ada entity in lower case. If instead of writing the above import pragma you
write:

function Get_Val (V : Interfaces.C.long) return Interfaces.C.int;

pragma Import (Stdcall, Get_Val, External_Name => "retrieve_val");

then the imported routine is _retrieve_val@4. However, if instead of specifying the External_
Name parameter you specify the Link_Name as in the following example:

function Get_Val (V : Interfaces.C.long) return Interfaces.C.int;

pragma Import (Stdcall, Get_Val, Link_Name => "retrieve_val");

then the imported routine is retrieve_val, that is, there is no decoration at all. No leading
underscore and no Stdcall suffix @nn .

This is especially important as in some special cases a DLL’s entry point name lacks a trailing
@nn while the exported name generated for a call has it.

354 GNAT User’s Guide

It is also possible to import variables defined in a DLL by using an import pragma for a variable.
As an example, if a DLL contains a variable defined as:

int my_var;

then, to access this variable from Ada you should write:

My_Var : Interfaces.C.int;

pragma Import (Stdcall, My_Var);

Note that to ease building cross-platform bindings this convention will be handled as a C calling
convention on non-Windows platforms.

G.6.3 Win32 Calling Convention

This convention, which is GNAT-specific is fully equivalent to the Stdcall calling convention
described above.

G.6.4 DLL Calling Convention

This convention, which is GNAT-specific is fully equivalent to the Stdcall calling convention
described above.

G.7 Introduction to Dynamic Link Libraries (DLLs)

A Dynamically Linked Library (DLL) is a library that can be shared by several applications
running under Windows. A DLL can contain any number of routines and variables.

One advantage of DLLs is that you can change and enhance them without forcing all the
applications that depend on them to be relinked or recompiled. However, you should be aware
than all calls to DLL routines are slower since, as you will understand below, such calls are
indirect.

To illustrate the remainder of this section, suppose that an application wants to use the
services of a DLL ‘API.dll’. To use the services provided by ‘API.dll’ you must statically
link against the DLL or an import library which contains a jump table with an entry for
each routine and variable exported by the DLL. In the Microsoft world this import library
is called ‘API.lib’. When using GNAT this import library is called either ‘libAPI.dll.a’,
‘libapi.dll.a’, ‘libAPI.a’ or ‘libapi.a’ (names are case insensitive).

After you have linked your application with the DLL or the import library and you run your
application, here is what happens:

1. Your application is loaded into memory.

2. The DLL ‘API.dll’ is mapped into the address space of your application. This means that:

• The DLL will use the stack of the calling thread.

• The DLL will use the virtual address space of the calling process.

• The DLL will allocate memory from the virtual address space of the calling process.

• Handles (pointers) can be safely exchanged between routines in the DLL routines and
routines in the application using the DLL.

3. The entries in the jump table (from the import library ‘libAPI.dll.a’ or ‘API.lib’ or
automatically created when linking against a DLL) which is part of your application are
initialized with the addresses of the routines and variables in ‘API.dll’.

4. If present in ‘API.dll’, routines DllMain or DllMainCRTStartup are invoked. These rou-
tines typically contain the initialization code needed for the well-being of the routines and
variables exported by the DLL.

There is an additional point which is worth mentioning. In the Windows world there are two
kind of DLLs: relocatable and non-relocatable DLLs. Non-relocatable DLLs can only be loaded

Appendix G: Microsoft Windows Topics 355

at a very specific address in the target application address space. If the addresses of two non-
relocatable DLLs overlap and these happen to be used by the same application, a conflict will
occur and the application will run incorrectly. Hence, when possible, it is always preferable to
use and build relocatable DLLs. Both relocatable and non-relocatable DLLs are supported by
GNAT. Note that the ‘-s’ linker option (see GNU Linker User’s Guide) removes the debugging
symbols from the DLL but the DLL can still be relocated.

As a side note, an interesting difference between Microsoft DLLs and Unix shared libraries,
is the fact that on most Unix systems all public routines are exported by default in a Unix
shared library, while under Windows it is possible (but not required) to list exported routines
in a definition file (see Section G.8.2.1 [The Definition File], page 356).

G.8 Using DLLs with GNAT

To use the services of a DLL, say ‘API.dll’, in your Ada application you must have:

1. The Ada spec for the routines and/or variables you want to access in ‘API.dll’. If not
available this Ada spec must be built from the C/C++ header files provided with the DLL.

2. The import library (‘libAPI.dll.a’ or ‘API.lib’). As previously mentioned an import
library is a statically linked library containing the import table which will be filled at load
time to point to the actual ‘API.dll’ routines. Sometimes you don’t have an import library
for the DLL you want to use. The following sections will explain how to build one. Note
that this is optional.

3. The actual DLL, ‘API.dll’.

Once you have all the above, to compile an Ada application that uses the services of ‘API.dll’
and whose main subprogram is My_Ada_App, you simply issue the command

$ gnatmake my_ada_app -largs -lAPI

The argument ‘-largs -lAPI’ at the end of the gnatmake command tells the GNAT linker to
look for an import library. The linker will look for a library name in this specific order:

1. ‘libAPI.dll.a’

2. ‘API.dll.a’

3. ‘libAPI.a’

4. ‘API.lib’

5. ‘libAPI.dll’

6. ‘API.dll’

The first three are the GNU style import libraries. The third is the Microsoft style import
libraries. The last two are the actual DLL names.

Note that if the Ada package spec for ‘API.dll’ contains the following pragma

pragma Linker_Options ("-lAPI");

you do not have to add ‘-largs -lAPI’ at the end of the gnatmake command.

If any one of the items above is missing you will have to create it yourself. The following
sections explain how to do so using as an example a fictitious DLL called ‘API.dll’.

G.8.1 Creating an Ada Spec for the DLL Services

A DLL typically comes with a C/C++ header file which provides the definitions of the routines
and variables exported by the DLL. The Ada equivalent of this header file is a package spec
that contains definitions for the imported entities. If the DLL you intend to use does not come
with an Ada spec you have to generate one such spec yourself. For example if the header file of
‘API.dll’ is a file ‘api.h’ containing the following two definitions:

356 GNAT User’s Guide

� �
int some_var;

int get (char *);
 	
then the equivalent Ada spec could be:� �

with Interfaces.C.Strings;

package API is

use Interfaces;

Some_Var : C.int;

function Get (Str : C.Strings.Chars_Ptr) return C.int;

private

pragma Import (C, Get);

pragma Import (DLL, Some_Var);

end API;
 	
Note that a variable is always imported with a DLL convention. A function can have C or
Stdcall convention. (see Section G.6 [Windows Calling Conventions], page 352).

G.8.2 Creating an Import Library

If a Microsoft-style import library ‘API.lib’ or a GNAT-style import library ‘libAPI.dll.a’ or
‘libAPI.a’ is available with ‘API.dll’ you can skip this section. You can also skip this section
if ‘API.dll’ or ‘libAPI.dll’ is built with GNU tools as in this case it is possible to link directly
against the DLL. Otherwise read on.

G.8.2.1 The Definition File

As previously mentioned, and unlike Unix systems, the list of symbols that are exported from
a DLL must be provided explicitly in Windows. The main goal of a definition file is precisely
that: list the symbols exported by a DLL. A definition file (usually a file with a .def suffix) has
the following structure:� �

[LIBRARY name]
[DESCRIPTION string]
EXPORTS

symbol1

symbol2

...
 	
LIBRARY name

This section, which is optional, gives the name of the DLL.

DESCRIPTION string

This section, which is optional, gives a description string that will be embedded in
the import library.

EXPORTS This section gives the list of exported symbols (procedures, functions or variables).
For instance in the case of ‘API.dll’ the EXPORTS section of ‘API.def’ looks like:� �

EXPORTS

some_var

get
 	
Note that you must specify the correct suffix (@nn) (see Section G.6 [Windows Calling Conven-
tions], page 352) for a Stdcall calling convention function in the exported symbols list.

There can actually be other sections in a definition file, but these sections are not relevant to
the discussion at hand.

Appendix G: Microsoft Windows Topics 357

G.8.2.2 GNAT-Style Import Library

To create a static import library from ‘API.dll’ with the GNAT tools you should proceed as
follows:

1. Create the definition file ‘API.def’ (see Section G.8.2.1 [The Definition File], page 356).
For that use the dll2def tool as follows:

$ dll2def API.dll > API.def

dll2def is a very simple tool: it takes as input a DLL and prints to standard output the
list of entry points in the DLL. Note that if some routines in the DLL have the Stdcall

convention (see Section G.6 [Windows Calling Conventions], page 352) with stripped @nn
suffix then you’ll have to edit ‘api.def’ to add it, and specify ‘-k’ to gnatdll when creating
the import library.

Here are some hints to find the right @nn suffix.

1. If you have the Microsoft import library (.lib), it is possible to get the right symbols
by using Microsoft dumpbin tool (see the corresponding Microsoft documentation for
further details).

$ dumpbin /exports api.lib

2. If you have a message about a missing symbol at link time the compiler tells you what
symbol is expected. You just have to go back to the definition file and add the right
suffix.

2. Build the import library libAPI.dll.a, using gnatdll (see Section G.11.7 [Using gnatdll],
page 362) as follows:

$ gnatdll -e API.def -d API.dll

gnatdll takes as input a definition file ‘API.def’ and the name of the DLL containing
the services listed in the definition file ‘API.dll’. The name of the static import library
generated is computed from the name of the definition file as follows: if the definition file
name is xyz.def, the import library name will be libxyz.a. Note that in the previous
example option ‘-e’ could have been removed because the name of the definition file (before
the “.def” suffix) is the same as the name of the DLL (see Section G.11.7 [Using gnatdll],
page 362 for more information about gnatdll).

G.8.2.3 Microsoft-Style Import Library

With GNAT you can either use a GNAT-style or Microsoft-style import library. A Microsoft
import library is needed only if you plan to make an Ada DLL available to applications developed
with Microsoft tools (see Section G.5 [Mixed-Language Programming on Windows], page 352).

To create a Microsoft-style import library for ‘API.dll’ you should proceed as follows:

1. Create the definition file ‘API.def’ from the DLL. For this use either the dll2def tool as
described above or the Microsoft dumpbin tool (see the corresponding Microsoft documen-
tation for further details).

2. Build the actual import library using Microsoft’s lib utility:
$ lib -machine:IX86 -def:API.def -out:API.lib

If you use the above command the definition file ‘API.def’ must contain a line giving the
name of the DLL:

LIBRARY "API"

See the Microsoft documentation for further details about the usage of lib.

G.9 Building DLLs with GNAT Project files

There is nothing specific to Windows in the build process. see Section 11.5 [Library Projects],
page 147.

358 GNAT User’s Guide

Due to a system limitation, it is not possible under Windows to create threads when inside the
DllMain routine which is used for auto-initialization of shared libraries, so it is not possible to
have library level tasks in SALs.

G.10 Building DLLs with GNAT

This section explain how to build DLLs using the GNAT built-in DLL support. With the
following procedure it is straight forward to build and use DLLs with GNAT.

1. building object files

The first step is to build all objects files that are to be included into the DLL. This is done
by using the standard gnatmake tool.

2. building the DLL

To build the DLL you must use gcc’s ‘-shared’ and ‘-shared-libgcc’ options. It is quite
simple to use this method:

$ gcc -shared -shared-libgcc -o api.dll obj1.o obj2.o ...

It is important to note that in this case all symbols found in the object files are automatically
exported. It is possible to restrict the set of symbols to export by passing to gcc a definition
file, see Section G.8.2.1 [The Definition File], page 356. For example:

$ gcc -shared -shared-libgcc -o api.dll api.def obj1.o obj2.o ...

If you use a definition file you must export the elaboration procedures for every package
that required one. Elaboration procedures are named using the package name followed by
" E".

3. preparing DLL to be used

For the DLL to be used by client programs the bodies must be hidden from it and the .ali
set with read-only attribute. This is very important otherwise GNAT will recompile all
packages and will not actually use the code in the DLL. For example:

$ mkdir apilib

$ copy *.ads *.ali api.dll apilib

$ attrib +R apilib*.ali

At this point it is possible to use the DLL by directly linking against it. Note that you must
use the GNAT shared runtime when using GNAT shared libraries. This is achieved by using
‘-shared’ binder’s option.

$ gnatmake main -Iapilib -bargs -shared -largs -Lapilib -lAPI

G.11 Building DLLs with gnatdll

Note that it is preferred to use GNAT Project files (see Section G.9 [Building DLLs with GNAT
Project files], page 357) or the built-in GNAT DLL support (see Section G.10 [Building DLLs
with GNAT], page 358) or to build DLLs.

This section explains how to build DLLs containing Ada code using gnatdll. These DLLs
will be referred to as Ada DLLs in the remainder of this section.

The steps required to build an Ada DLL that is to be used by Ada as well as non-Ada
applications are as follows:

1. You need to mark each Ada entity exported by the DLL with a C or Stdcall calling
convention to avoid any Ada name mangling for the entities exported by the DLL (see
Section G.11.2 [Exporting Ada Entities], page 359). You can skip this step if you plan to
use the Ada DLL only from Ada applications.

2. Your Ada code must export an initialization routine which calls the routine adainit gener-
ated by gnatbind to perform the elaboration of the Ada code in the DLL (see Section G.11.3
[Ada DLLs and Elaboration], page 361). The initialization routine exported by the Ada
DLL must be invoked by the clients of the DLL to initialize the DLL.

Appendix G: Microsoft Windows Topics 359

3. When useful, the DLL should also export a finalization routine which calls routine adafinal
generated by gnatbind to perform the finalization of the Ada code in the DLL (see
Section G.11.4 [Ada DLLs and Finalization], page 361). The finalization routine exported
by the Ada DLL must be invoked by the clients of the DLL when the DLL services are no
further needed.

4. You must provide a spec for the services exported by the Ada DLL in each of the program-
ming languages to which you plan to make the DLL available.

5. You must provide a definition file listing the exported entities (see Section G.8.2.1 [The
Definition File], page 356).

6. Finally you must use gnatdll to produce the DLL and the import library (see Section G.11.7
[Using gnatdll], page 362).

Note that a relocatable DLL stripped using the strip binutils tool will not be relocatable any-
more. To build a DLL without debug information pass -largs -s to gnatdll. This restriction
does not apply to a DLL built using a Library Project. see Section 11.5 [Library Projects],
page 147.

G.11.1 Limitations When Using Ada DLLs from Ada

When using Ada DLLs from Ada applications there is a limitation users should be aware of.
Because on Windows the GNAT run time is not in a DLL of its own, each Ada DLL includes
a part of the GNAT run time. Specifically, each Ada DLL includes the services of the GNAT
run time that are necessary to the Ada code inside the DLL. As a result, when an Ada program
uses an Ada DLL there are two independent GNAT run times: one in the Ada DLL and one in
the main program.

It is therefore not possible to exchange GNAT run-time objects between the Ada DLL and the
main Ada program. Example of GNAT run-time objects are file handles (e.g. Text_IO.File_
Type), tasks types, protected objects types, etc.

It is completely safe to exchange plain elementary, array or record types, Windows object
handles, etc.

G.11.2 Exporting Ada Entities

Building a DLL is a way to encapsulate a set of services usable from any application. As a
result, the Ada entities exported by a DLL should be exported with the C or Stdcall calling
conventions to avoid any Ada name mangling. As an example here is an Ada package API, spec
and body, exporting two procedures, a function, and a variable:� �

with Interfaces.C; use Interfaces;

package API is

Count : C.int := 0;

function Factorial (Val : C.int) return C.int;

procedure Initialize_API;

procedure Finalize_API;

-- Initialization & Finalization routines. More in the next section.

private

pragma Export (C, Initialize_API);

pragma Export (C, Finalize_API);

pragma Export (C, Count);

pragma Export (C, Factorial);

end API;
 	

360 GNAT User’s Guide� �
package body API is

function Factorial (Val : C.int) return C.int is

Fact : C.int := 1;

begin

Count := Count + 1;

for K in 1 .. Val loop

Fact := Fact * K;

end loop;

return Fact;

end Factorial;

procedure Initialize_API is

procedure Adainit;

pragma Import (C, Adainit);

begin

Adainit;

end Initialize_API;

procedure Finalize_API is

procedure Adafinal;

pragma Import (C, Adafinal);

begin

Adafinal;

end Finalize_API;

end API;
 	
If the Ada DLL you are building will only be used by Ada applications you do not have to
export Ada entities with a C or Stdcall convention. As an example, the previous package could
be written as follows:

� �
package API is

Count : Integer := 0;

function Factorial (Val : Integer) return Integer;

procedure Initialize_API;

procedure Finalize_API;

-- Initialization and Finalization routines.

end API;
 	
� �
package body API is

function Factorial (Val : Integer) return Integer is

Fact : Integer := 1;

begin

Count := Count + 1;

for K in 1 .. Val loop

Fact := Fact * K;

end loop;

return Fact;

end Factorial;

...

-- The remainder of this package body is unchanged.

end API;
 	
Note that if you do not export the Ada entities with a C or Stdcall convention you will have
to provide the mangled Ada names in the definition file of the Ada DLL (see Section G.11.6
[Creating the Definition File], page 362).

Appendix G: Microsoft Windows Topics 361

G.11.3 Ada DLLs and Elaboration

The DLL that you are building contains your Ada code as well as all the routines in the Ada
library that are needed by it. The first thing a user of your DLL must do is elaborate the Ada
code (see Appendix C [Elaboration Order Handling in GNAT], page 307).

To achieve this you must export an initialization routine (Initialize_API in the previous
example), which must be invoked before using any of the DLL services. This elaboration routine
must call the Ada elaboration routine adainit generated by the GNAT binder (see Section 4.2.6
[Binding with Non-Ada Main Programs], page 87). See the body of Initialize_Api for an
example. Note that the GNAT binder is automatically invoked during the DLL build process
by the gnatdll tool (see Section G.11.7 [Using gnatdll], page 362).

When a DLL is loaded, Windows systematically invokes a routine called DllMain. It would
therefore be possible to call adainit directly from DllMain without having to provide an explicit
initialization routine. Unfortunately, it is not possible to call adainit from the DllMain if your
program has library level tasks because access to the DllMain entry point is serialized by the
system (that is, only a single thread can execute “through” it at a time), which means that the
GNAT run time will deadlock waiting for the newly created task to complete its initialization.

G.11.4 Ada DLLs and Finalization

When the services of an Ada DLL are no longer needed, the client code should invoke the
DLL finalization routine, if available. The DLL finalization routine is in charge of releasing
all resources acquired by the DLL. In the case of the Ada code contained in the DLL, this is
achieved by calling routine adafinal generated by the GNAT binder (see Section 4.2.6 [Binding
with Non-Ada Main Programs], page 87). See the body of Finalize_Api for an example. As
already pointed out the GNAT binder is automatically invoked during the DLL build process
by the gnatdll tool (see Section G.11.7 [Using gnatdll], page 362).

G.11.5 Creating a Spec for Ada DLLs

To use the services exported by the Ada DLL from another programming language (e.g. C), you
have to translate the specs of the exported Ada entities in that language. For instance in the
case of API.dll, the corresponding C header file could look like:� �

extern int *_imp__count;

#define count (*_imp__count)

int factorial (int);
 	
It is important to understand that when building an Ada DLL to be used by other Ada applica-
tions, you need two different specs for the packages contained in the DLL: one for building the
DLL and the other for using the DLL. This is because the DLL calling convention is needed to
use a variable defined in a DLL, but when building the DLL, the variable must have either the
Ada or C calling convention. As an example consider a DLL comprising the following package
API: � �

package API is

Count : Integer := 0;

...

-- Remainder of the package omitted.

end API;
 	
After producing a DLL containing package API, the spec that must be used to import API.Count
from Ada code outside of the DLL is:

362 GNAT User’s Guide� �
package API is

Count : Integer;

pragma Import (DLL, Count);

end API;
 	
G.11.6 Creating the Definition File

The definition file is the last file needed to build the DLL. It lists the exported symbols. As an
example, the definition file for a DLL containing only package API (where all the entities are
exported with a C calling convention) is:� �

EXPORTS

count

factorial

finalize_api

initialize_api
 	
If the C calling convention is missing from package API, then the definition file contains the
mangled Ada names of the above entities, which in this case are:� �

EXPORTS

api__count

api__factorial

api__finalize_api

api__initialize_api
 	
G.11.7 Using gnatdll

gnatdll is a tool to automate the DLL build process once all the Ada and non-Ada sources
that make up your DLL have been compiled. gnatdll is actually in charge of two distinct
tasks: build the static import library for the DLL and the actual DLL. The form of the gnatdll
command is� �

$ gnatdll [switches] list-of-files [-largs opts]
 	
where list-of-files is a list of ALI and object files. The object file list must be the exact list of
objects corresponding to the non-Ada sources whose services are to be included in the DLL.
The ALI file list must be the exact list of ALI files for the corresponding Ada sources whose
services are to be included in the DLL. If list-of-files is missing, only the static import library is
generated.

You may specify any of the following switches to gnatdll:

-a[address]
Build a non-relocatable DLL at address. If address is not specified the default
address 0x11000000 will be used. By default, when this switch is missing, gnatdll
builds relocatable DLL. We advise the reader to build relocatable DLL.

-b address

Set the relocatable DLL base address. By default the address is 0x11000000.

-bargs opts

Binder options. Pass opts to the binder.

-d dllfile

dllfile is the name of the DLL. This switch must be present for gnatdll to do
anything. The name of the generated import library is obtained algorithmically from
dllfile as shown in the following example: if dllfile is xyz.dll, the import library
name is libxyz.dll.a. The name of the definition file to use (if not specified

Appendix G: Microsoft Windows Topics 363

by option ‘-e’) is obtained algorithmically from dllfile as shown in the following
example: if dllfile is xyz.dll, the definition file used is xyz.def.

-e deffile

deffile is the name of the definition file.

-g Generate debugging information. This information is stored in the object file and
copied from there to the final DLL file by the linker, where it can be read by the
debugger. You must use the ‘-g’ switch if you plan on using the debugger or the
symbolic stack traceback.

-h Help mode. Displays gnatdll switch usage information.

-Idir Direct gnatdll to search the dir directory for source and object files needed to
build the DLL. (see Section 3.3 [Search Paths and the Run-Time Library (RTL)],
page 78).

-k Removes the @nn suffix from the import library’s exported names, but keeps them
for the link names. You must specify this option if you want to use a Stdcall

function in a DLL for which the @nn suffix has been removed. This is the case for
most of the Windows NT DLL for example. This option has no effect when ‘-n’
option is specified.

-l file The list of ALI and object files used to build the DLL are listed in file, instead of
being given in the command line. Each line in file contains the name of an ALI or
object file.

-n No Import. Do not create the import library.

-q Quiet mode. Do not display unnecessary messages.

-v Verbose mode. Display extra information.

-largs opts

Linker options. Pass opts to the linker.

G.11.7.1 gnatdll Example

As an example the command to build a relocatable DLL from ‘api.adb’ once ‘api.adb’ has
been compiled and ‘api.def’ created is

$ gnatdll -d api.dll api.ali

The above command creates two files: ‘libapi.dll.a’ (the import library) and ‘api.dll’ (the
actual DLL). If you want to create only the DLL, just type:

$ gnatdll -d api.dll -n api.ali

Alternatively if you want to create just the import library, type:
$ gnatdll -d api.dll

G.11.7.2 gnatdll behind the Scenes

This section details the steps involved in creating a DLL. gnatdll does these steps for you.
Unless you are interested in understanding what goes on behind the scenes, you should skip this
section.

We use the previous example of a DLL containing the Ada package API, to illustrate the
steps necessary to build a DLL. The starting point is a set of objects that will make up the
DLL and the corresponding ALI files. In the case of this example this means that ‘api.o’ and
‘api.ali’ are available. To build a relocatable DLL, gnatdll does the following:

1. gnatdll builds the base file (‘api.base’). A base file gives the information necessary to
generate relocation information for the DLL.

364 GNAT User’s Guide

$ gnatbind -n api

$ gnatlink api -o api.jnk -mdll -Wl,--base-file,api.base

In addition to the base file, the gnatlink command generates an output file ‘api.jnk’ which
can be discarded. The ‘-mdll’ switch asks gnatlink to generate the routines DllMain and
DllMainCRTStartup that are called by the Windows loader when the DLL is loaded into
memory.

2. gnatdll uses dlltool (see Section G.11.7.3 [Using dlltool], page 364) to build the export
table (‘api.exp’). The export table contains the relocation information in a form which
can be used during the final link to ensure that the Windows loader is able to place the
DLL anywhere in memory.

$ dlltool --dllname api.dll --def api.def --base-file api.base \

--output-exp api.exp

3. gnatdll builds the base file using the new export table. Note that gnatbind must be
called once again since the binder generated file has been deleted during the previous call
to gnatlink.

$ gnatbind -n api

$ gnatlink api -o api.jnk api.exp -mdll

-Wl,--base-file,api.base

4. gnatdll builds the new export table using the new base file and generates the DLL import
library ‘libAPI.dll.a’.

$ dlltool --dllname api.dll --def api.def --base-file api.base \

--output-exp api.exp --output-lib libAPI.a

5. Finally gnatdll builds the relocatable DLL using the final export table.
$ gnatbind -n api

$ gnatlink api api.exp -o api.dll -mdll

G.11.7.3 Using dlltool

dlltool is the low-level tool used by gnatdll to build DLLs and static import libraries. This
section summarizes the most common dlltool switches. The form of the dlltool command is

$ dlltool [switches]

dlltool switches include:

‘--base-file basefile ’
Read the base file basefile generated by the linker. This switch is used to create a
relocatable DLL.

‘--def deffile ’
Read the definition file.

‘--dllname name ’
Gives the name of the DLL. This switch is used to embed the name of the DLL in
the static import library generated by dlltool with switch ‘--output-lib’.

‘-k’ Kill @nn from exported names (see Section G.6 [Windows Calling Conventions],
page 352 for a discussion about Stdcall-style symbols.

‘--help’ Prints the dlltool switches with a concise description.

‘--output-exp exportfile ’
Generate an export file exportfile. The export file contains the export table (list of
symbols in the DLL) and is used to create the DLL.

‘--output-lib libfile ’
Generate a static import library libfile.

‘-v’ Verbose mode.

Appendix G: Microsoft Windows Topics 365

‘--as assembler-name ’
Use assembler-name as the assembler. The default is as.

G.12 GNAT and Windows Resources

Resources are an easy way to add Windows specific objects to your application. The objects
that can be added as resources include:

• menus

• accelerators

• dialog boxes

• string tables

• bitmaps

• cursors

• icons

• fonts

• version information

For example, a version information resource can be defined as follow and embedded into an
executable or DLL:

A version information resource can be used to embed information into an executable or a
DLL. These information can be viewed using the file properties from the Windows Explorer.
Here is an example of a version information resource:

1 VERSIONINFO

FILEVERSION 1,0,0,0

PRODUCTVERSION 1,0,0,0

BEGIN

BLOCK "StringFileInfo"

BEGIN

BLOCK "080904E4"

BEGIN

VALUE "CompanyName", "My Company Name"

VALUE "FileDescription", "My application"

VALUE "FileVersion", "1.0"

VALUE "InternalName", "my_app"

VALUE "LegalCopyright", "My Name"

VALUE "OriginalFilename", "my_app.exe"

VALUE "ProductName", "My App"

VALUE "ProductVersion", "1.0"

END

END

BLOCK "VarFileInfo"

BEGIN

VALUE "Translation", 0x809, 1252

END

END

The value 0809 (langID) is for the U.K English language and 04E4 (charsetID), which is
equal to 1252 decimal, for multilingual.

This section explains how to build, compile and use resources. Note that this section does not
cover all resource objects, for a complete description see the corresponding Microsoft documen-
tation.

G.12.1 Building Resources

A resource file is an ASCII file. By convention resource files have an ‘.rc’ extension. The easiest
way to build a resource file is to use Microsoft tools such as imagedit.exe to build bitmaps,

366 GNAT User’s Guide

icons and cursors and dlgedit.exe to build dialogs. It is always possible to build an ‘.rc’ file
yourself by writing a resource script.

It is not our objective to explain how to write a resource file. A complete description of the
resource script language can be found in the Microsoft documentation.

G.12.2 Compiling Resources

This section describes how to build a GNAT-compatible (COFF) object file containing the
resources. This is done using the Resource Compiler windres as follows:

$ windres -i myres.rc -o myres.o

By default windres will run gcc to preprocess the ‘.rc’ file. You can specify an alternate
preprocessor (usually named ‘cpp.exe’) using the windres ‘--preprocessor’ parameter. A list
of all possible options may be obtained by entering the command windres ‘--help’.

It is also possible to use the Microsoft resource compiler rc.exe to produce a ‘.res’ file
(binary resource file). See the corresponding Microsoft documentation for further details. In
this case you need to use windres to translate the ‘.res’ file to a GNAT-compatible object file
as follows:

$ windres -i myres.res -o myres.o

G.12.3 Using Resources

To include the resource file in your program just add the GNAT-compatible object file for the
resource(s) to the linker arguments. With gnatmake this is done by using the ‘-largs’ option:

$ gnatmake myprog -largs myres.o

G.13 Debugging a DLL

Debugging a DLL is similar to debugging a standard program. But we have to deal with two
different executable parts: the DLL and the program that uses it. We have the following four
possibilities:

1. The program and the DLL are built with GCC/GNAT.

2. The program is built with foreign tools and the DLL is built with GCC/GNAT.

3. The program is built with GCC/GNAT and the DLL is built with foreign tools.

In this section we address only cases one and two above. There is no point in trying to debug
a DLL with GNU/GDB, if there is no GDB-compatible debugging information in it. To do so you
must use a debugger compatible with the tools suite used to build the DLL.

G.13.1 Program and DLL Both Built with GCC/GNAT

This is the simplest case. Both the DLL and the program have GDB compatible debugging
information. It is then possible to break anywhere in the process. Let’s suppose here that the
main procedure is named ada_main and that in the DLL there is an entry point named ada_dll.

The DLL (see Section G.7 [Introduction to Dynamic Link Libraries (DLLs)], page 354) and
program must have been built with the debugging information (see GNAT -g switch). Here are
the step-by-step instructions for debugging it:

1. Launch GDB on the main program.
$ gdb -nw ada_main

2. Start the program and stop at the beginning of the main procedure
(gdb) start

This step is required to be able to set a breakpoint inside the DLL. As long as the program
is not run, the DLL is not loaded. This has the consequence that the DLL debugging
information is also not loaded, so it is not possible to set a breakpoint in the DLL.

Appendix G: Microsoft Windows Topics 367

3. Set a breakpoint inside the DLL

(gdb) break ada_dll

(gdb) cont

At this stage a breakpoint is set inside the DLL. From there on you can use the standard approach
to debug the whole program (see Chapter 30 [Running and Debugging Ada Programs], page 275).

G.13.2 Program Built with Foreign Tools and DLL Built with
GCC/GNAT

In this case things are slightly more complex because it is not possible to start the main program
and then break at the beginning to load the DLL and the associated DLL debugging information.
It is not possible to break at the beginning of the program because there is no GDB debugging
information, and therefore there is no direct way of getting initial control. This section addresses
this issue by describing some methods that can be used to break somewhere in the DLL to debug
it.

First suppose that the main procedure is named main (this is for example some C code built
with Microsoft Visual C) and that there is a DLL named test.dll containing an Ada entry
point named ada_dll.

The DLL (see Section G.7 [Introduction to Dynamic Link Libraries (DLLs)], page 354) must
have been built with debugging information (see GNAT -g option).

G.13.2.1 Debugging the DLL Directly

1. Find out the executable starting address

$ objdump --file-header main.exe

The starting address is reported on the last line. For example:

main.exe: file format pei-i386

architecture: i386, flags 0x0000010a:

EXEC_P, HAS_DEBUG, D_PAGED

start address 0x00401010

2. Launch the debugger on the executable.

$ gdb main.exe

3. Set a breakpoint at the starting address, and launch the program.

$ (gdb) break *0x00401010

$ (gdb) run

The program will stop at the given address.

4. Set a breakpoint on a DLL subroutine.

(gdb) break ada_dll.adb:45

Or if you want to break using a symbol on the DLL, you need first to select the Ada language
(language used by the DLL).

(gdb) set language ada

(gdb) break ada_dll

5. Continue the program.

(gdb) cont

This will run the program until it reaches the breakpoint that has been set. From that
point you can use the standard way to debug a program as described in (see Chapter 30
[Running and Debugging Ada Programs], page 275).

It is also possible to debug the DLL by attaching to a running process.

368 GNAT User’s Guide

G.13.2.2 Attaching to a Running Process

With GDB it is always possible to debug a running process by attaching to it. It is possible to
debug a DLL this way. The limitation of this approach is that the DLL must run long enough
to perform the attach operation. It may be useful for instance to insert a time wasting loop in
the code of the DLL to meet this criterion.

1. Launch the main program ‘main.exe’.
$ main

2. Use the Windows Task Manager to find the process ID. Let’s say that the process PID for
‘main.exe’ is 208.

3. Launch gdb.
$ gdb

4. Attach to the running process to be debugged.
(gdb) attach 208

5. Load the process debugging information.
(gdb) symbol-file main.exe

6. Break somewhere in the DLL.
(gdb) break ada_dll

7. Continue process execution.
(gdb) cont

This last step will resume the process execution, and stop at the breakpoint we have set. From
there you can use the standard approach to debug a program as described in (see Chapter 30
[Running and Debugging Ada Programs], page 275).

G.14 Setting Stack Size from gnatlink

It is possible to specify the program stack size at link time. On modern versions of Windows,
starting with XP, this is mostly useful to set the size of the main stack (environment task). The
other task stacks are set with pragma Storage Size or with the gnatbind -d command.

Since older versions of Windows (2000, NT4, etc.) do not allow setting the reserve size of
individual tasks, the link-time stack size applies to all tasks, and pragma Storage Size has no
effect. In particular, Stack Overflow checks are made against this link-time specified size.

This setting can be done with gnatlink using either:

• using ‘-Xlinker’ linker option
$ gnatlink hello -Xlinker --stack=0x10000,0x1000

This sets the stack reserve size to 0x10000 bytes and the stack commit size to 0x1000 bytes.

• using ‘-Wl’ linker option
$ gnatlink hello -Wl,--stack=0x1000000

This sets the stack reserve size to 0x1000000 bytes. Note that with ‘-Wl’ option it is not
possible to set the stack commit size because the coma is a separator for this option.

G.15 Setting Heap Size from gnatlink

Under Windows systems, it is possible to specify the program heap size from gnatlink using
either:

• using ‘-Xlinker’ linker option
$ gnatlink hello -Xlinker --heap=0x10000,0x1000

This sets the heap reserve size to 0x10000 bytes and the heap commit size to 0x1000 bytes.

• using ‘-Wl’ linker option

Appendix G: Microsoft Windows Topics 369

$ gnatlink hello -Wl,--heap=0x1000000

This sets the heap reserve size to 0x1000000 bytes. Note that with ‘-Wl’ option it is not
possible to set the heap commit size because the coma is a separator for this option.

GNU Free Documentation License 371

GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful
document free in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The “Document”, below, refers to any such manual
or work. Any member of the public is a licensee, and is addressed as “you”. You accept
the license if you copy, modify or distribute the work in a way requiring permission under
copyright law.

A “Modified Version” of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero Invariant Sections.
If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.
A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25
words.

http://fsf.org/

372 GNAT User’s Guide

A “Transparent” copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, that is suitable for revising
the document straightforwardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety of formats
suitable for input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for
any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without markup,
Texinfo input format, LaTEX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML, PostScript or PDF designed for human modifica-
tion. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by proprietary word proces-
sors, SGML or XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML, PostScript or PDF produced by some word processors
for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title page.
For works in formats which do not have any title page as such, “Title Page” means the
text near the most prominent appearance of the work’s title, preceding the beginning of the
body of the text.

The “publisher” means any person or entity that distributes copies of the Document to the
public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the
Title” of such a section when you modify the Document means that it remains a section
“Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use technical measures
to obstruct or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both

GNU Free Documentation License 373

covers must also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with changes limited to
the covers, as long as they preserve the title of the Document and satisfy these conditions,
can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy,
or state in or with each Opaque copy a computer-network location from which the general
network-using public has access to download using public-standard network protocols a
complete Transparent copy of the Document, free of added material. If you use the latter
option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has fewer than
five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copy-
right notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating
at least the title, year, new authors, and publisher of the Modified Version as given
on the Title Page. If there is no section Entitled “History” in the Document, create
one stating the title, year, authors, and publisher of the Document as given on its

374 GNAT User’s Guide

Title Page, then add an item describing the Modified Version as stated in the previous
sentence.

J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the “History”
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in
the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title
with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorse-
ments of your Modified Version by various parties—for example, statements of peer review
or that the text has been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace the
old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to
use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the combined work.

GNU Free Documentation License 375

In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled
“Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections
Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with
a single copy that is included in the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in
the Document, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers. In
case of a disagreement between the translation and the original version of this License or a
notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”,
the requirement (section 4) to Preserve its Title (section 1) will typically require changing
the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly pro-
vided under this License. Any attempt otherwise to copy, modify, sublicense, or distribute
it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copy-
right holder is reinstated (a) provisionally, unless and until the copyright holder explicitly
and finally terminates your license, and (b) permanently, if the copyright holder fails to
notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the
copyright holder notifies you of the violation by some reasonable means, this is the first
time you have received notice of violation of this License (for any work) from that copyright
holder, and you cure the violation prior to 30 days after your receipt of the notice.

376 GNAT User’s Guide

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have been
terminated and not permanently reinstated, receipt of a copy of some or all of the same
material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation. If the
Document specifies that a proxy can decide which future versions of this License can be
used, that proxy’s public statement of acceptance of a version permanently authorizes you
to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web
server that publishes copyrightable works and also provides prominent facilities for anybody
to edit those works. A public wiki that anybody can edit is an example of such a server. A
“Massive Multiauthor Collaboration” (or “MMC”) contained in the site means any set of
copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published
by Creative Commons Corporation, a not-for-profit corporation with a principal place of
business in San Francisco, California, as well as future copyleft versions of that license
published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of
another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that
were first published under this License somewhere other than this MMC, and subsequently
incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections,
and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-
SA on the same site at any time before August 1, 2009, provided the MMC is eligible for
relicensing.

http://www.gnu.org/copyleft/

GNU Free Documentation License 377

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU General
Public License, to permit their use in free software.

Index 379

Index

-
‘--additional-tests’ (gnattest) 258
‘--as’ (dlltool) . 365
‘--base-file’ (dlltool) . 364
‘--call_threshold’ (gnatpp) 198
‘--control-couplingx ’ (gnatmetric) 215
‘--def’ (dlltool) . 364
‘--demangle’ (gprof) . 273
‘--dllname’ (dlltool) . 364
‘--eol’ (gnatpp) . 199
‘--ext’ (gnatfind) . 187
‘--ext’ (gnatxref) . 186
‘--GCC=’ (gnatchop) . 122
‘--GCC=compiler_name’ (gnatlink) 92
‘--GCC=compiler_name’ (gnatmake) 95
‘--GNATBIND=binder_name’ (gnatmake) 96
‘--GNATLINK=linker_name’ (gnatmake) 96
‘--harness-only’ (gnattest) 258
‘--header-file’ (gnatstub) . 255
‘--help’ (dlltool) . 364
‘--help’ gnatbind . 82
‘--help’ gnatchop . 121
‘--help’ gnatclean . 229
‘--help’ gnatfind . 187
‘--help’ gnatlink . 91
‘--help’ gnatls . 226
‘--help’ gnatmake . 95
‘--help’ gnatname . 128
‘--help’ gnatxref . 185
‘--hierarchy-couplingx ’ (gnatmetric) 215
‘--ignore’ (gnatelim) . 115
‘--linesx ’ (gnatmetric) . 209
‘--LINK=’ (gnatlink) . 93
‘--liskov’ (gnattest) . 258
‘--no-complexityx ’ . 213
‘--no-elim-dispatch’ (gnatelim) 115
‘--no-exception’ (gnatstub) 256
‘--no-linesx ’ . 209
‘--no-local-header’ (gnatstub) 256
‘--no-separate-is’ (gnatpp) 197
‘--no-separate-loop-then’ (gnatpp) 197
‘--no-static-loop’ (gnatmetric) 213
‘--no-syntaxx ’ (gnatmetric) 211
‘--output-exp’ (dlltool) . 364
‘--output-lib’ (dlltool) . 364
‘--par_threshold’ (gnatpp) . 198
‘--RTS’ (gcc) . 43
‘--RTS’ (gnatbind) . 84
‘--RTS’ (gnatfind) . 187
‘--RTS’ (gnatls) . 226
‘--RTS’ (gnatmake) . 101
‘--RTS’ (gnatpp) . 199
‘--RTS’ (gnatxref) . 186
‘--RTS’ option . 292
‘--RTS=sjlj’ (gnatmake) . 75
‘--RTS=zcx’ (gnatmake) . 75
‘--separate-label’ (gnatpp) 197
‘--separate-loop-then’ (gnatpp) 197
‘--separate-root’ (gnattest) 258
‘--separate-stmt-name’ (gnatpp) 198
‘--stub-default’ (gnattest) 258

‘--subdir’ (gnattest) . 258
‘--subdirs=’ (gnatmake and gnatclean) 175
‘--syntaxx ’ (gnatmetric) . 211
‘--tagged-couplingx ’ (gnatmetric) 215
‘--unit-couplingx ’ (gnatmetric) 215
‘--use-on-new-line’ (gnatpp) 198
‘--version’ gnatbind . 82
‘--version’ gnatchop . 121
‘--version’ gnatclean . 229
‘--version’ gnatfind . 187
‘--version’ gnatlink . 91
‘--version’ gnatls . 226
‘--version’ gnatmake . 95
‘--version’ gnatname . 128
‘--version’ gnatxref . 185
‘-83’ (gnathtml) . 268
‘-A’ (gnatbind) . 82
‘-a’ (gnatdll) . 362
‘-a’ (gnatfind) . 187
‘-a’ (gnatls) . 226
‘-a’ (gnatmake) . 97
‘-A’ (gnatmake) . 100
‘-a’ (gnatxref) . 185
‘-a’ gnatbind . 82
‘-aI’ (gnatbind) . 82, 88
‘-aI’ (gnatls) . 226
‘-aI’ (gnatmake) . 100
‘-aIDIR’ (gnatfind) . 187
‘-aIDIR’ (gnatxref) . 185
‘-aL’ (gnatmake) . 100
‘-An ’ (gnatpp) . 196
‘-aO’ (gnatbind) . 82, 88
‘-aO’ (gnatclean) . 230
‘-aO’ (gnatls) . 226
‘-aO’ (gnatmake) . 100
‘-aODIR’ (gnatfind) . 187
‘-aODIR’ (gnatxref) . 185
‘-aP’ (any project-aware tool) 175
‘-ax ’ (gnatpp) . 196
‘-b’ (gcc) . 38
‘-B’ (gcc) . 38
‘-b’ (gnatbind) . 82
‘-b’ (gnatbind) . 85
‘-b’ (gnatdll) . 362
‘-b’ (gnatlink) . 92
‘-B’ (gnatlink) . 92
‘-b’ (gnatmake) . 97
‘-b’ (gnatmem) . 247
‘-b’ (gnatprep) . 221
‘-bargs’ (gnatdll) . 362
‘-bargs’ (gnatmake) . 101
‘-c’ (gcc) . 38
‘-C’ (gcc) . 265
‘-c’ (gnatbind) . 82
‘-c’ (gnatbind) . 86
‘-c’ (gnatchop) . 121
‘-c’ (gnatclean) . 229
‘-c’ (gnatmake) . 97
‘-C’ (gnatmake) . 97
‘-c’ (gnatname) . 128
‘-c’ (gnatprep) . 221

380 GNAT User’s Guide

‘-C’ (gnatprep) . 221
‘-C=’ (gnatmake) . 97
‘-cargs’ (gnatmake) . 101
‘-cc’ (gnathtml) . 268
‘-cl’ (gnatpp) . 198
‘-cn ’ (gnatpp) . 197
‘-complexityx ’ (gnatmetric) 213
-coverage . 271
‘-D’ (gnatbind) . 82
‘-D’ (gnatclean) . 229
‘-d’ (gnatdll) . 362
‘-d’ (gnatfind) . 188
‘-d’ (gnathtml) . 268
‘-D’ (gnathtml) . 268
‘-d’ (gnatls) . 226
‘-d’ (gnatmake) . 97
‘-D’ (gnatmake) . 97
‘-d’ (gnatmetric) . 208
‘-d’ (gnatname) . 128
‘-D’ (gnatname) . 128
‘-D’ (gnatpp) . 197
‘-D’ (gnatprep) . 221
‘-d’ (gnatxref) . 186
‘-D-’ (gnatpp) . 197
‘-dnn [k|m]’ (gnatbind) . 82
‘-e’ (gnatbind) . 83
‘-e’ (gnatbind) . 86
‘-E’ (gnatbind) . 83
‘-e’ (gnatdll) . 363
‘-e’ (gnatfind) . 188
‘-e’ (gnatpp) . 198
‘-e’ (gprof) . 273
‘-E’ (gprof) . 273
‘-eI’ (gnatmake) . 97
‘-eL’ (any project-aware tool) 175
‘-eL’ (gnatmake) . 98
‘-eS’ (gnatmake) . 98
‘-ext’ (gnathtml) . 268
‘-F’ (gnatbind) . 83
‘-F’ (gnatclean) . 229
‘-f’ (gnatfind) . 188
‘-f’ (gnathtml) . 268
‘-f’ (gnatlink) . 92
‘-f’ (gnatmake) . 98
‘-F’ (gnatmake) . 98
‘-f’ (gnatname) . 128
‘-f’ (gnatstub) . 255
‘-f’ (gnatxref) . 186
‘-f’ (gprof) . 273
‘-F’ (gprof) . 273
‘-fcallgraph-info’ (gcc) . 39
‘-fdata-sections’ (gcc) . 116
‘-fdump-ada-spec’ (gcc) . 265
‘-fdump-ada-spec-slim’ (gcc) 265
‘-ff’ (gnatpp) . 198
‘-ffunction-sections’ (gcc) 116
‘-files’ (gnatelim) . 115
‘-files’ (gnatls) . 226
‘-files’ (gnatmetric) . 215
‘-files’ (gnatpp) . 200
‘-fno-inline’ (gcc) . 38, 109
‘-fno-inline-functions’ (gcc) 38, 109
‘-fno-inline-functions-called-once’ (gcc) 38,

109
‘-fno-inline-small-functions’ (gcc) 38, 109

‘-fno-ivopts’ (gcc) . 38
‘-fno-strict-aliasing’ (gcc) 39
-fprofile-arcs . 271
-fstack-check . 251
‘-fstack-check’ (gcc) . 39, 68
-fstack-usage . 251
‘-fstack-usage’ (gcc) . 39
-ftest-coverage . 271
‘-fverbose-asm’ (gcc) . 43
‘-g’ (gcc) . 39, 107
‘-g’ (gnatdll) . 363
‘-g’ (gnatfind) . 188
‘-g’ (gnatlink) . 92
‘-g’ (gnatmake) . 98
‘-g’ (gnatxref) . 186
‘-gnat-p’ (gcc) . 41, 66
‘-gnat05’ (gcc) . 39, 69
‘-gnat12’ (gcc) . 39, 70
‘-gnat2005’ (gcc) . 39, 69
‘-gnat2012’ (gcc) . 39, 70
‘-gnat83’ (gcc) . 39, 69
‘-gnat95’ (gcc) . 39, 69
‘-gnata’ (gcc) . 39, 59
‘-gnatA’ (gcc) . 39
‘-gnata’ switch . 330
‘-gnatb’ (gcc) . 39, 45
‘-gnatB’ (gcc) . 39
‘-gnatc’ (gcc) . 39, 68
‘-gnatC’ (gcc) . 39
‘-gnatd’ (gcc) . 39, 72
‘-gnatD’ (gcc) . 74
‘-gnatD[nn]’ (gcc) . 40
‘-gnatdc’ switch . 281
‘-gnatE’ (gcc) . 40, 68
‘-gnatec’ (gcc) . 40
‘-gnatec’ (gnatpp) . 199
‘-gnatec’ (gnatstub) . 256
‘-gnateD’ (gcc) . 40, 78
‘-gnateE’ (gcc) . 40
‘-gnatef’ (gcc) . 40
‘-gnateG’ (gcc) . 40
‘-gnateI’ (gcc) . 40
‘-gnatem’ (gcc) . 40, 76
‘-gnatep’ (gcc) . 40, 77
‘-gnateP’ (gcc) . 40
‘-gnateS’ (gcc) . 40
‘-gnatf’ (gcc) . 40, 46
‘-gnatF’ (gcc) . 40
‘-gnatg’ (gcc) . 40
‘-gnatG’ (gcc) . 72
‘-gnatG[nn]’ (gcc) . 40
‘-gnath’ (gcc) . 40
‘-gnati’ (gcc) . 41, 70
‘-gnatI’ (gcc) . 41
‘-gnatjnn’ (gcc) . 41, 46
‘-gnatk’ (gcc) . 41, 71
‘-gnatl’ (gcc) . 41, 44
‘-gnatL’ (gcc) . 41, 73, 74
‘-gnatl=fname’ (gcc) . 45
‘-gnatm’ (gcc) . 41, 45
‘-gnatn’ (gcc) . 41, 71
‘-gnatN’ (gcc) . 41, 72
‘-gnatn’ switch . 20
‘-gnatN’ switch . 20
‘-gnato’ (gcc) . 41, 66, 105

Index 381

‘-gnato’ (gnatstub) . 256
‘-gnatp’ (gcc) . 41, 66, 105
‘-gnatP’ (gcc) . 41
‘-gnatq’ (gcc) . 41, 46
‘-gnatQ’ (gcc) . 41, 46
‘-gnatr’ (gcc) . 41, 74
‘-gnatR’ (gcc) . 42, 74
‘-gnats’ (gcc) . 42, 68
‘-gnatS’ (gcc) . 42, 75
‘-gnatt’ (gcc) . 42, 72
‘-gnatT’ (gcc) . 42
‘-gnatu’ (gcc) . 42, 72
‘-gnatU’ (gcc) . 42, 45
‘-gnatv’ (gcc) . 42, 44
‘-gnatV’ (gcc) . 42
‘-gnatVa’ (gcc) . 59
‘-gnatVc’ (gcc) . 60
‘-gnatVd’ (gcc) . 60
‘-gnatVe’ (gcc) . 60
‘-gnatVf’ (gcc) . 60
‘-gnatVi’ (gcc) . 60
‘-gnatVm’ (gcc) . 60
‘-gnatVn’ (gcc) . 60
‘-gnatVo’ (gcc) . 60
‘-gnatVp’ (gcc) . 61
‘-gnatVr’ (gcc) . 61
‘-gnatVs’ (gcc) . 61
‘-gnatVt’ (gcc) . 61
‘-gnatw’ (gcc) . 42
‘-gnatW’ (gcc) . 42, 70
‘-gnatw.a’ (gcc) . 49
‘-gnatw.A’ (gcc) . 49
‘-gnatw.b’ (gcc) . 49
‘-gnatw.c’ (gcc) . 49
‘-gnatw.e’ (gcc) . 50
‘-gnatw.h’ (gcc) . 51
‘-gnatw.H’ (gcc) . 51
‘-gnatw.i’ (gcc) . 51
‘-gnatw.I’ (gcc) . 51
‘-gnatw.l’ (gcc) . 52
‘-gnatw.L’ (gcc) . 52
‘-gnatw.m’ (gcc) . 52
‘-gnatw.M’ (gcc) . 52
‘-gnatw.o’ (gcc) . 53
‘-gnatw.O’ (gcc) . 53
‘-gnatw.p’ (gcc) . 53
‘-gnatw.P’ (gcc) . 53
‘-gnatw.r’ (gcc) . 54
‘-gnatw.s’ (gcc) . 54
‘-gnatw.S’ (gcc) . 55
‘-gnatw.t’ (gcc) . 55
‘-gnatw.T’ (gcc) . 55
‘-gnatw.u’ (gcc) . 55
‘-gnatw.U’ (gcc) . 56
‘-gnatw.w’ (gcc) . 56
‘-gnatw.W’ (gcc) . 56
‘-gnatwa’ (gcc) . 48
‘-gnatwA’ (gcc) . 48
‘-gnatwb’ (gcc) . 49
‘-gnatwB’ (gcc) . 49
‘-gnatwc’ (gcc) . 49
‘-gnatwC’ (gcc) . 49, 50
‘-gnatwd’ (gcc) . 50
‘-gnatwD’ (gcc) . 50
‘-gnatwe’ (gcc) . 50

‘-gnatwf’ (gcc) . 50
‘-gnatwF’ (gcc) . 50
‘-gnatwg’ (gcc) . 50
‘-gnatwG’ (gcc) . 50
‘-gnatwh’ (gcc) . 50
‘-gnatwH’ (gcc) . 50
‘-gnatwi’ (gcc) . 51
‘-gnatwI’ (gcc) . 51
‘-gnatwj’ (gcc) . 51
‘-gnatwJ’ (gcc) . 51
‘-gnatwk’ (gcc) . 51
‘-gnatwK’ (gcc) . 52
‘-gnatwl’ (gcc) . 52
‘-gnatwL’ (gcc) . 52
‘-gnatwm’ (gcc) . 52, 57
‘-gnatwM’ (gcc) . 52
‘-gnatwn’ (gcc) . 53
‘-gnatwo’ (gcc) . 53
‘-gnatwO’ (gcc) . 53
‘-gnatwp’ (gcc) . 53
‘-gnatwP’ (gcc) . 53
‘-gnatwq’ (gcc) . 53
‘-gnatwQ’ (gcc) . 54
‘-gnatwr’ (gcc) . 54
‘-gnatwR’ (gcc) . 54
‘-gnatws’ (gcc) . 54
‘-gnatwt’ (gcc) . 55
‘-gnatwT’ (gcc) . 54, 55
‘-gnatwu’ (gcc) . 55
‘-gnatwU’ (gcc) . 55
‘-gnatwv’ (gcc) . 56
‘-gnatwV’ (gcc) . 56
‘-gnatww’ (gcc) . 56
‘-gnatwW’ (gcc) . 56
‘-gnatwx’ (gcc) . 56
‘-gnatwX’ (gcc) . 56
‘-gnatwy’ (gcc) . 57
‘-gnatwY’ (gcc) . 57
‘-gnatwz’ (gcc) . 57
‘-gnatwZ’ (gcc) . 57
‘-gnatx’ (gcc) . 42, 75
‘-gnatX’ (gcc) . 42, 70
‘-gnaty’ (gcc) . 42, 61
‘-gnaty’ (gnatstub) . 256
‘-gnatyM’ (gnatstub) . 256
‘-gnatz’ (gcc) . 42
‘-h’ (gnatbind) . 83
‘-h’ (gnatbind) . 86
‘-h’ (gnatclean) . 229
‘-h’ (gnatdll) . 363
‘-h’ (gnatls) . 226
‘-h’ (gnatname) . 128
‘-H32’ (gnatbind) . 83
‘-H64’ (gnatbind) . 83
‘-hg’ (gnatstub) . 255
‘-hs’ (gnatstub) . 255
‘-I’ (gcc) . 42
‘-I’ (gnatbind) . 83, 88
‘-I’ (gnatclean) . 230
‘-I’ (gnatdll) . 363
‘-I’ (gnathtml) . 268
‘-I’ (gnatls) . 226
‘-i’ (gnatmake) . 98
‘-I’ (gnatmake) . 100
‘-i’ (gnatmem) . 247

382 GNAT User’s Guide

‘-i’ (gnatpp) . 198
‘-I’ (gnatpp) . 199
‘-i’ (gnatstub) . 256
‘-I-’ (gcc) . 42
‘-I-’ (gnatbind) . 83
‘-I-’ (gnatclean) . 230
‘-I-’ (gnatls) . 226
‘-I-’ (gnatmake) . 101
‘-I-’ (gnatpp) . 199
‘-I-’ (gnatstub) . 255
‘-IDIR’ (gnatfind) . 188
‘-IDIR’ (gnatstub) . 255
‘-IDIR’ (gnatxref) . 186
‘-j’ (gnatmake) . 98
‘-k’ (dlltool) . 364
‘-K’ (gnatbind) . 86
‘-k’ (gnatchop) . 121
‘-k’ (gnatdll) . 363
‘-k’ (gnatmake) . 98
‘-k’ (gnatstub) . 256
‘-kx ’ (gnatpp) . 196
‘-l’ (gnatbind) . 83
‘-l’ (gnatbind) . 86
‘-L’ (gnatbind) . 83
‘-l’ (gnatdll) . 363
‘-l’ (gnathtml) . 268
‘-l’ (gnatmake) . 98
‘-L’ (gnatmake) . 101
‘-l’ (gnatstub) . 256
‘-largs’ (gnatdll) . 363
‘-largs’ (gnatmake) . 101
‘-ln ’ (gnatpp) . 197
‘-log’ (gnatelim) . 115
‘-m’ (gnatbind) . 83
‘-m’ (gnatbind) . 85
‘-M’ (gnatbind) . 83
‘-M’ (gnatbind) . 85
‘-m’ (gnatmake) . 99
‘-M’ (gnatmake) . 99
‘-m’ (gnatmem) . 247
‘-M’ (gnatpp) . 198
‘-margs’ (gnatmake) . 101
‘-mbig-switch’ (gcc) . 42
-mwindows . 352
‘-n’ (gnatbind) . 83
‘-n’ (gnatbind) . 87
‘-n’ (gnatclean) . 229
‘-n’ (gnatdll) . 363
‘-n’ (gnatlink) . 92
‘-n’ (gnatmake) . 99
‘-N’ (gnatpp) . 197
‘-ne’ (gnatmetric) . 213
‘-nex ’ (gnatpp) . 196
‘-nostdinc’ (gcc) . 42
‘-nostdinc’ (gnatbind) . 83
‘-nostdinc’ (gnatfind) . 187
‘-nostdinc’ (gnatmake) . 101
‘-nostdinc’ (gnatxref) . 185
‘-nostdlib’ (gcc) . 42
‘-nostdlib’ (gnatbind) . 83
‘-nostdlib’ (gnatfind) . 187
‘-nostdlib’ (gnatmake) . 101
‘-nostdlib’ (gnatxref) . 186
‘-nt’ (gnatmetric) . 208
‘-ntx ’ (gnatpp) . 196

‘-nx ’ (gnatmetric) . 208
‘-nx ’ (gnatpp) . 196
‘-o ’ (gnatbind) . 84
‘-o’ (gcc) . 42
‘-O’ (gcc) . 42, 106
‘-o’ (gnatbind) . 86
‘-o’ (gnatbind) . 87
‘-O’ (gnatbind) . 84
‘-O’ (gnatbind) . 86
‘-o’ (gnatelim) . 115
‘-o’ (gnathtml) . 268
‘-o’ (gnatlink) . 92
‘-o’ (gnatls) . 226
‘-o’ (gnatmake) . 99
‘-o’ (gnatmetric) . 208
‘-o’ (gnatpp) . 199
‘-o’ (gnatstub) . 256
‘-of’ (gnatpp) . 199
‘-og’ (gnatmetric) . 208
‘-ox’ (gnatmetric) . 208
‘-P’ (any project-aware tool) . 175
‘-p’ (gnatbind) . 84
‘-p’ (gnatbind) . 86
‘-P’ (gnatbind) . 84
‘-p’ (gnatchop) . 121
‘-P’ (gnatclean) . 229
‘-p’ (gnathtml) . 268
‘-p’ (gnatmake) . 99
‘-P’ (gnatmake) . 99
‘-P’ (gnatname) . 128
‘-pass-exit-codes’ (gcc) . 43, 72
‘-pFILE’ (gnatfind) . 188
‘-pFILE’ (gnatxref) . 186
-pg . 272
‘-pipe’ (gnatpp) . 199
‘-px ’ (gnatpp) . 197
‘-q’ (gnatchop) . 121
‘-q’ (gnatclean) . 229
‘-q’ (gnatdll) . 363
‘-q’ (gnatelim) . 115
‘-q’ (gnatmake) . 99
‘-q’ (gnatmem) . 247
‘-q’ (gnatmetric) . 215
‘-q’ (gnatstub) . 256
‘-q’ (gnattest) . 258
‘-r’ (gnatbind) . 87
‘-R’ (gnatbind) . 84
‘-r’ (gnatchop) . 121
‘-r’ (gnatclean) . 229
‘-r’ (gnatfind) . 188
‘-r’ (gnatpp) . 199
‘-r’ (gnatprep) . 221
‘-r’ (gnatstub) . 256
‘-r’ (gnattest) . 258
‘-rf’ (gnatpp) . 199
‘-rnb’ (gnatpp) . 199
‘-S’ (gcc) . 43
‘-s’ (gnatbind) . 84
‘-s’ (gnatbind) . 85
‘-S’ (gnatbind) . 84
‘-s’ (gnatfind) . 188
‘-s’ (gnatls) . 226
‘-s’ (gnatmake) . 99
‘-s’ (gnatmem) . 247
‘-s’ (gnatprep) . 222

Index 383

‘-sc’ (gnathtml) . 268
‘-sfn’ (gnatmetric) . 208
‘-shared’ (gnatbind) . 84
‘-static’ (gnatbind) . 84
‘-t’ (gnatbind) . 84, 85
‘-T’ (gnatbind) . 84
‘-t’ (gnatelim) . 115
‘-t’ (gnatfind) . 188
‘-t’ (gnathtml) . 269
‘-T’ (gnatpp) . 198
‘-t’ (gnatstub) . 256
‘-T0’ option . 292, 294
‘-u’ (gnatbind) . 84
‘-u’ (gnatls) . 226
‘-u’ (gnatmake) . 99
‘-U’ (gnatmake) . 100
‘-u’ (gnatprep) . 222
‘-v’ (dlltool) . 364
‘-v’ (gcc) . 43
‘-V’ (gcc) . 43
‘-v’ (gnatbind) . 84, 85
‘-v’ (gnatchop) . 121
‘-v’ (gnatclean) . 230
‘-v’ (gnatdll) . 363
‘-v’ (gnatelim) . 115
‘-v’ (gnatlink) . 92
‘-v’ (gnatls) . 226
‘-v’ (gnatmake) . 100
‘-v’ (gnatmetric) . 215
‘-v’ (gnatname) . 128
‘-v’ (gnatpp) . 200
‘-v’ (gnatstub) . 256
‘-v’ (gnattest) . 258
‘-v -v’ (gnatlink) . 92
‘-v -v’ (gnatname) . 128
‘-v’ option (for GPRbuild) . 139
‘-vl’ (gnatmake) . 100
‘-vm’ (gnatmake) . 100
‘-vP’ (any project-aware tool) 175
‘-vP’ (gnatclean) . 230
‘-w’ . 58
‘-w’ (gcc) . 43
‘-w’ (gnatbind) . 84
‘-w’ (gnatchop) . 121
‘-w’ (gnatpp) . 200
‘-W’ (gnatpp) . 199
‘-Wall’ . 57
‘-we’ (gnatbind) . 85
‘-wq’ (gnatelim) . 115
‘-ws’ (gnatbind) . 85
‘-Wstack-usage’ . 57
‘-Wuninitialized’ . 57
‘-Wunused’ . 57
‘-Wx’ (gnatbind) . 84, 85
‘-X’ . 146
‘-X’ (any project-aware tool) . 175
‘-x’ (gnatbind) . 84, 85
‘-X’ (gnatclean) . 230
‘-x’ (gnatmake) . 100
‘-x’ (gnatmetric) . 208
‘-x’ (gnatname) . 128
‘-X’ (gnattest) . 258
‘-xs’ (gnatmetric) . 208
‘-y’ (gnatbind) . 85
‘-z’ (gnatbind) . 85, 88

‘-z’ (gnatmake) . 100

.

.def . 356

__gnat_finalize . 304
__gnat_initialize . 304
__gnat_malloc . 83
__gnat_set_globals . 300, 301
_main . 267

A
Access before elaboration . 66
Access-to-subprogram . 325
ACVC, Ada 83 tests . 69
Ada . 88, 282
Ada 2005 Language Reference Manual 3
Ada 2005 mode . 69
Ada 2012 mode . 70
Ada 83 mode . 69
Ada 95 Language Reference Manual 3
Ada 95 mode . 69
Ada compatibility issues warnings 57
Ada expressions . 277
Ada language extensions . 70
Ada Library Information files . 20
Ada.Characters.Latin_1 . 13
ADA_INCLUDE_PATH . 79
ADA_OBJECTS_PATH . 88
ADA_PRJ_INCLUDE_FILE . 79
ADA_PRJ_OBJECTS_FILE . 88
ADA_PROJECT_PATH . 143, 233
adafinal . 87, 303
adainit . 87, 299
Address Clauses, warnings . 53
afferent coupling . 214
AIX resolver library . 293
‘ALI’ files . 20
Aliasing . 111
Alignment control in gnatpp . 196
Annex A . 282
Annex B . 282
APIENTRY . 352
Arbitrary File Naming Conventions 127
ASIS . 253
Asm . 24
Assert . 59
Assert failures . 49
Assertions . 59

B
Bad fixed values . 49
Biased representation . 49
Binder consistency checks . 85
Binder output file . 22
Binder, multiple input files . 87
binding . 263
Body . 141
Body_Suffix . 141
Breakpoints and tasks . 279

384 GNAT User’s Guide

Building the GNAT Run-Time Library 237

C
C . 24
C varargs function . 24
C++ . 25
Calling Conventions . 24
cannot generate code . 37
case statement . 146
case statement (effect of ‘-mbig-switch’ option) . . 42
Casing . 140
Casing control in gnatpp . 196
Ceiling_Locking (under rts-pthread) 293
Check, elaboration . 68
Check, overflow . 66
Checks, access before elaboration 66
Checks, division by zero . 66
Checks, elaboration . 309
Checks, overflow . 105
Checks, stack overflow checking 66, 68
Checks, suppressing . 66
Cleaning tool . 229
COBOL . 24
Code Coverage . 271
code page 437 . 14
code page 850 . 14
Combining GNAT switches . 43
command line length . 136
Command line length . 92
Compatibility (between Ada 83 and Ada 95 / Ada

2005) . 343
Compatibility between Ada 95 and Ada 2005 345
Compatibility with Ada 83 . 69
Compilation model . 13
Complexity metrics control in gnatmetric 212
Component clause, missing . 49
Conditional compilation . 329
Conditionals, constant . 49
Configuration pragmas . 123
Consistency checks, in binder . 85
CONSOLE Subsystem . 352
Convention Ada . 24
Convention Asm . 24
Convention Assembler . 24
Convention C . 24
Convention C++ . 25
Convention COBOL . 24
Convention Default . 25
Convention DLL . 26
Convention External . 25
Convention Fortran . 25
Convention Stdcall . 25
Convention Stubbed . 26
Convention Win32 . 26
Conventions . 3
Coupling metrics (in in gnatmetric) 213
Coupling metrics control in gnatmetric 213
CR . 13
Cyrillic . 14

D
Deactivated code, warnings . 55

Debug . 59
Debug Pool . 244
Debugger . 275
Debugging . 275
Debugging Generic Units . 279
Debugging information, including 92
Debugging optimized code . 107
Debugging options . 72
Default . 25
Default_Switches . 137
Definition file . 356
Deleted code, warnings . 55
Dependencies, producing list . 99
Dependency rules . 95
Dereferencing, implicit . 50
Disable Metrics For Local Units in gnatmetric . . 208
Division by zero . 66
DLL . 26, 354
DLL debugging . 366
DLL debugging, attach to process 368
DLLs and elaboration . 361
DLLs and finalization . 361
DLLs, building . 357, 358
Dot_Replacement . 140

E
efferent coupling . 214
Elaborate . 310
Elaborate_All . 311
Elaborate_Body . 310
Elaboration checks . 68, 309
Elaboration control . 307, 326
Elaboration of library tasks . 317
Elaboration order control . 35
Elaboration, warnings . 52
Eligible local unit (for gnatmetric) 208
End of source file . 13
Error messages, suppressing . 46
EUC Coding . 15
Exceptions . 278
Excluded_Source_Dirs . 134
Excluded_Source_Files . 135, 153
Excluded_Source_List_File 135, 153
Exec_Dir . 136
Executable . 139
Executable_Suffix . 139
Export . 267
Export table . 359
Export/Import pragma warnings 56
extends all . 154
external . 146
External . 25, 159
Externally_Built . 142

F
fan-in coupling . 214
fan-out coupling . 214
FDL, GNU Free Documentation License 371
Features, obsolescent . 51
FF . 13
File names . 17
File naming schemes, alternative 17

Index 385

Fixed-point Small value . 49
Foreign Languages . 24
Formals, unreferenced . 50
Fortran . 25

G
gcov . 271
gdb . 275
Generic formal parameters . 69
Generics . 19, 279
Global_Compilation_Switches 145, 159
Global_Configuration_Pragmas 145, 161
GNAT . 88, 282
GNAT Abnormal Termination or Failure to

Terminate . 281
GNAT compilation model . 13
GNAT extensions . 70
GNAT library . 35
GNAT Programming Studio (GPS) 8
GNAT Run-Time Library, rebuilding 237
‘gnat.adc’ . 17, 124
gnat_argc . 88
gnat_argv . 88
GNAT INIT SCALARS . 84
GNAT_PROCESSOR environment variable (on Sparc

Solaris) . 293
GNAT STACK LIMIT . 251
gnat1 . 37
gnatbind . 81
gnatcheck . 253
gnatchop . 119
gnatclean . 229
gnatdll . 362
gnatelim . 114
gnatfind . 185
gnatkr . 217
gnatlink . 91
gnatls . 225
gnatmake . 95
gnatmem . 245
gnatmetric . 207
gnatpp . 195
gnatprep . 221, 333
gnatstub . 255
gnattest . 257
gnatxref . 185
GNU make . 239
GPR_PROJECT_PATH . 143, 233
gprof . 272
GPS (GNAT Programming Studio) 8

H
Hiding of Declarations . 50
HP-UX and ‘-mbig-switch’ option 42
HP-UX Scheduling . 294
HT . 13

I
Ignore_Source_Sub_Dirs . 134
Implementation . 141
Implementation_Exceptions . 141

Implementation_Suffix . 141
Implicit dereferencing . 50
Import library . 356
Improving performance . 105
Inheritance_Locking (under rts-pthread) 293
Inline . 20, 108
Inlining . 35
Inlining, warnings . 53
Interfaces . 88, 282
Interfacing to Ada . 24
Interfacing to Assembly . 24
Interfacing to C . 24
Interfacing to C varargs function 24
Interfacing to C++ . 25
Interfacing to COBOL . 24
Interfacing to Fortran . 25
Internal trees, writing to file . 72
Irix libraries . 293
ISO 8859-15 . 14
ISO 8859-2 . 14
ISO 8859-3 . 14
ISO 8859-4 . 14
ISO 8859-5 . 14

L
Languages . 134
Latin-1 . 13, 345
Latin-2 . 14
Latin-3 . 14
Latin-4 . 14
Latin-9 . 14
Layout control in gnatpp . 197
Leading_Library_Options . 149
LF . 13
Library browser . 225
Library tasks, elaboration issues 317
Library, building, installing, using 231
Library_ALI_Dir . 148
Library_Auto_Init . 151
Library_Dir . 147, 151
Library_GCC . 148
Library_Interface . 150
Library_Kind . 148
Library_Name . 147
Library_Options . 149
Library_Reference_Symbol_File 152
Library_Src_Dir . 151
Library_Standalone . 150
Library_Symbol_File . 152
Library_Symbol_Policy . 151
Library_Version . 148
Line metrics control in gnatmetric 209
Linker libraries . 101
Linker_Options . 149
Linux threads libraries . 293
Local_Configuration_Pragmas 138
Locally_Removed_Files . 135

M
Machine_Overflows . 67
Main . 136
Main Program . 304

386 GNAT User’s Guide

make . 239
makefile . 239
Makefile package in projects . 165
Memory Pool . 243
Metric tool . 207
Mixed Language Programming 21
Multiple units, syntax checking 68

N
N (gnatmem) . 247
naming scheme . 98
Naming scheme . 134
No Entry Calls In Elaboration Code 321
No Strict Aliasing . 111

O
Object file list . 305
Object_Dir . 135
Obsolescent features . 51
Optimization and debugging . 107
Optimization Switches . 109, 111
Order of elaboration . 307
Other Ada compilers . 24
Output file control in gnatmetric 207
Overflow checks . 66, 105

P
Parallel make . 98
Parameter order, warnings . 53
Parentheses, warnings . 53
portability . 133
pragma Assert . 330
pragma Assertion_Policy . 330
pragma Debug . 330
pragma Debug_Policy . 330
pragma Elaborate . 310
Pragma Elaborate . 317
pragma Elaborate All . 311
pragma Elaborate Body . 310
pragma Inline . 108
pragma Locking Policy (under rts-pthread) 293
pragma Preelaborate . 310
pragma Pure . 310
pragma Restrictions . 74
pragma Suppress . 105
pragma Task Dispatching Policy 292, 294
pragma Time Slice . 292, 294
pragma Unsuppress . 105
Pragmas, configuration . 123
Pragmas, unrecognized . 50
Preelaborate . 310
Preprocessing . 333
Preprocessors (contrasted with conditional

compilation) . 329
Pretty-Printer . 195
Profiling . 271, 272
project file packages . 137
project path . 143
project qualifier . 145
Project_Files . 157
Project_Path . 158

PTHREAD_PRIO_INHERIT policy (under rts-pthread)
. 293

PTHREAD_PRIO_PROTECT policy (under rts-pthread)
. 293

Pure . 310

R
rc . 366
Rebuilding the GNAT Run-Time Library 237
Recompilation, by gnatmake . 101
Record Representation (component sizes) 54
Record Representation (gaps) . 51
Remote Debugging using gdbserver 280
Resources, building . 365
Resources, compiling . 366
Resources, using . 366
Resources, windows . 365
RTL . 42
rts-pthread threads library . 293
RTX libraries . 294
Run-time libraries (platform-specific information)

. 289
Run-Time Library, rebuilding 237

S
scenarios . 146
SCHED_FIFO scheduling policy 292
SCHED_OTHER scheduling policy 292
SCHED_RR scheduling policy . 292
SDP_Table_Build . 300
Search paths, for gnatmake . 100
Separate_Suffix . 141
setjmp/longjmp Exception Model 289
Shift JIS Coding . 15
SJLJ (setjmp/longjmp Exception Model) 289
Small value . 49
Solaris Sparc threads libraries 293
Source directories . 133
Source directories, recursive . 134
Source file, end . 13
Source files, suppressing search 101, 230
Source files, use by binder . 81
Source_Dirs . 133
Source File Name pragma . 17
Source_Files . 134
Source_List_File . 135
Source_Reference . 121
Spec . 141
Spec_Suffix . 140
Specification . 141
Specification_Exceptions . 141
Specification_Suffix . 140
Stack Overflow Checking . 68, 251
stack traceback . 282
stack unwinding . 282
Stand-alone library, building, using 234
standalone libraries . 150
Static Stack Usage Analysis . 251
Stdcall . 25, 352
stderr . 44, 45
stdout . 44
storage, pool . 243

Index 387

storage, pool, memory corruption 244
Strict Aliasing . 111
String indexing warnings . 56
Stubbed . 26
Style checking . 61
SUB . 13
Subunits . 19
Subunits (and conditional compilation) 331
Suppress . 66, 105
Suppressing checks . 66
Switches . 138, 159
symbolic links . 98
Syntax metrics control in gnatmetric 210
System . 88, 282
System.IO . 79

T
Task switching . 279
Tasking and threads libraries . 289
Tasks . 279
Temporary files . 352
Text_IO and performance . 114
Threads libraries and tasking . 289
Time stamp checks, in binder . 85
traceback . 282
traceback, non-symbolic . 282
traceback, symbolic . 286
typed variable . 146
Typographical conventions . 3

U
Unassigned variable warnings . 56

Unchecked Conversion warnings 57
Unsuppress . 68, 105
unused subprogram/data elimination 116
Upper-Half Coding . 15

V
Validity Checking . 59
varargs function interfaces . 24
Version skew (avoided by gnatmake) 6
Volatile parameter . 342
VT . 13

W
Warning messages . 47
Warnings . 85
Warnings Off control . 56
Warnings, activate every optional warning 50
Warnings, treat as error . 50
Win32 . 26
Windows 95 . 351
Windows 98 . 351
Windows NT . 351
WINDOWS Subsystem . 352
windres . 366
Writing internal trees . 72

Z
ZCX (Zero-Cost Exceptions) . 289
Zero Cost Exceptions . 75
Zero Cost Exceptions . 300
Zero-Cost Exceptions . 289

i

Table of Contents

About This Guide . 1
What This Guide Contains . 1
What You Should Know before Reading This Guide . 3
Related Information . 3
Conventions . 3

1 Getting Started with GNAT . 5
1.1 Running GNAT . 5
1.2 Running a Simple Ada Program . 5
1.3 Running a Program with Multiple Units . 6
1.4 Using the gnatmake Utility . 7
1.5 Introduction to GPS . 8

1.5.1 Building a New Program with GPS . 8
1.5.2 Simple Debugging with GPS . 9

2 The GNAT Compilation Model . 13
2.1 Source Representation . 13
2.2 Foreign Language Representation . 13

2.2.1 Latin-1 . 13
2.2.2 Other 8-Bit Codes . 14
2.2.3 Wide Character Encodings . 14

2.3 File Naming Rules . 16
2.4 Using Other File Names . 17
2.5 Alternative File Naming Schemes . 17
2.6 Generating Object Files . 19
2.7 Source Dependencies . 19
2.8 The Ada Library Information Files . 20
2.9 Binding an Ada Program . 21
2.10 Mixed Language Programming . 21

2.10.1 Interfacing to C . 21
2.10.2 Calling Conventions . 24

2.11 Building Mixed Ada and C++ Programs . 26
2.11.1 Interfacing to C++ . 26
2.11.2 Linking a Mixed C++ & Ada Program . 26
2.11.3 A Simple Example . 27
2.11.4 Interfacing with C++ constructors . 29
2.11.5 Interfacing with C++ at the Class Level . 31

2.12 Comparison between GNAT and C/C++ Compilation Models 35
2.13 Comparison between GNAT and Conventional Ada Library Models 35

3 Compiling Using gcc . 37
3.1 Compiling Programs . 37
3.2 Switches for gcc . 38

3.2.1 Output and Error Message Control . 44
3.2.2 Warning Message Control . 47
3.2.3 Debugging and Assertion Control . 59
3.2.4 Validity Checking . 59

ii GNAT User’s Guide

3.2.5 Style Checking . 61
3.2.6 Run-Time Checks . 66
3.2.7 Using gcc for Syntax Checking . 68
3.2.8 Using gcc for Semantic Checking . 68
3.2.9 Compiling Different Versions of Ada . 69
3.2.10 Character Set Control . 70
3.2.11 File Naming Control . 71
3.2.12 Subprogram Inlining Control . 71
3.2.13 Auxiliary Output Control . 72
3.2.14 Debugging Control . 72
3.2.15 Exception Handling Control . 75
3.2.16 Units to Sources Mapping Files . 76
3.2.17 Integrated Preprocessing . 76
3.2.18 Code Generation Control . 78

3.3 Search Paths and the Run-Time Library (RTL) . 78
3.4 Order of Compilation Issues . 79
3.5 Examples . 80

4 Binding Using gnatbind . 81
4.1 Running gnatbind . 81
4.2 Switches for gnatbind . 82

4.2.1 Consistency-Checking Modes . 85
4.2.2 Binder Error Message Control . 85
4.2.3 Elaboration Control . 86
4.2.4 Output Control . 86
4.2.5 Dynamic Allocation Control . 87
4.2.6 Binding with Non-Ada Main Programs . 87
4.2.7 Binding Programs with No Main Subprogram . 88

4.3 Command-Line Access . 88
4.4 Search Paths for gnatbind . 88
4.5 Examples of gnatbind Usage . 89

5 Linking Using gnatlink . 91
5.1 Running gnatlink . 91
5.2 Switches for gnatlink . 91

6 The GNAT Make Program gnatmake . 95
6.1 Running gnatmake . 95
6.2 Switches for gnatmake . 95
6.3 Mode Switches for gnatmake . 101
6.4 Notes on the Command Line . 101
6.5 How gnatmake Works . 102
6.6 Examples of gnatmake Usage . 103

iii

7 Improving Performance . 105
7.1 Performance Considerations . 105

7.1.1 Controlling Run-Time Checks . 105
7.1.2 Use of Restrictions . 106
7.1.3 Optimization Levels . 106
7.1.4 Debugging Optimized Code . 107
7.1.5 Inlining of Subprograms . 108
7.1.6 Vectorization of loops . 109
7.1.7 Other Optimization Switches . 111
7.1.8 Optimization and Strict Aliasing . 111

7.2 Text_IO Suggestions . 114
7.3 Reducing Size of Ada Executables with gnatelim . 114

7.3.1 About gnatelim . 114
7.3.2 Running gnatelim . 114
7.3.3 Processing Precompiled Libraries . 115
7.3.4 Correcting the List of Eliminate Pragmas . 115
7.3.5 Making Your Executables Smaller . 116
7.3.6 Summary of the gnatelim Usage Cycle . 116

7.4 Reducing Size of Executables with Unused Subprogram/Data Elimination 116
7.4.1 About unused subprogram/data elimination . 116
7.4.2 Compilation options . 116
7.4.3 Example of unused subprogram/data elimination . 117

8 Renaming Files Using gnatchop . 119
8.1 Handling Files with Multiple Units . 119
8.2 Operating gnatchop in Compilation Mode . 119
8.3 Command Line for gnatchop . 120
8.4 Switches for gnatchop . 121
8.5 Examples of gnatchop Usage . 122

9 Configuration Pragmas . 123
9.1 Handling of Configuration Pragmas . 124
9.2 The Configuration Pragmas Files . 124

10 Handling Arbitrary File Naming Conventions Using
gnatname . 127

10.1 Arbitrary File Naming Conventions . 127
10.2 Running gnatname . 127
10.3 Switches for gnatname . 127
10.4 Examples of gnatname Usage . 129

11 GNAT Project Manager . 131
11.1 Introduction . 131
11.2 Building With Projects . 132

11.2.1 Source Files and Directories . 133
11.2.2 Object and Exec Directory . 135
11.2.3 Main Subprograms . 136
11.2.4 Tools Options in Project Files . 136
11.2.5 Compiling with Project Files . 138
11.2.6 Executable File Names . 139
11.2.7 Avoid Duplication With Variables . 139
11.2.8 Naming Schemes . 140

iv GNAT User’s Guide

11.3 Organizing Projects into Subsystems . 142
11.3.1 Project Dependencies . 142
11.3.2 Cyclic Project Dependencies . 143
11.3.3 Sharing Between Projects . 144
11.3.4 Global Attributes . 145

11.4 Scenarios in Projects . 145
11.5 Library Projects . 147

11.5.1 Building Libraries . 147
11.5.2 Using Library Projects . 149
11.5.3 Stand-alone Library Projects . 150
11.5.4 Installing a library with project files . 152

11.6 Project Extension . 152
11.6.1 Project Hierarchy Extension . 154

11.7 Aggregate Projects . 155
11.7.1 Building all main programs from a single project tree . 155
11.7.2 Building a set of projects with a single command . 155
11.7.3 Define a build environment . 156
11.7.4 Performance improvements in builder . 157
11.7.5 Syntax of aggregate projects . 157
11.7.6 package Builder in aggregate projects . 159

11.8 Aggregate Library Projects . 161
11.8.1 Building aggregate library projects . 161
11.8.2 Syntax of aggregate library projects . 161

11.9 Project File Reference . 162
11.9.1 Project Declaration . 162
11.9.2 Qualified Projects . 163
11.9.3 Declarations . 164
11.9.4 Packages . 164
11.9.5 Expressions . 166
11.9.6 External Values . 167
11.9.7 Typed String Declaration . 168
11.9.8 Variables . 168
11.9.9 Attributes . 169
11.9.10 Case Statements . 173

12 Tools Supporting Project Files . 175
12.1 gnatmake and Project Files . 175

12.1.1 Switches Related to Project Files . 175
12.1.2 Switches and Project Files . 175
12.1.3 Specifying Configuration Pragmas . 178
12.1.4 Project Files and Main Subprograms . 178
12.1.5 Library Project Files . 179

12.2 The GNAT Driver and Project Files . 179
12.3 The Development Environments . 182

13 The Cross-Referencing Tools gnatxref and gnatfind 185
13.1 gnatxref Switches . 185
13.2 gnatfind Switches . 186
13.3 Project Files for gnatxref and gnatfind . 188
13.4 Regular Expressions in gnatfind and gnatxref . 189
13.5 Examples of gnatxref Usage . 190

13.5.1 General Usage . 190
13.5.2 Using gnatxref with vi . 192

13.6 Examples of gnatfind Usage . 192

v

14 The GNAT Pretty-Printer gnatpp . 195
14.1 Switches for gnatpp . 195

14.1.1 Alignment Control . 196
14.1.2 Casing Control . 196
14.1.3 Construct Layout Control . 197
14.1.4 General Text Layout Control . 198
14.1.5 Other Formatting Options . 198
14.1.6 Setting the Source Search Path . 199
14.1.7 Output File Control . 199
14.1.8 Other gnatpp Switches . 200

14.2 Formatting Rules . 200
14.2.1 White Space and Empty Lines . 200
14.2.2 Formatting Comments . 200
14.2.3 Construct Layout . 202
14.2.4 Name Casing . 203

15 The GNAT Metric Tool gnatmetric . 207
15.1 Switches for gnatmetric . 207

15.1.1 Output File Control . 207
15.1.2 Disable Metrics For Local Units . 208
15.1.3 Specifying a set of metrics to compute . 208

15.1.3.1 Line Metrics Control . 209
15.1.3.2 Syntax Metrics Control . 210
15.1.3.3 Complexity Metrics Control . 212
15.1.3.4 Coupling Metrics Control . 213

15.1.4 Other gnatmetric Switches . 215
15.1.5 Generate project-wide metrics . 215

16 File Name Krunching Using gnatkr . 217
16.1 About gnatkr . 217
16.2 Using gnatkr . 217
16.3 Krunching Method . 218
16.4 Examples of gnatkr Usage . 219

17 Preprocessing Using gnatprep . 221
17.1 Preprocessing Symbols . 221
17.2 Using gnatprep . 221
17.3 Switches for gnatprep . 221
17.4 Form of Definitions File . 222
17.5 Form of Input Text for gnatprep . 222

18 The GNAT Library Browser gnatls . 225
18.1 Running gnatls . 225
18.2 Switches for gnatls . 226
18.3 Example of gnatls Usage . 227

19 Cleaning Up Using gnatclean . 229
19.1 Running gnatclean . 229
19.2 Switches for gnatclean . 229

vi GNAT User’s Guide

20 GNAT and Libraries . 231
20.1 Introduction to Libraries in GNAT . 231
20.2 General Ada Libraries . 231

20.2.1 Building a library . 231
20.2.2 Installing a library . 233
20.2.3 Using a library . 233

20.3 Stand-alone Ada Libraries . 234
20.3.1 Introduction to Stand-alone Libraries . 234
20.3.2 Building a Stand-alone Library . 234
20.3.3 Creating a Stand-alone Library to be used in a non-Ada context 236
20.3.4 Restrictions in Stand-alone Libraries . 237

20.4 Rebuilding the GNAT Run-Time Library . 237

21 Using the GNU make Utility . 239
21.1 Using gnatmake in a Makefile . 239
21.2 Automatically Creating a List of Directories . 240
21.3 Generating the Command Line Switches . 241
21.4 Overcoming Command Line Length Limits . 242

22 Memory Management Issues . 243
22.1 Some Useful Memory Pools . 243
22.2 The GNAT Debug Pool Facility . 244
22.3 The gnatmem Tool . 245

22.3.1 Running gnatmem . 246
22.3.2 Switches for gnatmem . 247
22.3.3 Example of gnatmem Usage . 247

23 Stack Related Facilities . 251
23.1 Stack Overflow Checking . 251
23.2 Static Stack Usage Analysis . 251
23.3 Dynamic Stack Usage Analysis . 252

24 Verifying Properties Using gnatcheck . 253

25 Creating Sample Bodies Using gnatstub 255
25.1 Running gnatstub . 255
25.2 Switches for gnatstub . 255

26 Creating Unit Tests Using gnattest . 257
26.1 Running gnattest . 257
26.2 Switches for gnattest . 258
26.3 Project Attributes for gnattest . 258
26.4 Simple Example . 259
26.5 Setting Up and Tearing Down the Testing Environment . 259
26.6 Regenerating Tests . 259
26.7 Default Test Behavior . 260
26.8 Testing Primitive Operations of Tagged Types . 260
26.9 Testing Inheritance . 261
26.10 Tagged Types Substitutability Testing . 261
26.11 Testing with Contracts . 261
26.12 Additional Tests . 262
26.13 Current Limitations . 262

vii

27 Generating Ada Bindings for C and C++ headers 263
27.1 Running the binding generator . 263
27.2 Generating bindings for C++ headers . 264
27.3 Switches . 265

28 Other Utility Programs . 267
28.1 Using Other Utility Programs with GNAT . 267
28.2 The External Symbol Naming Scheme of GNAT . 267
28.3 Converting Ada Files to HTML with gnathtml . 268
28.4 Installing gnathtml . 269

29 Code Coverage and Profiling . 271
29.1 Code Coverage of Ada Programs using gcov . 271

29.1.1 Quick startup guide . 271
29.1.2 Gnat specifics . 271

29.2 Profiling an Ada Program using gprof . 272
29.2.1 Compilation for profiling . 272
29.2.2 Program execution . 272
29.2.3 Running gprof . 272
29.2.4 Interpretation of profiling results . 273

30 Running and Debugging Ada Programs 275
30.1 The GNAT Debugger GDB . 275
30.2 Running GDB . 276
30.3 Introduction to GDB Commands . 276
30.4 Using Ada Expressions . 277
30.5 Calling User-Defined Subprograms . 278
30.6 Using the Next Command in a Function . 278
30.7 Stopping when Ada Exceptions are Raised . 278
30.8 Ada Tasks . 279
30.9 Debugging Generic Units . 279
30.10 Remote Debugging using gdbserver . 280
30.11 GNAT Abnormal Termination or Failure to Terminate . 281
30.12 Naming Conventions for GNAT Source Files . 281
30.13 Getting Internal Debugging Information . 282
30.14 Stack Traceback . 282

30.14.1 Non-Symbolic Traceback . 282
30.14.1.1 Tracebacks From an Unhandled Exception . 282
30.14.1.2 Tracebacks From Exception Occurrences . 284
30.14.1.3 Tracebacks From Anywhere in a Program . 285

30.14.2 Symbolic Traceback . 286
30.14.2.1 Tracebacks From Exception Occurrences . 286
30.14.2.2 Tracebacks From Anywhere in a Program . 286

viii GNAT User’s Guide

Appendix A Platform-Specific Information for the Run-Time
Libraries . 289

A.1 Summary of Run-Time Configurations . 289
A.2 Specifying a Run-Time Library . 292
A.3 Choosing the Scheduling Policy . 292
A.4 Solaris-Specific Considerations . 293

A.4.1 Solaris Threads Issues . 293
A.5 Linux-Specific Considerations . 293
A.6 AIX-Specific Considerations . 293
A.7 Irix-Specific Considerations . 293
A.8 RTX-Specific Considerations . 294
A.9 HP-UX-Specific Considerations . 294

Appendix B Example of Binder Output File 295

Appendix C Elaboration Order Handling in GNAT 307
C.1 Elaboration Code . 307
C.2 Checking the Elaboration Order . 308
C.3 Controlling the Elaboration Order . 309
C.4 Controlling Elaboration in GNAT - Internal Calls . 312
C.5 Controlling Elaboration in GNAT - External Calls . 314
C.6 Default Behavior in GNAT - Ensuring Safety . 315
C.7 Treatment of Pragma Elaborate . 317
C.8 Elaboration Issues for Library Tasks . 317
C.9 Mixing Elaboration Models . 322
C.10 What to Do If the Default Elaboration Behavior Fails . 322
C.11 Elaboration for Access-to-Subprogram Values . 325
C.12 Summary of Procedures for Elaboration Control . 326
C.13 Other Elaboration Order Considerations . 326

Appendix D Conditional Compilation . 329
D.1 Use of Boolean Constants . 329
D.2 Debugging - A Special Case . 329
D.3 Conditionalizing Declarations . 330
D.4 Use of Alternative Implementations . 331
D.5 Preprocessing . 333

Appendix E Inline Assembler . 335
E.1 Basic Assembler Syntax . 335
E.2 A Simple Example of Inline Assembler . 336
E.3 Output Variables in Inline Assembler . 337
E.4 Input Variables in Inline Assembler . 340
E.5 Inlining Inline Assembler Code . 341
E.6 Other Asm Functionality . 341

E.6.1 The Clobber Parameter . 342
E.6.2 The Volatile Parameter . 342

ix

Appendix F Compatibility and Porting Guide 343
F.1 Compatibility with Ada 83 . 343

F.1.1 Legal Ada 83 programs that are illegal in Ada 95 . 343
F.1.2 More deterministic semantics . 344
F.1.3 Changed semantics . 344
F.1.4 Other language compatibility issues . 345

F.2 Compatibility between Ada 95 and Ada 2005 . 345
F.3 Implementation-dependent characteristics . 346

F.3.1 Implementation-defined pragmas . 346
F.3.2 Implementation-defined attributes . 346
F.3.3 Libraries . 346
F.3.4 Elaboration order . 347
F.3.5 Target-specific aspects . 347

F.4 Compatibility with Other Ada Systems . 347
F.5 Representation Clauses . 348
F.6 Compatibility with HP Ada 83 . 349

Appendix G Microsoft Windows Topics . 351
G.1 Using GNAT on Windows . 351
G.2 Using a network installation of GNAT . 351
G.3 CONSOLE and WINDOWS subsystems . 352
G.4 Temporary Files . 352
G.5 Mixed-Language Programming on Windows . 352
G.6 Windows Calling Conventions . 352

G.6.1 C Calling Convention . 353
G.6.2 Stdcall Calling Convention . 353
G.6.3 Win32 Calling Convention . 354
G.6.4 DLL Calling Convention . 354

G.7 Introduction to Dynamic Link Libraries (DLLs) . 354
G.8 Using DLLs with GNAT . 355

G.8.1 Creating an Ada Spec for the DLL Services . 355
G.8.2 Creating an Import Library . 356

G.8.2.1 The Definition File . 356
G.8.2.2 GNAT-Style Import Library . 357
G.8.2.3 Microsoft-Style Import Library . 357

G.9 Building DLLs with GNAT Project files . 357
G.10 Building DLLs with GNAT . 358
G.11 Building DLLs with gnatdll . 358

G.11.1 Limitations When Using Ada DLLs from Ada . 359
G.11.2 Exporting Ada Entities . 359
G.11.3 Ada DLLs and Elaboration . 361
G.11.4 Ada DLLs and Finalization . 361
G.11.5 Creating a Spec for Ada DLLs . 361
G.11.6 Creating the Definition File . 362
G.11.7 Using gnatdll . 362

G.11.7.1 gnatdll Example . 363
G.11.7.2 gnatdll behind the Scenes . 363
G.11.7.3 Using dlltool . 364

G.12 GNAT and Windows Resources . 365
G.12.1 Building Resources . 365
G.12.2 Compiling Resources . 366
G.12.3 Using Resources . 366

G.13 Debugging a DLL . 366

x GNAT User’s Guide

G.13.1 Program and DLL Both Built with GCC/GNAT . 366
G.13.2 Program Built with Foreign Tools and DLL Built with GCC/GNAT 367

G.13.2.1 Debugging the DLL Directly . 367
G.13.2.2 Attaching to a Running Process . 368

G.14 Setting Stack Size from gnatlink . 368
G.15 Setting Heap Size from gnatlink . 368

GNU Free Documentation License . 371
ADDENDUM: How to use this License for your documents . 377

Index . 379

	About This Guide
	What This Guide Contains
	What You Should Know before Reading This Guide
	Related Information
	Conventions

	Getting Started with GNAT
	Running GNAT
	Running a Simple Ada Program
	Running a Program with Multiple Units
	Using the gnatmake Utility
	Introduction to GPS
	Building a New Program with GPS
	Simple Debugging with GPS

	The GNAT Compilation Model
	Source Representation
	Foreign Language Representation
	Latin-1
	Other 8-Bit Codes
	Wide Character Encodings

	File Naming Rules
	Using Other File Names
	Alternative File Naming Schemes
	Generating Object Files
	Source Dependencies
	The Ada Library Information Files
	Binding an Ada Program
	Mixed Language Programming
	Interfacing to C
	Calling Conventions

	Building Mixed Ada and C++ Programs
	Interfacing to C++
	Linking a Mixed C++ & Ada Program
	A Simple Example
	Interfacing with C++ constructors
	Interfacing with C++ at the Class Level

	Comparison between GNAT and C/C++ Compilation Models
	Comparison between GNAT and Conventional Ada Library Models

	Compiling Using gcc
	Compiling Programs
	Switches for gcc
	Output and Error Message Control
	Warning Message Control
	Debugging and Assertion Control
	Validity Checking
	Style Checking
	Run-Time Checks
	Using gcc for Syntax Checking
	Using gcc for Semantic Checking
	Compiling Different Versions of Ada
	Character Set Control
	File Naming Control
	Subprogram Inlining Control
	Auxiliary Output Control
	Debugging Control
	Exception Handling Control
	Units to Sources Mapping Files
	Integrated Preprocessing
	Code Generation Control

	Search Paths and the Run-Time Library (RTL)
	Order of Compilation Issues
	Examples

	Binding Using gnatbind
	Running gnatbind
	Switches for gnatbind
	Consistency-Checking Modes
	Binder Error Message Control
	Elaboration Control
	Output Control
	Dynamic Allocation Control
	Binding with Non-Ada Main Programs
	Binding Programs with No Main Subprogram

	Command-Line Access
	Search Paths for gnatbind
	Examples of gnatbind Usage

	Linking Using gnatlink
	Running gnatlink
	Switches for gnatlink

	The GNAT Make Program gnatmake
	Running gnatmake
	Switches for gnatmake
	Mode Switches for gnatmake
	Notes on the Command Line
	How gnatmake Works
	Examples of gnatmake Usage

	Improving Performance
	Performance Considerations
	Controlling Run-Time Checks
	Use of Restrictions
	Optimization Levels
	Debugging Optimized Code
	Inlining of Subprograms
	Vectorization of loops
	Other Optimization Switches
	Optimization and Strict Aliasing

	Text_IO Suggestions
	Reducing Size of Ada Executables with gnatelim
	About gnatelim
	Running gnatelim
	Processing Precompiled Libraries
	Correcting the List of Eliminate Pragmas
	Making Your Executables Smaller
	Summary of the gnatelim Usage Cycle

	Reducing Size of Executables with Unused Subprogram/Data Elimination
	About unused subprogram/data elimination
	Compilation options
	Example of unused subprogram/data elimination

	Renaming Files Using gnatchop
	Handling Files with Multiple Units
	Operating gnatchop in Compilation Mode
	Command Line for gnatchop
	Switches for gnatchop
	Examples of gnatchop Usage

	Configuration Pragmas
	Handling of Configuration Pragmas
	The Configuration Pragmas Files

	Handling Arbitrary File Naming Conventions Using gnatname
	Arbitrary File Naming Conventions
	Running gnatname
	Switches for gnatname
	Examples of gnatname Usage

	GNAT Project Manager
	Introduction
	Building With Projects
	Source Files and Directories
	Object and Exec Directory
	Main Subprograms
	Tools Options in Project Files
	Compiling with Project Files
	Executable File Names
	Avoid Duplication With Variables
	Naming Schemes

	Organizing Projects into Subsystems
	Project Dependencies
	Cyclic Project Dependencies
	Sharing Between Projects
	Global Attributes

	Scenarios in Projects
	Library Projects
	Building Libraries
	Using Library Projects
	Stand-alone Library Projects
	Installing a library with project files

	Project Extension
	Project Hierarchy Extension

	Aggregate Projects
	Building all main programs from a single project tree
	Building a set of projects with a single command
	Define a build environment
	Performance improvements in builder
	Syntax of aggregate projects
	package Builder in aggregate projects

	Aggregate Library Projects
	Building aggregate library projects
	Syntax of aggregate library projects

	Project File Reference
	Project Declaration
	Qualified Projects
	Declarations
	Packages
	Expressions
	External Values
	Typed String Declaration
	Variables
	Attributes
	Case Statements

	Tools Supporting Project Files
	gnatmake and Project Files
	Switches Related to Project Files
	Switches and Project Files
	Specifying Configuration Pragmas
	Project Files and Main Subprograms
	Library Project Files

	The GNAT Driver and Project Files
	The Development Environments

	The Cross-Referencing Tools gnatxref and gnatfind
	gnatxref Switches
	gnatfind Switches
	Project Files for gnatxref and gnatfind
	Regular Expressions in gnatfind and gnatxref
	Examples of gnatxref Usage
	General Usage
	Using gnatxref with vi

	Examples of gnatfind Usage

	The GNAT Pretty-Printer gnatpp
	Switches for gnatpp
	Alignment Control
	Casing Control
	Construct Layout Control
	General Text Layout Control
	Other Formatting Options
	Setting the Source Search Path
	Output File Control
	Other gnatpp Switches

	Formatting Rules
	White Space and Empty Lines
	Formatting Comments
	Construct Layout
	Name Casing

	The GNAT Metric Tool gnatmetric
	Switches for gnatmetric
	Output File Control
	Disable Metrics For Local Units
	Specifying a set of metrics to compute
	Line Metrics Control
	Syntax Metrics Control
	Complexity Metrics Control
	Coupling Metrics Control

	Other gnatmetric Switches
	Generate project-wide metrics

	File Name Krunching Using gnatkr
	About gnatkr
	Using gnatkr
	Krunching Method
	Examples of gnatkr Usage

	Preprocessing Using gnatprep
	Preprocessing Symbols
	Using gnatprep
	Switches for gnatprep
	Form of Definitions File
	Form of Input Text for gnatprep

	The GNAT Library Browser gnatls
	Running gnatls
	Switches for gnatls
	Example of gnatls Usage

	Cleaning Up Using gnatclean
	Running gnatclean
	Switches for gnatclean

	GNAT and Libraries
	Introduction to Libraries in GNAT
	General Ada Libraries
	Building a library
	Installing a library
	Using a library

	Stand-alone Ada Libraries
	Introduction to Stand-alone Libraries
	Building a Stand-alone Library
	Creating a Stand-alone Library to be used in a non-Ada context
	Restrictions in Stand-alone Libraries

	Rebuilding the GNAT Run-Time Library

	Using the GNU make Utility
	Using gnatmake in a Makefile
	Automatically Creating a List of Directories
	Generating the Command Line Switches
	Overcoming Command Line Length Limits

	Memory Management Issues
	Some Useful Memory Pools
	The GNAT Debug Pool Facility
	The gnatmem Tool
	Running gnatmem
	Switches for gnatmem
	Example of gnatmem Usage

	Stack Related Facilities
	Stack Overflow Checking
	Static Stack Usage Analysis
	Dynamic Stack Usage Analysis

	Verifying Properties Using gnatcheck
	Creating Sample Bodies Using gnatstub
	Running gnatstub
	Switches for gnatstub

	Creating Unit Tests Using gnattest
	Running gnattest
	Switches for gnattest
	Project Attributes for gnattest
	Simple Example
	Setting Up and Tearing Down the Testing Environment
	Regenerating Tests
	Default Test Behavior
	Testing Primitive Operations of Tagged Types
	Testing Inheritance
	Tagged Types Substitutability Testing
	Testing with Contracts
	Additional Tests
	Current Limitations

	Generating Ada Bindings for C and C++ headers
	Running the binding generator
	Generating bindings for C++ headers
	Switches

	Other Utility Programs
	Using Other Utility Programs with GNAT
	The External Symbol Naming Scheme of GNAT
	Converting Ada Files to HTML with gnathtml
	Installing gnathtml

	Code Coverage and Profiling
	Code Coverage of Ada Programs using gcov
	Quick startup guide
	Gnat specifics

	Profiling an Ada Program using gprof
	Compilation for profiling
	Program execution
	Running gprof
	Interpretation of profiling results

	Running and Debugging Ada Programs
	The GNAT Debugger GDB
	Running GDB
	Introduction to GDB Commands
	Using Ada Expressions
	Calling User-Defined Subprograms
	Using the Next Command in a Function
	Stopping when Ada Exceptions are Raised
	Ada Tasks
	Debugging Generic Units
	Remote Debugging using gdbserver
	GNAT Abnormal Termination or Failure to Terminate
	Naming Conventions for GNAT Source Files
	Getting Internal Debugging Information
	Stack Traceback
	Non-Symbolic Traceback
	Tracebacks From an Unhandled Exception
	Tracebacks From Exception Occurrences
	Tracebacks From Anywhere in a Program

	Symbolic Traceback
	Tracebacks From Exception Occurrences
	Tracebacks From Anywhere in a Program

	Platform-Specific Information for the Run-Time Libraries
	Summary of Run-Time Configurations
	Specifying a Run-Time Library
	Choosing the Scheduling Policy
	Solaris-Specific Considerations
	Solaris Threads Issues

	Linux-Specific Considerations
	AIX-Specific Considerations
	Irix-Specific Considerations
	RTX-Specific Considerations
	HP-UX-Specific Considerations

	Example of Binder Output File
	Elaboration Order Handling in GNAT
	Elaboration Code
	Checking the Elaboration Order
	Controlling the Elaboration Order
	Controlling Elaboration in GNAT - Internal Calls
	Controlling Elaboration in GNAT - External Calls
	Default Behavior in GNAT - Ensuring Safety
	Treatment of Pragma Elaborate
	Elaboration Issues for Library Tasks
	Mixing Elaboration Models
	What to Do If the Default Elaboration Behavior Fails
	Elaboration for Access-to-Subprogram Values
	Summary of Procedures for Elaboration Control
	Other Elaboration Order Considerations

	Conditional Compilation
	Use of Boolean Constants
	Debugging - A Special Case
	Conditionalizing Declarations
	Use of Alternative Implementations
	Preprocessing

	Inline Assembler
	Basic Assembler Syntax
	A Simple Example of Inline Assembler
	Output Variables in Inline Assembler
	Input Variables in Inline Assembler
	Inlining Inline Assembler Code
	Other Asm Functionality
	The Clobber Parameter
	The Volatile Parameter

	Compatibility and Porting Guide
	Compatibility with Ada 83
	Legal Ada 83 programs that are illegal in Ada 95
	More deterministic semantics
	Changed semantics
	Other language compatibility issues

	Compatibility between Ada 95 and Ada 2005
	Implementation-dependent characteristics
	Implementation-defined pragmas
	Implementation-defined attributes
	Libraries
	Elaboration order
	Target-specific aspects

	Compatibility with Other Ada Systems
	Representation Clauses
	Compatibility with HP Ada 83

	Microsoft Windows Topics
	Using GNAT on Windows
	Using a network installation of GNAT
	CONSOLE and WINDOWS subsystems
	Temporary Files
	Mixed-Language Programming on Windows
	Windows Calling Conventions
	C Calling Convention
	Stdcall Calling Convention
	Win32 Calling Convention
	DLL Calling Convention

	Introduction to Dynamic Link Libraries (DLLs)
	Using DLLs with GNAT
	Creating an Ada Spec for the DLL Services
	Creating an Import Library
	The Definition File
	GNAT-Style Import Library
	Microsoft-Style Import Library

	Building DLLs with GNAT Project files
	Building DLLs with GNAT
	Building DLLs with gnatdll
	Limitations When Using Ada DLLs from Ada
	Exporting Ada Entities
	Ada DLLs and Elaboration
	Ada DLLs and Finalization
	Creating a Spec for Ada DLLs
	Creating the Definition File
	Using gnatdll
	gnatdll Example
	gnatdll behind the Scenes
	Using dlltool

	GNAT and Windows Resources
	Building Resources
	Compiling Resources
	Using Resources

	Debugging a DLL
	Program and DLL Both Built with GCC/GNAT
	Program Built with Foreign Tools and DLL Built with GCC/GNAT
	Debugging the DLL Directly
	Attaching to a Running Process

	Setting Stack Size from gnatlink
	Setting Heap Size from gnatlink

	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

	Index

